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“Nothing in life is to be feared, it is only to be understood.  

Now is the time to understand more, so that we may fear less.” 
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Abstract 

 

In the last decades, bioengineering research promoted the improvement in human health and 
wellbeing through the development, optimization and evaluation of innovative technologies and 
medical devices for both diagnosis and therapy. In this context, the exploitation of biomedical 
technology advances plays a key role in the study and treatment of heart disorders. 

This PhD thesis focuses on two main application areas: on one hand, foetal cardiac physiology 
and electrocardiography and, on the other, intracardiac electrophysiology, substrate mapping and 
radiofrequency ablation. There, it aims at providing new instruments and insights to improve the 
knowledge and go beyond the current state of the art by the development of novel signal 
processing and machine learning tools that aim at supporting the diagnosis and treatment of 
cardiac diseases.  

Non-invasive foetal ECG (fECG) is a long-standing niche research topic characterized by the 
continuous demand of improved solutions to solve the problem of recovering high-quality fECG 
signals from non-invasive trans-abdominal recordings. This PhD thesis focused on the 
development of algorithms for non-invasive fECG extraction and enhancement. Specifically, in 
collaboration with the Prof. Hau-Tieng Wu (Department of Mathematics and Statistical Science, 
Duke University, Durham, NC, USA), a novel algorithm for the extraction of morphologically 
preserved multi-channel fECG signals was conceived. Furthermore, wavelet denoising was 
deeply investigated for the post-processing of the fECG recordings, to quantitatively evaluate the 
noise-removal and morphology-preservation effects of different wavelet denoising approaches, 
expressly tailored for this application domain.  

Intracardiac electrophysiology is a branch of interventional cardiology aimed at the diagnosis 
and treatment of arrhythmias by catheter-based techniques exploiting electroanatomic substrate 
mapping and ablation. In this exciting scenario, this PhD thesis focused on post-ischemic 
ventricular tachycardia, which is a life-threatening arrhythmia. Being the electrophysiological 
studies and ablations very time-consuming and operator-dependent, the first applied-research goal 
was the development of an effective tool able to support clinical experts in the recognition of the 
ablation targets during clinical procedures. Moreover, a detailed spectral characterization of post-
ischaemic signals was performed, thus paving the way to the development of novel approaches 
in terms of advanced signal analysis, automatic recognition of the arrhythmogenic substrates, 
study of the substrate and, in general, to a deeper understanding of the arrhythmogenic 
mechanisms. 

Beyond the scientific content, this PhD thesis gives an important contribution from an industrial 
perspective in both fields. In fact, automated signal processing tools for the non-invasive fECG 
signals can improve the detection capabilities of current tools, to be clinically exploited for low-
cost antenatal screening. At the same time, novel methods for ablation targets recognition in 
cardiac electrophysiology could be embedded in future medical electroanatomic mapping systems 
as plug-in to enhance current computer-aided methods. 

  



6 

Table of contents 

 

List of figures .................................................................................................................................................................... 9 

List of tables .................................................................................................................................................................... 14 

Introduction .................................................................................................................................................................... 16 

Thesis outline ............................................................................................................................................................... 17 

Part I ................................................................................................................................................................................ 19 

Non-invasive foetal ECG monitoring ............................................................................................................................ 19 

Foetal cardiac monitoring .............................................................................................................................................. 22 

1.1 Physiology of foetal cardiovascular system ........................................................................................................... 22 

1.2 Electrophysiological basis of cardiac electrical activity ......................................................................................... 23 

1.3 Electrocardiography and ECG acquisition ............................................................................................................. 26 

1.4 Monitoring the foetal cardiac well-being ............................................................................................................... 29 

1.4.1 Foetal electrocardiography .............................................................................................................................. 31 

1.4.2 Commercially available monitoring devices based on non-invasive foetal ECG ........................................... 32 

Overview of non-invasive foetal ECG signal processing ............................................................................................. 34 

2.1 Non-invasive foetal ECG signal processing issues ................................................................................................ 34 

2.2 Background on signal processing methods for non-invasive foetal ECG analysis ................................................. 35 

2.3 Conclusion .............................................................................................................................................................. 36 

A novel algorithm for non-invasive foetal ECG extraction ......................................................................................... 37 

3.1 Rationale................................................................................................................................................................. 37 

3.2 Materials and methods ............................................................................................................................................ 37 

3.2.1 Background on optimal shrinkage, nonlocal Euclidean median and de-shape STFT tools............................. 38 

3.2.2 Proposed algorithm ......................................................................................................................................... 40 

3.2.3 Material ........................................................................................................................................................... 46 

3.3 Methods for the comparative analysis .................................................................................................................... 47 

3.4 Results and discussion ............................................................................................................................................ 49 

3.4.1 Algorithm performance on synthetic signals ................................................................................................... 49 

3.4.2 Algorithm performance on real signals ........................................................................................................... 52 

3.4.3 Discussion ....................................................................................................................................................... 53 

Wavelet-based algorithms for non-invasive foetal ECG post-processing: materials and methods ......................... 58 

4.1 Rationale................................................................................................................................................................. 58 

4.2 Materials and methods ............................................................................................................................................ 58 

4.2.1 Background on wavelet denoising .................................................................................................................. 59 



7 

4.2.2 Wavelet denoising algorithms and parameterizations analysed ...................................................................... 60 

4.2.3 Annotated real and synthetic datasets for non-invasive foetal electrocardiography post-processing 

benchmarking ........................................................................................................................................................... 62 

4.3 Methods for the comparative analysis .................................................................................................................... 68 

4.4 Results and discussion ............................................................................................................................................ 72 

4.4.1 Best adaptation of the Han et al. threshold to SWPT ...................................................................................... 72 

4.4.2 WD effectiveness ............................................................................................................................................ 72 

4.4.3 Superiority of SWT or SWPT ......................................................................................................................... 73 

4.4.4 Discussion ....................................................................................................................................................... 74 

Wavelet-based algorithms for non-invasive foetal ECG post-processing: a methodology review ........................... 79 

5.1 Rationale................................................................................................................................................................. 79 

5.2 Materials and methods ............................................................................................................................................ 79 

5.2.1 Non-invasive fECG WD-based post-processing algorithms included in the study ......................................... 80 

5.2.2 Chosen parameterizations in case of missing information .............................................................................. 84 

5.3 Methods for the comparative analysis .................................................................................................................... 84 

5.4 Results and discussion ............................................................................................................................................ 86 

5.4.1 Best parameterization ...................................................................................................................................... 86 

5.4.2 Optimal WD post-processing for non-invasive fECG enhancement ............................................................... 88 

5.4.3 Discussion ....................................................................................................................................................... 95 

Conclusions on Part I ................................................................................................................................................... 101 

Part II ............................................................................................................................................................................ 103 

Intracardiac electrophysiology .................................................................................................................................... 103 

Overview of cardiac arrhythmias: basic classifications, electrophysiological substrates and studies ................... 106 

7.1 Cardiac arrhythmias ............................................................................................................................................. 106 

7.1.1 Ventricular arrhythmias and tachycardias ..................................................................................................... 106 

7.2 Electrophysiological mechanisms underlying cardiac arrhythmias ...................................................................... 107 

7.3 Electrophysiological study of cardiac arrhythmias ............................................................................................... 110 

7.3.1 Intracardiac electrograms .............................................................................................................................. 111 

7.3.2 Cardiac mapping: tools and techniques ......................................................................................................... 113 

Background on post-ischaemic ventricular tachycardia: arrhythmogenic substrate and targeting strategies for 

ablation .......................................................................................................................................................................... 116 

8.1 Role of scar in VT arrhythmogenesis ................................................................................................................... 116 

8.2 Substrate-guided mapping and catheter ablation in scar-related VTs................................................................... 117 

8.2.1 Ventricular abnormal potentials as high-frequency deflections in intracardiac electrograms ....................... 117 

8.2.2 Background on developed tools supporting VT arrhythmogenic substrate identification to guide catheter 

ablation ................................................................................................................................................................... 118 



8 

8.3 Conclusion ............................................................................................................................................................ 119 

Novel insights on post-ischaemic VT arrhythmogenic substrate: spectral characterisation of ventricular 

intracardiac potentials in human post-ischaemic bipolar electrograms .................................................................. 120 

9.1 Rationale............................................................................................................................................................... 120 

9.2 Materials and Methods ......................................................................................................................................... 120 

9.2.1 Spectral analysis methods ............................................................................................................................. 123 

9.3 Methods for the comparative analysis .................................................................................................................. 126 

9.4 Results and discussion .......................................................................................................................................... 126 

9.4.1 Identification of the main frequency range of interest .................................................................................. 126 

9.4.2 Spectral investigations .................................................................................................................................. 127 

9.4.2.1 Post-ischaemic physiological potentials ..................................................................................................... 127 

9.4.2.2 Post-ischaemic abnormal potentials ........................................................................................................... 128 

9.4.2.3 Physiological versus abnormal potentials .................................................................................................. 129 

9.4.3 Discussion ..................................................................................................................................................... 130 

Computer-assisted arrhythmogenic sites detection ................................................................................................... 133 

10.1 Rationale............................................................................................................................................................. 133 

10.2 Materials and Methods ....................................................................................................................................... 133 

10.2.1 Feature extraction and classification tools .................................................................................................. 134 

10.3 Methods for the comparative analysis ................................................................................................................ 141 

10.4 Results and discussion ........................................................................................................................................ 145 

10.4.1 Results by proposed automatic recognition approaches .............................................................................. 145 

10.4.2 Results of feature selection and projection distance .................................................................................... 149 

10.4.3 Discussion ................................................................................................................................................... 151 

Conclusions on Part II .................................................................................................................................................. 154 

Final conclusions ........................................................................................................................................................... 156 

References...................................................................................................................................................................... 158 

Appendix A .................................................................................................................................................................... 176 

Appendix B .................................................................................................................................................................... 184 

List of publications ....................................................................................................................................................... 186 

 

 

  



9 

List of figures 
 

1.1 Different stages of foetal heart development………………………………….…………….…22 

1.2 Schematic representation of foetal and neonatal circulation from [10]…………….…………23 

1.3 Schematic representation of a typical action potential in nerve cells [14]…………………….24 

1.4 Schematic representation of conductance changes for Na+ and K+ ion channels generating the 

action potential in nerve cells  [14]………………………..…………………………………...24 

1.5 Action potential in a Purkinje fibre [14]………………………………………………..……..25 

1.6 Example of rhythmical action potentials and the corresponding K+ conductance changes 

[14]………………………………………………………………………………………….... 25 

1.7 Action potentials arising from the different cardiac regions and the resulting electrocardiogram 

waveform [16]…………………………………………………………………...…………....26 

1.8 The P, QRS and T waves constituting the ECG and their corresponding electrophysiological 

events occurring in the cardiac cycle…………………………………………………………..27  

1.9 The cardiac vector resulting from the different phases of ventricular depolarization and the 

corresponding ECG trace recorded on lead II…………………………………………………28 

1.10  Electrode positioning for the standard ECG 12-lead configuration………………………..…28  

1.11  An apical five-chamber view of a foetal heart (on the left) along with an example of PWD 

velocity trace with the characteristic waveform (on the right) reflecting the mitral inflow due to 

the passive filling of the LV and atrial contraction (i.e., the E and A peaks, respectively) and the 

aortic outflow (i.e., the V peak) in different cardiac cycles.…………………………..…..…. 30 

1.12  First fECG recording [69]……………………………………………………………….……31 

1.13  Some examples of most recent monitoring devices based on NI-fECG……………………...33 

2.1 Main foeto-maternal compartments [4]……………………………………………….……… 34 

2.2 Amplitude and frequency range of different overlapping bioelectrical interferences to the fECG 

signals [4]...………………………………………………………………………………..…..35 

3.1 Schematic representation of the different steps involved in the proposed algorithm…………41 

3.2 Maternal and foetal dipoles positions (yellow and blue sphere, respectively) along with the 

electrode locations (grey squares) both on the abdomen (from 1 to 32) and the thorax (33, 

34)……………………………………………………………………………………………..47 

3.3 Examples of 5-min long abdominal ECG signals affected by physiologically plausible non-

stationary noise included in the synthetic dataset……………………………………….…….48 

3.4 Results on the synthetic dataset…………………………………………………….…………49 

3.5 A 5-s zoom on two examples of synthetic signals for each subset (SNRmn of 3 dB, 6 dB, 9 dB, 

12 dB)…………………………………………….…………………………………….……..51 

3.6 Two 10-s long examples of synthetic recordings from the simulated pregnancy #2 of the 9-dB 

subset………………………………………………………………………………………….52 

3.7 Results on the real dataset in terms of Acc, TPR and PPV achieved by the proposed approach 

(A, slight grey boxes), the Jamshidian-Tehrani and Sameni [158] algorithm (B, darker grey 

boxes), and those achieved on the extracted fECG signals by Matonia et al. [161] (C, white 

boxes) across all the different channels and pregnancies……………………………………..53 



10 

3.8 Results on the real dataset in terms of Acc (top), TPR (middle), and PPV (bottom), obtained by 

the novel proposed approach (light grey boxes), the Jamshidian-Tehrani and Sameni [158] 

algorithm (dark grey boxes), and those achieved on the extracted fECG signals by Matonia et 

al. [161] (white boxes) across the ten different analysed pregnancies………………………...54 

3.9 A 5-s zoom on two examples of real recordings acquired from two different pregnant 

women………………………………………………………………………………………... 56 

4.1 Example of 2-level decomposition of a real fECG signal (@2048 Hz) with WT (on the left) and 

WPT (on the right)………………………………………………………………………….…59 

4.2 Comparison of the different scaling factors proposed to adapt the Han et al. threshold [169] to 

a 7-level decomposition with SWPT…………………………………………………………..62 

4.3 Graphical representation, provided by the fecgsyn tool, illustrating the virtual maternal torso, 

the location of the maternal heart (upper sphere) and the foetal heart (lower 

sphere)…………………………………………………..…………………………….………63 

4.4 Example of the signals involved in the creation of a horizontal abdominal lead of the synthetic 

dataset, characterized by an SNRmn of 3 dB……………….……………………………….…64 

4.5 Example of a 15-dB horizontal abdominal lead of the synthetic dataset (lowest plot) along with 

the three components giving rise to it: the pure foetal ECG signal (upper plot), the pink noise 

(second row) and white noise (third row)……………..……………………………………….65 

4.6 Electrode positioning for the real dataset acquisition…………………………...……….…….66 

4.7 Schematic representation of the whole processing chain for fECG extraction…………….….67 

4.8 Example of raw abdominal traces (upper plots) and the corresponding extracted foetal ECG 

signals (lower plots)………………………………………………………………...………....68 

4.9 All the wavelet parameterizations investigated in this study…..………………………...……69 

4.10  General scheme of all the comparative analyses performed in this work……………………..71 

4.11  SNR and TPR performance indexes for SWPT-CI, SWPT-LI and SWPT-SA denoised fECG 

signals with 6-level or 7-level decompositions and for raw noisy fECG signals…………..…72 

4.12  WD effectiveness in terms of SNR, Acc and TPR on the synthetic dataset (top) and the real one 

(bottom)…………………………………………………………………………………….....73 

4.13  Results obtained with the three selected thresholds on the simulated dataset for both 

decomposition levels (six and seven) and WD methods (SWT and SWPT) in terms of 

morphology preservation.…………………………………………………………..…………74 

4.14  Results obtained on the simulated dataset (first two columns) and on the real one (last two 

columns) for 6-level (Level 6) and 7-level (Level 7) decompositions, grouping all approaches 

by SWT and SWPT………………………………………………………..…………………..75 

4.15  Main different foetal heartbeat morphologies from the real dataset obtained by synchronized 

averaging of the highly correlated beats (ρ > 0.6) after WD post-processing exploiting SWT 

with 7-level decomposition and Han et al. threshold…………………………………………..76 

4.16  Example of SWT and SWPT denoising results with both levels and decompositions with 

Universal (A, D for level six and seven respectively), Minimax (B, E for level six and seven 

respectively) and Han et al. threshold (C, F for levels six and seven, 

respectively)………………………………………………………………………….……….78 



11 

5.1 Graphical representation of PCA loadings  for the first two PCs………………….………….85 

5.2 Schematic representation of the analysis performed for the identification of the best 

parameterization for WD algorithms involving different options (top) and the analysis carried 

out for the optimal WD post-processing investigation (bottom)……………………………….86 

5.3 PI distributions obtained when considering all the figures of merit for the different WD 

algorithm examined in this study………………………………………………….……….... 90 

5.4 PI distributions obtained in the overall performance evaluation when varying the noise level 

affecting the synthetic NI-fECG recordings (i.e., before any WD was performed)…………..90 

5.5 PI distributions obtained in the noise removal performance assessment…………….………..92 

5.6 PI values in the noise reduction performance evaluation when varying the noise entity affecting 

the synthetic NI-fECG signals before WD post-processing………………………………...…92 

5.7 PI distributions obtained in the morphological performance investigation…………….……..93 

5.8 PI values obtained in the morphological performance investigation when considering the 

different noise entities affecting the synthetic NI-fECG signals before WD post-

processing…………………………………………………………………………..…………93 

5.9 Effect of hard and soft thresholding in WD…………………………………………..……….95 

5.10  Effect of classical WD threshold on NI-fECG signal…………………..……………….…….96 

5.11  Scores of the different WD algorithms in the plane identified by the first two PCs in the overall 

performance assessment………………………………………………………………...…….97 

5.12  Effect of WD algorithms on NI-fECG signals……………………………………..………….98 

5.13  Scores of the different WD algorithms in the plane identified by the first two PCs in the noise 

reduction assessment………………………………………………………………………... 100 

5.14  Scores of the different WD algorithms in the plane identified by the first two PCs in the 

morphology preservation assessment……………………………………...………………... 100 

7.1 Examples of surface ECG recordings in presence of monomorphic VT (top), polymorphic VT 

(middle) and VF (bottom)…………………………………………………….…………...…107 

7.2 Schematic representation of afterdepolarizations occurring with a Purkinje cell action potential. 

A) EAD occurring during plateau phase, B) EAD developed during repolarization phase and C) 

DAD [195]……………………………………………………………………………….......108 

7.3 Schematic representation of a re-entry. Adapted from [202]………………………………..109 

7.4 Schematic representation of different functional re-entry types: leading circle (on the top left), 

figure-of-eight (on the top right), reflection (on the bottom left) and a spiral wave (on the bottom 

right). Adapted from [195,202]………………………………………………………………110 

7.5 Examples of multi-electrode catheter for mapping and ablation………………..………….. 111 

7.6 Representation of the unipolar electrogram recording………………………………….……112 

7.7 Electrograms obtained by healthy myocardial tissue (top) and by myocardial scar 

(bottom)………………………………………………………………………………..…….113 

7.8 Example of a voltage map obtained from the EAM of a left ventricle in a post-ischaemic patient 

by using the CARTO®3v6 system (Biosense Webster, Inc., Diamond Bar, CA, USA)……...115 

8.1 Examples of VT re-entry circuits [218]………………………………….……………….… 116 



12 

8.2 Schematic representation of different substrate-guided catheter ablation strategies performed in 

scar-related VT substrates [254]………………………………………………...…………...118 

9.1 GUI developed for the EGMs labelling……………………………………...…………….…122 

9.2 Prototypical examples for each EGM type………………………………….……………….123 

9.3 Schematic representation of the identification procedure for the frequency values fH, in order to 

determine the upper boundary for the subsequent sub-band spectral analysis………………..124 

9.4 Distribution of the of the frequency values fH including 95% of the total PSD power for each 

EGM type…………………………………………………………………………………….126 

9.5 Median relative power contents in the different sub-bands for each EGM type…………..…128 

9.6 Spectral features estimated for all EGM types……………………………….……….…..….128 

9.7 Absolute and normalised PSDs for all EGM types……………………………...………..…..132 

10.1  Example of a FAM map in which some LV portions were discarded during the mapping 

procedure, thus resulting in an empty area……………………………………………….….134 

10.2  Some examples of raw EGMs (i.e., before windowing and any processing stage) included in 

the classification dataset……………………………………………………………………..135 

10.3  Composition of the available dataset…………………………………………………….…..135 

10.4  Example of fragmentation measure captured by the proposed approach…….……………...136 

10.5  Schematic representation of the 6-mm circular area determining the neighbours of the point P 

(in red) into the voltage map………………………………………………………………….138 

10.6  Example of LAT map with CV vectors (white arrows)…………………………….……….139 

10.7  Schematic representation of CD feature computation……………………………..………...140 

10.8  Schematic representation of the Pearson’s correlation coefficient ρ computed on each pair of 

features……………………………………………………………………………………… 143 

10.9  Confusion matrices for the three classification models obtained in the 10-time 10-fold cross-

validation scheme……………………………………………………………………..……..147 

10.10 Confusion matrices for the three classification models obtained in the leave-one-subject-out 

cross-validation scheme………………………………………………………….…………..148 

10.11 Cumulative confusion matrices for the SVM-based and KNN-based classification 

approaches obtained in the 10-time 10-fold cross-validation scheme (top) and in the leave-one-

subject-out cross-validation strategy (bottom) when feature selection was adopted….…..…150 

10.12 Cumulative confusion matrices for the 10-time 10-fold cross-validation scheme (left side) 

and in the leave-one-subject-out cross-validation strategy (right side) when projection distance 

was limited to 6 mm…………………………………………………..………………….…..152 

5A.1 PI distributions obtained for the different parameterizations analysed for the Ahmadi et al. 

algorithm [144]………………………………………………………………………..……..176 

5A.2 PI distributions obtained for the different parameterizations analysed for the Ivanushkina et 

al. algorithm [148]…………………………………………………………………..……….176 

5A.3 PI distributions obtained for the different parameterizations analysed for the Jadhav and 

Dhang algorithm [149]………………………………………………………….….………...177 

5A.4 PI distributions obtained for the different parameterizations analysed for the Shayesteh and 

Fallahian algorithm [138]……………………………………………………………….…...177 



13 

5A.5 PI distributions obtained for the different parameterizations analysed for the Swarnalatha and 

Prasad algorithm [139]…………………………………………………………….……...….178 

5A.6 PI distributions obtained for the different parameterizations analysed for the Vigneron et al. 

algorithm [140]………………………………………………………………………..……..179 

5A.7 PI distributions obtained for the different parameterizations analysed for the Wang et al. 

algorithm [141] …………………………………………………………………..……….....180 

5A.8 PI distributions obtained for the different parameterizations analysed for the Mochimaru et 

al. algorithm [151] …………………………………………………………………………..180 

5A.9 PI distributions obtained for the different parameterizations analysed for the Ionescu 

algorithm [146]…………………………………………………………………….……..… 181 

5A.10 PI distributions obtained for the different parameterizations analysed for the Jothi and Prabha 

algorithm [150] …………………………………………………………………………….. 182 

5A.11 PI distributions obtained for the different parameterizations analysed for the Rivet et al. 

algorithm [137]……………………………………………………………………..………..183 



14 

List of tables 

 
3.1 Results on the real dataset in terms of Acc, TPR, and PPV obtained by the proposed approach, 

the Jamshidian-Tehrani and Sameni [158] algorithm, and on the NI-fECG signals extracted by 

Matonia et al. [161], overall and across the ten different analysed pregnancies………………55 

4.1 SNRmn values for all the signals composing the synthetic dataset…………………………......64 

4.2 Real dataset relevant anamnestic information (foetal presentation: L: left, R: right, O: occiput, 

S: sacrum, T: transverse, P: posterior A: anterior) along with the abdominal leads chosen for 

this study. ……………………………………………………………………………………..66 

5.1 WD algorithms and their parameterizations as included in the review……………..………….83 

5.2 Best WD parameterizations identified for those algorithms where multiple parameter 

combinations were originally presented.…………………………………………………..…..88 

5.3 Statistical results for the quantitative comparison, in terms of overall performance, of the 17 WD 

algorithms included in this study…………..……………………………………………….… 89 

5.4 Statistical results for noise removal performance evaluated for the 17 WD algorithms included 

in this study………………………………………………………………………………..…..91 

5.5 Statistical results for the quantitative analysis on morphological preservation performance, 

computed on the 17 WD algorithms included in this study………………………………..….94 

9.1 Statistically significant differences (p < 0.025) amongst the different pairwise comparisons 

obtained via PSD analysis considering absolute (●) and relative (♦) power contents in the 

different spectral sub-bands by the post hoc Conover’s non-parametric multiple comparison 

statistical test.………………………………………………………………………………...127 

10.1 Feature selected by the mRMR approach in the two cross-validation schemes.….................144 

10.2 Number of EGM recordings that were removed for each class and patient by limiting the 

projection distance to 6 mm. ………………………………………………………………...145 

10.3 Results achieved by the SVM and KNN models by the 10-time 10-fold cross-validation 

scheme…………………………………..…………………………………………………...145 

10.4 Performance indexes achieved by the SVM and KNN models through the leave-one-subject-

out cross-validation strategy……………………………………………………………...….146 

10.5 Mean and standard deviation of the different performance indexes obtained by the SVM and 

KNN models by the 10-time 10-fold cross-validation scheme when feature selection was 

adopted……………………………………………………………………………...………. 149 

10.6 Performance indexes achieved by the SVM and KNN models through the leave-one-subject-

out cross-validation strategy when feature selection was performed…………………..……. 149 



15 

10.7 Performance indexes in terms of mean and standard deviation obtained by the SVM, KNN and 

ANN models through the 10-time 10-fold cross-validation scheme when projection distance 

was limited to 6 mm…………………………………………………..…………………….. 151 

10.8 Performance indexes achieved by the SVM, KNN and ANN models through the leave-one-

subject-out cross-validation strategy when projection distance was limited to 6 mm………. 151 

9B.1 Absolute power contents obtained for all EGM types in the different spectral ranges……..184 

9B.2 Relative power contents obtained for all EGM types in the different spectral ranges……….185 

 

  



16 

Introduction 

 

Technological advances in cardiovascular health are strongly fostered by the need to help solving 
some relevant clinical conditions. In fact, according to the American Heart Association [1], 
cardiovascular diseases represent the first cause of death and their prevalence is globally 
increasing, causing more than 18 million deaths globally in 2019 [2]. This evidence gave birth to 
the strong scientific motivation and research-based drive for providing innovative health 
technologies aiming to improve the clinical care and assessment, not only in terms of diagnosis 
and treatment, but also monitoring and prevention. The scientific objective of this PhD thesis 
belongs to this context, and as such it aimed to study and conceive novel approaches supporting 
the diagnosis and treatment of cardiac diseases. These innovative techniques, employing 
advanced signal processing and machine learning tools, were conceived to address some critical 
issues affecting two clinical areas: on one hand, foetal cardiac physiology and electrocardiography 
and, on the other one, intracardiac electrophysiology, substrate-guided mapping and 
radiofrequency ablation. 

As regards the foetal electrocardiography, non-invasive foetal electrocardiogram (NI-fECG) 
could play a key role for the prenatal screening and diagnosis of all pathologies inducing changes 
in foetal electrocardiogram (fECG) morphology, like some forms of congenital heart diseases and 
foetal arrhythmias, thus enabling a prompt in-utero treatment or intervention in early pregnancy. 
However, NI-fECG is not typically adopted in the clinical practice, mainly because of its complex 
setup and relatively low signal-to-noise ratio (SNR)[3]. Several physiological and instrumental 
noise sources hamper its acquisition, even after that powerful signal processing methods have 
been applied. Furthermore, despite the huge number of techniques developed in the literature, the 
identification of a clean and undistorted fECG signal still remains an open research issue [4]. As 
such, one goal of this PhD project was the development of algorithms for NI-fECG extraction and 
enhancement. Specifically, as regards the fECG extraction, a novel algorithm for the recovery of 
morphologically preserved multi-channel NI-fECG signals was introduced, in collaboration with 
the Prof. Hau-Tieng Wu (Department of Mathematics and Statistical Science, Duke University, 
Durham, NC, USA). On the other hand, for the post-processing of the NI-fECG recordings, 
different wavelet denoising (WD) methods were studied and assessed, to quantitatively evaluate 
the noise-removal and morphology-preservation effects of different implementation approaches 
in this application field. 

As regards the intracardiac electrophysiology, the main focus of the thesis concerns the 
electrophysiological substrate mapping in post-ischaemic ventricular tachycardia (VT). 
Specifically, in this regard, this PhD thesis deals with signal processing and machine learning 
tools for the analysis of bipolar endocardial electrograms (EGMs) acquired from patients affected 
by post-ischemic VT undergoing substrate mapping and catheter ablation procedures. In this 
sense, the research activity had two main goals, which are tightly linked and required by the high 
VT recurrence after ablation procedures [5]. The first goal was the improvement of the clinical 
outcome and the reduction of clinical procedure times, by developing an effective tool able to 
support the cardiologist in the recognition of the ablation targets during electrophysiological 
procedures. Therefore, in the light of this first scientific objective, a novel tool for the automatic 
recognition of abnormal ventricular potentials (AVPs) has been proposed, by comparing different 
features and classification strategies. The other goal was a basic characterisation of the AVPs, 
thus paving the way to the introduction of innovative and targeted approaches for their detection 
and, in this perspective, supporting a deeper understanding of the arrhythmogenic mechanisms, 
such as re-entry circuits within the damaged myocardial substrate. As such, a spectral 
investigation of bipolar EGM has been carried out, in order to identify the main frequency 
contributions of both post-ischaemic physiological potentials and AVPs, along with some spectral 
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signatures for these EGMs. Both aspects are extremely relevant, since electrophysiological 
studies and their outcomes strongly depend on the cardiologist’s expertise, who is asked to 
visually inspect a huge amount of signals when targeting ablation sites, thus making the clinical 
procedure time-consuming, prone to errors and intrinsically operator-dependent. 

 

Thesis outline 

This thesis is divided in two parts, according to the two application areas under investigation. In 
Part I, the focus is on NI-fECG research, introducing the physiological and scientific background 
and the motivation behind the development of algorithms for NI-fECG extraction and 
enhancement. In Part II, the intracardiac electrophysiology research is presented, along with a 
preliminary description of electrophysiological substrates, the scientific context and the main 
issues that led to the proposed investigation. 

In Chapter 1, the physiology and the electrophysiological basis of the foetal cardiac activity are 
described, with an overview on available foetal cardiac monitoring tools. Chapter 2 introduces 
the NI-fECG signal processing issues and the state-of-the-art methods developed for fECG 
analysis. Chapter 3 focuses on the description of the novel fECG extraction algorithm conceived 
in this thesis, detailing its processing stages and results, also in comparison with other effective 
NI-fECG extraction algorithms from the scientific literature. Chapter 4 and 5 illustrate the 
effectiveness of WD methods for the post-processing of the NI-fECG recordings, presenting and 
comparing different implementation approaches and algorithms in terms of the noise reduction 
and morphology preservation, while introducing a real and synthetic dataset for post-processing 
benchmarking. Remarkably, the proposed fECG extraction algorithm has been conceived 
independently from the NI-fECG post-processing investigations, thus they are presented 
separately. Conclusions on Part I are presented in Chapter 6. 

Part II starts with Chapter 7, which gives an overview of cardiac arrhythmias, their 
electrophysiological substrates and currently available tools for the electrophysiological studies 
and treatment. Chapter 8 deepens the investigation on scar-related VTs, focusing on their 
arrhythmogenic substrates and illustrating the main targeting strategies and background tools 
guiding catheter ablation. Moreover, this Chapter details several issues related to the current 
clinical substrate-guided ablation procedures. In Chapter 9, some novel insights on VT 
arrhythmogenic signals are given, by presenting a spectral investigation on the power contents of 
post-ischaemic physiological and abnormal potentials, along with some spectral features, to 
highlight specific signatures for these signals. Chapter 10 presents the adoption of artificial 
intelligence tools for the automatic recognition of ablation target in substrate-guided mapping 
procedures, thus supporting the clinicians in targeting arrhythmogenic sites. In Chapter 11 the 
conclusion on Part II is presented, whereas Chapter 12 closes this PhD thesis work, with possible 
hints on future works and industrial exploitation of the results. 

 

The scientific dissemination of my research is reported at the end of this PhD thesis. Remarkably, 
some publications about different research field, i.e. mainly neural signal processing and wearable 
electronics in the context of the DoMoMEA project, have been produced under remunerative 
research grants, and as such they are just listed without providing any deeper exploration in this 
thesis, in order to keep the focus on the two main research topics. 
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Chapter 1 

 

Foetal cardiac monitoring 

 

1.1 Physiology of foetal cardiovascular system  

During the embryogenesis process, the heart is one of the first originated organs, starting to fulfil 
its function since the earliest stages of gestation [6], [7]. In fact, foetal heart first beats at around 
the 22nd day of gestation, when it starts to actively participate in the oxygen and nutrients 
distribution [8]. The embryology of the developing heart and its different structures is based on 
several sequential stages and genetic expressions [9]. More generally, the foetal cardiac 
development starts at the 2nd week of gestation, when the cardiogenic mesodermal cells form the 
first and second heart fields progenitor cells leading to the four-chambered structure by the end 
of the 7th week, though different stages (Figure 1.1) [10].  

 

However, despite the anatomical similitude, the foetal circulation significantly differs from 
neonatal one, both structurally and functionally [11]. In fact, in the foetal circulation gas exchange 
does not occur in lungs but is governed by the placenta, which acts predominantly by the 10th 
week of gestation [8]. Moreover, the foetal cardiovascular system function is guaranteed also by 
other anatomical adaptations: the ductus venosus, the ductus arteriosus or ductus Botalli, and the 
foramen ovale. Specifically, blood flows from the placenta to the foetus via the umbilical vein, 
providing the oxygen and all the nutrients needed. At this stage, a minimal part of this blood 
provides the liver with oxygen and nutrients, whereas the largest part arrives in the right atrium, 
through the ductus venosus and the inferior vena cava. Oxygenated blood entering the right atrium 
mostly reaches the left atrium through the foramen ovale. Then, it flows to the left ventricle, the 
ascending aorta and subsequently to all the foetal upper body, in particular the head and brain, 
thus guaranteeing optimal oxygen and nutrients for their functioning [10], [11]. The residual 
poorly oxygenated blood entering the right atrium, both from inferior and superior vena cava, 
flows into the right ventricle and then to the pulmonary artery. Here, only a small blood proportion 
reaches the lungs, to satisfy their limited metabolic needs, whereas most of the blood flow arrives 
in the descending aorta by the ductus arteriosus, thus irrorating the foetal lower body. Finally, the 
partially-oxygenated blood from the aorta returns to the placenta by the umbilical arteries [8], 
[10], [12].  

 

Figure 1.1. Different stages of foetal heart development. 
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However, the unique cardiac circulation characterizing foetal physiology is lost when the 
transition from intrauterine to extrauterine life occurs, which relies on several complex 
physiological changes involving cardiovascular, respiratory and other organ systems. At birth, all 
the shunts (i.e., the foramen ovale, the ductus arteriosus and the ductus venosus) are closed by the 
combined action of postnatal oxygenation, increased systemic vascular resistance and lower 
pulmonary vascular resistance, which are induced by pulmonary ventilation and the umbilical 
cord clamping [11], [12]. From now on, in the after-birth physiology, the pulmonary and systemic 
circulations are separated, as detailed hereinafter. However, any alteration in foetal heart 
development or in its transition to the extrauterine life can determine adverse consequences for 
the baby [10].  

After birth, the physiology of human heart is based on two pumps: the right heart, mainly 
composed of the right atrium, the tricuspid valve, the right ventricle and the pulmonary valve, and 
the left heart, given by the left atrium, the mitral valve, the left ventricle and the aortic valve. They 
provide the pulmonary and systemic circulations respectively. In fact, in the pulmonary 
circulation, the deoxygenated blood from the right ventricle is passed to the lungs, and returns as 
oxygenated blood to the left side of the heart. Conversely, the pumping action of the left heart 
transports oxygenated blood from the pulmonary circulation through the left atrium, the left 
ventricle, the aorta and to the rest of the body, which then returns as oxygen-depleted to the right 
heart [13], [14]. 

 

1.2 Electrophysiological basis of cardiac electrical activity 

The basis for normal mechanical pumping function of heart is given by the sequential generation 
and propagation of the cardiac electrical impulses [15]. However, despite the differences between 
foetal and adult hearts are significant from a mechanical perspective, their electrical activity is 
similar [4].  

 

Figure 1.2. Schematic representation of foetal and neonatal circulation from [10]. 

DV, ductus venosus; UV, umbilical vein; IVC, inferior vena cava; RA, right atrium; RV, right ventricle; 

LA, left atrium; FO, foramen ovale; SVC, superior vena cava; PA, pulmonary artery; DA, ductus 

arteriosus; UA, umbilical arteries; PV, pulmonary veins. At birth, the umbilical cord is clamped and 

the shunts occlude, thus resulting in a separation of the pulmonary and systemic circulations.  
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The fundamental unit of the cardiac electrical activity is given by the excitable cells, which are 
able to generate the so-called action potentials. Action potentials are found to be rapid changes 
in the membrane potential [14], whose typical waveform is depicted in Figure 1.3. 

The normal resting trans-membrane potential is about -90 mV, which is determined by the 
potassium (K+) and sodium (Na+) diffusion and the action of the electrogenic Na+-K+ pump. In 
this condition, the K+ conductance is 50-100 times higher than the Na+ one. When the membrane 
potential rises from -90 mV towards 0 mV because of an external stimulus, the voltage-gated Na+ 
channels are opened and Na+ ions start to pour into the cell. This fact causes a 5000-fold increase 
of the Na+ conductance of the membrane, and as such allowing the inflow of other positive Na+ 
ions. In this phase, the trans-membrane potential depolarises and overshoot, even reaching 
positive voltage values. Then, the Na+ channels start to inactivate and close, while the delayed 
voltage-gated K+ channels open even more, because of the potential rise. These simultaneous 
events lead to the decrease of the Na+ ions inflow and a substantial outflow of K+ ions, thus 
resulting in the sharp repolarization and recovery of the resting membrane potential [14]. 

However, the action potential is initially generated only when a threshold voltage for elicitation 
is reached by the membrane potential, which typically constitutes a sudden rise of 15 to 30 mV. 
Once generated, it propagates in excitable tissues following the all-or-nothing principle [14].  

Different types of excitable cells co-exist in the human heart. Focusing on heart muscle fibres, 
the waveform of the action potential is quite different, as shown in Figure 1.5. In this case, the 
depolarization phase is governed by the opening of the fast voltage-gated Na+ channels. The 
depolarization phase is followed by a plateau portion of about 200-300 ms, which is mainly 

 

Figure 1.3. Schematic representation of a typical action potential in nerve cells [14]. 

 

Figure 1.4. Schematic representation of conductance changes for Na+ and K+ ion channels generating 

the action potential in nerve cells [14]. 
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caused by the inflow of calcium (Ca2+) ions through the prolonged opening the Ca2+-K+ channels 
and, partly, by the slower opening of the voltage-gated K+ channels, which delay the 
repolarization phase. The presence of the plateau has a functional role in these excitable cells, 
delaying the repolarization phase and as such prolonging the contraction of the heart muscle for 
the whole period [14]. Remarkably, a new action potential cannot be generated until the 
membrane is depolarized, since the voltage-gated Na+ channels are inactivated until the resting 
membrane potentials level is reached. Therefore, the plateau also influences the duration of the 
refractory period of the cardiac fibre, which is normally around 250-300 ms for the ventricles and 
150 ms for the atria. 

This action potential waveform is typically found in Purkinje fibres, but also in atrial and 
ventricular myocytes [16]. 

 

Another characteristic action potential waveform is that occurring in cardiac pacemaker cells (see 
Figure 1.6), like those in the sinoatrial and atrioventricular nodes [16], whose self-induced 
discharges determine the rhythmical heartbeat. In these excitable cells, the automatic re-excitation 
is due to the resting membrane potential, which is around -60 to -70 mV. In this condition, the 
Na+ and Ca2+ can easily flow inward, determining a further increase of the membrane permeability 
and inflow of other positive ions, eliciting the action potential. Remarkably, at the end of the 
membrane repolarization and for some milliseconds after, the membrane shows a higher 
permeability to K+ ions, causing a hyperpolarization of the trans-membrane potential which 
impede the instantaneous self-induced re-excitation of the pacemaker cell. When the permeability 
to K+ is restored, the resting potential is reached and the re-excitation can occur again. 

 

 

Figure 1.5. Action potential in a Purkinje fibre [14]. 

 

Figure 1.6. Example of rhythmical action potentials and the corresponding K+ conductance changes  

[14]. 
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Therefore, different action potential waveforms can be detected from different cardiac tissues 
(and then regions), as shown in Figure 1.7. Specifically, the sequential generation and propagation 
of these potentials leads to the typical waveform detected in surface electrocardiograms [16]. 
Normally, the pacemaker cells in the sinoatrial node generate the cardiac electrical impulse, thus 
determining the electrical pattern also known as sinus rhythm. The impulse propagates across the 
atria through the anterior, middle and posterior internodal pathways and Bachmann’s bundle, 
moving toward the atrioventricular node. At this point, the impulse propagation is slightly 
delayed, i.e. the atrioventricular node depolarizes after some milliseconds, allowing the atrial 
cardiomyocytes to complete their contraction and pump the residual blood into the ventricles 
before their depolarization [14]. Then, the impulse is propagated to the bundle of His, the left and 
right bundle branches, the Purkinje fibres and finally to the ventricular muscle [16]. As such, in 
the cardiac cycle, each cardiac chamber is depolarized and repolarized rhythmically, alternating 
systolic and diastolic phases. Overall, each sequence of a systole and a diastole constitute a cardiac 
cycle, whose duration is found to be as the reciprocal of the heart rate [14]. 

 

1.3 Electrocardiography and ECG acquisition  

The ECG is the time-domain representation of the cardiac electrical activity. In healthy subjects, 
each cardiac cycle is depicted in the ECG by several deflections, mainly the P wave, the QRS 
complex and the T wave. Adults and foetuses have ECG patterns that are very similar in their 
morphology, despite they show significant differences in amplitudes [4], [17]. 

The P wave reflects the depolarization of the atria preceding the atrial systole, whose amplitude 
and duration are typically below 0.25 mV and 120 ms, respectively, in adults [18], [19]. After 
about 0.15 to 0.20 s from the end of the P wave, the atria repolarize. However, the so-called atrial 
T wave is rarely recorded in the ECG since it is buried by the simultaneous QRS complex [14]. 
The isoelectric interval between the end of the P wave and the onset of the consecutive QRS 
complex is called as P-R segment, whereas the time between the onset of the atrial and ventricular  
depolarizations is called P-Q interval (or P-R interval) [18], [19]. In this phase, between 0.12 and 
0.2 s, the electrical impulse travels through the atrioventricular node, the bundle of His and bundle 
branches, and the Purkinje fibres. The QRS complex is caused by the ventricular depolarization, 

 

Figure 1.7. Action potentials arising from the different cardiac regions and the resulting 

electrocardiogram waveform [16]. 
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occurring at the beginning of the ventricular contraction; it typically lasts less than 100 ms with a 
peak-to-peak amplitude between 1 and 1.5 mV. The end of the QRS complex is defined at the J 
point. The segment between the J point and the onset of the consecutive T wave is called S-T 
segment, representing the temporal interval between the end of depolarisation and the beginning 
of repolarisation occurring in ventricles. Finally, the T wave represents the ventricular 
repolarization and, as such, anticipates the ventricular diastole. Its normal morphology is 
asymmetrical, with a duration of less than 250 ms and an amplitude below 0.3 mV. However, 
from a clinical perspective, the most interesting measure concerns the Q-T interval, representing 
the total time for the complete ventricular depolarization and repolarization. A minor deflection 
may occur after the T wave, known as the U wave, which seems to result from the repolarisation 
of mid-myocardial cells and His-Purkinje fibres, but its significance is still debated [18], [19]. 
Figure 1.8 summarizes the electrophysiological events of the cardiac cycle and their 
corresponding ECG waves. 

 

In adults, the electrocardiogram can be acquired non-invasively, by placing surface electrodes on 
the chest and the limbs. In fact, the cardiac electrical activity determines the spread of an electrical 
depolarization through the heart but also in the surrounding conductive tissues, generating 
electrical potentials that can be recorded on the body surface [14].  

Actually, the ECG recording is based on an original assumption that models the cardiac electrical 
activity as a single two-dimensional dipole, with a fixed location at the centre of the heart, located 
in an infinite, homogeneous, resistive, passive volume conductor [20]. The dipole is represented 
by its time-varying dipole moment, also known as cardiac vector, which rotates in accordance 
with the cardiac depolarization and repolarizations. As such, the ECG signal recorded on the body 
surface can be seen as a linear projection of the cardiac vector. On these assumptions, the 
Einthoven’s lead system identified the right arm, the left arm and the left leg as the vertices of an 
equilateral triangle, whose sides correspond to the so-called lead vectors. As such, when 
performing a bipolar recording by placing two measuring electrodes, one positive and one 
negative, in correspondence of two of these anatomical points, it is possible to observe the 
projection of the cardiac vector onto the chosen lead vector [20]. 

 

Figure 1.8. The P, QRS and T waves constituting the ECG and their corresponding 

electrophysiological events occurring in the cardiac cycle. 
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The Einthoven electrode configuration allows the recording of the three bipolar leads, i.e. lead I, 
lead II, lead III, but also the three Goldberger unipolar augmented leads, i.e. aVR, aVL and aVF. 
In the unipolar leads, the recording is performed between each limb electrode and the Wilson 
central terminal reference. All these leads, along with the six precordial leads on the chest, which 
measure the electrical activity closer to the heart, constitute the standard 12-lead ECG system, 
which is the one of major clinical adoption [20]. The 12-lead ECG system requires the placement 
of ten recording electrodes and a ground/right leg drive electrode on the right leg, as shown in 
Figure 1.10. Since each lead examines the cardiac electrical activity from a different perspective, 
the electrode positioning is standardized for adults (Figure 1.10) but not for the foetuses, as better 
detailed in Section 2.1, considering that it is not possible to directly apply the electrodes on the 
foetal body.   

Nonetheless, also the foetal cardiac electrical activity can be model by the single dipole theory 
effectively [4]. However, due to the different cardiac output of the ventricles in foetus and adult, 
their electrical axes point towards different directions, i.e. towards the right and the left side of 
the heart respectively, thus resulting in different vectorcardiograms (VCG) representations [21]. 
Based on these premises and the dynamical ECG model proposed in [22], a synthetic model for 
the NI-fECG was introduced [23] and later extended to be included in the fecgsyn open-source 
toolbox [24], [25] for foetal-maternal mixture simulation. Moreover, due to the anatomic 
differences and changes in media properties and distributions, this modelling has been recently 
optimized [26]. 

 

 

Figure 1.9. The cardiac vector resulting from the different phases of ventricular depolarization and the 

corresponding ECG trace recorded on lead II. 

 

Figure 1.10. Electrode positioning for the standard ECG 12-lead configuration. V1-V6: precordial 

leads; RA: right arm; LA: left arm; LL: left leg; RL: right leg. 
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1.4 Monitoring the foetal cardiac well-being  

Different technologies can be exploited for foetal heart monitoring, depending on the gestational 
age and the goal of the examination [27], [28]. They can rely on different principles and 
approaches, both invasive and non-invasive, and mainly include phonocardiography, one-
dimensional Doppler ultrasound, cardiotocography, foetal echocardiography, 
magnetocardiography and electrocardiography. However, other methodologies have been rarely 
exploited for the same purpose, such as pulse oximetry [29], [30], photoplethysmography [31] 
and near-infrared spectroscopy [32]–[35].  

Foetal phonocardiography (fPCG) estimates the foetal cardiac performance non-invasively 
from the foetal heart sounds produced by the closure of the cardiac valves [36]. This technique 
can be used from the 20th week of gestation, but can be exploited also in labour [37].  fPCG 
employs a piezoelectric or optical sensor placed on the maternal abdomen that transduces the 
acoustic information into an electrical signal [28]. It currently provides only the antenatal analysis 
of foetal heart rate (fHR) and foetal breathing movement [38], [39] but, although it could provide 
important diagnostic information, the considerable difficulties related to the signal acquisition 
and processing limit its adoption [40], [41]. 

One-dimensional Doppler ultrasound performs the fHR measure by estimating the Doppler 
shift between the transmitted and received ultrasound beams. The ultrasound wave is sent by the 
piezoelectric crystal, pass through the different maternal tissues and is reflected by the foetal 
heart, thus guaranteeing a non-invasive foetal cardiac assessment. Specifically, in the hand-held 
Doppler transducers, which are used for intrapartum and antenatal heart rate variability (HRV) 
measures, two distinct piezoelectric crystals manage the transmission and the detection of the 
echo, respectively. However, beyond HRV, one-dimensional Doppler ultrasound techniques have 
proven to be useful also for foetal development and wellbeing assessment by the analysis of foetal 
cardiac valve opening intervals [42]–[44]. 

Cardiotocography (CTG) is an ultrasound-based technology allowing the foetal heart 
monitoring by the continuous fHR recording along with the simultaneous monitoring of uterine 
mechanical contractions. It is performed from the 20th week of gestation, by using two 
transducers: an ultrasound transducer detecting the foetal heart activity, and a pressure transducer, 
called tocodynamometer, monitoring the uterine contractions [4]. Despite they can be internally 
placed, transducers are typically applied externally, thus enabling a non-invasive monitoring. As 
regards the ultrasound technology, CTG is mainly based on a single piezoelectric crystal 
performing both the sending and the receiving of the ultrasound wave, thus exploiting the so-
called pulsed-wave Doppler mode [28]. CTG constitutes a standard care methodology for the 
foetal well-being assessment, in antenatal [45] and intrapartum settings [46]. Despite the 
advantages introduced by CTG are still debated [47], many studies focused on the automatic 
analysis of CTG recordings in order to reduce inter- and intra-expert variability and enable the 
identification of risky or pathological conditions [48]–[55]. However, although CTG is relatively 
cheap and easy to implement, it does not provide a beat-to-beat fHR assessment since, due to its 
low SNR, fHR averaging in a time window is often required [37], [56], [57]. 

Foetal echocardiography is an ultrasound imaging technique that enables clinicians to monitor 
the foetal heart both structurally and functionally from the 18th week of gestation. Foetal 
echocardiography ultrasound systems should exhibit several imaging capabilities, as 2D or grey-
scale, M-mode, colour and pulsed-wave Doppler (PWD) [3]. Doppler echocardiography has been 
found to be particularly useful for the detection of congenital heart diseases (CHD) and the 
assessment of the foetal cardiac rhythm [3]. Specifically, it allows evaluating the anatomy and 
function of cardiac chambers, the cardiac timings but also the direction, volume and velocity of 
the blood flow in vessels and cardiac chambers. In this regard, PWD allows the evaluation of 
additional important information, as the foetal blood flow across the main cardiac valves along 
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with its direction and velocity, and a complete assessment of the diastolic and systolic function in 
the apical five-chamber view. Specifically, this latter methodology allows the inspection of the 
four chambers and the first part of the aorta, leading to a characteristic PWD velocity waveform 
[58], [59], as shown in Figure 1.11, by which different cardiac intervals and performance indexes 
can be deduced [60]. 

Despite foetal echocardiographic methods represent a standard tool for antenatal screening and 
care [3], they need expensive technologies and qualified clinicians to be performed [37], [61], 
thus restricting their adoption only in case of risky conditions [28]. Remarkably, they measure the 
mechanical consequences of the electrical activity. As such, they are not able to provide 
information about cardiac electrical waveforms and beat-to-beat variability of the fHR1 [4], [62], 
[63]. Nonetheless, these aspects are of peculiar importance since several CHD and foetal 
arrhythmias have morphological reflections on the cardiac electrical signal [27], but also in pre-
eclampsia [64], intrauterine growth restriction (IUGR) [65] and foetal distress abnormal 
conditions [17]. Moreover, they cannot allow continuous monitoring, thus missing transitory 
arrhythmias and fHR changes over time [66]. As such, new technologies were introduced and 
studied: magnetocardiography and foetal electrocardiography [4], [63], [66]. 

Foetal magnetocardiography (fMCG) can measure the magnetic fields associated to the foetal 
cardiac electrical activity non-invasively from the 20th week of gestation. It requires high-
performance sensors as the superconductive quantum interference device (SQUID) to be 
employed in a magnetically shielded room. Despite fMCG may provide cardiac electrical signals 
with accurate morphology, proven to be useful for CHD and foetal arrhythmias identification [67] 
and the assessment of foetal neurodevelopment [68], it cannot be adopted for long-term 
monitoring and suffers from the expensive, complex and cumbersome equipment needed [27], 
[37]. All these limitations relegate the use of the fMCG in only a limited number of clinical centres 
[3]. 

 
1 Although an accurate estimate of fHR can be obtained by foetal pulsed-wave Doppler or M-mode echocardiography, 
the complexity of the exam hampers its use for general screening, and, in any case, the analysis can be only limited to a 
short time. 

 

Figure 1.11. An apical five-chamber view of a foetal heart (on the left) along with an example of PWD 

velocity trace with the characteristic waveform (on the right) reflecting the mitral inflow due to the 

passive filling of the LV and atrial contraction (i.e., the E and A peaks, respectively) and the aortic 

outflow (i.e., the V peak) in different cardiac cycles. In the apical five-chamber view, the right and left 

ventricles (RV and LV, respectively), the left and right atria (LA and RA), the aortic region (AO) and 

the sample volume adopter for PWD acquisition (PW) are indicated. Adapted from [59]. 
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Foetal electrocardiography is based on the acquisition of the foetal cardiac electrical activity. 
Given the topic of the first part of this thesis, it is deeply explored in the next section. 

 

1.4.1 Foetal electrocardiography 

Foetal cardiac electrical activity has been firstly recorded as ECG in the early 20th century [69]. 
From that moment on, several works focused on this research topic, but many fundamental aspects 
are still under investigation and discussion.  

 

The acquisition of fECG can be performed either invasively or non-invasively. 

The invasive fECG (I-fECG) is performed by introducing an intra-uterine electrode in the cervix, 
after the rupture of the membrane, and attaching it in direct contact with the presenting portion of 
the foetal scalp. The reference electrode is placed on the maternal thigh [70]. Due to the 
invasiveness of the procedure, this technique can be performed only during labour and in presence 
of risk factors, thus impeding its adoption for prenatal screening. I-fECG allows the recording of 
high-quality fECG signals, thus enabling accurate fHR monitoring with beat-to-beat accuracy, 
fECG morphology analysis [37], [71], and especially the S-T analysis (STAN) based on the S-T 
segment and T/QRS ratio [72]–[75]. In intrapartum foetal monitoring, I-fECG may be clinically 
combined with CTG monitoring [70], [76] and performed by commercially-available devices as 
the STAN S31 monitor (Neoventa Medical, Molndal, Sweden) [77], but its clinical usage is 
uncommon [78]. Nonetheless, the main drawbacks of this monitoring technique concern its 
invasiveness, which exposes both the mother and the foetus to infection risks, the possibility of 
being exploited only at the last stage of pregnancy, and the unavailability of a three-dimension 
assessment of the foetal cardiac electrical activity [4], [76], [78]. 

Non-invasive fECG (or NI-fECG) is a promising tool for continuous foetal monitoring and 
prenatal diagnostics [17], [56], [79]. NI-fECG examines the foetal cardiac electrical activity from 
the maternal abdomen, by applying surface electrodes on the mother’s belly, which record the 
potentials associated with the depolarizations and repolarizations occurring in the foetal heart 
[27]. Typically, in order to optimise the skin-electrode contact impedance, a gentle abrasion is 
performed on the maternal skin and then, a conductive gel is applied before electrode placement. 
NI-fECG can be exploited starting from the 18th week of gestation [4]. As such, it could allow a 
prenatal, low-cost and risk-free monitoring, and thanks to its non-invasiveness, it could be 
exploited also for long-term applications [27], [37]. Moreover, NI-fECG could also enable the 
assessment of all pathological states inducing changes in ECG waveform morphology [56] and, 
in worst cases, premature diagnosis of foetal defects. As such, it could be a powerful tool enabling 
possible therapeutic interventions antenatally or immediately after-birth.  

NI-fECG provides accurate estimate of fHR and its beat-to-beat variability [80], even 
outperforming standard ultrasound methods [81], [82] especially in case of high maternal body 

 

Figure 1.12. First fECG recording [69]. 
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mass indexes [83], [84]. This is an important aspect since fHR patterns are related to the foetal 
well-being, the gestational age, but also the autonomic nervous system (ANS) development and, 
as such, allow the ANS functionality assessment in the prenatal period [85]. Moreover, NI-fECG 
technique has been found to be particularly useful also in cases of pre-eclampsia [86], [87], IUGR 
[88] and for the antenatal screening and diagnosis of CHD [79] and foetal arrhythmias [89]. 
However, NI-fECG suffers from several problems, as better described in the next chapter, which 
lead to low-quality fECG recordings [3], [4], [27], [78], thus preventing the adoption of this 
technique for the fECG morphological analysis and, generally, in the clinical practice. In fact, NI-
fECG is mainly exploited for fHR estimation [37], while fECG morphological analyses are 
enabled by I-fECG technology [56]. Despite the huge scientific effort and results on simulated 
data [25], [90]–[93], some useful morphological information has been rarely extracted from real 
NI-fECG recordings, as for detection of foetal arrhythmias [89], [94], S-T segment analysis [80], 
[95], altered morphology of the QRS complex [96], T-wave alternans [97] and some cardiac 
intervals [79], [90], [98], deserving further clinical validation. As such, further research is needed 
to address this specific issue [99]. 

 

1.4.2 Commercially available monitoring devices based on non-invasive foetal ECG  

In recent years, several fHR monitoring devices based on NI-fECG were proposed and approved 
for clinical use [30], [56], [100]. The first commercially available system was the wireless Monica 
AN24 monitor by Monica Healthcare (Nottingham, UK), adopting several electrodes placed on 
the maternal abdomen. Then, several technologies exploiting disposable patch-systems were 
introduced, as the Novii Wireless Patch System by GE Healthcare (Chicago, Illinois, USA), the 
MERIDIAN M110 system by MindChild Medical (North Andover, Massachusetts, USA), the 
PUREtrace and the Nemo Fetal Monitoring System by Nemo Healthcare (Veldhoven, The 
Netherlands). Moreover, in order to guarantee long-term continuous assessment of foetal well-
being, many at-home monitoring technologies have been proposed as the wearable 5-channel 
monitor system by Bloomlife (San Francisco, California, USA and Genk, Belgium) and Imec 
(Leuven, Belgium and Eindhoven, The Netherlands), the FDA-cleared Invu device [101] by Nuvo 
(Tel Aviv, Israel) and the Owlet Band (Lehi, UT, USA). 
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Figure 1.13. Some examples of most recent monitoring devices based on NI-fECG. On top, the Owlet 

Band (left side) and the Invu device by Nuvo (right side) are reported, whereas on bottom, the Nemo 

Fetal Monitoring System by Nemo Healthcare (left side) and the wearable 5-channel monitor system 

by Bloomlife and Imec (right side) are depicted. 
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Chapter 2    

 

Overview of non-invasive foetal ECG signal processing  

 

2.1 Non-invasive foetal ECG signal processing issues 

As discussed in the previous Chapter 1, several issues affect the recording of NI-fECG signals, 
preventing them to reach diagnostic reliability and to be clinically exploited [27]. At first, the 
recorded NI-fECG signals are very weak, whose magnitude is in the order of a few dozen of 
microvolts [17], [27] and as such several times lower than maternal ECG (mECG). Moreover, 
NI-fECG recordings are characterized by low SNR [3], [4], [27], [78], which can be ascribed to 
different causes. In fact, the source of NI-fECG signals, i.e. the foetal heart, is small [78] and the 
foetal cardiac electrical signal must pass through different propagating media before being 
acquired on the maternal abdomen by the measuring electrodes [4]. In their entirety, the layers 
and interposed tissues constitute the so-called volume conductor, whose shape and electrical 
properties change during the whole gestation period [102], hampering the NI-fECG acquisition. 
In fact, these biological media exhibit different electrical conductivities during the gestation and, 
specifically, an electrically insulating layer grows during gestation, which is able to mask the 
fECG signal completely between about the 28th and the 32nd week of gestation [102]. It is a 
protective waxy substance covering the foetus, called vernix caseosa, which acts as a complete 
electrical shield and, as such, changes the conductive propagation pathways, potentially inducing 
significant variations in NI-fECG morphology [102]. Nonetheless, this insulating layer gradually 
disappears from some parts of the foetal body, in particular the face and head that come in tight 
contact with the maternal pelvis, in the last phase of gestation, i.e. normally starting from the 32nd 
week of gestation. After this stage, NI-fECG can be acquired again with more consistent 
magnitude, but it is strongly influenced by the size and the unpredictable locations of the vernix 
caseosa holes [103]. In fact, the biological dissolving process may cause gaps in the vernix 
caseosa, which could alter the signal conduction pathways and make them inhomogeneous, thus 
distorting the NI-fECG and impeding morphological analysis from that moment on [103]. 

 

Besides the source and the propagation issues related to the foetal cardiac electrical activity, the 
low SNR of NI-fECG is also ascribed to the different biological and technical interferences [17], 
[76]. Many bioelectrical interferences are derived from the mother, particularly mECG, but also 
maternal respiration, electromyogram, the uterine contractions. Moreover, additional non-
physiological noises can be identified as interferences related to improper skin-electrode interface 
and cable shielding, or instrumentation noise, such as powerline interference and baseline wander. 

 

Figure 2.1. Main foeto-maternal compartments [4]. 



35 

Noises and interferences overlap with the weaker fECG in various domains [4], [17], and 
especially in both time and frequency domains (see Figure 2.2) thus requiring powerful signal 
processing methods [37], as better detailed in the next section. 
 

 

Moreover, NI-fECG acquisition is challenged even more considering that the foetus can show 
different presentations during the recording, and can move a lot in the maternal abdomen 
especially in the first two trimesters [4], when the signal is not distorted. Foetal presentation is 
typically unpredictable and can substantially influence the recorded fECG from the maternal 
belly, as different dipole projections are exposed on the measuring electrodes. In this regard, time-
varying foetal orientation and movement prevent the adoption of a standard electrode 
configuration, as foetal body coordinates may vary with respect to the maternal body coordinates 
and as such to the surface electrodes. Moreover, electrodes are placed on the maternal abdomen, 
thus different anisotropic media are interposed between the source and the measuring systems, 
limiting the exploitability of the conventional dipole model and leads. This is the reason why, 
despite the different positioning proposed in the literature, an optimal electrode configuration 
cannot be achieved [17]. Overlapping interferences, foetus’ behavioural states and time-varying 
presentations comprehensively make the NI-fECG a non-stationary signal, thus hampering even 
more its processing and analysis. Moreover, multiple pregnancies are possible, therefore 
challenging more and more the NI-fECG tools because multiple foetal ECG sources are recorded. 

Based on all these premises, despite the huge number of techniques developed in the scientific 
literature for fECG processing, the identification of a clinically-interpretable and morphologically 
preserved fECG signal is still an open research issue [4], [17]. 

 

2.2 Background on signal processing methods for non-invasive foetal ECG analysis 

Given the promising advantages and potentialities in the adoption of NI-fECG for the antenatal 
screening, a great scientific effort has been put into the development of signal processing and 
analysis techniques, but also of innovative technologies, in order to recover high-quality and 
reliable fECG from non-invasive recordings [57], [78]. 

Typically, NI-fECG recording first undergo a pre-processing stage in order to mainly remove 
noises which are out of the fECG band [17]. In this stage, the main low-frequency artifacts, as 
baseline wandering and drift due to maternal respiration and electrode motion, are attenuated by 
adopting different signal processing approaches such as FIR and IIR high-pass filtering, moving 

 

Figure 2.2.  Amplitude and frequency range of different overlapping bioelectrical interferences to the 

fECG signals [4]. Labels are indicating maternal electrocardiogram (mECG), electroencephalogram 

(mEEG), electrooculogram (mEOG), electromyogram (mEMG), electrohystrogram (mEHG), and the 

foetal ECG (fECG). 
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median filtering with different window sizes [78], but also exploiting wavelet-based approaches 
[104]. At this stage, also the powerline noise and the high-frequency noise components due to 
electromyographic activity are suppressed, by selecting typical FIR and IIR low-pass and notch 
filters [78] or non-linear denoising approaches such as wavelet-based ones [105]. 

Then, the fECG extraction process is typically performed to retrieve the fECG component from 
the pre-processed NI-fECG recordings. This step mainly aims to remove the mECG component, 
which is stronger than the fECG in amplitude and overlaps with the fECG not only in the time 
domain but also in the frequency domain [4], [17]. Being a challenging task, a huge number of 
fECG extraction algorithms have been proposed in the literature for this purpose [37], [56], [76], 
[106]. According to the specific implementation, only abdominal recordings can be required, 
either single or multichannel, or both abdominal and thoracic signals can be recorded, to have a 
clean mECG reference. Many different fECG extraction approaches have been proposed in the 
literature, such as blind source separation algorithms, mainly exploiting independent component 
analysis (ICA)[107]–[109], but also as principal component analysis (PCA) [109], [110], periodic 
component analysis (πCA) [111] and nonstationary component analysis (NSCA) [112], template-
subtraction methods [81], [110], [113], Kalman filtering and its different extended versions [114], 
[115], wavelet-based algorithms [116], [117], adaptive filtering [118], [119] and neural networks 
[120]–[123], de-shape algorithm [93], [124] and many other hybrid approaches as reported in 
[37], [56]. 

After the fECG extraction process is performed, an additional post-processing stage may be 
needed in order to remove the residual background noise and enhance the fECG content [106]. In 
this regard, despite the scientific effort put into the NI-fECG post-processing stage is substantially 
lower than that related to fECG extraction, different NI-fECG enhancement methods may be 
mentioned. The first post-processing approach is the synchronized averaging of consecutive foetal 
QRS complexes, which has been proposed for fECG noise reduction for a long time [125], [126]. 
This approach has been frequently exploited in the field [127]–[129], also with improvements as 
the optimal tuning of the number of foetal beats to be averaged in NI-fECG traces [21], [130] or 
by looking at similar foetal beats in a different N-dimensional space [93] before averaging. Other 
works based the NI-fECG enhancement on spatio-temporal filtering [131], time-sequenced 
adaptive filtering [132] or deep neural network models [133]–[135]. Nonetheless, different 
authors exploited wavelet denoising methods for the same purpose [104], [136]–[151], as better 
explored in Chapter 4 and 5. 

 

2.3 Conclusion 

It is clear that, although NI-fECG is widely identified as a promising tool for antenatal screening 
and diagnosis, several issues hamper the achievement of high-quality fECG signals from 
abdominal recordings to be exploited for clinically useful morphological analyses. In this regard, 
as briefly illustrated in the previous paragraph, a huge number of signal processing techniques 
have been developed and published in the scientific literature, but nowadays NI-fECG is still 
mainly relegated to fHR estimation.  

In the light of all these premises that limit the NI-fECG development and consequently its clinical 
adoption, this PhD thesis aims to describe novel advanced signal processing tools for 
morphologically preserved fECG recovery. As such, this PhD work presents, at first, a novel 
algorithm for fECG extraction. Moreover, different wavelet-based strategies for the NI-fECG 
post-processing are proposed, and then compared with state-of-the-art wavelet denoising 
approaches developed for this specific application, in order to guarantee an optimal fECG 
enhancement and background noise removal. 
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Chapter 3    

 

A novel algorithm for non-invasive foetal ECG extraction  

 

3.1 Rationale 

As already explained in Chapter 2, many different issues hinder the attainment of clinically useful 
NI-fECG signals for antenatal screening and diagnosis. These aspects can be ascribed to the 
difficulties encountered when trying to extract high-quality and morphology-preserved fECG 
signals from abdominal recordings, even when introducing more advanced signal processing 
techniques and modelling tools. Therefore, in order to address this issue, in this chapter a novel 
algorithm for fECG extraction is introduced. This algorithm has been conceived in collaboration 
with Prof. Hau-Tieng Wu (Department of Mathematics and Statistical Science, Duke University, 
Durham, NC, USA). Specifically, considering the work by Su and Wu [90] in which a fECG 
extraction algorithm for both fHR and morphology analysis has been presented for two or three 
transabdominal recordings, and other previous works [93], [124], [152] introducing several 
advanced signal processing tools allowing for an efficient fECG extraction, a multi-channel fECG 
extraction approach was developed, which exploits the nonlocal Euclidean median algorithm, the 
de-shape short-time Fourier transform (STFT) technique and optimal shrinkage denoising 
algorithm. The performance obtained by this novel algorithm has been quantitatively assessed 
both in terms of foetal R-peak detection, including the evaluation of the foetal QRS complex 
detection accuracy (Acc), the true positive rate (TPR) and the positive predictive value (PPV), 
but also looking at the recovered foetal beats morphology on synthetic signals, by evaluating its 
preservation through the estimation of the root-mean-square error (RMSE), the Spearman’s rank 
correlation coefficient (rs) and Pearson’s correlation coefficient (ρ). 

 

3.2 Materials and methods 

The proposed fECG extraction algorithm fundamentally relies on the so-called adaptive non-
harmonic (ANH) model [93], [152], by which each abdominal ECG signal �(�) can be assumed 
as the combination of different time-varying non-sinusoidal oscillatory components with time-
varying amplitude and frequency, i.e., the mECG (��(�)), the fECG (��(�)) and the non-
stationary noise (�(�)): 

�(�)  =  ��(�) + ��(�) + �(�) (3.1) 

On this basis, the novel algorithm exploits several recent state-of-the-art signal processing tools, 
i.e. the optimal shrinkage algorithm, the de-shape STFT-based  R-peak detection, and the nonlocal 
Euclidean median technique, which are briefly detailed hereinafter.  
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3.2.1 Background on optimal shrinkage, nonlocal Euclidean median and de-shape STFT 

tools 

3.2.1.1 Optimal shrinkage 

Optimal shrinkage is a SVD-based denoising approach introduced in [153] and later exploited in 
[90] for an effective estimation of mECG. Indeed, considering the mECG contribution in a typical 
non-invasive abdominal recording, it is mixed with several instrumental and biological noisy 
interferences, particularly the fECG components, which must be removed for a robust mECG 
recovery. Thus, this can be treated as a matrix denoising problem, which can be mathematically 
expressed as [90], [153]: 

� = � +  
 (3.2) 

where � =  [��, ��,. . . , ��]  ∈ � �×� represents the mECG matrix including � noiseless mECG 
segments of length �, 
 is the noise matrix of the same size, and � =  [��, ��,. . . , ��]  ∈ � �×� is 
the matrix containing the corresponding noisy segments in the abdominal recording. By assuming 
a low-rank matrix � and a zero-mean independent and identical noise � with unit variance, and 
considering large � and � with � �⁄ ≤ 1, the optimal denoised matrix estimate of �, i.e. �, can be 
retrieved as [90], [153]: 

��  =    Λ∗#$
 (3.3) 

where 

� =    % #$
 (3.4) 

 

whereas  %∗  ∈ � �×� is computed from the optimal shrinker &∗('), that for an operator-norm loss 
function can be defined as [90], [153]: 

 &∗(') = ( �√� *'� − , − 1 + -('� − , − 1)� − 4,       /0 ' ≥ 1 + ,0                                                          3�ℎ567/85  

 

(3.5) 

 

in which ' represents each singular value of � and , the asymptotic aspect ratio of the � matrix, 
defined as � �⁄ , respectively [90], [153]. 

In this way, the optimal shrinkage allows for a better estimation of the mECG contribution, thus 
guaranteeing a subsequent, more suitable mECG cancellation and, therefore, a more reliable 
fECG recovery [90]. However, since the above-mentioned assumption of unit variance cannot be 
satisfied in this context, a normalization is required according to the noise level. This is 
accomplished by introducing a constant parameter chosen by the user, hereinafter called 839 [90]. 

 

3.2.1.2 Nonlocal Euclidean median 

Despite the nonlocal Euclidean median has been introduced as an image denoising algorithm 
[154], [155], it has been successfully applied in one-dimensional denoising contexts, and 
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remarkably for single-lead and two-channel fECG extraction [90], [93], [124]. Specifically, in its 
application for mECG recovery in a single-channel abdominal ECG signal, around each maternal 
beat, different segments of L samples can be extracted, which can be considered overall as the 
noisy collection of the pure mECG segments to be retrieved. In this regard, each noisy beat can 
be considered as a single entity in a L-dimensional manifold.  

Considering that two consecutive cardiac cycles may have different morphologies, i.e., may be 
distant in the manifold, and assuming the collection of maternal cardiac cycles to be independent 
from foetal ones [93], the underlying wave-shape function can be recovered for each noisy 
maternal beat by including its : nearest neighbours in the median, with : ∈ �. Mathematically, 

taking into account the i-th maternal beat in the abdominal ECG signal, i.e. ��(;) ∈ <�×=, and 

considering its Euclidean distance from each j-th maternal beat ��(>) ∈ <�×= as 

?;,>  =  @ A (��,B(;) − ��,B(>) )�=
B C �  (3.6) 

 

its : neighbours may be identified by considering the beats showing the smallest relative 

Euclidean distances in the manifold, leading to the neighbour’s matrix �D�(;) ∈ <E×= of the i-th 
maternal beat, where : is a user-defined parameter. On this basis, the noiseless version of the ��(;), namely �F�(;), can be computed as [93]: 

�F�(;) =  G5?/H�(�D�(;) ∈ <E×=) (3.7) 

However, considering  the abovementioned basic concepts, it is clear that the nonlocal Euclidean 
median algorithm can be applied not only for maternal beats, but also for fECG denoising 
whenever foetal R-peak locations are available [93]. 

 

3.2.1.3 De-shape STFT  

The de-shape STFT is a time-frequency analysis technique allowing for an enhancement of the 
fundamental frequency contribution while performing a nonlinear adaptive filtering on the 
spectral interferences related to its harmonics [93], [152]. For a general signal �(�), de-shape 

STFT is performed by combining the STFT (#I(B)) and the inverse short-time cepstral transform 

( I(B,J)), as [93], [152]: 


I(B,J)(�, K)  =  #I(B)(�, K)  I(B,J)(�, K) (3.8) 

where ℎ is the chosen window function and  K >  0 describes the frequency, while #I(B) and  I(B,J) 
are respectively defined as: 

#I(B)(�, K)  =  M �(N)ℎ(N − �)5O;�PQ(ROS) ?N  (3.9) 

 I(B,J)(�, K)  =  TI(B,J)(�, 1/K)  (3.10) 

with V defined as quefrency, and  
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TI(B,J)(�, V)  =  M W#I(B)(�, K) WJ 5O;�PXQ ?K (3.11) 

 

As such, by applying the de-shape STFT algorithm under the ANH model [152], it is possible to 
obtain a time-frequency representation of the signal, from which it is possible to extract the time-
domain trend of the instantaneous frequency by dynamic programming curve extraction algorithm 
and then the R peak locations by the beat tracking technique, as deeply described in [93], [124], 
[152]. 

 

3.2.2 Proposed algorithm 

In this section, a novel multi-channel fECG extraction algorithm is introduced. Then, the dataset 
adopted for its evaluation and the performance metrics are described. 

The algorithm is graphically described in Figure 3.1 and better detailed below. 

Step 1: Pre-processing 

At first, each abdominal ECG signals was pre-processed by removing high frequency noise 
through a 5th-order bidirectional IIR Butterworth low-pass filter with a cut-off frequency of 100 
Hz, as in [90]. Then, low-frequency interferences as baseline wandering were suppressed in each 
abdominal ECG channel by detrending. Specifically, low-frequency noise was estimated by a 
moving median filter with window of 500 ms, and then subtracted. As such, in the following 
sections, each p-th pre-processed abdominal ECG signal is denoted as Y9(�) ∈ ��×D, and the 
multi-channel recording set as Y(�) ∈ �Z×D, with [ the total number of available channels and � 
the number of samples. 

Step 2: Maternal R-peak detection 

Then, an accurate R-peak detection of maternal beats was performed. To this aim, on each pre-
processed abdominal recording Y9(�), maternal R peaks were detected by using the de-shape 
STFT along with the dynamic programming curve extraction algorithm and the beat tracking 
technique, following [90], [93], [124]. At this stage, a collection of maternal R-peak locations for 
each of the [ available channels is obtained, which however may differ because of background 
noise or fECG contributions. In order to select the most robust maternal R-peak annotation, each 
collection was compared with all the others in terms of F1 score, by imposing a very strict 
tolerance window (i.e., 5 or 10 ms). In this way, for each channel, the number of other channels 
showing a significant detection coherence (i.e., F1 score above a user-defined threshold, e.g. 0.95 
or 0.999) was computed and the channels were ranked according to this metric. Finally, the two 
top channels were considered to determine the final maternal R-peak locations, hereinafter 
denoted as: 

\] =  {��(_)}_ C �a
 (3.12) 

where < identifies the total number of maternal cardiac cycles. Specifically, the maternal R-peak 
locations belonging to the two collections of R peaks exhibiting the highest number of consistent 
detections were compared in terms of distance, and then only the R-peak annotations falling into 
an acceptable window of temporal distance (i.e., 5 or 10 ms) were retained in order to obtain \]. 
However, in those cases in which the collections of maternal R-peak locations were not strictly 
coherent (i.e., the collection selected as second for its high consistency showed a high F1 only 
when compared with another channel annotation), the \] was considered as the maternal R-peak 
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locations belonging to the abdominal channel exhibiting the highest number of coherent channels 
in terms of F1 score. 

Step 3: Maternal ECG estimation by optimal shrinkage and nonlocal median 

Based on the maternal R-peak locations in \], abdominal traces were denoised in order to 
retrieve a good estimate of the mECG contributions. As such, from each Y9(�), all segments 

 

Figure 3.1.  Schematic representation of the different steps involved in the proposed algorithm. After 

a pre-processing stage, abdominal ECGs are subjected to maternal R-peak detection and, then, to a 

two-steps denoising stage by optimal shrinkage and nonlocal median approaches. Then, a rough 

estimate of the multi-channel fECG is available and exploited for a more reliable estimation of the 

mECG content. At this point, an accurate multi-channel fECG is recovered by subtraction. On this 

basis, a channel selection approach is implemented, and an accurate foetal R-peak detection is 

adopted, in order to estimate an optimal fECG multi-channel set by nonlocal median. 
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including the maternal R peaks (i.e., Y9,�) were firstly extracted by considering a window centred 
on the R peak and with a duration equal to the quantile 0.95 of all the RR intervals (��b.cd).  

Mathematically, 

Y9,� =  {Y9,�(_)}_ C �a
 (3.13) 

with  

Y9,�(_) =  [Y9(��(_) − 0.5��b.cd), . . . , Y9(��(_) + 0.5��b.cd)] (3.14) 

and f =  1, … , [. 
Considering each channel separately, in order to attenuate both noise and fECG contents, all 
segments were denoised by optimal shrinkage by assuming, in this phase, an a-priori value of the 
parameter 839 equal to 4.5, according to the supposed noise level and a preliminary fine-tuning 
based on visual inspection. At this point, in the multi-channel case, a set of matrices Yh9,� was 
defined, with f =  1, … , [: 

Yh9,� =  {Yh9,�(_)}_ C �a
 (3.15) 

Yh9,�(_) =  [Yh9(��(_) − 0.5��cd%), . . . , Yh9(��(_) + 0.5��cd%)] (3.16) 

where Yh9,�(_) indicates the j-th segment in the f-th abdominal ECG channel after optimal 
shrinkage denoising. 

Then, in order to remove any uncorrelated residual noise, the nonlocal median algorithm was 
applied. However, since the nonlocal median has been adopted in single-channel applications 
only [90], [93], in this work it was adapted to a multi-channel set of abdominal recordings. 
Specifically, in the multi-channel approach, the similarity between each pair of maternal cardiac 
cycles was evaluated by summing their squared Euclidean distances across all available channels, 
as: 

?�(Yh9,�(_),   Yh9,�(>))  = A kYh9,�(_)  −  Yh9,�(>)k��
Z

9 C �  (3.17) 

 

Then, the abovementioned distance was used to determine the : nearest neighbours for each Yh9,�(_), which were further exploited for the proper median template estimate. In this context the 
squared Euclidean distance, which is frequently adopted in clustering and cluster compactness 
applications [156], was preferred to the standard Euclidean distance, in order to emphasize the 
distance between the neighbours [157]. Furthermore, : was imposed equal to 60 for both real and 
synthetic dataset investigations, in order to include a reasonable percentage of closest beats with 
respect to the total maternal beats in each median template, according to the signal duration and 
the supposed maternal heart rate. 

After all nonlocal medians were computed, the noiseless multi-channel mECG Yl�mno(�) was 
reconstructed by introducing each median template in its proper location. However, in order to 
handle overlapping cases during mECG reconstruction, all beat extremes were tapered by 
multiplying each template by a window function 7(�), defined as:  
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7(�) = p 8/��(/q), /q ∈  {0, (r 2)/(tuvwxyz9 − 1)⁄  , . . . , r/2}  8/��(/q), /q ∈  {r 2⁄ , r 2⁄ + (r 2⁄ ) (6uvwxyz9 − 1)⁄ . . . , r}  1                                                     3�ℎ567/85  (3.18) 

 

where tuvwxyz9 and 6uvwxyz9 identify any eventual overlap between two consecutive beats on the 
left and right side, respectively. Nonetheless, in order to avoid any step due to the introduction of 
median beats, even when two consecutive beats did not overlap, all templates were tapered in the 
construction of Yl�mno(�),  simply by introducing in 7(�) a fixed overlap of two samples. 

Step 4: Rough fECG estimation by mECG subtraction 

After the recovery of the mECG by denoising and tapering, a rough multi-channel fECG signal 
can be extracted. This can be achieved by subtracting the estimated mECG, i.e., Yl�mno(�), from Y(�): 

Yl�mno(�) =  Y(�) − Yl�mno(�)   (3.19) 

 

Step 5: Accurate maternal and foetal ECG estimation  

Since at this stage a rough multi-channel fECG estimate is available, it can be further exploited 
for an accurate estimation of 839 parameter, to be exploited in the optimal shrinkage technique. 
As such, Step 3 and 4 were repeated by simply considering a more reliable and robust estimation 
of the parameter 839, associated to the characteristics of the corresponding rough fECG and its 
noise level. Specifically, on the p-th pre-processed abdominal channel, 839 was defined as a 
scaled value of the sample standard deviation of the corresponding p-th rough fECG ({9), as: 

839   =  j {9 (3.20) 

with 

{9  = @ 1� − 1 A|Yl�mno,9(/)  − �̅�mno,9 |�D
; C �  (3.21) 

 

where �̅�mno,9 identifies the mean value for the p-th rough fECG channel and j is a tuneable 
parameter, typically varying between 2 and 20, in case of real and synthetic signals respectively, 
according to preliminary fine-tuning based on visual inspection. 

Finally, after the denoising process by optimal shrinkage and the nonlocal median was iterated on 
the pre-processed multi-channel abdominal recordings Y(�), as shown in Figure 3.1, a more 
accurate multi-channel mECG was obtained (Yl~�mno(�)), which can be further subtracted from Y(�) to get an accurate estimate of the multi-channel fECG Yl~�mno(�), as: 

Yl~�mno(�) =  Y(�) − Yl~�mno(�)   (3.22) 
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Step 6: Channel selection on accurate multi-channel fECG  

Then, according to the foetal position and presentation, some channels in Yl~�mno(�) could not 
provide sufficient and useful information, while hampering a correct foetal R-peak detection. As 
such, in order to detect the best fECG channels among those included in the multi-channel set, a 
channel selection approach is introduced. In this regard, to select an appropriate number � of 
channels, with � ≤  [, on each channel in Yl~�mno(�), i.e., Yl~�mno,9(�), two foetal R-peak detectors 
were applied. Specifically a Pan-Tompkins-based peak detector [110] and the combination of the 
beat tracking algorithm with the de-shape STFT [90], [93], [124] were used. Then, each Yl~�mno,9(�)  was evaluated according to the R-peak annotation consistency provided by the two 
detectors. In this regard, R-peak detection consistency was assessed in terms of F1 score, by 
available tools [24], [25]. Specifically, all R-peak annotations identified by both detectors, 
exploiting a 20-ms tolerance window, were considered as true positives, whereas the extra beats 
identified only by the de-shape STFT-based detector [90], [93], [124] or only by the Pan-
Tompkins-based peak detector [110] were assumed as false negatives and false positives, 
respectively. Then, all accurate fECG channels Yl~�mno,9(�) exhibiting an F1 score above a user-
defined threshold (e.g., 0.85 or 0.9) were selected for the following steps. In case the adopted 
threshold was too selective, an a-priori defined number of fECG channels was selected anyway. 

Step 7: Accurate foetal R-peak detection  

On the selected fECG channels, an accurate foetal R-peak detection was then needed in order to 
further processed the traces. To this aim, the SVD decomposition was exploited along with two 
different signal quality indexes (SQIs) [158], according to the dataset nature (see Section 3.2.3). 

On simulated signals, whose generation and characteristics are described in the following Section 
3.2.3, the SVD decomposition was performed on the selected accurate fECG channels Yl~�mno(�) 
and the first � ≤ � components were reconstructed separately, where � can be selected by the user. 
However, as the number of SVD components must be necessarily lower than (or equal to) the 
number of selected fECG channels, the parameter � is automatically adjusted in case of improper 
setting, by reducing it accordingly. 

From each of the � SVD components, a �-channel set of reconstructed signals �(�)��� � �(�∙�)×D 
was obtained. Then, on each reconstructed signal Y(�)���� ��×D, an SQI based on non-
gaussianity was estimated. Specifically, non-gaussianity (���Do) was measured in terms of 
negentropy, as  [158]:  

���Do  =  �j��S{Y(�)��� 5�f(− Y(�)����2 )}� + j�[�S{5�f(− Y(�)����2 )} − √22 ]�� (3.23) 

with j� = 36 (8√3 − 9)⁄  and j� = 24 (16√3 − 27)⁄ . No centring or normalization by the 
variance was performed. 

As such, since the foetal contribution is assumed to have a non-gaussian distribution because of 
its spiky R-peaks [158], the higher the non-gaussianity measure, the higher the foetal content in 
the reconstructed signal Y(�)���. As such, the reconstructed synthetic signal showing the highest ���Do was selected for the subsequent foetal R-peak detection. Specifically, this signal was firstly 
filtered by the a bidirectional 10th-order IIR Butterworth high-pass filter with cut-off frequency 
of 10 Hz, for foetal QRS enhancement [110], [159], normalized according to its absolute 
maximum and then considered as input for foetal R-peak detection. On this trace, foetal R-peak 
detection was performed by de-shape STFT and beat tracking [90], [93], [124], along with a final 
R-peak annotation refinement by looking for a local maximum or minimum in a 10-ms window 
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around each R peak location, according to the signal polarity and QRS balance, thus giving the 
final foetal R-peak locations ��,�w�. If the annotation failed (i.e., a fHR below 120 bpm was 
detected), the parameter � was automatically increased of one unit and the process repeated once 
again.  

On real signals, a similar approach was adopted, but exploiting a different SQI. After the SVD 
decomposition of the selected accurate fECG channels Yl~�mno(�), the first � ≤ � components were 
reconstructed separately. Each reconstructed signal Y(�)��� � ��×D from the total set �(�)��� � �(�∙�)×D was then filtered by a bidirectional 10th-order IIR Butterworth high-pass filter 
with cut-off frequency of 10 Hz, in order to enhance foetal QRS, as in [110], [159]. Then, a 
modified version of the pseudo-periodicity measure proposed in [158] was exploited. 
Specifically, on each filtered signal Y(�)���, i.e., Y�(�)���, the foetal QRS detector based on de-
shape STFT and beat tracking [90], [93], [124] was exploited. Then, on each signal Y�(�)���, a 
window with duration equal to the mean RR interval (�������) was extracted around each detected 

foetal R peak �� ∈ ���×�, leading to the foetal beat matrix �q � ���×�������, defined as: 

�q =  [Y�(�)���(�� − 0.5�������), . . . , Y�(�)���(�� + 0.5�������)] (3.24) 

 

From �q, a foetal beat template �q� ��×������� was then estimated by robust weighted average [158], 
[160]. On this basis, for each Y�(�)���, the dissimilarity between each extracted foetal beat and 
the foetal beat template was estimated as pseudo-periodicity SQI (���ZZ) by the sample-wise 
variance of their difference, as: 

���ZZ =  1������� A 1�� A(�q − �q)���
;C�

�������
>C�  (3.25) 

 

Then, since the higher the variance (i.e., the ���ZZ), the higher the dissimilarity, the SVD-based 
reconstructed signal showing the lowest ���ZZ was selected and its foetal R-peak locations were 
taken as final foetal QRS positions ��,�w�. Then, similarly to the synthetic case, a final R-peak 
annotation refinement was performed by looking for a local maximum or minimum in a 10-ms 
window around each R peak location, according to the signal polarity and QRS balance. Finally, 
also in the real case, the parameter � was automatically adjusted in case of improper setting, by 
reducing it according to the number of selected fECG channels, or even in case of failed 
annotation (i.e., a detected fHR below 100 bpm). In this latter case, the parameter � was 
automatically increased of one and the SVD component selection and detection repeated once 
again.  

Step 8: Optimal multi-channel fECG recovery by nonlocal median 

Once the foetal R peaks were detected, as last step, the selected fECG channels were further 
denoised by the nonlocal median approach, in order to attenuate the noisy contributions due to 
acquiring instrumentation, maternal EMG activity related to uterine contractions, or eventually 
residual mECG. 

Specifically, on each of the selected accurate fECG channels Yl~�mno(�)� ��×D, all segments 
including the final foetal R-peak locations ��,�w�. were extracted, by considering a window 
centred on each foetal R peak and with a duration equal to the median foetal RR interval (�������,�w�) 
computed on  ��,�w�.  
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Yl~�mno(>) =  [Yl~�mno(��,�w�(>) − 0.5�������,�w�), . . . , Yl~�mno(��,�w�(>) + 0.5�������,�w�)] (3.26) 

with � =  1, … , � and � representing the total number of detected foetal beats. 

Then, similarly to the maternal ECG denoising by nonlocal median algorithm, uncorrelated 
residual noise was removed from the fECG by estimating a proper median template on the :� 
nearest neighbours identified by the multi-channel squared Euclidean distance (see Equation 
3.17). In this study, :� was set equal to 80, for both real and synthetic data assessments, in order 
to consider a reasonable percentage of closest beats in each median template, according to the 
signal duration and the presumed fHR. Finally, the denoised fECG signals were reconstructed by 
introducing each median template in its proper location, tapering all foetal beat extremes by 7(�) 
as in Step 3 (see Equation 3.18 for its definition), and then performing an additional interpolation 
by a piecewise cubic Hermite interpolating polynomial function, only in those cases where foetal 
R peaks were more (or less) than �������,�w� apart.  

 

3.2.3 Material  

Two different datasets of abdominal recordings were used, to evaluate the performance of the 
proposed fECG extraction algorithm not only in terms of fHR estimation, but also for morphology 
analysis preservation. To this aim, results were evaluated on a physiologically-plausible synthetic 
dataset and a freely available real dataset [161]. 

The synthetic dataset includes 5-minute-long 32-channel abdominal recordings generated by an 
open-source non-invasive fECG signal simulator, fecgsyn [24], [25] at 2048 Hz. The maternal 
and foetal heart rates were assumed to be 90 and 150 bpm respectively, as in [162]. Specifically, 
despite the simulator offers 34 channels by default, for the evaluation of the proposed algorithm 
only abdominal channels were considered, whereas thoracic ones were ignored. The maternal 
heart coordinates were assumed equal to [2.0944, 0.2, 0.4], whereas foetal ones to [ −0.412, 0.284, 
−0.300], as in [162]. The position of the simulated surface electrodes detecting the abdominal 
ECG are depicted in Figure 3.2. 

Non-stationary realistic noises (i.e., muscular artifact, baseline wander and electrode motion) with 
different amplitudes were added, to challenge the fECG extraction algorithm and test its 
performance also in cases where typical blind source separation algorithms cannot perform 
accurately. As such, four different subsets of simulated data were obtained by considering a 
sinusoidal noise modulation, with the SNR of the mECG relative to noise (SNRmn) equal to 3 dB, 
6 dB, 9 dB and 12 dB, while keeping the same SNR of the fECG relative to the mECG (SNRfm), 
imposed equal to -10 dB. This latter parameter was chosen equal to -10 dB as it produces a 
physiologically plausible foetal contribution in abdominal traces, resembling the characteristic of 
the analysed real dataset, which showed a mean SNRfm of about -10.8 dB, according to [161]. In 
each subset, ten different multi-channel recordings were included, simulating ten different 
pregnancies. Two examples of synthetic abdominal traces with different noise levels are shown 
in Figure 3.3. 
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Synthetic signals were introduced since a clean fECG signal for each abdominal channel is 
available, thus allowing for the quantitative and effective evaluation of the morphology 
preservation of the proposed fECG extraction algorithm. However, some characteristics of the 
synthetic signals do not frequently take place in real recordings, therefore for an analysis of the 
algorithm performance also a real dataset has been used. Specifically, the real antenatal dataset 
by Matonia et al. [161] has been selected for this investigation, since it provides 20-min long 
traces with the reference foetal R-peak annotations. Specifically, the real antenatal dataset 
includes four-channel abdominal recordings performed on ten pregnant women between the 32nd 
and the 42nd week of gestation. Signals were acquired by the KOMPOREL system at 500 Hz with 
16-bit resolution, and preliminarily filtered to suppress powerline and low-frequency 
interferences [161]. Recordings were performed by four electrodes placed on the maternal 
abdomen near the navel, referenced to a common electrode on the pubic symphysis and with an 
active ground electrode on the left leg. Along with the abdominal recordings, also the foetal R-
peak locations are provided after validation by clinical experts, with a flag denoting their 
annotation reliability. More details can be found in [161]. 

However, for the processing of the real dataset, a resampling at 1 kHz was performed in order to 
enable a more accurate foetal R-peak detection and evaluation. 

 

3.3 Methods for the comparative analysis  

The performance obtained by the novel fECG extraction algorithm has been quantitatively 
assessed in terms of foetal R-peak detection after the extraction (in the light of its potential 
adoption for fHR measurement applications), and recovered foetal beat morphology (for its 
potential adoption in clinical contexts where morphological analysis is relevant).  

 

Figure 3.2.  Maternal and foetal dipoles positions (yellow and blue sphere, respectively) along with 

the electrode locations (grey squares) both on the abdomen (from 1 to 32) and the thorax (33, 34). GD 

identifies the reference electrode position, on the maternal back. 
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As regards the foetal R-peak detection performance, it was assessed on the extracted multichannel 
fECG signals of both real and synthetic datasets, by evaluating the foetal QRS complex detection 
Acc, TPR and PPV obtained by a de-shape STFT-based R-peak detection algorithm [90], [93], 
[124], as: 

��� =  �[ (�[ +  �� +  �[)⁄  (3.27) 

�[� =  �[ (�[ +  ��)⁄  (3.28) 

[[# =  �[ (�[ +  �[)⁄  (3.29) 

where TP represents the correctly detected foetal beats, FN the undetected foetal R-peaks and FP 
the incorrectly detected ones. For this evaluation, a 20-ms tolerance window has been set.  

Furthermore, the algorithm performance has been compared with other effective fECG extraction 
algorithms introduced in the scientific literature. As such, for an effective comparison, the same 
detection metrics were evaluated on the extracted fECG signals provided in the adopted real 
dataset [161], but also on the fECG signals extracted from the real abdominal recording by the 
algorithm proposed by Jamshidian-Tehrani and Sameni [158], which has been expressly 
developed for the fECG extraction from time-varying and low-rank abdominal mixtures. For its 
implementation, the OSET toolbox [163] and parameterization settings reported in [158] were 
exploited. 

Conversely, the morphological preservation analysis was carried out only on synthetic signals, in 
which a noiseless ground truth is available, by estimating the RMSE, the rs and ρ. Specifically, 
each metric was computed between each extracted fECG and the corresponding noiseless trace, 
beat-by-beat, and the median value for each extracted fECG channel was considered in the 
subsequent evaluations. Here, each noiseless fECG trace was pre-processed following Step 1 (see 

 

Figure 3.3.  Examples of 5-min long abdominal ECG signals affected by physiologically plausible non-

stationary noise included in the synthetic dataset. On the left, from top to bottom: a single-channel 

abdominal ECG signal with SNRmn equal to 3 dB, 6 dB, 9 dB and 12 dB respectively. On the right, a 5-

s zoom on corresponding left-side recordings with the foetal (red downward-pointing triangles) and 

maternal (blue downward-pointing triangles) QRS annotations. Amplitudes are dimensionless. 
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Section 3.2.2), in order to prevent any signal morphology difference from being associated to the 
missing pre-processing stage. In this analysis, an interval of 300 ms around each foetal R peak 
was considered, by taking 120 ms before and 180 ms after the foetal QRS location [164]. 

All data processing was performed in MATLAB v2020a (MathWorks Inc., MA, USA). 

 

3.4 Results and discussion 

3.4.1 Algorithm performance on synthetic signals  

All findings achieved on synthetic signals in terms of foetal R-peak detection effectiveness and 
morphology preservation are reported in Figure 3.4. As can be seen, foetal R peaks in the extracted 
fECG traces were accurately detected in all examined sets (median Acc values above 99.7%), 
with a high TPR and PPV (i.e., median values equal or above 99.7% and equal to 100%, 

 

 

Figure 3.4.  Results on the synthetic dataset. On top, foetal R-peak detection Acc, TPR and PPV values 

are reported for the four sets of simulated data affected by different non-stationary noise levels (i.e., 

SNRmn equal to 3 dB, 6 dB, 9 dB and 12 dB respectively). Similarly, morphology-preservation metrics 

are represented for the same sets on bottom. For the RMSE, units are not reported since signal 

amplitudes are dimensionless. For the sake of clarity, five outliers for the 3-dB set and 14 outliers for 

the 9 dB were not depicted; specifically, for the 3-dB case, outliers were enclosed in the range 35-36% 

for Acc, 49-51% for TPR, 55-57% for PPV and 0.4-0.6 for ρ, whereas for 9-dB case they were included 

in 66-69% for Acc, 79-81% for TPR, 80-83% for PPV. 
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respectively), thus encouraging the use of the proposed algorithm for reliable fHR monitoring. In 
this regard, higher variability can be appreciated in the 9-dB subset distributions with respect to 
the other sets, even if performance proves to be good, with all 25th percentiles standing above 
94%, 96.5% and 97% for Acc, TPR, and PPV, respectively.  

Furthermore, when looking at morphology preservation metrics, some interesting insights can be 
provided. In fact, focusing on Figure 3.4, the fECG signals seemed to be faithfully recovered from 
a morphological perspective, with small distortions and residuals. In fact, median ρ and rs values 
were found to be higher than 0.99 and 0.87 respectively, whereas median RMSE estimates were 
typically below 0.03, thus suggesting a very high consistency between the recovered foetal 
heartbeats and the corresponding noise-free cardiac cycles. This finding seemed to be stable and 
confirmed in all analysed synthetic subsets, regardless of the entity of the noise affecting the initial 
trans-abdominal recordings, thus guaranteeing good performances also in case of low SNR (see 
Figure 3.5), which is particularly important in the hypothesis of its exploitability in real 
applications. However, some rare exceptions occurred in the 9-dB subset, as shown in Figures 3.4 
and 3.6. Remarkably, morphology-preservation findings are independent from the foetal R-peak 
detection ones, since only the foetal R peaks provided by fecgsyn were considered in their 
computations. 
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Figure 3.5.  A 5-s zoom on two examples of synthetic signals for each subset (SNRmn of 3 dB, 6 dB, 9 

dB, 12 dB). For each example, the pre-processed abdominal ECG (upper row) with reference foetal 

R-peak annotations (blue crosses), the pre-processed noiseless fECG (middle row) and the recovered 

fECG (bottom row) with the detected foetal R-peaks (red crosses) are reported. 
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3.4.2 Algorithm performance on real signals  

Results obtained on real dataset are reported in Figures 3.7 and 3.8 and Table 3.1. Specifically, 
Figure 3.7 reports the overall foetal R-peaks detection performance offered by the proposed 
approach, the Jamshidian-Tehrani and Sameni [158] algorithm, and those achieved on the NI-
fECG signals extracted by Matonia et al. [161] across all the different channels and pregnancies.  

As can be seen from this Figure and Table 3.1, the proposed algorithm offered very good 
performance in foetal R-peak detection, even when compared with effective state-of-the-art fECG 
extraction algorithms. Specifically, from Figure 3.7 it is evident that the overall accuracy is 

 

Figure 3.6.  Two 10-s long examples of synthetic recordings from the simulated pregnancy #2 of the 9-

dB subset (in Panel A and B, respectively). In each panel, the first row reports the pre-processed trans-

abdominal ECG channel with the reference foetal R-peak annotations (blue crosses) provided by the 

fecgsyn simulator, the second row depicts the corresponding noiseless fECG after pre-processing, 

whereas the third row represents the optimal fECG signal extracted by the proposed algorithm along 

with the detected foetal R-peaks (red crosses). As can be seen, despite the adoption of the nonlocal 

median algorithm, some foetal beats are still completely buried by the residual noise, being their R-

peak locations hardly recognized or missed by the proposed algorithm. 
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consistently above 90% (median Acc = 96.5%), a very high rate of positive predictions (median 
TPR = 98.4%) and high precision (i.e., median PPV = 98%), suggesting its potential effective 
exploitation in fHR monitoring devices. Same conclusions can be drawn from Figure 3.8, 
describing the fHR detection efficiency by the three examined approaches across the abdominal 
channels, by analysing the different pregnancies separately. In fact, it is clear that the proposed 
algorithm was able to guarantee stable values across the ten different analysed pregnancies, 
exhibiting mean Acc, TPR and PPV values above 92.5%, 96.5%, 95.7% respectively, in all 
examines cases (see Table 3.1). Furthermore, by looking at Figure 3.9, the capability of the 
proposed algorithm to recover high-quality morphology-preserved fECG signals can be visually 
appreciated, even when maternal and foetal cardiac cycles overlap. 

 

3.4.3 Discussion 

In this chapter, a novel multi-channel fECG extraction algorithm able to provide high quality 
signals for morphological analysis has been presented and assessed. Despite being less 
comfortable for the mother, a multi-channel NI-fECG monitoring would be an advantage with 
respect to single-channel or two-channels systems, allowing for a more accurate foetal cardiac 
assessment and providing many insights on the different cardiac projections. From our results on 
the synthetic dataset, it is evident that the proposed algorithm was able to recover high-quality, 
morphology-preserved fECG signals from non-invasive multi-channel abdominal recordings, 
even when the noise level was significantly high or maternal QRS complexes overlap with foetal 
ones. These findings are further confirmed when looking at Figure 3.5, in which the very high 

 

Figure 3.7.  Results on the real dataset in terms of Acc, TPR and PPV achieved by the proposed 

approach (A, slight grey boxes), the Jamshidian-Tehrani and Sameni [158] algorithm (B, darker grey 

boxes), and those achieved on the extracted fECG signals by Matonia et al. [161] (C, white boxes) 

across all the different channels and pregnancies. 
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Figure 3.8.  Results on the real dataset in terms of Acc (top), TPR (middle), and PPV (bottom),  obtained 

by the novel proposed approach (light grey boxes), the Jamshidian-Tehrani and Sameni [158] 

algorithm (dark grey boxes), and those achieved on the extracted fECG signals by Matonia et al. [161] 

(white boxes) across the ten different analysed pregnancies. 
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resemblance between the noiseless fECG and the recovered fECG is clearly evident, regardless 
of the noise level affecting the abdominal ECG trace.   

Remarkably, the performance was evaluated by introducing realistic non-stationary noise with 
different amplitudes, which hampers a successful fECG extraction by typical processing methods 
as blind source separation algorithms. In this regard, as can be seen from Figure 3.4, a higher 
variability could be appreciated for the 9-dB synthetic subset. This aspect, despite unexpected,  
can be ascribed to the noise nature, which varies among the different simulated pregnancies 
despite same settings were imposed. Specifically, lowest values of Acc, TPR and PPV were found 
for the simulated pregnancy #2 belonging to the 9-dB subset, exhibiting much more correlated 
interferences which not only hamper the foetal R-peak detection of Step 7, but also impede an 
optimal fECG recovery, since they cannot be intrinsically suppressed by the nonlocal median 

Table 3.1.  Results on the real dataset in terms of Acc, TPR, and PPV obtained by the proposed 

approach, the Jamshidian-Tehrani and Sameni [158] algorithm, and on the NI-fECG signals extracted 

by Matonia et al. [161], overall and across the ten different analysed pregnancies. Values are reported 

as mean ± standard deviation. For each case, highest values are presented in bold. 

 Acc [%] 

 overall #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Proposed algorithm 
96.7 

±2.5 

99.6 

±0.0 

95.9 

±0.1 

96.5 

±0.0 

99.9 

±0.0 

99.3 

±0.0 

94.8 

±0.0 

96.4 

±0.0 

92.8 

±0.2 

95.7 

±0.0 

94.0 

±0.0 

Jamshidian-Tehrani 
and Sameni [155] 

66.4 

±28.3 

95.0 

±0.8 

75.4 

±4.8 

72.8 

±11.6 

98.4 

±0.2 

65.6 

±1.9 

37.6 

±6.7 

57.1 

±29.1 

8.2 

±3.4 

71.5 

±2.0 

82.5 

±22.9 

Matonia et al. [158] 
85.9 

±15.3 

95.1 

±4.0 

93.8 

±4.0 

95.0 

±3.8 

97.0 

±4.6 

98.0 

±1.1 

75.7 

±26.0 

71.1 

±19.2 

72.5 

±10.4 

81.9 

±16.0 

79.2 

±12.4 

 TPR [%] 

 overall #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Proposed algorithm 
98.6 

±1.2 

99.8 

±0.0 

98.2 

±0.0 

98.4 

±0.0 

100.0 

±0.0 

99.7 

±0.0 

97.6 

±0.0 

98.5 

±0.0 

96.6 

±0.1 

98.9 

±0.0 

97.6 

±0.0 

Jamshidian-Tehrani 
and Sameni [155] 

75.4 

±26.8 

97.1 

±0.4 

87.1 

±1.8 

85.2 

±9.5 

99.2 

±0.1 

80.1 

±0.5 

56.7 

±5.1 

67.5 

±27.2 

11.8 

±5.1 

82.9 

±2.2 

86.6 

±22.0 

Matonia et al. [158] 
92.7 

±9.8 

97.5 

±2.2 

97.5 

±1.8 

98.0 

±1.8 

98.6 

±2.2 

99.3 

±0.5 

85.3 

±18.8 

81.9 

±13.8 

85.5 

±6.5 

91.5 

±9.1 

91.5 

±7.0 

 PPV [%] 

 overall #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Proposed algorithm 
98.0 

±1.5 

99.7 

±0.0 

97.6 

±0.1 

98.0 

±0.0 

100.0 

±0.0 

99.6 

±0.0 

97.1 

±0.0 

97.8 

±0.0 

95.9 

±0.1 

96.8 

±0.0 

96.2 

±0.0 

Jamshidian-Tehrani 
and Sameni [155] 

76.2 

±24.3 

97.7 

±0.4 

84.7 

±4.5 

82.7 

±7.1 

99.2 

±0.2 

78.4 

±2.3 

52.3 

±8.5 

70.4 

±24.2 

20.6 

±6.4 

83.9 

±0.6 

92.5 

±8.1 

Matonia et al. [158] 
90.6 

±11.0 

97.5 

±2.1 

96.1 

±2.5 

96.8 

±2.2 

98.3 

±2.7 

98.6 

±0.7 

82.7 

±21.3 

82.0 

±13.8 

82.0 

±7.5 

87.5 

±10.7 

84.8 

±8.5 
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technique, since they cannot be completely considered as random noisy fluctuations with respect 
to the foetal cardiac cycle. As such, this correlated noises not only hamper the identification of a 
clean morphology, but also affect the SVD-based foetal R-peak identification, thus leading to 
uncorrected foetal beat template locations. In conclusion, this problem influences both results in 
terms of foetal R-peak detection and morphology preservation, deserving further investigations.  
For the sake of the completeness, two examples of fECG recovered from this subset are reported 
in Figure 3.6.  

 

Figure 3.9.  A 5-s zoom on two examples of real recordings acquired from two different pregnant 

women (in Panel A and B, respectively). Specifically, in each panel, the pre-processed trans-abdominal 

ECG signal (a), in grey) with the provided foetal R-peak annotations (a), blue crosses) are depicted, 

along with the corresponding accurate fECG extracted by the proposed method (b), in black) and the 

optimal fECG extracted by the proposed method (c), in black) obtained by the proposed algorithm, the 

fECG extracted according to Jamshidian-Tehrani and Sameni [158](d), in black) and provided by 

Matonia et al. [161] (e), in black). Red crosses identify the foetal R-peaks detected by the proposed 

approach. All amplitudes are reported in µV. However, different limits on amplitudes are offered, 

especially for (a) and (d), to allow a proper visual inspection of all the signals. 
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As regards the real dataset performance, although the recovered fECG morphologies can be 
qualitatively inspected, as in Figure 3.9, an effective and quantitative morphology-preservation 
assessment could not be enabled because of a missing ground truth on both waveforms and cardiac 
intervals. In this regard, many different algorithms have been proposed [25], [79], [80], [89]–[98], 
as already detailed in Section 1.4.1. However, a direct comparison with them is hampered by the 
adoption of different real datasets in their evaluation. Indeed, only in [165] the Matonia et al. 
antenatal NI-fECG dataset was exploited, but for a fHR detection algorithm assessment, thus 
diverging from the objective of this work. As such, two promising state-of-the-art fECG 
extraction algorithms were selected for the comparison. Remarkably, the proposed algorithm 
performance overcomes that offered by the Jamshidian-Tehrani and Sameni approach [158], and 
by Matonia et al. [161], not only in terms of Acc, but also in terms of PPV and TPR. Furthermore, 
from Table 3.1 and Figure 3.8, it is noteworthy that high-quality fECG signals were extracted by 
the proposed algorithm in different real scenarios, specifically even when the fECG level was 
much lower than noisy interferences, as for pregnancies #8 and #9 showing a mean foetal-to-noise 
SNR equal to -1.6 dB and -0.7 dB respectively, according to [161], and in those trans-abdominal 
recordings in which the mECG content was significantly higher than fECG one (i.e., for 
pregnancies #1 and #9 showing a mean maternal-to-foetal SNR equal to 11.1 dB and 17.7 dB 
respectively, from [161]), thus proving its potential usefulness also in inconvenient and 
troublesome long-term monitoring applications. 

A few limitations on these results should be considered. First, the lack of a clinical validation of 
the recovered fECG morphologies. Second, despite the algorithm performance was examined on 
a real antenatal dataset, no assessment was performed in case of foetal arrhythmias or fECG 
morphology alterations, thus impeding the assessment of the proposed algorithm on unhealthy 
foetuses. Furthermore, due to the limited size of the analysed datasets, no statistical analysis was 
performed in this investigation, thus our results were not corroborated from a statistical 
perspective.  
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Chapter 4    

 

Wavelet-based algorithms for non-invasive foetal ECG post-

processing: materials and methods   

 

4.1 Rationale 

As discussed in Chapter 2, despite the high number of techniques developed in the literature for 
NI-fECG processing, the identification of a clean and undistorted fECG signal remains an open 
research issue [4]. Specifically, even after powerful fECG extraction algorithms, a post-
processing step could be required to enhance the fECG content. In this context, WD has been 
adopted so far for the improvement of the SNR, to achieve a better fECG signal morphology 
[104], [136]–[141], [144]–[151]. However, this technique has been generally applied simply to 
reduce noisy interferences after fECG extraction algorithms, but fundamental evidence about the 
different wavelet implementation choices and parameterizations cannot be found in the scientific 
literature. In the scientific papers reporting on the application of specific algorithms, the datasets 
are of different type and quality, either real or simulated, whenever specified, which hampers the 
identification of an effective wavelet methodology for NI-fECG post-processing applications and 
the possibility to perform a comparative appraisal. Only in [104] and [105], an analysis of 
different WD algorithms and parameters was presented, albeit giving quantitative noise removal 
indications only on a limited set of simulated ECG signals affected by additive white gaussian 
noise in the former, while on a single fECG trace affected by muscular or powerline interference 
in the latter. Hence, a methodological study on the effect of WD on the post-processing of real 
and synthetic NI-fECG signals was missing. Therefore, this study aims to perform such an 
analysis, trying to answer relevant questions related to the optimal choices in terms of the 
granularity in the sub-band decomposition and of the thresholds able to combine an effective 
denoising with the preservation of the morphology of the fECG signal. To this aim, moving from 
our preliminary investigations on the topic [142], the adoption of stationary wavelet transform 
(SWT) and stationary wavelet packet transform (SWPT) was explored with different deepness of 
decomposition, chosen according to the fECG spectral characteristics [166]. In order to assess the 
importance of the dependency between the scaling factors used in the threshold computation and 
the decomposition level, we also compared three thresholds taken from the scientific literature, 
either conventional [167], [168] and unconventional [169], proposing and assessing some 
possible adaptations to SWPT for the latter. The analysis was performed on real and synthetic 
datasets of fECG signals extracted from non-invasive abdominal recordings. Since in the literature 
disparate dataset have been exploited for the NI-fECG WD post-processing assessment, the 
adopted dataset has been freely released by our group for research purposes and can be used as a 
benchmark for fECG post-processing techniques [162]. 

 

4.2 Materials and methods 

WD is a signal processing technique based on the so-called time-scale representation, provided 
by the wavelet transform (WT) [170], [171]. Among the different non-linear denoising 
techniques, WD is widely used in biomedical signal processing because of its good localization 
in the time and frequency domains. This feature is particularly useful when dealing with non-
stationary signals, such as the biomedical ones [172], [173]. Moreover, it allows for noise removal 
when noisy interferences share the same spectral band of the signal of interest. 
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4.2.1 Background on wavelet denoising 

The most widely used form of WT for fECG filtering is the discrete wavelet transform (DWT), 
which is characterised by a small distortion of QRS complex extremes [105]. It is based on the 
dyadic decomposition of the signal in sub-bands of different width [170]. It can be implemented 
by filter banks, including high-pass and low-pass filters whose definition is strictly associated 
with the chosen mother wavelet [170]. Such filters equally split in two the signal band: the outputs 
of this filtering step are known as detail and approximation at the first level and are associated 
with the higher and lower half-bands, respectively. Then, the same process is iteratively repeated 
on the output of the low-pass filter of the previous filtering step until the lowest frequency 
components, i.e., the approximation of the last level, cover the range between 0 and 0� 2y⁄ , where 0� denotes the folding frequency and t the chosen decomposition level. While only the 
approximation coefficients are given as input for the subsequent filtering steps in the WT, both 
detail and approximation are decomposed at each level in the wavelet packet transform (WPT) 
[170], generating a complete decomposition binary tree with consequent sub-bands of the same 
width, equal to 0� 2y⁄ . As such, by WPT, a finer time-frequency analysis is obtained, as can be 
seen in Figure 4.1. 

 

WD is essentially based on three main steps [170], [173]. In the first one (analysis), the signal is 
decomposed in a set of wavelet coefficients by WT; then, detail coefficients are compared to a 
threshold (thresholding phase), and those that exceed the threshold are used, along with the 
approximation, for time-domain reconstruction (synthesis). On the time-scale representation, the 
threshold is typically chosen to be proportional to the amount of noise, which, according to the 
noise affecting the signal of interest, can be estimated at each level by the robust median absolute 
deviation estimator, as [167], [168], [170], [174]: 

{> = 1.4826 ∗ G5?/H��|��> − ���� | ,  
(4.1) 

where ��> represents the detail coefficients at the j-th level while ����  represents their median 
value. Aside from {>, the threshold is defined by a scaling factor that may be fixed or level-
dependent. For instance, the Universal and the Minimax thresholds [167], [168] reported in 
Equations 4.2 and 4.3 are largely adopted. 

¡> = {> -2t�(�) (4.2) 

 

Figure 4.1.  Example of 2-level decomposition of a real fECG signal (@2048 Hz) with WT (on the left) 

and WPT (on the right). 
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¡> = {>(0.3936 + 0.1829 log�(�)) (4.3) 

Both thresholds depend on the signal length �. Once the threshold is computed at each detail 
level, different thresholding approaches can be implemented, but the most typical ones are the so-
called hard thresholding and soft thresholding [167], [168], which are respectively defined as: 

���,_������ =  ¥ ��>,_     /0   |��>,_|  ≥   ¡>    0         3�ℎ567/85            (4.4) 

���,_������ =  ¥   8/¦�(��>,_)�|��>,_| − ¡>         /0   |��>,_|  ≥   ¡>    0                                                     3�ℎ567/85         (4.5) 

 

where ��>,_ is the k-th detail coefficient at level j, and ¡> is the threshold value calculated for the 
same level. 

 

4.2.2 Wavelet denoising algorithms and parameterizations analysed  

In WD algorithms, at each step, different implementation choices can influence the denoising 
result. In this study, some of these choices have been made basing on preliminary investigations, 
literature evidence or considerations associated with the specific problem of fECG denoising.  

At first, the choice of the mother wavelet affects the WD output. During a preliminary 
investigation with different mother wavelets, as confirmed by other studies [175], the Haar mother 
wavelet achieved better results. Thus, it was selected for this work, also taking into account its 
smallest support, the simplicity of the coefficients of its filters and the associated advantages in 
any real-time implementation. Moreover, also hard-thresholding was selected to avoid the 
shrinkage effect associated with soft-thresholding, which reduces the amplitude of the denoised 
signal and negatively affects the quality indexes that could be adopted for the performance 
assessment. Finally, among the different implementations of the DWT, the SWT was chosen a 
priori because of its translation-invariance property [170], [176]–[178]. For the same reasons, the 
SWPT [179], [180] was used for the wavelet packet. 

Conversely, different parameterizations algorithms have been compared and tested, whose impact 
on the denoising process was unpredictable and worth to be analysed, also deepening the 
motivations behind them. As regards the decomposition level, only two different 
parameterizations were tested: six and seven levels, on the basis of the frequency contributions of 
major interest for foetal QRS complexes (8–20 Hz) [78] and the sampling frequency of the 
adopted signals, which was equal to 2048 Hz. In 7-level decomposition, WD was performed from 
1024 Hz down to 8 Hz (because details at level seven, cD7, spread over the 8–16 Hz band); in 6-
level decomposition, the lower limit for the details was 16 Hz (because the last detail, cD6, spans 
over the 16–32 Hz band). As in every conventional WD algorithm, the approximation band was 
maintained without changes, so the low-frequency components associated with the other fECG 
waves are preserved by construction. In WD, the selection of the threshold is particularly relevant 
since it determines the aggressivity of the denoising [105] and, therefore, the output SNR but also 
the degree of morphological distortion. In this regard, the predominant presence of noise was 
assumed to be at high frequencies, whereas a more significant signal content was assumed at low 
frequencies. For these reasons, we decided to test a threshold proposed by Han et al. in [169] for 
chaotic time series, defined in Equation 4.6. 
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¡> =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ {>-2 ln(�)                        � = 1

        {>-2 ln(�) / ln(� + 1)           1 < � < ­  
{>-2 ln(�) /-�               � = ­   

 (4.6) 

 

This unconventional threshold was conceived to perform a more aggressive denoising at higher 
frequencies while being more conservative at lower ones. The Han et al. threshold was compared 
to other conventional thresholds whose adoption is widespread in ECG signal processing, i.e. the 
Universal and the Minimax (reported in Equation 4.2 and 4.3, respectively) [167], [168]. Beyond 
the three thresholds and the two different levels of decomposition, a key aspect of this study was 
the assessment of SWT vs. SWPT. This is an interesting point, since the latter presents a finer 
granularity in the decomposition than the former, thus allowing for a more precise analysis of the 
signal, which is divided in equally sized sub-bands. Despite its use in different application fields 
and the aforementioned potentialities, SWPT, and more generally the WPT, was never used in 
fECG signal processing so far. A tentative approach was proposed only in [181] for powerline 
interference removal. However, to study its applicability to the fECG post-processing denoising, 
the adaptation of the Han et al. threshold was required, since this threshold was never used along 
with WPT and it is based on a level-dependent scaling factor of the estimated noise. Conversely, 
the transposition to the SWPT is direct for the Minimax and the Universal thresholds, by simply 
evaluating {> at each detail node. Therefore, three different adaptations of the Han et al. threshold 
for WPT, detailed in the following section, were compared and the best performing one was 
adopted for the comparisons with the SWT. 

 

4.2.2.1 Proposed adaptation of the Han et al. threshold to WPT 

The Han et al. threshold [169], which was originally conceived for DWT, uses a different scaling 
factor at the different levels (see Equation 4.6), which in turn implies a bind between the scaling 
factor of the threshold and the spectral band of the details. Therefore, it was required to assign a 
scaling factor to each of the sub-bands of the SWPT decompositions. Three approaches were 
conceived, with a growing aggressiveness in terms of denoising. For all of them, {> was evaluated 
at each detail node.  

In the first approach, hereinafter referred to as SWPT-LI, a simple linear interpolation was 
adopted to properly identify a scaling value for each SWT node. Specifically, considering the 
scaling factor values defined for the SWT nodes (i.e., black circles in Figure 4.2), missing values 
for intermediate SWPT nodes were deduced by linear interpolation between consecutive SWT 
nodes enclosing them (as reported by black dotted line in Figure 4.2). To be more conservative, 
the original SWT scaling values were assigned to the SWPT node at the highest frequency in the 
range corresponding to that SWT detail sub-band. For example, by considering a 7-level 
decomposition as in Figure 4.2, SWT details at level three, cD3, spread over the 32–64 Hz band, 
while in the SWPT case the same band is covered by node #4, #5, #6, #7. In order to identify the 
missing scaling values for the SWPT nodes, the scaling factor computed for SWT cD3 was 
assigned to node #7, whereas the values for the remaining SWPT nodes were deduced by linear 
interpolation of the values assumed by node #3 and node #7. This is the most conservative 
threshold. In the second approach, hereinafter referred to as SWPT-CI, the missing threshold 
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values were interpolated by a piecewise cubic Hermite interpolating polynomial. Compared to 
the previous approach, the shape-preserving characteristic of this interpolation method allowed 
achieving a smoothly changing scaling factor across the different nodes of the SWPT 
decomposition. Finally, our approach introduced in [142] was evaluated, hereinafter referred to 
as SWPT-SA (for SWPT spectral adaptation). In this case, for each SWPT node, the definition of 
the scaling factor followed Equation 4.6 by considering as � the SWT detail level whose frequency 
band included that SWPT node. As can be seen in Figure 4.2, this approach is the most aggressive 
one. 

 

4.2.3 Annotated real and synthetic datasets for non-invasive foetal electrocardiography 

post-processing benchmarking 

A dataset composed of real and synthetic NI-fECG signals was created to perform the 
comparative assessment of the different WD methods and freely released [162]. The first subset 
of data was composed of physiologically plausible synthetic fECG signals uncorrupted by the 
maternal interference, whereas the second one was derived from real abdominal recordings after 
a fECG extraction processing based on an adaptive filtering. The two datasets allow studying 
different aspects of denoising. In fact, the signal distortion caused by WD can be evaluated only 
on the synthetic dataset, because a noise-free version of the fECG is available. However, such a 
dataset includes several ideal conditions that are not necessarily met at the output of a non-
invasive fECG extraction method applied to real signals, motivating the adoption of a real dataset 
too. All real and synthetic data are meant to be used as a benchmark for fECG post-processing 
techniques, thus enabling the homogeneous analysis of different denoising algorithms, applied 
after the fECG extraction process, which was missing in the scientific literature. Moreover, these 
data can also be used as raw signals for the evaluation of different foetal QRS detection algorithms 
and fECG extraction methods, since both the corresponding real abdominal signals and the 
annotation of the foetal QRS complexes are provided. 

 

Figure 4.2.  Comparison of the different scaling factors proposed to adapt the Han et al. threshold 

[169] to a 7-level decomposition with SWPT. 

Black circles report the values for the SWT definition. The three SWPT adaptations, namely the linear 

interpolation (SWPT-LI, in black), the cubic interpolation (SWPT-CI, in light grey) and the spectral 

adaptation (SWPT-SA, in dark grey) are reported by putting in abscissa the SWPT nodes corresponding 

to specific spectral ranges: node 1 (8–16 Hz), node 3 (24–32 Hz), node 7 (56–64 Hz), node 15 (120–

128 Hz), node 31 (248–256 Hz), node 63 (504–512 Hz) and node 127 (1016–1024 Hz). 
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The synthetic dataset included 40 fECG signals, generated with the fecgsyn open-source NI-
fECG signal simulator [24], [25] at 2048 Hz, with a duration of 10 s each. By means of this tool, 
it is possible to generate several abdominal mixtures, selecting the beat-to-beat variability, heart 
rate baseline value and changes, SNRfm, the SNRmn, the position and orientation of the foetal and 
maternal hearts, foetal movements and uterine contractions. The toolbox calibrates the 
physiological and instrumental noise components with respect to the mECG signal by choosing 
the SNRfm and the SNRmn. Specifically, this synthetic dataset was created by exploiting a new 
simulation with respect to the one introduced in Section 3.2.3, in order to obtain fECG signals 
affected by typical residual noises occurring after common fECG extraction algorithms as 
adaptive filters, and with similar duration with respect to the real case analysed in this chapter. 
Conversely, longer recordings and more channels were needed in the investigations performed in 
Chapter 3. As such, for the creation of the synthetic dataset adopted in this chapter, all parameters 
were selected in order to simulate physiologically plausible recordings and, wherever possible, in 
accordance with the real dataset acquisition setup. Specifically, the sampling frequency was set 
to 2048 Hz, as in the real dataset, and the signal duration to 10 s. The maternal and foetal heart 
rates were assumed to be fixed at respectively 90 and 150 bpm. The maternal heart coordinates 
were imposed equal to [2.0944, 0.2, 0.4] and those of the foetus to [ −0.412, 0.284, −0.300], as in 
the previous chapter. The coordinates of the virtual surface electrodes detecting the abdominal 
ECGs were set to [-0.524, 0.500, -0.250] and [-0.785, 0.500, -0.250], which correspond to the 
schematic representation depicted in Figure 4.3. Virtual electrodes capture unipolar signals, 
referenced to a common GD electrode, so that a single differential lead was digitally created by 
subtracting the signal detected by the electrode 2 to the one detected by the electrode 1. 

 

 
By construction, the differential horizontal abdominal lead was obtained completely free of the 
mECG components, as it would happen when the signal is produced by a perfect NI-fECG 
extraction stage. For the same reason, we avoided adding realistic noise sources mimicking 
muscular artefacts, baseline wander and electrode movements. Conversely, white and pink noises 
created by using the OSET toolbox [163] were added to the abdominal lead, with amplitudes 
chosen according to the desired SNR. Since the fecgsyn tool does not allow to set directly the 

 

Figure 4.3.  Graphical representation, provided by the fecgsyn tool, illustrating the virtual maternal 

torso, the location of the maternal heart (upper sphere) and the foetal heart (lower sphere). Squared 

boxes, located on the maternal abdomen, indicate electrode positions, and are numbered for the 

corresponding output channel. 1-2 represents the horizontal lead provided in this dataset, which 

simulates the horizontal lead adopted in the real dataset. The reference electrode is indicated by the 

GD circle, approximately placed on the back. 
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SNR of fECG relative to noise, we set the SNRfm to −18 dB, whereas SNRmn  was linearly varied 
in the range between 3 dB and 15 dB, thus producing the 40 synthetic signals released in this 
dataset (see Table 4.1). Two examples of the abdominal lead for two virtual foetuses included in 
this dataset are shown in Figures 4.4 and 4.5. 

 

 

 

Table 4.1.  SNRmn values for all the signals composing the synthetic dataset. 

Signal SNRmn [dB] Signal SNRmn [dB] 

Synth_FECG_1 3.00 Synth_FECG_21 9.15 
Synth_FECG_2 3.31 Synth_FECG_22 9.46 
Synth_FECG_3 3.62 Synth_FECG_23 9.77 
Synth_FECG_4 3.92 Synth_FECG_24 10.10 
Synth_FECG_5 4.23 Synth_FECG_25 10.38 
Synth_FECG_6 4.54 Synth_FECG_26 10.69 
Synth_FECG_7 4.85 Synth_FECG_27 11.00 
Synth_FECG_8 5.15 Synth_FECG_28 11.31 
Synth_FECG_9 5.46 Synth_FECG_29 11.62 

Synth_FECG_10 5.77 Synth_FECG_30 11.92 
Synth_FECG_11 6.08 Synth_FECG_31 12.23 
Synth_FECG_12 6.39 Synth_FECG_32 12.54 
Synth_FECG_13 6.69 Synth_FECG_33 12.85 
Synth_FECG_14 7.00 Synth_FECG_34 13.15 
Synth_FECG_15 7.31 Synth_FECG_35 13.46 
Synth_FECG_16 7.62 Synth_FECG_36 13.77 
Synth_FECG_17 7.92 Synth_FECG_37 14.08 
Synth_FECG_18 8.23 Synth_FECG_38 14.38 
Synth_FECG_19 8.54 Synth_FECG_39 14.69 
Synth_FECG_20 8.85 Synth_FECG_40 15.00 

 

 

Figure 4.4.  Example of the signals involved in the creation of a horizontal abdominal lead of the 

synthetic dataset, characterized by an SNRmn of 3 dB. From top to bottom, the clean fECG signal, the 

pink noise, the white noise, and the noisy fECG signal obtained by their sum. Amplitudes are 

dimensionless. 
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Since this investigation was carried out before public availability of the dataset [161] adopted in 
Chapter 3, a different real dataset was used [162]. Such a real dataset included 42 fECG signals, 
that were extracted from non-invasive recordings from 17 pregnant women with healthy foetuses 
between the 21st and 27th weeks of gestation (see Table 4.2) and sampled at 2048 Hz, with a 
duration of 15 s each. The real dataset was acquired at the Division of Paediatric Cardiology, San 
Michele Hospital, Cagliari (Italy) by our group. The recording protocol was approved by the 
Independent Ethical Committee of the Cagliari University Hospital (AOU Cagliari) and 
performed following the principles outlined in the Helsinki Declaration of 1975, as revised in 
2000. The volunteers provided their signed informed consent to the protocol. The recordings were 
carried out with the patient in a comfortable semi-sitting position. Before applying the electrodes, 
mild skin treatment was performed on the maternal abdomen by using an abrasive gel (NuPrep, 
Weaver and Company, USA) to reduce the skin contact impedance. The signals originated from 
17 pregnant women satisfying the inclusion criteria during the dataset acquisition time frame, i.e. 
healthy foetuses between the 21st and 27th weeks of gestation. For each voluntary woman, only 
one recording session was performed, from which the good-quality abdominal signals’ segments 
were extracted. The gestational epoch was selected to have the best morphological accuracy for 
the transabdominal signals. Specifically, the lower limit is due to the small size of the foetus heart, 
that cannot guarantee a good signal acquisition, whereas the upper limit allows reducing the 
influence of the vernix caseosa, completely covering the foetal skin between the 28th to the 32nd 
week of gestation [102]. In fact, as already discussed in Section 2.1, during this time frame, the 
fECG signal propagation towards the maternal abdomen is hampered, making the foetal signal 
hardly detectable with surface electrodes. After the 32nd week of gestation, this layer usually 
partially disappears but the morphology of the NI-fECG signal is questioned [103].  

The biopotentials were recorded with the Porti7 portable physiological measurement system 
(TMSi, The Netherlands) with 22 bits of resolution (71.5 nV amplitude resolution) and choosing 
a sampling frequency set at 2048 Hz. The biopotential measurement system is characterized by 
an input bandwidth limited by a digital decimation filter to approximately 550 Hz (0.27x the 
sampling frequency). Moreover, it featured both differential and unipolar channels, and every 
unipolar channel is acquired with respect to the average of all the unipolar channels applied on 
the body so that the SNR of the raw signal is influenced by the number of used channels in the 
measurement. Three differential channels were used on the maternal thorax for the acquisition of 

 

Figure 4.5.  Example of a 15-dB horizontal abdominal lead of the synthetic dataset (lowest plot) 

along with the three components giving rise to it: the pure foetal ECG signal (upper plot), the pink 

noise (second row) and white noise (third row). Amplitudes are dimensionless. 
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a reference mECG, whereas 24 unipolar channels were used on the abdomen, in order to have the 
highest possible SNR on the abdominal signals in terms of common-mode rejection. Among the 
unipolar channels, only three of them, clearly indicated in Figure 4.6, were selected to give rise 
to three abdominal differential leads digitally, such as 1–2 to obtain a horizontal lead, 2–3 to 
obtain a vertical lead and 1–3 to obtain an oblique lead.  

Among the various methods available for the extraction of the fECG from non-invasive 
recordings, we chose to exploit a high-performance multireference QR-decomposition with back-
substitution recursive least-squares (QRD-RLS) adaptive filter, available from the authors of 
[182], given its numerical stability and good performance [118]. Adaptive filters are not able to 

Table 4.2.  Real dataset relevant anamnestic information (foetal presentation: L: left, R: right, O: 

occiput, S: sacrum, T: transverse, P: posterior A: anterior) along with the abdominal leads chosen for 

this study. Abdominal signals acquired from the same foetus are grouped together in the same row. 

Real signal 
Week of 
gestation 

Foetus 
presentation 

fECG channel 1 fECG channel 2 

Real_FECG_1 
24 breech, LST horizontal oblique Real _FECG_2 

Real _FECG_3 
Real _FECG_4 

21 breech, RSP horizontal vertical 
Real _FECG_5 
Real _FECG_6 24 breech, RSP horizontal oblique 
Real _FECG_7 26 vertex, ROP vertical oblique 
Real _FECG_8 25 breech, RSP horizontal oblique 
Real _FECG_9 25 vertex, ROP horizontal oblique 
Real _FECG_10 24 vertex, LOP horizontal vertical 
Real _FECG_11 21 breech, RSP horizontal oblique 
Real _FECG_12 25 breech, RSP horizontal oblique 
Real _FECG_13 24 breech, LSP horizontal vertical 
Real _FECG_14 24 breech, LSP horizontal oblique 
Real _FECG_15 

21 vertex, OP vertical oblique 
Real _FECG_16 
Real _FECG_17 22 breech, LSP vertical oblique 
Real _FECG_18 24 vertex, LOP vertical oblique 
Real _FECG_19 26 vertex, ROP horizontal oblique 
Real _FECG_20 25 breech, LSP vertical oblique 
Real _FECG_21 23 vertex, LOP vertical oblique 

 

 

 

Figure 4.6.  Electrode positioning for the real dataset acquisition. Circles indicate the electrodes 

utilized for unipolar recording while squares, pentagons, and rhombuses the electrodes for thoracic 

bipolar ones. Specifically, black circles represent the unipolar electrodes selected for the construction 

of the differential abdominal leads. 
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reject noise sources not in common with the reference channels and, as such, they demand a post-
processing denoising stage more than other techniques. Compared to other approaches, such as 
blind source separation [183], [184], adaptive filters are real-time algorithms able to extract the 
fECG from a reduced number of abdominal electrodes, which can be useful for wearable systems 
[185] and real-time embedded platforms [184]. The three thoracic leads were used as reference 
signals in order to produce a good representation of the mECG on the abdomen. The forgetting 
factor λ was set to 0.999 while the number of filter coefficients was set to 20, in accordance with 
previous studies [159]. Considering that the recording device adopted for the raw data collection 
was DC-coupled, all the leads were pre-processed to reduce the baseline wandering artefact in 
order to facilitate the QRD-RLS adaptive filter processing. In fact, such an artefact appears in 
different forms in the various leads and cannot be reduced by the application of the adaptive filter. 
Pre-processing consisted of a high-pass linear-phase equiripple FIR filter with a cut-off frequency 
of 1 Hz. Compared with the current guidelines that would impose a 0.67 Hz limit for the cut-off 
frequency of ECG signals [186], some studies on non-invasive fECG proved that a higher cut-off 
frequency of the high-pass filter allows achieving better results, still preserving the low-frequency 
components of the ECG, mainly related to P and T and to the ST segments [159]. Remarkably, 
the frequency range affected by this pre-processing stage does not interfere with the assessment 
of the WD approaches but only with the fECG extraction process, since the removed frequencies 
would lie in the approximation band which is not affected by the denoising. For the sake of 
completeness, the whole processing chain used to extract the fECG is presented in Figure 4.7. 

 

The annotation of the real foetal QRS complexes was performed manually and validated by an 
expert paediatric cardiologist with the help of a simultaneous cardiac foetal pulsed-wave Doppler 
signal recorded during the procedure, thus providing a mechanical reference for the 
electrophysiological signal. Despite the low SNR of some real traces, the presence of three 
different simultaneous abdominal leads (horizontal, vertical, and oblique) helps the R-peaks an- 
notation, enabling the identification of clear foetal R peaks at least in one good-quality trace. The 

 

Figure 4.7.  Schematic representation of the whole processing chain for fECG extraction. Three 

thoracic leads along with each abdominal trace are pre-processed with a high-pass (HP) filter with a 

cut-off frequency of 1 Hz and passed to the QRD-RLS adaptive filter for fECG extraction. Red dots 

mark the foetal QRS complexes. 
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annotation procedure was verified before and after the fECG extraction process to provide the 
most accurate indication of the foetal QRS complexes. Some examples of the extracted fECG are 
shown in Figure 4.8. From this inspection, it emerged that some extracted fECG channels were 
unreadable, from a clinical perspective. In order to use the same number of leads for each 
recording, the best two fECG traces per recording were selected to be released and exploited in 
the NI-fECG post-processing study (see Table 4.2).  

For the computation of the WD threshold according to the different methods presented in Section 
4.2, for synthetic signals the noise level {> was evaluated on a segment presenting only noise, i.e. 
approximately each interval between two foetal beats, since the mECG was not present. On the 
real dataset, the noise level {>  in the different sub-bands was hampered by the possible presence 
of mECG residuals after the fECG extraction. In this case, a part of the signal representative only 
of the noise could be identified on the fECG leads between the time instants comprised between 
the end of a maternal T wave and the beginning of the maternal P wave of the next beat (delineated 
in a thoracic lead, where only the mECG is visible, by using the algorithm presented in [187]). 
This avoided considering maternal components in noise estimation. However, such signal 
segments were excluded in the presence of a foetal QRS complex in that interval.  

 

 

4.3 Methods for the comparative analysis 

The different parameterizations of the WD methods assessed in this NI-fECG post-processing 
study are summarised in Figure 4.9. In this regard, the performance of the different WD 
approaches and parameterizations were systematically analysed by exploiting several indexes: the 
SNR, the foetal QRS detection Acc, and the foetal QRS detection TPR, or Sensitivity. On the 
synthetic dataset, the following indexes were also evaluated:  the RMSE, the ρ and the rs. 

 

Figure 4.8.  Example of raw abdominal traces (upper plots) and the corresponding extracted foetal 

ECG signals (lower plots). From the left to the right: horizontal, vertical, and oblique leads. Red 

markers indicate the manually annotated foetal R peaks. 
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The SNR is widely used to evaluate the quality of the trace in terms of power in the signal of 
interest and the noise sources. It was computed as: 

����® = 20t3¦�b(�ff� 4{)⁄  (4.7) 

where �ff� is the peak-to-peak amplitude of the fECG and { is the standard deviation of the 
noise. For the sake of the SNR calculation only, the estimation of the standard deviation of the 
noise was conceived as the median of the standard deviations computed on each interval between 
two foetal beats. This approach considers the presence of both the noise and potential residual 
mECG (the latter only in the real dataset). Moreover, before the WD, we computed the �ff� of 
a given signal on its average QRS complex, obtained by synchronized averaging, to reduce the 
inter-beat amplitude variability and the noise effect. On the simulated dataset, all foetal peaks 
were considered in the averaging since the signals were free from the mECG interference. In the 
real dataset, where mECG residuals could be present after the fECG extraction algorithm, the 
QRS averaging involved only those complexes exhibiting a Pearson’s correlation coefficient ρ 
above a given threshold, empirically chosen to be 0.6. If the number of correlated beats was lower 
than four, the signal was treated as non-deterministic, then substituting �ff� by the computation 
of four times the median standard deviation of such beats. To evaluate the SNR after the WD, we 
computed �ff� as the median value of the peak-to-peak amplitudes of highly correlated beats or 
of all beats for real and simulated signals, respectively. In every case, the time support of the 
foetal QRS complex was considered equal to 40 ms, centred around the R peak. Taking into 
account that the measurement on the QRS complex is limited to its peak-to-peak-amplitude, the 
chosen size allowed including only the relevant parts of the complex, according to the literature 
[164]. Moreover, the adoption of a larger time frame would not change the results unless for the 
possible inclusion of noise spikes. Since the denoising should in principle help a foetal QRS 
detection algorithm, another performance index considered in this work was the Acc and the TPR 
of a state-of-the-art peak detector [110], computed as in Equations 3.27 and 3.28, respectively. 
All these performance indexes are important on real recordings because the actual fECG 
waveform morphology is unknown, and it is impossible to assess the distortion introduced by the 
different post-processing methods. Conversely, this is possible on the simulated signals. To this 

 

Figure 4.9.  All the wavelet parameterizations investigated in this study. Two translation-invariant 

wavelet transforms (SWT and SWPT) along with two different decomposition levels (six and seven) and 

three thresholds (Minimax, Universal, Han et al. [169]) were assessed and compared. Specifically, due 

to its level-dependent scaling factor, three different SWPT transpositions were proposed and evaluated 

for the Han et al. threshold (SWPT-LI, SWPT-SA, SWPT-CI). 
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aim, the RMSE, ρ and Spearman’s rank correlation coefficient rs were evaluated between each 
WD-processed simulated signal and the corresponding noiseless fECG signal. For each signal, 
considering an interval of 300 ms around each foetal R wave, 120 ms before and 180 ms after 
[164], the three indexes were computed for each beat and their median values were used as 
measures of signal morphology preservation, as in Chapter 3. 

As regards the different comparisons between the WD methods along with the associated 
statistical analysis methodology, in order to reduce the number of comparisons, an assessment 
was preliminarily performed to identify the best adaptation of the Han et al. threshold to SWPT 
to be used for the subsequent analyses. To this aim, we compared all the available performance 
indexes computed on both datasets for each tested decomposition level. Then, we selected the 
best adaptation Han et al. threshold to SWPT for the subsequent analyses. At this point, we could 
consider three thresholds (Minimax, Universal and Han et al.) for each of the two WD methods 
(SWT and SWPT). On them, a statistical analysis was performed to investigate the following 
aspects: 

(i) WD effectiveness in terms of SNR, Acc and TPR. The comparisons were performed by 
considering denoised signals vs. raw signals, on both datasets, separately for six and 
seven decomposition levels 

(ii) superiority of SWT or SWPT in terms of SNR, Acc and TPR for both datasets and ρ, rs 
and RMSE for the synthetic one only, for each decomposition level and threshold 

(iii) the best decomposition level for a given method, i.e., by considering the comparison 
among SWPT or SWT approaches grouped by decomposition level. The analysis was 
performed on the same metrics as in (ii) 

(iv) the best WD approach for each of the two decomposition levels by comparing the 
performance of a given method (SWT and SWPT) and threshold against all the other 
approaches available at that decomposition level. The analysis was performed on the 
same metrics as in (ii). 

The schematic representation of the comparative assessments discussed above is depicted in 
Figure 4.10.  

For the statistical analysis, the normality of the distributions was preliminarily investigated by 
using the Lilliefors test. If a result did not satisfy the assumption of a normal distribution, a non- 
parametric statistical test was adopted. In specific, we used the Kruskal–Wallis test when 
comparing more than two distributions whereas the Wilcoxon test when comparing two 
distributions only. When the results of the Lilliefors test did not reject the assumption of a non-
normal distribution, we adopted the one-way ANOVA instead of the Kruskal–Wallis test and the 
Student’s t-test instead of the Wilcoxon test. Bonferroni correction was applied only when the 
goal of the analysis was the identification of the best solution, i.e. for the analysis (iv). In all the 
statistical tests, we considered p < 0.05 for statistical significance. All data processing was 
performed in MATLAB v2018b (MathWorks Inc., MA, USA). 
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Figure 4.10.  General scheme of all the comparative analyses performed in this work. Dashed arrows 

represent the different comparisons carried out whereas solid arrows the wavelet parametrizations 

involved in each analysis. Two wavelet transforms (SWT and SWPT), along with the chosen levels of 

decomposition (6 and 7) and three thresholds (Minimax, Universal, Han et al.) were included in the 

comparative analyses. For the Han et al. threshold, the best SWPT adaptation identified in this work 

is reported. 
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4.4 Results and discussion 

4.4.1 Best adaptation of the Han et al. threshold to SWPT 

The analysis aiming at identifying the best adaptation of the Han et al. threshold to SWPT did not 
reveal any statistically significant difference among the three proposed approaches on both 
datasets. However, all methods improved the quality of the signals in terms of SNR (p < 0.05 for 
the real dataset, p < 0.0001 for the synthetic one) and TPR for real signals (p < 0.0004) compared 
to the raw noisy signal, as can be seen in Figure 4.11, but not in terms of Acc in the QRS detection 
(data not shown). Despite the non-significant statistical difference, the SWPT-LI was selected for 
the subsequent analyses because it is simpler than SWPT-CI and exhibits qualitatively better 
performance than SWPT-SA in terms of SNR on real signals, as can be seen by looking at the 
SNR median values in Figure 4.11. 

 

4.4.2 WD effectiveness 

As can be seen in Figure 4.12, the behaviour of WD algorithms with their various 
parameterizations was different for the synthetic and real dataset. On the former, the SNR was 
always significantly improved (p < 0.0001  and p < 0.0004, respectively for six and seven 
decomposition levels) whereas on the latter only the Han et al. threshold produced a significant 
improvement in terms of SNR (p < 0.01) with all the parameterizations. However, Minimax 
produced a significant SNR enhancement only with SWT (p < 0.004) whereas Universal generally 
produced a significant reduction of the SNR (p < 0.04, for all but the SWT with seven 
decomposition levels). Focusing on the accuracy in the QRS detection, although with 6-level 

 

Figure 4.11.  SNR and TPR performance indexes for SWPT-CI, SWPT-LI and SWPT-SA denoised fECG 

signals with 6-level or 7-level decompositions and for raw noisy fECG signals. Top: results on the 

synthetic dataset. Bottom: results on the real dataset. 
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decompositions the median values of Acc for all the approaches exceeded those achievable on the 
noisy raw signals, no statistical significance was reached except for the SWT with Minimax on 
synthetic signals (p = 0.04). Moreover, with 7-level decompositions, WD significantly degraded 
the Acc with SWPT Universal and Minimax (p < 0.04), on the synthetic dataset, and with all the 
methods (p < 0.02) but the SWT Han et al. on the real one. Differently, TPR analysis showed that 
WD generally improved the QRS detector sensitivity with respect to the raw signals. On the real 
dataset, this was significant for all the algorithms (p < 0.001), whereas on the synthetic dataset 
statistical significance was achieved only by Minimax (p < 0.03 for both levels, SWT and SWPT) 
and Universal (p = 0.02, with 7-level SWT, and p = 0.03, with 6-level SWPT). 

 

4.4.3 Superiority of SWT or SWPT 

By exploiting the synthetic dataset, the results of this assessment in terms of the morphology 
preservation quality indexes are presented in Figure 4.13. Even though the results appear to be 
quite similar, the statistical analysis revealed significantly better morphology preservation by 
SWT with respect to SWPT in terms of ρ, RMSE and rs (p < 0.04 for all thresholds and levels, 
except for the RMSE with Minimax at level six where no statistically significant difference was 
observed). Moreover, by considering the performance indexes reported in Figure 4.12, SWT was 
always superior in terms of SNR (p < 0.0008) on real signals, whereas on the synthetic ones this 
superiority was statistically significant (p < 0.0003) for Universal (both levels) and for Han et al. 
and Minimax (only for level seven). The same holds also for the Acc in all 7-level approaches on 
real signals, with a noteworthy improvement with Minimax (p = 0.004) and Han et al. (p = 

 

 

Figure 4.12.  WD effectiveness in terms of SNR, Acc and TPR on the synthetic dataset (top) and the 

real one (bottom). 
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0.0009), and on synthetic signals for Minimax (p = 0.0003, level seven). No statistical difference 
was found in terms of TPR. 

 

4.4.4 Best decomposition level 

Figure 4.14 shows that six decomposition levels allowed reaching significantly higher rs values 
on both SWT and SWPT (p < 0.01) on the synthetic signals. No other morphological performance 
indexes were revealing a statistically significant difference between the two methods. By looking 
at the other indexes, six decomposition levels were significantly better in terms of Acc for the 
SWPT only (p = 0.003) on the synthetic dataset and for SWT and SWPT on the real one (p = 
0.0006 and p < 0.0001, respectively). Conversely, seven decomposition levels revealed 
significantly better results in terms of SNR for both SWT and SWPT (p < 0.02) on the synthetic 
dataset and only for SWT on the real one (p < 0.05). TPR followed a similar trend only on the 
real dataset (p = 0.04 and p = 0.03 for SWT and SWPT respectively). 

 

4.4.5 Best WD approach 

For the last analysis, every parameterization was compared with all the others, by keeping 
separate the different levels. On the synthetic dataset, the SWT with Han et al. threshold stood 
out as the best choice in 7-level decomposition in terms of ρ only (p < 0.0001 for all possible 
paired comparisons). On the real dataset, again SWT with Han et al. threshold outperformed all 
the other methods, this time in terms of SNR enhancement (p < 0.003) with both levels (Figures 
4.12 and 4.13). 

 

4.4.4 Discussion 

The adoption of translation-invariant wavelet decomposition for noise reduction was already 
proven to be effective in fECG morphology preservation, both using complex wavelets [147] and 
comparing the same processing with the decimated WT [150] . However, focusing the attention 
on real WT only, no quantitative comparison can be found in the scientific literature for the fECG 
problem, since in [150] only simulated signals with unspecified characteristics and extracted by 
an adaptive neuro-fuzzy interference system (ANFIS) have been exploited. Moreover, even 

 

Figure 4.13.  Results obtained with the three selected thresholds on the simulated dataset for both 

decomposition levels (six and seven) and WD methods (SWT and SWPT) in terms of morphology 

preservation. Specifically: Pearson’s correlation coefficient (ρ), RMSE and Spearman’s rank 

correlation coefficient (rs) distributions are reported in the different analysed cases. 
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though the SWPT was identified as a tool for powerline interference suppression on simulated 
fECG signals, albeit in an unconventional denoising approach [181], no previous work focused 
on its use on wide-band noise removal in fECG signals. Therefore, to the best of our knowledge, 
this study assessed in detail for the first time this kind of wavelet decomposition for fECG post-
processing. Since one of the selected thresholds, the Han et al. one, was conceived for DWT and 
not for SWPT, three different adaptations to the SWPT were proposed and evaluated, which 
revealed a substantial equivalence from a statistical perspective. These findings confirmed the 
importance of WD as fECG post- processing tool. This result is in line with previous works, al- 
though in those cases WD was performed in different ways and after different fECG extraction 
algorithms [139], [144], [148], [151].  

Moreover, the datasets that have been exploited in the related works [104], [136]–[141], [144]–
[146], [148], [149], [151], both real and synthetic, were heterogeneous, so that a quantitative 
comparison with these results was not possible. Furthermore, a quantitative analysis of the post-
processing results is frequently missing in the related works [140], [141], [148], [151] or a 
complete definition of the selected implementation choices is not clearly stated [136], [138], 
[145], [146], [148], [149]. Nevertheless, in [144] the effectiveness of WD as a post-processing 
tool for fECG signals was claimed, revealing how this technique could offer better performance 
in terms of fECG enhancement than its use as pre- processing or as both pre- and post-processing 
steps. However, the extraction process was carried out by a polynomial network and quantitative 
analysis was performed only on synthetic data in terms of SNR, whose improvement cannot be 

 

 

Figure 4.14.  Results obtained on the simulated dataset (first two columns) and on the real one (last 

two columns) for 6-level (Level 6) and 7-level (Level 7) decompositions, grouping all approaches by 

SWT and SWPT. The considerable number of outliers is due to the heterogeneity of the grouped 

distributions. 
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clearly quantified. A similar assessment was proposed in [139], where ANFIS was adopted as a 
separation algorithm. However, in this case, the adoption of WD is totally different from the 
typical use, retaining only the approximation coefficients and thus producing only a low-pass 
filtering behaviour. WD introduced an SNR improvement also in [145], where the extraction of 
foetal components was not performed due to the different recording system, and in [105], in which 
the WD noise removal was assessed on a single simulated trace affected by muscular or powerline 
interference. In the light of this scenario, our findings quantitatively revealed the performance of 
WD as fECG post-processing tool and, thanks to the open data availability [162], can provide a 
benchmark for other fECG post-processing algorithms. Moreover, our results can be generalised 
to different fECG recordings and projections, since our real dataset included different foetal 
heartbeat morphologies, as can be seen in Figure 4.15.  

 

 

From our results, it was clear that WD was generally unsuccessful in improving the accuracy of 
the foetal QRS detection, at least with the foetal QRS detector chosen in this work [110]. In fact, 
by focusing at first on the real signals, WD algorithms generally improved the accuracy of the 
foetal detection with 6-level decompositions, but not significantly, probably because of the high 
Acc values already achieved on the raw signals. On the other hand, forcing the denoising effect 
until 8 Hz (i.e. with 7-level decompositions), the accuracy performance was generally worse 
except for Han et al. threshold in SWT implementations. Nevertheless, the TPR analysis revealed 
that WD significantly enhanced the sensitivity of the foetal QRS detector on both datasets. By 
looking at Equations 3.27 and 3.28, the Acc and TPR behaviours can be related to the increase in 
FP number when using WD, probably due to the aggressive denoising that emphasized the 
residual artefacts compared with the background noise, challenging the QRS detector.  

Despite the results obtained on the QRS detection, the SNR was generally improved by WD, as 
expected [144]. On the synthetic signals, this finding was statistically demonstrated for all the 
methods, thresholds, and levels, whereas SNR results showed less homogeneity on the real 
signals. Excluding Han et al. threshold, which presented a significantly higher SNR regardless of 
the WD method and the decomposition level, Minimax achieved significant improvement only 
when used in combination with the SWT. On the other hand, Universal generally failed in 
improving the SNR of the signal. This evidence is consistent with [104], [138], where the 
superiority of Minimax with respect to Universal was proven considering hard thresholding, 
despite their quantitative analyses were carried out only on simulated data. However, this 
difference in SNR performance among thresholds is probably due to the shrinkage effect due to 
the threshold amplitudes. In fact, the Universal threshold presented the higher scaling factor of {> 

 

Figure 4.15. Main different foetal heartbeat morphologies from the real dataset obtained by 

synchronized averaging of the highly correlated beats (ρ > 0.6) after WD post-processing exploiting 

SWT with 7-level decomposition and Han et al. threshold [169]. 
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with respect to the other thresholds, whereas Han et al. threshold achieved higher values than 
Minimax up to level 3, i.e. at higher frequencies, being more conservative below 128 Hz.  

As regards the WD methods, SWT-based approaches outperform the more complex SWPT-based 
ones in fECG post-processing. Our analysis showed that SNR and the QRS detection Acc were 
significantly higher in the SWT-based algorithms with respect to SWPT-based ones, despite these 
findings were not always statistically significant. Moreover, on synthetic signals, the SWT 
methods demonstrated a significantly superior capability to preserve the fECG signal 
morphology. Overall, the SWT outperformed the SWPT, and the adoption of seven levels for the 
decomposition of the signal provided more relevant improvement in the performance of the 
former method compared with the latter. By comparing all possible WD methods involved in this 
study, the Han et al. threshold with SWT decomposition significantly outperformed all the other 
approaches in terms of ρ (on the synthetic dataset) and SNR (on the real dataset), despite statistical 
significance was rarely achieved. This result further confirmed the superiority of the SWT over 
the SWPT.  

Finally, by focusing on the level of decomposition, 6-level decomposition preserved the most the 
morphology of the underlying fECG signal, because the rs (on the synthetic dataset) and the Acc 
(on both datasets) were significantly higher at this level for all the WD methods. These findings 
suggested a less aggressive denoising with six levels of decomposition with respect to seven 
levels, as confirmed by the higher SNR values of the latter on both datasets, at least for the SWT. 
This result is coherent with the fact that 7-level decompositions introduce thresholding in a part 
of the signal band that is preserved in the 6-level case. However, Figure 4.16 visually shows how 
the SWT reached a better performance in terms of waveform distortion than the SWPT (which in 
turn reduces the amplitude of the foetal R peaks). Figure 4.16 also suggests that, regardless the 
chosen WD method, the different thresholds can produce substantial differences in the 
morphology of the fECG trace, particularly emphasized by the Universal threshold that often 
leads to complete cancellation of the foetal beats. 

Qualitative and quantitative analyses confirmed that the Han et al. threshold with SWT is the best 
approach for the denoising of fECG signals after signal separation, even though the Minimax 
threshold also achieved good denoising performance. Finally, even though WD is typically 
suitable for real-time processing, some points must be analysed. Remarkably, after setting the 
signal length and the level of decomposition to be exploited, the computational complexity 
associated to the three thresholds compared in this work can be considered equal, since all the 
scaling factors can be pre-computed off-line. Nonetheless, in this context, the computational 
complexity of the fECG post-processing is not considerably affected by the chosen WD algorithm 
but rather by the other algorithms involved in the evaluation of the {>, i.e. the fECG extraction 
method, the mECG delineator and the foetal QRS detector, whose computational load depends 
on the selected algorithms and its estimation is beyond the scope of this study. 
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Figure 4.16.  Example of SWT and SWPT denoising results with both levels and decompositions with 

Universal (A, D for level six and seven respectively), Minimax (B, E for level six and seven respectively) 

and Han et al. threshold [169] (C, F for levels six and seven, respectively). On the right, results 

obtained on a real extracted fECG signal from an abdominal recording were reported in µV; on the 

left, results obtained on a synthetic signal were represented. Zoom on one-second of each denoised 

fECG signal is reported to appreciate foetal beats morphology after wavelet denoising, with the 

original foetal beats in case of synthetic data and with the noisy traces in case of real ones (in grey). 
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Chapter 5    

 

Wavelet-based algorithms for non-invasive foetal ECG post-

processing: a methodology review 

 

5.1 Rationale 

As already detailed in Chapter 4, different scientific works exploited WD for NI-fECG 
enhancement. However, WD has been generally applied to reduce noisy interferences after fECG 
extraction algorithms, without providing evidence about the different wavelet implementation 
choices, parameterizations nor the dataset characteristics. As such, on the basis of the previous 
methodological study on the effect of WD on the post-processing of NI-fECG signals [142], 
[166], in order to potentially identify the best performing approach for the fECG post-processing, 
a systematic and quantitative comparative review of the different WD algorithms introduced for 
NI-fECG post-processing was performed. To this purpose, WD algorithms proposed in the 
scientific literature were accurately implemented in MATLAB or applied by exploiting ad-hoc 
software tools provided by the authors. However, when WD parameterizations were not always 
clearly stated, the most frequently adopted WD parameters and those referred to as the best 
options in our previous study [166] (see Chapter 4) were exploited, along with the decimated 
DWT. Performances were evaluated by providing quantitative evidence of WD effectiveness in 
noise reduction and morphological preservation on the same synthetic NI-fECG dataset described 
in Chapter 4, which was freely released by our group for the benchmarking of NI-fECG post-
processing algorithms [162]. Results were analysed in terms of SNR, Acc and TPR of a foetal 
QRS detector [110], RMSE, Pearson’s correlation coefficient ρ and Spearman’s rank correlation 
coefficient rs. Specifically, in order to summarize all these figures of merit and consider all of 
them simultaneously, a single performance index (PI) was conceived by exploiting PCA. After 
the best parameterization settings were identified for those algorithms in which different choices 
were possible, all WD approaches were statistically compared to identify a possible optimal 
solution for NI-fECG enhancement. 

 

5.2 Materials and methods 

In the light of the WD basic principles illustrated in Chapter 4, the parameterizations for a WD 
algorithm are mainly identified in the WT adopted for the decomposition, the mother wavelet, the 
decomposition level, the threshold definition, and the thresholding approach. In the scientific 
literature, different WD algorithms have been proposed for NI-fECG post-processing [104], 
[105], [136]–[151], [166], [181]. However, some of them [136], [188] did not provide sufficient 
information for their effective implementation, i.e. did not explicit most of the aforementioned 
parameterizations, thus preventing an effective comparison. Moreover, another work [181] 
analysed a SWPT-based methodology on fECG signals but for powerline interference suppression 
only, without taking into account any broad-band noise as in typical applications, and as such it 
was not included in this study. Overall, the methodological analysis was carried out on 17 WD 
methods, which are better explored in the following section. Wherever the authors did not specify 
any of the parameterizations needed for the algorithm implementation, the most frequently 
adopted WD parameters and/or those identified as the best options in Chapter 4 were exploited, 
along with the decimated DWT, which is most often employed for this purpose. Remarkably, as 
already detailed in Chapter 4, the decomposition level identifies the frequency sub-bands on 
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which the denoising is performed, according to the adopted sampling frequency. Therefore, in 
order to implement each WD algorithm as closely as possible to its original definition, in this 
study the decomposition level was adapted by based on the limits of details and approximation 
sub-bands when taking into account the sampling frequency of the exploited synthetic dataset 
[162], i.e. 2048 Hz.   

 

5.2.1 Non-invasive fECG WD-based post-processing algorithms included in the study 

The quantitative analysis was performed on 17 WD algorithms, detailed hereinafter and 
summarized in Table 5.1. Each algorithm was characterized by a single set or multiple sets of 
parameters, in terms of wavelet decomposition, mother wavelet, threshold definition, thresholding 
approach and level of decomposition. Furthermore, in case of missing settings, parameterizations 
were implemented as detailed in the next Section 5.2.2. 

The first algorithm included in this study was proposed by Ahmadi et al. [144]. They adopted the 
Daubechies8 (db8), the Symlet8 (sym8) and the Coiflet4 (coif4) as mother wavelets and the 
Universal threshold (see Equation 4.2). Following [144] and considering the different nature of 
the noisy interferences affecting the adopted synthetic dataset, the amount of noise was estimated 
as: 

{> = 1.4826 ∗ G5?/H����>  (5.1) 

where ��> represents the detail coefficients at the j-th level, computed on the full-length fECG 
signal.  

In the work by Castillo et al. [104] different WD parameterizations were tested and compared. 
Finally, the authors identified the db6, a 3-level decomposition, the Minimax threshold and the 
soft thresholding (see Equations 4.3 and 4.5, respectively) as best solutions for the NI-fECG 
denoising. Nonetheless, since our simulated signals are not affected by baseline wandering 
artifact, its suppression by zeroing the approximation, as suggested in [104], was not 
implemented. Moreover, the authors imposed the same DWT decomposition level for different 
NI-fECG datasets, i.e., the DaIsy dataset [189], the Non-Invasive Fetal ECG Database [190] and 
the Abdominal and Direct Fetal ECG Database [81], which however are characterized by different 
sampling rates, thus preventing an accurate WD adaptation to the signal frequency band. 
Conversely, the mathematical formulation for the {> followed the estimation expressed in 
Equation 4.1. 

A WD algorithm was introduced by Jamaluddin et al. [145], in which the DWT was exploited 
along with the Biorthogonal 1.5 (bior1.5) mother wavelet, hard thresholding (see Equation 4.4), 
five levels of decomposition and a custom threshold. However, since the decomposition level was 
assumed by the authors for a sampling frequency of 8000 Hz, it was fixed to five in order to be 
employed on our signals, which are sampled at 2048 Hz. Moreover, since the threshold was not 
analytically described in [145], it was deduced by the inspection of Figure 6 in [145] and adapted 
according to the signal amplitude in order to resemble the most the original WD approach in 
[145]. 

Another work by Ivanushkina et al. [148] adopted WD after fECG extraction. In their study, ad-
hoc synthetic NI-fECG signals and real recordings from the Abdominal and Direct Fetal ECG 
Database [81], [190] were denoised by using a 6th-order symmetric mother wavelet, a 5-level 
decomposition and a custom thresholding, which zeroes all detail coefficients at the first and 
second levels while adopting soft thresholding on the third one. As such, by adapting the 
decomposition level to six according to the characteristics of our synthetic dataset, also the 



81 

thresholding approach was revised by zeroing the same sub-bands (i.e., all detail coefficients of 
the first three levels) while considering the soft thresholding in the fourth detail level, ranging 
from 64 Hz to 128 Hz in our case. Furthermore, since the mother wavelet was not clearly 
identified, all the 6th-order wavelets meeting the requirements of symmetry, i.e. the sym6 and the 
bior2.6, were included and tested in following analyses.  

In [149], Jadhav and Dhang employed the coif5 wavelet and a 5-level decomposition for the post-
processing of two available real NI-fECG datasets [81], [190] sampled at 1000 Hz. As such, in 
order to faithfully reproduce their approach, a 6-level decomposition was considered on our 
simulated dataset. 

Conversely, in [138] Shayesteh and Fallahian investigated the role of WD in combination with 
BSS approaches. They adopted different parameter settings, concluding that several mother 
wavelets (i.e., db3, db4, db5, db6 and from the biorthogonal family) in combination with the 
Rigrsure threshold and hard thresholding [167], [168] allowed for getting best results. As detailed 
in Table 5.1, the authors considered two different decomposition levels (i.e., six and seven) 
without specifying any information about their data sampling rate. As such, following the 
approach adopted in the previous Chapter 4, both 6-level and 7-level decompositions were 
examined in this comparative analysis.    

Moreover, Swarnalatha and Prasad [139] considered a custom WD denoising, in which only the 
approximation was preserved. In their algorithm, a 5-level decomposition based on DWT was 
employed on several datasets digitalized at different sampling rates, thus inhibiting a proper 
adaptation according to the signal band in this study. Moreover, since the authors declared that 
the coiflet mother wavelets were used for the decomposition without identifying the order, all 
coiflets available in MATLAB were tested and compared in this investigation. 

In their work [140], Vigneron et al. used the biorthogonal wavelet family along with the Rigrsure 
threshold and 6-level decomposition for the WD post-processing of NI-fECG signals sampled at 
1000 Hz. Therefore, in this case, a proper adaptation of the decomposition level according to the 
sampling rate of our dataset was used, by considering seven levels of decomposition. 

In Wang et al. [141], a WD stage based on a 5th-order symmetric biorthogonal wavelet and 4-
level decomposition was tested on the DaIsy dataset [189], which is sampled at 250 Hz. As such, 
in its implementation, a 7-level decomposition was considered, whereas for the missing 
parameters the choices will be explained in the next section. 

Also Jaros et al. [143] integrated a WD post-processing stage in their hybrid NI-FECG extraction 
system. In their work, the authors adopted a WD post-processing stage on the Abdominal and 
Direct Fetal ECG Database [81] and the set A of the PhysioNet/Computing in Cardiology 
Challenge 2013 Dataset [190], [191] by considering a window-dependent threshold, defined as: 

�ℎ>,_ = : {>,_ (5.2) 

where : is a constant value equal to 2.5 and {>,_ identifies the standard deviation computed for 
the k-th detail level on each j-th window composed of 500 samples. Moreover, in their algorithm, 
Jaros et al. considered the db4 mother wavelet, a soft thresholding approach and a 6-level 
decomposition on NI-fECG signals sampled at 1000 Hz, which was adjusted as 7-level 
decomposition for our dataset. 

Similarly, Martinek et al. [105] investigated the use of WD as NI-fECG processing tool for the 
removal of powerline and muscular interferences. Focusing on muscular artifacts, the authors 
achieved better denoising results when considering the sym4 mother wavelet, hard thresholding, 
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and the adaptive threshold, which was defined as in Equation 5.2. However, in this work [105], : was set equal to 2.8 and {>,_ was computed on 1000-sample windows, following Equation 5.1. 

In [151], Mochimaru et al. used the Wavelet Analysis and Spectrum Analysis MEM software 
[192] for the WD post-processing. In this context, they used the coif24 as mother wavelet and a 
12-level decomposition on data sampled at 5000 Hz or 2048 Hz, along with a custom threshold. 
The latter was conceived by weighting the standard deviation of the wavelet coefficients by level-
dependent factors, which were defined by minimizing the information cost-function while 
maximizing the determination coefficient [151], [193]. However, in a previous study [194] the 
same authors not only exploited a similar approach on data sampled at different sampling rates, 
but they also specified the weighting factors. Therefore, this latter work [194] was taken into 
account in order to faithfully reproduce the threshold proposed in their algorithm, avoiding any 
adjustment for the level of decomposition. 

In [146], Ionescu proposed a WD approach for NI-fECG post-processing by considering the 
Abdominal and Direct Fetal ECG Database [81], [190]. In this work, WD was performed by using 
the LabVIEW Wavelet Denoised Express VI tool and exploiting an undecimated WT (i.e., the 
SWT), the bior4.4 mother wavelet and an 8-level decomposition. Since no additional information 
was clarified regarding the threshold and the thresholding method, all possible parameterizations 
offered by the tool were considered in MATLAB (i.e., hard and soft methods for thresholding, 
and Minimax, Universal, Rigrsure and Heursure for the threshold definition). Moreover, due to 
the different sampling frequency adopted in [146], the decomposition level was set to nine. 

In [150], Jothi et al. proposed the combined use of the undecimated WT, Rigrsure threshold and 
soft thresholding with different mother wavelets belonging to the Daubechies, Symlets, Coiflets, 
Biorthogonal and Reverse Biorthogonal families. Unlike some other works, the choice of the 
mother wavelet was not found to be crucial by Jothi et al. in this context, thus all wavelets from 
those families that were available in MATLAB were considered and compared (see Table 5.1). 
Moreover, Jothi et al. considered a 4-level decomposition on data sampled at 4000 Hz, thus this 
parameter was set to three in order to be properly applied to our synthetic dataset. 

Similarly, in their work [137], Rivet et al. employed the SWT with the Rigrsure threshold and 
hard thresholding. The authors tested different levels of decomposition and found that six levels 
of decompositions offered higher SNRs than five, despite inducing a more aggressive denoising. 
However, they did not give any detail about the sampling rate of the adopted dataset nor the 
chosen mother wavelet. As such, the level of decomposition was considered equal to six without 
any adaptation, as also in accordance with our previous investigation [166], while the mother 
wavelet was selected according to Section 5.2.2. 

Ishikawa et al. [147] proposed a NI-fECG denoising based on the perfect-translation-invariant 
(PTI) complex DWT, which was found to be promising for the diagnosis of foetal arrhythmia. 
Specifically, by exploiting the WavePti software developed by the author H. Toda, it was possible 
to accurately reproduce their WD algorithm by choosing a Universal threshold and a soft 
thresholding, as revised in [147]. As regards the decomposition level, Ishikawa et al. performed 
WD by using a 7-level decomposition for NI-fECG signals sampled at 5000 Hz, while considering 
five levels of decomposition when signals were digitalized at 1250 Hz. As such, in the light of 
the adopted sampling rate for our dataset (i.e., 2048 Hz), in this quantitative review a 6-level 
decomposition was imposed.  

Finally, a WD algorithm based on the best parameterizations among those examined in our 
previous investigations [166] (see Chapter 4) was included in the comparative analysis. This 
approach, referred to as Baldazzi et al. algorithm hereinafter, involves the SWT, the Haar mother 
wavelet, a 6-level decomposition, the threshold proposed by Han et al. [169] and computed 
following [166] (see Chapter 4)  and hard thresholding. 
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Table 5.1. WD algorithms and their parameterizations as included in the review. Missing settings were 

considered as reported in bold italics, and decomposition levels eventually adapted are detailed in 

brackets. Remarkably, coifX, dbX, symX, bioX.X, rbiorX.X represent all wavelets belonging to the 

Coiflet, Daubechies, Symlet, Biorthogonal and Reverse Biorthogonal families respectively, and 

available in MATLAB. In this analysis, DWT expressly indicates the decimated WT decomposition, 

SWT the undecimated one, whereas PTI identifies a perfect-translation-invariant complex DWT 

decomposition. 

 

 
Wavelet 

transform 
Mother wavelet 

Decomposition 
level 

Threshold Thresholding 

Ahmadi et al. 
[144] 

DWT 
coif4, sym8, 

db8 
6 Universal hard, soft 

Castillo et al. 
[104] 

DWT db6 3 Minimax soft 

Jamaluddin et 

al. [145] 
DWT bior1.5 5 (3) custom hard 

Ivanushkina et 

al. [148] 
DWT sym6, bior2.6 5 (6) 

Rigrsure,  

Han et al. 
[166] 

custom  

Jadhav and 
Dhang [149] 

DWT coif5 5 (6) 
Rigrsure,  

Han et al. 
[169] 

hard, soft 

Shayesteh and 
Fallahian [138] 

DWT 
db3, db4, db5, 
db6, bior1.1 

6, 7 Rigrsure hard 

Swarnalatha and 
Prasad [139] 

DWT coifX 5 none custom 

Vigneron et al. 
[140] 

DWT biorX.X 6 (7) Rigrsure hard, soft 

Wang et al. 
[141] 

DWT bior5.5 4 (7) 
Rigrsure,  

Han et al. 
[169] 

hard, soft 

Jaros et al. 
[143] 

DWT db4 6 (7) Adaptive soft 

Martinek et al. 
[105] 

DWT sym4 6 Adaptive hard 

Mochimaru et 

al. [151] 
DWT coif24 12 custom hard, soft 

Ionescu [146] SWT bior4.4 8 (9) 

Universal, 

Minimax, 

Rigrsure, 

Heursure 

hard, soft 

Jothi and Prabha 
[150] 

SWT 
coifX, dbX, 

symX, bioX.X, 

rbiorX.X  
4 (3) Rigrsure soft 

Rivet et al. 
[137] 

SWT Haar, biorX.X 6 Rigrsure hard 

Ishikawa et al. 
[147] 

PTI complex 
DWT 

PTI complex 
wavelet 

7, 5 (6) Universal soft 

Baldazzi et al. 
[166] 

SWT Haar 6 Han et al. [169] hard 

 



84 

5.2.2 Chosen parameterizations in case of missing information 

Despite lot of scientific effort has been put in WD as post-processing stage for NI-fECG 
enhancement, as described in the previous section, in several works some information for an 
accurate and reliable implementation of the WD algorithm was missing. As such, in those cases 
where parameterizations were not reported, the most frequently adopted WD parameters and those 
referred to as the best options in our previous investigations [166] (see Chapter 4) were assumed. 
Specifically, unless otherwise noted, the decomposition was performed by the decimated DWT. 
As regards the mother wavelet, the most widely adopted family (i.e., the Biorthogonal wavelets) 
and the Haar wavelet proposed in our study [166] were considered, whereas a 6-level 
decomposition was taken into account in case of missing information. Moreover, when the 
threshold definition was not clearly stated, the most common threshold (i.e., the Rigrsure) and the 
one proposed by Han et al. [169], that was found as best solution in our previous analyses [166], 
were investigated. In each case, unless otherwise specified, {> was quantified on the full-length 
NI-fECG trace following Equation 4.1. Finally, when the thresholding method was not declared, 
both soft and hard thresholding were tested and evaluated.  

 

5.3 Methods for the comparative analysis 

The different WD algorithms and their parameterizations were quantitatively assessed and 
systematically compared by exploiting 40 synthetic fECG signals (see Section 4.2.3) affected by 
different levels of noise (i.e., with 40 SNRmn between 3 dB and 15 dB, obtained by additive pink 
and white noise). The comparative analysis was carried out in terms of different figures of merit: 
SNR, Acc and TPR of a foetal QRS detector [88], RMSE, ρ and rs. Specifically, SNR, Acc and 
TPR allow for the noise removal quantification, whereas the RMSE, ρ and rs allow assessing the 
capability to preserve the signal morphology after denoising offered by each WD algorithm as in 
both Chapters 3 and 4 and in our previous assessment [166]. Specifically, the SNR was computed 
as in Equation 4.7, by considering �ff� as the peak-to-peak amplitude of the beat template 
obtained by synchronized averaging of all foetal beats, and { as the median value of the standard 
deviations evaluated on each interval comprised between two consecutive foetal beats. Besides, 
the Acc and TPR were computed as reported in Equations 3.20 and 3.21, whereas the RMSE, ρ 
and rs were estimated between each beat in the WD-processed simulated signal and the 
corresponding one in the noiseless fECG signal. The three indexes were computed considering a 
window of 120 ms before and 180 ms after each beat [164]. 

However, as can be seen in Table 5.1, most of the algorithms (i.e., those by Ahmadi et al., 
Ivanushkina et al., Jadhav and Dhang, Shayesteh and Fallahian, Swarnalatha and Prasad, 
Mochimaru et al., Ionescu, Vigneron et al., Wang et al., Ionescu, Jothi and Prabha, Rivet et al.) 
were developed considering several alternative parameterizations. As such, a preliminary analysis 
was required in order to identify, for each approach, which set of parameters achieved better 
performance. After this initial investigation, each WD algorithm was associated to its best-
performing parameterization. Then, all the 17 WD algorithms were statistically compared in order 
to identify a possible optimal WD approach for the NI-fECG post-processing problem in terms 
of both noise removal effectiveness and signal morphology preservation. To be able to consider 
all the chosen figures of merit simultaneously, a single performance index PI was deduced by 
PCA. In this context, PCA was used to perform dimensionality reduction by exploiting the first 
two PCs, which retained the 94.1±3.4 % of the total variance across the different analyses. 
Specifically, the projection of each WD algorithm in the plane identified by the first two PCs, 
also known as score, was obtained according to its figures of merit. Then, the PI was estimated 
as the pairwise distance between the point representing each WD approach, i.e. 8�365;, and an 
ideally defined optimal result score, 8�365u9S;�zy, as: 
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[� =  *(8�365; − 8�365u9S;�zy)(8�365; − 8�365u9S;�zy)$ (5.3) 

 

Obviously, the smaller the distance from the optimal score, the higher the performance of the WD 
algorithm. The 8�365u9S;�zy valuewas defined by assuming as ideal conditions Acc, TPR, ρ and 
rs equal to 1, RMSE equal to 0 and the SNR as the highest estimate achievable among those 
computed on the noiseless fECG signals (i.e., 49.6 dB), normalized to 1. In fact, as the SNR 
assumes higher values than all the other figures of merit, each computed SNR was normalized by 
the aforementioned highest value before PCA. 

Specifically, for each WD algorithm, the six figures of merit were computed on the 40 synthetic 
signals after denoising and then the PCA was performed on these values. In this regard, at first 
PCA analysis and PI estimation were adopted to identify the best parameterization for WD 
algorithms involving different options. Then, PCA was used on all the 17 WD algorithms with a 
single/best parameterization, and the identification of the best NI-fECG post-processing was 
based on the PI metrics. This final analysis was also carried out in two steps. At first, the optimal 
WD algorithm was identified considering all the indexes simultaneously, thus giving an overall 
performance overview. The contribution of each figure of merit to the first two PCs is reported in 
Figure 5.1. In a second step, since the WD may be applied not only for fHR estimation, but also 
for morphological analyses, the analysis was focused specifically on noise removal and signal 
morphology preservation separately, by applying the PCA only on SNR, TPR and Acc on the one 
hand, and on RMSE, ρ and rs on the other hand. Figure 5.2 schematically reports the steps adopted 
in all performed investigations. 

 

 

Figure 5.1. Graphical representation of PCA loadings  for the first two PCs. For each figure of merit, 

the module and the direction of its vector suggest the metric contribution to the PCs: the larger the 

loading, the higher the contribution of the figure of merit for the specific PC. Conversely, the direction, 

i.e., the sign of the loading, indicates if the analysed figure and the PC are positively or negatively 

correlated. 

P
C

2
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For the statistical analysis, the normality of the PI distributions was preliminarily investigated by 
using the Lilliefors test. However, since in most cases the assumption of a normal distribution 
was not satisfied, a non-parametric statistical approach was chosen. Specifically, the Kruskal–
Wallis test was adopted for multiple comparisons, whereas the Wilcoxon signed rank test was 
selected for pairwise comparisons. Bonferroni correction was applied in each comparative 
analysis. In all the statistical tests, p < 0.05 was considered for statistical significance. All data 
processing was performed in MATLAB v2020a (MathWorks Inc., MA, USA). 

 

5.4 Results and discussion 

5.4.1 Best parameterization  

Results for the first analysis concerning the identification of the best parameterization for the 
algorithms exposing multiple options are reported in Table 5.2 in terms of best parameter 
combinations. Moreover, PI distributions for each WD algorithm and parameterization are 
reported in Figures 5A.1-11 in Appendix A. 

In this regard, for the Ahmadi et al. algorithm [144], six different parameterizations were assessed 
and compared (see Table 5.1) and, among them, a statistically significant difference was found (p 
= 0.0004). Specifically, the parameterization including sym8 mother wavelet and hard 
thresholding statistically outperformed all the others (p < 0.0001) except for the one involving 
coif4 mother wavelet and hard thresholding (p > 0.05). However, the latter showed an higher 
median distance from the optimal score, thus we selected the first one, i.e. the sym8 mother 
wavelet.  

As regards the Ivanushkina et al. algorithm [148], no statistically significant difference was 
achieved among the four available parameter combinations (p > 0.05). Nonetheless, in order to 

 

Figure 5.2. Schematic representation of the analysis performed for the identification of the best 

parameterization for WD algorithms involving different options (top) and the analysis carried out for 

the optimal WD post-processing investigation (bottom). 
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represent each WD algorithm by a single parameterization in the next analysis, the parameter 
setting offering the highest median performance (i.e., the lowest median distance from the optimal 
score) was selected, i.e. the sym6 wavelet and the Rigrsure threshold.  

For the Jadhav and Dhang algorithm [149] four different parameterizations were assessed. 
However, in this case, a statistically significant difference was found in the group (p = 0.0004), 
and, among the possible choices, the parameterization characterized by the Han et al. threshold 
and the hard thresholding achieved the best performance (p < 0.0001).  

Conversely, for the Shayesteh and Fallahian algorithm [138] no significant difference was found 
among the ten different parameterizations (p > 0.05), thus the one exhibiting the highest 
performance (i.e., db6 wavelet and 6-level decomposition) was chosen for the next assessment. 
The same findings were obtained for the multiple comparisons in the Swarnalatha and Prasad 
algorithm [139], the Jothi and Prabha algorithm [150] and the Rivet et al. algorithm [137]. As 
such, they were represented by the coif1, rbior2.2 and bior2.4 mother wavelets respectively.  

Besides, between the two possible parameter settings available for the Mochimaru et al. algorithm 
[151], the one involving the hard thresholding achieved statistically significant higher 
performance (p < 0.0001). 

Conversely, for the Vigneron et al. algorithm [140], a statistically significance different was found 
in the multiple comparison test (p < 0.0001). However, the best performing parameterization (i.e., 
the one showing the lowest distance from the optimal score) was not statistically identifiable. In 
fact, the parameter combination exhibiting the lowest median distance from the optimal score 
(i.e., bior6.8 and soft thresholding), despite being chosen for the next analyses, was not 
significantly different from the other parameterizations showing similar good performances but 
with different mother wavelets (i.e., bior1.1, bior1.3, bior2.2, bior2.4, bior2.6, bior2.8, bior3.9, 
bior4.4 and bior5.5).  

As regards the Wang et al. algorithm [141], after a statistically significant difference was found 
among the four possible parameterizations (p = 0.0016), the pairwise comparisons revealed that 
the best performance was achieved when considering the Han et al. threshold with hard 
thresholding (p < 0.0023).  

Finally, for the Ionescu algorithm [146], a statistically significant difference was found among 
the eight possible parameter combinations (p < 0.0001). Moreover, pairwise comparisons allowed 
choosing the parameterization combining Minimax threshold and hard thresholding, since it 
presented the lowest distance from the optimal score (p < 0.0018). 
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5.4.2 Optimal WD post-processing for non-invasive fECG enhancement 

Once the best parameterization settings were selected for those algorithms presenting multiple 
options, all the 17 WD algorithms were statistically compared to identify a possible optimal 
solution for NI-fECG enhancement. The assessment was initially performed by considering all 
figures of merit simultaneously, and then by evaluating noise removal performance only (i.e., 
SNR, Acc, TPR) and morphology preservation performance only (i.e., RMSE, ρ and rs). 

PI distributions for the overall performance analysis are reported in Figures 5.3. Besides, Table 
5.3 summarizes statistical results of the pairwise comparisons.  

As can be seen, Baldazzi et al. algorithm [166] (A17 in Figure 5.3 and Table 5.3) significantly 
outperformed all the other WD approaches (p = 0.0006 in the comparison with Ionescu algorithm 
[146], i.e., A13, p < 0.0001 in all the other assessments).  

Good performance was exhibited also by the WD algorithms by Jadhav and Dhang [149] and 
Martinek et al. [105], despite not reaching statistical significance in several comparisons, 
especially with Ionescu et al. [146] (see Table 5.3). The worst performance was marked by the 
Swarnalatha and Prasad algorithm [139]. However, such performance was not significantly 
different with respect to the results obtained by the Shayesteh and Fallahian [138] and the Jaros 
et al. [143] WD approaches.  

Table 5.2. Best WD parameterizations identified for those algorithms where multiple parameter 

combinations were originally presented. Decomposition levels after adaption to the sampling rate of 

the testing dataset are reported in brackets. 

 

 
Wavelet 

transform 
Mother wavelet 

Decomposition 
level 

Threshold Thresholding 

Ahmadi et al. 
[144] 

DWT sym8 6 Universal hard 

Ivanushkina et 

al. [148] 
DWT sym6 5 (6) Rigrsure custom  

Jadhav and 
Dhang [149] 

DWT coif5 5 (6) Han et al. [169] hard 

Shayesteh and 
Fallahian [138] 

DWT db6 6 Rigrsure hard 

Swarnalatha and 
Prasad [139] 

DWT coif1 5 none custom 

Vigneron et al. 
[140] 

DWT bior6.8 6 (7) Rigrsure soft 

Wang et al. 
[141] 

DWT bior5.5 4 (7) Han et al. [169] hard 

Mochimaru et 

al. [151] 
DWT coif24 12 custom hard 

Ionescu [146] SWT bior4.4 8 (9) Minimax hard 

Jothi and Prabha 
[150] 

SWT rbior2.2 4 (3) Rigrsure soft 

Rivet et al. 
[137] 

SWT bior2.4 6 Rigrsure hard 
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Table 5.3. Statistical results for the quantitative comparison, in terms of overall performance, of the 

17 WD algorithms included in this study: A1) Ahmadi et al. [144], A2) Castillo et al. [104], A3) 

Jamaluddin et al. [145], A4) Ivanushkina et al. [148], A5) Jadhav and Dhang [149], A6) Shayesteh 

and Fallahian [138], A7) Swarnalatha and Prasad [139], A8) Vigneron et al. [140], A9) Wang et al. 

[141], A10) Jaros et al. [143], A11) Martinek et al. [105], A12) Mochimaru et al. [151], A13) Ionescu 

[146], A14) Jothi and Prabha [150], A15) Rivet et al. [137], A16) Ishikawa et al. [147], A17) Baldazzi 

et al. [166]. 

Specifically, p < 0.05, p < 0.005 and p < 0.0001 are represented by *, ** and ***, respectively, 

whereas – indicates no statistically significant difference. 

 

 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 

A1 – – ** *** * ** – – *** *** – – – – ** *** 

A2  *** *** *** *** *** *** – *** ** – – *** *** – *** 

A3   *** *** *** *** – – *** *** ** – * *** – *** 

A4    ** *** *** *** * *** – – – *** *** *** *** 

A5     *** *** *** *** *** – ** – *** *** *** *** 

A6      – *** *** * *** *** *** *** *** – *** 

A7       *** *** – *** *** *** *** ** * *** 

A8        – *** *** ** – ** *** – *** 

A9         *** *** – – – ** – *** 

A10          *** *** *** *** ** *** *** 

A11           * – *** *** *** *** 

A12            – – *** – *** 

A13             – ** – ** 

A14              *** – *** 

A15               – *** 

A16                *** 
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Moreover, Figure 5.4 provides the PI values obtained at the different noise levels affecting the 
noisy synthetic NI-fECG signals. As expected, PI values decreased (higher performance) for 
increasing values of the SNR, as expected, due to the higher quality of the signals before WD, 
whereas the PI values increased (worse performance) when the initial SNR was lower (i.e., in 
signals of lower quality). In fact, when the original NI-fECG signal was only limitedly affected 
by noise from the beginning, the WD algorithm might perform generally better, getting closer to 
the ideal condition (i.e., higher SNR, ACC, TPR, ρ and rs and lower RMSE values).  

 

 

Figure 5.3. PI distributions obtained when considering all the figures of merit for the different WD 

algorithm examined in this study (the lower the better): A1) Ahmadi et al. [144], A2) Castillo et al. 

[104], A3) Jamaluddin et al. [145], A4) Ivanushkina et al. [148], A5) Jadhav and Dhang [149], A6) 

Shayesteh and Fallahian [138], A7) Swarnalatha and Prasad [139], A8) Vigneron et al. [140], A9) 

Wang et al. [141], A10) Jaros et al. [143], A11) Martinek et al. [105], A12) Mochimaru et al. [151], 

A13) Ionescu [146], A14) Jothi and Prabha [150], A15) Rivet et al. [137], A16) Ishikawa et al. [147], 

A17) Baldazzi et al. [166]. 
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Figure 5.4. PI distributions obtained in the overall performance evaluation when varying the noise 

level affecting the synthetic NI-fECG recordings (i.e., before any WD was performed).  
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As regards the performance only in terms of noise removal, Tables 5.4 and Figure 5.5 report the 
results in terms of statistical significance obtained in the pairwise comparisons and PI 

distributions for each WD algorithm, respectively. 

 

 

 

Table 5.4. Statistical results for noise removal performance evaluated for the 17 WD algorithms 

included in this study: A1) Ahmadi et al. [144], A2) Castillo et al. [104], A3) Jamaluddin et al. [145], 

A4) Ivanushkina et al. [148], A5) Jadhav and Dhang [149], A6) Shayesteh and Fallahian [138], A7) 

Swarnalatha and Prasad [139], A8) Vigneron et al. [140], A9) Wang et al. [141], A10) Jaros et al. 

[143], A11) Martinek et al. [105], A12) Mochimaru et al. [151], A13) Ionescu [146], A14) Jothi and 

Prabha [150], A15) Rivet et al. [137], A16) Ishikawa et al. [147], A17) Baldazzi et al. [166]. 

Specifically, p < 0.05, p < 0.005 and p < 0.0001 are represented by *, ** and ***, respectively, 

whereas – indicates no statistically significant difference. 

 

 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 

A1 – – – *** – ** – * *** *** *** *** – – *** *** 

A2  ** *** *** *** *** – – – *** *** *** – *** – *** 

A3   *** *** *** *** – * – *** *** *** – *** – *** 

A4    *** *** *** – – * ** ** *** *** *** *** *** 

A5     *** *** *** – *** – – *** *** *** *** ** 

A6      – *** ** – *** *** *** *** ** – *** 

A7       *** *** – *** *** *** *** ** – *** 

A8        – ** *** *** *** * *** ** *** 

A9         *** – – *** – ** *** - 

A10          *** *** *** – – – *** 

A11           – *** *** *** *** *** 

A12            *** *** *** *** – 

A13             *** *** *** *** 

A14              *** – *** 

A15               – *** 

A16                *** 
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As can be noticed, when only SNR, TPR and Acc indexes were taken into account, the best 
performance was marked by the Ionescu algorithm [146], which outperformed all the other WD  
approaches significantly (p < 0.0001). Conversely, although without statistically significant 
differences in the comparison with several WD approaches, the highest median distance from the 
optimal score was marked by the Swarnalatha and Prasad algorithm [139], followed by the WD 
proposed by Shayesteh and Fallahian [138], and Rivet et al. [137]. 

Furthermore, depending on the noise level affecting the synthetic NI-fECG (see Figure 5.6), the 
PI obtained considering the noise removal figures of merit only followed the same trend found in 

 

Figure 5.5. PI distributions obtained in the noise removal performance assessment: A1) Ahmadi et al. 

[144], A2) Castillo et al. [104], A3) Jamaluddin et al. [145], A4) Ivanushkina et al. [148], A5) Jadhav 

and Dhang [149], A6) Shayesteh and Fallahian [138], A7) Swarnalatha and Prasad [139], A8) 

Vigneron et al. [140], A9) Wang et al. [141], A10) Jaros et al. [143], A11) Martinek et al. [105], A12) 

Mochimaru et al. [151], A13) Ionescu [146], A14) Jothi and Prabha [150], A15) Rivet et al. [137], 

A16) Ishikawa et al. [147], A17) Baldazzi et al. [166]. 

 As can be seen, the lowest distance from the optimal score is obtained by the Ionescu algorithm, thus 

guaranteeing the highest performance in terms of noise reduction. 
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Figure 5.6. PI values in the noise reduction performance evaluation when varying the noise entity 

affecting the synthetic NI-fECG signals before WD post-processing.  
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the overall performance assessment, as expected. However, the PI trend exhibited by the Ionescu 
algorithm [146] was substantially different from all the others. 

Finally, as regards the morphological performance investigation, results are reported in Figures 
5.7 and 5.8, and in Table 5.5.  Like the overall performance case, the best performance in terms 
of signal morphology preservation (i.e., higher ρ and rs and lower RMSE) was achieved by the 
Baldazzi et al. algorithm [166] (p < 0.0001), followed by the Jadhav and Dhang [149] and  
Martinek et al.[105] approaches, whereas the Ionescu algorithm [146] seemed to be far from the 

 

 

Figure 5.7. PI distributions obtained in the morphological performance investigation: A1) Ahmadi et 

al. [144], A2) Castillo et al. [104], A3) Jamaluddin et al. [145], A4) Ivanushkina et al. [148], A5) 

Jadhav and Dhang [149], A6) Shayesteh and Fallahian [138], A7) Swarnalatha and Prasad [139], 

A8) Vigneron et al. [140], A9) Wang et al. [141], A10) Jaros et al. [143], A11) Martinek et al. [105], 

A12) Mochimaru et al. [151], A13) Ionescu [146], A14) Jothi and Prabha [150], A15) Rivet et al. 

[137], A16) Ishikawa et al. [147], A17) Baldazzi et al. [166]. 

In this case, the highest performance (i.e., lowest PI) is achieved by the Baldazzi et al. algorithm, as 

such providing the highest performance in terms of morphology preservation. 
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Figure 5.8. PI values obtained in the morphological performance investigation when considering the 

different noise entities affecting the synthetic NI-fECG signals before WD post-processing.  
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optimal score, showing higher PI values, even though without statistically significant differences 
compared to the closer Swarnalatha and Prasad [139], Jaros et al. [143] and Shayesteh and 
Fallahian [138] WD algorithms. For the sake of the completeness, Figure 5.8 represents the PI 
values obtained for each analysed WD algorithm at different initial SNRs. As can be seen, the 
Baldazzi et al. [166] algorithm exhibited the lowest PI values for all noise levels. 

Table 5.5. Statistical results for the quantitative analysis on morphological preservation performance, 

computed on the 17 WD algorithms included in this study: A1) Ahmadi et al. [144], A2) Castillo et al. 

[104], A3) Jamaluddin et al. [145], A4) Ivanushkina et al. [148], A5) Jadhav and Dhang [149], A6) 

Shayesteh and Fallahian [138], A7) Swarnalatha and Prasad [139], A8) Vigneron et al. [140], A9) 

Wang et al. [141], A10) Jaros et al. [143], A11) Martinek et al. [105], A12) Mochimaru et al. [151], 

A13) Ionescu [146], A14) Jothi and Prabha [150], A15) Rivet et al. [137], A16) Ishikawa et al. [147], 

A17) Baldazzi et al. [166]. 

Specifically, p < 0.05, p < 0.005 and p < 0.0001 are represented by *, ** and ***, respectively, 

whereas – indicates no statistically significant difference. 

 

 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 

A1 – – *** *** ** ** – – *** *** – ** – ** – *** 

A2  *** *** *** *** *** *** * *** ** – *** *** *** – *** 

A3   *** *** *** *** ** – *** *** – *** – *** – *** 

A4    – *** *** *** *** *** – *** *** *** *** – *** 

A5     *** *** *** *** *** – *** *** *** *** ** *** 

A6      – *** *** ** *** *** – *** *** *** *** 

A7       *** *** – *** *** – *** – ** *** 

A8        – *** *** – ** *** ** – *** 

A9         *** ** – *** – ** – *** 

A10          *** *** – *** ** *** *** 

A11           ** *** *** *** * *** 

A12            *** – ** – *** 

A13             *** * ** *** 

A14              *** – *** 

A15               ** *** 

A16                *** 
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 5.4.3 Discussion 

In this study, different WD post-processing algorithms and parameterizations have been explored 
and statistically compared for the identification of a possible optimal NI-fECG enhancement 
approach in terms of noise reduction and morphological preservation effectiveness. At first, a 
preliminary analysis for the identification of best parameterization was carried out, in order to 
represent each WD algorithm by a singular and best parameter combination, as reported in Table 
5.2. However, by comparing at Tables 5.1 and 5.2, some further interesting aspects emerged. 
Firstly, hard thresholding seemed to overcome the soft one, on average. It was underlined for the 
WD algorithms proposed by Ahmadi et al. [144], Jadhav and Dhang [149], Wang et al. [141], 
Mochimaru et al. [151], and Ionescu [146], but not for Vigneron et al. algorithm [140], in which 
soft thresholding offered significantly better PI values (see Figure 5A.6 in Appendix A). These 
findings, despite in contrast with those achieved in [104], are coherent with the results obtained 
in [105], [138]. In fact, although hard thresholding may introduce discontinuities [104], it did not 
shrink the signal amplitude [105], thus guaranteeing a higher SNR and less morphology distortion, 
as can be seen in Figure 5.9. Conversely, for the Vigneron et al. algorithm, the trend was opposite 
since the WD did not effectively reduce the noise whereas the soft one did, as can be seen in 
Figure 5.9.  

 

 

Figure 5.9. Effect of hard and soft thresholding in WD. In the upper row, the noisy fECG signal (SNRmn 

originally equal to 7 dB) is represented in grey while the noiseless fECG component is depicted in 

black. Then, the same signal is displayed after WD by Ahmadi et al. algorithm [144] with hard (a) and 

soft (b) thresholding, Jadhav and Dhang algorithm [149] with hard (c) and soft (d) thresholding, Wang 

et al. algorithm [141] with hard (e) and soft (f) thresholding, Mochimaru et al. algorithm [151] with 

hard (g) and soft (h) thresholding, Ionescu algorithm [146] with hard (i) and soft (j) thresholding, and 

Vigneron et al. algorithm [140] with hard (k) and soft (l) thresholding. For all the other WD settings, 

default or best parametrizations were considered. Amplitudes are dimensionless. 
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Moreover, when looking at the parameter setting comparison for the Ionescu algorithm [146], it 
was evident that, among the most typical thresholds (i.e., Universal, Minimax, Rigrsure and 
Heursure), the Minimax threshold got better results than others, although in this case a single 
mother wavelet and decomposition level were considered. Moreover, despite in [138] the Rigrsure 
threshold was identified as optimal, our results are in accordance with other previous studies 
[104], [166] and are further confirmed by visual inspection of WD signals (see Figure 5.10). 

 

Focusing on the last investigation, our results suggested that, when comparing all the 17 WD 
approaches in terms of overall performance, the Baldazzi et al. algorithm [166] showed 
significantly higher denoising effectiveness than all the others. This finding, which is based on 
the proposed PI formulation, is also evident when referring to Figure 5.11. In fact, as can be seen, 
the Baldazzi et al. algorithm [166] scores are the closest to the optimal one.  

 

Figure 5.10. Effect of classical WD threshold on NI-fECG signal. In the upper row, the NI-fECG 

signal with and without noise (in grey and black, respectively) before WD is depicted, with SNRmn at 

9.2 dB. The same signal after WD by Ionescu et al. algorithm [146] is represented in the other rows, 

by exploiting bior4.4 mother wavelet, 9-level decomposition, hard thresholding and Universal (a), 

Minimax (b), Rigrsure (c), Heursure (d) thresholds. In row (a)-(d), the corresponding noiseless trace 

is depicted in grey.  
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However, by looking at Figure 5.3, also WD algorithms by Jadhav and Dhang [149] and Martinek 
et al. [105] showed high performance when considering noise removal and morphological 
distortion together (see Figure 5.12), although without reaching statistical significance in some 
comparisons (see Table 5.3). The same trend was found when looking at the signal morphology 
preservation performance only, thus highlighting that the weight assigned to ρ and rs was 
significantly higher than that assigned to the SNR in the overall performance investigation, as can 
be also appreciated in Figure 5.1. This latter aspect is further confirmed in Figure 5.12. 
Conversely, in this context, the WD approach by the Swarnalatha and Prasad [139] exhibited the 
highest median distance from the optimal score, followed by Jaros et al. [143], and Shayesteh and 
Fallahian [138] algorithms.  

Since NI-fECG recordings may be useful for fHR estimation applications only, in which 
morphology is not assessed, in this study the noise removal efficiency exhibited by the different 
WD algorithms was investigated separately. In this analysis, the Ionescu algorithm [146] seems  
to be the best option. This finding, which has a marked statistical significance (p < 0.0001), is 
also confirmed by visual inspection in time-domain (see Figure 5.12) and in the PC plane (see 
Figure 5.13). Besides the Ionescu algorithm [146], also Wang et al. [141] and Baldazzi et al. [166] 
offered good noise reduction results. 

Conversely, in order to give a deeper insight for an optimal fECG enhancement in applications 
requiring fECG morphological analyses, only ρ, rs and RMSE were considered too. In this latter 
investigation, the Baldazzi et al. algorithm [166] stood out as best approach, as can be seen also 
in Figures 5.12 and 5.14, allowing for a less aggressive denoising with respect to the Ionescu 
algorithm [146] which, on the other hand, allowed for a better noise reduction. In this framework, 
valuable results were also achieved by Jadhav and Dhang [149] and Martinek et al. [105] 
algorithms. 

In conclusion, the results of this comparative review highlighted how the adoption of different 
WD settings can significantly affect the denoising effectiveness, both in terms of noise reduction 
and signal morphology distortion. Moreover, the outcomes of our study suggest that parameter 
settings and denoising algorithms should be chosen according to the specific application. In fact, 
a higher noise reduction can determine a loss of significant signal content, which hampers any 
morphological analysis, but could be useful for the detection of foetal arrhythmias [70], [73]. On 
the other hand, WD algorithms introducing lower signal morphology distortions could reduce the 
effectiveness of fHR estimation algorithms, as the denoising is less aggressive.  

Figure 5.11. Scores of the different WD algorithms in the plane identified by the first two PCs in the 

overall performance assessment. 
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Figure 5.12. Effect of WD algorithms on NI-fECG signals. On the bottom left, a synthetic NI-fECG 

signal before WD (in grey, with initial SNRmn of 12.5 dB) and its noiseless counterpart (in black) are 

depicted, whereas on the right side its noiseless median template obtained by synchronized averaging 

is represented. In the next leftward rows, the same signal is represented after WD performed through 

the algorithm by a) Ahmadi et al. [144], b) Castillo et al. [104], c) Jamaluddin et al. [145], d) 

Ivanushkina et al. [148], e) Jadhav and Dhang  [149], f)  Shayesteh and Fallahian  [138], g) 

Swarnalatha and Prasad  [139], h) Vigneron et al. [140], i) Wang et al. [141], j) Jaros et al. [143], k) 

Martinek et al. [105], l) Mochimaru et al. [151], m) Ionescu [146], n) Jothi and Prabha [150], o) Rivet 

et al. [137], p) Ishikawa et al. [147], q) Baldazzi et al. [166]. In the corresponding rightward rows, the 

median templates obtained by synchronized averaging are shown. Figure is divided on two pages for 

better visualization.  
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Figure 5.12. (Continued) 
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All these aspects should be carefully taken into account when performing the denoising of NI-
fECG signals for their effective enhancement. Finally, another interesting aspect of this work 
concerns the innovative approach proposed for the assessment of post-processing algorithms. In 
fact, our evaluation methodology was robustly founded on the PCA and, remarkably, allowed the 
assessment of the different WD algorithms from different perspectives while avoiding the 
introduction of any biased weight to be assigned to the different figures of merit, in order to obtain 
a reliable PI definition.  

 

 

 

 

  

 
Figure 5.13. Scores of the different WD algorithms in the plane identified by the first two PCs in the 

noise reduction assessment. 

 
Figure 5.14. Scores of the different WD algorithms in the plane identified by the first two PCs in the 

morphology preservation assessment. 
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Chapter 6    

 

Conclusions on Part I 
 

As discussed from the beginning of the Part I of this PhD thesis, the acquisition of high-quality 
fECG signal from non-invasive trans-abdominal biopotential recordings is severely hampered by 
different issues, mainly related to the NI-fECG signals low SNR and amplitude [3], [4], [17], [78], 
thus inhibiting the adoption of this technique for foetal cardiac wellbeing assessment in the 
conventional clinical practice [27]. This part of my PhD work came up in this context, studying 
and developing advanced signal processing tools aiming at providing morphologically preserved 
NI-fECG recovery. Specifically, both the NI-fECG extraction and the fECG post-processing 
stages have been deeply examined.  

As regards the NI-fECG extraction algorithm, a novel approach was proposed in collaboration 
with Prof. Hau-Tieng Wu (Department of Mathematics and Statistical Science, Duke University, 
Durham, NC, USA). The proposed methodology showed promising results, not only in terms of 
foetal R-peak detection, but also in terms of signal morphology preservation capabilities, thus 
paving the way for its possible application in fHR monitoring devices and for clinically useful 
morphological analyses. Remarkably, further important advancements of the proposed techniques 
were not reported in this thesis, as their validation is still in progress, but will hopefully be 
presented in the scientific literature soon. 

As regards the NI-fECG post-processing investigations, despite the widespread application of 
WD on different biomedical signals, in this context WD has been generally applied to remove 
noise interference without paying particular attention to its possible implementation setting. 
Conversely, this part of my PhD thesis underlined that this powerful tool must be used with special 
care in this particular application because of its possible negative impact on the signal morphology 
or even on further signal processing steps applied downstream, such as the foetal QRS detection. 
The results revealed how the adoption of a level-dependent scaling factor in the definition of the 
threshold significantly improves the denoising effectiveness, compared with conventional 
approaches proposed in the literature. Specifically, the best WD algorithm settings delineated in 
Chapter 4 emerged as the best option for the NI-fECG post-processing purpose when compare 
with all the approaches proposed in the scientific literature until now, to the best of my knowledge, 
especially in terms of signal morphology preservation. However, a different strategy derived from 
the work by Ionescu [146] was better when noise reduction can be achieved without special 
attention to the signal morphology, such as for fHR extraction. All the underlined aspects could 
be valuably considered when approaching the denoising of fECG signals for enhancement, thus 
contributing to the exploitation of the NI-fECG for effective antenatal cardiological assessment. 
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Part II 

Intracardiac electrophysiology 
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Chapter 7    

 

Overview of cardiac arrhythmias: basic classifications, 

electrophysiological substrates and studies 

 

7.1 Cardiac arrhythmias 

The electrophysiological principles of the conduction system in a healthy human heart have been 
already described in Section 1.2. However, some abnormal alterations of the normal sinus rhythm 
can occur, giving birth to the so-called arrhythmias. According to the heart rate observed, we can 
mainly distinguish between tachycardias (also named as tachyarrhythmias), in which the heart 
rhythm is accelerated (>100 beats per minute or bpm, at rest), and bradycardias or 
bradyarrhythmias, in presence of which the rhythm is slowed down (<60 bpm)[14], [19]. Focusing 
on tachycardias, according to their site of origin we can identify supraventricular and ventricular 
tachycardias.  

Supraventricular tachycardias originate above the ventricular conduction system, i.e. in the 
atria, in the sinoatrial node and in the atrioventricular junction. Depending on the terminology, 
they may include sinus tachycardia and paroxysmal supraventricular tachycardias (i.e. mainly 
atrial tachycardias, atrioventricular nodal re-entrant and atrioventricular re-entrant tachycardias) 
showing a nearly organized rhythm, but also atrial flutter and atrial fibrillation, with higher atrial 
rates and characteristic waves in ECG leads [19]. 

Ventricular arrhythmias are due to ectopic depolarizations occurring in the ventricles and 
comprise premature ventricular beats or contractions (PVCs), ventricular tachycardias (VTs) and 
ventricular fibrillation (VF). Given the topic of this PhD thesis, ventricular arrhythmias are deeply 
explored in the following paragraph, with a special focus on VTs. 

 

7.1.1 Ventricular arrhythmias and tachycardias 

Among ventricular arrhythmias, PVCs are abnormal ectopic beats typically arising before an 
expected normal beat, i.e. a sinus P wave. They can appear as a single beat or as subsequent 
depolarizations, frequently with regular rates with respect to normal cardiac activations, as such 
giving rise to characteristic ECG recordings as in the case of ventricular bigeminy and trigeminy 
[19]. PVCs may have unifocal or multifocal origins, and their site of origin determines the 
morphologies by which they appear in the different ECG leads. PVCs mainly reflect the automatic 
activity of extra ventricular pacemakers and may affect healthy subjects and patients suffering 
from heart diseases, both symptomatically (i.e., palpitations) or not.  

VTs are identified by abnormal ventricular depolarizations resulting in a heart rate of at least 100 
bpm at rest. VTs can be classified according to their duration and morphology [19], [195], [196]. 
Depending on the tachycardia duration, VTs can be identified as sustained or non-sustained. 
Specifically, non-sustained VTs have a duration of 30 s or less and terminate spontaneously 
without hemodynamic compromise, whereas sustained VTs typically last more than 30 s and/or 
require prompt termination because of hemodynamic vulnerability [19], [195]–[197]. 
Nonetheless, the appearance-based classification distinguishes between monomorphic and 
polymorphic VTs. Monomorphic VTs exhibit a singular, repetitive, and stable QRS morphology. 
Among the most common symptoms due to this form of VT, palpitations, shortness of breath, and 
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light-headedness could be mentioned [19]. Conversely, polymorphic VTs are characterized by 
multiple and variable QRS morphologies, which reflect multiple origins and variable activation 
patterns [195], [197]. Torsades de Pointes is an example of polymorphic VT pathology with QT 
interval prolongation. Except for idiopathic forms, VTs can be caused by structural heart disease, 
both related to previous ischaemic events and non-ischaemic cardiomyopathies as congenital 
heart disease, but also by genetic conditions and metabolic alterations [197]. VT patients are 
frequently exposed to a major risk of sudden cardiac death, and their treatment may vary from 
pharmacological antiarrhythmic therapy, electrical shock therapy by implantable cardioverter-
defibrillators (ICDs) and catheter ablation, mainly according to the underlying heart disease and 
clinical presentation [198], [199]. The prognosis is also difference, according to the originating 
condition. In this regard, while polymorphic VTs are mainly due to myocardial ischemia or 
inherited disorders, monomorphic VTs commonly originate from re-entrant mechanisms 
occurring in myocardial scars [197], and will be better explored in Sections 7.2 and 8.1.    

VF is a rapid (> 300 bpm, usually) and completely irregular ventricular activation with variable 
QRS morphologies and timings, due to very disorganized depolarization pathways [195], [196]. 
It is frequently associated with pre-existing monomorphic or polymorphic VTs conditions [19]. 
VF is the most risky among all the cardiac arrhythmias since it determines a totally uncoordinated 
ventricular contraction that, if not promptly interrupted by electrical defibrillation, leads to  
unconsciousness, cardiac arrest and death [14]. 

 

 

 

7.2 Electrophysiological mechanisms underlying cardiac arrhythmias 

The electrophysiological mechanisms leading to the development of cardiac arrhythmias may be 
associated with alterations in the cardiac impulse formation, including automaticity and triggered 
activity, or disorders in its propagation, i.e. re-entry [195], [198], [200]–[202].  

Automaticity is defined as the ability of cardiac cells to autonomously generate action potentials 
[200]. As already explained in Section 1.2, it reflects a physiological condition occurring in 
healthy heart, and specifically in the pacemaker cells of the sinoatrial node. In normal conditions, 
sinoatrial pacemaker cells exhibit the highest depolarization rate and, as such, they act as primary 
drivers of cardiac electrical depolarization. However, in case of sinoatrial node dysfunctions or 
alterations in the impulse propagation, other cardiac structures in atria or ventricles, also including 

 

 

 

Figure 7.1.  Examples of surface ECG recordings in presence of monomorphic VT (top), polymorphic 

VT (middle) and VF (bottom). 
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the so-called latent or subsidiary pacemaker cells, may develop spontaneous depolarizations. 
Overall, disorders of impulse formations can be ascribed to altered normal automaticity, i.e. 
suppression or enhancement of pacemaker activity in specialized heart cells as those in sinoatrial 
node, atrioventricular node and Purkinje system, or to abnormal automaticity arising in non-
pacemaker myocardial cells in atria and ventricles [202]. In general, arrhythmias can be caused 
by inappropriate discharge of the sinoatrial node, resulting from improper activity of the 
autonomous nervous system or other factors, but also by the action of the latent pacemakers, or 
both, leading to a shift of the impulse origin in ectopic sites [195], [200]. Indeed, when the rate 
of the sinus node decreases, it may happen that sinoatrial node does not overdrive subsidiary 
pacemakers of ectopic sites anymore, as such allowing them to start firing at their intrinsic rate. 
On the other hand, latent pacemakers can be subject to an enhanced automaticity, thus resulting 
in overdriving the normal sinoatrial discharge and leading to accelerated automatic rhythms. 
Nonetheless, automaticity may include also parasystole, in which the latent pacemaker, also 
known as parasystolic focus, is protected from the sinoatrial impulse propagation, thus generating 
ectopic activations with different intrinsic rates simultaneously [200]. Normal or abnormal 
automaticity often contribute to cardiac arrhythmias which, in principle, are due to nonautomatic 
mechanisms. This is the case of premature beats generated by automaticity that, however, can 
pave the way for re-entrant mechanisms [195]. 

Triggered activity is associated with impulse generation caused by depolarizing oscillations in 
the membrane potential, also called afterdepolarizations [200], [202]. In this case, the activity is 
not self-generating but triggered by the afterdepolarization. Afterdepolarizations can generate 
focal arrhythmias by inducing a depolarization exceeding the activation threshold, but also re-
entrant arrhythmias, which cause a prolongation in action potential, which consequently may 
determine the development of a refractoriness-related unidirectional block [201]. 
Afterdepolarizations may occur during the repolarization phase of a preceding action potential 
(early afterdepolarizations, EADs), or later (delayed afterdepolarizations, DADs). Specifically, 
DADs occur after repolarization phase is fully completed, and their possibility to induce triggered 
activity strongly depends on their amplitude and on the actual membrane potential. Conversely, 
the EADs are depolarizations developed in membrane potential that may appear during the plateau 
level (phase 2 EADs) or during the repolarization phase (phase 3 EADs) (see Figure 7.2), and as 
such they are able to alter the repolarization upstroke of cardiac myocytes by sudden depolarizing 
shifts of the membrane voltage [195].  

Re-entry mechanism is based on the persistence of a propagating impulse that excites the cardiac 
tissue repetitively and continuously [201]. In this condition, an excitatory wavefront does not 
vanish after activation as in normal conductive pathways, but propagates in a circular path and 
activates the same surrounding cardiac tissue cyclically, taking advantage of the periodical out-
of-refractoriness periods. Remarkably, re-entrant mechanisms are responsible of most clinical 
tachyarrhythmias [195], [202], as such they deserve a deeper explanation in the following. 

 

Figure 7.2.  Schematic representation of afterdepolarizations occurring with a Purkinje cell action 

potential. A) EAD occurring during plateau phase, B) EAD developed during repolarization phase and 

C) DAD [195]. 
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For the re-entry to be initiated and sustained, different prerequisites have to be accomplished 
[195], [201], [202]. As regards the substrate, the myocardial tissue constituting the circuit has to 
present heterogeneous properties, from the electrophysiological, conductive and refractoriness 
perspectives. Moreover, in order to induce the excitatory wavefront to travel along the circular 
path, a central area of anatomical and/or functional block composed of unexcitable tissue is 
needed. Another essential element is the unidirectional conduction block, which can be temporary 
or not, since in case of its absence, the impulse would travel along both sides of the central block, 
flow down and extinguish itself (see Figure 7.3). Moreover, its role is fundamental to guarantee 
the initial excitability of half-side of the re-entry. Furthermore, since the wave of excitation might 
flow only in excitable cardiac tissue, the already excited tissue should have completed its 
refractory period for the circular pathway to completely pass through again. As such, the 
wavefront must be sufficiently delayed in its propagation in order to encounter, at each time, out-
of-refractoriness myocardial cells. This aspect is typically ensured by slow-conduction areas in 
re-entrant pathways, which exhibit a decreased conduction velocity [195], [200], [202]. Finally, 
the re-entrant mechanism may need an initiating trigger to be established, as a premature 
depolarization, but also a critical mass of tissue to be sustained.  

When the re-entry is due to anatomical structures, it is referred to as anatomical re-entry. In this 
case, the central area of block is given by an anatomical obstacle, around which the re-entry is 
maintained. In this regard, two essential aspects have to be introduced: the wavelength and the 
excitatory gap [195], [202]. The former is defined as the product of conduction velocity and 
refractory period, and mainly concerns the possibility for the re-entry to be sustained in all those 
cases in which the wavelength is shorter than the length of the circular path. Conversely, the 
excitatory gap embodies any possible excitable tissue arising between the head of the re-entrant 
excitatory wavefront and the tail of the preceding one, and it is important not only for the re-entry 
perpetuation but also for its possible termination by external electrical stimulation. Another type 
of re-entrant mechanism is the functional re-entry, which is due to the heterogeneous 
electrophysiological properties of the involved myocardium. Among functionally defined re-
entries, several types can be mentioned according to the different paths and principles [195], 
[200], [202]. The first one is the leading circle re-entry, in which the excitatory waveform travels 
on partially refractory pathways and around a core that, conversely, is totally non-conducting 
because exposed to continuous excitations. Furthermore, a different re-entrant type is due to the 
different conduction and repolarization properties affecting the myocardium in specific 
circumstances, which may cause the so-called anisotropic re-entry. A singular example is given 
by the figure-of-eight re-entry, which is derived by the combination of two excitatory wavefronts 
that, despite travelling in opposite sense, may converge into the same common isthmus. A 
different form is represented by the reflection mechanism, in which the wavefront may propagate 
in both directions on the same path thanks to the presence of a slow-conduction tissue that 
guarantees the extinction of the refractory period. Finally, the last functional re-entry types are 
characterized by a spiral rotating propagation pattern that, on one hand, ensures that the core 

 

Figure 7.3.  Schematic representation of a re-entry. Adapted from [202]. 
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remains inactive, whereas on the other allows for slow conduction of the impulse. Most of the 
functional re-entrant mechanisms are schematically reported in Figure 7.4. 

    

 

7.3 Electrophysiological study of cardiac arrhythmias 

Electrophysiological studies are often indicated in patients affected by cardiac arrhythmias [203]. 
During these invasive diagnostic examinations, the cardiac electrical activity is examined locally, 
in order to reach a deeper understanding of the nature and source of the involved arrhythmia, but 
also to identify the best-suited intervention for its treatment. The electrophysiological study is 
performed by slightly invasive clinical procedures, in which a variable number of thin 
multielectrode catheters are inserted percutaneously and are guided directly into the cardiac 
chambers, sometimes using fluoroscopy [201]. As such, the electrical activity can be acquired 
from the cardiac chamber in which the catheter is positioned, leading to intracardiac recordings 
called electrograms (EGMs) [195], [204]. However, intracardiac catheters may have different 
properties and forms in order to perform recording, but also pacing and ablation, in different sites 
and with different modalities.  

 

Figure 7.4.  Schematic representation of different functional re-entry types: leading circle (on the top 

left), figure-of-eight (on the top right), reflection (on the bottom left) and a spiral wave (on the bottom 

right). Adapted from [195,202]. Arrows represent excitatory wavefronts, whereas solid lines the 

resulting re-entry. In the figure-of-eight re-entry, central block areas are depicted in light grey, 

whereas slow-conduction areas of reflection mechanism are reported in dark grey. 
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7.3.1 Intracardiac electrograms 

Unlike the surface ECG, that allows the recording of the whole cardiac electrical activity, 
intracardiac EGMs represent the electrical activity of the local cardiac tissue close to the catheter 
electrodes [195]. Specifically, near-field potentials related to the local electrical activity near the 
recording electrodes of the catheter, and far-field potentials from remote cardiac activations are 
present in intracardiac EGMs [201]. Important information can be deduced by EGM amplitude, 
morphology, duration and its relationship with other recorded intracardiac signals, as the local 
activation time, the direction of wavefront propagation and the activation complexity of the 
myocardial tissue surrounding the recording electrode [195], [201]. Similarly to the ECG 
acquisition, extracellular potentials may be modelled as multiple electric dipoles, whereas the 
wavefront can be seen as their vectorial sum [204].  

EGMs may be acquired in bipolar or unipolar recording modes, leading to signals with different 
morphologies and characteristics, mainly in terms of field of view, directionality, spatial and 
temporal resolution [204]. However, many aspects should be taken into account when analysing 
the EGM morphologies, as the adopted filtering, the sampling frequency, the electrode size, the 
contact force and the catheter position [205]. 

Unipolar EGMs are acquired as the potential difference between the voltage of the  recording 
(exploring) electrode, which is placed in contact with the cardiac chamber, and the reference 
voltage offered by either an indifferent electrode located at a distance from the heart or the 
Wilson’s central terminal [195], [204]–[206]. Therefore, their field of view encloses all 
activations occurring between the recording and the reference electrodes. In general, a positive 
deflection will be displayed on the unipolar EGM when the activation wavefront is approaching 
the exploring electrode, whereas a negative deflection will appear when it travels away from it 
(see Figure 7.6). On these premises, this recording modality may provide information about the 
direction of wavefront propagation. Nonetheless, the amplitude of the unipolar EGM is inversely 
proportional with respect to the distance between the source and the recording electrode. In this 
regard, one main disadvantage of the unipolar EGMs is that they are strongly and inevitably 
affected by considerable far-field signals, of limited amplitude the farther they are coming from 
[204], [206]. However, unipolar recordings allow to record signals with good resolution in both 
time and spatial domains, which are not affected by the propagation direction. 

 

Figure 7.5. Examples of multi-electrode catheter for mapping and ablation.  

On top row, ThermoCool SmartTouch SF (left), CristaCath (middle), ThermoCool SmartTouch 

catheters are represented. On bottom row, the PentaRay (left), the Duo-Decapolar catheter (middle) 

and Decapolar catheters are depicted (Biosense Webster, Inc., Diamond Bar, CA, USA). 
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Bipolar EGMs are given by the potential difference obtained between two exploring electrodes 
placed both in contact with the myocardium, or, equivalently, by the mathematical difference 
between two unipolar recordings [204], [206], [207]. Bipolar EGMs show higher SNR and better 
represent high-frequency components with respect to unipolar recordings [195], [205], being less 
affected by the far-field and common noise contributions. As such, bipolar EGMs are 
preferentially adopted to record local activity deflections, as in the case of depolarizations arising 
from impaired myocardial tissue, which are frequently associated to arrhythmogenicity [147]. The 
amplitude and duration (or width) of bipolar EGMs are strongly influenced by several factors, 
including the distance between the source and the electrodes, the inter-electrode distance, the 
direction of propagation and the conduction velocity [195], [204]. In this regard, myocardial areas 
of slower conduction result in wider deflections in bipolar EGMs. However, bipolar EGMs cannot 
provide proper information about the propagation direction. As such, despite the bipolar EGMs 
are those typically adopted in electrophysiological and mapping studies, simultaneous unipolar 
recording may help in some conditions, as for propagation direction and local activation time 
assessment [195], [201]. Given the different drawbacks of both recording modalities, different 
solutions have been proposed in recent years, as the omnipolar recording and the Laplacian 
technique [205]. 

 

In the light of the objective of the second part of this PhD thesis, it should be highlighted that the 
EGM morphology, amplitude, and timings play a key role in the clinical electrophysiological 
procedures. Firstly, the EGM amplitudes are important from the clinical perspective, especially 
in mapping and ablation procedures, since they are used for the distinction of healthy myocardial 

 

 

Figure 7.6. Representation of the unipolar electrogram recording. When the excitatory waveform 

(arrows) is approaching the recording electrode, a positive deflection in displayed. Conversely, when 

it flows away, the recorded signal becomes negative. As such, even if the wavefront is moving towards 

from different directions, it would not be reflected by the electrogram morphology [204]. 
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tissues from damaged ones [206]. In fact, an amplitude reduction may be due to structural changes 
or zones of activation blocks, inducing a reduced number of cells to be activated [205]. 
Specifically, in ventricular bipolar EGMs, peak-to-peak amplitudes below 0.5 mV have been 
associated to dense scar tissue2, whereas voltages above 1.5 mV to normal myocardium [208]. 
Moreover, in case of alteration in the cell-to-cell electrical coupling or, more in general, because 
of anisotropic properties of the substrate, the propagation patterns of myocardial cells may be 
affected. Particularly, these situations may lead to a disordered and asynchronous conduction 
sequence, which results in fractionated EGMs, as represented in Figure 7.7. This condition is 
frequently associated with the presence of local fibrosis, which may occur in normal cardiac 
tissues, but mainly in myocardial tissues damaged by ischemia [195], [204]. As such, these 
features in intracardiac EGMs may provide a lot of information regarding many underlying 
electrophysiological problems. 

 

 

7.3.2 Cardiac mapping: tools and techniques  

Heart rhythms and arrhythmias are frequently analysed through specific electrophysiological 
procedures, in which their electrical potentials are characterised from different perspectives and 
their sources are spatially localised in 3D in the cardiac chamber. These processes are generally 
referred to as cardiac mapping, in which different recording modalities and systems can be 
exploited [195], [201], [207]. Specifically, signal acquisition for the cardiac mapping can be 
performed by catheters in direct contact with the endocardium (endocardial mapping) or the 
epicardium (epicardial mapping), by intracardiac non-contact electrodes (non-contact mapping) 
or by body surface electrodes (body surface potential mapping or ECG imaging) [195], [204], 
[206]. In this regard, many different intracardiac catheters are available, with a single electrode 
allowing point-by-point acquisitions, or multiple electrodes for several simultaneous recordings.  

 
2 Here, scar is associated to ventricular myocardial tissue in which fibrotic tissue developed after an injury, thus 
hampering the normal impulse propagation. Ventricular scars are mainly due to ischaemic events, and specifically to 
myocardial infarction, but also to nonischaemic cardiomyopathies or to cardiac surgical treatments [214]. 

 

Figure 7.7. Electrograms obtained by healthy myocardial tissue (top) and by myocardial scar (bottom). 

As can be seen, in the top figure, the electrogram recorded is sharper, because many cells are activated 

rapidly and synchronously. Conversely, in presence of a scar (bottom), the conduction is highly 

irregular and displaced, thus the resulting electrogram is significantly fragmented and attenuated 

[195]. 
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Cardiac mapping may include very different techniques, as activation mapping, pace mapping, 
entrainment mapping, and voltage or substrate mapping.  

Activation mapping analyses the cardiac activation sequences and patterns based on EGM local 
activation time. Therefore, it provides this temporal activation information visually, by 
representing the  local activation time as colour-coded filling of the reconstructed three-
dimensional cardiac chamber, which can be useful in focal and macro re-entrant arrhythmias 
[195], [206], [207]. As such, after a reasonable number of points in the chamber of interest have 
been recorded, a continuous progression of colours, spanning from the earliest to the latest local 
activation in the mapped chamber can be appreciated. 

Pace mapping aims to identify the tachycardia source by pacing at different endocardial sites, in 
order to induce the same ECG morphology, i.e. P wave and QRS complexes similar to those 
observed during tachycardia [195], [206], [207], [209]. In fact, by pacing at specific cycle lengths 
in proximity of the tachycardia focus, it is possible to induce the same activation sequence, thus 
resulting in similar ECG waveforms recorded. The catheter is considered to be as close to the 
tachycardia site as higher the accordance of the ECG waveforms recorded during pacing and 
tachycardia. Therefore, in this sense, the analysis of the surface ECG and its correlation with 
tachycardia ECG recording allows  estimating the pacing site location of the tachycardic focus. 

Entrainment mapping allows detecting the presence and location of a re-entry circuit by 
exploiting pacing manoeuvres and their interaction with the tachycardia [195], [206], [207], [210]. 
Entrainment is mainly based on the presence of an excitable gap in the re-entry, whose excitable 
myocardial tissue can be captured by a premature pacing stimulus. In this condition, the external 
stimulus may propagate in antidromic (retrograde) direction, colliding with the previous 
wavefront of activation, but also in orthodromic (anterograde) direction in the same re-entrant 
path, therefore resetting the tachycardia. 

Substrate (or voltage) mapping provides the spatial distribution of the EGM peak-to-peak 
maximum amplitude, by adopting colour scales and the superposition of acquired voltage values 
to the anatomical cardiac chamber geometry [195], [206], [207]. It is important since, as already 
explained in the previous section, amplitude reduction can be ascribed to structural or functional 
alterations [205]. Local EGM amplitude can be acquired in sinus rhythm or during pacing, and 
allows for the identification of low-voltage areas (such as scars) from normal voltage areas (such 
as healthy tissues), but also border-zones regions associated to damaged but still significantly 
conductive myocardium [204], [205]. As such, voltage mapping allows the delineation of re-
entrant circuits and localization of arrhythmia, frequently guiding substrate ablation in ventricular 
tachycardia [201], [206]. However, in this regard, many novel mapping strategies have been 
proposed [211].  

Several new mapping systems have been proposed in the last decades, providing novel insights 
into arrhythmias generation and maintenance, but also for their ablative therapy [207], [212]. 
Specifically, many electroanatomic mapping (EAM) systems have been proposed to overcome 
the limitations imposed by conventional contact mapping systems based on fluoroscopy, allowing 
to obtain both electrophysiological and anatomical data of the cardiac chamber with high 
resolution, high efficacy in arrhythmia mapping and reduced fluoroscopic time and exposure 
[207], [213]. These systems are particularly useful when arrhythmic scar-related mechanisms 
involve complex anatomy or arrhythmia substrates close to important cardiac structures, as in 
those cases the functional heart structures can be marked and avoided by ablative therapies while 
focusing specifically on the arrhythmia origin [213]. The most widely adopted three-dimensional 
EAM mapping systems in the clinical procedures are the CARTO®3 system (Biosense Webster, 
Inc., Diamond Bar, CA, USA), the EnSite NavX system (St. Jude Medical, Inc., St. Paul, MN, 
USA) and the Rhythmia system (Boston Scientific, Inc., Marlborough, MA, USA) [206]. Three-
dimensional EAM systems allow the study of the cardiac chamber by performing intracardiac 
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recordings and 3D representation of different cardiac activation properties though colour-coded 
strategies. Specifically, many features as activation timing and amplitude voltages are extracted 
from the intracardiac EGMs, which are acquired at different sites in the cardiac chamber. 
Remarkably, in these systems, the mapping-ablation catheter is precisely located in the three-
dimensional space of the heart by the mapping system using magnetic-based and/or impedance-
based technology [206]. Moreover, the outer positions assumed by the mapping electrode catheter 
are exploited to generate the surface geometry of the EA map. As such, thanks to the accurate 
three-dimensional location of the different EGM acquisition sites, these extracted data can be 
exploited to generate a three-dimensional reconstructed map of the cardiac chamber with colour 
coding, thus allowing electrophysiologists to pinpoint arrhythmogenic re-entry or the focus of 
origin of the arrhythmia to target for ablation. Many technological advances are permeating in the 
field, leading to the integration of different technologies as contact force sensors and blending of 
images acquired by computer tomography, magnetic resonance or synchronous intracardiac 
ultrasound catheters [206], [207].  

Nonetheless, EAM is typically aimed at the identification of target sites for consequent catheter 
ablation. Catheter ablation is mostly based on radiofrequency (RF) energy, which is delivered on 
the myocardial tissue to induce thermal lesions and inhibit the conductive functioning in 
arrhythmogenic sites [195], [201]. The RF catheter ablation is found to be the dominant modality 
of arrhythmia ablation, despite new technologies have been introduced, as ultrasound, laser, 
microwave, and cryoablation [206]. 

 

 

  

 

Figure 7.8. Example of a voltage map obtained from the EAM of a left ventricle in a post-ischaemic 

patient by using the CARTO®3v6 system (Biosense Webster, Inc., Diamond Bar, CA, USA). Bipolar 

voltage values below 0.5 mV are displayed in red, above 1.5 mV in purple, whereas intermediate 

amplitudes are coloured accordingly. Along with bipolar voltages, some tags introduced during the 

clinical procedure are also reported.  
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Chapter 8    

 

Background on post-ischaemic ventricular tachycardia: 

arrhythmogenic substrate and targeting strategies for 

ablation 

 

8.1 Role of scar in VT arrhythmogenesis 

VTs are mainly induced by ventricular scars in several forms of heart disease [214]. Ventricular 
scars are typically caused by myocardial infarction, but also by nonischaemic cardiomyopathies 
and events involving fibrogenesis. Indeed, within scars, surviving myocyte bundles may coexist 
with dense fibrotic tissues, which together may lead to slow conduction, disordered propagation 
and conduction blocks, thus creating the conditions for re-entrant mechanisms [214]–[217]. 
Therefore, scar-related re-entry is found to be the primary arrhythmogenic mechanism for VT in 
structural heart disease [218]–[221]. VT circuits are typically characterized by complex 
morphologies with multiple entrances and exits [222], [223]. In this regard, structural 
heterogeneity of these areas may lead to multiple and variable re-entry morphologies involving 
epicardial, endocardial and/or midmyocardial tissues.  However, some patterns of VT circuits as 
single-loop, double-loop and multiple-loop re-entries have been described [218], [224], [225].  

 

These slow-conduction scar-related myocardial areas are characterized by low-amplitude 
voltages [222] and have been frequently associated to characteristic morphologies in the recorded 
EGMs, identified as fractionation [215], [226]–[228], isolated [229] and late potentials (LPs)  
[230]–[232], and local abnormal ventricular activity (LAVA) [233], [234]. However, despite 
variously defined, both LAVA and LPs have been proven to be associated to fundamental 
components of VT re-entry [235].  

 

Figure 8.1. Examples of VT re-entry circuits [218]. 
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All these EGM features and properties have been exploited for targeting arrhythmogenic sites 
during substrate-guided mapping for their subsequent ablation, to make these areas unexcitable 
from an electrical point of view. 

 

8.2 Substrate-guided mapping and catheter ablation in scar-related VTs  

Catheter ablation represents an effective therapeutic option for different forms of VT [199], 
[236]–[240], and as such often indicated for VT management [241]. In this context, it is exploited 
to suppress arrhythmogenic areas and, as such, enable the control of VT [242]. Nowadays, 
catheter ablation can be guided mainly by activation, substrate, pace and entrainment mapping, 
and is normally based on RF energy delivery, but many promising alternatives have been 
proposed [211], [243]. Recent research has demonstrated that substrate-guided mapping and 
catheter ablation during sinus rhythm may be a reasonable strategy to decrease arrhythmia 
recurrence [244], [245] and prevent implantable cardioverter-defibrillator (ICD) shocks [246]. 
Substrate-guided mapping is based on the identification of low-voltage slow-conducting areas in 
sinus rhythm, which become targets for catheter ablation in order to inhibit electrical conduction 
in arrhythmogenic tissue [247]. Despite voltage mapping may be hampered by several factors 
[206], [248], EGM characteristics in addition to peak-to-peak voltage amplitudes are frequently 
exploited for the identification of the arrhythmogenic substrate [249], [250]. In this regards, many 
different substrate-based strategies have been proposed, mainly including [206], [243], [250]–
[254]: 

 LPs abolition, aimed at performing catheter ablation in scar-related myocardial areas 
whose EGMs are affected by LPs, which have been found to effectively mark slow-
conduction re-entrant isthmuses [232], [247], [255]–[260];   

 LAVA ablation, based on the elimination of low-voltage, abnormal, high-frequency 
potentials associated with scar-related pathological tissue [247], [261], [262]; 

 Scar dechannelling, focusing on the identification of entrances of slow conductive 
channels in VT circuits through their EGM characteristics, in order to perform a selective 
and targeted ablation only on these regions [263]; 

 Core isolation, ablating the VT re-entry circuit around the scar, thus inhibiting possible 
electrical conduction by its entrances, isthmuses and exits [264]; 

 Scar homogenization, aimed at performing the ablation on the entire scar, guided by the 
presence of local abnormal conduction [265]. 

In this regard, Figure 8.2 schematically represents different substrate-guided catheter ablation 
strategies performed in scar-related VT substrates. 

 

8.2.1 Ventricular abnormal potentials as high-frequency deflections in intracardiac 

electrograms 

To summarize, despite many different strategies and tools have been proposed in the literature 
[206], [211], [221], [250]–[253], [266], [267], substrate-guided mapping and ablation procedures 
generally aim at targeting slow-conduction pathways, which are mainly identified by EGMs 
affected by so-called abnormal ventricular potentials (AVPs), with the final aim of silencing them, 
i.e. making these myocardial areas electrically inactive. Many authors have proposed different 
definitions of AVPs according to their temporal and morphological characteristics [206], [232], 
[244], [255]–[257], [259], [261], [262], [268], [269], which, nevertheless, have been proven to be 
frequently influenced by the infarct age in post-infarction VT [270]. AVPs are often qualitatively 
referred to as high-frequency deflections in intracardiac EGMs [206], [211], [261], [262], and 
different automated recognition algorithms are based on this assumption [271]–[273]. However, 
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no spectral characterisation of AVPs and post-ischaemic physiological potentials from 
intracardiac bipolar recordings has been performed so far. In fact, spectral analysis and time-
frequency analysis techniques have been previously exploited on ventricular EGMs only with the 
goal of identifying short-term frequency content variations induced by myocardial ischaemia 
[274], distinguishing monomorphic and polymorphic VTs [275], local and distant electrical 
activities [276] and VT EGMs from normal sinus rhythm ones [277], [278], or targeting 
arrhythmogenic sites [271]–[273], but not to identify peculiar signatures of AVPs in the frequency 
domain. A study [279] investigating the effect of post-myocardial infarct on the frequency 
characteristics of ovine unipolar recordings acquired by multi-electrode plunge needles 
determined the relationship between high-frequency spectral characteristics and arrhythmogenic 
substrates. However, whilst the latter analysed peculiar histological and electrophysiological 
aspects, no evidence on AVPs was provided, nor their spectral contents were compared with post-
ischaemic physiological EGM spectra. Moreover, as previously described, despite the unipolar 
recording mode being independent of the direction of the depolarisation wavefront, bipolar EGMs 
are less affected by other distant electrical activities. Indeed, because they allow the detection of 
high-frequency components and obtain higher SNRs [204], bipolar recordings are clinically 
preferred when targeting fractionated potentials and LPs [205].  

 

8.2.2 Background on developed tools supporting VT arrhythmogenic substrate 

identification to guide catheter ablation  

As previously detailed, VT ablation outcomes strongly depend on the identification of AVPs,  and 
different 3D EAM mapping systems are adopted by electrophysiologists in order to recognize 
AVPs during substrate-guided mapping and ablation procedures. Generally, nowadays AVPs are 
visually identified by the cardiologist during electrophysiological studies and manually tagged on 
the electroanatomic maps in order to perform ablation subsequently. On this basis, 
electrophysiological procedures and their outcomes strongly depend on the cardiologist’s 
expertise, who is asked to visually inspect a huge number of signals in real-time when spatially 
targeting ablation sites, thus making the clinical procedure time-expensive and operator-
dependent. Due to the relevance of an accurate detection of the VT arrhythmogenic substrate, 
several supporting mapping tools have been proposed, such as the CARTO®3 ripple mapping 
[280], the Rhythmia HDx mapping and the Ensite Precision automatic mapping [267], the Ensite 

 

Figure 8.2. Schematic representation of different substrate-guided catheter ablation strategies 

performed in scar-related VT substrates [254]. 
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Precision fractionation mapping algorithm [281], the Rhythmia Lumipoint algorithm [282], as 
long as identification algorithms including the mapping strategy based on voltage, fragmentation 
and duration criteria [283], the simultaneous amplitude frequency EGM transformation (SAFE-
T) mapping [272], the fragmentation map [271], the combination of voltage limit adjustment with 
the Fast Fourier Transform [273], the automated fractionation detection algorithm [284], [285], 
the re-entry vulnerability index (RVI) [286], [287] and the recent algorithm for 3D visualization 
of EGM duration [288], but also many alternative targeting strategies, as the decrement evoked 
potential (DEEP) mapping [289]–[291], the high-density mapping based on deceleration zones 
[292] and the hidden slow conduction (HSC) analysis [293], [294]. However, despite the variety 
of novel identification and mapping algorithms proposed for targeting VT arrhythmogenic sites 
during intracardiac procedures, none of the developed approaches currently exploited artificial 
intelligence tools for the automatic detection of VT substrate. 

 

8.3 Conclusion 

Among cardiac arrhythmias, VT has drawn the attention of many researchers due to its incidence 
and impact on the patient’s life. As previously detailed, scar-related VTs are frequently treated by 
substrate-guided mapping and RF catheter ablation, in order to make arrhythmogenic sites 
electrically inactive but, despite the clinical and scientific effort, the VT recurrence is still high 
[206], [295]. This unsuccess could be related to the fact that mechanisms underlying the VT origin 
and maintenance have been studied but still not completely understood [296], as long as to the 
need of a deeper understanding of the dynamic changes in tissues inducing re-entrant 
mechanisms, that would be useful in order to optimize these clinical approaches [297]. Moreover, 
the need of improving catheter ablation outcome runs in parallel to the need of focusing the 
ablation only on decisive and essential target points [298]. In light of all these premises, the second 
part of this PhD thesis aims to report the development of an effective artificial intelligence tool 
able to support the cardiologists in the recognition of the ablation targets during 
electrophysiological procedures, in the perspective of reducing clinical procedure times while 
improving their efficiency, the arrhythmogenic substrate delineation and, possibly, the clinical 
outcome. Simultaneously, another goal is to give support in reaching a deeper understanding of 
the mechanisms underlying the generation of abnormal signals, through the characterization of 
EGMs in the frequency domain. As such, in the next Chapter 9, the power contributions of post-
ischaemic physiological potentials and AVPs are explored in the frequency domain, along with 
some spectral features, to highlight specific spectral signatures for these signals, while in the 
Chapter 10 a novel computer-assisted algorithm for targeting arrhythmogenic sites is presented. 
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Chapter 9 

 

Novel insights on post-ischaemic VT arrhythmogenic 

substrate: spectral characterisation of ventricular 

intracardiac potentials in human post-ischaemic bipolar 

electrograms 

 

9.1 Rationale 

On the premises of the previous Chapter 8, a detailed spectral characterisation of AVPs and post-
ischaemic physiological potentials in bipolar recordings was performed to provide deeper insights 
on these signals and move towards a comprehensive understanding of the arrhythmogenic 
substrate. Specifically, this chapter aimed at the identification of the spectral components 
exhibiting the highest informative and peculiar contribution for both AVPs and physiological 
potentials, as long as some peculiar features of the morphology of their spectra, in order to provide 
robust and hitherto unavailable characterization of these signals. Beyond providing novel insights 
on these signals, such a complete spectral characterization has been exploited as the basis for 
further studies aimed at their targeted automatic recognition, as detailed in the next Chapter 10. 

As such, in this study, the power contributions of post-ischaemic physiological potentials and 
AVPs in bipolar intracardiac EGMs have been investigated, focusing on their spectral analysis 
after sub-band division. Here, bipolar recordings were selected as they ease the detection of high-
frequency components with good signal-to-noise ratio [204], [205]. As better detailed in the 
following sections, 450 real bipolar EGM segments acquired in sinus rhythm from seven patients 
affected by post-ischaemic VT have been retrospectively analysed for this purpose. Because of 
the high variability of their morphology, AVPs of three different types and post-ischaemic 
physiological potentials of two types were considered. On these signals, we investigated the 
power contributions by exploiting conventional spectral analysis methods combined with a sub-
band partitioning. In particular, the periodogram power spectrum and power spectral density 
estimate (PSD) were selected as the most suitable tools to provide an easily understandable 
spectral characterization. Along with the absolute powers, the relative power contents on each 
sub-band and different spectral features were appraised to provide a complete overview. 
Compared to other published works, the significant novelty of our study is the detailed assessment 
of bipolar signals, which are typically inspected by the electrophysiologists during the ablation 
procedures, to identify the spectral signatures of AVPs and physiological potentials, along with 
their distinctive spectral characteristics, providing new insights also on their PSD morphology. 

 

9.2 Materials and Methods 

This retrospective study was based on a dataset consisting of 450 bipolar EGM segments acquired 
from seven patients (86% male; mean age, 64 ± 9 years) affected by post-ischaemic VT at the San 
Francesco Hospital (Nuoro, Italy) between 2017 and 2018. This study on anonymised patient data 
was approved by the Independent ATS Ethical Committee (Azienda Tutela Salute, Sardegna) and 
performed following the principles outlined in the 1975 Helsinki Declaration, as revised in 2000. 
All patients provided their informed consent. Recordings were performed in sinus rhythm during 
left ventricular EAM by using the CARTO®3v6 system (Biosense Webster, Inc., Diamond Bar, 
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CA, USA) at a sampling frequency of 1 kHz. After the EAM was completed, catheter RF ablation 
followed the usual clinical protocols. Bipolar intracardiac EGMs were recorded using PentaRay™ 
(Biosense Webster, Inc.) 2-6-2 mm, by exploiting only the 2-mm spaced electrode pairs, 
ThermoCool SmartTouch® and ThermoCool SmartTouch® SF (Biosense Webster, Inc.) catheters 
and band-pass filtered between 16 and 500 Hz by the CARTO®3v6 system. Whilst the duration 
of each exported CARTO®3v6 recording was 2.5 s, only the biopotential around the reference 
annotation3 was guaranteed to be acquired by the multielectrode catheter in effective contact with 
the endocardium. Therefore, a window of 200 ms before and 300 ms after the reference point was 
identified as the portion of interest for all subsequent analyses. According to the sampling 
frequency adopted in the CARTO®3v6 system (i.e., 1000 Hz) and the chosen duration of the 
analysis window for each EGM (500 ms), the available frequency resolution for the discrete-time 
frequency analyses was 2 Hz.  

All intracardiac EGMs were manually labelled by an experienced cardiologist using an ad hoc 
MATLAB graphical user interface (GUI) expressly developed for this purpose (see Figure 9.1). 
Specifically, by exploiting the corresponding simultaneous surface ECG leads, all abnormal 
potentials occurring after or during the corresponding QRS complexes were considered, as in 
other works [259], and all physiological potentials from post-ischaemic damaged substrates were 
also included in the study, as detailed hereinafter. Conversely, all noisy or doubtful traces were 
discarded. 

Abnormal potentials, i.e. AVPs, were divided into three types [259], to take into account the high 
variability of the morphologies of all the bipolar intracardiac EGMs: 

 LP1: endocardial bipolar abnormal deflections spreading after the end of the 
corresponding surface QRS depolarisation, 

 LP2: endocardial bipolar depolarisations starting during the corresponding surface QRS 
depolarisation but vanishing after its end, and 

 EP: endocardial early EGM deflections completely falling within the corresponding 
surface QRS depolarisation boundaries. 

Physiological biopotentials (i.e., those without any abnormal deflection) originating from 
damaged myocardial substrates were also considered, dividing them into border-zone and scar-
related types. Only these physiological potentials were categorised according to their peak-to-
peak amplitudes (App) recorded in the bipolar EGMs. Conventionally [208], endocardial border-
zone potentials satisfied the constraint 0.5 mV < App < 1.5 mV, whereas scar-related ones were 
characterised by App < 0.5 mV. Amplitude categorisation was not applied to AVPs signals. All 
noisy or doubtful traces were discarded. 

Over all the procedures, equal numbers of examples were randomly selected for each type of 
potential, (90 per type) to provide an effective and balanced comparative assessment. Figure 9.2 
reports some typical examples of each EGM type. 

The power contents for all bipolar EGMs were evaluated in the frequency domain. This analysis 
was carried out by adopting PSD and multiple spectral features to characterise the signals and 
their spectra better, as detailed in the following section. 

 
3 The reference annotation is a temporal reference point which all other signals are aligned to by the CARTO®3 system. 
It corresponds to the timing in which a predefined event (e.g. the R peak) is observed in the reference surface ECG, for 
each cardiac cycle. However, different events may be considered according to the chosen identification criterion 
adopted during the procedure.  
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Figure 9.1. GUI developed for the EGMs labelling. Upper plot: first window for the ECG leads 

selection is represented: there, the electrophysiologist is asked to select the ECG leads in which the 

QRS occurs with earlier, intermediate and later latency. Blue bars identify the onset and the end of the 

QRS in all the twelve leads by an ad-hoc developed algorithm, while the moving red bar helps the 

clinician in its identification. Middle plot: after the selection, the GUI reports the three selected surface 

ECG leads and the analysed EGM. Red bar with a blue point allows the expert to mark the onset of 

any AVP. Bottom plot: by a simple click, different labels can be assigned both for AVPs, and for the 

other EGMs (i.e., choosing between physiological or garbage potentials by the “Not a late potential” 

button). In the process, different zooms and lead choices are allowed according to the visualisation 

requirements. 
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9.2.1 Spectral analysis methods 

The spectral analysis included several steps. Firstly, the main frequency range of interest for these 
signals was identified, as described hereinafter, to reduce the dimensionality of the problem by 
focusing on the spectral range that contains the largest part of the signal power. Then, the power 
contributions in different sub-bands were assessed and compared, to perform a fine-grained 
analysis of the EGM spectral content. Sub-band partitioning with a bandwidth of 20 Hz was 
performed, as also described in a previous study [279], on the basis of the frequency resolution 
imposed by the chosen window length. This choice allowed reducing the impact of both noise 
and intrinsic limitations of the signal analysis methods adopted, by trading off robustness and 
accuracy of the characterisation. 

The PSD method was exploited for spectral power estimation; here, the results were studied over 
sub-band partitions of the main frequency range of interest. Furthermore, the absolute and relative 
power contents of the potentials in the different sub-bands were computed because relative power 
analysis allows the elimination of signal amplitude influence, mainly due to the far field 
component, which clearly affects the power estimated from the spectral analysis. Finally, different 
spectral features were evaluated to characterise the different PSD morphologies and contents of 
the EGM types. 

At first, a preliminary identification of the main frequency range of interest was performed in 
order to focus the signal frequency analysis on the components that provide the largest part of 
information, leading to a more effective and understandable sub-band analysis of ventricular 
endocardial potentials. This approach allowed to restrict the number of sub-bands whilst still 
guaranteeing fine granularity during spectrum partitioning. for each EGM, we computed the PSD 

 

Figure 9.2. Prototypical examples for each EGM type. Two examples are represented on top and 

bottom rows for each EGM type. Specifically, from left to right, border-zone potentials, scar potentials, 

LP1 EGMs, LP2 EGMs and EP EGMs are depicted. 
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and estimated its total power as the area under the PSD curve over the entire frequency band 
limited by the Nyquist frequency. Then, we identified the frequency fH corresponding to the value 
for which the 95% of the total PSD power was retrieved (see Figure 9.3). Finally, considering the 
fH values for each of the five EGM types, the 95th percentiles (ξ95) were computed separately for 
each EGM type and the lowest sub-band including the maximum ξ95 was identified. The frequency 
range of interest was defined as the band between zero and the upper boundary of that sub-band. 

As regards the spectral analysis, it was performed by PSD and power spectrum. The power 
spectrum of the discrete-time signal represents its power as a function of the frequency bin ¯_, 
which is the normalized frequency, defined as r0 (0q/2)⁄ , where 0q represents the adopted 
sampling frequency. When the discrete Fourier transform (DFT) is used, ¯_ assumes the discrete 
values 2rj �⁄ . In fact, in its simplest non-parametric estimate, the power spectrum can be 
computed from the DFT of the windowed signal of interest (Y[�]) consisting of � samples, by 
normalising its squared magnitude as follows [299]: 

°±[¯_] =  |³´µ{Y[�]}|�(∑ 7[�] DO�� C b )� (9.1) 

where 

 

Figure 9.3. Schematic representation of the identification procedure for the frequency values fH, in 

order to determine the upper boundary for the subsequent sub-band spectral analysis. For each 

potential and EGM type, the frequency fH corresponding to the value for which the 95% of the total 

PSD power (grey area) was retrieved was firstly determined. Then, for each EGM type separately, the 

distribution of the fH values was deduced in terms of median (black squares on the right) and 5th and 

95th percentiles (ξ95), identified by the extremes of the dotted lines, on the right). As such, the lowest 

20-Hz sub-band enclosing the maximum ξ95 across the five EGM type was selected as upper boundary 

for subsequent spectral analysis. 
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³´µ{Y[�]}  =  A �[�] 5O>�P_�/DDO�
� C b  (9.2) 

and where ·[�] identifies the chosen window, while � and j span between 0 and � − 1, being � the signal length. Specifically, in this study, the fast Fourier transform was adopted along with 
a rectangular window function. The latter was chosen to avoid attenuation of the signal at its 
borders, as border effects are still limited by the high-pass pre-processing stage of the recording 
system. In this application, the choice of the DFT and windowing was imposed by the short 
duration of the EGM, thus providing a single epoch for each intracardiac potential.  

The spectral power was estimated as the area under the PSD curve. PSD can be computed by 
dividing the power spectrum by the effective noise equivalent bandwidth [299]. According to this 
assumption, PSD can be mathematically expressed as: 

°±³[¯_] =  |³´µ{Y[�]}|�0q  ∑ 7[�]� DO�� C b  (9.3) 

Here, absolute power analysis was carried out by computing the area under the PSD curves in 
each sub-band. 

The relative powers were also computed to avoid any influence in the analysis due to the 
amplitude of the signals, which is mainly ascribable to the far field component. These powers 
were estimated as the percentage ratio between the absolute power values of each sub-band and 
the area under the whole PSD curve in the main frequency range, similarly to a previous work 
[274].  

Moreover, a deeper characterization of the different PSD morphologies was obtained by 
exploiting some frequency-domain features [300]. Specifically, for each EGM, the following 
features were considered: 

 the mean frequency (MF), which is computed as the weighted sum of the power spectrum 
contents [�> and the corresponding frequencies 0> with respect to the total power 
estimated in the main frequency range of interest ([):  

<� =  ∑ (0> [�>)> [  (9.4) 

 
where [ =  ∑ [�>> ; on this basis, MF explains if the power spectrum contents are mostly 
localized at the higher or lower frequencies; 

 the mean spectral power (MP), which is defined as the mean power in the main frequency 
range of interest and, as such, expresses how much power, on average, is contained under 
each PSD in that range; 

 the maximum or peak frequency (PKF), which corresponds to the frequency in which the 
maximum of the power spectrum occurs, and 

 the power spectrum ratio (PSR), which is estimated as the ratio between the spectral 
power included near the PKF and the total power estimated in the main frequency range 
of interest ([): 

[�� [%] =  100 ∙ [b[  (9.5) 

where [b =  ∑ [>ZE�¸¹>CZE�O¹ . Specifically, º was set to be equal to 4 Hz. As such, the 

estimation was performed on a spectral interval equal to 8 Hz centred around the PKF 
to give an overview of how much power is concentrated around the PKF, highlighting 
how sharp the PSD morphology is around its maximum.  
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All computations were performed with MATLAB v2019b (MathWorks Inc., MA, USA). 

 

9.3 Methods for the comparative analysis  

The normality of all data distributions was preliminary assessed by Shapiro–Wilk’s test, and the 
homogeneity of variances was evaluated with Levene’s test. Data deviating from normality were 
presented as median values, and differences between groups were compared by the Kruskal–
Wallis test. When the p-value from Kruskal–Wallis test was statistically significant, a post hoc 
Conover’s non-parametric multiple comparison test [301], [302] was used to determine which 
group differed from the others. Several statistical inferences were simultaneously applied for all 
multiple comparisons, and the Bonferroni procedure for family-wise error rates was applied to 
control type-I errors by multiplying the uncorrected p-value with the total number of pairwise 
tests; the adjusted p-value for all computations was reported. Following Bonferroni adjustment, 
p < 0.025 was accepted as significant.  

All statistical analyses have been performed using STATA 16 (StataCorp LP, College Station, 
TX, USA). 

 

9.4 Results and discussion 

9.4.1 Identification of the main frequency range of interest  

The distributions of the fH values for the five different EGM types are presented in Figure 9.4 as 
median and 5th and 95th percentile values. Visual inspection indicates that the spectral power 
analysis can be effectively carried out on all contents below approximately 320 Hz, which 
includes all of the most extreme fH values.  

 

 

 

Figure 9.4. Distribution of the frequency values fH including 95% of the total PSD power for each EGM 

type. Distributions of frequency limits fH are reported as medians (squares) and 5th and 95th percentiles. 
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9.4.2 Spectral investigations  

In this section, all spectral power estimations are reported as pair-wise comparisons amongst the 
different EGMs types. The results are organised into three groups, according to the nature of the 
EGMs included in the comparison. In the first group, all post-ischaemic physiological potentials 
(i.e., border and scar) were studied. In the second group, all AVPs (i.e., LP1, LP2, and EP) were 
examined; in the third group, physiological potentials were compared with AVPs. Table 9.1 
summarises the spectral power results of pairwise comparisons for different spectral ranges. In 
the table, the different groups are identified by vertical dashed lines. Tables 9B.1 and 9B.2 in 
Appendix B report the absolute and relative power contents obtained for each EGM type in the 
different spectral ranges. Figure 9.5 presents the results of the relative power analysis in terms of 
median values graphically, and Figure 9.6 describes the results in terms of spectral features, as 
medians and 5th and 95th percentiles. 

 

9.4.2.1 Post-ischaemic physiological potentials 

Conversely from absolute power and MP results, which were driven by the signal amplitude and 
confirmed that border power contents were significantly higher than scar ones in all examined 
ranges (p < 0.0001). relative power analyses revealed how scar power values were significantly 
higher than border ones at the lowest frequencies, i.e. 0–20 Hz (p < 0.0001). However, border 
relative powers were again higher than scar ones only up to 160 Hz, specifically in 20–60 Hz (p 
< 0.0001) and 80–160 Hz (p < 0.0074), although statistical significance was nearly achieved in 
the 60–80 Hz range (p = 0.0391). Scar MF and PKF values were significantly lower (p < 0.0001 
for both cases) whereas scar PSR estimations were significantly higher (p < 0.0001) than border 
ones, thus confirming that this EGM type demonstrates its main contribution at lower frequencies 
than border cases. 

Table 9.1. Statistically significant differences (p < 0.025) amongst the different pairwise comparisons 

obtained via PSD analysis considering absolute (●) and relative (♦) power contents in the different 

spectral sub-bands by the post hoc Conover’s non-parametric multiple comparison statistical test. 

Wherever statistically significant differences could not be found, no symbol was reported. 

The colour of each symbol (black or grey) is associated with the EGM type, indicated in the heading 

line of that column with the same colour, exhibiting the highest median power content in that specific 

comparison (e.g., in the first column, which is related to the comparison between Border and Scar, 

black symbols are reported whenever an higher contribution of the border EGMs was detected, 

whereas grey symbols are present in case of significantly greater contribution of scar EGMs).  

Frequency 

range 

(Hz) 

Border 
vs. 

Scar 

LP1 

vs. 
LP2 

LP1 

vs. 
EP 

LP2 

vs. 
EP 

Border 
vs. 

LP1 

Border 
vs. 

LP2 

Border 
vs. 
EP 

Scar 
vs. 

LP1 

Scar 
vs. 

LP2 

Scar 
vs. 
EP 

0 – 20 ● ♦ ●  ●    ●  ● ♦ ● ♦ ● ♦  ♦  ♦ 
20 – 40 ● ♦ ● ♦ ● ♦   ●  ●  ● ♦ ● ♦ ●  ●  
40 – 60 ● ♦  ♦       ● ♦ ● ♦ ● ♦ ● ♦ ● ♦ 
60 – 80 ●   ♦  ♦    ♦  ♦  ♦ ● ♦ ● ♦ ● ♦ 

80 – 100 ● ♦  ♦  ♦    ♦  ♦  ♦ ● ♦ ● ♦ ● ♦ 
100 – 120 ● ♦  ♦  ♦      ♦  ♦ ● ♦ ● ♦ ● ♦ 
120 – 140 ● ♦  ♦ ● ♦      ♦  ♦ ● ♦ ● ♦ ● ♦ 
140 – 160 ● ♦  ♦  ♦      ♦  ♦ ● ♦ ● ♦ ● ♦ 
160 – 180 ●   ♦  ♦      ♦  ♦ ● ♦ ● ♦ ● ♦ 
180 – 200 ●   ♦  ♦    ♦  ♦  ♦ ● ♦ ● ♦ ● ♦ 
200 – 220 ●     ♦ ● ♦  ♦  ♦  ♦ ● ♦ ● ♦ ● ♦ 
220 – 240 ●   ♦  ♦ ●   ♦  ♦  ♦ ● ♦ ● ♦ ● ♦ 
240 – 260 ●   ♦  ♦ ●   ♦  ♦ ● ♦ ●  ● ♦ ● ♦ 
260 – 280 ●   ♦  ♦ ●   ♦  ♦ ● ♦ ●  ● ♦ ● ♦ 
280 – 300 ●   ♦  ♦ ●  ● ♦  ♦ ● ♦ ●  ● ♦ ● ♦ 
300 – 320 ●   ♦  ♦ ●   ♦  ♦ ● ♦ ●  ● ♦ ● ♦ 
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9.4.2.2 Post-ischaemic abnormal potentials 

LP1 and LP2 potentials. In terms of MP, our experiments revealed significantly higher values 
of LP1 than LP2 (p < 0.0001). Although absolute power analyses showed statistically significant 
differences only in the 0–40 Hz range, in which LP1 values were significantly higher than LP2 

 

Figure 9.5. Median relative power contents in the different sub-bands for each EGM type. Median 

values of relative power contents obtained in the different spectral ranges are reported for Border 

(black bars), Scar (darker grey bars), LP1 (middle grey bars), LP2 (lighter grey bars) and EP (white 

bars) EGMs. A zoom on the upper sub-bands (i.e., from 80 Hz to 320 Hz) is also provided to allow for 

a better visualization of the relative power contributions at the higher frequencies. The legend 

graphically details the association between colours and the different EGM types. 
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Figure 9.6. Spectral features estimated for all EGM types. Spectral feature results are reported as 

medians (black squares) and 5th and 95th percentiles. Specifically, in a) the distributions of mean 

frequency (MF) values are represented for all EGM types, whereas in b), c), and d) those referred to 

the mean spectral power (MP), the maximum or peak frequency (PKF) and the power spectrum ratio 

(PSR), respectively. 
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ones (p < 0.0001), relative power analysis revealed a different scenario. In this case, LP1 contents 
exceeded LP2 ones at low-frequencies, in particular in the 20–40 Hz range (p = 0.0007), whereas 
LP2 showed significantly higher contributions at all the higher frequencies (p < 0.0120), except 
in the 200–220 Hz sub-band, in which no statistical significance was achieved. This finding was 
confirmed by the MF analysis, in which LP1 showed lower mean frequencies than LP2 (p = 
0.0001). No statistical evidence was found between PKF and PSR. 

LP1 and EP potentials. This comparison is similar to the previous one. MP values were 
significantly higher for LP1 than EP (p < 0.0001). Although absolute power analysis showed 
statistically significant significances mainly in the 0–40 Hz range, in which LP1 contributions 
were considerably higher than EP ones (p < 0.0001), relative power analysis demonstrated several 
statistically significant differences between 20 and 320 Hz. Specifically, although LP1 showed 
higher median contents at low frequencies, i.e. 20–40 Hz (p = 0.0002), EP values consistently 
exceeded those of LP1 between 60 and 320 Hz (p < 0.0249). Significant lower-frequency 
contributions for LP1 with respect to EP were also found when MF values were assessed (p < 
0.0001). 

LP2 and EP potentials. In general, no significant difference was found between the LP2 and EP 
classes below 200 Hz. For higher frequencies, EP demonstrated significantly higher values in the 
200–320 Hz range (p < 0.0233) during absolute power analysis but only in the 200–220 Hz range 
in the corresponding relative power analysis (p = 0.0187).  

 

9.4.2.3 Physiological versus abnormal potentials 

Border and LP1 potentials. The MPs of border EGMs were significantly higher than those of 
LP1 EGMs (p = 0.0002). Statistical differences were rarely observed between these EGM types 
when absolute powers were analysed, i.e. essentially in the 0–40 Hz (p < 0.0217) range, in which 
border powers exceeded LP1 ones. However, when relative powers were analysed, LP1 spectral 
contents exceeded border ones in the range of 60–100 Hz (p < 0.0091) and above 180 Hz (p < 
0.0156). Furthermore, border PSR values were significantly higher than LP1 ones (p = 0.0017), 
thus suggesting a lower dispersion of power contributions around the maximum frequency in 
border EGMs. 

Border and LP2 potentials. Border EGMs showed statistically higher MP values than LP2 (p < 
0.0001). During absolute spectral analysis, statistically significant differences were noted only at 
frequencies below 60 Hz, where border power contents exceeded LP2 ones (p < 0.0070). 
However, LP2 and border EGMs significantly differed in terms of relative power in all the sub-
bands except in the 20–40 Hz one. Table 9.1 reveals that LP2 showed higher power contents in 
higher frequency ranges, i.e. between 40 and 320 Hz (p < 0.0001); the opposite behaviour was 
observed at the lowest frequencies, i.e. 0–20 Hz (p = 0.0048), where border EGMs exhibited 
higher power contributions. The main low-frequency contributions of border EGMs are also 
reflected by the MF results, in which border contributions were significantly lower than LP2 ones 
(p < 0.0001). PSR values suggested a major power gathering around the frequency peak for border 
EGMs (p < 0.0001). 

Border and EP potentials. The MP values of border EGMs were significantly higher than those 
of EP EGMs (p < 0.0001). Conversely, EP MF values significantly exceeded border ones (p < 
0.0001) with lower PSR contents (p < 0.0001).Absolute power analysis revealed statistically 
significant differences below 60 Hz, in which border power contents exceeded EP ones (p < 
0.0156), and above 240 Hz, where the opposite trend was noted (p < 0.0063). In terms of relative 
power, border and EP EGMs significantly differed in all the sub-bands, with border potentials 
showing higher contributions at lower frequencies (i.e. 0–40 Hz, p < 0.0197) and EP above 40 Hz 
(p < 0.0001). 
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Scar and LP1 potentials. Scar EGMs consistently showed significantly lower contributions than 
LP1 when absolute powers, MP, MF and PKF were examined (p < 0.0001). However, scar relative 
power values exceeded LP1 one in the lowest sub-band, i.e. 0–20 Hz (p < 0.0001, see Table 9.1). 
LP1 power contents were significantly higher than scar ones at higher frequencies, i.e. 20–240 
Hz (p < 0.0119). Furthermore, scar PSRs exceeded LP1 ones (p < 0.0001). These results clearly 
indicate that scar EGMs exhibited lower powers in absolute terms, but higher relative low-
frequency contents (see Figure 9.5) with a considerable amount of spectral power around their 
PKFs, which are typically observed below 25 Hz, as can be seen in Figure 9.6. 

Scar and LP2 potentials. Scar EGMs showed significantly lower power contributions than LP2 
in terms of MP (p < 0.0001) and in the absolute power analysis at frequencies above 20 Hz (p < 
0.0001). However, similarly to the previous case, the relative power contributions of these 
potentials demonstrated some interesting characteristics. Specifically, scar EGMs showed higher 
relative power contents at the lowest frequencies, i.e. below 20 Hz (p < 0.0001), but lower 
contents at higher frequencies, i.e. above 40 Hz (p < 0.0001). As in the previous case, this finding 
was confirmed by the trends of MF and PKF, in which scar contents were significantly lower than 
LP2 ones (p < 0.0001), and PSR values, in which scar EGMs exceeded LP2 ones (p < 0.0001). 

Scar and EP potentials. Scar EGMs showed significantly lower powers than EP EGMs in terms 
of  MP (p < 0.0001). The comparison in terms of absolute and relative power analysis led to the 
same results obtained in the previous case. The MF and PKF distributions confirmed the previous 
findings, thus suggesting higher scar contributions than EP ones (p < 0.0001 and p = 0.0002, 
respectively) at low frequencies, with major gathering around PKF in terms of PSR rather than 
EP (p < 0.0001). 

 

9.4.3 Discussion 

In this chapter, different spectral power analyses were performed to characterise abnormal and 
physiological post-ischaemic bipolar potentials and provide an accurate and quantitative 
comparative assessment amongst the different EGM types analysed. The results were grouped in 
terms of comparisons between physiological potentials, abnormal potentials and physiological 
versus abnormal potentials, i.e. AVPs. 

Although the absolute power analysis is influenced by the amplitude of the signals, which is 
mainly driven by the far field component, its results are quite interesting when compared to the 
relative power analysis and the insights synthetically provided by the identified spectral features. 
According to the absolute power analysis results (see Table 9.1), scar EGMs consistently 
demonstrated lower power values than all other types of potentials, regardless of the frequency 
range analysed. However, the spectral feature analysis results (see Figure 9.6) clearly show that 
scar MF and PKF are typically below 30 Hz, around which substantial power contributions are 
concentrated, as indicated by their higher PSRs. These findings suggest that scar power spectra 
are quite condensed around their maximum and may confirm the association between the lowest-
frequency contributions and the scar areas, as further demonstrated by the relative power analysis 
results. While PKF allowed to statistically emphasize scar potentials, PSR contents allowed to 
discriminate physiological potentials from AVPs, since both border and scar EGMs showed major 
power contributions around PKF (i.e., higher PSR in Figure 9.6) MF analysis seemed to delineate 
three clusters, namely, border and LP1, LP2 and EP, and scar. 

However, the absolute power results in Table 9.1 suggest that, below 40 Hz, border EGMs show 
higher contribution than all AVPs and that, amongst AVPs, LP1 EGMs involve greater slow 
components. The same finding could be confirmed by looking at the lower MF values in Figure 
9.6 for LP1 and border EGMs. Conversely, EPs showed higher contributions than border EGMs 
above 240 Hz, revealing significant high-frequency components, which also emerged in the 
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comparison with LP2 above 200 Hz. This finding was supported by the MF evaluation, in which 
the values of EP were found to be generally higher than those of all other EGM types.  

Although absolute power analysis results are interesting for the spectral characterization of 
physiological potentials and AVPs, the relative power analysis (see Table 9.1) provides several 
novel insights into the characterisation of these signals. Overall, our results indicate that 
physiological EGMs have greater contributions at lower frequencies (i.e. mainly below 20 Hz) 
than pathological ones, as conceivable according to the fragmented nature of AVPs. In particular, 
scar-related EGMs consistently indicated higher contributions at lower frequencies (i.e. 0–20 Hz) 
than all the other physiological and pathological types, which, however, gradually decreased when 
moving towards higher sub-bands. These findings are at least partially in accordance with 
previous scientific studies on post-ischaemic epicardial EGMs [274], [275]. In fact, Mor-Avi and 
Akselrod [274] demonstrated that myocardial ischaemia is responsible for a shift of the major 
frequency contents below 40 Hz whilst attenuating high-frequency spectral components. Sierra et 

al. [275] concluded that most of the signal energy is concentrated below 30 Hz in monomorphic 
and polymorphic VT recordings.  

Relative powers of LP2 and EP exhibited significantly greater values from 40 Hz than post-
ischaemic physiological potentials, even though statistical significance was not achieved on some 
spectral ranges (see Table 9.1). Conversely, whilst LP1 EGMs showed significantly higher power 
contents than scar potentials in the 20–240 Hz range, they generally did not assume significantly 
higher values than border potentials until 180 Hz. As such, AVPs presented greater relative 
powers at higher frequencies with respect to physiological potentials, with some differences in 
spectral ranges depending on the AVP type. Moreover, as regards the significances amongst 
AVPs, while LP1 showed lower power contributions than LP2 and EP mainly above 60 Hz, LP2 
and EP EGMs statistically differed in 200–220 Hz sub-band. 

In summary, AVPs demonstrated higher relative power contributions at higher frequencies (i.e. 
mainly above 40 Hz) when compared with physiological potentials, as can be also deduced from 
Figure 9.7. These findings are quite consistent with the a priori assumptions described in [271], 
in which spectral contents above 80 Hz were identified as a marker of highly fragmented EGMs, 
and another study [272], which identified the range of 70–180 Hz to be the useful spectral range 
for the arrhythmogenic potentials identification. Moreover, our results partially agree with 
another study [273], which indicated the 40–100 Hz range to be of interest for fractionated EGM 
recognition, and an earlier analysis [279], in which arrhythmogenic scar potentials showed 
significantly higher root mean square powers than non-arrhythmogenic ones from approximately 
40 Hz, at least in dense scar tissue. However, in all these previous studies, no justification behind 
the choice of the specific spectral range was provided. Indeed, differently to the previous works, 
our study characterises the spectral signatures of human endocardial post-ischaemic EGMs, both 
normal and abnormal, quantitatively by analysing their power contents in different sub-bands and 
looking at their spectral morphologies. Our analysis not only focuses on scar-related and 
arrhythmogenic substrates but also describes, in detail, the different AVP and physiological EGM 
types, thus providing additional important information for their characterisation.  

Whilst the rigorous assessment described above allows for studies on statistical differences, the 
generalisability of the presented results is affected by some limitations of this study. Specifically, 
the analysis was carried out on a limited set of bipolar EGMs acquired from seven post-ischaemic 
VT patients. Thus, larger datasets are necessary to reinforce the results or reduce the strength of 
our findings. Moreover, all recordings were annotated by a single cardiologist, whose experience 
may have biased the subsequent analyses. Furthermore, the labelling process and the subsequent 
analyses were carried out simply based on the signals as they were recorded by the CARTO®3 
system and as exploited during the clinical procedures, without taking into account any 
dependence from wavefront directionality and electrode parameters, which however affect the 
substrate-guided mapping techniques inherently [248], [303]–[305]. Other studies are in progress 
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to address the far-field effect on AVP power estimations to provide a deeper characterisation of 
these potentials after the influence of global ventricular depolarisation is removed. 

 

  

 

Figure 9.7. Absolute and normalised PSDs for all EGM types. Representative PSDs for both 

physiological and pathological signals in terms of medians (black solid line) and 5th and 95th 

percentiles (grey zones). From top to bottom: PSDs for border, scar, LP1, LP2 and EP EGMs. The left 

column illustrates standard PSD curves, whilst the right column depicts the same PSD curves after 

normalisation so that the area under each curve is unitary, thus allowing for a comparative overview 

of both absolute and relative power contents for all EGM types in different sub-bands. 
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Chapter 10    

 

Computer-assisted arrhythmogenic sites detection 

 

10.1 Rationale 

As explained in Section 8.2, catheter ablation is performed to inhibit the electrical conduction in 
arrhythmogenic substrate causing or sustaining the VT. According to the adopted mapping 
strategy, the identification of arrhythmogenic sites may be guided by the presence of AVPs. 
However, the procedure is entirely manual and time consuming, strongly relying on clinicians’ 
expertise in the visual inspection of the EGMs and their detection ability. Furthermore, as detailed 
in Section 8.2.2, many tools supporting the VT arrhythmogenic substrate identification have been 
introduced in the literature, but none of them addressed the challenge by exploiting artificial 
intelligence systems. On these premises, the adoption of machine learning methods for the 
computer-aided recognition of AVPs would be a relevant advancement, reducing the operator-
dependence and the procedure mapping times, but also supporting the clinicians in a more 
accurate targeting of arrhythmogenic sites, thus possibly improving clinical outcomes and VT 
recurrence. In fact, artificial intelligence tools have proven to achieve very high performance, 
both for biomedical signal analysis and biomedical imaging [306]. Therefore, in this chapter, the 
use of machine learning tools for the automatic recognition of AVPs in substrate mapping 
procedures has been explored. 

 

10.2 Materials and Methods 

In this retrospective study, a dataset consisting of 2603 bipolar EGM segments acquired from 
nine patients with post-ischaemic VT at the San Francesco Hospital (Nuoro, Italy) between 2017 
and 2018 was adopted. All signals were collected in sinus rhythm during the EAM procedure in 
left ventricle by the CARTO®3v6 system (Biosense Webster, Inc., Diamond Bar, California) and 
then exported in digital format for further processing. As for the previous investigation, bipolar 
EGM segments were recorded by PentaRay (Biosense Webster, Inc.) 2-6-2 mm, ThermoCool 
SmartTouch and ThermoCool SmartTouch SF catheters (Biosense Webster, Inc.) in left ventricle 
(LV) at a sampling frequency of 1 kHz and band-pass filtered between 16 and 500 Hz. After the 
EAM, RF catheter ablation was performed according to standard clinical protocols. The study on 
the anonymised data was approved by the Independent ATS Ethical Committee (Azienda Tutela 
Salute, Sardegna) and performed following the principles outlined in the 1975 Helsinki 
Declaration, as revised in 2000. All patients provided their informed consent. 

As previously explained in Chapter 9, the intracardiac catheter can be considered in effective 
contact with the endocardium in correspondence of the reference annotation, therefore only the 
EGM segment around the reference annotation timing was considered for the following analyses. 
Nevertheless, some exported EGMs were spatially projected onto empty areas of the 
reconstructed cardiac map, in which EAM was found to be irrelevant by clinicians for VT ablation 
and as such discarded during the clinical procedures. As a result, these intracardiac EGMs were 
removed, resulting in a final dataset of 2561 EGMs. For the sake of clarity, in Figure 10.1 an 
example of a LV map constructed during fast anatomical mapping (FAM, i.e., before any 
electrical information was acquired) with discarded portions is reported. 



134 

As for the previous Chapter 9, all EGMs were manually annotated by an experienced cardiologist 
using an ad-hoc MATLAB graphical user interface implemented for this specific purpose (see 
Figure 9.1), as in our previous investigation [307]. In this assessment, in order to perform the 
recognition between normal and abnormal potentials, all AVP types (see Section 9.2) and all 
physiological EGMs regardless of their App were considered, while all noisy or doubtful traces 
were excluded from the analysis. Some examples of EGMs included in the dataset adopted for 
the development of the automatic recognition tool are reported in Figure 10.2. However, since the 
post-ischaemic arrhythmogenic VT substrates are spatially restricted with respect to the healthy 
myocardial tissue, the number of recorded AVPs was typically limited in the exported procedures, 
thus resulting in two significantly imbalanced classes (namely, AVPs and Physio), as can be seen 
in Figure 10.3. Therefore, in this study, the Physio class was randomly down-sampled in order to 
provide a balanced and unbiased number of normal and abnormal observations for the machine 
learning tools. This procedure was performed when using a 10-time 10-fold cross-validation 
approach, as better detailed in Section 10.3.  

 

10.2.1 Feature extraction and classification tools 

During my PhD, several investigations have been performed in terms of automatic recognition of 
AVPs. Specifically, at first only the features from the time domain and the time-scale domain 
detailed below were analysed on a reduced set of the actual available dataset, providing good 
results [308]. However, by exploiting the time-series representing the EGM as input for an ANN, 
we questioned the usefulness of these feature-based models [307], as such other features were 
needed. Therefore, after the spectral characterisation of AVPs (see Chapter 9) was performed, 
several other features were included from the frequency domain, as also some features from the 
related EA maps, in order to improve the classification performance. As such, in this chapter the 
latest investigation only was reported, in which four types of features were extracted, both from 

 

Figure 10.1. Example of a FAM map in which some LV portions were discarded during the mapping 

procedure, thus resulting in an empty area. 
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direct processing of the EGMs in the time, frequency and time-scale domains, but also from their 
spatial localization in the EA map.  

Features from the time domain. In the time domain, two features were extracted: the App and a 
fragmentation measure. The App of each bipolar EGM was evaluated in a 350ms window around 
the reference annotation, considering 50ms before and 300ms after the annotation timing. As 
already detailed in Sections 7.3.1 and 9.2, this aspect has been largely exploited in the scientific 
literature [208], [251], [256], [309], it was introduced in order to help discriminating between 
high voltage EGMs, which are typically associated with normal myocardium, and those 
originating from border-zone and scar- related areas.  

 

Figure 10.2. Some examples of raw EGMs (i.e., before windowing and any processing stage) included 

in the classification dataset. In the left column, observations from the AVPs class are reported, whereas 

on the right one EGMs belonging to physiological potentials class are depicted. 
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Figure 10.3. Composition of the available dataset. Numerically, 752 EGMs were classified as AVPs 

whereas 1809 as physiological potentials (Physio). Thus, more than 70% of EGMs were labelled as 

physiological ones, so that, in the 10-time 10-fold cross-validation, a balancing strategy was adopted.  

 

Physio
71%

12% LP1

9% LP2

8% EP

VAPs
29%

Physio LP1 LP2 EP
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The fragmentation measure was extracted in order to highlight fragmented EGMs, that are 
typically associated with slow and disordered conduction areas [195], [215], [226]–[228], [271]. 
In this study, the fragmentation was computed as the total number of peaks in the 350ms-long 
signal, the latter being windowed by a rectangular window. Specifically, in order to provide a 
quantitative measure to the classifier, the windowed signal was rectified by taking its absolute 
value, and all peaks exceeding the 75% of its mean absolute deviation value were counted. An 
example for the fragmentation measure computation is provided in Figure 10.4.  

Features from the time-scale domain. Two features were also extracted from the time-scale 
domain, based on the continuous WT (CWT). CWT relies on a time-scale representation of the 
signal 0(�)  through a set of coefficients, which are obtained as [170], [171], [173]: 

 


�� (H, N)  =  1√H M 0(�) »∗ ¼� − NH ½�  ?� (10.1) 

 where H ∈  �¸
and N ∈  � represent the scale and time-shift parameters, respectively, whereas �√z » ¾SORz ¿ represents a time-shifted and scaled version of the function », which embodies the 

 

 

 

Figure 10.4. Example of fragmentation measure captured by the proposed approach. In the upper plot, 

the windowed signal (i.e. 50ms before and 300ms after the reference annotation timing) is reported. In 

the middle, the rectified signal is depicted in black, whereas the threshold based on the 75% of its mean 

absolute deviation as a red dashed line. As can be seen, three peaks exceeding the proposed threshold 

can be identified (in red), corresponding to three potential deflections found in the time-domain 

representation (lower plot). 
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mother wavelet. In other words, for every translation in time, each wavelet coefficient represents 
a similarity index between of the signal and the scaled version of ». Specifically, the scale factor 
regulates the degree of stretching of the mother wavelet and, as such, it is inversely proportional 
to the frequency: small scales generate a compressed », for which higher frequency components 
of the signal are examined; conversely, larger scales are associated to a more stretched », and so 
to lower frequency contributions are accounted for. This approach leads to a variable support of 
the wavelets in close relationship with the explored frequency band, which is not possible with 
the Fourier analysis. As such, unlike Fourier analysis, WT guarantees a good resolution both in 
time and in frequency domain, which can be exploited to identify AVPs. While in the DWT the 
scale parameter is varied discretely by powers of two, in the CWT there is not such a constraint. 
However, in the computer implementation of the technique, the scale parameter is also discretized 
but finely, e.g. as fractional powers of two. 

For the extraction of the features in the time-scale domain, the signal was firstly pre-processed by 
a WD stage [307], [308]. A translation-invariant à trous (undecimated) algorithm was adopted, 
using a Daubechies2 mother wavelet, the Universal threshold, the soft-thresholding and a 
decomposition level equal to 2, in order to implement the denoising only on the upper part of the 
signal band, i.e. from the folding frequency down to about 125 Hz. In this way, under-threshold 
small fluctuations of the signal that could represent confounding factors for the subsequent 
analysis were removed. Then, on the WD windowed signal, the CWT decomposition was 
computed by exploiting the Daubechies2 mother wavelet and all the scales from 2 to 35, in order 
to analyse the spectral components between about 16 Hz and 500 Hz. Then, the average power 
on each scale H was evaluated according to the following equation: 

[À(H)  =  1� A 
�� (H, N)�D
RC�  (10.2) 

where � is the total number of wavelet coefficients at that scale. For each windowed EGM, the 
five scales with the highest [À(H) were selected. Then, the standard deviation of such [À(H) and 
their sum were computed and considered as features in the time-scale domain. 

Features from the frequency domain. Based on the results obtained in Section 9.4, different 
features were considered in the frequency domain. Specifically, due to the statistically significant 
differences observed between the different AVPs and physiological EGMs, all the spectral 
features (i.e. MNF, PKF, MNP, PSR introduced in Section 9.2.1) along with the relative power 
contents in 0–20 Hz and in each 20-Hz sub-band between 40 and 320 Hz were extracted for each 
EGM to train and test the machine learning tools. 

Features from the spatial domain. In order to go one step forward with respect to the features 
derived only from the EGM itself, different features were also deduced from the EA voltage and 
local activation time (LAT) maps. In fact, despite EGM trends may contain many distinctive and 
relevant characteristics, their spatial localisation is essential in the EAM procedure. Therefore, 
different spatial features were also introduced. Remarkably, despite the proposed method is 
thought for retrospective investigations in which the whole EA map is available, it could be 
exploited also in a live context, by gradually obtaining the information needed and updating the 
spatial information accordingly while the mapping is being performed. 

As regards the voltage map, for each EGM, the spatial location on the map was reconstructed by 
a custom MATLAB software starting from the data exported from the CARTO®3v6 procedure. 
Then, for each spatial point P, a circular area of radius ϵ and centred on the EGM location of 
interest was identified. Specifically, different values of ϵ were tested (i.e., from 2 mm up to 7 
mm), in order to evaluate its impact on the classification performance. However, since best 
performance were achieved when setting the parameter ϵ equal to 6 mm, this value was chosen 
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for all the subsequent analyses. Then, in order to assess the electrical properties of all EGMs 
localised in close proximity of P, all the EAM neighbours falling within this area were considered 
for the feature extraction. A schematic representation of the circular 6-mm neighbourhood 
exploited for the extraction of the spatial features is reported in Figure 10.5. Once the neighbour 
points were identified, for each point P the following features were extracted: 

 the mean bipolar voltage, which was defined as the mean value of the App exhibited by 
the bipolar EGMs falling into the neighbourhood; 

 the weighted mean bipolar voltage, in which the mean value of App was computed by 
weighting the contribution of each EGM according to the inverse of its squared Euclidean 
distance to the point P; in case of multiple EGMs sharing the same virtual coordinates of 
the point P onto the voltage map, their weight was forced to be equal to one; 

 the standard deviation of the App exhibited by the bipolar EGMs acquired into the 
neighbourhood; 

 the number of neighbours exhibiting App < 0.5 mV, 0.5 mV <  App < 1.5 mV and App > 
1.5 mV; in this case, all values were normalized with respect to the total neighbours 
identified for P, in order to provide the classifiers with a feature set getting rid of the 
density of the points acquired during the EAM procedure. 

 

As regards the LAT map, which relies on a temporal estimate of the local activation, it was 
exploited for the definition of three additional spatial features: the LAT value, the conduction 
velocity (CV) and the coherence of directions (CD). The LAT value identified the local activation 
time for each EGM. In this study, it was derived from the CARTO®3v6 exported files or, if absent, 
by interpolation of map neighbours, and expressed in ms. In fact, in those cases in which LAT 
values were missing, it was decided to associate a LAT value equal to the corresponding one in 
the EA map in which the EGM point was localized, typically generated by the interpolation 
performed by the CARTO®3 system itself. It is important to note that this is an approximation 
taken in order to avoid being forced to eliminate further points from the dataset. 

On the other hand, the CV was adopted since it provides important information on the wavefront 
speed and the direction of its propagation, thus being intrinsically related to electrophysiological 
properties of the myocardial substrate, even in case of arrhythmogenic mechanisms [310]. 
Following [311], [312], it was possible to derive not only the intrinsic CV value, but also the 
direction of wavefront conduction as CV vectors. Indeed, starting from the discrete LAT values 
[311], [312], the activation map can be reconstructed using Cubic Radial Basis Function 

 

Figure 10.5. Schematic representation of the 6-mm circular area determining the neighbours of the 

point P (in red) into the voltage map. As can be seen, the neighbourhood is centred on the location of 

the EGM of interest (P) and spans for a radius equal to ϵ = 6 mm. Black arrows represent the distances 

between each neighbour point and P. All EGM points falling within the selected area are exploited for 

the computation of the spatial features of P. 
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interpolation. Once interpolation is performed, a LAT value is obtained for each position of the 
EA map. However, since the LAT is a temporal measure associated in each point to a spatial 
position X = [x, y, z], a continuous and differentiable interpolation function t = t(x, y, z) can be 
obtained at this phase, describing the variation of the activation time as a function of the position 
[311]. As such, through the derivation of the function t, the components of the CV vector can be 
computed for each point. An example of LAT map with CV vectors is reported in Figure 10.6. 

On this basis, in order to measure how much chaotic and turbulent the conduction was, the 
coherence of the directions of the different velocity vectors was estimated. Specifically, to this 
aim, the neighbours in the 6-mm circular area were identified, and the angle between the CV 
vectors belonging to the point P and to each neighbour was estimated. Therefore, in order to 
measure the coherence of the propagation direction, the standard deviation of the angles was 
extracted as CD feature for each EGM map point. Specifically, the higher the conduction 
disorganization and chaoticity, the higher the CD value. In Figure 10.7 a conceptual 
representation of the CD computation is provided. 

 

 

Figure 10.6. Example of LAT map with CV vectors (white arrows).  



140 

Finally, all features were standardized with mean zero and unit variance and used to train two 
machine learning models.  

Specifically, in order to evaluate the features effectiveness in AVPs and physiological EGMs 
recognition, a binary support vector machine (SVM) classifier with a 3rd order polynomial kernel 
was chosen. On the other hand, due to the variety of characteristics and morphologies affecting 
the AVPs class, another binary classifier based on a multi-class weighted k-nearest neighbour 
(KNN) classification model was also introduced to recognise the LP1, LP2, EP and physiological 
EGMs. In the latter, a number of neighbours equal to ten were imposed, whereas the distance 
weighting function was set equal to the inverse of the squared distance. The parameters mentioned 
above were chosen according to a preliminary investigation performed with MATLAB 
Classification Learner toolbox (data not shown). For all the other parameters, the default values 
were used, as the dataset size is intrinsically limited and an hyperparameter optimization could 
lead to overfitting. Thus, any future fine-tuning of any classifier parameter on larger dataset could 
help in reaching better performance, which however was not the primary objective of this PhD 
thesis.  

While the SVM classifier was asked to binary recognize between AVPs and Physio signals, the 
weighted KNN was forced to perform a multi-classification between the different types of AVPs 
and the Physio class, in order to improve their identification while enabling a deeper analysis on 
the pathological signals, thus allowing for a higher-level recognition among the different 
morphologies and characteristics. Nonetheless, the main objective of the developed machine 
learning tool is the identification of AVPs as target point for VT substrate-guided ablation, 
regardless of their type, in order to support the clinicians in their detection during the EAM and 
ablation procedures. As such, even if the weighted KNN is trained using four labelling types, 
during the test phase the annotations were converted into binary neglecting the type of AVP signal 
recognized, i.e. all EGMs classified as LP1, LP2 and EP were simply considered as AVPs. 

Moreover, since in our previous investigation [307] the benefit of the feature extraction was 
questioned, an artificial neural network (ANN) trained and tested on time-domain segments of 
the same intracardiac potentials was included in this study. Specifically, a feedforward, fully-
connected neural network with rectified linear unit (ReLU) activation function, with a size of fully 
connected layer equal to 100, and strength of the regularization term set to 0, was adopted to 
recognize between AVPs and Physio classes. For this purpose, the same time-window of 350 ms 

 

Figure 10.7. Schematic representation of CD feature computation. Once the 6-mm neighbourhood 

(dashed line in red) around the point P (red point) is identified, the CV vector of each neighbour (grey 

arrow) is evaluated as long as its orientation with respect to the CV vector of P (red arrow). If the 

wavefront propagation is not disorganized (on the left), the CD will be low, being computed as the 

standard deviation of the angles between the red arrow and grey arrows. Conversely, in case of 

disordered propagation (on the right), the CV vectors in the neighbourhood will point towards different 

directions, thus resulting in higher CD values. 
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around the reference annotation was adopted and the time-domain course of each raw EGM was 
considered as input for an ANN model, after standardization with mean zero and unit variance.  

 

10.3 Methods for the comparative analysis  

In order to provide an objective and quantitative evaluation of the proposed classification 
approaches, all classification methods were trained and tested through a 10-time 10-fold cross-
validation scheme and a leave-one-subject-out cross-validation scheme. The first validation 
strategy was adopted in order to obtain an objective and robust assessment of the performance by 
exploiting stratified partitions, whereas the second one allows, on one side, for an accurate 
performance evaluation on observations never seen by the classifier during training, thus 
resembling the most a real application scenario, and, on the other hand, for the evaluation of the 
impact due to eventual patient-specific characteristics of this kind of signal.   

As detailed in previous Section 10.2, the overall dataset was significantly imbalanced (i.e., more 
than 70% of EGMs belonged to the Physio class, as shown in Figure 10.3). Therefore, a random 
downsampling of physiological EGMs was performed in order to achieve an equal number of 
Physio and AVPs observation (i.e., 752 EGMs for each class), thus balancing the dataset 
composition. This strategy was adopted in the 10-time 10-fold cross-validation approach, in each 
time and fold sub-division, but not in the leave-one-subject-out case, in order to avoid reducing 
even more the dataset composition according to the very small number of AVPs for each patient. 
Finally, to perform an effective comparative analysis of the performance obtained by the different 
machine learning approaches, all models were trained and tested using the same AVPs and Physio 
sets, in each possible sub-division of the main dataset, thus exploiting the same folds among the 
models in each considered iteration. 

To evaluate the performance of the classifiers, five indices were estimated, i.e., the accuracy 
(���Áy), the true positive rate (�[�Áy) or Sensitivity, the true negative rate (���Áy) or Specificity, 
the false positive rate (�[�Áy), i.e. the false AVPs alarm rate, and the F1-scorecl, as: 

���Áy  =  �[Áy  +  ��Áy[Áy  +  �Áy  (10.3) 

�[�Áy  =  �[Áy[Áy  (10.4) 

���Áy  =  ��Áy�Áy  (10.5) 

�[�Áy  =  �[Áy�Áy  (10.6) 

�1 − 8�365Áy  =   2 [[#Áy  ∙  �[�Áy [[#Áy + �[�Áy (10.7) 
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where [Áy and �Áy represent the total number of AVPs and Physio EGMs, �[Áy and ��Áy the 
number of AVPs and Physio potentials correctly identified, respectively, �[Áy the normal EGMs 
classified as AVPs and [[#Áy the positive predictive value or precision, defined as: 

[[#Áy  =  �[Áy�[Áy +  �[Áy (10.8) 

Specifically, in the 10-time 10-fold cross-validation scheme, the performance indexes were 
evaluated on the total number of �[Áy , ��Áy , �[Áy , [Áy  and �Áy obtained by summation over the 
different folds at each time. Therefore, all indexes were computed for each group of ten folds, and 
results were reported as mean and standard deviation of the values obtained across the ten 
iterations, thus yielding to cumulative indexes better representing the behaviour of the models 
over the whole dataset. Conversely, confusion matrices were assessed cumulatively, by summing 
up not only the predictions in the different fold, but also the predictions of all the experiments 
repeated ten times. Similarly, in the leave-one-subject-out case, summation was exploited over 
the different patient-related subsets, thus obtaining a single value per performance index in the 
end. Nonetheless, this choice was mandatory for the leave-one-subject-out case because of the 
imbalanced dataset, in order to avoid getting results strongly biased by the number of AVPs 
included in each partition.  

Furthermore, two additional investigations were added, in order to evaluate the impact of the 
feature selection and the projection distance on the automatic recognition results.  

As regards feature selection, after the Pearson’s correlation coefficient ρ on each pair of features 
was appraised (see Figure 10.8), the minimum redundancy maximum relevance (mRMR) feature 
selection method was adopted to minimize the redundancy and maximize the  relevance of the 
feature set with respect to the response variable [313], [314], thus trying to identify the features 
with most useful information content. The feature selection was initially carried out on the training 
set obtained in each fold and time, for the 10-time 10-fold cross-validation scheme, and for each 
patient-related iteration in the leave-one-subject-out case, leading to 100 feature selections for the 
10-time 10-fold cross-validation, whereas to nine feature selections in the leave-one-subject-out 
case. Then, a common set of features for the entire assessment was derived as follows. Based on 
the importance score provided by the mRMR algorithm for each feature, a score vector was 
generated at each iteration and then normalized between 0 and 1. Subsequently, the sum of the 
scores was considered for each specific feature, and a single score vector (V) with a relevance 
value for each feature was obtained. Then, V was sorted in descending order and the contribution  
of each feature, from the most important to the less important one, was cumulatively summed 
until the 80% of the total information content was reached. At this point, the first M features 
contributing to the 80% of the total information content were considered as selected features for 
the investigation on the entire set. The 80% threshold was imposed on the information content 
empirically, according to preliminary investigations in which the imposed value was found to be 
adequate for feature reduction (data not shown). All features selected for each cross-validation 
scheme are reported in Table 10.1. 

As regards the impact of the projection distance, it was assessed in order to evaluate if any 
discrepancy in the results could be observed when including in the dataset only those EGMs with 
an accurate projection on the EA map, i.e. those exhibiting a mismatch or distance lower than a 
specific threshold. This investigation has been introduced additionally, in order to check if the 
classification results obtained on the complete dataset could be confirmed or even enhanced by 
eliminating those points with less accurate and reliable spatial location, but not as a primary 
analysis since it causes a decrease of the total number of EGMs included in the analysis, thus 
affecting even more the limited size of the adopted dataset. As such, classification results were 
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computed also after the dataset was cleaned up by removing 1422 EGMs (i.e., 1156 EGMs from 
Physio and 266 from AVPs) exhibiting a projection distance on the map greater than 6 mm. Table 
10.2 details the number of EGM recordings that were removed for each class and patient in this 
latter evaluation. Interestingly, in the two different cross-validation scenario, similar features are 
selected.  

All computations were performed with MATLAB v2021a (MathWorks Inc., MA, USA). 

 

Figure 10.8. Schematic representation of the Pearson’s correlation coefficient ρ computed on each 

pair of features. Black colour represents higher correlation (i.e., one in absolute terms), while white 

colour reflects lower correlation (i.e., zero). Abbreviations stand for: a) bipolar App, b) standard 

deviation of the five highest CWT powers, c) sum of the five highest CWT powers, d) fragmentation 

measure, e) PSR, f) MNF, g) PKF, h) MNP, i) relative PSD power in 0 – 20 Hz, j) in 40 – 60 Hz, k) in 

60 – 80 Hz, l) in 80 – 100 Hz, m) in 100 – 120 Hz, n) in 120 – 140 Hz, o) in 140 – 160 Hz,  p) in 160 – 

180 Hz, q) in 180 – 200 Hz, r) in 200 – 220 Hz, s) in 220 – 240 Hz, t) in 240 – 260 Hz, u) in 260 – 280 

Hz, v) in 280 – 300 Hz, w) in 300 – 320 Hz, x) mean bipolar App in the neighbourhood, y) weighted 

mean bipolar App in the neighbourhood, z) standard deviation of the App in the neighbourhood, aa) 

neighbours with App < 0.5 mV, bb) neighbours with 0.5 mV <  App < 1.5 mV, cc) neighbours with App 

> 1.5 mV, dd) LAT, ee) CV,  ff) CD. 
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Table 10.1. Feature selected by the mRMR approach in the two cross-validation schemes. Specifically, 

features included for each validation approach are identified by ■. As can be seen, most of them are 

shared between the two cross-validation methods. 

 

Feature 

10-time 

10-fold  
cross-

validation  

leave-one-
subject-out 

cross-
validation 

Feature 

10-time 

10-fold  
cross-

validation  

leave-one-
subject-out 

cross-
validation 

Bipolar App ■ ■ 
Relative PSD power 

in 180 – 200 Hz 
■ ■ 

Standard deviation 
of the five highest 

CWT powers 
■ ■ 

Relative PSD power 
in 200 – 220 Hz 

■ ■ 

Sum of the five 
highest CWT powers ■ ■ 

Relative PSD power 
in 220 – 240 Hz 

■ ■ 

Fragmentation 
measure ■ ■ 

Relative PSD power 
in 240 – 260 Hz 

 ■ 

PSR   
Relative PSD power 

in 260 – 280 Hz 
  

MNF   
Relative PSD power 

in 280 – 300 Hz 
  

PKF   
Relative PSD power 

in 300 – 320 Hz 
■ ■ 

MNP ■ ■ 
Mean bipolar App in 
the neighbourhood 

■ ■ 

Relative PSD power 
in 0 – 20 Hz 

  
Weighted mean 

bipolar App in the 
neighbourhood  

■ ■ 

Relative PSD power 
in 40 – 60 Hz 

 ■ 
Standard deviation 

of the App in the 
neighbourhood 

■ ■ 

Relative PSD power 
in 60 – 80 Hz 

  
Neighbours with App 

< 0.5 mV 
 ■ 

Relative PSD power 
in 80 – 100 Hz ■  

Neighbours with  
0.5 mV <  App < 1.5 

mV 

  

Relative PSD power 
in 100 – 120 Hz ■ ■ 

Neighbours with App 
> 1.5 mV 

■ ■ 

Relative PSD power 
in 120 – 140 Hz 

  LAT ■ ■ 

Relative PSD power 
in 140 – 160 Hz ■ ■ CV   

Relative PSD power 
in 160 – 180 Hz ■ ■ CD ■  
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10.4 Results and discussion 

10.4.1 Results by proposed automatic recognition approaches 

Performance results obtained by the SVM and KNN approaches are shown in Tables 10.3 and 
10.4 for the 10-time 10-fold and the leave-one-subject-out cross-validation schemes respectively, 
along with those achieved by the ANN-based strategy. Remarkably, for the leave-one-subject-out 
cross-validation, a single value for ACCcl, TPRcl, FPRcl, TNRcl, and F1-scorecl is provided since 
the performance indexes were evaluated on the total number of TPcl, TNcl, FPcl, Pcl and Ncl 
obtained by summation over the different patients at each iteration (see Section 10.3). 

As can be seen, classification performances were quite high, similar, and stable for both proposed 
methods, whereas in case of ANN model they worsened considerably. Nonetheless, F1-scorescl 
underlined that both feature-based approaches exhibited high precision and TPR. However, a 
deterioration in all performance indexes could be perceived when jumping from the 10-time 10-
fold to the leave-one-subject-out case, as expected. Furthermore, some differences could be 
appreciated when focusing on TPRcl, TNRcl and FPRcl, since these values became slightly different 
in SVM and KNN models. In fact, while the recognition of AVPs and Physio classes seemed to 
be well balanced in the SVM model, it was not true for the KNN one, especially when considering 

Table 10.2. Number of EGM recordings that were removed for each class and patient by limiting the 

projection distance to 6 mm. As can be seen, a total of 1422 EGMs were discarded, of which 266 among 

AVPs. 

 

 
Patient 

#1 
Patient 

#2 
Patient 

#3 

Patient 
#4 

Patient 
#5 

Patient 
#6 

Patient 
#7 

Patient 
#8 

Patient 
#9 

Physio 235 31 24 450 56 152 55 130 23 

LP1 23 1 3 42 2 29 3 1 9 

LP2 14 24 5 2 0 31 3 0 1 

EP 9 0 4 0 6 41 12 1 0 

 

Table 10.3. Results achieved by the SVM and KNN models by the 10-time 10-fold cross-validation 

scheme. Cumulative values are reported as mean and standard deviation computed across the ten 

times. For the sake of a complete comparison, also the results of the ANN-based model have been 

reported. 

 SVM model KNN model ANN model 

ACCcl [%] 90.2 ± 0.8 92.4 ± 0.7 83.7 ± 0.9 

TPRcl [%] 91.0 ± 0.7 90.7 ± 0.8 82.0 ± 1.2 

TNRcl [%] 89.4 ± 1.1 94.1 ± 1.0 85.3 ± 1.2 

FPRcl [%] 10.6 ± 1.1 5.9 ± 1.0 14.7 ± 1.2 

F1-scorecl 0.90 ± 0.01 0.92 ± 0.01 0.83 ± 0.01 
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the leave-one-subject-out case. Specifically, looking at first at 10-time 10-fold cross-validation 
results, both AVPs and Physio EGMs were correctly recognized by the SVM in approximately 
90% of cases, whereas in the KNN model the ability of Physio recognition reached higher values 
(i.e., about 94%) than AVPs. These results implicitly led to higher FPRcl, i.e. more frequently 
false AVPs alarms, in the SVM model than in the KNN one (10.6% vs. 5.9%, respectively). 
Conversely, bigger differences in TPRcl, FPRcl and TNRcl values were found in the leave-one-
subject-out case. In fact, in this scenario, the SVM model seemed to better recognise Physio 
EGMs than AVPs (i.e., 83.2% vs. 77.8%, see Table 10.4) with an higher false AVPs alarm rate, 
and the same trend was visible for the KNN approach, in which the gap between TPRcl and TNRcl 
was more emphasized (i.e., 92.3% vs 68.8%, see Table 10.4). However, considering that the aim 
of the developed tool should be supporting clinicians in the recognition of arrhythmogenic 
substrates, which are identified by AVPs, the performance of the SVM classifier seemed to move 
closer to the purpose, even if drawing attention to an higher number of false AVPs. Cumulative 
confusion matrices are reported in Figures 10.9 and 10.10. 

 

Table 10.4. Performance indexes achieved by the SVM and KNN models through the leave-one-subject-

out cross-validation strategy. Also in this case, the results of the ANN-based model have been reported. 

 SVM model KNN model ANN model 

ACCcl [%] 81.6 85.4 70.3 

TPRcl [%] 77.8 68.8 57.0 

TNRcl [%] 83.2 92.3 75.8 

FPRcl [%] 16.8 7.7 24.2 

F1-scorecl 0.71 0.73 0.53 
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Figure 10.9. Confusion matrices for the three classification models obtained in the 10-time 10-fold 

cross-validation scheme. 
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Figure 10.10. Confusion matrices for the three classification models obtained in the leave-one-subject-

out cross-validation scheme. 
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10.4.2 Results of feature selection and projection distance 

Results obtained by feature selection are reported in Tables 10.5 and 10.6 for the 10-time 10-
fold and the leave-one-subject-out cross-validation schemes respectively. By looking at those 
values, it is evident that the performance remained stable when only some features were taken 
into account, in terms of all the performance indexes and for both classification models. Thus, 
reducing the number of involved features could lead to high and accurate performance as well as 
using all the features, with same disparities in TPRcl, FPRcl and TNRcl values. Similarly, also the 
cumulative results obtained in the confusion matrices (see Figure 10.11) showed no improvements 
nor substantial modifications (i.e., below 2.5%) with respect to the results achieved by considering 
the complete feature set.  

 

Table 10.5. Mean and standard deviation of the different performance indexes obtained by the SVM 

and KNN models by the 10-time 10-fold cross-validation scheme when feature selection was adopted. 

 SVM model KNN model 

ACCcl [%] 88.9 ± 0.7 91.7 ± 0.4 

TPRcl [%] 90.6 ± 0.8 89.6 ± 0.8 

TNRcl [%] 87.3 ± 1.1 93.8 ± 0.7 

FPRcl [%] 12.7 ± 1.1 6.2 ± 0.7 

F1-scorecl 0.89 ± 0.01 0.92 ± 0.00 

 

Table 10.6. Performance indexes achieved by the SVM and KNN models through the leave-one-subject-

out cross-validation strategy when feature selection was performed.  

 SVM model KNN model 

ACCcl [%] 83.1 84.3 

TPRcl [%] 77.8 68.5 

TNRcl [%] 85.4 90.8 

FPRcl [%] 14.6 9.2 

F1-scorecl 0.73 0.72 
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Finally, Table 10.7 and 10.8 along with Figure 10.12 report the results achieved by limiting the 
projection distance. As can be seen, by comparing the results obtained in the 10-time 10-fold 
cross-validation (see Tables 10.7 and 10.3), no significant differences were visible, whereas the 
same imbalance in AVPs and Physio recognition by the KNN-based model could be still 
appreciated. Conversely, when considering the leave-one-subject-out validation (see Tables 10.8 
and 10.4), some slight changes can be appreciated, especially when looking at TNRcl and FPRcl 

values in SVM and KNN models. In fact, on the one hand, both classification approaches showed 
a consistent decrease in the Physio detection accuracy, equal to 5.7% for SVM and 8.5% for KNN, 
thus resulting in lower accuracies, despite TPRcl values were well preserved. On the other, FPRcl 
values consistently increased for both SVM (+5.7%) and KNN (+8.5%) approaches, thus 
suggesting a greater presence of false positive alarms in both methods. Interestingly, when 
considering only EGMs with accurate and reliable spatial location, the findings obtained by the 
ANN model seemed to be improved in terms of TPRcl (i.e., 57.0% vs. 69.5%, see Tables 10.4 and 
10.8) but not in terms of TNRcl (75.8% vs. 67.8%), nonetheless leading, on the one hand, to very 
high FPRcl (32.2%), and on the other to low accuracy (ACCcl = 68.6%) and precision (F1-scorecl 
= 0.66) in the recognition of both classes also in this case.  

 

  

  

Figure 10.11. Cumulative confusion matrices for the SVM-based and KNN-based classification 

approaches obtained in the 10-time 10-fold cross-validation scheme (top) and in the leave-one-subject-

out cross-validation strategy (bottom) when feature selection was adopted. 
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10.4.3 Discussion  

In this chapter, different feature-based classification models were proposed to support 
cardiologists in the recognition of abnormal and physiological potentials in order to reduce the 
operator-dependence and the EAM procedure times, but also to enable a more accurate targeting 
of arrhythmogenic sites, thus possibly improving clinical outcomes and VT recurrence. Results 
reported in Section 10.4.1 showed that the adoption of machine learning methods for the 
computer-aided recognition of AVPs would be very useful, allowing for a reliable and accurate 
recognition of abnormal potentials in more than 90% of cases when considering the 10-time 10-
fold cross-validation (i.e., 90.2% and 92.4% for SVM and KNN models, respectively; see Table 
10.3). Accuracies decreased when the leave-one-subject-out validation was adopted (i.e., 81.6% 
vs. 90.2% for the SVM model, and 85.4% vs. 92.4% for the KNN-based one, respectively; see 
Table 10.4), and some discrepancies emerged between AVPs and Physio recognition, especially 
in the KNN-based approach, and in terms of false AVPs alarm rate between the SVM and KNN. 
This finding suggests, on the one hand, that the high imbalance between the AVPs and Physio (in 
the composition of the overall dataset, and as such in every patient-related subset considered in 
each iteration of the leave-one-subject-out validation) could significantly affect the performance 
of the classifier. On the other hand, this ambiguity could underline also the presence of patient-
specific characteristics among post-ischaemic EGM features in the used dataset. However, despite 

Table 10.7. Performance indexes in terms of mean and standard deviation obtained by the SVM, KNN 

and ANN models through the 10-time 10-fold cross-validation scheme when projection distance was 

limited to 6 mm. 

 SVM model KNN model ANN model 

ACCcl [%] 91.3 ± 0.7 92.8 ± 0.7 85.8 ± 1.4 

TPRcl [%] 91.6 ± 0.9 91.2 ± 1.0 83.6 ± 2.1 

TNRcl [%] 91.0 ± 1.0 94.4 ± 1.1 88.0 ± 1.1 

FPRcl [%] 9.0 ± 1.0 5.6 ± 1.1 12.0 ± 1.1 

F1-scorecl 0.91 ± 0.01 0.93 ± 0.01 0.86 ± 0.02 

 

Table 10.8. Performance indexes achieved by the SVM, KNN and ANN models through the leave-one-

subject-out cross-validation strategy when projection distance was limited to 6 mm. 

 

 SVM model KNN model ANN model 

ACCcl [%] 78.3 77.6 68.6 

TPRcl [%] 79.4 69.3 69.5 

TNRcl [%] 77.5 83.8 67.8 

FPRcl [%] 22.5 16.2 32.2 

F1-scorecl 0.76 0.73 0.66 
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our previous investigations questioned the usefulness of feature-based models [307], from this 
analysis it is clear that the only adoption of the time-series representing the EGM is not sufficient 
to guarantee an accurate and reliable identification of AVPs (i.e., 83.7% and 70.3 % in the 10-
time 10-fold and leave-one-subject-out cross-validation schemes, respectively; see Tables 10.3 
and 10.4), even when considering only EGMs with a rigorous spatial projection on the EA map 

  

  

  

Figure 10.12. Cumulative confusion matrices for the 10-time 10-fold cross-validation scheme (left side) 

and in the leave-one-subject-out cross-validation strategy (right side) when projection distance was 

limited to 6 mm. 
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(i.e., 85.8% and 68.6% in the 10-time 10-fold and leave-one-subject-out cross-validation 
schemes, respectively; see Tables 10.7 and 10.8), leading to high false AVPs detection rate, 
especially when the leave-one-subject-out case is considered.  

Moreover, when introducing a feature selection (see Section 10.4.2), classification performance 
remained stable and high, which is important for real-time application scenarios.  

Conversely, the inclusion of only those EGMs with an accurate projection on the EA map overall 
confirmed the previous results, but in the leave-one-subject-out validation results, some 
difference arose. Specifically, TNRcl values decreased significantly in both SVM-based and 
KNN-based models, whereas TPRcl findings remained quite stable (see Tables 10.4 and 10.8). 
This fact could be due to the considerable reduction in Physio observations when the projection 
distance was limited. In fact, among the 1422 removed EGMs, 1156 were from Physio and 266 
from AVPs, thus generally affecting even more the size of the adopted dataset, especially in terms 
of physiological potentials. Furthermore, as shown in Table 10.2, an abundance of discarded 
physiological EGMs occurred mostly in two patients (i.e., patients #1 and #4), which could have 
determined a consistent bias, especially in our leave-one-subject-out results, since several EGMs 
for these patients were not considered in this latter analysis. As such, the results of this 
investigation would benefit from the adoption of a larger database that we are currently 
contributing to create. 
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Chapter 11    

 

Conclusions on Part II 

 

As already detailed in Chapter 8, despite the clinical and scientific effort put in the treatment of 
VTs, their recurrence is still high [206], [295]. Some aspects related to the mechanisms underlying 
the VT origin and maintenance are still an open issue [296], [297], as long as the need of 
performing ablation only on decisive and essential target points [298]. 

In light of all these premises, the first aim of this part of my PhD thesis was the characterization 
of EGMs in the frequency domain. In this regard, despite the widespread association of AVPs 
with high-frequency spectral contents in post-ischaemic intracardiac bipolar EGMs, a rigorous 
spectral analysis of these signals was missing in the scientific literature. In this thesis, this gap 
was addressed, and the investigation revealed that the main frequency contributions of 
physiological and pathological post-ischaemic EGMs are found below 320 Hz. Moreover, when 
amplitude influences are eliminated, physiological potentials show greater contributions at lower 
frequencies whereas AVPs demonstrate higher spectral contributions at frequencies above ~40 
Hz. Conversely, when looking at AVPs only, LP1 showed lower power contributions than LP2 
and EP mainly above 60 Hz, whereas LP2 and EP EGMs statistically differed in 200–220 Hz sub-
band. In the light of the above-mentioned spectral signatures of AVPs and physiological 
potentials, these findings may be valuable not only because they represent a spectral 
characterisation of these potentials, moving a step forward in the direction of a deeper 
understanding of arrhythmogenic substrate mechanisms, but also to support the development of 
automatic tools for the efficient and targeted distinction of different physiological and abnormal 
EGM types. 

The second aim of this part was the development of a novel and effective computer-assisted 
algorithm for targeting arrhythmogenic sites in VT trans-catheter ablation procedures. The main 
goal concerned the conception of the artificial intelligence tools to support cardiologists in the 
recognition of the ablation targets during post-ischaemic VT electrophysiological procedures, 
thus possibly reducing the procedure time while improving their effectiveness in the 
arrhythmogenic substrate identification and, possibly, the clinical outcome. As such, different 
classification methods for the automatic identification of AVPs in intracardiac bipolar EGMs 
were presented and compared. The first two approaches were based on a SVM classifier and a 
weighted KNN model, trained and tested on different features extracted from the time, the time-
scale, the frequency and the spatial domains, while another one was based on an ANN trained on 
the time-series of the samples forming the bipolar EGM. The latter was introduced in order to 
assess the actual need of exploiting features in the automatic AVPs recognition, already 
questioned in our preliminary investigations [307]. Classification results showed high accuracy 
for both feature-based methods, with some differences in terms of false positive and negative rates 
according to the chosen identification approach. These findings are promising, also when 
exploiting feature selection, and are even confirmed when including in the dataset only those 
EGMs exhibiting a reliable spatial location in the EA map, suggesting the efficacy of proposed 
methods and, as such, the possibility of AVPs automatic recognition with the suggested features. 
Even though the results are encouraging and confirm the possibility for the technological 
development of computer-aided systems to be successfully applied in interventional 
electrophysiology, their generalizability should be carefully considered because of the limited 
size of the dataset. Moreover, signal annotation was performed by a single expert cardiologist, 
which could have led to a biased response. Deeper analyses on larger datasets could overcome 
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these limitations and assess the actual exploitability of the proposed approach in clinical 
procedures. 
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Chapter 12    

 

Final conclusions   

 

According to the high incidence and mortality of cardiovascular diseases [1], [2], a huge amount 
of scientific effort and research attempt have been recently put in investigating and developing 
innovative strategies and devices aiming to improve not only the diagnosis and treatment, but also 
monitoring and prevention. This PhD thesis was developed in the path of this trend, aiming to 
study and conceive novel approaches supporting the diagnosis and treatment of cardiac diseases, 
by exploiting advanced signal processing and machine learning tools. Specifically, the focus of 
this research was pointed on two main topics: NI-fECG and intracardiac electrophysiology, 
mainly related to post-ischaemic VT substrate-guided mapping and radiofrequency ablation. 

As regards the NI-fECG investigation, different advanced signal processing tools were introduced 
and assessed with the aim of recovering morphologically preserved NI-fECG signals. 
Specifically, a novel NI-fECG extraction algorithm has been developed, in collaboration with 
Prof. Hau-Tieng Wu (Department of Mathematics and Statistical Science, Duke University, 
Durham, NC, USA). The proposed algorithm exhibited high performance, not only when 
evaluated in terms of fHR detection, but also when a morphological analysis is pursued. 
Furthermore, different WD post-processing algorithms have been investigated in order to provide 
an accurate and efficient NI-fECG enhancement, and statistically compared in a quantitative 
review. Remarkably, the WD algorithm settings underlined in our initial investigation proved to 
be the best-performing solution for the NI-fECG post-processing with respect to other approaches 
proposed in the scientific literature, especially in terms of signal morphology preservation, 
whereas a different strategy derived from the work by Ionescu [146] appeared as the best 
methodology when the noise reduction is mainly required, as in fHR monitoring devices.  

Both NI-fECG extraction and post-processing investigations are of great relevance, since they 
could allow for a better recovery of fECG signals, thus paving the way for its adoption in clinical 
practice for antenatal screening and diagnosis, but also for their integration in foetal cardiac 
monitoring devices, as the one proposed in the PRIN ICT4MOMS project, in which I’m currently 
involved. In this sense, other different datasets could be exploited for an effective evaluation of 
these methods on unhealthy foetuses, but also on twin pregnancies, especially for the NI-fECG 
extraction purpose. Furthermore, future research could be focused on accurate channel selection 
to be applied before NI-fECG extraction step, in order to develop a smart wearable NI-fECG 
monitoring system able to adapt to the foetal positions and gestational age. All these future steps 
are actually work-in-progress, along with further improvements to the fECG algorithms based on 
geometrical information. 

As regards the intracardiac electrophysiology, different signal processing and artificial 
intelligence tools have been introduced with a twofold purpose: giving new spectral insights of 
both AVPs and post-ischaemic physiological EGMs, thus moving a step forward in the direction 
of a deeper understanding of the VT arrhythmogenic mechanisms, on the one hand, and 
supporting clinicians in the recognition of the ablation targets during electrophysiological 
procedures, thus possibly reducing procedure times while improving their effectiveness in the 
arrhythmogenic substrate delineation and, eventually, the clinical outcome, on the other one. As 
such, in the light of the first objective, a deeper spectral characterization of both physiological 
and abnormal potentials has been carried out. The study revealed that the main frequency 
contributions of physiological and abnormal post-ischaemic EGMs are found below 320 Hz. 



157 

Furthermore, when amplitude influences were disregarded, physiological potentials showed 
greater contributions at lower frequencies, i.e., manly below 20 Hz, whereas AVPs demonstrated 
higher spectral contributions at frequencies above approximately 40 Hz, but several finer 
differences may be observed between the different AVP types. These achievements may be 
valuable not only to achieve a basic characterisation of these potentials and a deeper 
understanding of arrhythmogenic substrate mechanisms, but also when developing automatic 
approaches for their recognition. In fact, in order to address the second scientific objective, 
different artificial intelligence tools have been introduced and assessed for the automatic 
identification of AVPs in intracardiac bipolar EGMs. Supervised automatic recognition results 
showed high accuracy, with some differences in terms of false positive and negative rates 
according to the chosen classification approach. These findings are promising in different 
scenarios, suggesting the efficacy of proposed features and recognition methods and, as such, the 
possibility of AVPs automatic identification in clinical context. 

Also in this case, both investigations are valuable since consistently contribute to a deep 
characterization of the arrhythmogenic substrates and their related signals, while introducing 
possible computer-aided systems to support clinicians in their recognition during substrate-guided 
mapping procedures. Despite the need of a more substantial dataset and annotations by multiple 
experts, this PhD thesis opens to the technological development of artificial intelligence systems 
to be integrated in off-the-shelf EAM devices and successfully applied in post-ischaemic VT 
substrate mapping and ablation procedures, thus improving the clinical strategy and outcome. 
However, in this sense, many interesting aspects are still to be inspected, as the use of other 
advanced signal processing and machine learning methods, such as complexity analysis and deep 
learning, but also filtering strategies in order to enhance only the pathological signatures. 
Remarkably, all this aspects are currently being studied and a patent is being deposited. 
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Appendix A 
 

 

Figure 5A.1. PI distributions obtained for the different parameterizations analysed for the Ahmadi et 

al. algorithm [144], involving DWT, 6-level decomposition and Universal threshold with: P1) coif4 

mother wavelet and hard thresholding, P2) coif4 mother wavelet and soft thresholding, P3) sym8 

mother wavelet and hard thresholding, P4) sym8 mother wavelet and soft thresholding, P5) db8 mother 

wavelet and hard thresholding, P6) db8 mother wavelet and soft thresholding. 
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Figure 5A.2. PI distributions obtained for the different parameterizations analysed for the Ivanushkina 

et al. algorithm [148], involving DWT, 6-level decomposition, a custom thresholding and: P1) bior2.6 

mother wavelet with Rigrsure threshold, P2) bior2.6 mother wavelet with the Han et al. threshold, P3) 

sym6 mother wavelet with Rigrsure threshold, P4) sym6 mother wavelet with Han et al. threshold. 
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Figure 5A.3. PI distributions obtained for the different parameterizations analysed for the Jadhav and 

Dhang algorithm [149], employing DWT, coif5 mother wavelet, 6-level decomposition and: P1) 

Rigrsure threshold with hard thresholding, P2) Han et al. threshold with hard thresholding, P3) 

Rigrsure threshold with soft thresholding, P4) Han et al. threshold with soft thresholding. 
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Figure 5A.4. PI distributions obtained for the different parameterizations analysed for the Shayesteh 

and Fallahian algorithm [138], assuming DWT, Rigrsure threshold and hard thresholding with: P1) 

bior1.1 mother wavelet and 6-level decomposition, P2) bior1.1 mother wavelet and 7-level 

decomposition, P3) db3 mother wavelet and 6-level decomposition, P4) db3 mother wavelet and 7-

level decomposition, P5) db4 mother wavelet and 6-level decomposition, P6) db4 mother wavelet and 

7-level decomposition, P7) db5 mother wavelet and 6-level decomposition, P8) db5 mother wavelet 

and 7-level decomposition, P9) db6 mother wavelet and 6-level decomposition, P10) db6 mother 

wavelet and 7-level decomposition. 
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Figure 5A.5. PI distributions obtained for the different parameterizations analysed for the Swarnalatha 

and Prasad algorithm [139], involving DWT, 5-level decomposition, and a custom thresholding 

approach with: P1) coif1 mother wavelet, P2) coif2 mother wavelet, P3) coif3 mother wavelet, P4) 

coif4 mother wavelet, P5) coif5 mother wavelet. 
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Figure 5A.6. PI distributions obtained for the different parameterizations analysed for the Vigneron et 

al. algorithm [140], involving DWT, 7-level decomposition, Rigrsure threshold and: P1) bior1.1 

mother wavelet with hard thresholding, P2) bior1.1 mother wavelet with soft thresholding, P3) bior1.3 

mother wavelet with hard thresholding, P4) bior1.3 mother wavelet with soft thresholding, P5) bior1.5 

mother wavelet with hard thresholding, P6) bior1.5 mother wavelet with soft thresholding, P7) bior2.2 

mother wavelet with hard thresholding, P8) bior2.2 mother wavelet with soft thresholding, P9) bior2.4 

mother wavelet with hard thresholding, P10) bior2.4 mother wavelet with soft thresholding, P11) 

bior2.6 mother wavelet with hard thresholding, P12) bior2.6 mother wavelet with soft thresholding, 

P13) bior2.8 mother wavelet with hard thresholding, P14) bior2.8 mother wavelet with soft 

thresholding, P15) bior3.1 mother wavelet with hard thresholding, P16) bior3.1 mother wavelet with 

soft thresholding, P17) bior3.3 mother wavelet with hard thresholding, P18) bior3.3 mother wavelet 

with soft thresholding, P19) bior3.5 mother wavelet with hard thresholding, P20) bior3.5 mother 

wavelet with soft thresholding, P21) bior3.7 mother wavelet with hard thresholding, P22) bior3.7 

mother wavelet with soft thresholding, P23) bior3.9 mother wavelet with hard thresholding, P24) 

bior3.9 mother wavelet with soft thresholding, P25) bior4.4 mother wavelet with hard thresholding, 

P26) bior4.4 mother wavelet with soft thresholding, P27) bior5.5 mother wavelet with hard 

thresholding, P28) bior5.5 mother wavelet with soft thresholding, P29) bior6.8 mother wavelet with 

hard thresholding, P30) bior6.8 mother wavelet with soft thresholding. 
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Figure 5A.7. PI distributions obtained for the different parameterizations analysed for the Wang et al. 

algorithm [141], involving DWT, bior5.5 mother wavelet, 7-level decomposition and: P1) Rigrsure 

threshold with hard thresholding, P2) Han et al. threshold and hard thresholding, P3) Rigrsure 

threshold with soft thresholding, P4) Han et al. threshold and soft thresholding. 
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Figure 5A.8. PI distributions obtained for the different parameterizations analysed for the Mochimaru 

et al. algorithm [151], assuming DWT, coif24 mother wavelet, 12-level decomposition and a custom 

threshold with : P1) hard thresholding, P2) soft thresholding. 

 P
I



181 

 

 

Figure 5A.9. PI distributions obtained for the different parameterizations analysed for the Ionescu 

algorithm [146], involving SWT, bior4.4 mother wavelet, 9-level decomposition with: P1) Universal 

threshold and hard thresholding, P2) Minimax threshold and hard thresholding, P3) Rigrsure 

threshold and hard thresholding, P4) Heursure threshold and hard thresholding, P5)Universal 

threshold and soft thresholding, P6) Minimax threshold and soft thresholding, P7) Rigrsure threshold 

and soft thresholding, P8) Heursure threshold and soft thresholding. 
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Figure 5A.10. PI distributions obtained for the different parameterizations analysed for the Jothi and 

Prabha algorithm [150], involving SWT, 3-level decomposition, Rigrsure threshold, hard thresholding 

and: P1) coif1 mother wavelet, P2) coif2 mother wavelet, P3) coif3 mother wavelet, P4) coif4 mother 

wavelet, P5) coif5 mother wavelet, P6) db1 mother wavelet, P7) db2 mother wavelet, P8) db3 mother 

wavelet, P9) db4 mother wavelet, P10) db5 mother wavelet, P11) db6 mother wavelet, P12) db7 mother 

wavelet, P13) db8 mother wavelet, P14) db9 mother wavelet, P15) db10 mother wavelet, P16) sym2 

mother wavelet, P17) sym3 mother wavelet, P18) sym4 mother wavelet, P19) sym5 mother wavelet, 

P20) sym6 mother wavelet, P21) sym7 mother wavelet, P22) sym8 mother wavelet, P23) bior1.1 mother 

wavelet, P24) bior1.3 mother wavelet, P25) bior1.5 mother wavelet, P26) bior2.2 mother wavelet, P27) 

bior2.4 mother wavelet, P28) bior2.6 mother wavelet, P29) bior2.8 mother wavelet, P30) bior3.1 

mother wavelet, P31) bior3.3 mother wavelet, P32) bior3.5 mother wavelet, P33) bior3.7 mother 

wavelet, P34) bior3.9 mother wavelet, P35) bior4.4 mother wavelet, P36) bior5.5 mother wavelet, P37) 

bior6.8 mother wavelet, P38) rbior1.1 mother wavelet, P39) rbior1.3 mother wavelet, P40) rbior1.5 

mother wavelet,  P41) rbior2.2 mother wavelet, P42) rbior2.4 mother wavelet, P43) rbior2.6 mother 

wavelet, P44) rbior2.8 mother wavelet, P45) rbior3.1 mother wavelet, P46) rbior3.3 mother wavelet, 

P47) rbior3.5 mother wavelet, P48) rbior3.7 mother wavelet, P49) rbior3.9 mother wavelet, P50) 

rbior4.4 mother wavelet, P51) rbior5.5 mother wavelet, P52) rbior6.8 mother wavelet.  
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Figure 5A.11. PI distributions obtained for the different parameterizations analysed for the Rivet et al.  

algorithm [137], involving SWT, 6-level decomposition, Rigrsure threshold and hard thresholding 

with: P1) Haar mother wavelet, P2) bior1.1 mother wavelet, P3) bior1.3 mother wavelet, P4) bior1.5 

mother wavelet, P5) bior2.2 mother wavelet, P6) bior2.4 mother wavelet, P7) bior2.6 mother wavelet, 

P8) bior2.8 mother wavelet, P9) bior3.1 mother wavelet, P10) bior3.3 mother wavelet, P11) bior3.5 

mother wavelet, P12) bior3.7 mother wavelet, P13) bior3.9 mother wavelet, P14) bior4.4 mother 

wavelet, P15) bior5.5 mother wavelet, P16) bior6.8 mother wavelet. 
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Appendix B 
 

 

Table 9B.1. Absolute power contents obtained for all EGM types in the different spectral ranges. Values 

are reported in 10−4 mV2 in terms of medians (in bold) and 5th and 95th percentiles (in brackets). 

Frequency 

range 

(Hz) 
Border Scar LP1 LP2 EP 

0 – 20 
27.21 

[4.43 ; 97.92] 
4.06 

[0.27 ; 21.47] 
14.32 

[1.51 ; 66.99] 
4.68 

[0.97 ; 27.95] 
5.68 

[0.37 ; 62.20] 

20 – 40 
23.98 

[5.84 ; 105.39] 
1.93 

[0.12 ; 10.18] 
17.73 

[1.94 ; 97.39] 
5.16 

[0.83 ; 48.35] 
6.43 

[0.55 ; 94.46] 

40 – 60 
2.92 

[0.20 ; 25.13] 
0.05 

[0.01 ; 1.28] 
2.38 

[0.15 ; 81.73] 
1.71 

[0.15 ; 24.70] 
1.98 

[0.04 ; 10.36] 

60 – 80 
0.67 

[0.03 ; 14.63] 
0.03 

[0.00 ; 0.45] 
0.63 

[0.07 ; 23.25] 
0.65 

[0.09 ; 6.30] 
0.62 

[0.06 ; 6.84] 

80 – 100 
0.39 

[0.03 ; 7.71] 
0.01 

[0.00 ; 0.21] 
0.34 

[0.04 ; 7.89] 
0.32 

[0.03 ; 4.29] 
0.36 

[0.03 ; 4.40] 

100 – 120 
0.19 

[0.01 ; 4.99] 
0.01 

[0.00 ; 0.16] 
0.18 

[0.01 ; 2.05] 
0.16 

[0.01 ; 3.90] 
0.21 

[0.01 ; 4.14] 

120 – 140 
0.13 

[0.00 ; 3.00] 
0.00 

[0.00 ; 0.13] 
0.09 

[0.01 ; 0.92] 
0.10 

[0.01 ; 3.31] 
0.19 

[0.01 ; 3.62] 

140 – 160 
0.10 

[0.01 ; 1.76] 
0.00 

[0.00 ; 0.10] 
0.06 

[0.01 ; 1.28] 
0.07 

[0.01 ; 2.02] 
0.07 

[0.00 ; 2.02] 

160 – 180 
0.04 

[0.01 ; 1.36] 
0.00 

[0.00 ; 0.08] 
0.05 

[0.00 ; 2.68] 
0.07 

[0.01 ; 1.44] 
0.07 

[0.01 ; 1.51] 

180 – 200 
0.03 

[0.00 ; 0.99] 
0.00 

[0.00 ; 0.03] 
0.04 

[0.01 ; 3.20] 
0.04 

[0.00 ; 0.90] 
0.06 

[0.00 ; 1.57] 

200 – 220 
0.02 

[0.00 ; 0.99] 
0.00 

[0.00 ; 0.03] 
0.03 

[0.00 ; 2.86] 
0.01 

[0.00 ; 0.36] 
0.04 

[0.00 ; 1.39] 

220 – 240 
0.02 

[0.00 ; 0.74] 
0.00 

[0.00 ; 0.01] 
0.02 

[0.00 ; 1.40] 
0.02 

[0.00 ; 0.45] 
0.05 

[0.00 ; 1.01] 

240 – 260 
0.01 

[0.00 ; 0.48] 
0.00 

[0.00 ; 0.01] 
0.02 

[0.00 ; 0.44] 
0.02 

[0.00 ; 0.30] 
0.03 

[0.00 ; 0.83] 

260 – 280 
0.01 

[0.00 ; 0.25] 
0.00 

[0.00 ; 0.01] 
0.01 

[0.00 ; 0.22] 
0.01 

[0.00 ; 0.20] 
0.03 

[0.00 ; 0.62] 

280 – 300 
0.01 

[0.00 ; 0.22] 
0.00 

[0.00 ; 0.01] 
0.01 

[0.00 ; 0.38] 
0.01 

[0.00 ; 0.17] 
0.02 

[0.00 ; 0.61] 

300 – 320 
0.01 

[0.00 ; 0.18] 
0.00 

[0.00 ; 0.01] 
0.01 

[0.00 ; 0.34] 
0.01 

[0.00 ; 0.18] 
0.02 

[0.00 ; 0.40] 
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Table 9B.2. Relative power contents obtained for all EGM types in the different spectral ranges. 

Percentage values are reported as medians (in bold) and 5th and 95th percentiles (in brackets). 

Frequency 

range 

(Hz) 
Border Scar LP1 LP2 EP 

0 – 20 
43.56 

[15.46 ; 70.20] 
67.93 

[29.52 ; 83.74] 
40.09 

[10.26 ; 59.73] 
34.14 

[7.24 ; 67.71] 
34.42 

[6.32 ; 65.22] 

20 – 40 
44.46 

[12.10 ; 60.18] 
28.08 

[13.44 ; 54.13] 
43.97 

[20.66 ; 55.76] 
35.02 

[15.68 ; 58.63] 
35.50 

[11.15 ; 60.28] 

40 – 60 
4.59 

[0.39 ; 25.07] 
1.09 

[0.22 ; 10.97] 
6.10 

[1.71 ; 33.78] 
9.52 

[2.48 ; 25.29] 
8.72 

[2.33 ; 31.05] 

60 – 80 
0.70 

[0.06 ; 15.56] 
0.65 

[0.14 ; 5.40] 
1.80 

[0.60 ; 10.20] 
4.84 

[0.87 ; 14.24] 
3.53 

[0.56 ; 16.07] 

80 – 100 
0.42 

[0.04 ; 12.60] 
0.21 

[0.05 ; 2.40] 
1.06 

[0.23 ; 4.23] 
2.38 

[0.23 ; 11.83] 
1.95 

[0.34 ; 12.85] 

100 – 120 
0.29 

[0.03 ; 7.93] 
0.13 

[0.04 ; 1.20] 
0.48 

[0.06 ; 4.37] 
1.39 

[0.17 ; 8.78] 
1.19 

[0.15 ; 8.35] 

120 – 140 
0.14 

[0.01 ; 5.13] 
0.09 

[0.01 ; 0.67] 
0.18 

[0.04 ; 2.20] 
0.83 

[0.08 ; 6.17] 
1.03 

[0.09 ; 5.20] 

140 – 160 
0.10 

[0.02 ; 2.80] 
0.05 

[0.01 ; 0.60] 
0.15 

[0.01 ; 1.96] 
0.49 

[0.05 ; 4.67] 
0.60 

[0.08 ; 5.52] 

160 – 180 
0.05 

[0.01 ; 2.27] 
0.07 

[0.01 ; 0.72] 
0.10 

[0.02 ; 3.74] 
0.45 

[0.05 ; 2.92] 
0.45 

[0.06 ; 4.16] 

180 – 200 
0.04 

[0.00 ; 1.96] 
0.05 

[0.01 ; 0.45] 
0.09 

[0.02 ; 4.38] 
0.24 

[0.03 ; 2.13] 
0.37 

[0.05 ; 3.79] 

200 – 220 
0.03 

[0.00 ; 1.52] 
0.05 

[0.01 ; 0.31] 
0.08 

[0.01 ; 3.95] 
0.11 

[0.02 ; 1.25] 
0.22 

[0.02 ; 2.84] 

220 – 240 
0.02 

[0.00 ; 0.85] 
0.03 

[0.01 ; 0.27] 
0.06 

[0.01 ; 1.44] 
0.13 

[0.02 ; 0.84] 
0.25 

[0.04 ; 2.18] 

240 – 260 
0.02 

[0.00 ; 0.56] 
0.04 

[0.00 ; 0.27] 
0.05 

[0.01 ; 0.59] 
0.11 

[0.02 ; 0.71] 
0.19 

[0.02 ; 1.87] 

260 – 280 
0.01 

[0.00 ; 0.49] 
0.02 

[0.01 ; 0.30] 
0.04 

[0.00 ; 0.45] 
0.08 

[0.01 ; 0.83] 
0.18 

[0.02 ; 1.64] 

280 – 300 
0.01 

[0.00 ; 0.41] 
0.03 

[0.00 ; 0.25] 
0.04 

[0.00 ; 0.61] 
0.07 

[0.01 ; 0.53] 
0.15 

[0.02 ; 1.23] 

300 – 320 
0.01 

[0.00 ; 0.27] 
0.02 

[0.00 ; 0.31] 
0.04 

[0.00 ; 0.55] 
0.08 

[0.01 ; 0.97] 
0.12 

[0.02 ; 1.12] 
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