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ABSTRACT

This thesis presents a Riemannian approach to Programming by Demonstration (PbD).

It generalizes an existing PbD method from Euclidean manifolds to Riemannian mani-

folds. In this abstract, we review the objectives, methods and contributions of the pre-

sented approach.

OBJECTIVES

PbD aims at providing a user-friendly method for skill transfer between human and

robot. It enables a user to teach a robot new tasks using few demonstrations. In or-

der to surpass simple record-and-replay, methods for PbD need to ‘understand’ what to

imitate; they need to extract the functional goals of a task from the demonstration data.

This is typically achieved through the application of statistical methods.

The variety of data encountered in robotics is large. Typical manipulation tasks in-

volve position, orientation, stiffness, force and torque data. These data are not solely

Euclidean. Instead, they originate from a variety of manifolds, curved spaces that are

only locally Euclidean. Elementary operations, such as summation, are not defined on

manifolds. Consequently, standard statistical methods are not well suited to analyze

demonstration data that originate from non-Euclidean manifolds. In order to effectively

extract what-to-imitate, methods for PbD should take into account the underlying ge-

ometry of the demonstration manifold; they should be geometry-aware.

Successful task execution does not solely depend on the control of individual task

variables. By controlling variables individually, a task might fail when one is perturbed

and the others do not respond. Task execution also relies on couplings among task vari-

ables. These couplings describe functional relations which are often called synergies. In

order to understand what-to-imitate, PbD methods should be able to extract and encode

synergies; they should be synergetic.

In unstructured environments, it is unlikely that tasks are found in the same scenario

twice. The circumstances under which a task is executed—the task context—are more

likely to differ each time it is executed. Task context does not only vary during task exe-

cution, it also varies while learning and recognizing tasks. To be effective, a robot should

be able to learn, recognize and synthesize skills in a variety of familiar and unfamiliar

contexts; this can be achieved when its skill representation is context-adaptive.

THE RIEMANNIAN APPROACH

In this thesis, we present a skill representation that is geometry-aware, synergetic and

context-adaptive. The presented method is probabilistic; it assumes that demonstra-

tions are samples from an unknown probability distribution. This distribution is ap-

proximated using a Riemannian Gaussian Mixture Model (GMM).

Instead of using the ‘standard’ Euclidean Gaussian, we rely on the Riemannian Gaus-

sian—a distribution akin the Gaussian, but defined on a Riemannian manifold. A Rie-
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mannian manifold is a manifold—a curved space which is locally Euclidean—that pro-

vides a notion of distance. This notion is essential for statistical methods as such meth-

ods rely on a distance measure. Examples of Riemannian manifolds in robotics are: the

Euclidean space which is used for spatial data, forces or torques; the spherical manifolds,

which can be used for orientation data defined as unit quaternions; and Symmetric Pos-

itive Definite (SPD) manifolds, which can be used to represent stiffness and manipula-

bility.

The Riemannian Gaussian is intrinsically geometry-aware. Its definition is based on

the geometry of the manifold, and therefore takes into account the manifold curvature.

In robotics, the manifold structure is often known beforehand. In the case of PbD, it fol-

lows from the structure of the demonstration data. Like the Gaussian distribution, the

Riemannian Gaussian is defined by a mean and covariance. The covariance describes

the variance and correlation among the state variables. These can be interpreted as lo-

cal functional couplings among state variables: synergies. This makes the Riemannian

Gaussian synergetic. Furthermore, information encoded in multiple Riemannian Gaus-

sians can be fused using the Riemannian product of Gaussians. This feature allows us to

construct a probabilistic context-adaptive task representation.

CONTRIBUTIONS

In particular, this thesis presents a generalization of existing methods of PbD, namely

GMM-GMR and TP-GMM. This generalization involves the definition of Maximum Like-

lihood Estimate (MLE), Gaussian conditioning and Gaussian product for the Rieman-

nian Gaussian, and the definition of Expectation Maximization (EM) and Gaussian Mix-

ture Regression (GMR) for the Riemannian GMM. In this generalization, we contributed

by proposing to use parallel transport for Gaussian conditioning. Furthermore, we pre-

sented a unified approach to solve the aforementioned operations using a Gauss-Newton

algorithm. We demonstrated how synergies, encoded in a Riemannian Gaussian, can be

transformed into synergetic control policies using standard methods for Linear Quadratic

Regulator (LQR). This is achieved by formulating the LQR problem in a (Euclidean) tan-

gent space of the Riemannian manifold. Finally, we demonstrated how the context-

adaptive Task-Parameterized Gaussian Mixture Model (TP-GMM) can be used for con-

text inference—the ability to extract context from demonstration data of known tasks.

Our approach is the first attempt of context inference in the light of TP-GMM. Although

effective, we showed that it requires further improvements in terms of speed and relia-

bility.

The efficacy of the Riemannian approach is demonstrated in a variety of scenarios.

In shared control, the Riemannian Gaussian is used to represent control intentions of a

human operator and an assistive system. Doing so, the properties of the Gaussian can

be employed to mix their control intentions. This yields shared-control systems that

continuously re-evaluate and assign control authority based on input confidence. The

context-adaptive TP-GMM is demonstrated in a Pick & Place task with changing pick and

place locations, a box-taping task with changing box sizes, and a trajectory tracking task

typically found in industry.
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NOTATION & ILLUSTRATION GUIDE

NOTATION GUIDELINES

This thesis mainly follows the notation guidelines stated in the following table.

Notation Description Meaning

a Normal case Scalar value

a Bold lower-case Manifold element

a Type writer style Random variable

a Math fraktur Tangent space element

A Upper-case Set

A Bold upper-case Matrix

A⊤ Superscript script-

style T

Matrix transpose

ã Over-placed tilde Approximated value

ai Subscript letter Index indicator (typically i , j ,k or p)

ac Superscript letter Functional indicator (e.g. θc for context parameters)

ag Bold subscript letter Relation indicator (here meaning a ∈ TgM)

Ah
g Bold sub- and super-

scripts

Transformation from g to h

Occasionally, the guidelines are breached; if so the notation is clarified within the text.
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COMMON SYMBOLS

The following is a list of commonly used symbols.

Symbol Description

Ah
g

(

p
)

Action function (see Section 2.2.1)

A∥
h
g(p) Parallel action function (see Section 2.2.1)

det() Function which returns the determinant of a matrix

diag() Function which transforms a vector into diagonal matrix, or extracts di-

agonal components from a matrix.

Expp() Riemannian exponential map, defined at p (see Section 2.2.1)

I , I d Identity matrix (of dimension d).

J Jacobian

K Number of Gaussians in GMM

Λ Precision matrix

λ Precision scalar

Logp() Riemannian logarithmic map, defined at p (see Section 2.2.1)

µ Mean of Gaussian distribution

M Riemannian manifold

N () Gaussian distribution

N Number of data points

ω Vector of angular velocities

π The mathematical constant pi

πi Mixing coefficient of Gaussian i in a GMM

P Number of coordinate systems in a TP-GMM

ρ Correlation coefficient

R
d d-Dimensional Euclidean space, or d-dimensional set of real numbers

R
+ Set of positive real numbers

R Rotation matrix (Chapters 2 and 4), or control cost matrix (Chapters 3 and

5)

SE(d) d-Dimensional special Euclidean Group

SO(d) d-Dimensional special orthogonal Group

σ Variance scalar

Σ Covariance matrix of Gaussian distribution

Sd Spherical manifold of dimension d

S+ Manifold of SPD matrices

θm ,θc Model and context parameters, respectively

TpM Tangent space of manifold M defined at p ∈M
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ILLUSTRATION GUIDE

2D Euclidean Gaussian

x1

x2
µ

Σ

A Euclidean Gaussian is characterized by its mean

µ and covariance Σ. For 2D Gaussian distributions,

these are visualized using a point and an ellipse, re-

spectively. The ellipse contour is drawn one standard

deviation from its center (the mean µ), unless stated

otherwise. Along the contour of the ellipse, the distri-

bution has a constant probability, as a result its shape

corresponds to the covariance Σ.

3D Euclidean Gaussian

x1

x2

x3

µ

Σ

A Euclidean Gaussian is characterized by its mean µ

and covariance Σ. For 3D Gaussian distributions, the

covariance is visualized using an ellipsoid, and the

mean is sometimes not depicted as it lies at the ellip-

soid center. The ellipsoid surface is drawn one stan-

dard deviation from the mean, unless stated other-

wise. Over the surface of the ellipsoid, the distribu-

tion has a constant probability, as a result its shape

corresponds to the covariance of the distribution.

Gaussian 3D Orientation

r
3

r 2r 1

Σ12

Σ13Σ23

x1

x2

x3

A Gaussian distribution on 3D orientation is visu-

alized using three axes (r 1,r 2,r 3), colored in red,

green and blue, with ellipses at their end-points. The

axes depict the mean orientation, and represent the

(scaled) columns of the corresponding rotation ma-

trix. Their origin usually depicts the spatial mean.

The ellipse contours show the axes end-points mo-

tion along a line of constant probability; they dis-

play the orientation covariance at one standard de-

viation (unless stated otherwise). The combination

of the marginal covariances, Σ12, Σ13, Σ23, cover the

full orientation covariance.

Correlation Matrix

1

0

−1

x1

x2

x3

x4

x5

x6

x1 x2 x3 x5x4 x6

The entries of a covariance matrix, Σi j = ρi jσiσ j ,

combine correlation coefficients −1 ≤ ρi j ≤ 1 among

random variables xi and x j , with their standard devi-

ations σi ,σ j . The correlation matrix visualizes cou-

plings among state variables (synergies). Its cell col-

ors correspond to the values of the correlation coeffi-

cients. As diagonal cells represent the correlations of

variables with themselves, their value is always 1.
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1
INTRODUCTION

Essentially, robots are mechatronic systems; assemblies of well-engineered sensors, ac-

tuators and structural components. Opposed to most mechatronic systems, robots are

envisioned to perform a variety of tasks in unstructured environments. Thereby achiev-

ing or surpassing human performance in terms of speed, accuracy and adaptability.

Achieving this vision is challenging. The task variety and lack of structure makes man-

ual coding of control policies impractical, if not unfeasible. Robot learning provides a

promising alternative. Instead of manually coding the control policy, the robot derives

it from examples, or discovers it through reward-driven exploration. In this work, we

focus on the former: Programming by Demonstration (PbD) [1–4], and propose to use

Riemannian geometry to model, synthesize and recognize task space skills.

1.1. BACKGROUND

Although early works in artificial intelligence predicted autonomous robots would emerge

before the year 2000, history demonstrated differently [5]. Classical approaches in robot

learning (e.g. Reinforcement Learning (RL) [6]), learn discrete state-action pairs from

scratch. Unfortunately, these approaches do not scale well to the robots’s continuous

state-action space due to the curse-of-dimensionality [6].

To mitigate this problem, researchers proposed to pre-structure the learning prob-

lem using biologically inspired movement primitives [7, 8]. These are elementary units

of action that can be adapted, merged and sequenced into complex behavior [9]. Ex-

amples of such primitive movements are pick-up object A, kick the ball, wave to person

A. Instead of using atomic state-action pairs, movement primitives use parameterized

functions. These functions replace the discrete state-action pairs using a continuous

state-action relation. Typical approaches for parameter estimation are PbD [1–4] and

policy search [6, 10, 11]. Often, these are combined: initializing the parameters of the

primitive based on human demonstration, and improving the primitive over time using

exploration strategies.

Movement primitives can be defined at different levels. Two commonly encountered

levels are joint-space and task-space [7]. Task-space primitives can be more generic, as

1
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they model primitives independently from a kinematic structure. This eases skill trans-

fer between dissimilar agents, and allows the robot to use its redundancies to minimize

influence of sensory-motor noise [12, 13], or to perform a secondary task [14]. Addi-

tionally, the encoded task coordination enables the robot to maintain task performance

while being perturbed [15, 16] (task-specific flexibility).

1.2. MOTIVATION & OBJECTIVES

Conceptually, PbD allows the transfer of skill through physical demonstrations. Yet, to

surpass simple record-and-replay abilities, the robot needs to ‘understand’ the objective

which underlies the demonstrations; i.e. what to imitate? Furthermore, given the ob-

jective is uncovered, the robot needs to know how to use its body to achieve it, i.e. how

to imitate? These questions are among the four elementary questions of PbD [2], and

underlie the objectives of the proposed skill representation, namely: geometry-aware,

synergetic and context-adaptive. In what follows, we motivate why we focus on these

objectives.

1.2.1. GEOMETRY-AWARE

In robotics, we encounter a variety of manifolds. For example in task space, we find the

Euclidean manifold R
d to describe positions, forces and torques; the manifold of sym-

metric positive definite matrices S+ to represent stiffness, covariance or manipulability;

the special orthogonal group SO(3) or the unit-sphere S3 to represent orientation by

rotation matrices or unit quaternions; or the special Euclidean group SE(3) to describe

rigid-body poses.

Demonstration data can originate from combinations of these manifolds. In order

to uncover the task objective—to answer what-to-imitate?—a skill representation needs

to admit data from different manifolds in order to fully benefit from the available infor-

mation. By combining information from a variety of manifolds, the objective could be

uncovered more effectively or accurately. Furthermore, to synthesize the learned behav-

ior, the robot is restricted to the geometry of the output space. If the desired output is an

orientation, the algorithm should ensure the output is a unit quaternion, or an orthonor-

mal rotation matrix. Therefore, the skill parameterization should be geometry-aware.

1.2.2. SYNERGETIC

Successful task execution does not solely depend on the control of individual task vari-

ables. By controlling variables individually, a task might fail when one is perturbed and

the others do not respond. Instead, successful task execution depends on coupling of

task variables. These coupling describe functional relations which are often called syn-

ergies [16, 17].

In control, synergies can be used to synthesize (reflexive) control policies [18, 19] us-

ing the minimal intervention principle [12]. Such policies maintain functional integrity

of the encoded skill, opposed to tracking the individual state variables. Consider for ex-

ample a robot which holds a tray with two hands. Its objective is to keep the distance

between the hands equal. When the robot is pushed on the left hand, a synergetic con-

troller would respond compliantly, moving both hands in concord. Yet, when the right
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hand is fixed at time of perturbation, the left hand should resist the perturbation. As

the synergetic controller aims at maintaining functional integrity at minimum cost, dif-

ferent disturbance scenarios are handled differently. In contrast, a control policy that

ignores coupling among task variables could either be stiff or compliant and propagate

the interaction forces from the left to the right hand through the tray.

A skill encoding should describe the coupling and variation of the task variables.

Besides control, this information also serves regression, generalization and control, as

demonstrated by Mühlig et al. [20] Calinon et al. [18, 19, 21] and Paraschos et al. [22, 23].

1.2.3. CONTEXT-ADAPTIVE

In unstructured environments, a task can be encountered in different contexts. To al-

low the robot to respond to new situations, its skill representation should be context-

adaptive. Although what-to-imitate? intrinsically implies the capacity to generalize, we

explicitly mention context adaptation to stress its importance.

The ability to learn, synthesize and recognize tasks executed in different contexts

makes a robot more versatile and user-friendly. Skill adaptation increases versatility, as

it allows the robot to perform tasks in contexts that were not encountered before. The

ability to learn a task from samples performed in different context, increases the ease of

transfer: it lessens the need to anticipate on future context; and it reduces the number of

models to train (one task model for all context, instead of a task model for each context);

it removes the need to replicate the same context for separate demonstrations.

1.3. STATE OF THE ART

The presented objectives have been recognized by others, and existing approaches in-

clude them to some extent. Table 1.1 compares state of the art primitive parameteriza-

tions. It shows that that none of the existing methods fully meet all criteria. The remain-

der of this section motivates this conclusion by discussing the table content in detail.

Method Adaptive Synergetic Geometry-Aware Related Work

DMP X X [8, 24–31]

TP-GMM X X [18, 19, 21, 32–36]

ProMP X X [22, 23]

GPR X X* X* [37–39]

Table 1.1: Comparison of common primitive representations based on the objectives presented in this chap-

ter. *) Gaussian Process Regression (GPR) can encode coordination among state variables separately using a

Wishart process [39], and is geometric aware on the input only [38].

1.3.1. DMP
Dynamic Movement Primitives (DMP) [8,24] are widely used to represent motion primi-

tives. A DMP consists of a spring-damper system that is perturbed by non-linear forcing

term. The non-linear forcing term shapes the behavior of the primitive, and its parame-

ters are learned from data. The linear spring-damper ensures that the DMP converges to

a pre-defined goal position. A DMP is context-adaptive through its goal position, which
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can be adapted (online) to new goal positions. However, additional motion constraints,

such as approach direction, are not encoded by DMP.

Generally, each state dimension is controlled by a separate DMP. Although these

DMPs are temporally coupled through a common phase variable, they are not spatially

coupled. Furthermore, the output of the forcing terms does not depend on the system

state, which makes their behavior mostly open-loop. The absence of feedback and spa-

tial coupling prevents synergetic encoding. Ude et al. [26] used geometrical concepts to

encode end-effector pose using DMPs. This extension thus made DMP geometry-aware.

1.3.2. GMM-GMR AND TP-GMM
Calinon et al. [21, 32–35] approach skill encoding as a clustering problem. Instead of

modeling the regression function directly, they estimate a joint-distribution over the

state variables, and perform regression through conditioning. This approach allows the

handling of missing data, and the encoding of variance and coupling among state vari-

ables. During reproduction, the motion is retrieved through statistical inference using

Gaussian Mixture Regression (GMR). This approach, named GMM-GMR, has been used

to represent movement skills using dynamical systems [34,35] and time (or phase) driven

systems [21, 32, 33].

The regression output of GMR is a Gaussian distribution with full covariance matrix.

The variance and correlation encoded in this matrix describe the local synergies in the

demonstration data. Mühlig et al. [20] used the variance resulting from GMR to optimize

movement primitives. Later works, exploit the full covariance information to obtain syn-

ergetic response to perturbations [18, 19, 36].

The linear transformation properties of the Gaussian Mixture Model (GMM) allow

the modeling of primitives in different coordinate systems. By relating coordinate sys-

tems to the task context (e.g. objects or landmarks), a context-adaptive version of GMM-

GMR, named Task-Parameterized Gaussian Mixture Model (TP-GMM), is realized [18,21,

40].

The Euclidean nature of the Gaussian distribution, restricts the type of data that can

be used with GMM-GMR and makes it not geometry-aware. Despite these limitations,

Silvério et al. [41] were able to extend TP-GMM for unit quaternions by exploiting the

linear representation of the quaternion product. As this approach omits the curvature of

the unit quaternion manifold, it requires normalization of the quaternions after regres-

sion and lacks geometrical interpretation of the covariance information. Kim et al. [42]

presented a more geometric approach to represent orientation in GMM-GMR. Although

similar to the approach presented in this thesis, Kim et al. do not use parallel transport,

an essential element for the generalization of Gaussian conditioning as will be demon-

strated in Section 2.5.4.

1.3.3. PROMP
Probabilistic Movement Primitives (ProMP) [22, 23] represent primitives using parame-

terized trajectory distributions. The structure of ProMP encodes both temporal and spa-

tial couplings among the state variables. These couplings facilitate context-adaptation

and synergy encoding. Using conditioning, the behavior of a ProMP can be adapted to

move through via-points at specific time instances. The spatial and temporal couplings
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ensure that the motion characteristics are maintained.

The structure of ProMP consists of a weighted sum of basis functions, and splits spa-

tial and temporal information. This structure allows the construction of closed-form

synergetic controllers for linear systems, and efficient motion adaption through Gaus-

sian conditioning. Yet, as the structure relies on Euclidean operations, ProMP is re-

stricted to Euclidean data. Furthermore, because ProMP models a distribution over tra-

jectories, each demonstration only represents a single data point. This, in combination

with the large number of open parameters (mainly due to the size of the covariance ma-

trix), makes the training of ProMP require a large number of demonstrations [43].

1.3.4. GPR
GPR is a generic non-parametric regression technique which can be used for time-series

modeling [37, 44]. Unlike GMM-GMR and ProMP, it does not capture variability but un-

certainty. This implies the following: if many (Gaussian) samples are available for a state

at time t , a GPR will output a desired state value with high certainty, even if the vari-

ance of the samples is large. GMM-GMR and ProMP will instead output the same mean

value, but with a variance corresponding to the observed samples. In addition, a sep-

arate GPR is required for each task variable. As a result, GPR cannot directly encode

coupling among the task variables. Recently, Umlauft et al. [39] proposed to capture

coupling and variability separately using a Wishart distribution (a Gaussian process on

Symmetric Positive Definite (SPD) matrices). Using this route, GPR is able to encode

synergies using a seperate Gaussian Process.

In robotics, GPR is typically used with a radial-basis kernel as prior. Using this ker-

nel GPR is only compatible with Euclidean data. This because both input and output

depend on Euclidean concepts: the input because the radial-basis function relies on a

Euclidean distance measure; the output because the individual GPR outputs are uncon-

strained and therefore can only be combined into a Euclidean vector. Lang et al. [38]

remove the input limitation using an alternative distance measure in the radial-basis

kernel. Using this kernel, the input the GPR becomes geometry-aware.

1.4. A RIEMANNIAN APPROACH

This thesis proposes a way to extend TP-GMM to Riemannian manifolds, and thus gen-

erally applicable to a wider range of demonstration data. This generalization allows us

to exploit context-adaptive structure of TP-GMM in task-space manipulation, and use

its synergetic properties. This proposed extension checks the ‘Geometry-Aware’ cell of

TP-GMM in Table 1.1, and makes TP-GMM meet the desired objectives.

We start by motivating the use of Riemannian manifolds; why does a manifold need

to be Riemannian in order to generalize TP-GMM? The answer lies in the requirements

of TP-GMM. Its working relies on the Gaussian distribution and its properties: TP-GMM

requires the manifold to admit a probability distribution. This, in turn, requires the no-

tion of (Mahanalobis) distance. Then, in order to attain TP-GMM functionality, the dis-

tribution should have equivalent operations for Maximum Likelihood Estimate (MLE),

Gaussian conditioning, Gaussian product, and linear transformation.

The choice for Riemannian manifolds follows from these requirements. Informally



1

6 1. INTRODUCTION

stated, manifolds are smooth curved spaces that locally resemble a Euclidean space.

Generally, manifolds do not provide a notion of distance, as they do not possess a metric

to measure distance. Riemannian manifolds provide this notion, using the Riemannian

metric—a positive definite inner product. Note, that this approach explicitly leverages

the structure of the manifold which is known beforehand. This contrasts with the field

of metric learning, where researchers attempt to discover the structure of the manifold

from data [45, 46].

With the notion of distance, one can define Riemannian equivalents of mean and

covariance, and generalize the Gaussian distribution as demonstrated by Pennec [47].

We follow this work, and rely on the information-based generalization of the Gaussian,

which we denote the Riemannian Gaussian. The Riemannian Gaussian permits all prop-

erties required to generalize GMR and TP-GMM to Riemannian manifolds. The pro-

posed generalization of TP-GMM maintains its context-adaptive and synergetic prop-

erties, and gives it the ability to consider a wider range of demonstration data. In this

thesis, we focus on the use of position and orientation data, but others build on the pro-

posed approach [48] and demonstrated its use on other manifolds [49, 50].

1.5. CONTRIBUTIONS

The main contribution of this thesis is the generalization of TP-GMM and related meth-

ods to Riemannian manifolds. This generalization required several innovative steps,

which will be presented below. We split the contributions according to the presented

objectives: geometry-aware, synergetic and context-adaptive. Detailed descriptions of

the contributions are given in the introduction of the corresponding chapters.

1.5.1. GEOMETRY-AWARE

The generalization of GMM-GMR from Euclidean manifolds to Riemannian manifolds,

involved generalizing the GMM and its operations, namely: parameter estimation, Gaus-

sian product, Gaussian conditioning and linear transformation. Compared to previous

work [42, 51], we propose to use parallel transport in Gaussian conditioning and GMR,

and demonstrate its necessity. MLE has been proposed previously (e.g. MLE [47,51,52]),

and product of Riemannian Gaussians appeared as fusion in other fields [53–56]. Yet in

this thesis, we provide a unified approach to all operations, and show their applicability

in PbD.

1.5.2. SYNERGETIC

The Riemannian Gaussian encodes variation and correlation among the manifold di-

mensions. This information represents functional grouping of the manifold dimen-

sions; it describes (local) synergies. Previous work demonstrated how standard Linear

Quadratic Regulator (LQR) can be used to obtain synergetic, or risk-sensitive, state-

feedback controllers based on the encoded covariance [18,19,36]. This thesis generalizes

these concepts to Riemannian manifolds. Although generally LQR cannot be directly ap-

plied on manifolds, we demonstrate that such controllers can be defined using the linear

tangent spaces of the Riemannian manifold.
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1.5.3. CONTEXT-ADAPTIVE

Our Riemannian approach, generalizes the context-adaptive properties of TP-GMM to

task space. To date, TP-GMM applications have restricted themselves to rigid-body

transformations (rotations and translations of the demonstrated motions). Yet, the trans-

formation properties of the Gaussian permit the broader range of affine transformations.

In this thesis, we formalize this range, and demonstrate the capabilities of TP-GMM with

affine context parameterizations.

TP-GMM is typically applied to model and synthesize robot skills in a context-adaptive

manner. The introduction of task context brings about a third action: context inference,

the estimation of circumstances under which a skill has been executed. In the light of

TP-GMM, we address this problem for the first time. The proposed method uses an

Expectation Maximization (EM)-based algorithm to infer context from movement data

given a context-adaptive model.

1.5.4. APPLICATIONS

The research that led to this thesis has been performed within the SMART-E project [57].

The focus of this project lies on robotics research with applications in industrial scenar-

ios. In this perspective, the Riemannian approach for PbD has been applied in practical

scenarios.

The main application involved maintenance of the Large Hadron Collider (LHC) of

CERN. As the LHC is highly radioactive, humans cannot enter it to perform maintenance.

Instead, CERN relies on teleoperation to perform maintenance operations. In this thesis

we explore ways in which the Riemannian framework can be used to generate shared

control strategies that can assist the teleoperator. Within the AutoMAP project [58], the

Riemannian framework has also been used to program autonomous maintenance oper-

ations in a similar scenario.

1.6. THESIS OUTLINE

The contributions are split over the main objectives of the thesis: geometry-aware, syn-

ergetic, and context-adaptive, as illustrated in Figure 1.1. Each chapter details how the

Riemannian approach achieves an objective. Chapter 2 describes the theoretical foun-

dation of the Riemannian approach to PbD. Chapter 3 describes how the Riemannian

Gaussian can be used to synthesize synergetic controllers. Chapter 4 describes how

context adaptation is achieved using the Riemannian framework: the generalization of

TP-GMM. Chapter 5 combines elements of previous chapters to develop two different

shared control strategies. The chapters are mostly self-contained, as they comprise a

dedicated introduction, related work and discussion sections. Conclusions and future

work are given in Chapter 6.

1.7. SUPPLEMENTARY MATERIAL

The methods described in this thesis have been implemented and bundled in a Python

module named RiePybdlib. The module can be found via the author’s website: https:

//gitlab.martijnzeestraten.nl/martijn/riepybdlib. The website also provides

tutorial articles, in the form of interactive notebooks that demonstrate the operations

https://gitlab.martijnzeestraten.nl/martijn/riepybdlib
https://gitlab.martijnzeestraten.nl/martijn/riepybdlib
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Geometry-Aware

(Chapter 2)

Context-Adaptive

(Chapter 4)

Synergetic

(Chapter 3)

Application:

Shared-Control

(Chapter 5)

Figure 1.1: Graphical representation of the thesis contents.

presented in Chapter 2 and Riemannian LQR presented in Chapter 3. Matlab code has

been made available by Dr. Sylvain Calinon and can be accessed via: http://www.

idiap.ch/software/pbdlib/.

Videos of the experiments presented in chapters 2, 3 and 4 can be found via the fol-

lowing links:

• Chapter 2: https://youtu.be/NiRPE0egymk,

• Chapter 3: https://youtu.be/oM5btdbsdig,

• Chapter 4: https://youtu.be/jYas1LZAtMI.

http://www.idiap.ch/software/pbdlib/
http://www.idiap.ch/software/pbdlib/
https://youtu.be/NiRPE0egymk
https://youtu.be/oM5btdbsdig
https://youtu.be/jYas1LZAtMI
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A GEOMETRY-AWARE TASK

ENCODING

2.1. INTRODUCTION
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µx2

x1

(a) Maximum Entropy

N (x1, x2)

N (x2|x1)

x1

x2

(b) Conditioning

N1
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x2

x1

(c) Product

µ

Σ

AΣA⊤

Aµ+b

A,bx2

x1

(d) Linear Transformation

Figure 2.1: Visualization of the favorable properties of the Gaussian that are often used in PbD. (a) Given the

first two moments (µ, Σ) the Gaussian is the maximum entropy distribution. (b) The conditional distribution

of a jointly Gaussian distribution is again Gaussian. (c) The product of two Gaussians is, after normalization, a

Gaussian distribution. (d) The linear transformation of a Gaussian is again Gaussian.

Probabilistic methods in Programming by Demonstration (PbD) assume demonstra-

tions represent samples from some unknown probability distribution. The models used

to approximate this distribution are often based on the Gaussian distribution, e.g. [8, 21,

22,59,60]. The Gaussian has various favorable properties, as illustrated in Figure 2.1: it is

the maximum entropy distribution given the first two moments (mean and covariance)

of the data; the conditional distribution of joint Gaussian distribution, is again Gaus-

sian; the product of two Gaussians is, after normalization, Gaussian; and, a Gaussian

remains Gaussian under linear transformation of its parameters. These properties have

enabled the estimation, synthesis and generalization properties of popular approaches

Parts of this chapter have been published in IEEE Robotics and Automation Letters (RA-L) [48].

9
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such as GMM-GMR [33], TP-GMM [21], Probabilistic Movement Primitives (ProMP) [22]

and Stable Estimator of Dynamical Systems (SEDS) [35].

Common in these approaches is the encoding of movement data. Such data can

be defined in joint or end-effector space. Often, the primary task requirements that

underlie a movement are related to the end-effector space—commonly referred to as

task space. In such cases, joint-level descriptions may be unnecessarily restrictive: they

are limited to a single kinematic structure (a change in this structure may change the

task-space result), and cannot exploit kinematic redundancy for secondary tasks. A

task-space representation is more easily transferred among robots (this only requires

the transformation between the robots end-effector poses), and it allows inclusion of

secondary tasks in the null-space [61, 62]. Furthermore, it allows the robot to exploit re-

dundancy to reduce the effect of noise on task performance [12, 13], to reduce expected

impact in collision [63], or to effectively detect and respond to collision [64].

µ
S1

µ̄
R2

µ
R2

Figure 2.2: The mean of three data points

in S1 computed using different methods:

based on manifold distance (green), based

on Euclidean distance (orange), based Eu-

clidean distance and normalized (red).

As orientation data cannot be globally ex-

pressed in a Euclidean space, the Gaussian dis-

tribution is not very well suited to encode ori-

entation or pose data. This may very well ex-

plain why many probabilistic approaches either

consider joint-space or position-only task-space

representations: the Gaussian-based methods do

not permit data defined in non-Euclidean spaces.

Although normalization techniques can in some

cases be used to let Euclidean methods comply

with the manifold curvature, these techniques in-

troduce inaccuracies due to the Euclidean length

measurement. This is illustrated for the manifold

S1 in Figure 2.2: although normalization can be

used to project Euclidean estimates onto the man-

ifold, the projection does not correspond to the

mean computed with true manifold distances.

In this thesis, we propose a geometry-aware

approach. Using the tools of Riemannian geom-

etry, we obtain a task representation that can en-

code demonstration data originating from a variety of manifolds. The Riemannian ap-

proach allows us to generalize approaches based on Gaussian Mixture Model (GMM).

Although, this was originally motivated by the ability to handle orientation data, the

proposed approach can also handle other type of data such as Symmetric Positive Defi-

nite (SPD) matrices. These are encountered when handling stiffness, inertia or sensory

data organized as covariance features [49, 50].

Section 2.5 presents the foundation of the Riemannian approach to PbD. It intro-

duces Riemannian statistics and shows how to generalize the Gaussian distribution and

the required properties to Riemannian manifolds. Before presenting the core material,

preliminaries on Riemannian geometry and common parameterizations of orientation

are discussed in Section 2.2. Furthermore, we review how others have countered statis-

tical encoding of orientation in Section 2.3, and motivate our parameterization of end-
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effector pose in Section 2.4. After introduction of the Riemannian approach, Section 2.6

presents an application of it in bi-manual manipulation.

2.2. PRELIMINARIES

The approach presented in this thesis relies on Riemannian geometry. We therefore start

this section by introducing the required notions from this field. More elaborate discus-

sion on Riemannian geometry are given by Lee [65] and Jost [66]. In addition, we de-

scribe the links of various parameterizations of orientation with Riemannian geometry

and assess their usability for our statistical application.

2.2.1. RIEMANNIAN MANIFOLDS

U

M

φ

φ−1

R
d

Ω
p

p

(a) Coordinate chart

p

Vγ,p = γ̇[tp ]

γ

tp
R

R
d

φ

φ−1

γ(t )

(b) Tangent vector Vγ,p

Figure 2.3: (a): A manifold M is a d-dimensional topological space for which each point p has a neighborhood

U ∈M that is homeomorphic to an open subset Ω⊂ R
d . Such a homeomorphism φ : U →Ω is called a chart.

(b): A tangent space can be defined at each point of the manifold. Its vectors are functionals Vγ,p . These can

be represented numerically by associating the tangent space with a coordinate chart.

A manifold M is a d-dimensional topological space—a set of points with a certain

structure (topology)—which has the appealing property that it is locally a real coordinate

space R
d . This allows points of the manifold to be represented numerically. The map

that assigns numerical values to each point of the manifold is called a (coordinate) chart,

i.e.

φ : U →Ω, (2.1)

maps a subset U ∈M to a subset Ω ∈ R
d (see also Figure 2.3a). Note that Ω cannot gen-

erally be associated with a vector space; elements of Ω are d-tuples and not coordinate

vectors that are used for numerical linear algebraic computations. An atlas is a family of

charts that covers the manifold.

TANGENT SPACE

At each point p ∈M one can define a vector space,

TpM=
{

Vγ,p |∀γ : R→M
}

, (2.2)
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consisting of functionalsVγ,p : C∞ →R. The functionalVγ,p = (· · ·◦γ)′[γ−1[p]]1 is a vector

that is tangent to a path γ(t ) at p .

The tangent vectors of all possible paths through p form the tangent space TpM. By

associating the tangent space with a coordinate chart, a vector basis naturally arises (see

also Figure 2.3b):

Vγ,p = (· · · ◦γ)′[γ−1[p]],

= (· · · ◦ (φ−1 ◦φ)◦γ)′[γ−1[p]], (2.3)

= ((· · · ◦φ−1)◦ (φ◦γ))′[γ−1[p]], (2.4)

= ∂i (· · · ◦φ−1)[φ◦γ[tp ]]
︸ ︷︷ ︸

∂...

∂φi

∣
∣

p

(φ◦γ)i ′[tp ]
︸ ︷︷ ︸

ωi

. (2.5)

Here, we subsequently introduced the identity φ−1 ◦φ, re-associated, and applied the

product rule in (2.3), (2.4) and (2.5), respectively. The sub and super indices i refer to

Einstein’s summation convention.

The basis vectors ∂...
∂φi

∣
∣

p are the partial derivatives of the chart φ with respect to its d

coordinates. This notation is usually written as ∂
∂φi , or ∂i when the coordinate chart is

clear from the context. Note that the empty spot in the partial derivative follows logically

from the fact that basis vectors are elements of the tangent space: functionals.

The vector coordinates ωi are real numbers as the time derivatives (φ ◦γ)i ′ : R→ R.

They form the coordinate vectors

w= [ω0,ω1, ... ,ωd ]⊤, (2.6)

that can be used to perform numerical vector algebra.

DISTANCE

A manifold M with a Riemannian metric—a positive definite inner product 〈·, ·〉p de-

fined on each tangent space TpM—is called a Riemannian manifold. The metric en-

ables the length measurement of tangent vectors. As a result, it introduces the notion of

length on the manifold. The length of a path γ(t ) between a,b ∈M is measured by

Lb
a (γ) =

∫b

a
〈γ̇(t ), γ̇(t )〉γ(t ) dt . (2.7)

Consequently, the distance between two points can be found by minimizing (2.7) for γ,

i.e.

dist(a,b) = minLb
a (γ). (2.8)

The path γ that minimizes (2.8) lies on a geodesic—the generalization of the straight line

to Riemannian manifolds. The notion of minimum distance is essential in generalizing

the Gaussian distribution, as it facilitates the definition of mean and dispersion (covari-

ance).
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p = Expp

(

g
)

p= Logp

(

g
)

g

T g
M

(a)

p g
g
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g (p g )

ph
h
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Figure 2.4: Manifold mappings and action function for S2. (a) The exponential and the logarithmic map pro-

vide local one-to-one mappings between the manifold and its tangent space at point g . (b) An action Ah
g

(

pg
)

maps pg (a point defined relative to g ) to ph by moving it along a geodesic (dotted lines) until it reaches a point

such that the distance between ph and h equals the distance between pg and g (both distances visualized by

black lines).

EXPONENTIAL AND LOGARITHMIC MAP

The tangent spaces and their bases provide the ability to perform linear algebra. In order

to perform computations on the manifold, we need a distance preserving map to move

points between the manifold and the tangent spaces. The exponential and logarithmic

maps provide this functionality.

The exponential map Expg (·) : TgM→M is a distance preserving map from the tan-

gent space to the manifold. Expg (p) maps p to p in such a way that p lies on the geodesic

through g with direction p, and the distance between g and p is ‖p‖ = 〈p,p〉g , see Fig-

ure 2.4a. The exponential only locally maps minimum distance. The set of all points

for which the exponential does not map minimum distance is called the cut-locus. For

spherical manifolds, which can be used to represent orientation with unit quaternions,

the cut-locus only contains one point: the antipodal of the exponential base. For this

point there is no single unique minimum distance path between the base and its antipo-

dal.

The inverse of the exponential map is called the logarithmic map Logg (·) : M →
TgM. The logarithmic map is defined for all points that do not lie in the cut-locus of

its base, i.e. it is only defined when the exponential uniquely maps minimum distance

paths.

The maps between the curved manifold and the linear tangent space need to straighten

the curvature of the manifold. This straightening introduces deformations, as illustrated

in Figure. 2.5. Figure 2.5b displays the tangent space of S2 at point p1. The circles and

straight lines illustrate the latitudinal and longitudinal rings, respectively. Note that the

latitudinal rings are stretched, while the longitudinal rings keep their original length.

Consequently, the lengths of p1−p2 and p1−p3 reflect true distances as each pair lies on

a longitudinal ring. The length p2−p3 does not reflect the true distance, as the minimum

1This functional maps from the set of smooth functions C∞ to the real numbers. It thus takes a function as

argument. The ... indicate where the functional argument operates.
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distance path between p1 and p3 appears curved, instead of straight in the projection

(Figure 2.5b). Note that even the lengths of the circular paths, that appear in Figure 2.5b,

do not reflect the true distances as they are stretched in the projection.

p1

p3
p2

(a) Manifold S2

p2

p1 p3

(b) Tangent space Tp1
S2

Figure 2.5: The manifold exponential and logarithmic maps deform the manifold-distances in order to make

it fit in Euclidean space. Here, this deformation is illustrated for S2. The green lines illustrate the (projected)

geodesics connecting p1, p2 and p3. The purple lines illustrate the (projected) lines p1 − p3, p1 − p2 and

p2 −p3.

In general, one exponential and logarithmic map is required for each tangent space.

For homogeneous manifolds, however, their function can be moved from the origin e to

other points on the manifold as follows

Expg

(

pg

)

=A
g
e

(

Expe (pg )
)

, (2.9)

Logg

(

p
)

= Loge

(

Ae
g

(

p
))

, (2.10)

where Ah
g

(

p g

)

is called the action function. It maps a point p g along a geodesic to ph ,

in such a way that the distance between p g and g equals the distance between ph and h

(see Figure 2.4b).

Action functions remove the need to compute a specific exponential and logarithmic

map for each point in the manifold at the cost of imposing a specific alignment of the

tangent bases. This is illustrated for S2 in Figure 2.6a. Although this alignment does not

compromise the functions defined by (2.9) and (2.10), one must consider it while moving

vectors from one tangent space to another.

PARALLEL TRANSPORT

Parallel transport moves vectors between two tangent spaces along the geodesic that

connects the tangent bases; thereby maintaining a constant angle between the vector

and the geodesic. To achieve parallel transport between any two points on the manifold,

we need to compensate for the relative rotation between TgM and ThM. For d-spheres
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e

(a)

ph =ph

Tg M

T
h M

e

g h

ph =A‖h
g

(ph )
pg

(b)

Figure 2.6: (a) Tangent space alignment with respect to e. (b) Even though the tangent bases are aligned with

respect to e, base misalignment exists between Tg M and ThM when one of them does not lie on a geodesic

through e. In such cases, parallel transport of p from Tg M to ThM requires a rotation A∥
h
g(p) to compensate

for the misalignment of the tangent spaces.

this rotation is given by

R‖
h
g = I d+1 − sin(m)g u⊤+ (cos(m)−1)uu⊤, (2.11)

where u = [v⊤,0]⊤ gives the direction of transportation. It is constructed from h by map-

ping it into TgM, normalizing it, and finally rotating it to g ; i.e. v= R
g
e Logg(h)/m with

m = ||Logg(h) || the angle of transportation (See [67], Ch. 8). Notice that (2.11) is defined

in the manifold ambient space R
d+1, while we have defined our tangent spaces in R

d . To

achieve parallel transport between TgM and ThM, we define the parallel action

A∥
h
g(p) = B⊤ Re

h R‖
h
g R

g
e B p, (2.12)

where B contains the direction of the bases at the origin. For the manifolds S2 and S3

we use

B 2 =
[

1 0 0

0 1 0

]⊤

, and B 3 =





0 1 0 0

0 0 1 0

0 0 0 1





⊤

. (2.13)

Furthermore, R
g
e and Re

h
represent rotations between e and g , and h and e, respectively.

Note that no information is lost through the projection B , which can be understood by

realizing that the parallel action is invertible. The effect of parallel transport is visualized

for S2 in Figure 2.6b.

CARTESIAN PRODUCT

Finally, we note that the Cartesian product of two Riemannian manifolds is again a Rie-

mannian manifold. This property allows us to define joint distributions on any combi-

nation of Riemannian manifolds. For example, a robot pose is represented by the Carte-

sian product of a 3 dimensional Euclidean space and a hypersphere, i.e. p ∈ R
3 ×S3.
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The corresponding Exp(), Log(), A (), and parallel transport of the Cartesian product are

obtained by concatenating the individual functions, e.g.

Log[
ea
eb

]

([
a

b

])

=
[

Logea
(a)

Logeb
(b)

]

.

M: R
d S2 S3

g ∈M






gx1

...

gxd










gx

g y

gz





(
q0

q

)

Expe (g) e+






gx1

...

gxd












(

s(||g||) g

||g||
c(||g||)

)

, ||g||6=0






0

0

1




 , ||g||=0







(

c(||g||)
s(||g||) g

||g||

)

, g||6=0

(

1

0

)

, ||g||=0

Loge

(

g
)






gx1

...

gxd












ac(gz)
[gx ,g y ]⊤

||[gx ,g y ]⊤||, gz 6=1

[

0

0

]

, gz=1







ac∗(q0)
q
||q ||, q0 6=1






0

0

0




 , q0=1

Ah
g

(

p
)

p g−g+h Rh
e Re

g pg h ∗g−1 ∗pg

A∥
h
g(p) I dp B⊤

2Re
h

R∥
h
g R

g
e B 2p B⊤

3Q⊤
h

R∥
h
g Q g B 3p

Table 2.1: Overview of the exponential and logarithmic maps, and the action and parallel transport functions

for all Riemannian manifolds considered in this work. s(·),c(·),ac∗(·) are short notations for the sine, cosine,

and a modified version of the arccosine2, respectively. The elements of S3 are quaternions, ∗ defines their

product, and −1 a quaternion inverse. Q g and Qh represent the quaternion matrices of g and h.

2.2.2. ORIENTATION REPRESENTATION

The relative orientation between two coordinate systems is defined by a linear operator,

a d ×d orthonormal matrix with determinant 1. The set of all rotation matrices forms a

group under the matrix product. This group is called the special orthogonal group,

SO(n) = {R ∈R
d×d |RRT = RT R = I ,det(R) = 1}. (2.14)

Although a rotation matrix has 9 numerical entries, a change in orientation is charac-

terized by only 3 degrees of freedom. Yet, there exists no 3-parameter representation of

SO(3) that is singularity free, and uniquely covering [68]. Singularity free, refers to the

existence of a global continuous function f : SO(3) →R
3.

2The space of unit quaternions, S3, provides a double covering over rotations. To ensure that the distance

between two antipodal rotations is zero we define arccos∗(ρ)

{

arccos(ρ)−π ,−1 ≤ ρ < 0

arccos(ρ) ,0 ≤ ρ ≤ 1
.
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As SO(3) is not Euclidean, standard statistical methods will not respect its manifold

structure—the Euclidean mean of a set of rotation matrices is not a rotation matrix. Lo-

cal 3-parameter representations of SO(3) appear to be more forgiving in this regard. In

this section, we will see that this appearance can be deceiving. We review common three

and four parameter representations of orientation, namely: Euler angles, axis-angle and

unit quaternions. We discuss their relation to SO(3) and their ability to compose orien-

tation through summation. To aid this discussion, we first introduce additional details

of SO(3). The description of the different representations is based on a more elaborate

discussion given by Murray et al. [68] (Ch. 2.2, and Appx. A).

SPECIAL ORTHOGONAL GROUP SO(3)

SO(3) is both a compact matrix Lie-group and a Riemannian manifold under the com-

mon Euclidean metric. Each Lie-group has a Lie-algebra, a tangent space defined at

the identity. The elements of the Lie-algebra of SO(3), denoted so(3), are 3× 3 skew-

symmetric matrices

ω̃=





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 . (2.15)

The set of such matrices is a 3D Euclidean manifold, whose elements can be represented

as ω ∈R
3. ω is often described as the angular velocity required to move from the identity

to a particular orientation in unit time.

The matrix exponential provides a mapping between the matrix Lie-group and its

algebra. In the special case of SO(3), it can efficiently be computed using Rodriguez’

formula for rotation

R(ω) = I + sin(θ) ˜̄ω+ (1−cos(θ)) ˜̄ω2, (2.16)

where ω= θω̄ is composed of an angle θ = |ω| and a unit vector ω̄=ω/θ. The operator

·̃ , transforms ω in its skew-symmetric representation. Because the exponential map

relates ω to R , ω is sometimes called the exponential coordinate of R . The inverse of

operation is achieved using the logarithmic map. Inverting Rodriguez’ formula, it can be

efficiently computed, namely

θ =
{

arccos
(

1−trace(R)
2

)

if R 6= I ,

2πk otherwise,
(2.17)

ω̄=
{

1
sin(θ)

(

R −R⊤
)

if R 6= I ,

0 otherwise .
(2.18)

Here, the integer k and ω̄ can be arbitrary chosen when R = I . Note that the inverse of

the exponential map is not continuous near the identity. The exponential map is a many-

to-one map: if ω̄θ relates to R , so will ω̄(θ+2πk). Representations of orientation that rely

on ω are therefore not uniquely covering SO(3). Note that the Lie-group exponential and

logarithmic maps for SO(3) coincide with the Riemannian exponential and logarithmic

maps.
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EULER ANGLES

Euler angles describe a rotation R ∈ SO(3) using three scalars. Each scalar describes a

rotation about a (local) coordinate axis. By concatenating the individual rotations one

obtains the desired rotation matrix, e.g.

R x y z (ψ,φ,θ) = R x (ψ)R y (φ)R z (θ), (2.19)

describes the rotation by subsequently rotating data about the local z, y and x axes.

Here, the order and axes of rotation in the sequence may change depending on the ap-

plication. Intuitively, Euler angles can be visualized as a stack of rotations [69].

Euler angles are not coordinate vectors—they do not correspond to a single coordi-

nate basis—instead they form tuple. To illustrate this, we rewrite (2.19) by replacing the

rotations R x , R y , R z , by their exponential maps

R x y z (ψ,φ,θ) = ExpI

(

exψ
)

ExpI

(

e yφ
)

ExpI(ezθ) (2.20)

6= ExpI

(

exψ+e yφ+ezθ
)

(2.21)

where {ex ,e y ,ez } are basis vectors. Note that we cannot generally apply

ExpI(A)ExpI(B ) = ExpI(A +B ) , (2.22)

as this property requires the condition AB = B A [70]. Consequently, we conclude that

Euler angles are not coordinate vectors because they cannot be expressed in a single

vector space. Instead, they can be seen as a 3-tuple of a coordinate chart that covers

SO(3).

Although summation of Euler angles will yield valid rotation matrices, this summa-

tion does not properly compose orientation, since summation is not performed in a sin-

gle vector space. Similarly, one might naively compute a correlation matrix over Euler

angles. The resulting covariance matrix, however, will not properly describe the corre-

lation among the different rotational degrees of freedom. In fact, the resulting matrix is

not a proper covariance matrix because it is not a tensor—A mapping which takes two

elements form the same vector space to the real numbers, V ×V →R.

AXIS-ANGLE

Euler stated that any orientation R ∈ SO(3) is equivalent to a rotation about a fixed axis

ω ∈ R
3 through an angle θ ∈ [0,2π). This description of rotation is often denoted the

axis-angle or equivalent axis representation. When the axis of rotation has unit norm,

i.e. |ω| = 1, the axis-angle representation corresponds to the exponential coordinates of

SO(3).

The axis-angle representation allows the representation of orientation in a vector

space (the Lie-algebra). Unlike Euler angles, the axis-angle representation thus formally

allows Euclidean operations. However, the difference between two orientations does not

correspond to their difference in axis-angle representation, i.e.

LogI

(

R1R⊤
2

)

6= LogI(R1)−LogI(R2) , if R1 6= I ,R2 6= I . (2.23)

This distortion results from ‘flattening’ SO(3) onto R
3 through the exponential (see also

Section 2.2.1).
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UNIT QUATERNION

A quaternion is a tuple consisting of four scalars often grouped as a scalar q0 and a 3D

vector q v [71]. The set of unit quaternions (quaternions with norm 1), covers the rota-

tional group SO(3) twice: each element R ∈ SO(3) corresponds to two unit quaternions,

namely q and −q . Therefore, the unit quaternions do not provide a unique representa-

tion of SO(3). However, the maps from SO(3) →S3 and S3 → SO(3) are both continuous.

The unit quaternions thus provide singularity free representation of SO(3).

Composition of orientation, is achieved through the quaternion product. AsS3 is not

a Euclidean space, unit quaternions cannot be composed under summation. Similarly

to SO(3), S3 is a Riemannian manifold. Distances between unit quaternions are thus

computable in an appropriate tangent space.

The elements of its tangent spaces have a direct relation with the velocity vectors of

so(3), namely:

β= 1

2
ω, (2.24)

where β ∈ TeS
3 is an element of the tangent space at the identity e of S3, and ω ∈ so(3)

the corresponding velocity vector in SO(3). The intuition behind the scaling factor 1
2

is

the double covering of rotation: the equator length of S3 is 2π, which corresponds to

2 ·2π rotation.

COMPARISON

We assess suitability of the presented parameterizations using Table 2.2. The first three

criteria appear commonly in comparisons of orientation parameterizations: having a

minimal (3-parameter) representation can be desirable because such parameterizations

can be considered ‘unconstrained’. Singularity free representations are desirable in ap-

plications with large orientation range. Finally, uniqueness ensures an unambiguous

mapping between SO(3) and its parameterization. The remaining criteria are less com-

mon, yet essential for statistical applications. First, we require the parameterization to

form a vector space to enable computation of mean and covariance3. Furthermore, the

parameterization needs to measure the true minimum distance between rotations.

Table 2.2 separately lists TR SO(3) and TqS
3. The explicit use of tangent spaces

enables measurement of distance, an essential element for our statistical application.

However, both groups can only measure minimum distance between two orientations

R1 and R2 when they lie on a geodesic that crosses the origin of the tangent space. In

any other case, the deformation introduced by the logarithmic map alters the measured

length (see also Section 2.2.1). Given the non-linear nature of SO(3) such a limitation

is inevitable. The fact that we can measure minimum distance by taking into account

these limitations, opens a way for statistics on the manifold.

TR SO(3) and TqS
3 are neither minimal nor unique. They are not considered mini-

mal, as a rotation expressed in a tangent space requires both the tangent vector and the

tangent base (i.e. q ∈ S3 or R ∈ SO(3)). Their parameterizations are not unique because

3In Section 2.5.1 we will use mean-point that is not defined in a vector space. But its computation—and that

of the covariance—still requires a vector space.



2

20 2. A GEOMETRY-AWARE TASK ENCODING

their exponential maps are many-to-one (as discussed before multiple points in the tan-

gent space correspond to the same rotation). This is not problematic in our application

as long as the logarithmic maps project minimum distance. This is the case for the log-

arithmic map of SO(3) (2.18), and can be achieved for the unit quaternions. Recall that

the group of unit quaternions covers SO(3) twice, the measurement of distance between

two orientations R1 and R2 is thus ambiguous. This is resolved by defining the loga-

rithmic map of S3 in such a way that q and −q are mapped to the same point in TqS
3

(see Table 2.1). This creates a unique map from SO(3) to TqS
3. Using uniquely mapping

logarithmic maps, both mean and covariance can be computed.

The map from SO(3) to TqS
3 is singularity free when using the matrix exponential

and logarithmic maps. A practical implementation requires the use of Rodriguez’ for-

mula, which is undefined around the origin of the tangent space. Practically, this forms

no restriction as we can sufficiently approximate these maps around origin using the

first two terms of their Taylor expansion.

Concluding, both TqS
3 and TR SO(3) provide a suitable orientation parameterization

for use in statistics. In Section 2.5.1, it turns out that the use of unit quaternions through

TqS
3 can be advantageous because its double covering of orientation makes distribu-

tions on orientation more dense.

Parameterization minimal sf unique vector space min. dist.

SO(3) – X X – –

TR SO(3) – X
∗ – X X

∗

Axis-angle X – – X –

Euler angles X – – – –

Unit quaternion – X – – –

TqS
3 – X∗ – X X∗

Table 2.2: Comparison of parameterizations of SO(3) using the criteria (left-to-right): Minimal, referring to the

ability to represent orientation by the minimum number of parameters; sf (Singularity-Free), indicates that

the mappings between a parameterization and SO(3) are continuous and always existing; unique, indicates

that each element of SO(3) is uniquely defined in the parameterization; vector space, indicates the parame-

terization is a vector space; min. dist. (minimum distance), indicates that the minimum distance between

orientations can be properly measured. An asterisk indicates that the condition holds under specific condi-

tions (see comparison in Section 2.2.2).

2.3. RELATED WORK

This thesis is originally motivated by the desire to perform statistics on a combination

of position and orientation data. In this section we review methods used in robotics and

PbD which apply statistics on a combination of position orientation.

Orientation statistics are related to the field of directional statistics [72], a study that

is mainly concerned with observations in the form of unit vectors. Mardia et al. [72]

distinguish three approaches within this field:

• Ambient statistics, which neglect the structure of the underlying manifold and treat

the space as being Euclidean;
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• Wrapped (manifold) statistics, which rely on a statistical distribution that is wrapped—

tailored—on the manifold;

• Intrinsic statistics, which perform statistics indirectly on the manifold using a (lo-

cal) bijective mapping between the directional manifold and other (Euclidean)

manifolds.

Although parameterizations for orientations are not limited to unit vector data, this cat-

egorization is well-suited to group the related work.

AMBIENT APPROACHES

Within the field of PbD, various examples of the ambient approach can be found. Cali-

non et al. [18] use Euler angles to encode simple orientation (alignment) in a Task-

Parameterized Gaussian Mixture Model (TP-GMM). As pointed out by Silvério et al. [41]

the approach cannot be used for general orientations. Instead, Silvério et al. propose

to use the quaternion representation for orientation as this allows linear composition

of orientation through the quaternion matrix. However, the proposed method still as-

sumes the quaternion data to be embedded in a Euclidean space, thereby neglecting

its unit constraint. As a result, additional regularization steps are required in both the

training and reproduction phase. Furthermore, the extracted covariance matrix is 4 di-

mensional, while orientation has 3 degrees of freedom. Malekzadeh et al. [73] used this

approach to program end-effector pose to a bionic handling assistant.

To avoid the unit constraint of the quaternion, Gribovskaya et al. [74] rely on the

axis-angle representation. They demonstrate how orientation can be incorporated in a

dynamical system. The dynamical system is represented using a GMM, encoding the

joint distribution over axis s, angle θ and rotational velocity ω: P (ω,θ, s). The dynam-

ical system is then obtained by computing the conditional distribution P (ω|θ, s) using

Gaussian Mixture Regression (GMR).

Kim et al. [75] proposed to encode orientation using the first two columns of the

rotation matrix. As indicated later by Kim et al. [42], this approach requires additional

post-processing to meet orthonormality constraints, and does not pernit a proper com-

putation of probability because of an incorrect distance measure between rotations.

WRAPPED APPROACHES

The examples of wrapped approaches to encode and synthesize orientation data are

scarce in Robotics. There are, however, examples of wrapped approaches for pose es-

timation. In [76–79], the Bingham distribution is used for orientation estimation and

filtering. The Bingham distribution is an anti-podal symmetric distribution on a unit hy-

persphere. The anti-podal aspect of the distribution makes it especially suited to encode

unit quaternions, as anti-podal quaternions represent the same orientation.

INTRINSIC APPROACHES

Feiten, Lang et al. [59, 60] perform statistics on, respectively, orientation and pose using

the central projection method. The orientation and pose data, represented as (dual)

quaternions, is projected in a Euclidean space using the central projection. Within this

Euclidean space, distributions are computed on the projected data: Feiten et al. [60]
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approximate the distribution using a (mixture of) Gaussian(s), while Lang et al. [59] use a

Gaussian Process (GP). Since the central projection is not distance preserving (i.e. points

equally spaced on the manifold will not be equally spaced in the projection plane), the

projection plane cannot be directly used to compute statistics on manifold elements.

More recently, Lang et al. modified their approach based on GP by replacing the central

projection method with a distance preserving measure [38].

Ude et al. [26] propose methods to include orientation expressed as rotation matri-

ces or quaternions in the Dynamic Movement Primitives (DMP) framework [8]. As the

forcing term of DMP is a Euclidean construct, its definition required projection of the

orientation error—the difference between the current and the goal orientation—into a

tangent space of the rotational manifold.

Both Simo-Serra et al. [51] and Kim et al. [42] follow a Riemannian approach (al-

though not explicitly mentioned in [42]). Simo-Serra et al. use their method for human

pose tracking, and Kim et al. apply their method to motion modeling and synthesis. Both

methods consider rotational data as elements of the unit quaternion manifold, and en-

code a distribution on orientation using a Riemannian Gaussian [47]. Independently,

both works present a method for Gaussian conditioning. In this thesis, we follow a sim-

ilar approach, but propose an alternative method for Gaussian conditioning. The newly

proposed generalization of Gaussian conditioning follows the manifold geodesics, yield-

ing a proper generalization of Gaussian conditioning (see Section 2.5.4).

The need to express uncertainty over orientation or pose also arises in state propa-

gation problems such as Kalman filtering or SLAM [53, 56, 80–83]. These methods seem

to have been developed independently of [42, 47, 51]. Noteworthy is the work of Bar-

foot et al. [56] who study distributions of uncertainty on the Lie-groups SO(3) and SE(3).

They derive these distribution starting from a standard Euclidean Gaussian. Like in Pen-

nec et al. [47], they recognized that the normalization in the resulting Gaussian-like ex-

pression cannot be computed easily. However, they show that explicit computation of

this expression is not required for their application.

2.4. PARAMETERIZATION OF END-EFFECTOR POSE

End-effector pose can be represented as elements of SE(3), SO(3)×R
3 or S3 ×R

3. In this

thesis, we represent end-effector pose as elements of S3 ×R
3: the Cartesian product of

unit quaternions and 3D translations. This section describes the distinction between

SE(3) and SO(3) ×R
3 and motivates our choice for selecting the Cartesian product of

rotation and translation over SE(3). The argument uses the rotational group SO(3) to

maintain consistency with the cited work; but, the same argument holds when the ro-

tational group is represented by unit quaternions. Our preference for unit quaternions

over SO(3) is motivated in Section 2.5.1.

The pose of an end-effector is described by a position and orientation in space, which

are quantified by elements of R3 and SO(3), respectively. Different topologies can be

assigned to the set of poses. For example, both SO(3)×R
3 and SE(3) contain the same set

of poses under a different topology. The former is the Cartesian product of the rotational
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and translational group, and the latter the group of rigid-body transformations, i.e.

H =
[

R v

0 1

]

∈ SE(3). (2.25)

These transformations map Euclidean vectors between vector spaces while preserving

their relative distance—as if they belong to a rigid-body.

SE(3) and SO(3)×R
3 are both groups and manifolds. Yet, SE(3) 6= SO(3)×R

3, as their

topology and group structure differ. The difference between SE(3) and SO(3)×R
3 be-

comes apparent in their group operation∗. Consider the composition of two poses (A,b)

and (R , v ). For SO(3)×R
3 this yields:

(
AR

b +v

)

=
(

A

b

)

∗
(

R

v

)

, (2.26)

and for SE(3) this yields:

[
AR Av +b

0 1

]

=
[

A b

0 1

]

∗
[

R v

0 1

]

. (2.27)

Clearly, the translational part is transformed differently, as Av +b 6= v +b. The rigid-

body structure is not preserved in the group operation of SO(3)×R
3, thereby causing the

inequality Av +b 6= v +b.

Rigid-body transformations can be viewed as rigid-body displacement in a common

inertial frame. A well-known result from kinematics states: “Any rigid-body displace-

ment can be realized by a rotation about an axis combined with a translation parallel to

that axis”(Chasles’ theorem) [68, 84]. In other words, any rigid-body displacement can

be described by screw motion. Screw motions provide a coordinate independent de-

scription of rigid-body velocity—they are independent of inertial frame. This is a very

convenient property, which enables coordinate-free descriptions of rigid-body dynam-

ics, and efficient algorithms to solve them [85, 86].

To determine if the structure of SE(3) suits our needs, we ask the following ques-

tions: Are rigid-body displacements parameterized by screw motions minimum dis-

tance paths; i.e. are they geodesics? Do we require a coordinate independent repre-

sentation? Does our application require rigid-body transformations?

Briefly answered: screw motions do not generally represent minimum distance [84,

87]; our approach requires a coordinate-dependent approach, and transformations of

end-effector pose that are not restricted to rigid-body transformations (see Chapter 4).

SO(3)×R
3, on the other hand, does provide the means to measure minimum distance

and transform rotation and orientation separately. We motivate these answers below

using the illustrative examples in Figure 2.7.
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H 1 H 3 H 2

(a) The screw motion in SE(2) between two poses

does not generally lie on a minimal distance path.

The opaque red/green lines indicate poses, the

transparent pose-sequences depict screw motion

paths between poses.

Ψ

Ψ ′

Q ∈ Aff(2)

Ψg

(b) An affine transformation applied to a 2D box. It

changes the box scaling, translation and rotation.

In order to transform a pose-path, the full affine

transformation is applied to the spatial part, but

only the rotational element is applied to the orien-

tation part.

Ψ2

Ψ
1

Ψ
2

Ψg

Ψ1
?

(c) A conceptual illustration of the context-adaptive

approach that is introduced in Chapter 4. The ap-

proach models tasks in multiple local coordinate

systems that relate to objects in the environment.

By moving the local coordinate systems with the

object location context adaptation is achieved.

Figure 2.7: Illustrations used in Section 2.4 to motivate the parameterization of end-effector pose by SO(3)×R
3.

METRICS, GEODESICS AND SCREW MOTIONS ON SE(3)

It is well-known that there exists no bi-invariant4, or a natural left or right invariant met-

ric on SE(3) [68, 84, 87, 88]. Park and Brockett [87, 89] showed that

G =
[
αI 0

0 βI

]

, (2.28)

4 Bi-invariance implies that the metric holds under both left and right group operations. The distance dist(·, ·)G

on manifold M measured under metric G is bi-invariant if dist(a,b)G = dist(ebe,eae)G for any a,b,e ∈M.

Similarly, left or right invariance implies that distance is preserved under either left or right group operations.
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withα,β ∈R
+, are the only left-invariant metrics on SE(3)—i.e. metrics which hold under

change of inertial frame. These are also the metrics of the manifold product SO(3)×R
3.

The map that relates rigid-body displacements to screw motion is the matrix expo-

nential. It relates elements of the Lie-algebra se(3) to SE(3). Unlike the Riemannian ex-

ponential, the matrix exponential is not based on a metric but follows from the group

structure of SE(3) [84]. Given a screw motion s12, which describes the rigid-body dis-

placement from H 1 to H 2, this raises the question: is there a left-invariant metric (2.28)

which makes screw motion result in geodesics?

Figure 2.7a illustrates that screw motions do not generally lie on geodesics. If the

screw motion that describes the rigid-body displacement from H 1 to H 2 would lie on

a geodesic, there would not be a shorter path between H 1 and H 2. Yet, by introducing

H 3, we see that the combination of screw motion from H 1 to H 2 via H 3 is shorter under

any metric (2.28). Therefore, we can conclude that the matrix exponential does not map

minimum distances on SE(3). Consequently, the matrix exponential and logarithmic

maps are not suitable for our statistical framework which requires a minimum distance

map.

RIGID-BODY TRANSFORMATIONS

The use of rigid-body transformations to represent end-effector pose is unnecessarily

restrictive. It does not allow us to transform the positional and orientation parts of the

end-effector pose using different transformations without violating the group structure.

Figure 2.7b illustrates the need for different transformations. It shows how a taping mo-

tion across the seam of a carton box can be transformed to a box of different shape and

pose. Here, the shape transforms the spatial part of the motion using an affine transfor-

mation, while the orientation part is transformed using a rotational transformation. The

application of an affine transformation to an element of SE(3) does not necessary yield

an element of of SE(3), as any scaling inflicted by the transformation would violate the

orthonormal property of the SE(3) rotation. The way in which these affine transforma-

tions are applied in our framework is detailed in sections 2.5.5 and 4.3.1.

COORDINATE DEPENDENCE OF TP-GMM

A celebrated benefit of SE(3) is the ability to represent rigid-body motion independent

from an inertial frame. Yet, the context-adaptive approach, presented in Chapter 4 gains

its generalization capabilities from a coordinate-dependent representation. This is con-

ceptually illustrated in Figure 2.7c. The context-adaptive approach models motion in

different local coordinate systems Ψi . Generalization to new context is achieved by plac-

ing the local representations in new context. To achieve this, the end-effector poses are

defined in a coordinate-dependent way. A coordinate independent representation of

rigid-body motion is thus not required in our application.

2.5. GAUSSIAN OPERATIONS ON RIEMANNIAN MANIFOLDS

In this section the generalization of the Euclidean Gaussian to Riemannian manifolds is

introduced. We will demonstrate how, and to what extend, this Riemannian Gaussian

can generalize the properties of its Euclidean counterpart.
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2.5.1. THE RIEMANNIAN GAUSSIAN

RIEMANNIAN CENTER OF MASS

The absence of a Euclidean structure makes the concept of a mean value not directly

transferable to Riemannian manifolds. However, using the notion of variance σx(y) =
E
[

dist(x, y)
]

, we can define an alternative first mode that can be used in a Gaussian-like

distribution.

Recall the definition of mean for a distribution Px of random variable x that is de-

fined on a Euclidean space

µ= E [Px] =
∫

z Px(z) d z , (2.29)

where µ, z ∈ R
d . Its extension to Riemannian manifold is prevented by the integral over

z , as the sum over z ∈M is not defined. Variance, on the other hand, is the expectation

of a real-valued distance function, and the resulting integral can be computed over the

Riemannian manifold, namely

σx(y) = E
[

dist(x, y)2
]

=
∫

M
dist(x, z)2 Px(z)dM(z). (2.30)

with x, y , z ∈M, and dM(z) an infinitesimal volume element (see [47]). The distance

on the manifold corresponds to the length of the geodesics. We can thus use dist(x, z)2 =
Log

x
(z)⊤ Log

x
(z).

Fréchet showed that variance of a random variable is minimized for the mean value

µ, i.e. µ= y . The set of points that minimizes

E [x] = arg min
y∈M

(

E
[

dist(x, y)2
])

, (2.31)

thus consists of mean points.

r

x

Figure 2.8: The ball B(x ,r ) = {y ∈M|dist(x , y) < r }, is said to be geodesic if it does not meet the cut locus of its

center. This means that there exists a unique minimizing geodesic from the center to any point of the geodesic

ball. The ball is said to be regular if its radius verifies 2r
p
κ < π, where κ is the maximum of the Riemannian

curvature in this ball. (definition adopted from [47]). The yellow cover visualizes the largest regular geodesic

ball on S2. The ball is centered at center x and excludes the equator. It is geodesic on S2 because it does not

cover the cut locus (the anti-podal of x), and regular because its radius r <π for a manifold curvature κ= 1.
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The existence and uniqueness of the mean point is not guaranteed. Karcher and

Kendall studied the uniqueness and existence of local minima of (2.30) [90, 91], which

are called Riemannian centers of mass and sometimes (incorrectly) referred to as Karcher

means [92]. They demonstrated that: (1) a distributionPx has a unique Riemannian cen-

ter of mass when its support is included in a regular geodesic ball B(y ,r ) (see Figure 2.8);

and (2), (2.30) is convex if the support of Px is contained in B(y ,r ), and the ball with

double radius B(y ,r ) is still geodesic and regular. These proofs have later been extended

for manifolds with ψ-convexity to distributions with non-compact support, such as dis-

tributions of the exponential family.

Practically, (1) ensures that a sufficiently localized distributionPx is uni-modal, while

(2) ensures that it can be found using gradient descent. Given the curvature of the Rie-

mannian manifold, (1) allows us to determine if an estimated Riemannian center of mass

is unique. This is the case if the observations {x i }N
n fit in a regular geodesic ball, i.e.

r = max
i

(

dist(µ, x i )
)

< π

2
p
κ

, (2.32)

with curvature κ.

COVARIANCE

When the mean point(s), are determined. They can be used to compute the second mo-

ment: the covariance, the directional dispersion of the data. Within the Riemannian

framework distance and direction of a point x with respect to another point y can be

represented in the Euclidean tangent space TyM using Logy(x), given that x lies within

its domain D(y).

Since we have the ability to express distance and direction among points in a Eu-

clidean fashion, we can compute the covariance similarly to Euclidean covariance, namely

Σ= E

[

Logµ(x)Logµ(x)⊤
]

=
∫

D(µ)
Logµ(z)Logµ(z)⊤Px(z)dM(z). (2.33)

THE MAXIMUM ENTROPY DISTRIBUTION

In [47], Pennec shows that the maximum entropy distribution given the first two moments—

mean point and covariance—is a distribution of the exponential family

NM

(

x |µ,Λ
)

= k−1 exp

(

−1

2
Logµ(x)⊤ΛLogµ(x)

)

, (2.34)

with k a normalization, µ ∈M the Riemannian center of mass, and Λ the precision (also

known as the concentration) defined in the tangent space TµM. This formulation of the

Gaussian depends on the distance preserving mapping from the manifold to the tangent

space (Logµ(x)) which allows the computation of Mahanalobis distance. This mapping

provides us a way to describe coordination and variance among the dimensions of the

manifold in the linear tensor Λ. The potential of this tensor is demonstrated throughout

this thesis: it enables regression on manifolds (Section 2.6), forms the basis of the syner-

getic controllers presented in Chapter 3, and describes weights of the Gaussian product

that is used in chapters 4 and 5.
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λ

0

1
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3
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σ2

Variance on unit circle
Variance on real line

Figure 2.9: In the context of Riemannian manifolds, for sufficiently large precision, we can approximate vari-

ance to be inversely proportional to precision (i.e. Σ ≈Λ
−1). This is illustrated for the relation between vari-

ance and precision of a Gaussian on the unit circle S1 (blue), and the real line R (orange). For small precision,

the true variance of the unit circle converges to a constant, while the real line follows the relation σ2 = λ−1.

However, as precision increases, σ2 = λ−1 becomes a reasonable approximation for the distribution on the

unit circle. This behavior generalizes to all compact manifolds [47].

The normalization coefficient k is given by

k =
∫

M
exp

(

−1

2
Logµ(x)⊤ΛLogµ(x)

)

dM(x), (2.35)

with dM(x) an infinitesimal volume element (see Pennec et al. [47]), and the relation

between covariance and precision

Σ=
∫

M
Logµ(x)Logµ(x)⊤ exp

(

−1

2
Logµ(x)⊤ΛLogµ(x)

)

dM(x), . (2.36)

The integrals in (2.35) and (2.36) require Logµ(x) to be continuous on M. This is gener-

ally not the case; e.g. the spherical manifolds used in this work contain a discontinuity

at the cut-locus. One can ignore this requirement at the cost of generating an under-

estimative model, whose error magnitude relates to the variance of the distribution.

Simo-Serra et al. [51] demonstrated that an estimation error of over 1% on S2 requires a

distribution with a standard deviation larger than 1.0 radian. Furthermore, (2.36) makes

computation of concentration matrix from the precision matrix difficult. However, for

reasonably small covariance, the precision can be approximated by Λ ≈ Σ
−1. We illus-

trate this in Figure 2.9 for the special case of compact manifolds.

In this thesis, we rely on an approximation of the maximum entropy distribution for

Riemannian Manifolds,

NM

(

x |µ,Λ
)

= 1
√

(2π)d |Σ|
︸ ︷︷ ︸

k−1

exp

(

−1

2
Logµ(x)⊤Σ−1 Logµ(x)

)

. (2.37)

This approximation has also been used Simo-Serra et al. [51], Kim et al. [42] and Dubbel-

man [52]. It assumes the relation between the covariance and the precision to be Σ =
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ǫ(µ) W J ∆
M

L
E






Logµ(xn)
...

Logµ(xn)




 diag






Σ
−1

...

Σ
−1











−I
...

−I






1
∑

nN hn

N∑

n=1
hn Logµ(xn)

P
ro

d
u

c
t






−Logµ
(

µ1

)

...

−Logµ
(

µP

)




 diag






Σ
−1
‖1
...

Σ
−1
‖P











−I
...

−I






(
P∑

p=1
Σ

−1

‖p

)−1 P∑

p=1
Σ
−1
‖p Logµ

(

µp

)

C
o

n
d

it
io

n

[
LogxI

(

µ
I

)

LogxO

(

µ
O

)

]

Λ‖

[
0

−I

]

LogxO

(

µ
O

)

+Λ
−1
‖OO

Λ
⊤
‖OI

LogxI

(

µ
I

)

Table 2.3: Overview of the parameters used in iterative likelihood maximization of the mean value presented

in Section 2.5.

MLE Product Condition

Σ
1

∑N
i

hi

N∑

n=1
hi Logµ(xn)Logµ(xn)⊤

(
∑P

p=1Σ
−1
‖p

)−1
Λ

−1
‖OO

Table 2.4: Overview of the equations required to compute the covariance for the procedures presented in Sec-

tion 2.5.

Λ
−1, and the absence of a cut-locus, i.e. the domain of Logµ(x) = R

d . Throughout this

thesis, we will refer to (2.37) as the (approximated) Riemannian Gaussian.

The approximations gain us simplicity, and efficiency at the cost of losing accuracy

in the likelihood values for distributions with large variance. For position data these

simplifications do not cause any error. For Euclidean data, (2.34) becomes the standard

Euclidean Gaussian, and exactly matches (2.37).

For orientation data, the manifold used to express orientation data will influence the

accuracy of our approximation. Throughout this thesis we rely on the unit quaternion to

represent orientation. Its double covering of SO(3) makes distributions of SO(3) appear

more concentrated on S3; a length on SO(3) will appear halved on S3, and variance is

thus be decreased by a factor 22 on S3. Furthermore, unit quaternions capture SO(3)

within a regular geodesic ball on S3, ensuring the existence of a unique mean (see also

Section 2.5.1).

We find the presented approximation suited for our framework, because it allows

us to generalize the operations used in state-of-the-art PbD methods in the Euclidean

space. These applications typically involve movement generalization and synthesis, and

do not heavily rely on (absolute) likelihood values.
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µ←Expµ(∆)
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Figure 2.10: Visualization of iterative likelihood maximization required to find a Riemannian center of mass.

(a) Given an initial guess of µ (red star), the points p i (blue dots) are projected in the tangent space TµM

using the logarithmic map Logµ(·) (red dots). (b) After projection, an update is computed, i.e. ∆ = 1
N pi . (c)

The update is projected back onto the manifold using the exponential map Expµ(·) (green dot). After, the

update steps (a-c) are repeated until |∆| reaches a pre-defined convergence threshold.

2.5.2. ITERATIVE LIKELIHOOD MAXIMIZATION

The parameters of Riemannian Gaussian can be estimated by maximizing the likelihood

of (2.37). The required procedure is similar for estimation based on empirical data, prod-

uct of Gaussians, and Gaussian conditioning. In this section, we derive the general pro-

cedure for data-driven parameter estimation. This derivation follows Dubbelman [52].

Similar results can be found in [47, 90]. The special cases of product of Gaussians and

Gaussian conditioning will be discussed in sections 2.5.3 and 2.5.4, respectively.

Given random points x i ∈M, our objective is to find µ, and Σ that maximize maxi-

mize (2.37). As common for distributions of the exponential family, this is most conve-

niently achieved by maximizing the log-likelihood,

L = c − 1

2

N∑

i=1

hi Logµ(x i )⊤Σ−1 Logµ(x i ) , (2.38)

with c a constant, and hi weights assigned to each point. Here, it is assumed that

hi = 1, but different weights are required when estimating the likelihood of a mixture of

Gaussians (see Section 2.5.6).

Because Logµ(x) is potentially non-linear, optimization of (2.34) requires an itera-

tive procedure. This procedure first estimates the mean point, and then computes the

covariance in the tangent space TµM. We illustrate the procedure in Figure 2.10, and

describe its derivation in the remainder of this section.

First, the log-likelihood (2.38) is rearranged as

f (µ) =−1

2
ǫ(µ)⊤W ǫ(µ), (2.39)

where c is omitted as it is independent of the samples x i , and

ǫ(µ) =
[
Logµ(x0)⊤ ,Logµ(x1)⊤ , ... ,Logµ(x N )⊤

]⊤
, (2.40)

is a stack of tangent space vectors in TµM. These vectors give the distance and direction

of x i with respect to µ. W is a weight matrix with a block diagonal structure (see Table

2.3).
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We maximize (2.39) using a Gauss-Newton optimization. For this, we first make a

second order Taylor expansion of (2.39), namely

f (µ) ≈ f (µ̃)+∆
⊤ f ′(µ̃)+ 1

2
∆

⊤ f ′′(µ̃)∆, (2.41)

where

f ′ = J⊤W ǫ(µ̃), (2.42)

f ′′ = J⊤W J , (2.43)

are the gradient and the Hessian, respectively. J the Jacobian of ǫ(x) with respect to the

tangent basis of TµM. It is a vertical concatenation of individual Jacobians J i corre-

sponding to Logµ(x i ) which have the simple form J i =−I d .

From the Taylor expansion (2.41) we derive the Gauss-Newton update, which is

∆=−
(

J⊤W J
)−1

J⊤W ǫ(x), (2.44)

∆ provides an estimate of the optimal value mapped into the tangent space TµM.

The optimal value is obtained by mapping ∆ onto the manifold

µ← Expµ(∆) . (2.45)

The computation of (2.44) and (2.45) is repeated until ∆ reaches a predefined conver-

gence threshold. We observed fast convergence in our experiments for Maximum Likeli-

hood Estimate (MLE), Conditioning, Product, and GMR (typically 2-5 iterations). In the

case of parameter estimation from data, the structure of W greatly simplifies ∆. This

structure makes ∆ independent of the covariance Σ. The covariance can thus be com-

puted independently after µ converged (see Table 2.4).

Note that the presented Gauss-Newton algorithm performs optimization over a do-

main that is a Riemannian manifold, while standard Gauss-Newton methods consider a

Euclidean domain.

2.5.3. GAUSSIAN PRODUCT

The log-likelihood of a product of Gaussians is given by

L(x) = c − 1

2

P∑

p=1

Logµp
(x)T

Σ
−1
p Logµp

(x) , (2.46)

where P represents the number of Gaussians to multiply, and µp and Σp their param-

eters. Parameter estimation for the approximated Gaussian N
(

µ̃,Σ̃
)

can be achieved

through likelihood maximization.

Ignoring the constant c, we can rewrite (2.46) into the form (2.39) by defining

ǫ(µ̃) =
[

Logµ1

(

µ̃
)⊤

,Logµ2

(

µ̃
)⊤

, ... ,LogµP

(

µ̃
)⊤

]⊤
, (2.47)

and W = diag
(

Σ
−1
1 ,Σ−1

2 , ... ,Σ−1
P

)

, where µ̃ is the mean of the Gaussian we are approx-

imating. Note that the vectors Logµp

(

µ̃
)

in (2.47) are not defined in the same tangent



2

32 2. A GEOMETRY-AWARE TASK ENCODING

T
µ

1
M

Tµ1
M

N1

N2

N1N2

T
µ

1
,2
M

(a) With parallel transport

T
µ

1
M

Tµ1
M

N1

N2

N1N2

Tµ
1,2

M

(b) Without parallel transport

Figure 2.11: In order to maximize the log-likelihood (2.46), the distance term (2.47) needs to be expressed in a

common tangent space. Here, we visualize the outcome of the optimization with (a) and without (b) parallel

transportation of the covariance. As the longitudal covariance ofN1 is smaller than that ofN2, the center of the

product N1N2 should move towards N1. This is correctly achieved by the parallel transport of the covariance

matrices.

space. Instead, they are defined in P different tangent spaces. In order to perform the

likelihood maximization we need to switch the base and argument of Log() while ensur-

ing that the original likelihood function (2.46) remains unchanged. This implies that the

Mahalanobis distance should remain unchanged, i.e.

Logµp

(

µ̃
)⊤
Σ
−1
p Logµp

(

µ̃
)

= Logµ̃

(

µp

)⊤
Σ
−1
‖p Logµ̃

(

µp

)

, (2.48)

where Σ‖p is a modified weight matrix that ensures an equal distance measure. It is

computed through parallel transportation of Σp from µp to µ̃ with

Σ‖p =A∥
µ̃
µp

(

Lp

)⊤
A∥

µ̃
µp

(

Lp

)

, (2.49)

where Lp is obtained through a symmetric decomposition of the covariance matrix, i.e.

Σp = L⊤
p Lp . This operation transports the eigencomponents of the covariance matrix

[93]. Figure 2.11 compares the computation of the Gaussian product with and without

parallel transport on S2.

Because parallel transport depends on the changing µ̃, (2.49) is evaluated at each

iteration of the gradient descent. For spherical manifolds, parallel transport is the linear

operation (2.12), and (2.49) simplifies to Σ‖p = R⊤
Σp R with R = A∥

µ̃
µp

(I d ). Using the

transported covariances, both the gradient and the covariance can be computed. Their

formula are presented in tables 2.3 and 2.4.

Equation (2.46) can have multiple extrema when Logµ(x) is non-linear. As a result,

the product of Gaussians on Riemannian manifolds is not guaranteed to be Gaussian.

Figure 2.12 compares the true log-likelihood of a product of two Gaussians with the log-

likelihood of a Gaussian approximation. The neighborhood in which the approximation
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Figure 2.12: Log-likelihood for the product of two Gaussians on the manifold S2. The Gaussians are visualized

on their tangent spaces by the black ellipsoids. The color of the sphere corresponds to the value of the log-

likelihood (high=red, low=blue). The true log-likelihood (equation (2.46) with P = 2) is displayed on the left of

each subfigure, while the log-likelihood approximated by the product is displayed on the right. The configu-

ration of the Gaussians in (a) results in a log-likelihood with a single mode, while (b) shows the special case of

multiple modes. Note the existence of a saddle point to which the gradient descent could converge.

of the product by a single Gaussian is reasonable will vary depending on the values of µp

and Σp . In chapters 4 we demonstrate that the approximation is suitable for movement

regeneration in our context-adaptive framework.

The Gaussian product arises in different fields of probabilistic robotics. Generaliza-

tions of the Extended Kalman Filter [54] and the Unscented Kalman Filter [55] to Rie-

mannian manifolds required a similar procedure. Similarly, Wolfe et al. proposed a sim-

ilar procedure for Bayesian fusion on Lie-Groups [53].

2.5.4. GAUSSIAN CONDITIONING

In Gaussian conditioning, we compute the probability P
(

xO|xI
)

∼ N (µO|I ,ΣO|I) of a

Gaussian that encodes the joint probability density of xO and xI . The log-likelihood of

the conditioned Gaussian is given by

L(x) = c − 1

2
Logµ(x)⊤ΛLogµ(x) , (2.50)

with

x =
[

xI

xO

]

, µ=
[
µI

µO

]

, Λ=
[
Λ

II
Λ

IO

Λ
OI

Λ
OO

]

, (2.51)

where the superscripts O and I indicate respectively the input and the output, and the

precision matrix Λ=Σ
−1 is introduced to simplify the derivation.

Equation (2.50) is in the form of (2.39). In the case of conditioning, we want to esti-

mate xO given xI (i.e. µO|I). Similarly to the Gaussian product, we cannot directly op-

timize (2.50) because the dependent variable, xO, is in the argument of the logarithmic

map. This is again resolved by parallel transport, namely

Λ‖ =A∥
x
µ(V )⊤A∥

x
µ(V ) , (2.52)

where V is obtained through a symmetric decomposition of the precision matrix: Λ =
V⊤V . Using the transformed precision matrix, the values for ǫ(x t ) and J (both found
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in Table 2.3), we can apply (2.45) to obtain the update rule. The covariance obtained

through Gaussian conditioning is given by Λ
−1
‖ . Note that we maximize the likelihood

only with respect to xO, and therefore 0 appears in the Jacobian listed in Table 2.3.

2.5.5. GAUSSIAN TRANSFORMATION

e
A

u

µµA

A

Au

(a) Transformation A

e

b

µA

µA,b

(b) Translation b

Figure 2.13: Application of task-parameters A ∈R
d×d and b ∈S2 to a Gaussian defined on S2.

One of the challenges in PbD is to generalize skills to previously unseen situations,

while keeping a small set of demonstrations. In task-parameterized representations [21],

this challenge is tackled by considering the robot end-effector motion in different coor-

dinate systems. These are defined in a global frame of reference through the task pa-

rameters A and b, representing a linear transformation and translation, respectively. In

Euclidean spaces this allows data to be projected to the global frame of reference through

the linear operation Au +b.

This linear operation can also be applied to the Riemannian Gaussian, namely

µA,b = Expb

(

A Loge

(

µ
))

, (2.53)

ΣA,b = (AΣA⊤)‖
µA,b
b

, (2.54)

with (·)‖µA,b
b

the parallel transportation of the covariance matrix from b to µA,b . These

operations are used in Chapter 4 to generalize the task-parameterized framework to Rie-

mannian manifolds.

We illustrate the individual effect of A and b in Figure 2.13. The rotation A is ex-

pressed in the tangent space of e. Each center µ of the Gaussian is expressed as u =
Loge

(

µ
)

in this tangent space. After applying the rotation u′ = Au, and by exploiting

the property of homogeneous space in (2.9), the result is moved to b with Expb

(

u′) =
Ab

e

(

Expe

(

u′)), see (2.53). To maintain the relative orientation between the local frame

and the covariance, we parallel transport the covariance ΣA from the b to µA,b and ob-

tain ΣA,b . The transport compensates the tangent space misalignment caused by mov-

ing the local frame away from the origin. Figure 2.13b shows the application of b to the

result of Figure 2.13a.
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2.5.6. GAUSSIAN MIXTURE MODEL AND EXPECTATION MAXIMIZATION (EM)

Similarly to a GMM in Euclidean space, a GMM on a Riemannian manifold is defined by

a weighted sum of Gaussians

P (x) =
K∑

i=1

πi N
(

x ;µi,Σi

)

,

where πi are the priors, with
∑K

i
πi =1, πi ≥ 0. In PbD, they are used to represent non-

linear movements in a probabilistic manner. Parameters of the GMM can be estimated

by EM. This is an iterative process that soft-clusters the data (Expectation step), and

subsequently updates the Gaussian parameters using a weighted MLE (Maximization

step) [94]. The concept of EM is applicable to data defined in a Riemannian manifold, as

previously demonstrated by Simo-Serra et al. [51].

Algorithm 2.1 describes EM for Riemannian data. The inputs of EM are the N data

points x1:N = {x1, ... , x N }, and an initial estimate of the GMM parameters. Various meth-

ods exist to initialize the parameters. In Appendix A.1 we describe two common ap-

proaches: K-means and K-bins.

The core of EM consists of two elements: the Expectation step (E-step, lines 3–7) and

the Maximization (M-step, lines 9–13). The E-step computes the weights γn,k , which

are called responsibilities as they describe how responsible each Gaussian is for a data

point. During the M-step the current estimate of the GMM parameters is updated based

on a weighted average of the data points. For each state k, the M-step first computes

the mean (line 11). This involves the likelihood maximization (2.38) with the weights

hi = γn,k (i = n). Using the estimated mean µk , the covariance Σk is computed (line 12).

Here, Nk normalizes the weights in such a way that
∑N

n γn,k = 1. The prior πk describes

the Gaussian’s overall responsibility for the data. Finally, the log-likelihood of the GMM is

computed to assess the change δl l between two iterations. If the log-likelihood increase

is smaller than a pre-defined convergence threshold the parameters are assumed to have

converged. A low convergence threshold results in a more accurate solution at the cost

of more iterations. In this thesis, an empirically chosen value of 1e −5 is used. The main

difference between EM for Euclidean data and EM for Riemannian data, is the need of a

Gauss-Newton optimization to compute the mean (line 11). Similarly, to MLE of a single

Gaussian the uniqueness of µk is not guaranteed. In practice, the Gaussians of a GMM

are sufficiently concentrated and converge to a unique Riemannian center of mass (see

also Section 2.5.1).

2.5.7. GAUSSIAN MIXTURE REGRESSION

A popular regression technique for Euclidean GMM is Gaussian Mixture Regression (GMR)

[21]. It approximates the conditioned GMM using a single Gaussian, i.e.

P
(

xO|xI
)

≈N
(

µ̂O,Σ̂
O

)

.
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Algorithm 2.1 Expectation Maximization for GMM

1: function EM_GMM(x1:N , {µk ,Σk ,πk }K
k=1

)

2: while δl l > ǫconv do ⊲ Check change of likelihood, δl l , between iterations

3: # E-Step:

4: for k ∈ {1, · · · ,K } do

5: for n ∈ {1, · · · , N } do

6: γn,k = πk N (xn|µk,Σk)
∑K

i=1
πi N (xn|µi,Σi)

7: Nk =∑N
n γn,k

8:

9: # M-Step:

10: for k ∈ {1, · · · ,K } do

11: µk ← argmaxµk

(

L
(

x1:N ,µk ,γ1:N ,k

))

12: Σk ← 1
Nk

∑N
n γn,k Logµ(xn)Logµ(xn)⊤

13: πk ← Nk

N

14:

15: # Compute log-likelihood:

16: l l =∑N
n=1 ln

(∑K
k=1

πk N
(

xn|µk,Σk

))

17: return {µk ,Σk ,πk }K
k=1

In Euclidean space, the parameters of this Gaussian are formed by a weighted sum of the

expectations and covariances, namely,

µ̂O =
K∑

i=1

hi E
[

N
(

xO|xI ;µi,Σi

)]

, (2.55)

Σ̂
O =

K∑

i=1

hi cov
[

N
(

xO|xI ;µi,Σi

)]

, (2.56)

with hi =
N

(

xI ;µI

i
,ΣII

i

)

∑K
j=1

N
(

xI ;µI

j
,ΣII

j

) . (2.57)

We cannot directly apply (2.55) and (2.56) to a GMM defined on a Riemannian mani-

fold. First, because the computation of (2.55) would require a weighted sum of manifold

elements—an operation that is not available on the manifold. Secondly, because directly

applying (2.56) would incorrectly assume the alignment of the tangent spaces in which

Σi are defined.

To remedy the computation of the mean, we employ the approach for MLE given in

Section 2.5.2, and compute the weighted mean iteratively in the tangent space Tµ̂OM,

namely

∆=
K∑

i=1

hi Logµ̂O
(

E[N
(

xO|xI ;µi,Σi

)

]
)

, (2.58)

µ̂O ← Expµ̂O(∆) . (2.59)
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Here, E[N
(

xO|xI ;µi,Σi

)

] refers to the conditional mean point obtained using the proce-

dure described in Section 2.5.4. Note that the computation of the responsibilities hi is

straightforward using the Riemannian Gaussian (2.34).

After convergence of the mean, the covariance is computed in the tangent space de-

fined at µ̂O. First, Σi are parallel transported from Tµi
M to Tµ̂OM, and then summed

similarly to (2.56) with

Σ̂
O =

K∑

i

hi Σ‖i , where (2.60)

Σ‖i =A∥
µ̂O

µi
(Li )⊤A∥

µ̂O

µi
(Li ) , (2.61)

and Σi = Li L⊤
i
.

2.6. APPLICATION

The Cartesian product allows us to combine a variety of Riemannian manifolds. Rich

behavior can be encoded on such manifolds using relatively simple statistical models.

We demonstrate this by encoding a bi-manual pouring skill with a single multivariate

Riemannian Gaussian, and reproduce it using the presented Gaussian conditioning.

We transfer the pouring task using 3 kinesthetic demonstrations on 6 different loca-

tions in Baxter’s workspace while recording the two end-effector poses (positions and

orientations, 18 demonstrations in total). The motion consists of an adduction followed

by an abduction of both arms, while holding the left hand horizontal and tilting the right

hand (left and right seen from the robot perspective). Snapshots of a demonstration

from two users (each moving one arm) are shown in Figure 2.14 and the typical demon-

strations are shown in the video. The demonstrated data lie on the Riemannian mani-

fold R
3 ×S3 ×R

3 ×S3. We encode the demonstrations in a single Gaussian defined on

this manifold, i.e. we assume the recorded data to be distributed as x ∼N
(

µ,Σ
)

, with

x =
(

xL , q L , xR , q R

)

composed of the position and quaternion of the left and right end-

effectors.

Figure 2.15a shows the mean pose and its corresponding covariance, which is defined

in the tangent space TµB. The x1, x2 and x3 axes are displayed in red, blue and green,

respectively. The horizontal constraint of the left hand resulted in low rotational variance

around the x2 and x3 axes, which is reflected in the small covariance at the tip of the x1

axis. The low correlation of its x2 and x3 axes with other variables confirms that the

constraint is properly learned (Figure 2.15b).

The bi-manual coordination required for the pouring task is encoded in the correla-

tion coefficients of the covariance matrix5 visualized in Figure 2.15b. The block-diagonal

elements of the correlation matrix relate to the correlations within the manifolds, and

the off-diagonal elements indicate the correlations between manifolds. Strong positive

and negative correlations appear in the last block column/row of the correlation matrix.

The strong correlation in the rotation of the right hand (lower right corner of the matrix)

confirms that the main action of rotation is around the x3-axis (blue) which causes the

5We prefer to visualize the correlation matrix, which only contains the correlation coefficients, because it high-

lights the coordination among variables.

https://youtu.be/NiRPE0egymk?t=8s
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(a) Typical demonstration

(b) Typical reproduction

Figure 2.14: Snapshot sequences of a typical demonstration (top) and reproduction (bottom) of the pouring

task.
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(a) End-effector covariance

xR

ωR

xL

ωL

xR ωRxL ωL

1

−1

0

(b) End-effector correlation

Figure 2.15: The encoded task projected on the left and right end-effectors. (a) Gray ellipsoids visualize the

spatial covariance (i.e. ΣX L
, ΣX R

), their centers are the mean end-effector positions (µxL
, µxR

). Each set of

colored orthogonal lines depicts the end-effector mean orientation, its covariance is visualized by the ellipses

at the end of each axis. (b) Correlation encoded within and between the different manifolds. The gray rectan-

gles mark the correlations required for the reproduction presented in this experiment.

x1(red) and x2(green) axes to move in synergy. The strong correlations of the position

xL , xR , and rotation ωL with rotation ωR , demonstrate their importance in the task.

These correlations can be exploited to create a controller which can adapt online

to new situations. To test the responsive behavior, we compute the causal relation

P
(

q R |xR , q L , xL

)

through the Gaussian conditioning approach presented in Sec. 2.5.4. A

typical reproduction is shown in Figure 2.14, and others can be found in the correspond-

ing video. In contrast to the original demonstrations, which show noisy synchronization

patterns from one recording to the next, the reproduction shows a smooth coordination

behavior. The orientation of the right hand correctly adapts to the position of the right

hand and the pose of the left hand. This behavior generalizes outside the demonstration

area.

To assess the regression quality, we perform a cross-validation on 12 out of the 18

original demonstrations (2 demonstrations on 6 different locations).The demonstra-

tions are split in training set of 8 and a validation set of 4 demonstrations, yielding
(12

8

)

= 495 combinations.6 For each of the N data points
(

xL , q L , xR , q R

)

in the valida-

tion set, we compute the average rotation error between the demonstrated right hand

rotation q R , and the estimated rotation q̂ R = E[P
(

q R |xR , q L , xL

)

], i.e. the error statistic

is 1
N

∑

i ‖Logq̂R,i

(

q R,i

)

‖. The results of the cross-validation are summarized in the box-

plot of Figure 2.16. The median rotation error is about 0.15 radian, and the interquartile

indicates a small variance among the results. The far outliers (errors in the range 0.5−0.8

radian) correspond to combinations in which the workspace areas covered by the train-

ing set and validation set are disjoint. Such combinations make generalization harder,

yielding the relatively large orientation error.

6The number of combinations to assess in cross-validation quickly grows with the number of demonstra-

tions. To limit the computational time of cross-validation, only a subset of demonstrations is used in cross-

validation.

https://youtu.be/NiRPE0egymk?t=30s
https://youtu.be/NiRPE0egymk?t=30s
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Error Angle [Rad]

Figure 2.16: Cross validation results described in Section 2.6 .

2.7. DISCUSSION

In this chapter, we showed how GMM-based methods for PbD can be extended to Rie-

mannian manifolds. We described how to perform Gaussian conditioning, Gaussian

product and Gaussian transformations on Riemannian manifolds. These are the ele-

mentary tools required to extend GMM-GMR and TP-GMM as will be demonstrated in

Chapter 4.

N (x)

µ‖x |t

µx |t

(a)
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Figure 2.17: Visualization of Gaussian conditioning with and without parallel transport, by computing N (x |t )

with x ∈S2, t ∈R. (a) shows the output manifold where the marginal distribution N (x) is displayed in gray. (b)

shows, per data point, the distance between conditioning with and without parallel transport. See Section 2.7

for further details.

Both Simo-Serra et al. [51] and Kim et al. [42] follow a Riemannian approach, al-

though not explicitly mentioned by Kim et al. . Similar to our work, they rely on a sim-

plified version of the maximum entropy distribution on Riemannian manifolds [47]. In-

dependently, they present a method for Gaussian conditioning. But the proposed meth-

ods do not properly generalize the linear behavior of Gaussian conditioning to Rieman-

nian manifolds, i.e. the means of the conditioned distribution do not lie on a single

geodesic—the generalization of a straight line on Riemannian manifolds. This is illus-

trated in Figure 2.17. Here, we computed the update ∆ (given in Table 2.3 row 3, column

4) for Gaussian conditioning N (x |t ) with and without parallel transport, i.e. using Λ and

Λ∥, respectively. Without parallel transport the regression output (solid blue line) does

not lie on a geodesic, since it does not coincide with the (unique) geodesic between the

outer points (dotted blue line). Using the proposed method that relies on the parallel
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transported precision matrix Λ∥, the conditioned means µ‖x |t (displayed in yellow) fol-

low a geodesic path on the manifold, thus generalizing the ‘linear’ behavior of Gaussian

conditioning to Riemannian manifolds.

The manifold of unit quaternions is very regular as it has a constant curvature. Eu-

clidean methods (e.g. [41]) can handle such data when aided by regularization heuristics.

In fact, as such methods do not require an iterative solver, they are computationally more

efficient than the Riemannian approach. What is the added benefit of the Riemannian

approach compared to the Euclidean approach? First, the Riemannian approach omits

the need for normalization heuristics, making it more generic. Furthermore, it provides

a proper way of defining covariance: the Euclidean method provides a 4 dimensional co-

variance matrix even-though there are only 3 rotational degrees of freedom; the Rieman-

nian approach properly takes the geometry into account, and estimates the covariance

matrix in a 3 dimensional Euclidean tangent space. The results presented in Section 3.5

indicate that such covariance structure is, in some cases, better able to extract synergies

from demonstration data. Finally, the Riemannian approach outperforms the Euclidean

approach when handling more complex manifolds such as SPD matrices [49,50] by using

a unified methodology that can be applied on various manifolds.





3
LEARNING SYNERGETIC CONTROL

3.1. INTRODUCTION

Synergies are functional groupings of elements that are constrained to work as a single

unit [16]. Their existence potentially explains how biological sensorimotor systems are

able to perform tasks accurately, despite high redundancies and noisy sensors [12,13,16,

96]. Synergies also appear at task level: grasping and manipulation require coordination

between objects in the environment and the degrees of freedom of the hands. Similarly,

synergies can be used as elementary units of behavior in the context of robotic control.

By specifying task-dependent coordination at a low control level, one can achieve task

specific disturbance rejection. In this chapter, we show that the covariance information

of a Riemannian Gaussian can be used to derive synergetic controllers. It demonstrates

that the Riemannian approach is able to encode and synthesize synergetic behavior.

The proposed control approach relies on the Linear Quadratic Regulator (LQR)—a

control paradigm that simplifies the design of optimal controllers for linear dynamical

systems. This optimal regulator is found by minimizing a cost function. This quadratic

function is parameterized by a tracking cost matrix Q and a control cost matrix R . Often,

the tracking cost is manually defined using a diagonal Q matrix, thereby ignoring poten-

tial functional relations among state variables. Instead, we propose to relate the tracking

cost to the covariance information of the Gaussian, whose structure includes such func-

tional couplings. The ability to specify synergies through Q while guaranteeing stability

makes the LQR an ideal method for our approach.

Task-space synergies require a suitable parameterization of robot pose, which in-

volves both position and orientation. Since a global, singularity free, Euclidean represen-

tation of orientation does not exist [68], common methods available for Programming

by Demonstration (PbD) and LQR are not directly applicable. We build upon the prob-

abilistic framework for PbD on Riemannian manifolds introduced in Chapter 2. This

framework allows us to learn distributions over robot poses whose support is contained

The contents of this chapter have been published in the proceedings of IEEE/ISR International Conference on

Intelligent Robotics and Systems [95].
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in a regular geodesic ball [47]. In practice, this restricts the orientation data to lie within

a ±π radius of the empirical mean (the Riemannian center of mass). This is achieved by

encoding robot poses as elements on the manifold R
3 ×S3—The Cartesian product of

the 3-dimensional Euclidean space and the unit-quaternion manifold S3, respectively.

The contributions of this chapter are two-fold: i) We demonstrate that the Rieman-

nian Gaussian can be used to encode rich synergies of task-space manipulation that in-

volve position and orientation; ii) We show how infinite horizon LQR can be used to

regulate synergies that are defined on Riemannian manifolds.

The remainder of this chapter is structured as follows. Section 3.2 discusses previous

work related to LQR on non-Euclidean spaces and controller-gain estimation based on

demonstration data. Then, we introduce our method for LQR on Riemannian manifolds

in Section 3.3. The efficacy of the approach is shown through an experimental evalua-

tion involving bi-manual synergy transfer in Section 3.4. Finally, we will discuss some

intrinsic geometric limitations of control on manifolds in Section 3.5.

3.2. RELATED WORK

Different approaches for LQR on SO(3), SE(3) or coverings of these groups exist. Sac-

con et al. [97] derive a LQR controller on SO(3) through Pontryagin’s Maximum Princi-

ple. Marinho et al. [98] use a dual-quaternion representation to derive a LQR tracking

controller. The latter involves converting the dual quaternion transformation-invariant

error into an affine time-varying system. Such representation can be compared to a pose

manifold, yet the position quaternion does not represent well the Cartesian space, and

the method requires the manual specification of the control and state error costs. Sim-

ilarly, Wang and Yu [99] present a dual quaternion controller for rigid-body motion sta-

bilization and tracking, built on a screw theory formulation.

Our approach to learn synergies from demonstration involves the estimation of stiff-

ness and damping matrices from the correlation observed in the demonstration data.

Similarly, Rozo et al. [100] and Saveriano and Lee [101] estimate the stiffness directly

from the covariance information. Smoother stiffness profiles can be obtained from

the covariance information through LQR as demonstrated by Medina et al. [36], Cali-

non et al. [18] and Zeestraten et al. [19]. Kronander and Billard [102] use a combination of

tactile and kinesthetic teaching to communicate the desired stiffness of the robot along

a trajectory. Unlike these previous works, the presented method considers coordination

among position and orientation of multiple end-effectors.

3.3. LQR IN THE TANGENT SPACE

We start with a training set consisting of N data points, x ∈M. This set potentially con-

tains synergetic coupling among the manifold dimensions. Our aim is to find a con-

troller that preserves these synergies. To identify them, we estimate the center µ ∈M

and covariance Σ ∈ TµM of a Riemannian Gaussian using the Maximum Likelihood

Estimate (MLE) (see Section 2.5.2). The covariance matrix encodes the local synergies

around the estimated center. Similarly to previous work [18, 19, 36], we use LQR to repli-

cate the encoded behavior. LQR is a controller for linear systems of the form ξ̇= Aξ+B u
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µ
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T µ
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Figure 3.1: Visualization of state evolution obtained by Riemannian LQR on the system state manifold, Ms =
S2×R

2, for two different covariance matrices (red and blue ellipses). The initial state of the system is indicated

by p and the desired state by µ. a) The figure shows the response path in S2 and TµS
2. The response on

the manifold is visualized by the solid lines, and the response on the tangent space by the dotted lines of

corresponding color.

that optimizes a cost function that is quadratic in both state ξ and control input u,

c = 1

2

∫
(

ξ⊤Qξ + u⊤Ru
)

dt . (3.1)

The solution to this optimal control problem is a state-feedback controller of the form

u = Lξ. Its gain matrix, L, is obtained by solving an algebraic Riccati equation (see

e.g. [103]).

The required linear system cannot be defined on the manifold, since it is not a vector

space. However, we can exploit the linear tangent spaces to achieve a similar result. The

state error between the desired state pd and current state p can be computed using the

logarithmic map e = Logpd

(

p
)

that projects the minimum length path between pd and

p into the Euclidean space Tpd
M. We define the linear time-invariant system,

[
ė

ë

]

︸︷︷︸

ξ̇

=
[

0 I

0 −M−1C

]

︸ ︷︷ ︸

A

[
e

ė

]

︸︷︷︸

ξ

+
[

0

M−1

]

︸ ︷︷ ︸

B

u. (3.2)

with inertia matrix M and damping matrix C . The augmentation with ėmakes the system

state manifold to be Ms =M×R
d . As a result, the linear system is defined in Tp̄d

Ms

with p̄d ∈ Ms (the original desired state augmented with a desired velocity), and the

mapping from the manifold to this tangent space

ξ= Logp̄d

(

p̄
)

. (3.3)

The covariance Σ of a Riemannian Gaussian NM(µ,Σ) describes the variance and

correlation of the state variables in a tangent space defined at µ ∈M. By assuming that



3

46 3. LEARNING SYNERGETIC CONTROL

Figure 3.2: Visualization of the three different behaviors: i) horizontal planar translation (in blue), ii) vertical

planar rotation (in red), iii) coupled rotation and translation (in green).

the desired LQR tracking precision can be related to the observed covariance, we formu-

late the cost function (3.1) in the tangent space Tµ̄Ms using (3.3)

c = 1

2

∫(

Logµ̄
(

p̄
)⊤

︸ ︷︷ ︸

ξ⊤

Q Logµ̄
(

p̄
)

︸ ︷︷ ︸

ξ

+u
⊤Ru

)

dt , (3.4)

with µ̄=
[
µ

0

]

, Q =
[
Σ
−1 0

0 0

]

,

and R the control cost matrix. With the dynamical system (3.2) and cost function (3.4),

the optimal state feedback controller

u = Ls
(3.3)= L Logµ̄

(

p̄
)

, (3.5)

can be computed. Similarly to classical infinite horizon LQR, the gain matrix, L = R−1B⊤X ,

is obtained by solving the algebraic Riccati equation

AX + AX −X B R−1B⊤X +Q = 0. (3.6)

Figure 3.1 demonstrates the approach on the manifold S2 ×R
2. It shows how the

response of the system changes based on the shape of the covariance matrix. LQR is

computed in the tangent space of the attractorµ. Its response is visualized in the tangent

space, and projected on the manifold.

3.4. SYNERGIES IN BI-MANUAL MANIPULATION

The presented method is tested in a bi-manual task. Our aim is to demonstrate that a

variety of synergies can be learned and reproduced using our approach.

The experimental setup consists of two Barrett WAMs with three fingered hands. To-

gether, the two end-effectors hold a ball. We evaluate three different synergies: i) hor-

izontal planar translation; ii) vertical planar rotation; iii) translation coupled with rota-

tion. The setup with an illustration of the coordination patterns is shown in Figure 3.2.
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The synergies are taught through kinesthetic teaching [100]. For each synergy we

demonstrated the tolerated motion of the hands around a desired ball pose. For ex-

ample, behavior iii) is demonstrated by repeatedly moving both hands unidirectionally

away from the center while rotating along the axis of motion. The demonstration data

consist of hand-pose pairs which are defined at the hand palms.

The demonstration data of the bi-manual skill lie on the 12-dimensional (d = 12)

manifold

Mbm =R
3 ×S3

︸ ︷︷ ︸

Pose 1

×R
3 ×S3

︸ ︷︷ ︸

Pose 2

. (3.7)

For each behavior we computed the MLE of the mean and covariance of the Riemannian

Gaussian NMbm

(

µ,Σ
)

, and added 1·10−3I d as prior to the covariance. This regularization

term prevents high gains in the state variables that have very low variance; it bounds the

gains found through LQR.

The resulting models are visualized in Figure 3.3. The covariance of the position

clearly shows the preferred direction of motion: i) motion in the horizontal plane; ii)

motion in the vertical plane; iii) motion along one axis. Similarly, the rotational covari-

ance provides information about the alloted rotation: i) no rotation in any direction; ii)

rotation in a single plane; iii) rotation around a single axis.

The learned synergies appear in the correlation matrices1. For i), the planar coupling

between the hand positions results in the strong positive correlation between xL,1 and

xR,1, and between xL,2 and xR,2. For ii), the synergy involves a rotation around the global

x1 axis. This is correctly captured in the correlation between ωL,1 and ωR,2. Furthermore,

there exists a strong negative correlation between the x3 axes of the left and right hand.

This indicates the opposite upwards/downwards motion made during the rotation. Note

that the rotation of the hands around the ball created a circular motion around its cen-

ter. This requires a nonlinear coupling between the x2 and x3 of both hands, something

that cannot be properly captured in a single Gaussian. For iii), strong correlation is ob-

served between x2,L and x2,R , indicating the motion along the axis of translation. The

strong correlation between x2,L , x2,R and ω2,L , ω2,R establishes the coupling between the

translation and rotation.

To reproduce the demonstrated synergies, we employ the Riemannian LQR pre-

sented in Section 3.3. The system state manifold for the bi-manual skill

Ms =R
3×S3

︸ ︷︷ ︸

Pose 1

×R3×S3
︸ ︷︷ ︸

Pose 2

× R
3×R3

︸ ︷︷ ︸

Pose 1 velocity

× R
3×R3

︸ ︷︷ ︸

Pose 2 velocity

, (3.8)

consists of the skill-manifold augmented with the pose velocities. We define a linear

system in the tangent space Tµ̄Ms (3.2), where M and C are the end-effector inertia and

1The covariance matrix combines correlation coefficients −1 ≤ ρi j ≤ 1 among random variables Xi and X j

with deviation σi of random variables Xi , i.e. it has elements Σi j = ρi j σiσ j . We prefer to visualize the corre-

lation matrix instead of the covariance matrix, since it only contains the correlation coefficients and highlights

the coordination among variables.
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damping, which we approximate by

M = diag(1.17,1.17,1.17,0.009,0.008,0.005,

1.17,1.17,1.17,0.009,0.008,0.005),

C = diag(20,20,20,1,1,0.1,20,20,20,1,1,0.1),

respectively. We run the controller with a frequency of 500 Hz.

The control cost matrix Q is constructed from the inverse covariance matrix of the

Gaussian describing the desired synergy

Q =
[
Σ
−1 0d×d

0d×d 0d×d

]

, (3.9)

hereby setting a zero cost on the desired velocity. Furthermore, we manually defined a

constant control cost matrix

R = diag(
1

80
,

1

80
,

1

80
,12.5,12.5,25,

1

80
,

1

80
,

1

80
,12.5,12.5,25),

which was the same for all three synergies.

By solving the LQR problem we obtain the gain matrix L ∈ R
12×24, which we use to

compute the control command u = [u⊤
L ,u⊤

R ]⊤ ∈ R
12. The desired joint torques are com-

puted using

τ=τg (q)+ J (q)⊤u, (3.10)

with τg the torques required for gravity compensation, J the manipulator Jacobian, and

q the joint angles.

Typical reproductions of the encoded synergies are visualized in Figure 3.3c and in

the video accompanying this Chapter. Figure 3.4 shows the step response of the real

system and the linear system (3.2) for behavior iii). The figure shows a stable response of

the real system. The transients of the real system and the linear system are similar. The

steady-state errors of the real system are likely due to the approximated inertia matrix

and the unmodeled static friction.

3.4.1. QUALITY OF THE SYNERGIES

Our approach exploits the structure of the manifold to discover the synergies. Yet, is the

Riemannian approach better in extracting synergies than the Euclidean approach? In

other words, would the same synergies emerge if we consider the quaternion data to be

embedded in a 4D Euclidean space?

To assess this question, we analyze the spectral properties of the covariance matrices

for the Riemannian Gaussian, and the ‘Euclidean’ Gaussian (where we treat Quaternion

data as Euclidean). The Eigen vectors of the covariance matrix represents the synergies—

functional couplings among the manifold dimension—and the Eigen values their impor-

tance (or strength).

https://youtu.be/oM5btdbsdig
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(a) Graphs depicting the synergy models. The colored ellipsoids show the covariance of the left and

right end-effectors in red and blue, respectively. The orthogonal red, green and blue lines indicate the

orientation distribution. The colored ellipsoids at the end of each line depict the rotational covariance

using
p

0.3-standard deviation. (see also the illustration guide on page xi).
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(c) Reproduction examples. The orthogonal red, blue and green lines originate from the end-effector

position and depict the end-effector orientation. The lines represent the end-effector x1, x2 and x3

axes respectively.

Figure 3.3: Visualization of coordination encoding described in Sec. 3.4. The three behaviors (i)–(iii) are or-

dered left-to-right.
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Figure 3.5: Visualization of the (sorted) Eigen values of the three different experiments presented in Section 3.4

From the three behaviors we demonstrated, behavior (i, Translation) should contains

two degrees of freedom (the plane) and thus is expected to have two non-zero Eigenval-

ues. The planar rotation (behavior ii), requires a circular motion in the plane along the

spatial degrees of freedom. As this behavior cannot be properly represented in asingle

(linear) covariance matrix, more than one non-zero Eigen values can be expected when

analyzing this motion pattern. Finally, the translation-rotational motion (iii) requires

only a single mode of motion and should therefore only have one non-zero Eigen value.

Figure 3.5 shows the Eigen values that are extracted from the three demonstrated

synergies. The Riemannian approach contains 12 Eigenvalues (corresponding to the

degrees of freedom in the system), and the Euclidean approach 14 (the additional 2

result from the redundant dimensions introduced by the Euclidean approximation of

the quaternions). The translational behavior (a) displays similar results for the Rieman-

nian and Euclidean approach: three non-zero Eigen values of which the first two cor-

respond to the planar translation. The planar rotation clearly shows one large and one

smaller non-zero Eigen value for both approaches. Finally, a clear difference between the

Riemannian and the Euclidean approach is shown in the coupled translation/rotation.

Here, the Riemannian approach correctly displays a single non-zero Eigen value, while

the Euclidean incorrectly inferred 3. This latter result indicates that the Riemannian ap-

proach could be more suitable of encoding synergies when considering functional cou-

pling along the translational and rotational degrees of freedom.
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3.5. DISCUSSION

This chapter presented an approach to learn task-space synergy controllers from demon-

stration data. We proposed to exploit Riemannian geometry to combine manifolds

through the Cartesian product. This makes the approach easily adaptable to a vari-

ety of manifolds. For example, all experimental evaluations of LQR presented in this

work are performed using one single piece of code. Changing from the toy-example to

the bi-manual manipulation example solely required specifying a different system state

manifold.

?

U
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w
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S1

(a) Manifold S1

U
n

w
in

din
g

S∗

(b) Manifold double covering S1: S∗

Figure 3.6: Visualization of the manifolds S1 and its double covering S∗. See Section 3.5 for a detailed descrip-

tion.

The geometrical nature of the orientation group SO(3) prevents the existence of con-

tinuous globally stable state-feedback controllers [104, 105]. We illustrate the geometric

nature of this problem using Figure 3.6. In this figure the unit sphere S1 and its double

covering S∗ are considered as an illustrative analogy to SO(3) and its double covering

S3. First, we describe why a state-feedback controller on SO(3) is discontinuous and not

globally stable. Then, we explain why a double covering of the rotational group does not

resolve the issue.

The discontinuity in control on SO(3) arises when the angle error between the set-

point and system state has a magnitude of ±π, as illustrated in Figure 3.6a by the orange

dot (system state) and stars (setpoint). In this scenario, there is no unique minimizing

path between the setpoint and the system state; the system state lies at the antipodal

of the setpoint. The control signal of a state-feedback controller switches sign when

passing the antipodal, and therefore is discontinuous. In addition, the state-feedback

controller is not globally stable, because the antipodal is an (unstable) equilibrium.

S∗ double covers S1; making one rotation about S∗ yields two rotations on S1. By

controlling orientation on this double covering, the maximum rotation angle is repre-

sented by a distance of only π/2. The discontinuity that appeared on S1 seems to be

resolved: at any point in the top hemisphere—which fully covers S1—there is only one

shortest path to the orange setpoint. However, this solution does not really resolve the

original problem: a discontinuity still exists when the system state is at the antipodal of

S∗ (which is the setpoint itself in S1). In addition, the solution gives rise to the ‘unwind-
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ing’ phenomena [104]: when the state is close to the antipodal ofS∗ it moves towards the

opaque orange setpoint, thereby unwinding the double covering. As a result, the system

state will first move away from the setpoint before converging to it.

In our definition of the logarithmic map (see Table 2.1), we ensure that we always

measure the minimum distance between two quaternions. This avoids the unwinding

phenomena, but maintains the discontinuity at ±π state error and absence of global sta-

bility. However, the attraction domain of the unstable equilibria is nowhere dense [105].

Furthermore, by definition of our LQR problem, this unstable equilibrium lies π radian

away from the setpoint (µ). Therefore, we consider the absence of global convergence

a theoretical limitation that has no practical consequence to the learning and reproduc-

tion of synergies from demonstration.

The presented approach relies on the ability to measure minimum distances on the

manifold. This is not naturally achieved on SE(3) because neither a bi-invariant metric

nor a natural left or right invariant metric exists [86]. In this work, we choose to use

a left-invariant metric because it allows us to encode the synergy models independent

from the inertial frame.

The state-feedback controller (3.5) is similar to the double-geodesic controller for

Lie-groups presented by Bullo and Murray [106]. In their work on PD-control, they also

highlight the difference between control on SE(3) and SO(3)×R
3 (or S3 ×R

3, as we do).

They show that controllers defined on SE(3) do not follow geodesics of the SE(3) man-

ifold. But controllers defined on the Cartesian product SO(3)×R
3 do. Yet, when con-

trolling on S3 ×R
3 we still need to specify a relative weighting between positional and

rotational components. Since a similar trade-off is faced when balancing torques and

forces through R , we choose to equally weight position and orientation contributions in

the metric. The proper weighting of position and orientation is then postponed until the

inevitable tuning of the control cost matrix.

The control cost matrix remains an open parameter that requires manual tuning. In

our experimental evaluation, we set the values of R in such a way that the control effort

is well balanced for the translation and rotational degrees of freedom. The fact that we

could use a single R for the three different synergies shows that its selection is more

system than task dependent. In practice, one could specify a fixed system-dependent

ratio R f for the control variables and allow the user to control the overall control cost of

the system by a single parameter β, i.e. R =βR f . Here, R should be bounded to prevent

unstable controllers due to actuator limitations of the real systems.

Throughout this chapter, we focused on the derivation of a controller for a single syn-

ergy. Real manipulation tasks will require a variety of synergies along a desired trajectory.

By encoding manipulation tasks in a Gaussian Mixture Model (GMM), representing the

joint distribution of time and pose P
(

t , p
)

, one can for example obtain a time depen-

dent synergy by computing P
(

p|t
)

using Gaussian Mixture Regression (GMR) (see Sec-

tion 2.5.7). In situations where regression is computationally demanding, one could run

the regression at a relatively low rate, while the presented controller ensures a synergetic

response to disturbance.





4
CONTEXT-ADAPTIVE TASKS

4.1. INTRODUCTION

Generalization is a key requirement in Programming by Demonstration (PbD) [2,3], and

robot learning in general. It is the ability to model, synthesize and recognize tasks per-

formed in different contexts. In this chapter, we focus on generalization through context

independent task modeling.

Before elaborating, we define the terms task context and context independence. Con-

sider sending a parcel. This involves filling a box with items to ship, closing it and attach-

ing an address label. Parcels differ in shape and size, and might be packed at different

position and orientation. This information is considered as task context: the circum-

stances under which a task is executed. The motions required to pack, close and mark

a parcel depend on the task context. Each task has characterizing features: the address

label in the center, the stamp in the upper right corner, etc. These features are intrinsic

to the task. A model that represents these features free of context, is context independent.

Task modeling, synthesis and recognition are three common actions for a robotic

system: modeling allows robots to maintain compact task representations and improve

them over time; through synthesis robots generate motion, allowing them to act and

change the state of the world; and task recognition enhances situation awareness and

communication capabilities, as it enables the robot to identify tasks or gestures.

A robot that models skills independent of context, can adapt tasks more effectively

to unseen context. Instead of maintaining separate task models for each context, ev-

ery task only requires one context-independent model. This makes PbD more effec-

tive, as demonstrations of a task observed in different context can train a single context-

independent model. This reduces the number of demonstrations required, and removes

the need to demonstrate the task in a particular context. The smaller set of task models

potentially improves recognition accuracy, as there are less classes to distinguish. Ad-

ditionally, task recognition could be augmented with context inference—the ability to

estimate in which context a task was executed. Finally, context independent models

improve synthesis, which is achieved by associating new context with the context inde-

pendent model.

55
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This chapter presents a context independent framework for task space manipulation

based on the task-parameterized framework [18,21,40]. This framework achieves strong

generalization by relying on generic, but pre-defined, model and context structures. The

contributions of this chapter with respect to previous works are threefold:

1. it demonstrates how the task-parameterized framework is generalized to Rieman-

nian manifolds using the material presented in Chapter 2;

2. it provides an overview of the type of context parameterizations that are applicable

in the (Riemannian) task-parameterized framework;

3. it completes the task-parameterized framework with an algorithm to infer task

context, next to the already existing methods for modeling and synthesis.

After discussing the related work in Section 4.2, Section 4.3 reviews the task-parameterized

framework and introduces the extension to Riemannian manifolds and context infer-

ence. Then, the modeling, synthesis and inference actions are evaluated in Section 4.4,

and more practical applications are presented in Section 4.5.

4.2. RELATED WORK

Context adaptation is related to two elementary questions in the field of PbD, namely:

What to imitate? (what features represent the task) and How to imitate? (how to adapt

them to different context) [2]. Commonly, context-adaptive approaches answer the for-

mer using demonstration data, and the latter by pre-defined model and context struc-

tures.

The Dynamic Movement Primitives (DMP) framework [8, 24] has different context-

adaptive implementations. A DMP is a linear spring-damper system that is perturbed

by a non-linear forcing term. As the non-linear term decays, the system is guaranteed

to converge to the spring attractor (goal position). DMP thus allows the modification of

both the start and goal position. This can be seen as a form of context adaptation, and

has been used to generalize end-effector motions in task-space [25, 27, 28, 107]. Pervez

and Lee [31] propose a task-parameterized DMP. Here, the context parameters are mod-

eled in a joint probability density function together with the DMP parameters. Doing so,

the DMP can adapt to via-point context in addition to the start and goal contexts. Their

experimental results demonstrate both interpolation and extrapolation capabilities. Yet,

the examples are restricted to 2D planar motion with spatial context only. Ude et al. [26]

proposed a variant of DMP that encodes the full end-effector pose. This extension al-

lowed DMP to adapt to changes in both goal position and orientation. It has been used

in several task space applications which required context adaptation, e.g. [29, 30]. Al-

though DMP can adapt to changing goals, its lack of spatial coordination precludes the

use of spatial constraints to reach them (e.g. when seizing a book from a shelf under

a constrained motion direction). Furthermore, it remains unclear how DMP can han-

dle more expressive context, which comprises multiple objects or object scaling. The

context-adaptive approach presented in this chapter is able to take such situations into

account.

The more recently proposed Probabilistic Movement Primitives (ProMP) [22] has

several context-adaptive extensions. As DMP, it supports the modification of start and
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goal position. Additionally, as ProMP encodes spatial coordination, it allows for con-

strained reaching. A more elaborate coupling between task context and task motion can

be achieved by encoding a joint distribution of context and ProMP weights. During task

synthesis context dependent weights are obtained through conditioning [23]. A similar

approach can be used to coordinate movements between human and robot [108]. Yet,

these approaches only consider position-based context, and rely on linear regression

which most often remain feasible for interpolation within known contexts only.

The context parameterization presented by Brandi et al. [109] seems similar to the

one presented in this chapter. Brandi et al. relate the context to coordinate systems (or

landmarks) defined on template objects. The context parameters are obtained from a

point-cloud matching algorithm that finds the warped transformation between a known

point-cloud and an observed object. The context is parameterized by position and a

number of (Euler) angles. These context parameters are used to define a context inde-

pendent ProMP. While the method presented by Brandi et al. only allows the trans-

formation of the ProMP mean, our approach provides a variety of transformations (in-

cluding translation, scaling and rotation), and applies these to the full model (mean and

covariance).

The task-parameterized (TP) approach [18, 21, 40] models the demonstration in dif-

ferent coordinate systems (frames of reference). These coordinate systems are linked

to the position or orientation of different objects and landmarks in the environment—

the task context. Examples are: the position and orientation of table legs in an assem-

bly task [100], location of a box in pointing and pick-up tasks [19, 40], or parts of the

robots body [40, 41]. Based on the demonstration data, each coordinate system en-

codes a unique model of the task motion. By demonstrating the task for varying context,

unique motion patterns appear in each coordinate systems. Invariance in these patterns

corresponds to the importance of the coordinate systems. During motion synthesis in-

variance information is used to fuse the information encoded in the different coordinate

systems. This fusing step can be seen as maximization of a metric of imitation. Such

a metric has been used to generalize demonstration data in [33, 110]. In a similar fash-

ion, Bowen et al. [111] and Yang et al. [112] provide ways to learn imitation metrics for

Euclidean data. The use of multiple coordinate systems in combination with a fusion

method provides strong generalization capabilities. Even though the approach has orig-

inally been presented using GMM-based skill representations, it is also compatible with

representations such as ProMP or Gaussian Process (GP) [21].

Methods based on invariant features represent a distinct branch of movement en-

coding [113–115]. These methods represent task-space motion using velocity-like de-

scriptors and can encode both position and orientation information. The removal of

explicit spatial and temporal information creates context-independent task representa-

tions. Vochten et al. [114] combine invariant features with optimization to generalize

demonstrated point-to-point trajectories to new start and goal poses. Lee et al. [115]

use a feature representation that is bi-directional; its transformation between the Carte-

sian space and invariant space is achieved without losing information. This approach is

appealing and similar to our context-adaptive framework in the sense that it is able to

generalize, encode, synthesize and recognize motion in varying context. Similar to our

framework, the context adaptation can include affine transformations. Yet, unlike Lee et
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al., the approach presented in this Chapter can take multiple task-relevant objects into

account.

Alternatively, exploration-based methods have been considered for context adapta-

tion. Examples of such methods are reinforcement learning [10,116,117], and deep rein-

forcement learning [118, 119]. Despite appealing, these methods typically require large

amount of real-world interaction, which are not always available in our applications.

4.3. RIEMANNIAN TASK-PARAMETERIZED GAUSSIAN MIXTURE

MODEL

The task-parameterized framework presented in this chapter achieves strong context

adaptation by representing task motion in local coordinate systems. It builds on the

Task-Parameterized Gaussian Mixture Model (TP-GMM) presented by Calinon [21]. The

framework requires three elements: a context parameterization which defines the rela-

tion between local (context-independent) coordinate systems, and a global coordinate

system; a model parameterization to compactly represent the local movement represen-

tations; and a merging method that allows to fuse the contextualized movement repre-

sentations. Before discussing these elements in detail, we give a conceptual description

of the method using Figure 4.1.

The task-parameterized framework observes demonstrations from different perspec-

tives. Typically, these perspectives are linked to the task context—objects or landmarks

in the environment. In Figure 4.1, the perspectives are the green and purple holes. To

formalize the context, it is represented by coordinate systems; one coordinate system

attached to each object or landmark. The task parameters describe the relation between

the local coordinate systems and the global coordinate system. In Figure 4.1 this relation

is a rigid-body transformation, but this chapter demonstrates more complex relations

are possible.

By observing demonstrations from different perspectives, variant and invariant re-

gions appear. Invariance indicates that the state of an object—which is linked to the

coordinate system—influences the task motion; it indicates that an object state is im-

portant for task execution. This becomes apparent in Figure 4.1, where invariance ap-

pears close to the green and purple holes. We call these local representations context

independent, because they represent the task isolated from a specific context. In order

to compactly represent the local task representations without losing the covariance in-

formation, it is encoded in a joint probability density function (pdf). In this chapter, we

represent this pdf using a (Riemannian) Gaussian Mixture Model (GMM), the TP-GMM.

The encoding of local variability enables the generalization to new contexts. To re-

produce the encoded behavior, the local representations are placed in a global coordi-

nate system according to the newly encountered context. There, the local representa-

tions are fused while taking into account the encoded variability. Figure 4.1 shows how

Gaussian Mixture Regression (GMR) and product of Gaussians are used to generalize

the peg-in-hole task to a new context. Note that generalization takes into account both

the position and orientation of the holes. Doing so, the generalization respects the con-

strains required to enter the holes.
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The peg-in-hole task is demonstrated in

different situations. Here, we demon-

strate a point-to-point movement from

the green to the purple hole. At each

demonstration, the end-effector trajec-

tory (gray), and pegs’ position and orien-

tation are recorded.

To create a configuration inde-

pendent representation of the

end-effector data, we project

them into the green and purple

holes.

The projected data are en-

coded using a Gaussian

Mixture Model (GMM),

which approximates the joint

probability density function

P(x f 1, x f 2, t ).

To generate the most-likely tra-

jectory in each reference frame,

the conditional distribution

P
(

x f 1, x f 2|t
)

is computed at

each time step with Gaussian

Mixture Regression (GMR),

yielding a tube of Gaussians.

Given new positions of the two holes, the

GMR results are projected in the global

reference frame. They are then fused us-

ing the product of Gaussians to obtain

the desired trajectory for the current sit-

uation (the yellow tube represents the

trajectory distribution).
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Figure 4.1: Conceptual description and illustration of TP-GMM. A further analysis of this example is given in

Section 4.4.2.

Formally, a TP-GMM represents the probability distribution

P
(

x |θm , θc
)

=
K∑

k=1

πk

P∏

p=1

N
(

x
∣
∣θm

p,k , θc
p

)

. (4.1)

It consists of a weighted sum of K distributions, with the weights
∑K

k=1
πk = 1 and πk ≥ 0.
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The summed distributions are formed by a product of P Gaussians N
(

x
∣
∣θm

p,k , θc
p

)

; each

representing the task in a local coordinate system. The Gaussians are defined by the

model parameters θm
p,k

= {µp,k ,Σp,k }, and context parameters θc = {θc
p }P

p=1.

The task-parameterized framework involves three elements: (contextualized) demon-

stration data, task context, and a context-independent model. The elements form a

triad; given two, one can estimate the other. This triad leads to three optimization prob-

lems, namely model estimation, motion synthesis and context inference. The objectives

of these optimization problems are listed in Table 4.1.

The concepts for model estimation and motion synthesis have been discussed in pre-

vious work [21] and will be briefly reviewed in sections 4.3.2 and 4.3.3. Context inference

has not yet been addressed in the light of TP-GMM. Section 4.3.4 describes the infer-

ence problem, and proposes an Expectation Maximization (EM)-based solution. With

the introduction of context inference, one can implement task recognition (the last en-

try in Table 4.1) straightforwardly. This allows the recognition of tasks from pre-defined

library of TP-GMM. Yet, before we can describe modeling, synthesize and inference, the

task parameters, and their relation to the model parameters needs to be defined. This is

done in Section 4.3.1.

Action Optimization objective

Modeling θm
(

x1:N , θc
1:N

)

= argmaxθm
∏N

n=1P
(

xn

∣
∣θm,θc

n

)

Synthesis xO
(

xI , θm , θc
)

= argmaxxO P
(

xO
∣
∣xI , θm , θc

)

Inference θc
(

x1:N ,θm
)

= argmaxθc P
(

x1:N

∣
∣θm , θc

)

Recognition t
(

x1:N , θm
1:T , θc

1:T

)

= argmaxt∈{1,...,T }P
(

x1:N

∣
∣θm

t , θc
t

)

Table 4.1: Overview of optimization objectives in the task-parameterized framework. The symbols θc and

θm refer to the context and model parameters respectively. a : b indicates a set of elements, e.g. θc
1:N

=
{θc

1, · · · ,θc
N

}. The superscriptsI andO indicate input and output, respectively.

In the task-parameterized framework, the task is considered from the landmarks and

objects that form the task context. The motion is thus described in the coordinate sys-

tems that are attached to objects and landmarks. Here, we call these local represen-

tations context independent, as they describe the robot motion independently from a

context instance (i.e. a specific location, or shape).

When demonstrating the task for varying context, different invariant patterns will

emerge in these coordinate systems. The variability among the demonstrations ob-

served in each coordinate system indicates its importance in the task. When variabil-

ity is large, the robot motion was not consistent with the object’s pose or shape. In this

case the object’s state is not important for the task motion. For low variability the oppo-

site holds. It is important to realize that this importance can be time-varying; the object

state can be important at the start of the motion and not at the end of the motion. After

projecting the data into the local coordinate systems, they can be encoded in a compact

probabilistic model. To synthesize the data in a new context, the local models are first

contextualized—i.e. projected into a common (global) coordinate system. There, the

contextualized models need to be fused to obtain the task motion for the current con-
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text. The fusion involves a trade-off in which each coordinate system is weighted by the

observed variance.

4.3.1. CONTEXT PARAMETERIZATION

Group Name Group Definition Template Deformations

Template

General Linear

Group
GL(n)

Uniform Scale

Group (USG)
US(n) = {Q : SIn×n ,S ∈R

+}

Special

Orthogonal

Group

SO(n) = {Q : QQ⊤ = I ,det(Q) = 1}

Affine Group Aff(n)=
{[

Q v

0 1

]

: Q ∈ GL(n), v ∈R
n

}

Special

Euclidean

Group

SE(n) =
{[

Q v

0 1

]

: Q ∈ SO(n), v ∈R
n

}

Translational

Group
TG(n) =

{[
I n×n v

0 1

]

: v ∈R
n

}

Table 4.2: An overview of the groups that are considered for context parameterization. To illustrate the dif-

ference between the groups, we apply three different transformations to a template shape (visualized in the

second row of the table). The red/green axis indicates the origin of the original template, and assists the visu-

alization of rotation and translation.

TP-GMM relies on a context parameterization. It is defined by the task parameters,

and their relation to the GMM model parameters. Originally, the linear transformation

properties of the Gaussian represent this relation. They permit affine transformation of

GMM parameters, and thus form an affine context parameterization. Similarly, transfor-

mation properties of the Riemannian Gaussian, defined in Section 2.5.5, are compatible

with the affine group.
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The transformation capacity of this group is abundant for task space manipulation,

as it comprises any combination of scaling, translating and rotating of task-space mo-

tion. Table 4.2 gives an overview of these abilities for the affine group and its subgroups.

There, the group operations are applied to a mixture of Euclidean Gaussians. The con-

text parameterization {Q ∈ GL(3), v ∈ R
3} allows translation, scaling and rotation of the

original model.

Although the affine group is suitable for Euclidean data, it is not directly applicable to

rigid-body poses. The application of an affine transformation to a rigid-body pose does

not yield a rigid-body pose, but an affine transformation. This is exemplified for SE(3).

Consider the affine transformation to a pose, namely
[

QR Qg +v

0 1

]

︸ ︷︷ ︸

Aff(3)

=
[

Q v

0 1

]

︸ ︷︷ ︸

Aff(3)

[
R g

0 1

]

︸ ︷︷ ︸

SE(3)

. (4.2)

It preserves the Euclidean structure of the pose its spatial part (i.e. g ,Qg + v ∈ R
3), but

does not necessarily preserves the group structure of its orientation part. As Q ∈ GL(3)

and R ∈ SO(3) ⊂ GL(3), the operation QR yields an element of GL(3). Only when Q ∈
SO(3), QR is an element of SO(3), and (4.2) yields a valid pose.

In order to include orientation data into a TP-GMM, it needs to permit affine trans-

formations. This is achieved by applying the affine transformation separately on the spa-

tial and orientation parts of the rigid-body pose. The affine transformation is straight-

forwardly applied to the spatial part, and employs its desirable properties of rotation,

translation and scaling. In addition, the orientation part R is transformed using the ro-

tation RQ ∈ SO(3) which is closest to transformation Q , namely

RQ = arg min
R∈SO(3)

‖QR⊤− I‖F , (4.3)

with ‖ · ‖F the Frobenius norm. The measure of closeness is based on the orthogonality

property RR⊤ = I ; the matrix R which makes QRT closest to the identity is defined to be

the closest rotation. As we rely on the quaternion representation for orientation, we also

define

ΨS3 : GL(3) →S3, (4.4)

which maps Q ∈ GL(3) to the closest quaternion in the sense of (4.3).

R
3 S3

A Q , I 3,

b v , ΨS3 (Q)

Table 4.3: A and b parameterization for

task-space manifolds.

After introduction of the affine transforma-

tions, we review its relation to the model pa-

rameters and define the task parameters. Recall,

the transformation properties presented in Sec-

tion 2.5.5. These properties can be used to trans-

form a GMM with K Gaussians and base e ∈M us-

ing the task parameters θc = {A,b}. The parameters

of the contextualized Gaussian are thus defined by

µA,b
k

=Ψθc (µk ) = Expb

(

A Loge

(

µk

))

, (4.5)

Σ
A,b
k

=Φθc (Σk ) =
(

AΣk A⊤)

‖
µ

A,b
k

b

, (4.6)
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where the subscript ‖µ
A,b
k

b
refers to the parallel transport of a covariance matrix fromµk to

the contextualized µA,b
k

, as described in Section 2.5.5. Table 4.3 indicates how an affine

transformation, characterized by Q ∈ GL(3) and v ∈R
3, is reflected in task parameters of

these manifolds. For the Cartesian product M = R
3 ×S3, their contributions are com-

bined as,

AM =
[

AR3 0

0 AS3

]

∈ TeM, (4.7)

bM =
(

bR3 ,bS3

)

∈M. (4.8)

To train the context-adaptive tasks through demonstration, maps are required that

transform data between the context-dependent and context-independent representa-

tion. For this we define Ψθc (x) and its inverse,

Ψθc (x) = Expb

(

A Loge(x)
)

, (4.9)

Ψ
−1
θc (x) = Expe

(

A−1 Logb(x)
)

. (4.10)

Note that transformation (4.5) equals (4.9).

4.3.2. MODELING

Task modeling is the process of estimating the context-independent model parameters

θm from task examples performed under a given context. The input of this process are

therefore the task context and task motion. Together, they form the demonstration data

X = {xn ,θc
n}1:N , with N the number of samples.

Algorithm 4.1 describes the modeling process. First, it projects each sample xn into

the P coordinate systems, and collects the projections in X n (lines 2–8). This collecting

ensures that the P projections of xn are perceived as one data point during parameter

estimation. The group of all projected samples forms the context-independent data set

X m . If the demonstration data xn lie on the manifold M, the elements X m lie on the

manifold M×·· ·×P−1 M (the Cartesian product of P task manifolds M).

The context-independent data are modeled into a joint distribution represented us-

ing a GMM with K Riemannian Gaussians (line 11). Its parameters are estimated using

EM as described in Section 2.5.6. The parameters of the distributions in each of the P

coordinate systems are obtained by marginalization (line 15).

Algorithm 4.1 differs slightly from the TP-GMM formulation in [18,21]. These formu-

lations use a modified EM-algorithm to estimate the parameters of P GMMs. During its

E-step, the responsibilities (see also Section A.2), are computed using the joint distribu-

tion
∏

p N
(

xn,θm
p ,θc

)

. This ensures that the likelihood of xn is jointly evaluated on the P

coordinate systems. These responsibilities are then used in the M-step, to compute the

parameters of the P GMMs separately. In contrast, Algorithm 4.1 models the joint distri-

bution over the context-independent data (line 11); it computes the correlation among

the P coordinate systems in the M-step, and uses this in the E-step to compute the re-

sponsibilities. Essentially, this approach implies that both the variables among the coor-

dinate systems, and variables observed within a coordinate system might be correlated.



4

64 4. CONTEXT-ADAPTIVE TASKS

As each locally projected data point originates from the same global data point, the cor-

relation among coordinate systems is related to context correlation.

Practically, the modified formulation removes the need for a separate EM-algorithm

for context-adaptive movements. In addition, the correlation information might be used

to detect redundancy in context. Objects or landmarks are considered to be redundant

if they affect task execution in a similar fashion. Context redundancy can be related to

correlation: demonstration data projected in coordinate systems of redundant objects

will have similar patterns, and are therefore correlated.

Algorithm 4.1 Pseudo-code of the task-adaptive model-estimation.

1: function MODELCONTEXTDATA({xn ,θc
n}1:N , K )

2: # Create context independent data set

3: X m = {}

4: for n ∈ {1 · · ·N } do

5: X n = {}

6: for p ∈ {1, ... ,P } do

7: AddToSet

(

Ψ
−1
θc

n,p
(xn) , X n

)

⊲ Using (4.10)

8: AddToSet
(

X n , X m
)

9:

10: # Model a joint distribution over multiple coordinate systems

11: {µk ,Σk ,πk }K
k=1

← EM(X m,K ) ⊲ See Section 2.5.6

12:

13: # Obtain the p GMM parameters through marginalizing

14: for p ∈ {1, ... ,P } do

15: θm
p,k

= {µk,p ,Σk,p ,πk }K
k=1

← Margin({µk ,Σk ,πk }K
k=1

, p)

16:

17: return θm = {θp,k }1:N ,1:p

4.3.3. MOTION SYNTHESIS

Motion synthesis is the process of generating the most likely data xO given the model

parameters θm, task-context θc and some input data xI . Here, the input xI is not re-

quired to contextualize the TP-GMM. Yet, to synthesize movement, an external signal is

required. In this chapter, the examples are limited to time-driven motions, i.e. they use

time as input and pose as output. The use of alternative mappings such as required for

autonomous dynamical systems [35, 120] are considered to be a valuable extension.

Algorithm 4.2 describes the procedure for motion synthesis. First, the TP-GMM that

encodes the joint distribution of the state variables {xO, xI} is contextualized using the

parameters θc (lines 2–5). This projects the P GMMs in the global coordinate system.

Then, the conditional distributions P(xO|xI) are computed for the P GMMs separately

(lines 8–9). The contextualization and regression steps are changeable in order: one can

regress the GMM in local coordinates and contextualize the result, or contextualize the

GMM and regress its global projection. By projecting first, both input and output vari-
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ables are contextualized. This could for example be used to adjust the motion execution

by scaling the temporal signal.

The output of the conditioning gives P views of the desired state, namely µ̂
O|I
p . The

confidence of each output is given by the covariance Σ̂
O|I
p . The Gaussian product pro-

vides a way to fuse the different views while taking into account their confidence (line 12).

The output of the Gaussian product is again a Gaussian. Its parameters give the desired

state µ̂O|I together with an expected covariance Σ̂
O|I

.

Algorithm 4.2 Pseudo-code of the task-adaptive motion synthesis.

1: function SYNTHESIS({xI ,θc , θm )

2: # Create context-dependent model:

3: for p ∈ {1, · · · ,P } do

4: µ̂k,p =Ψθc
p

(

µk,p

)

⊲ See (4.5)

5: Σ̂k,p =Φθc
p

(

Σk,p

)

⊲ See (4.6)

6:

7: # Condition Individual Coordinate System:

8: for p ∈ {1, · · · ,P } do

9: µ̂
O|I
p ,Σ̂

O|I
p ← GMR

(

{µ̂k,p ,Σ̂k,p }K
k=1

, xI

)

⊲ See Section 2.5.7

10:

11: # Merge contributions of each Coordinate System:

12: N
(

µ̂O|I ,Σ̂
O|I)

=∏P
p=1N

(

µ̂
O|I
p ,Σ̂

O|I
p

)

⊲ See Section 2.5.3

13:

14: return µ̂O|I ,Σ̂
O|I

4.3.4. CONTEXT INFERENCE

Context inference estimates the context parameters θc given the context-independent

model parameters θm and observed data xn . Unlike modeling and synthesis, the context

inference problem has not yet been described in the light of TP-GMM.

We introduce the concept of context inference using an example given by Wilson

and Bobick [121]. They exemplify parameterized gesture recognition using a fisherman

who states: “I caught a fish, and it was this big”. The sentence is accompanied by a

firm gesture indicating the size of the fish. The distance between the hand palms at the

moment the fisherman says “this”, indicates the size of the fish—the parameter of the

gesture. Note that this gesture can even be interpreted without speech. A competing

fisherman following the conversation from a distance will understand the size of the fish

solely by observing the gesture. The competitor is able to make this inference because he

recognizes the gesture, knows the context, and—most importantly—understands which

part of motions is key to infer the size of the fish.

This section presents a first attempt to parameter inference for TP-GMM. The ap-

proach is based on EM, which will be described first. Then, as context inference turns

out to be complex, a strategy is proposed to avoid local optima.
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EM FOR CONTEXT INFERENCE

Context inference involves maximizing (4.1) with respect to the context parameters. As

(4.1) contains hidden variables—the state activation—an EM-approach is proposed to

solve the inference problem. As in any EM-algorithm, the E-step computes the respon-

sibilities using the data log-likelihood, namely

γn,k =
πk

∏P
p N

(

xn|Ψθc
p

(

µk,p

)

,Φθc
p

(

Σk,p

))

∑K
i
πi

∏P
p N

(

xn|Ψθc
p

(

µi,p

)

,Φθc
p

(

Σi,p

)) . (4.11)

The computation of the E-step is straightforward, as it only involves function evalua-

tions. Yet, for bad initial estimates of θc the likelihood of the data xn becomes very small.

As a result, the denominator approaches zero, and could result in numerical instabilities.

In Section 4.3.4, this will be addressed by adding a regularization term.

The maximization step optimizes the lower bound (A.3) with respect to θc. This

yields the optimization

θ = arg max
θc∈M

∑

z

P
(

Z |X ,θc,old
)

ln
(

P
(

Z , X |θc
))

, (4.12)

which, given our model and observations xn , becomes

θ = arg max
θc∈M

N∑

n=1

K∑

k=1

γn,k

(

ln(πk )+
P∑

p=1

ln
(

N
(

xn|Ψθc
p

(

µk,p

)

,Φθc
p

(

Σk,p

)))

︸ ︷︷ ︸

E(x ,θc ,θm
k

)

)

. (4.13)

Where E(x ,θc ,θm
k

)) is introduced to simplify notation. It represents the context depen-

dent part of the log-likelihood.

Generally, EM simplifies maximization of likelihood functions with latent variables

[94]. For example, EM for parameter estimation of a Euclidean GMM has closed-form

expectation and maximization steps. This simplification is attained enabled by splitting

the optimization in two. This permits cancellation of the exponential function of the

Gaussian.

Despite the cancellation of the exponential, the non-linear appearance of the con-

text parameters θc
p makes it unfeasible to solve the M-step effectively in closed form, or

using a simple Gauss-Newton optimization as for Riemannian GMM. This is even true

for a linear context parameterization and a Euclidean GMM. We demonstrate this by

introducing the affine task parameters θc = {{Ap ,bp }}P
p=1. Using Table 2.1, the context

transformations (4.5) and (4.6) simplify to

Ψθc
p

(µ) = Aµ+b,

Φθc
p

(Σ) = AΣA⊤.

Replacing these in E(xn ,θc ) we obtain,

E(x ,θc ,θm
k ) = c − 1

2

P∑

p

(

(x − Apµp +bp )
)⊤

ApΣ
−1 A⊤

p

(

x − (Apµp +bp )
)

. (4.14)
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where θm
k

= {{µ,Σ}p }P
p=1 are the model parameters of Gaussian k. The maximization

of this expression is challenging because Ap appears until the fourth order and Ap is

constrained to a manifold.

In order to perform the M-step, we resort to optimization on manifolds [67]. Mani-

fold optimization is well suited for our approach, because the context manifold is known,

as it follows from the context parameterization. When the context consists of rotations

A and translations b in 3D space, our optimization manifold is SO(3)×R
3. When we

consider more generic affine transformations, A ∈ GL(3) and b ∈ R
3, the optimization

manifold is GL(3)×R
3.

E-STEP REGULARIZATION

EM is not guaranteed to converge to the global optimum. Instead, it is only guaran-

teed to convergence to a local optimum. This is not problematic when the optimization

landscape contains few optima, and EM can be initialized close to a sufficient optimum.

However, in the case of context inference for TP-GMM, various local optima can exist.

We propose a regularization method that can improve EM for context inference.
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Figure 4.2: Effect of regularization in context inference visualized on a peg-in-hole task. The top row visualizes

the progress (increasing opacity) of the optimization in 2D space: the red line indicates the input data x1:N ;

the colored ellipsoids represent the Gaussians of the TP-GMM (colored according to their coordinate system).

The bottom row visualizes the outcome of the E-step γn,k .

Each coordinate system of a TP-GMM contains a GMM. Typically, each GMM con-
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tains Gaussians with relatively small variance (invariant Gaussians), and Gaussians with

relatively large variance (variant Gaussians). An invariant Gaussian indicates that con-

text p is important for the task-representation, while variant Gaussians indicate the op-

posite. This behavior is evident in Figure 4.1, where the invariant directions govern the

output of the product of Gaussians.

The E-step tends to assign invariant Gaussians low responsibility. This is reasonable

since it is unlikely that an invariant Gaussian is responsible for x1:N unless the data lies

close to its center. Consequently, invariant Gaussians are likely to be ignored during the

maximization step while they are most crucial in the estimation of the context parame-

ters. Figure 4.2a exemplifies this scenario: the initial context estimate (the location and

orientation of the purple and green holes) is such that almost no responsibility is as-

signed to the 3rd state. As a result, the estimated context parameters represent a bad

local optimum.

To break this paradox we propose to regularize the E-step by replacing the model

covariances Σk,p in (4.11) by

Σ̂p,k =Σp,k + Iλ, (4.15)

with regularization factor λ ∈ R
+. This ‘inflates’ the invariant Gaussians, ensuring the

E-step assigns them responsibility. The effect of this regularization on the optimization

outcome is visualized in Figure 4.2b. The bottom graph shows that the invariant Gaus-

sians are now assigned responsibility. This indicates that the M-step takes them into

account. As a result, the EM outcome shows a more reasonable estimate of the context

parameters (top graph).

Once the regularized optimization converged, the regularization factor can be set

to zero. This allows further improvement of the estimated context. The results of this

combined approach are shown in Figure 4.2c.

To objectively compare the results of the two optimization options, we review their

cost (the lower bound (A.3)) which are visualized in Figure 4.3. The results confirm that

the regularization assisted in reaching a better optimum. But the results also demon-

strate that the regularized approached prevents reaching the true local minimum. This

is caused by the relatively high penalty that the regularized solution obtains for small

misalignments of the invariant Gaussians. The combined solution takes best of both

world by further refining the solution of the regularized solution. On the downside, we

need to define a heuristic that allows the algorithm to determine when to switch from

regularized to non-regularized optimization.

4.4. EVALUATION

4.4.1. WRITTEN LETTERS, A SINGLE FRAME EXAMPLE

The actions of modeling, synthesis and inference are demonstrated on a 2D data set of

hand written characters as visualized in Figure 4.4. This data serves well for illustrative

purpose, because they are easily visualized and contain a variety of motions. Both affine

and rigid-body transformations are considered as context parameterization for this data

set. The context describes the pose or shape of the letter with respect to the observer.
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Figure 4.3: Cost comparison

Figure 4.4: Demonstrations data and estimated GMMs of the letter data set.

MODELING

The data set consists of 6 letters, each demonstrated 5 times. Each demonstration is re-

sampled to 200 data points {t , x} ∈R×R
2, and its temporal signal is normalized such that

it lies in the range [0,1]. During the demonstration phase the context is held fixed, i.e.

per letter each demonstration is performed in a coordinate system of equal shape and

pose. As a result, the variability observed among demonstrations relates to shape and

pose variations that are allowed within a specific context. From a modeling perspective

it makes no difference whether these demonstrations are given in single or multiple con-

texts. When there is only one coordinate system (i.e. P = 1), the demonstration data are

transformed and modeled in a single context independent frame. For example, if the

letter ‘A’ would have been demonstrated in contexts of different position and rotation,

their projections into the context independent space will overlap as if they were given in

a single position and rotation. In contrast, with multiple coordinate systems (P > 1), it is

important to demonstrate the task in a variety of contexts. By changing the context, the
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importance of the individual coordinate systems can be discovered. This influences the

ability to generalize to new situations, as will be discussed in Section 4.4.2.

The demonstration data of each letter are used to estimate a joint probability distri-

bution P (t , x) that is represented using a GMM. The number of Gaussians in each GMM

was manually set (4 (A), 7 (B), 4 (C), 4 (D), 7 (E) and 5 (F) ). The parameters were esti-

mated using EM, and initialized using K-bins (see Appendix A.1). The resulting models

and the demonstration data are visualized in Figure 4.4.

SYNTHESIS

After modeling, the letters can be synthesized in a variety of contexts. Figure 4.5 demon-

strates synthesis examples for rigid-body and affine transformations. The letters are syn-

thesized through contextualizing and conditioning the modeled distribution. The par-

ticular contexts are given by

ASE(2) = Rx(θ) , bSE(2) = v , (4.16)

AAff(2) = Rx(θ)diag(s), bAff(2) = v , (4.17)

where Rx(θ) ∈ SO(2) is the 2D rotation parameterized by θ

Rx(θ) =





1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)



 , (4.18)

v ∈ R×R
2 a translation, and s ∈ R

3 a scaling. Table 4.4 presents the parameter values

used for the synthesis examples in Figure 4.5. Note that the rotation and scaling are 3D

values because they transform joint distribution of time and position. This formulation

also allows the modification of execution time by changing the temporal scaling (first

entry of s).

θ v s

H1
π
5

(0, [−10,10]⊤) [1,0.3,0.3]

H2 −π
5

(0, [−10,−10]⊤) [1,1.3,1.3]

H3
π
2

(0, [10,10]⊤) [1,0.3,1.3]

H4 −π
2

(0, [10,−10]⊤) [1,1.3,0.3]

Table 4.4: Parameters that describe the rigid-body and affine transformations used in synthesis of the letter

reproduction examples.

In practice, we see that the GMM can be properly transformed under both rigid-body

and affine transformations. The transformations preserve the spatial and temporal rela-

tions that are encoded in the original GMM. The latter is confirmed by the fact that the

expected values E(P (x|t )), computed using GMR, clearly reproduce the encoded letters.
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(a) Rigid-body transformations

(b) Affine transformations

Figure 4.5: Synthesis of 6 written letters using two different context parameterizations. In (a), 4 rigid body

transformations are applied to the letter data set. (b) Applies 4 affine transformations to the rigid body data

set. Each graph displays the original model in gray and the 4 transformed models in color. Additionally, the

regressed motion P (x|t ) is displayed using the thick lines of corresponding color.
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INFERENCE

Context inference can be used to estimate the context under which a written letter is

drawn. Here, the inference capabilities of the approach presented in Section 4.3.4 is as-

sessed. EM for context inference requires the motion data for which we want to estimate

the context, the context-independent model, an initial guess of the context parameters,

and the tuning parameters of the algorithm. The input data are given by the synthe-

sis results displayed in Figure 4.5. The true context thus corresponds to (4.16) with the

parameters specified in Table 4.4. As initial guess we take the identity transformation:

A = I 3 and b = (1,0). EM is regularized (λ = 10) for the first 3 steps, and continued un-

regularized (λ= 0) until convergence.

Figure 4.6: Context inference for 2D written letters. Each of the sub-figures displays the context inference re-

sults for 4 different contexts (colored red, green, blue and purple). The initial context estimate is visualized us-

ing the gray contextualized GMM in the center of each sub-figure. The spatial misalignment between the true

contexts (transparent) and the estimated contexts (opaque) are indicated by the dotted lines of corresponding

color. The rotational misalignment is indicated by the red and green orthogonal lines.

The outcome of the context inference for all letters is visualized in Figure 4.6. The

inference was successful for the letters B, D, and E. Partially successful for the letters C

and F, and not successful for the letter A. In the case of the letter A, the inference was

able to approximate the required translation, yet unable to identify the required rota-

tion. Figure 4.7 demonstrates the cause of this failure. It shows the state responsibility

assignments for a successful and unsuccessful inference attempt. In the successful case,

the states are ‘activated’ in sequence, while in the other case the states are not activated

in appropriate order.

Using the context-inference, can also be used for classification. The goal of classi-

fication is to identify to which class a certain movement belongs. Given a query move-

ment, classification requires two steps. First, context inference is performed on each
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(a) Responsability assignment for the letter A.
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(b) Responsability assignment for the letter B.

Figure 4.7: State responsibilities during context-inference for unsuccessful inference (a) and successful infer-

ence (b). The increasing opacity indicate the progress of the EM.

class model (letter model in this case). Then, the likelihood of the query data is eval-

uated for each context-dependent model. The model with the highest likelihood indi-

cates the class of the query data. Figure 4.8 gives the classification results for the letter

data set. For this particular transformation, the classification results are successful for

all letters (see Figure 4.9). However, the classification relies on a properly estimated con-

text. In case inference is unsuccessful for the true class model, classification is likely to

fail. Such situations could be detected by requiring a minimum likelihood for classifica-

tion. If none of the classes reaches a likelihood beyond this minimum, the system could

indicate classification is not reliable.

A B C D E F
0.0

0.5
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1.5
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C
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(a) Likelihood per letter

Figure 4.8: Classification results. The colored dots indicate the data likelihood after context-inference per

letter.

4.4.2. PEG-IN-HOLE, A TWO FRAME EXAMPLE

The context-adaptive representation enables generalization of demonstrated tasks to

new situations. This task was already used as an illustrative example, but in this section

it is evaluated in more detail. The goal of the task is to move from one hole into another.
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Figure 4.9: Context inference results obtained during classification. The blue lines indicate the input data of

the inference algorithm. The figures show the letter models using the initial context prior to inference (gray),

the models contextualized using the true context parameters (green), and the models contextualized using the

inferred context parameters (blue). The blue and green colored models appear merged, as the inferred context

lies very close to the true context.

Here, the departure and arrival at the start and goal holes have constrained directions.

As the position and orientation of both holes can vary, it is desirable to generalize the

demonstrated task to unseen context.

MODELING

The task context is parameterized by the rigid-body transformations of start and goal

holes. During the demonstration phase, four examples are given of the task while record-

ing the temporal 2D spatial information. Each demonstration, the position and orienta-

tion of the goal are changed. This allows the algorithm to discover the importance of the

different frames.

The demonstration data are projected and modeled in the context-independent co-

ordinate systems using the algorithm described in Section 4.1. This GMM is defined on

the manifold R×R
2×R

2, corresponding to the temporal information and spatial context-

independent data. The demonstration data and the model are visualized in Figure 4.10.

This model captures the essence of context-independent encoding: invariant fea-

tures. The demonstration data shows different variance when considered from different

perspectives. At the start of the motion low variance is observed in the start frame, and

large variance in the goal frame. While at the end of the motion the opposite is observed.
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Figure 4.10: Modeling of a 2D peg in hole task. Left: context-dependent demonstrations of the peg-in-hole

task. Middle&Right: The demonstration data projected and modeled in the start and goal coordinate systems.

Each demonstration is uniquely colored, and the line opacity indicates its temporal progress.

SYNTHESIS

TP-GMM allows the synthesize of motion in unseen context. This is achieved using the

steps described in Section 4.3: contextualizing the model, performing GMR in the indi-

vidual frames, and finally combining the GMR results using the Gaussian product. This

section demonstrates the generalization capabilities and limitations of motion synthe-

sis.

The ability of TP-GMM to generalize to unseen context is limited by the variability

that was observed during the demonstrations. To assess this ability we define a measure

of generalization. The proposed measure quantifies generalization difficulty by the like-

lihood that a context has been observed before. This requires a context distribution,

which is approximated using a single Riemannian Gaussian on the context manifold

SO(2)×R× SO(2)×R, i.e. θc ∼ N (Σc ,µc ). The parameters of the context distribution

are estimated from the contexts encountered during the demonstration phase.

With the Gaussian-based measure, generalization difficulty depends on the likeli-

hood of a context to belong to this distribution. Figure 4.11 illustrates peg-in-hole syn-

thesis for context instances that lie 1, 2, and 3 standard deviations from the mean con-

text. Each sub-figure thus illustrates examples of equal difficulty. These results show

that TP-GMM is able to generalize the task to likely context (σ≤ 1). Furthermore, as the

generalization difficulty rises, conflicts arise between the synthesized data and the task

constraints. This is most apparent in Figure 4.11c, where the synthesized data crosses

the borders of the start and goal hole.

The constraints are violated because the Gaussian product puts too much emphasis

on the information encoded in the goal frame at the start of the motion, and vice versa

for the end of the motion. The trade-off made by the Gaussian product relies on relative

variability between the start and goal frame. When a context instance lies far from the

context observed during demonstrations, the relative variability of model is too scarce to

fully meet the task constraints. Yet, the resulting motion reflects the demonstrated task

constraints, a feature which could not be achieved with standard regression techniques

such as GMM-GMR or DMP. Furthermore, the synthesis reliability can be assessed using

the presented difficulty measure. In active learning scenarios this measure can be used
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to trigger a demonstration requests when a robot encounters situations that cannot be

performed reliably [122, 123].

x1

x 2

(a) σ= 1

x1
x 2

(b) σ= 2

x1

x 2

(c) σ= 3

Figure 4.11: Synthesis of the peg-in-hole task for samples with a standard deviation σ from the mean context

µc . The samples are equally spaced over the contour of equal probability spanned by the largest two eigen

components of the context covariance Σ
c . The synthesized data is visualized in yellow. The start and goal

positions of the samples are visualized in green and purple, respectively. The gray lines and holes visualize the

original demonstrations and their context.

INFERENCE

Finally, context inference is performed on the peg-in-hole task. The objective is to es-

timate the context parameters θc , the position and orientation of the start and goal,

given an input trajectory X = {x1, · · · , x N }. Inference is performed with regularization

as described in Section 4.3.4. The E-step is regularized during the first three EM steps

(λ = 0.1), after which the regularization is removed (i.e. λ = 0) and EM is repeated until

convergence. EM is initialized at the mean context µc .

The TP-GMM of the peg-in-hole task encodes both temporal and spatial informa-

tion. In this example, inference only relies on the spatial information. This is more

practical as it does not require temporal rescaling of the input data. Yet, this makes the

inference more challenging, as the individual frames of the TP-GMM can no longer be

temporally aligned.

Similarly to synthesis, the inference quality is assessed using context parameters of

varying difficulty. Based on the context distribution, 3×6 context instances are selected.

6 instances equally spaced over contours of equal probability at 1, 2 and 3 standard de-

viations from the mean context. These context instances form the ground truth. Input

data X , required to validate the inference approach, is generated by synthesizing the

most-likely motion for each context instance as described in Section 4.4.2.

Figure 4.12 demonstrates the inference results, i.e. the estimated context θc given

the TP-GMM, and the input data X . Figure 4.13 visualizes the error between the ground

truth and the estimated context. Similarly to the synthesis example, for likely context

instances the results are satisfying. However, the results degrade as the likelihood de-

creases. When a context distribution is available, the reliability of the inference result

can be assessed by its likelihood.
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Figure 4.12: Inference of the peg-in-hole task for samples with varying standard deviations from the mean

context µc . The samples are equally spaced over the contour of equal probability spanned by the largest two

eigen components of the context covariance Σ
c . The inferred context is visualized in purple and green. Gray

holes visualize the context used to synthesize the orange input data.

T 1 T 2 T 3 T 4 T 5 T 6

3

2

1

L
o

g
θ

c

(

θ̃
c
)

σ= 3
σ= 2
σ= 1

Figure 4.13: Visualization of the context inference errors observed in Figure 4.12 for different levels of difficulty

(σ= 1,2 and 3).
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4.5. APPLICATIONS

This section presents applications of the context-adaptive approach. The applications

include two robotic experiments, and a more artificial example which clearly demon-

strates the capabilities of affine contexts. All applications in this section consider 3D

position and orientation and leverage the Riemannian framework in a context-adaptive

setting.

Table 4.5 gives an overview of the task manifold, context manifold, modeling and

synthesis methods used for the different experiments. The PICK & PLACE and CAR DOOR

tasks are the outcome of a collaboration within the SMART-E project [57]1.

This section gives an overview of the experimental results, and presents insights

gained from these experiments. Detailed descriptions of the experiments are given in

Appendix B.

Task Data Context Modeling Synthesis Appx

PICK & PLACE R
3 ×S3 ×R SE(3)×SE(3) time-based + EM GMR + Product B.1

CAR DOOR R
3 ×S3 SE(3) time-based + EM GMR B.1

BOX TAPE R
3 ×S3 Aff(3)×SE(3) time-based + EM GMR + Product B.2

Table 4.5: An overview of the context-adaptive experiments.

4.5.1. TASK DESCRIPTIONS

(a) PICK & PLACE (b) DOOR TASK (c) BOX TAPE

Figure 4.14: Overview of the tasks that were programmed using the context-adaptive approach presented in

this chapter.

Figure 4.14 illustrates the 3 context-adaptive tasks that are discussed in this section.

The PICK & PLACE (Figure 4.14a) and DOOR TASK (Figure 4.14b) were used to validate a

modular approach to flexible automation (see Appendix B.1 for details). Both tasks are

recorded using a Vicon motion tracking system, and reproduced using a Schunk manip-

ulator.

The objective of the DOOR TASK is to track a profile inside the door with sufficient

pressure and correct orientation. In practice, such a motion is used to attach fabric onto

1The collaborations in the SMART-E project are with Andrea Giusti, Esra Icer and Aaron Pereira of the Technical

University of Munich (TUM).
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the door. Unlike the other applications discussed in this section, it only considers a sin-

gle local coordinate system: the rigid-body pose of the door. The PICK & PLACE requires

the move of an object from the green to the red box. In this tasks, the rigid-body pose of

the boxes comprise the task context. The PICK & PLACE task involves a grasp and release

action. This binary signal is represented on R. Together with the end-effector pose of the

robot (R3 ×S3) , this yields the demonstration manifold R
3 ×S3 ×R.

The BOX TAPE task (Figure 4.14c) involves closing a box using a tape tool. This re-

quires a taping motion that goes across the closing seam on top of the box, and is started

and stopped about half-way the adjacent sides. The task context comprises the pickup

location of the tape tool, and the location and shape of the box. These are parameterized

by a rigid-body and affine transformation, respectively. Using the affine context param-

eterization, the skill can be generalized to boxes with different sizes. The data for this

experiment are recorded using a marker-based motion capture system. Synthesis of the

motion is performed in simulation.

4.5.2. DEMONSTRATION DATA & MODELING

Task #Dem M K

AXIS BRUSH 4 R× (R3 ×S3)× (R3 ×S3) 6

BUTTON PUSH 5 R× (R3 ×S3)× (R3 ×S3) 6

PICK & PLACE 9 R× (R3 ×S3)× (R3 ×S3)×R 6

CAR DOOR 3 R× (R3 ×S3)× (R3 ×S3) 15

BOX TAPE 6 R× (R3 ×S3)× (R3 ×S3) 9

Table 4.6: Overview of empirically chosen parameters for demonstrating and modeling.

To program a task, it was demonstrated several times. It is not straight forward to

determine the exact amount of demonstrations to guarantee proper imitation. For the

context-adaptive approach the set of demonstrations should allow the discovery of vari-

ant and invariant features in the different coordinate systems. When the data set is

too small, these features will not be properly discovered. Requiring a large amount of

demonstrations might annoy the user. In our experiments, each demonstration is given

in a different context. The number of demonstrations for each task, given in Table 4.6,

followed empirically from the context variation we expected in each task. The context se-

lection was based on basic knowledge of the task, and the understanding that TP-GMM

needs to discover invariant features. Although the context variation was intentional,

it was not pre-engineered (we did not pre-analyze contexts to attain maximum vari-

ance/invariance). As the CAR DOOR task, only involves a single coordinate system, no

variant or invariant features are required for generalization. In this case a small number

of demonstrations was used to omit potential inaccuracies produced during the demon-

strations.

Each demonstration is recorded separately. After demonstration excess data (recorded

before and after each demonstration) was trimmed by the demonstrator using a graphi-

cal user interface. In addition, the temporal signals were linearly rescaled to make them

range from 0 to 1. These simple pre-processing steps improve temporal alignment of the
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demonstration data, and therefore contribute to a better model. No additional filtering

or signal processing steps were involved.

After demonstration, the data are modeled in Riemannian GMM. Here, we rely on

the algorithm described in Section 4.3.2, which projects the demonstration data in the

local coordinate systems and fits a GMM of K states using EM. The number of states of

each GMM was empirically chosen (see Table 4.6). The EM algorithm converged for all

tasks within 100 iterations.

4.5.3. SYNTHESIS

Figure 4.15: A typical reproduction of the door task

The different tasks are synthesized following Algorithm 4.2. The CAR DOOR model

contextualization is based on the new door pose. Using the contextualized model, the

task motion is synthesized. This is achieved using GMR with time as input, and position

and orientation as output. To keep the joint velocities within the hardware limitations,

the generated trajectory is dynamically rescaled in time. This process can be automated,

as discussed in for example [124]. The reproduction is displayed using snapshots in

Figure B.6, and in the video. They show a smooth trajectory which complies with the

demonstrations. Both position and orientation aspects of the demonstrations are pre-

served and properly adapted to the new context (door pose).

The PICK & PLACE is reproduced by contextualizing its model to the new pick and

place poses. Similar to the CAR DOOR, the synthesized trajectories are dynamically

rescaled to meet joint velocity limits. Snapshots of the PICK & PLACE task are given

in Figure 4.16, and the full reproductions are featured in the video. The reproductions

demonstrate that the robot can adapt its motion to the new contexts. However, during

placement the robot slightly pushes the object onto the place location, a behavior which

not has been intentionally demonstrated. Yet, the model contains unintended corre-

lation among the rotational and spatial dimensions. Practically, such behavior can be

avoided using shrinkage regularization, as described in Appendix B.1.3. Effectively, this

technique lessens the correlation.

The BOX TAPE task is synthesized in seen and unseen contexts. The results are visual-

ized in Figure 4.17. The figure shows how the GMM adapts to the shape of the box. Note

the relative horizontal and vertical stretch of the GMMs in Figures 4.17a and 4.17b. They

https://youtu.be/jYas1LZAtMI?t=0m30s
https://youtu.be/jYas1LZAtMI?t=1m57s
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Figure 4.16: Snapshot of 2 reproductions of the Pick & Place task.

show that GMM adapts to the box shape. Furthermore, note that the encoded orienta-

tion of the end-effector changes in a similar fashion for both box shapes.
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(a) Reproduction on box 1
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(b) Reproduction on box2

Figure 4.17: Box taping reproductions in a previously encountered context (a), and new context (b). The 3D

figures(a,b) show the position outcome of GMR for the box and pickup frame in green and purple, respec-

tively. The outcome of the product of Gaussians (yellow) also demonstrates the resulting orientation using the

3 colored orthogonal lines. The cubic shape indicates the pose of the box.
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4.6. DISCUSSION

In this chapter, we presented a context-adaptive framework for modeling, synthesis

and inference of task-space motion. The framework completes the previously proposed

TP-GMM by presenting a method for context inference, and extends it from task-space

position to task-space pose. Additionally, we presented an overview of context types that

are compatible with the task-parameterized approach.

This chapter highlights the benefit of affine context in modeling and synthesis of

motion. Compared to rigid-body transformations, affine transformations admit object

scaling in addition to object position and rotation. This enables well-supplied gener-

alization capabilities. These have been demonstrated by the experiments presented in

Section 4.4.1 and Section 4.5. These experiments showed that a (Riemannian) GMM

can be contextualized using affine transformations; that it admits the use of both posi-

tion and orientation in 2D and 3D; and, that it can combine different types of context-

parameterizations (in our case affine and rigid-body transformations).

TP-GMM extracts context importance from demonstration data; this importance is

given by variant and invariant patterns in the different coordinate systems. TP-GMM

only requires the definition of candidate objects, their importance is extracted from

demonstration. Furthermore, TP-GMM is indifferent about the way coordinate systems

are defined on objects. It only requires this definition to be consistent (once a coordinate

system is set for an object, its definition should not change). This is an advantage over

other context-adaptive approaches [22, 27, 28, 31, 107]. These require manually defined

task features, such as goal position [27,28,107], via-points [22] or object height [31]. The

ability to discover important features from demonstration data makes TP-GMM more

generic. For example for a peg-in-hole task, our approach only requires a coordinate

system associated with the object that contains the hole, while approaches like DMP

and ProMP require specific coordinates of the hole. We have to note that this generality

comes at a cost. The task-features are not discrete, instead they emerge from a trade-off

performed by the product of Gaussians. This limits the generalization capabilities, as

was demonstrated in the peg-in-hole task. There, the extrapolation attempts resulted in

collision between the peg and the hole. In future work, this could be resolved through

discretisation of invariant patterns in such a way that they become hard constraints (e.g.

through modification of the covariance matrices by setting small eigenvalues to zero, or

large eigenvalues to infinity).

In our evaluations we empirically set the number of Gaussians K of the TP-GMM.

Although this thesis does not focus on automatic model selection, we acknowledge this

is required for a fully functioning PbD system. We attempted selecting the number of

Gaussians using the Bayesian Information Criterion (BIC) [125], but found this method

to easily over-estimate the number of Gaussians. This is potentially explained by the

fact that demonstration data do not contain well separated clusters. Further research

is required to find alternative measures to determine the optimal number of clusters.

Possible directions could lie in the use of Dirichlet processes as used in [126, 127] .

In our experiments, we achieved object recognition using marker-based motion track-

ing systems. Such system might not be available in many scenarios. In this light, point-

cloud matching is considered a viable technique that can be linked to the context param-

eterization. Such application would share similarities with the work of Brandi et al. [109].



4.6. DISCUSSION

4

83

This chapter discussed context inference for TP-GMM for the first time. Context-

inference enables the robot to recognize in what context a motion is executed. This has

potential application in intention recognition (classification of action) and non-verbal

communication (e.g. communicating object sizes through hand gestures). Unlike mod-

eling and synthesis, context-inference involves a complex optimization. We presented

and evaluated an EM-based approach to solve it. One of the main challenges faced by

the EM algorithm is responsibility assignment—i.e. the process that determines which

data points are most relevant to infer context. Although we proposed a regularization

method which lessens this problem, our experimental evaluation showed that the pro-

posed approach did not always infer context properly. We expect that inference can

be improved by explicitly taking into account the state activation order using a Hidden

Markov Model (HMM) or Hidden Semi-Markov Model (HSMM) [128], as this provides

the algorithm additional temporal information. With an improved EM procedure, the

presented approach is readily extendable to richer context (i.e. affine transformations),

and 3D data which included both position and orientation. Such an extension solely

requires the modification of the EM objective function.





5
PROGRAMMING SHARED CONTROL

BY DEMONSTRATION

In chapters 2–4, we presented a Riemannian approach for Programming by Demonstra-

tion (PbD) which has geometry-aware, synergetic and context-adaptive properties. In

this chapter, we use these properties to generate shared control strategies for teleopera-

tion.

5.1. INTRODUCTION

Teleoperation has been a key drive for robotics research. It stems from the pragmatic

need to perform tasks in remote environments. These tasks occur in a broad application

domain, ranging from deep sea to outer space. Traditionally, the robot motion is directly

controlled by the operator. In such systems, the performance of the operator is improved

by increasing the transparency of the teleoperation system, and by providing her with a

feeling of presence [129].

Virtual assistance can further improve the teleoperator performance [130,131]. Such

systems share or delegate task execution to an assistive system, with the aim of reducing

the operator’s cognitive load. The reduced cognitive load could allow the teleoperator to

perform teleoperation for longer periods of time.

Often, shared control approaches make use of virtual fixtures. These constraint the

manipulability of a robot by restricting the system state to a defined space (area/volume).

Metaphorically, a virtual fixture can be seen as a ruler which aids users to draw straight

lines [132, 133]; its use significantly improves task performance [132, 134], and reduces

mental workload [133].

In teleoperation, virtual fixtures can prevent the remote robot, the slave, to collide

with the environment. For another example, virtual fixtures can constrain the orien-

tation of a tool to remain perpendicular to a wall. This way, the operator controls the

position of the end-effector while the assistive system handles its orientation. Ideally,

The contents of this chapter have been submitted to IEEE Robotics and Automation Letters (RA-L).
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the operator performs the intelligent part of a task—deciding where to drill—while the

assistance handles the trivial part—the perpendicular constraint.

Virtual fixtures are often hand-coded as attractors or repulsors that drive the sys-

tem towards or away from a certain state [133]. However, the wide variety of tasks that

can benefit from virtual fixtures make manual coding a daunting task. We argue that

the user-friendly interface offered by PbD [4] can alleviate this problem, and propose to

program virtual fixtures by demonstration.

Section 5.2 presents related work; it defines the notions semi-autonomous control

and shared control, and puts forward two forms of shared control. The related work is

categorized accordingly. Section 5.3 details our approach to learn shared controllers by

demonstration. In Section 5.4, the approach is evaluated on a maintenance scenario

originating from the Large Hadron Collider (LHC) of CERN, Switzerland. Finally, the

method and results are discussed in Section 5.5.

5.2. RELATED WORK

Depending on the implementation, virtual fixtures can either be seen as a form of semi-

autonomous control or shared control. In this chapter, we distinguish the two by the

way human and automation control a system. We define a control system to be semi-

autonomous when the control of the state variables is separated. For example, consider

a task that requires the control of both position and orientation of the robot end-effector.

This task is performed semi-autonomously when the human controls the position man-

ually, while the orientation is controlled by the assistive system. On the other hand, in

shared control all state variables are jointly controlled by the human and assistive sys-

tem. The weighting of the control inputs determines the level of automation. Shared

control provides a continuum from manual to automated control.

The control intentions of human and automation can be combined at different lev-

els. The majority of virtual fixtures can be seen as a form of Haptic Shared Control (HSC)

[133,135], where the intentions are mixed at the operator interface through haptic inter-

action, see for example [131,132,136,137]. The haptic communication between operator

and assistive system is appealing because it makes the human operator fully aware of the

intentions and output of the control system. Furthermore, it relies on human proprio-

ception, which, unlike the visual or auditory senses, is rarely occluded.

Alternatively, the intentions of the operator and assistive system can be mixed after

the interface, at the state level. In this case, states given by the operator and the assistive

system are fused through a weighted combination. We call this form of shared control

State Shared Control (SSC), but other names are used throughout literature: for exam-

ple, input-mixing shared control [138], mixed initiative control [139], or input blending

control [140]. As SSC does not require physical interaction with the operator, it leaves

room for vision-based user-interfaces.

Learning of virtual fixtures is a topic of active research. Recently, Raiola et al. [137]

demonstrated a shared control approach that learns virtual fixtures from data. The user

can add new fixtures to the system in order to adapt to new manipulation examples.

Bodenstedt et al. [141] presented a semi-autonomous system which controls the end-

effector orientation autonomously, while the operator controls its translation manu-

ally. The assistive behavior is programmed by demonstration. Havoutis et al. [142] pre-
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sented an SSC approach that merges the movements generated by a task model and a

human operator. In this approach, the task model is programmed by demonstration.

Abi-Farraj et al. [143] presented a semi-autonomous approach which encodes tasks as

trajectory distributions. These distributions are iteratively refined through collaborative

task executions. Pérez-del-Pulgar et al. [131] proposed a method to learn HSC by demon-

stration and assess their method on a peg-in-hole task. During a demonstration phase

they record the position of the end-effector and the interaction forces and torques. Dur-

ing reproduction, they infer the desired position from the measured interaction forces

and torques using Gaussian Mixture Regression (GMR).

Our work is similar to Havoutis et al. [142]. We advance it in two directions. First, our

proposed approach relies on the Riemannian framework presented in previous chap-

ters. This allows the consideration of generic rotation in 3D-space. Second, we present

approaches to learn both SSC and HSC strategies, while Havoutis et al. [142] only con-

sidered SSC.

5.3. PROGRAMMING & SYNTHESIZING SHARED CONTROL

In shared control, system state is jointly controlled by a human and an assistive system.

The amount to which they can influence the system state defines the level of automation

[135]— the degree to which a system is automated. The lowest level of assistance yields

manual control, while the highest level of assistance results in a fully automated system.

We propose a system that relates the level of automation to the confidence of its in-

puts. This is achieved by taking into account the confidence level when combining the

inputs of the shared control system. When both human and assistance are equally con-

fident, their inputs will be weighted equally. Likewise, when one of the inputs has higher

confidence, it will be weighted more heavily.

In our system confidence is expressed by positive-definite matrices. This allows the

assignment of confidence on individual state-variables, as well as confidence coupling

among state variables. By combining confidence with a desired state, the intentions of

both human and automation can be represented by a Gaussian, namely:

NH =NH (µH ,ΣH ), (5.1)

NA =NA(µA ,ΣA). (5.2)

Here, the center µ of the Gaussian represents the desired state, and its precision Λ=Σ
−1

provides a measure of confidence. The internal model of the assistive system is repre-

sented by a Gaussian Mixture Model (GMM), which we denote the task model. The de-

sired state, with a corresponding confidence level,NA , is thus obtained straightforwardly

using GMR. The resulting Gaussian has a full covariance matrix encoding both variance

and correlation among the state variables. The parameters of NH are set manually, as

will be discussed later in this section. Because NA is computed online, the confidence

of the assistive system can change at each time step. As a result, the level of automation

is continuously re-evaluated. This creates a shared control system that shifts control

authority online depending on the confidence of the user and automation.

The remainder of this section describes the proposed method in detail. Section 5.3.1

discusses how the assistive system can be programmed by demonstration. Then, Sec-
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tion 5.3.2 describes two different methods in which the intentions of human and assis-

tive system can be combined. Finally, we discuss different structures for the confidence

representation in Section 5.3.3.

5.3.1. PROGRAMMING SKILL MODELS BY DEMONSTRATION

Instead of pre-defining the behavior of the assistive system, we program it by demon-

stration. We collect a set of example motions while the operator performs the task in

question in a direct teleoperation manner. In most teleoperation scenarios, we would

be interested in the position and orientation of the robot end-effector. In this scenario,

a dataset required to learn a skill would consist of N end-effector poses x .

Based on the example motions, we learn a Riemannian GMM using the method de-

scribed in Section 2.5.6. This model reflects motion data that are identical, recurring

and accurately performed as Gaussians with low variance. These Gaussians capture the

invariant behavior of the demonstrations—a feature that we exploit during online feed-

back/motion generation.

We want to ensure that the assistive system only provides assistance in areas where

we have learned the skill in question. This is achieved by incorporating a prior into the

model which yields non-assistive behavior. This prior is represented as a Gaussian with

large variance and added to the GMM. In practice, this Gaussian will be ‘activated’ when

the user enters areas where no skill has been demonstrated. The large variance makes

HSC fully compliant, and ensures that SSC ignores the state desired by the assistive sys-

tem.

Since the skill is modeled as a joint probability density function (pdf) P
(

xO, xI
)

rep-

resented as a GMM, we can perform statistical inference using GMR. This estimation

yields a Gaussian distribution; e.g N
(

µO|I ,ΣO|I)

parameterized by an expected state

µO|I , and covariance Σ
O|I (I andO correspond to the input and output variables, respec-

tively).

5.3.2. SHARED CONTROL STRATEGIES
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(b) Haptic Shared Control (HSC)

Figure 5.1: Block diagrams visualizing the shared control strategies considered in this work.

To achieve shared control, we need to define how the control intentions of the user

and the assistive system are combined. We consider two different ways, namely, SSC and

HSC. The block diagrams displayed in Figure 5.1 illustrate the different methods. The

methods are distinguished by the level at which the inputs of the actors are combined.
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We first discuss our implementation of each approach separately, and then highlight

their differences in more detail.

STATE SHARED CONTROL (SSC)

SSC combines the inputs after the interface on which the human operates. As depicted

in Figure 5.1a, both human and automation generate a control input with a confidence

level. Both inputs are represented by a Gaussian: NA and NH . Since both Gaussians

encode state variables, we can combine them using Gaussian product: Nd = NANH .

The Gaussian product produces a weighted average of the centers of NA and NH that

takes into account the variance of the individual variables and correlation among the

variables. In effect, this fuses the state issued by the operator with the state predicted by

the automation. The product takes into account the confidence of the actors, as this is

expressed in the covariance matrices.

HAPTIC SHARED CONTROL (HSC)

HSC combines the inputs at the user interface, as depicted in Figure 5.1b. The input

of the agent is conveyed to the human agent through forces applied at the user inter-

face. The operator can either comply or resist these forces. This effectively establishes a

shared control system.

We propose to generate the haptic forces or torques using Linear Quadratic Regulator

(LQR). This is achieved using the cost function

c =
∫

(x s −µA)⊤Σ−1
A (x s −µA)+u⊤

ARu A (5.3)

with x s the current state of the control interface, u the control input applied to the hap-

tic interface, and R a control cost that corresponds to the confidence of the operator.

Solving this optimal control problem yields a gain matrix L, that is used in the actuation

command of the haptic interface

u A =−L(µA −x s ). (5.4)

This actuation is felt by the human operator as F A . By displaying the input of the as-

sistive system at the control interface, HSC achieves a high automation awareness. Fur-

thermore, the operator is fully aware of the outcome of the input mixing, because it cor-

responds to the current state of the haptic interface.

The level of automation is regulated through the magnitude of the applied forces.

When the applied forces are such that the human cannot resist them, the system acts

autonomously. Manual operation, on the other hand, is achieved when the operator

cannot detect the forces. This results in a continuum, and varying levels of autonomy,

based on the confidence of the operator’s and automation predictions.

ILLUSTRATIVE COMPARISON

We illustrate the differences between SSC and HSC using Figure 5.2. The graphs show

that the output values of the shared control systems (thick blue line) differ. In SSC, the

output of the shared control system is the trade-off between the user and assistive input.

In contrast, the output of HSC corresponds to the input of the user. Here, we assumed
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Figure 5.2: Illustration of the proposed shared control approaches on the variable xO . The input and confi-

dence of the human (yellow) and assistive system (red) are visualized by the lines and the shaded areas, respec-

tively. The outcome of the shared control method is visualized in blue. See Section 5.3 for further description.
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Figure 5.3: Input mixing using different covariance structures (a–b). The control input of Human operator

(H) and autonomous agent (A) are visualized by the red and blue Gaussians (ellipsoids), respectively. The

mixed control input is visualized by the green Gaussian. The ellipsoid center indicates the desired state, and

its contour the covariance.

the user counters the force generated by the haptic system (indicated by the blue ar-

rows). HSC thus maintains a direct relation between the state of the interface and the

state of the slave robot, while in SSC the state of the interface is not guaranteed to reflect

the state of the slave robot. Furthermore, the product of Gaussians used in SSC provides

a confidence measure on the output. This measure can be used to determine the stiff-

ness and potential synergies of the slave’s end-effector, as discussed in Chapter 3. Such

information is not available for HSC.

5.3.3. CONFIDENCE STRUCTURES

The covariance matrix supports a rich expression of confidence. Yet, this support comes

at a cost: the amount of parameters to specify. By constraining the covariance structure,
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Master

Slave Collimator

(a) Setup (b) Task

Figure 5.4: Visualization of experimental setup. Refer to Section 5.4 for a detailed description.

the number of parameters that needs to be specified can be reduced.

Figure 5.3 illustrates how a variety of mixing behaviors can be achieved using dif-

ferent covariance structures. Isotropic Gaussians (Σ = βI d ) put an equal weight on all

control variables, but only require specifying one parameter. Diagonal covariance ma-

trices (Σ= diag(β1, ... ,βd )) allow separate weighting on the individual dimensions using

d parameters. Full covariance matrices allow the handling of coupling among variables,

but require defining d(d +1)/2 parameters. Alternatively, the number of parameters can

be reduced using subspace clustering as demonstrated by Tanwani et al. [144]. Note that

the illustrations are based on SSC (product of Gaussians). In HSC, the structure of the

control cost matrix R can be used to represent the operator’s confidence, as it influences

the overall stiffness of the HSC system.

In our experiments we use the demonstration data to estimate full covariance ma-

trices for the automation, but manually define the operator confidence using a diagonal

covariance matrix. This keeps the number of open parameters low.

5.4. EXPERIMENTAL EVALUATION

5.4.1. SCENARIO

The LHC at CERN in Switzerland is a hazardous environment. Radiation inside the LHC

poses a health threat to maintenance personnel. Currently, maintenance schedules in-

clude a period to allow radiation to decay and create a safe working environment. Tele-

operation can reduce downtime due to maintenance, as it removes the decay period

from the maintenance schedule.

The experimental task is part of the maintenance procedure of a collimator—a device

used to parallelize particle beams. The LHC can contain up to 152 collimators, which

are located in radioactive areas [145]. This maintenance procedure involves the removal

and replacement of a protection cover. Removal of the cover is achieved by sequentially

moving towards it, grasping it, unlocking it using a 10 degree clockwise rotation, and

sliding it from the locking pins (see Figure 5.4b).

5.4.2. EXPERIMENTAL SETUP

The experimental setup, visualized in Figure 5.4, consists of two Barrett WAM 7-DOF

robots and a 1:1 mock-up of the collimator. The left WAM acts as the master device, and
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is equipped with a haptic ball that allows the teleoperator to control the end-effector

pose of the slave. The WAM pictured on the right acts as the slave and is equipped with a

three fingered hand (Barrett BH8-280). The hand is programmed to have two states (pre-

grasp, and grasp) which are activated by the operator. The mock-up of the collimator

contains all parts required for this particular maintenance scenario.

5.4.3. EXPERIMENTAL PROCEDURE

The virtual fixture is programmed through kinesthetic teaching; we collect data while

manually moving the robot to perform the maintenance operation. Although kinesthetic

teaching cannot be applied on site, it can be used in a safe environment prior to the

execution of the teleoperation task. Alternatively, one could use demonstration data of

an expert teleoperator.

We demonstrated a number of successful removal and replacing attempts of the cap.

For each demonstration we recorded position and orientation of the robot end-effector

and the collimator. To allow the transfer of the demonstrated skill to different poses

of the collimator, we project the recorded end-effector poses in the collimator frame,

i.e. the collimator pose represents the task context. The projected data are encoded in

a Gaussian N (µskill,Σskill), with µskill ∈ R
3 ×S3 and Σ

skill ∈ SPD(6). In addition to the

trained behavior, we define a variant Gaussian N (µvar,Σvar) with relatively large covari-

ance (Σvar = 10 · I 6), at the origin of collimator base. This Gaussian ensures that, outside

the area of demonstrations, HSC is fully compliant and SSC follows the intentions of

the operator. The skill and variant Gaussians are combined in a GMM with equal prior

πi = 0.5.

The experiment evaluates 3 different control conditions: (1) Manual control (MAN),

(2) HSC, and (3) SSC. The shared control methods are used to assist the teleoperator

in orienting the end-effector. The desired state of the assistive system is obtained by

computing the conditional probability P
(

q |x
)

; a distribution of the desired orientation

q given an end-effector position x . For SSC we set ΣH = diag(0.5,0.5,0.001). In effect,

these settings provide the operator with full control on the rotational axis required for

the (un)locking motion of the task. On the other axes the autonomous system has higher

confidence. Outside the task area the operator has full control over the position and ori-

entation of the robot. For HSC we selected the control cost matrix R = diag(75,75,150),

resulting into approximately equal resistance among all rotational axes.

The 3 control conditions are tested for two different locations of the collimator (P1

and P2). By changing the location of the collimator, the movements required to remove

the cap change significantly. In total 6 trials are performed by each subject (3 control

conditions, 2 collimator positions).

We recruited 11 healthy subjects, aged 22–34, that had no prior experience in tele-

operation. During the teleoperation the subjects could visually observe the slave robot

and the collimator. This is expected to give the subjects better situational awareness,

compared to observing the collimator through a 2D vision system, as traditionally used

in teleoperation. Yet, part of the scene is still occluded by the hand and arm of the slave.

Each subject was shown how to perform the task using teleoperation and was allotted

to train the removal and replacement of the cap using all control conditions. The train-

ing phase is conducted on location P0. Despite the training prior to the experiment, we
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Figure 5.5: Visualization of the trained skill on the collimator. The bound of the yellow ellipsoid indicates one

standard deviation of the position covariance. The ellipsoid center indicates the mean. The orthogonal colored

lines indicate the mean orientation. The colored ellipsoids at the end of each axis indicate 4 standard deviation

of the rotational covariance.

expected subjects to improve their performance throughout the experiment. To avoid

such skill improvement to delude the experimental outcome, we randomized the order

of the experimental conditions within trials. An example of the order of task executions

is: (MAN, HSC, SSC), (HSC, MAN, SSC). Before each trial, the subjects were informed

about the type of assistance they would receive.

During each trial we record position and orientation of master, slave and collimator,

the state of the hand (grasped/released) and the trial duration. In addition, we asked

each subject to fill out a questionnaire about their experience with the proposed shared

controllers.

5.4.4. RESULTS

PROBABILISTIC SKILL MODEL

We demonstrated the task on the collimator using kinesthetic teaching (see Figure 5.4b).

The obtained model is visualized in Figure 5.5. The figure shows the behavior demon-

strated around the cap. The small rotational covariance indicates a fixed orientation of

the end-effector, and the positional covariance indicates the desired direction of motion.

During the reproduction phase we generate orientation assistance for the teleopera-

tor. This is achieved by estimating the desired orientation q based on the current posi-

tion x of the slave end-effector; i.e. P
(

q |x
)

∼N
(

µq |x ,Σq |x )

. This distribution forms the

input of the assistive system.
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Figure 5.6: Summary of the phase durations for the three teleoperation conditions, evaluated at two locations

of the collimator.

GRASPING REMOVAL REPLACING

MAN 6= HSC 0.62, 0.21 0.47, 0.16 0.69, 0.24

MAN 6= SSC 0.06, 0.25 0.64, 0.40 0.63, 0.75

Table 5.1: Overview of the paired t-test results. Null hypothesis: Phase durations of manual teleoperation and

the shared control strategy are the same. The entries of the table display the significance level for the two

locations of the collimator (P1, P2).

SUMMARY OF EXPERIMENTAL RESULTS

We assess the quality of assistance given by the shared controllers based on duration

of the different phases in the task. We distinguish three phases in the cap task, namely

GRASPING, REMOVAL and REPLACING. The duration of each of these phases is computed

based on the position and grasping signals of the hand. The position signal allows us

to determine the location of the end-effector with respect to the collimator. We define

a sphere of radius 0.08[m] around the cap which we call the manipulation zone. The

grasping time is defined as the duration between entering the manipulation zone and

activating the grasp. The removal time is defined as the duration between issuing the

grasp command and exiting the manipulation zone. Finally, the replacement time is

defined as the duration between entering the manipulation zone for the second time

and releasing the grasp.

The measured durations are summarized in Figure 5.6. The results do not display

clear differences between the control strategies or positions. To ensure this observa-

tion is correct, we performed a paired t-test comparing the results of manual teleop-

eration with each of the shared control strategies. These results are listed in Table 5.1,

and demonstrate that there exist no significant differences (p < 0.05) in phase duration

among the control methods.

Table 5.2 lists the results gathered from the questionnaire. The subjects were asked to

answer each question by selecting one out of five options, which ranged from ‘absolutely

not’ to ‘yes, absolutely’. These answers were linearly transformed into the range [−2,2].

Furthermore, we asked the subjects to indicate which form of the teleoperation they

preferred: MAN (18%), HSC (27%) and SSC (55%).
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Question: Did you... Mean Std
H

S
C

A find the provided guiding forces useful? 0.00 1.28

B had to ‘fight’ the provided assistance? 0.55 0.89

C feel in control while being assisted by forces? 0.36 0.88

S
S

C

A find the provided orientation correction useful? 0.82 0.57

B had to ‘fight’ the provided assistance? −0.73 1.35

C feel in control while being assisted? 1.09 1.08

Table 5.2: Outcome of subjective evaluation. See Section 5.4.4 for discussion of the results.

5.5. DISCUSSION

The presented work shares similarities with the approach of Raiola et al. [137]. Nonethe-

less, our methods are different. Namely, with both SSC and HSC, we perform Gaussian

regression from position to orientation while in Raiola et al. [137], a virtual fixture is ac-

tivated based on a notion of closeness.

We demonstrated the implementation of our approach in a real-world scenario. Both

HSC and SSC can be trained on demonstrations, and provide a varying level of automa-

tion. Although most of the subjects indicated that they prefer a form of shared control

while performing teleoperation, our quantitative evaluation does not show that either

HSC or SSC increases the teleoperation performance for our chosen measure. As this

finding conflicts with previous work on shared control [130, 132, 135], we discuss poten-

tial sources that could have caused this contradiction.

The (dis)mounting of the collimator cap was found difficult by our subjects. We

found that users experienced difficulty removing and placing the cap over the two lock

pins. Although our assistive system attempts to ease these actions by guiding the end-

effector orientation, additional fine manipulation is still required to perform the actions.

Moreover, if the cap collides with the environment during the replacement, it can slip

within the hand. This makes replacement of the cap more difficult, as the orientation

desired by the model mismatches the one required for replacement. Both of these issues

can be removed by altering the environment, but such modifications would make the

application less realistic.

Furthermore, a different input device can be considered. The WAM provides the user

with a one-to-one mapping between the master and the slave. However, moving it phys-

ically might be too bulky for our subjects. A smaller device, for example the Omega6

from Force Dimension, that is traditionally used for haptic interaction might be more

intuitive and easier to use in future experiments.

In our current implementation, we heuristically set the operator confidence for HSC

and SSC. These values influence the level of automation that the subjects experience.

Using the current settings the subjects indicated they had to fight the forces provided by

HSC (see Table 5.2 HSC.B). While the subjects disagreed this was the case for SSC (see

Table 5.2 SSC.B). This hint the desired level of assistance was not optimal, and could

vary among users. Further research in this direction would be required to confirm these

findings.
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We presented a Riemannian approach to PbD. It is founded on three properties that are

desirable for skill representations: geometry-aware, the ability to combine demonstra-

tion data defined on a variety of manifolds; synergetic, the ability to extract and synthe-

size functional coupling from the demonstration data; and context-adaptive, the abil-

ity to model, synthesize and recognize contexts from demonstration data. As existing

skill representations cover these properties only in part, our aim was to develop one that

meets all desirable properties. This concluding chapter highlights to what extent Rie-

mannian approach reached our aim, and discusses future research directions.

6.1. SUMMARY OF FINDINGS

The base of the proposed skill representation lies at GMM-GMR and TP-GMM. These

Euclidean models have shown to be successful in PbD and, for Euclidean data, provide

synergetic and context-adaptive properties. The Riemannian generalization maintains

these properties and adds geometric awareness.

6.1.1. GEOMETRY-AWARE

Geometry awareness lies at the core of the Riemannian approach. In order to make

GMM-GMR and TP-GMM geometry-aware, we proposed to reformulate them using

the Riemannian Gaussian—the Riemannian analogue of the Euclidean Gaussian [47].

Chapter 2 demonstrated that the Riemannian Gaussian bears all operations required

by GMM-GMR and TP-GMM, namely Maximum Likelihood Estimate (MLE), Gaussian

conditioning, Gaussian product and linear transformation. The former three operations

require a likelihood maximization, which can be solved using an iterative Gauss-Newton

algorithm. The potentially non-linear nature of a Riemannian manifold, makes the need

for an iterative scheme unavoidable for a generic approach. In our experiments opti-

mization typically took 2-5 iterations to converge.

Noteworthy, the notion of parallel transport was shown to be essential for general-

ization of Gaussian conditioning and Gaussian product. For example, without parallel
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transport the conditioning output does not follow a geodesic (the generalization of a

straight line), and thus not preserves the ‘linear’ characteristic of Gaussian conditioning.

Unlike Euclidean space, data defined on Riemannian manifolds can have multiple

mean points: Riemannian centers of mass. Given a set of demonstrations, the Gauss-

Newton algorithm will converge to the closest (local) optimum of the corresponding

likelihood function. Only when the data are sufficiently concentrated (contained in a

geodesic ball), the algorithm is guaranteed to converge to the global optimum of the

likelihood function. Fortunately, given the geometry of the manifold, the potential ex-

istence of multiple optima can be determined from the data beforehand. When using

unit quaternions to represent orientation data, the existence of local optima is unlikely

because SO(3) is almost fully contained in a geodesic ball on S3.1

Practically, the Riemannian approach requires a manifold to be defined in terms of

an exponential map, a logarithmic map, and parallel transport. Once these maps are

defined, the presented approach is applicable. Moreover, as the Cartesian product of

Riemannian manifolds is again a Riemannian manifold, applicability extends to any

combination of Riemannian manifolds. In other words, the tool-set required to encode

and synthesize a spatial motion in 2D, is no different from the one used to encode a

bi-manual task which includes orientation and position in 3D. This is demonstrated by

applying the Riemannian framework on S2 for illustrative purposes, on S3 ×R
3 for end-

effector manipulation, and onS3×R3×S3×R3 for bi-manual coordination. Furthermore,

Rozo et al. [49] and Jaquier et al. [50] extended the presented approach te Symmetric Pos-

itive Definite (SPD) data.

6.1.2. SYNERGETIC

The covariance structure of the Riemannian Gaussian encodes both variance and corre-

lation between the manifold dimensions. These quantitative connections can be inter-

preted as functional relations among state variable: synergies. Consequently, the (Rie-

mannian) Gaussian captures potential synergies that occur in demonstration data.

Chapter 3 showed how these synergies can be enabled in state-feedback control

strategies. The approach relies on standard LQR, but relates the LQR cost function to

the covariance matrix of the Riemannian Gaussian. This step introduces the observed

synergies in the control objective. As LQR is not directly applicable on the manifold, we

defined it in the linear tangent space at the mean of the Riemannian Gaussian.

The LQR-based controllers act as virtual spring-damper systems that are spanned

across the manifold dimensions. The synergies make their perturbation response mimic

the coordination patterns observed in the demonstration data. In analogy to human-

motor control, this behavior can be perceived as reflexive: attempting to maintain func-

tional integrity. Practically, the state-feedback controllers achieve this response without

the need for additional, (potentially) expensive regression steps.

The nature of the rotational manifold SO(3) prevents the existence of a globally stable

continuous state-feedback controller. This holds for both SO(3) and its parameteriza-

tions (e.g. unit quaternions). Despite this intrinsic limitation, state-feedback controllers

on SO(3) function well because the attraction domain of the (unstable) equilibrium is

nowhere dense.

1A geodesic ball on S3 covers a hemisphere with exclusion of its boundary which corresponds 2π rotation.
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As a natural trade-off between spatial and rotational length-scales does not exist, it

needs to be specified manually for controllers that jointly control position and orienta-

tion. In our approach this trade-off is made through the (diagonal) control cost matrix.

In our experiments a single control cost was used to achieve different synergetic con-

trollers. This indicates that control cost is more robot dependent than task dependent.

6.1.3. CONTEXT-ADAPTIVE

Task-Parameterized Gaussian Mixture Model (TP-GMM) is a skill representation that en-

codes data in multiple local coordinate systems, each representing the skill from a dif-

ferent perspective. By contextualizing the local perspectives in a common coordinate

system and fusing their skill representations, generalization to new context is achieved.

Chapter 4 generalized TP-GMM to Riemannian manifolds using the Gaussian opera-

tions presented in Chapter 2. Additionally, it introduced a method for context inference;

a way to deduce context for known tasks from observations. These extensions permit

TP-GMM to perform modeling, synthesis and inference for context-adaptive tasks that

involve position and orientation data.

We presented an overview of the types of context parameterizations that are pro-

vided by (Riemannian) TP-GMM. The most generic context parameterization involves

affine transformations. These allow scaling, translation and rotation of individual coor-

dinate systems. Yet, the flexibility provided by the affine group implies a large number

of context parameters. This might be challenging for its future application in context

inference. Alternatively, sub-groups of the affine group, such as the rigid-body transfor-

mations, provide a lower dimensional alternative that is sufficient for many scenarios.

The generalization capabilities of the context-adaptive approach have been evalu-

ated in simulation for synthesis and inference. The evaluation assessed this capability

based on context-likelihood, a (Gaussian) measure that judges the chances that a con-

text was observed before. Based on this measure, we found that that TP-GMM is able

to generalize properly for likely context (σ< 1), but generalization capabilities decay for

less likely context. In these cases, the trade-off achieved by product of Gaussians puts

too much weight on irrelevant motion aspects. As a result, synthesis still mimics the

demonstration data, but does not guarantee task constraints are fully met. Yet, using the

context-likelihood, the robot can assess its chances of success under a given context in

advance. This ability could serve as safety guard in critical scenarios, and prevent the

robot from damaging its environment.

Furthermore, we evaluated Riemannian TP-GMM in a Pick & Place task, and a box-

tape task, which involved both position and orientation information in 3D space. The

box-tape task displayed the context-adaptive competence of TP-GMM under affine trans-

formations. It allowed the model to adapt to boxes of known and unknown shape that

were placed in different poses. The Pick & Place task, executed on the Schunk robot,

demonstrated context adaptation for rigid-body transformation. But also revealed that

regularization steps might be required during reproduction. The reproductions of this

task showed that the model captured correlations which were demonstrated uninten-

tionally. These effects can be attenuated through covariance shrinkage.

The concept of context inference is novel in the light of TP-GMM. This thesis, pre-

sented the generic problem of context inference, and proposed an EM-based method
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to solve it. The optimization problem required for context inference is prone to have

local optima. To avoid them, we proposed a regularization method which alters the ex-

pectation step of EM. Although effective, the experimental evaluation showed that the

proposed method requires additional research to make context inference more reliable.

Suggestions to further improve context inference are given below.

6.1.4. PROGRAMMING SHARED CONTROLLERS BY DEMONSTRATION

Chapter 5 presents how the material of chapters 2, 3 and 4 can be used in shared control.

Generally, shared control strategies combine inputs of a human operator and an assis-

tive system. In the presented approach, both inputs are represented by a Gaussian; its

mean indicates a desired state, and its covariance relates to the confidence of this state.

We proposed to program the behavior of the assistive system by demonstration, and

present two ways to fuse intentions of human and automation, namely HSC and SSC.

Both approaches continuously trade-off their inputs based on their confidence, thereby

establishing a constant re-evaluation of control authority.

The control strategies were compared to manual teleoperation in a user-study. Al-

though the objective results do not confirm that the use of SSC or HSC improves task

completion time, the subjects preferred shared control over manual control.

6.2. FUTURE WORK

The use of geometrical concepts is not new in robotics and the related field of human

motor control. In robot control, it has proved to be a valuable tool for control, dynamics,

and design algorithms [85–87, 146], and it is also gaining attention in the learning com-

munity [48–51, 147]. Geometrical concepts such as geodesics and equi-affine velocities

can be associated to phenomena found in human motor control [148, 149]. This thesis

contributed to this roadmap with a Riemannian view on PbD. In this closing section we

explore future work: what opportunities do we see for the Riemannian approach to PbD?

6.2.1. SHORT TERM OUTLOOK

Below is a list of concepts, which we deem practically applicable. These ideas arose dur-

ing the development of the Riemannian approach, but did not come to light due to time

constraints. Some of them have been briefly mentioned within the preceding chapters,

and will be elaborated in more detail.

INCLUDING ROBOT DYNAMICS IN CONTROL

Our LQR-based approach for synergetic control defines both state and control cost in

task space. Although it seems sensible to specify task-related cost in this space, phys-

ically, control cost appears at actuation level in joint space. The ideal combination

would define task-related cost in task space—independent from robot kinematics and

dynamics—and define the control cost at joint level.

The corresponding optimal control problem will be more complex, as it needs to

consider the non-linear dynamics and kinematics. In return, the controller truly acts ac-

cording to the minimal intervention principle [12]; trading off task performance with

actuation-based control cost. The resulting policy might demonstrate more energy-

efficient postures, exploit the passive dynamics in task execution, or find postures in
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which intrinsic motor noise interferes least with task performance [13]. As suggested

by Park [150], a geometric approach to robot dynamics and control could yield efficient

solutions in this direction [86, 146].

COVARIANCE WEIGHTED INVERSE KINEMATICS

In this thesis, correlation information was used to ease the definition of controller gains.

Covariance might also become of use in inverse kinematics. Efficient inverse kinematics

solvers rely on a regularized least-squares solver. The regularization term in this opti-

mization term defines the allotted solution error. As the covariance matrix contains such

information, it might be used to establish task-specific inverse kinematics solvers. Such

task-specific solutions are useful for applications where only few degrees of freedom are

available, or left when multiple tasks are combined.

ACTIVE LEARNING

For extreme context extrapolation, generalization cannot always be reliably achieved. In

such cases, important (invariant) task features, are too strongly influenced by the unim-

portant (variant) features during the fusion step. Active learning could provide a way

to resolve this. In an active learning scenario, we could measure the confidence that a

context has been observed before. If this likelihood is low, generalization is likely to fail.

In that case, the robot can improve its skill by asking the user to demonstrate the proper

response for the new context. This approach falls in line with the active learning scheme

presented by Maeda et al. [123].

DISCRETE CONTEXT CONSTRAINTS

The generalization capabilities of TP-GMM are currently limited by the variability of the

context encountered during the demonstration phase. Extrapolation capacity could be

improved by transforming strong motion features in constraints, or by omitting weak

features. This can be achieved by modifying the eigenvalues of the covariance matrices

of variant and invariant states. For example, if a Gaussian has only large eigenvalues, it

is unlikely it contains any important information for motion synthesis, or recognition.

To ensure these states do not affect motion synthesis in case of strong generalization

(extrapolation), we can give them infinite variance. In effect, this is a discretization step,

which locally discards coordinate systems during the fusion step of TP-GMM.

IMPROVED CONTEXT-INFERENCE

Chapter 4 presented a novel approach for context inference. Despite the proposed reg-

ularization, the evaluation showed context inference is not always successful. This was

caused by an improper temporal sequence detection: the state activation order did not

match the ground truth. Future work could address this by explicitly modeling the state

activation order and duration using a Hidden Markov Model (HMM) [128] or Hidden

Semi-Markov Model (HSMM) [151]. Besides alleviating the activation order problem,

this could enable context inference from partially observed motions. This ability can be

attained through the HMM forward-backward algorithm [128].

In this thesis, the evaluation of context-inference was restricted to rigid-body trans-

formations for two reasons: first, the dimensionality of the inference problem is signif-

icantly larger compared to rigid-body pose estimation. As inference was already chal-

lenging for rigid-body pose, its use has not been attempted for affine transformation.



6

102 6. CONCLUSION & FUTURE WORK

Secondly, Riemannian optimization on affine transformations is computationally ex-

pensive as no closed-form solution exists for the (matrix) exponential and (matrix) log-

arithm maps. The former could be attempted for HMM-based modeling, and the latter

matter might be resolved using retraction mappings [67]. These mappings approximate

the exponential and logarithmic map, and are computationally more efficient.

6.2.2. LONG TERM PERSPECTIVES

We close with two more general topics: we introduce the motivation of a “Riemannian

dynamic primitive”, and discuss how future work could address “what-to-imitate?”

RIEMANNIAN DYNAMIC PRIMITIVES

In this work, we separated regression (GMR) and control (LQR). For the Euclidean case,

these steps can be merged, as we showed in previous work [19]. This is achieved by mod-

eling the local motion dynamics (position and velocity) in a Gaussian, and the Gaussian

activation sequence and sojourn using a HSMM [151]. Reproduction involves the gener-

ation of a (discrete) state activation order, which can directly be transformed in control

signals using Model Predictive Control (MPC) [152].

Compared to traditional time (or phase)-driven systems, this approach does not

require temporal alignment of demonstration data. Yet, it administers temporal con-

straints, unlike the dynamical system approach (e.g. [35]). The use of HSMM and HMM

could form a bridge between low-level trajectory-based approaches and the higher-level

symbolic approaches of PbD. The discrete nature of HMM provides the means to sym-

bolize (groups of) local motion dynamics, and couple them in a desirable order. Using

MPC, symbol compositions can be merged to ensure smooth reproductions. Extending

the Riemannian approach in this direction would yield similar benefits.

Hogan and Sternad propose a broader definition for dynamic primitives [17]. They

argue primitive representations should integrate various sources of dynamic informa-

tion. They observe that despite limitations of the neuromuscular system humans out-

perform robots in tool-use, a hallmark of human behavior. They hypothesize that hu-

mans can only achieve such behavior by encoding their behavior in primitive dynamic

actions. These dynamic primitives are composed of atoms, exemplified by discrete or

cyclic movements, or impedance behaviors. As such information involves different man-

ifolds, these primitives would require a unified framework to connect the atoms into

primitives. We believe the presented Riemannian framework is up to this challenge. It

provides a statistical framework that can handle a variety of manifolds encountered in

the proposition of Hogan and Sternad. The Riemannian approach can encode discrete,

periodic, and impedance behavior in a single model. Discrete time-driven movements

by representing the temporal signal on a 1D Euclidean space. Periodic motion by rep-

resenting the phase signal on the unit-circle S1. Furthermore, the framework can han-

dle task-space information which includes position (R3), orientation (S3 or SO(3)), and

impedance information (S+).

Future work would investigate how our previous work [19] and the dynamic primi-

tives of Hogan and Sternad [17] could be merged with the Riemannian approach. Such

an approach is expected to involve (heavy) optimization, yet by exploiting the manifold

structure efficient optimization solutions might arise.
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WHAT TO IMITATE?

In this thesis, we addressed the question: What to imitate?; what features in the demon-

stration data characterize the objectives of the task. A general approach to answer this is

to estimate an imitation metric from the data. This metric should somehow capture the

imitation objectives. By maximizing this metric the robot can imitate the demonstrated

behavior, i.e. determine how to imitate?.

This imitation metric can be found in different branches of robot learning: the re-

ward function in (deep) Reinforcement Learning (RL) [10,118, 153] can be considered as

an imitation metric, as it describes optimal behavior; akin RL, the cost functions used

in optimal control [154, 155] are metrics of imitation. These links become more clear in

the light of inverse RL or Inverse Optimal Control (IOC) [156–161], where demonstra-

tion data are used to compose a reward (or cost) function from a set of (parameterized)

candidate rewards functions. Both the candidate and composed reward functions are

imitation metrics, as they describe optimal behavior.

Methods based on TP-GMM and GMM-GMR represent the more classical approach

to PbD. They are typically used to represent time-based motion trajectories. Their like-

lihood functions represent an imitation metric: the ability of a motion to maximize this

metric, reflects its match to the demonstrated data. Furthermore, TP-GMM encodes

skills from multiple, competing perspectives, which is reminiscent of the candidate re-

ward functions used in RL and IOC. The ability to cast TP-GMM into an optimal control

problem strengthens its parallel with IOC. The difference between our PbD methods

and IOC or RL lies in level of detail described in the imitation metric. The metrics used

in our method are relatively concrete (low-level), while IOC and RL define more high-

level goals. In this perspective, this thesis contributed by generalizing the ability to spec-

ify metrics of imitation to Riemannian manifolds, and might also serve IOC by defining

Riemannian reward candidates.

The links between IOC and PbD raise a variety of questions: Is the structure of

TP-GMM suitable for context-adaptive reward shaping in the field of IOC? Can its struc-

ture be used to represent high-level goals more generally? Can a Riemannian approach

improve IOC efficiency by constraining the combination of reward functions to a man-

ifold? Can the Riemannian approach serve at a meta-level? i.e. can knowledge about

reward landscape geometry be used to make exploration more efficient? More generally,

questions arise about the relation between the Riemannian metric and imitation metric:

Can PbD, which essentially uncovers an imitation metric, be phrased as metric learn-

ing [45, 46]? Can it be related to the discovery of the manifold structure? These, among

others, are questions worthy of further investigation.





LIST OF ACRONYMS

DMP Dynamic Movement Primitives

EM Expectation Maximization

HMM Hidden Markov Model

HSMM Hidden Semi-Markov Model

HSC Haptic Shared Control

GMM Gaussian Mixture Model

GMR Gaussian Mixture Regression

GP Gaussian Process

GPR Gaussian Process Regression

IIT Istituto Italiano di Tecnologia

IOC Inverse Optimal Control

LHC Large Hadron Collider

LQR Linear Quadratic Regulator

MLE Maximum Likelihood Estimate

MPC Model Predictive Control

PbD Programming by Demonstration

pdf probability density function

ProMP Probabilistic Movement Primitives

RL Reinforcement Learning

SEDS Stable Estimator of Dynamical Systems

SPD Symmetric Positive Definite

SSC State Shared Control

TP-GMM Task-Parameterized Gaussian Mixture Model
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A.1. INITIALIZATION ALGORITHMS FOR EM
Expectation Maximization (EM) is commonly used for parameter estimation of GMM.

Within this thesis we use mixtures of Riemannian Gaussian, and present a modified ver-

sion of the EM algorithm in Section 2.5.6. Like any EM algorithm, this algorithm requires

an initial guess of the parameters. Two commonly applied initialization methods are K-

means and K-bins.

A.1.1. K-MEANS

K-means is hard-clustering technique that computes K means of a given data set. The

means are computed using EM. As K-means does not consider the covariance of the

data and uses a hard-assignment, it generally converges faster than EM for GMM [94].

However, like EM for GMM, K-means will converge to the closest local optimum. To in-

crease probability of discovering the global optimum, K-means can be ran several times

using different initial conditions. Algorithm A.1 gives pseudo-code for K-means on Rie-

mannian manifolds. First, the K means µk are initialized by equating them to randomly

selected unique data points (line 3). Then, the total distance between the cluster cen-

ters and the cluster data points minimized. This is done iteratively. The expectation

step assigns point each data point to the closest mean in an expectation step (lines 7–

10). Then, the maximization step updates the mean of each clustering the assigned data

points (lines 7–10). The logarithmic map in lines 10 and 14 enables the generalization of

K-means to Riemannian manifolds. The mean µk , computed in the M-step, is unique as

long as xn∀rn,k are contained in a regular geodesic ball (see Section 2.5.1). After conver-

gence, the estimated means can be used to compute Covariance and priors (lines 18 and

19).

A.1.2. K-BINS

K-bins is a non-iterative algorithm that divides data in K bins (clusters) according to

a Euclidean measure label assigned to each data point. When the data set consists of

multiple temporally aligned demonstrations, the time stamps are ideal as labels.

Algorithm A.2 describes an implementation of K-bins. The input of K-bins consists

of N sets of a label bn ∈ R and data point xn ∈M, and the number of bins K . First, the

label range is determined (lines 2 and 3). This range is split into K equal ranges of length

δ (line 4). Then, for each range k, the mean, covariance and prior are computed for all

points whose label lies within this range (lines 5–10).
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Algorithm A.1 K-means initialization

1: function KMEANS(x1:N , K )

2: # Initialization:

3: µk ← Random(x1:N ,K ) ⊲ Randomly select data points as initial means

4:

5: # Likelihood Maximization

6: while rn,k change do

7: # E-Step:

8: for k ∈ {1, · · · ,K } do

9: for n ∈ {1, · · · , N } do

10: rn,k =
{

1 if k = argmin j Logµ j
(xn)⊤ Logµ j

(xn) ,

0 otherwise

11:

12: # M-Step:

13: for k ∈ {1, · · · ,K } do

14: µk ← argminµk

(
∑N

n=1 rn,k Logµk
(xn)⊤ Logµk

(xn)
)

15:

16: # Compute initialization for EM

17: for k ∈ {1, · · · ,K } do

18: Σk = 1
Nk

∑N
n rn,k Logµk

(xn)Logµk
(xn)⊤

19: πk =
∑N

n=1 rn,k

N

20: return {µk ,Σk ,πk }K
k=1

Algorithm A.2 K-bins initialization

1: function KBINS({bn , xn}1:N , K )

2: bmin = min(b1:N )

3: bmax = max(b1:N )+ǫ ⊲ 0 < ǫ≪ 1.0 ensures all xn are assigned

4: δ= (bmax −bmin)/K

5:

6: for k ∈ {1, · · · ,K } do

7: rn =
{

1 if δ(k −1) ≤ (bn −bmin) < δk,

0 otherwise

8: µk ← argmaxµk

(

− 1
2

∑N
n=1 rn Logµk

(xn)⊤ Logµk
(xn)

)

9: Σk = 1
∑N

n=1 rn

∑N
n rn Logµk

(xn)Logµk
(xn)⊤

10: πk =
∑N

n=1 rn

N

11: return {µk ,Σk ,πk }K
k=1
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A.2. EXPECTATION MAXIMIZATION

EM is an iterative algorithm to estimate parameters of models with latent—unobserved—

variables [94, 162]. In the case of GMM, the unobserved variable is the Gaussian that

generated an observation. Assume given the complete data set {X , Z } consisting of the

observed data X and the latent data Z .The parameterized distribution over the full data

set is given by the joint distribution distribution P (X , Z |θ). Where θ are the parameters

to be estimated. Yet, in reality only the marginal distribution,

P (X |θ) =
∑

z

P (X , Z |θ) , (A.1)

can be observed.

Consider the following decomposition of the observed distribution.

P (X |θ) =L
(

q,θ
)

+KL
(

q ∥ p
)

, (A.2)

with

L
(

q,θ
)

=
∑

z

q(Z ) ln{
P (X , Z |θ)

q(Z )
}, (A.3)

KL
(

q ∥ p
)

=−
∑

z

q(Z ) ln{
P (X |Z ,θ)

q(Z )
}, (A.4)

the lower bound1 and Kullback-Leibler divergence, respectively. Given some initial es-

timate of the parameters θol d EM iteratively performs two steps: First, the lower bound

on the likelihood lnP (X |θ) is maximized with respect to q . This is achieved by setting

q equal to the posterior P (X |Z ,θ). The posterior maximizes the lower bound because it

minimizes the Kullback-Leibler divergence (A.4) given θol d . Sequentially, the maximiza-

tion attempts to maximize L
(

q,θ
)

by changing θ while keeping the previously found

q(Z ) fixed. This step guarantees an increase of lnP (X |θ), given that we can find θ

that increases L
(

q,θ
)

. This can be understood by considering (A.2) and realizing that

the Kullback-Leibler was minimized in the E-step and cannot further decrease because

KL
(

q ∥ p
)

≥ 0.

1 Note that L
(

q,θ
)

is a lower bound because the Kullback-Leibler divergence is by definition equal or greater

than zero.
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Demonstrations Motion Synthesis

Set of Modules Robot Generator

Controller Generator Automation

Figure B.1: A modular approach to industrial automation.

In Section 4.5 we describe the results of different experiments. This appendix de-

scribes these experiments in more detail.

B.1. A MODULAR APPROACH FOR AUTOMATION

This section describes work done within the SMART-E project [57]. The presented ex-

perimental results are obtained in collaboration with Andrea Giusti, Esra Icer and Aaron

Pereira of the Technical University of Munich (TUM).

We start by describing the background of the modular approach to automation.

Then, we discuss the experimental evaluation of the approach, thereby focusing on the

demonstration and synthesis aspects of the Riemannian approach. A video of the two

experiments is available online. Throughout the text, hyperlinks are used to highlight

specific parts of this video.

B.1.1. BACKGROUND

In classical industrial environments robots perform only a small set of tasks for long

periods of time. They are selected because their strength and kinematic structure suited

the task requirements, and their behavior is hand-coded by an expert programmer.

The classical approach to automation is less suited for flexible automation, where

tasks might change from hour-to-hour or day-to-day. Buying a dedicated robot for each

set of tasks is uneconomical and manual coding is too time consuming. Flexible au-

tomation requires a robot whose hardware and software are more easily adapted to new

tasks.

In this perspective, we investigate a modular approach to industrial automation in

which demonstration data drives both robot composition and robot programming. The

concept is visualized in Figure B.1 and assumes that a task to automate and a set of

modules are given. In order to automate the task, the user demonstrates it a number

of times. The demonstrations convey to the system how the task is executed and how

it should adapt to context variations. The demonstrations are used to generate a task

model which is used in two ways: it is used to find the best composition of modules to

meet a given optimization criterion (e.g. energy consumption or execution speed, see

https://youtu.be/jYas1LZAtMI
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Icer et al. [163, 164]); and it is used to replicate the task after robot assembly. To replicate

the task, the robot requires a suitable controller. To achieve this, we rely on the work

of Giusti et al. [165, 166]. They assume each robot module stores its kinematic and dy-

namic properties. After assembly this information is collected by a central control unit

to derive a model-based controller. Compared to decentralized control approaches for

modular robots, this approach is appealing as it allows the use of standard model-based

controllers. Using the derived controller, the demonstrated task is automated and ready

for production.

B.1.2. EXPERIMENTAL SETUP & TASK DESCRIPTION

Figure B.2: Overview of the experimental setup.

The experimental setup used to evaluate the modular approach is visualized in Fig-

ure B.2. The modular system consists of a Schunk modular robot1, three additional cus-

tom modules, and a Vicon infrared motion tracking system. The modular system is used

to perform two different tasks: a trajectory tracking task, and a pick & place task. The

former involves the tracking of a profile inside the car door. The latter involves the move-

ment of an object between the green and red boxes.

The two tasks are demonstrated using dedicated demonstrator tools, which are dis-

played in Figure B.3. Markers are attached to each tool to allow a motion tracking system

to recognize and record their motion. Each tool has a pre-defined mapping to a specific

end-effector module. The use of dedicated demonstrator tool resolves the correspon-

dence problem [3] in a practical manner, as they explicitly define which information

should be recorded.

1Although Schunk does not sell the robot components separately, the system can be used in a modular fashion:

the modules can be combined and controlled in different configurations.
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(a) Pen tool (b) Pick & Place tool

Figure B.3: Demonstrator tools

B.1.3. EXPERIMENTAL RESULTS

DOOR TASK

Figure B.4: Snapshots of a typical door task demonstration.

To demonstrate the profile-tracking task, the car door is placed on a table in such

a way that the user can easily demonstrate the motion. The objective of the task is to

track a profile inside the door with sufficient pressure and correct orientation. In prac-

tice, such a motion is required to attach fabric onto the door. In our experiment, only

the position and orientation of the pen tool are recorded. The pressure is obtained by

compression of a spring that is part of the pen tool. The trajectory consists of both po-

sition and orientation information. The orientation information ensures that the pen

trajectory is perpendicular to the curved profile.

The task is demonstrated three times. During each demonstration the location of the

door and the demonstrator tool are recorded using the tracking system. Snapshots of a

typical demonstration are given in Figure B.4 and shown in the video. In this scenario,

the context consists of the pose of the door. By encoding the tool trajectory with respect

to the car door, we obtain a context-independent task representation. After the demon-

stration phase, excess data at the start and end of the demonstrations are trimmed using

a graphical user interface. Furthermore, the temporal signal is re-scaled to make it range

from 0 to 1. These two steps improve the temporal alignment of the demonstration data,

thereby contributing to a better model. Finally, the context-independent data (compris-

https://youtu.be/jYas1LZAtMI?t=0m08s
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Figure B.5: Illustration of the demonstration data and the task model of the door task. The demonstration

data are displayed by the three colored lines, and Gaussians of the GMM are visualized by the three colored

ellipsoids.

ing position, orientation and temporal information) are encoded in a Riemannian GMM

with 15 states using EM (Section 2.5.6). The number of Gaussians was selected using the

Bayesian Information Criterion (BIC) [125]. Figure B.5 shows the spatial representation

of the model, together with the GMM obtained after EM.

Figure B.6: A typical reproduction of the door task.

After modeling the task, the door was mounted close to the base-module as illus-

trated in Figure B.2. The task model is contextualized using the new door pose. Using

the contextualized model, the task motion is synthesized. This is achieved using GMR

with time as input, and position and orientation as output. The synthesis result serves as

input of the robot configuration generator, and the reproduction. Here, we only focus on

the reproduction part. And assume the optimal configuration is found and assembled.

To keep the joint velocities within the hardware limitations, the generated trajectory

is dynamically rescaled in time. This process can be automated, see for example [124].
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The reproduction is displayed using snapshots in Figure B.6, and in the video. They

show a smooth trajectory which complies with the demonstrations. Both position and

orientation aspects of the demonstrations are preserved and properly adapted to the

new context (door pose).

PICK & PLACE TASK

Figure B.7: 4 demonstrations of the Pick & Place task.

The second task considered in the modular framework is a pick & place task. In this

task, the context comprises the pick and place locations, each parameterized using a

rigid-body pose. By encoding the demonstration data in these local coordinate systems,

the task can be generalized to new situations. This has already been we demonstrated in

Section 4.4.2 using a 2D peg-in-hole task. In this experiment, we show that the Rieman-

nian approach can achieve generalizations of tasks that include orientation data.

The goal of the pick and place task is to pick an object from the red box, and place

in on the green box. 4 of the 9 demonstrations are visualized in Figure B.7, and featured

in the video. Each demonstration is recorded in a different context. Each context having

different position and orientation of the goal and target box. During the demonstrations

we record the box poses, the tool pose and a signal which indicates grasp/release of the

gripper. The latter (binary) signal is verbally communicated during the demonstrations.

After the demonstration phase, the end and start of each demonstration is trimmed us-

ing a graphical user interface, and the temporal signal linearly re-scaled to make it range

0–1. This pre-processing step improves temporal alignment of the demonstration data.

The context-independent data consist of a temporal signal, two pose signals (one

for each local coordinate system), and a grasp signal. The data are thus defined on the

Riemannian manifold Mpu =R
1 × (R3 ×S3)× (R3 ×S3)×R

1. They are encoded in a Rie-

mannian GMM consisting of 6 states (empirically set). The marginal distribution of posi-

tion data, and demonstration data are visualized in Figure B.8. The demonstration data

reveal distinct variation patterns in the pick and place frames (of reference). The pick

frame shows invariance at the start of the motion (approximately 0.1 ≤ t ≤ .4), and the

https://youtu.be/jYas1LZAtMI?t=0m30s
https://youtu.be/jYas1LZAtMI?t=1m01s
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Figure B.8: Context-independent Pick & Place model.

place frame at the end of the motion (approximately 0.6 ≤ t ≤ .8). This information is

captured in the covariance of the GMM.

Figure B.9: Snapshot of 2 reproductions of the Pick & Place task.

After assembling the optimal configuration, the motion is reproduced in three un-

seen contexts. Snapshots of two reproductions are given in Figure B.9, and the three full

reproductions are featured in the video. The reproductions demonstrate that the robot

can adapt its motion to the new contexts. However, during placement the robot slightly

pushes the object onto the place location, a behavior which has not been demonstrated.

We discuss the cause of this behavior and a potential remedy using figures B.10 and

B.11. In (a), both figures display the spatial mean outputs of GMR and the Gaussian

https://youtu.be/jYas1LZAtMI?t=1m57s
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product using the colored lines. Subplots (b–c), display information about the GMR and

product outputs at t = 0.75. (b) displays the error between the GMR outcomes and the

product outcome(i.e. Logµpr od

(

µg mr

)

), and the variance σ in each of the state dimen-

sions. (c) and (d) display the correlation matrices of the pick-up and place context at

t = 0.75, respectively.

In Figure B.10a we observe the product of Gaussians produces the expected result

for the x and y coordinates: the product’s output is ‘pulled’ towards the frame with the

lowest variance. Yet, the outcome of the z coordinate seems irregular; the product output

around t = 0.75 lies below the GMR-output of the target frame.

How can this behavior be explained? The Gaussian product trades-off both the GMR

means thereby taking into account their covariance. Figure B.10b visualizes the outcome

of this trade-off per dimension. If a context-dimension lies close to zero, the product was

governed by this context (i.e. pick-up or place context). At the visualized time instance

(t = 0.75), the product mostly governed by the place-frame. Only the ωy and z dimen-

sions show a relatively large error for the place context. Also note that the trade-off yields

an equal error on ωy for both pick-up and place frames.

The downward shift in the z dimension is mainly caused by the correlation and vari-

ance information of ωy and z. The place-frame allows a relatively large variance for ωz

and shows a negative correlation with z. This combination permits a negative displace-

ment in the z direction for a positive angle error ωy . Although there is a similar correla-

tion between the rotational axes of the pick-up frame and its z coordinate, their contri-

butions is less severe because they have a high variance (and therefore lower cost in the

trade-off).

This behavior can damped by imposing a prior on the output of GMR. In Figure B.11a,

we obtain the desired outcome by ‘shrinking’ the covariance matrix [167]. This is achieved

by replacing the covariance outputed by GMR (Σg mr ) by

Σ̂=λΣd + (1−λ)Σg mr , (B.1)

where Σ
d = diag(Σg mr ) only contains the diagonal components of Σg mr . In effect, the

shrinkage regularization lessens the correlation among the manifold dimensions. This is

apparent in Figures B.11c and B.11d, where the correlation in the off-diagonal is slightly

less compared to Figures B.10c and B.10d. As a result, the outcome of the product of

Gaussians follows yields the expected behavior as illustrated in Figure B.11a.
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Figure B.10: Synthesis results without regularization. Refer to Section B.1.3 for a detailed description.
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Figure B.11: Synthesis results with regularization (λ= 0.2). Refer to Section B.1.3 for a detailed description.
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B.2. BOX TAPING

Figure B.12: Experimental setup used to record the box-tape data. Box sizes left-to-right: 0.175×0.275×0.215,

0.260×0.22×0.16, 0.22×0.40×0.31 (H×W×D [m]). The colored lines and dot on each box indicate orientation

and shape of the box frames. The axes x (Width/2), y (Height/2) and z(dot, Depth/2) are colored red, green

and blue, respectively. The location of each frame lies inside the boxes at its geometrical center. The pose

of the taping tool is measured at the taping contact point, and is visualized using the colored (orthonormal)

reference frame.

Closing a carton box with a tape dispenser is a typical example of a generalizable

task. The task involves recurrent features for boxes of different size and pose: the tap-

ing motion goes across the closing seam on top of the box, and is started and stopped

about half-way the adjacent sides. This type of context is compatible with the affine

context parameterization, as it can represent context with varying position, orientation

and scaling. Furthermore, a proper orientation encoding is required in this application:

the taping tool needs to be well-aligned with the seam, and rotate around the corners

of the box. The Riemannian approach suits this purpose well, as no prior engineering

is required on the orientation aspect. This opposed to using Euler angles, in which a

suitable order of rotation needs to be defined; or axis-angle, where a suitable ‘identity’

is required to minimize potential distortions in angle measurements (see discussion in

Section 2.2.2).

The objective of the box-tape application is to demonstrate the use of Riemannian

TP-GMM with an affine context parameterization. Figure B.12 shows the components

of the experimental setup. It consists of 3 boxes with different sizes. To simplify the

experimental implementation, the setup is based on a marker based motion capture

system. This system emulates object recognition to determine box size and orientation.

B.2.1. CONTEXT PARAMETERIZATION & MODELING

The task is demonstrated 3 times on boxes 2 & 3, and validated on boxes 1 & 2. The

demonstration involves moving the tape tool to one adjacent side over the surface of

the box, to the other adjacent side, while covering the closing seam. After this motion,

the tool is returned to the initial position. In each demonstration, a temporal signal,

and poses of the box and tape-tool are recorded. The demonstration data lie on the

manifold Mt ape = R×R
3 ×S3 ×R

3 ×S3. Each demonstration is started and stopped by
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the demonstrator, and recorded using a sampling rate of 100 [Hz]. To improve temporal

alignment of the demonstrations, excess data at the start and end of each demonstration

is manually cut using a graphical interface, and the temporal signals are normalized.

The task context is defined by two frames: the box, and the pick-up location. The box

frame is formalized using an affine transformation: Qbox ∈ GL(3), v box ∈ R
3. The pick-

up location (pu) is defined using a rigid-body transformation: R pu ∈ SO(3), v pu ∈ R
3.

Together this yields the context parameterization

A =









t 0 0 0 0

0 R pu 0 0 0

0 0 I 3 0 0

0 0 0 Qbox 0

0 0 0 0 I 3









, b =









0

v pu

ΨS3

(

R pu

)

v box

ΨS3

(

Qbox

)









, (B.2)

with ΨS3 (·) as defined in Section 4.3.1, and 0 are matrices of appropriate size filled with

zeros . The first element of A and b corresponds to the temporal signal. Through t , the

duration of the reproduction can be modified. It can for example be set to the average

duration of the demonstrations. In each demonstration, the pick-up location (R pu ∈
SO(3), v pu ∈R

3) is assumed fixed and defined as the first recorded tool pose.

To encode the demonstration data, it is first projected in the individual frames. The

projected data are then encoded in a Riemannian TP-GMM with 9 Gaussians (empiri-

cally set) on the manifold Mt ape . Encoding is performed using EM and initialized using

K-means (see Appendix A.1). The demonstration data and model are visualized in Fig-

ure B.13. Note the affine context parameterization transformed the data in such a way

that data acquired from different box shapes and poses overlap in the box frame (Fig-

ure B.13b). This is in contrast to the rigid-body transformation of the pick-up frame,

which only aligns the data w.r.t. the pick-up pose, but does not perform any scaling.

B.2.2. SYNTHESIS

After modeling the taping motion, it can be synthesized in new context. Following Algo-

rithm 4.2, the model is first contextualized based on the observed box pose and shape,

and tape-tool pose. Then, GMR is performed using a temporal signal as input, to deter-

mine the desired states of the different frames. Per time step, the regression results are

merged using the Gaussian product. Figure B.14 demonstrates two reproductions in new

and previously encountered context. Note the relative horizontal and vertical stretch of

the GMMs in Figures B.14b and B.14b. They show that GMM adapts to the box shape.

Furthermore, note that the encoded orientation of the end-effector changes in a similar

fashion for both box shapes.
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Figure B.13: Visualization of the data projected and TP-GMM in the pick-up frame (a) and box frame (b).
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Figure B.14: Box taping reproductions in a previously encountered context (a, c), and new context (b). The 3D

figures(a,b) show the position outcome of GMR for the box and pickup frame in green and purple, respectively.

The outcome of the product of Gaussians (yellow), also demonstrates the resulting orientation using the 3

colored orthogonal lines. The cubic shape indicates the pose of the box. (c) shows 2D views of (a), where the

box is depicted as a rectangle.
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