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Abstract 

 

Down syndrome (DS) is the leading cause of genetically-defined intellectual disability. 

Additionally, DS individuals often present with increased susceptibility to epileptic seizures and 

hyperactivity. Recently, several studies identified altered GABAergic activity through chloride-

permeable GABAA receptors as one of the main contributors to impaired cognitive performance 

in the Ts65Dn mouse model of DS. Data from adult Ts65Dn mice and DS individuals showed an 

increased expression of the chloride importer NKCC1. As a result, intracellular chloride 

concentration is higher in Ts65Dn mice and GABAergic responses are depolarizing (vs 

hyperpolarizing and inhibitory). Accordingly, treatment with the FDA-approved diuretic and 

NKCC1 inhibitor bumetanide during adulthood rescues inhibitory GABAergic transmission and 

cognitive deficits in DS mice, although the beneficial effect of the treatment is rapidly lost upon 

drug withdrawal. However, hyperactivity and susceptibility to seizures are not rescued by 

bumetanide treatment in adulthood. Here, we investigated the long-term effects of early-in-life 

genetic and pharmacological interventions targeting NKCC1 by neuron-specific AAV9-mediated 

NKCC1 knockdown and bumetanide treatment during the first 2 weeks of development, 

respectively. We found a rescue in long-term memory in two different memory tasks in adult 

Ts65Dn animals after both interventions. Additionally, early NKCC1 downregulation rescued 

short-term memory, susceptibility to seizures and hyperactivity phenotype in Ts65Dn mice in 

adulthood. Notably, both early-in-life genetic and pharmacological interventions rescued the 

increased GABA-mediated spiking events in acute brain slices from adult trisomic animals. 

Finally, since bumetanide treatment of human infants can lead to deafness, we assessed ototoxicity 

in adult WT and Ts65Dn mice treated early in development and found no significant deficits in 

acoustic startle-response. Our results suggest that time-specific interventions possibly impacting 

on the trajectories of the developing brain could rescue cognitive performance and deficits that are 

not rescued by treatment in adulthood, avoiding the adverse diuretic effects of the required chronic 

adult treatment with bumetanide. 
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Introduction 

 

The role of GABA in brain development 

 

The emergence and functional maturation of neuronal circuits during brain development involves 

three distinct yet partially overlapping phases: an early, innate activity-independent phase, a 

second, activity-dependent phase driven by spontaneous patterns of neuronal activity and finally 

an experience-dependent phase of neuronal activity driven by sensory experience (Figure 1). The 

first phase dictated by genetic cues and the second by spontaneous neuronal activity are essential 

for neuronal progenitor proliferation and differentiation. During these two phases newly born 

neurons mature morphologically and migrate to their final locations in the brain, establishing a 

first set of neuronal connections (Khazipov, Esclapez et al. 2001, Spitzer 2006). After the 

functional maturation of the sensory organs, the final stage begins, and neuronal activity driven by 

sensory experience from the external environment refines the initial coarse neuronal circuitry: a 

circuitry that undergoes many changes throughout life and it is never static (Feller 1999, Leighton 

and Lohmann 2016, Hadders-Algra 2018). 

 

 

Figure 1. The interplay between gene expression, electrical activity and environment. At the first step 

of the hardwiring of early development genes coding for channels, receptors and ligands are expressed. 
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Ligand binding and gap junctions drive first electrical activity through transient elevations of calcium. This 

electrical activity in turn regulates gene expression both directly and indirectly. During this loop 

environmental cues impact electrical activity by softwiring. Adapted from (Spitzer 2006). 

 

The first neurotransmitter to be functional in the developing neuronal networks is GABA (γ-

aminobutyric acid) (Khazipov, Esclapez et al. 2001, Ben-Ari 2014). GABA is mostly known as 

the main inhibitory neurotransmitter in the adult CNS. However, during development, its action is 

mostly depolarizing and excitatory. GABA is synthetized in the CNS of vertebrate organisms from 

L-glutamic acid by the L-glutamic decarboxylase (GAD). GAD is present in two isoforms, GAD65 

and GAD67 (Paoletti and Davison 1971, Buddhala, Hsu et al. 2009). GABA exerts its action by 

binding to two different families of receptors: the ionotropic GABAA receptors and the 

metabotropic GABAB receptors. The assembly of 5 different subunits out of a total of nineteen 

potential subunits (α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3) form heterogeneous GABAAR complexes, 

which are ligand-gated ion channels. Different subunit combinations confer different functional 

properties to GABAARs’. These properties relate to ionic gating dynamics, cellular localization, 

and physiological functions (Koduvayur, Gussin et al. 2014, Has and Chebib 2018). GABAAR 

functions are mediated by Cl- currents, as GABAARs are mostly permeable to chloride (Cl-). The 

combination of subunits comprising GABAARs determines the kinetics of the Cl- currents. Those 

can be a slow and tonic extra-synaptic current or a fast and phasic synaptic current. Tonic currents 

are generated when low concentrations of GABA escape the synaptic cleft and activate extra 

synaptic GABAARs, while phasic currents occur within the synaptic cleft, when GABA released 

in the synaptic cleft activates GABAARs on the postsynaptic membrane (Brickley, Cull-Candy et 

al. 1999, Farrant and Nusser 2005, Cellot and Cherubini 2013). Tonic (extrasynaptic) currents 

plays a major role in mediating network activity during early brain development (Brickley, Cull-

Candy et al. 1999, Farrant and Nusser 2005, Kilb, Kirischuk et al. 2013).  Finally, GABA also acts 

on metabotropic GABAB receptors that form heterodimers of two different subunits (GABAB1 and 

GABAB2) localized on both pre- and postsynaptic membranes and operate through G proteins 

mediating inhibition in the adult brain (Ben-Ari, Gaiarsa et al. 2007), while during development 

GABAB receptor, which lacks coupling to potassium channels, has been identified to promote 

neuronal migration and morphological maturation through non-hyperpolarizing signaling (Bony, 

Szczurkowska et al. 2013).  
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Based on its concentration gradient across the membrane and the neuronal membrane resting 

potential, chloride can flow through GABAA receptors in both directions. Thus, when there is a 

low chloride concentration inside the cell the direction of the flow is inward. This determines a 

hyperpolarizing/inhibitory currents, which physiologically occurs in the adult CNS due to the high 

expression of the Cl- exporter KCC2 (Figure 2). (Kaila, Price et al. 2014). Instead, during brain 

development, there is a high chloride concentration inside the cell. This high intracellular Cl- 

concentration is driven by the high expression of the Cl- importer NKCC1. The activation of the 

GABAAR determines a chloride efflux. This in turn leads to membrane depolarization, activation 

of voltage-gated calcium channels and removal of the Mg2+ block from NMDA receptors and 

calcium influx into the cell, causing further membrane depolarization (Kaila, Price et al. 2014). 

Interestingly, GABA exerts a central role in both the early stages of neurodevelopment, 

characterized by the organization of the CNS structure, and later, in the activity-dependent phase 

when the emerging network start to generate pattern of activity (Represa and Ben-Ari 2005). In 

the early stages of development, GABA exerts a trophic role in the development of neuronal 

networks by causing, calcium influx in the cell, which is vital for the activation of second 

messengers (i.e. calcium sensitive kinase (PKC) and calcium/calmodulin-dependent protein kinase 

II, CamKII), that take part in cell migration, differentiation and synapse formation (Noctor, Flint 

et al. 2001, Ben-Ari 2002, Takayama and Inoue 2010, Succol, Fiumelli et al. 2012, Cellot and 

Cherubini 2013, Ben-Ari 2014). Later in development, when the coarse circuit structure is built, 

GABA is responsible for the generation of the first pattern of activity able to create, maintain or 

remodel the network connections. Due to its depolarizing activity, it is able to generate 

spontaneous network bursts, network action potentials of various intervals and durations (Aguado, 

Carmona et al. 2003). This spontaneous activity is a key component of the developing brain, 

because of its fundamental role in orchestrating various developmental processes, from neurite 

elongation to migration and maturation of the neural network (Aguado, Carmona et al. 2003). 
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Figure 2. GABA exerts a depolarizing activity in immature neurons, while it has inhibitory action in 

adult. Left, High NKCC1 expression during development accumulates chloride inside the cells (30 mM), 

thus determining an outward direction of Cl- upon GABAA receptor activation and depolarization of the 

membrane. Right, In adult neurons, the developmental upregulation of KCC2 expression determines a low 

Cl- concentration (4-6 mM) inside the cell, thus an efflux of chloride and hyperpolarization of the 

membrane. Adapted from (Ben-Ari 2002). 

 

 

These early patterns of spontaneous neuronal activity are evolutionary conserved during 

development and have been described in several species including the rodent, chick, ferret, rabbit 

and turtle (Wong 1999, Khazipov, Esclapez et al. 2001, Aguado, Carmona et al. 2003). Moreover, 

evidence from primate fetuses report early patterns of synchronized hippocampal network activity 

in utero. Those are similar to the giant depolarizing potentials (GDPs) described in the neonatal 

rodent hippocampus. However, they are shifted toward the fetal life in primates (Khazipov, 

Esclapez et al. 2001). Evidence about the role of depolarizing GABA during these early patterns 

of neuronal activity in humans has not been investigated yet. However, the presence of early 

patterns of synchronized activity has been described in human preterm babies by EEG and fMRI 

(Khazipov and Luhmann 2006, Tolonen, Palva et al. 2007, Arichi, Whitehead et al. 2017). The 

only data available in humans, derive from in vitro studies with neurons differentiated from human 

pluripotent stem cells (iPSCs). In these cells, early patterns of synchronous network activity is 

based mainly on gap junctions and emerges when the strong depolarizing GABA activity decreases 
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(Moore, Zhou et al. 2011, Makinen, Yla-Outinen et al. 2018). Recently, data in brain organoids 

reported the presence of GDP-like events mimicking the early network activity of the fetal brain 

(Zafeiriou, Bao et al. 2020). Interestingly, around differentiation day 40 the polarity of GABA 

switches from excitatory to inhibitory in the brain organoids, which coincides with reduced GDPs 

(Zafeiriou, Bao et al. 2020). 

The switch in GABA polarity from depolarizing and mostly excitatory to hyperpolarizing and 

inhibitory coincides with the developmental upregulation of KCC2 and the disappearance of the 

network oscillations (Sernagor, Young et al. 2003, Leitch, Coaker et al. 2005). For at least some 

brain structures, that time coincides with the emergence of complex, region-specific behaviors 

(Dehorter, Vinay et al. 2012). Interestingly, this increase in KCC2 expression coincides with 

molecular changes in the composition of GABAAR subunits in the mature brain, which facilitates 

the refinement of inhibition (Kanold and Shatz 2006). 

Finally, during the last phase of the development of the neural circuits, GABAergic transmission 

plays a fundamental role during the so-called critical periods (Figure 2). These are temporal 

windows of enhanced neuronal connectivity and plasticity driven by experience-dependent activity 

during brain development (Berardi, Pizzorusso et al. 2000, Hensch 2004, Hensch and Fagiolini 

2005, Takesian and Hensch 2013, Begum and Sng 2017, Sommeijer, Ahmadlou et al. 2017, 

Hensch and Quinlan 2018, Zhang, Mu et al. 2018).  
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Figure 3. GABA regulates the opening and closure of critical periods. The onset and closure of the 

critical period for the most famous paradigm of monocular deprivation. The red circles indicate the onset, 

peak and end of the critical period. The blue arrow indicates that the onset of enhanced plasticity can be 

anticipated by enhancing GABA transmission, while the red arrow indicates that mediating reduction of 

GABA transmission prolongs the period of plasticity. Adapted from (Hensch 2005). 

 

 

Physiological brain development and the role of chloride transporters 

 

In recent years, the pivotal role that intracellular Cl- concentration exerts in modulating 

GABAergic transmission and consequently the mechanisms orchestrating brain development has 

drawn attention for its implication in neurodevelopmental disorders. For the cation-chloride 

cotransporter family (CCCs), in neuronal cells, two cotransporters are the main regulators of Cl- 

homeostasis: the sodium-potassium-chloride cotransporter isoform 1 (NKCC1) and the potassium-

chloride symporter isoform 2 (KCC2) (Li, Tornberg et al. 2002, Blaesse, Airaksinen et al. 2009).  

NKCC1 is highly expressed during development in immature neurons, where its inward-directed 

flow under physiological conditions keeps the intracellular chloride levels at high values (30mM). 

This leads to a depolarizing and mostly excitatory GABAergic activity during development 

(Dzhala, Talos et al. 2005, Achilles, Okabe et al. 2007). On the other hand, KCC2 is the only 

cotransporter from the CCC family which has solely neuronal expression. It is highly expressed in 
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mature neurons, where its outward-directed flow under physiological conditions keeps the 

intracellular chloride levels at low values (between 4-6 mM). This leads to hyperpolarizing and 

inhibitory GABA activity in the adult brain (Rivera, Voipio et al. 1999, Ben-Ari 2002, Stein, 

Hermans-Borgmeyer et al. 2004, Ben-Ari 2014, Delpire and Kahle 2017).  

 

GABA switch in brain structures follows a caudal to rostral direction  

 

Notably, the switch of GABAergic responses from depolarizing to hyperpolarizing during CNS 

development follows a caudal to rostral pattern, firstly occurring in evolutionarily older brain 

structures, which also develop firstly (e.g. spinal cord, brainstem), followed by higher structures 

(e.g. hypothalamus, thalamus and the neocortex) (Figure 4) (Watanabe and Fukuda 2015). 

Specifically, in the murine spinal cord, the mature pattern of low NKCC1 and high KCC2 

expression can be observed as early as E15.5, promoting the switch of GABA polarity in motor 

neurons from depolarizing to hyperpolarizing at E17.5. Of note, this switch is abolished in KCC2 

-/- motor neurons recorded at E18.5 confirming the important functional role of the two transporters 

(Hubner, Stein et al. 2001, Branchereau, Chapron et al. 2002, Delpy, Allain et al. 2008). 

Moving caudally, in the developing hypothalamus, the presence of NKCC1 mRNA expression is 

not clear in the rodent embryos, and weak postnatally. However, the protein levels peak in the 

perinatal days (around E20-P0) and gradually decrease by P11 (Wang, Shimizu-Okabe et al. 2002, 

Perrot-Sinal, Sinal et al. 2007). Conversely, at E14.5, KCC2 mRNA is strongly present and 

maintains its expression into adulthood in rodents, while the protein is detectable within the first 

week of life in rodents (Li, Tornberg et al. 2002, Wang, Shimizu-Okabe et al. 2002, Perrot-Sinal, 

Sinal et al. 2007).  

In the developing thalamus, NKCC1 mRNA is not present during embryonal life in rats but its 

expression increases and remains stable at postnatal ages (Wang, Shimizu-Okabe et al. 2002, 

Watanabe and Fukuda 2015). Conversely, KCC2 mRNA is already present in rodent dorsolateral 

nuclei of thalamus at the same time as the structure begins to form (E12) with the exception of the 

dorsomedial part, which expresses KCC2 later at E18 (Li, Tornberg et al. 2002, Wang, Shimizu-

Okabe et al. 2002, Watanabe and Fukuda 2015). 
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In the developing cerebellum, NKCC1 mRNA is not detected in Purkinje cells, but it is detected 

only in granule cells at any postnatal age studied in rats. Specifically, NKCC1 mRNA is observed 

in the external germinal layer and in granule cells at P7 reaching adult levels by P21 (Mikawa, 

Wang et al. 2002). Conversely, KCC2 transcripts are found at E15.5 in mouse and at P1 in rat 

Purkinje cells, when the cells begin differentiation (Mikawa, Wang et al. 2002). Moreover, KCC2 

mRNA is detectable already at P3 in mouse and at P7 in rat granule cells reaching adult levels by 

P21 similar to NKCC1 (Mikawa, Wang et al. 2002, Stein, Hermans-Borgmeyer et al. 2004). 

In the developing hippocampus, NKCC1 transcripts are substantially present in hippocampal 

formation neuroepithelium at E18 and later at P1 in pyramidal cells layer of CA1 and CA3 regions 

in rats (Wang, Shimizu-Okabe et al. 2002), reaching the highest levels within the first week of life 

and then gradually decreasing by P15 (Plotkin, Snyder et al. 1997, Wang, Shimizu-Okabe et al. 

2002, Pfeffer, Stein et al. 2009). Conversely, KCC2 mRNA transcripts are detected first in the 

CA3 region at E15.5 in mice. This is followed by transcript expression at the CA1 region at E18.5 

and the dentate gyrus by the end of the first postnatal week, finally reaching adult levels by P15 

(Stein, Hermans-Borgmeyer et al. 2004). In the same study, western blot analysis revealed 

considerable amounts of KCC2 protein perinatally in the mouse hippocampus (Figure 4) (Stein, 

Hermans-Borgmeyer et al. 2004).  

In the developing neocortex, NKCC1 mRNA is detected in mice as early as E12.5 in the niches of 

neuronal progenitor cells in the neuroepithelium and in the ventricular zone of the ganglionic 

eminences, where its expression increases by E14.5 (Li, Tornberg et al. 2002, Watanabe and 

Fukuda 2015). In rats, strong levels of NKCC1 mRNA and protein are reported in differentiated 

cells of the cortical plate (Li, Tornberg et al. 2002, Watanabe and Fukuda 2015). NKCC1 protein 

expression reaches high expression levels in the postnatal neocortex between P3-P14 (Dzhala, 

Talos et al. 2005). Interestingly, KCC2 mRNA signals are not detectable in the developing 

neocortex in mice before birth  (Figure 4) (Li, Tornberg et al. 2002, Wang, Shimizu-Okabe et al. 

2002), while KCC2 protein levels are low during the first two postnatal weeks and they steadily 

increase by P21 (Dzhala, Talos et al. 2005). 
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Figure 4. Developmental expression profiles of NKCC1 (left) and KCC2 (right) in the CNS. For the 

three time points studied (E18, P0, P14) and regions DLG: dorsal lateral geniculate nucleus; HP: 

hippocampus; VLP: ventral posterior thalamic nucleus. Colors indicate the level of expression of the two 

cotransports for NKCC1 (pink) and KCC2 (blue). Adapted from (Watanabe and Fukuda 2015). 

 

Finally, in the epithelial tissue of the developing brain only NKCC1 is expressed, while KCC2 

maintains its neuron-specific expression. Specifically, NKCC1 is highly expressed both in the 

developing and adult choroid plexus in rodents (Kanaka, Ohno et al. 2001, Li, Tornberg et al. 

2002). Recent data suggest a key role for NKCC1 in water transport and the formation of the 

cerebrospinal fluid (CSF) in the adult brain, where it exhibits an unusual outward transport 

direction (Steffensen, Oernbo et al. 2018). 

In the developing human brain (16 areas studied), studies report NKCC1 mRNA expression during 

the second trimester of gestation. NKCC1 increases with time and continues after birth (Hyde, 

Lipska et al. 2011, Sedmak, Jovanov-Milosevic et al. 2016). In particular, NKCC1 protein levels 

are high in the parietal cortex during the third trimester of gestation with a peak at post-

conceptional week (PCW) 35 and gradually decrease from the first year of life to adulthood 

(Dzhala, Talos et al. 2005). Notably, KCC2-immunoreactivity is observed as early as PCW16 in a 
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subset of subplate neurons (Bayatti, Moss et al. 2008) and later PCW 25 in the hippocampus and 

entorhinal cortex (Dzhala, Talos et al. 2005, Sedmak, Jovanov-Milosevic et al. 2016). This is in 

line with KCC2 mRNA levels that are detected in prefrontal cortex and the hippocampus during 

the second trimester of gestation and gradually increase after birth (Hyde, Lipska et al. 2011), 

while KCC2 protein also increases over the first year of life (Dzhala, Talos et al. 2005). 

Interestingly, the overall ratio of NKCC1 to KCC2 is very high in pediatric human brains, 

gradually decreasing to finally reach stable adult levels by the second year of life (Jansen, Peugh 

et al. 2010). 

 

The role of NKCC1 and KCC2 in the developmental processes 

 

NKCC1 and KCC2 as the main chloride cotransporters determine GABAergic signaling and play 

a fundamental role in participating and regulating all the complex processes of the dynamic 

developing brain. Their role in cell proliferation, migration, synapse formation and maturation has 

been studied extensively in the literature. 

 

NKCC1 regulates cell proliferation and apoptosis  

 
In the developing brain, high NKCC1 mRNA expression has been reported in radial glial cells and 

the proliferative zones of the lateral and medial ganglionic eminences at E14.5 in ex vivo rat 

studies. Interestingly, NKCC1 was not expressed in post-mitotic migrating or differentiating 

neurons (Noctor, Flint et al. 2001, Li, Tornberg et al. 2002). This NKCC1-enriched expression in 

the proliferative zone of the subcortical region (but its absence in post-mitotic neurons) suggests a 

possible role in cell proliferation. This is supported by studies in NKCC1 knockdown mice that 

exhibit defects in the proliferation of neural precursor cells of the sub-ventricular zone (SVZ) and 

the neural progenitors of the lateral ganglionic eminences (Young, Taylor et al. 2012, Magalhaes 

and Rivera 2016). Interestingly, pharmacological blocking of NKCC1 by bumetanide had the same 

effect in inhibiting cell proliferation of neuronal precursors in the SVZ and rostral migratory 

stream (RMS) in mice (Figure 5) (Sun, Yu et al. 2012). Moreover, studies using bumetanide have 

reported the role of NKCC1 in the regulation of cell cycle progression in mouse oligodendrocyte 
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precursor cells in vitro (Fu, Tang et al. 2015). NKCC1 has also been demonstrated to play a role 

in apoptosis of Cajal-Retzius neurons, a population of neurons that mostly disappears early-in-life 

in the mouse developing cortex (Blanquie, Liebmann et al. 2017).  

 

Figure 5. NKCC1 regulates proliferation in the SVZ and RMS precursors. Immunohistochemistry in 

slices of P18 mice for BrdU (red) and Hoechst staining for nuclei (green). (A) Precursors of the 

subventricular zone (SVZ) and (B) Precursors of the rostral migratory stream (RMS) in control condition 

or after incubation of bumetanide. (C) Quantification of BrdU-positive cells in control conditions and after 

bumetanide incubation. Adapted from (Sun, Yu et al. 2012). 

 

Both NKCC1 and KCC2 play a role in neuronal migration 

 

The depolarizing activity of GABAergic transmission in the developing neurons driven by the high 

expression of NKCC1 and intracellular chloride accumulation has been implicated in the migration 

of cortical neurons in the ventricular zone and the cortical plate in rats (Behar, Li et al. 1996, Behar, 

Schaffner et al. 1998, Shimizu-Okabe, Yokokura et al. 2002, Heck, Kilb et al. 2007). RNAi against 

NKCC1 and pharmacological blocking by bumetanide in vitro reduced migratory speed in 
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neuroblasts (Mejia-Gervacio, Murray et al. 2011). Indirect in vivo evidence supporting the role of 

NKCC1 in migration of newly-born neurons comes from a study, where authors demonstrate a 

disruption of cortical neuron morphology after NKCC1 knockdown by in utero electroporation in 

mice, without however investigating the migration of neurons (Wang and Kriegstein 2008). 

Notably, activation of GABAA receptor facilitated the migration of interneurons in the marginal 

zone (MZ) in an intracellular calcium-dependent manner. This process was slowed by bumetanide-

driven NKCC1 inhibition (Inada, Watanabe et al. 2011), demonstrating the role of NKCC1 in 

tangential migration. Moreover, several lines of evidence suggest that increased NKCC1 to KCC2 

ratio in cortical neurons in rodents underlies pathologies related to morphological abnormalities 

during brain development (such as micro-gyral cortical malformations and neuronal ectopy) 

(Shimizu-Okabe, Okabe et al. 2007, Koyama, Tao et al. 2012, Fukuda and Wang 2013). 

Interestingly, interventions targeting NKCC1 (RNAi-mediated NKCC1 knockdown and 

pharmacological inhibition by bumetanide) rescued aberrant migration of granule cells in the 

dentate gyrus (DG) in a rat model of febrile seizures (Koyama, Tao et al. 2012), and the tangential 

migration in an ethanol-induced interneuronopathy mouse model (Skorput, Lee et al. 2019).  

During the late stages of migration, when migrating precursors settle down and begin to develop 

their neurites, expression of KCC2 increases leading to a subsequent reduction in the intracellular 

chloride concentration (roughly from 30 mM to 10mM) (Owens, Boyce et al. 1996, Yamada, 

Okabe et al. 2004, Achilles, Okabe et al. 2007). Several lines of evidence suggest that KCC2 

mediates migration of interneurons at their final stage (Bortone and Polleux 2009), where its 

upregulation works as a stop signal both in vitro and in vivo in mice and in organotypic cultures 

from a ferret model of cortical dysplasia (Bortone and Polleux 2009, Miyoshi and Fishell 2011, 

Inamura, Kimura et al. 2012, Abbah and Juliano 2014). Interestingly, KCC2 expression was not 

found in the migratory interneurons but only after they settled in the cortical plate (Inada, 

Watanabe et al. 2011). This pattern of KCC2 expression has also been demonstrated in excitatory 

neurons in rats, where the cotransporter increases expression levels only after the neurons have 

completed their migration across different cortical layers (Cancedda, Fiumelli et al. 2007). 

Notably, overexpression of KCC2 in newly born excitatory cortical neurons by in utero 

electroporation did not affect their migration in rats (Cancedda, Fiumelli et al. 2007). This may 

possibly be because the depolarizing GABA signaling is preserved by taurine-mediated inhibition 

of KCC2, which is highly expressed at embryonic stages (Inoue, Furukawa et al. 2012). In line 
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with the results above, downregulation of KCC2 using the environmental toxin (BPA) and a KCC2 

antagonist rescues the abnormal features of neuronal migration observed after increase in KCC2 

levels in ferrets (Djankpa, Lischka et al. 2019). Recently, in a mouse model of intellectual 

disability related to loss-of-function of OPHN1 (Oligophrenin 1), interneuron migration was found 

to be impaired with lower number of cells reaching their final position. The impaired migration 

was due to an altered Cl- homeostasis driven by premature KCC2 upregulation, which was rescued 

by application of KCC2 blocker, VU0463271 (Maset, Galla et al. 2021). 

 

NKCC1 and KCC2 have a role in neuronal maturation  

 

Both NKCC1 and KCC2 play key roles in neuronal morphological maturation (neurite branching 

and maintenance,  inhibitory and excitatory synaptogenesis and plasticity of synapses) (Nakanishi, 

Yamada et al. 2007, Wang and Kriegstein 2008, Pfeffer, Stein et al. 2009, Khalilov, Chazal et al. 

2011, Kaila, Price et al. 2014, Sedmak, Jovanov-Milosevic et al. 2016). Specifically, NKCC1 

knockdown by in utero electroporation in mouse excitatory cortical neurons alters the 

physiological morphological parameters of dendritic arbors, spine density and spine length of both 

excitatory and inhibitory synapses (Wang and Kriegstein 2008, Young, Taylor et al. 2012). 

However, Pfeffer et al., reported no significant morphological alterations of hippocampal 

arborizations in NKCC1 -/- mice. Although, they found a delay in the maturation of GABAergic 

and glutamatergic synapses (Pfeffer, Stein et al. 2009). Moreover, pharmacological inhibition of 

NKCC1 disrupted AMPA synapse maturation, indicating that GABA depolarization cooperates 

with NMDA receptor activation to regulate excitatory synapse formation during mouse cortical 

development (Wang and Kriegstein 2011). Interestingly, NKCC1 expression has been found in the 

growing neurites and genetic and pharmacological interference with NKCC1 led to abolished 

outgrowth of the developing neurites in PC12 cells (Nakajima, Miyazaki et al. 2007, Nakajima 

and Marunaka 2016). Interestingly, NKCC1 participate in neurite regeneration of injured adult rat 

neurons in vivo (Pieraut, Laurent-Matha et al. 2007, Modol, Santos et al. 2015).  

KCC2 is expressed in the neuronal cell soma and dendrites, including dendritic spines. Increase of 

KCC2 expression correlates with synaptogenesis in the rat hippocampus (Gulyas, Sik et al. 2001). 

The role of KCC2 in synapse formation has been demonstrated in a series of studies. Premature 
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expression of KCC2 in a subpopulation of cortical progenitors by in utero electroporation in rats 

has a profound effect on morphological maturation, with decreased number and length of neurites 

(Figure 6) (Cancedda, Fiumelli et al. 2007) together with an increased number of dendritic spines 

(Fiumelli, Briner et al. 2013). The dual role of KCC2 in both dendritic growth and in spine 

maintenance could be the possible reason behind the seeming discrepancy after premature KCC2 

upregulation. Specifically, the role of KCC2 in dendritic growth requires GABA depolarizing 

signaling. Conversely, the structural role of KCC2 in dendritic spine formation is Cl- -independent. 

Indeed, transfection with the N-terminal-deleted KCC2 (which has no transporter activity) rescued 

the deficits induced by premature KCC2 overexpression (Fiumelli, Briner et al. 2013). As a 

molecular mechanism of this spinogenesis KCC2 demonstrated to directly interact with the 

cytosolic actin-associated protein 4.1N (Li, Khirug et al. 2007). Studies on KCC2 and excitatory 

synapses show that dendritic spine heads (the location of AMPA and NMDA receptor) are KCC2-

enriched (Chamma, Chevy et al. 2012, Blaesse and Schmidt 2015), and KCC2 has a role in 

constraining lateral diffusion of AMPA receptors, and in regulating their content at the spine 

(Gauvain, Chamma et al. 2011, Chevy, Heubl et al. 2015, Llano, Smirnov et al. 2015). In line with 

previous studies, KCC2 (-/-) mice show profound alterations in synaptic and neuronal network 

activity in the CA3 hippocampal region (Khalilov, Chazal et al. 2011). Finally, premature KCC2 

overexpression was also found in a rat model of atypical febrile seizure and reduction in its levels 

rescued the morphological alterations in spine density and the susceptibility to seizures phenotype 

(Awad, Sanon et al. 2016). In humans, a KCC2 variant has been found in an Australian family 

with febrile seizures with a reduction in the number of dendritic spine (Puskarjov, Seja et al. 2014). 

 

 

Figure 6. Premature KCC2 overexpression has a profound effect on morphological maturation. Two 

dimensional projection of dendrites of neurons in II/III layers of the cortex in rats (P6) electroporated in 

utero either with EGFP (left) or KCC2/EGFP (right). Adapted from (Cancedda, Fiumelli et al. 2007). 
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NKCC1 and KCC2 regulate critical periods in the developing brain  

 

Brain plasticity early-in-life is much higher than later in adulthood. The critical period for sensory 

system plasticity has been widely investigated in the visual system, starting from the pioneering 

study of Wiesel and Hubel in 1965 with one of the most famous experiments in neuroscience. They 

showed that monocular deprivation in kittens leads to permanent alterations in the brain 

organization and permanent loss of vision. On the other hand, in adult cats there is no such an 

effect. This proved the existence of critical periods in which the developing brain is highly 

susceptible to changes induced by sensory experience (Wiesel and Hubel 1965).  

In the case of the visual cortex, proper development of GABAergic transmission is crucial for both 

the opening and the closure of the critical period plasticity. Indeed, manipulation of inhibition, by 

prematurely enhancing or reducing GABAergic signaling during development controls the onset 

of the critical period plasticity in rodents (Huang, Kirkwood et al. 1999, Fagiolini and Hensch 

2000, Iwai, Fagiolini et al. 2003, Hensch 2004, Hensch and Fagiolini 2005). Notably, reducing 

GABAergic activity in adult animals reopens the critical period in the visual cortex (Harauzov, 

Spolidoro et al. 2010). More recently, Deidda and colleagues demonstrated that depolarizing 

GABAergic signaling during early postnatal brain development plays a key role in the duration of 

the critical period for visual cortical plasticity. In particular, they reported that pharmacological 

inhibition of NKCC1 with bumetanide from P3 until P8 in rats extended the duration of the critical 

period into young adulthood (P35) in bumetanide-treated rats, with a mechanism dependent on the 

neurotrophin BDNF (Figure 7) (Deidda, Allegra et al. 2015). 
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Figure 7. Early interference of depolarizing GABA prolongs critical period in the visual system by 

inducing changes in plasticity markers at P35. Visual cortex coronal sections from rats (P35) treated 

either with vehicle or bumetanide between P3-P8. Immunostaining for (from left to right) WFA-

perineuronal nets (red), parvalbumin interneurons (PV) (green), and double-positive. Arrows indicate 

parvalbumin interneurons not surrounded by PNNs. Adapted from (Deidda, Allegra et al. 2015). 

 

 

Expression and functional profiles of other CCC isoforms in the developing brain 

 

The NKCC family apart from NKCC1 contains also NKCC2 isoform. Epithelial cells of the 

ascending limb of loop of Henle in the kidney and the macula densa express high levels of NKCC2 

(Edwards, Castrop et al. 2014, Delpire and Gagnon 2018). There, NKCC2 isoform facilitates the 

reabsorption of sodium and chloride ions into the blood (Edwards, Castrop et al. 2014, Delpire and 

Gagnon 2018). Pharmacological agents blocking NKCC2 lead to excessive diuresis (including 

pronounced natriuresis and kaliuresis) (Becker, Nothwang et al. 2003, Gamba and Friedman 2009, 

Hannemann, Christie et al. 2009, Schiessl and Castrop 2015). Interestingly, loss-of-function 

mutation of NKCC2 gene results in Bartter’s syndrome, which is characterized by hypokalemic 

alkalosis, hyponatremia and hypotension (Simon, Karet et al. 1996). In humans, NKCC2 is 

strongly expressed in the epithelial layer of the endolymphatic sac of the inner ear (Kakigi, 

Nishimura et al. 2009). Recently, NKCC2 immunoreactivity was also reported in the brain in the 

posterior pituitary gland, specifically in the vasopressin and oxytocin-positive neurons in the 

hypothalamic-neurohypophyseal system in the rat brain (Konopacka, Qiu et al. 2015). In humans, 
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NKCC2 mRNA was not detected in any brain region studied (Sedmak, Jovanov-Milosevic et al. 

2016). 

Of the KCC family of Cl- extruders, four isoforms have been reported so far, KCC1, KCC2, KCC3 

and KCC4, and all of them are expressed in the developing brain (Li, Tornberg et al. 2002, Kaila, 

Price et al. 2014). KCC1 isoform is expressed in both neuronal and non-neuronal cells at relatively 

low levels, but it is highly enriched in epithelial cells, especially at the choroid plexus. There, 

KCC1 mRNA was exclusively detected during mouse brain development (Kanaka, Ohno et al. 

2001, Li, Tornberg et al. 2002). KCC1 mRNA levels have also been reported in neurons and glial 

cells in several regions (hippocampus, olfactory bulb, posterior hypothalamic nucleus) of the adult 

rat brain (Kanaka, Ohno et al. 2001). Interestingly, KCC1 has been found to negatively regulate 

the NGF-dependent neurite outgrowth in vitro in PC12 cells (Nagao, Nakajima et al. 2012). 

Outside the CNS, KCC1 has been found in bone, testis, ovary, and kidney (Garneau, Marcoux et 

al. 2017). In humans, KCC1 mRNA was first observed in the cerebellar cortex at embryonic stages 

(PCW 10–13) and also found in several other brain regions (hippocampus, striatum, and thalamus) 

at PCW 21 and birth (Sedmak, Jovanov-Milosevic et al. 2016). Nevertheless, KCC1 expression is 

relatively low in the human cortex (Kaila, Price et al. 2014). 

KCC3 isoform is widely expressed in the rodent CNS both in neurons and other cells throughout 

brain development, and its levels undergo a developmental increase (Pearson, Lu et al. 2001, 

Boettger, Hubner et al. 2002). Interestingly, two KCC3 isoforms show specific expression patterns, 

KCC3a is expressed in the brain, whereas KCC3b is restricted to tissues outside the CNS (Blaesse, 

Airaksinen et al. 2009). During brain development in rodents, KCC3 mRNA is weakly present 

during embryogenesis (Li, Tornberg et al. 2002), but both the mRNA and the protein are widely 

expressed in the adult brain (cortex, hippocampus, brainstem and cerebellar Purkinje neurons) 

(Pearson, Lu et al. 2001, Shekarabi, Salin-Cantegrel et al. 2011). Functionally, KCC3 has been 

implicated in myelination because of its expression in white matter-rich structures (spinal cord and 

peripheral nerves) (Pearson, Lu et al. 2001). Indeed, KCC3 -/- mice exhibit axonal swelling, 

hypomyelination, and demyelination in sciatic nerves (Howard, Mount et al. 2002, Byun and 

Delpire 2007). These deficits reported in rodents recapitulate most of the human peripheral 

neuropathy symptomatology (Bowerman, Salsac et al. 2017). In fact, loss-of-function mutations 

in KCC3 gene have been associated with Andermann syndrome, a human peripheral neuropathy 
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associated with agenesis of the corpus callosum characterized by severe sensorimotor neuropathy, 

locomotor abnormalities and areflexia (Howard, Mount et al. 2002, Uyanik, Elcioglu et al. 2006, 

Bowerman, Salsac et al. 2017). More recently, KCC3 was reported to contribute to cell volume 

regulation in mouse peripheral nerve fibers (Flores, Schornak et al. 2019). Along with KCC1, 

KCC3 has been found to be expressed outside the CNS in bone, testis, ovary, and kidney (Garneau, 

Marcoux et al. 2017). In humans, KCC3 mRNA was described in the cortex, cerebellum, 

hippocampus, amygdala, striatum, and thalamus in all the stages of development and adulthood 

with peak of expression during prenatal period and a developmental decrease in expression (age 

range: 5 PCW–82 years (Sedmak, Jovanov-Milosevic et al. 2016). 

KCC4 isoform undergoes developmental decrease in adult rodent brain. During embryonic mouse 

brain development, KCC4 is expressed in the choroid plexus, peripheral ganglia, and the nucleus 

of the trigeminal nerve and most abundantly in the ventricular zones (Li, Tornberg et al. 2002). In 

the adult CNS, KCC4 is present at low level in cranial nerves, brainstem and spinal cord 

(Karadsheh, Byun et al. 2004). The major phenotype of KCC4 (-/-) mice is deafness suggesting 

that the KCC isoform plays a role in cochlear development, along with NKCC1. KCC4 loss-of-

function leads to the cell death of hair cells possibly by osmotic perturbation or membrane 

depolarization (Boettger, Hubner et al. 2002). In humans, KCC4 mRNA was detected at low levels 

in the cortex both at prenatal and postnatal ages (Kaila, Price et al. 2014), but was not found in 

another study in any brain region studied (Sedmak, Jovanov-Milosevic et al. 2016).  

 

Chloride transporter dysregulation in neurodevelopmental disorders 

 

Neurodevelopmental disorders (NDs) are chronic psychiatric/neurological conditions that are 

present in up to 4–5% of the population (Mitchell, 2011). As already discussed above, the highly 

orchestrated brain developmental processes (proliferation, migration and cell fate specification) 

rely on an inextricable link between the genome and the environment (Esposito, Azhari et al. 

2018). In the developing brain these processes are not merely driven by predetermined genetic 

programs, but they also rely on phenotypic checkpoints. These are, for example, functional 

feedbacks on time-specific and region-specific developmental processes driven by the integration 

of genetic and environmental cues in the assembly of neuronal networks (Ben-Ari and Spitzer 
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2010). The recent advances in genomic and functional genomic analysis has resulted in the 

identification of hundreds of mutations that possibly predispose to the development of NDs 

(O'Donovan and Owen 2016, Tarlungeanu and Novarino 2018). Notably, in the majority of NDs, 

a combination of genetic predisposition and environmental factors acting on the first years of life 

in humans has been suggested to be the trigger for the development of the disease (Kim and 

Leventhal 2015, Mitchell 2015). Moreover, epigenetic modifications (e.g. histone deacetylation, 

DNA chromatin methylation and non-coding RNAs) constitute a link between the environment 

and the genetic code and can reversibly regulate gene expression with implications for 

neurodevelopmental disorders (Wade, Gegonne et al. 1999). In particular, the epigenetic patterning 

during brain development is considered of high importance for the imprinting and gene dosage 

regulation, and can thus induce long-lasting changes from molecular to behavioral level (Feng, 

Fouse et al. 2007, Murgatroyd, Patchev et al. 2009, Nagy and Turecki 2012, Yoon, Vissers et al. 

2018).  

Any deviations from the typical development of the nervous system that leads to clinical symptoms 

is considered a neurodevelopment disorder (ND) by definition. Neurodevelopmental disorders 

include genetic syndromic diseases, such as Rett syndrome, Down syndrome and Fragile X, and 

also multifactorial disorders such as non-syndromic autism spectrum disorders, intellectual 

disability, ADHD and epilepsy among others (Harris 2014, Ghiani and Faundez 2017, Tarlungeanu 

and Novarino 2018, Cardoso, Lopes-Marques et al. 2019). Interestingly, also neuropsychiatric 

disorders traditionally considered belong to adults such as schizophrenia, bipolar disorder and 

anxiety disorders are now considered neurodevelopmental disorders, having their origins in the 

developing brain (Leonardo and Hen 2008, Owen and O'Donovan 2017, Fleiss, Rivkees et al. 

2019). Although they display very different etiologies, the majority of NDs share common 

phenotypic features with mild to profound impairments in executive functions (learning deficits, 

memory, attention, emotional regulation, behavioral flexibility, sociability, and self-regulation) 

and some comorbidity (e.g., increased seizure susceptibility hyperactivity and sleep disorders, high 

levels of inflammation).  

Interestingly, many of these common phenotypic features have been attributed to alterations found 

in GABAergic transmission. In particular, several studies demonstrated a high intracellular 

chloride accumulation in neurons and a depolarizing GABAergic activity, attributed to an altered 
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NKCC1/KCC2 cotransporter ratio in a wide range of NDs. Those include epilepsy, autism 

spectrum disorders, Down syndrome, Fragile X syndrome, Asperger syndrome, Rett syndrome, 

schizophrenia, Dravet syndrome, tuberous sclerosis complex and traumatic brain injury (Medina, 

Friedel et al. 2014, Jaggi, Kaur et al. 2015, Wu, Che et al. 2016, Ben-Ari 2017, Schulte, Wierenga 

et al. 2018). 

The focus of both animal and clinical studies has been the restoration of physiological intracellular 

Cl- concentration by genetic or pharmacological interventions aiming at regulating NKCC1 and 

KCC2 expression/function. This has been mostly done with the pharmacological inhibition of 

NKCC1 with bumetanide (Medina, Friedel et al. 2014, Jaggi, Kaur et al. 2015, Ben-Ari 2017, 

Schulte, Wierenga et al. 2018). Other studies investigated restoration of physiological Cl- 

concentration by enhancing KCC2 transport, with the KCC2 activator CLP257 (Gagnon, Bergeron 

et al. 2013). However, the KCC2 selectivity of CLP257 has been debated as Cardarelli and 

colleagues argued that the mechanism of action is the potentiation of GABAA receptor activity and 

not KCC2 activation (Cardarelli, Jones et al. 2017). The hypothesis was rejected by Gagnon and 

colleagues by replicating their results, thus suggesting the need for further investigation (Gagnon, 

Bergeron et al. 2017). Finally, recent studies evaluate additional targets for restoration of the 

NKCC1/KCC2 expression/function for therapeutic purposes. In particular, the insulin-like growth 

factor-1 (IGF-1) reported to decrease the NKCC1/KCC2 ratio in the developing neurons in rats, 

facilitating in this way the developmental switch of GABA from depolarizing to hyperpolarizing 

(Baroncelli, Cenni et al. 2017). Moreover, the WNK-SPAK kinase is a potential therapeutic target 

regulating the two cotransporter ratio by activating NKCC1 and deactivating KCC2 (Kahle, 

Rinehart et al. 2010, de Los Heros, Alessi et al. 2014, Kahle, Khanna et al. 2015). 

 

Epilepsy 

 

Epilepsy is a neurological disorder characterized by the predisposition to generate spontaneous 

recurrent seizures with or without motor manifestation, and varying degrees of impaired 

awareness. Epileptic seizures are caused by excessive or hypersynchronous neuronal activity in 

the brain with focal or generalized onset. (Chang, Lowenstein et al. 2003, Falco-Walter, Scheffer 

et al. 2018). Evidence from studies both in rodent models of epilepsy and humans report CCC 
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dysfunction, suggesting that neuronal hyperexcitability and hypersynchronous neuronal activity is 

the result of an alteration of the balance between excitation to inhibition (E/I) synaptic activity 

(Woo, Lu et al. 2002, Huberfeld, Wittner et al. 2007). Interestingly, an imbalance in NKCC1 and 

KCC2 activity leading to depolarizing GABAergic activity has been observed in several animal 

models of epilepsy (Ben-Ari 2017, Di Cristo, Awad et al. 2018).   

The first studies investigating therapeutic interventions targeting restoration of physiological Cl- 

homeostasis found that inhibition of NKCC1 with either furosemide or bumetanide caused a cease 

in the epileptic activity both in vitro and in vivo in rats (Hochman, Baraban et al. 1995, 

Schwartzkroin, Baraban et al. 1998, Hochman, D'Ambrosio et al. 1999). Notably, bumetanide 

treatment rescued the increased susceptibility to seizures in the developing brain facilitated by the 

high NKCC1 expression both in vitro and in vivo in neonatal rats (Dzhala, Talos et al. 2005). 

Moreover, in the kindling-induced seizure model for rodents, NKCC1 was found to be increased 

in the amygdala in rats (Okabe, Ohno et al. 2002), and KCC2 downregulated in the hippocampi of 

mice (Rivera, Li et al. 2002). In line with the above studies, KCC2-deficient mice exhibit increased 

frequency of seizures (Woo, Lu et al. 2002). More recent works in rodent models of epilepsy 

confirm the role of an altered NKCC1/KCC2 ratio in the pathogenesis of epilepsy, with the use of 

bumetanide to be the most commonly used intervention with positive outcomes in a series of 

preclinical studies (Dzhala, Brumback et al. 2008, Li, Zhou et al. 2008, Mazarati, Shin et al. 2009, 

Nardou, Ben-Ari et al. 2009, Dzhala, Kuchibhotla et al. 2010, Edwards, Shah et al. 2010, Almeida, 

Scorza et al. 2011, Koyama, Tao et al. 2012, Cleary, Sun et al. 2013, Loscher, Puskarjov et al. 

2013, Reid, Riazi et al. 2013, Eftekhari, Mehrabi et al. 2014, MacKenzie and Maguire 2015, 

Marguet, Le-Schulte et al. 2015, Robel, Buckingham et al. 2015, Tollner, Brandt et al. 2015, Baek, 

Yi et al. 2016, MacKenzie, O'Toole et al. 2016, Sivakumaran and Maguire 2016, Zhang, Xu et al. 

2016, Hu, Yang et al. 2017, Santos, Rodrigues et al. 2017, Wang, Wang et al. 2017, Amadeo, 

Coatti et al. 2018, Kelley, Cardarelli et al. 2018, Kharod, Carter et al. 2018). Finally, in a mouse 

model of maternal immune activation during gestation resulted in changes of KCC2 levels in 

offspring, mediated by increased binding of the repressor factor RE1 subsequently leading to 

transcriptional downregulation of KCC2 and increasing the susceptibility to epileptic seizures 

(Corradini, Focchi et al. 2018). This evidence support the hypothesis that early-in-life 

environmental insults can also induce changes in GABAergic system leading to epilepsy. 
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Interestingly, evidence from human studies show an imbalance in the NKCC1/KCC2 ratio, with 

NKCC1 upregulation and/or KCC2 downregulation present in epilepsy patients. Upregulation of 

NKCC1 was found in hippocampus and subiculum of temporal lobe epilepsy and focal cortical 

dysplasia patients (Palma, Amici et al. 2006, Huberfeld, Wittner et al. 2007, Munoz, Mendez et al. 

2007, Sen, Martinian et al. 2007, Huberfeld, Blauwblomme et al. 2015). Altered expression of the 

NKCC1/KCC2 ratio has been reported also in cortical samples from epileptic children (Jansen, 

Peugh et al. 2010) and in rare forms of epilepsy (Aronica, Boer et al. 2007, Sen, Martinian et al. 

2007, Kim, Fenoglio et al. 2008, Conti, Palma et al. 2011, Shimizu-Okabe, Tanaka et al. 2011, 

Pallud, Le Van Quyen et al. 2014). Recently, increased NKCC1 and decreased KCC2 has been 

observed in human brain samples of people with Dravet syndrome, an infantile encephalopathy 

characterized by severe epilepsy and cognitive impairment (Ruffolo, Cifelli et al. 2018). 

Bumetanide has been used as a treatment in clinical studies to treat epilepsy, ameliorating seizure 

frequency in temporal lobe epileptic patients and in a child affected by intractable multifocal 

seizures (Kahle, Barnett et al. 2009, Eftekhari, Mehrabi et al. 2014). However, the NEMO clinical 

trial, investigating the efficacy and safety of the use of bumetanide for the treatment of acute 

neonatal encephalopathy seizures (Pressler, Boylan et al. 2015), was interrupted due to poor 

bumetanide antiepileptic action and ototoxic effect in 3 out of 11 treated subjects (Ben-Ari, Damier 

et al. 2016). More recently, a pilot clinical trial with bumetanide to treat neonatal seizures reported 

reduction in seizure burden attributable to bumetanide over phenobarbital without increased 

serious adverse effects (Soul, Bergin et al. 2020). Nevertheless, this positive correlation between 

pathogenesis of epilepsy and decreased KCC2 levels has raised controversy as some other groups 

showed increased KCC2 expression in epileptic brain tissue from both rodent models 

(Galanopoulou 2008, Khirug, Ahmad et al. 2010, Awad, Sanon et al. 2016) and humans (Jansen, 

Peugh et al. 2010, Karlocai, Wittner et al. 2016). The upregulation or downregulation of KCC2 

expression in epilepsy could be explained by a difference in the brain region studied, stage of 

disease, sex, or the influence of seizures themselves (Di Cristo, Awad et al. 2018). Indeed, KCC2 

as an extruder causes potassium elevation in the extracellular environment, which could contribute 

to the lowering of the threshold for the generation of the seizures and to the synchronization of the 

epileptiform discharges (Di Cristo, Awad et al. 2018).  
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Autism spectrum disorders  

 

Autism spectrum disorder (ASD) is a group of syndromes characterized by different etiologies but 

common core symptoms (i.e., repetitive behaviors, communication deficits in social interaction 

and language) (Pizzarelli and Cherubini 2011). Up to date, several risk factors for the development 

of ADS have been identified. However the specific etiology of ADSs is still poorly understood. 

The common core symptomatology suggests that some mechanisms driving ASD might be shared 

among different syndromes of the spectrum (e.g., Rett syndrome, Fragile X syndrome) (Percy 

2011, Moss, Richards et al. 2013, Kaufmann, Kidd et al. 2017). Moreover, ASD, as most 

neurodevelopmental disorders, share high comorbidity with other developmental syndromes such 

as increased susceptibility to epileptic seizures (Lewis, Kesler et al. 2018). 

ASD-related deficits develop often in utero or early-in-life (Stoner, Chow et al. 2014), a period 

when GABAergic signaling exerts a trophic role regulating the developmental processes. 

Interestingly, early evidence of altered GABAergic transmission underling ASD pathology, was 

reported when describing a paradoxical effect upon activation of GABAA with the benzodiazepine 

diazepam in autistic children (Marrosu, Marrosu et al. 1987). In particular, the authors reported 

anxiety and aggression in diazepam-treated autistic children, suggesting the presence of 

depolarizing GABAergic signaling in ASD (Marrosu, Marrosu et al. 1987). Following this 

evidence, preclinical studies in rodent models of ASD using valproic acid (VPA) treatment (in 

utero exposure to VPA is a risk factor for development of autism) reported downregulation of 

KCC2 and ASD-related behavioral deficits (Eftekhari, Mehrabi et al. 2014, Tyzio, Nardou et al. 

2014). Notably, KCC2 heterozygous knockout mice exhibit alterations in social behavior 

(Anacker, Moran et al. 2019). Interestingly, bumetanide administration in VPA-treated pregnant 

rats resulted in the rescue of ASD-related behavioral deficits in their offspring (Eftekhari, Mehrabi 

et al. 2014, Tyzio, Nardou et al. 2014). More recently, a preclinical study targeting NKCC1, with 

treatment of bumetanide or a novel NKCC1-selective inhibitor, both rescued the social deficits 

and repetitive behaviors in young adult autistic (VPA) mice (Savardi, Borgogno et al. 2020).  

Altered GABAergic transmission has also been identified as an underlying cause of ASD 

pathology in humans (Cellot and Cherubini 2013). Notably, a line of evidence in autistic patients 

reported that bumetanide treatment ameliorated the core symptoms of ASD, as assessed by the 

Childhood Autism Rating Scale (CARS). This suggests that bumetanide and interventions 
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targeting NKCC1 are promising for the treatment of ASD (Lemonnier and Ben-Ari 2010, 

Lemonnier, Degrez et al. 2012, Lemonnier, Villeneuve et al. 2017, Hadjikhani, Asberg Johnels et 

al. 2018). Moreover, bumetanide treatment of a young girl with Asperger syndrome, an autistic 

syndrome belonging to ASD, resulted in improvements of sensory deficits (Grandgeorge, 

Lemonnier et al. 2014). Notably, two Phase III clinical trials are ongoing investigating the safety 

and efficacy of oral Bumetanide treatment in children (2-7 years old) and adolescents (7-18 years 

old) with autism (NCT03715153 and NCT03715166 respectively). 

 

Rett syndrome 

 

Rett syndrome (RTT) is a neurodevelopmental disorder caused by intrauterine monogenic 

mutations in the X-linked Methyl-CpG-binding protein (MECP2) gene with a prevalence of 1 

female in 10,000–15,000 female live births (Ip, Mellios et al. 2018). Mecp2 is a transcriptional 

repressor that binds to methylated DNA and regulates the transcription of a large number of genes 

(Chahrour and Zoghbi 2007). Rett syndrome individuals develop typically until the age of 6–18 

months. However they then regress, exhibiting various symptoms (e.g., cognitive impairment, 

seizures, motor dysfunction, ASD-like symptoms and stereotypy among others (Ehinger, Matagne 

et al. 2018, Ip, Mellios et al. 2018). MeCP2 has been linked to GABAergic function, since its 

expression is approximately 50% higher in cortical GABAergic neurons compared to other types 

of neurons (Chao, Chen et al. 2010). Interestingly, in a MeCP2 mutant mouse model KCC2 was 

found reduced in the cortex (Banerjee, Rikhye et al. 2016). More recently, Lozovaya et al., showed 

that the developmental GABAergic shift is abolished at birth in CA3 pyramidal neurons of MeCP2 

mutant mice, and that two weeks later GABA exerts strong excitatory activity that was restored by 

maternal bumetanide treatment one day before delivery (Lozovaya, Nardou et al. 2019). 

Interestingly, Tang and colleagues identified small-molecule compounds (KEECs) that increase 

KCC2 protein expression levels by acting on different signaling pathways (activation of the 

TRPV1 or SIRT1 pathways or inhibition of the FLT3 or GSK3β). Administration of KEECs 

rescued electrophysiological and morphological abnormalities of RTT neurons and ameliorated 

behavioral phenotypes related to respiration and locomotion in Mecp2 mutant mice (Tang, Drotar 

et al. 2019).  
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Evidence indicating a possible alteration in the GABAergic signaling in RTT humans showed an 

imbalance of NKCC1/KCC2 with a reduction of KCC2 in the cerebrospinal fluid (CSF) obtained 

from RTT patients (Duarte, Armstrong et al. 2013). This has been supported by deficits found in 

KCC2 expression in human RTT patient stem cell-derived neurons (Tang, Kim et al. 2016). 

Interestingly, insulin-like growth factor-1 (IGF1) treatment has been a therapeutic strategy to 

ameliorate the severity of the syndrome both in RTT mouse models (Tropea, Giacometti et al. 

2009, Castro, Garcia et al. 2014, Banerjee, Rikhye et al. 2016) and in RTT patients (Khwaja, Ho 

et al. 2014, Pini, Congiu et al. 2016). 

 

Fragile X syndrome 

 

Fragile X syndrome (FXS) is a genetic disorder caused by intrauterine mutations in the X-linked 

FMR1 gene, which encodes for Fragile X mental retardation protein (FMRP). FMRP is a RNA-

binding protein that acts as regulator of the translation of several mRNAs. FXS is the leading cause 

of inherited intellectual disability and a significant genetic contributor to ASD (Hodges, Reynolds 

et al. 2019). The clinical manifestation of FXS includes cognitive deficits, autism-like behavior, 

hypersensitivity to sensory stimuli and comorbidity with epilepsy, which is relatively benign and 

often resolved beyond childhood (Hagerman and Stafstrom 2009, Morel, Peyroux et al. 2018). 

Altered GABAergic signaling has been implicated in the pathophysiology of FXS. For example, 

in FXS KO mice the developmental switch in GABA polarity from depolarizing to hyperpolarizing 

is delayed, due to increased expression of NKCC1 (He, Nomura et al. 2014). Interestingly, Tyzio 

and colleagues found KCC2 to be decreased in hippocampal slices from FXS mice at P15 and P30 

leading to elevated chloride levels. Maternal treatment with bumetanide one day before birth 

rescued the elevated excitability in CA3 neurons and the autism-like behavioral deficits in the 

Fmr1 KO mice (Tyzio, Nardou et al. 2014). More recently, bumetanide-treated FXS mice during 

the critical period of somatosensory cortex plasticity rescued GABAergic signaling and synaptic 

plasticity and caused a long-lasting rescue of somatosensory circuit function (He, Arroyo et al. 

2019). Conversely, Zeidler and colleagues found that treating FXS mice with bumetanide was 

insufficient to completely restore social impairment in the automated tube test. For that reason, 

they suggested a combination therapy of genetic reduction of mGluR5 expression along with 

bumetanide treatment, which in fact worsened social impairment (Zeidler, de Boer et al. 2017). In 
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humans, Lemonnier and colleagues treated a FXS child with bumetanide (Lemonnier, Robin et al. 

2013). Interestingly, bumetanide administration resulted in the amelioration all the 5 clinical tests 

performed to evaluate autistic core symptoms (Lemonnier, Robin et al. 2013). Additionally, two 

Phase III double-blind randomized clinical trials (childhood-adolescence and adolescence-

adulthood) targeting GABA signaling using arbaclofen, a GABAB agonists in autistic people 

(Berry-Kravis, Hagerman et al. 2017) did not succeed to demonstrate conclusive results on the 

efficacy of the treatment (Berry-Kravis, Lindemann et al. 2018). 

 

Schizophrenia  

 

Schizophrenia is a neurodevelopmental disorder, even if it is clinically diagnosed mostly in young 

adulthood. It is characterized by psychosis and a broad spectrum of behavioral, cognitive and 

social deficits, leading to disability and premature mortality (Lewis 2012, Marin 2016). The 

clinical symptomatology of schizophrenia can be divided into three categories: positive symptoms 

(e.g., hallucinations), negative symptoms (e.g., depression, avolition and apathy), and cognitive 

symptoms (Lewis 2012, Correll and Schooler 2020). The etiology of schizophrenia is yet mostly 

unknown, but it is considered a multifactorial disorder with both genetic and environmental 

contributors. Interestingly, changes in GABAergic neurotransmission have been reported in both 

rodent models and schizophrenic people (Gonzalez-Burgos and Lewis 2008, Hashimoto, Arion et 

al. 2008, Balu and Coyle 2011, Yang, Huang et al. 2015, Larimore, Zlatic et al. 2017). In particular, 

an altered NKCC1/KCC2 ratio was described in two different mouse models of schizophrenia 

(Yang, Huang et al. 2015, Larimore, Zlatic et al. 2017). Moreover, KCC2 mRNA expression was 

found to be significantly decreased in the hippocampus of schizophrenic people in comparison to 

controls, suggesting impaired Cl- homeostasis due to increased NKCC1/KCC2 ratio (Hyde, Lipska 

et al. 2011). Furthermore, mutations in SLC12A2 and SLC12A5 genes, encoding for NKCC1 and 

KCC2, respectively, have been reported to increase the risk for developing schizophrenia in 

humans (Potkin, Turner et al. 2009, Merner, Chandler et al. 2015, Merner, Mercado et al. 2016). 

Two kinases (OXSR1 and WNK3) that regulate NKCC1 and KCC2 activity was found to be 

increased in the prefrontal cortex in patients suggesting a shift in the balance of chloride that can 

alter GABAergic signaling (Arion and Lewis 2011). Of, note, in vitro data from DiGeorge 

Syndrome (a condition that is highly comorbid to schizophrenia), NKCC1/KCC2 imbalance 
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caused hyperexcitability of the network which was rescued by bumetanide (Amin, Marinaro et al. 

2017). 

In agreement with the NKCC1/KCC2 imbalance found in human studies, treatment with 

bumetanide reduced the severity of the symptoms and hallucinations in schizophrenic people  

(Lemonnier, Lazartigues et al. 2016, Rahmanzadeh, Eftekhari et al. 2017), without recovering the 

total score of the general positive and negative syndrome scale (PANSS) and the brief psychiatric 

rating scale (BPRS) (Rahmanzadeh, Shahbazi et al. 2017). Oxytocin (intranasal administration) 

has been extensively used in studies to reduce the severity of symptoms of schizophrenia (Feifel, 

Macdonald et al. 2010, Goldman, Gomes et al. 2011, Pedersen, Gibson et al. 2011, Feifel, 

Macdonald et al. 2012, Davis, Lee et al. 2013, Fischer-Shofty, Brune et al. 2013, Lee, Wehring et 

al. 2013, Modabbernia, Rezaei et al. 2013, Davis, Green et al. 2014, Gibson, Penn et al. 2014, 

Woolley, Chuang et al. 2014, Shin, Park et al. 2015, Brambilla, Cotelli et al. 2016, Woolley, 

Chuang et al. 2017, Ota, Yoshida et al. 2018, Halverson, Jarskog et al. 2019). Nevertheless, several 

other studies suggest no effect of oxytocin on severity of schizophrenia symptoms (Horta de 

Macedo, Zuardi et al. 2014, Cacciotti-Saija, Langdon et al. 2015, Dagani, Sisti et al. 2016, Jarskog, 

Pedersen et al. 2017). Considering the ability of oxytocin to regulate GABA signaling during labor 

and birth, further investigation is needed to understand the mechanism of oxytocin for its 

therapeutic effect and if it is related to chloride transporter expression/function (Tyzio, Cossart et 

al. 2006, Khazipov, Tyzio et al. 2008, Eftekhari, Shahrokhi et al. 2014, Tyzio, Nardou et al. 2014, 

Leonzino, Busnelli et al. 2016, Ben-Ari 2018). 

 

Tuberous sclerosis complex 

 

Tuberous sclerosis complex (TSC) is a multiorgan, autosomal dominant genetic disorder resulting 

from loss-of-function mutations in the TSC1 or TSC2 genes. TSC is characterized by structural 

brain abnormalities such as dysplastic lesions (van Slegtenhorst, de Hoogt et al. 1997, Crino, 

Nathanson et al. 2006). Moreover, the clinical manifestation of TSC includes profound 

neurological impairments and often presents early-in-life with focal epilepsy, autistic behaviors, 

intellectual disability and general developmental delay (Crino, Nathanson et al. 2006, Ess 2006). 

Interestingly, an increased NKCC1/KCC2 ratio was found in TSC extracts from cortical tubers, 
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suggesting a possible involvement of altered GABAergic signaling in the pathogenesis of TSC 

(Talos, Sun et al. 2012, Ruffolo, Iyer et al. 2016). Notably, an altered GABA reversal potential 

was described in Xenopus oocytes grafted with cortical tissue membranes from TSC people 

(Ruffolo, Iyer et al. 2016).  

 

Down syndrome 

 

Down syndrome (DS), is the most common chromosomal disorder and the leading genetic cause 

of intellectual disability and congenital birth defects. It is caused by the triplication of a full or part 

copy of human chromosome 21 (Hsa21) (Nadel 2003, Antonarakis and Epstein 2006, Parker, Mai 

et al. 2010). DS occurs in approximately 1 of 800 live births (Bull 2020). The majority of cases 

(96 %) are caused by meiotic nondisjunction occurring in the egg, while less often it is caused by 

chromosomal translocation (3-4 %) or mosaicism (1-2 %) (Bull 2020). DS people exhibit 

developmental defects and growth delay and phenotypic features affecting most systems (Nadel 

2003, Antonarakis and Epstein 2006, Antonarakis, Skotko et al. 2020). Individuals with DS are at 

high risk at developing multiple chronic conditions over their lifetime (i.e. congenital heart disease, 

hearing loss, overweight-obesity, sleep apnea) (Capone, Chicoine et al. 2018, Antonarakis, Skotko 

et al. 2020). Notably, almost all DS individuals manifest cognitive deficits to varying severity 

levels (Pennington, Moon et al. 2003, Dierssen 2012, Vicari, Pontillo et al. 2013, Grieco, Pulsifer 

et al. 2015). 

There are several mouse models recapitulating aspects of the human trisomy. Although they all 

have limitations, they have transformed basic research in DS (Aziz, Guedj et al. 2018, Antonarakis, 

Skotko et al. 2020). The Ts65Dn mouse is the best characterized and most widely used animal 

model for DS (Reeves, Irving et al. 1995). Ts65Dn mice are characterized by a partial trisomy of 

Mus musculus chromosome 16 (MMU16), which is syntenic to the long arm of human 

chromosome 21, fused to the centromere of the murine chromosome 17 (Davisson, Schmidt et al. 

1990, Antonarakis, Lyle et al. 2004). Interestingly, Ts65Dn mice recapitulate many features of DS 

phenotype, showing impairment in neuronal development (Belichenko, Masliah et al. 2004, 

Chakrabarti, Galdzicki et al. 2007, Contestabile, Fila et al. 2007, Chakrabarti, Best et al. 2010, 

Contestabile, Benfenati et al. 2010), defects of synaptic plasticity (Siarey, Stoll et al. 1997, Siarey, 
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Carlson et al. 1999, Kleschevnikov, Belichenko et al. 2004, Costa and Grybko 2005, Hanson, 

Blank et al. 2007, Contestabile, Greco et al. 2013), impaired hippocampus-dependent memory 

functions (Reeves, Irving et al. 1995, Holtzman, Santucci et al. 1996, Fernandez, Morishita et al. 

2007, Contestabile, Greco et al. 2013), hyperactivity (Escorihuela, Fernandez-Teruel et al. 1995, 

Reeves, Irving et al. 1995, Sago, Carlson et al. 2000) increased susceptibility to seizures 

(Westmark, Westmark et al. 2010, Deidda, Parrini et al. 2015) and sleep disorders (Stewart, 

Persinger et al. 2007, Colas, Valletta et al. 2008, Das, Medina et al. 2015).  

 

GABAergic transmission in Down syndrome 

 

A first main finding suggesting an altered GABAergic transmission in trisomic models was the 

presence of an imbalance between excitatory and inhibitory inputs in the hippocampus of Ts65Dn 

mouse (Hanson, Blank et al. 2007). The same year, treatment with GABAA antagonists was shown 

to recover cognitive impairments in the same mouse model (Fernandez, Morishita et al. 2007). 

Moreover, agonist of GABAA α5 can restore LTP and attenuate cognitive performance (Braudeau, 

Delatour et al. 2011). Interestingly, the alteration in GABAergic activity of DS mice is also 

supported by studies reporting an increased number of GABAergic interneurons in the cortex and 

hippocampus of adult and adolescent Ts65Dn mice (Chakrabarti, Best et al. 2010, Perez-

Cremades, Hernandez et al. 2010, Hernandez-Gonzalez, Ballestin et al. 2015). Interestingly, more 

recent in DS brain organoids and chimeric mouse brains studies have confirmed the increased 

interneuron production, due to upregulation of transcriptional regulators of interneurons mediated 

by increased OLIG2 expression (Xu, Brawner et al. 2019). Furthermore, an increase in 

spontaneous GABAergic postsynaptic events in CA1 pyramidal neurons was found in adult 

Ts65Dn mice. Nevertheless, no alterations were found in the frequency of mIPSCs or the 

probability of GABA release at the synapses (Chakrabarti, Best et al. 2010, Best, Cramer et al. 

2012). Interestingly, further investigations revealed no alterations in the density GABAergic 

terminals and synapses of the CA1 region in adult Ts65Dn mice, but only on their distribution 

(Kurt, Davies et al. 2000, Belichenko, Masliah et al. 2004, Kurt, Kafa et al. 2004, Belichenko, 

Kleschevnikov et al. 2009). Conversely, Mitra and colleagues found increased frequency of 

mIPSC in the CA1 region of 2 weeks old Ts65Dn mice (Mitra, Blank et al. 2012), whereas other 

studies reported decrease of spontaneous inhibitory currents in the CA3 region of Ts65Dn mice 
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(Hanson, Blank et al. 2007, Stagni, Magistretti et al. 2013). Moreover, in the adult Ts65Dn dentate 

gyrus (DG) mIPSC were found to be increased (Kleschevnikov, Belichenko et al. 2004, 

Kleschevnikov, Belichenko et al. 2012), along with increased GABAergic synaptic density in the 

inner molecular layer and granular layer of adult Ts65Dn mice (Martinez-Cue, Martinez et al. 

2013, Garcia-Cerro, Martinez et al. 2014, Mojabi, Fahimi et al. 2016), while the cerebellar granule 

cells showed increased excitability and decreased tonic inhibition (Usowicz and Garden 2012, 

Szemes, Davies et al. 2013). An explanation for these seemingly contrasting results could be the 

parameters for the analysis, the sex of the animals, the age or the sub-region studied. Of note, the 

KCNJ6 gene, encoding for the GIRK channel subunit 2 (GIRK2), is triplicated in Ts65Dn mice 

leading to mRNA and protein upregulation in hippocampus, cortex and midbrain (Harashima, 

Jacobowitz et al. 2006). 

Studies on DS human brains report reduced brain size and decreased number of neurons due to 

overall deficits in neurogenesis during development (Contestabile, Fila et al. 2007, Guidi, 

Bonasoni et al. 2008). Histological studies revealed decreased number of parvalbumin and 

calbindin positive cells in the frontal and temporal cortex of DS humans (Kobayashi, Emson et al. 

1990). Additionally, gene expression analysis of cortical neuronal progenitors obtained from DS 

humans revealed a decrease in the GABAergic neuron proliferation and changes in the expression 

of GABAA receptor subunits (increased GABAAα2 and downregulation of the GABAAα3 and 

α5) (Bhattacharyya, McMillan et al. 2009). Interestingly, DS people-derived iPSCs show deficits 

of GABAergic neurons (smaller size, processes and altered migratory pathways) (Huo, Qu et al. 

2018), in line with the previous reports (Bhattacharyya, McMillan et al. 2009). Overall, the data 

from the human studies do not seem to support the data derived from preclinical studies showering 

increased GABA-mediated transmission due to increased number of GABAergic interneurons 

(Contestabile, Magara et al. 2017). On the other hand, DS humans and DS animal models show an 

increased susceptibility to seizures, hyperactivity and anxiety pointing to excess excitation rather 

than inhibition in DS (Pueschel, Bernier et al. 1991, Stafstrom, Patxot et al. 1991, Escorihuela, 

Fernandez-Teruel et al. 1995, Reeves, Irving et al. 1995, Goldberg-Stern, Strawsburg et al. 2001, 

Lott and Dierssen 2010, Westmark, Westmark et al. 2010, Lott 2012, Moss, Richards et al. 2013, 

Vicari, Pontillo et al. 2013, Deidda, Parrini et al. 2015, Robertson, Hatton et al. 2015, Dekker, 

Sacco et al. 2018). 
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Interestingly, DS mice, recapitulate the impairments in cognitive performance characteristic of DS 

individuals. This has been demonstrated by investigating the molecular substrates underlying 

learning. For example, altered synaptic plasticity (both LTP and LTD) in hippocampal slices 

(Siarey, Stoll et al. 1997, Kleschevnikov, Belichenko et al. 2004, Costa and Grybko 2005, 

Belichenko, Kleschevnikov et al. 2007, Fernandez, Morishita et al. 2007, Kleschevnikov, 

Belichenko et al. 2012, Belichenko, Kleschevnikov et al. 2015, Deidda, Parrini et al. 2015) was 

described in DS mice. Given the evidence suggesting a role of altered GABAergic signaling in the 

cognitive deficits and abnormalities in synaptic plasticity observed in Ts65Dn mice, several studies 

have evaluated GABAA receptors as a possible therapeutic target to rescue GABAergic activity 

and cognitive impairment in DS. A growing body of studies consistently reported that inhibition 

of GABAA receptors targeting several subunits rescued LTP and hippocampal-dependent 

cognitive abilities in Ts65Dn mice (Fernandez, Morishita et al. 2007, Rueda, Florez et al. 2008, 

Braudeau, Dauphinot et al. 2011, Braudeau, Delatour et al. 2011, Martinez-Cue, Martinez et al. 

2013, Potier, Braudeau et al. 2014). Of note, fluoxetine treatment and environmental enrichment, 

both reported to reduce GABAergic signaling, rescued plasticity and cognitive abilities in Ts65Dn 

mice (Martinez-Cue, Baamonde et al. 2002, Martinez-Cue, Rueda et al. 2005, Sale, Maya 

Vetencourt et al. 2007, Maya Vetencourt, Sale et al. 2008, Baroncelli, Sale et al. 2010, Begenisic, 

Spolidoro et al. 2011, Mendez, Pazienti et al. 2012, Caiati and Cherubini 2013, Begenisic, 

Baroncelli et al. 2014, Begenisic, Sansevero et al. 2015). The evidence from animal models and 

human studies support the hypothesis of a causal link between the altered GABAergic 

transmission, impaired synaptic plasticity and cognitive deficits in DS, highlighting GABAergic 

signaling as a promising therapeutic target in DS.  

 

Depolarizing GABAAR signaling in Down syndrome and the role of NKCC1  

 

In 2015, Deidda and colleagues proposed a new link between GABAAR signaling and cognitive 

impairments in DS (Deidda, Parrini et al. 2015). Specifically, they found that defective 

GABAergic activity was mediated by an increased expression of NKCC1 protein in the whole 

hippocampus (and the CA3-CA1 analyzed separately) and cortex of adult Ts65Dn mice compared 

to WT animals, without an upregulation of NKCC1 mRNA. This suggested that possibly post-

translational modifications underlie NKCC1 protein upregulation. The finding from the animal 



37 | 
 

model was supported by biochemical analysis of adult human DS hippocampi, revealing an 

upregulation of NKCC1 also in DS human. Notably, KCC2 protein levels were found unaltered 

both in Ts65Dn mice and human tissue. 

 

 

 

Figure 8. GABA exerts a depolarizing activity in adult Ts65Dn neurons Left, in adult Ts65Dn neurons 

high NKCC1 expression leads to accumulation of intracellular chloride and upon GABAA receptor 

activation depolarization and excitation. Right, in the adult WT neurons the physiological concentration of 

chloride in the cell determines a hyperpolarization of the membrane upon GABAAR activation. Adapted 

from (Ben-Ari 2002). 

 

Given the upregulation of NKCC1 that could lead to changes in the polarity of GABAAR signaling, 

the authors investigated GABAergic transmission in adult Ts65Dn mice. In these animals, they 

found that GABAergic transmission was depolarizing and mostly excitatory rather than 

hyperpolarizing and inhibitory (Figure 8) (Deidda, Parrini et al. 2015). In particular, they reported 

the presence of increased GABA-mediated spiking events in the CA1 hippocampal pyramidal 

neurons in response to exogenous GABA in adult Ts65Dn slices. Accordingly, bath application 

with bicuculline, an antagonist of GABAA receptors to block endogenous GABAA signaling 

decreased spiking frequency in Ts65Dn neurons. 
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Deidda and colleagues used the gramicidin-perforated technique for whole-cell recordings, which 

preserves the endogenous intracellular Cl- concentration. They found that the reversal potential of 

GABA-induced currents (ECl-) of adult Ts65Dn CA1 pyramidal neurons was shifted to more 

positive values in comparison to the WT neurons (Figure 8). Specifically, Ts65Dn neurons 

exhibited a more positive ECl- (-58mV) compared to WT neurons (-66mV) with a resting potential 

of -62mV. This would predict an outward Cl- current mediating depolarization in Ts65Dn neuron, 

and an inward Cl- current mediating hyperpolarization in WT neurons upon GABAAR activation. 

The authors confirmed these results demonstrating increased resting [Cl-]i in Ts65Dn neurons of 

the CA1 region by using two-photon imaging with a chloride-sensitive dye. The use of gramicidin 

perforated patch-clamp was an important step in determining changes in the reversal potential ECl-

. In fact, a study using whole-cell patch-clamp recordings reported no differences in ECl- in 

Ts65Dn mice, possibly due to dilution of the intracellular chloride concentration from the pipette 

solution (Kleschevnikov, Belichenko et al. 2012). 

 

Bumetanide treatment rescues functional and behavioral deficits in Ts65Dn mice 

 

Considering that the increased expression of NKCC1 leads to depolarizing GABAergic 

transmission and impaired synaptic plasticity in Ts65Dn mice, Deidda and colleagues investigated 

the pharmacological inhibition of NKCC1 by bumetanide as a potential therapeutic strategy for 

the cognitive deficits in Ts65Dn animals. Interestingly, bumetanide restored the hyperpolarizing 

and inhibitory GABAergic signaling in acute hippocampal slices of adult Ts65Dn mice (Deidda, 

Parrini et al. 2015). Specifically, bath application of bumetanide was able to rescue the altered 

ECl- and decreased the GABA-induced spiking events, with no significant phenotype of 

bumetanide application in WT slices. This suggested that the shift of ECl- in adult Ts65Dn mice 

was responsible for the depolarizing GABAAR activity. Moreover, bumetanide bath application 

restored the impaired CA1-CA3 LTP in acute brain sliced from adult Ts65Dn mice, with no effect 

on the LTP found in WT animals (Deidda, Parrini et al. 2015).  

Given the evidence in slices the authors proceeded with the in vivo evaluation of intraperitoneal 

bumetanide treatment in WT and Ts65Dn adult animals. All the three bumetanide treatment 

strategies investigated (acute, sub-chronic-1 week or chronic-4 weeks) rescued hippocampus-
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dependent learning and memory deficits in Ts65Dn animals in three independent behavioral tests 

(object recognition test, object location test and contextual fear conditioning task) all assessing 

long-term memory in rodents (Figure 9) (Deidda, Parrini et al. 2015).  

 

 

 

Figure 9. Bumetanide treatment of adult Ts65Dn animals rescues long-term hippocampus-dependent 

memory deficits. Top, from left to right: Schematic representation of the contractual fear conditioning task, 

object location task, novel object recognition task. Bottom, from left to right: Quantification of the 

performance after acute bumetanide treatment in the contractual fear conditioning task, object location task, 

novel object recognition task. Adapted from (Deidda, Parrini et al. 2015). 

 

Recently, Savardi and colleagues demonstrated that a newly synthetized compound selectively 

inhibiting NKCC1 over NKCC2 (avoiding in this way the diuretic effect of bumetanide) is able to 

restore the physiological intracellular Cl- in Ts65Dn neuronal cultures. Moreover, in vivo testing 

of the NKCC1-selective inhibitor rescued poor short-term and long-term memory in young adult 

Ts65Dn mice as assessed by T-maze, novel object recognition, object location and contextual fear 

conditioning task (Savardi, Borgogno et al. 2020). Of note, the new NKCC1-selective inhibitor 

did not reveal any off-targets in in vitro assays and no overt toxic effects were reported in treated 

animals. These evidence support therapeutic interventions targeting NKCC1 in DS. 
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Neurodevelopment is dictated by timing and specificity 

 

The pioneering work of Wiesel and Hubel in 1965 (Wiesel and Hubel 1965) opened the way for a 

new branch of neuroscience investigating the importance of the timing in the development of the 

brain. The brain is developing in tightly regulated and temporally precise manner. In particular, 

the assembly of neuronal networks is accomplished by functional feedbacks on time-specific and 

region-specific developmental processes (Ben-Ari and Spitzer 2010). In the dynamic process of 

brain development, any time-specific perturbation in the acquisition of the functional neuronal 

properties that leads to a delay or the failure in the maturation of a given developmental stage can 

thus leave a pre-symptomatic signature for the development of a neurodevelopmental disorder that 

might be diagnosed only later in life (Figure 10) (Ben-Ari and Spitzer 2010). Perturbations during 

brain development can include innate insults (e.g., gene mutations) or environmental insults (e.g. 

inflammation, early-life-stress, toxins) and might lead to very different functional phenotypic 

changes, depending on the time or the signaling network that they disrupt (Ben-Ari and Spitzer 

2010, Cristino, Williams et al. 2014, Marguet, Le-Schulte et al. 2015, O'Donovan and Owen 2016, 

Wallace 2016).  

Regardless of the underlying cause for the development of an ND, the early onset and the 

developmental delays in reaching functional milestones are common across syndromic and non- 

syndromic conditions (Meredith 2015). Emerging data indicate that many neurodevelopmental 

disorders arise from the alteration of normal developmental trajectories (Marin 2016, Del Pino, 

Rico et al. 2018, Chorna, Cioni et al. 2020). This is the case also for NDs that are clinically 

diagnosed when manifest behaviorally years after the first brain alterations, as in the case of 

schizophrenia (Marin 2016). Interestingly, data deriving from epidemiological, genetic, 

epigenetic, proteomic and clinical studies suggest the presence of a critical window during brain 

development for the establishment of either risk or resilience to adult neuropsychiatric disorders 

(Levitt and Veenstra-VanderWeele 2015). The behavioral manifestation can be further 

complicated if initial functional changes trigger compensatory mechanisms affecting further 

developmental processes and structures (Krol and Feng 2018). Future investigations should focus 

extensively on the brain alterations induced by innate or environmental insults that occur during 

the dynamic brain development linking the gap between time/brain region and ND 

symptomatology. The very existence of these critical windows of brain susceptibility might be a 
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good starting point for the understanding of the overlapping clinical features present in many 

neurodevelopmental disorders (Chisholm, Lin et al. 2015, Ghiani and Faundez 2017). For 

example, mild to severe intellectual disability, language and social communication deficits, 

repetitive behavior, epilepsy and hyperactivity are commonly present in many NDs (Owen 2012, 

Harris 2014).    

 

 

Figure 10. Critical periods across brain regions and the sequential disruption in NDs. (A) 

Representation of the evolutionary caudal to rostral maturation for each brain region (brainstem, thalamus, 

cortex), where functional monosynaptic connections form from one region to the next one. (B) The full line 

represents the neurotypical opening and closure for the critical period of plasticity for each region. The 

dashed line represents aberrant development potentially due to a delay. Phenotype refers to any kind of 

structural and functional changes that differ between neurotypical and aberrant profiles due to timing. 

Adapted from (Meredith 2015).  

 

 

Timing is an important parameter for the effectiveness of therapeutic interventions in NDs 

 

Pathological development is a dynamic process demanding personalized interventions with 

implementation onset  as early as possible (Lazaratou, Economou et al. 2017). It is increasingly 

evident that the greater level of brain plasticity during critical periods provides an opportunity for 
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better and long-lasting response to therapeutic interventions with early onset of rehabilitation 

(Johnston 2009). 

The concept of early behavioral interventions in pathological development has been present also 

in traditional psychiatry. However, genetic and pharmacological therapeutic interventions in NDs 

have been investigated to a great extent only in the very last years. Studies in animal models of 

NDs confirm the hypothesis that altered cellular phenotypes exist long before clinical behavioral 

deficits are manifested (Krol and Feng 2018). Accordingly, early interventions in these animal 

models have often been more effective in ameliorating the burden of behavioral deficits than later 

interventions, when the critical periods of brain plasticity are closed. (Krol and Feng 2018). 

Given the important role that GABAergic signaling has in brain development, it is not a surprise 

that many of the studies discussed above on NDs report alterations and investigate therapeutic 

interventions targeting the GABAergic system. In particular, in 2015, Marguet and colleagues 

linked the alteration observed in cortical and hippocampal network activity in the neonatal Kv7-

deficient mouse model of genetic epilepsy to structural and behavioral impairments that they found 

in the adult life (Marguet, Le-Schulte et al. 2015). They reported that pharmacological intervention 

with bumetanide during the first two weeks of life, a period of aberrant neuronal activity, could 

prevent the development of pathological network activity, along with structural and epileptic 

phenotype in the adulthood. Interestingly, the authors did not report any adverse effect of early 

bumetanide treatment, and no significant phenotype of bumetanide in control mice. The same 

group previously (Peters, Hu et al. 2005) reported that restoration of Kv7 channel function in 

young adults did not rescue the adult phenotype in the animals. The restricted temporal window 

of effective intervention demonstrates that identifying a target period is an essential component of 

treatment (Krol and Feng 2018). 

Recent studies have also highlighted that early therapeutic interventions can have a long-lasting 

structural and functional impact on the brain of Fragile X mice. In particular, Fragile X mice (Fmr1 

KO mice) was shown to have high expression of NKCC1 protein (but not mRNA) in the cortex at 

P10 leading to a delay of the GABA polarity switch from depolarizing to hyperpolarizing. This 

contributes, at least to some extent, to the pathological synaptic phenotype in the Fmr1 KO cortex 

(He, Nomura et al. 2014). Interestingly, bumetanide treatment during early postnatal life (P0-P10) 

rescued LTP in the somatosensory cortex and restored whisker evoked-response in the adult Fmr1 
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KO mice. That was followed by a proteome remodeling in the barrel cortex of treated animals. 

The most notable findings of this study were restoration of MeCP2 and GAP43 expression in 

bumetanide-treated Fmr1 KO mice compared to controls Fmr1 KO, and increase in the levels of 

parvalbumin (PV) and TrkB after bumetanide treatment (He, Arroyo et al. 2019). In line with these 

data, Dansie et al. showed that oral minocycline treatment (from birth until weaning) reduced 

locomotor activity and partially rescued audiogenic seizures in young Fmr1 KO mice. The long-

term rescue was possible only when treatment was given during development and not in the adult 

life, when constant treatment was needed for the rescue of the phenotype (Dansie, Phommahaxay 

et al. 2013). In addition, a single induction of epileptic seizure at P10 can lead to long-term 

behavioral defects in the adult Fmr1 KO mice, again stressing the importance of time-specific 

perturbations in brain development (Hodges, Reynolds et al. 2019). Moreover, Tyzio and 

colleagues found decreased level of KCC2 in the hippocampi of autistic mice at P15 and P30 

causing alteration of GABAergic transmission. That was corrected -along with behavioral autism-

like features later in life- by maternal treatment with bumetanide right before birth (Tyzio, Nardou 

et al. 2014). The beneficial effects of early intervention has been also demonstrated in 2 young 

children with Fragile X syndrome. Psychopharmacological treatments with (memantine, sertraline, 

minocycline as added in this order), when combined with intensive educational training, improved 

their cognitive and behavioral performance (Winarni, Schneider et al. 2012). 

Early alterations have been reported also in Rett syndrome. A recent study on Mecp2 mutant mice 

showed that the developmental GABAergic shift is abolished at birth in CA3 pyramidal neurons 

of Mecp2 mutant mice, and that, two weeks later, GABA exerts strong excitatory activity 

(Lozovaya, Nardou et al. 2019). Maternal bumetanide treatment one day before delivery rescued 

GABAergic activity (inhibitory GABA, spontaneous glutamatergic and GABAergic activity, and 

metabotropic LTD) two weeks after, but it did not rescue respiratory or weight deficits (Lozovaya, 

Nardou et al. 2019).  

In Smith–Magenis syndrome, a neurodevelopmental disorder that is caused by loss of one copy of 

the RAI1 gene, conditional reactivation of RAI1 only in young animals (3-4 weeks old), but not 

later (7-8 weeks) after birth rescued social deficits. Of note, in the Scn1a+/− mouse model of Dravet 

syndrome aberrant parvalbumin-interneuron activity during the first weeks of life contributes to 
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chronic epilepsy onset in the adulthood even if aberrant interneuron activity is normalized by P35 

(Favero, Sotuyo et al. 2018).  

Of note, exposure to cannabinoids during lactation delays the upregulation of KCC2 and thus the 

switch of GABA polarity in the mPFC, along with alterations in ultrasonic vocalizations in rats. 

Notably, bumetanide treatment corrected the delayed GABA switch. By co-administering a CB1R 

antagonist the authors confirmed that the effects of early cannabinoid exposure are CB1R-

mediation (Scheyer, Borsoi et al. 2020). 

In humans, the first-line treatment of choice for attention-deficit/hyperactivity disorder (ADHD) 

is methylphenidate, a norepinephrine–dopamine reuptake inhibitor (NDRI). Interestingly, imaging 

data show that the effectiveness of the treatment in enhancing GABA basal levels (reduced in the 

prefrontal brain regions of ADHD people) is age-dependent (Solleveld, Schrantee et al. 2017). In 

particular, when the treatment is given at a young age (before 16 years old) the changes in the 

GABAergic system are lasting in adult life, while first treatment response in adulthood (> 23 years) 

exerts no major effects demonstrating that treatments with early onset have better outcomes that 

treatments administered later in life (Solleveld, Schrantee et al. 2017). In humans, the concept of 

very early interventions is the focus of recent clinical trials focusing on deficit-targeted 

interventions within the first year of life for preterm babies (Kooiker, van der Linden et al. 2020). 

The trials integrate a collaborative approach between experts and families along with recent 

technological advances that enabled the use of online tools for tele-monitored home intervention 

in infancy, with positive outcomes in motor and visual development of preterm infants later in life 

(Rollins, Campbell et al. 2016, Sgandurra, Bartalena et al. 2016, Coufal and Woods 2018, Chung, 

Donelan et al. 2021). Other early interventions in preterm babies are being carried out also using 

ergo therapy and physiotherapy interventions with positive acute outcomes (Kepenek-Varol, 

Tanriverdi et al. 2019), but further studies need to evaluate the long-term effects of early 

physiotherapy approaches to preterm babies. 

Finally, it is important to be noted that in adult life genetic and pharmacological manipulations in 

animal models of neurodevelopmental disorders can still rescue several alterations that arose 

during pathological development at molecular, network activity and behavioral level (Ehninger, 

Li et al. 2008, Castren, Elgersma et al. 2012). However, many interventions require chronic 

administration of the therapeutic intervention for the rescue of the deficits (Dansie, Phommahaxay 
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et al. 2013, Deidda, Parrini et al. 2015, Pinto, Morelli et al. 2020). Moreover, many deficits cannot 

be rescued by therapeutic interventions in the adult life, indicating that earlier intervention are 

needed at the time the deficits are encoded in the circuits (Clement, Aceti et al. 2012, Deidda, 

Parrini et al. 2015, Mei, Monteiro et al. 2016, Solleveld, Schrantee et al. 2017, Krol and Feng 

2018). Indeed, the windows of enhanced plasticity during brain development offer opportunity 

windows for the rescue of pathological developmental trajectories, conferring long-lasting effects 

with target and time specific interventions (Johnston 2009, Lazaratou, Economou et al. 2017, Krol 

and Feng 2018).  

 

Timed therapeutic interventions in Down syndrome 

 

In the case of Down syndrome, as in other NDs, many (but not all) brain alterations arise during 

the development. Interestingly, recent MRI volumetric analyses of Down syndrome fetuses and 

neonates reveal alterations from typically developed euploid infants (Patkee, Baburamani et al. 

2020). The first alterations are described during the second trimester of pregnancy in the 

cerebellum and during the third trimester for the cortex. A similar study with a larger cohort 

described similar alterations with decreased growth trajectories of the cortical plate, the subcortical 

parenchyma, and the cerebellum in DS fetuses (Tarui, Im et al. 2020). These alterations in the size 

of diverse brain regions are hypothesized to be the structural substrates for later cognitive 

functional impairments (Rathbone, Counsell et al. 2011, Chorna, Cioni et al. 2020, Patkee, 

Baburamani et al. 2020).  

In line with early brain deficits in DS, some studies demonstrated that early interventions are 

promising also in DS. Interestingly, early environmental enrichment in Ts65Dn pups during 

development led to increased maternal care and rescue of synaptic plasticity and cognitive 

performance in the adulthood (Begenisic, Sansevero et al. 2015). Notably, environmental 

enrichment in adult Ts65Dn mice was sufficient to promote learning, memory and visual acuity 

rescue (Martinez-Cue, Rueda et al. 2005, Begenisic, Spolidoro et al. 2011), although the effect 

was different between sexes in the different tasks performed (Martinez-Cue, Baamonde et al. 

2002). 



46 | 
 

Additionally, a number of studies have highlighted the importance of early (embryonic, perinatal 

and postnatal) pharmacological interventions for the rescue of structural and functional deficits 

seen in Ts65Dn mice. In particular, prenatal treatment (between E8-12) with the neuroprotective 

peptides (NAP+SAL, active fragments of ADNP and ADNF) rescued the motor and sensory 

milestones reached within 2 postnatal weeks in Ts65Dn mice (Toso, Cameroni et al. 2008), and 

also prevented learning deficits in adult life (Incerti, Horowitz et al. 2012). Moreover, a single 

injection of SAG1.1, a synthetic activator of Sonic hedgehog pathway at P0 rescued structural and 

cognitive deficits in the adult Ts65Dn mice (Roper, Baxter et al. 2006, Das, Park et al. 2013). 

Notably, maternal choline supplementation (from embryonic life until P21) improved spatial 

memory performance and neurogenesis in the offspring in the adult life of Ts65Dn mice (Moon, 

Chen et al. 2010, Velazquez, Ash et al. 2013, Ash, Velazquez et al. 2014, Kelley, Powers et al. 

2014, Alldred, Chao et al. 2019, Kelley, Ginsberg et al. 2019). Additionally, embryonic to early 

postnatal treatment rescued long-term memory and synaptic deficits by increasing plasticity 

markers (BDNF and phosphorylated CREB) both in three and seven month old Ts65Dn mice 

(Kazim, Blanchard et al. 2017). Furthermore, a number of studies have investigated interventions 

targeting the serotonergic system to rescue impaired neurogenesis and dendritic development in 

trisomic animals. Prenatal and neonatal fluoxetine treatment (a selective serotonin reuptake 

inhibitor) in Ts65Dn mice during development (P3 to P15) restored hippocampal neurogenesis 

and rescued memory performance, suggesting long-term effects of early treatment one or three 

months after treatment cessation (Bianchi, Ciani et al. 2010, Guidi, Stagni et al. 2013, Guidi, Stagni 

et al. 2014, Stagni, Giacomini et al. 2015). Interestingly, fluoxetine treatment to adult animals does 

not improve spatial learning and memory impairments and has adverse effects (seizures and 

mortality) in Ts65Dn mice (Heinen, Hettich et al. 2012). Of note, a study stressed the prophylactic 

role of the ciliary neurotrophic factor (CNTF) in brain development in Ts65Dn mice. 

The studies above clearly demonstrate that early pharmacological or environmental interventions 

in DS mice during a specific temporal windows of the developing brain can have a positive, long-

lasting effects on brain structural and behavioral deficits in adulthood. The magnitude and striking 

persistence of the effects of neonatal and prenatal interventions emphasizes the importance of early 

treatment in DS (Stagni, Giacomini et al. 2015). Considering the important role of GABAergic 

activity in the developing brain the hypothesis of altered GABAergic signaling as causative of the 

aberrant neural circuit formation in the developing trisomic brain should be investigated 
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extensively. Interestingly, fluoxetine and environmental enrichment has been both demonstrated 

to reduce GABAergic signaling (Martinez-Cue, Baamonde et al. 2002, Sale, Maya Vetencourt et 

al. 2007, Maya Vetencourt, Sale et al. 2008, Baroncelli, Sale et al. 2010, Begenisic, Spolidoro et 

al. 2011, Begenisic, Sansevero et al. 2015, Baroncelli, Cenni et al. 2017). Thus, the brain structural 

and behavioral deficits reported rescued in the studies above (Stagni, Giacomini et al. 2015) could 

be at least partly due to modulation of GABAergic activity. Notably, a first evidence for alterations 

in the switch of GABA polarity during development was demonstrated recently in Ts65Dn mice 

(Lysenko, Kim et al. 2018). Here, in primary hippocampal cultures and acute slices from Ts65Dn 

animals authors demonstrated that GABA polarity switch is delayed in Ts65Dn hippocampus and 

hypothesize that this prolongation in GABA activity maturation can contribute, to some extent, to 

altered neuronal circuits in DS (Lysenko, Kim et al. 2018). 
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RATIONAL OF THE STUDY 

 

Deidda and colleagues reported that in adult Ts65Dn mice the GABAAR signaling is depolarizing 

and excitatory due to upregulation of NKCC1 (Deidda, Parrini et al. 2015). Intraperitoneal 

bumetanide treatment (or NKCC1 inhibition by a selective inhibitor; Savardi, Borgogno et al. 

2020) rescued hippocampus-dependent learning and memory deficits in adult Ts65Dn animals in 

three independent behavioral tests assessing long-term memory in rodents (Deidda, Parrini et al. 

2015). However, the effect of bumetanide was not long-lasting, as the positive effects of 

bumetanide were lost after one week of drug withdrawal, as drug withdrawal experiments revealed 

(Deidda, Parrini et al. 2015). Moreover, bumetanide treatment in adult Ts65Dn animals did not 

rescue hyperactivity phenotype and susceptibility to epileptic seizures (Figure 11). Altogether, 

these results, suggest that bumetanide treatment in adulthood did not induce neuronal rewiring to 

cause the rescue of cognitive function in adult Ts65Dn mice. Moreover, hyperactivity and 

increased susceptibility to seizures might in fact depend on mechanisms other than depolarizing 

GABA signaling or they directly depend on miswiring during development. Here, I will study 

whether alterations of the transporters (NKCC1 and KCC2) determining GABAergic activity are 

present since early in development in trisomic animals. I will investigate any long-term effects of 

early-in-life genetic and pharmacological interventions targeting NKKC1 to rescue deficits in the 

adult life in Ts65Dn mice using a neuron-specific AAV9-mediated NKCC1 knockdown and 

bumetanide treatment during the first 2 weeks of development, respectively. This project aims at 

studying the effectiveness and safety of time-specific interventions for DS. Targeted and timed 

interventions possibly impacting on the trajectories of the developing brain might offer a promising 

alternative for long-lasting positive outcomes avoiding the adverse effects of chronic adult 

treatment. 
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Figure 11. Bumetanide treatment in adult Ts65Dn mice do not rescue hyperactivity and susceptibility 

to seizure phenotypes. (A) Locomotor activity during dark phase (left) and light phase (right) over the 

course of 24 hours (divided 12h of light and 12 of dark) in WT and Ts65Dn mice treated with vehicle and 

bumetanide. (B) Susceptibility to seizures as assessed by the audiogenic seizures test in animals treated 

with vehicle and bumetanide. Left, percentage of animals that exhibited AGS, right, mean AGS severity 

score. Adapted from (Deidda, Parrini et al. 2015). 
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Results 

1. Altered protein expression of Cl- transporters in early postnatal life of Ts65Dn mice 

 

To address the developmental profile of NKCC1 and KCC2 of WT and Ts65Dn animals, we 

dissected their brains and collected the hippocampal areas at different time points spanning from 

postnatal day 2 (P2) to adulthood. We performed western blot analysis with specific NKCC1 and 

KCC2 antibodies. 

We found that both NKCC1 and KCC2 levels increased with increasing developmental ages, with 

KCC2 upregulation being many-fold higher than the increase of NKCC1 expression (see scale on 

y-axis in Figure 13 A,B) in both WT and Ts65Dn animals. Quantification of protein expression in 

<P60 (adult) hippocampi in WT and Ts65Dn hippocampi (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Equal amounts of protein homogenate from hippocampus were loaded onto each lane and 

probed with antibodies against NKCC1, KCC2, APP and ACTIN. (A) Mouse hippocampal samples from 

different developmental time points. (B) Hippocampal samples from adult WT and Ts65Dn mice loaded in 

equal protein amounts. Actin was used as a housekeeping gene. APP was used as a positive control for the 

genotype, as APP gene is a triplicated gene in Ts65Dn mice. 
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Figure 13. Quantification of NKCC1 (A), KCC2 (B) and APP (C) protein expression in the hippocampi of 

WT and trisomic mice. The results were normalized to the levels of the average of WT brains at P2 

(postnatal day 2). (A) Circles represent the average protein expression for each time-point ± SEM, (two-

way ANOVA, F Interaction (4.152)= 1.004, p = 0.4071, Holm–Sidak post hoc test). (B) Circles represent the 

average protein expression for each time-point ± SEM, (two-way ANOVA, F Interaction (4.152)= 0.7208, p = 

0.5790, Holm–Sidak post hoc test). (C) Circles represent the average protein expression for each time-point 

± SEM, (two-way ANOVA, F Interaction (4.104)= 6.443, p = 0.0001, Holm–Sidak post hoc test, ** p < 0.01, 

**** p < 0.0001 two-way). 

 

 

 

 

 
Figure 14. Quantification of NKCC1 (A), KCC2 (B) and APP (C) protein expression in the hippocampi of 

>P60 WT and trisomic mice. The results were normalized to the levels of the average of WT. Bars represent 

the average expression levels ± SEM, and circles represent data points for each animal. Unpaired two-tailed 

Student’s t test (*p < 0.05, ***p<0.001). 

 

 

In particular, when normalized to the WT levels for each time point studied, Ts65Dn levels for 

NKCC1 were significantly higher at P7, P21 and >P60 (Figure 15A). Moreover KCC2 levels in 

Ts65Dn mice where significantly lower at P2, P15 and at P30 (Figure 15B). The results indicate 

an altered cotransporter expression in trisomic hippocampi since early in postnatal development. 

For all analysis, we ran a parallel quantification of the APP protein levels, which used as a positive 

control due to its triplication (and consequent upregulation) in Down syndrome (Figure 15C). 

Notably, when we calculated the NKCC1 /KCC2 ratio and normalized it to WT levels, we found 

that trisomic mice showed significantly high NKCC1 to KCC2 ratio at all developmental points 

analyzed and in adulthood (Figure 16).  
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Figure 15. Quantification of Western blots for NKCC1 (A), KCC2 (B) and APP (C) protein expression in 

the hippocampi of WT and Ts65Dn mice normalized on Actin. Each time point is normalized in each WT 

P (postnatal day). Lines report the average protein expression of all analyzed animals (± SEM) and circles 

represent data points for each animal. Unpaired two-tailed Student’s t test (*p < 0.05, **p < 0.01, 

***p<0.001) was performed for each time point individually. 
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Figure 16. Quantification of the ratio of NKCC1/KCC2 protein expression in the hippocampi of WT and 

Ts65Dn mice in Western blots experiments. Ts65Dn protein expression level for each time point is 

normalized to the expression levels of the average of WT samples at the same time point. Lines report the 

average protein expression of all analyzed animals (± SEM) and circles represent data points for each 

animal. Unpaired two-tailed Student’s t test (*p < 0.05;**p<0.01;*** p<0.001) was performed for each 

time point individually. 

 

  

2. In vitro validation of viral NKCC1 RNA interference 

 

The early-in-life brain alterations characteristic of the brain of fetuses with Down syndrome are 

hypothesized to be the structural and molecular substrates for later neurocognitive impairments 

characteristic of the syndrome (Patkee, Baburamani et al. 2020). Following this rationale and 

supported by our results showing altered NKCC1/KCC2 ratio present since the first postnatal days 

of life in trisomic mice, we aimed to test the hypothesis that interfering with the NKCC1 levels 

early in brain development we could rescue the pathological developmental trajectories possible 

substrate of behavioral deficits in DS.  
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To this aim, we employed a tool that was created by the Cancedda lab for RNA interference and 

consequent reduction of NKCC1protein levels by the use of artificial microRNAs (amiRs) (Figure 

17). In particular, amiRs are constructed by replacing the 21-22 nucleotide antisense targeting 

sequence (the so-called guide strand) of a naturally-occurring primary-microRNA (pri-miRNA) 

with an antisense sequence against hNKCCl. This RNA-interference tool, achieves neuron-

specific expression of the amiR against NKCCl by using a human Synapsin promoter to drive the 

transgene expression. This invention has been submitted for patent application under the 

publication number WO/2018/189225. Notably, as commonly used for research purposes in 

recombinant AAV vectors (rAAV), the two viral open reading frames (ORF) rep and cap, naturally 

being flanked between ITR they are inserted as helper genes in trans to package the transgene 

inside the capsid and the gene of interest is inserted in their place (Kwon and Schaffer 2008). In 

this way the ability of recombinant AAV to integrate into its preferred site of genomic integration 

termed as AAVS1 is abolished (Deyle and Russell 2009). The recombinant AAV serotype 9 we 

used for our study is expressed throughout life episomally without integrating in the host genome 

(Penaud-Budloo, Le Guiner et al. 2008). 

 

Figure 17. Schematic representation of the AAV9 construct bearing the artificial miRNA (amiR) against 

NKCC1. AAV9 vector is under the human Synapsin promoter (syn) for selective expression of the construct 

in neurons. EGFP is a reporter gene to monitor transduction of the virus followed by the artificial miRNA 

against NKCC1. WPRE (woodchuck hepatitis post-transcriptional regulatory element) is for enhancement 

of the stability of the viral transcripts. Polyadenylated 3′-end signal (pA) is for transcription termination. 

ITR (inverted terminal repeat) flanked transgene expression cassette to enhance gene expression. The red 

and green in the sequence loop indicates the 5′-flanking and 3′-flanking regions, respectively. 

 

First, we tested the AAV9 vector in primary neuronal cultures. The amiR against NKCC1 

significantly downregulated NKCC1 protein levels (Figure 18B) compared to the control vector. 

Moreover, the vector was expressed only in neurons and not in astrocytes, in agreement with its 

neuron-specific synapsin promoter (Figure 18A). 
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Figure 18. In vitro validation of AAV9 viral construct for RNAi interference against NKCC1 under the 

Synapsin promoter in primary cortical neuronal cultures. (A) Primary cortical cultures at DIV 7 transduced 

with the AAV9 construct expressing GFP. GFP shows co-localization with the specific neuronal MAP2 

and does not co-localize with the astrocytic marker GFAP. (B) Western blot analysis from cortical cultures 

transduced with the AAV construct with artificial miRNA (amiR) targeting NKCC1. Unpaired two-tailed 

Student’s t test (*p < 0.05). 
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3. GFP expression mediated by early-in-life AAV9 infection is present in large 

transduction brain-areas in adulthood 

 

 

 

 

 

Figure 19. Schematic representation of the experimental protocol for the in vivo experiments. Bilateral 

intraventricular injection with the AAV9 construct was performed at postnatal day 2 in WT and Ts65Dn 

pups. Behavioral testing was performed between P90-120 (see Figures 9-14) and tissues collected at the 

end of the experiment. 
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Figure 20. Example of serial sections of an adult (P120) mouse brain showing the viral construct-mediated 

GFP expression after bilateral intraventricular injection at P2. Bilateral injections in the ventricles at P2 

drives the expression of GFP in several regions in the adult brain (hippocampus, cortex, thalamic and 

hypothamic regions).   

 

Next, we assessed the ability of the previously tested AVV9 vector in driving GFP expression (as 

a proxy of NKCC1 downregulation) in the adult brain upon bilateral intraventricular injection with 

the AAV9-NKCC1 amiR and control constructs at P2 in WT and Ts65Dn pups after random 

allocation of the treatment. Mice were weaned at P28. First, we assessed the transduction 

efficiency by histochemistry experiments, 15 brains were collected between P120-P130, and 

processed for immunohistochemistry with the nuclear dye Hoechst-33342 on serial brain slices. 
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After intraventricular injection at P2, we found that GFP was present in hippocampus, cortex and 

subcortical areas of all the 15 adult brains we analyzed (Figure 20).  

 

4. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues 

memory deficits in adult Ts65Dn mice 

 

 

 

 

 

 

 

Figure 21. Schematic representation of the experimental protocol for WT and Ts65Dn mice. WT and 

Ts65Dn pups at postnatal day 2 are subjected to bilateral intraventricular injection of the neuron-specific 

AAV9 construct for NKCC1 knockdown. Mice are weaned at P28 and behavioral testing is performed 

between P90-120. 

 

 

We first assessed the long-term effects of early-in-life knockdown of NKCC1 in restoring short-

term memory in adult life, by testing WT and Ts65Dn mice expressing NKCC1 or control amiR 

in the T-maze test (spontaneous alteration protocol, 11 trials). In agreement with data from the 

literature (Kleschevnikov, Belichenko et al. 2012, Savardi, Borgogno et al. 2020), control amiR 

Ts65Dn mice showed poor short-term memory in comparison to control amiR WT mice. NKCC1 

amiR rescued the number of correct choices of Ts65Dn mice in comparison to trisomic animals 

injected with the control construct (Figure 22). WT NKCC1 amiR animals did not show any 

significant phenotype.   
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Figure 22. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues impaired 

short-term memory in adult Ts65Dn mice. Top, schematic representation of the T-maze task. Bottom, 

quantification of the correct choices in mice injected with control construct or amiR NKCC1 at P2. Lines 

report the average score of all analyzed animals (± SEM) and circles represent data points for each animal 

(two-way ANOVA, F Interaction (1,63)= 4.835, p = 0.0316, Holm–Sidak post hoc test, ** p < 0.01, * p < 0.05 

two-way). 

 

 

Next, we assessed any lasting effects of early-in-life RNA interference against NKCC1 on long-

term memory deficits in Ts65Dn adult mice. Long-term memory was assessed in three independent 

tasks (i.e., novel object recognition, contextual fear conditioning and object location). The novel-

object recognition (NOR) test measures the preference of mice for a novel object versus previously 

encountered familiar objects. In agreement with what previously demonstrated (Deidda, Parrini et 

al. 2015), Ts65Dn mice injected at P2 with control amiR showed deficits in recognition memory 

in comparison to WT control amiR animals. Interestingly, early-in-life NKCC1 downregulation 

was able to fully rescue the deficit in discrimination of novelty of Ts65Dn mice when compared 

to control amiR Ts65Dn mice in adulthood (Figure 23A). The effect of NKCC1 amiR in the 

trisomic group in NOR test was not due to object preference (among the 3 objects used in this 
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behavioral test) or in total object exploration time in all groups (Figure 23 B,C,D). WT NKCC1 

amiR animals did not show any significant phenotype.  

 

 

Figure 23. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues impaired 

discrimination index in the novel object recognition task in adult Ts65Dn mice. Top, schematic 

representation of the novel object recognition test. Bottom, (A) Quantification of the discrimination index 

in mice injected with control construct or NKCC1 amiR at P2. Lines report the average discrimination 

index of all analyzed animals (± SEM) and circles represent data points for each animal (two-way ANOVA, 

F Interaction (1,70)= 63.78, p = 0.0001, Tukey’s post hoc test, *** p < 0.001, two-way). (B) Quantification of 

the percentage of time spent exploring the three objects during the acquisition phase. Bars represent the 

average exploration time for each object of all analyzed animals ± SEM (ANOVA, *p > 0.05). (C) 

Quantification of the percentage of the total time spent exploring the objects during the acquisition phase. 
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Bars represent the average exploration time (seconds) of all analyzed animals ± SEM (two-way ANOVA, 

F Interaction (1,70)= 0.3491, p = 0.5566, Tukey’s post hoc test, two-way). (D) Quantification of the percentage 

of the total time spent exploring the objects during the trial phase. Bars represent the average exploration 

time (seconds) of all analyzed animals ± SEM (two-way ANOVA, F Interaction (1,70)= 1.09, p = 0.3001, 

Tukey’s post hoc test, two-way). 

 

Next, we evaluated associative memory in the contextual fear conditioning test (CFC). This task 

assesses long-term, associative learning by quantifying the freezing response that takes place after 

conditioning by the pairing of a foot shock with a particular context represented by the grid 

releasing the shock (Figure 24, Top). In agreement with previously demonstrated (Deidda, Parrini 

et al. 2015), control amiR Ts65Dn mice showed poor freezing response after re-exposure to the 

grid context 24h after the conditioning session, when compared to control amiR WT mice. 

Notably, NKCC1 amiR intraventricular injection early-in-life fully restored the associative 

memory in adult Ts65Dn mice (Figure 24A), with no changes in non-associative freezing (freezing 

response measured in a new context; Figure 24B). WT NKCC1 amiR animals did not show any 

significant phenotype.  

 
Figure 24. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues impaired 

freezing response in the contextual fear conditioning task in adult Ts65Dn mice. Top, schematic 

representation of the contextual fear conditioning test. Bottom, (A) Quantification of the freezing response 

in mice injected with control construct or NKCC1 amiR at P2. Lines report the average discrimination 

index of all analyzed animals (± SEM) and circles represent data points for each animal (two-way ANOVA, 

F Interaction (1,61)= 37.74, p = 0.0001, Tukey’s post hoc test, *** p < 0.001, two-way). (B) Quantification of 
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the freezing response in mice during the exposition to the new context. Lines report the average 

discrimination index of all analyzed animals (± SEM) and circles represent data points for each animal 

(two-way ANOVA, F Interaction (1,61)= 0.2137, p = 0.6455, Tukey’s post hoc test). 

 

 

 

Finally, we evaluated spatial memory in the object location task (OL). The test measures the ability 

of mice to recognize the new location of a familiar object with respect to spatial external cues 

(Figure 25, top). In agreement with what previously described (Deidda, Parrini et al. 2015), control 

amiR Ts65Dn mice showed impaired spatial memory in comparison to control amiR WT mic. This 

was demonstrated by a poor discrimination index reflective of poor discernment of the new object 

position. NKCC1 amiR significantly restored the performance of Ts65Dn mice (Figure 25A). The 

effect of the NKCC1 amiR in the OL test was not due to alterations in the object preference or in 

the total object exploration during the acquisition phase (Figure 25B and 25C). WT NKCC1 amiR 

animals did not show any significant phenotype. There were no significant differences among any 

groups in the total exploration time both in the acquisition and trial sessions. 
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Figure 25. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues impaired 

discrimination index in the object location task in adult Ts65Dn mice. Top, schematic representation 

of the object-location test. Bottom, (A) Quantification of the discrimination index in mice injected with 

control construct or NKCC1 amiR at P2. Lines report the average discrimination index of all analyzed 

animals (± SEM) and circles represent data points for each animal (two-way ANOVA, F Interaction (1,70)= 

36.42, p = 0.0001, Tukey’s post hoc test, *** p < 0.001, two-way). (B) Quantification of the percentage of 

time spent exploring the two objects during the acquisition phase. Bars represent the average exploration 

time for each object of all analyzed animals ± SEM (ANOVA, *p > 0.05). (C) Quantification of the 

percentage of the total time spent exploring the objects during the acquisition phase. Bars represent the 

average exploration time (seconds) of all analyzed animals ± SEM (two-way ANOVA, F Interaction (1,70)= 

3.014, p = 0.0870, Tukey’s post hoc test, two-way). (D) Quantification of the percentage of the total time 

spent exploring the objects during the trial phase. Bars represent the average exploration time (seconds) of 

all analyzed animals ± SEM (two-way ANOVA, F Interaction (1,70)= 0.004126, p = 0.9490, Tukey’s post hoc 

test, two-way). 
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5. Neuron-specific NKCC1 knockdown by AAV9 injection early-in-life rescues 

increased susceptibility to epileptic seizures in adult Ts65Dn mice 

 

Deidda and colleagues reported no significant effect of bumetanide on the increased susceptibility 

to epileptic seizures described in Ts65Dn mice (Westmark, Westmark et al. 2010, Deidda, Parrini 

et al. 2015), when the drug-treatment was performed in adulthood (Deidda, Parrini et al. 2015). To 

assess whether early knockdown of NKCC1 could rescue the susceptibility to seizure phenotype 

of trisomic mice, we performed the audiogenic seizure (AGS) test in adult Ts65Dn and WT mice 

injected with control and NKCC1 amiR at P2. In agreement with the literature (Deidda, Parrini et 

al. 2015), Ts65Dn control amiR mice exhibited increased AGS susceptibility in comparison to WT 

control amiR mice, as quantified by the percentage of animals that exhibited AGS (Figure 26A), 

or mean AGS severity score (Figure 26B). Notably, NKCC1 amiR significantly restored the 

increased AGS susceptibility in Ts65Dn mice.  

 

Figure 26. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues increased 

susceptibility to seizures in adult Ts65Dn mice. Top, schematic representation of the AGS test. The 

numbers indicate the score given to an animal during the procedure for seizure induction by a 120 dB white 

noise. Bottom, (A) Percentage of animals that exhibited AGS susceptibility (left, Chi Square test with 

Sidak adjustment for multiple comparisons, **P<0.01, *P < 0.05), (B) mean AGS severity score 

(ANOVA on ranks, Student-Newman-Keuls Method, (*P < 0.05). Bar charts represent the percentage of 

animals showing AGS (left) or average severity score ± SEM (right). The numbers of animals tested (WT 

control amiR: 15, Ts65Dn control amiR: 12, WT NKCC1 amiR: 20, Ts65Dn NKCC1 amiR: 12). 
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6. Neuron-specific NKCC1 knockdown by AAV9 injection early-in-life rescues 

increased locomotor activity in adult Ts65Dn mice 

 

Deidda and colleagues reported no significant effect of bumetanide on the increased locomotor 

activity typical of Ts65Dn animals (Escorihuela, Fernandez-Teruel et al. 1995, Reeves, Irving et 

al. 1995, Sago, Carlson et al. 2000, Deidda, Parrini et al. 2015), when bumetanide was given in 

adult trisomic mice. To assess whether early knockdown of NKCC1 could rescue the hyperactivity 

phenotype of adult trisomic mice, we performed a 24-hour monitoring test of the locomotor 

activity of adult Ts65Dn and WT mice injected with control and NKCC1 amiR at P2. The 24-hour 

monitoring was divided in 12 hours of light and 12 hours of dark. As reported in the literature 

(Deidda, Parrini et al. 2015), Ts65Dn control amiR mice exhibited increased locomotor activity 

for all the parameters analyzed (horizontal activity, total distance travelled and stereotypic activity) 

in comparison to WT control amiR mice in the dark phase, when mice are more active. Notably, 

NKCC1 amiR in Ts65Dn fully restored the increased locomotor activity (horizontal, total distance 

travelled and stereotypic) (Figure 27A,B,C). No significant effect of NKCC1 amiR was observed 

in WT animals. On the other hand, no significant differences were found in the locomotor activity 

between Ts65Dn and WT control amiR groups during the light phase (Figure 27A,B,C), and, early 

knockdown of NKCC1 with NKCC1 amiR did not have any significant phenotype in both WT and 

Ts65Dn.  

 

 

A 
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Figure 27. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues increased 

locomotor activity in adult Ts65Dn mice. (A) Quantification of the horizontal locomotor of WT and 

Ts65Dn adult mice injected with either control or NKCC1 amiR at P2.  The light phase is represented on 

the left and whereas the dark phase is represented shadowed on the right. Bars represent the average 

locomotor activity ± SEM, and circles represent data points for each animal. Light phase: two-way 

ANOVA, F Interaction (1,59)= 0.2535, p = 0.6165, Tukey’s post hoc test, * p < 0.05, two-way. Dark phase: 

two-way ANOVA, F Interaction (1,59)= 5.843, p = 0.0188, Tukey’s post hoc test, * p < 0.05, two-way. (B) 

Quantification of the total distance travelled by adult WT and Ts65Dn mice injected with either control or 

NKCC1 amiR at P2. The light phase is represented on the left and whereas the dark phase is represented 

shadowed on the right. Bars represent the average locomotor activity ± SEM, and circles represent data 

points for each animal. Light phase: two-way ANOVA, F Interaction (1,57)= 0.2665, p = 0.6077, Tukey’s post 

hoc test, * p < 0.05, two-way. Dark phase: two-way ANOVA, F Interaction (1,59)= 6.94, p = 0.0107, Tukey’s 

post hoc test, * p < 0.05, two-way. (C) Quantification of the stereotypic locomotor activity of WT and 

B 

C 
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Ts65Dn adult mice injected with either control or NKCC1 amiR at P2. The light phase is represented on 

the left and whereas the dark phase is represented shadowed on the right. Bars represent the average 

locomotor activity ± SEM, and circles represent data points for each animal. Light phase: two-way 

ANOVA, F Interaction (1,59)= 0.1672, p = 0.6841, Tukey’s post hoc test, * p < 0.05, two-way. Dark phase: 

two-way ANOVA, F Interaction (1,59)= 4.768, p = 0.0330, Tukey’s post hoc test, * p < 0.05, two-way. 

 

7. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues 

GABAAergic signaling in hippocampal acute slices of adult Ts65Dn mice 

 

 

 

 

 

 

 

Figure 28. Schematic representation of the experimental protocol for WT and Ts65Dn mice. WT and 

Ts65Dn pups at postnatal day 2 are subjected to bilateral intraventricular injection of the neuron-specific 

AAV9 construct for NKCC1 knockdown. Mice are weaned at P28 and electrophysiological recordings are 

performed between P60-90. 

 

 

Next, we wanted to investigate the possible mechanisms underlying the behavioral rescue upon 

NKCC1 downregulation early-in-life in Ts65Dn animals. Regulation of intracellular Cl- 

concentration by Cl- transporter NKCC1 and KCC2 is a key player in modulating GABAergic 

responses and consequent physiological brain development (Cancedda, Fiumelli et al. 2007, Ben-

Ari 2017). Thus, we assessed whether NKCC1 inhibition in the context of the increased 

NKCC1/KCC2 ratio that we found in Ts65Dn pups, could rescue the brain developmental 

trajectory of Ts65Dn pups. First, we assessed whether the RNA interference-mediated 

downregulation of NKCC1 early in brain development could rescue the increased GABA-

mediated spiking events already described in adult Ts65Dn mice (Deidda, Parrini et al. 2015). To 

this aim, we performed bilateral intraventricular injection of AAV9-NKCC1 amiR and control 

constructs to WT and Ts65Dn pups at P2, and performed multi-electrode array recordings (MEA) 

in acute brain slices (at >P70) from the previously injected animals. Hippocampal slices were 

recorded at basal conditions for 30 minutes. In a first set of experiments, we tested the neuronal 

firing activity upon application of exogenous GABA (100 μM). As expected, both control and 
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NKCC1 amiR WT slices showed a suppression of the average mean firing rate MFR to reach a 

values near to zero) (Figure 16A). Interestingly, some slices of NKCC1 amiR WT group increased 

their MFR upon GABA application, but did not reach a significant difference with respect to WT 

control amiR (Figure 15A). Conversely, control amiR Ts65Dn slices (Figure 15A) showed 

significantly increased average MFR ratio upon GABA administration in comparison to WT 

control amiR slices. Remarkably, NKCC1 amiR significantly restored the response to exogenous 

GABA bath application in adult Ts65Dn hippocampal slices (Figure 15A).  

Then, we quantified the percentage of electrodes for each slices showing significant change in 

comparison to their baseline level (threshold of 10% change). We found that the majority of the 

electrodes decreased their firing rate upon activating GABAARs with GABA in control amiR WT 

slices (12% of increasing electrodes, 77 % of decreasing electrodes) or NKCC1 amiR slices (18% 

of increasing electrodes, 66% of decreasing electrodes) (Figure 15B). Conversely, in control amiR 

Ts65Dn slices the majority of the active electrodes increased the average MFR level upon 

exogenous GABA administration (51% of increasing electrodes, 36% of decreasing electrodes) 

indicating a profound alteration of inhibitory GABAergic signaling in comparison to WT control 

amiR slices. However, adult Ts65Dn slices from mice injected with NKCC1 amiR at P2 displayed 

a significant decrease in the MFR with a percentage of MFR variation comparable to WT control 

amiR (8% of increasing electrodes, 76% of decreasing electrodes), indicating a complete rescue 

of the inhibitory GABAergic signaling.  

Next, we tested the effect of the endogenous GABAergic signaling by bath applying the specific 

GABAAR antagonist bicuculline (BIC; 20 uM) to NKCC1 and control amiR slices from adult WT 

and Ts65Dn mice. The average MFR ratio of control amiR WT slices showed a large increase in 

the firing rate activity upon bicuculline treatment, as expected (Figure 15C). Conversely, control 

amiR Ts65Dn slices showed a decrease in the average MFR ratio upon bicuculline administration 

in comparison to control amiR WT slice (Figure 15 C). Remarkably, NKCC1 amiR Ts65Dn slices 

showed a significant increase in the MFR ratio to levels similar to the control amiR WT slices 

(Figure 15 C). Interestingly, NKCC1 amiR led to a significant decrease of the MFR in WT slices 

compared to WT control amiR. 

When we quantified the percentage of electrodes for each slices showing significant change in 

comparison to their baseline level, we found that the majority of the electrodes increased their 
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firing rate upon blocking GABAARs with bicuculline in control amiR WT slices (85% of 

increasing electrodes, 7% of decreasing electrodes), whereas NKCC1 amiR WT slices showed a 

significant increase in the MFR compared to control amiR WT slices (53% of increasing 

electrodes, 35% of decreasing electrodes) (Figure 15D). Conversely, in control amiR Ts65Dn 

slices the majority of the active electrodes decreased the average MFR level upon blocking 

GABAARs with bicuculline (24% of increasing electrodes, 78% of decreasing electrodes) 

indicating a profound alteration of inhibitory GABAergic signaling in comparison to WT control 

amiR slices. However, Ts65Dn slices from adult mice injected with NKCC1 amiR at P2 displayed 

a significant increase in the MFR with a percentage of MFR variation comparable to WT control 

amiR slices (95% of increasing electrodes, 1% of decreasing electrodes), indicating a complete 

rescue of the inhibitory GABAergic signaling. 
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Figure 29. Neuron-specific NKCC1 knockdown by AAV9 infection early-in-life rescues GABAergic 

signaling in adult Ts65Dn mice. Hippocampal multi-electrode array (MEA) recordings from (8-12 weeks 

old) adult WT and Ts65Dn mice injected with the NKCC1 or control amiR at postnatal day 2. (A) 

Quantification of MFR ratio after exogenous GABA administration in the bath. MFR for each electrode is 

normalized to the value of the same electrode during basal condition (indicated as the dotted line) and then 
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average for each slice. The small square indicates the mean, the central line illustrates the median, and the 

box limits indicate the 25th and 75th percentiles and each dot represents the MFR ratio for each recorded 

brain slice. Bars represent the MFR of all recorded electrodes ± SEM, and dots represent data points for 

each slice (WT control amiR: 6 animals, 6 slices, Ts65Dn control amiR: 9 animals, 10 slices, WT NKCC1 

amiR: 9 animals, 13 slices, Ts65Dn NKCC1 amiR: 6 animals, 7 slices). Data points falling on the dashed 

line (MFR equal to 0) show no change in the MFR data points falling above the dashed line (MFR ratio >1) 

show an increase in MFR and data falling below the dashed line (MFR ratio <1) show a decrease in MFR 

after drug administration in the bath (two-way ANOVA, *p<0.05; **p<0.01; followed by Tukey’s post hoc 

test). (B) Quantification of the percentage of MEA electrodes for each slice that significantly change the 

MFR after bath application of GABA. Bars above zero (dark grey) represent percentage of electrodes that 

increased their activity in comparison to the baseline after GABA application in the bath, whereas bars 

below zero (light grey) represent percentage of electrodes that decreased their activity in comparison to the 

baseline (two-way ANOVA, **p<0.01; *** p<0.001; followed by Tukey’s post hoc test). (C) 

Quantification of the MFR ratio after bicuculline administration in the bath. MFR for each electrode is 

normalized to the value of the same electrode during basal condition (indicated as the dotted line) and then 

average for each slice. The small square indicates the mean, the central line illustrates the median, and the 

box limits indicate the 25th and 75th percentiles and each dot represents the MFR ratio for each recorded 

brain slice. Bars represent the MFR of all recorded electrodes ± SEM, and dots represent data points for 

each slice (WT control amiR: 7 animals, 7 slices, Ts65Dn control amiR: 7 animals, 8 slices, WT NKCC1 

amiR: 10 animals, 9 slices, Ts65Dn NKCC1 amiR: 8 animals, 8 slices). Data points falling on the dashed 

line (MFR equal to 0) show no change in the MFR data points falling above the dashed line (MFR ratio >1) 

show an increase in MFR and data falling below the dashed line (MFR ratio <1) show a decrease in MFR 

after drug administration in the bath (two-way ANOVA, *p<0.05; *** p<0.001; followed by Tukey’s post 

hoc test). (D) Quantification of the percentage of MEA electrodes for each slice that significantly change 

the MFR after bath application of bicuculline. Bars above zero (dark grey) represent percentage of 

electrodes that increased their activity in comparison to the baseline after GABA application in the bath, 

whereas bars below zero (light grey) represent percentage of electrodes that decreased their activity in 

comparison to the baseline (two-way ANOVA, **p<0.01; *** p<0.001; followed by Tukey’s post hoc test). 
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8. Early-in-life bumetanide treatment does not cause adverse effects on the body 

weight and acoustic startle reactivity reflex in the treated mice  

 

NKCC1 amiR delivery by AAV9 infection early-in-life results in NKCC1 knock down throughout 

life. This experiment does not allow to evaluate whether reduction of NKCC1 activity for a 

restricted time early in life is sufficient to have long-lasting effects later in life. 

To address this question we took a pharmacological approach by the use of the FDA-approved 

drug bumetanide. Bumetanide is a NKCC1 and NKCC2 inhibitor that has been used as a diuretic 

for the last 4 decades (Kharod, Kang et al. 2019). We treated WT and Ts65Dn pups twice a day 

subcutaneously with vehicle (DMSO) or bumetanide (subcutaneous, 0.2 mg/kg) from postnatal 

day 2 (P2) to postnatal day 15 (P15) (Figure 30). The two injection a day was followed based on 

the short elimination half-life (no detection in plasma after 2 hours) and the poor capacity of the 

drug to penetrate the blood brain barrier (Cleary, Sun et al. 2013, Savardi, Borgogno et al. 2020). 

Bumetanide was dissolved in DMSO in a stock solution of 1 mg/ml. The day of the injection the 

stock solution was dissolved in saline accordingly and injected in a volume of 20 μl/g (between 

P2-P8 due to low pup weight and amount injected) and 10 μl/g (between P9-P15 as pups are 

gaining weight) to have a final concentration of 0.2 mg/kg. We chose this concentration of 

bumetanide on the basis of previous studies on rodents (Dzhala, Talos et al. 2005, Mazarati, Shin 

et al. 2009, Brandt, Nozadze et al. 2010, Deidda, Allegra et al. 2015, Deidda, Parrini et al. 2015, 

Savardi, Borgogno et al. 2020). We chose to perform the bumetanide treatment from postnatal day 

2 to postnatal day 15 following previous studies that demonstrated the safety of bumetanide 

treatment during this period (Wang and Kriegstein 2011, Marguet, Le-Schulte et al. 2015, He, 

Arroyo et al. 2019). On bumetanide-treated animals and their littermates controls, we assessed 

long-term effects of early-in-life treatment in a battery of behavioral tests performed between P90-

120 (in absence of treatment). 
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Figure 30. Schematic representation of the experimental protocol for the in vivo experiments. Subcutaneous 

bumetanide injections (0.2 mg/kg) were performed twice a day from postnatal 2 to postnatal day 15 in WT 

and Ts65Dn pups. Behavioral testing was performed between P90-120 (see Figures 33-44) and tissues 

collected at the end of the experiment. 

 

Due to the potent diuretic effect of bumetanide that leads to excessive diuresis and possibly 

hypokalemia we first assessed the safety of the early-in-life treatment in mice. First, we 

investigated any effects of bumetanide on the body weight of pups during the temporal window of 

the treatment. We monitored the body weight of the animals treated daily from the first day of 

treatment (P2) until the last day of the treatment (P15). We found no effect of early bumetanide 

treatment on body weight of both females and males of WT and Ts65Dn animals when compared 

to vehicle-treated controls (Figure 31). Of note, we found a significantly higher body weight in 

WT pups compared to Ts65Dn, in agreement, with data from the literature (Glass, Valmadrid et 

al. 2019). 
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Figure 31. Early-in-life bumetanide treatment does not affect body weight in pups. (A) Average weight 

of female Ts65Dn and WT animals treated with vehicle or bumetanide in early life, (ANOVA mixed linear 

models, * p < 0.05). Circles report the average weight of all animals (± SEM). (B) Mean weight of male 

Ts65Dn and WT animals treated with vehicle and bumetanide. (ANOVA mixed linear models, * p < 0.05). 

Circles report the average weight of all analyzed animals (± SEM). 

 

Then, since bumetanide treatment in newborn babies has been linked to hearing loss in humans 

(Pressler, Boylan et al. 2015). We treated pups with vehicle and bumetanide during the first two 

weeks of life and tested them in the acoustic startle reactivity response test in the adulthood (P90). 

In particular, we induced a startle response in mice by exposing them to a 90 dB sudden sound. 

The entity of startle response is considered indicative of the hearing ability. We found no 

significant effect of early-in-life bumetanide treatment in both WT and Ts65Dn mice (Figure 32). 
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Figure 32. Early-in-life bumetanide treatment does not have an adverse effect on hearing ability in 

adult Ts65Dn mice. Average score of acoustic startle reactivity response reflex in adult mice treated with 

vehicle or bumetanide from P2 to P15, (two-way ANOVA, F Interaction (1,82)=0.2097, p = 0.6482, Tukey’s 

post hoc test). The score scale (0=no response, 1=mild response, 2= complete response) to the acoustic 

stimulus. Lines report the average startle response of all analyzed animals (± SEM) and circles represent 

data points for each animal. The numbers of animals tested (WT vehicle: 27, Ts65Dn vehicle: 16, WT 

bumetanide: 24, Ts65Dn bumetanide: 19). 

 

9. Early-in-life bumetanide treatment rescues long-term memory deficits in adult 

Ts65Dn mice 

 

 

First, we assessed the long-term effects of early-in-life bumetanide treatment in restoring short-

term memory in adulthood, by testing mice in the T-maze test (spontaneous alteration protocol, 11 

trials). Contrary to data from the literature (Savardi, Borgogno et al. 2020), vehicle-treated Ts65Dn 

mice showed only a non-significant trend toward poorer short-term memory in comparison to 

vehicle-treated WT mice which was still present in animals treated in early life with bumetanide 

(Figure 33).  
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Figure 33. Vehicle-treated Ts65Dn mice do not exhibit a significantly impaired short-term memory 

and bumetanide treatment does not have any significant effect. Top, schematic representation of the T-

maze task. Bottom, quantification of the correct choices in mice treated with vehicle or bumetanide from 

P2 until P15. Lines report the average score of all analyzed animals (± SEM) and circles represent data 

points for each animal (two-way ANOVA, F Treatment (1,80)= 0.7744, p = 0.3815, Tukey’s post hoc test, two-

way).  

 

In our experiments we included both male and female pups, whereas, the data from the literature 

included only males (Kleschevnikov, Belichenko et al. 2012, Deidda, Parrini et al. 2015, Savardi, 

Borgogno et al. 2020). Thus, we decided to analyze males and females separately to assess any 

gender difference in the performance of our cohort of animals. We found that female Ts65Dn mice 

did not show poor short-term memory in the T-maze test compared to vehicle-treated female WT 

(Figure 34A). Bumetanide treatment in early life had no effect in these animals. We found that 

male Ts65Dn treated with vehicle show a clear trend for poor short-term memory compared to the 

WT vehicle-treated mice (Figure 34B), which was nevertheless not rescued by bumetanide 

treatment. To better understand whether there was a gender difference in the performance of the 

T-maze test in adult Ts65Dn mice, we repeated the experiments in naïve animals (not treated with 

vehicle early-in-life). We found that adult naïve male Ts65Dn mice showed significantly poorer 
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short-term memory compared to male WT male animals. Interestingly, adult naïve female Ts65Dn 

mice did not show any impairment in short-term memory.  

 

 

Figure 34. Gender-selective impairment of short-term memory in Ts65Dn mice. (A) Quantification of 

the correct choices in female WT and Ts65Dn mice injected with vehicle or bumetanide as pups. Lines 

report the average score of all analyzed animals (± SEM) and circles represent data points for each animal 

(two-way ANOVA, F Interaction (1,44)= 0.08232, p = 0.7755, Tukey’s post hoc test, two-way). (B) 

Quantification of the correct choices in male WT and Ts65Dn mice injected with vehicle or bumetanide as 

pups. Lines report the average score of all analyzed animals (± SEM) and circles represent data points for 

each animal (two-way ANOVA, F Interaction (1,32)= 0.5463, p = 0.4652, Tukey’s post hoc test, two-way). (C) 

Quantification of the correct choices in naïve male WT, and naïve male and female Ts65Dn mice. Lines 

report the average score of all analyzed animals (± SEM) and circles represent data points for each animal 

(Unpaired two-tailed Student’s t test (*p < 0.05), p = 0.0247 (naïve WT males- naïve Ts65Dn males; p = 

0.5042 (naïve WT males- naïve Ts65Dn females). 
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Next, we assessed any long-term effects of early-in-life bumetanide treatment on long-term 

memory deficits in Ts65Dn adult mice. We first performed the novel-object recognition (NOR) 

test. In agreement with what previously demonstrated and our data in mice injected with control 

amiR AAV9 viruses (Deidda, Parrini et al. 2015), vehicle-treated Ts65Dn mice showed deficits in 

recognition memory in comparison to vehicle-treated WT animals. Early-in-life bumetanide 

treatment was able to fully rescue the deficit in discrimination of novelty of Ts65Dn mice in 

adulthood in comparison to vehicle-treated WT mice (Figure 35A). The effect of early bumetanide 

treatment in the trisomic group in NOR test was not due to object preference (among the 3 objects 

used in this behavioral test) or in total object exploration time in all groups (Figure 35B,C,D). WT 

animals treated with bumetanide as pups did not show any significant phenotype, in agreement 

with our results in WT animals infected with NKCC1 amiR in early life.  
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Figure 35. Early-in-life bumetanide treatment rescues impaired long-term memory in the novel 

object recognition task in adult Ts65Dn mice. Top, schematic representation of the novel object 

recognition test. Bottom, (A) Quantification of the discrimination index in mice treated with vehicle or 

bumetanide from P2 to P15. Lines report the average discrimination index of all analyzed animals (± SEM) 

and circles represent data points for each animal (two-way ANOVA, F Interaction (1,65)= 4.015, p = 0.0493, 

Tukey’s post hoc test, * p < 0.05, two-way). (B) Quantification of the percentage of time spent exploring 

the three objects during the acquisition phase. Bars represent the average discrimination index of all 

analyzed animals ± SEM (ANOVA, *p < 0.05). (C) Quantification of the percentage of the total time spent 

exploring the objects during the acquisition phase. Bars represent the average exploration time (seconds) 

of all analyzed animals ± SEM (two-way ANOVA, F Interaction (1,65)= 0.2698, p = 0.6052, Tukey’s post hoc 

test, two-way). (D) Quantification of the percentage of the total time spent exploring the objects during the 

trial phase. Bars represent the average exploration time (seconds) of all analyzed animals ± SEM (two-way 

ANOVA, F Interaction (1,65)= 0.005437, p = 0.9414, Tukey’s post hoc test, two-way). 
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We found no gender-selective difference in the performance of Ts65Dn mice in the novel object 

recognition (Figure 36). Both males and females trisomic animals showed a clear trend for 

impaired recognition memory. In female Ts65Dn mice, bumetanide treatment significantly 

rescued long-term memory, while in male trisomic animals treated with bumetanide there was a 

clear trend for restored memory performance, although the number of experimental animals was 

lower. No significant phenotype was found in WT animals treated with bumetanide both males 

and females. 

 

 

Figure 36. No gender-specific difference in the novel object recognition task. (A) Quantification of the 

discrimination index in female mice treated with vehicle or bumetanide from P2 to P15. Lines report the 

average discrimination index of all analyzed animals (± SEM) and circles represent data points for each 

animal (two-way ANOVA, F Interaction (1,33)= 1.661, p = 0.2064, Tukey’s post hoc test, * p < 0.05, two-

way). (B) Quantification of the discrimination index in male mice treated with vehicle or bumetanide from 

P2 to P15. Lines report the average discrimination index of all analyzed animals (± SEM) and circles 

represent data points for each animal (two-way ANOVA, F Interaction (1,28)= 1.45, p = 0.2386, Tukey’s post 

hoc test, * p < 0.05, two-way). 

 

 

Next, we evaluated associative memory in the contextual fear conditioning test (CFC). In 

agreement with previously demonstrated (Deidda, Parrini et al. 2015) and our result in control 

amiR animals, vehicle-treated Ts65Dn mice showed poor freezing response after re-exposure to 

the grid context 24h after the conditioning session, when compared to vehicle-treated WT mice. 

Notably, bumetanide treatment during early postnatal life fully restored the associative memory in 
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adult Ts65Dn mice (Figure 37A), with no changes in non-associative freezing (freezing response 

measured in a new context; Figure 37B). WT animals treated with bumetanide did not show any 

significant phenotype.  

 

 

Figure 37. Early-in-life bumetanide treatment rescues impaired freezing response in the contextual 

fear conditioning task in adult Ts65Dn mice. Top, schematic representation of the contextual fear 

conditioning test. Bottom, (A) Quantification of the freezing response in adult mice treated with vehicle or 

bumetanide from P2 to P15. Lines report the average freezing response of all analyzed animals (± SEM) 

and circles represent data points for each animal (two-way ANOVA, F Treatment (1,58)= 9.396, p = 0.0033, 

Tukey’s post hoc test, ** p < 0.01; * p < 0.05, two-way). (B) Quantification of the freezing response in 

mice during the exposition to the new context. Lines report the average freezing response of all analyzed 

animals (± SEM) and circles represent data points for each animal (two-way ANOVA, F Interaction (1,58)= 

0.6462, p = 0.4248, Tukey’s post hoc test, two-way).  

 

 

As for the novel object recognition test, we found no gender-selective difference in the 

performance of Ts65Dn mice in the contextual fear conditioning (Figure 38). Female trisomic 

animals showed a clear trend for impaired freezing time, while males showed a significantly 

impaired freezing response. For both genders, bumetanide treatment improved freezing time in 

Ts65Dn mice. In agreement with our data on WT animals injected with NKCC1 amiR in early life, 
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no significant phenotype was found in WT animals treated with bumetanide both in males and 

females. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. No sex-specific difference in the contextual fear conditioning task. (A) Quantification of the 

freezing response in adult female mice treated with vehicle or bumetanide from P2 to P15. Lines report the 

average freezing response of all analyzed animals (± SEM) and circles represent data points for each animal 

(two-way ANOVA, F Treatment (1,31)= 2.972, p = 0.0947, Tukey’s post hoc test, * p < 0.05, two-way). (B) 

Quantification of the freezing response in adult male mice treated with vehicle or bumetanide from P2 to 

P15. Lines report the average freezing response of all analyzed animals (± SEM) and circles represent data 

points for each animal (two-way ANOVA, F Treatment (1,23)= 7.302, p = 0.0127, Tukey’s post hoc test, ** p 

< 0.01; * p < 0.05, two-way). 

 

 

 

 

Finally, we evaluated spatial memory in the object location task (OL). In agreement with the 

literature we found that Ts65Dn mice treated with vehicle show impaired spatial memory as 

expected (Deidda, Parrini et al. 2015). On the other hand, also WT animals treated with vehicle as 

pups performed poorly in the OL with a discrimination index very close on average to the chance 

level (Figure 39A), while early-in-life bumetanide treatment did not show any significant 

phenotype in Ts65Dn mice and WT mice when compared to their control mice treated with vehicle 

(Figure 39A). The result of discrimination index in the OL test was not due to alterations in the 

object preference or in the total object exploration during the acquisition phase (Figure 39B,C). 

There were no significant differences among any groups in the total exploration time both in the 

acquisition and trial sessions. 
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Figure 39. Adult WT vehicle-treated animals as pups show impairment in the object location test. (A) 

Quantification of the discrimination index in mice treated with vehicle or bumetanide from P2 to P15. Lines 

report the average discrimination index of all analyzed animals (± SEM) and circles represent data points 

for each animal (two-way ANOVA, F Interaction (1,61)= 1.097, p = 0.2990, Tukey’s post hoc test, * p < 0.05, 
two-way). (B) Quantification of the percentage of time spent exploring the two objects during the 

acquisition phase. Bars represent the average discrimination index of all analyzed animals ± SEM 

(ANOVA, *p < 0.05). (C) Quantification of the percentage of the total time spent exploring the objects 

during the acquisition phase. Bars represent the average exploration time (seconds) of all analyzed animals 

± SEM (two-way ANOVA, F Interaction (1,60)= 0.00691, p = 0.9340, Tukey’s post hoc test, two-way). (D) 

Quantification of the percentage of the total time spent exploring the objects during the trial phase. Bars 

represent the average exploration time (seconds) of all analyzed animals ± SEM (two-way ANOVA, F 

Interaction (1,61)= 0.001591, p = 0.9683, Tukey’s post hoc test, two-way). 
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Data from the literature indicate that early life stress has long-lasting, a gender-selective effect on 

the performance of male mice in the novel object location task during adulthood (Bath, Nitenson 

et al. 2017). This effect is specific to the NOL and is not present when animals are tested in the 

novel object recognition and contextual fear conditioning tests. 

We reasoned that injections twice a day during the first two weeks of life could be a stressful event 

for mouse pups. We thus re-analyzed that data from the OL test taking into account the gender of 

the animals (Figure 40). We found that female WT animals treated with vehicle were successful 

in discriminating the novel object location, while female Ts65Dn animals treated with vehicle 

showed a clear trend for poor spatial memory. Notably, bumetanide treatment in female Ts65Dn 

animals did not rescue the poor discrimination index compared to the female WT animals treated 

with bumetanide. On the other hand, male WT animals treated with vehicle showed impaired 

spatial memory performance in agreement with the poor performance in the OL and Morris water 

maze (MWM) tests of male animals that have experienced stressful events early-in-life. We found 

no significant phenotype in male WT and Ts65Dn animals treated with bumetanide. 

 

 

Figure 40. Gender-selective impairment of spatial memory in Ts65Dn mice. (A) Quantification of the 

discrimination index in adult female mice treated with vehicle or bumetanide from P2 to P15. Lines report 

the average discrimination index of all analyzed animals (± SEM) and circles represent data points for each 

animal (two-way ANOVA, F Interaction (1,32)= 2.833, p = 0.1021, Tukey’s post hoc test, * p < 0.05, two-

way). (B) Quantification of the discrimination index in adult male mice treated with vehicle or bumetanide 

from P2 to P15. Bars represent the average discrimination index of all analyzed animals ± SEM, and circles 

represent data points for each animal (two-way ANOVA, F Interaction (1,25)= 0.1851, p = 0.6707, Tukey’s 

post hoc test). 
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10. Early-in-life bumetanide treatment rescues increased susceptibility to epileptic 

seizures in adult Ts65Dn mice 

 

Deidda and colleagues reported no significant effect of bumetanide on the increased susceptibility 

to epileptic seizures, when the drug-treatment was performed in adult Ts65Dn mice. To assess 

whether treatment with bumetanide during a specific developmental window can rescue the higher 

susceptibility to seizures of trisomic mice in adulthood, we performed the audiogenic seizure 

(AGS) test in adult (P110-120) Ts65Dn and WT mice injected with vehicle or bumetanide from 

P2 to P15. In agreement with the literature (Westmark, Westmark et al. 2010, Deidda, Parrini et 

al. 2015), Ts65Dn vehicle-treated mice exhibited increased AGS susceptibility in comparison to 

WT, control mice, as assessed by the percentage of animals that exhibited AGS (Figure 41A), or 

mean AGS severity score (Figure 41B). Notably, bumetanide treatment during early postnatal life 

fully restored the increased AGS susceptibility in adult Ts65Dn mice.  

 

Figure 41. Early-in-life bumetanide treatment rescues increased susceptibility to seizures in adult 

Ts65Dn mice. Top, schematic representation of the AGS test and scoring. The numbers indicate the score 

given to an animal during the induction of a specific behavior by a 120 dB white noise. Bottom, (A) 

Percentage of animals that exhibited AGS susceptibility (left, Chi Square test with Sidak adjustment for 

multiple comparisons, **P<0.01, *P < 0.05), (B) mean AGS severity score, (two-way ANOVA on ranks, 

FTreatment (1,58)= 8.404, p = 0.0053, Student-Newman-Keuls Method, *P < 0.05). Bar charts represent the 

percentage of animals showing AGS (left) or average severity score ± SEM (right). The numbers of animals 

tested (WT-vehicle: 20, Ts65Dn-vehicle: 12, WT-bumetanide: 15, Ts65Dn-bumetanide: 15). 
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As for the novel object recognition and contextual fear conditioning tests, we found no gender-

selective difference in the susceptibility to epileptic seizures of Ts65Dn mice (Figure 42). Female 

trisomic vehicle-treated animals showed significantly higher score in audiogenic seizures in 

comparison to WT females, while male trisomic animals showed a clear trend for increased AGS 

score. For both genders, bumetanide treatment improved AGS score in Ts65Dn mice. In WT 

animals no significant phenotype was found in both males and females treated with bumetanide. 

 

 

 

 

 

 

 

 

 

 

Figure 42. No sex-specific difference in the susceptibility to seizures in adult Ts65Dn mice. (A) Mean 

AGS severity score in female mice (two-way ANOVA on ranks, FGenotype (1,30)= 7.742, p = 0.0092, Student-

Newman-Keuls Method). Bar charts represent the average severity score ± SEM (right). The numbers of 

female animals tested (WT-vehicle: 9, Ts65Dn-vehicle: 7, WT-bumetanide: 9, Ts65Dn-bumetanide: 9). (B) 

Mean AGS severity score in male mice (two-way ANOVA on ranks, FTreatment (1,24)= 4.617, p = 0.0420, 

Student-Newman-Keuls Method). Bar charts represent the average severity score ± SEM (right). The 

numbers of male animals tested (WT-vehicle: 11, Ts65Dn-vehicle: 5, WT-bumetanide: 6, Ts65Dn-

bumetanide: 6). 
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11. Early-in-life intervention alters locomotor activity in mice 

 

Deidda and colleagues reported no significant effect of bumetanide on the increased locomotor 

activity in Ts65Dn animals (Reeves, Irving et al. 1995) when bumetanide was given in adult 

trisomic mice (Deidda, Parrini et al. 2015). To assess whether early-in-life bumetanide treatment 

could rescue the increased locomotor activity in trisomic mice (Reeves, Irving et al. 1995), we 

monitored the locomotor activity of adult WT and Ts65Dn animals treated with vehicle and 

bumetanide as pups during the first two postnatal weeks of life over the course of 24 hours. For 

the analysis, the 24-hour monitoring was divided in 12 hours of light and 12 hours of dark. We 

found no significant differences between groups in the light phase for all the parameters analyzed 

(horizontal activity, total distance travelled and vertical activity), which is in agreement with the 

literature (Deidda, Parrini et al. 2015). During the dark phase, we found no significant difference 

among groups. Nevertheless, both Ts65Dn groups (treated with vehicle and bumetanide) showed 

a trend for increased locomotor activity during the dark phase for horizontal activity, total distance 

travelled and vertical activity (Figures 42A,B,C) in comparison to WT controls. Ts65Dn animals 

have a trend to significant activity compared to WT mice, but the number of animals is too low to 

draw final conclusions. No significant effect of bumetanide treatment was also observed in any 

group. 
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Figure 43. Early-in-life bumetanide treatment does not affect locomotor activity in Ts65Dn adult 

mice. (A) Quantification of the horizontal locomotor activity of mice treated with vehicle or bumetanide 

from P2 to P15. The light phase is represented on the left, whereas the dark phase is represented shadowed 

on the right. Bars represent the average locomotor activity ± SEM, and circles represent data points for each 

animal. Light phase: two-way ANOVA, F Interaction (1,45)= 0.1937, p = 0.6620, Tukey’s post hoc test, * p < 

0.05, two-way. Dark phase: two-way ANOVA, F Interaction (1,43)= 0.3904, p = 0.5354, Tukey’s post hoc test, 

* p < 0.05, two-way. (B) Quantification of the total distance travelled in mice treated with vehicle or 

bumetanide from P2 to P15. The light phase is represented on the left, whereas the dark phase is represented 

shadowed on the right. Bars represent the average locomotor activity ± SEM, and circles represent data 

points for each animal. Light phase: two-way ANOVA, F Interaction (1,45)= 0.3264, p = 0.5707, Tukey’s post 

hoc test, * p < 0.05, two-way. Dark phase: two-way ANOVA, F Interaction (1,43)= 0.4262, p = 0.5173, Tukey’s 

post hoc test, * p < 0.05, two-way. (C) Quantification of the vertical locomotor activity of mice treated with 

vehicle or bumetanide from P2 to P15. The light phase is represented on the left, whereas the dark phase is 

represented shadowed on the right. Bars represent the average locomotor activity ± SEM, and circles 

represent data points for each animal. Light phase: two-way ANOVA, F Interaction (1,44)= 0.1239, p = 0.7266, 
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Tukey’s post hoc test, * p < 0.05, two-way. Dark phase: two-way ANOVA, F Interaction (1,43)= 0.1353, p = 

0.7148, Tukey’s post hoc test, * p < 0.05, two-way. 

 

We analyzed males and females separately to assess any gender difference in the performance of 

the groups. No significant differences were found among groups (Figure 44). 

 

 

 

Figure 44. Early-in-life bumetanide treatment does not have a significant gender-specific locomotor 

activity in Ts65Dn adult mice. (A) Quantification of the horizontal locomotor in female mice treated with 

vehicle or bumetanide from P2 to P15. The light phase is represented on the left and whereas the dark phase 

is represented shadowed on the right. Bars represent the average locomotor activity ± SEM, and circles 

represent data points for each animal. Light phase: two-way ANOVA, F Genotype (1,29)= 1.712, p = 0.2010, 

Tukey’s post hoc test, * p < 0.05, two-way. Dark phase: two-way ANOVA, F Genotype (1,28)= 5.445, p = 

0.0270, Tukey’s post hoc test, * p < 0.05, two-way. (B) Quantification of the horizontal locomotor in male 

mice treated with vehicle or bumetanide from P2 to P15. The light phase is represented on the left and 

whereas the dark phase is represented shadowed on the right. Bars represent the average locomotor activity 

± SEM, and circles represent data points for each animal. Light phase: two-way ANOVA, F Genotype (1,12)= 

17.84, p = 0.0012, Tukey’s post hoc test, * p < 0.05, two-way. Dark phase: two-way ANOVA, F Genotype 
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(1,11)= 0.4777, p = 0.5038, Tukey’s post hoc test, * p < 0.05, two-way. (C) Quantification of the vertical 

locomotor activity in female mice treated with vehicle or bumetanide from P2 to P15. The light phase is 

represented on the left and whereas the dark phase is represented shadowed on the right. Bars represent the 

average locomotor activity ± SEM, and circles represent data points for each animal. Light phase: two-way 

ANOVA, F Genotype (1,28)= 4.396, p = 0.0452, Tukey’s post hoc test, * p < 0.05, two-way. Dark phase: two-

way ANOVA, F Genotype (1,28)= 1.702, p = 0.2026, Tukey’s post hoc test, * p < 0.05, two-way. (D) 

Quantification of the vertical locomotor activity in mice treated with vehicle or bumetanide from P2 to P15. 

The light phase is represented on the left and whereas the dark phase is represented shadowed on the right. 
Bars represent the average locomotor activity ± SEM, and circles represent data points for each animal. 

Light phase: two-way ANOVA, F Genotype (1,12)= 0.2331, p = 0.6380, Tukey’s post hoc test, * p < 0.05, 

two-way. Dark phase: two-way ANOVA, F Genotype (1,11)= 0.1386, p = 0.7168, Tukey’s post hoc test, * p < 

0.05, two-way. 

 

12. Early-in-life bumetanide treatment rescues GABAAergic signaling in hippocampal 

acute slices of adult Ts65Dn mice  

 

 

 

 

 

 

 

 

Figure 45. Schematic representation of the experimental protocol for WT and Ts65Dn mice. WT and 

Ts65Dn pups were treated with either vehicle or bumetanide for the period from P2 until P15. Mice were 

weaned at P28 and electrophysiological recordings were performed between P60-90. 

 

We then investigated on the possible mechanisms underlying the behavioral rescue in long-term 

memory (NOR and CFC) and susceptibility to epileptic seizures upon bumetanide treatment early-

in-life in Ts65Dn animals. We assessed whether the bumetanide treatment could rescue the 

increased GABA-mediated spiking events already described in adult Ts65Dn mice (Deidda, 

Parrini et al. 2015). To this aim, we treated WT and Ts65Dn pups with vehicle or bumetanide from 

P2 to P15, and performed multi-electrode array recordings (MEA) in acute brain slices (at >P70) 

from the previously treated animals. Hippocampal slices were recorded at basal conditions for 30 

minutes followed by 30 minutes of recordings after exogenous GABA (100 μM) administration in 

the bath. As expected, the vehicle-treated WT mice showed a suppression of average MFR (with 

a values near to zero) (Figure 32A). Interestingly, slices from WT animals treated with bumetanide 

as pups did not  significantly change their MFR ratio in comparison to WT vehicle-treated slices. 
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Conversely, vehicle-treated Ts65Dn (Figure 32A) showed significantly increased MFR ratio upon 

GABA administration in comparison to WT vehicle-treated animals. Remarkably, early-in-life 

bumetanide treatment significantly restored the response to exogenous GABA bath application in 

adult Ts65Dn hippocampal slices (Figure 32A).  

Then, we quantified the percentage of electrodes for each slices showing significant change in 

comparison to their baseline level (threshold of 10% change). We found that the majority of the 

electrodes decreased their firing rate upon GABA application in vehicle-treated WT slices (16% 

of increasing electrodes, 69% of decreasing electrodes) or bumetanide-treated slices (30% of 

increasing electrodes, 50% of decreasing electrodes) (Figure 32B). Conversely, in vehicle-treated 

Ts65Dn slices the majority of the active electrodes increased the average MFR level upon 

exogenous GABA administration (67% of increasing electrodes, 17% of decreasing electrodes). 

However, Ts65Dn slices from mice treated with bumetanide from P2 until P15 displayed a 

significant decrease in the MFR with a percentage of MFR variation comparable to that of vehicle-

treated WT (46% of increasing electrodes, 47% of decreasing electrodes), indicating a significant 

rescue of the inhibitory GABAergic signaling. 
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Figure 46. Early-in-life bumetanide treatment rescues GABAergic signaling in adult Ts65Dn mice. 

Hippocampal multi-electrode array recordings (MEA) from (8-12 weeks old) adult WT and Ts65Dn mice 

treated with vehicle or bumetanide from P2 until P15. (A) Quantification of MFR ratio after exogenous 

GABA administration in the bath. MFR for each electrode is normalized to the value of the same electrode 

during basal condition (indicated as the dotted line) and then average for each slice. The small square 

indicates the mean, the central line illustrates the median, and the box limits indicate the 25th and 75th 

percentiles and each dot represents the MFR ratio for each recorded brain slice. Bars represent the MFR of 

all recorded electrodes ± SEM, and dots represent data points for each slice (WT-vehicle: 2 animals, 6 slices 

Ts65Dn-vehicle: 3 animals, 8 slices, WT-bumetanide: 3 animals, 8 slices, Ts65Dn-bumetanide: 5 animals, 

12 slices). Data points falling on the dashed line (MFR equal to 0) show no change in the MFR, data points 

falling above the dashed line (MFR ratio >1) show an increase in MFR, and data falling below the dashed 

line (MFR ratio <1) show a decrease in MFR after drug administration in the bath (two-way ANOVA, 

*p<0.05; followed by Tukey’s post hoc test). (B) Quantification of the percentage of MEA electrodes for 

each slice that significantly change the MFR after bath application of GABA. Bars above zero (dark grey) 

represent percentage of electrodes that increased their activity in comparison to the baseline after GABA 

application in the bath, whereas bars below zero (light grey) represent percentage of electrodes that 

decreased their activity in comparison to the baseline (two-way ANOVA, *p<0.05; **p<0.01; *** p<0.001; 

followed by Tukey’s post hoc test). 
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Discussion 

 

In this study, we demonstrate for the first time that an increased ratio of NKCC1/KCC2 is present 

since early postnatal life in trisomic mice and that interference with NKCC1 during a vulnerable 

developmental window of brain maturation resulted in lasting rescue of cognitive deficits, 

hyperactivity and susceptibility to seizure phenotypes in the adult Ts65Dn mice. To target NKCC1 

we used a neuron-specific genetic approach by AAV9-mediated NKCC1 knockdown and systemic 

subcutaneous administration of the FDA-approved diuretic bumetanide, an NKCC1 inhibitor, 

during the first 2 weeks of development.  

 

Chloride transporter expression is altered since early postnatal life in Ts65Dn mice 

 

Here, we studied the developmental expression of the two cotransporters during brain development 

in WT animals and Ts65Dn mice. We found that both NKCC1 and KCC2 increase their expression 

in the hippocampus after birth in both WT and trisomic mice, as assessed at P2, P7, P15, P21, P30, 

>P60. . The robust upregulation of KCC2 is many-fold higher the upregulation of NKCC1. This 

is in line with evidence from the literature supporting the upregulation of KCC2 in many studies 

in both rodents (Rivera, Voipio et al. 1999, Kaila, Price et al. 2014, Watanabe and Fukuda 2015) 

and humans (Vanhatalo, Palva et al. 2005, Sedmak, Jovanov-Milosevic et al. 2016). This also 

points to the robust upregulation of KCC2 postnatally as the main mediator of the GABA polarity 

switch (Rivera, Voipio et al. 1999). This is in line with the fact that premature overexpression of 

KCC2 early in development results in a physiological (and not hyperpolarized) ECl- (Cancedda, 

Fiumelli et al. 2007). In contrast, RNA interference for NKCC1 knock down in utero reversed 

EGABA at more hyperpolarizing potentials in neocortical neurons than in controls (Wang and 

Kriegstein 2008). On the other hand, the developmental regulation of NKCC1 mRNA and/or 

protein has been a topic of controversy with a series of human and rodent (both rats and mice) 

studies reporting either a clear developmental upregulation (Yan, Dempsey et al. 2001, Wang, 

Shimizu-Okabe et al. 2002, Hyde, Lipska et al. 2011, Sedmak, Jovanov-Milosevic et al. 2016), or 

developmental downregulation (Shimizu-Okabe, Yokokura et al. 2002, Yamada, Okabe et al. 

2004, Dzhala, Talos et al. 2005) or stable expression (Mao, Garzon-Muvdi et al. 2012) during 

development possibly. This was possibly due to technical difficulties identifying NKCC1 that can 
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be mediated by epitope masking after epitope phosphorylation (Delpire and Austin 2010, 

Hartmann and Nothwang 2014) and/or unintended splice isoform specificity of NKCC1 available 

antibodies (Puskarjov, Kahle et al. 2014, Virtanen, Uvarov et al. 2020). Moreover, sequence 

diversity of NKCC1 homologues across species (98% between mice and rats and 94% between 

mice and humans) should be taken into account considering that the differences between species 

are mainly located in N-terminal parts and C-terminal regions around exon 21, a region which is 

alternatively spliced into NKCC1a and NKCC1b isoforms (Randall, Thorne et al. 1997, Hebert, 

Mount et al. 2004, Virtanen, Uvarov et al. 2020).  On the other hand, since NKCC1, unlike KCC2, 

is expressed not only in neurons, it is possible that the discrepancy in the diverse studies is given 

by a diverse contribution from astrocytes and oligodendrocytes, which express NKCC1 continue 

to proliferate in the postnatal brain (Annunziato, Boscia et al. 2013, Reemst, Noctor et al. 2016). 

In particular, we found that Ts65Dn mice have significantly upregulated NKCC1 protein at P7, 

P21, >P60 in comparison to WT mice , while we found a significant downregulation of KCC2 at 

P2, P15, P30 in trisomic hippocampi in comparison to WT animals. Computing the ratio of 

NKCC1 to KCC2 we found that Ts65Dn have an altered Cl- transporter ratio at all the time points 

studied, with P2 being the first time point studied. We expressed the NKCC1/KCC2 ratio as a 

reference for prediction of EGABA in neurons. The assumption is that since the two transporters 

play opposite roles in Cl- transportation, a decreasing NKCC1/KCC2 ratio during development 

should be in line with the described excitatory to inhibitory shift in GABAergic signaling sustained 

by the increasing levels of negative shift in EGABA values. Nevertheless, we are currently validating 

this assumption by electrophysiological recordings also in light of the already mentioned 

expression of NKCC1 by astrocytes and oligodendrocytes.   

Our findings on increased NKCC1/KCC2 ratio during development in Ts65Dn mice are supported 

by recent data showing a delay in GABA polarity switch in primary hippocampal cultures and 

acute hippocampus slices of Ts65Dn mice. There, authors found that the timing of the GABA 

switch was delayed by 2–3 days in Ts65Dn hippocampal cultures and by 2 days in CA3 slices. 

However, they did not investigate the molecular mechanisms undelaying this delay (Lysenko, Kim 

et al. 2018). Our results on the developmental expression of NKCC1 and KCC2 showing 

significantly increased NKCC1/KCC2 ratio at all the time points studied come from bulk 
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hippocampal samples. This doesn’t allow us to draw conclusions about possible sub-regional 

differences in cotransporter expression. 

Finally, considering that the upregulation of NKCC1 described in adult Ts65Dn mice by Deidda 

and colleagues was also confirmed in the hippocampus of adult DS people (Deidda, Parrini et al. 

2015) and that our results show a significantly increased ratio of NKCC1 to KCC2 present early 

on in postnatal Ts65Dn hippocampus, future investigations should study whether alterations in 

cotransporter regulation is present during brain development also in DS people. 

 

Early interventions targeting NKCC1 result in long-term rescue of deficits in adult Ts65Dn 

mice 

 

Our results suggest that early interventions targeting NKCC1 have long-term effects in rescuing 

learning and memory, hyperactivity, susceptibility to epileptic seizures and GABAergic signaling 

in the adult Ts65Dn mice. A long-lasting effects of a transient treatment with bumetanide during 

development has been also reported by other groups in epilepsy (Marguet, Le-Schulte et al. 2015), 

Fragile X (Tyzio, Nardou et al. 2014, He, Arroyo et al. 2019) and Rett syndrome (Lozovaya, 

Nardou et al. 2019). In particular, a study using Kv7 current-deficient mice, a model of neonatal 

epileptic encephalopathy, has shown that bumetanide treatment between P0-P14 prevents 

structural and behavioral pathology and normalizes network activity in these mice (Marguet, Le-

Schulte et al. 2015). Moreover, in Fragile X mice (Fmr1 KO mice) the authors reported defective 

EGABA in the hippocampus due to downregulation of KCC2. Notably, maternal pretreatment with 

bumetanide rescued electrophysiological and behavioral phenotypes in offspring though an 

oxytocin signaling-dependent mechanism (Tyzio, Nardou et al. 2014). More recently, He and 

colleagues suggested an alternative model for the altered EGABA in Fragile X mice, showing 

elevated NKCC1 expression in the postnatal cortex of Fmr1 KO mice resulting in synaptic deficits 

and circuit dysfunction that were rescued by bumetanide treatment (P0-P10) with lasting effects 

(He, Arroyo et al. 2019). Tyzio and colleagues did not investigate NKCC1 levels in Fmr1 KO 

hippocampus and He and colleagues did not find differences in KCC2 expression levels in mutants. 

The different etiology from chloride dysregulation in the two studies in Fmr1 KO mice could be 

explained by region specific differences in cotransporter expression. However, both models point 
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to an increased NKCC1/KCC2 ratio and the positive outcome of bumetanide treatment. Moreover, 

in CA3 pyramidal neurons of Rett syndrome mice (MeCP2 mutant) the developmental GABAergic 

polarity shift was reported to be abolished and responses to GABA were excitatory two weeks 

after birth, which was restored by maternal bumetanide treatment one day before delivery 

(Lozovaya, Nardou et al. 2019). Common ground between these studies and ours is the lasting 

effect of early bumetanide treatment in rescuing disrupted developmental processes.  

Considering the rescue of long-term memory (novel object recognition, contextual fear 

conditioning and object location), the effect that we found in animals infected with the neuron-

specific AAV9-NKCC1 amiR at P2 could be simply the result of NKCC1 downregulation during 

the period of testing (adulthood). This is because NKCC1 knock down by AAV9-NKCC1 amiR 

likely lasts throughout adulthood (Ittner, Klugmann et al. 2019) and after adult bumetanide 

treatment is sufficient to rescue cognitive impairment in Ts65Dn animals (Deidda, Parrini et al. 

2015). On the other hand, our approach by early-in-life treatment with bumetanide (P2-P15) 

indicated that a transient interference with NKCC1 function during brain maturation can per se 

have long-lasting effects on Ts65Dn adult mice rescuing long-term memory in the novel object 

recognition task and contextual fear conditioning.  Nevertheless, when we tested the same animals 

in the object location task, we found that vehicle-treated WT animals showed a poor discrimination 

index. A gender-specific analysis revealed that the controls animals that performed poorly in the 

object location test were males. This is in line with data from the literature showing that early life 

stress (ELS) has long-lasting, gender-selective effect on the performance of male mice specifically 

in the object location task during adulthood (Naninck, Hoeijmakers et al. 2015, Bath, Nitenson et 

al. 2017). Indeed, because of the poor pharmacokinetics of bumetanide we followed a two injection 

a day strategy as previously described (Deidda, Allegra et al. 2015, Marguet, Le-Schulte et al. 

2015). This was possibly perceived as an ELS by pups. Interestingly, the same study showed that 

the negative effect of ELS in cognitive performance of female mice was also observed in young 

animals (P21 and P38), but did not persist in early adulthood (Bath, Nitenson et al. 2017). This is 

again in line with the good discrimination index that we found in the task in female mice, as tested 

between P90-P120. Of note, the gender-selective impact of ELS in spatial memory has been 

described also in the Morris water maze task (Naninck, Hoeijmakers et al. 2015). Although we did 

not test our experimental animals in the Morris water maze, we did found poor spatial memory 
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performance in male controls in the object location test supporting the gender-selective impairment 

of ELS in spatial memory. 

Interestingly, early-in-life NKCC1 knock down rescued short-term memory in the T-maze task in 

adult Ts65Dn mice, which is in line with data showing the same rescue after selective NKCC1 

inhibition in young adult trisomic (male) animals (Savardi, Borgogno et al. 2020). However, 

gender-depended analysis of animals treated with vehicle as pups revealed a male-selective 

impairment of adult Ts65Dn mice in short-term memory (T-maze task). Conversely, Faizi et al. 

did show impaired spontaneous alteration of female Ts65Dn in the T-maze task. These seemingly 

contradicting results may depend on subtle differences in the protocol. Indeed, Faizi et al 

themselves reported no deficit in spontaneous alteration in both male and female Ts65Dn mice in 

Y-maze, a task very similar to the T-maze and also assessing short-term memory (Faizi, Bader et 

al. 2011). Notably, in the T-maze task, the discrepancy between the rescue of short-term memory 

deficit seen in Ts65Dn mice after early-in-life NKCC1 knock down and the no effect after early-

in-life bumetanide treatment could be explained by the lifelong downregulation of NKCC1 with 

the early-in-life AAV9 NKCC1 interference approach, suggesting that transient NKCC1 inhibition 

by bumetanide treatment might not be enough for the rescue of this deficit in the adult Ts65Dn 

animals. 

Both early downregulation of NKCC1 starting at P2 and early-in-life bumetanide treatment 

resulted in a complete rescue of the susceptibility to seizure phenotype, almost three months after 

the treatment cessation in Ts65Dn mice. Adult bumetanide treatment did not rescue the 

susceptibility to seizures in trisomic mice (Deidda, Parrini et al. 2015). This suggests that 

additional mechanisms independent of depolarizing GABA signaling or early circuit alterations 

underlie the epileptic phenotype in DS animals.  Interestingly, in a genetic rat model of epilepsy 

(GERP) increased susceptibility to audiogenic seizures has been attributed to an increased number 

of GABAergic neurons (as determined by GAD immunoreactivity) in circuits of the inferior 

colliculus (IC) (Faingold, Gehlbach et al. 1986, Maxson 2017, Ribak 2017). However, the IC 

neurons in GERP rats were found to be less sensitive to GABA and benzodiazepine iontophoresis 

than in control rats (Faingold, Gehlbach et al. 1986). Moreover, a rat study showed that 

susceptibility to audiogenic seizures resulted from neuronal hyperexcitability to sound induced by 

a decreased GABAergic inhibition in IC (Bagri, Sandner et al. 1989). Although the authors claimed 
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a decreased effectiveness of inhibition in the IC of audiogenic susceptible rats (Faingold 2002), no 

recordings of EGABA were performed in these studies. The increased susceptibility seen in Ts65Dn 

mice (Westmark, Westmark et al. 2010, Deidda, Parrini et al. 2015) might be related to altered 

GABAergic signaling in these same local circuits. Transient interference with bumetanide early-

in-life could rescue the pathological trajectories in adulthood. Additionally, the susceptibility to 

seizures in adult Ts65Dn animals was also rescued by neuron-specific AAV9-mediated NKCC1 

knockdown early-in-life. Notably, injection of the AAV9 construct at P2 resulted in a large 

transduction brain-areas in adulthood including hippocampus, cortex, and subcortical regions that 

could also explain the rescue of increased seizure phenotype and the networks mediate this 

phenotype. These data support that timed interference with NKCC1 during development is vital 

for the prevention of susceptibility to seizure phenotype in adult trisomic animals.  

The hyperactivity phenotype was rescued by early downregulation of NKCC1. Also this deficit 

was not ameliorated by bumetanide treatment in adult DS animals (Deidda, Parrini et al. 2015), 

suggesting again that it might arise during development and be encoded in the circuits. 

Interestingly, hyperactivity is highly comorbid in neurodevelopmental disorders (Gnanavel, 

Sharma et al. 2019). Although fMRI studies have revealed both shared and distinct functional 

networks between ADS and ADHD subjects (Di Martino, Zuo et al. 2013) more studies are needed 

to better understand comorbidity in NDs and circuit specific behavioral deficits. Notably, we could 

not see the known increased locomotor activity of vehicle-treated Ts65Dn in comparison to WT 

animals, when animals were injected twice a day postnatally. This was due to the fact that vehicle-

treated WT mice as pups showed themselves increased locomotor activity in the dark phase in 

comparison to control amiR animals in this study and as described by Deidda and colleagues. 

Possibly, ELS could have a role also in altered locomotor activity. However, the low number of 

animals that tested does not allow to draw us final conclusions about gender-selective ELS impact 

due to early-in-life injections, yet. Overall, the controversy over the impact of ELS on cognition 

depends widely on the stress induction protocol (Buckert, Schwieren et al. 2014). Moreover, each 

learning and memory task involves different brain areas and the effects of ELS could be region or 

circuit specific depending on the kind of stressor and time of the induction. We are currently 

running experiments using pharmacological intervention by oral administration of bumetanide in 

pups (by treating their dam with bumetanide in the water) to try to avoid the adverse selective ELS 

impact by repeated pup early-in-life injections. 
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Interestingly, our results show that WT animals injected with NKCC1 amiR or treated with 

bumetanide early-in-life do not show any significant phenotype in any behavioral test. This is in 

line with He and colleagues that found no alterations of brain and cognitive development in control 

littermates treated with bumetanide the same period as we did (He, Arroyo et al. 2019). The fact 

that we did not see any phenotype after early NKCC1 interference in WT animals, despite the 

fundamental role that depolarizing GABAergic signaling plays during development, could be 

explained by strong compensation for the lack of Cl− uptake in the network activity described in 

the neonatal hippocampus of NKCC1 -/- animals (Sipila, Huttu et al. 2009). In line with our results 

these compensatory mechanisms are in place also under more subtle conditions of NKCC1 

downregulation as seen in vivo with conditional loss of NKCC1. In particular, in mice with 

conditional loss of NKCC1 in telencephalic glutamatergic neurons, although impacted 

hippocampal activity in slices by impairing neuronal synchrony, in vivo had a minor impact on 

spontaneous hippocampal activity with no significant deficits found in hippocampus-dependent 

behaviors (Graf, Zhang et al. 2020). It is possible that in WT animals strong compensatory 

mechanisms after interference with NKCC1 during development result in no behavioral 

abnormality in adulthood. It is also possible that dysregulation of NKCC1/KCC2 in the context of 

DS, where trisomy leads to dysregulation in cellular and molecular levels in multiple systems the 

capacity for compensation is reduced and behavioral alterations are manifested.  

It is evident from our results that early-in-life interference with NKCC1 results in lasting effects 

in adulthood. We are currently investigating the mechanisms underlying this long-lasting effect. 

Interestingly, a previous study (Deidda, Allegra et al. 2015) demonstrated that early interference 

of NKCC1 with bumetanide treatment (between P3-P8) in rats extended the duration of the critical 

period of the visual cortex plasticity into young adulthood (P35). BDNF is known to regulate the 

closure of the critical period in the visual system and studying changes in plasticity markers and 

reduced inhibitory tone revealed the effect of bumetanide on critical period prolongation. Notably, 

the authors found reduced density of perineuronal nets, down-regulation of BDNF and decreased 

frequency of mIPSCs at P35 that did not persist though in adulthood. Moreover, early bumetanide 

treatment did not alter the overall structural development of the visual system (Deidda, Allegra et 

al. 2015). In the case of DS, conflicting results on BDNF expression come from a number a studies 

with some reporting no difference in expression levels between trisomic and WT animals 

(Lockrow, Boger et al. 2011, Kleschevnikov, Belichenko et al. 2012, Begenisic, Sansevero et al. 
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2015, Parrini, Ghezzi et al. 2017), while others reporting reduced hippocampal expression in 

Ts65Dn mice at different ages (Bianchi, Ciani et al. 2010, Voss, Heo et al. 2013, Stagni, Giacomini 

et al. 2015). The reported discrepancies possibly come from age, gender and structure differences. 

In the Ts65Dn mice overproduction of parvalbumin interneurons has been observed in the 

hippocampus (Chakrabarti, Best et al. 2010), however a human study found reduced parvalbumin-

positive interneurons in the frontal and temporal cortices of DS patients (Kobayashi, Emson et al. 

1990). Future studies should investigate the role of GABAergic interneurons in DS. Finally, less 

is known about the perineuronal nets of the extracellular matrix in the Ts65Dn mice with one study 

reporting increased deposition of versican V2 in the stratum oriens of the hippocampus (Howell 

and Gottschall 2012). Considering these studies and the effect that Deidda and colleagues reported 

after bumetanide treatment further investigation should better characterize plasticity markers in 

DS and the effect of early interference with NKCC1. In Fragile X mice, bumetanide treatment 

during early postnatal life (P0-P10) resulted in lasting rescue of LTP and whisker response maps 

in barrel cortex in the adult Fmr1 KO mice. The authors attributed the long-term effects of early 

bumetanide treatment to the proteome remodeling they found in mice treated. Notably, they found 

increased levels of levels of parvalbumin (PV) and TrkB and restoration of MeCP2 and GAP43 

expression levels after bumetanide treatment (He, Arroyo et al. 2019). Interestingly, Deidda and 

colleagues did not find alterations in parvalbumin-positive interneurons on the visual cortex of rat 

animals treated with bumetanide as pups. This could be explained due to different techniques used 

for detection, as He et al., reported protein PV upregulation using mass-spectroscopy and Deidda 

et al., investigated PV-immunoreactivity levels. Additionally, differences between bumetanide 

effects on mice and rats cannot be excluded. 

Surprisingly, early pharmacological treatment with bumetanide during the first two postnatal 

weeks of life restored increased GABA-mediated spiking events upon GABA bath application in 

hippocampal slices of young adult trisomic animals (2-3 months old). This lasting effect of early-

in-life bumetanide treatment in adulthood, three months after the treatment cessation clearly 

suggests the presence of an opportunity window for the correction of GABAergic signaling 

observed in adult trisomic animals (Deidda, Parrini et al. 2015). Early neuron-specific AAV9-

mediated NKCC1 knockdown also rescued GABAergic signaling after both GABA and 

bicuculline administration in the bath, confirming that the increased NKCC1 mediates the 

increased GABA-mediated spiking activity. Furthermore, we observed that some slices of NKCC1 
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amiR WT group increased their MFR upon GABA application, but did not reach a significant 

difference with respect to WT control amiR, while the MFR upon bicuculline resulted in a 

significant decrease of MFR in slices of NKCC1 amiR WT group in comparison to NKCC1 amiR 

WT slices. A slight, but not significant increase of MFR upon GABA bath application was also 

observed in hippocampal slices of WT animals treated with bumetanide as pups. These activity 

alterations in GABAergic activity after early interference with NKCC1 in WT does not correlate 

with any significant behavioral phenotype in the behavioral battery performed. This could be due 

to biological robustness, subtle alterations in the network that do not lead to behavioral anomalies 

due to strong compensation observed also in the NKCC1 -/- mice (Sipila, Huttu et al. 2009, Graf, 

Zhang et al. 2020). 

 

The need of early interventions to correct neurodevelopment in DS 

 

A growing body of evidence indicates that neurodevelopmental disorders arise from alterations of 

the physiological developmental trajectories (Marin 2016, Del Pino, Rico et al. 2018, Chorna, 

Cioni et al. 2020). The necessity for early-in-life interventions in neurodevelopmental disorders is 

suggested both for syndromic and non-syndromic conditions. Those are characterized by early 

onset and developmental delays in reaching functional milestones regardless of the underlying 

cause of the ND (Meredith 2015).  

In the case of Down syndrome, alterations in the brain are seen early during development, with 

decreased volume and reduced neuronal density in cortex, hippocampus and cerebellum 

(Contestabile, Fila et al. 2007, Patkee, Baburamani et al. 2020, Uguagliati, Al-Absi et al. 2021), 

defects of synaptic plasticity (Siarey, Stoll et al. 1997, Kleschevnikov, Belichenko et al. 2004, 

Costa and Grybko 2005) impaired hippocampus-dependent memory functions (Reeves, Irving et 

al. 1995, Contestabile, Greco et al. 2013) hyperactivity (Escorihuela, Fernandez-Teruel et al. 1995, 

Reeves, Irving et al. 1995, Sago, Carlson et al. 2000) increased susceptibility to seizures 

(Westmark, Westmark et al. 2010, Deidda, Parrini et al. 2015) and sleep disorders (Stewart, 

Persinger et al. 2007, Colas, Valletta et al. 2008, Das, Medina et al. 2015). In the clinical 

symptomatology, the cognitive impairment is the most common and severe feature of DS starting 

the first years of life. After the age of 40 the majority of DS individuals have histopathological 



103 | 
 

features of Alzheimer’s disease , which deteriorates further the cognitive performance (Bull 2020). 

DS people do not only show developmental delays but also developmental regression, the loss of 

an acquired function or the failure to progress to the next developmental milestone beyond a 

prolonged plateau after a period of relatively normal development. In particular, the intelligence 

quotient (I.Q.) of Down syndrome individuals, which ranges from 40 (severe intellectual 

disability) to 70 (moderate) plateaus early-in-life and further declining in adolescence (Rachidi 

and Lopes 2008, Dierssen 2012). In this context, the possibility of prolongation of critical period 

plasticity by bumetanide treatment would possibly have a positive outcome in a case where 

cognition is declining. However, the study showing prolongation of CP after early bumetanide 

treatment was performed in WT rats (Deidda, Allegra et al. 2015) and further investigation in 

Ts65Dn mice should be performed. Moreover, the increased frequency of epileptic seizures has 

onset concentrated mostly early-in-life and aging, whereas hyperactivity starts in childhood even 

before the third year of life and lasts also in adult life (Green, Dennis et al. 1989) are often 

comorbid in DS people (Reeves, Irving et al. 1995, Westmark, Westmark et al. 2010, Ekstein, 

Glick et al. 2011, Dierssen 2012, Deidda, Parrini et al. 2015, Moss 2017). Our results 

demonstrating rescue of susceptibility to seizures and hyperactivity following early interventions 

targeting NKCC1 in Ts65Dn support early life interventions in DS to rescue epilepsy and 

hyperactivity deficits that are present since early in development. The developmental regression 

seen in DS subjects highlights even further that early-in-life (prophylactic in the case of DS) 

interventions should start as early as possible (Thurm, Powell et al. 2018). Indeed, considering that 

in humans, brain development is a process spanning more than two decades (from embryonic 

patterning to synaptic pruning and myelination; (Marin 2016, Silbereis, Pochareddy et al. 2016), 

this progressive decline in cognitive abilities could derive by either a time-specific perturbation at 

a given step during development or a secondary deficits arising from homeostatic, compensatory 

mechanisms acting over a protracted period due to earlier initial brain alterations.  

 

Potential pitfalls of early therapeutic interventions  

 

Bumetanide, is an FDA-approved diuretic, considered to be a very safe drug in adult. Most frequent 

side effects are due to its unselective action on NKCCs. Indeed, the diuretic effect of bumetanide 

depends on its ability to inhibit NKCC2 in the kidney, thus causing strong diuresis. Excessive 
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diuresis leads to secondary side effects that include, ionic imbalance. Nevertheless, ionic 

imbalance can be compensated with dietary supplements. In the developing brain, in fact 

bumetanide can induce ototoxicity by interfering with NKCC1 (expressed in the cochlea) (Delpire, 

Lu et al. 1999) and NKCC2 (in the endolymphatic sac at the membranous labyrinth) (Kakigi, 

Nishimura et al. 2009) signaling in developing the inner ear. Indeed, the NEMO trial 

(NCT01434225) which was investigating the use of bumetanide in newborns with hypoxic 

ischemic encephalopathy (HIE), was interrupted shortly after 3 out of 11 treated newborns were 

diagnosed with hearing loss (Pressler, Boylan et al. 2015). However, a recent clinical trial 

(NCT00830531) with bigger cohort and control group investigating the efficacy and safety of 

bumetanide treatment in newborns with HIE reported lower percentage of hearing impairment 8% 

of treated subjects (2 out of 26 subjects) versus 27% of treated subjects (3 out of 11 subjects) 

reported in the NEMO trial (Pressler, Boylan et al. 2015, Soul, Bergin et al. 2021). Notably, 4 out 

of 5 bumetanide-treated subjects that showed hearing impairment in both studies had HIE and 

received aminoglycoside (gentamicin) treatment, whose ototoxic effect has been reported to be 

aggravated by bumetanide (Zimmerman and Lahav 2013, Ben-Ari, Damier et al. 2016, Soul, 

Bergin et al. 2021). Therefore, the lower percentage of hearing impairment reported by Soul et al., 

could be partly attributed to the lower use of gentamicin in their trial (50% of HIE subjects treated 

versus 86% in the NEMO trial) (Soul, Bergin et al. 2021). Our results show no significant effect 

of early postnatal bumetanide treatment on the acoustic startle reactivity test, indicating no hearing 

loss in bumetanide-treated animals. The hearing loss after bumetanide treatment in newborns has 

been attributed to the synergetic effects of several factors such as immaturity of hair cells and 

differences between the roles of NKCC1 and KCC2 in the regulation of chloride in immature and 

adult cochlear hair cells (Brummett 1981, Milenkovic and Rubsamen 2011, Ben-Ari, Damier et al. 

2016). In mice, responses to sounds can first be behaviorally observed and recorded from the 

auditory nerve around postnatal days 10 to 12, when the ear canal opens (Kros, Ruppersberg et al. 

1998). However, the proliferation of hair cells occurs in embryonic life (E12-16) in mice (Marrs 

and Spirou 2012). Moreover, auditory nerve fibers generate spontaneous activity by E14 and drive 

third order central neurons by E17, nearly 2 weeks before hearing onset. Thus, functional 

establishment of the mouse auditory circuits occurs during late embryonic dates (Marrs and Spirou 

2012), before the onset of our treatment protocol. This suggests that the lack on ototoxicity upon 

early postnatal treatment in mice could only reflect the differences between auditory system 
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development of humans and mice at birth. Further investigation of auditory system maturation and 

NKCC1 regulation in human development are therefore mandatory to shed light on the timing an 

intervention with bumetanide should follow not to jeopardize hearing ability. For example, in 

humans oral treatment bumetanide have been already given to children of an age ranging from 3 

months to 18 years old to rescue behavioral deficits in autism (Lemonnier and Ben-Ari 2010, 

Lemonnier, Degrez et al. 2012, Lemonnier, Villeneuve et al. 2017). Currently, bumetanide 

treatment is being assessed for the safety and efficacy in two Phase III clinical trials in autistic 

children (2-7 years old) and adolescents (7-18 years old) (NCT03715153 and NCT03715166 

respectively). 

As already mentioned above, other side effects that have been investigated in mice include 

impairment in sensorimotor gating (Wang and Kriegstein 2011). However, these deleterious 

effects of embryonic inhibition of NKCC1 were not observed when bumetanide treatment began 

in the postnatal life (Wang and Kriegstein 2011). In addition, no adverse effect in terms of 

bumetanide treatment during the first two postnatal weeks have been reported by two studies on 

genetic epilepsy mouse model (Marguet, Le-Schulte et al. 2015) and maternal separation rat model 

(Hu, Yu et al. 2017). Early bumetanide treatment for a shorter period (P3-P8) in rats also did not 

have any acute adverse effect on body weight of treated pups (Deidda, Allegra et al. 2015). In line 

with the safety of postnatal treatment with bumetanide in mice, we found no adverse effect of early 

bumetanide treatment (P2-P15) in the body weight, of both WT and Ts65Dn treated mice. In 

humans, no adverse effects (besides strong diuresis and ionic imbalance) by early bumetanide 

treatment was also reported in a clinical trial with five autistic infants treated with bumetanide for 

three months (Lemonnier and Ben-Ari 2010) and chronic bumetanide treatment in autistic children 

and adolescents (2-18 years old) (Lemonnier, Degrez et al. 2012, Lemonnier, Villeneuve et al. 

2017). 

Finally, new, more potent and selective drugs may provide an alternative to bumetanide by 

reducing the side effects of the diuretic action of bumetanide. In particular, a novel selective 

NKCC1 inhibitor (no inhibition on NKCC2) has been developed and tested for its ability to rescue 

cognitive impairment in Ts65Dn mice, without a diuretic effect are already a promising therapeutic 

approach (Savardi, Borgogno et al. 2020). Moreover, a combined therapy, regulating the function 

of NKCC1 and KCC2 with the use of bumetanide and KCC2 activators (Gagnon, Bergeron et al. 
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2013, Gagnon, Bergeron et al. 2017) may decrease side effects by reducing the dosage of each 

compound.  

 

Translational value of an early-in-life intervention 

 

As highlighted above, taking all the possible pitfalls and risks of an early pharmacological 

intervention, including the vulnerability of the developing brain into consideration, timely 

interventions should be under scrutiny before they are transferred into clinical practice. On the 

other hand, the recognition of the potentials for correcting the trajectory of brain development 

makes this a very exciting time in the field of neurodevelopmental disorder research (Antonarakis, 

Skotko et al. 2020). This is even more relevant for DS research. Indeed, in the last five decades it 

is highly indicated that pregnant women at advanced maternal age (>35 years old) undergo prenatal 

screening for genetic disorders in the fetus with risk estimation for Down syndrome being the most 

successful among different screening concepts (Neagos, Cretu et al. 2011, Cuckle and Maymon 

2016). In 2011, non-invasive prenatal testing using cell-free DNA (cfDNA) extracted from the 

maternal plasma became commercially available in clinical practice offering a safe and accurate 

diagnostic screening of the fetus (Carlson and Vora 2017, Suciu, Toader et al. 2019, Bull 2020). 

This preclinical screening can detect trisomy with 99.7% percent accuracy (Bull 2020). The 

possibility to diagnose DS during the first trimester of gestation opens a window of opportunity 

for planning of early therapeutic interventions. Conversely, other NDs such as ASD do not have 

biomarkers to be diagnosed earlier than the manifestation of the deficits mostly around the second 

year of life. Timely and differential diagnosis of subclinical pathological signs as early as possible 

is vital to prevent a vicious reactive plasticity cycle that give rise to the characteristic deficits of 

each ND (Ben-Ari 2017). Our data on hyperactivity, susceptibility to epileptic seizures and 

cognitive performance rescue after timed interventions indeed point to the value of early 

interventions to obtain long-lasting outcomes. 

Despite NDs are caused by impaired brain developmental processes, treatments in adult life in 

animal models of NDs have proved also effective (Ehninger, Li et al. 2008, Castren, Elgersma et 

al. 2012). Nevertheless, interventions in animal models of NDs require chronic administration of 

the therapeutic intervention for the rescue of the deficits, as drug withdrawal experiments reveal 
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(Braudeau, Delatour et al. 2011, Dansie, Phommahaxay et al. 2013, Gantois, Pop et al. 2013, 

Deidda, Parrini et al. 2015, Pinto, Morelli et al. 2020). This necessity for continuous treatment 

administration is highlighted also by clinical trials, where they employ chronic treatments for the 

rescue of ND deficits (Lemonnier, Degrez et al. 2012, Grandgeorge, Lemonnier et al. 2014, 

Hadjikhani, Zurcher et al. 2015, Berry-Kravis, Hagerman et al. 2017). 

The high translational value of a timed therapeutic intervention during a developmental window 

to rescue pathological developmental trajectories in their core could avoid the adverse effects 

following chronic treatment. In the case of bumetanide lifelong treatment on a daily basis in 

adulthood would have a strong impact on the life of treated individuals as bumetanide is a strong 

diuretic drug causing excessive diuresis and osmotic fluid imbalance (Konopacka, Qiu et al. 2015, 

Savardi, Borgogno et al. 2020). This is particularly inconvenient in the case of DS because the life 

expectancy of DS individuals has dramatically increased in the recent decades. Indeed, 

improvements in medical care has resulted in an increase of life expectancy from a mean age of 

26 years and 4 years (median) in 1950 to average of 53 years and 58 years (median) in 2010 in the 

US (de Graaf, Buckley et al. 2017). Moreover, a lifelong drug administration is a commitment and 

includes several risks (i.e. drug resistance, drug-drug interactions). Our data suggests that 

treatment administered at the right moment during an opportunity window is a promising approach 

to treat or even prevent the emergence of a structural and functional deficit with lasting effects. 

One could speculate that this, in humans, could lead to the fact that you will not use any treatment 

as adults or less doses, nevertheless easing the burden of the side effects.  

Finally, our study demonstrated gender-selective differences between male and female Ts65Dn 

animals and gender-selective impact of ELS in WT animals later in life. Other studies usually 

employ male animals to investigate pharmacotherapies and cognition in DS (Kleschevnikov, 

Belichenko et al. 2012, Deidda, Parrini et al. 2015, Savardi, Borgogno et al. 2020). To provide a 

more comprehensive insight of the effect of trisomy and the potential interventions future studies 

should include both males and females animals (Shaw, Klein et al. 2020). Of note, DS people 

studies have reported gender differences in behavioral and emotional impairments, with males 

being at a higher risk of more severe forms of intellectual disability, speech production deficits, 

thought and attention difficulties, and aggressiveness than DS females (Maatta, Tervo-Maatta et 

al. 2006, van Gameren-Oosterom, Fekkes et al. 2013). However, other studies do not find these 
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gender differences or report female-selective behavioral deficits, such as psychosis (Jacola, Hickey 

et al. 2014, Dykens, Shah et al. 2015). Further studies should investigate more extensively gender 

differences in the animal models of DS and DS people, which could help in the design of more 

efficient therapeutic interventions that can be transferred into the clinical practice. 

 

Concluding remarks 

 

In our study, we demonstrated that there is an opportunity window for long-term correction of 

learning and memory deficits, hyperactivity and susceptibility to seizures in the adult Ts65Dn 

mice. Moreover, our results suggest that an early intervention targeting NKCC1 by AAV-mediated 

knock down or by a commonly used, FDA drug is a promising approach for DS, although this 

approach should be under rigorous scrutiny for the possible pitfalls and risks following 

interventions of the vulnerable developing brain.  
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Methods 

 

Animals  

All animal procedures were approved by IIT licensing in compliance with the Italian Ministry of 

Health (D.Lgs 26/2014) and EU guidelines (Directive 2010/63/EU). A veterinarian was employed 

to maintain the health and comfort of the animals. Mice were housed in filtered cages in a 

temperature-controlled room with a 12:12 h dark/light cycle and with ad libitum access to water 

and food. All efforts were made to minimize animal suffering and use the lowest possible number 

of animals required to produce statistical relevant results, according to the ‘‘3Rs concept.’’ In this 

study, we used Ts65Dn mice maintained in their original genetic background (Reeves, Irving et 

al. 1995) by crossing (more than 40 times) Ts65Dn female to C57BL/6JEi x C3SnHeSnJ (B6EiC3) 

F1 males (Jackson Laboratories). Ts65Dn mice were genotyped by PCR as previously described 

(Duchon, Raveau et al. 2011, Reinholdt, Ding et al. 2011). 

Animals aged between 12 and 16 weeks were used for behavioral experiments. Animals between 

10-12 weeks were used for electrophysiology experiments. Both males and females were used for 

behavioral experiment, biochemistry, immunohistochemistry and electrophysiology experiments. 

Different cohorts of mice were used for the diverse tests. Ts65Dn and WT littermates were 

randomly assigned to bumetanide (Sigma; 0.2 mg/kg body weight) or vehicle groups (2% DMSO 

in saline) and treated twice a day, because of the pharmacokinetics of bumetanide (Cleary, Sun et 

al. 2013), by subcutaneous (SQ) injections from P2 to P15. Mice body weight was monitored twice 

a day during the treatment period and at P28, P60 and P90. 

 

Behavioral Testing  

Ts65Dn male and female mice (9–14 weeks old) were tested after bumetanide (0.2 mg/kg, SQ) or 

vehicle (2% DMSO in saline) treatment as pups from P2 until P15, or after bilateral intraventricular 

infection with a neuron-specific AAV9 construct with control amiR or NKCC1 amiR at P2. The 

battery of tests was run over a total period of 1 month (P90-P120) (seven behavioral tests for 

Ts65Dn and WT littermates in the following order: Startle acoustic reactivity, NOR, T-maze, 

NOL, Locomotor activity, CFC, Audiogenic seizures. The tasks (NOR, T-maze, NOL, CFC, 

Audiogenic seizures) were video-recorded and then analyzed manually by a blind operator. 
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Vehicle- and bumetanide-treated mice were always evaluated in parallel and with the same time 

schedule. In order to avoid any confounding effects, tests were administrated only once to 

individual mice. A detailed outline of the order of the tests for the different experimental cohorts 

is reported in Supplementary Table 1. After each trial or experiment, the diverse apparatus and 

objects were cleaned with 70% ethanol. 

 

NOR Test  

The test evaluates the spatial memory by measuring the ability of mice to recognize the new 

location of a familiar object. The NOR test was conducted in a gray acrylic arena (44 × 44 cm), 

evenly illuminated by overhead red lighting (12–14 lux). On day 1, mice were habituated to the 

arena by freely exploring the chamber for 15 min. On day 2, during the acquisition phase, mice 

were free to explore three different objects (different in color, size, shape, material) for 15 min. 

After 24 h, one object from the acquisition phase was replaced with a novel object, and the mice 

were tested for 15 min for their ability to recognize the new object. The time spent exploring each 

object was defined as the number of seconds during which mice showed investigative behavior 

(i.e., head orientation, sniffing occurring within < 1.0 cm) or clear contact between the object and 

the nose. The time spent exploring each object, expressed as a percentage of the total exploration 

time, was measured for each trial. The discrimination index was calculated as the difference 

between the percentages of time spent investigating the novel object and investigating the familiar 

objects: [discrimination index = (novel object exploration time/total exploration time × 100) - 

(familiar object exploration time/total exploration time × 100)]. As a control, we monitored object 

preference during the acquisition phase and exploration time in the acquisition phase and trial 

phase. 

 

Object Location Test (OL)  

The test evaluates the spatial memory by measuring the ability of mice to recognize the new 

location of a familiar object. The test was performed in a gray acrylic arena (44 × 44 cm), evenly 

illuminated by overhead red lighting (12–14 lux). Mice were first habituated to the chamber for 15 

min on day 1. On day 2, during the acquisition phase, mice were exposed to two identical objects 

for 15 min. After 24 h, one of the two objects was moved during the test session to a novel location, 
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and the mice were tested for 15 min for their ability to recognize the new location of the object. 

The time spent exploring each object was defined as the number of seconds during which mice 

showed investigative behavior (i.e., head orientation, sniffing occurring within < 1.0 cm) or clear 

contact between the nose and the object. A discrimination index was calculated as the percentage 

of time spent investigating the object in the new location minus the percentage of time spent 

investigating the object in the old location [discrimination index = (new object location exploration 

time/total exploration time × 100) - (old object location exploration time/total exploration time × 

100)]. As a control, we monitored object preference during the acquisition phase and the 

exploration time in the acquisition phase and trial phase.  

 

T-Maze  

The tests evaluates the short-term memory by measuring exploratory behavior of a new 

environment in mice. The T-maze is a black opaque plastic apparatus with a starting arm and two 

perpendicular goal arms, each equipped with a sliding door and evenly illuminated by overhead 

red lighting (12–14 lux). The T-maze test (spontaneous alteration protocol, 11 trials) evaluates 

short-term memory by analyzing the correct choice of the unexplored arm. The test was performed 

in similar way to that previously conducted on Ts65Dn mice (Kleschevnikov, Belichenko et al. 

2012, Savardi, Borgogno et al. 2020). In each trial, a mouse was first placed in the starting chamber 

for 20 s. Then, the sliding door was removed, and the animal was free to explore the apparatus. 

When the mouse entered (with all four limbs) one of the two goal arms, the opposite arm was 

closed with the sliding door. When the mouse (free to explore the remaining part of the apparatus) 

returned to the starting area, the previously closed goal arm was opened. The trial was repeated 11 

times. Entry into a goal arm opposite the one previously chosen was considered a correct choice, 

while entry into the previously explored arm was considered an incorrect choice. Alternation score 

was calculated as the percentage of correct choices (i.e., left-right or right-left) over the total 

number of the ten possible alternations. 
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CFC Test  

The test evaluates the long-term associative memory by measuring the freezing time of the animals 

placed in a location where they had received an adverse stimulus (electric shock) 24 h earlier. The 

experiments were performed in a fear-conditioning system (TSE), which is a transparent acrylic 

conditioning chamber (23 3 23 cm) equipped with a stainless-steel grid floor. Mice were placed 

outside the experimental room in their home cages before the test and individually transported to 

the TSE apparatus in standard cages. Mice were placed in the conditioning chamber, and they 

received one electric shock (2 s, 0.75mA constant electric current) through the floor grid 3 min 

later. Mice were removed 15 s after the shock. After 24 h, mice were placed in the same chamber 

for 3 min. After 2 h, they were moved to a new context (black chamber with plastic gray floor and 

vanilla odor). The time spent frozen was scored and expressed as percentage of the total time 

analyzed. 

 

Locomotor activity 

Spontaneous locomotor activity was evaluated as previously described (Reeves, Irving et al. 1995) 

over a 24-h period (12/12 h dark/light cycle) during the fourth week of treatment. Horizontal 

activity, vertical and stereotyped movements were automatically evaluated using a VersaMax 

apparatus (AccuScan Instruments) equipped with an array of photocell beams. On the day of 

testing, mice were administered either vehicle or bumetanide just before the onset of the light phase 

(8 a.m.) and dark phase (8 p.m.) of the day. 

 

Audiogenic seizures 

Assessment of AGS sensitivity was conducted essentially as previously described (Westmark, 

Westmark et al. 2010, Westmark, Westmark et al. 2011) during the last (fourth) week of behavioral 

testing, as the last behavioral test. On the day of testing, mice were injected with bumetanide or 

vehicle 30 min before being introduced to a gridded cylindrical box (15-cm diameter) located in a 

sound-attenuating cubicle equipped with two loudspeakers and a video camera (TSE Systems). 

Mice were then exposed for 3 min to a 120-dB white noise and monitored for seizure induction. 

AGS severity was scored from 0 to 3 as previously described 64: 0, no response; 1, wild running; 

2, clonic seizure; and 3, tonic seizure. 
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Acoustic startle response 

The acoustic startle response (ASR) test assesses the reactivity to a sudden acoustic stimulus 

(usually a loud sound). It is a standardized test for an evolutionary conserved reflex across 

mammals (Koch 1999). Before the start of the behavioral battery (between P85-P90) each mice 

was placed in a plastic open cage. A device producing a sudden sound (20 kHz, 90 dB at 30cm) 

was used. Each mouse performed three trials (three sounds of the same intensity with 5s interval) 

and the score was averaged.  

For behavioral experiments, we adopted the following exclusion criteria independent of genotype 

or treatment (before blind code was broken). In the T-maze test, we excluded mice that did not 

conclude the 10 trials within 20 min of the test. In the CFC test, we excluded mice showing very 

high non-associative freezing in the new context. This was defined as more than 30 s freezing 

during the 3-min test. In the OL and NOR test, we excluded animals showing very low explorative 

behavior. This was defined as less than 10 s of direct object exploration during the 15-min test. 

Following these criteria, a total of 11 mice among the NOR, NOL, CFC and T-maze tests were 

excluded. 

 

Electrophysiological recordings 

Hippocampal slices preparation 

Animals between 10 and 16 weeks of age were used in the experiments. Both male and female 

mice were used in the electrophysiology experiments. Slices were obtained as previously described 

(Panuccio, Colombi et al. 2018). Briefly, mice were anesthetized with isoflurane and transcardially 

perfused with an ice-cold cutting solution (pH 7.4, oxygenated with 95% O2 and 5% CO2; see 

appendix A for the composition of the solutions). The animals were decapitated, and their brains 

were removed and immersed in ice-cold cutting solution. Combined entorhinal/hippocampal slices 

(400 μm thick, cut with a VT1000S Leica Microsystems vibratome) were incubated at 32 °C for 

20 min in artificial cerebrospinal fluid (ACSF) oxygenated with 95% O2 and 5% CO2 (see 

appendix A for the compositions of the solutions). The slices were then maintained in ACSF 

solution for at least 1 hour to allow recovery.   
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Experimental protocol 

Slices were pre-incubated with standard ACSF for 45 minutes. We adapted slices for 20 minutes 

on the MEA setup while continuously perfusing them with oxygenated ACSF and then recorded 

basal spontaneous activity for 30 minutes. We applied GABA (100 uM) or Bicuculline (20 uM) 

for the same amounts of time. We discarded the recordings made during the first 15 minutes of 

drug application to ensure complete exchange of the solution.   

Data analysis 

Data analysis was performed off-line using the custom software package SPYCODE (Bologna, 

Pasquale et al. 2010). The steps in the analysis are described briefly below. Raw traces were high-

pass-filtered (>300 Hz) to isolate spikes from the low fluctuation of the signal (LFP). We computed 

the spike detection as previously described (Maccione, Gandolfo et al. 2009). Briefly, the method 

used three parameters: (1) a differential threshold (DT) set independently for each channel and 

computed as 8-fold the standard deviation (SD) of the noise of the signal; (2) a peak lifetime period 

(PLP) set to 2 ms; (3) a refractory period set to 1 ms. 

The algorithm scans the raw data to discriminate the relative minimum or maximum points. Once 

a relative minimum point is found, the nearest maximum point is searched within the following 

PLP window (or vice versa). If the difference between the two points is larger than DT, a spike is 

identified and its timestamp saved. Then, to characterize the activity level of the CA1 region, we 

computed the mean firing rate (MFR), which is defined as the mean number of spikes per second, 

computed over the total recording time. We considered active electrodes as those presenting a 

firing rate higher than 0.02 spikes per second.  

We computed the mean firing ratio (MFR), which is defined as the mean firing rate after drug 

administration (either GABA or Bicuculline) over the mean firing rate during baseline. Values 

equal to 1 indicate no change in MFR after drug application in the bath. Values above 1 indicated 

an increase while values below 1 a decrease in MFR after drug application. 

𝑀𝐹𝑅 𝑟𝑎𝑡𝑖𝑜 =
𝑀𝐹𝑅 𝐺𝐴𝐵𝐴/𝐵𝑖𝑐

𝑀𝐹𝑅 𝑏𝑎𝑠𝑎𝑙
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We computed the percentage of variation for each active electrode and we evaluated significant 

changes with respect to the basal condition. The percentage of variation was computed as follows: 

 

% 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝐶ℎ =
𝑀𝐹𝑅𝑑𝑟𝑢𝑔 − 𝑀𝐹𝑅𝑏𝑎𝑠𝑎𝑙

𝑀𝐹𝑅𝑏𝑎𝑠𝑎𝑙
 

 

We considered significant those electrodes showing a percentage of variation up to 10% with 

respect to the basal condition.  

 

Biochemistry  

Protein extraction 

For total protein extraction, hippocampal samples were homogenized in RIPA buffer (1% NP40, 

0.5% deoxycholic acid, 0.1% SDS, 150 mM NaCl, 1 mM EDTA, 50 mM Tris, pH 7.4) containing 

1 mM PMSF, 10 mM NaF, 2 mM sodium orthovanadate and 1% (v/v) protease and phosphatase 

inhibitor cocktail (Sigma). The samples were clarified by centrifugation at 20,000g, and the protein 

concentration was determined using a Bicinchoninic Acid Assay (BCA) kit (Pierce). 

Western blotting 

For immunoblot analysis, equal amounts of protein were run on 4–12% Bis-Tris NuPAGE 

(Invitrogen) or Criterion-XT (Bio-Rad) gels and transferred onto nitrocellulose membranes (GE 

Healthcare). Membranes were probed with mouse anti-NKCC1 (clone T4, Developmental Studies 

Hybridoma Bank; 1:4,000), rabbit anti-KCC2 (Millipore, catalog no. 07-432; 1:4,000), rabbit anti 

β-actin (Sigma, catalog no. A2066; 1:10,000), mouse anti-APP (clone 22C11, Millipore, catalog 

no. MAB248; 1:2,000), followed by HRP-conjugated secondary antibodies goat anti-rabbit and 

goat anti-mouse (ThermoFisher Scientific, catalog nos. 31460 and 31430, respectively; 1:5,000). 

Membranes were developed with SuperSignal West Pico chemiluminescent substrate 

(ThermoFisher Scientific). The chemiluminescent signals were acquired on iBright CL1500 

Imaging System (ThermoFisher Scientific), and the band intensities were quantified using 
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ImageQuant software (GE Healthcare). In some experiments, membranes were stripped and 

reprobed with a second antibody. 

 

Immunohistochemistry 

 

Animals were deeply anesthetized and transcardially perfused with 4% paraformaldehyde in 100 

mM phosphate buffer (PB), pH 7.4. Brains were collected, post-fixed for 24 h in the same fixative 

solution, cryo-preserved in 30% sucrose in PB and stored at -80 °C until use. 

Immunohistochemistry was performed on 30-μm coronal serial sections to visualize distribution 

of the GFP expression by the AAV9 construct. The sections were stained with the nuclear dye 

Hoechst-33342 (Sigma-Aldrich). Fluorescence images were captured with Neurolucida (Mbf 

Bioscience) microscope equipped with a 10X air objective and a motorized stage. For each section, 

serial images were acquired to construct a contouring of the whole slice. Reconstruction of the 

images acquired from serial section were put together using ImageJ software 

(http://imagej.nih.gov/ij/). 

 

Viral preparations 

 

AAV serotype 9 (AAV9) used in this study were produced using a slight modification of the 

adenovirus-free transient transfection methods described before (Matsushita, Elliger et al. 1998, 

Ayuso, Mingozzi et al. 2010). Briefly, adherent HEK293 cells grown in roller bottles were 

transfected with three plasmids containing the adenovirus helper proteins, the AAV Rep and Cap 

genes, and the ITR-flanked transgene expression cassette. Three days after transfection, cells were 

harvested, lysed by sonication, and treated with benzonase (Merck-Millipore). Vectors were 

purified using two successive ultracentrifugation rounds in cesium chloride density gradients. Full 

capsids were collected. The final product was formulated in sterile phosphate buffered saline 

containing 0.001% of pluronic F-68 (Sigma), and stored at -80°C. Titers of the AAV vector stocks 

were determined by SDS-PAGE followed by SYPRO Ruby protein gel stain and band 

densitometry. Bilateral intraventricular injection of the viral construct (control amiR or NKCC1 
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amiR) were performed in pups at P2. Dose injected: 1*1010 vg/hemisphere resulting in a dose of 

2*1010 vg/mice. 

  

Statistical Analysis  

The results are presented as the means ± SEM. The statistical analysis was performed using 

SigmaPlot (Systat) and GraphPad (Prism) software. Where appropriate, the statistical significance 

was assessed using the following parametric test: two-tailed unpaired t-test, one-way ANOVA 

followed by Dunnet post hoc test, two-way ANOVA or two-way ANOVA on ranks followed by 

all pairwise Tukey post hoc test, Holm–Sidak post hoc test or Student-Newman-Keuls Method. 

Chi Square test with Sidak adjustment for multiple comparisons was used for AGS analysis. P-

values < 0.05 were considered significant. Outliers were excluded only from the final pool of data 

by a Grubb’s test run iteratively until no outliers were found. For the analysis of the weight of the 

treated animals we carried out linear analyses of variance (ANOVA) using the ‘ezANOVA’ 

function of the R software (Michael Lawrence, 2016). ‘Genotype’ and ‘Treatment’ were 

considered as between factors and ‘Postnatal day’ as within factor. P-values were Greenhouse-

Geisser adjusted when sphericity assumptions were violated. Post hoc t-tests were corrected with 

Bonferroni method. 
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Supplementary Tables 

 

Supplementary table 1 

 

Mice cohorts for behavioral testing after infection with AAV9 control or NKCC1 amiR as 

pups 

Cohort 

# 

Animals NOR OL T-maze CFC Locomotor 

activity 

Audiogenic 

seizures 

1 WT control amiR: 6 

Ts65Dn control amiR: 2 

WT NKCC1 amiR: 13 

Ts65Dn NKCC1 amiR: 2 

 

 

 

 

 

 

 

 

  

2 WT control amiR: 6 

Ts65Dn control amiR: 4 

WT NKCC1 amiR: 12 

Ts65Dn NKCC1 amiR: 7 

 

 

 

 

 

 

 

 

  

3 WT control amiR: 14 

Ts65Dn control amiR: 4 

WT NKCC1 amiR: 2 

Ts65Dn NKCC1 amiR: 2 

 

 

 

 

 

 

 

 

  

4 WT control amiR: 0 

Ts65Dn control amiR: 0 

WT NKCC1 amiR: 8 

Ts65Dn NKCC1 amiR: 3 

     

 

 

 

5 WT control amiR: 7 

Ts65Dn control amiR: 2 

WT NKCC1 amiR: 0 

Ts65Dn NKCC1 amiR: 0 

     
 

 
 

6 WT control amiR: 0 

Ts65Dn control amiR: 0 

WT NKCC1 amiR: 5 

Ts65Dn NKCC1 amiR: 3 

      

 

7 WT control amiR: 6 

Ts65Dn control amiR: 4 

WT NKCC1 amiR: 0 

Ts65Dn NKCC1 amiR: 0 

      

 

8 WT control amiR: 0 

Ts65Dn control amiR: 0 

WT NKCC1 amiR: 10 

Ts65Dn NKCC1 amiR: 4 

     

 

 

9 WT control amiR: 0 

Ts65Dn control amiR: 0 

WT NKCC1 amiR: 3 

Ts65Dn NKCC1 amiR: 3 

     

 

 

10 WT control amiR: 2 

Ts65Dn control amiR: 5 

WT NKCC1 amiR: 0 

Ts65Dn NKCC1 amiR: 0 

     

 

 

 
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Supplementary table 2 

 

Mice cohorts for behavioral testing after vehicle and bumetanide treatment as pups 

 

  

Cohort 

# 

Animals NOR OL T-maze CFC Locomotor 

activity 

Audiogenic 

seizures 

Startle 

1 WT vehicle: 3 

Ts65Dn vehicle: 1 

WT bumetanide: 4 

Ts65Dn bumetanide: 6 

 

 

 

 

 

 

 

 

  

 

 

 

2 WT vehicle: 6 

Ts65Dn vehicle: 3 

WT bumetanide: 7 

Ts65Dn bumetanide: 8 

 

 

 

 

 

 

 

 

  

 

 

 

3 WT vehicle: 5 

Ts65Dn vehicle: 4 

WT bumetanide: 0 

Ts65Dn bumetanide: 0 

 

 

 

 

 

 

 

 

  

 

 

 

4 WT vehicle: 9 

Ts65Dn vehicle: 4 

WT bumetanide: 6 

Ts65Dn bumetanide: 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 WT vehicle: 3 

Ts65Dn vehicle: 1 

WT bumetanide: 4 

Ts65Dn bumetanide: 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 WT vehicle: 5 

Ts65Dn vehicle: 5 

WT bumetanide: 6 

Ts65Dn bumetanide: 3 

 

 

 

 

 

 

 

 

  

 

 

 

7 WT vehicle: 0 

Ts65Dn vehicle: 3 

WT bumetanide: 3 

Ts65Dn bumetanide: 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 WT vehicle: 11 

Ts65Dn vehicle: 5 

WT bumetanide: 2 

Ts65Dn bumetanide: 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 WT vehicle: 0 

Ts65Dn vehicle: 0 

WT bumetanide: 8 

Ts65Dn bumetanide: 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
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Supplementary table 3 

 

Mice cohorts for MEA recordings after infection with AAV9 control or NKCC1 amiR as 

pups 

   

GABA 

BICUCULLINE 
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Supplementary table 4 

 

Mice cohorts for MEA recordings after vehicle and bumetanide treatment as pups 

   

GABA 
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Introduction

Many philosophers and scientists initially defined human cognitive develop-
ment by describing changes in an individual’s social and personal contexts

rather than focusing on the biological processes of brain development. It

was not until the era of Camillo Golgi and Santiago Ramon y Cajal
(19–20th centuries) that the foundations of modern neuroscience were set

and that the concept of neurodevelopment evolved. Many advances have been

made since then, thereby elucidating the different biological mechanisms
underlying behavior in both physiological and pathological conditions. Never-

theless, many more studies are necessary to adequately bridge neuronal phys-

iological properties and biological rules for complex behaviors. Here, we focus
on how the neuronal cation chloride cotransporters (CCCs), by regulating

GABAergic transmission, play fundamental roles in determining proper neural

development. Moreover, we describe how impairments of the expression and
function of these CCCs can lead to the onset of defective brain development,

which underlies aberrant behaviors in several psychiatric/neurological condi-
tions also referred to as neurodevelopmental disorders.
569
Brain development and the role of GABA

Three distinct yet partially overlapping phases are involved in the establishment

of neuronal circuits during development: an early, innate activity-independent
phase, a later phase driven by spontaneous patterns of neuronal activity, and a

final phase dependent on neuronal activity driven by sensory experience.
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During the first two phases, neuronal progenitors proliferate and differentiate,

and newly born neurons mature morphologically and migrate to their final
locations in the brain, establishing a first set of neuronal connections (Ben-

Ari, 2001; Spitzer, 2006). After the development of sensory organs, the final

phase starts, and neuronal activity driven by sensory experience from the exter-
nal environment refines the initial neuronal circuitry (Feller, 1999; Hadders-

Algra, 2018; Leighton and Lohmann, 2016).

GABA (γ-aminobutyric acid) is the first neurotransmitter to be functional in

developing neuronal networks and it plays major roles in all three phases of

brain development. GABA is synthesized in the CNS from the L-glutamic acid
by the enzyme L-glutamic decarboxylase (GAD), which is present in two iso-

forms, GAD65 and GAD67 (Buddhala et al., 2009). GABA exerts its action

by binding two different types of receptors: the ionotropic GABAA receptor
(GABAAR) and the metabotropic GABAB receptor (GABABR). GABAARs are

ligand-gated ion channels formed by the assembly of 5 different subunits

out of a total of nineteen potential GABAAR subunits (α1-6, β1-3, γ1-3, δ, ε,
θ, π, ρ1-3). Different combinations of five subunits confer GABAARs’ diverse

properties with respect to ionic gating dynamics, cellular localization, and

physiological functions (Has and Chebib, 2018; Koduvayur et al., 2014).
GABAARs are mostly permeable to chloride (Cl�) and they mediate slow and

tonic extra-synaptic currents or fast and phasic synaptic currents, depending

on the presence of the different combination of the receptor subunits. Tonic
currents are mediated by low concentrations of ambient GABA that escaped

from the synaptic cleft and can activate subtypes of extrasynaptic GABAA recep-

tors with high affinity (Brickley et al., 1999; Cellot and Cherubini, 2013;
Farrant and Nusser, 2005). Conversely, the phasic GABAergic inhibition occurs

at the postsynaptic site of the cleft, when GABA is released at a high concentra-

tion from the presynaptic vesicles. During early brain development, before the
onset of GABAergic synaptic activity, extrasynaptic tonic current plays a major

role in mediating network activity (Brickley et al., 1999; Farrant and Nusser,

2005; Kilb et al., 2013).

For both tonic and phasic GABAergic currents, Cl� can flow through the

GABAAR in both the directions, depending on its concentration gradient across
the cell membrane and the membrane resting potential of the neuron. In the

adult CNS under physiological conditions, there is a low Cl� concentration

inside the neurons. Thus, the direction of Cl� flow is inward, and GABA exerts
hyperpolarizing and inhibitory actions (Kahle et al., 2013). Conversely, during

early neurodevelopment, there is a high Cl� concentration inside the cell. Thus,

opening of the GABAAR causes a chloride efflux from the cell and GABA depo-
larizes the membrane (Kahle et al., 2013). This depolarization leads to activa-

tion of voltage-gated calcium channels and removal of the Mg2+ block from

NMDA receptors, causing further membrane depolarization and calcium influx
into the cell. This is vital for the activation of second messengers, including
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calcium sensitive kinase (PKC) and calcium/calmodulin-dependent protein

kinase II (CamKII), that participate in neuronal migration, differentiation
and synaptogenesis (Ben-Ari, 2002, 2014; Cellot and Cherubini, 2013;

Leinekugel et al., 1997; Takayama and Inoue, 2010).

Later in development, when the initial set of connections between developing

neurons is built, depolarizing GABA also controls spontaneous neuronal activ-

ity in the form of network action potential bursts of different durations and
intervals across multiple brain areas. Interestingly, these bursts of spontaneous

neuronal activity during early development have been described in different

species including the rodent, chick, turtle, ferret and rabbit (Aguado et al.,
2003; Ben-Ari, 2001; Wong, 1999). Moreover, evidence exists that in primate

fetuses there is a complex hippocampal network capable of generating sponta-

neous and paroxysmal synchronized activities in utero (Khazipov et al., 2001).
Interestingly, early patterns of neuronal synchronized activity have also been

described in humans (preterm babies) by EEG and fMRI studies (Arichi

et al., 2017; Khazipov and Luhmann, 2006; Tolonen et al., 2007). Nevertheless,
the contribution of depolarizing GABA during these early patterns of neuronal

activity in humans has not been investigated yet. The only data available in

humans, derive fromneurons differentiated from human pluripotent stem cells
in vitro, in which early synchronous network activity is based mainly on gap

junctions and emerges when the strong depolarizing GABA activity decrease

(Makinen et al., 2018).

Notably, when GABA switches its action from depolarizing and mostly excit-

atory to hyperpolarizing and inhibitory later in life by upregulating KCC2 gene
expression, the neuronal network activity oscillations disappear (Leitch et al.,

2005; Sernagor et al., 2003). Interestingly, for at least some brain structures, this

phenomenon coincides with the development of complex behavior related to
that specific brain structure. For example, the striatum completes its immature

activity patterns precisely when pups begin coordinated locomotor behavior

(Dehorter et al., 2012).

Finally, proper GABAergic transmission is fundamental during critical periods

of enhanced neuronal connectivity and plasticity driven by sensory system

experiences deriving from individuals’ own life experiences (Begum and Sng,
2017; Berardi et al., 2000; Hensch, 2004; Hensch and Fagiolini, 2005;

Hensch and Quinlan, 2018; Sommeijer et al., 2017; Takesian and Hensch,

2013; Zhang et al., 2018).
Chloride transporters in physiological brain development

The understanding of themechanisms regulating intracellular Cl� concentration

during development has gained a lot of attention in recent years because of the
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fundamental role of Cl� in modulating GABAergic transmission and its conse-

quent implication in neurodevelopmental processes. In neurons, the main reg-
ulators of Cl� homeostasis are the CCCs (Blaesse et al., 2009; Li et al., 2002),

especially the sodium-potassium-chloride cotransporter isoform 1 (NKCC1)

and the potassium-chloride symporter isoform 2 (KCC2). NKCC1 is highly
expressed in immature neurons during development, as it transports Cl� inside

the cells, leading to a high intracellular Cl� concentration (�30mM), and depo-

larizing and mostly excitatory GABA actions (Achilles et al., 2007; Dzhala et al.,
2005). On the other hand, KCC2 is highly expressed inmature neurons, where it

keeps the intracellular Cl� level at low values (4–6mM; Delpire and Kahle,

2017), thereby determining the hyperpolarizing and inhibitory GABA action
(Ben-Ari, 2002, 2014; Rivera et al., 1999; Stein et al., 2004).

Interestingly, this mature pattern of low NKCC1 and high KCC2 expression
develops earlier in the evolutionarily older structures (e.g., spinal cord, brain-

stem, hypothalamus; Watanabe and Fukuda, 2015). Indeed, NKCC1 and

KCC2 are highly expressed in the mouse spinal cord from E11.5-E13.5 (Delpy
et al., 2008) and starting from E15.5, NKCC1 decreases its expression, while

KCC2 remains highly expressed. This difference generates the depolarizing to

hyperpolarizing GABA switch in motor neurons around E17.5 (Branchereau
et al., 2002). Notably, recordings at E18.5 in KCC2�/� mice showed that motor-

neurons exhibited GABA and glycine (that also binds to Cl�-permeable ionic

receptors) excitation, thus highlighting KCC2 importance in determining the
polarity and efficacy of GABAergic inhibitory transmission (Hubner et al., 2001).

In the hypothalamus, the presence of NKCC1 mRNA expression was not clear
in rodent embryos, and its expression was weak postnatally. Conversely, at

E14.5, KCC2mRNA is strongly present andmaintains its expression into adult-

hood in rodents (Li et al., 2002; Wang et al., 2002). This suggests that the devel-
oping hypothalamus presents a mature-like phenotype characterized by

GABAergic inhibitory activity. Nevertheless, electrophysiological recordings

in developing hypothalamic neurons showed that GABA exerts a depolarizing
and excitatory action (Gao and van den Pol, 2001). This seemingly contrasting

results could be explained by posttranscriptional mechanisms like phosphory-

lation able to modulate the activity of the two CCCs, sex-specific and/or cell-
specific expression of KCC2 (Watanabe and Fukuda, 2015).

In the thalamus, NKCC1 mRNA is not present during the embryonic stages in

rats (Wang et al., 2002). Conversely, KCC2 mRNA is already found at E12 in
rodents thalamus,when the region begins forming, with the exception of the dor-

somedial part, which expresses KCC2 later at E18 (Li et al., 2002; Wang et al.,
2002; Watanabe and Fukuda, 2015). Notably, NKCC1mRNA is stably expressed

in the thalamic tissue postnatally in rats (from soon after birth into adult life),

suggesting a possible low hyperpolarizing or even depolarizing action of GABA
in the adult thalamus (Wang et al., 2002; Watanabe and Fukuda, 2015).
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In the rat cerebellum, NKCC1 mRNA was not detected in Purkinje cells at any

postnatal age. Conversely, KCC2 mRNA was found at E15.5 in mouse Purkinje
cells and at P1 in rat Purkinje cells when the cells begin differentiation (Mikawa

et al., 2002). Interestingly, NKCC1 mRNA was observed in rats in the external

granule layer, where the immature granule cells (later developing in compari-
son to Purkinje cells) are located at P7 and P14, and in the internal granular

layer in postmigratory granule cells after P7 (Mikawa et al., 2002). Moreover,

KCC2 transcripts were detectable already at P3 inmouse and at P7 in rat granule
cells (Mikawa et al., 2002; Stein et al., 2004).

In the rat hippocampus, NKCC1 mRNA is strongly present in the neuroepithe-
lium at E18 (Watanabe and Fukuda, 2015), peaking in the first postnatal week

and then decreasing by P14-P15 (Pfeffer et al., 2009; Plotkin et al., 1997; Wang

et al., 2002). Instead, KCC2 mRNA signals can be detected first in the CA3
region at E15.5 and in the CA1 region at E18.5 in mice; it then reaches adult

levels at P15 (Stein et al., 2004). In the same study, western blot analysis

showed a time course of KCC2 protein expression closely parallel to the detec-
tion of the KCC2 transcript described above (Stein et al., 2004).

In the neocortex, NKCC1 transcripts have been detected as early as E12.5 in
scattered cells of the mouse neuroepithelium and in the ventricular zone

(VZ) of the ganglionic eminences (Li et al., 2002; Watanabe and Fukuda,

2015) where the neuronal progenitors are located. By E14.5, NKCC1 mRNA
is upregulated in the proliferative zones of the lateral and medial ganglionic

eminence in mice (Watanabe and Fukuda, 2015). Then, NKCC1 expression

in the VZ decreases in late mouse embryonic development (E17-P0;
Caviness Jr. et al., 1995). In the differentiated cells of the cortical plate both

mRNA and protein of NKCC1 are strongly present in rats (Li et al., 2002;

Watanabe and Fukuda, 2015). Interestingly, KCC2 mRNA signals are not
detected in the mouse neocortex until P0 (Li et al., 2002; Wang et al., 2002).

Although most of the work on the presence or absence of the CCCs is based

on mRNA evidence, some data on the protein expression are available for
the rat neocortex. In particular, NKCC1 is highly expressed postnatally between

P3-P14, whereas KCC2 is expressed at low levels during the first 2 weeks after

birth and is upregulated by P21 (Dzhala et al., 2005).

Finally, NKCC1 is highly expressed both in the developing and adult choroid

plexus in mice and rats (Kanaka et al., 2001; Li et al., 2002). There, NKCC1 is

located on the apical membrane of epithelial cells and it plays a key role in the
formation of the cerebrospinal fluid (CSF). Conversely, KCC2 is not expressed

in the choroid plexus epithelial cells in mice (Steffensen et al., 2018).

The developmental expression profiles of NKCC1 and KCC2 have also been

investigated in humans. At the mRNA level, both NKCC1 and KCC2 increased

with gestational age during the second trimester and after birth in the prefrontal
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cortex, while only KCC2 increased in the hippocampus across the second tri-

mester, but both NKCC1 and KCC2 increased after birth (Hyde et al., 2011).
A more recent study found lower levels of NKCC1 mRNA during the prenatal

period (10 post conception week (PCW)-birth) with an increase in the postna-

tal age (birth-90 years) in the 16 brain areas analyzed (Sedmak et al., 2016). At
the protein level, the expression of NKCC1 in the time window between PCW

31–41 was high with a peak at PCW 35 and decreased from the first year of life

(PCW 54–92) to adulthood in the parietal cortex. KCC2 expression was low
during the entire fetal and neonatal period (PCW 20–41) and increased over

the first year of life (Dzhala et al., 2005). Nevertheless, other studies found a

robust presence of both KCC2 mRNA and protein during the second half of
gestation in the neocortex, indicating that high KCC2 expression starts prena-

tally (Kaila et al., 2014). Notably, expression of KCC2 was observed as early as

PCW16 in a subset of subplate neurons (Bayatti et al., 2008). Moreover, KCC2-
immunoreactive neurons were described in the hippocampus and entorhinal

cortex as early as PCW 25 (which was the earliest age tested), and these neurons
reach adult levels during the first six postnatal months (Dzhala et al., 2005;

Sedmak et al., 2016). Interestingly, the overall ratio of NKCC1 to KCC2 is very

high in pediatric human brains, and it decreases until approximately 2 years of
life and then it remains at the adult levels ( Jansen et al., 2010).
The role of NKCC1 and KCC2 in neuronal proliferation,
migration, and network integration

The important role of NKCC1 and KCC2 in driving and regulating fundamental

processes of proper brain development has been widely demonstrated in
rodents by diverse experimental approaches ranging from knock out (KO) ani-

mals to modulating the expression and/or the activity of the two CCCs by phar-

macological inhibition (e.g., with the widely used FDA-approved drugs
bumetanide and furosemide), RNA interference, overexpression (Schulte

et al., 2018).

NKCC1 plays a key role in cell proliferation and apoptosis
The role of NKCC1 in brain cell proliferation has been demonstrated by a

number of studies. In particular, ex vivo investigations have shown that NKCC1
is expressed in radial glial cells in rats (progenitors of excitatory cortical neu-

rons; Li et al., 2002; Noctor et al., 2001) in the cortex, although it is not in

βIII-tubulin- (marker of postmitotic neurons) positive regions (Li et al.,
2002). Interestingly, NKCC1 is highly expressed also in the ganglionic emi-

nence, the brain region that gives birth to GABAergic interneurons (Li et al.,

2002). In agreement with the abovementioned studies, NKCC1 knockdown
mice have defects in the proliferation of neural precursor cells of the SVZ

(Young et al., 2012) and in the proliferation of the neural progenitors of the
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lateral ganglionic eminences (Magalhaes and Rivera, 2016). Moreover, phar-

macological blocking of NKCC1 with bumetanide inhibits cell proliferation
in neuronal precursors of the subventricular zone in mice (Sun et al., 2012).

The role of NKCC1 in brain cell proliferation has been demonstrated also

in vitro in mouse oligodendrocyte precursor cells, where NKCC1 inhibition
is associated with attenuation in cell cycle progression (Fu et al., 2015).

Another fundamental stage where NKCC1 plays a role is programmed cell
death during development. In particular, NKCC1 is implicated in the

activity-regulated cell death in Cajal-Retzius neurons, a population that mostly

disappears from apoptosis early in life in the mouse developing cortex
(Blanquie et al., 2017). Pharmacological inhibition of NKCC1 by bumetanide

in vitro or genetic deletion of the cotransporter in vivo (NKCC1�/� mice) res-

cued the population of Cajal-Retzius neurons from apoptosis (Blanquie
et al., 2017).
NKCC1 and KCC2 regulate neuronal migration
The depolarizing GABA transmission by high expression of NKCC1 in the
ventricular zone and cortical plate (Shimizu-Okabe et al., 2002) plays a role

in the migration of newly generated rat cortical neurons (Behar et al., 1996,

1998; Heck et al., 2007). In particular, both knocking down of NKCC1
(shRNA) and pharmacological manipulations of NKCC1 by bumetanide in

neuroblasts in mice from the rostral migratory stream in organotypic slice cul-

tures reducedmigratory speed without affecting the direction of themigration
(Mejia-Gervacio et al., 2011). Although this piece of evidence points to a pos-

sible role for NKCC1 in physiological interneuronmigration, a direct demon-

stration of the involvement of NKCC1 in cortical excitatory-neuronmigration
is still missing. Indeed, the knockdown of NKCC1 in vivo in mice during neu-

rodevelopment through in utero electroporation resulted in a disruption of
cortical neuron morphology, but unfortunately, neuronal migration was

not evaluated in that same study (Wang and Kriegstein, 2008). Nevertheless,

several lines of evidence suggest that altered expression of NKCC1 underlies
cortical malformations and neuronal ectopy in pathological conditions

(Fukuda and Wang, 2013; Koyama et al., 2012; Shimizu-Okabe et al.,

2007). In particular, high expression of NKCC1 and low expression of
KCC2 were found in cortical plate neurons involved in micro-gyral cortical

malformations in rodents in vivo (Fukuda and Wang, 2013; Shimizu-

Okabe et al., 2007). Moreover, either knockdown of NKCC1 by RNA interfer-
ence or its pharmacological inhibition by bumetanide both rescued the

migration deficits of granule cells in the dentate gyrus (DG) in a rat model

of febrile seizures in vivo (Koyama et al., 2012). Furthermore, some evidence
indicates a role for NKCC1 in the migration of glioma cells both in vitro and

in vivo in mice (Haas and Sontheimer, 2010). While these in vivo studies
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suggest that high NKCC1 expression could affect neural migration and path-

ological conditions, it is not clear whether physiological levels of NKCC1 reg-
ulate migration in vivo in nonpathological conditions.

As for NKCC1, some evidence exists that KCC2 also mediates migration of
interneurons, where its upregulation works as a stop signal both in vitro and

in vivo in mice and in organotipic cultures from a ferret model of cortical dys-

plasia (Abbah and Juliano, 2014; Bortone and Polleux, 2009; Inamura et al.,
2012;Miyoshi and Fishell, 2011). On the other hand, KCC2 expression in excit-

atory neurons increases only after they have completed their migration across

different cortical layers and other brain areas in rats (Cancedda et al., 2007). In
agreement with these data, overexpression of KCC2 in newly born excitatory

cortical neurons did not affect their migration in rats (Cancedda et al.,

2007). Nevertheless, this may possibly be because high levels of taurine inhibit
KCC2 function at embryonic stages, thus preserving the depolarizing GABA sig-

naling (Inoue et al., 2012). Interestingly, a structural role for KCC2 in neural

crest cell migration and early radial glia migration in mice (at E9.5) was
reported to occur through the interaction with the cytoskeleton-associated pro-

tein 4.1N and independently of the ion-transport action (Horn et al., 2010).

NKCC1 and KCC2 regulate neuronal morphological maturation
Both NKCC1 and KCC2 play fundamental roles in neuronal branching and in

the establishment, maintenance and plasticity of synapses (Kaila et al., 2014;

Khalilov et al., 2011; Sedmak et al., 2016). In particular, a high Cl� concentra-
tion maintained by the high expression of NKCC1 and the low expression of

KCC2, is fundamental for neuronal morphological maturation.

For example, NKCC1 was observed in the tip of growing neurites (Nakajima
et al., 2007), and both its knockdown by RNA interference (Nakajima et al.,

2007, 2011a,b) or its pharmacological inhibition by treatment with bumeta-
nide (Nakajima and Marunaka, 2016) abolished neurite outgrowth in vitro

in PC12 cells. Accordingly, knockdown of NKCC1 in vivo disrupted the den-

dritic maturation of mouse cortical neurons (Wang and Kriegstein, 2008;
Young et al., 2012). Moreover, NKCC1 activation is also required for neurite

growth in injured rodent adult neurons in vivo (Modol et al., 2015; Pieraut

et al., 2007, 2011). Furthermore, NKCC1 has been involved in the maturation
of both rodent excitatory and inhibitory synapses (Nakanishi et al., 2007;

Pfeffer et al., 2009; Wang and Kriegstein, 2008). Although NKCC1�/� mice

do not exhibit morphological alteration of hippocampal dendritic arboriza-
tion, they presented delayed maturation of GABAergic and glutamatergic syn-

apses (Pfeffer et al., 2009). Accordingly, in utero NKCC1 knockdown in mouse

excitatory cortical neurons affected the physiological development of excitatory
and inhibitory synapses (Wang and Kriegstein, 2008).Moreover, pharmacolog-

ical NKCC1 inhibition by bumetanide during mouse cortical development
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disrupted AMPA synapsematuration, although it did not affect NMDA receptor

signaling (Wang and Kriegstein, 2011). In line with studies on NKCC1 down-
regulation/inhibition, premature expression of KCC2 by in utero electropora-

tion in a subpopulation of rat cortical neuron progenitors severely impacted

morphological maturation, with fewer and shorter neurites (Cancedda et al.,
2007); but see (Fiumelli et al., 2013) together with an increased number of den-

dritic spines (Fiumelli et al., 2013). This seeming discrepancy (decreased neur-

ite complexity vs. increased dendritic spine density) could be possibly
explained by considering the two different and specific roles of KCC2 in den-

dritic growth and in spine maintenance. In particular, in dendritic growth,

which possibly requires GABA depolarizing signaling, low KCC2 expression
could be needed to the maintenance of the proper chloride homeostasis. Con-

versely, KCC2 has been showed to exert a structural role in the process of den-

dritic spine formation, independently of its Cl� transporter activity, through
the interaction with cytoskeleton (Fiumelli et al., 2013). Interestingly, in a differ-

ent study KCC2 has been demonstrated to interact with the submembrane actin
cytoskeleton by binding to 4.1N protein (Li et al., 2007), which could represent

themolecularmechanismunderlying the spinogenesis.Moreover, different stud-

ies showed that KCC2 is highly expressed in spine headwhere AMPA andNMDA
receptor are located, playing a role in maintenance of glutamatergic synapses

(Blaesse and Schmidt, 2015; Chamma et al., 2012), in constraining lateral diffu-

sion of AMPA receptors, and in regulating their content at the spine (Chevy et al.,
2015; Gauvain et al., 2011; Llano et al., 2015). In agreement with previous stud-

ies, KCC2 knockout mice exhibit large alterations in synaptic and neuronal net-

work activity in the CA3 region of the hippocampus (Khalilov et al., 2011).

Finally, premature KCC2 overexpression found in a rat model of atypical febrile

seizures and in a variant of KCC2 found in an Australian family with febrile

seizures cause a reduction in dendritic spine number (Awad et al., 2016;
Puskarjov et al., 2014b) Interestingly, the reduction of the premature KCC2

expression rescued the alterations in spine density andmorphology and the sei-

zure susceptibility in the same rat model of febrile seizures (Awad et al., 2016).
The role of NKCC1 and KCC2 in the critical period of brain
plasticity

The critical period for sensory system plasticity has been widely investigated in

the visual system, starting from the pioneering studies of Hubel and Wiesel in
the half of the 20th century. Interestingly, proper development of GABAergic

transmission is crucial for both the opening and the closure of the critical

period plasticity in the visual cortex. Indeed, manipulation of inhibition, by
prematurely enhancing or reducing GABAergic signaling during development

interferes with the onset of the rodent critical period plasticity (Fagiolini



578 CHAPTER 21: Chloride transporters in brain development and disease
et al., 2004; Fagiolini and Hensch, 2000; Huang et al., 1999; Iwai et al., 2003).

Notably, reducing GABAergic activity in adult animals reopens the critical
period in the visual cortex (Harauzov et al., 2010). More recently, Deidda

and colleagues demonstrated that depolarizing GABA during early postnatal

development plays a pivotal role in the duration of the critical period for visual
cortical plasticity later in life. In particular, they observed that pharmacological

inhibition of NKCC1with bumetanide from P3 to P8 in rats extended the dura-

tion of the critical period into adulthood, with a mechanism dependent on the
neurotrophin BDNF (Deidda et al., 2015a).
Expression and role of other NKCCs and KCCs in the
developing brain

In addition to NKCC1, the NKCC family also contains NKCC2. NKCC2 is
highly expressed in the apical membrane of the epithelial cells of the thick

ascending limb in the kidney and the macula densa cells (specialized sensor

cells detecting changes in the fluid composition of the distal tubule), where
it facilitates the reabsorption of sodium and chloride ions into the blood

(Delpire and Gagnon, 2018; Edwards et al., 2014). Moreover, NKCC2 is

strongly expressed in the epithelial layer of the endolymphatic sac in humans,
a part of the vestibular system (Kakigi et al., 2009). Notably, NKCC2 immuno-

reactivity is also present in vasopressinergic and oxytocinergic neurons in the

hypothalamo-neurohypophyseal system in the rat brain (Konopacka et al.,
2015). Blockade of NKCC2 leads to pronounced natriuresis, kaliuresis and

diuresis (Becker et al., 2003; Castrop and Schiessl, 2014; Gamba and

Friedman, 2009; Hannemann et al., 2009; Schiessl and Castrop, 2015). Loss
of function mutations of the gene coding for NKCC2 result in Bartter’s syn-

drome, which is characterized by hypokalemic alkalosis, hyponatremia and

hypotension (Simon et al., 1996).

The less studiedmembers of the KCC family (KCC1, KCC3, and KCC4) are also

expressed in the developing brain. KCC1mRNA was exclusively detected in the
choroid plexus during mouse brain development (Li et al., 2002), but mRNA

levels have been found in neuronal and glial cells in diverse regions (olfactory

bulb, hippocampus, choroid plexus, posterior hypothalamic nucleus) of the
adult rat CNS in vivo (Kanaka et al., 2001). Interestingly, KCC1 negatively reg-

ulates NGF-induced neurite outgrowth in vitro in PC12 cells (Nagao et al.,

2012). KCC3 mRNA is weakly represented in the embryonic rodent brain
(Li et al., 2002), but both the mRNA and the protein are widely present in adult

cortical, hippocampal, brainstem and cerebellar Purkinje neurons (Pearson

et al., 2001; Shekarabi et al., 2011). Moreover, KCC3 protein is expressed in
white matter-rich structures in the rodent brain, spinal cord and peripheral

nerves, indicating a role of KCC3 in myelination (Pearson et al., 2001).
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Furthermore, KCC3 regulates the cell volume in mouse peripheral nerve fibers

(Flores et al., 2018). In agreement with the previous findings, KCC3�/� mice
exhibited axonal swelling, hypomyelination, and demyelination in sciatic

nerves (Byun and Delpire, 2007; Howard et al., 2002). Interestingly, these mice

recapitulate most of the symptoms of human peripheral neuropathy associated
with agenesis of the corpus callosum (ACCPN, also known as Andermann syn-

drome). This severe sensorimotor neuropathy is characterized by locomotor

abnormalities and areflexia and has been associated with loss-of-function
mutations in KCC3 gene (Bowerman et al., 2017; Howard et al., 2002;

Uyanik et al., 2006).

KCC4 is highly expressed in the embryonic mouse brain, including choroid

plexus, peripheral ganglia, ventricular zones and the nucleus of the trigeminal

nerve (Li et al., 2002). Along with NKCC1, KCC4 plays a role in cochlear devel-
opment, as KCC4 KO mice exhibit deafness. KCC4 loss possibly exerts that

effect by causing the death of hair cells by osmotic perturbation or membrane

depolarization (Boettger et al., 2002).

Spatiotemporal expression of the KCC transporters has been studied also in

humans. In particular, KCC1 mRNA was first observed in the cortex of the cer-
ebellum at embryonic stages (between PCW 10–13) and also found in other

brain regions (hippocampus, striatum, and thalamus between PCW 21 and

birth; Sedmak et al., 2016). KCC3 mRNA was described in the cortex, cerebel-
lum, hippocampus, amygdala, striatum, and thalamus in all the stages of devel-

opment and adulthood (age range: 5 PCW–82 years; Sedmak et al., 2016).

KCC4 mRNA was detected at low levels in the cortex both at prenatal and post-
natal ages (Kaila et al., 2014), but not detected in a subsequent study in any

brain region (Sedmak et al., 2016). NKCC2 mRNA was not detected in any

brain region (Sedmak et al., 2016).
Chloride transporters in neurodevelopmental disorders

Neurodevelopmental disorders (NDs) are chronic psychiatric/neurological

conditions that affect 4–5% of the population (Mitchell, 2011). In general,

NDs result from an altered developmental processes induced by both genetic
and environmental factors, which cause defective growth of the central ner-

vous system. Although they display very different etiologies, most of the

NDs share a number of features (e.g., impairments in learning, memory, emo-
tional regulation, sociality, and self-control) and some comorbidity (e.g.,

increased seizure susceptibility and sleep disorders). Interestingly, many of

these common features have been associated with common alterations in
GABAergic transmission. In particular, several studies demonstrated a high

intracellular chloride concentration and a depolarizing GABA action
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attributable to an altered NKCC1/KCC2 ratio in a wide range of NDs, includ-

ing epilepsy, Dravet syndrome, autism spectrum disorders, Asperger syn-
drome, Rett syndrome, Fragile X syndrome, schizophrenia, tuberous

sclerosis complex, traumatic brain injury, and Down syndrome (Ben-Ari,

2017; Jaggi et al., 2015; Medina et al., 2014; Schulte et al., 2018; Wu et al.,
2016a).

Interestingly, restoration of physiological Cl� concentration by pharmacolog-
ical intervention aimed at inhibiting NKCC1 or enhancing KCC2 activity has

led to positive outcomes in rodent models and patients with these conditions

(Ben-Ari, 2017; Jaggi et al., 2015; Medina et al., 2014; Schulte et al., 2018). Cur-
rently, the most used approach to restore low intracellular Cl� concentration in

mouse models of brain pathologies as well as in clinical studies in patients has

been the inhibition of NKCC1 with bumetanide. Another recently investigated
option to restore intracellular Cl� concentration has been the enhancement of

KCC2 activity by the compound CLP257. This has been explored in cultured

cell lines and in spinal cord slices obtained from rats with peripheral nerve
injury, a condition characterized by KCC2 hypofunction (Gagnon et al.,

2013). Interestingly, CLP257, by modulating KCC2 activity, was also able to

exert an antinociceptive action in rats with peripheral nerve injury (Gagnon
et al., 2013). Nevertheless, a recent study showed that CLP257 was not able

to modulate KCC2 activity in vitro in the same cultured cell line used previ-

ously, opening the possibility that the behavioral effects of CLP257 observed
by Gagnon and colleagues may be independent of KCC2 modulation

(Cardarelli et al., 2017). Again, this study was challenged by Gagnon and col-

leagues, who replied to the Cardarelli and co-workers objection confirming
their previous findings (Gagnon et al., 2017), thus indicating the need for fur-

ther investigation.

Finally, recent studies evaluated other components involved in NKCC1 and

KCC2 regulation that could be considered in the future as possible therapeutic

targets. For example, the insulin-like growth factor-1 was able to decrease the
NKCC1/KCC2 ratio in developing rat neurons in vivo, promoting the GABA

switch from depolarizing to hyperpolarizing (Baroncelli et al., 2017). More-

over, the kinase WNK-SPAK, which can activate NKCC1 and deactivate
KCC2 through its phosphorylation state (Kahle et al., 2010), could also be

an interesting target to modulate the NKCC1/KCC2 ratio (de Los Heros

et al., 2014; Kahle et al., 2015).

Here, we give a brief description of the involvement of altered NKCC1 and

KCC2 expression/function in the pathogenesis of some neurodevelopmental
disorders, considering some examples of therapeutic approaches. We

describe more in detail the case of the Down syndrome at the end of this

section.
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Epilepsy

Epilepsy is a neurological disorder characterized by epileptic seizures. These are
caused by altered, excessive or hypersynchronous neuronal activity in the brain

(Chang and Lowenstein, 2003). Several pieces of evidence suggest that neuro-

nal hyperexcitability and hypersynchronization is the result of an alteration of
the delicate balance between excitatory and inhibitory synaptic activity. Inter-

estingly, an imbalance in NKCC1 and KCC2 activity together with depolarizing

GABAergic action have been observed in several animal models of epilepsy
(Ben-Ari, 2017; Di Cristo et al., 2018). The first lines of evidence about the

involvement of CCCs in epileptogenic activity came from the late 90s, when

four independent studies found that the antagonization of NKCC1 with furo-
semide or bumetanide caused a block of epileptic activity both in vitro and in

vivo in rats (Hochman et al., 1995, 1999; Hochman and Schwartzkroin, 2000;

Schwartzkroin et al., 1998). In 2002, four other works demonstrated the direct
relationship between NKCC1, KCC2 and epileptic pathogenesis. In particular,

high NKCC1 expression was indicated as a factor influencing the increased sus-

ceptibility to seizures in the developing brain. In this study, bumetanide admin-
istration was able to rescue epileptiform activity both in vitro and in vivo during

development in rodents (Dzhala et al., 2005). Moreover, increased expression
of NKCC1 was found in the amygdala-kindling model of seizures in rats

(Okabe et al., 2002). Furthermore, a decrease in KCC2 expression was found

in the mouse hippocampus after kindling-induced seizures (Rivera et al.,
2002). Finally, mice deficient in KCC2 showed frequent seizures (Woo et al.,

2002). This may be possibly due to a shift in the ECl, which leads to impaired

efficacy of GABAAR-mediated inhibition and/or to less reuptake of potassium
and chloride during high-frequency spikes (Woo et al., 2002). Stemming from

these first works, several other studies in rodent models confirmed the involve-

ment of an altered NKCC1/KCC2 ratio in the pathogenesis of epilepsy.
A number of these studies also confirmed positive outcomes upon bumetanide

treatment (Almeida et al., 2011; Amadeo et al., 2018; Baek et al., 2016; Cleary

et al., 2013; Dzhala et al., 2008, 2010; Edwards et al., 2010; Eftekhari et al.,
2014a; Hu et al., 2017; Kelley et al., 2018; Koyama et al., 2012; Li et al.,

2008; Loscher et al., 2013; MacKenzie and Maguire, 2015; MacKenzie et al.,

2016; Marguet et al., 2015; Mazarati et al., 2009; Nardou et al., 2009; Reid
et al., 2013; Robel et al., 2015; Santos et al., 2017; Sivakumaran and

Maguire, 2016; Tao et al., 2016; Tollner et al., 2015a; Wang et al., 2017;

Zhang et al., 2016a).

Interestingly, an imbalance in the NKCC1/KCC2 ratio is also present in human

patients. First, upregulation of NKCC1 and/or downregulation of KCC2 was

found in the hippocampal subiculum and hippocampi obtained from patients
affected by temporal lobe epilepsy (Huberfeld et al., 2015, 2007; Munoz et al.,

2007; Palma et al., 2006; Sen et al., 2007). Then, other studies found altered
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expression of NKCC1 and/or KCC2 in the cortical malformation of patients

affected by medically intractable epilepsy (Aronica et al., 2007; Sen et al.,
2007; Shimizu-Okabe et al., 2011) in hypothalamic hamartoma, a rare epilep-

togenic lesion associated with gelastic seizures (Kim et al., 2008), in cortical

samples from epileptic children ( Jansen et al., 2010), and in peritumoral tis-
sues with high seizure susceptibility (Conti et al., 2011; Pallud et al., 2014).

Notably, an increased expression of NKCC1 and a decreased expression of

KCC2 were observed also in brain samples obtained from patients affected
by Dravet syndrome, an infantile encephalopathy characterized by severe epi-

lepsy and cognitive impairment (Ruffolo et al., 2018). Interestingly, bumeta-

nide treatment ameliorated seizure frequency in temporal lobe epilepsy
(Eftekhari et al., 2014a). Moreover, bumetanide was able to reduce seizure

duration and frequency in a child affected by intractable multifocal seizures

(Kahle et al., 2009). Nevertheless, the NEMO trial, assessing the efficacy and
safety of the use of bumetanide for the treatment of acute neonatal encephalop-

athy seizures (Pressler et al., 2015), was recently interrupted due to poor bume-
tanide antiepileptic action and ototoxicity (Ben-Ari et al., 2016). Moreover, the

involvement of KCC2 in the pathogenesis of epilepsy has been recently ques-

tioned based on conflicting results showing increased KCC2 expression in epi-
leptic brain tissue from both human ( Jansen et al., 2010; Karlocai et al., 2016)

and rodent models (Awad et al., 2016; Galanopoulou, 2008; Khirug et al.,

2010). Nevertheless, the conflicting results showed both decreased and
increased KCC2 expression in epilepsy; this discrepancy could depend on brain

region, stage of disease, gender, or the influence of seizures themselves

(Di Cristo et al., 2018). Indeed, KCC2 activity causes potassium elevation in
the extracellular compartment, which could contribute to the lowering of

the threshold for the generation of the seizures and to the synchronization

of the epileptiform discharges (Di Cristo et al., 2018). Thus, although the
involvement of alterations of NKCC1 and KCC2 expression/activation in epi-

lepsy is clearly demonstrated, deeper studies to better investigate their delicate

modulation and assess the possibility of targeting them with pharmacological
approaches are still required.
Autism spectrum disorders

Autism spectrum disorders (ASD) are a group of syndromes characterized by

different etiologies, but common core symptoms (e.g., repetitive behaviors,

deficits in social interaction and language impairment; Pizzarelli and
Cherubini, 2011), suggesting that possibly there are common mechanisms

underlying ASD pathology. Moreover, ASD can be comorbid with other neuro-

developmental syndromes such as epilepsy (Lewis et al., 2018), Rett syndrome
(Percy, 2011), Fragile X syndrome (Kaufmann et al., 2017), or Down syndrome

(Moss et al., 2013). Several pieces of evidence, both from rodent models and
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humans, indicate that commonly altered GABAergic transmission could under-

lie ASD pathology (Cellot and Cherubini, 2014). In particular, the pioneering
observation of a paradoxical effect upon the administration of GABAA-

signaling-enhancing benzodiazepine diazepam in autistic children (e.g., anxi-

ety and aggression; Marrosu et al., 1987), suggested the possibility of depolar-
izing GABA action in ASD. This idea prompted researchers to test whether the

inhibition of NKCC1 by bumetanide could be a valid therapeutic strategy in

five autistic children (Lemonnier and Ben-Ari, 2010). The amelioration of some
behavioral aspect related to ASD upon bumetanide treatment opened the way

for a larger clinical trial designed for 54 autistic patients (Lemonnier et al.,

2012) and consequently a phase II clinical study (Lemonnier et al., 2017).
These studies confirmed that bumetanide is able to ameliorate the core symp-

toms of ASD measured by the Childhood Autism Rating Scale (CARS). More-

over, bumetanide resulted efficient in the treatment of a young girl with
Asperger syndrome, a neurodevelopmental disorder belonging to ASD

(Grandgeorge et al., 2014). In parallel to the clinical studies, KCC2 expression
was downregulated in the VPA rat model of ASD (Eftekhari et al., 2014b; Tyzio

et al., 2014). Interestingly, bumetanide administration in VPA-treated pregnant

rats resulted in the rescue of core behaviors related to ASD in their offspring
(Eftekhari et al., 2014b; Tyzio et al., 2014). Nevertheless, the lack of preclinical

studies addressing bumetanide treatment at the developmental stages compa-

rable to those of patients enrolled in clinical trials and the paucity of mouse
models of autism tested among the many that exist, highlights the need for fur-

ther investigation.
Rett syndrome

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in

the X-linked Methyl-CpG-binding protein (MECP2) gene. Mecp2 binds to
methylated DNA and regulates the transcription of a large number of genes.

Individuals affected by RTT grow normally until the age of 6–18months but then

develop various symptoms (e.g., cognitive impairment, seizures, altered motor
function and stereotype behaviors; Ehinger et al., 2018). As for autism, several

pieces of evidence indicate a possible alteration in the GABAergic signaling in

RTT rodent models and humans (Cellot and Cherubini, 2014). The first evidence
regarding alterations in the NKCC1/KCC2 balance came from a study of

corticospinal fluid (CSF) obtained from RTT patients, where a decreased level

of KCC2 expression was found (Duarte et al., 2013). More recently, deficits in
KCC2 expression have been found in human RTT patient stem cell-derived neu-

rons (Tang et al., 2016) and in a mouse model of RTT (Banerjee et al., 2016).

Interestingly, insulin-like growth factor-1 (IGF1) treatment ameliorated the sever-
ity of the syndrome both in RTT mousemodels (Castro et al., 2014; Tropea et al.,

2009) and in RTT patients (Khwaja et al., 2014; Pini et al., 2016), thus suggesting



584 CHAPTER 21: Chloride transporters in brain development and disease
its implementation in the treatment of NDs (Bou Khalil, 2017). Nevertheless, fur-

ther investigation of the NKCC1/KCC2 ratio and its consequence on GABA sig-
naling are needed to better clarify the role of the two CCCs in the

pathogenesis of RTT and their possible involvement as therapeutic targets.
Fragile X syndrome

Fragile X syndrome (FXS) is a genetic disorder caused by mutations in the

X-linked FMR1 gene encoding for Fragile X mental retardation protein
(FMRP). FMRP is a regulator of the translation of several mRNAs. FXS individ-

uals show cognitive deficits, autistic behavior, hypersensitivity to sensory stim-

uli and comorbidity with epilepsy (Morel et al., 2018). These symptoms led
researchers to hypothesize an excitatory/inhibitory imbalance, as previously

observed in ASD and epilepsy. In particular, driven by the positive outcome

of the earlier pilot study on autistic patients (Lemonnier et al., 2012), the same
authors treated a FXS child with bumetanide (Lemonnier et al., 2013). Interest-

ingly, bumetanide administration resulted in the amelioration of the score of

each of the 5 clinical tests performed to probe autistic core symptoms
(Lemonnier et al., 2013), opening the route to larger clinical trials. In agree-

ment with the clinical study, FXS mice showed a delay in the developmental

switch of GABA polarity from depolarizing to hyperpolarizing, due to increased
expression of NKCC1 (He et al., 2014). The same year, Tyzio and colleagues

found increased Cl� concentrations in hippocampal slices from FXS mice at

P15 and P30 due to a decreased level of KCC2. Fetal treatment with bumetanide
right before birth was able to recover the intracellular Cl� concentration,

GABAergic transmission and the behavioral features related to autism later

in life (Eftekhari et al., 2014b; Tyzio et al., 2014). Recently, treatment of FXS
mice with bumetanide during the critical period of somatosensory cortex plas-

ticity rectified GABA polarity and synaptic plasticity and allowed long-lasting

restoration of proper somatosensory-circuit formation (He et al., 2018). More-
over, a recent study found that bumetanide treatment by itself was insufficient

to completely rescue social impairment in the automated tube test in FXS mice,
suggesting the need for a combination therapy (Zeidler et al., 2017). Neverthe-

less, in the same study, the combination of the genetic reduction of mGluR5

expression together with bumetanide treatment worsened social impairment,
indicating that the combination therapy needs to be better investigated in terms

of drug type, targeting pathway and time window of administration (Zeidler

et al., 2017). Although there are only a few studies in animal models and in
humans, the abovementioned evidence confirms the involvement of the

NKCC1/KCC2 imbalance in the pathogenesis of FXS syndrome and their mod-

ulation as a possible therapeutic strategy.
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Schizophrenia

Schizophrenia is a neurodevelopmental disorder characterized by psychosis
and cognitive impairments, leading to disability and premature mortality

(Lewis, 2012). In particular, the clinical manifestations can be divided into

three categories: positive symptoms (e.g., hallucinations), negative symptoms
(e.g., depression and apathy), and cognitive symptoms (Lewis, 2012). The eti-

ology of schizophrenia is still under investigation, but a large body of literature

agrees on the contribution of both genetic and environmental factors. GABAer-
gic transmission seems again to play an important role in the pathogenesis of

this ND (Balu and Coyle, 2011). In particular, the first pieces of evidence of

impaired Cl� homeostasis in schizophrenia came from a study on the prefron-
tal cortex (and later the hippocampus) of schizophrenic patients, where

NKCC1 expression was increased (Dean et al., 2007; Hyde et al., 2011).

A few years later, alterations in SLC12A2 and SLC12A5 genes, encoding for
NKCC1 and KCC2, respectively, were indicated as susceptibility genes for

schizophrenia development in patients (Kim et al., 2012; Merner et al.,

2015, 2016; Potkin et al., 2009). Furthermore, increased expression of two
kinases regulating NKCC1 and KCC2 activity, OXSR1 and WNK3, was found

in the prefrontal cortex of schizophrenic subjects, indicating a possible increase
in NKCC1 activity and a decrease in KCC2 function in schizophrenic patients

(Arion and Lewis, 2011). In addition, an altered NKCC1/KCC2 ratio was

described in two different mouse models of schizophrenia (Larimore et al.,
2017; Yang et al., 2015). Finally, an interplay between NKCC1 and the protein

Disrupted in schizophrenia 1 (DISC1, an intrinsic regulator of neurogenesis

implicated in schizophrenia) has been demonstrated to be fundamental for
the regulation of the dendritic development of newborn neurons during adult

neurogenesis in the mouse hippocampus (Kim et al., 2012), suggesting possi-

ble involvement of NKCC1 in the pathogenic mechanisms underlying
schizophrenia.

Of note, in vitro evidence from Amin and coworkers revealed an imbalance in

NKCC1 and KCC2 expression also in DiGeorge Syndrome (a condition confer-
ring high risk of schizophrenia), which caused hyperexcitability of the network

recovered by bumetanide application to the neuronal culture (Amin

et al., 2017).

Bumetanide treatment in schizophrenic patients reduced the severity of the

symptoms and hallucinations (Lemonnier et al., 2016; Rahmanzadeh et al.,
2017a), without ameliorating the total score of the general positive and negative

syndrome scale (PANSS) and the brief psychiatric rating scale (BPRS)

(Rahmanzadeh et al., 2017b). Interestingly, intranasal administration of oxyto-
cin reduced the severity of symptoms in schizophrenic patients in several studies

(Brambilla et al., 2016; Davis et al., 2014, 2013; Feifel et al., 2012, 2010;
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Fischer-Shofty et al., 2013; Gibson et al., 2014; Goldman et al., 2011; Lee et al.,

2013;Modabbernia et al., 2013;Ota et al., 2018; Pedersen et al., 2011; Shin et al.,
2015; Woolley et al., 2017, 2014), but see (Cacciotti-Saija et al., 2015;

Caravaggio et al., 2017; Dagani et al., 2016; Horta de Macedo et al., 2014;

Jarskog et al., 2017). In light of the ability of oxytocin to regulate GABA signaling
in fetal and newborn rodents (Ben-Ari, 2018; Eftekhari et al., 2014b; Khazipov

et al., 2008; Leonzino et al., 2016; Tyzio et al., 2006, 2014), it is tempting to

hypothesize that oxytocin exerts its therapeutic effect on schizophrenic patients
also by regulating CCCs. A deeper investigation of the molecular mechanisms

underlying the possible relation between the oxytocin system and CCCs could

open new avenues for the treatment of schizophrenia and other NDs.
Tuberous sclerosis complex

Tuberous sclerosis complex (TSC) is a multiorgan genetic disorder caused by

loss of function mutations of the TSC1 or TSC2 genes (van Slegtenhorst
et al., 1997). This pathology is characterized by the presence of cortical tubers

(i.e., dysplastic lesions), source of focal epilepsy, autistic behaviors and intel-

lectual disability. Given the imbalance of the NKCC1/KCC2 ratio in epilepsy
(Schulte et al., 2018), the investigation of CCCs in tuberous sclerosis has gained

interest. TSC patients present an increased NKCC1/KCC2 ratio in extracts from

cortical tubers (Ruffolo et al., 2016; Talos et al., 2012). An altered GABA reversal
potential was also described in Xenopus oocytes injected withmembranes from

TSC patient cortical tissues (Ruffolo et al., 2016). Altogether, these studies sug-

gest a possible involvement of NKCC1/KCC2 imbalance in the pathogenesis of
TSC in patients. Nevertheless, a better investigation of both the pathogenic

mechanisms and possible therapies needs to be performed in rodent models.
Neurodevelopmental abnormalities caused by traumatic
brain injury

Traumatic brain injury (TBI) is caused by an injury to the brain due to external
objects or forces. When TBI occurs in early childhood, the cortical and subcor-

tical lesions lead to altered neurodevelopmental processes and consequent cog-

nitive defects persisting for the lifetime of the individual (Bonnier et al., 2007;
Jonsson et al., 2013; Keenan et al., 2007). The neurodevelopmental damages

occurring after a TBI are the result of a cascade of events, called secondary brain

injury, including damage of the blood-brain barrier, inflammation, excitotoxi-
city, edema, ischemia, and neuronal damage (e.g., excitotoxicity, aberrant ionic

homeostasis, axonal disconnection, and death; Ghajar, 2000; Park et al., 2008).

One of the mechanisms underlying this cascade of events is possibly an imbal-
ance of NKCC1 and KCC2 expression and function. Indeed, three independent

studies found that NKCC1 was upregulated in the hippocampus and choroid
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plexus of traumatic brain injury rat models and that bumetanide administra-

tion decreased the inflammatory response and neuronal damage (Lu et al.,
2008, 2006, 2007). Then, other studies confirmed the fundamental role of

NKCC1 in TBI-induced rodent hippocampal aberrant neurogenesis

(Lu et al., 2015), neuronal and astrocytic apoptosis (Hui et al., 2016; Zhang
et al., 2017b), cerebral edema (Lu et al., 2017; Zhang et al., 2016b), seizures

(Liang and Huang, 2017; Wang et al., 2017), BBB disruption (Zhang et al.,

2017a), and microvascular failure (Simard et al., 2010). Finally, a recent work
described decreased KCC2 expression in the rat parietal cortex after TBI, which

was rescued by melatonin administration leading to amelioration of neural

apoptosis and brain edema (Wu et al., 2016b). The deep understanding of
the involvement of both NKCC1 and KCC2 in the secondary brain injury upon

TBI suggests timely pharmacological interventions to prevent the consequent

neurodevelopmental alterations observed in TBI children.
Chloride transporters in Down syndrome

Down syndrome (DS) is caused by the triplication of human chromosome

21 (Hsa21) and it is one of the most common genetic causes of intellectual

disability and congenital birth defects. Many health issues characterize per-
sons with DS (Antonarakis and Epstein, 2006; Desai, 1997; Nadel, 2003;

Parker et al., 2010), with almost all individuals presenting with cognitive def-

icits (Dierssen, 2012; Edgin et al., 2012; Pennington et al., 2003; Vicari
et al., 2013).

Several studies investigated possible mechanisms involved in cognitive

impairment, taking advantage of diverse murine genetic models of DS
(Dierssen, 2012). The Ts65Dn mouse (Reeves et al., 1995) is the most char-

acterized and widely used. These mice are characterized by the presence of an

extra chromosome derived from mouse chromosome 16, representing the
long arm of human chromosome 21, fused to the centromere of the murine

chromosome 17 (Antonarakis et al., 2004). Interestingly, Ts65Dn mice reca-

pitulate many features of DS. In particular, these mice show impairment in
neuronal development (Belichenko et al., 2004; Chakrabarti et al., 2010,

2007; Contestabile et al., 2010, 2007), defects of synaptic plasticity

(Contestabile et al., 2013; Costa and Grybko, 2005; Kleschevnikov et al.,
2004; Siarey et al., 1999, 1997), impaired hippocampus-dependent memory

functions (Contestabile et al., 2013; Costa et al., 2008; Fernandez et al., 2007;
Reeves et al., 1995), hyperactivity (Escorihuela et al., 1995; Reeves et al., 1995;

Sago et al., 2000), and sleep disorders (Colas et al., 2008; Das et al., 2015;

Stewart et al., 2007).
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Down syndrome and GABAergic transmission

The first lines of evidence regarding the involvement of defective GABAergic
transmission in DS found an increased number of GABAergic interneurons

in the cortex and hippocampus of adult and adolescent Ts65Dn mice, respec-

tively (Chakrabarti et al., 2010; Perez-Cremades et al., 2010). These alterations
were accompanied by an increase in spontaneous GABAergic postsynaptic

events in CA1 pyramidal neurons of adult Ts65Dn mice (Chakrabarti et al.,

2010). Interestingly, subsequent provided seemingly contrasting and often
inconsistent results, depending on the parameters analyzed, hippocampal sub-

region and age of the animals. For instance, electrophysiological experiments

did not find any alterations nor in the frequency of miniature inhibitory post-
synaptic currents (mIPSC), neither in the release probability at GABAergic syn-

apses. Moreover evoked GABAA transmission in the hippocampal CA1 region

of adult Ts65Dn mice (Best et al., 2012; Chakrabarti et al., 2010), as well as
electron microscopy and immunohistochemical studies on hippocampus of

adult Ts65Dn mice did not reveal any alteration in the density GABAergic ter-

minals and synapses, but only on their distribution (Belichenko et al., 2009b,
2004; Kleschevnikov et al., 2012b; Kurt et al., 2000, 2004). Conversely, mIPSC

frequency was found increased in the CA1 region of Ts65Dn pups (Mitra et al.,
2012) and in DG of Ts65Dn adults (Kleschevnikov et al., 2012b, 2004),

whereas it was found decreased in hippocampal CA3 region of Ts65Dn mice

(Hanson et al., 2007; Stagni et al., 2013) and GABAergic synaptic density
was found increased in the hippocampal DG of adult Ts65Dn mice (Garcia-

Cerro et al., 2014; Martinez-Cue et al., 2013; Mojabi et al., 2016). Interestingly,

studies of DS autoptic brain samples and analysis of cortical neuronal progen-
itors obtained from DS individuals have shown a general reduction in the

GABAergic system at various levels (i.e., defects in interneuron neurogenesis,

reduced number and size in cortical calbindin and parvalbumin neurons)
(Bhattacharyya et al., 2009; Kobayashi et al., 1990; Ross et al., 1984), in seem-

ingly inconsistence with the first evidence describing increased GABAergic

transmission in Ts65Dn mice.

Thus, the evidence in TS65Dnmice and brain samples taken altogether suggests

that besides an increased number of GABAergic interneurons, hippocampal

subregion and age-dependent differences, together with compensatory mecha-
nisms and a general increase in the excitability of the interneurons may be pre-

sent in DS (Contestabile et al., 2017).

Interestingly, further studies demonstrated that the alteredGABAergic transmis-

sion affected synaptic plasticity in DS mice, experimentally measured with the

long-term potentiation (LTP) protocols in acute brain slices of adult Ts65Dn
mice (Belichenko et al., 2009a, 2015, 2007; Costa and Grybko, 2005;

Fernandez et al., 2007; Kleschevnikov et al., 2012a, 2004).
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Given that several pieces of evidence suggested that the cognitive deficits and

abnormalities in synaptic plasticity observed in Ts65Dn mice derive, at least
in part, from an excess of GABAA-mediated neurotransmission in the hippo-

campal circuitry (i.e., spontaneous GABAergic postsynaptic events in CA1,

mIPSC frequency and evoked GABAergic transmission in DG), diverse studies
evaluated GABAA receptors as a possible therapeutic target to rescue cognitive

impairment in DS. For 10 years, numerous independent groups tested GABAA

receptor inhibitors targeting diverse subunits and consistently found a rescue in
LTP and hippocampal cognitive abilities in Ts65Dn mice (Braudeau et al.,

2011a,b; Fernandez et al., 2007; Martinez-Cue et al., 2014, 2013; Mohler,

2012; Potier et al., 2014; Rueda et al., 2008). Similar results were obtained
by treating Ts65Dn animals with fluoxetine, an inhibitor of serotonin reuptake

(Begenisic et al., 2014; Bianchi et al., 2010; Guidi et al., 2014; Stagni et al.,

2015), but see (Heinen et al., 2012) or exposing the Ts65Dn animals to an
enriched environment (Begenisic et al., 2015, 2011; Martinez-Cue et al.,

2002, 2005). Since both fluoxetine and exposure to an enriched environment
reduced GABAergic signaling (Baroncelli et al., 2010; Begenisic et al., 2014,

2015, 2011; Caiati and Cherubini, 2013; Maya Vetencourt et al., 2008;

Mendez et al., 2012; Sale et al., 2007), it is possible that the effects on Ts65Dn
mice may be due, at least in part, to modulation of GABAergic transmission, as

in all the studies reported above for GABAA receptor inhibitors.

These lines of evidence reinforce the hypothesis of a causal link between the
increased GABAergic transmission, synaptic plasticity abnormalities and cogni-

tive deficits of DS mice (Chakrabarti et al., 2010; Kleschevnikov et al., 2004)

and highlight GABAergic transmission as a possible therapeutic target in DS.
On the other hand, both individuals with DS and DS mice show an increased

susceptibility to seizures (Arya et al., 2011; Gholipour et al., 2017; Goldberg-

Stern et al., 2001; Lott, 2012; Lott and Dierssen, 2010; Rissman and Mobley,
2011; Robertson et al., 2015; Smigielska-Kuzia et al., 2009; Stafstrom et al.,

1991; Westmark et al., 2010) and hyperactivity (Deidda et al., 2015b;

Escorihuela et al., 1995; Moss, 2017; Pueschel et al., 1991; Reeves et al.,
1995; Sago et al., 2000), and individuals with DS often show anxiety traits

(Dekker et al., 2018; Haddad et al., 2018; Vicari et al., 2013), pointing to excess

excitation rather than inhibition in DS.
NKCC1 is implicated in depolarizing GABAAR signaling
in Down syndrome

In 2015, Deidda and colleagues proposed a new perspective about GABAAR

transmission in DS (Deidda et al., 2015b). In their work, the efficacy and polar-
ity of GABAAR signaling were investigated in adult Ts65Dn mice. Surprisingly,

they found that GABAergic transmission was depolarizing and mostly
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excitatory rather than hyperpolarizing and inhibitory in adult DS mice. In par-

ticular, they described an increase in spike frequency in Ts65Dn hippocampal
and neocortex acute slices in comparison to WT, both in baseline conditions

and upon application of GABA. Accordingly, blockade of endogenous GABAA

signaling by the application of the GABAAR antagonist bicuculline resulted in a
reduction in the spike frequency in neurons from Ts65Dn brain slices.

The excitatory action of GABA in Ts65Dn brain slices was accompanied by a
shift in the reversal potential for GABAAR-driven Cl� currents (ECl) tomore pos-

itive potentials. Indeed, taking advantage of the gramicidin-perforated patch

clamp, a technique that allows maintenance of the endogenous intracellular
Cl� concentration, they observed that Ts65Dn neurons exhibited a less negative

ECl (�58mV) in comparison to WT neurons (�66mV). The use of gramicidin-

perforated patch-clamp was key, considering that another study conducted to
investigate ECl in Ts65Dn mice by whole-cell patch-clamp did not detect these

differences possibly due to alterations of intracellular chloride concentration

caused by dilution from the pipette solution (Kleschevnikov et al., 2012b).
Of note, an ECl value above the membrane resting potential suggests an out-

ward Cl� current. This was indeed described by Deidda and colleagues by

Cl� imaging in CA1 neurons from Ts65Dn acute brain slice.

Interestingly, the same study found that the defective GABAergic signaling was

due to an increased expression of NKCC1 protein, which they found in the
entire hippocampus, the CA3-CA1 subregion and cortices of adult Ts65Dn

mice compared to WT littermates. Interestingly, Deidda and coworkers found

increased NKCC1 expression also in hippocampi from DS individuals, provid-
ing a parallel between the animal model and humans. Conversely, no changes

in KCC2 protein expression both in Ts65Dn mice and DS individuals were

detected. Notably, the authors did not find a significant increase in NKCC1
mRNA in adult Ts65Dn mice.
Bumetanide treatment rescues the altered GABAergic
transmission, synaptic plasticity and cognitive deficits
in Ts65Dn mice

Considering that the increased expression of NKCC1 is the possible cause of the
aberrant GABAergic transmission in Ts65Dn mice, Deidda and colleagues eval-

uated NKCC1 inhibition by bumetanide as a potential therapeutic strategy.

Bath application of bumetanide was able to rescue ECl, with a reduction of
spontaneous spiking activity and a decrease in the GABA-induced spike fre-

quency in acute hippocampal slices of adult Ts65Dn mice. Conversely, there

was no significant effect of bumetanide application in WT mice, confirming
that the shift of ECl was responsible for depolarizing GABAAR signaling in adult

Ts65Dn mice.
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Moreover, bumetanide bath application to acute brain slices was able to recover

the hippocampal CA1-CA3 LTP to WT levels, with no effect on the LTP in WT

mice. Finally, Deidda and colleagues tested Ts65Dn mice and their WT litter-
mates in three independent behavioral tasks to assess hippocampus-dependent

long-term explicit memory after either an acute (1 time only), subchronic
(1 week) or a chronic (4 weeks) systemic (intraperitoneal) treatment with

bumetanide. Interestingly, they proved that all three treatments with bumeta-

nide were able to fully recover the poor associative memory of Ts65Dn mice in
the contextual fear conditioning test. Moreover, bumetanide was able to rescue

the performance of Ts65Dn mice to the level of WT mice in the object-location

test, showing a full recovery of spatial-memory performance. Finally, bumeta-
nide administration was also able to rescue the novel-discrimination memory

of Ts65Dn mice in the novel object recognition test (Deidda et al., 2015b).

Notably, bumetanide exerted acute activity on NKCC1 and it did not provide
long-lasting effects. Indeed, a drug withdrawal experimental protocol (i.e., a

week of bumetanide washout after a four-week treatment) completely abol-

ished the rescue observed in both LTP and behavioral tasks, indicating the
requirement for chronic treatment (Deidda et al., 2015b).
Concluding remarks

From Deidda and colleagues’ work to the other several studies, we have
highlighted here a clear implication for the disrupted NKCC1/KCC2 expression

ratio in the pathogenesis of neurodevelopmental disorders such as Down syn-

drome, epilepsy, ASD, Rett syndrome, Fragile X, schizophrenia, tuberous scle-
rosis complex, and neurodevelopmental abnormalities caused by traumatic

brain injury. Accordingly, the inhibition of NKCC1 by the FDA-approved

diuretic bumetanide is able to recover pathological phenotypes associated with
the aforementioned neurodevelopmental conditions in rodent models and/or

human subjects, as highlighted above. This highlights the tremendous poten-

tial for repurposing (Strittmatter, 2014) of bumetanide in the treatment of a
number of neurodevelopmental disorders. Nevertheless, there are still some

open issues that need to be addressed.

First, the mechanisms underlying the dysregulation of the NKCC1/KCC2

expression ratio in pathology, as well as its physiological variation during early

development are still mostly unknown and insufficiently investigated (Schulte
et al., 2018). Interestingly, the discrepancy between the level of NKCC1 mRNA

(not increased) and the protein (increased) observed in brain homogenates

from DS mice suggests possible posttranscriptional regulatory mechanisms
(Deidda et al., 2015b). This could open new avenues for the investigation of

the mechanism regulating NKCC1 expression in pathological conditions and
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the possibility of new therapeutic targets for Down syndrome and the other ND

characterized by an aberrant NKCC1/KCC2 expression ratio.

Second, bumetanide is a strong diuretic, which is currently only used in hospi-

tals to mainly treat the consequences of heart failure. Thus, the use of a strong
diuretic to treat patients with severe behavioral impairments as in NDmay seri-

ously jeopardize drug compliance during chronic treatment. Bumetanide exerts

its diuretic actions by blocking NKCC2, which leads to ionic imbalance. More-
over, NKCC2 is also expressed in vasopressinergic and oxytocinergic neurons in

the hypothalamo-neurohypophyseal system and in the vestibular system,

increasing the potential side effects of chronic bumetanide treatment. Hence,
a new drug selective for NKCC1 and devoid of unfavorable diuresis, electrolyte

imbalance, and unwanted effects on the hypothalamo-neurohypophyseal sys-

tem and auditory system is required to ameliorate the symptoms of the subjects
affected by ND. In particular, the effects on the auditory system have proved

critical for the treatment of infants. Indeed, one clinical trial for the repurposing

of bumetanide for the treatment of acute neonatal encephalopathy seizures was
suspended due to induced deafness in some treated subjects (Ben-Ari

et al., 2016).

Third, a number of studies highlighted bumetanide’s poor blood-brain barrier

penetration (Brandt et al., 2010; Cleary et al., 2013; Puskarjov et al., 2014a;

Tollner et al., 2015b; Topfer et al., 2014) and recent investigations considered
bumetanide’s low levels in the brain after systemic administration as incompat-

ible with NKCC1 inhibition, thus questioning the brain expressed-NKCC1 as

the target of bumetanide in ND (Romermann et al., 2017; Wang et al.,
2015). Further studies are required to confirm NKCC1 as a therapeutic target

in the brain and to elucidate the mechanisms of action of bumetanide in

brain-related behaviors.

Finally, most of the brain defects occurring in DS as well as in the other ND

described above originate during development. Thus, the deep investigation

of NKCC1 and KCC2 expression and function in neural maturation and circuit
formation could elucidate the mechanisms underlying the pathogenesis of

these conditions. Moreover, this could open the possibility to search for more

efficient, timely, and early therapeutic strategies. Indeed, acting when neuronal
networks are still plastic during development could ameliorate symptoms that

treatments in adult ages were not able to reverse, possibly due to preexisting

miswiring in the neuronal circuit. For example, bumetanide treatment in adult
Ts65Dn mice failed to rescue hyperactivity and seizure susceptibility, whereas

an earlier treatment could be beneficial (Deidda et al., 2015b). Moreover, early
pharmacological treatments in NDs could also lead to beneficial behavioral

effects that persist into adulthood. This could eliminate or most likely reduce

the need for chronic pharmacological treatments in adulthood. Although the
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results for the treatment of pediatric ASD patients with bumetanide are encour-

aging, long-lasting effects of early treatments will have to be addressed first in
animal models and then in patients (Grandgeorge et al., 2014; Lemonnier and

Ben-Ari, 2010; Lemonnier et al., 2012). Interestingly, the administration of flu-

oxetine, SAG1.1 or choline during gestation or in the early postnatal period has
already demonstrated long-lasting and beneficial effects in the memory of

Ts65Dn mice (Ash et al., 2014; Bianchi et al., 2010; Das et al., 2013; Guidi

et al., 2013; Moon et al., 2010; Velazquez et al., 2013). Interestingly, besides
early pharmacological treatment, the regulation of the CCCs expression by viral

injection in parenchyma or through the several other available techniques

(Cwetsch et al., 2018) could represent a valuable option to perform an early
intervention and achieve long-lasting effects in the brain.

In conclusion, the results obtained from basic research on brain development
and from studies on animal models of DS and other ND indicate the NKCC1/

KCC2 imbalance as one of the mechanisms underlying brain development def-

icits and behavioral impairments that characterize ND. Interestingly, the afore-
mentioned studies also suggest that timely treatment with specific NKCC1

inhibitors may lead to positive outcomes. Thus, new drugs and possibly inno-

vative genetic therapeutic approaches selectively targeting CCCs should be
tested at different times during development in ND animal models and possi-

bly in clinical trials with the hope that timely and specific intervention on CCCs

will ameliorate the symptoms of patients affected by NDs in the future.
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