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Abstract

The cognitive approach to the development of autonomous vehicles takes inspiration from
human reasoning, and, conversely to the computationalist approach, rejects formulating
fixed mathematical models to describe each possible behavior of vehicles and objects around
them. The computationalist approach indeed has a weakness: developers cannot examine
and mathematically formulate all possible real-world situations that drivers may encounter.
Cognitive approaches provide a solution to this problem, as they suggest that vehicles should
continually learn through experience as humans do, which would allow them to progressively
grasp rare and unexpected behaviors. This thesis mainly addresses the pivotal question of
detecting when some unexpected behavior is occurring - referred to as anomaly detection
- within a cognitive self-awareness framework. The adopted framework is characterized
by several desirable characteristics, such as being Bayesian, hierarchical, multi-sensorial,
data-driven, and interpretable.

A set of modules for anomaly detection and localization of an agent are proposed.
Dynamic Bayesian Networks are used, as they are interpretable probabilistic models allowing
hierarchical representation of variables potentially coming from multiple sensors; moreover,
the links between variables inside Dynamic Bayesian Networks can be learned from data. All
methods in the thesis adopt a filter called the Markov Jump Particle Filter that can be described
through a Dynamic Bayesian Network on a minimum of three levels. When elaborating
image data, Variational Autoencoders are adopted to perform dimensionality reduction
while maintaining a probabilistic representation; novel methods for joining Variational
Autoencoders and Bayesian filters are proposed.

This thesis focuses on the elaboration of vehicular video and odometry data. First, self-
awareness anomaly detection approaches to separately handle video and odometry data are
proposed; then, an approach fusing the two modalities is introduced; the capability to localize
the vehicle is also added.

The proposed methods are evaluated on real-world and simulated data from terrestrial
and aerial vehicles.





Resumen

El enfoque cognitivo para el desarrollo de vehículos autónomos se inspira en el razonamiento
humano y, a la inversa del enfoque computacional, rechaza la formulación de modelos
matemáticos fijos para describir cada posible comportamiento de los vehículos y objetos
alrededor de ellos. En efecto, el enfoque computacional tiene una debilidad: los desarrol-
ladores no pueden examinar y formular matemáticamente todas las posibles situaciones del
mundo real que los conductores podrían encontrar. Los enfoques cognitivos proporcionan una
solución a este problema, ya que sugieren que los vehículos deberían aprender continuamente
a través de la experiencia como hacen los humanos, lo que les permitiría reconocer progresi-
vamente comportamientos raros e inesperados. Esta tesis trata principalmente la question
fundamental de detectar cuándo está ocurriendo algún comportamiento inesperado - definida
como detección de anomalías - dentro de un marco de autoconciencia cognitiva. El marco
adoptado tiene características deseables, como ser bayesiano, jerárquico, multisensorial,
basado en datos e interpretable.

Se propone un conjunto de módulos para la detección de anomalías y localización de
un agente. Se utilizan Redes Bayesianas Dinámicas, ya que son modelos probabilísticos
interpretables que permiten una representación jerárquica de variables potencialmente prove-
nientes de sensores múltiples; además, los vínculos entre variables dentro de las Redes
Bayesianas Dinámicas se pueden aprender de los datos.

Todos los métodos en la tesis adoptan un filtro llamado Filtro de Partículas de Salto de
Markov, que puede describirse a través de una Red Bayesiana Dinámica con un mínimo de tres
niveles. Los datos de imágenes se procesan usando un Autocodificadores Variacionales para
realizar una reducción de dimensionalidad manteniendo una representación probabilística; se
proponen métodos novedosos para unir Autocodificadores Variacionales y filtros Bayesianos.

Esta tesis se enfoca en la elaboración de datos de vehículos de video y odometría. En
primer lugar, se proponen enfoques de detección de anomalías para elaborar por separado
datos de vídeo y odometría; luego se introduce un enfoque que fusiona las dos modalidades;
también se añade la capacidad de localizar el vehículo.

Los métodos propuestos se evalúan con datos del mundo real y simulados, tanto de
vehículos terrestres como aéreos.
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Chapter 1

Introduction

1.1 Motivation

The aim of Autonomous Vehicles (AVs) is to reduce - or remove - the necessity of human
intervention during the execution of the vehicles’ functions. The field of AVs has been
evolving since the 1980s and is anticipated to offer benefits across several domains, including
transportation, agriculture, disaster response, security, and surveillance [238, 59]. Two
main approaches can be identified in the AV field: computationalist and cognitive. The
computationalist approach defines fixed mathematical rules that describe the behavior of both
the vehicle and the agents it interacts with. In contrast, the cognitive approach recognizes the
infeasibility of formulating rules for all possible real-world situations. AVs should instead
continually learn from experience, similarly to what humans do. This approach is, thus,
called “cognitive” because it takes inspiration from human cognition.

A great variety of cognitive architectures have been developed across the last decades
[129]. One relevant concept within the cognitive approach is self-awareness. Self-awareness
can be described as the “capacity of becoming the object of one’s own attention” [162].
Therefore, a self-aware agent directs its attention not solely on the external environment,
but also on its own state. AVs can do this by simultaneously monitoring externally oriented
sensors such as cameras or lidar (named “exteroceptive sensors”), and internally oriented
sensors such as Inertial Measurement Units (IMUs), or sensors that monitor steering, braking,
or wheel speed (named “proprioceptive sensors”).

The approaches proposed in this thesis are based on the cognitive self-awareness frame-
work presented by Regazzoni et al. [183]. This framework is inspired by the work of
neuroscientists such as Friston [173, 74, 73, 77, 13, 76], Haykin [94], and Damasio [45]. Six
necessary capabilities of self-aware systems are identified in this framework: initialization,
memorization, prediction, anomaly detection, new model creation, and decision-making.
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Initialization is the creation of an initial model, whereas memorization refers to retaining
information for future use. Through prediction, the agent can estimate how itself and the
environment will evolve. It can then compare predictions and new observations through
anomaly detection. Predictions that differ from observations warn that something unexpected
has happened and that the available model is not reliable anymore, triggering the creation
of a new model. Finally, during decision-making, the agent chooses the optimal actions to
perform, based on observations and on the available models. Anomaly detection allows for
identifying when a new model should be trained. Through these six capabilities, the agent
is capable of learning new rules that continually emerge from the data. For this reason, the
self-awareness is defined as “emergent” [131, 182]. In this thesis, the first four capabilities
are analyzed, with a special focus on the fourth one, i.e., anomaly detection. It is important to
notice how anomaly detection has many uses outside of the self-awareness context too, such
as fraud detection [161, 100], social media security [79], medical image anomaly detection
[102, 16], video and audio surveillance [168, 15, 181].

This thesis does not address the last two self-awareness capabilities (i.e., new model
creation and decision-making), leaving it for future research. The problem of localization
is instead considered, as it is fundamental for autonomous vehicles, especially in video
surveillance applications.

The framework proposed in [183] was employed for low-dimensional positional [17] and
control [115] data and, subsequently, for high-dimensional lidar data [105]. Image data were
not explored, nor was the combination of a low-dimensional and a high-dimensional sensor.
However, image data are of significance for autonomous cognitive systems because cameras
are cheap, and the representation gained from them is similar to the one elaborated by the
human brain. This representation is rich, but also complex, comprised of millions of features
that are intractable without further processing. Additionally, image content is typically a
highly non-linear function of the system dynamics. Therefore, modeling of image data is
non-trivial.

This thesis builds on the self-awareness architecture proposed by Regazzoni et al. [2] by
exploring its application to image data, by further studying positional data, and by ultimately
fusing the two modalities. The primary objective of the thesis is to develop a self-awareness
model for autonomous vehicles employing image and odometry data. Images are extracted
from a camera that observes the environment and that is mounted on the vehicle; therefore
this type of sensor is exteroceptive. Odometry data can be obtained through different sensors:
for instance, from Global Positioning System (GPS), IMUs, external cameras, or lidar.
Sequential global positioning data carry both exteroceptive information (the location of the
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vehicle in the environment) and proprioceptive information (how the vehicle is speeding,
accelerating, or rotating).

The architecture is designed to take inspiration from human reasoning and, therefore, to
have several bio-inspired characteristics, including being probabilistic, hierarchical, data-
driven, and multi-sensorial. Furthermore, the architecture is also interpretable, which is
a desirable characteristic for AVs. Several concepts inspired from the neuroscientist Karl
Friston are also employed in the proposed approach, such as the concept of Generalized States
(GS) [77, 13], linear attractors [77] and minimization of free energy [76, 173]. GSs cointain
the states per se, their velocities, accelerations and higher-level derivative information. In
this thesis, several methods to predict how the GSs evolve across time are proposed. GSs can
also be clustered, and clusters of GSs identify a specific semantic information: for examples,
if the state corresponds to the vehicle’s position, the GS could contain position and velocity.
A GS cluster includes data with similar position and velocity. The evolution of the GS can
then be also described at a higher hierarchical level as the transition between these clusters.

Dynamic Bayesian Networks (DBNs) are used, as they are probabilistic, interpretable
methods allowing hierarchical modeling of variables. DBNs are a type of Probabilistic
Graphical Model (PGM), graph-based representations that encode causal relationships be-
tween random variables. DBNs also delineate the dynamics of random variables over time.
A key benefit of DBNs lies in their hierarchical structure. They depict causal relationships
between high-level variables, which capture abstract semantic information about the world,
and low-level distributions, which describe raw sensory data from the environment. We
adopt a filter called Markov Jump Particle Filter (MJPF) [17] that can be represented as a
DBN on a minimum of three levels and that combines a set of Kalman Filters (KFs) with a
Particle Filter (PF). However, a DBN cannot be directly employed on high-dimensional data
such as images. Therefore, a method for dimensionality reduction must first be adopted. We
choose to use a Variational Autoencoder (VAE) [122] because it can perform dimensionality
reduction of the images and at the same time maintain a probabilistic representation. Using
the VAE bottleneck, we obtain a Generalized State including information about the image
content and the motion between images. Furthermore, the Growing Neural Gas (GNG)
algorithm [78] is adopted to cluster the Generalized States.

To achieve the above-mentioned prediction capability, the method must be able to predict
how the GSs change over time. In this thesis, several novel possibilities are analyzed
to combine the described models and to perform prediction. First, we explore a method
based only on image data, where the prediction is performed through neural networks
(NNs). Secondly, we examine the case of positional data prediction. Thirdly, we combine
the odometry and image data employing a Kalman Variational Autoencoder (KVAE) [71].
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In the proposed architecture, we guide the learning of the video architecture leveraging
the odometry GS. We call this model Cluster Guided KVAE (CG-KVAE). Indeed, image
content is complex and is a highly non-linear function of the system dynamics, whereas
low-dimensional odometry information is simpler. Therefore, odometry GSs and models can
be employed to aid the training phase of the image models.

Prediction is performed in this case through linear models. We also execute vehicle
localization from the camera images, i.e., Visual-Based Localization (VBL). Two different
ways of fusing image and odometry data are proposed in this approach. In all cases, an
MJPF is adopted when performing prediction and anomaly detection, adapted to each of the
considered cases.

The use of VAEs, KVAEs, and MJPFs allows us to obtain a method with the charac-
teristics mentioned on the previous page, i.e., being probabilistic, hierarchical, data-driven,
explainable, and multi-sensorial. Probabilistic modeling is achieved because VAEs and
MJPFs are probabilistic methods. The MJPF enables the hierarchical modeling of variables.
The VAE and the vocabulary of the MJPF can be learned directly from data, yielding a
data-driven method; the combination of odometry and video data makes it multi-sensorial
too. In addition, DBNs are inherently interpretable models. Further explainability can also
be obtained from the anomalies: each anomaly has a different meaning, and the combination
of detected anomalies can help to identify the cause of the abnormal event.

We evaluate the methods proposed in this thesis on real-world datasets (and one simulated
dataset) from both terrestrial vehicles and Unmanned Aerial Vehicles (UAVs). The terrestrial
vehicles move according to simpler motion patterns and mostly along two directions, whereas
the UAVs can exhibit more complex motions along three dimensions.

To summarize, the main aims of this thesis are the following:

• The development of a self-awareness architecture for autonomous vehicles inspired
from human reasoning, and that incorporates characteristics such as being probabilistic,
hierarchical, data-driven, explainable, and multi-sensorial;

• The use of anomaly detection inside this architecture to identify new rules that continu-
ally emerge from the data and that signal the necessity to build a new model;

• The employement of low and high dimensional data, which should be handled as
homogeneously as possible;

• The localization of the vehicle in the environment, as an additional capability of the
architecture.
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1.2 Thesis Outline

Firstly, Chapter 2 describes some background topics necessary to understand the methods
proposed in this thesis. The concepts and algorithms explored in this chapter can be applied
in many fields and not only for AVs. Some of the concepts treated are general and well-
established, whereas others are more recent and specific. The main topics covered are
DBNs, Bayesian Filters, and VAEs (both static and dynamical). They are fundamental in this
thesis, as all proposed approaches are modelled through DBNs and use the MJPF, which is a
Bayesian Filter; all proposed methods for high-dimensional data employ an evolution of a
VAE. Indeed, the framework underlying this thesis uses DBNs and Bayesian Filters, and is
introduced in Chapter 3.

Chapter 3 analyses the state-of-the-art approaches related to self-awareness for au-
tonomous systems, anomaly detection and Visual-Based Localization, which are the main
fields and applications tackled by this thesis. Therefore, conversely to the Background chap-
ter, this chapter does not consider general methods applicable to many fields, but specifically
examines the AVs field. Concepts such as awareness, self-awareness, and explainability
are introduced, as well as some relevant ideas from the neurosciences. A literature review
of anomaly detection and VBL is provided. Moreover, Chapter 3 presents the framework
adopted in this thesis and the reasons behind its adoption, identifying six capabilities and
five characteristics that are desirable for self-aware systems. These capabilities and charac-
teristics were already described in the introduction, but are examined in detail in Chapter
3. Furthermore, we discuss how they take inspiration from neuroscience concepts. Finally,
other cognitive approaches are presented and compared with the one adopted in this thesis.

Chapter 4 is centered on the extraction, description and analysis of datasets. We
distinguish this chapter from the following ones because of its transitional purpose and more
technical and traditional nature. First, it introduces the experimental setup for a drone and
lidar dataset extraction and it proposes the traditional Signal Processing methods adopted
to perform localization of the drone. Then, it examines all the datasets that are used for
evaluation throughout the thesis. Finally, it discusses in detail characteristics of some of
the used datasets that will be important in later chapters. In the first part of this chapter,
we consider drone localization in indoor environments, which poses a significant issue
due to the unreliability or lack of GPS signal and the impossibility of adopting methods
such as wheel odometry. However, drone positional information is crucial in surveillance
applications. To address this issue, this chapter proposes a method for drone localization that
uses onboard sensors (e.g., camera and IMUs) and ArUco markers placed in the environment.
The positions estimated from Visual Inertial Odometry (VIO) are combined with the ones
from marker detection through a KF. Then, an external lidar sensor is employed to track
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the drone. This latter localization serves as a ground truth for the former one, and for
possible successive elaborations of the positional data. The two estimations are aligned and
synchronized. The method is evaluated using a DJI FLY 2S drone and an Ouster OS1 lidar in
a closed environment.

In Chapters 5 to 8, we then describe the proposed methods, and we display and discuss
the results. Each chapter is dedicated to one approach. The method adopted in Chapter 5
only uses camera data, whereas the one presented in Chapter 6 only employs odometry data.
In Chapters 7, and 8, the combination of camera and odometry data is considered. In all
these chapters except Chapter 8, terrestrial vehicular data are adopted; on the other hand,
Chapter 8 considers both terrestrial and aerial data.

A more detailed explanation of the content of Chapter 5 to Chapter 9 is outlined in the
following paragraphs.

The approach proposed in Chapter 5 combines DBNs and NNs to detect anomalies in
video data at different abstraction levels. We use a VAE to reduce the dimensionality of
video frames. Two versions of the approach are proposed and compared. The first one trains
the VAE only on the video frames and uses the difference between consequent latent states
of the VAE to build the Generalized States. The second method extracts the Optical Flows
(OFs) between subsequent images, and trains the VAE on both the video frames and the
OFs, thus generating a low-dimensional latent space that captures both visual and dynamical
information. In both cases, a novel MJPF extension is employed to predict the successive
frames and detect anomalies in video data. The two methods are compared. Our evaluation
procedure is executed using video data from a semi-autonomous vehicle performing different
tasks in a closed environment. Additionally, tests on benchmark anomaly detection datasets
are conducted.

Chapter 6 tackles the problem of interpretability. It presents an approach for learning
prediction models and detecting anomalies by decomposing the evolution of an agent’s state
into its different motion characteristics, such as the way it is accelerating or oscillating.
Anomaly signals are computed on the different motion parameters, allowing us to better
understand what the cause of the abnormality might be. Notably, when performing anomaly
detection on an autonomous vehicle’s sensory data, it is fundamental to infer the cause of
the possible anomalies. A filter is introduced based on a four-level DBN to increase the
interpretability of the results with respect to previous methods in literature. The proposed
anomaly detection method is tested on data from a real vehicle. We also consider the case
in which multiple models are learned, analyzing how to extract the salient discriminatory
features from each, and use the proposed anomaly detection method to perform driver
behavior classification.
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As we have observed, the combination of different sensory information to predict upcom-
ing situations is an innate capability of intelligent beings. Therefore, Chapter 7 proposes a
method for video-frame prediction and anomaly detection that leverages odometric data. We
adopt a DBN framework, which is combined with the use of Deep Learning (DL) methods
to learn an appropriate latent space. First, a MJPF is built over the odometric data. The
odometry information is clustered, and a set of clusters is obtained. As a second step, the
video model is learned. It is composed of a KVAE modified to exploit the odometry clusters
so that, during learning, it focuses its attention on features related to the dynamic tasks that
the vehicle is performing. We denote the obtained overall model as Cluster-Guided Kalman
Variational Autoencoder (CG-KVAE). Evaluation is conducted using data from a car moving
in a closed environment and leveraging a part of the University of Alcalá DriveSet dataset,
where several drivers move in a normal and drowsy way along a secondary road.

Chapter 8 proposes a method to simultaneously perform anomaly detection and VBL,
within the adopted self-awareness framework for autonomous vehicles, by combining Deep
Learning with traditional Signal Processing approaches. In the proposed method, a DBN
model is learned considering the positional and video data. A modified CG-KVAE is
introduced. In the online phase, a Coupled Markov Jump Particle Filter (CMJPF) is proposed
to simultaneously execute anomaly detection and VBL. The extracted anomalies are used
to improve the localization process, restarting some particles of the Particle Filter when
anomalies exceed a threshold. The method is evaluated on trajectories extracted with the
Carla simulator and on four real-world datasets, including two of the datasets extracted
through the set up and the method proposed in Chapter 4.

Finally, Chapter 9 draws some conclusions about the approaches proposed in the thesis
and discusses future research directions.

1.3 Summary of Contributions

The main contributions of this thesis are summarized as follows:

• The introduction of an anomaly detection approach for image data within a DBN
framework, that allows for anomaly detection at different hierarchical levels, and,
therefore, provides some first insight into the anomaly’s source. Two versions of this
approach are presented and compared (Chapter 5).

• A novel anomaly detection approach for low-dimensional data, that breaks down agent
motion into different directions and parameters to enhance interpretability (Chapter 6).
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• The extension of the low-dimensional data approach to driver behavior classification
(Chapter 6).

• The presented approaches ensure that low levels of the DBN are sensor-specific, while
high levels are treated as uniformly as possible across sensory modalities. In this way,
DBNs of diverse sensors can be joined more easily. Different levels of homogeneity
are reached in the various approaches and are discussed in the thesis.

• The fusion of video and odometry data is consequently performed. A novel fusion
method is proposed, in which the simpler odometry model is used to guide the learning
of the more complex camera model (Chapter 7).

• An alternative fusion model for video and odometry data is introduced, where the
learning of the video model is guided by both video and odometry data (Chapter 8).

• Both fusion approaches are extended to the application of VBL, thus proposing a novel
VBL approach mixing traditional tracking methods and Deep Learning (Chapter 8).

• Different approaches are proposed for combining traditional Bayesian filters, including
the Kalman Filter, Particle Filter, Unscented Kalman Filter (UKF), and MJPF, with
deep learning approaches such as Variational Autoencoders.

• A Signal Processing method is introduced to extract the drone positioning for an indoor
evaluation dataset. This dataset serves as a valuable resource for evaluating anomaly
detection and VBL approaches. Drone camera data and IMU are adopted to self-locate
the drone. The ground truth position is determined by tracking the drone on the lidar
data and by aligning the result with the localization from the drone’s onboard sensors
(Chapter 4).



Chapter 2

Background and Preliminaries

This chapter introduces some background methods and algorithms necessary to understand
the rest of the thesis. These include both more general and well-established concepts
such as DBNs, and more specific and recent algorithms, such as Dynamical Variational
Autoencoders (DVAEs). What is introduced in this chapter is relevant to understanding the
methods mentioned in the State of the Art chapter and the methods proposed in this thesis.
It was chosen to separate the “Background and Preliminaries” chapter from the “State of
the Art” chapter because the former introduces concepts and models applicable in many
fields and for many applications, whereas the latter concentrates specifically on the field
of Autonomous Systems and on the anomaly detection and Localization applications. For
example, in the current chapter, DBNs are introduced, and the basic concepts related to them
are explained. In contrast, Chapter 3 explores how DBNs can be used in a self-awareness
model for Autonomous Systems.

The structure of the current chapter is outlined as follows.
First, we define the difference between discriminative and generative models (Section

2.1) and mention some examples of the latter case. We then focus on Bayesian Networks
(Section 2.2) and, specifically, on DBNs (Section 2.3). DBNs are generative models and their
knowledge is fundamental to understand the framework on which this thesis is based.

Section 2.4 introduces how filters for probabilistic inference can be represented using
DBNs. Some of these filters are discussed: the Kalman Filter (Section 2.4.1), the Extended
Kalman Filter (Section 2.4.2), the Unscented Kalman Filter (Section 2.4.3), and the Particle
Filter (Section 2.4.4). We observe how a Particle Filter and a set of Kalman Filters can be
combined to create an MJPF (Section 2.4.6). This filter will be adopted in the methods
proposed in this thesis and will be modified in order to work in combination with other
models, such as VAEs.
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Finally, Section 2.5 tackles the problem of dimensionality reduction. Indeed, probabilistic
filters such as the MJPF cannot be directly applied on high dimensional data such as camera
data. For this reason, the VAE (another generative model) and DVAEs are analyzed in
Sections 2.6 and 2.7, respectively. A particular DVAE, the Kalman Variational Autoencoder,
is also described in more detail in Section 2.7.1.

2.1 Generative Models

Two types of models can be distinguished in the Machine Learning context: discriminative
models and generative models (GMs) [83]. Discriminative models learn the conditional
probability of a class label given some observed input; this is the case of classifiers. On the
other hand, generative models can learn the underlying hidden distribution of the data they
are trained on and can generate samples from the same distribution.

Bayesian Networks (BNs) are a type of generative model that allow the factorization of
the joint distribution of data through conditional probabilities depending on hidden variables.
Dynamic Bayesian Networks (DBNs) perform this factorization across time [52].

When working on high dimensional data such as images, two of the most commonly used
generative models are Variational Autoencoders (VAEs) [122] and Generative Adversarial
Networks (GANs) [85]. VAEs learn the probability distribution of data explicitly, commonly
assuming a Gaussian or Gaussian Mixture Model distribution. VAEs encode individual
data samples by assuming a Gaussian distribution and representing each sample with both
a mean and a variance. Through sampling from the learned distribution, they can generate
similar data points to the ones they were trained on. Conversely, GANs implicitly learn the
distribution of the data without defining any parameters. VAEs and GANs can additionally
be used inside a DBN to learn the relation between high-dimensional data (e.g., images) and
low-dimensional latent states. This relation corresponds to the so-called observation model.

2.2 Bayesian Networks

Probabilistic Graphical Models (PGMs) are graph-based representations encoding conditional
dependences between random variables [127, 209].

Recent works [167, 227, 20, 9] have demonstrated the usefulness of PGMs for encoding
semantic relationships between random variables. Additionally, relevant research contri-
butions [21, 118, 198] suggest that PGMs are suitable representations for explaining and
factorizing conditional dependences between latent states extracted from data through Deep
Leaning techniques.
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PGMs can be divided into two main classes: Undirected Graphical Models (UGMs)
and Directed Graphical Models (DGMs). UGMs, also known as Markov random fields,
consider systems in which there is no directionality in the relationship between the variables
[51]. Conversely, DGMs, also known as Bayesian Networks (BNs), allow us to model
causal interactions between random variables. A BN is typically represented by two sets of
parameters: the nodes in a BN, which represent random variables, and the directed links,
which represent conditional probability distributions between the connected variables.

A simple example of BN is displayed in Fig. 2.1. Note how the arrows connect node z
to node x and y. The arrows represent the direction of the causality relations. For example,
being z the probability of having rain, and x and y being respectively the probabilities of
the grass being wet and of the rain barrel being full, the causal relationships between z and
x and between z and y are clear. z is called the parent and the conditional probabilities
of x and y with respect to z can be written as p(x|z) and p(y|z). Note that, if we observe
that the grass is wet (i.e., x = True), it becomes more likely that the rain barrel is full.
However, when we know that it has rained (i.e., z = True), the wet grass does not alter our
expectations regarding the rain barrel being full; similarly, a full rain barrel does not affect
our expectations regarding the grass being wet. This means that x and y are conditionally
independent of each other, given z. These conditional independence relationships can be
written as p(x|z,y) = p(x|z) and p(y|z,x) = p(y|z). Each variable is, in fact, conditionally
independent of its non-descendants, given its parents.

𝑥 𝑦

𝑧

Fig. 2.1 Example of a simple Bayesian Network.

A BN represents a probability distribution over all the variables. Supposing a general
case in which we have N random variables xi, with i = 1 . . .N, a generic entry in the
distribution represents the probability of having a particular value for each variable, e.g.,
p(x1 = v1, . . . ,xN = vN). The probability value of this entry can be found through the formula
[192]:

p(x1 = v1, . . . ,xN = vN) =
N

∏
i=1

p(vi|parents(xi)), (2.1)

where parents(xi) denotes the specific values of the parent nodes of variable xi.
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In the case displayed in Fig. 2.1, this becomes p(x,y,z) = p(z)p(x|z)p(y|z).
It should be noted how conditional independence relationships simplify the computation

of the probability distribution over the graph, as they correspond to missing links. The graph
is, therefore, not fully connected, as it would otherwise be, and the computations are fewer.

2.3 Dynamic Bayesian Networks

A particular type of BN, namely, a DBN [80], describes dynamic processes that incorporate
changes through time. It is a Directed Acyclic Graph containing directed links between the
involved variables, not allowing loop cycles.

DBNs can decompose data with complex and non-linear dynamics into segments that
are explainable by simpler dynamical units. One of the main advantages of DBNs concerns
their potential hierarchical nature: a DBN allows us to formulate in a simple way the causal
relationships present at each time instant between high-level variables (capturing abstract
semantic information) and low-level distributions (capturing rough sensory information).
DBNs that have a hierarchical structure are called Hierarchical Dynamic Bayesian Networks
(HDBNs). Accordingly, at each time instant, i.e., in a DBN’s slice, causal relationships
between variables are encoded through inter-slice links. Additionally, DBNs also model how
random variables change over time; this information is encoded in temporal links. Fig. 2.2a
and 2.2b show a DBN representation consisting of two and three hierarchical variable levels,
respectively. These two DBNs will be referenced in the next sections, showing examples of
how they can be implemented.

𝑃(𝑥𝑡|𝑧𝑡)

𝒙𝒕 𝒙𝒕+𝟏

𝒛𝒕 𝒛𝒕+𝟏

𝑃(𝑥𝑡+1|𝑧𝑡+1)

Time t Time t+1

Inter-slice links

Intra-slice links

𝒛𝒕−𝟏

𝒙𝒕−𝟏

Time t-1
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(a)

𝑃(𝑥𝑡|𝑧𝑡)

𝒙𝒕 𝒙𝒕+𝟏

𝒛𝒕 𝒛𝒕+𝟏

𝑃(𝑥𝑡+1|𝑧𝑡+1)

Time t Time t+1

𝒛𝒕−𝟏

𝒙𝒕−𝟏

Time t-1

𝑃(𝑧𝑡|𝑆𝑡)

𝑺𝒕

𝑃(𝑆𝑡+1|𝑆𝑡)

𝑺𝒕+𝟏

𝑃(𝑧𝑡+1|𝑆𝑡+1)

𝑺𝒕−𝟏

𝑃(𝑧𝑡+1|𝑧𝑡)

(b)

Fig. 2.2 A 2-level DBN (a) and a 3-level DBN (b). The links highlighted in red are inter-slice
links, and the ones in blue are intra-slice links.

As described above for BNs, the nodes represent variables (e.g., xt , zt , St), and the links
represent conditional dependences between them (e.g., P(xt |zt), P(zt |St), P(zt+1|zt)). The
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low-level variable (xt) corresponds to sensory observation. In contrast, higher-level variables
capture increasingly more conceptual information.

In this thesis, stationary DBNs are considered. The stationarity condition supposes that
the same probabilistic relationships hold between each couple of subsequent time instants
t and t +1 [186]. We can distinguish two types of links in the figure: inter-slice links and
intra-slice links. Inter-slice links define relationships between variables at distinct time
instants, whereas intra-slice links define relationships between variables at the same time
instant.

In Fig. 2.2, we also display in lighter color the slice at time t−1. However, recall from
Section 2.2 that, in these networks, variables are conditionally independent of their non-
descendants given their parents. Consequently, taking the DBN in Fig. 2.2a as an example,
the state zt+1 depends on the state at the previous time instant, i.e., zt . It is conditionally
independent of zt−1, xt−1 (and of xt), given zt , i.e., the past and future are conditionally
independent, given the present. This is called the Markov property (or Markov condition).

Learning a DBN consists of parameter learning and structure learning. The former is
the process of learning the distributions for a certain structure, whereas the latter entails the
identification of the optimal topology for a DBN, determining which variables should be
included and how they are interconnected [142].

2.4 Probabilistic Inference

Now that the fundamental theory about DBNs has been covered, we can observe how DBNs
can be used to represent the filtering process of the state of an agent. The state is a vector
that could, for example, contain odometry information of the agent such as its position and
speed, or a compressed representation of what the agent is seeing in the environment. In
this thesis, Generalized States (GS) are considered, which will be introduced in Chapter
3. It is important to remark that the hidden state is not directly observable but is obtained
from observations. When dealing with odometry data from a vehicle, the observations could
contain position, velocity, acceleration, and higher-level derivatives. Tracking the state of
an object means predicting how the state evolves and correcting this prediction through the
newly obtained observations. This process can therefore be performed through two steps:
prediction and update. In the prediction phase, the state zt of an object at time t is estimated
based on the transition probability P(zt |zt−1) and given all the observations until step t−1
(X1...t−1) [192]:

P(zt |X1...t−1) =
∫

P(zt |zt−1)P(zt−1|X1...t−1)dxt−1 (2.2)
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As it can be observed, a marginal is calculated over all the possible values of the state at
time t−1.

When the new observation xt is obtained, the update phase is performed, i.e., the predic-
tion is corrected based on the observation [192]:

P(zt |X1...t) = P(zt |X1...t−1,xt) = (2.3)

= αP(xt |zt ,X1...t−1)P(zt |X1...t−1) = (2.4)

= αP(xt |zt)P(zt |X1...t−1) (2.5)

In 2.3, the evidence X1...t is divided into two parts. In 2.4 Bayes law, P(x|y) = P(y|x)P(x)
P(y) ,

is applied. In 2.5 the Markov property is used. α is a a normalizing constant introduced so
that the probabilities sum to 1.

At a time instant t, P(zt |X1...t−1) is called the prior, P(xt |zt) is the likelihood and
P(zt |X1...t) the posterior. The objective of Bayesian filtering is finding the posterior. At the
next time instant, t +1, the posterior in t serves as the new prior.

Different types of filters can be employed for performing state estimation. The most
commonly used ones are the Kalman Filter (KF), the Extended Kalman Filter (EKF), the
Unscented Kalman Filter (UKF), and the Particle Filter. The KF is optimal in linear systems
with Gaussian noise, whereas the other three filters are used when these conditions are not
satisfied. In the methods proposed in this thesis, KF, UKF, and PF are employed. These
filters are briefly introduced in the following sections. Particular attention is provided in
describing them, as the corresponding formulas will be recalled again throughout the thesis,
and in particular in Chapter 5. Conversely, the EKF is only briefly described.

It must be noticed that not only the state could be estimated: higher-level semantics could
be considered too, as, for example, the movement of an object from a zone of the state space
to another one. This type of estimation is consequently considered in Section 2.4.5, and a
fundamental filter for this thesis, the Markov Jump Particle Filter (MJPF), is introduced.

2.4.1 Kalman Filter

The KF is a state estimation filter first introduced in 1960, and initially used for monitoring
the position and velocity of an orbiting vehicle [87]. The Kalman Filter is optimal when two
conditions are satisfied: i) the system is linear and ii) the noise is Gaussian.

If the model is linear and the noise Gaussian, we can define it through these two relations:
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• The observation model, which connects at each time instant t the observed variable
xt with the state variable zt through the use of a linear observation matrix H and a
Gaussian zero-mean observation noise wt with covariance R:

xt = Hzt +wt (2.6)

• The transition model, which relates the state vector zt−1 at time t−1 with the state
vector zt at time t:

zt = Azt−1 +But−1 +nt−1 (2.7)

where A is the linear transition matrix mapping the state at time t−1 onto the state at
time t; B is a linear control input model mapping an optional control input ut−1 onto
the state at time t; nt−1 is a Gaussian zero-mean prediction noise with covariance Q.

The prediction and update phases of the Kalman Filter are consequently performed as
described in the following paragraphs. It must be noticed that not only the mean value of the
state must be predicted and updated but also the covariance of it. A covariance estimation Σ

is therefore defined too. This is because, under the considered assumptions, the variables in a
Kalman Filter are Gaussian.

Prediction The mean and covariance of the state are predicted through the following
equations:

zt|t−1 = Azt−1|t−1 +But−1 (2.8)

Σt|t−1 = AΣt−1|t−1AT +Q (2.9)

Update The new observation zt is obtained and the mean and covariance of the state are
updated based on it. The estimation is updated by measuring the difference between the
prediction and the observation. This difference is called innovation and is defined as:

vt = xt−Htzt|t−1 (2.10)

The innovation also has a covariance given by:

St = HΣt|t−1HT +R (2.11)

Combining the covariance of the innovation and of the prediction, a matrix called Kalman
Gain is obtained:

Kt = Σt|t−1HT S−1
t (2.12)
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The Kalman Gain is used as a weight for the correction of the estimation. The values in
the Kalman Filter are high when there is high confidence in the sensorial data (i.e., the
observation) and low confidence in the prediction. This case leads to a high correction of
the prediction according to the observation. In the opposite case, the correction is smaller.
Therefore, the update is performed according to the following equations:

zt|t = zt|t−1 +Kt(xt−Hzt|t−1) (2.13)

Σt|t = Σt|t−1−KtStKT
t = [I−KtH]Σt|t−1 (2.14)

A KF can be represented through a DBN like the one in Fig. 2.2a. The prediction phase
corresponds to the link P(zt+1|zt), whereas the observation phase corresponds to the link
P(xt |zt). The EKF, UKF and PF can also be represented with the same DBN.

It can be noticed that the Signal Processing community typically uses “x” to represent the
latent state of a KF and “z” to represent the observation. However, “z” is also typically used
to represent the latent state of a VAE [122]. Consequently, we choose this second notation to
represent the continuous latent state of any DBN model, and adopted it throughout the entire
thesis for consistency.

The Null Force Filter A particular type of KF is the Null Force Filter (NFF), also called
Unmotivated Kalman Filter [104]. It is a Generalized Filter (a concept that will be better
explored in Chapter 3), in which the state is composed of L variables and their derivatives. If
we stop at the first-order time derivative, the state has dimension 2L (think, for example, of
position and velocity). The NFF consists of a KF that has no control input matrix B (see Eq.
2.7) and has a transition matrix defined as:

A = [A1A2] (2.15)

with A1 = [IL0L,L]
⊺ and A2 = [0L,L0L,L]

⊺, where IL is an identity matrix of dimension L; and
being 0L,L a matrix with L columns and L rows containing only zeros.

This filter, therefore, in the case of positional data, supposes that the object does not
move and keeps having null speed.

As already observed, the KF is optimal when the observation and transition model are
linear. When these hypothesis are not verified, the EKF, UKF and PF can provide better
results.
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2.4.2 Extended Kalman Filter

Let us consider the case in which the observation and prediction model are defined by the
following equations:

xk = h(zt)+wt (2.16)

zt = f (zt−1)+nt−1 (2.17)

where h and f are non-linear functions.
The solution provided by the EKF proposes to linearize the non-linear models around the

last estimated value of the state and then to apply the normal KF steps [184]. This means
that, at each time instant t, during prediction, Eq. 2.17 is linearized around zt|t and then the
prediction step is performed to obtain zt+1|t and Σt+1|t ; during update, Eq. 2.16 is linearized
around xt+1|t and consequently the update step is performed to obtain zt+1|t+1 and Σt+1|t+1.
The EKF is not explored further, as the more recent UKF allows us to obtain better accuracy.
We instead concentrate on this second filter.

2.4.3 Unscented Kalman Filter

The UKF was first proposed in [221] as an alternative and more accurate solution to the
EKF. The idea behind the UKF is to select a set of carefully chosen sample points (called
sigma points) of the state distribution that completely capture the mean and covariance of
the estimated state, and to propagate them in the non-linear model. These propagated points
capture the posterior mean and covariance to the 3rd order (of the Taylors series expansion).

If an L-dimensional state vector is considered, 2L+1 sigma points are propagated, each
associated with a weight W i. Considering, for example, the prediction phase, if the estimated
state zt|t at time t can be defined through a mean z̄t|t and covariance Σt|t , the sigma points and
the corresponding weights are defined by the following equations [221]:

z0
t|t = z̄t|t

zi
t|t = z̄t|t +(

√
(L+λ )Σt|t)i i = 1...L

zi
t|t = z̄t|t− (

√
(L+λ )Σt|t)i−L i = L+1...2L

W 0,m =
λ

L+λ

W 0,c =
λ

L+λ
+(1−α

2 +β )

W i,m =W i,c =
1

2(L+λ )
i = 1...2L
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where λ = α2(L+ k)−L is a scaling parameter. Here, α determines the spread of the sigma
points around z̄t|t and is typically set to a small value (e.g., 1e-3). k is a secondary scaling
parameter typically set to 0, while β = 2 for Gaussian distributions.

When these sigma points are propagated through the non-linear function f , the newly
obtained points can be defined as:

zi
t+1|t = f (zi

t|t) (2.18)

and can be used, together with the weights W i, to approximate the mean and covariance
of the predicted state:

z̄t+1|t =
2L

∑
i=0

W i,mzi
t+1|t (2.19)

Σt+1|t =
2L

∑
i=0

W̃ i,c{zi
t+1|t− z̄t+1|t}{zi

t+1|t− z̄t+1|t}⊺ (2.20)

2.4.4 Particle Filter

We have seen that, in both EKF and UKF, the posterior probability density function was ap-
proximated through the two parameters of a Gaussian distribution, i.e., mean and covariance.
Conversely, the PF is a non-parametric posterior estimator: the posterior is approximated by
a set of particles, where each particle has a weight assigned to it [58].

If a PF with a number N of particles is defined, during the initialization of the estimation
process, each particle is given a weight 1

N . As new observations are obtained, the weights
of each particle are recalculated (reweighting) based on the particle’s likelihood given the
observation. A high weight is assigned to particles that reflected more the actual data, while
particles that performed a bad prediction are given a low weight. A resampling is then
performed: particles having a low weight are eliminated, while particles with a high weight
are replicated. After resampling, all the N particles have again a weight of 1

N . This process is
defined as sequential importance resampling (SIR). Resampling is executed to avoid particle
degeneracy. This happens when, after some iterations, one particle weight takes a value close
to one, whereas all the other particle weights are close to zero. However, frequent resampling
- for example at each iteration - can lead to particle impoverishment: samples do not diversify
and collapse into a single point in the state space. This can be avoided by resampling in a
controlled way. A common way to determine if particle degeneracy is present consists in
evaluating the effective sample size Ne f f :

Ne f f =
1

∑
N
i=1(wi)2

(2.21)
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where wi is the weight assigned to the i-th particle.
Resampling can then be performen when Ne f f is below a defined threshold. This means

that resampling occurs when a limited subset of particles, with their combined weights,
disproportionately contributes to the overall total weight (see [58] for further details about
the PF).

2.4.5 Switching Models

In the previous sections, we only considered state estimation filters with a single hidden state
level. These filters can be represented with the DBN in Fig. 2.2a. However, an additional
hierarchical level could be added: not only the instantaneous state of an object could be
predicted but also additional symbolic information regarding the object itself. In the case of
odometry data tracking, this could be, for example, information related to the areas where
an object is moving and the type of motion that it is performing. Here, the state space can
be clustered in areas having similar position values and velocity values, i.e., clusters or
superstates. Therefore, it is possible to track across time how the object moves from one
superstate to the next ones.

DBNs that allow considering more hierarchical levels are called mixed-state DBNs,
and the corresponding learned models are known as switching models. These models are
named like this because the prediction model at the state level changes when switching
from one superstate to another one. Typically, two types of switching models are used: the
Markov Jump Linear Model (also known as Markov Jump Particle Filter) [17] and the Rao
Blackwellized Particle Filter [54]. The first one is employed for linear systems with Gaussian
noise, the second one for non-linear systems with non-Gaussian noise. In this thesis, we
focus on the MJPF.

2.4.6 Markov Jump Particle Filter

In this section, we briefly discuss the basics of an MJPF.
The MJPF synthesizes a three-level DBN as the one displayed in Fig. 2.2b : the evo-

lution of the continuous state zt related to a sensor observation xt is tracked on the lower
level, whereas discrete variables St are used to switch from one linear dynamical model for
continuous state prediction to another one.

The relationship between the observation zt and xt is described by the observation equation
of the KF (Eq. 2.6). The dynamical model, used to perform prediction at the continuous
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level, is defined by the transition equation of the KF (Eq. 2.7) as:

zt+1 = Azt +BU (St)+nt , (2.22)

where Azt takes the state-space information from zt and makes its time derivatives null.
BU (St) encodes the time derivative information (actions) of the agent at time t. U (St) depends
on the variable St , which corresponds to the active discrete state at the time t. The variable nt

is a zero-mean Gaussian distribution representing the noise of the dynamical modeling.
During the online filtering phase, the MJPF uses a set of KFs at the continuous state level,

which follow Eq. 2.6 (update phase) and Eq. 2.22 (prediction phase), and a PF at the discrete
level.

Again, the same two phases observed for the other aforementioned filters mentioned
above can be identified and performed at each time instant t:

• The prediction phase. During this phase, the filter estimates the state and superstate at
the next instant.

• An update phase. The new measurement is used for updating the state and superstate
prediction.

We will see more in detail how an MJPF can be built and used for filtering and anomaly
detection in Chapter 3. Note that the MJPF allows switching between different dynamical
models. It is, thus, a Switching Linear Dynamical System (SLDS).

2.5 Dimensionality Reduction

As mentioned in the Introduction, this work considers a multi-modal autonomous vehicle
framework. This means that low-dimensional data (e.g., odometry data or steering wheel
angle) are combined with high dimensional data (e.g., video frames from a camera mounted
on the vehicle). In this thesis, this second type of information is mostly taken into consider-
ation. Therefore, a dimensionality problem arises, as it is not possible to apply the MJPF
directly on the single image pixels. Instead, it is necessary to transform the high-dimensional
problem into a low-dimensional one by using an encoding algorithm. An approximation of
the original image could then be obtained from this encoding step.

As seen in Section 2.1, generative models learn the probability distribution of the training
data and generate new data with possible variations compared to the training ones. When
dealing with images, two commonly used generative methods are Variarional Autoencoders
(VAEs) [122] and Generative Adversarial Networks (GANs) [85]. Since VAEs, differently
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from GANs, explicitly learn the data distribution, they can be more naturally inserted in a
framework that uses DBNs.

2.6 Variational Autoencoder

σ2

 µ

𝑧𝑥
𝐸𝑛𝑐𝑜𝑑𝑒𝑟
𝑞𝜃(𝑧|𝑥)

𝐷𝑒𝑐𝑜𝑑𝑒𝑟
𝑝𝜑(𝑥|𝑧) ො𝑥

Fig. 2.3 General structure of the VAE.

In its vanilla version, a VAE is composed of an encoder qθ (z|x) and a decoder pφ (x|z),
that can be estimated through the learning process of the VAE on training data. Through θ

and φ , we define the parameters of the encoder and decoder, respectively. The encoder qθ (z|x)
allows representing each sample x fed into it through two bottleneck features, i.e., a mean µ

and a variance σ2. On the other hand, the decoder pφ (x|z) synthesizes an observation x from
a latent state z sampled from a Gaussian distribution N (µ,σ2) with mean µ and a variance
σ2. Therefore, the former allows the reduction of dimensionality of the observations (i.e.,
image data) and the application of anomaly detection at a low-dimensional state level; instead,
the latter allows obtaining again high-dimensional data and applying anomaly detection at
the observation level. Note that, in Fig. 2.2, the VAE can be seen as an observation model
P(xt |zt).

The learning phase of the VAE is conducted to optimize the parameters θ and φ , max-
imizing the sum of the lower bound on the marginal likelihood of each observation x of a
dataset D, as described in [122, 123]:

Lφ ,θ (D) = ∑
x∈D

Lφ ,θ (x), (2.23)

where Lφ ,θ (x) is defined as:

Lφ ,θ (x) =−DKL(qθ (z|x)||pφ (z))+Eqθ (z|x)[logpφ (x|z)], (2.24)
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where the term DKL is the KL divergence. Therefore, the first term measures the difference
between the encoder’s distribution qθ (z|x) and the prior pφ (z); the prior typically being a
standard normal distribution N (0,1). The second term is the expected log-likelihood of the
observation x and forces the VAE to reconstruct the input data.

In this thesis, the VAE is used to encode the input information in a significant lower-
dimensional space that exhibits probabilistic properties. As observed in Section 2.1, VAEs
can be integrated inside a DBN model, when the observation model P(xt |zt) has to be learned.

2.7 Dynamical Variational Autoencoders

VAEs were initially developed without including temporal correlation, meaning that each
data vector and the corresponding latent vector at a certain time instant t were processed
independently from the following time instants. Consequently, studies regarding VAEs were
extended and applied to many complex Deep Dynamic Bayesian Networks (DDBNs) to
model sequential data exhibiting temporal correlation. These DDBNs embedded in the
VAE framework are Dynamical VAEs (DVAEs), that is, VAEs including a temporal model
for sequential data. As described in [82], the DVAE model must contain two fundamental
relationships:

• Decoding link: zt is a parent of xt . This link depicts the hierarchical nature of DVAE.
This corresponds to what we called an observation model.

• Temporal link: at least one element in Z1...t−1 or in X1...t−1 is parent to either zt or xt .
If the link is between zt−1 and zt , it corresponds to what we called a transition model.

Various DVAE models have lately been proposed [71, 18, 40, 19, 133, 72, 139, 145].
Among them, the Kalman Variational Autoencoder (KVAE) by Fraccaro et al. [71] is adopted
in Chapters 7 and 8 of this thesis.

There are several reasons for choosing the KVAE in our work instead of other methods.
Firstly, the method in [110] was tested only on simple data and the training procedure was
observed to be slow. Therefore, we opted to exclude this model. Secondly, methods such
as [18, 40, 72, 139, 145] employ Recurrent Neural Networks (RNNs) or fully connected
NNs to model the temporal link, whereas in Chapter 8 we desire a piece-wise linear model.
Approaches adopting a combination of linear models, such as [71] and [19] can be modified
to work as piece-wise linear models. The final choice of the KVAE was based on one further
advantage that it presents: its disentanglement capability. The KVAE combines a VAE and
a KF and separates the latent states in two levels of abstraction. The first level relates to
the content of the images, whereas the second one relates to the dynamics between images,
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thus proposing a disentanglement of the video information. This capability is in line with
one of the characteristics of our framework that we will discuss in the next chapter, i.e., its
interpretability. Therefore, as the KVAE is used in our method, Section 2.7.1 describes it.

2.7.1 Kalman Variational Autoencoder

The study in [71] examines the application of prediction models for linear video sequences
and introduces the KVAE. It performs unsupervised learning to separate two different levels
of abstraction. For each input frame xt at time instant t, the following latent representations
are defined: i) a continuous level at representing the content of the images, as output from the
VAE and as input for a Bayesian Filter with linear Gaussian models; ii) another continuous
level zt representing the motion between consequent images. These lead to the DBN in Fig.
2.4.

𝑷(𝒙𝒕|𝒂𝒕)

𝑷(𝒛𝒕|𝒖𝒕)

𝑷(𝒂𝒕|𝒛𝒕)

𝑷(𝒙𝒕+𝟏|𝒂𝒕+𝟏)

𝑷(𝒛𝒕+𝟏|𝒖𝒕+𝟏)

𝒙𝒕 𝒙𝒕+𝟏

𝒛𝒕+𝟏
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Fig. 2.4 The DBN corresponding to the KVAE proposed in [71].

The links between at and xt are represented by the encoder qθ (at |xt) and by the decoder
pφ (xt |at) of a VAE, respectively. The content-related state at is linked to the motion-related
state zt through the following pseudo-observation model:

at =
K

∑
i=1

α
(i)
t ∗Ci ∗ zt + vt (2.25)

whereas zt at following time steps are connected through the dynamical model:

zt+1 =
K

∑
i=1

α
(i)
t ∗Ai ∗ zt +

K

∑
i=1

α
(i)
t Bi ∗ut +ωt (2.26)

The matrices {Ci}i=1...K , {Ai}i=1...K , {Bi}i=1...K represent a set of pseudo-observation
models C, of transition models A, and a set of control matrices B, respectively, as defined in
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the traditional Kalman Filter equations. Here, ut represents an optional control input. In [71]
and [117], for example, the case of a torque-controlled pendulum is considered, where the
angle acceleration - proportional to the applied external torque - corresponds to the control
input. Models A, B and C are combined through a vector of probabilities αt .

Non-linearities in the latent space of image sequences are tackled by introducing an
RNN with Long Short-Term Memory (LSTM) cells, that non-linearly updates network
parameters over time, i.e., dt = LST M(at−1,dt−1). The output of the LSTM, sent to a
softmax function, generates the probabilities used to select the combinations of models
Ai,Bi,Ci, i.e., αt = so f tmax(dt).

2.8 Conclusions

To conclude, in this chapter, we have analysed some concepts and algorithms that form the
basis of this thesis.

Firstly, these concepts and algorithms are necessary to understand the State of the
Art chapter, which will discuss self-awareness for Autonomous Systems. The framework
adopted in this thesis, presented in Chapter 3, is based on DBNS, and on generative models
in general. Moreover, in the self-awareness context, we will propose anomaly detection
systems, that often adopt generative models such as VAEs. Consequently, generative models
will be referenced throughout the other chapters of the thesis too. A representation based
on DBNs is adopted, coherently with the framework underlying this thesis. Furthermore,
VAEs are adopted, as this thesis mainly focuses on camera data, and VAEs allow performing
dimensionality reduction while keeping a probabilistic representation. The KF, the UKF,
MJPF, the VAE and the KVAE are employed, modified, and combined in the methods
proposed from Chapter 5 to Chapter 8.



Chapter 3

State of the Art

This chapter describes the relevant state of the art in the context of this thesis. In Section
3.1, we begin by outlining the evolution of autonomous systems and their intersection with
the concept of self-awareness. Then, we discuss the framework underpinning this thesis,
elucidating its neurobiological inspiration and principal capabilities in Sections 3.2 and 3.3,
respectively. In these two sections, we identify and discuss six basic capabilities and five
characteristics that self-awareness frameworks should possess. As some of these capabilities
and desiderata cover topics that have been tackled by many researchers, further details
are provided in two sections: Sections 3.4 and 3.6 provide a literature review of anomaly
detection and Visual-Based Localization (VBL), respectively; Section 3.5 defines what
interpretability and explainability are.

After the objectives and capabilities of our analyzed framework have been introduced,
the framework is described in deeper mathematical detail in Section 3.7.

Finally, in Section 3.8, we compare the adopted framework with other related ones, and
elucidate the rationale behind the choice of this framework. The choice is based on the
desiderata that we identified in preceding sections, and which either draw inspiration from the
functioning of the human brain or are deemed advantageous for a self-awareness framework.

To summarize, this chapter provides a discussion of the framework at the base of this
work, a description of some related systems, and a review of underlying topics such as
anomaly detection, Visual-Based Localization, and interpretability.

Throughout this chapter, while presenting methods and discoveries from the state of the
art, we also discuss extensively how they are connected to the adopted framework, and to the
methods proposed in this thesis.
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3.1 The Autonomous Vehicles field and self-awareness

Autonomous vehicles are vehicles designed to diminish or entirely eliminate the need for
human intervention in the execution of their tasks. Fully autonomous cars are anticipated
to yield numerous benefits, including a reduction in traffic incidents, alleviation of traffic
congestion, and a decrease in emissions [238]. Additionally, they offer enhanced transporta-
tion options for individuals with limited mobility, for the elderly, and for people without a
driving license [238]. Beyond transportation, many other applications are of relevance for
autonomous vehicles, either terrestrial or aerial. Video surveillance and fault detection can
benefit from the use of autonomous vehicles, which can monitor areas such as buildings or
ships [32]. Among many other application examples, autonomous drones are adopted in
agriculture to inspect the soil and crop growth, in Search and Rescue operations to localize
survivors and deliver aid kits, in weather forecasting, and in traffic monitoring [59]. While
this thesis and the underpinning framework are not limited to a specific application, the field
of video surveillance is the most direct beneficiary of the methods described herein.

The field of autonomous cars has started to develop in the 1980s. Some important
examples of these first self-driving research platforms were the NavLab vehicles developed
by Carnegie Mellon University. NavLab 5 drove through America in a test, called the “No
Hands Across America”, in which the vehicle navigated autonomously 98 % of the time,
while human operators controlled the throttle and brakes [6]. An important thrust to the
field of Autonomous cars was provided by the three “Grand Challenges” organized between
2004 and 2007 by the U.S. Defense Advanced Research Projects Agency (DARPA). The
cars competing in these challenges had to drive autonomously in real driving situations
across 240 km, 212 km and 96 km, respectively. The first two challenges took place in
non-urban areas, whereas the third one took place in a simulated urban area with other cars
but with no pedestrians. No team completed the first challenge (2005), but five and six teams
completed the second and third one, respectively [11]. These challenges and other ones
(e.g., [60, 27, 31, 108, 28]) spur the development of autonomous cars [6]. Moreover, in
the 21st century, other factors have accelerated AV research, such as the advancements in
computer vision brought by the development of Deep Learning, and the adoption of new
sensory modalities, like lidar [238]. In these last decades, drones have changed from being
used for primarily military purposes to being adopted for commercial applications [205].

Amidst this growing interest in autonomous vehicles, researchers in this field have pro-
posed two main approaches: computationalist and cognitive [156]. The former formulates
fixed mathematical models to describe the behavior of the vehicles and objects around them,
while the latter takes inspiration from human reasoning. The computationalist approach,
however, has a weakness: developers cannot examine and mathematically formulate all
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possible real-world situations that drivers may encounter. Cognitive approaches provide
a solution to this problem, as they suggest that vehicles should continually learn through
experience as humans do, which would allow them to progressively grasp rare and unex-
pected behaviors. The human brain has consequently been a source of inspiration for the
development of artificial agents such as autonomous vehicles.

Some cognitive architectures are based on the concepts of awareness and self-awareness.
Awareness relates to the knowledge that an agent, whether biological or artificial, has of the
surrounding environment; in contrast, self-awareness is associated with the consciousness
that the agent has of its own state. Self-awareness is a broad concept derived from neuro-
science and several interpretations of it exist [56]. Lewis et al. state that “self-awareness is
concerned with the availability, collection, and representation of knowledge about a system,
by that system” [141], whereas Morin et al. defines self-awareness as the “capacity of
becoming the object of one’s own attention” [162]. In their book about self-aware computing
systems [130], Kounev et al. define self-aware computing systems as systems with two main
characteristics. Firstly, these systems “learn models capturing knowledge about themselves
and their environment (such as their structure, design, state, possible actions, and runtime
behavior) on an ongoing basis”. Secondly, they “reason using the models (e.g., predict,
analyze, consider, and plan) enabling them to act based on their knowledge and reasoning
(e.g., explore, explain, report, suggest, self-adapt, or impact their environment) in accordance
with higher-level goals, which may also be subject to change”.

Following from these definitions, a self-aware agent focuses not only on the external
environment but also on the evolution of its own state. For example, a person driving down a
street is aware of her surroundings through her eyes and is also self-aware of how much force
she exerts on the steering wheel when performing a curve, which allows her to adjust her
movements and the impressed force based on what she sees. This concept can be applied to an
artificial agent too, such as an autonomous car performing the same curving movement. The
car must be equipped with a camera sensor to monitor its surroundings and a steering sensor
to track its own state. Accordingly, two types of sensors can be distinguished: i) exteroceptive
sensors to reach situational awareness, such as external cameras; ii) proprioceptive sensors to
gain self-awareness, such as a steering wheel sensor in a vehicle. Through their situational and
self-awareness capabilities, these agents can recognize the experience they are encountering
from a set of learned experiences; this knowledge consequently forms the basis of conducting
a decision-making step and perform an action, impressed on the environment through a set of
actuators. The ongoing (or continual) learning of new models is also an important element
of self-aware systems.
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In their work [183], Regazzoni et al. proposed a cognitive framework based on the
concepts of awareness and self-awareness. The work presented in this thesis is based on this
framework.

It is worth mentioning that systems for AVs are typically divided into two main blocks:
the perception system and the decision-making system. The former has the objective of using
the sensory input to create an internal representation of the environment (and of the vehicle’s
state), whereas the latter is responsible for guiding the vehicle to its final goal [11]. Whereas
the full framework includes both modules, this thesis only proposes methods for the first one.

3.2 The neurobiological inspiration behind the adopted self-
awareness framework

Since this thesis is based on the cognitive self-awareness framework by Regazzoni et al.
[183], relevant neurobiological theories and concepts that worked as inspiration are discussed
in this section. First, we describe the idea of the brain as a “predictive machine” (Section
3.2.1). Then, taking into consideration this idea, we comment on some concepts from the
work of neuroscientist Karl Friston that are relevant to this thesis (Section 3.2.2). Finally, we
explore some further discoveries of neuroscience that work as important indicators on how
to develop a bio-inspired artificial agent (Section 3.2.3).

3.2.1 The brain as a probabilistic prediction machine

From the second half of the last century, the idea of the brain as a “predictive machine” has
taken hold in the neuroscience field. According to this idea, perception is not merely the
reading of sensory input, but is the combination of these sensory inputs with the brain’s
expectations and beliefs about their causes [200]. As a consequence, the brain is a machine
that continuously makes predictions about the evolution of the state of the world and of itself,
and matches these predictions with the corresponding observations. What humans feel is the
brain’s “best guess” of the causes of the received sensory inputs [200].

Although it took hold in neuroscience only in the last decades, the idea of perception as
an indirect reflection of the real state of the world dates back millennia in its first glimmers,
as it can be found in Plato’s Allegory of the Cave [177]. Physicist and physiologist Hermann
von Helmholtz, in the late nineteenth century, defines perception as “unconscious inference”
[171] and psychologist Richard Gregory, in the 1970s, as a “neural hypothesis-testing” [86].
The term “hypothesis testing” summarizes the idea described in the previous paragraph, that
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is, the brain makes hypotheses (predictions) about the world and tests them against sensory
inputs (observations).

Many neuroscientists have analyzed this idea, performed experiments with results that
supported it, and then proposed their own take on it [200, 173, 98]. For example, Anil
Seth, in his thought-provoking book “Being You”, defines perception as a “controlled
hallucination” [200]. As humans never actually experience sensory inputs themselves, but
only interpretations of them, human experience is determined by top-down prediction and
not by the bottom-up sensory input. The term “hallucination” would bring to mind the
case of someone seeing or hearing something that is not real, like in schizophrenia. Seth’s
definition, however, refers to a “controlled” hallucination, because it is corrected through the
comparison with (bottom-up) sensory input from the world [200].

Among the many neuroscience studies, in this thesis, we are particularly interested in the
work of Karl Friston.

3.2.2 The free energy principle and other relevant concepts from the
work of Karl Friston

The free energy minimization concept was proposed by neuroscientist Karl Friston and is
related to the idea of the brain as a “predictive machine”. To explain this concept, let us start
by noting that the second law of thermodynamics states that the entropy of every isolated
system increases over time. Friston affirms that to counter the pull of this law, living beings
have a tendency to occupy states in which they are expected to be. In this case, the states
might be, for example, values of heart rate, temperature, or other bodily characteristics [200].
Through this seeking of statistically expected states, living beings can minimize their sensory
entropy. A living organism experiences an “unexpected” or “surprising” state when it finds
itself in a condition with a low probability of occurrence [98]. Indeed, a quantity called
“surprisal” specifies how statistically unexpected an event is [200].

Notice that, however, entropy and surprisal cannot be directly measured because their
calculation would include analytically intractable integrals. Consequently, the concept of
Variational Free Energy (VFE) is introduced, which can be approximated with a prediction er-
ror [74], i.e., the difference between what the model expects and what is observed. Prediction
error is always greater than surprisal [98]:

Prediction error = surprisal + perceptual divergence

The perceptual divergence compares the current hypothesis with the true posterior beliefs.
It is a Kullback Leibler divergence and, therefore, it is always greater or equal to zero.
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Therefore, minimizing prediction error means minimizing surprisal. The prediction error is,
therefore, an upper bound to surprisal [173]. VFE (or prediction error) can be minimized
in two ways: either by finding the best explanation for sensory data, or by acting to change
the observed sensory data. So, VFE can be minimized by perception or action [173].
Starting from Section 3.3, we will observe how prediction errors are relevant in the adopted
framework.

Another concept used by Friston and important for this work concerns Generalized States
(GSs). GSs z̃ = [z,z′,z′′, ...] are composed of states per se, by their velocities, accelerations,
etc. [77].

The states that are revisited and compatible with survival are called “global random
attractors” [74, 41]. The motion among global attractors can be defined through flow
functions describing the evolution of the GSs [77]. The flow can be decomposed in two
components: a curl-free or irrotational component that moves towards regions with high
ergodic density, and an orthogonal divergence-free or solenoidal component. Ergodic density
is a probability measure that can be interpreted as the probability of finding the living being
in a certain state at a random point in time [75, 172].

3.2.3 Other indications from neuroscience

The work of Friston and other neuroscientists [173, 98, 200] provides suggestions for the
development of an artificial agent. With “agent”, in artificial intelligence, one usually
describes “anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators” [192]. In our case, the agent also obtains
proprioceptive observations.

From indications from neuroscience, an agent that mimics the way humans interpret
the world should be: 1) Bayesian (specifically, it should perform Bayesian inference), 2)
hierarchical, 3) multi-sensorial, and 4) data-driven. We examine each of these points in the
following paragraphs.

As we have observed in the previous sections, the predictive brain performs inference
about the state of the world and itself. We have analyzed Bayesian inference in Section
2.4. Notice that both human perception and sensor recordings are always accompanied by
uncertainty. For example, when humans observe entities moving at a far distance, there will
be uncertainty in the estimation of their identity. Humans could be uncertain in classifying
a small urban animal as a dog or a cat, or in ascertaining if someone is an acquaintance or
just a lookalike. Similarly, when working with vehicular camera data, we might have to
consider the uncertainty in the appearance of objects due to particular viewing angles and
lighting sources. When using GPS for tracking the movement of an object, as an example,
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there is uncertainty due to measurement errors and interpolation errors. We must, therefore,
acknowledge that we are working with random variables, and Bayesian inference provides a
solution for this. However, there is also another reason behind the choice of using Bayesian
inference: multiple sources of evidence suggest that the brain operates as a Bayesian system
[98].

Secondly, we observed that the method should be hierarchical. Adopting a hierarchy
allows an agent to process information from low-level observations to high-level concepts,
similarly to how human beings do. Friston notices how hierarchical models might be used by
the brain too, given the hierarchical arrangement of cortical sensory areas [74]. Furthermore,
this hierarchical division also allows handling prediction at different time scales: complex
low-level information can be accurately predicted only for short time windows, whereas
high-level conceptual information can potentially be predicted in a longer time window with
higher accuracy [98].

Thirdly, we remark on the importance of the method being multi-sensorial. We noticed
in Section 3.1 how an intelligent vehicle can potentially be endowed with multiple sensors.
Similarly, human beings use their senses to navigate and interact with the world. Note that
these senses are not only limited to the obvious exteroceptive ones (sight, hearing, taste,
touch, and smell), but also include interoceptive ones, which report, for example, heartbeats,
blood pressure levels, various low-level aspects of blood chemistry, degrees of gastric
tension and how breathing is progressing [200]. This relates again to the division between
exteroceptive and interoceptive sensors in autonomous vehicles mentioned in Section 3.1. In
this thesis, we combine two sensors of the vehicle: an exteroceptive sensor (camera) and a
sensor that could either be considered interoceptive or exteroceptive (GPS). Nonetheless, the
proposed framework suggests the integration of a larger number of sensors, including both
exteroceptive (e.g., lidar) and interoceptive ones (e.g., IMU).

Finally, notice that data-driven learning is opposed to model-based learning [70]: in
data-driven approaches, the process of learning predictions or controls is guided by data;
in model-driven approaches, a model of the system has to be first derived through expert
knowledge. Data-driven learning better resembles human learning by experience.

We also highlight the importance of having a generative model. We already discussed
generative models in Section 2.1. Here, instead, we observe how the brain is a generative
model: using an example by Seth [200], if I hold a tomato in my hand and only see the front
of it, I am perceptually aware that the tomato also has a back, even if I cannot see it, because
of the model of how a tomato is structured that I have learned in my head. Generative models
are what allows the brain to perform the predictions that will be compared to observations.
Notice, however, that we did not include this concept in the above list. This is because,
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Bayesian inference (point 1) already requires a generative model [173], and so the concept
was already implicitly included in the list.

In addition to the four above-mentioned characteristics, we will add an additional one,
which will be discussed in the next section.

It is worth noting that the framework by Regazzoni et al. [183] - which underlies this thesis
- also takes inspiration from the work of other neuroscientists except the aforementioned
ones, such as Haykin [94] and Damasio [45]. However, their theories are not discussed here
as they are not central to the methods proposed in this thesis.

3.3 Basic Capabilities and Characteristics of the Adopted
self-awareness Framework

After having introduced neurobiological concepts and elucidated four essential characteristics
inspired by them, we now turn our attention to discussing the requisite capabilities of a self-
awareness framework and introduce one additional desired characteristic.

As proposed in [183], six basic capabilities should be possessed by an agent for it to be
considered self-aware: initialization, memorization, inference, anomaly detection, model
creation, and interface with control. We briefly analyze them and illustrate them in Fig.
3.1. The self-aware agent is first initialized with a predefined model (initialization), and
can memorize the model (memorization); it consequently uses the learned model to perform
inferences about its future state and the future changes in the environment (inference); it
identifies new situations when they appear (anomaly detection) and learns a new model (or
sub-part of the overall model) to describe them (model creation); finally, it uses the acquired
knowledge to perform decisions and implement changes in the environment (interface with
control).

As can be seen in Fig. 3.1, the capabilities are applied in sequence and form a closed loop,
as new model creation reconnects itself with memorization. The learning of new models
allows performing incremental learning (also called continual learning). Note that, in this
thesis, we only consider the capabilities from initialization to anomaly detection.

Observe how the inference and anomaly detection capabilities relate to the concept of the
brain as a “predictive machine”: inference defines the prediction phase, whereas anomaly
detection represents the comparison of the prediction with the sensory observation. If
prediction and sensory observation diverge, high anomalies are detected. Anomalies indicate
the necessity to create a new model, since the current one no longer accurately represents the
incoming data. Anomalies, therefore, are connected with the concept of surprisal. When a
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Fig. 3.1 The first five basic self-awareness capabilities and the continual learning loop that
they form.

new model is created, the anomalies in the next analogous experiences are minimized, along
with prediction errors, surprisal and free energy, aligning with the ideas of Friston presented
in Section 3.2.2.

In this context, we introduce the final desired characteristic, which complements the
four identified earlier: interpretability (or, at the very least, explainability). Interpretable
models are inherently comprehensible, as we can elucidate their inner workings. A detailed
explanation of this concept is provided in Section 3.5. First, notice, how, in the passage from
anomaly detection to model creation, interpretability is important: it can be used to identify
the origin of the detected anomaly and which part of the overall model should be created
anew. Furthermore, also notice that interpretability is not a bio-inspired characteristic, as the
human brain is not easily interpretable.

The subsequent sections delve deeper into three key areas within our adopted framework:
anomaly detection (one of the six capabilities), interpretability (one of the five desiderata),
and localization (an additional capability deriving from the multi-sensoriality property).

Recognizing the extensive body of research on anomaly detection and its significance as
the fourth capability among the six discussed above, we dedicate Section 3.7.4 to a literature
review of anomaly detection methods. Given the centrality of anomaly detection in this
thesis, we devote considerable space to its exploration.
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In Section 3.5, we define the concepts of interpretability and explainability, drawing
connections to anomaly detection.

Finally, Section 3.6 presents a literature review of VBL methods. Our earlier discussions
highlighted the importance of multi-sensoriality as a desideratum for self-awareness frame-
works. From this desideratum derives the possibility of correlating different sensor values
among each other, and of predicting the values of one sensor from the others. In this thesis,
we study the visual and odometric sensors. When the positional information is predicted
from the visual information, we are referring to VBL.

3.4 Anomaly Detection

Anomaly Detection is not only relevant for self-awareness. The identification of abnormal
instances of data represents a relevant issue across different research topics. Through anomaly
detection algorithms, for example, video surveillance cameras can recognize when possibly
dangerous or violent events are happening, such as break-ins, assaults, armed robberies, or
traffic incidents; suspicious zones in medical images like mammograms or tomography scans
can be identified and can help doctors diagnose tumors or nodules; fraudulent credit card
transactions can be detected as deviations from the normal usage profile of the clients. In
general, anomaly detection methods constitute a necessary component in all applications that
require identifying a change from a known set of rules or models. It is indeed fundamental
to note that anomalies are related to a model and are not absolute. In the video surveillance
case, the initial model could describe the normal interactions between customers in a store; in
the medical imaging case, it could extract the salient features of a healthy organ; in the credit
card case, it could keep track of user’s normal credit card transaction patterns. Abnormal data
correspond to a divergence from these learned models and are instead subject to different rules.
Therefore, it is evident how anomaly detection, which has many applications, represents a
fundamental step also for artificial self-aware systems that can continually learn from new
situations, as it allows a system to distinguish the occurrence of a new situation from an
already experienced one.

3.4.1 Types of Anomalies and Anomaly Detection Methods

The concept of anomalies is dependent on data type, on the cardinality of the relationship
between the involved variables, data structure, and data distribution [69]. Different anomaly
types - and consequently anomaly distances and anomaly detection algorithms - can be identi-
fied when working on time-independent or time-dependent applications, on low-dimensional
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data such as trajectories, high-dimensional data such as images or structures such as graphs,
etc.. To estimate the complexity of anomaly detection, we reference the work by Foorthuis
[69], which, through a review of anomaly detection literature, recognizes three broad groups
of anomaly, 9 basic types, and 63 subtypes. Considering as an example video data, Ra-
machandra et al. [179] distinguish five main types of anomaly: i) appearance anomaly, ii)
short-term motion anomaly, iii) long-term motion anomaly, iv) group anomaly, v) time-of-day
anomaly. As an example, a car driving along a street could either see an abnormal object such
as a traffic cone at the center of the street (i), detect an abnormal motion when the car in front
suddenly brakes (ii), perform a sequence of abnormal movements, for example due to the
driver falling asleep (iii), observe two other vehicles interacting abnormally, as in a collision
(iv). Finally, motions and speeds deemed normal during the day may not be permitted after
sunset (v).

The work by Chandola et al. [33] serves as a foundational reference for the classification
of anomaly detection methods. In this section, we report a summary of the defined anomaly
classes for point anomalies, i.e., abnormalities calculated on a single datapoint. The authors
distinguish six general methods for point anomaly detection; the first five are non-probabilistic
methods, while the sixth one groups together the probabilistic methods. In the following
paragraphs, we give a brief discussion of five out of six of these methods. Additionally,
Chandola et al. [33] notice how additional methods can be distinguished for contextual
anomalies such as abnormal sequences in a time series.

Classification based methods (CLA). In these methods, a classifier is learned that can
either distinguish normal data from abnormal ones based on a discriminative boundary (one-
class classifier) or different classes of normal data from each other (multi-class classifier). In
the second case, an instance is detected as abnormal when it can not be associated with enough
confidence to any of the normal classes. Any algorithm typically used for classification
can be adopted for these methods, including neural networks, Bayesian Networks, Support
Vector Machines (SVMs) [42], and rule-based classification methods.

Distance based methods (DB). These methods are based on the calculation of the distance
of data points from their closest neighbors, leveraging the assumptions that normal data
occur in dense neighborhoods, whereas anomalies are far from their closest neighbors. The
choice of the distance metric is therefore essential. To account for neighborhoods of various
densities, the distance value is often relative to the distances between points in the closest
neighborhood.
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Clustering based methods (CLU). These methods rely on assumptions dependent on
the chosen clustering techniques: i) techniques like Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [63], RObust Clustering using links (ROCK) [88] or
Shared Nearest Neighbor clustering (SNN) [62] assume that anomalies are not assigned to
any of the built clusters; ii) when using techniques like Self-Organizing Map (SOM) [125],
one can assume that abnormal data lie far away from the cluster’s centroid; iii) finally, one
could leverage the assumption that normal data belong to big clusters and abnormal ones to
small clusters.

Information theoretic methods (IT). These methods use measures from Information The-
ory such as Kolmogorov Complexity, entropy or relative entropy to analyze the information
content of the data and extract the most anomalous subset of data points (i.e., sequence,
subgraph, image area) compared to the rest of the data.

Statistic/probabilistic methods (STA). Probabilistic-based methods aim to model the
normal sample features’ distributions (inliers) associated with the training data, whereas ab-
normalities can be detected as data samples known as outliers with low probability [185]. The
probability that a data sample belongs to a certain distribution can be estimated using proba-
bilistic distances such as Bhattacharyya, Mahalanobis, Hellinger, or the Kullback–Leibler
divergence. Abnormality detection using probabilistic (statistical) models can be classified
into two main groups: parametric such as Gaussian Mixture Model (GMM) methods and
Regression methods and non-parametric such as Histogram or Kernel Density Estimation
(KDE) methods [222]. A significant advantage of the probabilistic approach is that it can be
easily generalized to different data types and modalities. Its limitation arises when attempting
to fit the data to a specific distribution, as the distribution may not be a suitable match for the
data [2].

Chandola et al. [33] propose this classification and further identify an additional set of
anomaly methods, i.e., spectral anomaly detection techniques, based on the assumption that
data, especially high dimensional ones, can be brought to a lower dimensional subspace
where normal and abnormal data can be more easily distinguished. Examples of such methods
could be using Principal Component Analysis (PCA) or VAE on image data or embedding
graphs as adjacency matrices. These methods can be used as a preprocessing step applied
before the other methods defined above. Similarly, when handling abnormal sequences of
data, such as in time-series data, detection can be either performed through an adaptation of
the previous methods to contextual anomalies or through methods that learn the structure



3.4 Anomaly Detection 37

of the data, for example executing the prediction of the following time instants from the
previous ones (prediction-based methods (PRE)).

Table I summarizes the classification of anomaly detection methods, indicating a set of
characteristics that an anomaly detection method should have in our context and framework,
that should not be confused with the five desiderata described earlier. However, the seven
characteristics in the table correlate to the previous desiderata and capabilities. If data
labeling is unnecessary, data-driven unsupervised learning can potentially be performed. The
ability to provide anomaly scores with a confidence range and its applicability to probability
models make the method suitable for use in DBN models and Bayesian inference. Providing
anomalies on diverse abstraction levels is compatible with a hierarchical architecture. The
capability to perform incremental learning aligns with the continual learning loop in Fig. 3.1.
Finally, when elaborating video data, as is the case in this thesis, we need methods that can
be applicable to high-dimensional time-series data.

Notice how all the proposed methods can be applied to time-series data and are unsuper-
vised. Most of these methods could also be applied for some variety of incremental learning
through the use of anomaly scores, but this problem is rarely tackled in the state of the art.
Classification does not give an anomaly score with a confidence range, as in general in this
class of method a sample is only described as belonging or not to the class; information-
theoretic methods also do not have this capability. Only prediction-based methods and
statistical methods (and, in part, clustering-based methods) can be applied to probability
models. Finally, the methods introduced in this thesis possess all the specified characteristics
and, in addition, provide anomaly scores at various levels of abstraction. Further discussion
of this table from the point of view of our framework is provided in Section 3.7.1.

Table I Comparisons between the different anomaly detection methods. *: unnecessary for
one-class version, necessary for multi-class version; **: valid for some methods of this
category but not all.

CLA DB CLU IT STA PRE Ours
Data labeling unnecessary * ✓ ✓ ✓ ✓ ✓ ✓

Gives anomaly score with confidence range ✗** ✓ ✓ ✗ ✓ ✓ ✓

Extendable to HD data ✓ ✓ ✓ ✓ ✓ ✓ ✓

Applicable to probability models ✗ ✗ ✗** ✗ ✓ ✓ ✓

Applicable to time-series data ✓ ✓ ✓ ✓ ✓ ✓ ✓

Allows incremental learning ✓ ✓ ✓ ✗ ✓ ✓ ✓

Gives anomaly on diverse abstraction levels ✗ ✗ ✗ ✗ ✗ ✗ ✓
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3.4.2 Anomaly Detection in Low-Dimensional Data

In this thesis, we focus on unsupervised probabilistic methods based on DBN representations
for time-series data. Several works have leveraged BNs and DBNs to perform anomaly
detection in various fields [158, 29, 195]. This type of network, allowing a hierarchical
probabilistic representation of the world, is particularly appropriate for autonomous systems
that try to reflect human reasoning. BNs additionally allow the building of a hierarchy of
anomalies. We will further comment on how DBNs satisfy the five desiderata of self-aware
frameworks in Section 3.7.

In particular, the MJPF has been used as a basic Bayesian filter applied on DBNs to
perform anomaly detection on low-dimensional data (such as odometry data in [17] and
control information in [115]) from different types of sensors of multi-modal physical agents
like semi-autonomous vehicles. Section 3.7 tackles the framework adopted in these papers
(and in this thesis).

3.4.3 Anomaly Detection in High-Dimensional Data

As video data are high-dimensional, it cannot be elaborated pixel-wise in a time-efficient
way by the majority of anomaly detection algorithms developed for low-dimensional data -
including MJPF. Instead, features first need to be extracted from the video data, allowing the
problem to be reformulated in a lower dimensionality [38]. The process of feature extraction
can either be accomplished through hand-crafted methods or through Deep Learning (DL)
based methods. In the first case, human knowledge about specific problems such as occlusion,
variations in orientation, scale, or illumination is exploited to develop feature extractors.
Two examples of hand-crafted feature methods, out of many, are the Histogram of Oriented
Gradients (HOG) [43] and the Histogram of Optical Flow (HOF) [44]. In the case of DL-
based methods, training data are given as input to an NN, which learns the most salient
features for the task it needs to accomplish. Various studies on computer vision applications
[7, 4, 169] demonstrate how features learned by NNs generally outperform hand-crafted
features. For this reason, in recent years hand-crafted feature methods have largely been
taken over by DL-based methods. Because of this, in this section, we only consider DL-based
methods.

Once dimensionality reduction is performed, many anomaly detection methods described
in Section 3.4.1 can be performed on the extracted features, as summarized in Table I.
Additionally, Kiran et al. [124] identify three main strategies for video representation and
anomaly detection, i.e., methods based on reconstruction, methods based on prediction
and methods based on generative models (GMs). It is worth noting how these strategies
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can be combined: for example, prediction [152, 143] and reconstruction [204] methods
often rely also on generative models. As seen already in Section 3.4.1, important types of
anomaly detection methods are probabilistic methods. For high-dimensional data, some
further remarks should be made, given the widespread use of probabilistic generative models
like GANs and VAEs in the state of the art

Reconstruction-based methods The idea behind the baseline reconstruction-based method
for video data is simple: a Convolutional Autoencoder (CAE) is trained to reconstruct
either the image frames or some connected characteristics (e.g., the OF calculated between
following images). Testing images (or corresponding characteristics) are then given as input
to the trained CAE. Consequently, abnormal inputs tend to display a worse reconstruction
than normal ones. Often, the reconstruction error is only used to train the CAE to obtain
a lower-dimensional representation of the input, but it is not used during testing. In the
testing phase, instead, anomaly detection is performed using the low-level features extracted
through the CAE encoder. For example, in [196], a distance-based Euclidean anomaly score
is calculated in the low-dimensional space related to image frames, and in [217] the extracted
motion features from the OF between consecutive images is given as input to a one-class
Support Vector Machine.

Prediction-based methods As noted by different research works [216, 149], reconstruction-
based methods present some limitations. Since NNs have a high generalization capability
when enough training data are given, abnormal frames can be reconstructed with a limited re-
construction error and, therefore, classified as normal. Possible alternatives to reconstruction-
based methods are prediction-based methods, that calculate abnormalities comparing the
difference between a predicted future frame and its ground truth. These methods are the
high-dimensional version of the homonym prediction-based methods mentioned in Section
3.4.1.

Several works employ feed-forward architectures to make predictions of future time
instants given the current/previous ones. When video data are considered, Convolutional
Neural Networks (CNNs) are used inside these methods, as they allow the extraction of spatial
features of the video frames. However, one main problem arises when using vanilla CNNs
for video forecasting: although they can capture intra-frame dependencies in the receptive
field given by the used kernel size, they cannot represent inter-frame dependencies and
long-range spatial dependencies [170]. This problem has been tackled in several works and
has been mitigated using dilated convolutions for capturing long-range dependencies [236]
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and 3D convolutions to account also for modeling across time and for capturing inter-frame
dependencies [245, 246].

Most current prediction methods perform forecasting by using RNNs - especially LSTM
networks - and transformers [219]. RNNs keep an internal state that works as a compact
memory of past observations that is updated when a new observation is obtained. When
forecasting is performed on video data, Convolutional LSTMs (ConvLSTMs) [201] are often
used, which combine CNNs and LSTMs. ConvLSTMs have become extremely popular for
anomaly detection purposes [159, 153, 226].

Generative models based methods GMs can learn the underlying distribution of the
training data. VAEs [122] and GANs [85] are models of this type typically used when
working on images. Whereas GANs implicitly learn the distribution of the data, VAEs
perform it explicitly. Vanilla VAEs assume a Gaussian distribution of the data and encode
each sample through a mean and variance; they are used in many probabilistic approaches
for anomaly detection.

Probabilistic approaches As mentioned previously, anomaly detection approaches may
have a deterministic or probabilistic nature. Most approaches present in the current literature
are deterministic, which constitutes a problem, especially in prediction-based methods. If
different next frames can derive from the current one, a deterministic approach trained with
a pixel-wise loss function will learn to average all possible outcomes, resulting in a blurry
prediction. To obtain a better performance, recent methods have started to consider the
uncertainty that is intrinsic to the world. When working with images, the uncertainty can
be in the appearance of objects due to particular viewing angles and lighting sources, or in
the sequence between frames, as different possible next frames can be generated from the
current one (e.g., a car at an intersection can either turn left or right). VAEs constitute the
basis of many probability-based methods. In [5], an uncertainty estimation is performed in
the different layers of the VAE’s decoder to detect novel observations. In [233], a recurrent
convolutional VAE is developed, and an anomaly score is calculated from the reconstruction
error probability.

This capability of VAEs and GANs aligns with the core principles of this thesis, as
it focuses its attention on the development of a method that is probabilistic and that can
consequently be inserted inside a DBN framework for capturing anomalies and exploiting
them to perform the continual learning of models in time-series data. By reducing the
dimensionality of the observed frames, VAEs and GANs can be used as non-linear observation
models in a DBN such as the one described in Fig. 2.2b.
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Additionally, as VAEs offer the possibility of modeling video as low-dimensional random
variables, recent research has also tried to combine VAEs with DBNs [225, 110, 19, 71].
These works however did not consider anomaly detection and continual learning of models
as an objective. Additionally, experiments were conducted on very simple datasets displaying
only basic motions and observations from a static viewpoint.

Another work [180], instead, coupled GANs and DBNs considering anomaly detection
and continual learning at the same time. In this work, a hierarchy of coupled cross-modal
GANs is developed. When a high anomaly is produced due to the detection of abnormal
observations or abnormal dynamics, a new GAN is built for learning the new situation.
A Switching model is developed, consisting of the hierarchy of GANs at the continuous
level and of an HMM at the discrete level. However, because GANs inherently learn data
probability without explicit parameterization, this approach has limitations and does not
contemplate the possibility of using some of the anomaly distances typically adopted for
statistic anomaly detection methods. We will analyze some of these anomalies in Section
3.7.4.

In this thesis, first in Chapter 5, a method for anomaly detection in video data is presented;
it employs a generative model reconstruction-based method for extracting video features.
Anomaly detection is then performed through a predictive method. The algorithm combines
VAEs and DBNs to obtain a probabilistic representation of the observed current image and
multiple possible predictions of the next image.

3.5 Interpretability and explainability

When considering anomaly detection applied in particular to the self-aware agents’ field,
another important concept can be introduced, i.e., interpretability. As we have seen in
Section 3.3, it is one of the five desiderata that we identified for self-aware systems. It can be
observed that there is no strict, universally recognized definition of interpretability, which is
often also associated with explainability. We refer in this thesis to the definition provided
by Rudin [191], who divides between inherently interpretable models, which “provide their
own explanations, which are faithful to what the model actually computes”, and post-hoc
explanation models, in which a second model is “created to explain the first black-box model”;
the former models are the objective of interpretable Machine Learning (ML), whereas the
latter ones of explainable ML. Similarly, in [148], interpretability is defined as answering
the question “How does the model work?”, and explainability as answering the question
“What else can the model tell me?”. It is interesting to note the desiderata and properties
of interpretable research defined by [148], which include causality, decomposability of the
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individual parameters, and algorithmic transparency. Bayesian models, such as DBNs, are
interpretable algorithms.

However, since there is no strict definition of the two concepts of “explainability” and
“interpretability”, many practitioners in the ML field use them interchangeably.

Explainable anomaly detection is a field that has recently gained attention [146, 101].
When performing anomaly detection, it is desirable to determine where or when an abnormal
event was, together with its cause, e.g., what model rules were broken. The reason can be
field-specific. For example, in healthcare, anomaly detection algorithms are used to detect
diseases and an explanation of the anomaly can help the doctor make a diagnosis. This
is even truer in the field of Autonomous Vehicles, as unexplainable autonomous cars are
less easily accepted by the public [50]. In the framework adopted in this thesis, a further
reason to use interpretable models such as DBNs can be traced back to the six capabilities
described in Section 3.3. As we observed, once anomalies are detected, a new model must be
trained. However, sometimes not the entire model needs to be retrained, but only a part of it.
Understanding the anomaly reason (or, simply, at what abstraction level it occurs) allows us
to detect which part of the models must be retrained. This concept will be explored further in
the methodology sections.

3.6 Multi-Sensorial Agents and Visual-Based Localization

As we observed in Sections 3.2.3 and 3.3, we consider a multi-sensorial framework. In a
data-driven, multi-sensorial framework, it is possible to learn how the observations from the
different sensors are related to each other and, consequently, to predict the observations of one
sensor from the values of another one. When we derive absolute positional information from
video data, we are in the domain of VBL. This field is of great relevance for Autonomous
Systems because, to navigate in an environment, they need the capability of localizing
themselves in it.

Therefore, in Chapter 8, we will tackle the challenge of localizing a moving agent in a
known environment, given only camera data. By defining the environment as “known”, we
hypothesize to be provided with sequential synchronous visual and odometric data during the
learning phase of the models. We can consequently correlate our framework to the fields of
VBL, Visual Odometry (VO), and Visual Simultaneous Localization and Mapping (V-SLAM).

VBL consists in the task of retrieving a camera’s pose given an image or a sequence of
images from the camera itself [175]. The survey in [175] proposes a division of VBL methods
into two main groups: indirect/retrieval-based methods and direct methods. Indirect methods
map images of the training set in a chosen feature space, creating a database of descriptors
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for already seen images; when a query image is provided during the online execution of the
method, the algorithm looks for the best match in the dataset. Direct methods directly recover
the pose of the query according to a known reference. Pose regression approaches are one
sub-type of this second category. CNNs can be used to regress the pose from images; the
first example of a CNN-based regression architecture for VBL is PoseNet [119]. In PoseNet,
the classification layers of a GoogleNet [211] were substituted with two fully connected
layers to regress the camera pose. Pose is thus regressed in an end-to-end way. In [207],
several retrieval-based and regression-based architectures are tested on a real dataset of a
supermarket; some of the tested methods adopting a CNN use the Posenet architecture. An
approach based on classification is considered too.

Other DL architectures have also been exploited in the VBL framework in combination
with CNNs, such as spatial Long Short-Term Memory network to capture contextual infor-
mation [220]. Most VBL methods rely on a single image to estimate position and orientation.
Whereas image sequences are not always available, they can increase accuracy when they are
accessible. A set of works [138, 24, 218, 231] have consequently begun to leverage image
sequentiality inside the newly proposed frameworks. In our method, we similarly assume the
presence of sequential data, which enables us to track the moving agent.

It is worth noting that, except for the aforementioned ones, other subcategories of VBL
methods fall under the direct and indirect groups. For example, direct approaches also include
feature to points matching methods, which find the correspondence between camera image
features and points in a 3D point cloud model of the environment [175]. However, these
methods incorporate or derive components (e.g., the 3D point clouds) that fall outside the
scope of interest for this thesis.

In contrast, the objective of Visual Odometry (VO) is to estimate the relative motion of
a camera using a sequence of images [235]. Consequently, VO is susceptible to estimation
drift over time. It is important to note that VO is typically employed in scenarios where the
environment map is not available, differently from VBL and from our proposed objective. In
recent years, end-to-end methods using CNNs have also been proposed in the VO field, such
as in [223, 109, 150].

Finally, in V-SLAM, an agent localizes itself in an unknown environment and simultane-
ously builds a map of it [235].

This thesis, in Chapter 8, describes a method that combines some characteristics of the
three general methods discussed above for the specific case of video surveillance localization
in a fixed environment. The method incorporates the following features:
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• Known Environment. Similar to retrieval-based and regression-based VBL methods,
the environment is known. This means that both video and positional data are available
during training. It is a limitation compared to V-SLAM, which builds a map online.

• Absolute Positioning. Our method, like VBL, aims to estimate the absolute positioning.

• Sequential Visual Data. As in VO and V-SLAM, sequential visual data are leveraged,
achieving a more robust localization than the one obtained by single-image VBL.

• Generative Map. During training, we build a generative map of the environment, which
is not continuous but sparse, as it is composed of a set of clusters. The clustering
enables a hierarchical representation and higher explainability. Each cluster allows us
to predict positions and their changes during a navigation task. Explainability in this
case regards the capability of the model to correlate video anomalies with the dynamic
behaviors of the agent.

Improving localization with anomaly detection

As in Chapter 8, we propose a method that leverages anomaly detection to improve localiza-
tion, here we briefly review this topic.

[174] and [229] use a monocular inertial SLAM, combined with wheel odometry and
Global Navigation Satellite System (GNSS) measurements, respectively. In the former paper,
when abnormal chassis movement is detected, the wheel odometer is removed from the
localization estimation; in the latter, the same is performed when GNSS data are abnormal.

In [174], a monocular inertial SLAM is proposed with three methods for detecting
abnormal chassis movement; when anomaly is detected, the wheel odometer is removed
from the state estimation equation and only camera and IMU (Inertial Measurement Unit)
are adopted. An inertial SLAM framework is also employed in [229], this time together with
GNSS measurements; the chi squared test is used to detect anomalies on the GNSS data and
to potentially exclude them from the localization estimation.

Anomaly detection and localization have also been combined when using other sensors
instead of a camera, e.g., acoustic data in [230], and Ultra-WideBand receivers in [57]. In
all these methods, multiple sensors or measurements are provided at test time, and anomaly
detection is adopted to decide which localization to trust more. Conversely, in this thesis,
only one sensor measure is available at test time. Moreover, we will analyze how to leverage
anomalies to partially restart the localization process.
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Fig. 3.2 Block diagram of the proposed self-awareness method. © 2021 Elsevier,
http://www.elsevier.com.

3.7 Details of the adopted self-awareness framework

Having comprehensively introduced the essential information to understand the proposed
framework — from the foundational algorithms, neurobiological inspirations, desired capa-
bilities and characteristics, to the state-of-the-art approaches — we can proceed to a detailed
mathematical description of the adopted framework.

3.7.1 General Framework description

The proposed framework is illustrated in Fig. 3.2. Low and high-dimensional data can be
given as input to the framework. After executing preprocessing on low-dimensional data and
feature extraction through the VAEs’ encoder on high-dimensional data, a Generalized State
vector is built, following from Friston’s definition (see Section 3.2.2). It includes the filtered
states as Generalized Errors (GEs) obtained from the initial model, which is activated during
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the real-time inference in the initial iteration. In this case, the initial model represents static
rules of the surrounding environment (i.e. the expected dynamic changes are quasi null and
are only affected by random perturbations). Performing clustering on the Generalized Errors,
a Generalized Dynamic Bayesian Network (GDBN) model is learned. It is a DBN in which
the hidden states are Generalized States (GSs). When new data are obtained, the learned
model is used to perform inference through the GDBN, and different levels of anomalies
are extracted. If a high level of anomaly is detected, the corresponding Generalized Errors
are stored, and a new model is built to be used in parallel with the previous ones in the next
GDBN inference.

From Fig. 3.2 we can also deduce the characteristics in Table I:

• First of all, our method does not need any data labeling. Instead, it is unsupervised: a
model is learned and the anomaly is detected with respect to it.

• Both low and high-dimensional data can be used as input. In Fig. 3.2, odometry,
steering angle, power, and rotor velocity data from a vehicle are shown as examples of
low-dimensional data; video data from a camera as high-dimensional data.

• Time-series data are considered.

• A probability model in the form of a GDBN is learned.

• Anomalies with respect to this model are detected at different abstraction levels,
specifically at the frame level, continuous level, and discrete level.

• The detected anomalies are coupled with a confidence range, as will be evident in
Section 3.7.4.

• When an anomaly is detected with respect to a learned model, a new model is created,
allowing incremental learning and an expansion of previous knowledge.

In the following Sections, a more detailed description of the framework is provided. The
training of the GDBN model is defined in Section 3.7.2. Sections 3.7.3 and 3.7.4 present the
MJPF testing algorithm and its multi-level anomaly measurements, respectively. Then, in
Section 3.7.5, the use of Generalized Errors obtained through the DBN anomalies is set as a
basis for the continual learning of new models. The index of the section where each concept
is explained can also be found in red in Fig. 3.2 near its graphic representation. Finally, we
dedicate Section 3.7.6 to describing how this framework complies with the five identified
desiderata and to showing how this was possible through the use of DBNs.
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3.7.2 Generalized Dynamic Bayesian Network (GDBN) model

Initially, a self-aware agent starts perceiving the surrounding environment using an initial
GDBN (i.e., a null force filter with static assumptions about the environmental states) by
interpreting the received generalized observations x̃t = [xt ẋt ]

⊺ that comprise the variable and
its generalized coordinates of motion coming from the agent’s sensors. In this case, the agent
detects abnormalities all the time and calculates the Generalized Errors z̃t expressed as:

z̃t = [zt żt ]
⊺ (3.1)

where zt are the predicted hidden states obtained by the null force filter according to the
following dynamic model:

zt = zt−1 + vt (3.2)

while żt are errors on derivatives calculated as innovations by the null force filter using
current generalized observations as follows:

żt =
xt−Hzt−1

∆t
, (3.3)

where H is an identity matrix and ∆t is the sampling time.
Consequently, the GEs collected in previous experience are used during the training

phase as input to an unsupervised clustering algorithm (e.g. Growing Neural Gas (GNG) [78]
or Self-Organizing Maps (SOMs) [126]) which encodes the GEs into discrete components
producing a set of discrete variables (S̃) or neurons which we refer to as superstates, such
that:

S̃ = {S̃1, S̃2, . . . , S̃M} (3.4)

where M is the total number of superstates.
Note how the equations considered above refer to the low-dimensional data case, in

which the observation model is known, is linear, and is expressed by the matrix H that maps
observations to hidden states. In the case of high-dimensional data, instead, we must first
bring data to a low-dimensionality through the use of a feature extractor. Therefore, the first
part of the GDBN that must be learned is the observation model itself. As observed in Section
3.4.3, this can be performed through the training of networks such as VAEs and GANs. In
this thesis, we consider the use of VAEs for such a task. In this case, the observation model,
that in the low-dimensional case was represented by Eq. 3.3, becomes:

x̃t = h(z̃t)+ vt , (3.5)
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where the function h(.) corresponds to the non-linear transformation applied by the
VAE’s decoder Pφ (x̃|z̃), and vt is the noise.

Throughout the methodology chapters, two main methods are proposed to join VAEs and
DBNs. In Chapter 5, we propose an approach that takes video frames and their OF as input;
in Chapter 7 and the following ones, instead, we adopt a method solely based on video frames
that uses a KVAE. In both cases, though, the concept is to have some information related to
both the frame content and the motion between the frames. In this general description of the
framework, we adopt the notation and the DBN of the method in Chapter 5. However, the
same concepts can be applied to the method proposed in Chapter 7 and onwards.

In Chapter 5, to capture both information of frame content and of motion between
subsequent frames, we train a couple of VAEs, one to reconstruct the frame at time t, xt ,
and the other to reconstruct the Optical Flow (OF) between frames at time t and t +1, OFt .
The bottleneck is consequently divided into two parts: one, that we call zt , representing the
state/content (from xt); the other, that we call żt , capturing the motion/velocity information
(from OFt). Clustering is performed on the combination of these two variables.

Once the dimensionality reduction process is performed, the rest of the method remains
mostly the same, with some adjustments and limitations.

After clustering, the M×M transition matrix (Π) defined as:

Π =


π(S̃t = S̃1)

...
π(S̃t = S̃M)

=


π11 . . . π1M

... . . . ...
πM1 . . . πMM

 (3.6)

is learned by estimating the transition probabilities πi, j = P(S̃t = j|S̃t−1 = i), j, i ∈ S̃ over a
period of time. Thus, it is possible to create a set of generalized superstates S̃t .

This set of discrete variables realizes the top or discrete level of the GDBN. Each
generalized superstate S̃t (S̃t ∈ S̃) is associated with statistical properties as mean value
(M(S̃t)), covariance matrix (Q(S̃t)) and a set of hidden GSs z̃t encoded inside it. The hidden
continuous GSs (z̃t) represent the intermediate or continuous level of the GDBN. The
relationship among the hidden states and superstates is characterized by the P(z̃t |S̃t) link in
the GDBN.

The bottom level in the GDBN stands for the real generalized observations (x̃t) measured
by the sensors. The path from S̃t to x̃t realizes the chain of causality among random variables
at hierarchical levels. The probabilistic dependencies among the variables involved in the
chain of causality are characterized by the linked edges. Considering in this case the chain
rule, the joint probability of S̃t , z̃t and x̃t ; P(S̃t , z̃t , x̃t), can be factorized as a product of the
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conditional probabilities such as:

P(S̃t , z̃t , x̃t) = P(S̃t)P(z̃t |S̃t)P(x̃t |z̃t) (3.7)

This implies the possibility of using the model to generate new data samples given the direct
cause (i.e. the parent node). In addition, links between generalized hidden variables at
consecutive time instants represent the corresponding conditional temporal probabilities. Π

embeds the dynamic rules at the discrete level that drive the dynamic changes by switching
between multiple dynamic models at the continuous level. Such probabilistic causal reasoning
in the GDBN allows us to explain events, diagnose causes, and make predictions about future
events. The transition probability P(S̃t |S̃t−1) at the discrete level is represented by the
transition matrix Π. Let us suppose that, at time t−1, particle n is associated to cluster i, i.e.,
S̃n

t−1 = i. In this case, the probability P(S̃n
t |S̃n

t−1) can be calculated using the i-th row of the
transition matrix Π:

P(S̃n
t |S̃n

t−1 = i) = [πi1,πi2, ...,πiM] (3.8)

It is worth noting that, optionally, multiple transition matrices can be employed instead of
only one. A set of Temporal Transition Matrices (TTMs) Π(g) could be computed, containing
the probabilities π

(g)
i j of moving from one cluster to the other ones, given that g time instants

have been spent in the current cluster. This element of the vocabulary is optional, as the
transition matrix Π could be used alone. However, performing the prediction at the discrete
level with a combination of Π and of the TTMs can provide a more accurate prediction of
the next cluster, because also the time spent in a cluster is taken into consideration.

In this case, let us consider that the time spent in the current cluster g corresponds to τ

time instants. The probability P(S̃n
t |S̃n

t−1) can now be calculated as:

P(S̃n
t |S̃n

t−1 = i,g = τ) = [πi1,πi2, ...,πiM]+α[π
(τ)
i1 ,π

(τ)
i2 , ...,π

(τ)
iM ]+β

(τ)
δ (3.9)

where α balances the two matrices and can be set for example to 0.5. The TTM allows
us to consider how much time has been spent in the cluster; keeping the Π matrix too avoids
overfitting to the TTM, which is built with less data. Additionally, δ is an element that adds
a uniform probability of moving to all the clusters. This element avoids the possibility of
remaining stuck in a cluster. Its importance can be incremented the more time is spent in a
cluster, through the scalar β (g), which increases with g.

The dynamic causal model describing the state-space representation of a time-series
process - under the assumption that each observation x̃t stems from a d-dimensional hidden
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state z̃t , itself generated by a discrete hidden superstate S̃t - takes the following form:

z̃t = g(z̃t−1, S̃t−1)+wt = Az̃t−1 +BU (S̃t−1)+wt−1 (3.10)

The continuous function g(.) in Eq. (3.10) is assumed to be linear and determines the
state temporal evolution at the continuous level guided by the discrete level predictions and it
is subject to a Gaussian noise wt . In Eq. (3.10), A and B are the dynamic model matrix and
the control model matrix, respectively. A different control vector U (S̃t−1) is associated with
each superstate S̃t−1 that depends on the mean derivative of z̃t−1 samples encoded in that
superstate. So, Π encodes not only the transitions between superstates but also jumps between
different linear models at the continuous level. Note that, in the case of high-dimensional
data, the prediction model can change. Either linear or non-linear models can be employed.
In the method in Chapter 5 non-linear models are used, whereas in the one from Chapter
7 linear models are adopted. In the case of Chapter 7, we use a model as the one in Eq.
3.10 (however, we will observe that a further DBN level is added). Instead, in Chapter 5,
to keep the structure of the high-dimensional case as similar to the low-dimensional one as
possible, we opt to learn for each found superstate a neural network N(S̃) characterizing the
temporal evolution of the GS for that superstate. Eq. 3.10 can therefore be substituted with
the following expression:

z̃t = g(z̃t−1, S̃t−1)+wt = N(S̃t)(z̃t−1)+wt−1 (3.11)

where wt−1 is the error after convergence of the network and can be approximated as a
Gaussian noise.

Fig. 3.3 summarizes the proposed GDBN. In red, the intra-frame connections are linked to
their corresponding element: P(x̃t−1|z̃t−1) is the observation model and corresponds to matrix
H in the low-dimensional case and to the VAE’s decoder Pφ (x̃|z̃) in the high-dimensional
case; the link P(z̃t−1|S̃t−1) is correlated with the cluster mean M(S̃t) and covariance Q(S̃t). In
green, the inter-frame connections are displayed: the prediction model P(z̃t |z̃t−1) is chosen
through the local motion U (S̃t) in the low-dimensional case and through the neural network
N(S̃t) in the high dimensional case; P(S̃t |S̃t−1) is encoded by the transition matrix Π (and,
optionally, by the TTMs Π(g)). All the learned elements of clusters (M(S̃t), Q(S̃t), Π, Π(g),
N(S̃t)) constitute what we denominate as the clusters’ vocabulary.
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Fig. 3.3 The proposed Generalized Dynamic Bayesian Network. © 2021 Elsevier,
http://www.elsevier.com.

3.7.3 Real-time Inference Algorithm

The MJPF first introduced in [17] (see Section 2.4.6) is employed during the real-time
process to perform inferences at different hierarchical levels starting from the learned GDBN
model. MJPF realizes a switching model that uses a combination of a PF to predict discrete
superstates and a bank of KFs for continuous states’ prediction and estimation. In the case of
GSs extracted from high-dimensional data, in which we apply a non-linear model to perform
state prediction, a bank of UKFs [221] can be used instead, as we will do in Chapter 5.
Such a switching behavior between the dynamic transitions at discrete/continuous levels and
observations permits updating of belief in hidden variables by passing local messages in
simultaneous inference modes, namely the predictive or causal inference (top-down) and
the diagnostic inference (bottom-up). This capability of DBNs is called message passing.
Observe how it recalls the concepts seen when discussing the hypothesis of the brain as a
“predictive machine” (Section 3.2.1).

Temporal predictive messages (π(S̃t), π(z̃t)) (refer to Fig. 3.3) depend on the dynamic
rules stored in the model and are called intra-slice messages. Instead, top-down messages
from S̃t to z̃t depend on the clustering statistics including mean values and covariance matrices.
The bottom-up reasoning is based on likelihood models consisting of messages (λ (S̃t), λ (z̃t))

(refer to Fig. 3.3) passing in a feed-backward manner to adjust expectations given a sequence
of observations. The PF relies on the transition matrix encoded in the dynamic model as a
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proposal distribution to predict future superstates (S̃n
t ). Initially, it draws N samples from that

distribution. These samples are equally weighted and associated with a specific superstate.
Then, for each particle n, a KF is employed to predict the continuous variables z̃t which
depend on the expected superstate as pointed out in Eq. (3.10).

Once the new evidence x̃t is observed, a message is backward-propagated from the bottom
level towards the higher levels. Consequently, the weights of the particles can be reweighted
according to:

Wt =Wtλ (S̃t) (3.12)

In Eq. (3.12), Wt is the vector of particles’ weights [w1
t ,w

2
t , ...,w

N
t ]. Instead, λ (S̃t) is the

diagnostic message propagated from the bottom towards the top level of the hierarchy to
update the belief in hidden variables at that level and can be calculated as:

λ (S̃t) = λ (z̃t)P(z̃t |S̃t) = P(x̃t |z̃t)P(z̃t |S̃t) (3.13)

where λ (z̃t) is the message backpropagated from the evidence x̃t to the intermediate level
z̃t . P(z̃t |S̃t) denotes a set of N Gaussian distributions with means M(S̃) and covariances Q(S̃).
Instead, λ (z̃t)∼N (z̃t ,R) denotes a Gaussian distribution with mean z̃t and covariance R. The
multiplication between λ (z̃t) and P(z̃t |S̃t) can be obtained by calculating the Battacharyya
distance (DB) as follows:

DB

(
λ (z̃t),P(z̃t |S̃t = i)

)
=−ln

∫ √
λ (z̃t)P(z̃t |S̃t = i)dz̃t (3.14)

where i ∈ [1,M]. The vector Dλ containing all the DB values between λ (z̃t) and all the
superstates assigned to the N particles is here estimated as:

Dλ =
[
DB(λ (z̃t),P(z̃t |S̃t = S̃n=1

t )), . . . ,DB(λ (z̃t),P(z̃t |S̃t = S̃n=N
t ))

]
(3.15)

This means that we take the DB distance related to the cluster assigned to each of the N
particles.

Therefore, the vector λ (S̃t) in terms of probability is:

λ (S̃t) =

[
1/Dλ (1)

1/∑
N
l=1 Dλ (l)

, . . . ,
1/Dλ (N)

1/∑
N
l=1 Dλ (l)

]
(3.16)

After the weights are updated, the particles are resampled based on them, following the
SIR approach.
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In classical Bayesian filtering, predictive and diagnostic reasoning are used to estimate a
joint posterior at different hierarchical levels. However, an indispensable step is missed in
this process to evaluate the differences between two messages arriving at a given node based
on a probabilistic metric that estimates the surprisal caused by observations that can not be
explained by the model. The following section shows how to provide a self-aware agent
with the capability to detect multimodal abnormalities which are the basis to continually
update the knowledge about the perceived environment and encode new concepts related to
the emergent abnormal behavior.

3.7.4 Multi-modal Abnormality Measurements

In the proposed approach, classical Bayesian inference (i.e., MJPF) is enriched with advanced
functionality that exploits a probabilistic distance between top-down and bottom-up messages
incoming to a generic node at different levels inside the GDBN to define hierarchical
abnormality measurements. Such probabilistic distances quantify the similarity between
two probability distributions (π(‡) and λ (‡)) over the domain ‡ which can be continuous or
discrete distributions. Several important probabilistic distances include the following:

• Bhattacharyya distance (DB) [23]: this distance has been proposed to reflect the degree
of dissimilarity between two probability distributions. It is based on the Bhattacharyya
Coefficient (BC) that approximates the amount of overlap between two distributions.
In the case of discrete probability distributions, BC is defined as follows:

BC(π(z̃),λ (z̃)) = ∑
z̃∈Z̃

√
π(z̃)λ (z̃) (3.17)

while, in the case of continuous distributions:

BC(π(z̃),λ (z̃)) =
∫ √

π(z̃)λ (z̃)dz (3.18)

Thus, the Bhattacharrya distance DB is defined through the BC in the following way:

DB =− ln
(

BC(π(z̃),λ (z̃))
)

(3.19)

In either case (discrete and continuous distributions), 0 ≤ BC ≤ 1 and 0 ≤ DB ≤ ∞.
If the two distributions are multivariate normal distributions, π(z̃)∼N (µ1,Σ1) and
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λ (z̃)∼N (µ2,Σ2), the Bhattacharyya distance can be calculated as:

DB =
1
8
(µ1−µ2)

⊺
Σ
−1(µ1−µ2)+

1
2

ln

(
detΣ√

detΣ1detΣ2

)
(3.20)

with:
Σ =

Σ1 +Σ2

2
(3.21)

• Mahalanobis distance (DM) [155]: the Mahalanobis distance (DM) can be visualized as
the distance of a point from a distribution by measuring how many standard deviations
the point is away from the distribution’s mean. Let us suppose that x is a row vector
consisting of a multivariate measurement of an observation point and µ , Σ are the
mean and covariance of the distribution. Then, DM is computed as follows:

DM =
√

(x−µ)⊺Σ−1(x−µ) (3.22)

where, 0≤ DM ≤ ∞.

• Kullback–Leibler divergence (DKL) [134]: the DKL is a way to measure the matching
between two probability distributions. If two distributions perfectly match then DKL =

0, otherwise it ranges between 0 and ∞. The DKL between two discrete probability
distributions can be formulated as:

DKL

(
π(z̃)||λ (z̃)

)
= ∑

z̃∈Z̃

π(z̃) log
π(z̃)
λ (z̃)

(3.23)

while for continuous distributions it is defined in the following way:

DKL

(
π(z̃)||λ (z̃)

)
=
∫

π(z̃) log
π(z̃)
λ (z̃)

dz (3.24)

In the following subsections, we use some of the aforementioned probabilistic distances as
examples to associate abnormality metrics with the different levels of the GDBN.

Discrete Level

The abnormality indicator at the discrete level is defined as a distance between the predictive
(π(S̃t)) and diagnostic (λ (S̃t)) messages entering to node S̃t . Such a distance provides an
awareness signal indicating how the real sensory signals received from the surrounding
environment behave concerning the rules encoded in the generalized model. A high discrete-
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level anomaly can indicate, for example, an abnormal sequence of clusters, or that there is
some difference between the characteristics of the clusters where we expect to move and of
the data that we observe. We use the symmetric Kullback-Leibler Divergence as an example
to measure the similarity between the two discrete probability distributions (π(S̃t) and λ (S̃t)).
The Kullback-Leibler Divergence Abnormality (KLDA) as defined in [132] has the following
form:

KLDA = DKL

(
π(S̃t)||λ (S̃t))+DKL(λ (S̃t)||π(S̃t)

)
(3.25)

where || identifies the divergence. At each time instant t the histogram of the predicted
particles is extracted and the probability of occurrence of each particle is calculated as:

p(S̃t = i) =
y(S̃t = i)

N
i ∈ [1,M] (3.26)

where y(.) is the frequency of occurrence of a specific superstate i and N is the total number
of particles propagated by PF. It is worth noting that λ (S̃t) is unique for all particles at time
instant t. Let’s define S as the set of winning particles whose probability of occurrence is
greater than zero such that:

S= {i|p(S̃t = i)> 0} i ∈ [1,M] (3.27)

DKL is calculated between λ (St) and the rows of the transition matrix related to the winning
particles in S. Hence, (3.25) becomes:

KLDA = ∑
i∈S

[
p(i)

M

∑
j=1

πi j log(
πi j

λ j
)
]
+∑

i∈S

[
p(i)

M

∑
j=1

λ j log(
λ j

πi j
)
]

(3.28)

Continuous Level

At this level, we focus on the messages entering node z̃t and calculate the corresponding
abnormality measurements defined as statistical metrics based on a probabilistic distance (e.g.
DB, DM, DKL). The message P(z̃t |S̃t) forwarded towards the intermediate level describes the
probability of having the prediction z̃t in a certain superstate. Thus calculating the difference
between the predictive message π(z̃t) and P(z̃t |S̃t) allows us to evaluate if the predictions
performed at the discrete level match the prediction done at the continuous level. For example,
such a difference can be obtained through the DB distance in the following way:

Db2 = DB(π(z̃t),P(z̃t |S̃n
t )) =− ln

∫ √
P(z̃t , S̃n

t |x̃t−1)P(z̃t |S̃n
t )dz̃t (3.29)
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On the other hand, it is important to evaluate how much the real observations support the
predictions performed at the continuous level which leads to detecting any abnormal behavior
occurring in the surrounding environment. The second abnormality at the continuous level can
be calculated as the difference between the observations (λ (z̃t)) and the predicted generalized
states (π(z̃t)) which is also based on the probabilistic distances defined previously (e.g. DB,
DM, DKL). For example, using the DB distance, the second abnormality at the continuous
level can be formulated as:

Db1 = DB(π(z̃t),λ (z̃t)) =− ln
∫ √

P(z̃t , S̃n
t |x̃t−1)P(x̃t | ˜zX t)dz̃t (3.30)

Observation Level

The anomaly at this level is particularly informative in the case of high-dimensional data.
In general, two types of observation-level anomalies can be distinguished: i) the direct
reconstruction error due to having learned an observation model that is not suitable for the
observed data. This is the case, for example, of anomalies due to previously unseen contents
and elements appearing in the scene. These anomalies lead to a high discrepancy between
the observed image, xt , and its reconstruction, x̂t , through the VAE network. ii) the distance
between the observation, xt , at t and the predictive message π(x̃t) forward propagated from
the continuous level towards the node xt . From the practical point of view, this can be
interpreted through the calculation of a frame (and OF anomaly) such as the Mean Squared
Error (MSE) between the predicted image, x̂t−1, at time t−1 and the observed image, xt , at
time instant t.

3.7.5 Use of Generalized Errors for Continual Learning

In the previous sections, we have seen how the described framework allows us to enrich the
GDBN architecture and leverage its message-passing concept for the calculation of anomalies
and GEs.

The objective of anomaly indicators is to provide the agent with the capability of under-
standing whether the models that it is using are suitable or not to predict the evolution of the
world and of its own state in the situation it is sensing and experiencing. As shown in Fig.
3.2, in the “Continual Learning” diagram, when high anomalies are detected, the agent is
alerted that it should learn a new model. It consequently stores the corresponding GEs.

On the other hand, the purpose of GEs is to identify which actions the filter has to execute
to correct the predictions it performed. A new model learned from the GEs minimizes
the GEs on the same type of sequence as the one on which they had been identified. By
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minimizing the GEs, surprisal and free energy are minimized too. A clustering process is
performed again and a new model is inserted in the set of learned models.

To summarize, anomalies indicate that a new model should be created, and which part of
the original model should be updated whereas GEs instruct the agent on how the new model
should be created.

It is to note how, in the high-dimensional case, some limitations to the Continual Learning
through GEs are present. New observations (e.g., new objects appearing in the scene, new
types of environments, etc.) could be detected. In this case, the training of a new VAE
is necessary. In this situation, testing requires the use of multiple VAEs (and so, multiple
observation models) in parallel.

Note that, whereas we introduce the concept of Continual Learning and how it is tackled
to give a full idea of the proposed framework, this thesis does not address this part of the
framework.

3.7.6 The Adopted Framework and the five Desiderata of self-awareness

After presenting the adopted framework, we can observe how it complies with the five
desiderata of self-awareness that we have identified in Sections 3.2.3 and 3.3. We reiterate
here that the desired framework should:

• perform Bayesian inference;

• be hierarchical;

• be multi-sensorial;

• be data-driven;

• be interpretable (or explainable).

The proposed framework possesses these characteristics thanks to the use of DBNs.
Indeed, DBNs allow us to model the process of Bayesian inference between random variables
arranged in a hierarchy, thus complying with the first two desiderata. Additionally, we could
potentially join the DBNs of multiple sensors, making the model multi-sensorial, as we will
perform in Chapter 7. Although low-levels of the hierarchy will be dishomogeneous, because
observations are obtained from sensors of different nature and dimensionality, the higher
levels of the hierarchy can work in a homogeneous way.

Moreover, in Section 3.7.2, we have seen how the links in DBNs can be learned in a
data-driven way. As for the interpretability, we have already discussed in Section 3.5 how
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DBNs are an interpretable model and how they can further be enhanced through anomalies
to identify which part of the model should be learned anew. Much more detail regarding this
last characteristic has been provided in Sections 3.7.3, 3.7.4, and 3.7.5, which also serve to
remark once again the importance of anomalies in the adopted framework.

3.8 Other Related Frameworks

In this section, we compare the adopted framework with other proposed state-of-the-art
frameworks and approaches.

Few self-awareness approaches have been presented throughout the years, as this area is
still in its infancy [96].

One seminal contribution to the self-aware field is the work by Lewis et al. [36, 64,
140]. The authors distinguish five types of self-awareness: stimulus awareness, interaction
awareness, time awareness, goal awareness, and meta self-awareness. Eight patterns for
combining these types of self-awareness are introduced. This design has been applied to
fields such as cloud computing and smart camera networks [36]. However, the discussion of
self-awareness proposed in these works is very high-level, and the reached self-awareness
in the presented practical examples is mainly limited to a form of self-monitoring and
self-modeling.

Similarly, also the work in [50] proposes a high-level view of self-awareness. It focuses
on verification and explainability through a self-aware approach. Verification relates to
techniques to assess whether an agent is meeting its requirements. The approach proposes
a “hybrid agent”, which obtains continuous processed information (e.g., object recognition
and engine monitoring from the sensors), performs decision-making by selecting between
a set of high-level discrete choices, and outputs continuous control signals. The agent is
programmed in terms of BDI principles [26]: it contains Beliefs about the world (and itself),
Desires that capture its long-term goals, and Intentions that encode its plans or courses of
action. The authors also propose to monitor the agent’s motives behind its course of action,
its progress toward the goal, the effect of its actions on the world, etc. However, the treatment
of the problems is tackled in a very high-level way, and low-level methods are not proposed.
Nevertheless, it is worth noting that the authors of this work remark on the importance of
some aspects that we have also covered: they discuss explainability, they suggest taking into
account the reliability of different modules (or sensors), they propose the use of a hierarchical
structure by distinguishing continuous low-level controls and discrete high-level decisions.

In [84], a self-awareness approach is presented to detect failures in the operations of a
robot following human commands. Anomaly detection is performed. Events are detected in
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the robot’s operations. Events are a discrete concept extracted from the elaboration of the
input data. The method calculates the probability of an event ei to follow an event e j, given
that t time instants have passed between the two. For each couple of events, a histogram
is computed, with each histogram bin corresponding to a different t. During the online
testing phase of the method, the learned histograms are adopted to find an anomaly score
for the sequence of events. The method is, therefore, probabilistic (even if not through
Bayesian inference) and data-driven. Discrete variables (the events) are calculated and used;
however, continuous state variables are not elaborated for anomaly detection. Therefore, the
hierarchical structure of the method is not fully leveraged. No mention of multi-sensoriality
or interpretability is provided.

Another self-awareness approach is introduced with the RoboErgoSum project [34]. The
presented cognitive architecture is composed of several components. First, the Sensorial
perception module perceives the environment through visual (RGB-D) exterocetive data
and proprioceptive values from the robot’s joints. These inputs are preprocessed to detect
objects, actions, and their effects. Preprocessing of visual data is performed by voxelising
and clustering the RGB-D point clouds. The Motor module includes the possible actions that
the robot can execute. The Sensorimotor Learning module elaborates the preprocessed data
from the sensorial perception module. A Dynamic Bayesian network is learned, to discover
the dependencies between the different variables, including the robot’s actions. The Spatial
reasoning and knowledge module and the Knowledge base module create and memorize
symbolic data of the perceived environment. Since the architecture is primarily directed at
social robots that interact with humans, two modules for this task are introduced (i.e., the
Human-aware task planning module and the Human-aware motion and manipulation plan-
ning module). As Reinforcement Learning is employed for action selection, a Reinforcement
Learning model-free decision-making system is also present. Finally, the Motivation module
handles the robot’s goals, and the Supervision system supervises the other modules during
action planning, and to monitor the interaction with humans. Consequently, this method
is probabilistic, data-driven, multi-sensorial, and potentially hierarchical. No mention of
interpretability or explainability is made.

Other approaches have been proposed in areas such as embedded systems [55], cloud
computing [35], or healthcare monitoring [8]. In the field of robotics, self-aware models
were employed, among other applications, for social robots [208, 188], for swarms and multi-
robot organisms [243, 128], and for underwater robots [3]. Software frameworks for quick
application development of self-aware systems have also been proposed, such as the Research
on self-awareness (RoSA) framework [89], which is based on an Obserse-Decide-Act loop
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[97], and introduces features for abstracting data information, checking data reliability and
content, and recording data history.

As we observed in Section 3.1, self-awareness approaches fall under the umbrella of
cognitive methods. It is worth noting that, in 2018, Kotseruba et al. conducted a survey in
which they identified approximately three hundred cognitive architectures, adopted in around
nine hundred projects [129]. Additionally, one should take into account the cognitive archi-
tectures developed in the five years following that survey, further adding to this substantial
body of work. In the rest of this section, we choose to concentrate on the comparison against
one recent architecture proposal, i.e., the Joint Embedding Predictive Architecture (JEPA), as
it assembles various ideas formulated by many authors in various contexts into a consistent
whole [136, 47].

In 2022, notorious computer scientist Yann LeCun presented a proposal for the JEPA,
an Autonomous Machine Intelligence architecture, drawing from different scientific back-
grounds [136, 47]. At present, some aspects of it are still under analysis. It is composed of
six main components: the Configurator, the Perception Model, the World Model, the Cost
module, the Actor Model, and the Short-Term Memory. The Configurator obtains inputs from
all the other modules and configures them depending on the agent’s goal. The Perception
Model uses sensory observations to estimate the state of the world, possibly in a hierarchical
way. The World Model predicts future World states at different levels of the hierarchy and at
multiple time scales. The Cost module is divided into two types (Intrinsic Cost module and
Critic module) and evaluates the level of “discomfort” that the agent feels through a variable
called “energy”. Indeed, this framework employs Energy-Based Models [137] and seeks for
the agent to take actions that allow it to remain in states minimizing the average energy. The
Intrinsic Cost module is non-trainable and is modulated by the Configurator depending on
the agent’s goal. On the other way, the Critic module is trained to predict the future values of
the intrinsic cost. The Actor Model chooses the sequence of actions that minimizes the cost.
The Short-Term Memory stores the past, current, and future states of the world and intrinsic
costs.

Two possible modes of conducting a perception-action episode are identified. In the most
complex of the two, reflecting traditional Model-Predictive Control, the Perception Model
first extracts a representation of the world, and the Actor Model then proposes a sequence of
actions to undertake. The World model simulates possible sequences of world states deriving
from the proposed actions, and the cost module evaluates the associated costs. The action
sequence resulting in the lowest cost is selected. After every action is performed, the states
and intrinsic costs are saved in the Short-Term Memory, so that they can later be employed
to train the Critic.
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We highlight two important aspects of this architecture. Firstly, the World Model does
not learn to predict how World observations evolve, because not every perceived detail is
relevant to accomplish the agent’s goal. Consider, for example, an autonomous vehicle
navigating a road: the World model needs to predict how pedestrians are crossing the road,
but not how tree leaves are swaying in the wind. Therefore, the observations are encoded
to a lower-dimensional space encapsulating information pertinent to the current objective.
The World Model then focuses solely on learning how this projection evolves. This concept
will be relevant again in Chapter 7. The other relevant aspect of this architecture is that it is
a non-generative architecture. Instead, an Energy-Based Model is learned, which captures
the dependencies between two states x and y through a scalar-valued energy function F(x,y).
This function takes low values when x and y are compatible, and high values otherwise [136].

Our assessment takes into account whether the considered framework possesses the
desired characteristics that we have identified in the past sections.

Table II summarizes this comparison. To the five columns related to the characteristics
defined above, we add columns for the model being “generative” and “probabilistic”, as
an architecture could use generative models or be probabilistic, without adopting Bayesian
inference.

Firstly, the JEPA is hierarchical. As we have described, the Perception Model estimates
the state of the world in a hierarchical way, and the World model predicts future World states
at different levels of the hierarchy. Furthermore, the JEPA is data-driven, and multi-sensorial.
Probabilistic reasoning could be added but is not seen as necessary by the author. In contrast,
the JEPA does not use Bayesian Inference. It is also not generative. Interpretability and
explainability are not discussed.

Table II Comparisons between the adopted framework and the JEPA. “P” identifies that the
considered element could “potentially” be included, but its inclusion is not seen as necessary
by the authors. “-” means that the authors don’t elaborate on the considered element.

JEPA Ours
It uses Bayesian Inference ✗ ✓

It is generative ✗ ✓

It is probabilistic P ✓

It is hierarchical ✓ ✓

It is multi-sensorial ✓ ✓

It is data-driven ✓ ✓

It is interpretable/explainable - ✓
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3.9 Conclusions

In this chapter, we have discussed the state of the art relevant to the thesis. First, we have
briefly reviewed the evolution of autonomous vehicle research and the incorporation of
cognitive architectures and self-awareness into this domain. The neurobiological inspiration
behind the framework adopted in this thesis is then discussed, in particular, the concepts
of the brain as a probabilistic predictive machine, free energy minimization, attractors, and
Generalized States. Four desirable characteristics of self-aware systems are derived from
neuroscience: the use of Bayesian inference, a hierarchical structure, data-driven learning,
and the adoption of multiple sensors. Furthermore, we examined the importance of the
framework being interpretable or explainable. Six basic capabilities are also identified that
are necessary for a system to be considered self-aware: initialization, inference, anomaly
detection, model creation, and interface with control. In this thesis, the first four are examined.
Since anomaly detection constitutes one of these six capabilities, we propose a literature
review of this topic. A literature review is also provided for Visual-Based Localization
because this is a fundamental capability of autonomous vehicles. While discussing state-of-
the-art methods, we also compare them in a high-level way to the approaches presented in
this thesis.

Throughout the above-described sections, we provide all the information necessary to
understand the adopted framework. Therefore, we then describe the framework, we show
how it includes the five identified desirable characteristics, and we compare it with other
self-aware approaches and with the JEPA cognitive architecture proposed by Yann LeCun.



Chapter 4

The Adopted Evaluation Datasets:
Extraction and Overview

Before moving to the chapters covering the main proposed methods, in this chapter, we
examine the evaluation datasets employed throughout the thesis.

First, in Section 4.1, the extraction of an indoor drone dataset is considered. This
dataset includes onboard video and odometry measurements from the drone and, additionally,
sensory observations from an external lidar capturing the drone’s movements from above.
The instrumentation setup for these experiments is described in Section 4.1.1. Section
4.1.2 discusses how this dataset will be used in Chapter 8. For this purpose, we propose a
methodology for localizing the drone using onboard sensors such as cameras and IMUs, as
well as localizing it using lidar data (Section 4.1.3). Results are analyzed in Section 4.1.5.

Additionally to this drone dataset, several other datasets are adopted in the other method-
ology chapters. Therefore, in Section 4.2, we describe every evaluation dataset employed in
the thesis and provide some first examination of their relevant characteristics.

In Section 4.3, the extraction of a dataset with the Carla simulator [53] is also discussed.
Finally, Section 4.4 summarizes the main datasets information and Section 4.5 draws

some conclusions.

4.1 Drone dataset extraction

In this section, we detail the process of extracting an indoor drone dataset that can be used
to evaluate methods for various applications, and, in particular, for anomaly detection and
localization. In this thesis, it is employed in Chapter 8 to evaluate the localization capabilities
of the proposed self-awareness method.
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Indoor localization presents a distinctive set of challenges, notably the inapplicability
of GPS-based positioning methods. Alternative sensor modalities are thus needed, such as
IMUs, cameras, Ultra-wideband (UWB) technology, Light Detection and Ranging (lidar),
Kinect and more [237]. In accordance with this, Chapter 8 explores a novel self-awareness
method harnessing camera data for real-time localization and anomaly detection, which
could be combined with other sensors such as IMU, or with other methods (potentially also
camera-based). However, this method trains its models through known synchronous positions
and images. Therefore, localization must first be performed on the training dataset with
other methods. This section consequently explores localization with images, IMU, and lidar,
adopting traditional Signal Processing methods.

First, we perform localization leveraging the onboard drone sensors. We combine
positioning through external fiducial markers with the results of Visual Inertial Odometry
(VIO). Then, we perform a localization using a more precise external sensor, a lidar, which
can be employed as ground truth. The two localizations are aligned and synchronized.

Fiducial markers are artificial landmarks with a known size and shape, and are identifiable
because they display a specific pattern [113]. Most fiducial markers are squared and in black
and white, but colored or circular markers exist too [113]. Several papers compare fiducial
markers such as AprilTag, ArUco, STag, and ARTag, and more, [112, 113, 49] from the point
of view of accuracy, detection rate, and computational cost. As ArUco was shown to have a
good trade-off between these characteristics, we chose this fiducial marker.

Fiducial markers have been used in the localization literature, either alone [164] or in
combination with SLAM [147] or VIO [163]. For example, Mráz et al. [163] employ ArUco
markers because they add a global positioning and can correct the drift of the VIO.

The localization obtained from ArUco markers is sparse and absolute. It is sparse because
the markers could not be visible along the entire path of the vehicle, as is the case in our
dataset; it is absolute because the precise absolute position of the markers is known.

On the other hand, the VIO uses camera and IMU data and provides a continuous
localization that degrades with time due to drift. Additionally, this localization is relative
to the first-time instant and is not in an absolute coordinate system. A positional reference
for the initial instant is needed. In the proposed method, the first observed ArUco marker is
employed for this purpose.

Finally, the lidar is an active ranging sensor. It uses laser light to measure distance
and create 3D representations of an environment. In this section, we employ the lidar to
track the drone. The obtained continuous localization is used as ground truth to test the
localization from both the traditional Signal Processing methods on the onboard sensors and
the self-awareness method in Chapter 8.
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4.1.1 Instrumentation setup

The experiments were performed employing the following main instrumentation:

• A DJI FLY 2S drone.

• An Ouster OS1 lidar.

The drone was piloted by a human operator, connected through wifi using a controller.
The drone collects a rich variety of information, including RGB frame recordings from
a frontal camera (with 3840x2160 resolution and 30 Hz frame rate), measurements from
the accelerometer, gyroscope, and magnetometer (from two IMUs on board), temperature,
commands sent from the controller, and battery charge level. From these measurements, it
additionally performs estimation of connected quantities, as, for example, pitch, roll, and
yaw, velocity northwards, eastwards and downwards, and localization through VIO.

The lidar has a range from 0.3 to 120 m, a vertical field of view of 45◦, a vertical angular
resolution of 0.35◦, a precision of around 0.7-5 cm, and a rotation rate of 20 Hz.

(1)

(2)(3)

(a)

(4)

(5)

(b) (c)

Fig. 4.1 Flying environment observed from an external perspective. (a) and (b) display the
environment from the corridor above. The ArUco markers are highlighted in yellow beside
their identification number. (c) shows the environment from below, with the lidar position
highlighted.

The drone flies in the environment shown in the photos in Fig. 4.1, moving in the area
delimited by the ArUco markers highlighted in yellow (i.e., an area of around 7m x 5m). Fig.
4.2 illustrates further photos of the environment, in this case taken from the drone onboard
camera. The drone flies in the environment on the first floor, moving in the rectangular space
delimited by the two blue columns with ArUco markers on one side and by the two yellow
columns with ArUco markers on the other side. The lidar is positioned in an open corridor
above this environment, on the second floor.
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(2)

(a)

(4)

(3)

(6)

(b)

(4)

(c)

Fig. 4.2 Flying environment observed from the drone. The ArUco markers are highlighted in
yellow beside their identification number. Note that, in (b), also the optional marker (6) is
present.
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(4) (5)
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Fig. 4.3 Scheme of the ArUco placement in the flying environment. The ArUco identifications
numbers are the same adopted in Figs. 4.1 and 4.2. The origin coordinate system (XOYOZO)
displayed in red is relevant in Section 4.1.3.

In Fig. 4.3, we provide a scheme of the ArUcos placement, and of the precise distances
between them. Moreover, a number is assigned to each marker, which is also used in
preceding photos, to facilitate recognizing which marker in the scheme corresponds to which
marker in the photos. Furthermore, in red, a coordinate system XOYOZO is displayed, which
will be extensively referenced in Section 4.1.3. This coordinate system is placed in what will
be later referenced as the origin.

For each different type of experiment, the visible ArUco markers vary from three (i.e.,
the ones in Fig. 4.1a), to five (i.e., all the ones in Figs. 4.1a and 4.1b), to six (i.e., all the
ones in Figs. 4.1 and 4.2). The first five markers are all attached to columns present in the
environment. The sixth marker, displayed in Fig. 4.3 as “optional” and visible in Fig. 4.2b,
is inserted in only one of the experimental scenarios and is placed on a white board.
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The adopted marker dictionary is 4x4. The dictionary is the set of markers employed. A
4x4 dictionary is composed of ArUcos with 4 inner squares per side, i.e., 16 inner squares
in total. Markers with more inner squares provide more symbols. Tests were performed to
compare this dictionary with the 6x6 one. Due to the decrease in detection accuracy with
the 6x6 dictionary compared to the 4x4 dictionary, and to the lack of necessity of a bigger
dictionary, we chose to use the 4x4 one.

(a)

𝒁𝑶

𝑿𝑶

𝒁𝑳

𝑿𝑳

(b) (c)

Fig. 4.4 The lidar sensor observed from different perspectives. In (b) two reference systems
are compared: the lidar coordinate system (XLZL) and the origin coordinate system (XOZO).
To enhance clarity in the figure, the z-axis of the system is omitted. These systems are
relevant in Section 4.1.3.

The lidar observes the drone from a corridor above the flying environment. Fig. 4.1c
highlights in yellow where the lidar is positioned, from a point of view inside the flying
environment. On the other hand, Fig. 4.4 displays the lidar from above and from a closer
viewpoint.

In Fig. 4.5b we display a point cloud (PC) captured from the lidar. The points are
color-coded based on their intensity, which depends on the reflectivity of the objects. Darker
colors indicate lower intensity, while brighter colors represent higher intensity. The yellow
points indicated by the arrow correspond to the drone. This outcome is achieved by attaching
a marker, made of highly reflective material, onto the drone, which facilitates its tracking.
Fig. 4.5a shows the drone and the highly reflective marker (that is easily identifiable in the
photo by its yellow color).

4.1.2 Use of the drone dataset in the context of this thesis

We extract a set of indoor drone datasets to use them as evaluation datasets for anomaly
detection and localization methods such as the ones proposed from Chapter 5 to Chapter 8.
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(a) (b)

Fig. 4.5 (a): the DJI Fly 2S drone, with the marker with high reflectivity. (b): example of a
lidar point cloud. The red arrow points to the drone, which can be easily detected due to the
high-reflectivity of the marker on top of it.

In this thesis, we use these extracted datasets solely for evaluating the method proposed in
Chapter 8, which is centered on VBL. As seen in Chapter 3, VBL methods are trained with
both image and odometry data; however, during testing, only the image data are available,
and the corresponding odometry values are predicted from the learned model.

Therefore, Fig. 4.6 illustrates how the extracted datasets can be used in the context of
the proposed VBL self-awareness method in Chapter 8. On the left, in green, we display
some sensory inputs directly available from the datasets: the image, IMU, and lidar data.
When applying the self-awareness methods proposed in the following chapters of this thesis,
the data are divided in two sets: a training set without anomalies, and a testing set with
anomalies.

In the center of the figure, in violet, we represent the preprocessing method described in
Section 4.1.3, which enables us to obtain the position of the drone from either the onboard
sensors of the drone (see above in the figure) or from the external lidar (see below in the
figure).

When performing training of the VBL self-awareness method, the camera images and
positions of the drone are employed. The training is unsupervised for what concerns the
anomaly detection, but supervised for what concerns the localization: a loss is built between
the positions extracted from the onboard drone sensors and the positions predicted by the
self-awareness model.

Then, during the testing phase, we provide the drone camera testing images to the VBL
self-awareness method, which extracts anomalies and predicts the drone localization. The
predicted localization is compared to the one derived from the lidar, which acts as ground
truth (GT).
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Fig. 4.6 Scheme displaying how the drone dataset is used for evaluating the approach
proposed in Chapter 8. In the figure, SA stands for Self-Awareness.

Furthermore, as we observed in Section 3.3, our self-awareness models aim to perform
incremental learning when exposed to new situations, such as new visual observations or
previously unexplored motions. Consequently, incremental learning could be performed on
the localization models too. In this case, as during training of the self-awareness model, the
traditional Signal Processing localization from the onboard sensors is necessary again.

Note that, during training, the localization from the onboard sensors is adopted; con-
versely, during testing, we use the localization from the lidar. The rationale behind this choice
is the following: i) the localization adopted to train the drone should not be too complex or
expensive to obtain. Not all users could have costly instrumentation such as a lidar. Moreover,
not all environments could potentially be apt for the use of an external lidar or other precise
external localization methods. In our experiments, we chose a wide environment with an
upper corridor, which easily allowed the adoption of an external lidar. However, narrow
environments with several small rooms, corridors, tunnels, or containers (such as the interior
of a ship) could not allow its use; ii) conversely, the localization for comparison during
testing is solely employed as ground truth and is not needed by everyone who desires to train
the model. A ground truth should be precise, and this is the case for lidar localization: as we
observed in Section 4.1.1, the OUSTER OS1 lidar precision is 0.7-5 cm.
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4.1.3 Proposed preprocessing method

Fig. 4.7 displays the proposed method. Three main steps can be identified: i) the localization
of the drone through onboard sensors (upper part); ii) the localization of the drone through the
external lidar (lower part on the left, in green); iii) the synchronization of the two localizations
(lower part on the right, in white).

The first part takes as input the camera and IMU data of the drone and comprises three
elaborations. On one side, the ArUco markers are detected in the images and localized;
a sparse absolute localization is obtained from them (see the blue part in Fig. 4.7). It is
sparse because the ArUco markers are not visible throughout the entire trajectory of the
drone; it is absolute because we know the precise absolute position of the ArUcos in the
environment. On the other side, the drone performs Visual Inertial Odometry using the
camera and IMU data, providing a continuous relative localization (red part in Fig. 4.7). This
localization is not absolute but is relative to the position in the first time instant. Finally, the
two localizations are joined through a Kalman Filter to obtain an absolute and continuous
positioning (violet part in Fig. 4.7).

The second main block of the method takes as input the lidar point clouds. First, it aligns
the point cloud to the plane of the ground and of the wall of the environment and then tracks
the drone (but the two operations could be performed in an inverted order).

Finally, the localization from the drone and from the lidar are aligned with the position of
the first time instant and are synchronized in time.

The following paragraphs describe all the processing in detail, step by step.

Sparse absolute localization from the ArUco markers

The ArUco markers are detected in the drone camera images using the cv2.aruco python
library. When an image x is given as input to this elaboration, a 3D translation vector ta2d

and a rotation vector ra2d are obtained as output. These represent the pose of the ArUco
marker relative to the drone camera coordinate system XdYdZd . From the rotation vector,
the Rodriguez rotation matrix Ra2d is calculated. To obtain the drone localization in the
environment, we need to first have the drone camera position relative to the ArUco marker
coordinate system. Therefore, we compute the transpose of the Rodriguez matrix (as it is
equal to its inverse) and multiply it with the translation vector:

pd2a = R⊺
a2d ∗ ta2d, (4.1)

where pd2a is the position of the drone camera compared to a coordinate system centered
on the ArUco marker, XaYaZa, as seen in Fig. 4.8. However, we need the position of the
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Fig. 4.8 Representation of the relevant coordinate axes and position vectors for the localization
of the drone from the ArUco markers. The ArUco taken as an example for the drone
localization description in this image is the one on the upper right part of the image. Note
that the scale of the elements in the image does not correspond to reality.

drone camera in the origin coordinate system XOYOZO (see Fig. 4.3 to determine how it is
positioned in the environment scheme). To perform this last passage, we need to measure
the translation and rotation of the ArUco marker from the origin coordinate system. We
identify these values with ta2O and ra2O. We consequently calculate the rotation matrix Ra2O

from ra2O. Finally, we obtain the desired position of the drone from XOYOZO by applying the
following equation:

pd2O = Ra2O ∗ pd2a + ta2O, (4.2)

A representation of the described coordinate systems and position vectors for the local-
ization of the drone from the ArUco markers is shown in Fig. 4.8.

From this process, repeated for each camera image where an ArUco is detected, a sparse
absolute localization is obtained. We define these estimated positions with {pArUco

t }t∈D,
where D is the set of time instants corresponding to ArUco detections. As already remarked,
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this localization is sparse because, in some zones along its path, the drone does not see any
ArUco markers.

Continuous relative localization from Visual Inertial Odometry

As a second step, a continuous relative localization can be obtained from the drone by
joining the IMU and camera data to perform VIO. The DJI Fly 2S drone already provides a
VIO output. Consequently, we take this output as the second localization. We define these
estimated positions with {pV IO

t }t=1...T , where T is the total number of time instants of a
drone trajectory.

Final continuous absolute localization from onboard sensors

Once the two separate localizations are obtained, they can be joined. Note, however, that
the VIO localization is not in the XOYOZO coordinate system. Consequently, it must first be
aligned with it, i.e., it must be aligned with the localization from the ArUcos. The coordinate
transformation can be calculated using the first-time instant (in which an ArUco marker is
always detected). This transformation can then be applied.

A Kalman Filter joins the two localizations. At each time instant, the KF uses as
observation the position obtained from the ArUco (if available), and as prediction the velocity
between two positions obtained from the VIO elaborated by the drone. Additionally, the
observation covariance is not kept constant: its values are increased when the distance of the
camera from the ArUco increases. It also increases as the disparity between two consecutive
positions derived from the ArUcos becomes more pronounced.

We define the final estimated positions at the output of the KF with {pOnboard
t }t=1...T .

Alignment of the lidar point cloud

We now dedicate this and the following section to describing the localization of the drone
through the external lidar sensor.

This localization must be aligned with the XOYOZO coordinate system too. For simplicity,
in this thesis, we choose to perform the alignment in a way that is applicable to environments
delimited by a flat ground and a vertical wall, as the one in which we are operating.

We define with XLYLZL the original coordinate system of the lidar, that, as we said, does
not correspond to XOYOZO. See Fig. 4.4b for a graphical depiction where, for simplicity of
representation, only the X and Z axis are displayed (YO and YL in this scenario are roughly
the same and, in the figure, are in the direction of the yellow railing, pointing far from the
camera). Moreover, in this figure, we moved the origin point of the XOYOZO coordinate
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Fig. 4.9 Alignment process of the ground plane. The different coordinate systems described
in the text are plotted over the lidar point cloud.

(a) (b)

Fig. 4.10 Detection of the ground (a) and of the wall (b). The points detected as belonging
to either the ground or the wall are illustrated in violet; the rest of the lidar point cloud is
displayed in green.

system to the lidar sensor for a better comparison with XLYLZL. The true origin point of
XOYOZO can be observed in Fig. 4.3.

The first plot on the left in Fig. 4.9 also shows the lidar PC against the axes in the two
coordinate systems, now centered in the origin point of XOYOZO. Remember that this is not
the origin point of XLYLZL, but this coordinate system is moved in the figures to simplify the
comparison of the axes.

We don’t know precisely which is the rotation vector rLO that brings from XLYLZL to
XOYOZO, however, we can obtain a rough estimate rLL1 measuring how the lidar is pointing in
Fig. 4.4. This value does not have to be precise: the rotation will be refined by estimating both
the ground plane and the wall plane. The rough estimate is first needed because lidar ground
detection algorithms are employed, which assume that the ground is flat and approximately
located on the XY plane.



4.1 Drone dataset extraction 75

PCs after precise rotation of the 

Coordinate System (from ground)  

PCs after precise rotation of the 

Coordinate System (from wall)  

𝒀𝑶𝒀𝑳𝟐

𝒀𝑳𝟑~ 𝒀𝑶

Fig. 4.11 Alignment process of the wall plane. The different coordinate systems described in
the text are plotted over the lidar point cloud.

Having rLL1 , we can rotate the point cloud, leading to a coordinate system XL1YL1ZL1,
depicted in the center in Fig. 4.9. A ground detection algorithm is applied [176], as displayed
in Fig. 4.10a, where the detected ground points are represented in violet and the rest of the
PC in green. The plane of the ground and its normal are calculated. The angles between these
normals and XL1YL1ZL1 are computed, leading to a rotation vector rL1L2 . The application of
this rotation to the PC leads to the coordinate system XL2YL2ZL2, shown on the right in Fig.
4.9. The axes ZL2 and XL2 align better to ZO and XO than ZL1 and XL1.

However, the alignment of the point cloud can be refined further by leveraging the plane
of the wall. The wall in the environment can be treated as a ground and detected through the
same ground detection algorithm as before [176]. To accomplish this, we treat the YL2ZL2

plane as if it were the XY ground plane. In our case, the wall corresponds to the white
board marked in red in Fig. 4.1a. This configuration adds a difficulty, as ground detection
algorithms treat the ground as the object that has the lowest value on the Z axis. In our
case, the wall is not the furthest object away from the lidar, and so it it not - once YL2ZL2

is treated as if it were the XY ground plane - the one with lowest Z values. To solve this
issue, we take into consideration that, if we split the PC in slices along the XL2 axis, a wall or
white board such as the one in our environment will correspond to the slice with most points.
Therefore, a loop is performed cutting the lidar PC in different slices along the XL2 axis. The
ground detection algorithm is performed on each loop iteration. The wall corresponds to
the detected ground with the highest number of points. Once this surface is found (see Fig.
4.10b), the same operations executed after detecting the ground are repeated: the rotation
vector rL2L3 from XL2YL2ZL2 to the normal of the wall is calculated and applied to XL2YL2ZL2.
The new coordinate system XL3YL3ZL3 is found, which corresponds to a better approximation
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of XOYOZO than XL2YL2ZL2 was. Fig. 4.11 exemplifies this alignment, further showing its
rationale. The figure displays YO compared to YL2 and YL3.

Note that this procedure is environment-specific. In the case of an environment that
only has a flat ground and no wall, the process can stop at the first refinement (however, the
final localization from the lidar will not be as precise). If the environment has a wall which
corresponds to the furthest element in the room, there is no need to perform a loop to search
for the wall.

Tracking of the drone in the lidar point cloud

We localize the drone in the environment by exploiting the intensity information in the lidar
point cloud. Due to the reflective marker on the drone, the drone tends to be the object with
the highest intensity in the scene. This can be observed in Fig. 4.5b. We set a threshold T hInt

over the intensity. Points in the point cloud with an intensity exceeding this threshold are
deemed eligible for tracking, as they could belong to the drone. However, due to the different
angles at which the drone is observed from the lidar, the drone might sometimes not be the
object with the highest intensity in the point cloud.

Therefore, to mitigate the impact that other (small) objects have on the localization of
the drone at the first time instant, we delineate the region from which the drone initiates
its movement and where we initially search for it. This can be executed automatically by
finding, in the first τ instants of each flight, all the points that have an intensity over T hInt .
Outliers in this set are removed and all other values are used to calculate a mean position and
the corresponding standard deviation.

When beginning the drone tracking, we look for it within a radius of α standard deviations
from the found mean position. At the following instants, points in the PC with intensity
higher than T hInt are located. Only the ones at a set distance T hDist from the previous drone
position are kept and averaged to obtain the new drone position.

Finally, the computed localization is smoothed. We define the final estimated positions at
the output of the lidar with {pLidar

t }t=1...T .

Final Alignment and Synchronization of the onboard and lidar localization

We now have the localization from both the onboard sensors and from the lidar, i.e.,
{pOnboard

t }t=1...T and {pLidar
t }t=1...T . However, before comparing them, it is necessary

to complete the alignment procedure and synchronize them.
The majority of the alignment process of the point cloud has already been described in a

previous section. However, one last element is missing from the alignment: whereas the two
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localizations are expressed in coordinate systems with approximaly parallel axes, they don’t
share the same origin point. This final alignment can be done in a simple way, by subtracting
an offset from the vector of lidar localizations {pLidar

t }t=1...T . This offset is calculated as
the mean position of the drone from the onboard sensors localization in the first τ instants
of flight, when the drone is static on the ground. Only these instants are adopted for the
offset calculation because the following ones could potentially have a higher error in their
estimation.

Finally, the last step to perform is the synchronization of the two localizations. If the
two sensors share timestamps starting from the same beginning time (for example, by being
synchronized through a wireless connection), the alignment is straightforward. However, in
cases where synchronized timestamps are unavailable, an approximate synchronization can
be carried out. First, the onboard sensors localization is downsampled (from the 30 Hz of the
video frame rate to the 20 Hz of the lidar). Then, we calculate the difference in velocities
obtained by the two localization systems in a loop. During each iteration of the loop, one
of the two localization systems’ timestamps is incrementally shifted by a varying amount
of time. Consequently, at each step of the loop, different time alignments between the two
localizations are considered. We choose the alignment with the lowest difference .

4.1.4 Extracted scenarios

As we have just observed in Section 4.1.2, the drone evaluation datasets considered in this
chapter are used in Chapter 8 for evaluating the localization.

However, as previously observed, another objective of these datasets is evaluating
anomaly detection methods, either the ones in this thesis or different ones. Consequently, all
the dataset scenarios have a set of normal trajectories and a set of abnormal trajectories.

We extract the scenarios in the list below (note that, in every scenario, the drone starts
flying in front of ArUco 1).

• LOop motion (LOM): the drone takes off, and then performs a loop getting close to
all ArUcos from 2 to 5, and finally lands at the point where it started. In its motion, the
drone always faces outwards from the center of the flying environment. In the abnormal
version of this scenario, two new types of objects are placed in the environment; the
first type is a yellow cylinder and the second is a brown box. When the drone observes
the yellow cylinder, it performs abnormal motions such as going closer and further
away from it to observe it better. In contrast, the drone does not execute any abnormal
movements when the brown box enters its field of view. We extracted 13,469 train
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frames, 3,049 validation frames, and 46,503 (abnormal) testing frames (at the 30 Hz
video frame rate).

• Frontal motion (FM): the drone takes off facing ArUco 1, then turns on the left and
moves toward the white board where ArUco 6 is attached. When reaching the board, it
performs the same motion but moves backward. Three abnormal versions are extracted
for this scenario. In the first version (V 1), a pedestrian walks on the side of the drone,
either in the same direction of the drone or in the opposite one; no abnormal motion
from the drone is performed in this scenario. In the second version (V 2), a pedestrian
walks in front of the white board, either coming from the left of the drone or from its
right; in this scenario, the drone stops to let the pedestrian pass and then continues
in its motion. Finally, the last version (V 3) considers the four combinations of the
previous abnormal situations, i.e., two pedestrians are present in the scene. The drone
performs the same abnormal motion as before, to let the pedestrian in front of the white
board pass. In this last version, only onboard sensor data are extracted. We extracted
18,253 train frames, 2,518 validation frames, and 34,920 testing frames for the first
two abnormal scenarios, and 19,732 for the third one.

• LAteral motion (LAM): the drone takes off facing ArUco 1, and moves laterally,
from ArUco 2 to ArUco 3. Then, it flies back and lands. In the trajectories, the drone
starts at five different equispaced distances from ArUco 1, ranging from 0.9 to 2.1
meters. In the abnormal scenario, squared abnormal markers of different dimensions -
3x3, 7x7, 10x10, 15x15, 21x21 cm - and of different colors - (0,0,0), (127, 127, 127),
i.e., black and gray - are placed in the environment. No abnormal motion is performed
by the drone. We extracted 17,368 train frames, 1,736 validation frames, and 20,309
(abnormal) testing frames.

Fig. 4.12 shows examples of the drone camera images when anomalies appear. In
Fig. 4.12a, the yellow cylinders generating motion abnormalities in the LOM scenario are
displayed. Fig. 4.12b illustrates V 1 (above) and V 2 (below) of the abnormal FM scenario.
Finally, we display in Fig. 4.12c examples of the biggest (21x21 cm) and smallest (3x3 cm)
squared abnormal markers in the LAM scenario.

The odometry trajectories of the three scenarios are visualized in Fig. 4.13.

4.1.5 Localization results

In this Section, the results from the proposed localization method are reported. Because
the lidar positioning is used as a ground truth, we visually checked and confirmed that the



4.1 Drone dataset extraction 79

(a) LOM. (b) FM. (c) LAM.

Fig. 4.12 Drone camera anomalies in the different scenarios of the drone dataset.

(a) LOM. (b) FM. (c) LAM.

Fig. 4.13 Odometry of the three scenarios of the drone dataset. The positions of the ArUco
markers are displayed through black stars.

tracking of the drone was precise, by visualizing the obtained localization, instant by instant,
on the lidar PC. Furthermore, we visually checked that the synchronization was accurate.

We reiterate the pros and cons of the two localizations from the onboard sensors:

• The marker detection provides an absolute but sparse estimate of the drone positioning.

• The VIO provides a continuous position, that however tends to drift over time.

These characteristics can be seen in Fig. 4.14. The blue dots correspond to the estimated
position of the drone, obtained from the markers detected by the camera. They are present
in three focused areas, where the markers - represented by black stars - are located. On the
other hand, the continuous localization gained from the VIO is displayed in red. The lidar
ground truth localization is shown in green. Comparing the lidar and VIO localization, we
can discern the drift of the latter one: within the circumscribed area, the VIO estimates the



80 The Adopted Evaluation Datasets: Extraction and Overview

Fig. 4.14 Localization obtained from the ArUcos (blue), from the VIO (red), from the lidar
(green), and joining the positioning from ArUcos and VIO (violet). The position of the five
ArUco markers in this trajectory (belonging to the LOM scenario) are illustrated with black
stars. A black oval highlights the final time instants of the trajectory, where the drift of the
VIO is particularly evident.

position of the drone to be almost half a meter lower than what it is. Therefore, according
to the VIO, in the final frames of the experiment, the drone appears to be situated below
the ground plane. Conversely, the estimation obtained from the markers in that area better
mirrors the true position of the drone. When the VIO and ArUco localizations are joined, a
better localization is obtained than the two separate ones (see the violet plot).

Table I reports information about the three considered scenarios. From left to right, the
columns illustrate the dataset scenario, the number of trajectories extracted for each scenario,
the total number of frames, and the number of frames in which an ArUco marker was detected.
Please note that the frame count pertains to the data following the synchronization between
onboard sensors and lidar. The frame rate is now 20 Hz and not 30 Hz. For this reason, the
numbers are different from the ones reported in section 4.1.4. Additionally, the drone and
lidar were not started at the exact same instant, leading to one or the other capturing more
time instants in the different experiments before the drone took off or after it landed. This
accounts for some small additional difference in the numbers but does not pose any issues,
as both drone and lidar always capture the entire trajectory from the drone’s take-off to its
landing.
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Table I Basic information about the three drone dataset scenarios.

Data
Scenario

Num.
trajectories

Num.
frames

(at 20 Hz)

Num.
frames
ArUco

(at 20 Hz)
LOM 18 40,714 21,797
FM 27 36,155 14,361

LAM 21 26,207 15,482

Table II Localization error using the drone onboard sensors. The localization obtained from
the lidar is employed as ground truth.

Data
Scenario

Mean
loc. err.

VIO
(m)

Std.
loc. err.

VIO
(m)

Mean
loc. err.
ArUco

(m)

Std.
loc. err.
ArUco

(m)

Mean
loc. err.

final
(m)

Std.
loc. err.

final
(m)

LOM 0.1765 0,0978 0.2352 0,1827 0.1636 0,1055
FM 0.1459 0,0791 0.1391 0,1154 0.1445 0,0882

LAM 0.1958 0,1741 0.2064 0,1608 0.1705 0,1540

Table II numerically shows the goodness of these results. The table reports the results
by comparing the localization from the onboard sensors (VIO, ArUco, and VIO+ArUco)
with the ground truth from the lidar. Each couple of columns displays the mean and standard
deviation of the Euclidean distance between the localization predicted with the onboard
sensors and the ground truth obtained with the lidar. From left to right, the table shows the
results with the VIO, with the ArUco, and with the VIO combined with the ArUcos.

Notice how, in all three scenarios, the mean error is below 0.25 m. Also observed that
the final continuous localization is better than the continuous localization with only the VIO.

4.2 Other adopted evaluation datasets

In this section, other real-world evaluation datasets adopted in this thesis are described. Since
some datasets are employed in several methodology chapters of this thesis, we chose to
dedicate this section to introducing all used datasets. In this way, when encountering a dataset
being mentioned in the methodology chapters, the reader can go back to this section for some
basic information about it. Conversely, specific method-related analyses of these datasets
will be discussed in their respective methodology chapters.

First, in Sections 4.2.1, 4.2.2 and 4.2.3, we examine three vehicular datasets provided
with both camera and odometry information, i.e., the iCab dataset [157], the UAH-DriveSet
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dataset [190], and the Egocart dataset [206, 207]. Then, in Section 4.2.4, we jointly introduce
two fixed-camera anomaly detection benchmark datasets, i.e., the Subway dataset [1] and the
Avenue dataset [151]. More space is given to those datasets that are used more or examined
in deeper detail throughout the thesis.

4.2.1 ICab dataset

Stereo 
camera

Internal
sensors

(a) ‘iCab” vehicle (b) Environment from above.
© 2021 IEEE.

(c) Environment from side.

Fig. 4.15 Employed vehicle and environment of the iCab dataset.

Marin et al. adopted a real vehicle called “iCab” [157] (see Fig. 4.15a) to collect a multi-
sensor dataset. A human drove the iCab performing different tasks in a closed environment
displayed in Figs. 4.15b and 4.15c. The dataset was captured while the vehicle executed four
different tasks:

Scenario I - perimeter monitoring (PM), 13,533 frames: the vehicle follows a rectan-
gular trajectory along a closed building.

Scenario II - emergency stop maneuver (ES), 13,724 frames: the vehicle executes the
PM task, encounters two pedestrians crossing its path at each lap, performs an emergency
stop, and then continues the PM task when pedestrians exit its field of view.

Scenario III - pedestrian avoidance maneuver (PA), 7,247 frames: two obstacles
(stationary pedestrians) in different locations interfere with the PM task. The vehicle performs
an avoidance maneuver and continues the PM task.

Scenario IV - U-turn maneuver (U-turn), 9,874 frames: while executing the PM task,
the vehicle encounters two static pedestrians in different locations. It performs a U-turn
motion and continues the PM in the opposite direction compared to the training data.

The temporal evolution of the four above-described maneuvers from a first-person per-
spective is shown in Fig. 4.16a, 4.16b, 4.16c, and 4.16d, below the odometry plotting for
a single lap. The PM scenario is used for training and validation; the other scenarios are
for testing. We aim to detect the abnormal maneuvers in the testing scenarios caused by the
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(a) Perimeter monitoring (PM2) (b) Pedestrian avoidance (PA)
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Fig. 4.16 ICab vehicle tasks used to evaluate the proposed method. Perimeter monitoring is
adopted in the training phase whereas the other three tasks are employed for testing purposes.
© 2021 IEEE.

presence of pedestrians. Training and testing data were captured at different hours of the day
and camera orientations, resulting in differences in lighting conditions and element positions
with respect to the camera. Icab images have 640x480 resolution.

The three anomaly tasks are shown in Fig. 4.16b, 4.16c, 4.16d, where the maneuvers are
highlighted with different colors. Blue zones refer to the instances where the abnormal ma-
neuver is executed; green and yellow zones correspond to linear paths and curves respectively.
Shady areas are shown too, as they constitute a problem in computer vision and anomaly
detection: if very dark or bright areas are present, these could be potential anomalies when
the training set does not include similar dark areas. In our case, although shadows are present
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Shadow Area

(a) PM1 (training). (b) ES1 (testing).

Fig. 4.17 PM1 and ES1 sequences. Odometry information is displayed in red. Some image
examples are provided. © 2023 IEEE.

in the training phase, they only cover a few local parts of the frame compared to testing.
Consequently, they are noted as abnormal areas in the ground truth.

We also observe that two sets of experiments taken at different times of day and season
are present for the PM case and for the ES case. A set of PM is taken at the same season
(but at a different time of day) as a set of ES. We denote these sets as PM1 (6,849 frames)
and ES1 (6,558 frames). The other two PM and ES experiments are performed at different
times of day and season. We name them from here on PM2 (6,684 frames) and ES2 (7,166
frames). This latter couple is the one shown in the general Fig. 4.16. Conversely, Fig. 4.17
displays the PM1-ES1 experiments performed on the same day, with the odometry values
in red and some image examples. In this case, a shadow area is present on one side of the
training courtyard, whereas it is absent in the testing case.

This dataset is employed for evaluation in all methodology chapters of the thesis, as it
presents simple, spatially and temporally contained, repeated anomalies of different types,
allowing us to study how they can be detected at the different levels of the hierarchy.

4.2.2 UAH-DriveSet dataset

This is a dataset [190] by the University of Alcalá for driver behavior analysis composed of
various car sensory data from six drivers performing two routes (motorway and secondary
road) with three types of behaviors (normal, drowsy, and aggressive). The dataset provides
GPS, accelerometer, and video data of resolution 960x540 pixels.

Fig. 4.18 displays some examples of images from this dataset, all belonging to the
“secondary road” scenario.
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Fig. 4.18 Image examples from UAH-DriveSet dataset, all belonging to the “secondary road”
scenario.

A subpart of the “motorway road” and “secondary road” scenario is used in the evaluation
of the approaches proposed in Chapters 6 and 7, respectively.

4.2.3 Egocart dataset

The Egocart dataset [206, 207] is a benchmark dataset for indoor video localization, captured
with a shopping cart moving in an empty retail store. It is composed of a set of training and
testing image trajectories and their corresponding positions. The training set has 13,360
frames, and the testing set has 6,171. Egocart images have 1280x720 resolution. The ground
truth position is obtained using Structure from Motion techniques [228].

Spera et al. [206, 207] evaluated several state-of-the-art localization methods on this
dataset.

Fig. 4.19 displays some example frames from this dataset, and the training and testing
odometry data.

Note that this dataset is a benchmark localization dataset, and not an anomaly detection
one. It is employed in Chapter 8 of this thesis to test the localization capabilities of the
proposed method. However, some comments regarding the detection of anomalies are
proposed too.

(a) (b) (c)

Fig. 4.19 Training and testing Egocart odometry (a), and some examples of images of the
Egocart dataset.
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(a) (b) (c) (d)

Fig. 4.20 Examples of normal and abnormal images of the subway dataset: (a) subway
entrance normal image; (b) subway exit normal image; (c-d) subway exit abnormal images:
in (c) a person enters the platform from the wrong direction, whereas in (d) he exits the
platform when there is no train in the subway.

(a) (b) (c)

Fig. 4.21 Normal (a) and abnormal (b-c) frames in the Avenue dataset. In the abnormal
frames, a person throws paper in the air (b), and someone walks on the lawn (c). Note: the
illustrated red box does not correspond to the ground truth provided by the authors of the
dataset, but was plotted in this figure just to approximately highlight where some examples
of anomalies are located.

4.2.4 Fixed-camera datasets: Subway and Avenue

All datasets considered until now were extracted from a moving vehicle. In this Section,
instead, we introduce two real-world datasets from static cameras. In place of being mounted
on a vehicle, the camera in these datasets records the scene from an overhead vantage point.
Both datasets presented in this section are anomaly detection benchmark datasets.

The Subway Dataset [1] : this dataset contains two sets of video streams from surveil-
lance cameras positioned at the entrance and the exit of a subway, with people moving in the
corresponding flow direction. The Entrance dataset is composed of 144,249 frames (1 hour
and 36 minutes) and the Exit dataset contains 64,900 frames (43 minutes). In this thesis, the
first 18 and 5 minutes, respectively, were used for training. Abnormal events correspond to
people moving in wrong directions, loitering, etc..

The Avenue Dataset [151] : this dataset contains videos from a surveillance camera
positioned in front of a campus avenue, with 15,328 training and 15,324 testing frames
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(16 normal and 21 abnormal videos). Abnormal events correspond to people walking in
unexpected zones, throwing paper, running, etc. Some examples are shown in Fig. 4.21.

The Subway and Avenue datasets are employed to evaluate the approach proposed in
Chapter 5 only. The subsequent methodology chapters necessitate positional data of the
moving vehicle, which is incompatible with these static camera datasets.

4.3 Data from the Carla simulator (CarlaABN)

In addition to the real-world datasets described above, we use data from the Carla simulator,
an open-source simulator for autonomous driving research [53].

We automatically generate 50 trajectories of a car randomly moving in a town (Town
2), extracting a total of 22,776 frames. These frames are subdivided into 17,138 training
and 5,638 validation frames. The resolution of the frames is 288x162. Then, we manually
extract a set of abnormal scenarios:

• A Sudden Deceleration (SD), 50 frames: the car travels at normal speed along a
road traversed during training, and suddenly decelerates, a movement that was not
performed during training. This is a motion anomaly.

• An Out-Of-Street motion (OOS), 40 frames: the car crosses the center line of a known
road, and starts driving on the wrong side of the road. This is both a visual anomaly
(unseen areas of the map are explored) and a motion anomaly (due to the crossing of
the center line and moving in the wrong direction).

• An Abnormal Turn at an Intersection (ATI), 70 frames: during training, the car always
turned left at a specific intersection. Conversely, during the ATI scenario, it moves
straight at the same intersection. This is a motion anomaly and an anomaly at a higher
level of the DBN hierarchy, as the car moves from the known zone 1 (before the
intersection) to the unexpected known zone 2 (straight after the intersection) instead of
moving to the expected known zone 3 (at the left after the intersection). See Fig. 4.22
for an approximate representation of the zones 1, 2, and 3.

Fig. 4.22 displays the extracted training, validation (red), and testing (blue) trajectories.
The three scenarios are marked with the letters “a” (SD), “b” (OOS), and “c” (ATI). A frame
example for each scenario is displayed in Fig. 4.23; the same letters are adopted for the
scenarios as in Fig. 4.22.

From here on, we denominate this dataset CarlaABN, so that it can be easily referenced
in the thesis.
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Fig. 4.22 Training, validation and testing positions in the CarlaABN dataset.

(a) (b) (c)

Fig. 4.23 Frames of the CarlaABN dataset belonging to the three abnormal situations. (a):
SD; (b): OOS, after crossing the center line; (c): ATI, before crossing the intersection.

The advantage of using the simulator is that it allows us to easily extract precise scenarios
with simple, known, spatially and temporally contained anomalies. For each of the above-
described scenarios, we know at which level of the DBN hierarchy to expect high anomaly
signals. Therefore, we can test our approaches to verify at which level of the DBN anomalies
are detected.

The data extracted with the Carla simulator is adopted for evaluation in Chapter 8.

4.4 Datasets summary

Table III summarizes the main characteristics of the datasets explored in this chapter.
In the first three columns, the table defines the available data types, the data types

employed in the self-awareness methods presented in this thesis, and the data types used to
build the positional ground truth. Some datasets have a high variety of provided information,
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Table III Summary of the main characteristics of the datasets employed in this thesis. The
term "abs. pos." stands for absolute positioning.

Data
types

available

Data types
used for the

self-awareness
methods in this

thesis

Sensors
used to

build the
positional

GT

Fixed
(F)
or

moving
(M)

camera

Real-world
(RW)

or
simulated

(S)
data

Drone
(Section 4.1)

Camera,
abs. pos.,

IMU readings,
lidar PCs,

battery level,
etc.

Camera,
abs. pos. (GPS) Lidar M RW

ICab
(Section 4.2.1)

Camera,
abs. pos.,

IMU readings,
etc.

Camera,
abs. pos. (GPS) GPS M RW

UAH-DriveSet
(Section 4.2.2)

Camera,
abs. pos.,

IMU readings,
etc.

Camera,
abs. pos.

(GPS+IMU)
GPS+IMU M RW

Egocart
(Section 4.2.3)

Camera,
abs. pos.

Camera,
abs. pos. (SfM) Camera (SfM) M RW

Avenue
(Section 4.2.4) Camera Camera - F RW

Subway
(Section 4.2.4) Camera Camera - F RW

CarlaABN
(Section 4.3)

Camera,
abs. pos.

Camera,
abs. pos. (GPS)

Actual pos.
from simulator M S

so we only highlight a subpart of the data. For example, the employed DJI FLY 2S drone
provided a great amount of raw and elaborated data that was behind the scope of this thesis,
such as battery level, temperature, and wind speed. Similarly, the UAH-DriveSet dataset
includes a lot of processed information, such as detected lanes, vehicles, and lane-changing
events. It is also worth noting that this table summarizes the available data after preprocessing
but before applying the self-awareness models described in the next chapters.

The positional information is extracted in the different datasets with a variety of sensors.
In the drone dataset, we extracted it with the VIO, with the VIO and ArUcos, and with the
lidar. The positioning from the VIO and ArUcos is employed to train the self-awareness
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models, whereas the positioning from the lidar is used as ground truth. This is the only
real-world dataset case in which the odometry used as training input and as ground truth are
different, for the reasons explored in Section 4.1.3. In the iCab dataset, the positioning is
available through the GPS and the wheel odometer. The GPS positioning is employed in
this thesis. In the UAH-DriveSet dataset, the GPS position has a sampling rate of 1 Hz and
the IMU readings of 10 Hz. In this thesis, they are combined to obtain a positioning with
a sampling rate of 10 Hz. The Egocart positional data is extracted by the original authors
[207] through Structure from Motion (Sfm) techniques. Finally, in the CarlaABN dataset, a
simulated GPS sensor is adopted, and the real vehicle position in the simulator corresponds
to the ground truth.

Finally, the last two columns of the table define if the dataset camera was fixed or moving,
and if the data is real-world or simulated.

4.5 Conclusions

The objective of this chapter was twofold: i) to describe the extraction of an indoor drone
dataset for anomaly detection and localization, while also proposing a method for localizing
the drone from onboard and external sensors; ii) to introduce all the other evaluation datasets
adopted in this thesis, which include both real-world and simulated data.

In the first part, we proposed a traditional Signal Processing method to localize a door
flying in an indoor environment from its onboard sensors (camera and IMU) and from an
external sensor (lidar). The onboard localization was performed by combining a sparse
positioning obtained from detecting ArUco markers in the environment with a continuous
positioning gained from the VIO. The fusion was performed through a Kalman Filter. On
the other hand, lidar localization was made possible by tracking the drone in the lidar PC,
leveraging its high reflectivity. The lidar localization is aligned with the onboard localization
by identifying the plane of the ground and the plane of the wall inside the environment.

Moreover, in Section 4.1.2, we explain how the extracted drone dataset will be employed
for the evaluation of the self-awareness approaches proposed in this thesis.

In the second part of this chapter, we have introduced all the evaluation datasets that
are employed in this thesis. These include three real-world First-Person Viewpoint (FPV)
datasets, endowed with both camera and odometry information (iCab, UAH-DriveSet, and
Egocart), two real-world fixed camera datasets (Subway and Avenue), and one FPV simulated
dataset extracted using the Carla simulator. Except for the UAH-DriveSet and Egocart
datasets, all these datasets are specifically tailored for anomaly detection. Additionally,
we have noticed that certain datasets, including iCab and CarlaABN, feature spatially and
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temporally isolated abnormal scenarios. In these instances, we can readily pinpoint the
specific abnormal signals that are expected to register high within the DBN hierarchy.

Whereas in this chapter all the datasets are introduced, a more detailed analysis of some
of them will be found in the methodology chapters. This detailed analysis is related to
aspects of the proposed self-awareness methods and, therefore, would be out of place in this
introductory chapter.

Consequently, this chapter still does not describe or employ any of the proposed self-
awareness approaches central to this thesis. In the next chapters, the self-awareness methods
of this thesis are presented.





Chapter 5

Multilevel anomaly detection Through
Variational Autoencoders and Bayesian
Models for self-aware Embodied Agents

This is the first chapter of this thesis proposing a self-awareness approach based on the
framework discussed in Chapter 3. We tackle the anomaly detection application, and we
only employ camera data. As already discussed in Chapter 3, anomaly detection constitutes
a fundamental step in developing self-aware autonomous agents capable of continuously
learning from new situations, as it enables to distinguish novel experiences from already
encountered ones.

This chapter adopts DBNs and NNs to perform anomaly detection in video data across
multiple levels of abstraction. Two methods are presented and compared. Both exploit VAEs
to reduce the dimensionality of camera data and employ an extension of the MJPF. However,
whereas the first method trains the VAE on camera frames only and uses the innovation of a
Null Force Filter (NFF) to build the GS, the second method trains the VAE on camera frames
and Optical Flows (OFs) between consequent images.

Section 5.1 introduces the discussed problem and the motivation behind the proposed
approach, also given the framework discussed in Chapter 3. Then, the two versions of the
proposed approach are described in detail in Sections 5.2 and 5.3, respectively. We also
outline the advantages of the proposed approach (Section 5.4) and a general comparison
between the two versions with their advantages and disadvantages (Section 5.5). As the
adopted framework aims at performing incremental learning, we introduce how the extracted
anomalies can be exploited for this purpose (Section 5.6). Afterward, Section 5.7 discusses
results, further comparing the two approaches. Finally, Section 5.8 draws some conclusions.



94
Multilevel anomaly detection Through Variational Autoencoders and Bayesian Models for

self-aware Embodied Agents

5.1 Introduction

As examined in Section 3.3, the automatic detection of anomalies in video information is a
key element for generating robust autonomous systems that can adapt themselves to unknown
situations and incrementally learn predictive models from them.

Indeed, six basic capabilities of self-aware systems have been distinguished: initialization,
memorization, prediction, anomaly detection, new model creation, and decision-making.
Anomaly detection constitutes the fourth capability, and supports the recognition of novel
situations, triggering the creation of new models. The proposed method is based on hierar-
chical probabilistic models that facilitate inferring future instances of video sequences and
detecting anomalies, encompassing the capabilities from initialization to anomaly detection.

Self-awareness is an important feature that autonomous systems should own to emulate
human-like behavior and reasoning. As already pointed out in Chapter 3, recent research
[183] has leveraged bio-inspired brain theories, such as the ones of Friston [77], that define
a probabilistic hierarchical framework to endow artificial agents with awareness of their
surroundings and of their own state. In particular, Friston [77] proposes the use of Bayesian
dynamical filters to develop artificial agents that execute processes similar to the ones the
brain performs when presented with known and unknown situations. The use of this type
of filter allows us to model uncertainty, which is inherent in the representation of the world
and in the prediction of how it will change. These filters also enable the construction of a
hierarchical representation of the world through conditionally connected random variables
that can be linked across time and modality (i.e., proprioceptive and exteroceptive variables).
In particular, the Bayesian filters suggested by Friston are Generalized State Bayesian filters,
which represent the state through generalized coordinates of motion (see Section 3.2.2).

Recent research has started to introduce brain-based deductions into the aforementioned
probabilistic hierarchical models, along with the six basic capabilities of self-aware systems.
In particular, as mentioned in Section 3.4.2, the anomaly detection step has been applied on
low dimensional exteroceptive [17] and proprioceptive [115] data. In [180], a method for
developing self-aware models on video data was proposed using GANs and it covered the
first four self-awareness capabilities. A GAN [85] is a state-of-the-art method for handling
image data and has been shown to obtain impressive results for different applications such as
image inpainting, segmentation, super-resolution, and anomaly detection. However, GANs
do not offer an explicit probabilistic representation of the data. Conversely, despite giving
a blurrier reconstruction of the data, VAEs (see Section 2.6) allow an explicit probabilistic
representation of images, and can therefore be easily incorporated into a Bayesian framework.

The capability of the VAE to explicitly learn the data distribution allows us to find
anomalies at the different abstraction levels of the DBN. These anomalies can be calculated
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using probabilistic distances between the learned data distributions, as seen in Section 3.7.4.
The message-passing capabilities of hierarchical Bayesian models can consequently be
exploited. Anomalies using probabilistic distances such as Kullback-Leibler divergence
and Bhattacharyya distance can be defined and can be applied coherently at the different
abstraction levels.

Therefore, the work in [180] lacked a probabilistic nature and kept the treatment of data at
a high-dimensional level. DBN message-passing capabilities could not be properly exploited
and the interpretability of the model was limited. We remind the reader that interpretability is
one of the five desirable characteristics for self-awareness systems, identified in Section 3.3.
Additionally, we desire for the architecture to be multi-sensorial, and to handle high levels of
the hierarchy homogeneously between different sensory modalities. This is not possible with
GANs, which do not provide a probabilistic high-level representation.

Instead, the method proposed in this chapter reduces high-dimensional video data to low
dimensionality, allowing at the same time probabilistic reasoning. In this way, two worlds
are combined: the one of DBNs and the one of NNs. The presented method is based on the
latent representation of a VAE, which is employed to obtain a low-dimensional state of the
video at each time instant in a probabilistic fashion. Using the latent state values, clusters of
similar image appearance and motion are identified, facilitating a semantic representation of
video data.

In this chapter, we present two alternative methods for building the part of the state
related to the image motion and, consequently, for dividing the information into clusters. The
first method trains the VAE on camera frames only and computes the innovation of an NFF
on the VAE latent states. This innovation constitutes the part of the GS accounting for the
image motion information. On the other hand, the second method extracts the OF between
consequent video frames, and trains the VAE on both OF and camera frames; the part of the
latent state corresponding to the OF captures information related to the agent’s motion.

In each cluster, a prediction model consisting of a fully connected NN is employed to
learn a nonlinear dynamical model that allows estimating a future image given the current
one and its motion. These NNs encode the dynamical rules that emerge from the data.
Accordingly, two representation levels, i.e., discrete and continuous, are learned to make
inferences in video sequences and detect anomalies. During the online testing phase, a PF
(see Section 2.4.4) coupled with a set of UKFs [221] (see Section 2.4.3) are employed for
predicting at the discrete and continuous levels, respectively, and for detecting anomalies. By
combining the VAE, PF, KF (for the update) and UKF (for the prediction) in the two versions
of the proposed approach, two filters inspired by the original MJPF [17] are presented. Both
image-level, state-level, and discrete-level anomalies are calculated.
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To summarize, this chapter aims to develop a self-awareness approach for video anomaly
detection based on the framework presented in Chapter 3. A GDBN generative model is
learned, with a multi-level representation employing generalized coordinates of motion.

The novel contributions of this chapter are:

• A multi-level probabilistic model that represents video sequences into latent states,
facilitating the prediction at continuous and discrete hierarchical levels. This is per-
formed through two novel ways of combining VAE, KFs (update equations), UKFs
(prediction equations), and PF, and a set of NNs that non-linearly models the dynamics
of latent space information, thus encoding the dynamical rules emergent from the data.

• An approach that is compatible with low and high-dimensional data, potentially allow-
ing the detection of anomalies also in a multi-sensory framework with homogeneous
handling of the high levels of the DBN hierarchy.

• The detection of new situations that autonomous systems may employ to continuously
learn predictive models without forgetting previously learned experiences.

• A comparison between the two methods for building the GS and for joining the VAE
with the KF/UKFs. Two filters based on the MJPF are proposed. We define the first
filter as Adapted MJPF (AMJPF), and the second as OF Adapted MJPF (OF-AMJPF).
Both filters contain, as a submodule, a UKF modified to work with a VAE as an
observation model, and with an NN as a prediction model. This submodule is slightly
different in the two cases. In the first method, we name it Adapted KF (AKF) and,
in the second method, we name it OF Adapted KF (OF-AKF). We ascertain that the
incorporation of the OF enhances the anomaly detection performance, albeit increasing
the computation time and introducing a model-based dimension into the predominantly
data-driven framework, as we will discuss in the later sections.

5.2 First Version of the Proposed Approach

We start by describing in detail the first version of the approach.
The proposed method is composed of two basic steps, namely training and testing; during

the former (Section 5.2.1 and Fig. 5.1), algorithms are trained based on observed data;
whereas the latter (Section 5.2.2 and Fig. 5.2) uses learned algorithms to detect anomalies on
new data.
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Fig. 5.1 Training phase for the first version of the proposed approach. The VAE is trained to
reconstruct a set of training images. The latent states (i.e., the bottleneck features) are then
extracted and the GSs are derived and used for clustering. An NN is trained for each cluster.
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Fig. 5.2 Testing phase for the second version of the proposed approach. The encoder of the
VAE is used to extract the latent state corresponding to each testing image. The latent state is
given as input to the AMJPF, which detects anomalies by using cluster information.

5.2.1 Training phase

Variational Autoencoder

As a first step of the training phase, a VAE is used for describing the images in a latent
space that has significantly reduced dimension compared to the original image size. A VAE
has been used instead of a normal Autoencoder because it facilitates representing images
in the latent state probabilistically by using a mean µ and variance σ2 to approximate
each latent variable. This enables probabilistic reasoning and inference, and allows us to
detect anomalies at the latent feature level. Additionally, as we are interested in producing
predictive models that can work for multisensory data regardless of their dimensionality, the
VAE turns out to be an excellent choice for representing and treating video sequences as
small-dimensional data, potentially enabling a more homogeneous way of making algorithms
for data fusion with multimodal information.
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We first train the VAE by using a set of training images X IM
train. The images are given as

input to a VAE through the encoder qIM
θ
(zIM

t |xIM
t ). The VAE is then trained to reconstruct

the images through the decoder pφ (xIM
t |zIM

t ).
Consequently, we input again X IM

train to the VAE and obtain a set of latent features described
by µ IM

train and σ2
IM,train.

Let µ IM
t be the value of µ IM for the image xIM

t at time t. Consistent with the conventional
notation in VAE literature [122], we denote as σ2

IM,t the variance vector that the VAE asso-
ciates to µ IM

t , and we denote as zIM
t a sample from the Gaussian distribution N (µ IM

t ,σ2
IM,t).

The notation with the addition of the “IM” index might seem a bit complex, but we adopt
it to distinguish the image observation and latent state from the OF observation and latent
state that will be employed in the second method.

Null Force Filter and Generalized states

The framework underlying this thesis adopts concepts inspired by Friston, such as the use of
Generalized States. As discussed in Section 3.2.2, a set of GSs comprises information about
the states per se and about their higher-order dynamical features, i.e., their motion, velocity,
acceleration, etc.

Starting from the set of µ IM
train, considered as the state of training images, we could build

a set of GSs containing several time-order derivatives. This work only uses the first-order
derivative since no abrupt dynamics are considered.

An NFF is applied on µ IM
train. The GS is the extracted GE on the filter, as described in

Section 3.7.1. We define the GS at time t as:

z̃t = [µ IM
t µ̇

IM
t ]⊺ (5.1)

Note that µ̇ IM
t approximates the first-order derivative of µ IM

t .
We obtain a set of GSs for the training set, defined by:

Z̃train = [µ IM
train µ̇

IM
train]

⊺ (5.2)

Clustering and neural networks

After obtaining the GSs related to the training video sequences, we use a Growing Neural
Gas [78] clustering algorithm to cluster GSs into groups that carry similar information. Since
we use the values of µ IM

t and µ̇ IM
t to perform the clustering process, obtained clusters take

into consideration the encoded image and also its dynamics compared to the next frame. This
facilitates recognizing and clustering different ways of moving. However, it is also worth
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noting that this separation of different motion types is very limited because the VAE’s latent
state can be complex in the way it changes. Therefore, similar latent space differences do not
necessarily correspond to similar velocities.

For each cluster S̃, with S̃ = 1 . . .C, the following features are extracted:

• the cluster centroid M(S̃), i.e., the mean of the cluster;

• the cluster covariance Q(S̃);

• a transition matrix Π defining the overall probabilities of moving from one cluster to
the others;

• a set of Temporal Transition Matrices (TTMs) Π(g), containing the probability of
moving from one cluster to the other ones, given that g time instants have been spent
in the current cluster, where g = 2 . . .G, with G being the maximum time spent in a
cluster.

• a fully connected neural network N(S̃) defining the dynamics of the GSs is learned for
each cluster. This is the continuous predictive model.

Each of these elements was already present in the original architecture for odometry data
presented in [17], based on the framework examined in Section 3.7. The novelty in this
learned vocabulary is the addition of the NNs, necessary to make an accurate prediction on
the type of GS obtained in this chapter, which is an output of the VAE, and is less smooth
and more complex than odometry information.

For training each N(S̃), the value of each µ IM
t is taken as input and the corresponding µ̇ IM

t+1

as output, where [µ IM
t , µ̇ IM

t ]⊺ ∈ S̃. Moreover, to include the uncertainty of the Gaussian latent
spaces encoded in σ2, 2L additional inputs and outputs are used, where L is the dimension
of the VAE’s latent state µ IM

t . Such 2L points, together with the initial mean µ
IM,0
t = µ IM

t ,
permit to completely capture and define the Gaussian N (µ IM

t ,σ2
IM,t), as described in the

UKF’s paper [221] and in Section 2.4.3:

µ t
IM,i = µ t

IM +(
√
(L+λ )ΣIM

t )i if i = 1...L

µ t
IM,i = µ t

IM− (
√
(L+λ )ΣIM

t )i−L if i = L+1...2L,
(5.3)

where λ is a scaling parameter and ΣIM
t ∼ ILσ2

IM,t , being IL the identity matrix of dimen-
sion L.

The µ
IM,i
t values calculated in Eq. (5.3) are the so-called sigma points associated with

(µ IM
t , σ2

IM,t). A corresponding group of sigma points is defined in the same way for (µ IM
t+1,
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σ2
IM,t+1) and each value of µ

IM,i
t+1 −µ

IM,i
t is given as additional output for the training of the

NNs.
To summarize, each N(S̃) performs the following approximation:

µ̇
IM,i
t+1 ∼ N(S̃)(µ IM,i

t )+wi
t , (5.4)

where µ̇
IM,i
t+1 and µ

IM,i
t are calculated based on the [µ IM

t , µ̇t
IM]⊺ assigned to the considered

cluster and wi
t is the residual error after the network convergence.

Each N(S̃) learns a sort of quasi-semantic information based on a particular image
appearance and motion detected by the cluster S̃, facilitating the estimation of future latent
spaces, i.e., predicting following frames. The predictions can be employed to detect whether
new observations are similar to previously learned situations encoded in the set of NNs. If
the predictions from the NNs are not compliant with the observations, an anomaly is detected,
and models should be adapted to learn new situations, thereby generating new semantic
information.

Learned Dynamic Bayesian Network
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(b) DBN of OF-AMJPF.

Fig. 5.3 DBNs of the AMJPF and of the OF-AMJPF. It can be noticed how, in case (a), only
the image xIM

t is employed as observation to the filter, and the VAE is trained to reconstruct
it. In case (b), the Generalized Observation x̃t , composed of image and OF, is used as
observation; the VAE is trained to reconstruct both images and OFs.

Fig. 5.3a shows the DBN learned in this version of the approach. It can be noticed how
this is a three-level DBN as the one discussed in Sections 2.3 and 3.7.

Section 3.7 described the general framework underlying this thesis, and examined how
the observation model of the DBN could be either built with an observation matrix H (in the
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low-dimensional case) or with a Deep Learning generative model (in the high-dimensional
case). In this chapter, we implement this idea by adopting a VAE, which allows us to obtain
zIM
t from xIM

t through the encoder qθ (zIM
t |xIM

t ), and, to obtain xIM
t from zIM

t through the
decoder pφ (xIM

t |zIM
t ).

Furthermore, in Section 3.7, we noticed that the link P(z̃t+1|z̃t) could either be represented
by linear or by non-linear models. In this chapter, the non-linear models N(S̃t) are employed.
We will see in the next section how UKFs can be exploited in these models.

The other two links displayed in green in the figure are learned in the same way for
high-dimensional and low-dimensional data. As seen in Section 3.7, the cluster mean M(S̃)

and covariance Q(S̃) represent the link P(z̃t |S̃t), and the transition matrices represent the link
P(S̃t+1|S̃t). Therefore, on the one hand, low levels of the hierarchy are not homogeneous
across sensory modalities due to the diverse characteristics of the sensors. We saw in Section
3.7, that for low-dimensional data, linear prediction and observation models are built, using
the matrices U (S̃), and H. In contrast, in this chapter, for high-dimensional data, non-linear
models are employed. On the other hand, as desired, high levels of the hierarchy are expressed
homogeneously in the two cases.

5.2.2 Testing Phase

During the testing phase, each testing image is processed by the VAE. Then, a filter that we
denote as AMJPF is used to perform future frame prediction and to detect anomalies in video
sequences.

Adapted Markov Jump Particle Filter

As discussed in Section 2.4.6, an MJPF can be represented as a Probabilistic Switching
Graphical Model [127, 209]. It was enhanced in [17] with anomaly detection capabilities,
according to the self-awareness framework described in Chapter 3. The MJPF uses a set of
KFs at the continuous state level and a PF at the discrete state level [17].

This chapter tackles a problem that requires a non-linear model for prediction purposes
and a non-linear observation model, solved by a set of NNs (each of them associated with
a detected cluster) and by a VAE, respectively. Accordingly, a set of standard KFs at the
state level do not provide a good solution due to the aforementioned non-linearities. This
work uses a set of modified KFs with predictions following the same logic of the UKFs and
employs the encoded information of the VAE for updating purposes.

An overview of the MJPF can be found in Section 2.4.6 and a more detailed description
of how it is incorporated in the adopted self-awareness framework is proposed in Section 3.7.
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This section, instead, focuses on the parts that have been modified in the AMJPF compared
to the standard MJPF.

For both architectures (MPJF and AMPJF), at each time instant t, two stages are per-
formed: prediction and update. During prediction, the next cluster S̃t+1 (discrete level)
and the next GS z̃t+1 (continuous level) are estimated for each particle, i.e., p(S̃t+1|S̃t) and
p(z̃t+1|z̃t), respectively. Similarly to the standard MPJF, predictions at the discrete level in
the AMJPF are performed by using, for each particle, the transition matrices Π and Π(g).
On the other hand, predictions at the continuous level in the AMPJF are performed by the
neural network N(S̃t) associated with the selected discrete state S̃t . Since non-linear models
are considered for predicting continuous-level information, a UKF performs the estimations
by taking 2L additional sigma points as in Eq. 5.3. Therefore, the prediction for each sigma
point follows the equation below:

z̃i
t+1 = f (z̃i

t) = Az̃i
t +BN(S̃)(µ IM,i

t )+wi
t, (5.5)

where A and B are two matrices used to map the previous state z̃i
t and the new velocity

computed by N(S̃)(µ IM,i
t ) on the new state z̃i

t+1. Here, A = [A1A2] with A1 = [IL0L,L]
⊺,

A2 = 02L,L, and B = [ILIL]
⊺. The mean and covariance of the predicted state are then

calculated using the UKF formulas for the propagation of a Gaussian random variable
through a non-linear model.

Note that, when the state is at the border of the clusters, some particles predict to remain
in the original cluster, while others predict to move to the following one. Consequently, the
NNs of both clusters are used in their respective particles to perform state-level prediction.
This enables reasonable prediction at the borders of the clusters too.

The update phase is performed when a new measurement (image) is observed. At the
discrete level, particles are resampled based on a measure of the anomaly. This is, for the
moment, in contrast to the procedure in Section 3.7.3, where λ (S̃) was computed through
the described DB distances. In subsequent chapters, instead, when not explicitly states,
the resampling is performed coherently with the process described in Section 3.7.3. At
the state level, a modified version of the KF update is performed. This update takes into
consideration that µ IM

t and σ2
IM,t for image xIM

t can be used as the mapped observation
on the state space. Consistently, σ2

IM,t can approximate the covariance matrix, such that
ΣIM

t ∼ ILσ2
IM,t , representing the uncertainty while encoding images.

Alg. 1 describes the overall AMJPF steps; Algs. 2 and 3 (that are called during the
execution of Alg. 1) are related to the Adapted-KF’s prediction and update step, respectively.
They concern the prediction and update of the sole continuous level and not of the dicrete
level. Note that the Adapted-KF is not a true KF, but follows its reasoning.
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Coherently with the Bayesian notation already seen in Chapter 2, in the algorithms, a
term such as “z̃t|t−1” can be expressed as “the GS estimated at time t, given observations up
to time t−1”. In addition, an apex n is used in some of the variables to identify that they
are associated with the n-th particle out of N in the PF. In most discussions in this chapter,
instead, this apex is omitted for simplicity of notation.

Multi-level anomaly extraction

For conducting anomaly detection, we can exploit the capability of hierarchical Bayesian
models, like the MJPF, to perform message passing between the DBN nodes. It should
be recalled that three types of messages can be distinguished: intra-slice, top-down and
bottom-up. Top-down messages travel from upper nodes to lower ones. Combined with
intra-slice messages, they have a predictive capability, as is the case with π(S̃t) and π(z̃t)

displayed in Fig. 5.3. Bottom-up messages, moving from lower nodes to upper ones, have
a diagnostic capability: they are used to adjust the expectations (predictions provided by
top-down messages) given a sequence of observations. The combination of predictive and
diagnostic messages allows us to perform anomaly detection at different abstraction levels.
Three levels of abstraction can be identified: image-level, state-level, and discrete-level. The
corresponding anomalies are defined in the paragraphs below.

1) Kullback-Leibler-Divergence Anomaly (KLDA) at the Discrete Level [132]: This
anomaly is defined as a distance between messages entering node S̃t , namely the predictive
support π(S̃t) and the diagnostic support λ (S̃t+1). Differences between the probability
profiles of the predictive support and the evidence indicate that involved components of the
generative model do not fit current observations. In other words, they produce an awareness
signal indicating whether and how much the current agent’s surroundings behave differently
compared to rules learned previously. Since these two messages are discrete probability
distributions, the Kullback Leibler-Divergence (KLD) is employed to calculate the difference
between them. KLD is an asymmetric divergence. We use its symmetric version, as shown
in Eq. 3.25, which we report here for improved readability:

KLDA = DKL(π(S̃t)||λ (S̃t+1))+DKL(λ (S̃t+1)||π(S̃t)) (5.13)

To define λ (S̃t+1), we use the Bhattacharyya distance between two Gaussian distributions:
one coming directly from the GS z̃t+1 and its associated covariance Σt+1 and the other coming
from the mean M(S̃) and covariance Q(S̃) values of cluster S̃, for S̃ = {1, . . . ,C}. The entire
process for the calculation of the KLDA is defined in Section 3.7.3.
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Algorithm 1 AMJPF.
Input: Π, M(S̃), Q(S̃), N(S̃)← Vocabulary, with S̃ = 1 . . .C
xIM

t ← Images t = {1, ...,T}
N ← Total number of particles
for t = 1 to T← Time evolution do

Get latent state of the images using VAE’s encoders:
µ IM

t ,σ2
IMt = qIM

θ
(xIM

t )← Image latent state
ΣIM

t ∼ ILσ2
IM,t ← Image latent state covariance

for n = 1 to N← Particles do
Wn =

1
N ← weight of the particle

if t == 1← Initial iteration then
Define µ̇ IM

t and σ̇2
IM,t through initial prior density P(żIM

t )

Join (µ IM
t , σ2

IM,t ) and (µ̇ IM
t , σ̇2

IM,t ) to form (z̃t , Σt )
z̃n

t|t = z̃t ← current state
Σn

t|t = Σt ← current covariance
Estimate S̃n

t from P(z̃t |S̃t)
end
else

ANOMALY DETECTION:
λ (z̃n

t ) = P(x̃t |z̃t)
λ (S̃n

t ) = DB(λ (z̃n
t ),P(z̃t |S̃t))

Anomaly indicator at the observation level:
d_MSEIM,n

t = MSE(xIM
t , x̂IM

t )

MSEIM,n
t = MSE(xIM

t ,xIM
t|t−1,n)

Anomaly indicator at the continuous level:
Errn

t = z̃t|t−1,n− z̃t
Anomaly indicator at the discrete level:
KLDAn

t from λ (z̃n
t ), λ (S̃n

t ) as in Eq. 5.13.
UPDATE:
Update Belief in the hidden variables:
z̃n

t|t ,Σ
n
t|t = AKFupdate(z̃n

t|t−1,Σ
n
t|t−1,µ

IM
t ,ΣIM

t ),
where AKFupdate is the update of Alg. 3.
Update the particles’ weight based on the chosen anomaly Adist (e.g., MSEIM,n

t ) :
Wn =

Wn
Adist

end
PREDICTION:

Prediction at the discrete level:
S̃n

t+1 ∼Π(S̃n
t )

Prediction at the continuous level:
z̃n

t+1|t ,Σ
n
t+1|t = AKFpred(z̃n

t|t ,Σ
n
t|t)

where AKFpred is the prediction of Alg. 2.
Prediction at the image level through the VAE’s decoder:
xIM,n

t+1|t = pφ (µ
IM,n
t+1|t).

end
KLDA calculation.

SIR resampling
end
Output: MSEIM

t , Errt , KLDAt
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Algorithm 2 Prediction phase of the AKF and OF-AKF (AKFpred and OF-AKFpred).
Input: z̃t|t , Σt|t
Calculation of the sigma points z̃i

t|t and of their respective weights W̃ i,m and W̃ i,c as described
in [221].

The sigma points z̃i
t|t are propagated through the prediction model f , i.e., the NN of the

cluster N(S̃) (see Eq. 5.5 for the AKF, and Eq. 5.20 for the OF-AKF):

z̃i
t+1|t = f (z̃i

t|t) (5.6)

The weighted mean z̃t+1|t of the propagated sigma points z̃i
t+1|t is calculated:

z̃t+1|t =
2L

∑
i=0

W̃ i,mz̃i
t+1|t (5.7)

The weighted covariance Σt+1|t of the propagated sigma points is found:

Σt+1|t =
2L

∑
i=0

W̃ i,c{z̃i
t+1|t− z̃t+1|t}{z̃i

t+1|t− z̃t+1|t}⊺ (5.8)

Output: z̃t+1|t , Σt+1|t

The KLDA measurement allows us to define an anomaly at the highest level of the
proposed hierarchy. Consequently, this measurement identifies anomalies in the flow of
events, instead of pinpointing pixel-wise abnormalities.

2) Continuous-level anomaly: This anomaly corresponds to the distance between the
predictive support π(z̃t) and the diagnostic support λ (z̃t+1). In practice, this can be calculated
as the absolute distance between z̃t+1|t and z̃t+1, or with the Db1 and Db2 defined in Eqs.
3.30 and 3.29. The anomaly can be either calculated only on the particle with the highest
weight in the PF or on all particles. In this second case, it is then averaged over the number
of state components (2L) and the number of particles (P). In the results section, the first
method is chosen.

3) Image-level anomalies: We can distinguish at least two image-level anomalies: the
direct reconstruction anomaly and the prediction anomaly at the observation level. The direct
reconstruction anomaly corresponds to the calculation of the MSE between the reconstructed
image (x̂IM

t ) and the observed image (xIM
t ). In Alg. 1 and 4, we differentiate the direct

reconstruction anomaly from the prediction anomaly at the observation level by identifying
it with a “d_” in front (e.g., d_MSEIM,n

t ). On the other hand, the prediction anomaly at
the observation level (which we also denominate as image-level prediction anomaly) is
calculated through two phases. The state prediction µ IM

t+1|t , related to each particle n, is fed to
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Algorithm 3 Update phase of the AKF (AKFupdate).

Input: z̃t|t−1,Σt|t−1,µ
IM
t ,ΣIM

t
The subpart of the covariance Σt+1|t related to µ IM

t|t−1 is extracted:

Σ
IM
t|t−1 = Σt|t−1

∣∣∣
{row:1...L,col:1...L}

(5.9)

The Kalman Gain (KG) is obtained. The VAE’s encoder provides the state-level measurement
covariance (ΣIM

t ) related to µ IM
t :

Kt = [ΣIM
t|t−1; IL](Σ

IM
t|t−1 +Σ

IM
t )−1 (5.10)

The estimated mean state z̃t|t is updated based on the KG Kt . The VAE’s encoder directly
provides the projection of the new observation at the state level (µ IM

t ):

z̃t|t = z̃t|t−1 +Kt(µ
IM
t −µ

IM
t|t−1) (5.11)

The estimated covariance Σt|t is updated based on Kt :

Σt|t = Σt|t−1−Kt(Σ
IM
t|t−1 +Σt)K

⊺
t (5.12)

Output: z̃t|t , Σt|t

the VAE’s decoder, and the prediction backpropagated to the observation level is obtained,
i.e., x̂IM,n

t+1|t . Again, this value can be either computed only on the particle with highest weight
or it can be averaged over all particles. From a message-passing viewpoint, this anomaly
is the distance between the observation at t +1 and the predictive message π(z̃t) forward
propagated from the continuous level towards the node x̃t+1.

In Section 3.7.3, we observed how the PF resampling can be performed through the
message coming from the observation (see Eq. 3.12). In this chapter, we perform resampling
of the particles using the anomalies. We consider both resampling using the image-level
anomalies and resampling using the state-level anomalies. The first case corresponds to a
message moving directly from node x̃t+1 to node S̃t+1, whereas the second case also considers
a message through node z̃t+1. We will show how the results using the state-level anomaly
for resampling are comparable to the ones using the image-level anomaly. The former case
allows us to reduce the computation time, as there is no need to perform a passage through
the VAE’s decoder at each time instant t for each particle n.
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Fig. 5.4 Training phase for the second version of the proposed approach. The VAE is trained
to reconstruct a set of training camera images and the OFs between subsequent images. The
latent states (i.e., the bottleneck features) are then extracted and employed as GSs. Clustering
is performed on the GSs. An NN is trained for each cluster. © 2021 IEEE.
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Fig. 5.5 Testing phase for the second version of the proposed approach. The encoders of the
VAE are used to extract the GS corresponding to each testing image. The GSs are given as
input to the Adapted MJPF, which detects anomalies by using cluster information. © 2021
IEEE.

5.3 Second Version of the Proposed Approach

This section explains the second version of the proposed method. As the first one, it can be
divided into a training and a testing phase. The training phase is examined in Section 5.3.1
and illustrated in Fig. 5.4; the testing phase is discussed in Section 5.3.2 and displayed in
Fig. 5.5.
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5.3.1 Training phase

Variational Autoencoder

As in the first version, the input to the training phase of the method is the dataset of training
images:

X IM
train = {xIM

t }t=1...T, (5.14)

where xIM
t is the camera frame at time instant t, and T is the total number of time instants of

the dataset. As a first step of the algorithm, the set of dense OFs corresponding to the set
of images is extracted [65]. These are RGB images of the same dimension as the camera
frames. We express the set of OFs as:

XOF
train = {x

OF
t }t=1...T, (5.15)

where each xOF
t is calculated between the images xIM

t−1 and xIM
t . The first OF value, xOF

0 is set
to a null-motion image. We define with X̃train the combination of these two sets, i.e.,

X̃ train = [X IM
trainXOF

train]
⊺, (5.16)

Therefore, in this case, the observation can be defined as generalized too. This type of
observation vector is a Generalized Observation (GO).

Both the images and the OFs are given as input to a VAE through the encoders qIM
θ
(zIM

t |xIM
t )

and qOF
θ

(zOF
t |xOF

t ), respectively. The VAE is then trained to reconstruct the images and OFs
through the decoder pφ (xIM

t ,xOF
t |zIM

t ,zOF
t ).

As in the first version of the method, the VAE enables the generation of a latent state
having significantly reduced dimension compared to the original image and OF size. We
first train the VAE using X̃train. Then, we input again X̃train to the VAE and extract two sets
of latent features, i.e., µ IM

train, σ2
IM,train for the images, and µOF

train, σ2
OF,train for the OFs. The

corresponding values at each time instant t can be defined as µ IM
t , σ2

IM,t , µOF
t , and σ2

OF,t .

Generalized states

The proposed latent states extracted from the VAE contain information regarding both the
image content and the motion between consecutive frames. Compared to the first version of
the approach, a more reliable motion information is captured, as the OF is employed. By
combining the two parts of the latent state, µ IM

t and µOF
t , a GS is therefore obtained. The GS

at time t can be written as z̃t = [µ IM
t µOF

t ]⊺. The full set of GSs extracted from the training
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camera images and OFs can then be formulated as:

Z̃train = [µ IM
train µ

OF
train]

⊺ (5.17)

Additionally, the variance of each GS, z̃t , can be defined as σ2
t = [σ2

IM,t σ2
OF,t ]

⊺.

Clustering and neural networks

After obtaining the GSs related to the training video sequences, we use a Growing Neural
Gas (GNG) [78] algorithm to cluster GSs into groups that carry similar information. Other
clustering methods are potentially applicable, but the GNG is chosen because it does not
need the number of clusters to be defined a priori. Conversely, the training of the GNG can
be stopped when a specific condition is met. Therefore, a chosen discriminator or a chosen
group of discriminators (e.g., the distance from the cluster center, the covariance of clusters)
allows one to decide when to stop the algorithm.

Once clustering is performed, the same vocabulary discussed for the first version of
the method is extracted. However, the predictive NNs and the overall prediction model are
different, as the two subparts of the GS can no longer be directly derived one from another.
Indeed, µOF

t does not correspond to µ IM
t −µ IM

t−1 as was the case with µ̇ IM
t in the first version

of the approach. Conversely, µ IM
t and µOF

t now lie on two separate VAE latent spaces that
are not directly relatable.

To perform the training of each N(S̃)
OF , we give as input to the NN the value of every GS z̃t

assigned to cluster S̃. The obtained GS-level prediction z̃t+1|t is then passed to the decoder
pφ (xIM

t ,xOF
t |zIM

t ,zOF
t ). The outputs of the decoder are the corresponding observation-level

predictions, i.e., x̂IM
t+1|t (image prediction) and x̂OF

t+1|t (OF prediction). These predictions are
compared with the actual image and OF values, i.e., xIM

t+1 and xOF
t+1. The related MSE loss is

used to optimize the parameters of N(S̃)
OF .

Summarizing, each N(S̃)
OF performs the following approximation:

z̃t+1 ∼ N(S̃)
OF(z̃t)+wt, (5.18)

where wt is the network’s residual error after convergence.

Learned Dynamic Bayesian Network

Fig. 5.3b shows the DBN learned in this version of the approach. A three-level DBN is
adopted, as in the first version. Most of the elements of the two DBNs are the same. However,
the observation model is different: instead of only observing the images, GOs are provided
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as input. The observation model is composed of a couple of encoders qθ (zIM
t |xIM

t ) and
qθ (zOF

t |xOF
t ) and of a decoder pφ (xIM

t ,xOF
t |zIM

t ,zOF
t ).

Moreover, the two NN models are expressed differently in the two cases (see Eqs. 5.4
and 5.18).

5.3.2 Testing Phase

During the testing phase, each testing image and OF is processed by the VAE, and GSs are
calculated. Then, a filter that we denote as OF-AMJPF is used to perform predictions and to
detect anomalies.

Adapted Markov Jump Particle Filter

Alg. 4 describes the overall OF-AMJPF steps.
The OF-AMJPF follows an algorithm similar to the one of the AMJPF. However, it

incorporates specific adaptations tailored to the distinct origins and attributes of the GS, and
to the distinct approach for training the NNs.

Firstly, since the NNs are trained to directly predict the full GS at the next time instant,
instead of only half of it, the UKF prediction Eq. 5.3 is changed as follows:

z̃t
i = z̃t +(

√
(L+λ )Σt)i if i = 1...2L

z̃t
i = z̃t− (

√
(L+λ )Σt)i−2L if i = 2L+1...4L,

(5.19)

where λ is a scaling parameter and Σt ∼ I2Lσ2
t , being I2L the identity matrix of dimension

2L. With L, also in this case, we identify the dimension of the latent state part related to the
camera frames only.

Secondly, the prediction of a sigma point i follows the equation below:

z̃i
t+1 = f (z̃i

t) = N(S̃)(z̃i
t)+wi

t, (5.20)

Alg. 4 describes the overall OF-AMJPF steps. The same continuous-level prediction
algorithm (Alg. 2) used in the first version of the approach is adopted. However, notice
that Eq. 5.6 is different in the two cases. On the other hand, the continuous-level update
algorithm adopted by the OF-AKF is different from the one of the AKF and is Alg. 5. These
two continuous-level OF-AKF algorithms are employed in Alg. 4.
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Algorithm 4 OF-AMJPF.

Input: Π, M(S̃), Q(S̃), N(S̃)
OF ← Vocabulary, with S̃ = 1 . . .C

xIM
t , xOF

t ← Images and OFs t = {1, ...,T}
N ← Total number of particles
for t = 1 to T← Time evolution do

Get latent state of images and OFs using VAE’s encoders:
µ IM

t ,σ2
IM,t = qIM

θ
(xIM

t )← Image latent state
µOF

t ,σ2
OF,t = qOF

θ
(xOF

t )← OF latent state
z̃t = [µ IM

t µOF
t ]⊺, σ2

t = [σ2
IM,t σ2

OF,t ]
⊺← GS

Σt ∼ ILσ2
IM,t ← Latent state covariance

for n = 1 to N← Particles do
Wn =

1
N ← weight of the particle

if t == 1← Initial iteration then
z̃n

t|t = z̃t ← current state
Σn

t|t = Σt ← current covariance
Estimate S̃n

t from P(z̃t |S̃t)
end
else

ANOMALY DETECTION:
λ (z̃n

t ) = P(x̃t |z̃t)
λ (S̃n

t ) = DB(λ (z̃n
t ),P(z̃t |S̃t))

Anomaly indicator at the observation level:
MSEIM,n

t = MSE(xIM
t ,xIM,n

t|t−1)

d_MSEIM,n
t = MSE(xIM

t , x̂IM
t )

MSEOF,n
t = MSE(xOF

t ,xOF,n
t|t−1,n)

d_MSEOF,n
t = MSE(xOF

t , x̂OF
t )

Anomaly indicator at the continuous level:
Errn

t = z̃n
t|t−1− z̃t

Anomaly indicator at the discrete level:
KLDAn

t from λ (z̃n
t ), λ (S̃n

t ) as in Eq. 5.13.
UPDATE:
Update Belief in hidden variables:
z̃n

t|t ,Σ
n
t|t = OF-AKFupdate(z̃n

t|t−1,Σ
n
t|t−1, z̃t ,Σt),

where OF-AKFupdate is the update of Alg. 5.
Update particles’ weight based on chosen anomaly Adist (e.g., MSEIM,n

t ) :
Wn =

Wn
Adist

end
PREDICTION:

Prediction at the discrete level:
S̃n

t+1 ∼Π(S̃n
t )

Prediction at the continuous level:
z̃n

t+1|t ,Σ
n
t+1|t = OF-AKFpred(z̃n

t|t ,Σ
n
t|t)

where OF-AKFpred is the prediction of Alg. 2.
Prediction at the image level through the VAE’s decoder:
xIM,n

t+1|t ,x
OF,n
t+1|t = pφ (z̃n

t+1|t).
end
KLDA calculation.

SIR resampling
end
Output: MSEIM

t , MSEOF
t , Errt , KLDAt
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Algorithm 5 Update phase of the OF-AKF (OF-AKFupdate).
Input: z̃t|t−1,Σt|t−1, z̃t ,Σt
The Kalman Gain (KG) is obtained. The VAE’s encoders provide the state-level measurement

covariance (Σt):
Kt = Σt|t−1(Σt|t−1 +Σt)

−1 (5.21)

The estimated mean state z̃t|t is updated based on the KG Kt . The VAE’s encoder directly
provides the projection of the new observation at the state level (z̃t):

z̃t|t = z̃t|t−1 +Kt(z̃t− z̃t|t−1) (5.22)

The estimated covariance Σt|t is updated based on Kt :

Σt|t = Σt|t−1−Kt(Σt|t−1 +Σt)K
⊺
t (5.23)

Output: z̃t|t , Σt|t

Multi-level anomaly extraction

All anomalies described in Section 5.2.2 for the AMJPF can be adopted also in the OF-
AMJPF.

Moreover, we have to consider that, in the OF-AMJPF, a GO is present. Consequently,
the two discussed image-level anomalies can be defined for the OF too and not only for the
camera frames. Through the VAE’s decoder, we can take the observed OF (xOF

t ), reconstruct
it (x̂OF

t ), and calculate an OF direct reconstruction anomaly. Similarly, from the state level
prediction related to each particle (z̃n

t+1|t), we can calculate a GO reconstruction (x̂n
t+1|t).

Each GO reconstruction is composed of the camera frame reconstruction and of the OF
reconstruction. In this way, the OF prediction anomaly at the observation level can be
obtained too.

5.4 Advantages of using the proposed approach

The use of the AMJPF or of the OF-AMJPF provides the following advantages inside the
multi-modal self-aware framework described in Chapter 3:

• it allows us to parameterize the different variables of the problem and their relationships
through the use of a DBN.

• it provides homogeneity with low-dimensional sensory modalities, which were consid-
ered in previous work [17, 115]. In both of these works and in this chapter, a form of
MJPF is used, allowing message-passing and coherent anomaly detection at multiple
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levels. The high levels of the DBN hierarchy are expressed in the same way across
modalities. This means that clear and reusable semantics are adopted. Therefore, even
if multi-modality is not used in this chapter, it could be easily reached. However, also
note that one significant different is still present between the proposed approach and
the method in Section 3.7 for low-dimensional data: the use of neural networks instead
of piece-wise linear prediction models for state prediction.

• it permits the adoption of probabilistic distances, leading to a coherent definition of
probabilistic anomalies at the different levels of the DBN.

• the AMJPF and OF-AMJPF are coherent with the analyzed self-awareness theories
and framework: both are GS Bayesian filters (the family of filters proposed by Friston)
allowing us to model uncertainty, to build a hierarchical representation of information
and to extract multi-level anomalies, which could be consequently used to trigger a
new training phase.

5.5 Comparison between the two versions of the approach

From here on, we will refer to the first version of the approach as FV (First Version) and to
the second one as SV (Second Version). The main change inserted in the SV compared to
the FV is the use of the OF to represent the GS’ time-derivative information instead of the
difference between consequent image encodings. This leads to a more direct and effective
clustering of the vehicle motion and to more accurate discrete-level predictions. We will
observe in the results section that better anomaly detection performance is obtained with the
SV.

On the other hand, however, the SV introduces an evident model-driven element to the
approach. The dense OF used in this chapter is calculated through the Farneback method
[65]. Therefore, a model of motion estimation is adopted instead of having the networks
directly learn the connection between the motion and appearance state parts. Furthermore,
the calculation of the OF increases the computational complexity of the method.

Both versions comply with three of the remaining self-awareness characteristics intro-
duced in Chapter 3. They use Bayesian inference and are hierarchical. They employ DBNs,
which are interpretable models, and they further enhance this capability through hierarchical
anomalies that identify to which level of the DBN the abnormal event is related. Additionally,
in both versions of the approach, the dynamical rules emerge from the data. They are initially
learned from the normal model. The anomalies signal that new rules are emerging. Through
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an incremental learning step (not covered in this thesis), these emergent rules could be learned
too.

It must, however, be observed that the model is still not multi-sensorial. This capability
will be covered in Chapters 7 and 8.

5.6 Incremental Learning

The problem of incremental learning is not tackled in this thesis, but in this section, we
provide some insights on future work in this direction.

Our architecture can be extended for learning new scenarios: when abnormal situations
are detected, the input data related to them can be used for building a new model. In such
cases, the initial VAE (that we define here as VAE0) is copied and its weights are fine-tuned
using the set of abnormal images (and OFs), generating thus a VAE1. The rest of the training
process is repeated, building the GS through the bottleneck features related to the abnormal
images (and OFs).

During the new testing phase, VAE0 and VAE1 are used simultaneously. The minimum
anomaly signal between the two available VAEs is considered as the system’s anomaly
measurement. In this way, a hierarchy of models {Mi} can be built incrementally as
anomalies are detected, where i = 0...V , being V the number of trained VAEs. This would
allow the system to adapt itself to unseen situations as they are experienced by fine-tuning
previously learned VAEs and their associated NNs. Emergent rules can be, therefore,
incrementally learned.

In situations in which the VAE is already able to recognize and reconstruct all possible
image scenarios based on the appearance, but video dynamics/motions are new, the creation
of a new VAE is not necessary. It is sufficient to build new clusters and to train new NNs to
recognize abnormal dynamics/motions. Hence, the method’s modularity and its capability to
interpret which model parts are inadequate emerge as distinct advantages.

It can be observed that, in this way, future predictions are improved, leading to the
minimization of anomalies and GEs (and, therefore, of free energy).

5.7 Experimental Results

5.7.1 Employed Evaluation Datasets

In this section, we adopt three evaluation datasets: the Icab dataset [157] (see Section 4.2.1),
the Subway dataset [1] (see Section 4.2.4), and the Avenue dataset [151] (see Section 4.2.4).
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First, we analyze and compare in detail the two versions of the approach on the Icab
dataset. We observe that the SV displays higher performance. The PM scenario (i.e., PM1

and PM2) of the Icab dataset is used for training; the other scenarios (i.e., PA, ES, and U-turn)
are adopted for testing. We aim to detect, in the testing scenarios, the abnormal maneuvers
caused by the presence of pedestrians. Furthermore, as observed in Section 4.2.1, training
and testing data were captured at different hours of the day and camera orientations, resulting
in differences in lighting conditions and objects positions relative to the camera. Strong
lighting differences account for additional anomalies.

Then, we test the SV on the Subway and Avenue anomaly detection datasets. These are
static-camera datasets. The results show that, while the approach was developed for vehicular
datasets, it is also applicable to static-camera surveillance datasets.

5.7.2 Performance evaluation metrics

We calculate the anomaly indicators described in Sections 5.2.2 and 5.3.2. To evaluate the
goodness of the results we build the Receiver Operating Characteristic (ROC) curve for each
anomaly signal and we compute evaluation metrics such as the Area Under the Curve (AUC)
and the maximum ACCuracy (ACC).

A ROC curve plots the values of True Positive Rate (T PR) and False Positive Rate (FPR)
at different thresholds, where [91]:

T PR =
T P

T P+FN
, (5.24)

FPR =
FP

FP+T N
, (5.25)

where T P stands for “True Positive”, FN for “False Negative”, FP for “False Positive”,
and T N for “True Negative”. In anomaly detection, T PR and FPR consist in the percentage
of times in which abnormalities are correctly identified and in which they are incorrectly
assigned, respectively. A threshold that allows perfect discrimination would pass from the
left upper corner of the ROC curve, i.e. FPR = 0 and T PR = 1. To make an example of
the meaning of this type of diagram, let us consider the ROC curves in Figs. 5.7b and 5.7a,
ignoring for the moment the meaning of the illustrated anomalies. Note how the curves
always start in (0,0). This point corresponds to a threshold above the maximum abnormality
value: all values are assigned to the normal class, resulting in no false positives, but also in
no abnormality being detected (true positives). The curves always end in (1,1), the point
that corresponds to a zero threshold: all data are assigned to the abnormal class. The other
points of the curve correspond to thresholds in the middle.
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The AUC of the ROC is widely employed to measure the performance of classification
methods [165]. Another metric adopted here is the maximum ACC: we calculate the ACC
at the different thresholds and select the threshold with the highest accuracy. The ACC
corresponds to:

ACC =
T P+T N

T P+T N +FP+FN
, (5.26)

There are different ways to find an optimal threshold, such as finding the threshold that
maximizes the accuracy, or the point on the ROC curve with equal value of sensitivity and
specificity, or the point with the minimum distance from the left-upper corner of the unit
square, or the point where the Youden’s index has maximum value [90].

5.7.3 Implementation details

Table I Layers of the VAE’s encoder. NI stands for the number of input channels of the
image. © 2021 IEEE.

Layer Output Activation Kernel Stride
1.Input 120x240xNI Identity − −

2.Conv2D 87x117x16 ReLU 7,7 2,2
3.Conv2D 41x56x32 ReLU 7,7 2,2
4.Conv2D 18x25x64 ReLU 5,5 2,2
5.Conv2D 7x11x128 ReLU 5,5 2,2
6.Conv2D 2x4x128 ReLU +Flatten 5,5 2,2

7.FCµ ,FCσ 32 Identity − −

To adjust to the possible camera orientations, we perform data augmentation using 9
different crops of the images inside a central window. This is performed for the iCab case
only, as in the Subway and Avenue datasets the camera is static and the orientation does not
change.

As we desire to perform a fair comparison between the two cases, the implementation
details of the FV and of the SV are as similar as possible, such that both cases: i) use the
same layers in the two VAEs and in the prediction NNs; ii) employ the same image-level loss
during training; iii) use GNG as a clustering method; iv) have the same dimension of GSs
(64) and the same number of clusters (6).

The encoding layers of the VAEs are summarized in Table I; the decoder is symmetrical.
The learning rate is set to 5e−5 and weight decay to 0.01. The Adam optimizer was used. To
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Fig. 5.6 Odometry and video Clustering. © 2021 Elsevier, http://www.elsevier.com.

perform prediction, we used fully connected NNs composed of 5 layers with ReLu activation
functions. The network was implemented and trained using the PyTorch library.

5.7.4 Clustering visualization

As a first step of the presented framework, a normality model must be learned. In both the
FV and in the SV, the overall model includes the VAE encoder and decoder, the discrete
superstates with their statistical properties (i.e., mean value and covariance matrix), the
transition matrices describing the links between superstates, and the NNs capturing the
prediction model inside each cluster.

Both in the camera approach proposed in this chapter and in the odometry approach
presented in [17], clustering must be performed. We compare here the clustering that can be
obtained through the use of odometry data and of video data (taking the SV as an example).
In this section, we only refer to the iCab dataset, as the Subway and Avenue datasets don’t
have any significant odometry information.

Fig. 5.6 displays the performed clustering on the odometry and video data. Observing the
odometry case (5.6a), the mean values M(S̃) for each cluster can be visually recognized as the
mean value of the position data of the clusters (shown through the cyan dots) and the mean
values of the speed data of the clusters (displayed through the blue arrows). Additionally,
the dashed circles are proportional to the standard deviation of the clusters’ positions, which
can be extracted from Q(S̃). For better visualization purposes, instead of plotting the cluster
extension with the accurate ellipse shape, we use a circumference of radius equal to the
maximum standard deviation along the two directions.
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Instead, Fig. 5.6a represents clustering in the video case. As opposite sides of the court-
yard display similar visual appearances, while the same motions are performed, symmetry is
present. A shadow area is assigned a unique separate cluster (cluster 1).

From the figure, it can be observed how, in contrast to odometry clustering, video
clustering can join areas that are very far away in space. By clustering odometry and video
separately, two very different clustering results can be obtained. In Chapters 7 and 8 we will
explore two other ways of handling the clustering of data. In those two chapters, odometry
and video data are elaborated together.

5.7.5 Comparison between M1 and M2

Definition of normality

The PM frames (and their related OFs) are used as xIM
train (and xOF

train) to perform the training
phase described in Sections 5.2.1 and 5.3.1. Clustering experiments were performed by
varying the total number of clusters C; and the case C = 6 was chosen due to its accuracy at
representing scenes while employing a low number of clusters.

Since NNs are used to make predictions and each NN is associated with a cluster, the
number of training samples per cluster is a relevant parameter to consider, for avoiding
underfitting issues. Accordingly, each cluster has an average number of 9,022 samples, with
the smallest one containing 2,924 samples in the FV and 412 samples in the SV.

Pedestrian Avoidance

In this task, the vehicle avoids a static pedestrian (see Fig. 4.16b). Four shady areas are also
present, which are abnormal areas too.

Fig. 5.7 displays anomaly signals at the different levels of the DBN and the corresponding
ROC curves. These abnormalities are the ones described in Section 5.2.2. The arrangement
of the subfigures follows a hierarchical structure that partly mirrors the DBN hierarchy. At
the bottom, in Fig. 5.7c, are direct reconstruction anomalies. In the middle, in Fig. 5.7b, are
anomalies pertaining to GS predictions backpropagated at the image level, i.e., the prediction
anomalies at the observation level discussed in Section 5.2.2. Finally, at the top, in Fig. 5.7a,
are the discrete-level KLDAs. In all three cases, the FV results are in the plot above, and
the SV results are in the plot below. ROC curves associated with the first two cases are
showcased together in Fig. 5.7e (as they all are observation-level anomalies); ROC curves
related to discrete-level anomalies are displayed in Fig. 5.7d. Below the ROC curves, the
AUC and ACC values for each anomaly are displayed.

Let us start from the top a more detailed description of the plots.
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Fig. 5.7 Multi-level anomalies (a,b,c) and corresponding ROC curves (d,e) in the Pedestrian
Avoidance task. © 2021 IEEE.

(a) Point (1). (b) Point (2). (c) Point (3). (d) Point (4).

Fig. 5.8 Time instants in PA numerically defined in Fig. 5.7b: for each one, the real value of
the frame or OF is on the left and the corresponding reconstruction of the prediction is on the
right. (a)-(c): static pedestrian; (b)-(d): avoidance maneuver. © 2021 IEEE.
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Fig. 5.7a shows the anomaly at the discrete level. Note that SV discriminates both
anomaly zones, whereas FV detects only the first one. In the SV, a resampling of image-level
anomalies (rI) and state-level anomalies (rS) is considered; in the FV, only rI is shown. rI

and rs produce similar results. The anomaly at the discrete level signals that an abnormal
passage between clusters is performed. Indeed, when avoiding the pedestrian, the vehicle
executes an abnormal sequence of actions and a passage in an unexplored area.

From the image-level prediction anomalies in Fig. 5.7b, it can be observed that avoidance
maneuvers always present a high anomaly in both FV and SV cases with either rI or rs.
However, the pedestrian presence does not generate significant anomaly values. This is due to
the mixing effect of the pedestrian with the background, especially in the second pedestrian
case, where he wears a white shirt on a light-colored background (see Fig. 5.8c). Moreover,
Fig. 5.8 shows the image-level comparisons between the real camera frames and OFs and
the corresponding predictions for some time instants numbered in Fig. 5.7b. Similar ROC
curves are obtained from the two cases, with SV performing slightly better.

Note that, for the sake of a full comparison, we report an OF prediction error result also in
the FV case. This is obtained by calculating the OF with the Farneback method between the
predicted image and the previous one, and by then computing the MSE between this OF and
the real one. Therefore, the calculation of this anomaly is different and more time-consuming
than the one performed with the SV.

Finally, Fig. 5.7c displays the anomalies coming from a direct reconstruction method,
i.e., inputting images (and OFs, in the SV) to the VAE and calculating the MSE between
them and the outputted reconstructions. Note that since the VAE architectures of the FV
and of the SV are similar (allowing a fair comparison), both VAEs generate similar anomaly
values in the image reconstruction. Comparing the AUC and ACC obtained with the direct
reconstruction anomalies and the prediction anomalies, it can be observed that the anomaly
detection is slightly improved in the latter case. Also, note that a direct reconstruction can
miss anomalies due to the generalization abilities of Convolutional Autoencoders (the VAE
in our case) [149].

Observation-level anomalies signal us that abnormal observations are present in the
scene and that the car is moving abnormally. For example, in Figs. 5.8a and 5.8c, note that
the pedestrian does not get reconstructed and, therefore, a high image-level abnormality
corresponds to it. In Fig. 5.8b and 5.8d, the vehicle turns to the right, which was never
performed during training, resulting in an unseen OF that cannot either be reconstructed or
predicted accurately. On the other hand, motions seen during training, but not expected when
traveling in a certain area, would generate a high prediction anomaly at the observation level,
but not a high direct reconstruction anomaly, as we will see in an example in the ES scenario.
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Pedestrian avoidance through U-turn

In this task, the vehicle avoids a static pedestrian with a U-turn maneuver and then moves
away from the pedestrian (see Fig. 4.16c). This maneuver introduces new situations later on,
e.g., curving in the opposite direction, and already known behaviors, e.g., moving linearly in
regions with similar symmetries to those in the training set. The second and third executed
curves are abnormal, as they are performed in the opposite direction compared to the training
set. As in the previous case, some shadow areas are present in this scenario too.

The image-level prediction anomalies are shown in Fig. 5.9b. The performance of FV and
SV are comparable at this level, but SV offers slightly better results. Regions corresponding
to the U-turn maneuver, curves in the opposite direction, and shady areas tend to display
high anomalies. The pedestrian goes mostly undetected due to his “camouflage” with the
background (see Fig. 5.10a).

Fig. 5.9c displays the direct reconstruction anomalies. For this task, despite the discrete-
level anomalies being more peaked, direct reconstruction is sufficient to detect all abnormal
areas. Indeed, most of the abnormal areas display observations and motions that are new
to various degrees, instead of including known but unexpected observations or motions.
For example, in Fig. 5.10c, the vehicle turns right while moving toward the center of the
courtyard. During training, the vehicle never turned right nor was oriented toward the center
of the courtyard.

Fig. 5.9a shows the discrete-level anomalies. As before, this anomaly detects abnormal
sequences of coupled appearances and motion, that, in this scenario, correspond to the U-turn
maneuver and to the execution of curving actions in the opposite direction compared to
training. The reader should, however, also take into consideration that, if the VAE is fed
data significantly different from training, the latent state will be less meaningful and this will
impact the higher-level anomalies too, potentially causing their values to increase.

Emergency Stop maneuver

In this task, the vehicle performs an emergency stop maneuver and allows a pedestrian
to cross in front of it. Fig. 4.16d shows the anomaly zone (crossing pedestrian) in blue.
Additionally, after avoiding the first pedestrian, the driver performs an abnormal stabilization
maneuver, moving first right and then left to center the car between the white lines of the
courtyard (see Fig. 5.12b).

Fig. 5.11a displays the discrete-level anomalies. The FV detects the pedestrian anomalies
but not the abnormal sequence of maneuvers. The SV case can detect the stabilization
maneuver too.
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Fig. 5.9 Multi-level anomalies (a,b,c) and corresponding ROC curves (d,e) in the U-turn task.
© 2021 IEEE.

(a) Point (1). (b) Point (2). (c) Point (3). (d) Point (4).

Fig. 5.10 Time instants in U-turn numerically defined in Fig. 5.9b. (a): static pedestrian; (b):
normal straight motion on the opposite side of the courtyard; (c): U-turn; (d): normal curve.
© 2021 IEEE.
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Fig. 5.11 Multi-level anomalies (a,b,c) and corresponding ROC curves (d,e) in the Emergency
Stop task. © 2021 IEEE.

(a) Point (1). (b) Some images from point (2) to (3).

Fig. 5.12 Time instants in ES numerically defined in Fig. 5.11b. (a): crossing pedestrian (b):
Some images in the sequence going from (2) to (3) in Fig. 5.11b. © 2021 IEEE.
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Table II Execution time with 10 and 50 particles for the SV and FV using resampling through
image-level (rI) and state-level (rS) anomalies. Additionally, the AUC values of the different
anomalies for PA, U-turn, and ES are shown (with rS). The AUC values denoted for shortness
as “Image” and “OF” refer to the observation-level prediction anomalies. © 2021 IEEE.

N. part.
time SV
rI (ms)

time SV
rS (ms)

time FV
rI (ms)

time FV
rS (ms) AUCPA AUCU AUCES

Image 0.86 0.88 0.8
OF 10 57+OF 38+OF 48(+2OF) 37(+2OF) 0.72 0.84 0.73

KLDA 0.77 0.74 0.69
Image 0.87 0.91 0.81

OF 50 211+OF 123+OF 170(+2OF) 123(+2OF) 0.70 0.83 0.74
KLDA 0.77 0.80 0.81

Fig. 5.11b shows the image-level prediction anomalies due to the pedestrians for both the
FV and SV cases, with the SV having improved performance.

Finally, Fig. 5.11c exhibits the direct reconstruction anomalies. This sequence, compared
to the PA and U-turn ones, displays more anomaly cases related to unexpected but known
motions or sequences of motions in known environments. Examples are the deceleration
and acceleration before and after seeing the pedestrian, and the stabilization motion. In
Fig. 5.12a, we observe the vehicle decelerating in front of the pedestrian. The deceleration
motion is known, and therefore, we would expect that the predicted OF could be more or less
reconstructed. Instead, as we are in an area where we expect to move forward, the networks
predict an OF encoding a forward motion. The anomaly is thus detected.

In this task, the ROC curves of some of the signals display very low performance; this is
due to the inability of most of the signals to capture sequential anomalies, which, instead, is
the main objective of the KLDA anomaly. For example, direct reconstruction captures the
pedestrian anomaly accurately, but not the stabilization anomaly. By combining the different
anomaly signals, the best performance could be obtained. This anomaly fusion is, however,
not tackled in this thesis.

5.7.6 Computation Time

The algorithm is implemented in Python using the PyTorch library. The experiments were
carried out using an Intel® CoreTM i7K 8700K Processor and a dual NVIDIA® GeForce®
GTX 1080 Ti with 11 GB RAM GDDR5X each.

The computational time in Table II refers to the time required to analyze, predict, and
detect abnormalities in an instance of visual data. Experiments with 10 and 50 particles
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Fig. 5.13 Entropy vs. variance in various GNG training stops.

were performed for the SV and FV. The AUC values refer to the case of using the SV with
rs. Increasing the number of particles improves the accuracy of the method (in particular
for the discrete-level anomaly) while requiring more time. When using the SV, a single OF
calculation is necessary at the beginning; when using the FV and considering also the OF
anomaly, the OF must be calculated twice. The reader should be reminded, however, that
the calculation of the OF in the FV is not necessary and was only introduced in the Results
section to provide a complete comparison between the two versions of the approach.

The OF calculation on our platform requires 18ms for images of size 240x180, and
88ms for images of size 640x480. For the VAE encoding, the images and OFs were first
reduced from 640x480 to 240x160. Additionally, it is important to note how the resampling
performed with rs (in contrast to rI) does not impact the performance while significantly
increasing the speed, as it is not necessary to use the decoder of the VAE to calculate the
image-level anomalies for each particle. All the experimental results reported in this work
are obtained through an AMJPF (or OF-AMJPF) that uses 50 particles.

5.7.7 Clustering experiments

We perform different clustering experiments on the SV to show how clustering affects
the proposed method. We use the GNG algorithm because it adds new clusters during its
execution. Consequently, it is not necessary to define the number of clusters a priori, and the
clustering process can be stopped when a condition is met.

In Fig. 5.13 we display two examples of discriminators that could be used to stop
the clustering: i) the variance of the first component of the PCA (Principal Component
Analysis) over the GSs belonging to each cluster, averaged over the number of clusters; ii)
the normalized entropy of the transition matrix. On the x-axis is the corresponding number
of clusters. We desire both proposed discriminators to be low and we can stop the clustering
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Fig. 5.14 GNG vs. Kmeans clustering AUCs. © 2021 IEEE.

process when they reach a trade-off point. In Fig. 5.14, we show the AUC value for the
different proposed anomalies in the above-described GNG experiments. Additionally, we
compare these results with the ones obtained when the K-means clustering algorithm is
used, setting the same number of clusters as the ones reached with the GNG. We observe
that the best GNG results are obtained with 4/6 clusters, around the point in which entropy
and variance stabilize. Also, note that K-means generally performs worse. For further
comparisons with different clustering methods, we report the reader to [106], as clustering is
not the topic of this chapter. Further methods for comparing the clustering levels, inspired by
[106], will be adopted in Chapters 7 and 8.

5.7.8 Ablation study

We perform a study to see how the blocks of the method contribute to the performance gain.
Firstly, we consider applying the traditional MJPF on the VAE latent state obtained from

the sole camera information (and no OF). This means that the GS prediction is performed
with linear models built based on the GNG clustering and not with the neural networks. A
KF is employed instead of the AKF.

Conversely, we then remove the linear prediction models (and the KF) and use the
prediction neural networks (and the AKF). This case corresponds to the FV.

Finally, we calculate the OF and use it as additional input to the VAE to build the GS.
This case corresponds to the SV.

In this way, we can observe how the use of the prediction NNs and of the OF encoder and
decoder influence the performance. We display in Tables III, IV and V the AUC obtained
with rS resampling and 50 particles on the PA, U-turn and ES tasks, respectively.

It can be noted that both the addition of the prediction NNs and of the OF tend to
positively affect the performance on both anomaly indicators. The only exception is found
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Table III Ablation study on PA. The AUC (rS, 50 particles) with image prediction error and
KLDA is shown. In parentheses, we show the improvement of one cell of the table compared
to the same cell in the previous row.

AUC img. pred. err. AUC KLDA
MJPF 0.72 0.56

+ prediction NNs and AKF (FV) 0.84 (+0.12) 0.58 (+0.02)
+ OF (SV) 0.87 (+0.03) 0.77 (+0.19)

Table IV Ablation study on U-turn. The AUC (rS, 50 particles) with image prediction error
and KLDA is shown. In parentheses, we show the improvement of one cell of the table
compared to the same cell in the previous row.

AUC img. pred. err. AUC KLDA
MJPF 0.92 0.62

+ prediction NNs and AKF (FV) 0.82 (−0.10) 0.74 (+0.12)
+ OF (SV) 0.91 (+0.09) 0.80 (+0.06)

Table V Ablation study on ES. The AUC (rS, 50 particles) with image prediction error and
KLDA is shown. In parentheses, we show the improvement of one cell of the table compared
to the same cell in the previous row.

AUC img. pred. err. AUC KLDA
MJPF 0.65 0.55

+ prediction NNs and AKF (FV) 0.69 (+0.04) 0.66 (+0.11)
+ OF (SV) 0.81 (+0.12) 0.81 (+0.15)

on the U-turn case, with the image prediction anomaly, for which a better performance is
obtained on the base case. However, this can be explained by the nature and location of the
anomalies in this task and by the weakness of the basic MJPF on image data, which is highly
non-linear. The basic MJPF tends to perform badly on curve areas, as it cannot handle well
the high non-linearity of these regions (more will be discussed on this topic in Chapter 6).
Therefore, curving areas tend to be associated with high anomaly indicators. In the U-turn
task, conversely to the other tasks, all curving areas correspond to abnormal zones and most
abnormal zones are curving areas. Therefore, the basic MJPF shows a better performance on
the image prediction anomaly than the other two methods despite learning a worse model.

In the table, we report in parentheses the improvement of one cell of the table compared
to the same cell in the previous row. It is worth noting that the addition of the prediction
NNs and of the OF improves both the image prediction anomaly and the KLDA. The KLDA
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is particularly affected by the use of the OF, as this allows the creation of a more directly
explainable GS, leading to better clustering.

5.7.9 Discussion of comparison between FV and SV

From the obtained results, it can be observed that both methods, the FV and the SV, generate
a hierarchy of anomalies from less semantic to more semantic levels. The use of the OF as the
second part of the GS allows us to increase the performance of the method, due to the OF’s
ability to directly capture the features related to the type of instantaneous movement of the
vehicle and of the environment. Some shortcomings of simple reconstruction methods can
be overcome in certain cases, like the possibility that the reconstruction model generalizes to
new data or the inability to detect abnormal sequences of motions.

5.7.10 Analysis of the method on the Avenue and Subway datasets

In this section, we propose some additional results on the well-known Subway and Avenue
benchmark datasets (see Section 4.2.4). We perform testing using the SV only.

Despite not being an FPV dataset for Autonomous Systems, the Subway dataset is still
apt for use with our method, as agents inside the video move and act together with a certain
flow and rules of actions. In the following section, we propose an in-detail description of
results obtained on the Subway Exit dataset, where a clearer evolution of the flow of events
is present, due to the presence of the train entering and leaving the station.

On the other hand, the Avenue dataset is the least apt for our method among the three
adopted ones. This is because the actors interact independently, and, aside from a general left-
to-right motion in a specific section of the images, there is a lack of explicit flow or governing
rules of motion. Therefore, in this dataset, the significance of the highest hierarchical level
diminishes. Lower hierarchical levels can be considered only.

Consequently, we don’t examine the results on the Avenue dataset in detail but only
report the obtained performance in Table VI.

Table VI shows AUC performance for these datasets, with various ground truth (GT)
definitions in the case of the Subway dataset. It is worth noting that, as the different anomaly
measures in the hierarchy can refer to different types of abnormal events (as observed for
the U-turn data too), better results can be obtained by combining them. The combinations
mentioned in the Table refer to the simple method of summing the normalized anomalies.

In the next sections, we first analyze in detail the results on the Subway Exit dataset, and
then we provide a comparison on the Avenue and Subway datasets with other state-of-the-art
methods.
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Table VI Table displaying AUC value for direct image reconstruction anomaly, image
prediction anomaly and KLDA, for Subway Exit/Entrance dataset and Avenue dataset.
*combining the three anomalies, AUC = 0.8825 **combined with OF reconstruction anomaly,
AUC = 0.872. © 2021 IEEE.

GT img. rec. err. img. pred. err. KLDA
Exit Fig. 5.17 original 0.882 0.896 0.775

Fig. 5.17 additional 0.865 0.879 0.818(∗)
[121] 0.902 0.910 0.818

Entrance [121] 0.731 0.732 0.604
[48] 0.727 0.737 0.626

Avenue [151] 0.862(∗∗) 0.851 0.671

Analysis of the results obtained on the Subway Exit data

Fig. 5.15 displays the color-coded clustering on the training part of the Exit dataset. Different
clusters are formed based on the position of the train, its presence, and its absence. Passengers
crossing in front of the camera or leaving the platform form a passenger-related cluster (in
green in Fig. 5.15).

Fig. 5.16 shows different normal/abnormal events found in the testing part of the dataset.
The normal ones are: a passenger passing in front of the camera, from left to right (1),
the train entering the station (6), and passengers leaving the train and platform (7). The
abnormal ones, shaded in red, correspond to: the train leaving the station (2), a passenger
moving in front of the camera, from right to left (3), passengers going to the platform (4), a
passenger leaving the platform in absence of the train (5). Since there is not a clear consensus
regarding the dataset portion for training and regarding the ground truth, we tried to remain
faithful to the indications of the original author, training on the first 5 minutes of the dataset.
Accordingly, Fig. 5.17 displays in dark red the ground truth defined in a window around
the original authors’ point-wise definitions [1], which correspond to events of type (4). As,
however, events of type (2), (3), and (5) are also absent in the training part, we show them in
light red in Fig. 5.17. Table VI reports AUC values using the ground truths in Fig. 5.17 and
the one defined in [121].

Fig. 5.17 displays the anomalies at the different levels of the hierarchy. Additionally,
the different events (A) and the clustering assignment (C) are shown, color-coded as in Fig.
5.16 and in Fig. 5.15, respectively. It can be observed how the image prediction anomaly
makes the results slightly better. The use of the KLDA allows us to identify some normal
behaviors that were considered abnormal by the pixel-wise anomalies approach; the clearest
example is around time instant 22500. Due to the train occupying a big portion of the
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Fig. 5.15 First component of the PCA of the training GSs in subway Exit dataset, and
corresponding color-coded clusters assignment (C), with examples of related images. © 2021
IEEE.
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Fig. 5.16 Examples of normal/abnormal events in the testing set of subway Exit dataset. ©
2021 IEEE.

image, it generates a high pixel-wise reconstruction and prediction anomaly (despite it being
reasonably reconstructed and predicted). However, the succession of events at the conceptual
level is normal, and the event does not generate a high KLDA. A similar situation is found
for the event in which passengers leave the train and platform, around time instants 23000
and 61500.
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Fig. 5.17 Anomalies at the different levels for the Subway Exit frames. From above to
below, in each plot: image reconstruction anomaly; image prediction anomaly; KLDA;
abnormal/normal event (A), following the colors defined in Fig. 5.16; cluster assignment (C),
following the colors defined in Fig. 5.15. The labels on the x-axis represent the time instants.
© 2021 IEEE.

5.7.11 Performance comparison with other state-of-the-art methods

Lastly, we compare the anomaly detection results obtained on the Subway and Avenue
datasets with other state-of-the-art methods, to show that we compete with them, while also
providing a self-awareness method for vehicular data that has desirable characteristics such
as interpretability.

Table VI reported a summary of the results obtained with our method. It is worth noting
that some anomalies seem to provide better performance than others. However, some anomaly
signals are expected to be high in certain situations and not in others. We have just seen
an example of this with the KLDA and the observation-level anomalies in the Subway Exit
dataset. Therefore, the different anomalies could be fused to improve the performance.

The table shows that better results are obtained in the Subway Exit dataset compared to
the Subway Entrance. The reason is that the Exit dataset is governed by clearer flow-like rules
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Table VII Comparison of anomaly detection methods. The columns “Avenue”, “Exit” and
“Entrance” report the AUC of the methods on the respective dataset. The year of publication
is reported, and methods are listed according to it. In the sixth column, we analyze if
further supervision is given to the method, except for knowing that training data are normal.
Methods marked with a “✓” do not use further supervision. Supervision in the other methods
is constituted by the use of pre-trained object or interaction detection networks. The last
column defines if the method tackles the problem of interpretability/explainability.

Method Avenue Exit Entrance Year
No additional
supervision

Interpretability
/Explainability

[93] 0.702 0.807 0.943 2016 ✓ ✗

[66] 0.630 - - 2016 ✓ ✗

[154] 0.817 - - 2017 ✓ ✗

[245] 0.771 - - 2017 ✓ ✗

[193] - 0.902 0.904 2017 ✓ ✗

[39] 0.803 0.940 0.847 2017 ✓ ✗

[149] 0.849 - - 2018 ✓ ✗

[204] 0.892 0.946 0.902 2019 ✓ ✗

[48] 0.823 0.932 0.806 2020 ✓ ✗

[187] 0.829 - - 2020 ✗ ✗

[210] 0.896 - - 2020 ✗ ✗

Ours 0.862 0.910 0.732 2021 ✓ ✓

[144] 0.866 - - 2021 ✓ ✗

[213] 0.753 - - 2021 ✗ ✓

[241] 0.875 - - 2021 ✗ ✗

[214] 0.883 - - 2022 ✗ ✓

[224] 0.883 - - 2022 ✓ ✗

[197] 0.869 - - 2022 ✓ ✗

[244] 0.849 - - 2022 ✓ ✗

[203] 0.860 - - 2023 ✗ ✓

than the Entrance dataset: the train is fully visible, and when it reaches the station, pedestrians
are expected to exit the platform; on the other hand, when the train is absent, pedestrians are
not expected to move inside this one-way platform. Conversely, in the Entrance dataset, only
a small angle of the train appears in the camera, and crowd movements are more complex.
Therefore, a cluster-based representation of the entire scene is more appropriate in the Exit
scenario than in the Entrance.

For the sake of comparison with other state-of-the-art datasets, we select, for each dataset,
our anomaly signal that provided the best results (typically, the image prediction error).
Table VII compares this result with methods proposed in other approaches. The ground truth
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adopted for the Exit and Entrance datasets is the one in [121]. Methods are illustrated in
order of publication year. We analyze methods published both before and after ours.

We can observe how our method provides results that are competitive with the ones of the
state of the art. Up to its publication date, our method displayed among the best results on
the Avenue dataset. It also demonstrates a better performance than some methods published
in the following years. Competitive results are obtained on the Subway Exit dataset too.
Conversely, our method has poor results on the Subway Entrance dataset, for the reasons
already discussed.

All methods in the table are DL-based, using either Convolutional Autoencoders (e.g.,
[93, 48]), Deep Gaussian Mixture Models (e.g., [66, 210]), CNNs (e.g., [193, 149, 224,
214, 203]), CNNs and RNNs (e.g., [154]), Spatiotemporal Autoencoders (e.g., [245, 39]),
Attention-based Autoencoders (e.g., [204, 244]), Conditional VAEs (e.g., [144]), Graph
Convolutional NNs (e.g., [241]), GANs (e.g., [204]), or fully connected NNs (e.g., [187]).
The methods in [210] (the one displaying the highest performance on the Avenue dataset),
[187], [213], [241], [214], and [203] present some supervision, as they work on objects’
trajectories, after employing a pre-trained object detector. Therefore, they are not in line
with the self-aware philosophy of this thesis, as they suppose that notions such as objects or
pedestrians are known, instead of learning concepts and rules through experience. However,
for completeness, we also report results from this type of methods.

Among the methods in the table, only [213], [203], and [214] tackle the problem of
interpretability/explainability. In [213], this is performed by encoding, for each pair of
objects in a frame, an Object Interaction Vector (HOI) containing the box size, object class
score, and interaction probabilities. HOIs of the training data are employed to train a GMM.
Each HOI of the testing data is compared with the GMM and is considered abnormal if
it falls below a threshold probability under the GMM. The closest mixture component is
identified, and a saliency map is built, which allows the recognition of the part of the HOI
responsible for the anomaly. For example, it is possible to distinguish if the anomaly is due
to an object, or to an interaction between objects, and which kind of interaction. However,
this approach uses both a pre-trained object detector and a pre-trained interaction classifier,
which deviates from the underlying philosophy of this thesis.

The method in [214] is proposed by the same authors of [213]. The authors observed
how the use of the pre-trained models was a limitation confining the detection to a limited set
of known classes and preventing the generalization to unknown situations. Therefore, they
proposed an encoder-decoder architecture (with a vector quantization module) that derives
anomaly detection saliency maps and provides an interpretation of them. However, object
and interaction detectors are still employed in the final part of the method. The values of the
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saliency maps are summed inside the bounding boxes where objects are detected to derive
a per-box anomaly score. The anomaly explanation is again obtained from analyzing the
classes of objects and interactions that correspond to high anomaly scores. Compared to the
previous method, the anomaly is detected also without the pre-trained detectors, but these
are necessary for the explainability of the method. Therefore, this work does not align with
the philosophy of this thesis either. Firstly, it still relies on pre-trained models, moving the
problems noticed by the authors from the overall method to only the second part of it (the
anomaly explanation). Secondly, it leans more towards offering post-hoc explanations for
anomalies rather than embracing an interpretable model as a primary approach.

The most recent among the papers in the table, i.e., [203], published in 2023, also uses
pre-trained models. First, a set of networks for object and motion detection are pre-trained,
taking as input spatio-temporal regions of the video. Then, the training data embeddings from
these networks are used to learn a set of training exemplars. During testing, embeddings of
spatio-temporal regions are compared with all exemplars in the same area. Those embeddings
displaying a high distance from all the corresponding exemplars are classified as anomalies.
Since embeddings encode human-interpretable information, they can be used to explain the
anomalies. Therefore, the philosophy of this approach is very similar to the one of [214], but
again diverges from the one discussed in this thesis.

In this thesis, we adopt DBNs, which are interpretable models by nature, as it is possible
to express what is happening at their different levels. Furthermore, we can locate at which
level of the DBN an anomaly is detected, by analyzing which anomaly signal displays
high values compared to training. Notably, unlike other anomaly explanation methods, our
approach does not rely on pre-trained models.

5.8 Conclusions

This chapter presented an approach for predicting future time instances and detecting anoma-
lies in visual data. Using a VAE, we were able to bring high-dimensional data acquired
from a camera to a low-dimensionality compatible with other sensory data acquired from the
vehicle (e.g., position, steering angle). Two versions of a filter joining a VAE, KFs, UKFs,
and a PF were introduced, i.e., the AMJPF and the OF-AMJPF. In this way, the two worlds
of NNs and DBNs were combined.

The insertion of the OF for the generation of the GSs was shown to improve the accuracy
of the method (especially at the discrete level) compared to the version of the method
directly learning the motion information from camera data latent states. However, the
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calculation of the OF increased the computation time and added a model-based component
to a predominantly data-driven framework.

Anomaly signals at multiple levels of the DBN hierarchy were extracted. When faced
with a novel situation, the method could detect at which level anomaly signals were high
compared to training. These signals can already suggest the cause of an anomaly at a
general level. For example, an anomaly at the discrete level could be caused by an abnormal
sequencing between clusters; a high direct reconstruction anomaly could be caused by a new
object, or by a known object in an abnormal position (camera frame anomaly), or by a new
type of motion (OF anomaly); a high prediction reconstruction anomaly accompanied by
a low direct reconstruction anomaly signals the presence of known objects in unexpected
situations (camera frame anomaly) or known motions in unexpected situations (OF anomaly).
More anomaly types could be introduced in the future. Observation anomalies could be
analyzed further at the frame level, for example, to identify if the detected anomalies are vast
and sparse (as for a new environment) or concentrated (as for new objects).

The method is aimed at autonomous vehicles. However, we have also evaluated it on
static-camera benchmark datasets for anomaly detection. The method is competitive against
state-of-the-art approaches, especially in environments with clear flow-like motion rules. A
fusion method to combine the different anomaly signals should however be derived to have a
more significant comparison. As anomaly signals at different levels can display high values
in distinct situations, a rule to combine them should be deduced. The fusion of anomalies
and the introduction of further anomaly signals are not tackled in this thesis.

Furthermore, our method is integrated within a multi-modal architecture designed for
autonomous vehicles. The insertion of observations coming from other sensory data, e.g.,
positional and control data, into the proposed probabilistic framework, will be considered
in the next chapters. By allowing algorithms to handle multi-modal data when making
predictions and detecting anomalies, it is possible to generate more realistic agents that
associate multiple heterogeneous signals to familiar concepts as humans and other animals
do. Therefore, first, in Chapter 6, we analyze low-dimensional data and propose a method that
can be applied to it. In Chapters 7 and 8, novel approaches for combining low-dimensional
and high-dimensional data are proposed. Moreover, these two chapters also cover one
inhomogeneity in the treatment of high-dimensional data compare to low-dimensional data
in our method, i.e., the use of neural networks for state prediction instead of piece-wise linear
models.





Chapter 6

Interpretable anomaly detection using a
Generalized Markov Jump Particle Filter

This chapter presents a method for interpretable anomaly detection on low-dimensional
data. As we have explored in previous chapters, when performing anomaly detection on the
trajectory (or other sensory data) of an autonomous vehicle, it is fundamental to interpret
the found anomalies. The approach is based on the self-awareness framework presented
in Chapter 3 and proposes an extension of the MJPF with the main aim of improving the
interpretability. This is achieved by decomposing the evolution of an agent’s state into its
motion towards the objective it is trying to reach (the attractor) and into the oscillation around
this first motion.

Furthermore, we consider to be provided with data from different types of driver behavior.
We train multiple models, one for each type, and we extract the salient discriminatory
features of each. The proposed anomaly detection method is extended to perform behavior
classification.

Section 6.1 introduces the considered problem. In Section 6.2, we describe the proposed
method for anomaly detection, and in Section 6.3 we discuss its extension for driver behavior
classification. Section 6.4 discusses the obtained results. Finally, Section 6.5 draws some
conclusions.

6.1 Introduction

The learning of a model describing how the state of an agent evolves across time has many
purposes: using the model to perform short-time or long-time prediction; classifying an agent
based on what model it follows; performing anomaly detection distinguishing when the rules
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of the model are broken or when they are respected. Such applications are of interest in a
variety of fields, from autonomous driving, to self-aware radios [132], to video surveillance
[152], to weather forecasting [201], to medical image analysis [242].

In Section 3.5, we have seen that also the concept of interpretability is important when
discussing self-aware agents. Interpretable approaches should include causality, decompos-
ability of the individual parameters, and algorithmic transparency. DBNs possess all these
characteristics. In Chapter 5, we have also discussed how we can leverage the hierarchical
nature of DBNs to provide a basic explanation of anomalies, and we have proposed an
approach for camera data. Indeed, in the field of anomaly detection, it is relevant not only to
identify the time and location of an abnormal event but also to ascertain which model rules
were violated. Hierarchical models are apt for this purpose, as they allow us to distinguish
variables that are more directly related to the sensory observation (at the lowest levels of
the hierarchy) or to more conceptual representations (at the highest levels of the hierarchy).
Therefore, this allows distinguishing where the anomaly is located in the hierarchy too,
which, in turn, identifies on which models we should execute incremental learning.

Friston proposed the use of Hierarchical Generalized State Filters (i.e., hierarchical filters
employing Generalized States) and adopted the concept of linear attractors [77]. The motion
among attractors can be described through flow functions. The flow can be decomposed in a
curl-free component and in an orthogonal divergence-free component. Accordingly, in this
chapter, two types of motions are considered: the one in the direction of the attractor and
the one in the orthogonal direction. In [104], Iqbal et al. the model associated with each
cluster is connected with a linear attractor inspired by Friston. Similarly, in this chapter we
identify the learned clusters as the attractors. The first type of motion can be described as
the motivation that the agent pursues and how it moves toward the attractor. In contrast, the
second type of motion can be connected to the modality with which the agent reaches the
attractor along the orthogonal direction, e.g., smoother when the agent is an expert in its task,
and oscillating when it is uncertain. Therefore, the features related to the two directions of
motion can be used to identify a particular behavior and to determine the abnormality of
that behavior compared to an unknown one. When multiple behavior models are known,
the discriminatory features of each can be extracted and anomalies used for classification.
This has been used, for example, in driver behavior analysis [37, 232, 25]. One of its main
objectives is to distinguish dangerous drivers from safe ones. Oscillating and uncertain
drivers fall into the risk category of driving behaviors [37]. Drivers that are oscillating or
drifting from their lane could be drowsy. A drowsy driver can be alerted from the autonomous
vehicle, thus reducing the peril of a traffic accident [234]. Driver behavior classification can
be executed by finding thresholds where typical driver behavior is located. Driving behavior
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classification can be performed by setting hard rules that classify the different behaviors. For
example, an aggressive driver might be recognized by fixing rules on acceleration, speed,
or braking; a drowsy driver can be detected by hard-coding a test to detect an oscillating or
drifting motion between lanes. However, setting thresholds on these rules can be difficult.
Therefore, in recent years, research has studied methods that learn to classify driver behavior
in a data-driven way instead of hard-coding rules [234].

In this chapter, we propose an extension of the MJPF presented in [17], to create more
precise rules describing the evolution of the state of an agent and with the objective of treating
the study of the evolution along the direction of motion together with the evolution along its
orthogonal direction. Tests are conducted on two-dimensional real data by employing the
iCab dataset [157] and the UAH DriveSet dataset [190].

The main contributions of this chapter are the following:

• the tracking of parameters at the base of the vehicle’s motion and their use to predict
the next state. This allows to improve the interpretability of the model, increasing the
decomposability. This chapter extends the previous work to build a more flexible and
interpretable model based on a four-level DBN. We call this model Generalized-MJPF
(G-MJPF).

• the extraction of the features related to the direction perpendicular to motion using
the concept of vorticity and their usage to define an anomaly related to driver experi-
ence/uncertainty.

• the recognition of discriminatory features of a behavior class and the use of the
extracted anomalies for behavior classification purposes.

6.2 Method Description: anomaly detection

In this section, we explain the main method, aimed at anomaly detection. Its extension to
driver behavior classification is described in Section 6.3.

The method can be split into two parts: the training and the testing phase. During the
training phase, two filters are learned incrementally, a rotational MJPF (R-MJPF) and a basic
MJPF, which are joined to form the G-MJPF. During the testing phase, we apply the G-MJPF
on the testing dataset to detect anomalies relative to the learned model. As anomalies identify
where the learned model is not coherent with the object’s actual motion rules, a new filter
could be learned using the extracted model errors. A scheme of the method is illustrated in
Fig. 6.1.
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Fig. 6.1 Training and Testing phases of the G-MJPF. © 2021 IEEE.

6.2.1 Training phase

Null Force Filter and Generalized States

Let us suppose to be given a training dataset composed of T consequent observations
{xt}t=1...T from a sensor. In this chapter, we assume to be working with low-dimensional
observations, such as positional data from a GPS.

As an initial step, we track the evolution of the GSs {z̃t}t=1...T associated with the
observations, using an NFF. We remind the reader that an NFF is a KF supposing that the
agent is not affected by any force and that it continues in its motion with unmodified speed
compared to the previous time-step. The GS at time t can be defined as:

z̃t = [zt żt ]
⊺ = [zt v∥t ]

⊺, (6.1)

where żt approximates the first-order derivative of zt . When we observe positional data,
żt corresponds to the velocity in the direction towards the attractor. For this reason, in
this chapter, we also use the alternative notation v∥t for it. The symbol “∥” identifies that
the motion is towards the attractor and not orthogonal to it. We can link the GSs and
the observation through a transition matrix H, as in Eq. 3.3, which we report here for
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completeness and readability:

żt =
xt−Hzt−1

∆t
(6.2)

The dynamic model supposed by the NFF can be expressed through the following
equation:

z̃t+1 = Az̃t +ωt , (6.3)

where A = [A1,A2], with A1 = [Id,d,0d,d]
⊺ and A2 = [0d,d,0d,d]

⊺. Id,d is the identity matrix
with d rows and columns, where d is the observation dimension. Instead, 0d,d is a dxd matrix
of zeros. In the case of the trajectory data, d = 2 for 2D data and d = 3 for 3D data. In this
chapter, we assume to be working with 2D observations.

Therefore, at each time step in which the NFF is applied, we can extract the desired
motion parameters µ̃t , which allow us to correct our model, coherently with the free energy
principle defined by Friston [76]. One possible way of describing the correction is by using
the velocity part of the latent state, as we have already seen in Eq. 3.10:

z̃t = Az̃t−1 +BU (S̃t)+wt , (6.4)

where B = [0d,dId,d] is the control matrix projecting the velocity information U S̃t on the GS.
In this chapter, instead, we propose to perform the correction through a different model.

Eq. 6.3 could, therefore, also be corrected as:

z̃t+1 = Az̃t +(Φ+Ψ)z̃t + Ψ̇+ωt , (6.5)

Let us now discuss what Φ, Ψ and Ψ̇ are. Firstly, Φ represents a rotational correction and Ψ

an acceleration correction. Φ+Ψ can be modeled as:

Φ+Ψ =


0 0 1− cosθt +ψxt 0
0 0 0 1− sinθt +ψyt

0 0 1− cosθt 0
0 0 0 1− sinθt

 , (6.6)

being θt the rotation angle and being ψt = [ψxt ,ψyt ], i.e. the accelerations to add along the
d dimensions.

Secondly, Ψ̇ can instead be modeled as Ψ̇ = [0d,d,ψt ]
⊺. We extract the rotation angle

first, and then we estimate the acceleration from the remaining error present in the model.
In this way, we have extracted the parameters that define our rule of motion over z̃t , i.e.,
µ̃t = {θt ,ψt}.
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Clustering of the Generalized State and of the motion parameters

After performing testing with the NFF, and obtaining the GSs and motion parameters along
the direction of attraction, i.e., {z̃t , µ̃t}, we use the GNG [78] algorithm to cluster them.
Therefore, clusters group together similar states characterized by similar positions and rules
of motion.

We associate to each cluster S̃ = 1 . . .C a mean value M(S̃) and a covariance Q(S̃). A
transition matrix Π describes the probability of transitioning between clusters. The model
can also include the Temporal Transition Matrices containing the probability of moving
between clusters, having already spent a certain number of time instants in the current cluster.

Additionally, for each cluster S̃, the rotation center r(S̃) and the mean velocity magnitude
|v|(S̃) are extracted. The rotation center r(S̃) is obtained by supposing to move with a θt equal
to the mean θ (S̃t) of the cluster. Additionally to the center of rotation, also the orientation of
the rotation is saved for each cluster, i.e., o(S̃). The orientation identifies if the agent moves
clockwise or counterclockwise compared to the rotation center.

Redefinition of the prediction model

The prediction model can be reformulated again, so that, during testing, the newly-built model
can be employed to perform prediction. The reader can refer to Fig. 6.2a to understand the
process described in the next paragraphs. The figure illustrates an example of the trajectory
of an agent (i.e., the line in red) moving towards its motivation (i.e., the circle in violet). The
dotted blue line is the trajectory after the filtering process.

We initially determine the normal to the line connecting the rotation center of the current
cluster (r(S̃t)) and the current position (zt). This normal is defined as v̂∥t+1|t in the figure.
Then, we multiply it by the mean velocity magnitude of the current cluster (|v|(S̃)), obtaining
v∥t+1|t .

The prediction equation can consequently be reformulated through a non-linear function
f written as follows:

z̃t+1 = f (z̃t ,r(S̃), |v|(S̃))+ωt , (6.7)

This model allows considering the possibility of having a primary direction of rotation while
not depending on the velocity at the previous time instant, conversely to Eq. 6.5, which made
the model sensible to noise and less robust for anomaly detection purposes. It is worth noting
that r(S̃) is extracted after clustering and not while clustering, to avoid a noisy measurement
of it. If clusters with similar motions and in close positions happen to have different rotation
points, clustering can be refined, considering r(S̃) as an additional clustering input.
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Fig. 6.2 Geometric representation of the variables relevant for the prediction along the
direction towards the attractor (a) and along the orthogonal direction (b).

Extraction of the features for the orthogonal space

Through the definition of the clusters and their respective type of motion, the features related
to the motivation that guides the agent have been extracted. Based upon the attractor’s
theory of Friston [77], also the motion orthogonal to the direction towards the attractor can
be modeled. These features are not related to an attractor but rather to the type of agent
performing the motion, e.g., how expert or uncertain it is. We define this oscillation in
the direction perpendicular to motion with the name of vorticity, inspired by the homonym
concept used in fluidodynamics.

For each time instant t of the training data, based on the assigned clusters, prediction
is performed using r(S̃) and v(S̃) as defined in Eq. 6.7. Consequently, the predicted velocity
of the agent towards the attractor is found, i.e., v∥t+1|t . We direct the reader to Fig. 6.2b to
better understand the passages described in the next paragraph.

The error related to the prediction performed with Eq. 6.7 is extracted and projected
along the direction R̂t , which is orthogonal to v∥t+1|t . We define this orthogonal error as ε⊥t .
A Generalized Error (GE) is defined from it by considering its first-order time derivative ε̇⊥t :

ε̃⊥t = [ε⊥t , ε̇⊥t ]
⊺ (6.8)
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Fig. 6.3 DBN structure of the proposed G-MJPF. © 2021 IEEE.

Clustering of the features for the orthogonal space

Clustering using GNG is then performed on the GEs. Consequently, a set of V clusters
S̃⊥ = 1 . . .V is extracted, each associated with a mean value M(S̃)

⊥ and a covariance Q(S̃)
⊥ . A

transition matrix Π⊥ is calculated too. Temporal transition matrices can be computed as well.
In this way, we have built also a model for the orthogonal error.

Learned Dynamical Bayesian Network

We have now acquired the vocabulary for our G-MJPF, a process akin to learning a DBN.
Fig. 6.3 displays the learned DBN: in black, we show the variables related to the motion
along the direction to the attractor, highlighting in green the parameters at the base of motion;
in orange, we display the variables connected with the normal to the direction towards the
attractor; the writings in blue define the filter used to perform prediction at the considered
level. It is worth noting that the level related to ψt is reported below the one related to θt , as
we suppose for the rotation angle θt to be extracted first, and for the acceleration ψt to be
derived as the remaining error.
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6.2.2 Testing phase

During the testing phase, anomaly detection is performed on a testing dataset. In [17], as
discussed in Section 3.7, a MJPF was used for anomaly detection. In this chapter, we propose
a modified version of the MJPF, with more precise clustering and general motion rules,
allowing the tracking of motion along the direction of attraction and along its normal. In the
following description, we will consequently concentrate on the differences between the basic
MJPF and the G-MJPF.

Generalized Markov Jump Particle Filter

The G-MJPF is composed of two subparts: an R-MJPF and a basic MJPF. At each time
instant, firstly, the R-MJPF is employed and, secondly, its prediction error is provided as
input to the basic MJPF.

As in the basic MJPF, two steps are performed: prediction and update.
During the prediction phase, at each time instant t, based on the cluster associated with

each particle of the PF, we perform a KF prediction of the GSs z̃t+1|t with the prediction
model in Eq. 6.7. The KF is not optimal in this case, because the model is non-linear, but we
adopt it as a first solution. As in the basic MJPF, prediction at the cluster level is performed
using the transition matrix Π, which, in this case, is built through clustering over both GSs
and parameters.

During the update phase, at each time instant t + 1, the motion parameters θt+1 and
ψt+1 are estimated as in the NFF, and the state prediction z̃t+1|t is corrected based on the
sensor observation, similarly to how performed in the basic MJPF, [17]. Anomalies are then
extracted. Additionally, the orthogonal error εt is found for each particle prediction. The
error of the particle with the highest weight is given as input to the parallel MJPF for tracking
along the orthogonal direction R̂t . Filtering in this MJPF is performed exactly as in the basic
MJPF [17].

Multi-level anomaly detection

During the update phase of the two parallel MJPFs, anomalies can be extracted on all levels
of the hierarchical DBN.

Using direct mean subtraction between prediction and update or probabilistic measures
based on the Bhattacharyya distance as in Section 3.7.4, anomalies on z̃∥t , θt , ψt and ε̃t can
be extracted. At the cluster level, KLDA can be calculated, on both the R-MJPF and on the
basic MJPF.
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Table I Comparisons between the basic MJPF [17] and the G-MJPF. © 2021 IEEE.

Prediction model Clustering
Parameters

(µ̃t) filtering
Orthogonal

(ε̃⊥t) filtering
Basic

MJPF [17] linear
based only
on the GSs absent absent

G-MJPF rotational (R-MJPF)

based on the
GSs & motion

parameters
(R-MJPF)

present for
improved

interpretability

present for
improved

interpretability

Comparison between the MJPF and the G-MJPF

Table I summarizes the differences between the basic MJPF and the proposed G-MJPF, from
training to testing.

Firstly, let us address the first two columns in the table. In the basic MJPF, clustering
is performed solely on the GSs and a linear prediction model is applied. In contrast, the
first component of the G-MJPF, i.e., the R-MJPF, involves clustering on the GSs and on the
motion parameters and uses a rotational model. This allows for representing the training
data with fewer clusters while obtaining a precise prediction. To elucidate this concept, let
us consider the example of a moving vehicle. Such a vehicle can either travel in a straight
line or follow a curved path. When extracting clusters on velocity only, and using a linear
prediction model as in the basic MJPF, the treatment of curvilinear segments offers two
distinct approaches. These segments can either be subdivided into many small clusters, each
approximating the curving motion with a straight motion along distinct directions, or they
can be represented through a single cluster with a less precise prediction model. Conversely,
when extracting clusters on the rotation angle too, and adopting a rotational prediction model,
a single cluster with precise prediction can be obtained.

The second difference between the two filters pertains to the variables on which clustering
and filtering are performed. In the table, this is illustrated by the third and fourth columns.
The MJPF performs filtering only on position and velocity. On the other hand, the G-MJPF
adopts the motion parameters (µ̃t) and the error on the orthogonal direction (ε̃⊥t) too. By
decomposing the motion along its different directions and parameters, it is now possible
to more precisely identify the variables associated with high values of the anomaly signals.
Therefore, we can pinpoint which aspect of the vehicle motion is generating anomalies. This
increases the interpretability of the method.

To summarize, the first two differences are aimed at obtaining a more accurate model,
whereas the second two differences are intended to achieve a more interpretable approach.
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Fig. 6.4 Proposed approach for driver behavior classification. © 2021 IEEE.

6.3 Method Description: Driver Behavior Classification

The method proposed in the previous sections for anomaly detection, can be extended for
driver behavior classification. Fig. 6.4 illustrates the approach, which is also subdivided into
a training phase and a testing phase.

6.3.1 Training Phase

The objective of driver behavior classification is to identify how a vehicle is moving, choosing
among a set of N classes. Therefore, during training, we must be provided with N datasets
X set

1 . . .X set
N , one per behavior class.

Firstly, a G-MJPF is built on each dataset, following the training phase described in
Section 6.2.1.

The found clusters of each set constitute a graph, as observed by Zaal et al. [239]. The
graph corresponding to a set of clusters can be derived from the transition matrix Π of the
R-MJPF. Each cluster corresponds to a node in the graph. Edges are present between two
clusters i and j that correspond to a non-null value in the elements πi j of the transition matrix.
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Consequently, we have N graphs G1, . . . ,GN . A Graph Matching procedure can be
performed on each couple of graphs to find which clusters correspond to each other in the
two graphs. When performing each comparison, we call one graph the “source graph” and
the other one the “target graph”. A source graph Gs is compared with each of the N-1 target
graphs Gta,1, . . . ,Gta,i, . . . ,Gta,N−1. We match the corresponding clusters by finding, for each
cluster of Gs, the cluster of Gta,i with the smallest Euclidean distance. This distance is saved.
Being Cs the number of clusters of Gs, a vector of Cs euclidean distances is found, that we
name as d(GsGta) = {d(GsGta)

S̃
}S̃=1...Cs

.
The calculation of this vector of minimum distances is repeated for each of the N-1 target

graphs.
Then, we compute, for each cluster of Gs, the average distance across the N-1 sets

d(GsGta). It is worth paying attention to the fact that the average is calculated across the N-1
target graphs and not across the Cs clusters. In this way, we obtain a distance value for each
cluster of the source graph. These scalars form a vector of normalized cluster distances
dGs = {dGs

S̃
}S̃=1...Cs

of Gs. The highest distances in the set correspond to clusters that are
more specific to the corresponding source graph, i.e., to the class.

This procedure is repeated to obtain the distance vector for each of the N graphs.

6.3.2 Testing Phase

When given a new dataset to perform classification, the N G-MJPFs are applied in parallel
to it, and the corresponding anomalies at the different levels are extracted. The sequence of
winning clusters is also memorized. The winning cluster at time t is the one with the highest
weight in the PF. Each anomaly at extracted from the i-th G-MJPF is modified as follows:

at = at ∗ (di
S̃t
/max(di)∗α +β ), (6.9)

where di
S̃t

is the distance associated with the i-th G-MJPF and with the cluster S̃t assigned
to the considered particle of the PF. Furthermore, max(di) corresponds to the maximum
distance in the vector di. The scalars α and β are used to weight the impact of the distances
on the original anomalies.

The use of the cluster’s distances allows us to give more importance during the classifica-
tion to those clusters that have been identified as specific to the particular class. For each
G-MJPF, anomalies across levels are normalized and averaged over all time instants. The
G-MJPF displaying the lowest final anomaly corresponds to the final estimated class.

The α and β values in Eq. 6.9 are set by performing testing on the training data and
by doing a grid search. The N G-MJPFs are tested on the N training datasets as described
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above. The anomalies at are calculated by adopting different combinations of values for α

and β . The obtained class assignments with the different combinations are compared with
the ground truth. During training, the ground truth is available, as each trajectory is assigned
a driver behavior class. The couple of α and β giving the highest classification accuracy is
employed during testing too.

6.4 Results

6.4.1 Employed Evaluation Datasets

To test the proposed method, we use the iCab [157] and the UAH-DriveSet datasets [190],
which were introduced in Sections 4.2.1 and 4.2.2, respectively.

The iCab dataset is a dataset primarily developed for anomaly detection. It is employed
in this chapter to evaluate the first part of the proposed method, i.e., the anomaly detection,
in particular from the point of view of interpretability.

The UAH-DriveSet dataset, instead, is a dataset for driver behavior analysis. As examined
in Section 4.2.2, it is composed of various car sensory data from six drivers performing two
routes (motorway and secondary road) with three types of behaviors (normal, drowsy, and
aggressive). In the drowsy case, the drivers were asked to “simulate slight sleepiness, which
normally results in sporadic unawareness of the road scene” [190]. In the aggressive case,
the driver was told to “push to the limit his aggressiveness (without putting the vehicle at
risk), which normally results in impatience and brusqueness while driving” [190]. Drowsy
behavior was observed to often result in lane drifting and lane weaving. Lane drifting
happens when the driver drifts from his lane into the adjacent ones or oscillates inside
his lane. Lane weaving, instead, is the maneuver of quickly switching back and forth
between lanes. Lane weaving was observed to be a behavior typical of aggressive driving too.
Other characteristics of aggressive driving were general over-speeding, and brusque motions
when braking, accelerating, and turning. However, Arroyo et al. [190], who extracted the
dataset, also noticed that the behavior was very dependent on the driver. Whereas some
drivers executed dangerous and aggressive maneuvers when asked to perform the aggressive
scenario, others were more cautious and implemented the requested aggressiveness only by
over-speeding [190].

In this chapter, we used the GPS and accelerometer data of five drivers from the dataset’s
motorway road. The data of the third driver (out of the six) was excluded from our study
because of irregular patterns in the accelerometer data.
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Due to GPS having a sampling rate of 1 Hz only, we used a KF combining GPS and
accelerometer data (10 Hz), to obtain a 10 Hz estimation of the trajectory data.

We employed MATLAB both for preprocessing the GPS and IMU data, and for training
the proposed models.

6.4.2 Anomaly detection on the iCab data

We use the PM data to perform training and we employ the PA, U-turn, and ES data to
perform anomaly detection.

Fig. 6.5 displays the anomalies at the different levels of the DBN for the PA (Fig. 6.5a),
U-turn (Fig. 6.5b) and ES (Fig. 6.5c) scenarios. Each subfigure is composed of two separate
plots: the upper plot illustrates the state innovation and the KLDA (i.e., the state-level
error and the discrete level anomaly); the lower plot illustrates the errors at the level of the
additional motion parameters µ̃t = {θt ,ψt} and of the orthogonal state ε⊥t . Therefore, the
upper plot identifies anomalies at a more general level, detecting if the state or the sequence
between the clusters is abnormal. In contrast, the lower plot allows us to analyze more in
detail the anomaly type, pinpointing if it is caused by an abnormal rotation or by an abnormal
acceleration.

Let us analyze the three cases one by one, starting from the PM scenario (Fig. 6.5a).
The blue areas correspond to the pedestrian avoidance maneuver, during which the vehicle
performs a semi-circular motion around the pedestrian to avoid it (see Fig. 4.16b). The
KLDA anomaly increases in these two areas due to the abnormal sequencing between clusters.
However, it cannot explain what element of the vehicle motion is abnormal. Instead, if we
analyze the motion parameters, as expected, a high rotational error is present. Moreover, at
the beginning and at the end of the rotation, the vehicle slightly oscillates to stabilize the
maneuver, generating peaks in the orthogonal error.

In Fig. 6.5b, the U-turn scenario is illustrated. In this case, the blue interval represents
the full area from the start of the first U-turn motion - after which the vehicle moves in the
opposite direction compared to the training scenario - to the end of the second U-turn motion
- after which the vehicle moves again in the same direction as performed during training.
In this interval, two separate causes of odometry anomaly can be identified. On the one
hand, the vehicle is always moving in the opposite direction compared to training. On the
other hand, in four distinct subparts of this area, the vehicle performs abnormal rotation and
acceleration actions: it executes the U-turn maneuver at the beginning and at the end of the
interval, and it curves right twice, whereas in training it only curved left. These four subparts
are highlighted in red in Fig. 6.5a. The trajectory of this scenario is shown in Fig. 4.16c.
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Fig. 6.5 Anomalies at the state and cluster level (above) and at the parameters and orthogonal
direction level (below) for the PA (a), U-turn (b), and ES (c) scenarios. © 2021 IEEE.



152 Interpretable anomaly detection using a Generalized Markov Jump Particle Filter

The KLDA anomaly signal displays high values throughout the blue interval. High
rotation errors, instead, are concentrated in the four abnormal red areas. In the rest of the
blue interval, the vehicle is moving straight, as during training, and therefore no rotation
error is present. The acceleration error has high values in three of the red areas as well.

Finally, Fig. 6.5c shows the ES scenario. The blue intervals correspond to the emergency
stop maneuver. The applied methods in this scenario, however, perform worse than in the
other two scenarios. This is also due to the vehicle starting and stopping, during the first
and last time instants of the training dataset, in the same zone where it is performing the
emergency stop during testing. Since the two motions are similar and are performed in the
same zone, the algorithm is not able to detect the anomaly. This anomaly is more effectively
detected from the camera data, as demonstrated in Chapter 5.

6.4.3 Driver behavior classification on the UAH-DriveSet dataset

As the driver behavior classification dataset does not have a training and a testing set, we
first build multiple training sets. Five trajectories are available for each class. Consequently,
five training datasets are obtained for each class, by excluding in each dataset one of the five
trajectories. The excluded trajectory is then used for testing.

Therefore, we obtain the following training datasets, each composed of four trajectories:
X train,1

norm , . . . , X train,5
norm , X train,1

drowsy, . . . , X train,5
drowsy, X train,1

aggr , . . . , X train,5
aggr .

We also build the following testing datasets, each composed of one trajectory: X test,1
norm , . . . ,

X test,5
norm , X test,1

drowsy, . . . , X test,5
drowsy, X test,1

aggr , . . . , X test,5
aggr .

For each training dataset, a G-MJPF is trained. We need a G-MJPF of each class to
compute the cluster distances di, with i = 1 . . .N. Therefore, we associate the datasets
extracted above to obtain five experiments: the first one combines X train,1

norm , X train,1
drowsy, X train,1

aggr

(for training), X test,1
norm , X test,1

drowsy, and X test,1
aggr (for testing); the second one combines X train,2

norm ,

X train,2
drowsy, X train,2

aggr (for training), and X test,2
norm , X test,2

drowsy, X test,2
aggr (for testing), and so on.

Finally, during testing, each trajectory is filtered with the three G-MJPF associated with
its experiment.

Classification is performed by employing five errors and anomaly distances on the state
along its direction of motion, on the motion parameters, and on the state along the orthogonal
direction. The obtained classification accuracy is 73.33%.

Fig. 6.6 shows the confusion matrix associated with the classification results. We observe
that the aggressive trajectories are correctly classified three times out of five, whereas the
normal and drowsy trajectories are each classified correctly four times out of five. The lower
performance on the aggressive trajectories is in line with what was observed by Arroyo et al.
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Fig. 6.6 Confusion matrix obtained classifying the considered subpart of the UAH-DriveSet
dataset.

[190]: since the difference between the normal and aggressive driving styles highly depends
on the driver, classification of this behavior is more difficult.

The comparison with other approaches is not easy. The UAH-DriveSet dataset provides a
lot of sensory information: GPS, IMU, and camera raw data, as well as pre-processed camera
information. The DriveSafe app [22, 189, 190], which was used to process the dataset, adopts
computer vision and pattern recognition techniques to detect lane marks and to track the lane
in which the driver is moving. Events such as lane drifting and lane weaving are detected.
Therefore, the authors of the dataset, and other researchers [120, 194, 247], proposed methods
based on both GPS, IMU, and pre-processed camera information. Conversely, in our study,
only the data from GPS and IMU are exploited. An additional difficulty when performing
a comparison is the part of the dataset employed to evaluate the method’s accuracy. Some
authors only use the secondary road part of the dataset, or the motorway part, or both.
Some authors only employ the normal and aggressive trajectories, ignoring the drowsy ones.
Furthermore, for data-driven methods such as ours, another element that can vary between
papers is the part of the dataset used for training and for testing. As a final difference, some
researchers classified the trajectories at the end, as in the original paper [190], whereas others
classified them after a few minutes of driving. For this reason, we compare the results with
the ones obtained by three papers that used only the GPS and/or IMU. Since, however, the
training was performed on different data subsets compared to our case, we describe each
subset in detail.

In [234], several methods are compared. In all cases, GPS and IMU data are employed;
70% of the UAH DriveSet dataset (from each trajectory) is used for training and the remaining
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30% is employed for testing. The sixth dataset trajectory is not used. First, the authors train
different classifiers on the entire motorway and secondary road training set and choose the one
displaying the best results. Five types of classifiers are evaluated: discriminant analysis [46],
decision tree [178], K-nearest-neighbours (KNN) [67], Support Vector Machine (SVM) [42],
and ensemble learning [160]. The accuracy for each classifier can vary greatly, depending
on its type. For example, The accuracy of SVM ranged from 24.9% (with a cubic kernel) to
67.4% (with a fine Gaussian kernel). A simple Decision Tree was shown to have a 52.7%
accuracy; a complex one a 63.1% accuracy. KNN was tested by calculating the distance
in various ways; the worst results were obtained with a quadratic distance (51.1%), and
the best with a weighted distance (66.8%). The method displaying less variety was the
discriminant analysis, which results in an accuracy of 51.0% in the linear case, and in an
accuracy of 51.1% in the quadratic case. Finally, ensemble learning, ranged from 51.5%
(subspace discriminant) to 81.3% (random forest with Bayesian parameter optimization).
Therefore, the best result was obtained with ensemble learning with random forest, with an
accuracy of 81.3%. The second best was ensemble learning with subspace KNN, with an
accuracy of 69.0%. Then, the authors proposed two modifications. Firstly, they decided to
train the classifiers on each driver behavior, and not on the general driver behavior, i.e., to
train a classifier for each driver, in each of the three behaviors. During testing, 15 classes
can be assigned to a trajectory, as there are 5 drivers and 3 driving behaviors. The behavior
of the assigned class is the predicted behavior of the trajectory. The overall learned model
is defined in this case the “personalized model”. Secondly, the authors decided to split the
learning of the classifiers distinguishing the secondary road and the motorway, instead of
training everything together. They name the learned model in this case the “road-aware”
model. The road-aware model has an accuracy of 86.2% on the motorway and of 80.9%
on the secondary road. The accuracy of the personalized model increased to 93.6% on the
motorway and to 89.4% on the secondary road. The overall accuracy of the personalized
road-aware model is 91.6%.

Another paper [215] proposes a classification method on the GPS data based on an RNN
model, using either a Gated Recurrent Unit (GRU) [12] or an LSTM. Both secondary and
motorway data are used. Training is performed in two ways. The first method (here called
F1) excludes the fifth trajectory of the dataset from training and uses it for testing. This is
similar to what we performed. However, in our case, all trajectories were used, in turn, as
testing trajectories. Furthermore, the authors split all the trajectories (except the fifth) into a
part for training (80%) and a part for validation (20%). The second method (F2) uses 70%
of the data for training, 15% for validation and 15% for testing. Data were either normalized
or standardized. One-minute-long, two-minutes-long, and three-minutes-long blocks of data
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were employed for classification, instead of classifying the entire trajectory at the end. We
examine only the F1 three-minute case with normalization, as it corresponds more to our
scenario. With GRU, the accuracy was 82.8%; with LSTM is was 90.3%.

Finally, in [14], a method based on a sequence-to-sequence LSTM Autoencoder and
hierarchical clustering is presented. First, during training, an LSTM Autoencoder is learned
on the training data. Agglomerative hierarchical clustering is executed on the learned
representation. A classifier is learned on each cluster. Then, during testing, test data are
clustered too. Two distance measures are proposed to find the best pairs of clusters between
training and testing. In each testing data point, the corresponding classifier is employed. The
method is evaluated on the entire UAH-DriveSet dataset, employing only the IMU data. The
authors use 80% of the data for training and 20% for testing. Two classifiers are employed: a
stacked LSTM [120] and an MLSTM-FCN [116]. In the first case, an accuracy of 80% was
obtained; in the second of 87%, with both proposed distance measures.

Comments for comparing the accuracies of these three methods with our own are difficult
to make due to the aforementioned training differences. However, this analysis allows
us to have a general idea of the accuracy of other methods. Our method appears to be
approximately in line with other methods, performing better than all five classifiers seen in
[234] (except ensemble learning with random forest), but worse, to varying degrees, than
other methods. However, in the future, more precise and extensive comparisons could be
performed, by training on the data subparts considered in each of these works.

6.5 Conclusions

This chapter proposes a method to learn prediction models of the state of an object along the
direction toward its motivation and along the orthogonal direction. A G-MJPF is developed
to perform anomaly detection and is additionally used for driver behavior classification. The
G-MJPF is obtained by joining two filters, an R-MJPF and a basic MJPF. Compared to the
basic MJPF, on which it is based, the R-MJPF performs clustering on the GS (position and
velocity, in the case of odometry) and on additional motion parameters related to rotation
and acceleration. Rotational predictive models are employed instead of the original linear
models. Filtering is performed on the GSs and motion parameters and the GEs are extracted
and used to build a basic MJPF. This second component of the G-MJPF allows us to filter
the movement of the agent along the normal to the direction of motion. In this way, we can
examine how the agent oscillates along the motion towards its goal.

The proposed G-MJPF is employed for driver-behavior classification. For each driver
behavior class, a G-MJPF is built. A graph is learned for each class, based on the transition
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matrix of the learned vocabulary. We identify how much each cluster is specific to the class
calculating a set of clusters’ distances. During testing, the filters’ anomalies are multiplied
by the clusters’ distances (based on the cluster assigned to each particle), and are used to
estimate the behavior class of the trajectory.

The method is tested on two real-world datasets. First, it was shown that the method can
explain what type of motion and what direction (toward the objective or in the orthogonal
direction) is abnormal. Driver behavior classification was also evaluated and compared to
other methods. Further testing could be performed in the future to extend these results.

Therefore, in this chapter, we presented a method adopting the proposed DBN framework
on low-dimensional data. In Chapter 5, we examined an approach for high-dimensional data.
In the next chapter, both low and high-dimensional sensors are employed.



Chapter 7

A Kalman Variational Autoencoder
Model assisted by Odometric Clustering
for Video Frame Prediction and anomaly
detection

In Chapters 5 and 6, we have proposed an approach based on the self-awareness framework
underlying this thesis adopting camera and odometry data, respectively. Instead, in this
chapter, we combine the two data types.

We present a method for video-frame prediction and anomaly detection that leverages
odometric data. We fuse DBNs and DL methods to learn an appropriate latent space. A basic
MJPF is first built using the odometry data. Then, we learn a KVAE-based video model.
The KVAE is modified to exploit the cluster vocabulary of the odometry model during its
training phase. During the testing phase, anomaly detection is performed leveraging both the
odometry and video data.

Section 7.1 introduces the problem of joining multi-sensory data of different dimension-
alities. In Section 7.2, the proposed method is described. Results are discussed in Section
7.3. Finally, Section 7.4 draws some conclusions.

7.1 Introduction

The combination of different sensory information to predict upcoming situations is an innate
capability of intelligent beings. Consequently, various studies in the Artificial Intelligence
field are currently being conducted to transfer this ability to artificial systems.
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Humans are intelligent beings who interpret and predict upcoming situations based
on current and previous experiences. Additionally, humans can elaborate multi-sensory
information, relating one sense to the others. According to Gibson [81], there are two different
sensitivity levels, i.e., passive and active perception. Passive perception only considers the
stimulation from the environment. In active perception, instead, the attentive actions and
reactions of the observer to the environmental inputs generate a stimulus themselves.

Currently, studies are being conducted to transfer to artificial systems the human capability
of prediction and correlation over multi-modal observations. Anomaly detection is an
application of this prediction capability [149, 152, 166].

A field that can benefit from multi-modal fusion is that of autonomous systems, which
are endowed with a multitude of sensors (e.g., cameras, GPS, IMU). For example, for an
autonomous car, certain visual information is expected to be accompanied by a particular
type of motion or a steering maneuver by a deceleration.

Different sensory information can be fused with trained models in a variety of ways.
Models separately obtained from different sensors can be joined together when homogeneity
is present. On the other hand, the use of low-dimensional sensors (e.g., positional/motion
data) can aid the learning phase in sensors displaying higher dimensionality and intrinsic
non-linearities (e.g., video data) [107]. This second option derives from sensory data like
vision being a powerful and complicated representation comprised of millions of features
that are intractable without further processing. Moreover, image content is typically a highly
non-linear function of the system dynamics; therefore, modeling of image data is non-trivial.

The motivation behind this chapter is to develop a data-driven multi-sensorial method
based on DL and HDBNs to reduce the dimensionality of a higher-dimensional sensor by
leveraging the information of a low-dimensional one.

In the previous chapters, we have leveraged HDBNs for anomaly detection on video and
odometry data, separately. In both cases, an extended version of a MJPF [17] was employed.
As we have seen, in this type of filter, the state is subdivided into clusters displaying similar
content and motion, and a prediction model is assigned to each cluster. In the basic MJPF,
linear prediction models are adopted.

To apply SLDS on higher dimensional data, dimensionality reduction is first necessary.
Generative neural networks such as VAEs [122] and GANs [85] reduce dimensionality while
learning at the same time the underlying distribution of the data. In Chapter 5, the AMJPF
and OF-MJPF were introduced. Camera (or camera frames plus OFs) were encoded through
a VAE. The obtained latent space could contain strong jumps between the encodings of
consequent frames (and OFs), and a neural network predictor needed to be used for modeling
the evolution inside each cluster, instead of the original linear models of the basic MJPF.
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In this chapter, instead, we propose to learn a smoother latent space. The movement along
the space inside a cluster can be measured by a linear approximator, which leads to a higher
interpretability of the latent space. Moreover, a higher homogeneity with the self-awareness
models for low-dimensional data can be reached, compared to Chapter 5, as we do not use
non-linear prediction models.

As we have examined in Section 2.7, a variety of works in the literature treat the problems
of combining VAEs and DBNs and learning generative models on sequential data. VAEs that
deal with sequential data are called DVAEs [133, 18, 40, 72, 139, 145, 110, 71]. However,
to the best of our knowledge, no previous work used DVAEs to combine information from
multi-modal data. Among the cited DVAEs, the KVAE [71], described in Section 2.7.1,
learns two levels of latent state abstraction. A pseudo-observation model and a prediction
model as the ones in a KF [114] are defined by a set of matrices combined at each time
instant through a probability vector.

To summarize, this chapter proposes a method using visual and odometric data of a
moving agent. A model is built to perform prediction over the odometric data, employing a
basic MJPF. The video model is based on the KVAE in [71]. The formulation through the
combination of linear models given by the KVAE allows us to reach a better homogeneity
with the odometric model formulation compared to the NN models proposed in Chapter
5. However, instead of using the KVAE defined in the original paper [71], we leverage the
learned odometric model for guidance. Whereas, in the traditional KVAE, an LSTM was
used to deduce the probabilities to combine the pseudo-observation and prediction models,
we propose using the cluster probabilities obtained from the odometric model. We call our
model Cluster Guided KVAE (CG-KVAE).

Additionally, testing is performed with anomaly detection methods similar to the ones
seen in the previous chapters.

Consequently, the main contributions of this chapter are:

• the use of a low-dimensionality sensor (odometry) to guide the learning phase of a
high-dimensional one (video), therefore obtaining a common clustering displaying
better properties;

• the testing of the proposed model on data from real vehicles, in particular considering
the camera and GPS data.
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7.2 Proposed Approach

7.2.1 A multi-modal learning framework

Two types of data from a moving vehicle are provided, i.e., video acquired from an onboard
sensor (First Person Viewpoint - FPV) and the corresponding odometry data. One base
hypothesis of the method is a good synchronization between the odometry and the video data
(see section 7.3.1 for further notes regarding the synchronization).

The proposed method is divided into two parts: The first phase is a training phase,
in which a training dataset is used to learn models for future-value prediction of both the
odometry and video data. The second phase is a testing phase, in which the learned models
are tested on another dataset; predictions that diverge from the actual future values indicate
the presence of an anomaly.

During the training phase, odometry data are leveraged to perform learning in the video
case. In the testing phase, the odometry data are consequently passed again to the video
module for performing future-frame prediction. Fig. 7.1 displays the training phase of the
method, whereas Fig. 7.2 refers to the testing procedure.
{xo

t }t=1...τ defines a set of odometry data observations, where τ corresponds to the total
number of considered time instants. Conversely, {xt}t=1...τ defines a set of video data
observations.

7.2.2 Learning of the odometry model

The basic idea of our method is to leverage the model built on one sensor SA to guide the
learning of the model built on a sensor SB. In the case considered, SA corresponds to an
odometric sensor (e.g., GPS), and SB to the camera one. Consequently, the first step that
needs to be performed is the learning of the odometry model. A DBN framework is built
such that the odometry and the video model are mostly consistent. In particular, probabilistic
linear state-space models are considered.

The learning on the odometry modality is based on a basic MJPF [17]. From each
odometry sensor observation xo

t , a GS [77] is obtained. The GSs contain the state and its
first-order time derivative:

z̃o
t = [zo

t , ż
o
t ] (7.1)

As seen in Section 3.7.1, the states are correlated to the observations supposing a linear
relationship of the following type:

żo
t =

xo
t −Hzo

t−1

∆t
(7.2)
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where H is an identity matrix.
Clustering is performed on the GSs using the GNG algorithm [78].
For each cluster S̃, with S̃ = 1 . . .K, where K is the total number of clusters, the following

information is extracted, as in the previous chapters: i) the cluster centroid M(S̃,o); ii) the
cluster covariance Q(S̃,o); iii) a transition matrix Π defining the probability of moving from
one cluster to the other ones; iv) optionally, a set of TTMs Π(g).

Having extracted all the above-defined cluster features, the learning of the odometry
model is complete.

Note, however, that also other DBN models could be used, extracting different features
instead of the defined GS z̃o

t and adopting different prediction models. An example could be
the model defined in Chapter 6, where the evolution of an agent’s state is decomposed in its
different motion-related parameters and a rotational prediction model is employed.

7.2.3 Extraction of clustering distance values in odometry

After the odometry model has been learned, the features to guide the learning of the video
model are extracted. We propose to do this through a probabilistic distance (e.g., Bhat-
tacharyya distance DB) between each GS z̃o

t and each cluster:

dS̃
t = DB((z̃o

t ,Σ
o
t ),(M

(S̃,o),Q(S̃,o))). (7.3)

where Σo
t represents the covariance of z̃o

t . We chose Bhattacharyya distance as a proba-
bilistic distance coherent with one of the anomalies that will be introduced in Section 7.2.7
to perform anomaly detection. Other distances could be employed too.

In this way, a set of τ ∗K distances is obtained. dddt defines the set of K distances at
each time step t. These distances are given as input to the video training block to guide the
learning phase and to set the clustering division.

7.2.4 Learning of the video model

As a second step of the proposed method, training is performed on the video dataset employ-
ing the KVAE algorithm presented in [71] and summarized in Section 2.7.1.

We propose using the clustering obtained from the odometry data and the found distances
{dddt}t=1...τ to set the same clustering and to guide the KVAE training phase. Note that the
original KVAE paper [71] did not mention the concept of clustering but rather defined the
presence of a set of K combinable dynamics. These K dynamics can be seen as a loose
clustering assignment. As the original KVAE requires the user to set the number of clusters a
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priori, the proposed method allows us to exploit the information from another modality (i.e.,
the odometry one) to fix this number. By using the distances {dddt}t=1...τ, the two clusterings
are fixed to overlap. During the online phase, this will allow a joint anomaly detection of the
two modalities, which are now represented through similar information.

Also, note that this odometry-assisted assignment has differences compared to the case
of dynamics learned from video. Firstly, zones with similar visual aspects and motion, but
different positions, are assigned to different clusters. This behavior could either be desirable
or not, depending on the case. In particular, if events are acceptable in some regions of a map
but not in others, this is an advisable feature. Furthermore, in certain situations, video data
could be different even if odometry data does not change, e.g., the car is not moving, and
various events might happen in front of the agent, such as pedestrians and vehicles moving.
However, these visual changes are unrelated to motion changes and are less relevant for
interaction analysis.

Consequently, the same pseudo-observation and dynamics models defined in the original
KVAE are kept, with the difference that the (optional) control matrices Bi are not included.
These models were defined in Section 2.7.1, but we report them also here for better readability,
without commenting on them further. However, it is worth reminding the reader that the
KVAE learns two latent state: at and zt . The zt state must not be confused with the zIM

t

extracted in Chapter 5. In this chapter and in the next one, we define as Σt the covariance
associated with the state zt , and as Σa

t the covariance associated with the state at .
The KVAE pseudo-observation and dynamics models are defined, respectively, as follows:

at =
K

∑
i=1

α
(i)
t ∗Ci ∗ zt + vt (7.4)

zt+1 =
K

∑
i=1

α
(i)
t ∗Ai ∗ zt +

K

∑
i=1

α
(i)
t Bi ∗ut +ωt (7.5)

In both Eq. 7.4 and in Eq. 7.5, a probability vector ααα t is necessary to combine the different
models and define which are more relevant. In the original KVAE, this was performed with
an LSTM followed by a softmax. Instead, in our method, we propose to use the odometry
model to guide the assignment of the matrices. The vector of distances dddt is adopted to
calculate the probability vector ααα t (α(S̃)

t corresponds to one element in ααα t):

α
(S̃)
t = so f tmax

 1

d(S̃)
t + ε

∗ 1
n

 , (7.6)
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where n is a temperature, and ε is a small positive value added to avoid the denominator
being zero. A low value of n leads to a multinomial probability distribution peaked around
the nearest cluster, whereas a high value of n leads to a flatter multinomial probability
distribution. This expression corresponds, therefore, to a softmax with temperature. Across
epochs of the video training, the value n can be annealed.

Optimization is performed on the parameters φ and θ of the VAE, and on the matrices
[Ak,Ck]k=1...K .

Note how the odometry sensor data are used as a focusing attention mechanism. This
clustered odometry data can be considered as a switch mechanism guiding the network to
weigh more its sensitivity towards the cluster to which the current input will be assigned.
It can be observed how, in this way, selected features are driven by the system’s action.
Following Gibson [81], the system not only stops at the passive detection (given by the
images only) but also considers the stimulus from odometry, making it active.

Alg. 6 summarizes the video training algorithm - which follows the original KVAE [71] -
and clarifies where the cluster probabilities ααα t should be inserted.

We summarize and further explain the video training choices in this paragraph. As
discussed, the vector of probabilities ααα t originally learned through an LSTM [71] is here
obtained using the distance of the odometry state z̃o

t from the found clusters. The clustering is
built using the concept of GSs, which include both the positional and the motion information
of the agent [77]. Consequently, this first unsupervised learning step allows not only to
define the number of clusters but also their type, e.g., clusters where the agent moves
linearly following a certain motion type. Then, the probabilities vector ααα t guides when
each video cluster must be activated. The matrices A and C are learned mixing models
with these odometry-obtained probabilities (with the mixing becoming more peaked around
the dominant cluster with the decrease of the temperature n, which makes the assignment
tighter). The motion-related zt state, forced to be smooth, evolves locally according to the A
matrices model, and learns to predict not the entire information, but what is common to the
motion/evolution inside the cluster. Note how this concept resembles the idea proposed by
Yann LeCun (Section 3.8) to concentrate the prediction effort on a subpart of the information
in the scene, and not on all observation details. Conversely to what was proposed by LeCun,
however, we also decode the prediction back to the observation level, even if it can be blurry.

7.2.5 Extraction of the video cluster features

Once the training is finished, as done for the odometry case, for each cluster S̃, the proposed
method extracts the cluster centroids (M(S̃,z), M(S̃,a)) over the values of the latent states (zt ,
at), and over the cluster covariances (Q(S̃,z), Q(S̃,a)).
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Algorithm 6 Training over the video data.
Input: Video training data {xt}t=1...τ, divided in sequences, as {xt}t=τ1...τ2 . Distances from

clusters {dddt}t=τ1...τ2 .
Initialize VAE, matrices A and C.
for i = 1 to Ep← number of epochs do

Calculate cluster probabilities {ααα t}t=τ1...τ2 , from odometry clusters distances
{dddt}t=τ1...τ2 , using Eq. 7.6.
Get latent state of images using VAE’s encoder, for t = τ1 . . .τ2:
at ,σ

2
t = qθ (xt)← Image latent state

Σa
t ∼ ILσ2

t ← Latent state covariance
Decode the latent state back to image level, for t = τ1 . . .τ2:
x̂t = pφ (at)← Reconstructed images
KALMAN FILTERING:
for t = τ1 to τ2← time evolution do

Perform Kalman Prediction, using Eq. 7.5 for the prediction model, combining
matrices A with the calculated {ααα t}t=τ1...τ2:
zt+1|t ,Σt+1|t = KFpred(zt|t ,Σt|t , [Ak]k=1...K,ααα t)
Perform Kalman Update, using Eq. 7.4 for the observation model, combining
matrices C with the calculated {ααα t}t=τ1...τ2 . The pseudo-observation is given by at
and Rv (i.e., covariance matrix of the measurement noise).
zt|t ,Σt|t = KFupdate(zt|t−1,Σt|t−1, [Ck]k=1...K,ααα t ,at ,Rv)

end
KALMAN SMOOTHING:
Perform the Kalman Smoothing procedure over state zt , obtaining smoothed values of
zt , Σt , with t = τ1 . . .τ2.
CALCULATION OF LOSSES:
A) VAE LOSSES:
Reconstruction loss as MSE between xt and x̂t , and KLD loss over at , Σt , for t = τ1 . . .τ2.
B) KF LOSSES:
for t = τ1 to τ2← time evolution do

Perform prediction using Eq. 7.5, from zt , obtaining ẑt+1. Transition loss is calculated
comparing (zt+1, Σt+1) from smoothing and ẑt+1.
Go back to latent state at using Eq. 7.4, from zt , obtaining ât . Emission loss is
calculated comparing (at , Σa

t ) from the VAE and ât .
The other KVAE losses are calculated (i.e., entropy loss and initial covariance loss).

end
Perform optimization over VAE parameters φ ,θ and /or matrices A,C, using the calcu-
lated losses or a subset of them.

end
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7.2.6 Learned Dynamic Bayesian Network

Whereas the DBN on the odometry remains the same as displayed in Fig. 3.3, the DBN on
the video and how the two connect is shown in Fig. 7.3, with the learned elements displayed
in red corresponding to each link.

P(xt |at) and P(at |xt) are defined by the VAE’s decoder and encoder, i.e., the KVAE acts
as an observation model.

The standard pseudo-observation (Eq. 7.4) and state prediction (Eq. 7.5) models of the
VAE correspond to P(at |zt) and P(zt+1|zt), respectively.

So far, the video subpart of the DBN corresponds to the original KVAE one displayed
in 2.4. Additionally, it can be observed how P(S̃t+1|S̃t), P(zt |S̃t) and P(z̃o

t |S̃t) are defined by
the transition matrix Π (and, potentially, Π(g)), and by mean M(S̃,z) and covariance Q(S̃,z),
and by mean M(S̃,o) and covariance Q(S̃,o), respectively.
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7.2.7 Anomaly detection

The second phase of the proposed method consists in the detection of anomalies on a testing
set compared to the models learned in the training phase.

At each time-instant t, the MJPF can be used to extract odometry anomalies.
An MJPF is an SLDS comprised of K KFs at the state level and of a PF at the cluster

level. The MJPF is employed as in [17] to extract anomalies by comparing predictions and
updates at the state and cluster levels of the hierarchy.

While performing filtering and anomaly detection on the odometry data, the distance
vector dddt is calculated (Eq. 7.3) and used to derive ααα t (Eq. 7.6), keeping the same n value
used at the end of the training phase. The obtained ααα t is passed to the video block.

In parallel, each video frame xt is given as input to the VAE’s encoder, and a Kalman
filtering step is performed on it, where the observation model is defined as in Eq. 7.4 and
dynamics model as in Eq. 7.5, using the ααα t just calculated by the odometry block. Predicted
latent state values at+1|t can be decoded back to the image level.

The testing process for video prediction and anomaly detection is summarized in Alg. 7.
The learning of the DBN allows the detection of anomalies at different hierarchical levels.

Therefore, similar anomalies to the ones introduced in Chapter 5 are applied and adapted to
the proposed approach.

At the image-level xt , the MSE between predicted images xt+1|t and real images xt+1 can
be calculated. Even direct error reconstruction can be used, calculating the MSE between the
directly reconstructed image x̂t and the real image xt .

At the latent states level, the error values at the at and zt levels are:

errat =
1

Da

Da

∑
n=1

(an,t+1|t−an,t+1), (7.7)

errzt =
1

Dz

Dz

∑
m=1

(zm,t+1|t− zm,t+1|t+1), (7.8)

where Da and Dz are the dimensions of the two latent states, respectively.
Finally, the KLDA used in Chapter 5 can be adapted to the KVAE approach. First, the

Bhattacharyya distance DB(λ (zt|t),P(zt |S̃t) = S̃)) is calculated between the current state zt

and each cluster, where:
λ (zt|t)∼N (zt|t ,Σt|t) (7.9)

P(zt |S̃t)∼N (M(S̃,v), Q(S̃,v)) (7.10)
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Algorithm 7 Testing over the video data.
Input: Video testing data {xt}t=1...τ. Distances from the clusters {dddt}t=1...τ.
for t = 1 to τ← time evolution do

Calculate cluster probabilities ααα t , from odometry clusters distances dddt , using Eq. 7.6.
Get the latent state of the images using the VAE’s encoder:
at ,σ

2
t = qθ (xt)← Image latent state

Σa
t ∼ ILσ2

t ← Latent state covariance
Decode the latent state back to image level:
x̂t = pφ (at)← Reconstructed images
KALMAN FILTERING:
Perform Kalman Prediction, using Eq. 7.5 for the prediction model, combining matrices
A with the calculated ααα t :
zt+1|t ,Σt+1|t = KFpred(zt|t ,Σt|t , [Ak]k=1...K,ααα t)
Perform Kalman Update, using Eq. 7.4 for the observation model, combining matrices
C with the calculated ααα t . The pseudo-observation is given by at and Rv.
zt|t ,Σt|t = KFupdate(zt|t−1,Σt|t−1, [Ck]k=1...K,ααα t ,at ,Rv)
PROPAGATE PRED. DOWN THE HIERARCHY:
Go back to latent state at using Eq. 7.4 from zt+1|t , Σt+1|t , obtaining at+1|t , Σa

t+1|t .
Decode the predicted latent state back to image level, as:
x̂t+1|t = pφ (at+1|t).
CALCULATE ANOMALIES:
Image level abns.:
1) direct reconstruction anomaly as:
errx̂t = MSE(xt , x̂t);
2) prediction anomaly as:
errx̂t+1|t = MSE(xt+1, x̂t+1|t).
Latent states anomalies: calculate errat and errzt using Eqs. 7.7 and 7.8.
Cluster level anomaly: find KLDAt using Eq. 7.11.

end
Output: errx̂t , errx̂t+1|t , errat , errzt , KLDAt .

being Σt|t the updated covariance of zt . We call λ (S̃t) the inverse of the set of DB distances
over all the clusters, similarly calculated as ααα t in Eq. 7.6; it describes the probability of being
in each video cluster, given the updated latent state value, and corresponds to a diagnostic
message of the DBN (i.e., a message from the observations). The corresponding predictive
message π(S̃t) is the sum of the rows of Π weighted by ααα t . The symmetric Kullback-Leibler
Divergence between these two probabilities is calculated, i.e.:

KLDA = DKL(π(S̃t)||λ (S̃t))+DKL(λ (S̃t)||π(S̃t)) (7.11)
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As in the previous chapters, the KLDA measurement allows us to define an anomaly at the
highest level of the proposed hierarchy. This measurement identifies anomalies in the flow of
events instead of identifying pixel-wise abnormalities.

7.3 Experimental results

7.3.1 Employed Evaluation Datasets

We evaluate our method on the iCab (see Section 4.2.1) and UAH-DriveSet datasets (see
Section 4.2.2).

The iCab dataset [157] uses a Perimeter Monitoring (PM) scenario for training and
Pedestrian Avoidance (PA), U-turn, and Emergency Stop (ES) scenarios for testing. Two sets
of experiments taken at different times of day and season are present for the PM case and for
the ES case. A set of PM is taken at the same season (but at a different time of day) as a set of
ES. In this case, a shadow area is present on one side of the training courtyard for the training,
whereas it is absent in the testing case. Experiments in this chapter are performed of this PM
(PM1) against his associated ES (ES1) and of the combined PMs (plus data augmentation) on
the remaining test cases.

The UAH-DriveSet dataset [190] is a dataset by the University of Alcalá for driver
behavior analysis composed of various car sensory data from six drivers performing two
routes (motorway and secondary road) with three types of behaviors (normal, drowsy, and
aggressive). In this chapter, testing is performed on the secondary road part of the dataset.
For this case, two groups of trajectories were provided for the normal case, a group in one
direction of the route, and a group in the opposite direction. Instead, the drowsy trajectories
were all in one direction, and the aggressive trajectories were in the opposite direction. We
chose to train on the normal trajectories moving in the same direction as the drowsy ones,
and we tested against the drowsy case. The dataset provided GPS, accelerometer, and video
data. Due to GPS having a sampling rate of 1 Hz only, a KF is employed to combine GPS
and accelerometer data (10 Hz), to obtain a 10 Hz estimation of trajectory data.

As observed in Section 7.2, one hypothesis of the method is a good synchronization
between the odometry and the video samples. In both used datasets, the timestamps of
the odometry and of the video are known. For the method to work well, the difference in
timestamps between a video sample and its aligned odometry sample should be as small as
possible (and it should be the smallest, the fastest the vehicle is moving).
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Table I Roughness, car speed correlation, and Entropy of Π for the state and features obtained
with each method. © 2023 IEEE.

Roughness (r) Vel. correlation (ρ) Π Entropy (e)
VAE 0.1288 0.172 0.319

KVAE 0.0819 0.200 0.484
CG-KVAE 0.0861 0.334 0.188

7.3.2 Results on the iCab dataset

Training of the model on the PM data

First, the model is trained to learn the normal pattern. Two separate training procedures
are performed, one using PM1, and the other one combining it with PM2 and performing
data augmentation on it. We denominate the model learned on PM1 as MD1 and the model
learned on PM1 and PM2 as MD2.

From the odometry data training, the GNG outputs a total of 23 clusters. The method
proposed in [17] is used, i.e., using position and first-time derivatives as features on which to
cluster, as explained in Section 7.2.2. The trained KVAE has dimensions of at equal to 24,
and of zt equal to 4. Sequences of lengths L = 20 are used. The images were reduced to a
dimensionality 64x64. The VAE is composed of filters of dimension 32, 64, and 128, with a
kernel of size 3. The value of n is set to 1 and increased of 0.2 at each epoch in which the
matrices A and C are trained.

The model was trained in Python, using the PyTorch library.
Table I reports different discriminators on three cases of latent states: i) the one from a

VAE performing direct reconstruction; ii) at from the original KVAE with LSTM training;
iii) at from CG-KVAE. Roughness describes how smooth the state is and is calculated
as r = 1

4(ȧt,std − ȧt−1,std)
2, where ȧt,std is the standardized value of at − at−1. Another

considered indicator is the mean absolute value of Pearson’s Linear Correlation coefficients
ρ between at and ẋo

t . Finally, the last column of the Table displays the entropy e of the
transition matrix Π. In general r,e,ρ ∈ [0,1] and we desire r and e to be low, and ρ to be
high. The simple VAE gives the worst results over r and ρ . CG-KVAE displays the best
entropy value, as it keeps the transition matrix of the odometry data.

To better understand the values of transition matrix entropy, see Fig. 7.4. In Fig. 7.4a the
clusters obtained with the original KVAE (fixing the number to 23) are displayed. Notice
how a cluster covers zones on opposite sides of the courtyard, and how the uncertainty in
the passage between clusters is high (high entropy). Fig. 7.4b shows the CG-KVAE clusters,
having lower entropy. Fig 7.4c shows, for each cluster in CG-KVAE, the other one that has



172
A Kalman Variational Autoencoder Model assisted by Odometric Clustering for Video

Frame Prediction and anomaly detection

-20 -15 -10 -5 0 5 10 15 20

x

0

5

10

15

20

25

30

y

Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5
Cluster #6
Cluster #7
Cluster #8
Cluster #9
Cluster #10
Cluster #11
Cluster #12
Cluster #13
Cluster #14
Cluster #15
Cluster #16
Cluster #17
Cluster #18
Cluster #19
Cluster #20
Cluster #21
Cluster #22
Cluster #23

(a)

-20 -15 -10 -5 0 5 10 15 20

x

0

5

10

15

20

25

30

y

 1

 2

 3

 4

 5

 6
 7

 8

 9

10

11
12

13 14

15

16
17

1819

20

21

22 23

Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5
Cluster #6
Cluster #7
Cluster #8
Cluster #9
Cluster #10
Cluster #11
Cluster #12
Cluster #13
Cluster #14
Cluster #15
Cluster #16
Cluster #17
Cluster #18
Cluster #19
Cluster #20
Cluster #21
Cluster #22
Cluster #23

(b)

-25 -20 -15 -10 -5 0 5 10 15 20

x

-5

0

5

10

15

20

25

30

35

y

(c)

-20 -15 -10 -5 0 5 10 15 20

x

0

5

10

15

20

25

30

y
Cluster #2
Cluster #3
Cluster #4
Cluster #5
Cluster #8
Cluster #10
Cluster #13
Cluster #14
Cluster #17
Cluster #18
Cluster #20

(d)

Fig. 7.4 (a): clusters of the KVAE, (b): clusters of the CG-KVAE, (c): for each cluster, the 2
clusters with closest A matrices are connected, (d): closest clusters of CG-KVAE in KVAE.
© 2023 IEEE.

most similar A matrices. Notice how often zones on corresponding sides of the courtyard
are connected, as they show very similar dynamic behavior. Finally, Fig. 7.4d displays the
clusters of KVAE again, colored as the clusters of CG-KVAE having the most similar A
matrices. The features have been reordered so that the ones displaying higher correlation are
at the same index. However, as the learned embedding space is different, the correspondence
is limited and the figure is not especially meaningful in zones with high changes such as
curving zones. However, some A connected to straight areas and displaying higher values
along their diagonal can be observed to correspond to zones in the same area in the original
KVAE. For example, notice cluster 8 of KVAE (green). Observing Fig. 7.4c again, it can be
seen how cluster 8 is very similar to cluster 14, in a symmetric courtyard area. Consequently,
one can deduce that the CG-KVAE learns similar A matrices for zones in symmetrical visual
areas but associates the better transition matrix of odometry.
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Testing of the model on the ES data

First, we show the results obtained when testing the model on the ES data, using MD1.
Fig. 7.5 uses colors to represent the events happening along the time axis. Yellow zones

are curves that should not generate a high anomaly, as they are also found in the training
data. Violet zones represent the part of the courtyard that was in the shadow in training but is
in the light during testing; some considerations regarding these areas are given further on.
Red and green areas are clear pedestrian-related abnormal areas, i.e., the pedestrian appears
inducing the car to stop (red), and the car restarts after the pedestrian passes (green). Finally,
in cyan zones, the car abnormally steers to the left.

Fig. 7.6 to Fig. 7.9 present all results related to this data case.
Fig. 7.6 shows the state-level anomaly obtained on the odometry data using the MJPF

proposed in [17], with the trained odometry model.
Fig. 7.7, instead, displays the state-level anomaly that would be obtained if an MJPF

were built directly on the VAE’s encodings. It can be observed how curving zones all result
in very high anomalies, whereas actual abnormal areas are mostly not detected as such. This
behavior is due to the high non-linearity present in curving areas compared to the rest of the
dataset, resulting in the model not learning to predict in those parts with sufficient accuracy.
To solve this problem, a method such as a KVAE or the AMJPF or the OF-AMJPF in Chapter
5 should be used instead.

Fig. 7.8 shows the state-level anomalies (above) and the KLDA (below) when using
the standard KVAE with LSTM, whereas Fig. 7.9 displays the same anomalies when a
CG-KVAE is employed. It can be observed that, in both cases, prediction in curving zones
is performing much better, not giving much higher anomalies than the rest of the sequence,
differently to Fig. 7.7. The CG-KVAE displays fewer noisy anomalies than the KVAE; a
peak is present in all pedestrian-related areas (red and green) and in the steering zone (cyan).
Additionally, the violet areas display a strong abnormality, since odometry is used to select
the model to guide prediction. During training, a shadow area was present in this zone; it
is absent during testing. An anomaly is thus detected. On the other hand, the LSTM does
not display strong anomalies in these areas, since one of the other areas in the light is used
for prediction (as the courtyard has high symmetry). Whereas learning a shadow model
and fixing it to a zone is of no interest some other types of more relevant behavior could be
learned on a particular side of the courtyard. Consequently, a KVAE with LSTM could be
used when similar rules can apply to similarly-looking zones; on the contrary, the CG-KVAE
allows us to bind a behavior to its odometry area.

Fig. 7.10a displays the ROC (Receiver Operating Characteristic) curves for the anomalies
using the original KVAE and the CG-KVAE, showing the better performance of the latter.
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Fig. 7.5 Color-coded events in the ES dataset, and image examples. © 2023 IEEE.
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Fig. 7.6 State-level anomaly across time instants (on the x-axis) obtained with the MJPF [17]
used on odometry data. © 2023 IEEE.
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Fig. 7.7 State-level anomaly on ES across time instants (on x-axis) obtained with the direct
MJPF [17] used directly on the VAE encodings. © 2023 IEEE.
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Fig. 7.8 Anomalies at the different levels on ES using the KVAE with LSTM. In blue: on at ;
in red: on zt ; in black: on S̃t . © 2023 IEEE.
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Fig. 7.9 Anomalies at the different levels on ES using the KVAE with the Odometry Clustering
assignment. © 2023 IEEE.
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Fig. 7.10 ROC curves for the following cases: (a) ES, (b) PA, (c) U-turn. For (b) and (c), the
best cluster level as seen in Fig. 7.13 was chosen. No Bi matrices were used for either the
CG-KVAE or the traditional KVAE. © 2023 IEEE.
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Fig. 7.11 Anomalies on PA using CG-KVAE. Blue interval: main anomaly (pedes-
trian+avoidance); grey: shadows; yellow: curve. The blue plot is the anomaly on at and the
red plot is the anomaly on zt . © 2023 IEEE.
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Fig. 7.12 Anomalies on U-turn using CG-KVAE. Blue interval: main anomaly (pedestrian+U-
turn); grey: shadows; yellow: curve. The blue plot is the anomaly on at and the red plot is
the anomaly on zt . © 2023 IEEE.

The performance of the Emergency Stop dataset cannot be compared with the one in
Chapter 5 because different parts of the PM and ES datasets were used in the two chapters. In
this chapter, PM1 was tested against ES1, whereas in Chapter 5 the full PM dataset (further
augmented) was tested against ES2.

Testing of the model on the PA and U-turn data

The model is also tested on the PA and U-turn data, using MD2. Fig. 7.11 and Fig. 7.12
display the anomalies on PA and U-turn, respectively. Blue zones represent the main anomaly:
pedestrian presence and avoidance maneuver for PA; pedestrian presence, U-turn, and curves
in the opposite direction to that of training for U-turn. Grey areas correspond to shadows not
present in training. Yellow zones are curves (normal motion).

Note that some shadows are present in the PA and U-turn data that are not present in
training; these shadows are the cause of the two peaks in Fig. 7.11 (above), one before the
avoidance zone and one after it.

Fig. 7.10b and Fig. 7.10c show the ROC curves for the anomalies using the original
KVAE and the CG-KVAE, for the PA and U-turn case, respectively. For these two datasets,
the performance with the CG-KVAE is slightly better, but not significantly so.
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We can observe that the method performs worse than the ones proposed in Chapter
5. Note, however, that the model is more computationally complex, as backpropagation
is performed on batches of images across multiple time instants and not on a single time
instant. Therefore, the images were reduced to a lower dimensionality (64x64 vs the 120x240
used in Chapter 5) and the VAE is smaller (it has three convolutional layers with 32,64,128
channels against five convolutional layers with 16,32,64,128,128 channels). Consequently,
the comparison is not fair, being the two models so different.

Comparison using several cluster experiments

The clustering over the odometry data can be optimized using a procedure similar to the ones
proposed in [103] and in [106], i.e., several clustering experiments can be performed, and the
one that performs better according to a proposed functional can be extracted. In [103] and
[106], clusters were sought to have a high covariance across position and a low covariance
across velocity (i.e., a precise prediction model with the highest coding capability). A trade-
off between these two requirements can be found, which corresponds to a trade-off between
the number of clusters and the precision of their prediction model. In [106], the optimal
trade-off number of clusters on the PM odometry task over several clustering methods was
found to be between 7 and 14 clusters, despite 23 giving a higher precision.

Experiments are conducted varying the GNG parameters, in particular the utility thresh-
old κ defined in [103]. The clustering algorithm consequently stops at a different number of
clusters. Training of the CG-KVAE and testing on the PA and U-turn datasets is performed
with five different cases: 2,8,14,23 and 70 clusters. Fig. 7.13 shows the obtained ROC
curves using the states and cluster anomalies. It can be observed that the same anomaly
type displays a similar behavior across experiments, with the zt anomaly having the best
performance. The worst results correspond to K = 2 and K = 70: in the first case, the models
are less precise because they merge different behaviors; in the second case, a too high number
of clusters leads to over-fitting. The best results are obtained with 8 and 14 clusters. Fig.
7.13c displays the centroids for the case with 8 clusters. Notice how the division is between
four straight zones and four curving zones, which is indeed the most natural division of the
courtyard area by human interpretation, too.

Testing with different CG-KVAE models

In this section, results are analyzed when varying the CG-KVAE model. As observed in
section 7.2.2, the odometry model can be built in different ways. The DBN with linear
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Fig. 7.13 ROC curves with varying cluster parameters: (a) PA, (b) U-turn. ’cls’ = clusters,
(c) PM data (red) with cluster centroids (in yellow for position and in black for velocity) for
the clustering giving best results (8 clusters). © 2023 IEEE.
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Fig. 7.14 ROC curves with varying models: (a) PA, (b) U-turn. ’linear’ refers to the CG-
KVAE with linear models in the odometry clusters [17]; ’linear + B’ has the same odometry
models as ’linear’, but adds the optional matrices Bi in the video model; ’rotational’ uses
rotational models in the odometry clusters as in Chapter 6. © 2023 IEEE.

predictions introduced in [17] (’linear’) is compared with the method in Chapter 6, which
clusters also leveraging the rotation angle and acceleration and uses rotational models
(’rotational’).

Another experiment is performed using the linear odometry case again and considering
the addition in the video model of the optional control matrices Bi mentioned in section III-D
(’linear + B’). As control vector ut , the velocity part of the z̃o

t state is used, i.e., żo
t . This

version, therefore, supposes that a complete knowledge of the odometry velocity data is
passed to the video model instead of the cluster probabilities only.

Fig. 7.14 reports the ROC curves of these experiments on the PA and U-turn cases. All
cases use 8 clusters. The three models display comparable results, with the ’rotational’ one
performing slightly worse (possibly due to the use of the more noisy acceleration information)
and with the ’linear + B’ performing better on U-turn for what concerns the KLDA anomaly
(due to the added direct connection between states zt and zo

t ).

7.3.3 Results on the UAH-DriveSet dataset

First, the model is trained using the sequences of the UAH-DriveSet dataset on the normal
trajectories moving in the same direction as the drowsy ones, keeping one trajectory out for
validation. Then, testing is performed on the training and validation trajectories, extracting
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Fig. 7.15 (a) Anomalies on the third drowsy trajectory; (b) Corresponding ROC curves. ©
2023 IEEE.

the anomalies, and, for each one of them, calculating the mean abnmean and the variance
abnvar. This allows us to define an anomaly threshold to be used in testing:

thresh = abnmean +β ∗abnvar, (7.12)

We set β = 1.5. Such a threshold defines as abnormal those points with anomaly value
differing from the mean of more than β times the variance, e.g., 68.3% of training/validation
data if β = 1, 86.64% if β = 1.5. We take β = 1.5 to leave a margin for observed training
and validation anomaly false positives.

Finally, testing is performed on the drowsy trajectories, extracting the anomalies. Note
that the UAH-DriveSet dataset is not an anomaly detection dataset; moreover, there is no
ground truth defining which parts of the drowsy trajectories actually fall into said behavior
and which instead are normal. Consequently, we selected one of the drowsy trajectories
and manually marked events that we observed in the first 4500 time instants. The chosen
trajectory was the third one; the corresponding driver performed clear oscillating behaviors,
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(a)
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Fig. 7.16 Examples of zones from the third drowsy trajectory giving high anomalies. (a):
Overtaking (t ∼ 700); (b): Bridge (t ∼ 1450); (c): Oscillations (t ∼ 4400). © 2023 IEEE.

while others appeared more normal. Fig. 7.15a uses colors to define the zones. Red zones
correspond to strong oscillations; bridges - which are normal observations - appeared in the
cyan areas; a vehicle fully overtakes the driver’s one in the green region.

Fig. 7.15a shows the anomalies at the different levels: i) the direct reconstruction anomaly
in violet; ii) the state anomalies, in blue on at , and in red on zt ; iii) the KLDA in green. All
the displayed anomalies are normalized relative to the corresponding abnmean and abnvar and
the threshold at 1.5 is shown.

First, it can be observed that zones where a bridge is present always result in high
anomalies, despite them being normal. As these zones are rare and are composed of darker
parts and higher contrast, as can be seen in Fig. 7.16b, they easily result in higher anomaly
values. However, it can be deduced that this type of anomaly is derived from a reconstruction
problem since it also causes the highest direct reconstruction errors.

Another zone giving high abnormality is the one where the vehicle is fully overtaken,
displayed in Fig. 7.16a.
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Finally, it can be observed how oscillating maneuvers - typical of drowsy behavior - give
higher abnormalities than other ones. An example of this behavior, causing the peak around
time t ∼ 4400, is shown in Fig. 7.16c.

Fig. 7.15b shows the ROC curves using CG-KVAE and direct VAE reconstruction. The
performance of the latter method is very poor because it only considers one image at a time
and, therefore, is not able to catch anomalies at the dynamic level (which are intrinsic in
oscillating cases). The perfomance is worse than the random chance classifier (ACC = 0.5).
This results also derives from the inability of the used VAE to well reconstruct normal but
rare images such as the bridges. In contrast, many anomalies are motion anomalies, which
cannot be detected through reconstruction. Using the CG-KVAE, the performance is still
very low, but significantly improved.

7.4 Conclusions

This chapter proposes a method to learn a predictive model for high-dimensional data (video)
using a CG-KVAE assisted by models learned on low-dimensional data (odometry). An
HDBN framework is combined with a DL method (a VAE). The model learns an object’s
latent representation at and its latent state zt , describing its dynamics from raw video and
odometry data. The odometry cluster probabilities are leveraged to combine the prediction
and pseudo-observation matrices composing part of the video model. During testing, pre-
dictions from the algorithms are compared with updates to extract multi-level anomalies.
Experiments showed that the model could predict future frames and detect anomalies using
real-world video sequences. Several testing experiments were performed, varying the model
and its parameters.

In the next chapter, the method is extended to perform localization in a known envi-
ronment by modifying the training model and the MJPF algorithm. Supposing not to be
provided at testing with the odometry anymore, we can estimate it by leveraging the learned
vocabulary and a probability vector estimated from the images only.



Chapter 8

Vehicle Localization and anomaly
detection for Video Surveillance in a
Dynamic Bayesian Network Framework

In the previous chapters, we focused on anomaly detection. In this chapter, instead, Visual-
Based Localization (VBL) is tackled by extending the approach proposed in Chapter 7. Two
alternative methods are introduced and evaluated.

The rest of the chapter is structured as follows. After introducing the problem in Section
8.1, we present the two versions of the approach in Sections 8.2 and 8.3, respectively.
Section 8.4 compares the two versions from the theoretical point of view. We then describe a
method to optimize the clustering in Section 8.5. Section 8.6 discusses extensive experimental
evaluation on both terrestrial and drone datasets. Finally, Section 8.7 draws some conclusions.

8.1 Introduction

Human beings possess the ability to localize themselves in a familiar environment and to
detect surprising events happening in it compared to previous experiences [61, 135].

In less complex animals, such as insects like honeybees and ants, localization relies on
calculating movement direction and speed, combined with compass cues like the position of
the sun [95]. This process is called path integration. However, no map of the environment
seems to be built using external landmarks. In contrast, more complex animals like humans
and other mammals combine path integration with landmark navigation and integrate infor-
mation from their senses to build a map of the environment that they have explored [92, 61].
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When novelties appear in the learned environment, they can detect the change and take a
response.

Similar to how humans use their different senses to localize and detect changes, surveil-
lance vehicles are equipped with a diverse set of sensors. We have seen in Section 3.1 that
sensors belong to two classes: proprioceptive and exteroceptive. Proprioceptive sensors
allow gaining awareness of one’s own state (self-awareness); exteroceptive sensors allow
gaining awareness of the surrounding environment (situational awareness). Examples of
these two classes are odometric sensors (e.g., wheel odometry) and cameras, respectively.
Proprioceptive sensors are directly connected to path integration. On the other hand, cameras
offer information not only about the vehicle’s ego-motion but also about external landmarks.

The abilities to localize in a known environment and to detect new situations find their
corresponding Artificial Intelligence fields in localization and anomaly detection. When
localization is performed at test time using solely visual information, we talk about VBL (see
Section 3.6). In VBL, during training, camera data and the corresponding odometry data are
used to learn a model for localizing the agent using the images as input. During testing, the
agent’s positions are not provided anymore, and the learned model - e.g., the learned map - is
used to localize from the images.

Simultaneously localizing oneself and detecting anomalies is important for tasks such
as video surveillance and fault detection with mobile robots. Consider a robot patrolling a
pre-defined route. To perform the correct actions to follow the route, it constantly needs to
know its location. Moreover, it must detect mobile or stationary anomalies, such as intruders
or suspicious objects [32]. Another relevant example is that of drones supervising ships to
detect faults such as broken cables or leakages.

This chapter tackles the problem of simultaneous VBL and anomaly detection for surveil-
lance vehicles. The following hypotheses are given:

• A: we suppose that training and testing are performed in the same environment, with
varying conditions. This setting is coherent with a video surveillance application in
which a robot always moves in the same building or ship;

• B: we suppose to have an estimation of the agent’s position during the training phase
to learn the correlations between video and odometry data.

We extend our work introduced in Chapter 7. Consequently, our objective is not solely
to perform vehicle localization, but to do it coherently with our self-awareness framework
for autonomous systems [183]. We combine DL-based methods, such as VAEs, [122] with
traditional Signal Processing methods, such as filtering based on DBNs [80]. Our objective
is to leverage the performance of CNNs in learning a suitable low-dimensional latent space
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of the video data without resulting in a black-box approach. We obtain a method that is
hierarchical, probabilistic, and explainable. DBNs also allow learning correlations between
multiple sensory modalities, i.e., the odometry and the video, making the approach multi-
sensorial. Additionally, the proposed method is data-driven: only the video and odometry
data of the sensors are provided, and the models are built using them without any prior
information, model, or hand-crafted features. The camera calibration parameters are also not
necessary. The five properties described in Sections 3.2.3 and 3.3 are, therefore, satisfied.

In the proposed method, during training, we learn a DBN model for predicting the
evolution of the odometry data, as in [17]. The odometry model is passed to the video model
learning block, which trains the CG-KVAE introduced in the previous chapter. However,
we propose some modifications in the learning of the CG-KVAE, directed to the VBL
application. Two alternative versions of the method are presented. In both versions, two
matrices are inserted in the model to predict the state of the odometry from the state of
the video. In the first version (FV), the rest of the training remains the same as in chapter
7. In the second version (SV), the clustering procedure is modified: instead of clustering
only on the odometry state, we cluster on both the odometry and video latent state. This
allows us to improve the localization of the vehicle. In both versions, a Coupled DBN
(CDBN) is obtained from the odometry and video models. Only video data are provided
during testing, and filtering is performed using a Coupled Markov Jump Particle Filter
(CMJPF). The CMJPF is a modification of the MJPF [17]. The CMJPF allows us to
perform simultaneous localization and anomaly detection. The anomalies are both a final
output (signaling whether something unusual has happened) and an intermediate result
leveraged to guide the localization. Anomalies explain possible model failures, increasing
the explainability of the method.

Furthermore, we examine how to choose an appropriate clustering, to avoid the problems
of over-clustering (i.e., when there are more clusters than necessary) and under-clustering (i.e.,
when there are not enough clusters, and the method’s accuracy decreases). We propose an
approach based on the covariance of the video and odometry states in each cluster, following
the method proposed in [103], where clustering optimization was performed only on the
odometry data.

To summarize, this chapter’s main contributions are:

• the learning of a DBN-based model in a self-awareness framework to couple a low-
dimensional and a high-dimensional sensory modality and to learn how to predict the
state of the low-dimensional modality from the state of the high-dimensional one;



186
Vehicle Localization and anomaly detection for Video Surveillance in a Dynamic Bayesian

Network Framework

• the introduction of the CMJPF: whereas the MJPF allowed us to perform anomaly
detection on a single sensor modality, the CMJPF combines the learned models over
video and odometry to execute VBL and anomaly detection;

• the use of the extracted anomalies to improve the localization process in a surveillance
application, to predict where it is failing, and to explain why;

• the introduction of a method for both VBL and anomaly detection that is data-driven,
hierarchical, probabilistic, explainable, and does not require prior models (e.g., camera
calibration parameters);

• the comparison of two alternative versions of the method;

• the proposal of an approach to choose an approximate clustering level.

8.2 First Version of the Proposed Approach

We start by describing in detail the first version of the approach.
The proposed method is divided into two parts: an offline training phase and an online

testing phase. During the training phase, the DBN models for odometry and video data
(First Person Viewpoint) are extracted. In the testing phase, the video data are provided,
and the learned models are used to predict the values of the odometry data and to extract
anomalies. This division mirrors the one seen in the methods proposed in the previous
chapters. Compared to all previous chapters, however, there are differences in the inputs and
outputs of the testing phase. The training phase takes as input both odometry and video data.
In contrast, the testing phase only takes as input the video data. Furthermore, not only the
anomalies are predicted, but also the localization.

Fig. 8.1a shows the training procedure from a very high-level point of view. Fig. 8.2
displays both training and testing, and provides further details.

8.2.1 Training of the odometry model

The training of the odometry model is conducted in the same way as seen in Section 7.2.2. To
summarize, GSs z̃o

t are extracted from the positional data points xo
t and are clustered with the

GNG algorithm, obtaining K clusters and an odometry vocabulary. The odometry vocabulary
includes cluster centroids M(S̃,o), cluster covariances Q(S̃,o), an overall transition matrix Π,
and TTMs Π(g). Finally, the distance dS̃

t of each data point from each cluster is calculated.
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(b) Second Version.

Fig. 8.1 Training phase in the first (a) and second (b) versions of the proposed anomaly
detection and localization approach. In the first version, the odometry state is extracted
by filtering the training positions, and is then used to perform clustering. The odometry
vocabulary guides the learning of the KVAE, which leads to the extraction of the video
vocabulary. In the second version, the clustering is performed using both the odometry states
and the video latent states obtained from the VAE bottleneck.

8.2.2 Training of the video model

The training procedure of the video model is similar to the one presented in Section 7.2.4.
Therefore, we summarize the common parts and focus on describing what is modified.

First, from the distances dS̃
t obtained from the odometry training, it is possible to estimate

the probability α
(S̃)
t that the odometry point at time t belongs to cluster S̃:

α
(S̃)
t = so f tmax

 1

d(S̃)
t + ε

∗ 1
m

 , (8.1)

where m is a temperature, and ε is a small positive value added to avoid the denominator
being zero.

At each time instant t, an image xt is passed through the encoder qφ of a VAE, to obtain a
first latent state at . A second latent state, zt , is also found, which has a smaller dimension
compared to at . Whereas at captures the content information of the images, zt focuses on the
dynamics between images. The two latent states are correlated through a pseudo-observation
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model defined as:

at =
K

∑
i=1

α
(i)
t C(i)zt + vt (8.2)

The dynamical model connects zt values at consequent times:

zt+1 =
K

∑
i=1

α
(i)
t A(i)zt +

K

∑
i=1

α
(i)
t B(i)+ωt (8.3)

The matrices {C(i)}i=1...K , {A(i)}i=1...K , represent a set of pseudo-observation models and of
transition models, respectively. They are combined through the vector of probabilities ααα t .
The original KVAE method considered a set of matrices {B(i)}i=1...K , which multiplied an
optional control vector. In contrast, in this chapter, we consider a set of matrices B providing
an addition term. Through these models, we can loosely associate with an odometry cluster
a different way of selecting features from the VAE bottleneck (through the C(i) matrices)
and a different image variation across time (A(i) matrices). This choice will enable us during
testing to distinguish whether something abnormal has happened in the content of the images
or in their motion, increasing the explainability of the method, as we can identify to what
model the anomaly is related.

For training the KVAE, at each loop of each epoch, we consider a batch of image
sequences of length L, i.e., {xt}t1...t1+L. The batch is passed through the encoder qφ (at |xt) of
the KVAE to obtain the latent states {at}t1...t1+L. Kalman filtering and smoothing are then
performed on these states, using the observation model in Eq. 8.2 and the prediction model
in Eq. 8.3. From this point onwards, we define with zt the low-dimensional latent state
extracted using filtering only, and with zst the one after applying the smoothing process too.

Since for localization we also desire to relate a value of the latent state zt inside a cluster
to its corresponding odometry state z̃o

t , we additionally train a set of matrices {D(i)}i=1...K

and {E(i)}i=1...K , such that:

ẑo
t = D(S̃t)zst +E(S̃t)+M(S̃t ,o)+mt , (8.4)

where ẑo
t is the estimated odometry state at time instant t and mt is the residual error. To ease

the training, we make the estimation of z̃o
t start from the odometry cluster centers M(S̃t ,o).

Consequently, we add a cross-modality loss Lcm:

Lcm =
K

∑
S̃=1

α
(i)
t
∥∥ẑo

t − z̃o
t
∥∥2 (8.5)

Fig 8.2 indicates the loss calculations with red dotted lines.
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At the end of the KVAE training, for each cluster S̃, we extract the cluster centroids
(M(S̃,a), M(S̃,z)) and the cluster covariances (Q(S̃,a), Q(S̃,z)) over the values of both latent states
at and zt .

8.2.3 Learned Coupled Dynamic Bayesian Network
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Fig. 8.3 Learned Coupled Dynamic Bayesian Network (CDBN). © 2022 IEEE.

During training, two DBNs are learned, as shown in Fig. 8.3. The features representing
the links are shown in red.

The DBN is very similar to the one learned in the previous chapter, i.e., see Fig. 7.3. A
link is added between the video state zt and the odometry GS z̃o

t , represented by Eq. 8.4. This
link enables to predict the odometry state from the video state. Furthermore, we add in the
image the link between at and S̃t , represented by M(S̃t ,a) and Q(S̃t ,a), which will be adopted to
estimate the current cluster, given the value of at . This link was already learned in Chapter 7,
but was not employed in the method, so we chose not to display it in the figure, for simplicity
and improved readability. In this chapter, instead, this link is exploited during the tracking.
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8.2.4 Combined MJPFs for estimating odometry from video.

During the online phase, at each time instant, only the video data xt is given, and we derive
the vehicle’s localization and the anomalies using the information of the CDBN in Fig. 8.3.
The traditional MJPF in [17] was built on the model of a single sensor. In this chapter, a
CMJPF is proposed, coupling the models of two sensors, where only one is observed.

We have discussed the MJPF in Chapter 2. We summarize here the most relevant
information to understand the CMJPF. The MJPF uses of a set of KFs at the state level and a
PF at the cluster level. A PF maintains a set of N particles during filtering, with each particle
representing a hypothesis and being associated to a mean, a covariance, and a cluster at each
time step. At each instant, a prediction and update phase are executed. Prediction and update
at the state level adopt the state prediction and update models related to the cluster of the
particle. The cluster-level prediction employs the transition matrices Π and Π(g). During the
update phase, particles undergo resampling to eliminate the least probable hypotheses.

The proposed CMJPF is based on the original MJPF but includes significant changes.
Firstly, each particle is associated with two means (one for the odometry GS and one for
the video state), two covariances, and a cluster. Secondly, the prediction and the update at
the state level are split into two steps, as they are performed both for the odometry GS and
for the video state. Conversely to a classic odometry MJPF, in the proposed CMJPF, we
don’t have the odometry observation. Consequently, we note that the odometry ’update’ is
not an actual update, as the positions are not observed. This update is in fact a prediction
performed through the vocabulary of the video model and the D and E matrices. Further
details regarding this point will be provided on the next page.

Similarly to the original MJPF, the prediction is performed at the cluster level leveraging
the matrices Π and Π(g).

Additionally, in the video case, note that pseudo-observation and state prediction are not
performed through the sum over the ααα t values (see Eq. 8.2 and Eq. 8.3). Instead, the PF of
the CMJPF is used to keep several cluster hypotheses in parallel, on a set of N particles, as in
the original MJPF.

In the following paragraphs, we describe the steps executed by the algorithm at each time
instant t (see also Fig. 8.4 and Alg. 8).

Particle-independent calculations

At each instant t, we perform a set of operations that do not depend on the N particles.
The image xt is passed through the VAE’s encoder qφ to extract the latent state at . The
Bhattacharyya distance DB is calculated between each video state and each video cluster:
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Algorithm 8 Method for obtaining odometry from video.
Input: Learned DBN vocabulary
f irst_resampling_per f ormed = False
for t = 1 to τ← Time evolution do

PARTICLE-INDEPENDENT CALCULATIONS:
xt ← Image at t
Get the latent state of images using the VAE’s encoder:
at = qθ (xt)← Image latent state
Find the distances of video encodings from video clusters:
d(S̃)

v,t = DB((at ,Σ
a
t ),(M

(S̃,a),Q(S̃,a))), for S̃ = 1 . . .K

Find the video cluster probabilities α
(S̃)
v,t from the distances d(S̃)

v,t , for S̃ = 1 . . .K, using Eq. 7.6.
if t == 1← Initial iteration then

INITIALIZATION OF THE PARTICLES:
for n = 1 to N ← Particles do

Initialize cluster assignment S̃t=1,n of particle n using cluster probabilities α S̃
v,t , with S̃ = 1 . . .K.

Initialize n-th particle video state as:
zt=1,n ∼N (M(S̃1,n,z),Q(S1,n,z)).
Initialize n-th particle odometry state as:
z̃o

t=1,n ∼N (M(S̃1,n,o),Q(S̃1,n,o)).
end

end
else

UPDATE:
for n = 1 to N← Particles do

Perform the video update: zt|t,n,Σt|t,n = KF_update(zt|t−1,n,Σt|t−1,n,C(S̃t,n),at ,Rv)

Get the odometry estimation from video: ẑo
t,n = D(S̃t,n)zt|t,n +E(S̃t,n)+M(S̃t,n,o)

Perform the odometry ’update’: z̃o
t|t,n,Σ

o
t|t,n = KF_update(z̃o

t|t−1,n,Σ
o
t|t−1,n, ẑ

o
t,n,R

o)

end
Calculate the anomalies. Based on them, assess if restarting particles is necessary.

Reweight the particles.
if Particles Restarting necessary then

Resample, restart n∗Ppar particles and set f irst_resampling_per f ormed == True.

end
else if f irst_resampling_per f ormed == False and Ne f f < Nth,l then

Resample particles and set f irst_resampling_per f ormed == True.
end
else if Ne f f < Nth,h then

Resample particles.
end

end
PREDICTION:

for n = 1 to N← Particles do
Predict the next cluster S̃t+1,n from S̃t,n using Π and Π(gt,n).

Predict the video state: zt+1|t,n,Σt+1|t,n = KF_v_pred(zt|t,n,Σt|t,n,A(S̃t,n),Qv).
Predict the odometry state: z̃o

t+1|t,n,Σ
o
t+1|t,n = KF_pred(zo

t|t,n,Σ
o
t|t,n,M

(S̃t,n,o),Q(S̃t,n,o)).
end

end
Output: Anomalies and xo

t|t,n with n = 1 . . .N
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d(S̃)
v,t = DB((at ,Σ

a
t ),(M

(S̃,a),Q(S̃,a))). Finally, a vector αααv,t of probabilities is obtained from

the set of K distances d(S̃)
v,t using Eq. 8.1. It defines how probable it is to be in each cluster,

based on the video observation. Note that the best temperature mv to use in this case might
not be the final one used in training, i.e., m, as we are now working on the video state and
not on the odometry state anymore.

Initialization of the particles

At the first time instant, the particles of the CMJPF are initialized. This means defining, for
each particle, the cluster, the mean, and covariance of both the odometric and video state.
The cluster S̃t=1,n, of particle n, is sampled using the multinomial distribution described by
αααv,t=1. Mean and covariance of video and odometry states of the particle can then be defined
sampling from the Gaussian distributions N (M(S̃1,n,z),Q(S̃1,n,z)) and N (M(S̃1,n,o),Q(S̃1,n,o)),
respectively.

Prediction phase

At each instant, the next cluster, the next odometry state, and the next video state are predicted
for each particle through the learned prediction models. At the cluster level, the prediction
is performed by combining the transition matrix Π and the TTM Π(g), where g is the time
spent in the considered cluster.

For the video state prediction, we use for each particle the A matrix of the associated
cluster, i.e., A(S̃t,n), in a standard KF prediction step. We define this step in Alg. 8 with the
notation KF_v_pred(zt|t,n,Σt|t,n,A(S̃t,n),Qv), because the standard KF prediction equation is
used on the video state, starting from the updated mean zt|t,n and covariance Σt|t,n at time
instant t, and using the prediction matrix A(S̃t,n) with the prediction uncertainty Qv (i.e., the
process noise covariance).

For the odometry part, no modification is necessary compared to the original model
proposed in [17], which used a standard KF step predicting that the object will move with
the mean velocity of the cluster (i.e., the second half of the vector M(S̃t,n,o)).

z̃o
t+1/t,n = Aoz̃o

t/t,n +BoU (S̃t,n)+wo
t (8.6)

where Aoz̃o
t/t,n takes the GS information from z̃o

t/t,n and makes null its time derivatives.

BoU (S̃t,n) encodes the time derivative information at time t. U (S̃t,n) contains the derivative-
related part of the variable M(S̃t,n,o). The variable ωo

t is a zero-mean Gaussian distribution
representing the noise of the model.
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Update phase

At each time instant, except for the first one, we perform the update of video and odometry
states using the current image. First, the video update is done. For each particle, the C matrix
of the associated cluster is used, i.e., C(S̃t,n). We define in Alg. 8 this step with the notation
KF_update(zt|t−1,n,Σt|t−1,n,C(S̃t,n),at ,Rv) because the traditional KF update equation is used
on video, starting from the predicted mean zt|t−1,n and covariance Σt|t−1,n at time instant
t−1, and using the pseudo-observation matrix C(S̃t,n); the pseudo-observation is the state at ,
with uncertainty Rv (i.e., the measurement noise covariance).

To execute the odometry state update, an observation of the vehicle’s position would
be required, but is unavailable. To address this limitation, in the course of model training,
the supplemental matrices D and E were introduced. These matrices derive an approximate
estimate ẑo

t,n for the odometry state based on the latent state zt,n (see Eq. 8.4). An odometry
“update”, denoted as z̃o

t/t,n, is obtained following the conventional Kalman Filter equations.
The update process incorporates ẑo

t,n as the odometry observation. Note that this operation is
not an actual update but rather a combination of two predictions, one using the odometry
prediction model defined by (M(S̃t ,o),Q(S̃t ,o)) and the other employing the cross-modality
model defined by matrices (D(S̃t),E(S̃t)). We adopt the name “update” because we combine
the two predictions through the standard KF update equations. x̂o

t,n and xo
t/t,n, corresponding

to ẑo
t,n and z̃o

t/t,n are then obtained through the observation model in Eq. 7.2.

Anomaly calculation

Several anomalies are extracted after the update phase. In the experiments presented in
Section 8.6, we calculate five types of anomalies:

• the image reconstruction error of the VAE, Abnrec = MSE(xt , x̂t), where MSE is the
Mean Squared Error;

• the MSE between the predicted and updated state at , averaged over the N particles i.e.,

di f fa =
∑

N
n=1(at|t−1,n−at|t,n)

N = ∑
N
n=1(di f fa,n)

N ;

• the MSE between the predicted and updated state zt , averaged over the N particles i.e.,

di f fz =
∑

N
n=1(zt|t−1,n−zt|t,n)

N = ∑
N
n=1(di f fz,n)

N ;

• the KLDA, which signals whether a previously unseen sequence of clusters is now
being followed;

• MSE between the two odometry predictions di f fẑo =
∑

N
n=1(ẑ

o
t,n−z̃o

t,n)

N =
∑

N
n=1(di f fẑo,n)

N .
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Note that each of these anomalies is related to a different level of the DBN: the image level,
the at state level, the zt state level, the S̃t cluster level, and the cross-modal interaction,
respectively. They are used to discover what part of the model should be updated. In addition
to the anomalies defined above, the minimum value in the vector αααv,t is used as an anomaly
indicator: when it is higher than normal, it signals that the model is uncertain regarding the
clusters’ assignment. In figures, we identify this anomaly as the “minimum S̃ likelihood
abnormality”.

Particles resampling

We reweight the particles: we give higher weight to particles belonging to clusters with a
higher likelihood (accordingly to Section 3.7.3) and with a lower anomaly. As a reweighting
anomaly, we use di f fa,n. Particles are resampled when the filter’s effective size Ne f f (see
Section 2.4.4) is below a defined threshold [58]. We propose using two separate thresholds.
The first one, Nth,l , is used at the start of the trajectory. After the first resampling, it is
substituted by a second threshold, Nth,h, which is employed for the rest of the tracking. At
the start of a trajectory, the algorithm needs to decide in which location of the overall space
the agent is situated and might need more time - and so a lower threshold - to correctly do it.
Conversely, a higher threshold can be used for the rest of the tracking. This reasoning does
not apply if the vehicle always starts from the same position: in this case, there is no need
to use a lower threshold at the beginning of the trajectory, because we approximately know
where the vehicle is located.

Particles restarts

The algorithm can detect whether its localization prediction is diverging from the actual
path that the vehicle is following. If this is the case, it needs to correct its localization. The
extracted anomalies are used to estimate how certain the algorithm is of its localization
and if it needs to perform re-localization. We defined a set of anomalies {abn j} j=1...6. For
all elements of this set - except Abnrec -, a percentage Ppar of the particles is re-initialized
when abn j exceeds a threshold T h j for more than a percentage Pw of a time window Wh. In
the case of the reconstruction anomaly Abnrec, a different approach is employed. Before
re-initializing the particles, it is necessary to wait until the anomaly falls below the threshold
for a designated time window Wl . This waiting period is crucial: if it were not used, the
particles would restart exactly when they are less likely to be placed in the correct clusters
because the high reconstruction anomaly indicates that those images were not part of the
training data.
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8.3 Second Version of the Proposed Approach

This section explains the second version of the proposed method. Fig. 8.1b shows the training
procedure on a high level. The procedure of the SV can be easily compared with the one of
the first version, on the left, in Fig. 8.1a. A more detailed description of both training and
testing is offered in Fig. 8.5.

8.3.1 Training of the odometry and video models

The processing of odometry and video starts in the same way as in the FV: the odometry GSs
z̃o
t are extracted through an NFF, and the video latent states at are obtained for all images

after training a VAE. Differently from the FV, the clustering is then performed on the joint
odometry-video state jt = [z̃o

t ,at ]. It is worth noting, however, that z̃o
t and at have different

dimensionalities: z̃o
t can be either 4-dimensional or 6-dimensional, whereas at can have much

greater dimensionality (in the results section, we chose to make it range from 16-dimensional
to 128-dimensional, depending on the complexity of the dataset). If we want to give the same
importance to the odometry and video subcomponents of jt during clustering, we need to
weigh them differently.

In the GNG algorithm [78], a distance is calculated between each jt and the temporary
clusters proposed by the method. Proposed cluster centers are moved closer to the input data,
and the nearest cluster to each input data point is the one that gets moved with the greatest
step. The used distance is a weighted MSE and is applied after performing standardization on
the state. The weights of the different components are distributed so that the same importance
is given to the odometry and video parts. For example, if the odometry GS is 4-dimensional,
and the video latent state is 16-dimensional, each odometry component is given a weight of
γ = 1

4 , and each video component is given a weight of δ = 1
16 .

After executing the clustering, the same odometry vocabulary components are extracted,
as in the FV case (i.e., M(S̃,o), Q(S̃,o), Π, and Π(g)). Additionally, a first version of a subpart
of the video model is extracted too, i.e., M(S̃,a), and Q(S̃,a).

The distance dS̃
t of each jt point from each cluster is calculated. It is the summation of

two distances:
d(S̃)

t = γd(S̃,o)
t +δd(S̃,a)

t , (8.7)

where dS̃,o
t is a probabilistic distance (e.g., Bhattacharya DB) between each odometry GS z̃o

t

and each odometry cluster:

d(S̃,o)
t = DB((z̃o

t ,Σ
o
t ),(M

(S̃,o),Q(S̃,o))) (8.8)
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where Σo
t represents the covariance of z̃o

t .
In contrast, dS̃,a

t is the probabilistic distance between each video state ãt and each video
cluster:

d(S̃,a)
t = DB((at ,Σt),(M(S̃,a),Q(S̃,a))) (8.9)

where Σa
t is the covariance associated with at .

The training of the video model in the SV is performed in the same way as in the FV (see
Section 8.2.2).

8.3.2 Learned DBN

The learned DBN can be expressed by the same structure as the one in the FV (see Fig. 8.3).

8.3.3 Combined MJPFs for estimating odometry from video.

The CMJPF in the SV of the method remains unaltered compared to the FV (see Section
8.2.4).

8.4 Comparison between the two versions of the approach

The difference between the FV and SV of the approach is the information adopted as input to
the GNG clustering. The clusters of the FV are built using only odometry data, whereas the
clusters of the SV are obtained employing both odometry and video data. This difference
leads to some advantages and disadvantages in each version.

Firstly, the SV has a performance advantage compared to the FV. As can be easily noticed
in Fig. 8.4, the first actions performed at each time instant are the particle-independent
operations. These include two steps: encoding the image with the VAE and calculating the
probability of being in each cluster (αααv,t), based on the VAE bottleneck. Therefore, a first
estimate of the probability of being in each cluster is obtained based solely on the content of
the images. The clustering in the SV of the method is built using the image information too.
As a result, the first estimate of the cluster at time t will tend to be more precise in the SV
compared to the FV. Final localization results are shown to be better in the SV.

In contrast, the FV has the advantage of being more modular. The odometry vocabulary
is learned, without using the video data, and, then, the video block is learned. In contrast, in
the SV, the learning of the odometry vocabulary depends on the video data too. This has two
consequences. First, when performing continual learning, video anomalies would lead to the
need to relearn the odometry vocabulary as well. Second, the CG-KVAE learning phase can
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become more restricted too: instead of learning the VAE and matrices together from the start,
the VAE must be learned first. To ensure comparable results, we explore the approach of
initially training the VAE independently in both the FV and SV (which does not align with
the original training suggestions of the KVAE paper [71]).

Another minor advantage of the first version is that the transition matrix tends to be less
entropic, which potentially leads to the need of less particles to track all the hypotheses.

The comparison of the accuracy and transition matrix entropy in the two versions of the
approach is conducted in detail in the result section.

8.5 Clustering Optimization

One important aspect of the proposed approach is the clustering. The input given to the
clustering method (i.e., only the odometry or both the video and odometry) is not the only
relevant issue. Another major problem is when to stop the GNG clustering.

GNG is a type of clustering algorithm in which the number of clusters does not need to
be defined a priori. Clusters are added as the process progresses. A condition to stop the
clustering can be defined: for example, the algorithm can be stopped when the mean distance
between most input data points and their closest cluster center is below a certain value [99].

In this section, we propose to analyze the characteristics of the obtained clustering graphs
as the algorithm progresses and to decide at the end which graph to choose. L levels of
clustering are obtained (i.e., L graphs). In the SV of the approach, we desire clusters with
the following main characteristics:

• the velocity prediction inside the cluster should be precise. In this way, the odometry
prediction performed by the CDBN link P(z̃o

t+1|z̃o
t ) will tend to be more accurate;

• the image content in the cluster should be homogeneous. This choice allows for a
better first estimate of the cluster probabilities from the video latent state;

• fewer clusters are desirable, so to have a simpler model requiring less memory to be
stored. Therefore, clusters should extend on an area that is as big as possible while
guarantee an accurate velocity prediction and image content homogeneity.

In the FV of the approach, only the first and third characteristics in the list apply. These
same two considerations were made in the papers [103] and [106]. In these two works,
a method for optimizing odometry clustering was proposed. The L clustering levels are
analyzed. The average covariance over position and velocity in each level is calculated.
Based on these two values (or on derived quality metrics, in [106]), the clustering level that
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guarantees a tradeoff between accurate velocity and spatial extension is found. In [103], a
loss function is computed based on the position and velocity mean covariances, and it is
minimized. In [106], two quality metrics are extracted: one is inversely proportional to the
positional covariance, increasing when the number of clusters increases, while the other is
directly proportional to the velocity covariance, decreasing when the number of clusters
increases; a tradeoff is selected as the clustering level closer to the intersection of the two
lines.

In this thesis, we propose a similar method, extending it to the case in which also video
information is present.

Let us consider the optimization procedure on the SV. First, L clustering levels are
computed. In each clustering level, the covariance over the positional, velocity, and video
latent state information is calculated. We express these three covariances at clustering level l
with the following symbols: Q(S̃,p,l), Q(S̃,v,l), and Q(S̃,a,l). The eigenvalues of each of the three
covariances are calculated, i.e., eig(Q(S̃,p,l)), eig(Q(S̃,v,l)), and eig(Q(S̃,a,l)). This operation
is repeated for each cluster in the graph. In [106], quality metrics were calculated on the
position and velocity covariances by averaging the values in the covariance. In this chapter,
instead, we calculate the eigenvalues of the covariances, as they are more meaningful.

The mean value of the eigenvalues, over the covariance dimension, and over the different
clusters, is found for all three cases. We perform this calculation for each of the L graphs.
Therefore, at the end, three quality metrics are obtained for each of the L levels, one related
to the positional covariance (qp), one to the velocity covariance (qv), and one to the image
content covariance (qa). The definition of these three quality metrics, for the l-th graph, is
summarized by the following formulas:

qp
l =

∑
K
k=1 ∑

Dp

d=1 eig(d)(Q(k,p,l))

K ∗Dp (8.10)

qv
l =

∑
K
k=1 ∑

Dv

d=1 eig(d)(Q(k,v,l))

K ∗Dv (8.11)

qa
l =

∑
K
k=1 ∑

Da

d=1 eig(d)(Q(k,a,l))

K ∗Da (8.12)

In the first equation, eig(d) refers to the d-th eigenvalue, and Dp is the dimensionality of
the positional covariance (i.e., either 2 or 3). The same notation rules apply for the second
and third formulas but refered to the velocity and video latent state covariances.

From the three desired characteristics listed on the previous page, we can perform some
considerations. First, to obtain a precise velocity prediction inside clusters, qv

l should be low;
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to obtain homogenous video content information inside clusters, qa
l should also be low; to

obtain a sparse positional extension inside clusters, qp
l should be high.

We suppose that the L clustering levels are such that, at the l-th level, the qp, qa, and qv

have reached the regime and they do not significantly decrease any further. We normalize
qp, qa, and qv and set a threshold from the regime for each of them. For example, the same
threshold T hr can be set for all three cases. The clustering level at which each of the three
quality metrics goes below the threshold is found. The number of clusters corresponding to
these three levels is averaged. We select as the optimum level the closest one to this average,
among the L available levels.

A remaining problem is choosing the threshold T hr. However, the method that we
propose aims to obtain an approximate clustering level, one that does not lead to under-
clustering or excessive over-clustering. A range of threshold values should, therefore, lead to
acceptable results. We analyze these values in the results section.

To further explain, let us suppose to fix the threshold to 0.25. This means that the distance
between the regime and the threshold is 25% of the distance between the highest value of the
quality metric (typically the value for the first clustering level). Therefore, the threshold is
set so to favor a high velocity and video latent state covariance, as desired.

8.6 Experimental Results

8.6.1 Employed evaluation datasets

We evaluate our method on the following datasets: iCab ES1 compared with PM1 (see Section
4.2.1), Egocart (see Section 4.2.3), FM and LAM drone scenarios (see Section 4.1.4), and
CarlaABN (see Section 4.3). In the iCab, Egocart, and CarlaABN datasets, a terrestrial
vehicle moves on a 2D space. In contrast, in the FM and LAM scenarios, a drone flies in a
3D space.

In the iCab dataset, we employ the PM1 perimeter monitoring scenario for training and
the ES1 emergency stop scenario for testing. These two scenarios take place in the same
courtyard, during the same season but at different times of day, which leads to a zone being in
the shadows during training, but not during testing. A difficulty of the dataset for performing
the localization is the symmetry of the courtyard on the four sides (see the first four images
in Fig. 8.6). The training data are divided into 4,500 for actual training and 1,598 for
validation.

In the Egocart dataset, a shopping cart moves in an empty retail store. We divide the
13,360 training images into 10,259 for training and 3,101 for validation. Also in this dataset,
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Fig. 8.6 Example of images in the iCab dataset. Observe the similarity between the first four
images. The vehicle in those four cases is located on the four opposite sides of the courtyard.
© 2022 IEEE.

positions far away from each other can display high visual similarity, due to the aisles of the
supermarket having similar structure; however, the symmetry is not as high as in the iCab
dataset. In contrast, the Egocart dataset has other difficulties compared to the iCab, FM, and
LAM datasets. Firstly, its visual complexity is higher. Secondly, whereas the agent in the
iCab, FM, and LAM datasets moves along a single path, the cart in the Egocart dataset turns
at many intersections between the aisles and takes many alternative routes in the store.

We provide the reader with some summary information regarding the CarlaABN, FM,
and LAM datasets as well. Further information can be retrieved in the respective dataset
sections.

CarlaABN is a simulated dataset obtained with the Carla simulator. In the normal
scenario, a vehicle moves around an empty city. Three abnormal scenarios are captured: a
sudden deceleration (SD), an Out-Of-Street motion (OOS), and an Abnormal Turn at an
Intersection (ATI).

The FM and LAM scenarios belong to a drone indoor dataset extracted in the context
of this thesis. In the FM scenario, the drone performs a frontal motion. In the abnormal
case, pedestrians move either on the side of the drone or in front of it. When pedestrians
appear in front of the drone, the drone stops to let them pass and then continues its motion,
similarly to the iCab ES1 scenario. In the LAM scenario, the drone performs a lateral motion.
In the abnormal case, some static abnormalities appear in the scene, constituted by squared
boards of black or grey color. The FM scenario does not present significant problems of
visual repetitions. Conversely, in the LAM case, certain instances of visual repetition occur
between frames captured at considerable distances from each other.

In this chapter, compared to the previous ones, we add the simultaneous localization and
use anomalies to improve it. As this is the main innovation, results are mainly related to
these two capabilities and focus less on mere anomaly detection. All real-world datasets
(iCab, Egocart, FM, and LAM) are adopted to test the localization capability of the method.
The CarlaABN, instead, is employed to analyze the explainability of the anomalies. Notably,
the Carla simulator allowed us to extract precise scenarios displaying anomalies that are
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simple, known, and spatially/temporally contained, all characteristics that facilitate the study
of explainability.

The localization results of the proposed method over the Egocart dataset and the memory
requirement of the trained model are compared with the methods evaluated in [207]. Some
of the methods in [207] are tested for comparisons on the Icab and drone datasets too.

An analysis of how the method’s results change depending on the tracking parameters is
provided.

Furthermore, we attempt to answer some important questions, such as: “how does
the difference between the FV and SV affect the training and testing?”, “how does the
precision of the clusters change in a 2D vs. a 3D dataset?”, “how do visual repetitions in the
dataset influence the performance of the method?”. While answering these questions, several
characteristics of the datasets are explored, such as visual complexity, covered area, variety
of motion types and viewpoints, and visual repetitions.

8.6.2 Implementation details

In this section, the implementation details of the method are provided: firstly, the optimization
steps in the training procedure are described, then the details of the NN models for the three
datasets are reported.

Training optimization

The training proceeds in different separately optimizable steps. For the clustering optimiza-
tion, see Section 8.5. To stop the VAE training, a traditional division of the data between
training and validation is used.

We additionally have to optimize the set of parameters [Nth,l , Nth,h, mv, Pw, Wh, Wl] and
the anomaly thresholds of the CMJPF. We proceed in two phases.

First, we test on the validation data - without particles restarting - using a grid search
over Nth,l , Nth,h, and mv; we select the combination providing the best results. If we decide
not to use the restarting of particles based on the anomaly levels, we can stop at this point.
Otherwise, we use the combination providing the best results to perform testing on the
training data.

Then, we calculate the mean and standard deviation of the anomalies over the training
data and define a set of thresholds of the following type:

T (i, j) = abn( j)
m +β

(i)abn( j)
std, (8.13)
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Table I Details about the models trained for each dataset.

Icab Egocart Carla Drone (FM) Drone (LAM)
[xt ] 64x64 192x108 108x72 152x84 152x84

kernels (3,3) (3,3) (3,3) (3,3) (3,3)
channels 32,64,128 16,32,64,64,128 16,32,32,64,64 16,32,32,64,64 16,32,32,64,64

[at ] 32 128 16 16 16
[zt ] 8 20 8 8 8
K 45 249 87 79 75

where T (i, j) is a threshold i for anomaly j; abn( j)
m and abn( j)

std are the mean and standard
deviation of anomaly j, and β (i) is a scalar associated to threshold i. Consequently, we test
on the validation data - this time adopting particles restarting - and perform a grid search
over Pw, Wh, Wl , and β (i). The combination providing the best result is used at testing. The
grid search can be performed in two ways: either by allowing a different β for the different
anomalies or by forcing all anomalies to use the same β . In the first case, compared to
the second one, the search time must be multiplied by the number of anomaly types. In
the following sections, when performing the grid search for the anomaly thresholds, we
always employ the same β for all anomalies, to spare computational time. The other solution,
however, could potentially lead to better results.

In the following sections, we perform both tracking parameters optimization and anomaly
thresholds optimization for the Egocart and CarlaABN datasets. Instead, for the other
datasets, unless explicitly specified, we execute only the parameters optimization. No
particles restarting is performed. The reason behind this choice is that, in the Egocart and
CarlaABN datasets, the vehicle turns at several intersections and follows different paths. In
contrast, in the other datasets, the vehicle follows the same path, even if it travels at diverse
speeds, and stops at different points. Therefore, in the former case, it is more likely that the
localization might deviate on the wrong path, and the method needs to correct it.

In Section 8.6.7, an analysis of the impact of the choice of parameters is provided.

Models details

Table I shows the details of the models used for the three datasets. For the Icab case, images
are reduced to a resolution of 64x64. We use a VAE with 3 convolutional layers with kernel
size equal to 3 and channel dimensions (32,64,128), and one Fully Connected (FC) layer.
Dimension of at is 32, and of zt is 8. The number of clusters K is 45. Batch size is 16 with a
step decay rate of 0.99 and decay steps equal to 20. Gradient cropping is used. Weight decay
is set to 0.001. Training is performed for 35 epochs on the VAE alone, 300 on the matrices
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Table II Comparison between the FV and SV of the proposed method. The table shows the
localization error in meters.

FV SV

Dataset
Mean

Err. (m)
Median
Err. (m)

Mean
Err. (m)

Median
Err. (m)

Egocart (x̂o
t,n) 2.34 0.86 1.83 1.07

Egocart (xo
t/t,n, final) 2.08 0.76 1.65 0.96

iCab (x̂o
t,n) 1.15 0.79 1.17 0.84

iCab (xo
t/t,n, final) 1.06 0.78 0.98 0.75

Drone FM (x̂o
t,n) 0.21 0.13 0.23 0.14

Drone FM (xo
t/t,n, final) 0.21 0.13 0.23 0.14

Drone LAM (x̂o
t,n) 1.45 0.57 0.88 0.39

Drone LAM (xo
t/t,n, final) 1.45 0.56 0.87 0.38

alone, and 700 on all parameters. For the Egocart and Carla cases, see Table I again. All
absent parameters are the same that are used in the Icab case.

The model was trained in Python, using the PyTorch library.

8.6.3 Localization results

First, we study the localization results: we evaluate the FV and SV of the method, we
compare our approach with other methods from the state of the art, and we consider one
dataset to analyze the clustering optimization and how the number of clusters affects the
localization performance.

Comparison between the FV and SV of the proposed approach

Table II compares the localization results of the FV and SV of the approach on the iCab,
Egocart, FM, and LAM datasets. The mean and median localization errors in meters are
shown. Results refer to particles surviving resampling until the end of the trajectory.

The first row related to each dataset reports the localization error from the x̂o
t,n estimations

(i.e., directly from the video DBN prediction) and from the xo
t/t,n estimations (i.e., after

performing the odometry ’update’ phase). Therefore, the second row involves the use of the
link P(z̃o

t+1|z̃o
t ) as well, whereas the first row doesn’t. The second row is the final result of

the method (and, as can be observed, displays better performance in all four cases).
The two columns on the left of the table refer to the FV, and the two columns on the right

refer to the SV. The SV tends to display better results, especially from the point of view of
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the mean error. A significant improvement can be observed on the Egocart (43 cm on the
mean error, whereas the median error increases by 20 cm) and drone LAM cases (58 cm on
the mean error and 18 cm on the median error). A minor improvement is present for the iCab
dataset (14 cm on the mean error, whereas the median error increases by 6 cm). In the FM
case, instead, the SV provides better results, but the difference is minimal (2 cm for the mean
error and 1 cm for the median error).

Comparisons between the proposed approach and other methods

In this section, we compare the proposed method against state-of-the-art ones. Tables III, IV,
V, and VI show the localization errors obtained on the Egocart, Icab, FM, and LAM datasets,
respectively. We perform these comparisons to evaluate if the method can reach a localization
accuracy around the state of the art. However, we must also note that the proposed method
does not solely perform localization. Instead, it is inserted in a wider theoretical framework
for self-aware autonomous systems, which includes anomaly detection and explainability.
Conversely, the methods used for comparison were developed only for localization.

The last two rows of each table (marked in blue) report the localization error of our
method, for the FV and SV, respectively. In the next paragraphs, when referencing our
method, unless expressly stated otherwise, we refer to the SV.

Table III shows the results obtained in [207] on the Egocart dataset through several
methods, alongside three methods that we added. The first section of the table refers to
Image Retrieval (IR) methods, and the second one to Regression (REG) methods. We omit
the classification-based method reported in [207] as we assume to be working on scenarios
where the environment zones are not labeled. In contrast, we have added three methods:
IR-VAE, IR-TC-VAE, and REG-ENC. In IR-VAE, first, a VAE is trained to reconstruct the
training images. A database of the latent states obtained with the VAE for the training data
is built. During testing, each image xt is given as input to the VAE, extracting the latent
state at . The closest latent state in the training database is found; xt is finally assigned the
position of this latent state. This method is, therefore, similar to methods such as IR-VGG16,
and IR-IV3. The difference is that the latent state is extracted from a VAE built solely
on the training dataset, instead of using a model pre-trained on ImageNet, a classification
dataset with more than 1.28 million images. The VAE is exactly the same that is employed
in our approach. The IR-TC-VAE case adds a temporal constraint, such that retrieval can
be performed only on images of the training set that do not have a position further away
of 4 meters from the position estimated for the previous testing time instant. This case is
similar to IR-TC-VGG16, but, again, with the VAE instead of the pre-trained model. Finally,
REG-ENC is a regression method that trains a CNN to directly predict the position from the
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Table III Localization error on Egocart (in meters). The final result of the proposed method
(either with FV or SV) is highlighted in blue.

Method
Mean

Err. (m)
Median
Err. (m)

IR-FISHER 1.63 0.31
IR-VGG16 0.72 0.28

IR-IV3 0.73 0.28
IR-TR-VGG16 0.55 0.28

IR-TR-IV3 0.69 0.32
IR-PNET-VGG16 2.17 1.38

IR-PNET-IV3 0.70 0.39
IR-TC-VGG16 0.52 0.28

IR-TR-TC-VGG16 0.44 0.29
IR-VAE 1.60 0.32

IR-TC-VAE 3.61 0.39
REG-PNET-RGB-VGG16 1.62 1.23

REG-PNET-RGB-IV3 0.57 0.39
REG-PNET-TR-RGB-IV3 0.56 0.42

REG-PNET-TR-TS-RGB-IV3 0.55 0.36
REG-PNET-RGB-POS-IV3 0.42 0.29

REG-SVR-PNET-RGB-VGG16 1.96 1.54
REG-SVR-TR-RGB-VGG16 1.46 0.90

REG-ENC 8.59 7.66
Proposed (DB) - xo

t/t,n (FV) 2.08 0.76
Proposed (DB) - xo

t/t,n (SV) 1.65 0.96

image. The used CNN has a structure similar to the VAE encoder, with the difference that a
ReLU activation, a dropout layer (p = 0.5), and an FC layer are added after the bottleneck
feature at (the variance is, instead, not learned). The FC layer gives the position as output.
For this reason, we denominate this method REG-ENC, as the used CNN is the same as
the encoder of the VAE, with the addition of three layers. Furthermore, the same training
choices (e.g., learning rate, optimizer) are employed as for the VAE. This method is similar
to REG-PNET-RGB-POS-IV3. The reason for adding these three methods is to have a fairer
comparison. All the methods employed in [207] start from models pre-trained on ImageNet,
whereas our method does not. Potentially, also our approach could start from a pre-trained
model. However, this is not completely coherent with our framework: pre-trained models are
trained through classification, which is supervised. Instead, in our framework, we desire to
learn concepts in an unsupervised and continual way, leveraging anomalies.
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Table IV Localization error on iCab (in meters). Results not in parenthesis refer to building
the database using all 6,558 frames; results in parenthesis refer to using only the 4,500
training ones. The final result of the proposed method is highlighted in blue.

Method
Mean

Err. (m)
Median
Err. (m)

IR-IV3 1.28 (1.48) 0.61 (0.65)
IR-TC-IV3 0.72 (0.77) 0.60 (0.64)

IR-VAE 23.00 (23.00) 23.00 (23.00)
IR-TC-VAE 23.00 (23.00) 23.00 (23.00)

REG-PNET-RGB-POS-IV3 1.52 1.15
REG-ENC 23.88 22.78

Proposed - xo
t/t,n (FV) 1.06 0.78

Proposed - xo
t/t,n (SV) 0.98 0.75

Table V Localization error on Drone FM (in meters). Results not in parenthesis refer to
building the database using all 20,771 frames; results in parenthesis refer to using only the
18,253 training ones. The final result of the proposed method is highlighted in blue.

Method
Mean

Err. (m)
Median
Err. (m)

IR-IV3 0.18 (0.18) 0.16 (0.16)
IR-TC-IV3 0.18 (0.18) 0.16 (0.16)

IR-VAE 0.20 (0.20) 0.16 (0.16)
IR-TC-VAE 0.20 (0.19) 0.16 (0.16)

REG-PNET-RGB-POS-IV3 0.24 0.20
REG-ENC 0.89 0.76

Proposed - xo
t/t,n (FV) 0.21 0.13

Proposed - xo
t/t,n (SV) 0.23 0.14

For comparison on the Icab, FM, and LAM datasets, we selected three of the methods
in [207] to have one IR method (IR-IV3), one IR method that considers the sequencing of
images (IR-TC-IV3), and one REG method (REG-PNET-RGB-POS-IV3). IR-IV3 executes
IR based on features from Inception-v3 [212] pre-trained on ImageNet; IR-TC-IV3 adds
the aforementioned temporal constraint. The temporal constraint is fixed to 4 meters for the
iCab dataset, and to 0.5 meters for the FM and LAM datasets, which cover a smaller area.
REG-PNET-RGB-POS-IV3 performs regression using a PoseNet [119] trained starting from
an Inception-v3 backbone pre-trained on ImageNet. An FC layer of 2048 units is added to
the backbone, followed by a ReLU activation, a dropout layer (p = 0.5), and another FC
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Table VI Localization error on Drone LAM (in meters). Results not in parenthesis refer to
building the database using all 19,104 frames; results in parenthesis refer to using only the
17,368 training ones. The final result of the proposed method is highlighted in blue.

Method
Mean

Err. (m)
Median
Err. (m)

IR-IV3 0.32 (0.32) 0.20 (0.20)
IR-TC-IV3 0.33 (0.34) 0.20 (0.20)

IR-VAE 0.47 (0.49) 0.25 (0.28)
IR-TC-VAE 0.86 (0.89) 0.33 (0.38)

REG-PNET-RGB-POS-IV3 0.74 0.71
REG-ENC 1.83 1.14

Proposed - xo
t/t,n (FV) 1.45 0.57

Proposed - xo
t/t,n (SV) 0.87 0.38

layer giving the position as output. The training was conducted with the Adam optimizer for
50 epochs, with batch size 16, and a learning rate of 10−5. The number of epochs, instead of
being fixed, is chosen based on when the loss on the validation data starts increasing. Note
that, instead, in [207] no division between training and validation was used.

Table III shows that, on the Egocart dataset, the proposed method performs better than
IR-PNET-VGG16, REG-SVR-PNET-RGB-VGG16 for the mean and median error, and better
than REG-PNET-RGB-VGG16 for the median error. However, it achieves worse results
than the other compared methods that use pre-trained models, as it does not leverage the
pre-training on ImageNet. On the other hand, the model performs significantly better than
REG-ENC, better than IR-TC-VAE, and worse than IR-VAE.

In the iCab case (Table IV), due to the symmetry of the environment, better results are
obtained with those methods that also enforce temporal constraints/reasoning (in particular,
IR-TC-IV3 and the proposed method). The proposed method performs much better than the
three methods (IR-VAE, IR-TC-VAE, and REC-ENC) that do not employ a pre-trained model
and use the same VAE (or encoder). The reason behind the failure of these models resides in
the high visual symmetry of the dataset: the VAE features corresponding to opposite sides of
the courtyard are very similar. However, through the Particle Filter, it is possible to consider
diverse hypotheses in parallel for several time instants, and then select which ones to keep.

In the FM scenario (Table V), similar results are obtained with the different considered
methods. The only exception is the REG-ENC approach, which localizes worse than all the
other ones. Our method is coherent with the other ones, performing slightly worse on the
mean error and slightly better on the median error.
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Finally, Table VI displays the results in the LAM scenario. In this case, our approach
performs worse than the methods with pre-trained models and IR-VAE, better than REG-ENC,
and very similarly to IR-TC-VAE.

Therefore, we can observe that the proposed method achieves results that are sometimes
worse, sometimes better, and sometimes equivalent to other state-of-the-art methods. Out
of the six methods presented in all tables, the IR-TC pre-trained methods (i.e., IR-TC-IV3
and IR-TC-VGG16) always outperform the proposed approach, except for the FM scenario,
where the results are similar. The REG-ENC consistently performs worse than our approach.
It is, however, worth noting that IR-TC-IV3 and IR-TC-VGG16 employ pre-trained models,
whereas REG-ENC, like our approach, does not.

In summary, the proposed method performs on a similar range with other state-of-the-art
VBL methods. It provides, however, further features compared to them:

• a structure coherent with a self-awareness framework;

• the definition of coupled odometry and visual generative maps allowing the extraction
of anomalies for explainability and potential continual learning.

Localization was also attempted using ORB-SLAM3 [30] on the iCab and Egocart
datasets. We remind that a single image is used, no depth data, and no Inertial Measurement
Unit. On both datasets, however, the localization lost track in correspondence with curves or
sudden motions. It is relevant to note that the frame rate of the Egocart dataset is quite low (3
f ps). We also remind that, compared to our method, SLAM supposes that the environment
is not known.

Comparisons with different clustering levels

In this section, we analyze the localization results obtained with different clustering levels.
Table VII shows the mean and median localization error obtained with 8, 27, 45, 116, and
150 clusters. These cases correspond to a threshold T hr (see Section 8.5) of around 0.75,
0.45, 0.35, 0.10, and 0.075, respectively. The threshold range 0.10-0.35 is a good trade-off
between accurate velocity prediction, visual content homogeneity, and high spatial extension,
favoring the first two elements. We can observe that, in this range, the localization error
maintains similar values.

Using a much higher threshold leads to under-clustering and to a severe degradation of
performance, as can be observed in the case with a 0.75 threshold. This is a bad choice from
the localization performance point of view, as it corresponds to giving much more priority
to having few big clusters than to having accurate velocity predictions and visual content
homogeneity inside each cluster.
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Table VII Localization error on iCab (in meters), with the SV, varying the number of clusters.
The last column defines the threshold T hr corresponding to the clustering level.

Number of clusters
Mean

Err. (m)
Median
Err. (m)

T hr

8 4.98 2.09 ∼ 0.75
27 1.13 0.83 ∼ 0.45
45 0.98 0.75 ∼ 0.35

116 1.10 0.74 ∼ 0.10
150 1.05 0.68 ∼ 0.075

Using a lower threshold, performance remains stable, with the disadvantage of an increase
in memory requirements and computational complexity, caused by the need to store a larger
vocabulary and to perform comparisons against a greater amount of clusters during tracking.

It is also worth noting that the number of clusters that allow to obtain good performance
change depending on the used method and on the objective. In Chapter 5 and 7, we observed
that 6 and 8 clusters, respectively, were sufficient to obtain good anomaly detection results.
However, for localization with the proposed piece-wise linear method, 8 clusters are not
enough to reach a satisfactory performance. Moreover, it is also worth noting that in Chapter
5, where 6 clusters were enough, neural networks were employed instead of linear models.

8.6.4 Quantitative and qualitative anomaly analysis

In this section, the anomalies are analyzed from a quantitative and qualitative point of view,
on the Egocart, iCab, and CarlaABN datasets. We focus especially on the explainability of
the anomalies. The results in this section are all extracted with the FV of the method.

Egocart

Fig. 8.7a presents the final errors associated with the first Egocart testing trajectory under
two cases: without activation of the restart mechanism for a subset of particles, and with
activation (Ppar = 25%). The restarts improve the results from a mean error of 4.40 m to
one of 1.63 m. Green dotted bars show the times in which restarts are performed. Fig 8.7b
displays some of the detected anomalies, explaining what caused the restarting choice. We
display some examples reconnecting to Fig. 8.8. At the point labeled as “1” in the figures, the
restart is due to a cluster-level anomaly (i.e., different sequencing compared to training). For
point “2te”, the restart is prompted by a high reconstruction error. In Fig. 8.8, the pixel-wise
image reconstruction error for point “2te” can be observed and compared with the same
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1) 3)2te)

1) 3)2te)

(a)

(b)

Fig. 8.7 (a): errors for the first Egocart trajectory, when particles re-initialization isn’t adopted
(red) and when it is (blue). (b): examples of anomalies. Restart points 1), 2te) and 3) are the
ones displayed in Fig. 8.8 too. The S̃t abnormality corresponds to the KLDA. © 2022 IEEE.
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Fig. 8.8 Egocart positions for training (red) and testing (blue) data. One training point (“2ta”)
and four testing points (“1”, “2”, “2te”, and “4”) are highlighted, and the corresponding
camera frames are shown on the right. The direct image reconstruction error of points “2te”
and “4” is displayed through a heatmap. The red color signifies a high error, whereas the
blue color represents a low error. © 2022 IEEE.
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Fig. 8.9 Anomaly events and particles restarts in the Icab case. The colored zones display the
anomaly regions and their type. The black dots show the time instants at which particles of
the PF were restarted. © 2022 IEEE.

type of error in a normal testing point (“4”). Indeed, we can note how the test point “2te”
is outside of the traversed zone in training, with point “2ta” being the closest one from the
train set. At point “3”, the odometry points display significant entropy in the probability of
belonging to the distribution of the clusters: see in Fig. 8.8 that this is a dense zone. Due to
this uncertainty, some particles are reinitialized.

Icab

A ground truth was defined for the Icab dataset. We analyze how accurate the anomalies are
and, consequently, how often particle restarts are fired for a good reason. In this example,
therefore, we restart particles also in the iCab case. The restarting of particles corresponds to
the detection of an abnormal event. Fig. 8.9 displays the color-coded anomalies across time:
the visible pedestrian forcing the car to stop (red), the car restarting after the emergency
stop (green), and an oscillating motion after a curve (cyan). Abnormal regions account for
21.69% of the trajectory. The black dots indicate instances when abnormal events surpassed
the thresholds, resulting in particle restarts. Out of the 17 restarts, 11 corresponded to
zones in the anomaly GT (precision = 0.647). The remaining restarts were mainly due
to oscillating motions of a smaller amplitude than the one plotted in cyan. Out of the 11
abnormal events displayed in Fig. 8.9, 10 correspond to at least one anomaly over the
threshold (recall = 0.909). The only false negative is the third “pedestrian visible” anomaly.

CarlaABN

We use qualitative results on the Carla dataset to display how each anomaly indicator can
capture distinct types of abnormal situations.

Fig. 8.10 shows some of the anomalies presented in Section 8.2.4 on three abnormal
scenarios manually extracted with the simulator. Fig. 8.11 displays the trajectories and some
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(a)

(b)

(c)

Fig. 8.10 Anomalies extracted on the three CarlaABN testing trajectories. The grey areas
are the abnormal zones: (a) sudden deceleration (SD); (b) Out-Of-Street Motion (OOD); (c)
Abnormal Turn at Intersection (ATI). One frame for each scenario is shown in Fig. 8.11.

a)b)
c)Training always 

turns left

1

test

2te

2

a

b

c

Fig. 8.11 CarlaABN positions for training (red) and testing (blue) data. On the left, one
camera frame is displayed for each abnormal scenario.
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Table VIII Memory requirements for each dataset.

Icab Egocart Carla Drone (FM) Drone (LAM)
Memory (MB) 3.24(3.13) 20.7(6.5) 0.85(0.79) 1(0.94) 1(0.97)

image examples for the three anomalies. The (a), (b), and (c) letters refer to the same testing
trajectories in the two figures. The simulator enables us to obtain abnormal data in which a
single or a limited number of causes are isolated. In Fig. 8.10a, the vehicle abruptly stops
and immediately restarts (see the area in gray). Note the increase in the prediction difference
indicator (corresponding to di f fẑo), which shows that the odometry and video models are
performing two different predictions. The odometry relies more on its prediction, which
supposes that the car continues to move forward at high speed. In Fig. 8.10b, the vehicle
moves into the wrong lane and obtains a lateral view of a forest that was not observed during
training. As expected, the at state anomaly (i.e., di f fa) and the zt state anomaly (i.e., di f fz)
exceed the threshold due to the newly observed images. However, the prediction difference
indicator (i.e., di f fẑo) is high, too, due to the abnormal motion. Finally, in Fig. 8.10c, the
vehicle proceeds straight at an intersection, where, in training, it always turned left (see Fig.
8.11). The algorithm fails to detect the anomaly. However, it is worth noting that the gray
area exhibits higher values of the KLDA compared to the rest. The failure can be attributed
to setting all thresholds with the same β value, whereas a lower threshold for KLDA may
have been more beneficial.

8.6.5 Algorithm memory requirements and speed

We analyze the algorithm’s memory requirements and computational time, considering the
Icab and Egocart models. The algorithm is implemented in Python using the Pytorch library.
The experiments were performed using an Intel® CoreTM i7K 8700K Processor and a dual
NVIDIA® GeForce® GTX 1080 Ti with 11 GB RAM GDDR5X each.

Table VIII shows the required memory to store the overall model. In the Icab case, 3.24
MB are necessary, of which 3.10 MB are for the VAE parameters and for the matrices A, B,
C, D, and E.

The distance d(S̃)
v,t (see Subsection 8.2.4) can be calculated in different ways. In the text,

we proposed to use the Bhattacharya distance DB between M(S̃,a) and Q(S̃,a). If, instead, the
MSE between M(S̃,a) and at is employed, it is not necessary to store the matrix Q(S̃,a). The
total memory requirement is reduced to 3.13 MB. The minor gain is due to having only 22
clusters and to the small dimension of the latent state zt .
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Table IX The last column on the right displays the algorithm’s computational cost with
varying settings. The changed settings are displayed from the second to the fourth column
and are: the number of particles (N), the method to calculate the distance d(S̃)

v,t between video
states and video clusters, the adoption of the restart mechanism (“Restarts”).

Dataset NNN ddd(S̃)
v,t Restarts time/img (ms)

Icab

5 DB Yes 25
25 DB Yes 65
50 DB Yes 115
50 MSE Yes 109
50 MSE No 108
50 DB No 114

Egocart

150 DB Yes 640
125 DB Yes 550
125 MSE Yes 504
125 MSE No 503
125 DB No 549

In the Egocart case, the memory required for storing the overall model is 20.7 MB, and
can be reduced to 6.5 MB, resulting in a substantial gain, as 249 clusters are used. The
localization results are similar in the two cases: a mean error of 2.08 and median error of 0.76
with Db, a mean error of 1.98, and median error of 0.97 for the MSE case. The comparison
is performed with the FV of the approach. The model is smaller than the ones based on
Inception V3 [212] (93 MB, 129 MB, 258 MB) and VGG-16 [202] (512 MB) used in [207].
No additional training data information needs to be stored.

Table IX shows the computational cost of the algorithm, for both the Icab and Egocart
model, varying the number of particles, using either DB or MSE for calculating d(S̃)

v,t , and
adopting particles restarts or not adopting it. First, we observe that using MSE instead of DB

reduces the computational cost of 6 ms in the Icab case with 50 particles (N) and of 46 ms in
the Egocart case with 125 particles. The computational cost of particle resampling, instead,
is negligible: approximately 1ms in both cases. In the Icab case, there is a fixed cost of 15ms,
plus 2ms for each added particle; in the Egocart case, these two costs are 100ms and 3.6ms,
respectively.

8.6.6 Attention analysis

We analyze the image information on which the network concentrates during the processes of
localization and prediction. In this way, we investigate the meaning of the zt state. There are
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Fig. 8.12 Attention analysis over the Icab dataset: on which image features does the network
concentrate its attention when performing localization, prediction, and update?

two ways to visualize where NNs are concentrating their attention: A) methods that change
the model input to find what areas, when perturbed, generate the most significant changes in
the output [240, 68] ; B) methods that visualize how the network internally responds to an
input [199, 10]. Most of these methods are thought for image classification.

As in our model the convolutional layers are followed by FC ones and by a set of matrices,
we do not have a 2D feature space as in most cases of the second type. Consequently, we
chose a simple method of the first type. We loop over the training data points; for each data
point xt , filtering is performed over [xt−η ,xt−1], with η being a chosen time window. Then,
the update at t is performed in two ways: i) using the actual observation xt ; ii) sliding a set of
occlusion windows over xt . For each occlusion window, we calculate the difference in the
update zt|t and in the localization prediction obtained with i) and ii). The predictions zt+1|t
calculated through the A matrices are compared too. The obtained differences are used to
build three attention images for each data point.

Fig. 8.12 shows the obtained explanation maps on parts of the Icab dataset. A color
closer to red means that a higher difference was obtained between the two cases, i.e., i)
and ii). The rows are related to localization, prediction, and update. For localization, the
network seems to keep information regarding some elements such as corners on the floor
pattern, horizontal lines of the colonnade, and trees (circled in white on the first row of Fig.
8.12). For the prediction, the model seemed to concentrate on the colonnade. This could be
explained by the fact that this element of the image is more easily encoded in a linear way
(the colonnade gets bigger as the car approaches) compared to more complicated patterns,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8.13 Localization error on validation dataset choosing different values of the parameters,
for Icab (a-e) and Egocart (f-j) cases. (a,f): Nth,h, (b,g) and (c,h): Nth,l , (d,i): mv. (e,j) refer to
different starting points of tracking.

such as the horizontal lines of the floor. A combination of the localization and update spots
is highlighted for the update.

8.6.7 Parameters choice analysis

In this section, we analyze how the parameters for the CMJPF influence the results of the
validation set.

Fig. 8.13 displays the localization results obtained on the validation set of the iCab
and Egocart datasets, with different parameters. Subfigures (a) to (d) and (f) to (i) consider
variations of Nth,l , Nth,h, and mv. The varied parameter is defined on the x-axis of the plots.
The mean final distance with each parameter is displayed as the high of the colored columns
and the standard deviation as an error bar. The error bar was thresholded to zero on the lower
part when necessary. Each color represents a different method of calculating the localization
error. Blue and red correspond to the localization from the weighted average of the particles
using x̂o

t,n and xo
t|t,n, respectively; cyan and magenta, instead, refer to the use of particles

surviving resampling, as in Table III and IV. The first row is for Icab, and the second is for
Egocart.
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Notice how, in the Icab case, where no intersections are present, using the particles with
their weights gives the best result. Conversely, in a case with many intersections, such as in
the Egocart dataset, considering the estimation of the particles remaining after full resampling
provides better results. At an intersection, two paths could have equally high weights initially,
but the less likely one will be cut at the end.

Fig. 8.13b shows that better results are obtained with a lower Nth,l on the Icab dataset,
which reflects how the environment is structured: in a highly symmetrical courtyard, waiting
longer before the first particles resampling allows us to pick the right side with a higher
probability. Fig. 8.13c shows this same case displaying all the points with their respective
error. Notice how cases with errors of almost 30 meters are found on the very top of the
figure: the vehicle is predicted to be on the opposite side of the courtyard. It happens 2 times
for Nth,l = 1.01 and 5 times for Nth,l = 1.05. In contrast, on the Egocart dataset, a higher
Nth,l provides better results, as can be observed in Fig. 8.13g. This is attributable to two
characteristics of the Egocart dataset: it has a low frame rate and it has many turns that lead
to the environment changing quickly. Consequently, resampling after a longer time also at
the beginning can be detrimental because wrong path estimations need to be cut promptly. In
addition, the Egocart dataset does not have the strong symmetry of the Icab dataset, which
made a lower Nth,l useful.

A lower temperature parameter mv (Fig. 8.13d and 8.13i) has a similar impact to that
of the resampling thresholds Nth,l and Nth,h, as it distributes the particles on the possible
hypothesis, which is beneficial in a case with many intersections as in the Egocart dataset.
Fig. 8.13e and 8.13j are not related to a trainable parameter but to the different instants that
were used as starting points. When evaluating the best choice of parameters, tracking is
started from several starting points across the trajectories. This provides a better choice of
the parameter Nth,l if the training and validation trajectories always start from the same area
but the testing trajectories might not.

This first testing over several parameters was conducted on a grid of 120 combinations
for Icab and 540 for Egocart. Similar testing is conducted to choose the parameters related to
the anomaly thresholds on a grid of 90 and 810 combinations.

8.6.8 How does the difference between the FV and SV affect the training
and testing?

In this section and in the following ones, we tackle some important questions related to the
proposed approach. The first question relates to the choice between the FV and the SV. In
Section 8.4, we have already seen the advantages and disadvantages of the two versions:
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the FV is more modular but provides less accurate localization, whereas the SV gives better
localization results but fragments the training of the model. Section 8.6.3 demonstrated the
accuracy difference between the two methods by testing on four datasets. In this section, we
analyze in greater detail the difference between the two versions. We can subdivide the main
question into four sub-questions.

How do the clustering quality metrics change in the two cases?

We have seen in Section 8.5 that the optimal clustering level can be selected using three
quality metrics qp, qv, and qa. Let us now examine how these quality metrics change when
changing the number of clusters, taking the iCab and LAM scenarios as examples.

Fig. 8.14 is related to the iCab dataset: in (a) and (b), the evolution of the quality
metrics depending on the number of clusters is displayed for the FV and SV, respectively.
As the FV employs qp and qv for optimization, we only show them in Subfigure (a). In
contrast, Subfigure (b), which is related to the SV, illustrates all three metrics. We also
show the standard deviation of the metric across the different clusters of the clustering level.
To facilitate comparison, Subfigure (c) joins the plots of the FV and SV (showing the qv

evolution over the FV too). The plots are normalized on the same scale. This normalization
can be operated as the same odometry GSs and VAE latent states are used in the two versions,
since the odometry information is the same, and the same VAE was employed. Observe
how, in the SV, both the velocity and image covariance quality metrics tend to descend
faster, meaning that fewer clusters are necessary to obtain similar levels of velocity accuracy
and image content homogeneity. However, also note that, after a certain clustering level
(∼ 50 clusters), the velocity covariance metric of the SV always remains higher than the
same metric for the FV, and decreases very slowly. The reason behind this behavior can be
explained by the trade-off between the velocity accuracy and the image homogeneity. There
might be very similar images with a certain level of difference in the velocity evolution that
end up being clustered together. This concept will be discussed further in the next section.

Fig. 8.15 displays the quality metrics for the drone LAM scenario. In this case too,
the image covariance quality metric qa descends much quicker in the SV of the approach.
Conversely, the velocity covariance quality metric qv decreases more slowly in the SV.

How do the clustering means and covariances change?

In this section, we take one example (the iCab) to show the variation of the image clustering
on the odometry space. The performed comparison is only qualitative and is executed on the
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(a)

(b)

(c)

Fig. 8.14 Clustering quality metrics on the iCab dataset with a different number of clusters
for the FV (a), the SV (b), and a comparison of the two cases (c).
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(a)

(b)

(c)

Fig. 8.15 Clustering quality metrics on the LAM drone scenario with a different number of
clusters for the FV (a), the SV (b), and a comparison of the two cases (c).
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(a) Positions, 27 clusters. (b) Positions, 116 clusters.

(c) Velocities, 27 clusters. (d) Velocities, 116 clusters.

Fig. 8.16 Cluster means and extensions for the iCab dataset, on the position space (upper
part) and velocity space (lower part), with 27 clusters (part on the left) and 116 clusters (part
on the right).

iCab dataset as it is the simplest one from the point of view of the odometry (having simple
motions in a 2D space).

In Figs. 8.16a and 8.16b, we display the positional cluster centers for the FV (black) and
SV (red) when using 27 and 116 clusters, respectively. The extension of the clusters is also
represented by ellipses with axes proportional to the standard deviation of the clusters. Figs.
8.16c and 8.16d are related to the same two cases (27 and 116 clusters), but display velocity
plots.
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Table X Evaluation indices that highlight the method’s capability to retrieve the original
cluster when provided with a single data point. See the text for further explanation.

Dataset
Ratio correct cluster

(better ↑)
MSE odom. dist. (m)

(better ↓)
Bhatta odom. dist.

(better ↓)
Icab, 27 clusters, FV 0.7113 6.6973 114.1005
Icab, 27 clusters, SV 0.7368 7.3099 142.4723
Icab, 45 clusters, FV 0.6918 6.0767 194.3291
Icab, 45 clusters, SV 0.7813 6.1775 259.6680
Icab, 116 clusters, FV 0.6804 4.9142 603.0445
Icab, 116 clusters, SV 0.8697 3.3763 190.6402

Egocart, FV 0.5959 3.0040 14.9611
Egocart, SV 0.8089 1.3744 4.0040

FM, FV 0.3990 0.2116 2.3175
FM, SV 0.7637 0.0899 0.5567

LAM, FV 0.5570 0.2013 2.0470
LAM, SV 0.7904 0.0863 0.3401

It is worth noting how, in the case of 27 clusters, many clusters have similar positional
and velocity centers in the FV and SV. Some clusters in the SV, instead, are moved to provide
a better image homogeneity. This is more evident in the case with 116 clusters: observe
the areas circled in blue in Fig. 8.16d. In the FV, the clusters in this area are distributed to
favor a more precise velocity prediction. Therefore, the two velocity “pathways” in these
areas get assigned to different clusters. Conversely, in the SV, the clusters join points on the
two “pathways”. The reason behind this is the trade-off between the velocity accuracy and
image homogeneity. This plot thus explains the behavior of the qv quality metric in the SV
compared to the FV, discussed in the previous section and illustrated in Fig. 8.14c.

In which case can I retrieve the original cluster better if I am provided with one image
data point only?

As discussed in Sections 8.2.4 and 8.4, the first operations performed in the tracking are
the particle-independent ones. A first estimate of the probability of being in each cluster is
computed using a single image data point. We compare here the performance of the FV and
SV in this operation.

Table X displays three metrics for this purpose. All metrics only relate to the particle-
independent calculations and, therefore, are computed through the use of a single image data
point, independently from all other points and without considering the rest of the tracking.
Thus, they are not metrics on the final result, but on an intermediate computation.
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The values in the first column (“ratio correct cluster”) are calculated as follows. First,
we find the probability αααv,t of being in each cluster, given an image data point. The cluster
displaying the highest probability is selected and compared with the “true cluster”. With
“true cluster” we identify the odometry cluster closest to the odometry point. Comparing
every assignment with the “true clusters”, we compute the ratio of correct cluster assignments
displayed in the table.

The second and third columns of the table show the average distance between the center
of the predicted cluster and of the “true cluster”. They display the MSE and Bhattacharyya
distances, respectively.

The table presents these performance indices for the iCab dataset (on three different
clustering levels), and on the Egocart, FM, and LAM datasets, with the FV and SV. For
each compared couple, the best index is highlighted in bold. The ratio in the first column is
consistently better (i.e., higher) in the SV. The indices in the second and third columns tend
to have better (i.e., lower) values in the SV as well. The SV of the approach, therefore, starts
from an improved estimation of the cluster probabilities vector αααv,t .

How does the evolution between clusters change?

In the SV of the approach, the clusters are built considering both odometry and video. This
can lead to a more entropic transition matrix. The reason is that a zone that could compose a
single cluster in the FV (due to its motion homogeneity), could instead be split into several
consequent clusters in the SV (due to its visual heterogeneity). Transition matrices that
are more entropic might lead to the need for more particles because they generate more
hypotheses of transition between clusters. This can be seen as a (small) disadvantage of the
SV.

Table XI illustrates this concept on the different considered datasets. In the first and
second columns, we show the transition matrix entropy and the mean entropy across the
TTMs. The last column displays the mean number of time instants spent in a cluster before
moving to the next one. The entropies of the matrices tend to be slightly higher in the
SV. Coherently with this, in the SV, the agent tends to spend less time in each cluster, and,
therefore, to jump more often between clusters. In the cases in which the inverse happens (a
higher entropy and lower time in the FV), the margin of difference tends to be small. For
each compared couple, we highlight in bold the case with lower entropy and higher time
spent in a cluster.
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Table XI Evaluation indices showing the entropy of the transition matrix and Temporal
Transition Matrices, and how much time is spent on average in one cluster before moving to
the next one. See the text for further explanation.

Dataset
Trans. Mat.

Entropy
TTMs mean

Entropy

Mean
time instants

spent in a cluster
Icab, 27 clusters, FV 0.7118 0.1073 54.0854
Icab, 27 clusters, SV 0.8589 0.1207 35.9837
Icab, 45 clusters, FV 0.4803 0.0560 33.9773
Icab, 45 clusters, SV 0.5696 0.0576 28.1887

Icab, 116 clusters, FV 0.2511 0.0152 17.0038
Icab, 116 clusters, SV 0.2755 0.0145 13.3482

Egocart, FV 0.1852 0.0094 52.7416
Egocart, SV 0.1720 0.0070 60.8092

FM, FV 0.4257 0.0425 36.3727
FM, SV 0.3937 0.0452 42.8511

LAM, FV 0.3971 0.0279 9.1113
LAM, SV 0.3960 0.0345 6.2284

8.6.9 How does the precision of the clusters change in 2D vs. 3D data?

In this section, we investigate the variation in the required number of clusters based on
whether we are using 2D or 3D data. First, however, we must examine the datasets to identify
those in which it makes sense to perform a comparison.

Figs. 8.17 and 8.18 compare several characteristics of the iCab, Egocart, FM, and LAM
datasets.

In Fig. 8.17a, the number of training data points for each dataset is shown. The drone
datasets are bigger than the iCab and Egocart datasets. However, the same zones are crossed
multiple times, since many repetitions of the experiments are performed (as in the iCab case
too).

Fig. 8.17b displays the covered area in cubic meters (m3), obtained by multiplying the
range along each dimension, in Fig. 8.17c. These two figures refer to positional information.
Therefore, to remind the reader which are the trajectories followed by the vehicles in the four
cases, we report them in Fig. 8.18. It is evident that, in a dataset such as iCab, the covered
area is vast, but it is crossed in a very sparse way, as only its perimeter is treaded. Conversely,
the space is covered in a much denser way in the Egocart and drone datasets. To account for
this difference, we divide the covered space into zones of one cubic decimeter of volume. We
then count the number of these zones that are crossed by the vehicle. The results are shown
in Fig. 8.17d. It is worth noting that, as expected, the covered decimeters for the iCab are
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(a) (b) (c)

(d) (e)

Fig. 8.17 Histograms showing various characteristics of the iCab, Egocart, FM, and LAM
datasets: number of data points (a), area in m3 (b), positional range along the dimensions x,
y, and z (c), cubic decimeters covered by the vehicles (d), variety of the velocity information
(e).

significantly fewer than for the Egocart, even if this covered a smaller area. The bins of the
FM and LAM datasets increase in height compared to Fig. 8.17b as well.

Finally, Fig. 8.17e estimates the variety of motions performed in each dataset. The
velocity space is divided into the same bins for the four datasets, and the number of bins
with at least one element is counted. This shows the motion complexity of the FM and LAM
datasets. Despite being extracted on a small area, these two datasets display a variety of
motions as vast as the iCab dataset. The Egocart dataset, however, is the most complex from
the point of view of motion variety. Fig. 8.19 also shows the velocity space for the four
datasets.

Therefore, both terrestrial vehicles cover a much vaster area, iCab more sparsely and
Egocart more densely. However, the two drone scenarios have a great variety of viewpoints
in the small area where they move and a great variety of motion types.

This first analysis considers the odometry characteristics. Let us now examine the visual
complexity of the four datasets. We perform this examination in two ways.

Firstly, we standardize the images based on the mean and standard deviation of the pixels
across each entire dataset. Then, the entropy is calculated for each image. Finally, the
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(a) ICab. (b) Egocart. (c) Drone FM. (d) Drone LAM.

Fig. 8.18 Positions covered by the iCab (a), Egocart (b), FM (c), and LAM (d) datasets.

(a) ICab. (b) Egocart. (c) Drone FM. (d) Drone LAM.

Fig. 8.19 Velocities taken by the iCab (a), Egocart (b), FM (c), and LAM (d) datasets.

histogram of image entropies is plotted in Fig. 8.20. These plots illustrate how often highly
entropic images are found in the dataset. Complex images with many details tend to be more
entropic. We can observe that iCab has many complex images. Egocart has both complex
and simpler images; in particular, there are several images with higher entropy than the ones
found in the other three datasets. The difference between the FM and LAM is also interesting.
Both scenarios include many images with low entropy, such as zones where the drone sees
big parts of the red floor or of the blue columns (see Figs. 8.21a and 8.21b). However, the
FM includes images with higher entropy than LAM. This is because the LAM scenario has a
much more restricted viewpoint, as the whiteboard, the blue columns, or the red floor are
always visible in a part of the images, and are uniform elements. In contrast, the FM dataset,
while moving forward in the environment, can observe a vast area filled with many objects.
To understand this, compare Figs. 8.21c (which belongs to the LAM scenario) and 8.21d
(which belongs to the FM scenario).

The computed histograms illustrate the distribution of complex images inside the datasets.
However, we could also assess the overall dataset complexity, i.e., the complexity of encoding
the entire dataset. To perform this, we first compute the Principal Component Analysis (PCA)
of the dataset. Then, we find the percentage of variance (or “proportion of variance”)
explained by each principal component [111]. It gives a sense of how much information
each principal component retains from the original data. Fig. 8.22 displays the percentage
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(a) ICab. (b) Egocart.

(c) Drone FM. (d) Drone LAM.

Fig. 8.20 Histogram of the image entropy in the iCab (a), Egocart (b), FM (c), and LAM (d)
datasets.

of explained variance across the number of considered principal components (PCs). Not all
components are shown: we chose instead to stop at the first 250 for better readability of the
plot.

Fig. 8.22a uses the entire dataset to calculate the values in the plot. Instead, to build Fig.
8.22b, we randomly selected only 250 data points from each dataset. In this second way, we
ensure that the length of the dataset does not impact the final results. Instead, only the image
content is relevant.

More complex datasets need more components to explain the same percentage of the
explained variance. The Egocart dataset appears to have a significantly higher complexity
than the other datasets. The drone FM scenario is less complex, whereas the drone LAM
scenario and iCab display similar complexity. Although it has some complex images, the
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(a) (b) (c) (d)

Fig. 8.21 Images from the FM and LAM scenarios. (a) and (b) show a viewpoint shared by
both scenarios. (c) and (d) belong to the LAM and FM scenarios, respectively.

(a) (b)

Fig. 8.22 Percentage of the explained variance of each dataset, when considering different
Principal Components (PCs) of the PCA.

FM scenario always follows a similar trajectory. In contrast, the LAM case, while having
simpler images, starts at five different distances from the whiteboard and, therefore, has a
higher variety of viewpoints (see also Fig. 8.17d). The iCab scenario, instead, has a lot of
viewpoints (see Fig. 8.17d again), but many of them share a very similar appearance due to
the symmetry of the courtyard. Therefore, its overall visual complexity is lower.

Therefore, we can now draw some conclusions from the analysis of the odometry and
video complexity of the datasets. Egocart is the most complex dataset among the four,
densely covering a large area with a variety of images. Consequently, we expect it to require
many more clusters than the other three datasets, and doing a comparison between it and the
used drone datasets would not be fair.

On the other hand, we can compare the drone datasets against the iCab one. We observed
how the iCab has fewer frames (but also fewer repetitions of the same motion), but covers
(sparsely) a larger area. On the other hand, the drone datasets cover a smaller area, but,
due to the 3D motion, have more viewpoints of it and a larger variety of motions. Thus,
we choose to qualitatively compare the iCab and LAM scenarios, which display a higher
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similarity. However, we must observe that the comparison has limitations, due to some
marked differences in the two datasets, such as the covered area. To perform the comparison,
observe Figs. 8.14 and 8.15. It is worth noting that the image covariance quality metric
decreases faster (i.e., requiring fewer clusters) to the regime in the drone dataset than in the
terrestrial dataset. In contrast, the opposite happens with the velocity covariance quality
metric. This suggests that drone datasets require more clusters due to their more complex
motions in 3D environments.

8.6.10 How do visual repetitions in the dataset influence the perfor-
mance of the method?

We have previously observed that, among the employed evaluation datasets, some displayed
bigger and more frequent visual similarities between points at a high positional distance
from each other. In particular, the iCab dataset is the one displaying the most evident visual
repetitions, as observable in Fig. 8.6. In this section, we analyze the visual repetitions
in the iCab, Egocart, FM, and LAM datasets, and we discuss how they can influence the
performance of our approach (and of Visual-Based Localization methods in general).

For each dataset, we compute a 2D histogram, as displayed in Fig. 8.24. On the x-axis is
the positional distance between couples of frames; on the y-axis is an indicator of the image
similarity. The color represents the probability associated to each histogram bin. In this way,
we can observe at what distance similar images are typically located.

The histogram is calculated as shown in Fig. 8.23. We give each image xt belonging to the
dataset as input to an Inception-v3 (IV3) network [212] and extract the corresponding latent
state ςt . We then perform a pairwise comparison of each couple of data points t and h. The
comparison considers both the image content and positional distance. A vector of positional
distances PD is found, by computing the Euclidean distance between each position xo

t and xo
h.

A vector of latent state distances LD is also obtained, by calculating the Euclidean distance
between each latent state ςt and ςh. The space covered by the values in these two vectors is
divided into 50 sections each. The joined space is composed, therefore of 50x50 = 2500 bins.
The number of couples t-h falling in each bin is calculated, and the values are normalized,
thus obtaining the desired histogram heatmap.

We can now comment on the heatmaps in Fig. 8.24. First, let us note how the iCab
heatmap (Fig. 8.24a) displays a sawtoothed progression of the most probable feature distances
(i.e., the brighter areas), with the increase of the positional distance. Two zones with high
visual similarity at a high positional distance are identified and marked with red squares. The
Egocart dataset (Fig. 8.24b), instead, has a sparser distribution across the bins. We can also
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Fig. 8.23 Method for the calculation of the heatmap histogram.

(a) ICab. (b) Egocart. (c) Drone FM. (d) Drone LAM.

Fig. 8.24 Histogram heatmaps for the iCab (a), Egocart (b), FM (c), and LAM (d) datasets.
On the x-axis is the positional distance. On the y-axis is the IV3 features distance.

observe that very far (> 25 m) points tend to have a higher feature distance than points at
a lower positional distance (0-25 m). The drone FM (Fig. 8.24c) dataset has no particular
concentrations of similar images at high positional distances: the feature distance tends to
increase with the positional distance. Finally, in the LAM dataset (Fig. 8.24d), the feature
distance tends to increase with the positional distance, but, at a high positional distance
(∼ 6.5 m), there are many visually similar images.

Let us examine the four cases in more detail with some examples.
Fig. 8.25 displays three couples of points from the iCab dataset as examples. On the

left, a red cross identifies the bin where the couple is located in the histogram. The frames
corresponding to the two points are displayed in the middle. Finally, on the right, the positions
of the two points are shown on the trajectory plot. The sawtooth progression observed in
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(a)

(b)

(c)

Fig. 8.25 Three examples from the iCab dataset.

the previous paragraph is easily explained from the image-position examples. Starting from
two points a couple of centimeters from each other, as the positional distance increases, the
visual features distance also increases, until points such as the ones displayed in case (a)
in the figure. These two points are located at symmetrical zones in the courtyard, on two
consequent sides. Then, increasing the positional distance again, the visual features distance
also increases again, until points such as the ones displayed in case (b). These two points are
at symmetrical zones in the courtyard, on two opposite sides. Subfigure (c), instead, shows
two very different images from the iCab dataset.

The presence of such stark visual repetitions in the iCab dataset constitutes an added
difficulty for VBL methods because a point could be predicted as being located on the wrong
side of the courtyard. For this reason, many methods in Table IV displayed bad performance.
Methods taking into consideration several data points for localization tend to give better
results. Through the use of the Particle Filter, our method can wait several time instants
before deciding what hypotheses to carry on (i.e., through resampling). Some hypotheses
will be on different sides of the courtyard.

This characteristic of the dataset also influences which parameters, during the optimiza-
tion in Section 8.6.7, tend to be favored. Notably, we have observed how, in the iCab dataset,
Nth,l tends to be chosen lower than in the Egocart dataset so that the first resampling can be
performed after more time instants.
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(a)

(b)

Fig. 8.26 Three examples from the Egocart dataset.

Fig. 8.26 shows two examples from the Egocart dataset. The first example (a) considers
points at a distance of ∼ 10 m, whereas the second example (b) takes points at a distance
of ∼ 35 m. In (a), we can observe two aisles with very similar appearance. In contrast, (b)
displays very different images. The reason why very different images are located at a very
high distance (> 25 m) is due to the structure of the supermarket. In the center, there are
many aisles (which tend to display similar appearance). In contrast, the opposite sides of the
supermarket have more open areas with more distinctive visual features.

In the SV of our method, using clusters with a lower image covariance (see Fig. 8.15c),
allows us to obtain better localization (see Table II) than in the FV because we can distinguish
more easily on which aisle, among the visually similar ones, the vehicle is moving.

We don’t show examples for the FM drone scenario, since we observed that it does
not display areas with high visual similarity at far positions. The absence of these visual
repetitions makes the VBL much simpler. Indeed, we observed in Table V that most methods
tend to exhibit good and very similar results.

Finally, Fig. 8.27 illustrates two examples from the LAM drone scenario. Firstly, while
in the same environment as the FM scenario, this dataset tends to have a higher number of
similar images. This can be one explanation for the worse localization results observed on
this dataset in Table VI. Many images at a distance of around 6.5 meters from each other also
tend to display visual similarity. The reason is illustrated in Fig. 8.27(a). At both these two
points, the drone is located in front of the blue columns, which have a similar appearance.
Subfigure (b), instead, shows an example of two very visually different points. The first
corresponds to when the drone is on the ground, and the second to when it is in the middle of
the flight between two columns.
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(a)

(b)

Fig. 8.27 Three examples from the LAM drone scenario.

To summarize, in this section, we have analyzed how visual repetitions constitute an
important difficulty in VBL methods, and how they can affect the final results shown in the
tables in Section 8.6.3.

8.7 Conclusions

We proposed a DBN-based model for simultaneous localization and anomaly detection, which
is inserted in our self-awareness framework for autonomous systems. The proposed method
combines Deep Learning with traditional Signal Processing methods for filtering and tracking.
The method is hierarchical, probabilistic, explainable, data-driven, and multisensorial. Two
alternative versions of the approach are presented, which differ in the information used to
perform clustering.

In the result section, we focused on examining the localization accuracy of the method and
also evaluated its explainability and its capability for anomaly detection. The two versions of
the method are compared. Several important questions are posed and discussed, regarding
the difference between the FV and SV of the approach, the precision of the clusters in a 2D
case vs. a 3D case, and the presence of visual repetitions in the data.

It is worth noting that one disadvantage of the approach proposed in this chapter is the
number of parameters. The grid search can be very time-consuming, even when the same
threshold is applied for all anomalies. Therefore, a method to more efficiently choose the
parameters could be developed. Reasonings could be made using the topology of the map (as
we observed, maps with frequent intersections require a lower Nth,h) or the visual repetitions
in the data (datasets with many visual repetitions in positions far from each other require a
lower Nth,l) or other characteristics of the data and of learned vocabulary.
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Only video data are used at testing time in the proposed method. Future work could
consider the addition of a second sensor to use during both the training phase and the testing
phase, such as the IMU. The IMU would increase localization performance, especially in
cases in which the video could not be reliable (e.g., shadows).





Chapter 9

Conclusions and Future Work

In this chapter, we draw some conclusions regarding the work performed in this thesis and
we analyze possible future research directions.

9.1 Conclusions

In this thesis, we introduced novel approaches within a self-awareness framework for au-
tonomous vehicles. We analyzed the significance and the evolution of autonomous vehicles,
with a focus on how neurobiological studies have recently influenced their development.
Our work was inspired by these neurobiological studies and was aimed at proposing multi-
sensorial, data-driven, hierarchical, and interpretable approaches, that adopt Bayesian infer-
ence. This is achieved by using a self-awareness framework based on DBNs. Central to this
framework is the concept of self-awareness. The minimum requirements for an agent to be
defined as self-aware are six capabilities: initialization, memorization, inference, anomaly
detection, model creation, and interface with control. These capabilities enable to perform
incremental learning of new models. In our work, we focused on the first four capabilities,
with a particular emphasis on anomaly detection. Notably, anomaly detection is a funda-
mental step in the continual learning cycle because it identifies which parts of the model
should be updated, based on new information. The hierarchical nature of DBNs allowed
us to detect anomalies at different levels, comparing top-down predictions with bottom-up
messages derived from the observations. We developed approaches for low-dimensional
odometry data, high-dimensional video data, and for the fusion of the two modalities. These
methodologies drew inspiration from Friston’s Generalized States, theory of linear attractors,
and free energy principle. Furthermore, we observed the importance of the vehicle being
able to localize itself while navigating an environment. Therefore, in the last chapter, we
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made the hypothesis that the vehicle always operated within a learned environment, and we
addressed the problem of VBL.

All presented approaches developed novel extensions of the MJPF filter. These extensions
were tailored for different use cases: some were integrated with a VAE and high-dimensional
data (Chapter 5), others were devised for low-dimensional data (Chapter 6), and others were
designed to work with a KVAE and with a model fusing video and odometry data (Chapters
7 and 8).

First, Chapter 5 introduced two alternative approaches for video data. In both approaches,
the high-dimensional data were first brought to low-dimensionality through a VAE. A
Generalized State was built on the VAE bottleneck. In the first version of the method, the GS
was created by combining the VAE latent state at a certain time instant with the difference
between it and the previous latent state; in the second version, the GS was obtained by
encoding both the camera frame and the OF between subsequent frames. In both versions,
clustering was then performed on the GSs, and a vocabulary was extracted, including a
prediction neural network for each cluster. When the model was presented with new data,
it leveraged the learned vocabulary to make predictions at the different levels of the DBN
hierarchy. It then compared these predictions with the observed data to detect anomalies
and to identify which portions of the model should be relearned. This chapter showed
that the adopted framework, first proposed for low-dimensional data, could be extended
for high-dimensional data too. The coherency between how DBN models are learned and
employed in the two cases is greater, the higher we move in the hierarchy. We have seen that
the cluster level performs predictions in the same way for the two data modalities (i.e., with
a transition matrix) and that anomalies can be calculated with the same anomaly distance
(i.e., the KLDA). In contrast, the observation model for high-dimensional data cannot be
represented by a simple observation matrix; instead, a VAE is used. VAEs are, however,
coherent with the adopted framework, because they are probabilistic and generative models.
This chapter presents one significant deviation from the low-dimensional data treatment at the
state level: the utilization of neural networks instead of piece-wise linear prediction models.
We addressed this divergence in Chapters 7 and 8. The two versions of the method proposed
in Chapter 5 were tested on the iCab dataset and discussed in detail. It was observed that the
second version provided better anomaly detection accuracy. The second version was also
tested on the Avenue and Subway anomaly detection benchmark datasets and was shown to
be competitive against other state-of-the-art methods.

In Chapter 6, an approach for low-dimensional data was proposed. In this case, no
reduction of dimensionality through the VAE was necessary. In this chapter, the concept of
linear attractors introduced by Friston was used as inspiration. The developed filter, the G-
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MJPF, aimed at separating the characteristics of the motion of the agent towards the attractor
and along the orthogonal direction. In this way, a higher level of interpretability could be
achieved. The proposed filter was also applied to perform driver behavior classification. In
this case, multiple G-MJPFs are built, one for each class. The most significant clusters for
each class are identified. Then, all filters run in parallel when classifying data. This chapter
showed how the interpretability of the original MJPF model could be further improved.
Moreover, it allowed us to examine novel uses of the proposed method for supervised
applications such as driver behavior classification. The method was tested on the iCab
dataset and on the UAH-DriveSet dataset. A comparison with other methods tested on the
UAH-DriveSet dataset was proposed. It is worth reminding the reader that it was difficult to
perform a precise accuracy comparison, due to differences in the training procedure across
papers. However, the results obtained with the proposed methods appeared to be in line with
other approaches from the state of the art.

After considering the low-dimensional and high-dimensional data separately, we studied
how to combine them. In Chapter 7, we proposed a CG-KVAE, a KVAE guided in its learning
of the video models by the clustering learned over the odometry data. With this approach,
the information of the simpler low-dimensional data is leveraged for the learning over the
more complex high-dimensional data. Instead of using a VAE and non-linear prediction
models as in Chapter 5, a KVAE with a combination of linear prediction models is employed.
Therefore, the contribution of this chapter in the context of the self-awareness framework was
twofold. Firstly, we tackled the multi-sensorial aspect of the framework and analyzed a novel
way of fusing the odometry and video data. Secondly, this chapter acted as a continuation
of our experiments in Chapter 5. As mentioned above, in Chapter 5, the DBN state-level
prediction still presented some inhomogeneity compared to a low-dimensional case, because
non-linear models were adopted. In Chapter 7, we made a first attempt at obtaining a higher
degree of homogeneity by using linear prediction models. The proposed method was tested
on the iCab dataset and on part of the UAH-DriveSet dataset. We discussed how results vary
by modifying the model and its parameters. We also compared the anomaly signals obtained
with the proposed approach and with the reconstruction loss of a vanilla VAE, showing how
our method provided better results.

Chapter 8 proposed two further extensions of this model, introducing a different as-
sumption compared to the previous chapter. In Chapter 7, we had supposed that video and
odometry data were both always present. In contrast, Chapter 8 hypothesized that, during
training, both data sources were always available, but, during testing, only the camera in-
formation was available. Therefore, we developed two extensions of the CG-KVAE model
that learned how to predict the odometry from the video data, through a set of additional
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matrices. In the testing phase, the method was employed to perform Visual Based Localiza-
tion, in addition to anomaly detection. Furthermore, we analyzed how several aspects of the
datasets can influence our models, such as if the data are 2D or 3D, or the presence of image
repetitions. We also addressed the problem of selecting the appropriate clustering level, to
avoid over-clustering and under-clustering, offering a valuable contribution to the overall
robustness of our methodology. Moreover, in this chapter, instead of using a combination of
linear models as in Chapter 7, we employ a piece-wise formulation, which further increases
the homogeneity with the odometry model. We compared the two versions of the proposed
approach. The second version displayed higher localization accuracy: we achieved a mean
localization error in meters of 1.65, 0.98, 0.23, and 0.87, on the Egocart, iCab, Drone FM,
and Drone LAM datasets, respectively. Furthermore, we executed an in-depth analysis of
the obtained results. First, we examined the obtained anomalies, the algorithm speed and
memory requirements, how the localization results changed depending on the parameters,
and on what visual features the learned network concentrated its attention. Finally, we posed
and answered three important questions: “how does the difference between the FV and SV
affect the training and testing?” (1), “how does the precision of the clusters change in a 2D
vs. a 3D dataset?” (2), “how do visual repetitions in the dataset influence the performance of
the method?” (3). We observed that a better video clustering metric was obtained in the SV,
which explains the better localization accuracy in the SV of the method (1). Moreover, 3D
drone datasets required more clusters than 2D datasets from terrestrial vehicles, due to the
more complex motions in the environments. Furthermore, we noticed how visual repetitions
in the dataset can worsen the performance of the method (3).

In addition to the proposed self-awareness models, we extracted an indoor drone dataset
and we presented a method for estimating the drone odometry from the camera, IMU, and
lidar observations (see Chapter 4). The obtained mean localization error was below 0.25 m
in all scenarios. Part of the extracted dataset was employed later in the thesis for evaluating
the proposed self-awareness methods.

All methods presented in the thesis were evaluated on a variety of real-world datasets
and on one simulated dataset.

9.2 Drone dataset availability

A link to the extracted dataset described in Chapter 4 will be made public - after publication
of the related paper - in the GitHub repository “https://github.com/GiuliaSlavic".
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9.3 Future Work

Starting from the work described in this thesis, several future directions can be identified.

9.3.1 Closing the Continual Learning cycle

As mentioned in the previous section, the six self-awareness capabilities are designed to
develop a cognitive system that continuously learns from new situations. The fifth capability,
model creation, considers the generation of a new model leveraging the abnormal data. In
this way, the new model can minimize the prediction error associated with data that was
previously classified as abnormal. Therefore, anomalies and GEs are minimized, and so
is free energy. When new situations are detected, new models are learned, resulting in the
availability of multiple parallel models. During subsequent testing phases, the method can
consequently switch between these models, based on their respective probabilities for the
given data.

Furthermore, it is important to highlight that, when anomalies are detected, it is not
always necessary to learn the entire model from scratch. Instead, the interpretability of the
DBN and the presence of anomaly signals at different levels can be exploited to pinpoint
which part of the model needs to be learned again. For example, in the method in Chapter 5,
if the anomaly is at the reconstruction level, the entire model must be learned again. Instead,
if only a high KLDA is detected, the clusters and, consequently, the prediction NNs should
be relearned, but the VAE does not need to be modified. Similarly, if the anomaly emerges in
the state prediction (or state prediction backpropagated at the observation level), the NNs,
or a single NN, should be learned anew. This flexibility during the continual learning phase
improves the practical applicability of our framework.

9.3.2 Further explaining the anomalies

Anomalies could be further explained in several ways. We identify here two possible ways.
Firstly, the combination of different sensory modalities can be leveraged to explain the

anomalies of one modality from the anomalies of another one. By analyzing video anomalies,
we can explain the possible cause of odometry anomalies. For instance, in a scenario with a
car stopping due to pedestrians, not all video anomalies are associated with a change in the
dynamics of the car. Indeed, some pedestrians walking on the sidewalk beside the car may
not be causing the stop, while others crossing in front of the vehicle might be. By analyzing
the video and odometry anomaly signals that are happening in a certain time window, it
would be possible to understand which video anomalies (in appearance and motion) are more
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Fig. 9.1 Real vehicle velocity (black arrows) vs. expected velocity (cyan arrows). The red
arrows correspond to the difference between the two. The expected velocity corresponds to
the mean velocity of the corresponding cluster.

(a) (b)

Fig. 9.2 Original camera image from the Emergency Stop scenario (a) vs. corresponding
direct reconstruction error image (b).

likely to be causing the odometry anomalies. In the provided example, this would correspond
to understanding that the anomaly due to pedestrians crossing in front of the car (visual
anomaly) is more likely to be the cause of the vehicle performing a stop maneuver (abnormal
odometry). A similar scenario example to the one of the car and the pedestrians is provided
by the FM drone dataset extracted in the context of this thesis. In this case, a drone observes
pedestrians on its side and front, with only the latter ones generating motion anomalies. The
FM scenario could be employed for further studies of anomaly detection in this direction.
The LOM scenario can be adopted for the same purpose, as it contains visual anomalies that
generate abnormal motions in the drone (i.e., the yellow objects) and other visual anomalies
that do not impact on the movement of the drone (i.e., the brown boxes).

Secondly, not only the anomaly indicator, but also the GEs should be studied further.
The anomaly indicator suggests at what level of the hierarchy the anomaly is detected, and,
therefore, which models need to be changed. However, to really understand the anomaly,
it is necessary to observe the GEs, i.e., how the model needs to be modified. Let us take
the example of a vehicle avoiding an obstacle by performing a rotational motion around it
(such as in the Pedestrian Avoidance scenario). In the odometry data, a rotational anomaly is
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detected. However, the anomaly signal is a scalar value at each time instant and it does not
give us information about the presence of an obstacle. Instead, by studying the generalized
errors, we can understand how the vehicle had to change its motion to avoid the pedestrian,
and we can also approximately estimate where the obstacle was located. Fig. 9.1 illustrates
this example in a stylized way, with the vehicle trajectory in black, the expected motion in
cyan, and the velocity error in red. Observe how the pedestrian acts as a repulsive force
in the first half of the semi-circular motion, where the vehicle is performing the avoidance
motion. From the velocity errors, it is possible to detect this repulsive force and estimate the
position of the obstacle. Then, an attractive force acts on the vehicle, after the pedestrian has
been surpassed because the vehicle is returning towards the original attractors (the clusters in
orange).

Another example of the difference between studying the anomaly signals and the GEs
can be done using video data. Again, in this thesis, we have studied the frame-level anomaly
signals, which provide one scalar abnormality value for each frame. However, to better
understand an observation-level camera anomaly, the error at the image level should be
examined. An example of this error, confronted with the camera observation at the same
time instant, is shown in Fig. 9.2. A first, simple examination of the error could consist in
observing whether it is a concentrated dense error (like the one caused by a pedestrian) or an
extended error (like the one caused by the observation of a new environment). More complex
examinations could be performed, considering other properties of the error.

9.3.3 Further analyzing the anomalies

The anomalies extracted by the methods proposed in the thesis could undergo additional
examination. For example, the extracted LAM drone dataset offers the possibility of studying
the dimension of the anomalies that can be successfully detected. In the dataset, square visual
anomalies of different sizes and colors are present.

9.3.4 Inserting other sensory modalities

Throughout this thesis, we employed camera and odometry data. The framework underlying
our work was also employed for vehicular control information [115] and, subsequently, for
lidar data [105]. However, we could extend our single-sensor methods to other types of
sensory input. In our multi-sensor methods, other couples of sensory modalities could be
joined; extensions with more than two sensors could also be developed. For example, the
VBL method in Chapter 8 could be improved by the integration of other sensors, such as
IMU. We could suppose that, while GPS data are never (or rarely) observable, both camera
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and IMU data are available at all instants. This is a frequent condition when agents navigate
indoor environments.
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