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Introduction and Objectives of the Work  

 

It is widely known that financial time series are characterized by very complex patterns 

and dynamics, that have to be accounting in estimation and forecasting analysis. 

Multivariate GARCH models have been and continue to be the most widely used time 

series models, both with parametric and non-parametric specifications: major 

examples are BEKK of Engle and Kroner (1995), the CCC of Bollerslev (1990) and 

the DCC of Engle (2002). Those models allow for volatility and correlations to change 

over time, and one of their main advantage is their easily implementation in many 

areas. More recently, the growing availability of high frequency data allows the 

development of different ex-post unbiased estimators of daily and intraday volatility, 

and this stimulated the development of specific models directly fitted on realized 

measures. Thus, although many multivariate variants of existing models could be 

applied on realized measures too, other specific models were adopted. Just to mention 

a few, the Realized GARCH of Hansen, Huang and Shek (2010), the Multiplicative 

Error Model of Engle (2002) and HEAVY models. Moreover, when multiple assets 

are involved, other issues arise (asynchronous trading and microstructure noise).  

Previous considerations underline the need for parametrizations and models able to 

guarantee the positiveness of variance covariance matrix at each point in time. As a 

natural consequence, the best choice is to adopt a Wishart distribution that 

automatically generates PSD matrices. Secondly, since the number of parameters to 

estimate clearly are proportionally to the number of assets included in the analysis, the 

estimation process could become infeasible. Thus, to overcome the curse-of-

dimensionality problem that could arise, it is necessary to define several constraints in 

the models to estimate, however guaranteeing a high level of flexibility in the model 

parametrization. In view of this background, this thesis is structured as follow: 

1. Chapter 1 introduces some preliminary concepts about volatility and its 

stylized facts, high frequency data and realized measures; 

2. Chapter 2 presents a class of models inspired by the consideration of simplicity, 

feasibility and computational speed in high dimensional environment. 
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Among them, a new parametrization that combine a multiplicative structure 

with dynamic correlations and variances, the DCC-CAW-MEM, directly fitted 

on the realized variance covariances matrices. After exploiting its 

characteristics, its estimation process (ML approach and QML interpretation), 

we also consider other parametrizations that have been found to be fit well in 

high dimensional context.  Some of them rely on the same multiplicative error 

structure of DCC-CAW-MEM and require the maximization of the same 

likelihood function, even if each of them presents a different structure and has 

a different degree of flexibility.  

3. Chapter 3 shows the empirical application of all the models discussed in the 

previous chapter, both in the in-sample and out of sample scenarios.
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Chapter 1 

A Survey of Realized Volatility and 

High Frequency Data 

 

Abstract 

In this chapter, I briefly review the concept of volatility, its main features and problems 

that can arise during its measurement. Then I introduce the topic of high frequency 

(HF) data, by focusing on the relationship between HF data and the microstructure 

noise. Consequently, I present the most common ex-post volatility estimator, the 

Realized Variance (RV) (Andersen et al, 2003). Then I extend the concept to the 

multivariate context, by considering more than two assets through the introduction of 

realized covariance estimators. Both in the univariate and in the multivariate setting, I 

will start from the introduction of a diffusion continuous time framework of analysis 

(Brownian motion).
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1.Introduction 
 

Volatility represents an interesting topic in financial time series, because it plays a 

central role in different area1. Although volatility is, in principle, a clear concept, its 

statistical treatment is not simple, because it is a latent variable which has to be 

estimated. This explains why it has received a lot of attention in literature, that has 

moved into two directions: the development of new models with richer formulations, 

that should result in higher estimation and forecasting performances, and a better 

classification of the existing models. With respect to the model development process, 

models range from the basic historical volatility ones (random walk, moving average, 

etc.) to the more complex and well-known ARCH ang GARCH models and their 

extension. Comprehensive reviews of literature can be found in Bauwens et al (2006) 

and in Silvennoinen and Terasvirta (2009). Referring to ranking among models, there 

is no consensus about which class of model performs better, and such conclusion 

comes from a set of mixed literature findings, even if many GARCH models still 

perform well in many applications.  More recently, the availability of intraday data has 

led to the rise of a growing interest in new ex-post volatility measures. In fact, realized 

volatility measures solve some issues of the traditional methods that rely on daily data 

(usually, daily squared returns). 

High frequency data (HF) introduces the possibility to add further assumptions for 

multivariate process high frequency variables. The availability of a great amount of 

information has led to an increase in the accuracy of the forecasts and to an advantage 

over traditional low frequency methodologies, which require data over a long period 

 
1 Poon and Granger (2003) stated that volatility forecasting is an important tool in financial risk 

management, while Andersen et al (2003) found three preliminarily applications of it: a) pure 

forecasting applications; 2) financial risk management for banks and trading houses; 3) generic 

applications outside financial field, but related to real economy. Relative to the last application of 

volatility forecasting, a lot of evidence can be found in literature. Just to mention a few,  Coshall et al 

(2009) applied univariate volatility models to the UK tourism demand to the country’s most popular 

international destinations, using twelve quarterly time series collected from the UK Office for National 

Statistics over the period 1977-2008, while Moran et al (2017) used multivariate time series analysis 

for modelling daily mean-mortality series of intensive car society units (ICUs) from Australian adult 

patient database, also confirming the validity of classical financial time series patterns. Moreover, 

Escribano et al (2018) modelled the volatility of electricity prices of Nord Pool Spot AS through a 

multiplicative component log-GARCH-X.  Obviously, other relevant examples can be founded, but the 

selected ones help to evidence how much volatility model techniques are widely used in all interesting 

areas.  
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of time. At the same time, there could be gains from financial processes and from the 

successful management of risks and trading costs.  

Moreover, one of the most important aspect when we talk about high frequency data 

is the sampling frequency. Even if using low frequency data measure could lead to 

imprecise estimates and forecast, computing the estimates to a very high frequency 

introduce some biases in the estimation itself, due to the contamination of 

microstructure noise. This has led many researchers to focus their research on ex-post 

estimation of daily variance and covariance of assets, using information based on intra-

daily price registrations and on the development of unbiased estimators and alternative 

approaches. 

 

1.2 Volatility 
 

In everyday language, volatility refers to the fluctuations observed in a certain 

phenomenon over time, while in economics it is used to describe the variability of a 

time series. 

More formally, in financial economics, the term volatility is defined as the standard 

deviation of a continuous time process.  

Depending on data availability and on the uses of model estimates, volatility models 

can be designed in discrete time or continuous time, even if it is clear that in many 

liquid financial markets, transactions take time at very short interval. As a 

consequence, it is natural to think about the priced and returns series of financial assets 

as arising through discrete observations from a continuous time diffusion process. 

Although many discrete models have been shown to be not consistent with the 

corresponding continuous modes, they are still used and preferred because of their 

flexibility in the estimation process. In this thesis I refer to volatility as the level of 

uncertainty associated to a financial asset, and it has been proved to be characterized 

by certain stylized facts, that are crucial for the correct specification of all the volatility 

models. 
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1.2.1 Fat tails 

 

It is a well-known point that the distribution of financial time series normally exhibits 

fatter tails than the normal distribution. Assuming that the fourth order moment of a 

GARCH(1,1) exists, Bollerslev stated that many financial time series exhibit a kurtosis 

index greater than the standardized value of 3. Afterward, He and Terasvirta (1999) 

generalized the same results for the GARCH(p,q). 

1.2.2 Volatility Clustering 

 

Volatility clustering was firstly introduced by Mandelbrot (1963), who reported “… in 

other words large changes tend to be followed by large changes- of either sign- and 

small changes tend to be followed by small changes…”.  

Lux and Marchesi (2000) attribute volatility clustering to the agent switching between 

fundamentalist and chartist strategies, while Kirchler and Huber (2007) suggested as 

source of volatility clustering the presence of heterogeneous information, and by 

assuming that traders learn from observed prices2. 

As reported by Aldridge (2009) current high volatility does not typically revert to 

lower volatility levels instantaneously, but higher volatility typically persists for 

different periods (this is also known as ARCH or GARCH effect). Thus, clustering is 

strictly related to the persistence or long memory of volatility. Especially in high 

frequency context, there is a lot of evidence of a near unit root in the conditional 

variances. Bollerslev (1998) suggests to use a visual inspection for determining the 

time series properties of volatility, by referring both to the absolute returns and square 

returns in the correlogram analysis. 

1.2.3 Leverage effect 

 

The leverage effect, also known as volatility asymmetry (Black, 1972), typically refers 

to the negative correlation between volatility and past returns. More precisely, this 

 
2 For further details, see Smith, V. L. (1982), Markets As Economizers Of Information: Experimental 

Examination Of The “Hayek Hypothesis”. Economic Inquiry, 20: 165-179. doi:10.1111/j.1465-

7295.1982.tb01149.x 
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effect implies that an increase in asset prices is accompanied by declining volatility, 

and it is asymmetric, so a moderate reduction of an asset price determines a larger 

increase of financial volatility.  

 

1.3 High Frequency Data 
 

In the last years, the growing availability of high frequency data has represented one 

of the most attractive field of research in financial econometrics. With financial and 

technological developments, the possibility to have tick by tick data has increased the 

interest of researchers in their management, to better understand the structure of 

financial markets. 

Andersen et al (2003) highlighted the improvements high frequency data produces in 

terms of predictive performances respect to the standard procedures that rely on daily 

data alone. This, in principle, led to obvious advantages in financial applications, 

especially in situation where prices arise from a continued time diffusion process. In 

other words, we could expect that more observation we have, the more precise the 

estimations will be. Unfortunately, some problems arise. It is obvious that except for 

most liquid assets, the continuous price is not available, and this implies the existence 

of a measurement error that must be taken into account. Secondly, when the sampling 

frequency increases, it also will increase the probability of occurrence of spurious 

correlations. Therefore, in practical applications, we have to deal with a trade-off 

between accuracy of estimates and forecasts and measurement errors, in order to 

reduce bias and distortions in statistical inference. In this section I analyze the trade-

off between microstructure noise and sampling scheme, by introducing some sources 

of microstructure noise and analyzing the different sampling schemes available in 

financial literature.  

Falkenberry (2002) synthetized the nature of the problems arising from the creation 

and the management of high frequency database. Among others (different nature of 

error types, intraday seasonal patterns in tick frequency, treatment of time, etc.), the 

main sources of microstructure noise are: 
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 Asynchronous nature of tick data; 

 Bid-ask bounce. 

 

1.3.1 Asynchronous trading 

 

In an ideal market, trading is synchronized, that means that all the buyers and sellers 

meet at the same time and conclude transactions, whose prices are recorded in the same 

moment. In practice, this not happens, and transactions take place in different 

moments. The effect of non-synchronous trading has firstly been investigated by 

Atchison et al (1987), who examined its effect on autocorrelation among assets. The 

effects of asynchronous trading arise when time series are wrongly measured. 

Generally, reported daily returns only reflect the last trade that takes place. Such 

scenario means that, in high frequency context, one incorrectly assumes daily returns 

as an equally space time series over a 24-hours interval. Scholes and Williams (1977) 

demonstrated that this non synchronous trading induces lag cross correlations and lag 

serial cross correlations into returns. Most importantly, Tsay (2003) evidenced this 

effect in terms of portfolio construction, since it leads to biased correlations among 

assets and inaccuracy in assessing risks in management strategies.  

1.3.2 Bid-ask spread 

 

The bid-ask spread, often considered as trading cost, is due to the difference between 

the price at which the buyer wants to buy and the price at which the seller wants to 

sell.  

Following Stoll (1989), the transaction cost from which bid-ask spread arises comes 

from under processing costs, inventory holding costs and adverse information costs. 

In fact, in order to maintain liquidity, many exchanges use market makers who stand 

ready to buy or sell whatever the public wishes to buy or to sell, but they usually buy 

at bid price and sell at higher ask price. As a convention among market makers, bid-

ask spreads usually take few discrete values, while in practice the bid-ask spread is 

time varying and related to both volume and volatility. Such result is due to transaction 

prices which are free to move between the ask and the bid, in a manner that they can 
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produce different log returns, even if the economic values of the assets is still the same. 

This scenario is known as bid-ask bounce, that is the bid-ask spread that introduce 

negative lag-1 serial correlation in asset returns, that has been exploited and modelled 

by Roll (1984).  

1.3.3 Univariate Setting: Quadratic Variation and Integrated Variance 

 

Now I am presenting the framework on which my analysis, in univariate setting, is 

based. As mentioned before, since many models have been formulated in a discrete 

time framework, it is natural to start from observation available at equally spaced 

discrete points in time. Let’s think to a discrete process  � ≡ ���� ���ℎ � = 1,2, . . . , � 

where ���� is assumed to arises from a continuous process, with the following 

conditional moments (mean and variance) ϻ�|��� =  ����|����� 

and  ϭ��|���� =  ��� ���|����� =  ���� − ϻ���|���� 

where ���� is the set of information available at time t-1, that determines the 

differences between the conditional and unconditional moments. 

As previously noted, most of the main applications in volatility modelling have been 

developed in the context of financial economics, thus it is natural to think about prices 

and returns. If we assume that p(t) is the univariate process of the logarithmic price 

evolving in the continuous time over a discrete internal [0,T], Back (1991) and 

Andersen et al (2003), and if the return process does not allow for arbitrage and a finite 

instantaneous mean, the asset price belongs than the log prices belong to the class of 

semi-martingale and it can be written as the sum of a drift component A(t) and a local 

martingale M:  ��� =   �0� + #��� + $��� 

Moreover, the latter can be splitted in two components: a realization of a continuous 

process, ∆#��� and ∆$��� and a jump component. With the initial assumption that ∆$�0� ≡ #�0� ≡ 0 
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���� =   �0� + #���& + ∆#��� + $���& + ∆$��� 

This decomposition is useful for the qualitative characterization of the asset return 

process. Since the return over [t-h, t] is defined as  ��� −   �� − ℎ�, this implies that: ���� =   ��� +  �� − ℎ� =  #��� + $��� 

Similarly, we can refer to the multivariate case involving of returns, by the upper-case 

letter R.  

Until now I have considered a discrete time framework but, as noted before, it is natural 

to think of prices and return arising from a continuous diffusion process in the form 

of: ' ��� =  ϻ���'��� + ϭ���'(��� ���ℎ � ≥ 0 

where (��� is a Wiener process, ϻ��� is a finite variation stochastic process and ϭ��� 

is a strictly positive cadlàg and it is the instantaneous volatility of the process. From 

this characterization, it follows that over the interval [t-h, t] if we consider a unit 

variation, h=1, we get 

���� =   ��� −  �� − 1� = * ϻ�+�'+�
��� + * ϭ�+�'�(�+�

���  

���ℎ 0 ≤ + ≤ � ≤ � 

The similitudes between the discrete and continuous characterizations are clear: the 

conditional mean and variance process are replaced by the corresponding integrated 

realizations of means and variances. Because the variation of the diffusion path of 

martingale is not affected by the drift component, intuitively its evolution is related to 

the evolution of the coefficient ϭ. 

Formally, the return variation is equal to the so-called quadratic variation: 

-���� = * ϭ��
��. �+�'+ 

The quadratic variation process could be approximated by cumulating cross products 

of high frequency returns. As noted by Andersen et al (2003), the quadratic variation 

is the main determinant of return covariance matrix, especially for shorter horizons, 

since the variation induced by genuine innovation, represented by the martingale 

component, locally is an order of magnitude larger than the return variation caused by 

changes in the conditional mean. 
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The diffusive sample path variation over [t-h, t] is also known as the integrated 

variance IV. 

/���� = * ϭ��
��. �+�'+ 

Under the simplifying assumptions of absence of microstructure noise and 

measurement error, the quadratic and integrated variation coincide. 

 

1.3.4 Realized Variance (RV) Estimator 

 

Given the previous characterization, the researchers developed different estimators of 

the integrated variance.  The most widely used is the realized variance (RV) estimator. 

I firstly examine the ideal context in which the absence of measurement errors made 

ex post volatility became observable. Andersen et al. (2003) suggested to estimate the 

realized variance as the sum of squared intraday returns, sampled at sufficiently high 

frequency. Considering � − ℎ +  01 a partition of  �t − h, t� interval, thus the realized 

variance will be defined as  

4�� = 5 6���.701 − ���.8�9
.:�  

It has been shown to be an unbiased estimator of ex-ante volatility, and in case of 

absence of microstructure noise it is also an unbiased estimator of the integrated 

variance. Moreover, several authors refer to realized volatility as the square root of 

RV. 

Many authors have started to individuate an appropriate framework for the estimation 

and the prediction of conditional variance of financial assets, in order to accommodate 

for the entire set of information in intraday data. Based on the results of Jacod and 

Protter (1998), Barndorff-Nielsen (2002) derived the asymptotic distribution of the 

realized variance as normal with zero mean and unit variance. As sampling frequency 

increases, the realized variance converges in probability to the quadratic variation 

(QV) 4� ��, ℎ, ;� → -���, ℎ�   �+ ; → ∞ 
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This is the formal link between RV and return quadratic variation, that directly follows 

from the theory of semi martingales and implies that as sampling frequency increases, 

RV provides a consistent measure of the IV. If this is true, in theory one could reduce 

the measurement error by increasing the sampling frequency. However, given the 

arguments introduce in Section 1.3, returns shouldn’t be sampled to often to avoid 

microstructure noise.  

1.3.5 Sampling frequency and Market Microstructure Noise 

 

As stated above, even if high frequency data represent a source of continuous 

information, there is a well-known bias between sampling frequency and 

microstructure noise. 

Andersen et al. (2003) highlighted how much crucial is the choice of the sampling 

frequency, considering high frequency data on deutschmark and yen returns against 

the dollar. By simulated volatility signature at varies sampling intervals, they 

individuated as optimal the 20-minute return sampling interval (k=20), that 

contemporaneously measures the microstructural bias and the sampling error.  

Aït-Sahalia et al. (2005) and Zhang et al. (2009) proved that RV is not a reliable 

estimator for the true variation of the returns in case of microstructure noise, since as 

sampling frequency increases, the noise becomes progressively more dominant. 

Consequently, literature recommends to use a realized variance estimator constructed 

by summing up intraday returns at some lower sampling frequency, usually 10, 15 or 

20 minutes.  

About this, it is possible to refer to the sparse sampling scheme, and it has been 

suggested by Andersen et al (2001). When sampling frequency is lower than the -1 

min, sparse RV, �4�>� will be: 

4��> =  5 ��,?>1@A
?:�  

It has been shown that the bias due to the noise is reduced when ;�> < ;, even if the 

total variance increases. Although sparse sampling tries reducing the microstructure 

noise in RV calculation, it potentially suffers from a loss of information and leads to a 

reduction in the efficiency of the estimator. For this reason, Bandi and Russel (2008) 

proposed to select the optimal sampling frequency by minimizing MSE (mean square 
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error). The authors presented a methodology similar to Bei et al. (2000), that is able to 

choose optimal sampling frequency by minimizing the expected square distance 

between the estimator (RV) and its theoretical counterpart (QV) as summarized by 

conditional MSE.  

At the same time, Zhang et al. proposed an alternative method to benefit from using 

infrequently data. Instead of arbitrarily selecting a subsample, the authors suggested 

to select a number of sub-grids of the original grid of observation time C = ⋃ C�E�FF:�  , where C�F� ⋂ CH ≭ Ø (when k ≭l) and the natural way to select the kth 

subgrid is to start from �F��and then pick every kth sample point until Ƭ, that means:  CF =  K�F��, �F��7F, �F��7�F, … , �F��71MFN 

Given the realized volatility 4���F� =  ∑ ��,?�1?:�  , Zhang et al. averaged the estimator, 

and then: 

4���PQR� = 1E 5 4�9�F� − ;�; 4�9�PHH�F
F:�  

Fixing T and using the observation within the interval [0,T] asymptotically as ; →∞ and ; ES → ∞, ;F hasn’t to be the same across k, we could define we get  

;� =  1E 5 ;F
F

F:� = ; − E + 1E  

The estimator is called Two Time Scales Estimator (TTSE), obtained through a 

combination of single grid and multiple grids.  

Under the assumption of IID noise structure (the microstructure noise has zero mean 

and is IID random variable independent of the price process and the variance of T� is 

O(1)), they showed that 

;�/V�4��WXY − /�� ℒ→ 8\ − 2���]��� + \^�9���_�0,1� 

and the converge is stable in law. For equidistant sampling and regular allocation to 

grids, ^� = à b��, the variance is equal to 8\ − 2��]��� + \^�� = 8\ − 2��]��� +
\ à b`��. 

In their paper, Zhang et al. demonstrated that the optimal choice of c becomes: 

\cd� =  e12��]����b` f�/a
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As the authors pointed out, it is also possible to estimate c to minimize the actual 

asymptotic variance from data in the present time period, or 0 ≤ � ≤ �. With a bias-

type adjustment, the estimator will be unbiased 

4��Pg0 =  e1 − ;;f�� 4�� 

The difference between the two estimators is of order h i; ;S j = h  �E���. 

Moreover, referring to the sample schemes, McAleer and Medeiros (2008) 

individuated four sampling schemes: 

1. Calendar time sampling (CTS), where the intervals are equidistant in calendar 

time, that’s k?,1� =  �1@ for all i.  

2. The transaction time sampling (TrTS), where prices are recorder every n-th 

transaction; 

3. Business time sampling (BTS), where the sampling times are chosen such that         /�?� =  lm1@; 
4. The tick time sampling (TkTS), where prices are recorder with each 

transaction. 

As pointed out by Oomen (2006), the choices of both sampling and calendar schemes 

are crucial for modelling and forecasting. Oomen showed that from theorical and 

empirical analysis, transaction time sampling is superior to the common approach of 

CTS, and it leads to a better minimization in MSE of the realized variance, yielding 

more accurate variance estimates. 

Furthermore, Griffin and Oomen (2008) proposed a comparison of the effect of tick 

time and transaction time sampling on RV calculations.  

 

1.3.6 Kernel-Based Estimator 

 

Motivated by the some of the issues mentioned before, in literature other estimators 

have been proposed for modeling the microstructure noise, such as the Kernel based 

estimators of QV, in presence of autocorrelation caused by microstructure noise.  
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Zhou (1996) was the first to use kernel function to deal with the problem of 

microstructure noise in high frequency data, proposing the following estimator: 

4��n = 4�� + 2 5 ;; − E
n

F:� opF 

Where opF =  i 11�Fj ∑ ��,0��,07�1�.0:� , 4�� is the all RV and E�·� is the Kernel function 

and n is the sum of intraday observations used in RV computation.  

Even if this estimator is unbiased, it is not consistent when we move to continuous. 

Extending Zhan’s work, Hansen and Lunde (2005) analyzed the implication of 

microstructure noise on RV estimates, and by using the Down Jones Industrial 

Average, they revealed some features of microstructure noise, with important 

implication for RV estimation.  

Given the time dependency and the correlation with the returns of the efficient price, 

the authors introduced the 4�Yr estimator, that uses the first order autocorrelation to 

bias correct the RV. Starting from Zhou’s estimator of 1996, the authors derived its 

properties allowing for non-constant volatility and non-Gaussian microstructure noise. 

Afterwards they compared the two estimators, demonstrating that 4�Yr performs 

better, as summarized by a greater reduction of MSE. 

 

1.3.7 Multivariate Setting: Quadratic Covariation 

 

In this section I focus on the analysis of methodologies used for producing ex-post 

measures of the covariance between assets. 

Before turning into the discussion about them, I have to introduce several assumptions 

about the underlying data generation process. As in the univariate setting, I focus on a 

continuous time diffusion model, supposing that I have n stocks whose log price 

process is ��?. As evidenced in Section 1.3.3 the continuous model can be summarized 

as: 

�� = * ϻ�+�'+�
��� + * s�+�'�(�+�

���  

where ϻ is a m by 1 vector of drift process and s is the spot co-volatility, while W is 

a vector of the Brownian motion. 
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In this the quadratic variation can be defined using matrix notation, as: 

-t = u�v 5w��0 − ��0��x w��0 − ��0��xy
 

Following advances in the realized co-volatility literature, we are interested in 

modelling and forecasting the daily ex-post covariation, through appropriate realized 

covariance estimators.  

The most used estimator of quadratic covariation is the so-called Realized Covariance 

(RC), introduce in financial literature by Barndorff-Nielsen & Shephard (2004). The 

authors showed that, if we can observe the log price processes at discrete points in time 

over an interval [0,T], with T=1, and if we have j intraday observations, the RC 

estimator is the sum given in the definition of quadratic variation, so that: 

4t� = 5w��0 − ��0��xw��0 − ��0��xy1
0:�  

Also in this case, under the assumption of no microstructure noise, it has been shown 

that RC is an unbiased estimator of the variance covariance matrix z�. Even in theory, 

the estimation will be simple, in practice some problems persist (asynchronous trading 

and microstructure noise). 

1.3.8 CholCov Estimator 

 

Since we rely on high frequency data, it is necessary to individuate an appropriate and 

consistent estimator of realized variance covariance matrix, by considering that in a 

multivariate setting, besides the accuracy of the estimator, the literature has 

extensively studied the need of a positive definite estimators3. Since our object of 

interest is the spot covariance matrix over the unit interval  

/th� = * z�+�'�+��
{  

 
3 For a complete survey about the estimation of both low and high dimensional covariance matrix and 

related estimation problems see Wei Biao Wu and Han Xiao (2011). 
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In this work for its computation, I will refer to Boudt et al. (2016) estimator, the 

CholCov, that has been found to be a consistent ex-post estimator of the variance 

covariance matrix, both to microstructure noise and asynchronous trading (after some 

refinement procedures). Starting from the ex-post covariation of log-prices, the 

estimator relies on a Cholesky decomposition4 of the spot covariance matrix into 

symmetric positive definite square matrices. By the Cholesky factorization, the spot 

covariance matrix z�+� can be decomposed into a lower triangular matrix |�+� with 

unit diagonal elements and a diagonal matrix }�+�, so that 

z�+� = |�+�}�+�|�+�y 
that means, with a matrix representation: 

|�+� =  ~ 1 0 ⋯ 0ℎ�� 1 … 0⋮ ⋮ ⋱ ⋮ℎ1� 0 ⋯ 1�  �;k }�+� =  ⎣⎢⎢
⎡����>� 0 ⋯ 00 ����>� … 0⋮ ⋮ ⋱ ⋮0 0 ⋯ �gg�>�⎦⎥⎥

⎤  
 

And, as reported by the authors, the link of each element of H and G matrices to the 

elements of the spot covariance matrix z�+� are represented by the following links: 

�FF = zFF − 5 ℎF�� ���
F��
�:�  

ℎFH = 1�HH �zFH − 5 ℎF�ℎH����
F��
�:� � 

The usefulness of this decomposition is the possibility to use as much data as possible 

and hold for any PSD matrix, that is true for the covariance matrix. Moreover, the 

authors demonstrated that its computational effort is compensated by an efficiency 

 
4 To be more precise, the Cholesky decomposition has widely been used in the volatility context (see 

Chiriac and Voev (2011) and Palandri (2009). 
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gain. if compared to other robust estimators (think about the multivariate realized 

kernel of Barndorff-Nielsen et al. (2011)), even if in case of microstructure noise the 

authors suggest to better refine the estimation procedure, by using integrated variance 

robust estimators.  

Realized variance covariances matrices used in the empirical application of Chapter 3 

has been computed through the CholCov estimator, in order to obtain a series of PSD 

matrices as input of our estimates.  Moreover, for better ensuring the reliability of the 

inferential results, some econometricians suggest to use a robust procedure for getting 

robust standard errors (lets’ think about the sandwich estimator or the Moore—Penrose 

pseudo-inverse, when the number of stocks is greater than the number of observations). 

 

 

 

 

 

 

 

 

 

 



 

 

24

Chapter 2 

A Class of Multivariate 

Models for Realized 

Conditional Variance and 

Covariance Matrices 

 

Abstract: 

Starting from the Engles’s (1982) paper about ARCH model, many models have been 

developed in order to better modelling financial volatility and its stylized fats. Even if 

ARCH and GARCH models are still the most used models in many practical 

applications, recent attention has been devoted to the volatility measurement on the 

basis of ultra-high frequency data.  

Despite the effectiveness of GARCH models, the new frontiers in analyzing volatility 

is represented by the Multiplicative Error Model, the MEM (Engle, 2002; Engle and 

Gallo, 2006; Brownlees et al., 2011), in which volatility is modelled as a product of a 

time-varying factor and a positive random variable, ensuring positiveness, without 

resorting to logs. 

Moreover, in high frequency context, another task of great importance is the modelling 

of variance covariance matrix. Although the RC estimator introduced before, the new 

frontiers in financial literature are represented by dynamic parametrizations for time-

varying daily variance covariances matrices. In this spirit we will refer to formulations 

consistent with dynamic conditional correlation typical of GARCH volatility models. 
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2.1 Introduction 
 

Even if GARCH models were originally defined in a univariate setting, their 

formulations have been easily adapted to the multivariate context.  

It is a well-known fact that financial time series are characterized by complex patterns 

and that an important role is played by the co-movements among assets. Thus, 

considering only financial modelling in univariate setting could led to a 

misspecification of the models, accounting for co-movements among assets has 

become a relevant topic in financial literature. In this field of research there has been 

a flourishing literature and many models have been developed. Multivariate GARCH 

models have been and still are the most widely used time series to correctly represent 

the covariance matrix. Let’s think about BEKK model of Baba, Engle, Kraft e 

Kronecker (1995), the Conditional Constant Correlation of Bollerslev (1986), the 

Dynamic Conditional Correlation of Engle (2002). 

Moreover, respect to the traditional setting, when moving from univariate to 

multivariate framework of analysis, practitioners have to deal with two additional 

issues, that have been different exploited in research: the imposition of some additional 

restrictions and conditions to ensure the positiveness of the variance-covariance 

matrices.  

To this regard, different distributional choices have been taken into consideration, in 

order to obtain a PSD variance covariance matrix, such as the exponential and the 

gamma distribution, and the multivariate Wishart distribution. 

About the latter, one example is the Conditional Autoregressive Wishart (CAW) model 

of Golosnoy et al. (2012), where the realized variance covariance matrix has been 

modelled trough the combination of a Wishart distribution and a BEKK time-varying 

dynamics. In the same spirit, Bauwens et al. (2016) explored the potential benefits of 

combining high and low frequency data, in the spirit of the Midas Data Sampling 

(MIDAS) filter, by separately accounting the long run level of covolatilities and their 

short run dynamics, through CAW-MIDAS.  

In addition, the HF data has increased the interest of researchers to model the series of 

realized covariances, that could be obtained by exploiting all the information available. 
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Thus, in this chapter I introduce the models used in the chapter 3, for the empirical 

application. Even if here the interest is not to offer a complete survey of the models, I 

will highlight the interesting features of each model used in the empirical study. 

Moreover, by combining some innovative key elements founded in the financial 

literature, I introduce a DCC-CAW-MEM model in high dimensional context. More 

precisely, I combined a consistent DCC-GARCH type parametrization with a vector 

Multiplicative Error Model (MEM) of Cipollini et al (2012), through a multivariate 

Wishart distribution. The time varying parametrization allowed to extract the co-

movement among assets, by using all the information guaranteed by a high frequency 

multiplicative error structure. Moreover, the additional Wishart distribution allowed 

to use a Quasi Maximum Likelihood approach, that simplify the optimization. 

Finally, before turning into discussion, it is important to note that in many practical 

applications, the multivariate modelling is translated into much simpler multiple 

univariate procedures, after appropriate series transformations. Moreover, instead of 

concentrating on univariate formulation, I will directly describe their multivariate 

extensions, that will be used in the empirical application in Chapter 3.
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2.2 General Framework  
 

The general framework proposed here is the one illustrated in the Section 1.3.7. For 

the model specification, let’s start from the Wishart distribution5. Suppose that t�  is a 

sequence of positive definite symmetric (PDS) realized covariance matrices of daily 

realized kernel volatility of n assets, conditioned on the available set of information ����. By assumption, the conditional distribution of t� , given the past history of the 

process ����, consisting of t�for T ≤ t-1, follow a Wishart distribution: 

t�|����  ̴ (1 �T , �� TS � 

where T is the degrees of freedom parameter and  �� TS  is a PDS scale matrix of order ;.  

From the properties of Wishart distribution6, it follows that: 

��t�|����� =  ��7��t�� = �� 

whit �� the conditional covariance matrix, whose i,j-th element is the covariance 

between assets i and j. 

The previous equations define the baseline CAW (Conditional Autoregressive 

Wishart) model with a time-varying scale matrix.  

Our idea is to use a decomposition of the scale matrix ��, in order to separately account 

for volatility and correlations. In the spirit of Bauwens, Storti and Violante (2012) and 

Bauwens, Braione and Storti (2016), I firstly decomposed the scale matrix in term of 

standard deviation and correlations, so that: 

 
5 Several authors use the Wishart distribution, because it allows to model each element of the 

correlation matrix, when more than two elements vary and it guarantee positive definite draws. 

Gourieroux, Jasiak and Sufana (2009) use a Wishart process of realized covariance matrices, a WAR (p) 

or Wishart autoregressive process, while Bonato, Caporin and Ranaldo (2012) proposed a block 

structure of WAR model, in order to reduce the number of parameters. Afterwards, an autoregressive 

inverse Wishart process has been proposed, that can directly be applied in portfolio optimization 

problem.  

6 For further details see Muirhead (1982) and Anderson (1984) 



 

 

28

�� =  ��4��� 

where 4� is a correlation matrix and  �� is a diagonal matrix given by the conditional 

standard deviations: 

�� =  
⎣⎢⎢
⎢⎡����,� 0 ⋯ 00 ����,� … 0⋮ ⋮ ⋱ ⋮0 0 ⋯ ��11,�⎦⎥⎥

⎥⎤
 

The specifications used for their temporal dynamics are explained in the following sub-

chapter. 

 

2.1 Univariate Volatility Modelling 

 

To begin I opted for a much simpler univariate specification for the conditional 

variances, that exclude interaction term, in order to simplify statistical inference.  

For the dynamics of the scale matrix the choice differs from the traditionally adopted 

models: despite the previous literature focuses on GARCH (1,1) model, my 

specification focuses on MEM (1,1) type process. 

In fact, in their traditional setting, GARCH models use daily returns (usually squared 

returns) to extract information about the current level of volatility but this is not best 

approach in contexts where volatility changes rapidly. In theory, they can be used to 

estimate realized covariance, as in Engle and Rangel (2008) but, since they rely on 

daily observed returns, in principle they provide less precise estimates and forecasts of 

variances and covariances than measures based on intraday data. 

Thus, I adopted the high frequency counterpart of GARCH model, the so-called 

Multiplicative Error Model (MEM) of Engle and Gallo (2006), that is based on the 

MEM structure proposed by Engle (2002).  

Let’s call 4�� the realized volatility of an asset and let ����  be the information set 

available at time t for forecasting. In the univariate framework of analysis, 4�� is 

modelled as the product of time varying conditional expectation S�t   and a positive 

random variable Ԑ�: 4�� = S�Ԑ� 
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���ℎ Ԑ�|����~}�vv� ��, 1�� 

and �� evolving according to a parameter vector θ: �� = S��, ����� 

In the simplest case, the conditional expectation is specified as: S� = � + o4���� + 'S��� 

Where α takes into account the contribution of recent observations. Stationary requires 

that all the coefficient in the conditional expectation equation of non-negative and that 

the sum is less than 1, thus ω≥0, o ≥0, ' ≥0 and (ω+ o + ') <1. 

 

The previous assumptions on S� and Ԑ�, if the Gamma distribution assumption of Engle 

and Gallo (2006) is adopted, allows to define the following conditional moments: ��4��|�����  = � ��� �4��|����� = ϭ�S�� 

Moreover, as for GARCH model, this implies that the conditional mean is equal to 

� = �1 − o − ' 

 

2.2 DCC-CAW-MEM 

 

After designed the volatility model to be used, the second stage of analysis consisted 

in designing the dynamic process of the conditional correlation matrix 4�. In order to 

realize this, I resorted the multivariate GARCH models widely used in econometrics. 

In a preliminary analysis, simply referring to correlation, it is obvious that one could 

separately compute the correlation coefficient, among series, through the classical ratio 

between covariance and the product of the variances among assets: 

 ?,0,�7� = ϭ?,0,�7��ϭ?,�7�ϭ0,�7� 

However, financial econometric developed models that directly account for 

correlations. 
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The latter play an important role in financial markets, because they allow to better 

exploit the market structure and, contemporaneously, they show how much important 

is the diversification in portfolio strategies. 

Investors usually prefer portfolio with low risks and high returns and portfolio 

optimization theory suggests diversification as one of the best solutions to achieve 

redditivity and reduce risks.  

Evidence of the importance of correlations has further been investigated in literature. 
King and Wadhwani (1990) found that the contagion coefficients increased during and 

immediately after the crash in response to rise of volatility but declined as volatility 

decreases and nothing in the model implies that contagion coefficients are necessarily 

constant. Goetzman, Li and Rouwenhorst (2005) distinguished two sources of 

diversification benefits obtained from international correlations: the variation in 

average correlation and the variation of the investment opportunity set faced by 

traders, and developed a test for structural changes in matrix correlation. The authors 

also conducted an element by element test and a more general test about the average 

correlation differences, and both of them rejected the hypothesis of constancy of the 

correlation structure between periods and across countries. Lin, Engle and Ito 

investigated the contemporaneous correlations of returns and volatilities of stock 

indices between Tokyo and New York, by fitting two separate GARCH models on 

daytime and overnight returns, using intraday data. Afterward, many researchers 

focused on testing the hypothesis of constancy of conditional correlations. Tse (2000) 

introduced a test based on Lagrange multiplier (LM) approach, while Bera and Kim 

(2002) developed a form of information matrix (IM) test for assessing the time varying 

structure of correlations, after fitting a bivariate GARCH model. Then, through a 

Monte Carlo experiment, the authors rejected the null hypothesis of constancy in all 

cases. In this spirit, the analysis of volatility and co-movements among assets have 

been the central point of a branch of econometrics and different models have been 

derived, such as VAR and VECM. However, the GARCH family models have been 

extensively used respect to the other models.  

Starting from ARCH and GARCH models the BEKK model of Baba, Engle, Kraft and 

Kroner (1995) and the Dynamic Conditional Correlation (DCC) of Engle (2002) and 

Tse and Tsui (2002) have been proposed, just to name a few. They rely on non-linear 
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combinations of univariate GARCH models and by construction, ensure a more 

parsimonious parametrization of the model. 

In this spirit, the general formulation that we adopt consists in the following equations: -� = �/1 − ##y − ��y� + #t���#y + �-����y 4� = -�∗��/�-�-�∗��/�
 

where A and B are ; � ; matrices of parameter, while Q� is a PSD definite matrix that 

represent the correlation driving process at time t. Moreover, -�∗��/�
 is a diagonal 

matrix. It is important to note that the last equation is necessary and required for 

practical computation, since it allows to transform -� in a correlation matrix, since its 

diagonal elements are not necessarily equal to 1.   

Thus, if I consider the previous equations, I have defined the Realized DCC model of 

Bauwens et al. (2012), where the realized covariance is included into the conditional 

covariance matrix by extending the classical DCC of Engle (2002).  

Moreover this parametrization, together with the n univariate MEM model for 

modeling volatility, defines a new model: the DCC-CAW-MEM.  

The DCC-CAW-MEM combines three different assumptions: the multivariate Wishart 

distribution, a consistent dynamic conditional correlation estimator and a 

multiplicative error model for modelling the variance covariance specification. 

In the remain of this session I draw the pros and cons of this approach.  

My idea was to separately model the element of the variance covariance matrix in a 

way that permits such kind of flexibility and does not prevent to estimate the model 

parameters in large dimension.  

As evidenced before, despite of using a classical GARCH(1,1) model for modeling 

volatility, I adopted the high frequency counterpart, by resorting the scalar vector 

MEM of Cipollini et al. (2012), for which the estimation is made equation by equation 

and stationarity is subjected to the condition that the characteristic roots of the 

polynomial are outside the unit circle, hence ω+ o + ' <1, so that, for the diagonal 

matrix D, the ii element is represented by:  S??,� = �? + o?4�??,��� + '?S??,��� 

Moreover, the model could be easily extended to incorporate other explanatory 

variables, let’s name   ����, for l=1,2,…,L variables, so that, traditional assuming that 4�� = S�Ԑ�, we get: 
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S� = � + o4���� + 'S��� + 5 �H  ����
�

H:�  

And extra features can be included, without requiring relevant changes in model 

structuration. The use of MEM model for the univariate modeling of volatility also 

open to the possibility of adopting other specification of the error term  Ԑ�. Even if in 

my case, I adopted a Gamma distribution, every other distribution with probability 

density function (pdf) over a positive interval [0,+ ∞), with unit mean and unknown 

constant variance, such as Log-normal, Weibull or exponential, or mixture of them7.  

As to mention a few, Engle and Gallo (2006) favoured a Gamma for modelling non 

negative valued time series while Bauwens et al. (2010) adopted a Weibull 

distribution. Other important characteristic of my model is the dynamic 

parametrization of the conditional correlation process. As introduce before, I used the 

Re-DCC od Engle (2012), where the correlation matrix is constructed through a 

factorization of Qt matrix, but it’s useful to note that by imposing some parameters 

restriction, it’s possible to shift to other conditional correlation dynamics. Since I relied 

on high dimensionality context, and I wanted to obtain both a realistic and 

parsimonious parametrization, in order to overcome the curse of dimensionality 

problem, I choose a scalar specification of our Qt matrix. 

Thus: -� = �̅�1 −   − ¡� +  t��� + ¡-��� 

Where �̅ is the is the sample covariance matrix of standardized residuals obtained from 

the univariate MEM estimates. 

Moreover, the parametrization of out model allowed to get a consistent estimation of 

all the parameters through a Quasi Maximum Likelihood (QML) approach. Using the 

probability density function (pdf) of the Wishart distribution and the decomposition of ��, into the diagonal matrix of standard deviations and the time varying correlation 

matrix, allowed to define the log likelihood of each observation, called u�, in the 

following way: 

 
7 Moreover, Ghysels, Gourieroux and Jasiak (2004) used an exponential model with gamma 

heterogeneity, in modelling a two-factor model for duration. 
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u� = − T2 u¢�|��|  −  T2 �������t�� 

And if the univariate equations for the conditional variances do not include spillover 

term and each conditional variance depends only on own lagged variances, thus the 

log-likelihood function can be generally written, as the sum of the single univariate 

log-likelihood functions, such that: 

£ = − T2 5�u¢�|��| + �������t���9
�:�  

The main advantage of this formulation is that the optimization could be achieved 

through n different optimization procedures, each for one observation in the time 

series. Additionally, taking advantage of the model structure, when the number of 

assets rapidly increases, it is possible to use three steps procedures: 

1. Step 1 foresees the estimation of the univariate parameters of volatility, through 

a MEM (1,1) process; 

2. Step 2 provides the estimation of the dynamic process of Qt based on the 

variance covariance matrix of standardized univariate residuals; 

3. In step 3, the parameters of the correlation equation will be estimated from the 

maximization of the single log-likelihood contributions. 

It is important to note that QML interpretation of coefficients guarantees a robust 

statistical inference and the estimation is consistent even if the underlying distribution 

is not a Wishart, and it allows to easily compute the standard errors8.  

After I have assessed the main properties of the DCC-CAW-MEM, it is useful to made 

a brief comparison with other models existing in literature. More specifically my 

model showed some similitudes with the Conditional Autoregressive Range (CARR) 

model of Chou (2005) and with the models illustrated in Bauwens, Braione and Storti 

(hereafter, BBS) (2016). With the first, my model shared the choice of the univariate 

specification for volatility estimator, even though the one used in Chou is strictly 

related to the ACD model of Engle and Russel (1998). 

 
8 See Noureldin et al. (2012) 
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At the same time, Chou used a one-step estimation process, but this is fitted on range 

volatility measure and it takes the following form: 

£� ?, ¡0, 4�, 4�, . . . , 4�� =  5�log�§�� + 4� §�⁄ �9
�:�  

With the model class of BBS, my model shared the dynamic structure of correlations 

and the one step estimation likelihood-based approach.  

Finally, it is useful to remember that my model, in the formulation adopted in this 

work, does not take into account spillover effect and in the univariate volatility model, 

I do not adopt a full representation for parameter matrices A and B. In fact, even if it 

is possible to adopt a full A matrix, in order to have some preliminarily information 

about correlation signs among assets, I will expect a lot of zero coefficients, because 

off the high dimensional framework of analysis. 

Furthermore, in my specification, I adopted a classical DCC (1,1) model, even though 

it should be extended, by introducing a parameter ɡ for asymmetry, in the spirit of the 

AG-DCC model of Cappiello et al. (2006), or as in Silvennoinen and Terasvirta (2012), 

through a smooth transition specification in modeling conditional correlations of asset 

returns, that allowed the conditional correlations varying from one state to another as 

a function of a transition variable . 

2.3 Alternative parametrizations: BEKK dynamics 

 

As introduced in the general framework of Section 2.1, given t� the series of realized 

variance covariance matrix, for which: 

   ��t�|����� =  ��7��t�� = �� 
It is possible to nest an alternative and competitive parametrization, without passing 

through the factorization of ��.  I will refer to this model as ReBEKK. 

Instead of using a DCC-GARCH type recursion, it is possible to adopt a BEKK-type 

framework. Without using the classical BEKK model of Baba, Engle, Kraft and 

Kroner (1995), I will refer to the multiplicative BEKK model of Hafner and Lindton 

(2010) that, through covariance targeting, introduced a first order scalar BEKK, 
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directly fitted to the series of realized variance covariance matrix, with the following 

form: �� = �̅�1 −   − ¡� +  t��� + ¡���� 

Where   and ¡ are positive scalars and   + ¡ < 1.  

Moreover, since I wanted to increase comparability of my model, it was possible to 

add another parametrization, based on the decomposition of  �� into a long run 

covariance matrix and a short run component, respectively  £ =  $$y and ��∗, such that: �� =  $���∗$�y 
In this case, $� is obtained through a Cholesky factorization of long run matrix L. The 

latter is estimated by the non-parametric smoother of Nadaraya-Watson, used in the 

estimation process for all the element of realized variance covariance matrices. For the 

short run component, I restored the multiplicative scalar BEKK, where, differently as 

in the first parametrization, I imposed the mean reversion condition in its dynamics, 

through /1, so that: ��∗ = �1 −   − ¡�/1 +  t���∗ + ¡����∗  

where t�∗ = $���t��$����y and it is a variance covariance matrix purged of its long 

run component. 

I will refer to this model as Np-ReBEKK.  

For both BEKK parametrization, the estimation process was carried out through a one-

step loglikehood-based approach, previously used: 

£ = 5�u¢�|��| + �������t���9
�:�  

 

2.4 Covariance Targeting 

 

Before turning into the presentation of the other model used in this work, I have to 

discuss one another feature of the new parametrization offered by DCC-CAW-Mem, 

that is also at the basis of the estimation procedure of one of the BEKK parametrization 

of Section 2.3: the covariance targeting.  
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To understand its usefulness, consider that, even if I imposed a scalar specification of 

my model, the number of parameters to be estimated was proportional to the number 

of assets, so that the estimation became cumbersome, if a high number of assets is 

included in the model design. Hence, in order to exploit the advantages of working 

with a great number of assets with intraday data, I needed a quick and simple way to 

guarantee a feasible estimation in the maximum likelihood framework. For this reason, 

both in DCC-CAW-MEM and in BEKK parametrizations, I resorted to targeting 

approach, that consists in pre-estimating the constant intercept matrix in the model 

specification. 

 

More specifically, in the DCC-CAW-MEM -� = �̅�1 −   − ¡� +  t��� + ¡-��� 4� = -�∗��/�-�-�∗��/�
 

Targeting is imposed in -� structure ensures that the conditional correlation will be 

identical to the sample unconditional correlation of the data. This is strictly achieved 

by computing the sample covariance matrix of standardized residuals Ԑ� that come 

from the n univariate MEM (1,1) estimation, so that: 

�̅ = �ª�Ԑ���Ԑ���y � = ��� 5 Ԑ���Ԑ���y9
�:!  

Moreover, also the first order scalar BEKK model is based on the covariance targeting, 

since its recursion has the following form: �� = �̅�1 −   − ¡� +  t��� + ¡���� 

Where �̅ is the unconditional long run variance covariance matrix. In this case, 

targeting implies the use of a sample covariance estimator for S and the maximization 

of the likelihood function with respect to the parameters α and β (maximization is made 

conditionally on the estimates of the long run covariance)9. 

 

 
9 For further details, see Pedersen, R. S., & Rahbek, A. (2014)  
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2.5 Additional models 
 

For the completeness of my analysis, I included one additional model for realized 

volatility, that combines two different specifications: the Heterogeneous 

Autoregressive model for the Realized Variance (HAR-RV) of Corsi (2009) and the 

dynamic structure of a DCC of Engle (2002).  

In the original formulation of 2003, Corsi allowed for heterogeneity in the traders’ 

time horizons, by introducing an additive cascade of partial volatility at the different 

time-points: daily, weekly and monthly, even if more other component could be easily 

added. 

Despite this model formally does not belong to the category of long memory models, 

Andersen, Bollerslev and Diebold (2007) and Wang, Bauwens and Hsiao (2013) have 

found that it provides a very good fit for most volatility series. Thus, the HAR-RV 

model could be considered a genuine long memory model, and in contrast to the other 

long memory model, it could be easily estimated through OLS procedures. Moreover, 

instead of considering the DCC of Engle separately from the HAR-RV, I decided to 

combine them, by using a two-steps estimation log-likelihood-based approach.  

In particular, the estimation required: 

1. in step 1, a multivariate DCC model was directly run on realized kernel time 

series, in order to obtain the correlation coefficient among series; 

2. in step 2, the standardized residuals Ԑ� of DCC model were used to reconstruct 

the volatility series ��that constitute the inputs of the OLS model, that allowed 

to find the HAR parameters: 

��7� = ¡{ + ¡g�� + ¡¬���­,� + ¡������,� + ®�7� 

With ® is a random error. 

Finally, as baseline model, the vMEM of Cipollini et al. (2012) has been estimated, 

through an equation by equation estimation approach.  

As for the univariate MEM model examined in the Section 2.1, the basic 

parametrization is the following: 4�� = S� ⊙ Ԑ� 
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where ⊙ is the Hadamard product and also in this case  S� = S�����, ��. The random 

variable is defined as k∗1 vector  ]�|���� ∽  ��1, z �. For the previous conditions: ��4��|�����  = S� ��� �4��|����� = S�S�y ⊙ ± 

As for the univariate framework, in the multivariate context the conditional 

expectation is defined as: 

S� = � + 5�oH4���H + 'HS��H��
H:�  

In my study, in order to estimate this recursive form �, o �;k '  are scalar parameters. 

Also in this case, during the estimation procedure, the usual constraints for 

positiveness and stationarity are imposed  � >0, o > 0, ' > 0 and �� + o + '� < 1. 

 

2.6 Estimation Procedures Concluding Remarks 

 

All the parametric models have been estimated through a maximum likelihood-based 

approach: excluding the HAR-DCC model and the vMEM, the estimation is done by 

a unique likelihood function, based on the Wishart distribution made on the series of 

realized variance covariance matrices Ct.  

The log-likelihood function has been defined as: 

− T2 5�u¢�|��| + �������t���9
�:�  

and, as it was shown, it is very general, in the sense that it can be used, in case of 

absence of microstructure noise, whatever will be the formulation for volatility and 

correlation dynamics. For those models, I decided to use a one-step approach in order 

to simplify the inference and to easily compute standard error s and model selection 

criteria. Moreover, in the case of non-parametric formulation, as for Np-ReBEKK 

model, the estimation requires two steps: the computation of the kernel smoother for 

accounting the long run co-movements in variance covariance matrices, and then the 

short run component is estimated through the previously defined ML approach. In 
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addition, the HAR-DCC model is the only one model that has been estimated through 

a two steps procedure, by firstly estimating the DCC parameters, followed by the 

estimation of HAR coefficient, through the standardized residuals. Finally, the vMEM 

has been estimated by an equation by equation approach, even if, instead of using a 

GMM estimator suggested by Cipollini (2012), I followed a ML approach, by adapting 

the univariate estimation procedure of Brownlees et al (2011).
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Chapter 3 

Evidence from Real Data 

 

 

Abstract: 

This chapter presents the empirical analysis conducted on a twenty realized kernel 

financial time series, and the corresponding daily series of realized variance covariance 

matrices.  

Firstly, I will present the dataset being used and the cleaning procedures adopted to 

obtain it. Then, after providing the full sample estimation results by comparing the 

models in term of information criteria, I finally presented the theoretically framework 

for financial one-step ahead forecasts and their comparisons.  
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3.1 Dataset 
 

In carrying out my empirical analysis, I considered a dataset of annualized realized 

kernel of volatility for twenty (20) financial indices, provided by the Oxford Man 

Institute10, from January 3, 2000 to December 5, 2017. 

As stated by Bandorff, Nielsen, Hense, Lunde and Sheppard (2002), realized kernel is 

a consistent estimator of realized volatility, and it is also robust respect to 

microstructure noise of the markets. 

The included stocks are: AEX Index, All Ordinaries , BVSP BOVESPA Index , Down 

Jones Index , CAC 40 , FTSE 100 , FTSE MIB , FSTE STRAIT TIME Index, DAX, 

Hang Seng Index , IBEX 35, Nasdaq 100, Korea Composite Stock Price Index,  IPC 

Mexico, Nikkei 225, NIFTY 50, Russel 2000,  SP 500 Index, Swiss Stock Market 

Index and EUROSTOXX 50.  

The original database contained 21 assets, but from a preliminarily analysis, it resulted 

that the percentage of missing values ranged between 2.45% of CAC40 and 16,78% 

of S&P/TSX Composite index (GSPTSE). 

Moreover, from a more careful examination, it has been possible to note that for 

GSPTSE index, there were two years of missing values (the series starts on May 

02,2002), so that I decided to drop it from the dataset. Furthermore, since I relied on 

standard measures and not on heavy data, in order to get a complete dataset, I deleted 

overnight returns (favoring the estimation accuracy). Then I choose, as treatment of 

missing values, a linear interpolation11 and, as a special case, in presence of a missing 

value at the first observation, I replaced it using the forward value.12 

Additionally, for the estimation process, I had to preliminarily compute the series of 

realized variance covariance matrices. The daily realized covariance matrices have 

been computed using the CholCov estimator presented in Section 1.3.8 

For a simpler read of the results, the following table reports abbreviations and the full 

name of the assets included in the study. 

 
10 The database used in this thesis refers to the 0.2 version, that was retired and now at the following 

link https://realized.oxford-man.ox.ac.uk/data/download it’s possible to download a more recent and 

bigger (31 assets) library, that rely on a different cleaning and econometric procedures.  
11 See Lu, Z. & Hui, Y.V. Ann Inst Stat Math (2003) 55: 197. https://doi.org/10.1007/BF02530494 
12 No additive cleaning procedures are used. 
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Table 1: Data symbols. The table shows the list of symbols (column 1) used to 

identify the corresponding financial time series indices (column 2). 

 

 

Given the framework of analysis presented in the previous chapter, the aim of this 

empirical analysis is to evaluate both the in-sample and the out-of- sample 

performance of the models presented before.  

Just for a reminder, we report a list of all the models presented in the previous sections. 

 

  Model N. parameters Parametric Semiparametric 

          

1) vMEM (4*n) ✓   

2) DCC-CAW-MEM (4*n)+2 ✓   

3) ReBEKK [n(n+1)/2]+2 ✓   

4) Np-ReBEKK 3   ✓ 

5) HAR-DCC (4*n)+2 ✓   

          

     
Table 2: List of analyzed models. This table lists the estimated models with each own 

number of parameters, as well as the specific parametrization.   

 

Symbol Asset Name

AEX AEX Index

AORD All Ordinaries

BVSP BVSP BOVESPA Index 

DJI Down Jones Index

FCHI CAC 40

FTSE FTSE 100

FTSEMIB FTSE MIB

FTSTI FSTE STRAIT TIME Index

GDAXI DAX

HSI  Hang Seng Index

IBEX IBEX 35

IXIC Nasdaq 100

KS11 Korea Composite Stock Price Index (KOSPI)

MXX IPC Mexico

N225 Nikkei 225

NSEI NIFTY 50

RUT Russel 2000

SPX SP 500 Index

SSMI Swiss Stock Market Index

STOXX EUROSTOXX 50
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Preliminarily I will report the results of the full sample estimation and, afterward, I 

will focus on the one step ahead out of sample forecasts. For the latter, the full dataset, 

from January 3, 2000 to December 5, 2017 is divided into two different periods: 

 Period I is the in-sample set for t=1, …, 4161. It corresponds to the 

period January 03, 2000 to December 04, 2015; 

 Period II is the out of sample set for the remaining 522 observations in 

the dataset, from December 05, 2015 to December 05, 2017, that 

represents the last observation included in the sample.  

Before presenting the full sample results, I will summarize the descriptive statistics for 

all the time series, distinguishing the full sample, the in sample and the out of sample 

sets of analysis. On the basis of the kurtosis, it is possible to note that time series 

properly exhibit fat-tail properties and there is also a departure from the Gaussian 

distribution, since the skewness is different from 0 and there is positive excess kurtosis. 
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Symbol Mean Median Min Max Std Skewness Kurtosis 

                

ESTIMATION SAMPLE: JANUARY 03, 2000 TO DECEMBER 05, 2015 (4161 OBSERVATIONS) 

AEX 15,35 12,67 2,80 99,92 9,53 2,46 12,64 

AORD 9,59 8,11 1,72 62,62 5,61 2,73 15,58 

BVSP 22,41 20,12 4,37 145,18 10,86 3,44 24,15 

DJI 13,98 11,65 3,09 151,65 9,20 3,69 29,15 

FCHI 16,83 14,68 3,18 107,09 9,56 2,44 14,11 

FTSE 12,60 10,41 3,15 90,59 7,86 2,55 14,39 

FTSEMIB 15,68 13,57 2,83 104,15 9,02 2,24 12,90 

FTSTE 10,65 9,33 3,84 83,59 5,21 3,03 22,12 

GDAXI 18,35 15,47 3,38 127,31 11,12 2,63 15,54 

HSI 14,01 11,94 3,29 106,03 8,13 3,73 28,21 

IBEX 17,22 15,92 3,23 95,11 9,02 1,95 11,43 

IXIC 15,76 12,50 3,19 129,64 10,53 2,52 14,17 

KS11 16,12 13,78 3,39 127,78 9,79 2,38 14,63 

MXX 11,42 9,76 2,55 87,10 6,17 3,00 20,30 

N225 15,03 13,41 4,00 98,32 8,02 3,17 22,08 

NSEI 15,91 13,18 2,54 159,60 10,59 3,60 27,94 

RUT 14,19 12,00 2,54 127,24 8,87 3,14 20,89 

SPX 14,22 11,79 2,43 153,19 9,46 3,34 25,11 

SSMI 12,67 10,36 4,17 83,95 7,44 2,79 15,12 

STOXX 17,65 15,07 0,28 165,90 10,56 2,92 21,46 

FORECASTING SAMPLE: DECEMBER 06, 2015 TO DECEMBER 05, 2017 (522 OBSERVATIONS) 

AEX 10,83 9,34 2,98 55,99 5,82 2,25 12,45 

AORD 8,81 7,79 2,95 39,58 3,97 2,51 14,36 

BVSP 14,03 13,04 4,32 66,00 5,72 2,54 17,99 

DJI 7,65 6,21 2,11 36,18 4,71 2,46 10,90 

FCHI 11,92 10,61 3,18 55,75 5,80 2,21 12,50 

FTSE 8,01 7,00 3,38 28,50 3,39 1,89 8,35 

FTSEMIB 12,79 11,27 3,68 46,82 6,10 1,78 7,57 

FTSTE 10,09 9,50 4,10 38,97 3,85 1,83 21,73 

GDAXI 11,98 10,75 2,92 46,90 5,99 1,66 7,45 

HSI 9,34 8,48 4,26 42,11 3,40 3,42 27,35 

IBEX 14,61 12,71 4,79 109,59 7,61 4,86 51,80 

IXIC 8,28 7,11 2,49 32,35 4,34 2,21 9,25 

KS11 7,10 6,65 3,05 43,57 2,79 5,88 65,63 

MXX 10,19 9,36 5,35 54,94 4,14 5,31 48,54 

N225 11,61 9,06 3,11 74,59 8,30 3,05 16,49 

NSEI 8,52 7,73 3,93 40,82 3,61 3,47 24,67 

RUT 9,28 8,48 3,83 31,44 3,92 1,94 8,31 

SPX 7,41 6,06 1,88 29,52 4,51 2,26 9,16 

SSMI 9,73 8,60 3,89 37,86 4,08 2,16 10,46 

STOXX 12,70 11,06 2,58 118,13 7,83 5,45 65,96 

FULL SAMPLE: JANUARY 03 2000 TO DECEMBER 05,2017 (4683 OBSERVATIONS) 
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AEX 14,84 12,28 2,80 99,92 9,30 2,50 13,07 

AORD 9,50 8,06 1,72 62,62 5,46 2,77 16,04 

BVSP 21,47 19,37 4,32 145,18 10,75 3,34 23,72 

DJI 13,27 10,98 2,11 151,65 9,04 3,63 29,03 

FCHI 16,29 14,13 3,18 107,09 9,34 2,47 14,45 

FTSE 12,09 9,86 3,15 90,59 7,63 2,63 15,11 

FTSEMIB 15,36 13,33 2,83 104,15 8,79 2,27 13,18 

FTSTE 10,59 9,97 3,84 83,59 4,91 3,24 25,00 

GDAXI 17,64 14,88 2,92 127,31 10,86 2,66 15,95 

HSI 13,49 11,45 3,29 106,03 7,88 3,80 29,39 

IBEX 16,93 15,61 3,23 109,59 8,91 2,16 13,65 

IXIC 14,93 11,70 2,49 129,64 10,30 2,56 14,60 

KS11 15,11 12,64 3,05 127,78 9,70 2,39 14,54 

MXX 11,28 9,67 2,55 87,10 5,99 3,15 21,68 

N225 14,65 13,00 3,11 98,32 8,12 3,06 20,72 

NSEI 15,09 12,38 2,54 159,60 10,32 3,64 28,71 

RUT 13,64 11,50 2,54 127,24 8,60 3,21 21,83 

SPX 13,46 11,09 1,88 153,19 9,29 3,30 25,08 

SSMI 12,34 10,10 3,89 83,95 7,20 2,86 15,88 

STOXX 17,10 14,57 0,28 165,90 10,41 3,03 22,77 

 

Table 3: Descriptive statistics of realized kernel financial time series. The table 

reports descriptive statistics of the realized kernel time series of the stocks used in the empirical 

applications. The three panel report the statistics for the in-sample, the out-of-sample and the 

dull period, respectively. 
 

 

Moreover, Figure 1 and Figure 2 show a representative example of time series plots of 

the realized daily log returns and the annualized realized kernel volatility, respectively, 

for two representatives series included in the sample: the AORD and STOXX50 

indices. The choice was due to their range of variability, respectively the lowest and 

the highest (for the full sample set of 4683 observations). The plot of all the financial 

time series is reported in the Appendix A, which also reports the correlation matrix 

among time series. Even if the correlation coefficients were high, the statistical 

significance of correlations is assessed only for KS11, MXX and NSEI indices. 
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Figure 1. Daily Log-returns of AORD and STOXX assets (full sample). 

 

Figure 2. Annualized Realized Kernel of AORD and STOXX assets (full 

sample). 
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A simple visual inspection for all the assets showed volatility clustering and 

persistence. All the estimation was made through MATLAB software. Even if there 

are some specific toolboxes that have been designed for modelling financial time 

series, both in univariate and in multivariate setting (such as MFE toolbox of 

Sheppard), most of the available functions refers to traditional GARCH models and 

were not suitable for my case, thus every function used in this thesis derived from a 

personal coding effort. Additionally, since the estimation requires numerical 

procedures to maximize the maximum likelihood functions, it is important to be aware 

they can lead to multiple local maxima and also different algorithms could lead to 

different parameter estimates and, consequently to different inferential results. 

Moreover, numerical procedures are strictly related to the choice of initial parameters, 

so that, in order to bypass the related parameters estimation uncertainty, all the results 

have been confirmed through the Globalsearch and Multistart Matlab’s algorithms. 

Furthermore, all the models have been estimated used the interior point algorithm and, 

for increasing the computational speed, the Hessian has not been estimated at each 

interaction, but standard errors have been computed with the robust sandwich 

covariance estimator, computed at the final parameters estimates.   

3.2 Full sample results 
 

To evaluate the relative performance of my models in fitting the data, I will present, 

in this section, the full sample estimation results for each model.  

For the baseline vMEM model, results are reported below. Table 4 shows all the 

parameters estimated, equation by equation. 
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 ω  o  δ  ϑ   

AEX 0,0462   0,2922 *** 0,6516 *** 5,5979 *** 

  (0,12)   (0,05)   (0,09)   (1,87)   

AORD 0,0393 *** 0,2908 * 0,6599 *** 6,5092 *** 

  (0,01)   (0,15)   (0,19)   (1,87)   

BVSP 0,0598   0,2814   0,6582   4,0866   

  (1,57)   (2,15)   (0,70)   (7,34)   

DJI 0,0500   0,2989 *** 0,6411 *** 5,6263 *** 

  (0,04)   (0,08)   (0,04)   (0,11)   

FCHI 0,0740   0,4003 *** 0,5156 *** 4,4299 *** 

  (0,17)   (0,08)   (0,09)   (1,07)   

FTSE 0,0533   0,2538   0,6829   5,0026 *** 

  (0,32)   (1,11)   (0,84)   (0,81)   

FTSEMIB 0,0787 *** 0,3483 *** 0,5628 *** 3,7030 *** 

  (0,02)   (0,04)   (0,03)   (0,04)   

FTSTI 0,0758   0,3498 *** 0,5645 ** 6,5017 *** 

  (0,28)   (0,03)   (0,28)   (1,68)   

GDAXI 0,0706   0,2873   0,6414   3,4880 *** 

  (0,23)   (0,85)   (0,64)   (0,01)   

HSI 0,0629   0,3056   0,6210 * 4,8165 *** 

  (0,40)   (0,74)   (0,38)   (0,85)   

IBEX 0,0652   0,3586 *** 0,5758 *** 5,5601 *** 

  (0,15)   (0,09)   (0,05)   (0,21)   

IXIC 0,0836 *** 0,3450 *** 0,5612 *** 3,7332 *** 

  (0,02)   (0,04)   (0,03)   (0,18)   

KS11 0,0919   0,3258 *** 0,5721 *** 3,2768 *** 

  (0,08)   (0,09)   (0,02)   (0,07)   

MXX 0,0536 *** 0,3540 *** 0,5824 *** 6,4319 *** 

  (0,02)   (0,00)   (0,01)   (0,57)   

N225 0,0530   0,3137   0,6231 ** 5,1084 *** 

  (0,04)   (0,38)   (0,31)'   (1,04)   

NSEI 0,0571 *** 0,4625 *** 0,4704 *** 8,4672 *** 

  (0,01)   (0,13)   (0,16)   (0,83)   

RUT 0,0638   0,3195   0,6066   4,6912 *** 

  (0,34)   (0,46)   (0,82)   (0,96)   

SPX 0,0597   0,3469 ** 0,5835 *** 5,3043 *** 

  (0,12)   (0,16)   0(0,07)   (0,97)   

SSMI 0,0410 * 0,2667 *** 0,6823 *** 6,0040 *** 

  (0,05)   (0,15)   (0,08)   (2,10)   

STOXX 0,0699 * 0,4007 *** 0,5194 *** 4,1403 *** 

  (0,04)   (0,03)   (0,01)   (0,17)   

 

Table 4: vMEM parameters’ estimate. Coefficients (standard error in parenthesis) of the 

vMEM estimates. Stars are put in correspondence of small p-values: *(p-value<10%); **(p-

value< 5%); ***(p-value< 1%). Full period: January 03, 2000 to December,05 2017. Number 

of observations: 4683. 
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It might be noticed that the estimated coefficient values are within a similar range of 

variability, providing evidence that volatility dynamics have a certain degree of 

homogeneity. Moreover, for all the assets, the o? coefficients usually vary between 

0.25 and 0.35, which makes the dynamics more reactive to past realizations of the 

process than what is typically implied by GARCH (1,1) approach13. As the same time '? coefficients range between 0.50 and 0.70. Furthermore, vMEM evidences a high 

level of persistence, calculated as (o + '�, ranging between 0.8978 (KS11) and 0.95 

(AORD). Excluding BVSP, FTSE, GDAXI and RUT, for which all coefficient values 

are not significant, the most of all the other assets coefficient, the parameters are 

significant at 1% level. Additionally, Table 5 reports the Ljung Box p-values up to lag 

22, for each estimation process. As it can be easily noticed, autocorrelation still 

remains a problem for the baseline vMEM model. 

 
13 Even if we don’t report the GARCH(1,1) estimates, the results are available upon request. Moreover, 

for GARCH processes o?  are between 0.07and 0.10, while '? parameters are greater than those 

estimated by vMEM (they are in mean around 0.89) 



 

 

50

 

  

Ljung-

Box Lag 

1 

Ljung-

Box Lag 

5 

Ljung-

Box Lag 

10 

Ljung-

Box Lag 

22 

AEX 0,000 0,000 0,000 0,000 

AORD 0,014 0,000 0,000 0,000 

BVSP 0,000 0,000 0,000 0,000 

DJI 0,000 0,000 0,000 0,000 

FCHI 0,221 0,000 0,000 0,000 

FTSE 0,000 0,000 0,000 0,000 

FTSEMIB 0,001 0,000 0,000 0,000 

FTSTI 0,061 0,000 0,000 0,000 

GDAXI 0,000 0,000 0,000 0,000 

HSI 0,008 0,000 0,000 0,000 

IBEX 0,000 0,000 0,000 0,000 

IXIC 0,000 0,000 0,000 0,000 

KS11 0,000 0,000 0,000 0,000 

MXX 0,256 0,000 0,000 0,000 

N225 0,000 0,000 0,000 0,000 

NSEI 0,132 0,000 0,000 0,000 

RUT 0,000 0,000 0,000 0,000 

SPX 0,000 0,000 0,000 0,000 

SSMI 0,000 0,000 0,000 0,000 

STOXX 0,506 0,000 0,000 0,000 

     

     

Table 5: Ljung Box. Ljung Box p-values up to lag 22. Full period: January 03, 2000 to 

December,05 2017. Number of observations: 4683. 
 

Among the models presented in this chapter, the DCC-CAW-MEM represents the new 

parametrization that I introduced in the financial econometric literature. 

As mentioned before, this model combines three different elements: the high frequency 

data, through the multiplicative error model (MEM), the Wishart distribution (as a 

generalization of the multivariate gamma density function) and the Re-DCC of Engle 

(2012) for the dynamics of conditional volatility in the decomposition of variance-

covariance matrix.  

The results of the estimation are reported in Table 6.
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 ω  o  δ  ϑ  

AEX 0,0801 *** 0,1747 *** 0,6442 *** 5,8960 *** 

 (0,000)  (0,000)  (0,000)  (0,000)  
AORD 0,1515 *** 0,3681 *** 0,4067 *** 5,9106 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0010)  
BVSP 0,0943 *** 0,2258 *** 0,5668 *** 5,9804 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0001)  
DJI 0,0564 *** 0,3261 *** 0,4352 *** 6,0466 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0002)  
FCHI 0,0967 *** 0,2167 *** 0,5723 *** 6,0173 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
FTSE 0,1891 *** 0,2108 *** 0,5798 *** 6,0534 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
FTSEMIB 0,0797 *** 0,1869 *** 0,6269 *** 5,9527 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0005)  
FTSTI 0,1281 *** 0,0003 *** 0,6920 *** 5,8088 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0103)  
GDAXI 0,0876 *** 0,1748 *** 0,6333 *** 6,0341 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
HSI 0,0868 *** 0,1971 *** 0,6101 *** 5,9976 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
IBEX 0,2034 *** 0,2142 *** 0,5551 *** 5,9211 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0005)  
IXIC 0,0875 *** 0,0002 *** 0,7920 *** 7,5593 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
KS11 0,1161 *** 0,0000 *** 0,6930 *** 5,8022 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0003)  
MXX 0,0647 *** 0,3001 *** 0,4837 *** 5,8916 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
N225 0,0872 *** 0,1919 *** 0,6139 *** 5,9699 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
NSEI 0,0589 *** 0,3081 *** 0,5100 *** 5,9414 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
RUT 0,1174 *** 0,2293 *** 0,5732 *** 5,9191 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0002)  
SPX 0,1924 *** 0,2919 *** 0,4895 *** 6,0447 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
SSMI 0,1840 *** 0,1965 *** 0,5913 *** 6,0838 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  
STOXX 0,0000 *** 0,3019 *** 0,4444 *** 6,2602 *** 

 (0,0000)  (0,0000)  (0,0000)  (0,0000)  

   α  β    

   0,0287 *** 0,7253 ***   

   (0,0000)  (0,0000)    
 

Table 6: DCC-CAW-MEM parameters’ estimates. Coefficients (standard error in 

parenthesis) of the DCC-CAW-MEM estimates. Stars are put in correspondence of small p-

values: *(p-value<10%); **(p-value< 5%); ***(p-value< 1%). Full period: January 03, 2000 

to December,05 2017. Number of observations: 4683. 
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It is interesting to highlight that in comparison to the previous parametrization, there 

are some changes in the parameter values: both o?and '? values, in general, decrease, 

but there is a market gain in significance for all the coefficients estimated (they are all 

significant at 1% level). 

As can be easily noticed, the mean level of persistence (o + '� decreases and now it 

ranges between 0.70 (FTSTI) and 0.82 (AEX). Moreover, the estimation results into 

two additional parameters, referring to the DCC-type dynamic for conditional 

correlation, that are, respectively, 0.287 and 0.7253. Both are statistically significant 

at 1% level.  

Others three models have been estimated. 

As discussed before and as synthesized in Table 3, two different BEKK 

parametrizations have been adopted. The first one, the scalar ReBEKK, directly nested 

a BEKK-type recursion for modelling the series of realized variance covariance 

matrices ��, while the second formulation, the NpReBEKK split the estimation of this 

matrix into the estimation of the short run ��∗  matrix, modelled with a BEKK recursion, 

and the long run component L, through a one side smoother function.  

In the first case, the estimation results in 212 parameters, while for the second 

specification, even though I really do not know how many parameters the estimation 

procedure involves in the long run component, the estimation finally results in 3 

parameters: the smoother kernel and the usually correlation parameters. In the 

following Table 7 I briefly report only the main parameters associated to the models 

and their relative standard errors, but obviously the full parameter estimates are 

available upon request. 

 Kernel Correlation 

  α β 

ReBEKK  0.1344*** 0.8154*** 

  (0.0000) (0.0000) 

    

NpBEKK 0.0350 0.1059*** 0.7765*** 

  (0.0000) (0.0000) 

 

Table 7: BEKK parametrizations’ estimates. Coefficients (standard error in 

parenthesis) of the BEKK model. For realized BEKK we only report the correlation 

coefficients. For the Np-ReBEKK I report the one side Nadaraya-Watson kernel estimator 

and the correlation parameters. Stars are put in correspondence of small p-values: *(p-

value<10%); **(p-value< 5%); ***(p-value< 1%). Full period: January 03, 2000 to 

December,05 2017. Number of observations: 4683. 
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Finally, the other parametrization exploited in this thesis is the HAR-DCC model. As 

stated in Section 2.5, differently from the other parametrizations, for this model we 

decided to use a two-step estimation procedure. Thus, from the first step, the 

correlation parameters are estimated though a maximum likelihood approach14 , while 

the HAR parameters are consequently fitted on the standardized residuals obtained in 

the first step. Parameters are reported in Table 8. As it can be seen, all the parameter 

estimates are significant at 1% level.  

 
14 For the details of the estimation we refer to Engle (2002). 
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 ·¸  ·¹  ·º  ·»  

AEX 1,9783 *** 0,0619 *** 0,4163 *** 0,4583 *** 

 (0,0005)  (0,0005)  (0,0006)  (0,0006)  
AORD 2,3926 *** 0,1748 *** 0,2051 *** 0,5781 *** 

 (0,0003)  (0,0003)  (0,0003)  (0,0003)  
BVSP 1,0603 *** 0,1441 *** 0,1424 *** 0,6796 *** 

 (0,0004)  (0,0004)  (0,0005)  (0,0005)  
DJI 5,6878 *** 0,1757 *** 0,2888 *** 0,4335 *** 

 (0,0004)  (0,0004)  (0,0005)  (0,0006)  
FCHI 1,3927 *** -0,0452 *** 0,3834 *** 0,5707 *** 

 (0,0013)  (0,0013)  (0,0018)  (0,0020)  
FTSE 1,0387 *** -0,0259 *** 0,3905 *** 0,5494 *** 

 (0,0019)  (0,0019)  (0,0027)  (0,0024)  
FTSEMIB 0,9647 *** 0,0585 *** 0,2461 *** 0,5960 *** 

 (0,0022)  (0,0022)  (0,0028)  (0,0032)  
FTSTI 0,6903 *** 0,0791 *** 0,0616 *** 0,8227 *** 

 (0,0012)  (0,0012)  (00,0014)  (0,0016)  
GDAXI 0,9656 *** -0,0405 *** 1,2419 *** -0,2466 *** 

 (0,0003)  (0,0003)  (0,0003)  (0,0003)  
HSI 2,4508 *** 0,1932 *** 0,3937 *** 0,3876 *** 

 (0,0001)  (0,0001)  (0,0001)  (0,0001)  
IBEX 0,9161 *** 0,1208 *** 0,4199 *** 0,4368 *** 

 (0,0004)  (0,0004)  (0,0004)  (0,0004)  
IXIC 1,5946 *** 0,1585 *** 0,3785 *** 0,4088 *** 

 (0,0005)  (0,0005)  (0,0006)  (0,007)  
KS11 0,8653 *** 0,2828 *** 0,2352 *** 0,4601 *** 

 (0,0002)  (0,0002)  (0,0002)  (0,0002)  
MXX 1,5335 *** 0,2463 *** 0,2007 *** 0,5169 *** 

 (0,0004)  (0,0004)  (0,0004)  (0,0005)  
N225 1,0138 *** 0,1318 *** 0,3650 *** 0,4321 *** 

 (0,0013)  (0,0013)  (0,0017)  (0,0019)  
NSEI 0,6327 *** 0,0908 *** 0,5149 *** 0,3459 *** 

 (0,0013)  (0,0013)  (0,0015)  (0,0016)  
RUT 1,1981 *** 0,3621 *** 0,0316 *** 0,5359 *** 

 (0,0008)  (0,0008)  (0,0009)  (0,0011)  
SPX 1,1632 *** 0,2647 *** 0,2332 *** 0,4675 *** 

 (0,0004)  (0,0004)  (0,0005)  (0,0005)  
SSMI 1,6238 *** 0,1366 *** 0,6318 *** 0,1505 *** 

 (0,0005)  (0,0005)  (0,0006)  (0,0006)  
STOXX 1,0054 *** 0,0467 *** 0,3010 *** 0,4986 *** 

 (0,0025)  (0,0025)  (0,0036)  (0,0043)  

   α  β    

   0,0169***  0,9437***    

   (0,0000)  (0,0000)    
 

Table 8: HAR-DCC parameters’ estimates. Coefficients (standard error in parenthesis) 

of the HAR-DCC estimates. Stars are put in correspondence of small p-values: *(p-

value<10%); **(p-value< 5%); ***(p-value< 1%). Full period: January 03, 2000 to 

December,05 2017. Number of observations: 4683. 
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Furthermore, Table 9 reports the value of log-likelihoods for all the models whose 

estimation is based on the general log-likelihood function ∑ �u¢�|��| + �������t���9�:�  

enounced in Sections 2.3 and 2.6, that are the DCC-CAW-MEM, the ReBEKK and 

Np-ReBEKK. 

For the fully parametrical models I also report the AIC and the BIC values, that are 

not shown for the only one non parametric specification. This is due to the fact that in 

the information criteria computations, the penalty term is strictly related to the whole 

number of parameters estimated, but I do not know how much parameters the 

estimation of long run covariance matrix L has involved.  

 

Models Num. Pars. LogLik AIC BIC 

1)DCC-CAW-MEM 82 -42927 86018 86547 

2)ReBEKK 212 -43421 87265 88633 

3)Np-ReBEKK - -4026,2 - - 

     

 

Table 9: Log-likelihood and information criteria of multiplicative models. Only 

multiplicative models (parametric and non-parametric) are reported here. Maximized log-

likelihood values are reported in the second column. Information criteria are computed as 

follows:  AIC= -2*LogLik+2*Np and BIC= -2*LogLik+Np*log(T). LogLik is the 

loglikelihood value obtained through numerical optimization procedures, Np is the number of 

parameters and T is the number of observations. Full period: January 03, 2000 to December,05 

2017. Number of observations: 4683. 

 

Moreover, since the estimation procedure of vMEM is obtained through an equation 

by equation approach, so that I have to deal with n likelihoods, and because off the 

HAR-DCC model has been estimated through a two steps approach, for those models, 

the comparison is made through two classical loss-functions, MSE and MAE. 

Referring to Table 9, as it can be easily noticed, in the multiplicative parameter class, 

the maximum likelihood values are not comparable, since the parametrizations rely on 

a very different number of parameters, thus the only possible comparison is made 

through the information criteria. Whatever information criterion (AIC or BIC) is used, 

the DCC-CAW-MEM outperforms the ReBEKK model. 

Furthermore, Table 10 reports two specific loss functions values: the Mean Square 

Error (MSE) and the Mean Absolute Error (MAE).  

Hansen and Lunde (2006) proved that those functions are robust and allow an unbiased 

model ranking. Additionally, the use of MAE is due to the fact that, as suggested by 
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Andersen et al (1999), this criterion is more robust than RMSE, because less 

susceptible to outliers.  

 

  Models   MSE MAE 

1) vMEM   30,00 3,32 

2) DCC-CAW-MEM 106,45 7,68 

3) ReBEKK   207,52 10,68 

4) Np-ReBEKK 291,89 14,94 

5) HAR-DCC   2371,18 23,81 

 

Table 10: Full sample Loss Functions. Full sample performances in terms of the mean 

square errors and mean absolute errors of the model estimated. The specific loss functions are 

calculated as follows: $�� = ��� ∑ ¼?�99:�   and $#� = ��� ∑ |¼?|99:� , with ¼? forecasting 

error. Full period: January 03, 2000 to December,05 2017. Number of observations: 4683. 

 

On the basis of those criteria, among the multiplicative models, the DCC-CAW-MEM 

has the best performance (MSE= 106.45 and MAE= 7.68), even if the lowest values, 

in absolute terms, are achieved by the vMEM, but it is important to remember that in 

the specification adopted in this study, it has only diagonal parameter matrices, thus, 

differently from the other models, it does not take into account correlations among 

assets.
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3.3 Forecasting results 
 

To determine whether the better in-sample performances of the DCC-CAW-MEM 

goes along with forecasting gains, I performed an out-of-sample one step ahead 

prediction for each model.  

As mentioned in Section 3.1 I recursively estimated the parameters on the first 4161 

daily observations (that is using data from January 03, 2000 to December 04, 2015) 

and then used the remaining 522 observations as forecast sample.  

Afterward, I assessed the out-of-sample performance of the models through the Model 

Confidence Set (MCS) of Hansen and Lunde (2011), that allowed me to made a 

comparison without choosing a reference model. 

 

3.3.1 Model Confidence Set 

 

The Model Confidence Set (MCS) of Hansen and Lunde is one of the most popular 

way to assess the statistical predictive performances among different econometric 

models. Let M{ be the initial collection of models for which we compute the one-step 

ahead predictions. The MCS approach is based on an iterative procedure, that, at each 

evaluation step, combines an equivalent test '¾ and an elimination rule ¼¾. The 

equivalent test '¾ uses the relative performance variable k?0,� = £?,� − £0,�, defined as 

difference between loss values of alternative models, i and j, so that models are ranked 

in term of expected loss ϻ?0 ≡ �wk?0,�x, and the alternative i is preferred to the 

alternative j if ϻ?0 < 0. 

Accordingly to the MCS procedure, the equivalence test is applied to the set $ = $c 

and if kX?0 is rejected, it means that there is evidence that the objects in M are “not 

equally good” and the elimination rule is used to individuate the models with the 

poorest performance from M. this procedure, that is repeated until '¾ is not rejected, 

allow to individuate the set $∗ of surveying models.  Thus, at a given confidence level, 

chosen by the users, the MCS contains the single model or the set of models with better 
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forecasting performances. Moreover, as required by the procedure, the MCS procedure 

requires one or more loss measures. Regarding the choice of loss function, in order to 

guarantee a comparability with the in-sample performances of the models, I used the 

same loss functions previously selected: the Mean Square (Forecast) Error (MSE) and 

the Mean Absolute (Forecast) Error (MAE), and I computed the MCS at two 

confidence levels (75 % and 90%). Whatever is the confidence level used, the MCS 

approach only includes, in the final “better quality” models set, the DCC-CAW-MEM, 

that outperforms respect to its competitive multiplicative models (ReBEKK and Np-

ReBEKK) and to the baseline vMEM and the two-step HAR-DCC model. 

Moreover, for the multiplicative models that rely on the Wishart distribution 

assumption, the MCS has also been computed through the QLIKE loss function, 

computed as -£/¿� = �u¢�|��| + �������t���. As can be noticed from the p-values 

reported below, Table 11, in this case the Np-ReBEKK model outperforms compared 

to the DCC-CAW-MEM, but this is not surprising, since it separately models the long 

run covariance matrix, in a non-parametric way. 

  vMEM DCC-CAW-MEM ReBEKK Np-ReBEKK HAR-DCC 

 

  

PANEL A: 90% 

MCS         

MSE 0,000 1,000 0,000 0,000 0,000 

MAE 0,000 1,000 0,000 0,000 0,000 

QLIKE   0,012 0,000 1,000   

  

PANEL B: 75% 

MCS         

MSE 0,000 1,000 0,000 0,000 0,000 

MAE 0,000 1,000 0,000 0,000 0,000 

QLIKE   0,015 0,000 1,000   

            

      

Table 11: Forecasting Evaluation  

This Table reports the forecasting results, in terms p-values obtained from the MCS approach,  

based on different loss functions: the MSE, the MAE and the QLIKE.  
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These findings suggest to extend the DCC-CAW-MEM parametrization, separately 

modelling the secular variance covariance matrix, in a similar way already seen for the 

Np-ReBEKK model. 
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Conclusions 

 

The present thesis tries to contribute to the existing econometric literature, dealing with 

the estimation and the forecasts of variances, covariances and correlations.  

My work is heavily based on the most recent finding in financial econometric, and 

evidences the important role played by realized measures in developing more robust 

estimators and in stimulating the development of new models.  

To summarize, an initial part of the work is devoted to the presentation of basic 

volatility concepts and to the analysis of high frequency context, by introducing the 

realized measures and in particular, realized variance and realized covariance matrix 

estimators. They have been found to guarantee more precise results, especially when 

they are used together with models directly designed to deal with daily and intraday 

data, instead of the traditional GARCH class models.  

In view of this background, I introduced different model parametrizations that can be 

used in large dimensional systems, with tens of assets. I decided to consider some 

multiplicative models, based on the Wishart distribution, but with different structures, 

ranging from mean reverting models to others that are computationally intensive but 

more realistic, in large systems. Among the others (vMEM, ReBEKK, Np-ReBEKK 

and HAR-DCC), I introduced a new parametrization, the DCC-CAW-MEM, that is 

directly fitted on the daily series of realized variance covariance matrices, and both 

allow for a dynamic parametrization through the Engle’s ReDCC dynamic and 

incorporate as much information as possible through the multiplicative error model 

component.  

Obviously, the estimation of all the models has required the definition of several 

constraints, for ensuring the accuracy of the parameters and relative standard errors, 

without losses in efficiency of the obtained results. 

Main message here is that building a multivariate time series model requires an 

intensive effort and computational complexity has to been carefully considered. 

Thus, different econometric techniques have been considered in the model design 

(from the CholCov estimator of daily realized variance covariance matrix and the 

covariance targeting procedure, to the robust sandwich estimator and model 
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confidence set approach) and other computational tasks, most of which arising from 

numerical optimization techniques, have required different solutions.  

In conclusion, this model is will be improved and many others parametrizations could 

be introduced, but it was suitable for my goals.
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Appendix A 

a.1) Plots of Daily Log-Returns and 

Annualized Realized kernel volatility  
 

For brevity, in Chapter 3, when the dataset has been presented, in that Section I only 

reported the daily log-returns and annualized realized kernel volatility for the two 

assets that presented the lowest and the highest range of variability, given the full 

sample period, with all the 4683 observations. For completeness, in the following 

pages I report the same plot for all the assets included in the sample. 

a.2) Correlation Matrix 
 

This Appendix reports the correlation matrix among series. As stated in Chapter 3, 

even if the correlations coefficients among asset are high, the statistical significance is 

assessed only for KS11, MXX and NSEI indices. 
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a.1 ) Daily Log-Returns: plots 
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a.1) Annualized Realized Kernel Volatility: plots 
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a.2) Correlation matrix among financial times series. 
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Appendix B 

 

The Wishart distribution 

 

Intuitively, the Wishart distribution is the multivariate extension of the gamma 

distribution, although most econometricians use the Wishart as a matrix generalization 

of the Chi-Square distribution.  

More formally, for easy in notation, I define the multivariate Gamma function as: 

À1�Q �⁄ = À1�1��� `⁄ Á ÂT 2⁄ + �1 − ��2 Ã`
?:�  

Thus, considering  t~(1�z, T�, where v is the degrees of freedom parameter and   z 

denote a PSD matrix (in our context this is the variance covariance matrix from a 

multivariate normal distribution, then the Wishart distribution probability density 

function is designed as: 

|t|Q�1���  ¼�  Ä− 12 ���z��t�Å2Q1 �⁄ |z|Q �⁄ À1�Q �⁄ �  

 

Where |z| is the determinant of the matrix, tr is the trace (that is the sum of the diagonal 

element of the matrix). Note that v >n-1 is the condition for the invertibility of z.  

Moreover, since in the multivariate time series analysis, I often need to make inference 

about the inverse of covariance matrix, let’s think about the inverse of our matrix, 

defined as � = t��. In this case, if Æ=z�� , the inverse of Wishart will have this 

associated pdf: 

Ç��|Æ� = |Æ|Q �⁄ |�|�Q717� ��⁄ ¼� Ä− 12 ���Æ����Å2�Q1� �⁄ À1�Q ��⁄  

I refer to B as the inverted Wishart distribution. 
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Link with ÈÉ distribution 

If X1,…,Xn  are independent observation, the sum of independent square observations 

has a Chi square distribution with v degree of freedoms. 

When Xi are random vector rather than real valued variables, one possible way to 

generalize the above sum of squared observations is through the following quadratic 

form t = ∑ �?�?y1?:� . Essentially, this representation of S is often use for designing the 

basic Wishart distribution, when v is integer valued and this is equivalent to the 

Wishart generalization obtained through multivariate gamma distribution, when v is 

real valued.  

 

Invariance and decomposition of C 

The Wishart distribution has two relevant properties: it is invariant under 

marginalization (without changes in the degree s of freedom parameter), and it is 

invariant under transformation  t → #t′#.
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Overview of models  
 

Throughout the thesis several models are described. Here I briefly report their 

structure, and when necessary, I provide some further details. The notation used is the 

same as in the content of each chapter. 

 

The vector Multiplicative Error Model (vMEM) of Cipollini et al. (2012) 

The vMEM of Cipollini et al. (2012) is fitted on annualized realized kernel time series. 

It assumes a multiplicative structure, in the modelling of realized volatility RV. It’s 

described by the following equations: 

4�� = ϻ� ⊙ Ԑ� 

���ℎ Ԑ�|����~}�vv� ��, 1�� 

and conditional expectation 

ϻ� = � + 5�oH4���H + 'Hϻ��H��
H:�  

 

with  �, o �;k '  scalar parameters.  

 

 

DCC-CAW-MEM 

The DCC-CAW-MEM is the new parametrization, based on the Wishart distribution, 

a MEM univariate volatility framework and dynamic conditional correlations and 

covariances. It is directly fitted on the series of realized variance covariance matrices, 

computed through the CholCov estimator of Boudt (2016) applied on log-returns. It is 

defined through the following equations:    

t�|����  ̴ (1 �T , �� TS � ��t�|����� =  ��7��t�� = �� 
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�� =  ��4��� k���{�??,�} = S??,� = �? + o?4�??,��� + '?S??,��� -� = �̅�1 −   − ¡� +  t��� + ¡-��� 

�̅ = �ª�Ԑ���Ԑ���y � = ��� 5 Ԑ���Ԑ���y9
�:!  

4� = -�∗��/�-�-�∗��/�
 -�∗ =  {k��� �-��}  

Where �̅ is the sample covariance matrix of standardized residuals Ԑ obtained from 

MEM specification. Regularization of -� through 4�is needed to obtain a well-defined 

correlation matrix with unit elements on the diagonal.  

ReBEKK model  

The ReBEKK model is based on the multiplicative model of Hafner and Lindton 

(2010). This model is sufficiently described by the following equations: 

 

t�|����  ̴ (1 �T , �� TS � 

 ��t�|����� =  ��7��t�� = �� 

�� = �̅�1 −   − ¡� +  t��� + ¡���� 

Where   and ¡ are positive scalars and   + ¡ < 1.  

 

NpReBEKK model 

Differently from the previous BEKK parametrization, the NpReBEKK model relies 

on a decomposition of the variance covariance matrix though a long run component 

and short one. The first is modeled through the smooth one side kernel function of 

Nadaraya-Watson and the short run is modeled through a multiplicative scalar BEKK.  

t�|����  ̴ (1 �T , �� TS � 
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��t�|����� =  ��7��t�� = �� �� =  $���∗$�y 
£ =  $$y ��∗ = �1 −   − ¡�/1 +  t���∗ + ¡����∗  

 

where t�∗ = $���t��$����y and M is a {n(n+1)/2} lower triangular matrix of 

parameters so that L is a mean reverting constant covariance matrix. Moreover, the 

Nadaraya-Watson estimator is computed as: 

£��Í� = ∑ ¿. i�Í − Íj t�Î�:�∑ ¿. i�Í − ÍjÎ�:�  

With Í ∈ �0,1� , ¿.�. � = �1/ℎ�¿�./ℎ� and k(.) is the one side Gaussian kernel 

function, and h the optimal bandwidth parameter.  

 

HAR-DCC model 

The HAR-DCC model combines the estimation of a multivariate DCC model of Engle, 

fitted on realized kernel time series, from which the standardized residuals are 

computed and used to reconstruct the volatility series �� , inputs of the HAR-RV model 

of Corsi (2009). 

��7� = ¡{ + ¡g�� + ¡¬���­,� + ¡������,� + ®�7� 

With ® is a random error.
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