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Abstract

In 1996, professors J. Edward Colgate and Michael Peshkin invented the
cobots as robotic equipment safe enough for interacting with human work-
ers. Twenty years later, collaborative robots are highly demanded in the
packaging industry, and have already been massively adopted by compa-
nies facing issues for meeting customer demands. Meantime, cobots are still
making they way into environments where value-added tasks require more
complex interactions between robots and human operators. For other appli-
cations like a rescue mission in a disaster scenario, robots have to deal with
highly dynamic environments and uneven terrains. All these applications
require robust, fine and fast control of the interaction forces, specially in the
case of locomotion on uneven terrains in an environment where unexpected
events can occur. Such interaction forces can only be modulated through the
control of joint internal torques in the case of under-actuated systems which
is typically the case of mobile robots. For that purpose, an efficient low level
joint torque control is one of the critical requirements, and motivated the
research presented here. This thesis addresses a thorough model analysis of
a typical low level joint actuation sub-system, powered by a Brushless DC
motor and suitable for torque control. It then proposes procedure improve-
ments in the identification of model parameters, particularly challenging in
the case of coupled joints, in view of improving their control. Along with
these procedures, it proposes novel methods for the calibration of inertial
sensors, as well as the use of such sensors in the estimation of joint torques.
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Chapter 1

Introduction

1.1 Motivation

While classical industrial robots operate in structured and known environ-
ments, there is a growing need for robots capable of interacting with humans
in shared environments or operating in unstructured and open spaces.

Among human-robot interaction envisioned use cases, we count the co-
operative tasks, where we find co-robots (from collaborative robots), or
“cobots”, working hand in hand with humans. “cobots” were invented in
1996 by J. Edward Colgate and Michael Peshkin, professors at Northwestern
University based in Illinois, United States, after an initiative led by Gen-
eral Motors to make robots or robotic equipment safe enough for interacting
with people. Presently, human-robot cooperation is highly demanded and
adopted in the packaging industry, leading to increased productivity, but is
still making its way into assembly lines, typically in the automotive industry.
In the same line of interaction, in a relatively near future, more and more
cobots will assist people in the office or at home. Making that cooperation
possible rises some challenges, among which we find the implementation of
collision avoidance strategies for handling the robot operational space, but
also the fine control of interaction forces between robotic and human agents
during co-manipulation of loads.

Robotics is also investing motion rehabilitation with high-tech adap-
tive prosthetic devices or exoskeletons. An exoskeleton can typically be
an anthropomorphic manipulator reproducing the kinematic chain of a hu-
man limb that requires the correction of a postural defect or some mobility
strength assistance. In these cases, the harnessing of interaction forces is
even more critical for the safety of the patient and the efficiency of the
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treatment.
In other robotic applications, robots have to operate in unstructured,

and eventually, open spaces. In such cases, the robot has to cope with
unpredictable and dynamic environments, or even navigate across uneven
terrains, like for instance: in a rescue and search mission as part of disaster
response measures; in the surveillance of sites against intrusion; in undersea
or space exploration.

These applications and operation conditions drive the research in mobile
robotics towards safer, compliant systems, thus integrating enhanced sens-
ing capabilities, and more robust control of interaction forces. As a matter
of fact, interaction forces are propagated across the robot multi-body artic-
ulated system through its joints as cross joint forces and moments. Consid-
ering the joint as a kinematic constraint on the relative motion of two bodies
[Featherstone, 2014, Chapter 3], the 6-D cross joint force/moment, also re-
ferred to as wrench, is the sum of an active wrench and a constraint wrench.
The active wrench comes from the transmission damping and elasticity (har-
monic drive), and the actuator on that joint, while the passive wrench is the
wrench imposing the motion constraint. In other words, the active wrench
lies in a subspace Ta aligned with the joint motion subspace S, satisfying
T⊤
a S = 1, and the constraint wrench lies in the orthogonal subspace S⊥.

The active wrench can then be considered as a generalized vector mapped
onto the subspace Ta. In the case of a 1-D (one dimension) rotary joint, the
active wrench is the total wrench across the joint projected onto the joint
axis, and the respective generalized wrench vector has a single dimension
and is commonly referred to as the joint torque. Interaction forces can be
modulated through the control of joint internal torques, and an efficient low
level joint torque control is one of the critical requirements for generating
compliant interaction forces. From those requirements we can derive the
following: a good measurement of joint positions, velocities and accelera-
tions, an accurate measurement or estimation and good tracking of joint
torques, as well as a proper identification of low level joint actuation model
parameters, i.e. the motor to joint feed forward parameters. Among these
parameters we can find the motor torque model, the friction parameters
specific to the motor, gearbox, or other components of the joint actuation
system.

Most humanoid robots are equipped with brushless DC motors and zero
backlash harmonic drives. These motors, under the adequate control, can
deliver a linear voltage to torque response. On the other side, harmonic
drives have some friction and elasticity inducing hysteresis in the torque
and friction models. Some robots use tendon driven coupled joints which
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significantly increases the complexity in the transmission model and the
uncertainties in the identification of the model parameters.

This thesis addresses a thorough model analysis of a typical low level
joint actuation sub-system powered by a Brushless DC motor. It then pro-
poses procedure improvements in the identification of model parameters,
particularly challenging in the case of coupled joints, in view of improv-
ing their control. The identification process requires accurate joint torques
measurement or estimation. Considering the high cost of joint torque sen-
sors, it is worth improving and relying on the estimation of joint torques
through inverse dynamics computations. For that purpose we present an
improved and optimized algorithm using inertial sensors for estimating link
linear and angular accelerations, which in turn can be directly used in the
inverse dynamics computations and more accurate joint torques estimation.
The efficacy of these computations is strongly dependent on accurate joint
position and link inertial sensing. In that context, we propose novel methods
for calibrating accelerometers and joint encoder offsets.

1.2 Research platform

For their versatility, high number of degrees of freedom (DoF), high potential
efficiency in locomotion capabilities, humanoid robots are often the preferred
category of mobile robots when it comes to operate in shared and highly
dynamic spaces.

The platform we have used for our experiements is the child-sized hu-
manoid robot “iCub”, developed by the iCub Facility at the Italian Institute
of Technology as part of the European Project RobotCub, a fully open source
and hardware project which goal was to study cognition through the imple-
mentation of a humanoid robot the size of a three and a half year old child:
the “iCub” [Tsagarakis et al., 2006] [Tsagarakis et al., 2007]. Since its initial
release in 2006, multiple upgrades and improvements, as part of “CoDyCo”
among other European Projects, added new features and increased its size to
a ten year old child, with stronger legs and the capability to walk. “CoDyCo”
aimed at advancing the control concepts and cognitive understanding of ro-
bust, goal-directed whole-body motion interaction with multiple contacts,
combining planning and compliance to deal with unpredictable events and
contacts. Until now, the robot has been adopted by more than 20 labo-
ratories worldwide. The version we have used for the experiments in this
thesis is the latest standard version “iCub 2.5”, active since early 2017. We
quickly list below its main characteristics relevant for our experiments, and
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they will be reviewed more in detail in each chapter.
The robot has 53 degrees-of-freedom (DoF) distributed as follows: seven

for each arm—shoulder pitch/roll/yaw, elbow, wrist pronation/pitch/roll;
six for each leg—hip pitch/roll/yaw, knee, ankle pitch/yaw; three for the
torso—torso pitch/roll/yaw; three for the neck—neck pitch/roll/yaw; nine
for each hand; and three for the eyes. The many DoF on the legs and torso
turned to be very useful for the in-situ calibration of joint encoders and
inertial sensors as they allowed to reach a wide range of joint positions and
inertial sensor frames orientations required for those procedures.

In the thesis experiments and dissertation we only consider the main
DoF: legs, arms and torso. These are actuated by motor groups composed
of a Brushless DC motor (BLDC), an harmonic drive and high resolution
encoders, suitable for torque control as they can provide a linear voltage to
torque response.

The robot is also equipped with a wide range of other sensors: inertial
sensors (gyroscopes, accelerometers and IMUs), link force-torque sensors
and skin tactile sensors. These are relevant for low level identification of
joint actuation model parameters and joint torque estimation.

1.3 Contribution and Thesis outline

In this section we draw the thesis outline through the main theoretical and
experimental contributions converging to the targeted joint actuation model
identification. Each chapter formulates the addressed problem, highlighting
its main contribution with respect to the state of the art on that problem,
then describes the methodology and presents the obtained experimental re-
sults.

1.3.1 Joint motor and friction model identification

Chapter 2 defines a model of joint low level actuation sub-system, applica-
ble for the main iCub joints on the legs, arms and torso. It then defines
a framework and methodology for identifying the model parameters in the
case of single joints and coupled joints like the shoulders or the joints con-
necting the waist to the torso. The identification targets the motor voltage
to torque model parameters and the joint state to friction model parame-
ters. The main contributions of this chapter are: the identification of static
friction parameters and their correlation with the hysteresis in the motor
input voltage to torque characteristics; the improvement of the experiment
procedure itself, avoiding the quantization issues affecting the driven motor
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input voltage Pulse Width Modulation (PWM) duty cycle; the improve-
ment of the procedure specific to coupled joints in view of performing the
model identification independently on each motor transmission chain, thus
avoiding the coupling effects.

1.3.2 Accelerometers and Joint Encoders Offsets Calibration

Chapter 3 proposes two contributions regarding the identification of joint
offsets in a kinematic chain using inertial sensors measurements. The first
contribution is about simplifying the identification process by estimating in
a single run the offsets of the whole kinematic chain, and doing so from
a single batch of accelerometers data. The second contribution is about
identifying in-situ the full calibration matrix and axes offsets of any ac-
celerometer mounted on the kinematic chain, without knowing the sensor
pose with respect to the link it is attached to. We will show how this allows
the calibration of the accelerometers to be independent from the identifica-
tion of the joint offsets, breaking a dependency loop. Additionally, we give
a particular attention to the identification of the cross-axis gains and their
dependency with respect to the drifting axes offsets, unlike other existing
methods which assume the calibration matrix to have only diagonal terms.

1.3.3 Link Angular Acceleration Estimation

Joint torques can be measured by joint torque sensors or estimated in a
framework using embedded force-torque sensors and inverse dynamics algo-
rithms as done on the iCub humanoid robot and presented in [Traversaro,
2017, Chapter 4].

That framework can take directly link accelerations as described in [Traver-
saro, 2017, Chapter 4 section 4.4.2], referred to as the sensor-based net force-
torque estimation, followed by the joint torque estimation. This approach
reduces the errors otherwise accumulated when propagating the link accel-
erations through the composition of joint accelerations from the root to the
leafs of a kinematic tree. The link angular accelerations are commonly esti-
mated through the forward kinematics, from the joint accelerations and the
model kinematic tree [Khalil and Dombre, 2004, Chapter 5] [Featherstone,
2014, Sections 2.2, 4.4].

Joint accelerations are commonly computed through double numerical
differentiation of joint encoders or single numerical differentiation of gyro-
scope measurements, at the cost of additional filtering and resulting lag.
Chapter 4 proposes a causal memoryless algorithm for estimating directly
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the link angular acceleration from data measured by accelerometers and gy-
roscopes attached to that same link. We can find in the literature similar
solutions, but targeting joint accelerations and depending on the composi-
tion of these accelerations for estimating the link accelerations. Our method
avoids any propagation of variables across the kinematic chain. On top of
that, the method is easily scalable across any number off n accelerometers.
We can say that the computational complexity scales linearly with the size
of the problem, if we define that size as the number off accelerometers n. It is
then common use to characterize the algorithm as having O(n) complexity.

1.4 Publications

[1] N. Guedelha, N. Kuppuswamy, S. Traversaro, and F. Nori, “Self-calibration
of joint offsets for humanoid robots using accelerometer measurements,” in
IEEE-Humanoids, 2016: 1233-1238.

[2] Gabriele Nava, Daniele Pucci, Nuno Guedelha, Silvio Traversaro, Francesco
Romano, Stefano Dafarra, Francesco Nori: ”Modeling and control of hu-
manoid robots in dynamic environments: ICub balancing on a seesaw” in
IEEE-Humanoids, 2017: 263-270.

[3] Stefano Dafarra, Gabriele Nava, Marie Charbonneau, Nuno Guedelha,
Francisco Andrade, Silvio Traversaro, Luca Fiorio, Francesco Romano, Francesco
Nori, Giorgio Metta, Daniele Pucci: “A Control Architecture with Online
Predictive Planning for Position and Torque Controlled Walking of Hu-
manoid Robots”, in IEEE-IROS 2018

[4] N. Guedelha, S. Traversaro, and D. Pucci, “Identification of motor and
friction parameters on coupled joints,” in Intelligent Systems Conference
(IntelliSys) 2019.

1.5 Technological outcome

The outcome of this research was:

• a conference paper publication on the 2016 IEEE-RAS International
Conference on Humanoid Robots [Guedelha et al., 2016],

• a conference paper publication on the 2019 Intelligent Systems Con-
ference (IntelliSys) [N. Guedelha and Pucci, 2019],
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• the implementation of a calibration framework that would later sup-
port multiple sensor modalities like accelerometers, gyroscopes and
IMUs. The framework was released as an open source project on
Github 1,

• the friction estimation feature was integrated in the calibration frame-
work sensors-calib-inertial. A Doxygen documentation of this frame-
work is in progress and can be found in the Github repository 2,

• the link acceleration algorithm has been implemented on Matlab and
a journal paper is under preparation for submission to IEEE-RAL.

I was also involved in analyzing the hardware configuration and interface
of the link force-torque sensors used on iCub, as well as the test of the
respective calibration tool 3, which was my contribution to the publication
[3]. Among the future work goals is collaborating with the author of the
mentioned tool in order to integrate the tool’s features in the sensors-calib-
inertial framework.

1https://github.com/robotology-playground/sensors-calib-inertial
2https://github.com/robotology-playground/sensors-calib-inertial/wiki/

Framework-documentation
3https://github.com/robotology-playground/insitu-ft-analysis
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Chapter 2

Joint Motor And Friction
Model Identification

2.1 Introduction

Some tasks require highly dynamic motions like running, jumping or even
walking on uneven terrains, and for that, the robot has to account for the
dynamic properties of the low level joint actuation. In typical torque control
architectures composed by two nested control loops, this concern lies within
the inner, low level control loop, which guaranties that the desired torque
computed by the outer loop is generated at the joint level as expected within
a delay that doesn’t compromise the stability of the controller. This chapter
addresses the identification of the joint low level actuation model parameters
which are critical factors for generating and tracking the desired joint torque.

The feed-forward control allows to anticipate the changes in the con-
troller setpoint, which in the case of low level joint torque control, would
be the desired joint output torque. At that point, the only errors left to
be corrected by the feedback controller are the model errors, the sensors
noise and the external disturbancies applied to the system. This improves
the stability of the controlled system, and the ability to use a wider range
of gains in the feedback control depending on the desired stiffness of the
joints. This type of control design is one among other model based control
designs which benefit from the accurate identification of the joint low level
actuation feed-forward model.

The identification first targets single joints with one DoF, actuated by
a single motor. Commonly, identifying the feed-forward parameters goes
through the breakdown of the overall transfer function relating the motor
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input parameter to the joint output torques, by modeling the sub-elements
of the actuation chain as well as their interaction. That chain is typically
composed of a motor, a reduction drive for multiplying the torque, and a
direct or cable driven connection to the joint shaft moving with the actuated
link. In this study we will consider electrical joint actuation subsystems
powered by a high performance brush-less Direct Current (DC) motor, and
equipped with a zero backlash Harmonic Drive. It is actually the case for
most of the humanoid robots 40cm tall or above, apart from those equipped
with hydraulic actuators.

DC motors, or brush-less motors are typically driven by current or volt-
age PWM—Pulse Width Modulation—duty cycle. The generated torque is
then multiplied in the Harmonic Drive, and transmitted to the load on the
output shaft, directly or through a cable system. Some torque is wasted
in the process, through friction, mostly in the torque conversion and trans-
mission components. The output torque on the shaft is what we define as
the joint torque. Given a parametric model describing the PWM to joint
torque dynamic system, the identification process then consists in quanti-
fying the parameters of that model. The resulting final dynamics of the
joint, while tracking a desired trajectory or torque, also depends on the load
applied on the shaft by the actuated link inertia and the external wrenches.
That load appears as an external factor with respect to the analyzed sys-
tem, and impacts the joint velocity and acceleration which are inputs to the
identification process.

A commonly used simple model defines the generated motor torque as a
linear function of the motor input voltage duty cycle, which will be detailed
in Section 2.3.3.

A large range of models have been defined and studied for describing
the friction dynamics, from static models like the Coulomb, the viscous and
Stribeck models, to more complex ones, like the switching models (seven
parameters model, Dahl model), or the most advanced dynamic models, like
the LuGre model, first presented in [Canudas de Wit et al., 1995] [Canudas-
de Wit, 1998], accounting also for stick-slip phases transitions and other
properties inherent to the interaction of surfaces in contact [Armstrong-
Hélouvry et al., 1994] [Olsson et al., 1998] [Van Geffen, 2009].

Previous works proposed improvements on joint torque and external
forces estimation, while the joints were not moving [Stolt et al., 2015b] [Ca-
purso et al., 2017], or were moving at very low velocities [Linderoth et al.,
2013] [Stolt et al., 2015a], while performing a lead-through programming
task. Lead-through programming is a way of programming a desired joint
trajectory, in order to perform a given task, by manually guiding the robot
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joints while the motion sequence is recorded. In this type of task, the de-
tection of very low external forces is required for allowing a smooth external
manipulation of the end effector by a human operator. The challenge was
to detect external forces lower than the static and Coulomb friction, that
could be quite high in industrial robots. The presented methods accounted
for the significant torque disturbancies due to static, Coulomb and viscous
friction, while estimating the external forces without the use of force-torque
sensors. In [Stolt et al., 2015a], the estimation framework integrates a fric-
tion compensation based on a simple Coulomb-viscous friction deterministic
model, dependent on a Coulomb and a viscous friction coefficients, and ve-
locity thresholds for smoothing the compensation. All these parameters
were tuned manually. In [Linderoth et al., 2013] and [Stolt et al., 2015b] the
friction is modeled as a uniformly distributed noise, combined to a Gaussian
noise of zero mean, with a variance increasing with joint velocity. The uni-
formly distributed noise is bounded by a range dependent on the velocity
and described as the ”Coulomb viscous friction band”. The band is defined
by two shifted sigmoid functions added to a viscous friction term: the area
between the two curves, significant only around zero velocity, models the
uncertainty of the static friction; the defined band converges to a classical
Coulomb-viscous friction model for increasing velocities. The model param-
eters then include the slope of the sigmoid functions around the zero velocity,
the area between the curves, the Coulomb and viscous friction coefficients.
Except for the Coulomb friction coefficient, which is averaged for slow ve-
locities, the parameters are identified or tuned manually and few details on
the procedure are given, which does not make the whole process fast and
easily repeatable.

When analyzing mechanisms that have numerous rolling parts that gen-
erate friction, a spectral-based identification of the friction parameters can
be performed [Popovic and Goldenberg, 1998]. This approach can identify
the contribution of each moving part of the transmission train to the overall
friction, accounting for position dependent torque variations due to those
contributions [Popovic and Goldenberg, 1998] [Simpson et al., 2002]. In this
case, the identified friction model depends on the velocity and position of the
joint. The frequency signature of the friction source is considered constant,
although their amplitude may vary.

A model-free approach, based on Gaussian networks, more precisely Ra-
dial Basis Function Networks (RBFN), can also be used for identifying the
non linear terms accounting for uncertainties and stick-slip transitions oc-
curring at low speeds [Hongliu Du and Nair, 1999]. The total friction is
split in two linear components, the classical Coulomb and viscous friction
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terms, and one non-linear component, function of the joint velocity and the
joint acceleration sign, more precisely the current and previous samples of
the joint velocity. The RBFN identifier estimates the Coulomb constant and
the non-linear function parameters, identifying a ten parameters model. But
this technique proved efficient on a bench setup, composed of a DC motor
with characteristics an order of magnitude higher than the motors used on
iCub, which is a child size humanoid robot. The motor is directly connected
to the load without a gearbox, which in the case of small or medium robots,
is an important source of friction non-linearity.

Model-based friction identification has been previously applied to the
context of humanoid robots, using a simple Coulomb-viscous friction model
in the feed-forward term of the low level torque control [Del Prete et al.,
2016]. In the approach presented in this chapter, we extend the Coulomb-
viscous static model, adding the Stribeck effect. The overall friction model is
an affine function of the joint velocity, does not depend on the joint position
and is memory-less, not taking into account stick-slip phase transitions.
Further details will be given in Section 2.3.2. This is a first step in including
the static friction in a full joint actuation model, and analyzing the its impact
on the overall motor torque model identification. Particular attention is
also given to how the motor torque model depends on the hardware and
the motor control mode (trapeezoidal, sinusoidal, Field Oriented Control),
hence the importance of considering the desired high level control scheme
and performance at the very early stage of the robot design.

We then focus on the coupled joints case, where the friction effects from
the multiple actuation chains are combined and their identification presents
a significant challenge. In the multi-body articulated systems we consider,
we can find robotic typical ”wrist” like mechanisms, or spherical joints,
where the three DoF have their respective rotation axis coinciding in a sin-
gle point. In the case of the humanoid robot “iCub” (Metta et al. [2010]),
such joints are coupled through a cable differential drive: the shoulder joints
(pitch, roll and yaw) as shown in figure 2.1b and described in Parmiggiani
et al. [2009]; the joints connecting the torso to the waist link (pitch, roll,
yaw) as shown in figure 2.6 and described in Tsagarakis et al. [2006] and
Tsagarakis et al. [2009]. In each of these couplings, the transmission between
motors and joints is cable driven. This has many benefits like compactness,
reduced inertia, while having the three axis pitch, roll and yaw to intersect in
a single point, allowing a motion almost similar to a spherical joint, except
that unlike the spherical joint, the coupled joint set has a singular configu-
ration also known as ”gimbal lock”. The coupling also presents inconvenient
properties like increased elasticity in the motor to joint transmission which
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results in hysteresis once combined with friction, adding complexity to the
actuation model. On top of that, the dynamics of the coupled DoF are
entangled, and it becomes more challenging to identify the joint actuation
parameters in the usual joint DoF space.

For controlling elastic coupled joints, a MIMO (Multiple Outputs Mul-
tiple Inputs) state feedback controller was introduced in [Le Tien et al.,
2007] [Le-Tien and Albu-Schäffer, 2017]. The proposed control architecture
benefits from joint position measurements both on the link and motor sides,
and joint torque sensor measurements on the link side. It integrates a Lugre
friction model in the feed forward component. The Coulomb and viscous
friction and link load coefficients as well as the Lugre model parameters are
identified in closed loop, through a non linear minimization of the expected
to measured motor current error. But the measurements acquired near the
velocity reversal points were removed from the optimization [Le-Tien and
Albu-Schäffer, 2017, Section 5.2], while these transitions are what we are
more concerned about in this chapter. In addition, the method relies on
a good model of the joint stiffness and damping, which accounts for the
elasticity only on the link side (the stiffness matrix is diagonal and depends
solely on link side joint positions) [Le-Tien and Albu-Schäffer, 2017, Section
2.2]. Hence, the method does not account for the gearbox elasticity on the
motor side.

In our approach, we account for the elasticity and friction on the motor
side, i.e. the Harmonic Drive, and the identification is done in open loop.
We propose a method for performing the model identification independently
on each motor transmission chain, thus avoiding the coupling effects.

This chapter is organized as follows: we first present an overview of
the joint actuation architecture implemented on the major joints of the
humanoid robot iCub (the platform we used for performing our identification
tests); after describing the model of each component composing one typical
joint actuation sub-system, we build the model of the full transmission chain
and pose the Newton-Euler equations describing its dynamics; based on
those equations, we define the identification framework and experimental
methodology, highlighting the choice of an open loop identification, which
provides improved results compared to a closed loop identification; we then
address the case of the coupled joints and present the experiment results.
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(a)

(b)

Fig. 2.1 CAD view of the iCub right arm with the three coupled shoulder
joints (a) and CAD view of the shoudler joints actuated by the differential
drive and three motors. Source: [Parmiggiani et al., 2012, Fig.4 & 5]

2.2 Joint Actuation and Sensors Architecture

The methodology presented in this chapter for identifying the motor torque
and joint friction model parameters requires the capability to perform accu-
rate joint position control and motor direct PWM (or current) control. It
also requires the feedback on joint torque, motor and joint angular position,
velocity and acceleration. The system we have used for our experiments
is the humanoid robot “iCub”, with its 53 degrees of freedom as shown in
the iCub CAD representation and the kinematic structure depicted in fig-
ure 2.2: seven for each arm—shoulder pitch/roll/yaw, elbow, wrist prona-
tion/pitch/roll; nine for each hand, six for each leg—hip pitch/roll/yaw,
knee, ankle pitch/yaw; three for the torso—torso pitch/roll/yaw; three for
the neck—neck pitch/roll/yaw; and three for the eyes. The robot is also
endowed with a wide range of other sensors: high-resolution joint encoders,
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inertial sensors, link force-torque sensors and skin tactile sensors.

(a) (b)

Fig. 2.2 The iCub kinematic structure. Figure (a) illustrates the iCub CAD
representation, and figure (b) its kinematic structure (eyes and hands have
been omitted for visual clarity). Source: [Parmiggiani et al., 2012, Fig.2]

2.2.1 Motor control and motor/joint motion sensing

Note. Absolute and relative (incremental) encoders: Relative en-
coders provide the linear or angular displacement measured since the instant
they were turned on and the sensing activated. Absolute encoders provide
the displacement with respect to a chosen position previously programmed or
set by design.

The motor group: The major joints (arms, legs, torso) are actuated
by motor groups composed of a Moog C2900584 brushless motor and an
harmonic reduction drive Harmoni Drive in a very compact configuration
(figure 2.3). For the joint position sensing, the group contains a 12-bit
resolution, absolute hall-effect encoder (AS5045 microchip from Austria Mi-
crosystems [Microsystems, 2013] or alternatively an AEA absolute encoder
microship). It is located at the joint side, after the harmonic drive, such
that it measures the joint child link’s rotation angle and not the motor’s
[Parmiggiani et al., 2012, section 4.3]. Because of space constraints, the
encoder was mounted at the rear end of the motor shaft (figure 2.3), and
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Fig. 2.3 Motor group cross section, showing the brushless motor, the har-
monic drive and the angle position encoders. Source: [Parmiggiani et al.,
2012, Fig.3]

connected to the output shaft through a stem across the motor’s hollow
shaft.

Joint position and rotor synchronization: The AS5045 encoder is a
contact-less magnetic position sensor providing an accurate angular absolute
position measurement over a full turn of 360◦. A magnet, diametrically
magnetized, is placed above and close to the encoder ship, and rotates with
the rotor shaft while the encoder is fixed to the motor housing. An array
of Hall effect sensors detects the rotating magnetic field and the magnet
angular position is estimated with a typical delay of 384 µs, a resolution of
0.0879◦ (4096 positions per revolution), a repeatability (Transition Noise)
of ±0.03◦ and an accuracy of ±0.5◦ (for more details refer to the appendix
A).

The joint position is also used for synchronizing the rotating magnetic
field (which creates the motor torque) with the rotor position, as explained
in more detail in the next section 2.3: the system uses an advanced Field
Oriented Control strategy which tracks the rotating magnetic field to keep
its position shifted with respect to the rotor’s poles by a quarter of electric
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Fig. 2.4 Typical arrangement for placing the rotating magnet close to the
sensing surface of the AS5045 chipset. Source: Microsystems [2017]

cycle (cf section 2.3). The resolution provided by the AS5045 encoder turned
to be insufficient for such purpose, neither for measuring the velocity of dy-
namic motions. Indeed, the smallest detectable velocity obtained through
pulse counting at 1 kHz sampling rate was ∆q/Ts = 0.088◦/0.001s = 88◦ s−1,
Ts being the encoder sampling period. For improving the velocity measure-
ment accuracy, an optical 13-bit incremental encoder was mounted inside the
motor housing as shown in figure 2.3. As the encoder resolution is combined
with the reduction drive ratio of 1:100, we get the equivalent resolution at
joint level of 360/(213×100) = 0.0004◦, and the smallest detectable velocity
becomes ∆q/Ts = 0.0004◦/0.001s = 0.4◦ s−1 [Tsagarakis et al., 2009, section
A].

We can see in appendix A a more detailed description of these two types
of rotary encoders—incremental or absolute encoders—with their respective
properties like the resolution, the accuracy and how repetitive the measure-
ments are.

Motor driver and low level torque control boards On the robot
iCub, the control architecture is designed as two nested control loops: the
high level control loop runs in the robot central unit or on a remote computer
connected to that unit through a distributed middle-ware called YARP (Yet
Another Robot Protocol), over wifi or wired IP network; the high level
controller sends through an Ethernet bus the desired joint torque to the
inner loop controller which is in charge of obtaining and tracking the desired
torque at the joint output shaft. This controller, running at 1 kHz in the
Ethernet Motor Supervisor (EMS) board, converts the desired torque into
the respective PWM as a percentage of the full-scale voltage feeding the
motor, and sends that value to the motor driver board 2FOC.
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Fig. 2.5 Motor driver and low level torque control hardware design.

Note. Whatever the selected high level control mode and respective control
parameter (desired joint position, velocity or torque), the EMS output pa-
rameter sent to the motor driver is always a PWM value.

The 2FOC motor driver board can drive a BLDC motor with a Field Ori-
ented Control algorithm, running at 20 kHz. The driver board feeds directly
the PWM power signal to the stator phases, generating a rotating magnetic
field that drags the rotor round with it. The motor driver closes the loop
on the rotor position feedback (for fine controlling the stator magnetic field
and thus maintaining a constant torque) and if required, can close the loop
on the stator current for increased robustness against voltage perturbations.

2.2.2 Joint torque estimation

iCub is not equipped with direct joint torque sensing, but instead, has six-
axis force-torque sensors mounted in the cross section of the arm [Parmiggiani
et al., 2009] and leg links as well as below the ankles. Combined with a tac-
tile skin, these sensors are integrated in a whole-body dynamics estimation
framework [Traversaro, 2017, chap. 4] which estimates the external contact
forces and all the joint torques, as will be explained more in detail in chap-
ter 4. The joint torque estimate is the feedback in the inner control loop
running at 1 kHz.
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Fig. 2.6 A CAD view of the joints connecting the waist to the torso, actuated
by a differential drive and three motors. Source: Tsagarakis et al. [2006]

2.2.3 Coupled joints and differential drives

As mentioned previously, some joints are coupled through a cable differential
drive (shoulder and torso joints). We perform our identification experiments
on the torso coupled joints, which motor groups and differential drive are
depicted in the figure 2.6. The cable driven differential adds significant elas-
ticity to the joints actuation and. combined with friction in the transmission
elements, increases the hysteresis in the model relating the input PWM sig-
nal to the joint output torque, as well as in the model relating the joint
velocity to the friction torque.
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Fig. 2.7 Close-up view of the waist differential drive. Source: Tsagarakis
et al. [2006]
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2.3 Modelling, problem formulation and assump-

tions

2.3.1 Notation

We summarize below the notation used for describing the models and the
algorithms in this chapter:

bτm,l Motor torque applied on point B of link l;

bτf,l Generalized friction torque applied on point B of link l;

bτc,l Coulomb friction torque applied on point B of link l;

bτv,l Viscous friction torque applied on point B of link l;
Fn Force normal to a contact surface;
µ, σ Respectively Coulomb and viscous friction coefficients;
sign(ω) Sign of the angular velocity;
τJ Output joint torque (applied to the joint child link);
In Identity matrix of dimension n.

The notation for describing an arbitrary angular velocity vector
ω or torque vector τ about an arbitrary axis x follows the right-
hand rule, such that the orientation of ω or τ is defined by the
arrow along that axis, the curved arrow being an indication
that we are in presence of an oriented vector.

2.3.2 Friction Models

While modeling the multiple components in the joint transmission chain, we
will often come across friction torques that can be found in the bearings, re-
duction drives, coupling systems or result from electromotive forces. Before
addressing the friction modeling specific to each component, we present in
this section the general concepts and typical models. There is a fair list of
candidate friction models: The most simple and common are the static ones
(constant parameters and structure) and are not defined for a zero relative
velocity between the two surfaces in contact; the ”switching” models (seven
parameters model, Dahl model described in [Van Geffen, 2009]), and the
most advanced dynamic models (LuGre model) switch between two distinct
”stick” and ”slip” states applying specific parameters for each of them; the
dynamic models account for the transition between stick and slip phases in
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(a) (b)

Fig. 2.8 Representation of the friction force Ff on an object M moving
relative to a flat surface at velocity v (a), or the friction torque τf on an
object rotating about a rotary joint axis at velocity ω (b). Fn is the force
normal to rotation axis.

a continuous function. Some of these models are quite empirical, which is
acceptable as long as they match the actual system behavior in the desired
range of working conditions: static, slow or fast motion up to a maximum
expected joint velocity and acceleration. We describe below the two most
commonly used models: the Static-Coulomb-Viscous friction model and the
Stribeck-Coulomb-Viscous friction model.

The Static-Coulomb-Viscous friction model

Coulomb developed the concept of a friction (1785) proportional to the load,
opposed to the motion, and independent of the contact area. Morin intro-
duced the static friction (1833), and Reynolds the viscous friction (1866).
We represent in Figure 2.8 a moving object M , either sliding over a flat
surface (Figure 2.8a) or revolving about a rotary joint (Figure 2.8b). In the
rotary joint case, we can see the load force Fn on the joint rotation axis (Fn

is normal to the axis), the rotation velocity ω and the total friction torque
τf due to the rotary contact.

The friction torque can be written as the superposition of the three
models, Coulomb, viscous and static friction, as follows:

τf = τc + τv + τs (2.1)

= −µFn sign(ω)− σω − Ts(ω), (2.2)

where the Coulomb friction τc is linear with respect to the load force
Fn on the rotation axis, and the viscous friction τv is a linear function of
the axis angular velocity ω. µ and σ are respectively the Coulomb and
viscous friction coefficients and are positive, such that the friction and the
rotation velocity always have opposite signs. The static friction τs, initially
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Fig. 2.9 Models of friction force versus angular velocity. (left) Static,
Coulomb and viscous friction model. (right) Negative viscous, Coulomb
and viscous friction model (Stribeck). Source: Van Geffen [2009].

expressed here as a general function of ω, Ts(ω), is the torque required to set
the axis into motion starting from a null velocity, and typically is higher than
the Coulomb and Viscous added components close to a null velocity. The
first simple model would consider the static friction as a constant, usually
higher than the Coulomb friction, as described in Van Geffen [2009] and
illustrated in Figure 2.9(a). This approximation creates a discontinuity when
the system velocity crosses zero, and thus can cause numerical issues and
torque instabilities.

The Stribeck-Coulomb-Viscous friction model

In most cases the transition from static to Coulomb-Viscous friction is pro-
gressive: the friction first decreases with increasing velocity from rest state
(like a negative viscous friction), before increasing again following the Vis-
cous friction model. This is called the Stribeck effect, as shown in Figure
2.9(b). In some cases, the initial friction drop can be significant, and the
overall friction appears not to have the Coulomb component.

The Boundary Lubrication: We can find in the literature more detailed
Stribeck models characterizing the friction behavior near the null velocity.
At very low speeds, when the surfaces are in solid-to-solid contact, we are in
a regime called “Boundary Lubrication” [Armstrong-Hélouvry et al., 1994],
the sheared solid surfaces being the boundary lubricants. In the case of a
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Fig. 2.10 Solid-to-solid contact between microscopic asperities, and forma-
tion of the Boundary Layer. Source: [Armstrong-Hélouvry et al., 1994,
Figure 4].

solid-to-solid contact, the contact topography can be modeled as a series
of asperities, compressed against each other, creating asperity junctions as
illustrated in Figure 2.10, even in the case of apparent point or line contacts
(between gear teeth), also referred to as nonconformal contacts [Armstrong-
Hélouvry et al., 1994, Section 2.1.1, Figure 3]. In the case of steel on steel
contact, even in absence of lubricants, an oxide film forms on the surface
of the asperities, producing a boundary layer that reduces significantly the
friction.

In a system lubricated by oil and grease there are four regimes of lubrica-
tion, as illustrated in Figure 2.11: static friction and presliding displacement
where the asperities behave like springs; boundary lubrication, where the ve-
locity is insufficient for building a fluid film between the surfaces (regime at
very low speeds); partial fluid lubrication, where the fluid is drawn by the
motion into the contact load region; at last the full fluid lubrication, where
the viscous friction classical behavior arises.

Remark 2.1. The previous models are all static, i.e. the model parameters
are the same for all working regimes (joint velocities). They are unable
to properly describe what happens at zero velocity (stick phase) or in the
transition from stick to slip phase. Considering the joints of a humanoid
robot, they operate near zero velocity or cross zero velocity quite often. In
this case a dynamic or switching model is preferred. Some models, more
complex, deal with hysteresis and have a local memory of previous slip/stick
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Fig. 2.11 The four dynamic regimes of the generalized Stribeck model.
Source: [Armstrong-Hélouvry et al., 1994, Figure 5].

states, but this is out of the scope of this thesis, and will be addressed in a
future work.

2.3.3 The Brushless Motor Control and Modelling

A “reversed” DC motor The BrushLess DC motor (BLDC) is a “re-
versed” DC motor: the rotor is composed of a hub holding permanent mag-
nets arranged in alternating pole pairs (commonly two to eight pairs); the
stator is composed by electromagnetic coils, i.e. electric windings wrapped
in slots around steel laminated poles. Once excited, the stator generates a
magnetic field that can be rotated through electronic commutation or mod-
ulation of the current in the windings [Akin et al., 2011]. The motor driver
uses the feedback on rotor position for aligning the stator field always along
or as close as possible to the rotor quadrature axis, which results in a torque
that causes the rotor and field to revolve at the same speed, which classifies
this kind of motor as the ”synchronous” type. The electronic commutation
allows to drop the mechanical brushed commutation, with the following
benefits: less friction and less voltage drop from the brushes sliding contacts
resistance; less sparks on the same brushes due to the abrupt current switch-
ing. Unlike the DC motor where the current commutation and the rotating
field generation occur in the rotor, on the brushless motor they occur in the
stator, hence the name of “reversed” DC motor.
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Generated torque and Back ElectroMotive Force The generated
torque can be constant for a given PWM setpoint, and independent from the
rotor angular position, as it will be described in the following subsections.
This can be achieved through Sinusoidal Commutation Control or Field
Oriented Control and for a large range of speeds if the loop is closed on the
measured phase currents projected on the Direct-Quadrature frame [Kiran
and Swamy, 2014] [Yousef and Abdelmaksoud, 2015].

We also describe how the motor torque, the amplitude of the rotating
magnetic field, the common amplitude of the sinusoidal currents on all three
phases of the stator and the motor input parameter PWM are all linearly
dependent [Dixneuf and Gilabert, 2005], such that we can write, when the
rotor is not moving:

τpwm,m = kpwm,τ PWM (2.3)

The rotation of the magnetic field generated by the rotor induces an
electromotive force (Faraday’s law) in the stator windings, Ev , also called
Back ElectroMotive Force (Back EMF), and therefore an induced current.
we will see in the following subsections that the Back EMF torque can be
writen as follows:

τbemf = −kbemf,τ θ̇ (2.4)

Stator windings arrangement The most common design of BLDC mo-
tors comprises a stator with three-phase windings, arranged in one of the
two common configurations as shown in figure 2.12: the ”delta” configura-
tion where the windings are connected to each other in a triangle shape; the
”Y-shaped”, also referred to as ”star” configuration where the windings are
connected to a central contact point, leaving the loose ends connected to
the phase interface terminals U , V and W .

There are three control methods for doing the electronic commutation of
the phases: the trapezoidal, the sinusoidal and the Field Oriented Control
as described further.

Trapezoidal control

The trapezoidal control is the simplest one, where we have always two ex-
cited phases (“ON” state phases) and the a third one floating i.e. in open-
circuit state (“OFF” state). This technique is well suited for BLDC motors
because in a certain range of rotor speeds, the constant current in the phases
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Fig. 2.12 The delta (a) and star i.e. Y-shaped (b) winding types on the
stator.

combined with the trapezoidal Back EMF results in a constant torque ap-
plied to the rotor. We illustrate in figure 2.13 the commutation sequence
happening during an electric cycle, matching a half mechanical cycle (half
turn of the rotor).

Definition 2.1. Electric cycle: a cycle in the oscillation of the current
flowing in a stator winding (pole), during which the stator winding changes
its polarity twice. Mechanical cycle: a cycle in the rotation of the rotor.

We can see in the right column of the figure 2.13 the energized phases and
the respective current direction for each rotation step. Driving the current
in the phases in such way requires a ”three-phase inverter” composed of six
IGBTs or MOSFETs inter-connected in a bridge structure. Each pair of
power transistors sets one of the phase input terminals U, V or W to DC+
or DC-. As an example, for setting the phases U and V as illustrated in
step 1, the terminal U has to be set to DC+, and terminal V to DC-, i.e.
the transistors SW1 and SW4 are both set to the same state ON, while all
the other transistors are set to OFF (floating state). Actually the way the
transistors are driven depends on the PWM or current control mode.

PWM control mode: In the commutation sequence step 1 illustrated in
figure 2.13, the transistors SW1 and SW4 are supposed to close the phases
U and V loop circuit, but the current in that loop needs to be regulated to
a desired value through a PWM drive signal PWMU. In such case, either
both transistors are driven by the same PWM signal PWMU (called the hard
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(a)

(b)

Fig. 2.13 Electronic commutation sequence of a Y-shaped winding stator,
following a trapezoidal control scheme. Source: [Zhao and Yu, 2014, Figure
11]
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chopping operation causing high frequency ripples in the current that can
damage the motor), either SW4 is set to ON for the whole duration of step 1
while SW1 is driven by PWMU (called the soft chopping operation). During
the soft chopping operation, the PWMU high state sets SW1 to ”ON”, while
the PWMU low state sets SW1 to ”OFF” and the current flows through the
diode LD V which is then in forward direction. This behavior reduces the
high frequency ripples.

Note. Every inductor (winding round a ferromagnetic core) has a self-
capacitance due to the proximity between the wound wire loops [Massarini
and Kazimierczuk, 1997]. When an inductor like a phase winding has an
electric current flowing through it and the circuit is abruptly opened, a high
voltage is induced (Lenz’s law) and the coupled inductor and self-capacitance
behave like a free oscillator, creating current ripples.

Hysteresis (current) control mode: If a hysteresis type current regu-
lator is used instead of the PWM control mode, the power transistors in the
MOSFET bridge are driven by a ON/OFF signal depending on the error
between the current flowing in each phase and the desired reference current
determined by the motor supervisor synchronizing the rotor rotation. From
this point on we consider only the PWM control mode.

The motor driver control system The Figure 2.14 illustrates an ex-
ample of motor driver control system: the hall effect sensors mounted in
the stator provide the rotor position feedback to the motor supervisor logic
circuit; the motor supervisor integrates the single input PWM drive signal
with the rotor position feedback and generates a set of switching signals—
”ON”, ”OFF”, ”PWM”—intended to drive the stator phases as described
earlier; the Three Phase Inverter uses these signals to drive the six power
transistors that feed the stator phases, generating a rotating magnetic field
of desired intensity and synchronized with the rotor position.

From PWM to current and from current to torque At each step
of the electric cycle, 2 phases in series (U-V, V-W, W-U) are supplied with
a given PWM power signal. As depicted in figures 2.15 and 2.18, the two
energized phases can be modeled by an equivalent electric circuit composed
by: the windings terminal to terminal (e.g. U to V) resistance r; the re-
spective self-inductance l; the total Back EMF voltage ev on both phases (U
and V). The circuit is a typical ”RL” low-pass filter which cut-off frequency
depends on the resistance r and inductance l values, and can be inferred by
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Fig. 2.14 A complete closed-loop control system for a sensored three-phase
BLDC motor. The circuit comprises the microcontroller supervising the
PWM outputs, a six MOSFET bridge driver, the MOSFET bridge and the
BLDC motor. Source: Microchip 1

computing the gain norm ‖G‖ in sinusoidal stationary regime, with a stalled
rotor (ev = 0):
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The gain norm drops to −3dB for ω = ωc which characterizes the cut-
off frequency. For the MOOG brushless motor used on the iCub hip pitch
or torso joints, the datasheet (appendix C) specifies a terminal to terminal
resistance of 0.682Ω and self-inductance of 0.452mH. From those values we
get a cut-off frequency of:

‖G‖ =
1√
2
⇐⇒ fc =

r

2πl
∼ 240Hz (2.6)

Note. The two “ON” phases resistance and self-inductance are character-
ized in the motor datasheet respectively as the ”terminal to terminal” re-
sistance and inductance, and are modeled here as the stator self-inductance
l.

1Figure 3 at https://www.digikey.it/en/articles/techzone/2013/mar/

an-introduction-to-brushless-dc-motor-control.
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Fig. 2.15 Stator two ”ON” phases electric model. epwm is the PWM input
signal, ev is the Back EMF voltage on the windings, r the windings resistance
and l the self-inductance.

The PWM signal has a typical frequency spectrum as depicted in figure
2.16, obtained through a Fast Fourrier Transform (FFT) of the time-domain
signal. The spectrum shows a pattern having a DC component, a first lobe
on the PWM carrier frequency and a series of harmonics with decreasing
amplitude on higher frequencies. We expect the RL low-pass filter to retain
the DC component, and suppress the first lobe and remaining harmonics.

In the frequency domain, the farther the first lobe is i.e. the higher the
PWM carrier frequency is, the more it is attenuated by the filter as well
as all the harmonics, and the less ripples we get in the time-domain. In
these conditions, for a fixed PWM duty-cycle value, the current flowing in
the two ”ON” phases rises smoothly and reaches an approximately constant
limit after a settling time. Actually, increasing the PWM carrier frequency
is a good way to smooth the ripples without affecting the settling time which
depends only on the filter.

Note. The FOC motor driver used on the iCub motor control can run and
generate a PWM at up to 40 kHz, which is two orders of magnitude higher
than the stator self-inductance cut-off frequency and allows a good current
response in the stator phases.

The DC component in the FFT sets the target voltage ur reached after
the filter settling time, and is given by: DC component = carrier Amplitude
× PWM duty cycle.

Because of the settling time required before the voltage reaches the target
limit, there is a ripple in the phase current each time there is a phase switch,
i.e. at every step transition of the electronic commutation described in figure
2.13. That effect can be observed in the resulting rotor torque (2.17), which
presents ripples at each phase switch—every 60◦ rotation—instead of the
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(a) (b)

(c) (d)

Fig. 2.16 PWM time-domain signal (a), frequency spectrum (FFT) (b), fre-
quency spectrum filtered by the low-pass RL filter (c), time-domain filtered
signal (d). Source: [Keim, 2016]

θ

Torque

Fig. 2.17 Rotor torque ripple in Trapezoidal Control. Source: [Akin et al.,
2011, Figure 3]

expected constant smooth value.
If we ignore the ripple issue, we can now replace the PWM signal in the

original model 2.15 by a constant voltage supply E0 and drop the inductance
l as shown in the equivalent electric model 2.18. E0 is proportional to the
PWM duty-cycle: E0 = kpwm,v PWM. The Back EMF is proportional to
fixed parameters like the number of winding turns per phase N , the rotor
radius r, length l and magnet flux density B, and to a variable parameter
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Fig. 2.18 Stator two “ON” phases equivalent model in continuous regime,
i.e. for an imput PWM with a frequency fe ≫ fc where fc is the cut-off
frequency of the phase self-inductance l. Typically fe ∼ 20kHz. E0 is the
equivalent voltage that would generate the same average current as the one
generated by the PWM signal.

which is the rotor velocity θ̇ [Akin et al., 2011]:

Ev = 2NlrBθ̇ = kbemf,v θ̇ (2.7)

The rotor torque depends on two residual reluctance components and
a third term which is the main produced torque, proportional to the same
fixed parameters mentioned above and to the phase current i:

τm ∼ 4N

π
Brlπi = kt i (2.8)

We can then express the current flowing in the stator as in (2.9) and
express the resulting torque as in (2.10). The torque constant is given in the
motor datasheet (kt = 0.047NmA−1) and can later be used to cross check
the PWM to torque constant kpwm,τ .

i =
E0 + Ev

r
=
kpwm,v

r
PWM−kbemf,v

r
θ̇ (2.9)

τm = kt i =

(

kt
kpwm,v

r

)

PWM−
(

kt
kbemf,v
r

)

θ̇ (2.10)

kpwm,τ = kt
kpwm,v

r
, kbemf,τ = kt

kbemf,v
r

(2.11)
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Sinusoidal Commutation Control

The Trapezoidal commutation has two main inconveniences: the abrupt
switching of the phase current creates torque ripples; the current and torque
are approximately constant only at high speed as the trapezoidal Back EMF,
combined with the constant phase current, optimizes the constant torque
approximation. For these reasons the Trapezoidal Control fails to provide a
smooth torque at low speed.

The Sinusoidal commutation solves that problem by generating a smooth
rotating magnetic field always in quadrature direction with respect to the
rotor direct axes (in the simple case of a two pole rotor) as illustrated in
the figure 2.19, which allows to avoid the current commutation spikes and
produce a constant torque free of ripples [Kiran and Swamy, 2014] [Yousef
and Abdelmaksoud, 2015].

The controller drives the winding currents following sinusoidal waveforms
which phase varies smoothly and synchronously with the rotor position. At
each instant, the winding currents are phase shifted by 120 degrees from
each other and are placed 120 degrees from each other around the stator.
Furthermore the windings are distributed (sometimes referred to as ”sinu-
soidal” windings in the litterature) i.e. for a single stator pole the windings
are placed around several slots in the stator armature, and the resulting
poles end up being partially overlapped [Akin et al., 2011]. This results in
a smoother transition between the stator magnetic poles. As explained in
appendix D, these properties allow the three phase currents to combine and
create a magnetic field ~B rotating smoothly with the rotor, proportional
and aligned with a current Space Vector ~I computed as follows [Dixneuf
and Gilabert, 2005]:

~I = ~Iu + ~Iv + ~Iw =
3

2
I, ~BI ∝ ~I, (2.12)

with I = ~uuI
√
2ejωt (2.13)

Where ~Iu, ~Iv and ~Iw are projections of the Time Vector I. The combined
field space vector ~BI interacts with the rotor magnetic moment ~Mj (D.2)
creating a couple that can be computed as follows:

Cem = ~Mj × ~BI ∝ I sin
(

~Mj , ~BI

)

(2.14)

Where I is the amplitude of the winding current in a single phase. So if
the generated rotating field ~BI is always in quadrature with the rotor direct
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Fig. 2.19 Sinusoidal Control: current space vector rotating synchronized
with the rotor position. The dashed arrows show the current space vector
lagging away of the quadrature axis as the rotation speed increases. Source:
Microchip, 2011 2.

axis, the torque is constant, maximal and depends only on the phase current
amplitude. We can consider the same model defined by (2.9), (2.10) and
(2.11).

Tracking the torque through current control: The control loop ar-
chitecture of a Sinusoidal Commutation has a motor supervisor logic unit
that differs from the one from the Trapezoidal Commutation. The motor
supervisor is composed of a sinusoidal commutator that synthesizes a sinu-
soidal voltage signal for each phase, and PWM modulators that generate
from those signals the PWM waveforms, which are then routed to the three-
phase inverter (MOSFETs bridge power stage). In the case where the motor
controller tracks the current in each phase winding, the loop is closed on each
phase current iu, iv and iw separately, right after the sinusoidal commutator
and the error processed through a PI controller before the PWM modula-
tion and power amplifying stages. This means that as the rotor angular

2https://www.microchip.com.
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velocity increases, each PI controller has to track a sinusoidal current and
compensate a sinusoidal Back EMF with increasing frequency. Due to the
PI controllers bandwidth limitation, the tracking fails for high rotor speeds
and the current space vector lags away from the rotor quadrature axis.

Field Oriented Control

The Field Oriented Control solves this issue by applying the current tracking
in the reference frame attached to the rotor, commonly called the direct-
quadrature (d-q) frame [Kiran and Puttaswamy, 2014]. This is achieved
in three main steps: the phase currents Iu, Iv are first transformed from
the stator static reference frame (stator X axis and Y axis in figure 2.19)
to the rotating d-q reference frame (Id, Iq); the loop is then closed on the
desired current, and the error processed by the PI controllers; the output
corrected voltages are transformed back to the stator reference frame before
being routed to the PWM modulator. In the d-q frame, the current is
theoretically constant, and the Back EMF a linear function of the rotor
angular velocity ω, and so we stay far from the PI controllers bandwidth
limitation. Under these conditions the tracking is straightforward: driving
the direct component Id to zero and the quadrature component Iq to the
desired current i.e. the motor input command.

Conclusion on the motor model definition

Currently the iCub firmware does not have a current loop implemented in the
motor driver so we will consider only the Sinusoidal Commutation control
use case in the methodology described in further sections. Furthermore we
will control the motor in PWM mode, using the feed-forward model defined
in (2.10) and (2.11):

τpwm,m = kpwm,τ PWM−kbemf,τ θ̇ + τf,m (2.15)

Where PWM is the motor driver input parameter, θ̇ the rotor angular
velocity, kpwm,τ is the PWM to torque coefficient and kbemf,τ is the veloc-
ity to Back EMF torque coefficient. Here we added a residual generalized
friction term τf,m which could be the friction on the axis bearings. We
can assume τf,m to be negligible compared to the Back EMF torque which
can be considered as a viscous friction, since it acts as a counter torque
proportional to the rotor velocity.
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2.3.4 Velocity, Torque and Power Conversions by Reduction
or Coupling Drives

Harmonic Drives

Close after the motor in the actuation chain, the harmonic drive is the next
component to transform the transmission dynamics variables, namely the
angular velocity, the torque and the rotor apparent inertia in the sub-system
[motor]-[harmonic drive]. We describe in 2.20 a spinning mass m with the
respective rotational inertia mḣm and angular velocity mω both expressed
on the point M of the shaft. We can apply this model to an iCub main
joint motor group (figure 2.3), where G is the harmonic drive and m is the
lumped mass of the fast rotating parts—the rotor and the harmonic drive
wave generator. We observe a torque mτ across the point M of the shaft.
The harmonic drive transforms the three dynamics quantities mḣm, mω and

mτ depending on the step-down ratio ρ, such that from its output point of
view, i.e. on point G, the mass m is seen rotating at an angular velocity
gω = ρ−1 mω, the output torque is gτ = ρ mτ , and the rotational inertia is
gḣm = ρ2 mḣm. We give a more detailed explanation on these conversions
further on.

Axiom 2.1. A reduction drive doesn’t inject power into a mechanical sys-
tem: it is conservative with respect to the power of the torques applied to
input shaft, except for the power loss due to friction and the potential power
stored in the elastic deformation of the drive components. The same prin-
ciple is applicable to cable driven coupling mechanisms like the differential
drives on iCub.

Note. In the harmonic drive, the friction lies in the contact between the
wave-generator and the flex-spline, and in the contact between the flex-spline
and the circular spline gear teeth.

Conversion of angular velocity and torque: We write the identity
between the input power and the output power. We consider the effect of
the generalized friction in the reduction drive as a negative power added to
the input:

Win +Wfriction =Wout (2.16)

⇔ mτ
mω + mτf,g

mω = gτ
gω, (2.17)

and in view of the unaltered input to output velocity ratio, we get:
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Fig. 2.20 Reduction drive dynamics conversions.

gω = ρ−1 mω ⇒ gτ = ρ mτ + ρ mτf,g (2.18)

⇔ gτ = ρ mτ + gτf,g (2.19)

⇔ gτ =

(

ρ+
gτf,g

mτ

)

mτ (2.20)

Where mτf,g is the generalized friction in the reduction drive expressed
on M and gτf,g the generalized friction expressed on G. We can either
consider that the resulting input to output torque ratio is changed from ρ to
(

ρ+ gτf,g

mτ

)

< ρ or consider an ideal friction-less reduction drive with torque

ratio ρ in series with a friction brake applying gτf,g.

Conversion of angular momenta: Since the derivative of an angular
momentum is equivalent to a torque, it is converted by the gearbox ratio
the same way, as follows:

gḣm = ρ mḣm = ρ (mIm
mω̇)

⇔ gIm
gω̇ = ρ (mIm ρ gω̇)

⇔ gIm = ρ2 mIm (2.21)

Which makes gIm be the apparent inertia of the spinning mass m. We
then realize that in the case of a motor group on iCub, even when the
standalone inertia of the rotor is negligible, it might not be the case of
its apparent inertia if the actuation chain is using a high ratio gearbox and
performing fast rotations: gIm is then four orders of magnitude greater than

mIm.

Static friction and stiffness in Harmonic drives In the study [Ched-
mail and Martineau, 1970], the authors characterized the friction and stiff-
ness in harmonic drives by running load tests on the drives, and observed
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that the static friction, referred to in the article as “dry friction torque”,
depended on the applied load and on the angular position of the rotating
shaft. This dependency was highlighted by the hysteresis in the experi-
mental results. They defined multiple hypothetical mechanical models of
the harmonic drive in order to match the experimental observations. The
models were always composed by three dynamic parameters: the friction be-
tween the gear teeth (function F); the stiffness of the flexspline (function S);
and the play in the gears (function P). These functions were then combined
in different, sequential arrangements: F-P-S; F-S-P; S-P-F; and so on. The
model best matching the experimental results turned to be the arrangement
S-F-P: stiffness-friction-play, with an almost null play and a friction torque
of 2.6Nm. We will later see that this value is fairly close to the hysteresis
observed in our own experiments.

Differential Cable Drives

Power, velocity and torque conversion: Differential drives, when used,
are commonly placed at the front end of a transmission chain for routing
and coupling the transmission power from a set of motors to a set of joints.
They can be found on iCub for coupling the waist yaw roll pitch joints to
three motors 0B4M0, 0B3M0 and 0B3M1 as shown in the close-up 2.7 and
illustrated in the functional sketch 2.21. The same principles apply here as
for the reduction drives. We define the vectors of motor velocities ωm and
torques τm as being the drive input, and the vectors of joint velocities ωj

and torques τj as being the the drive output. The mapping between mo-
tor and joint velocities is defined through a bijective linear transformation
T : ωm ∈ R

N 7→ ωj ∈ R
N , as done in [Nori et al., 2015b, 3.3.3]. T can be

expressed as an invertible coupling matrix defined as follows:

ωj = T ωm, (2.22)

The identity between the input and output mechanical power still holds
[Parmiggiani et al., 2009, section 3.3.3] [Nori et al., 2015b, section 3.3.3]:

τ⊤j ωj = τ⊤m ωm ∀ωj, ωm

=⇒ τ⊤j ωj = τ⊤m T−1 ωj

⇐⇒ τ⊤j = τ⊤m T−1

⇐⇒ τj = T−⊤τm . (2.23)
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(a)

(b)

Fig. 2.21 Sketch of the differential drive coupling the waist joints: the yaw,
roll and pitch joints are actuated by the motors 0B4M0, 0B3M0,and 0B3M1
in differential configuration. The plain red arrows are the joint rotation
axes, the dashed blue ones are the motor rotation axes (a). Motor and joint
positions are respectively noted θ ∈ R

3 and q ∈ R
3. A roll rotation by

an angle of q2, with q1 and q3 unchanged, implies a rotation of 0B4M0 by
θ1 = −q2, 0B3M0 and 0B3M1 respectively by θ2 = q2 and θ3 = q2. A yaw
rotation by q1 implies an equal rotation of 0B4M0 modulo the transmission
ratio (b). Source: [Nori et al., 2015b, Fig.5, 6].

39



Computation of coupling matrix T : In the case of the differential drive
on the iCub’s waist joints, let the velocity vectors be:

ωm =
[

θ0b4m0 θ0b3m0 θ0b3m1
]

=
[

θ1 θ2 θ3
]

∈ R
3,

ωj =
[

torsoyaw torsoroll torsopitch
]

=
[

q1 q2 q3
]

∈ R
3.

We assume the geometry of the differential drive to be known accurately,
more specifically the pulley diameters required for computing the transmis-
sion ratios: R = 0.04m and r = 0.022m as illustrated in the figure 2.21a. In
this particular coupling configuration, it is easier to compute the inverse ma-
trix T−1 than the direct transformation matrix T . We compute its columns
one by one, by ”moving” a single joint DoF qi, keeping the others unchanged,
and observing the impact on the motor angular positions. For instance, a
roll rotation by an angle of q2, with q1 and q3 unchanged, implies a rotation
of 0B4M0 by θ1 = −q2, 0B3M0 and 0B3M1 respectively by θ2 = q2 and
θ3 = q2, as shown below:





θ1
θ2
θ3



 =





× −1 ×
× 1 ×
× 1 ×









0
q2
0



 (2.24)

After building the same way the first and third columns, we get:

T−1 =





R
r

−1 0
0 1 −1
0 1 1



 , T =





r
R

r
2R

r
2R

0 0.5 0.5
0 −0.5 0.5



 , T−⊤ =





R
r

0 0
−1 1 1
0 −1 1



 .

(2.25)

Static friction and stiffness We will not analyze the effect of the cables
stiffness or the friction in the differential drive, instead we will assume that
effect can be modeled the same way we did for the harmonic drives model,
only this time with higher static friction and lower stiffness.
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Fig. 2.22 Kinematic chain representing a single joint.

2.4 Methodology

2.4.1 Assembling the Joint Actuation Model

We consider a joint actuation chain composed of a single motorM, a gearbox
(or harmonic drive) G , and a rotary joint, as shown in Fig 2.22. A PWM
input voltage feeds the motor, and the actuation chain delivers a joint torque
τJ . For building the full joint transfer function mapping the input PWM
to the output joint torque, we concatenate the sub-models described in the
previous section—the motor model ((2.15)) and the harmonic drive model
((2.18), (2.19), (2.21))—and integrate them in the system Euler equation.

Angular momenta and Euler equation

We can write the Euler dynamics equation for the system, which equates
the sum of torques applied on the system to the time derivative of the added
angular momenta of the rotating elements:

N
∑

i=1

τi =
M
∑

k=1

ḣk (2.26)

for N external torques applied to the system, and M rotating bodies. In
this analysis we consider the child link rotating with the joint as an external
element with respect to the joint actuation system. The motor rotor and
the gearbox are the bodies with significant inertia worth accounting for.
The child link rotating with the joint is treated as an external element with
respect to the joint actuation system:

τpwm,m + τf,g + τf,j − τj = ḣm + ḣg (2.27)
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where Im and Ig are respectively the rotational inertia of the motor and
the gearbox projected on the rotation axis such that Im ω̇g and Ig ω̇g are
scalars. In the above equation, all the derivatives are defined with respect
to the same inertial frame, and expressed on the same point of the axis G
at the reduction drive output.

Fig. 2.23 Expanded single joint actuation model: parallel representation of
the physical model and the transfer function PWM 7→ (Im + Ig)ω̇. The
diagram shows the input parameter PWM, all the torques applied to the
system and the resulting Angular Momentum. Since τJ is an output torque,
it appears as a negative value.

In view of (2.18), (2.19) and (2.21), we expand all the terms and rewrite
the equation solving τJ :

τpwm,m + τf,g + τf,j − (Im + Ig) ω̇j = τj (2.28)

⇐⇒ρkpwm,τ PWM−ρ2kbemf,τ ωj + ρτf,m

+ τf,g + τf,j − ρ2 (Im + Ig) ω̇j = τj
(2.29)

Equivalent Motor PWM Torque

We define the motor PWM torque as the torque produced after the PWM
input parameter and applied on the rotor, not accounting for any friction
effect of mechanic or electric nature, i.e. the linear term ρKpwm,τ PWM =
K∗

pwm,τ PWM, K∗
pwm,τ being the equivalent parameter of the [motor + har-

monic drive] block:

K∗

pwm = ρKpwm,τ (2.30)
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Fig. 2.24 Single joint actuation transfer function PWM 7→ τj in the Laplace
domain. M∗ represents the motor block grouping the brush-less motor and
the harmonic drive.

Equivalent Friction model

We can see that a series of terms contribute to the overall friction torque
applied to the shaft: the friction on the rotor bearings ρτf,m, the Back
EMF torque ρ2kbemf,τ ωj, the friction in the reduction drive τf,g, and the
friction on the joint bearings τf,j. The approach adopted in this methodology
consists in grouping all these friction terms in a single friction model, which
could be the Static/Coulomb/Viscous or the Stribeck friction model.

All the terms are grouped in a single Static friction term τs, a single
Coulomb friction term τc and a single viscous friction term τv: all the friction
on the bearings contributes to the the terms τc and τv, although we could
consider them negligible with respect to the friction in the harmonic drive
and the Back EMF; the Back EMF in particular is a linear function of ωj and
so has the properties of a viscous friction; the friction on the bearings should
be negligible with respect to the other terms; the friction in the harmonic
drive contributes to the three terms τs, τc and τv, with a significant static
friction component as we will observe in the experiment results.

Assumption 2.1. For professional grade bearings, or at least in the case
of iCub brushless motors and joints bearings, the static friction on those
bearings is negligible with respect with all the other friction terms and will
be ignored.

τc = τc,m + τc,g + τc,j = −Kc sign(ωj)

τv = τv,m + τbemf + τv,g + τv,j = −Kv ωj

τs = τs,g(ωj, σs)

τf (ωj, σs) = τc(ωj) + τv(ωj) + τs(ωj, σs),

(2.31)
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Where τc,·, τv,· and τs,· relate to the nature of the friction—respectively
Coulomb, viscous and static—and τ·,m, τ·,g, τ·,j relate to the origin of the
friction—respectively the motor bearings, harmonic drive (gearbox) and
joint bearings. σs is the maximum static friction measured at zero velocity.

Identification of The Equivalent Model Parameters

In view of (2.29), (2.30) and (2.31), we can rewrite the output joint torque
as:

gτj = K∗

pwm PWM− (gIm + gIg)
gω̇ −Kc sign(

gω)−Kv
gω + τs (2.32)

The identification of the motor and gearbox inertial parameters Im + Ig
is out of the scope of this thesis, so we assume they are given. We then need
to identify the motor parameter K∗

pwm and the friction parameters τs, Kc

and Kv.
The identification will be performed in two phases: the first phase identi-

fies the viscous friction parameters τs, Kc andKv; the second phase identifies
the motor parameter K∗

pwm. This approach allows to simplify the fitting of
the model parameters by reducing the problem dimension for each phase of
the identification.

2.4.2 First phase - friction parameters identification

Symmetric Coulomb/viscous Friction Model

We initially only consider the Coulomb and viscous friction components, for
describing the base estimation algorithm, and will later introduce the static
friction component. We need to place the system in a condition where only
the friction torques are present and acting on the shaft. This is achieved by
setting the motor input PWM to zero, canceling the motor PWM torque
and leaving only the motor internal mechanical friction and the counter
torque due to the Back EMF. In normal operating conditions, the Back
EMF adds a significant contribution to the overall joint actuation friction,
and for this reason, it’s crucial to account for that contribution in this phase
of the identification. The Back EMF creates induced currents in the motor
electromagnetic coils circuit 3 which result in a torque opposed to the motor
PWM torque. Setting the PWM parameter as mentioned above, instead of
turning off the motor, allows to keep the stator circuit closed and the Back

3located in the stator in the case of brushless motors
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EMF current to flow. In view of (2.32) and PWM = 0, we express the joint
torque as follows:

gτj + (gIm + gIg)
gω̇ = −Kc sign(

gω)−Kv
gω (2.33)

Where the joint velocity gω and acceleration gω̇ are respectively mea-
sured from joint encoders or inertial sensors. The joint torque gτJ is mea-
sured by a joint torque sensor or estimated from Force-Torque sensors mea-
surements and a modified inverse dynamics algorithm as seen in [Traver-
saro, 2017, Chapter 4 section 4.4.2]. We get the training data from a set
of measurements, and then fit the model (2.33) by defining and solving the
over-constrained linear system below:

X Θ = y (2.34)

With,

y = gτj + (gIm + gIg)
gΩ̇

X =

[

sign(ω1) sign(ω2) . . . sign(ωn)
ω1 ω2 . . . ωn

]⊤

Θ =
[

−Kc −Kv

]⊤

(2.35)

where ωi is the measured velocity at instant i, gΩ̇ is the column vector
of the joint angular acceleration measurement samples and gτj is the column
vector of the joint torque measurement samples. Obtaining the system (2.35)
is straightforward as it’s just the matrix formulation of (2.33). The linear
least squares solution can be computed by inverting the matrix X through
a Moore-Penrose left pseudo-inverse:

Θ =
(

X⊤X
)−1

X⊤ y (2.36)

X is of full column rank since the second column is an evenly distributed
set of velocities and so cannot be a multiple of the first column which is a
series of ±1 elements. The matrix X⊤X is well conditioned, assuming that
we use a reasonable range of joint velocities and have a low level of noise in
the encoder measurements. In any case, we verify numerically the condition
number of that matrix in the experiments in section 2.5.
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(a) (b) (c) (d)

Fig. 2.25 Selection step and ramp functions used for identifying the friction
parameters in (2.37). a: u+(ω), b: u−(ω), c: r+(ω), d: r−(ω)

Asymmetric Coulomb/viscous Friction Model with respect to the
Rotation Direction

Depending on the properties of the gearbox or harmonic drive, the coupling
pulleys for a cable driven transmission, we can consider the friction parame-
ters to change with the rotation direction. We’ve adapted the linear system
(2.35) to account for this property, by using a set of four unknowns Kc−,
Kv−, Kc+, Kv+ instead of two, and by using step and ramp functions in-
stead of the sign functions, as shown in Fig. 2.25. We can now redefine the
linear system as:

y = gτj + (gIm + gIg)
gΩ̇

X =









u−(ω1) u−(ω2) . . . u−(ωn)
r−(ω1) r−(ω2) . . . r−(ωn)
u+(ω1) u+(ω2) . . . u+(ωn)
r+(ω1) r+(ω2) . . . r+(ωn)









⊤

Θ =
[

−Kc− −Kv− −Kc+ −Kv+

]⊤

(2.37)

Proof. We will show here that the system (2.37) is equivalent to writing
(2.33) for every measurement pair {ωi, gτj,i} , ∀i ∈ [0, N ], N being the num-
ber of acquired samples, but applying Kc−, Kv− for ωi < 0 and Kc+, Kv+
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for ωi > 0:

(2.37) ⇐⇒ ∀i ∈[0, N ],

yi =−Kc− u
−(ωi)−Kv− r

−(ωi)

−Kc+ u
+(ωi)−Kv+ r

+(ωi)

=

{

−Kc− sign(ωi)−Kv− ωi, ωi < 0

−Kc+ sign(ωi)−Kv+ ωi, ωi > 0

(2.38)

This improvement can be systematically applied, adding a minor compu-
tation cost, and resulting in a more robust estimation. It is fully compatible
with the estimation procedure on coupled joints 2.4.4.

Stribeck/Coulomb/viscous friction model

If the static friction in the reduction drive is significant, for instance around
2Nm or higher, the results obtained with the models proposed above will
not result in an accurate fitting, giving a good approximation at higher
velocities, and a poor approximation near zero velocities, where the friction
torque curve appears to be quite non linear, and right before the state
transitions to a “stick” phase, as we will observe in the experiment results
(2.5.1). The non linearity and the unaccounted effects of the “slip-stick”
phase transitions are aggravated when the joint reaches or crosses the zero
velocity.

For that reason we now integrate in the estimation algorithm the model
combining the Coulomb and Viscous friction components with the Stribeck
effect τs(ω) Van Geffen [2009] Harnoy et al. [2008]. The Stribeck effect
is modeled here with an empiric non linear function, but still linear with
respect to the fitting parameters. The function we are looking for has to
approximate the torque response in the plot 2.29, which strongly resembles
the Stribeck model depicted in 2.9 and analyzed closer in this section. For
that and in view of (2.31), the overall friction function τf (ω) has to meet
the following properties:
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Fig. 2.26 Decomposition of Stribeck model into Coulomb/Viscous + expo-
nential function.

lim
ω→0−

τf (ω) = σ−s (2.39)

lim
ω→0+

τf (ω) = σ+s (2.40)

lim
ω→+∞

τf (ω) = τc(ω) + τv(ω) (2.41)

lim
ω→−∞

τf (ω) = τc(ω) + τv(ω) (2.42)

By applying (2.31) in each of the above equations we get:

lim
ω→0−

τs(ω) = σ−s − τc(ω)− τv(ω) = σ−s − τc(ω) (2.43)

lim
ω→0+

τs(ω) = σ+s − τc(ω) (2.44)

lim
ω→∞

τs(ω) = 0 (2.45)

We could have chosen for τs(ω) an hyperbolic function ∝ 1
ωn but such

function would have a singularity at ω = 0 that could be avoided with the
shifted function: τs(ω) ∝ 1

(ω−ω0)n
, only this introduces a new parameter

ω0 with respect to which τs would be non-linear. The good candidate we
found is an exponential function linearly parameterized. Let’s consider the
function g(x, σ) = (σ −Kc) e

−x. τs(ω) is symmetric with respect to the
origin, coincides with g(ω, σ+s ) in the half-plane ω > 0, and coincides with
−g(−ω, σ−s ) in the half-plane ω < 0, as illustrated in figure 2.26. We can
then write:
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τs(ω) = u+(ω)
(

σ+s −Kc

)

e−ω − u+(−ω)
(

σ−s −Kc

)

eω

= −
(

u+(ω) e−ω + u−(ω) eω
)

Kc

+ u+(ω) e−ω σ+s

+ u−(ω) eω σ−s

(2.46)

where u+ and u− are the step functions depicted in figure 2.25 (a) and
(b). So the overall friction can be posed as the linear system:

y = gτJ + (gIm + gIg) Ω̇g

X = X1 +X2

Θ =
[

−Kc −Kv −σ+s −σ−s
]⊤
,

(2.47)

with X1 and X2 defined as follows:

X1 =









u+(ω1) (1 + e−ω1) . . . u+(ωn) (1 + e−ωn)
r+(ω1) . . . r+(ωn)

u+(ω1) e
−ω1 . . . u+(ωn) e

−ωn

0 . . . 0









⊤

= diag
(

u+(ω1) . . . u
+(ωn)

)









(1 + e−ω1) . . . (1 + e−ωn)
ω1 . . . ωn

e−ω1 . . . e−ωn

0 . . . 0









⊤
(2.48)

X2 =









u−(ω1) (1 + eω1) . . . u−(ωn) (1 + eωn)
r−(ω1) . . . r−(ωn)

0 . . . 0
u−(ω1) e

ω1 . . . u−(ωn) e
ωn









⊤

= diag
(

u−(ω1) . . . u
−(ωn)

)









(1 + eω1) . . . (1 + eωn)
ω1 . . . ωn

eω1 . . . eωn

0 . . . 0









⊤
(2.49)

2.4.3 Second phase - Motor Parameter Identification

Algorithm The friction coefficients having been identified, we can now
use them in the joint dynamics equation (2.32) for identifying K∗

pwm. The
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approach is then equivalent, defining a system correlating this time the input
duty cycle PWM and the output joint torque τj, where K

∗
pwm is the only

unknown parameter. From (2.32) we can write:

X Θ = y (2.50)

With,

y = gτj + (gIm + gIg)
gΩ̇+Kc sign(

gΩ) +Kv
gΩ− gτs

X =

[

1 1 . . . 1
PWM1 PWM2 . . . PWMn

]⊤

Θ =
[

τ0 K∗
pwm

]⊤
,

(2.51)

where sign(gΩ) =
[

sign(ω1) . . . sign(ωn)
]⊤

. τ0 accounts for an eventual
offset current in the stator windings. A null motor current and torque could
then be obtained from an input value PWM = −K−1

pwm τ0. The system is
solved as the previous one, through the computation of a Moore-Penrose left
pseudo-inverse.

Note. As done for the friction parameters identification in 2.4.2, we should
verify that X is well conditioned. Again, X is of full column rank since the
second column is an evenly distributed set of PWM setpoint values and so
cannot be a multiple of the first column. The matrix X⊤X is well condi-
tioned, assuming that we use a reasonable range of PWM values with respect
to the noise level of the y measurements.

2.4.4 The Coupled Joints Case

The kinematic and dynamic coupling implemented by the differential drives
has to be accounted for when correlating joint with motor torques. this
aspect significantly impacts the measurement procedures and the estimation
results. Let us consider three joints J1, J2, J3 actuated by three motors
Ma,Mb,Mc through a differential coupling. We depict in Fig. 2.27 the
respective actuation system.

Velocities and torques transformation

We’ve seen in section 2.3.4 how to transform velocities (2.22) and torques
(2.23) between the input and the output of a coupling system like the dif-
ferential drive on the torso. If we apply (2.22) and (2.23) to the quantities
illustrated in the figure 2.27, we get:
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Fig. 2.27 Kinematic chain representing three coupled joints, the gearboxes
and motors. mωc,

gωc and gτc are respectively shaft angular velocities and
the measured or estimated torque on the motor C transmission chain. τj,3
is the output joint torque estimated on the joint J3.

ω̄j = T gω̄, with ω̄j =





ωj,1

ωj,2

ωj,3



 , gω̄ =





gωa
gωb
gωc



 , (2.52)

˙̄ωj = T g ˙̄ω, (2.53)

τ̄j = T−⊤
gτ̄ , with τ̄j =





τj,1
τj,2
τj,3



 , gτ̄ =





gτa
gτb
gτc



 , (2.54)

Identification Joint Wise or Motor Wise

Regarding the algorithms proposed in this section, like (2.35) and (2.51), we
have the choice between two methods: either we express all the quantities at
the joint level and we perform an identification joint wise; either we express
them at the point G of each motor group shaft (a), (b) and (c), and we per-
form the identification motor wise, applying the algorithms independently
on each motor group M∗

a , M
∗

b , M
∗
c . The first approach seems simpler from
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an execution point of view, assuming it is easier to constrain the coupled
joints motion to one joint at a time, but more complex regarding the identi-
fication system. The second method simplifies the identification algorithm
but it requires a more elaborated external actuation of the joints for moving
the analyzed motor in the desired range or following a desired approximate
velocity. We first need to verify how the identification algorithm unfolds for
each method.

Joint wise identification each joint ”sees” a virtual motor resulting from
its interaction with the three coupled motors. During the data acquisition,
each joint should be moved alone, which results in the coupled motors po-
tentially all moving simultaneously, depending on the terms of the coupling
matrix T redefined in (2.52) and (2.54). For instance, in the case of joint 1
we would get:

gω̄ = T−1 ω̄j =





(T−1)1,1 × ×
(T−1)2,1 × ×
(T−1)3,1 × ×





[

ωj,1 0 0
]⊤
,

gτ̄ = T⊤
[

τj,1 0 0
]⊤
,

In view of (2.52) and (2.54), we rewrite (2.32) as follows:

τ̄j = T−⊤
(

K∗

pwm PWM− gI
g ˙̄ω −Kc sign(gω̄)−Kv

gω̄ + τ̄s
)

, (2.55)

where K∗
pwm, Kc, Kv and gI are respectively the diagonal matrices of the

motor groups torque, Coulomb and viscous friction coefficients and inertia,
and PWM, τ̄s are respectively the vectors of motor groups inputs and static
friction:

K∗

pwm =





K∗
pwm,a 0 0

0 K∗

pwm,b 0

0 0 K∗
pwm,c



 , Kc =





Kc,a 0 0
0 Kc,b 0
0 0 Kc,c



 ,

Kv =





Kv,a 0 0
0 Kv,b 0
0 0 Kv,c



 , PWM =





PWMa

PWMb

PWMc



 , τ̄s =





τs,a
τs,b
τs,c



 ,

sign(gω̄) =
[

sign(gωa) sign(gωb) sign(gωc)
]⊤
,
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For identifying the friction parameters as done in the previous sections, we
set PWM = 03×1. In view of (2.55), we can then write the joint torques as
follows:

τ̄j + T−⊤
gIT

−1 ˙̄ωj = T−⊤ (−Kc sign(gω̄)−Kv
gω̄ + τ̄s) ,

= −T−⊤Kc sign(T−1 ω̄j)− T−⊤Kv T
−1 ω̄j, (2.56)

so we get the composite friction coefficients K̃c and K̃v such that:

K̃c = T−⊤Kc, (2.57)

K̃v = T−⊤Kv T
−1. (2.58)

The matrices K̃c and K̃v are not diagonal and we end up with a higher
dimension problem, tripling the number of terms to identify (eighteen in-
stead of six). The same way we built the identification linear system (2.35)
from (2.33), we build the identification system for a single joint k from the
kth line of (2.56) as follows:

y = τj,k + Ω̇j colk

(

T−⊤
gIT

−1
)

X =

[

sign(T−1 ω̄j,1) sign(T−1 ω̄j,2) . . . sign(T−1 ω̄j,n)
ω̄j,1 ω̄j,2 . . . ω̄j,n

]⊤

Θ =
[

rowk

(

−K̃c

)

rowk

(

−K̃v

)]⊤

(2.59)

where ω̄j,n is the vector of all three joints measured velocities at instant
n, Ω̇j is the n × 3 matrix of measured angular accelerations from all the
three coupled joints, τj,k is the column vector of the joint k torque measured
samples, colk(·) and rowk(·) are respectively the kth column and kth row of
the argument matrix. The linear least squares solution can be computed
the same way as for (2.35).

Identifying the K̃c and K̃v terms In order to identify Θ, relative
to joint k, we have to move all the joints and get a reasonable range of
velocity measurements (and accelerations if we do not neglect the inertial
terms) for each joint. If only one joint is moved, like for instance joint j, and
the remaining two are constrained in a fixed position, we obtain the velocity
to torque curve characterizing the cross-gains K̃v,kj and K̃c,kj which define
how the motion of joint j affects the torque measured on joint k.
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Note. Even if a single joint is being moved using an external force (moving
manually the child link of the joint), reaction torques can appear on the
constrained still joints, due to the multiple coupled friction torques coming
from the motor groups.

This analysis highlights the fact that the dynamics of the moved joint
depends on the dynamics of all three motor groups. The model identified
for a specific joint will inherit the combined uncertainties of the respective
motor groups parameters, typically due to slip/stick phase transitions and
other dynamics behaviors not accounted in the motor group models.

Motor wise identification This second approach is simpler: we first
transform all the joint velocities and torque measurements ω̄j and τ̄j, into
the respective transformed quantities gω̄ and gτ̄ expressed in the point G
of the motor groups shafts (a), (b) and (c), as per (2.52) and (2.54) and
as illustrated in Figure 2.27. We then just have to apply to each motor
separately the dynamics equation (2.32), replacing gτJ by gτx and ωg by
gωg,x, x being the motor a, b or c selected for identification. At last we solve
the equation for the friction and motor parameters following the algorithms
proposed in 2.4.2 and 2.4.3, ignoring the coupling. This converts the problem
into three independent problems, each on a single motor actuation chain.

For instance, in the case of motor Mc we would use gωc and gτc
in the system for identifying the friction as follows:

y = gτc + (gIm,c + gIg,c)
gΩ̇c

X =

[

sign(gωc,1) sign(gωc,2) . . . sign(gωc,n)
gωc,1

gωc,2 . . . gωc,n

]⊤

Θ =
[

−Kc,c −Kv,c

]⊤

(2.60)

Where gΩ̇c is the column vector of the motor Mc angular acceleration time
series, measured or computed using (2.53).

This method requires to block the remaining motors not targeted for
identification, in this case, Ma and Mb, in order to properly drive the ana-
lyzed motor (Ma) rotation through an external force applied on the coupled
joints.

We followed the second method, which presents the following benefits:
it is less sensitive to model uncertainties that can arise from bad estimates
of the coupling reduction ratios and the cables elongation in case of a cable
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driven differential; it allows to track unexpected slip/stick phase transitions
separately for each of the three motor actuation chains; whatever the com-
plexity of the coupling it will be easier to cover a desired range of velocities
on each motor; it allows to leave the identification of the coupling model to
a separate task.

Note. In platforms having Field Oriented Control motor drives, the motor
velocity can be estimated from the measurements of a high resolution en-
coder placed on the motor stator, which benefits from much higher accuracy
compared to the typical three hall-effect sensors used in motors driven by a
Trapezoidal Control.

2.5 Experimental Procedure and Results

We have tested the estimation algorithms proposed in section 2.4, on the
robot iCub, which actuation system and sensors framework were presented
in section 2.2. We have estimated the joint friction and motor parameters on
the right leg knee and on the coupled joints—yaw, roll, pitch—connecting
the waist to the torso. The sensors data were captured at 100Hz sampling
rate: joint positions, velocities, torque and motor velocities.

2.5.1 First Phase - Friction Parameters Identification

Procedure

After setting the PWM to zero, we apply an external torque to the joint in an
oscillating motion 4. It is preferred to avoid significant accelerations in order
to minimize and eventually neglect the inertial terms, otherwise we use the
inertial sensors measurements for estimating and accounting for the inertial
terms. We then apply the method described in 2.4.2 on the acquired data.
When applying the model, we verified numerically that the matrix X⊤X is
well conditioned, which is a requirement for the pseudo-inverse computation
to give an accurate solution.

Experiment Results

We present here the plots from the experiments on the friction estimation
on two single joints from the right leg, free of any coupling or cable driven
actuation: the right knee (2.29), the right hip roll (2.30a, 2.30b).

4This can be done manually or with an external actuation.
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Fig. 2.28 Friction model fitting results on the right leg knee. Grey dots:
the acquired samples. Plain cyan: Coulomb/Viscous model fitted with the
method proposed in 2.4.2. dashed red line: Stribeck model. The identified
parameters are: Kc ∼ 1Nm, Kv ∼ 0.30Nms/ deg.

After testing the procedure with the asymmetric model proposed in 2.4.2,
we verified that the friction (Kc, Kv) in the transmission system was rather
symmetric at least for the Coulomb and viscous friction parameters. We
then tried the symmetric Coulomb/Viscous method 2.4.2 on the same data.

As we can observe in the plot 2.28, the model (cyan color line) doesn’t
seem to fit well the data near the zero velocity: while at zero velocity the
model gives a Coulomb friction Kc ∼ 1Nm, the measured torque is twice as
high, rising up to ∼ 2Nm.

Later tests on most of the joints on the right leg of iCub—hip pitch/roll/yaw,
knee—revealed the same consistent increase of friction when the joint ve-
locity decreases to zero, similar to the Stribeck effect, as can be observed
in all the plots of friction torque in this section. As explained in 2.3.2, at
very low speeds, when the surfaces are in solid-to-solid contact, we are in
a regime called “Boundary Lubrication”, the sheared solid surfaces being
the boundary lubricants. For a given extension of that regime and viscous
friction coefficient, we can get a friction curve as the one observed on the leg
joints: when the angular velocity increases, starting from zero, the friction
keeps a constant value equal to the identified static friction σs (“Boundary
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Fig. 2.29 Friction model fitting results on the right leg knee. Blue dots: the
acquired samples. Plain red: Stribeck/Coulomb/Viscous model fitted with
the method proposed in 2.4.2. The identified parameters are: static frictions
σ+s ∼ 1.27Nm, σ−s ∼ 1.95Nm; Kc ∼ 0.85Nm; Kv ∼ 0.31Nms/ deg. 1©:
Boundary Lubrication regime, 2©: Full Fluid Lubrication regime (viscous
friction).

Lubrication”) until the viscous friction becomes dominant.
Figure 2.29 illustrates the Stribeck model fitted on the same data as

2.28. Unlike the Coulomb/Viscous model, the Stribeck model gives a good
estimate of σ+s and σ−s . Although we get approximately the same coefficient
Kv, Kc differs significantly between the two models.

A better fit of the “Boundary Lubrication”: The constraint on the
derivative of the model function at zero velocity, [δτf/δq̇]q̇=0 = 0, ensures
that we better fit the “Boundary Lubrication” plateau. we can observe the
fitting improvement in figure 2.29, where we applied the constraint on the
right derivative, i.e. [δτf/δq̇]q̇=0+ .

Further tests on the right leg hip roll provided comparable results, as
illustrated in 2.30a and 2.30b.

In 2.30a the motion was slow when changing direction. We can ob-
serve the same Boundary Lubrication around zero velocity as on the knee
joint. The identified parameters are: σ+s ∼ 2.49Nm, σ−s ∼ 0.96Nm; Kc ∼
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(a) Slow change of direction.

(b) Fast change of direction.

Fig. 2.30 Friction model fitting results on right leg hip roll. (a) Slow change
of direction. The “Boundary Lubrication” is visible around zero velocity.
(b) Fast change of direction (higher accelerations). Results in additional
concentric hysteresis cycles.
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Joint σ+s (Nm) σ−s (Nm) Kv (Nms/ deg)

right hip pitch 1.31 2.24 1.16
right hip roll 2.49 0.96 0.50
right hip yaw 1.30 2.58 1.22
right knee 1.27 1.95 0.69
right ankle pitch 2.90 0.71 1.32
right ankle roll 2.05 1.29 1.20

Table 2.1 Friction parameters extimation results on the iCub right leg joints.

0.76Nm; Kv ∼ 0.50Nms/ deg. A higher acceleration motion results in ”out-
lier” samples sitting away from the fitted friction model, in concentric hys-
teresis cycles. As mentioned in 2.3.4, this can be due to the stiffness of the
flex-spline in the Harmonic drive. A spring or a flexible element charac-
terized by a stiffness will transform an input torque like a low pass filter,
introducing delay and thus an hysteresis response.

We have run a friction estimation trial on all the right leg joints, listed
in the table 2.1. These results haven’t been validated yet with the low level
controller. On top of that, the present low level controller doesn’t integrate
yet static nor Coulomb friction compensation.

Using the angular acceleration measurement for removing outliers

As we will see in the experiments done on the right leg hip roll, the friction
torque measurements present a significant number of outliers that lower the
identifiability of the friction model parameters. We propose here a method
for efficiently filtering those outliers, while making the training data acquisi-
tion process more reliable. We use the rotation acceleration measurement as
a criterion to discard the samples which are not eligible for the static friction
fitting. Actually, the hysteresis observed in 2.30b appears and is aggravated
as soon as we cross the zero velocity with ever greater acceleration. A sim-
ple first approach to avoid that condition would be to discard the samples
acquired for which the angular acceleration is above a given threshold, as
illustrated in 2.31.
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(a) 3-D view with angular acceleration axis.

(i) (ii)

(iii) (iv)

(b) Progressive filtering of the outliers by applying an acceleration upper threshold

of 200 deg /s
2
(ii), 100 deg /s

2
(iii), 10 deg /s

2
(iv).

Fig. 2.31 Friction model fitting results on right leg knee, with acceleration
axis for filtering the outliers.
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The Coupled Joints Case

As explained in the methodology section 2.4.4, for identifying the joint pa-
rameters of a target motor, e.g. Mc, which is part of a coupling of motors
[Ma,Mb,Mc]:

• we first block the other two motorsMa andMb in any desired position.
We can do such by using position control with the controller PID gains
as high as possible before the low level controller becomes unstable. As
on iCub we don’t have an interface for setting a single motor in position
control, we had to emulate it at high level through PWM control and
a custom PID controller using the same gains as the original one.

• we then apply an external torque to the coupled joints, while measuring
the joint velocities and torques.

We performed the experiment on the torso motors 0B4M0, 0B3M0,
0B3M1 that drive the joints torso-yaw/pitch/roll. The external force was
applied by pushing the upper arms, making the torso rotate following a tra-
jectory constrained by two blocked motors over three. The results are de-
picted in the figures 2.32b and 2.32b. The fitting problem using the Stribeck
model wasn’t solvable for the estimation on 0B3M0 or 0B3M1, due to large
hysteresis distortion of the measurements caused by the cable driven differ-
ential stiffness. We could still identify the maximum observed static friction
σs ∼ 5Nm, which will have a great impact in the motor parameter K∗

pwm

identification.
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(a) Motor 0B3M0 friction model.

(b) Motor 0B3M1 friction model.

Motor Kc (Nm) Kv (Nms/ deg)

torso motor 3M0 0.73 0.47
torso motor 3M1 0.10 0.54

(c) Identified Coulomb and viscous friction parameters.

Fig. 2.32 Friction model fitting results on the torso motors 0B3M0 and
0B3M1. The fitting was done using a Coulomb/Viscous model.
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2.5.2 Second Phase - Motor Parameter Identification

Two alternative procedures were used for generating the training data map-
ping a range of PWM values to a range of outputs y mentioned in (2.51).

Procedure A - PWM indirect control

This procedure is the one requiring the simplest implementation: we set
the target joint in position control, with a fixed, arbitrary, desired position;
any external torque about the joint axis results in a rotation detected by the
joint encoder; this triggers the PID controller to adjust the PWM in order to
bring the joint back to the initial position. While exploiting this behavior, we
apply an oscillating external torque covering an even distribution of torques
within a reasonable portion of the working range of the actuation chain.
We’ve chosen for the presented experiments a range of moderate torques
often up to 30Nm (10% of the PWM fullscale).

On single joints, we obtained results which were good enough for iden-
tifying the joint torque model parameter but the accuracy was affected by
some quantization and hysteresis effects, as we can see in the experiment
results that follow.

Nevertheless the results turned to be worse for cable driven coupled
joints: the training data, was inadequate for model fitting, being affected
by two main aggravated iissues: quantization and hysteresis resulting in
sloppiness in the identified parameters. On top of that the method also
suffers from poor repeatability.

Quantization: We can observe in the plots a significant quantization
along the PWM axis, as illustrated in the diagram 2.33 representing a typ-
ical plot of the function PWM 7→ τj from data acquired using this method.
This problem originated in the PID controller. Its response has actually the
form:

∆PWM = PID(q − q∗) (2.61)

where ∆PWM is the corrective term from the PID, q and q∗ are re-
spectively the measured and the desired joint positions. An update of the
correction term ∆PWM is triggered by 1 LSB step of the joint encoder mea-
surement, and so, depends on the encoder resolution (refer to Appendix A
for further details). The minimal ∆PWM step would then be Kpδq and pro-
duce a visible quantization depending on the PID gain Kp and the encoder
resolution δq, as we can see in figure
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Fig. 2.33 Quantization and hysteresis in the PWM to torque characteristics.

We can estimate the expected quantization as follows. We assume that
for the hip roll we have a PID gain Kp = 2066.66 pwm.mach.units/ deg. The
resolution of the joint encoders being approximately 360

Fullscale
∼ 0.09deg, we

get a PWM step of ∆PWM ∼ 206 pwm.mach.units, which would give, in
%pwm, 206

FULLSCALEpwm
100 ∼ 206

32000100 ∼ 0.64%pwm. On top of that,

there is the PID Ki integral term which probably explains why we can have
regular quantization and a continuous cloud of points at the same time: the
quantization should appear if the integral term of the PID is null (Ki = 0)
or if it saturates.

Hysteresis: In some cases this can be aggravated by the coupled effect
of the transmission elasticity and the static friction generating an alternate
succession of stick/slip phases which results in hysteresis.

The combined hysteresis and quantization induced in the training data
made it very difficult to fit a simple model, even linear by parts, or a linear
combination of simple non-linear functions.

Poor repeatability: The procedure is not repeatable, as the external
force is being applied manually with a subjective intensity and velocity that
depend on the tester and can vary from one trial to another for the same
tester. This makes it difficult to detect anomalies in the data or to use the
data as a reference in Key Performance Indicator tests.
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Fig. 2.34 Fixture attached to the static base pole, keeping the upper arms
fixed, during the waist/torso joints direct PWM control procedure B. The
F/T sensors are located between the fixture attach point and the waist/torso
joints. The shoulders are in position control such that the upper arms and
the torso can be considered as a lumped single rigid body.

Procedure B - PWM direct control

With this procedure: we set the PWM directly while keeping the joint still
by applying an external reaction force; that force is either applied manually
by holding the joint child link, either fixing that link to an external fixture.
The fixture is the ideal solution, but even in the case of the manual operation
we expect some improvements in the results, more specifically getting rid of
the quantization, and having repeatable results.

Remark 2.2. it is important for the Force/Torque sensor providing the
measurements—used in the joint torque estimation—to be located between
the target joint and the point on the respective child link where the external
force is applied. For instance in the case of the torso joints calibration on
the iCub robot, since the robot is fixed on a static pole, and the Force/Torque
sensors at play are located in the upper arms right below the shoulders, the
tester should grab or fix with an external fixture the elbows or forearms of
the robot, as illustrated in figure 2.34.

The actual procedure consists in the followings steps:

• we fix the actuated link as explained earlier,

• the PWM is then set following a periodic pattern, of constant mag-
nitude and frequency, in our case a triangle waveform of amplitude
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Fig. 2.35 Hysteresis in the PWM to torque characteristics due to static
friction in the harmonic drive.

PWM = 8%pwm, and frequency f = 0.3Hz,

• the PWM signal is sampled at 100hertz,

• the pattern stops after 60 seconds, and the PWM final value is 0%pwm.

We perform the test again on the same single joint, the right hip roll, free
of any coupling or cable driven actuation. We can see the result in figure
2.35: a torque curve free of quantization. We compare in figure 2.36 the old
against the new procedure results. The joint output torque obtained through
the direct PWM control is now free of quantization, presents an hysteresis,
as expected, but has a a rather clear shape. A zoom in of the PWM time
series (2.36a & 2.36c) shows that in the case of the PID controlled PWM,
the resulting PWM signal is quantized and oscillating due to the encoder
vibrations. There is some quantization though with the new procedure but
this is due to delays in the Matlab application, which is not running a real-
time process, and is considered negligible in the identification context.

Hysteresis in the Motor Torque

This procedure provides results which are repeatable and free of quantiza-
tion, but still exhibit hysteresis effects. This is mainly due to the static
friction in the reduction drive: we’ve described in section 2.3.4 the friction
model for harmonic drives and how the static friction between the circular
spline and the flex-spline, combined with the flex-spline stiffness, can add
significant hysteresis to the drive output torque.and we can actually match
the level of hysteresis with the value of the static friction at play.
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(a) (b)

(c) (d)

Fig. 2.36 (a) PWM set by the PID controller, quantized. (b) Respective
quantized motor group torque. (c) PWM directly set to the desired pattern.
(d) Respective improved motor group torque. The motor group refers to the
brush-less motor and the harmonic drive (section 2.4.3).
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We can see highlighted in figure 2.35 the amplitude of the hysteresis
∼ 5Nm. As explained more in detail in 2.3.4, the output torque of the
harmonic drive has an hysteresis due to the static friction between its moving
parts and also the flex-spline stiffness. That is the main component of the
hysteresis observed in the motor output torque visible in 2.35. We can’t
measure directly that hysteresis but we could measure the static friction
causing it in the experiments we led in section 2.5.1 and in the plot 2.29:
σ+s or σ−s are usually around 2Nm. That would lead to the same amount
of hysteresis.

Model Dependency on The PWM duty cycle level and Frequency

We now wish to evaluate how much the model is sensitive to the PWM duty
cycle level and frequency considering the simple case where the duty cycle
varies following a triangular waveform.

Waveform Amplitude: We first analyze the torque response to a change
in the PWM duty cycle waveform amplitude (figure 2.37):

• the waveform has a constant frequency of 0.3Hz,

• we increase the input waveform amplitude in four steps: 4, 8, 12 and
16%pwm,

• each step of constant amplitude lasts 60 s.

The results have a good repeatability with respect to the signal ampli-
tude. The hysteresis level seems to increase linearly with respect to the
amplitude, from 5Nm to 10Nm, while we don’t see a significant change in
the K∗

pwm.

Waveform Frequency: We then analyze the torque response to a change
in the PWM duty cycle waveform frequency (figure 2.38):

• the waveform has a constant amplitude of 12%pwm,

• we increase the input waveform frequency in four steps: 0.1, 0.3, 0.6
and 0.9Hz,

• each step of constant frequency lasts 60 s.

The overall PWM to torque function seems to be invariant (except for
a small offset of ∼ 2%pwm and a torque amplitude attenuation of about
20% with respect to the frequency.
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(a) PWM and torque time series. (b) PWM to torque function.

Fig. 2.37 PWM to Joint torque response for increasing PWM duty cycle
amplitudes. The PWM duty cycle frequency is 0.3Hz.

(a) PWM and torque time series. (b) PWM to torque function.

Fig. 2.38 PWM to Joint torque response for increasing PWM duty cycle
frequencies.
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Fig. 2.39 PWM to joint torque response, characterizing a linear model with
an hysteresis of 5Nm, clearly visible at both ends of the curve.

The Coupled Joints Case

Unlike the procedure followed in 2.5.1, here we don’t have to block the
coupled motors not being characterized. If the moving link is tightly blocked
by a fixture, and the coupling transformation matrix T (2.3.4) is invertible,
we can drive the motor to characterize with a desired PWM waveform, and
send a null PWM to the other motors in the coupling (or even switch them
off). No power is exchanged between the idle motors and the joints nor
between idle motors and the active motor.

Proof. If the transform matrix T is invertible, we can compute the vector of
motor velocities θ̇ from the vector of joint velocities q̇ writing θ̇ = T−1 q̇ =
T−1 03×1 = 03×1.

We performed the experiment on the torso motors 0B4M0, 0B3M0,
0B3M1. In our case we didn’t have a fixture available for rigidly holding the
torso as described in 2.2, so we applied the same method used on the friction
estimation, controlling the ”inactive” motors in position and sending a fixed
position. We present the estimation results on one of the motors driving
the torso roll DoF, 0B3M0, in figure 2.39. The curve characterizes a linear
model with an hysteresis of 5Nm, due again to the harmonic drive static
friction and elasticity as for the non-coupled joints (2.5.2).
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2.6 Conclusion

Whether the joint torques tracking is done by an inner loop, or integrated
in the high level controller, any model based control scheme has its stability
improved by a feed-forward term accounting for the joint low level actuation
dynamics. This chapter addresses the modeling of that dynamics and the
identification of respective parameters.

We first defined a detailed model of a typical joint low level actuation
sub-system used on a humanoid robot with electrical actuators, considering
the following: the motor PWM-to-torque function, the torque and rotor in-
ertia conversion in the harmonic drive, the Back EMF and the friction in the
Harmonic Drive as the main sources of friction. We described the require-
ments for having a linear PWM-to-torque response and a velocity-to-Back
EMF linear model, free of ripples: (i) a Field Oriented Control (FOC) motor
driver, for tracking the current in the Direct-Quadrature frame, allowing to
keep a constant torque at all speeds; (ii) overlapped stator winding; (iii)
a high frequency PWM carrier for smoothing the current ripples without
affecting the torque bandwidth. This demonstrates the importance of con-
sidering the desired high level control scheme and performance at the very
early stage of the robot design. The friction contributions from all compo-
nents were regrouped in a single Stribeck model, which is a superposition of
static-negative viscous (Stribeck effect)-Coulomb-viscous models.

We then defined a methodology for identifying the model parameters
from motor PWM, joint veloccity and torque measurements, in the case of
single joints. The identifier was based on a least squares fitting algorithm.
The methodology was validated on the right leg joints of the humanoid robot
iCub. The Stribeck model with three of its usual four dynamic regimes––(I)
elastic deformation, (II) Boundary Lubrication, (IV) Full Fluid Lubrica-
tion––proved to be a good fit for the experiment results. We have added a
constraint on the friction derivative at zero velocity as the observed friction
profile exhibits a long Boundary Lubrication regime and no negative viscous
friction Stribeck effect, which seems to be a mechanical property specific to
the Harmonic Drives. We could correlate the identified static friction with
the hysteresis observed in the motor PWM-to-torque function.

The next step was to extended the joint modeling and identification to
coupled joints. The same method, used on single joints, is applied to each
motor independently, thus decoupling the parameters to be identified.

Unlike previous works on friction identification, the methods presented
here were performed in open loop control, relying on the joint torque esti-
mations based on force-torque sensors instead of motor currents adjusted by
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a closed loop control. This guarantees a simpler and more reliable control
of the motor input, avoiding any quantization in the motor torque response,
and better revealing the hysteresis effect due to the static friction and elas-
ticity in the transmission components, which would appear as noise on the
results we obtained in closed loop identification.

In a future work, the identified friction parameters shall be used on a
dynamic friction model (LuGre) and account for other position dependent
defects in the Harmonic Drive. In addition, we shall benefit from a fast closed
loop current control which would isolate Back EMF from pure mechanical
friction. Some friction compensation approaches, although model-free, like
the ones based on Gaussian networks, or Radial Basis Function Networks
(RBFN), rely on velocity and differential velocity information. As accel-
eration gives an information on velocity increase of decrease, it should be
handy for modeling stick-slip phase transitions. For such use, the accurate
direct estimation of angular accelerations would be an attractive feature.

Direct joint torque sensors are expensive. Multiple estimation frame-
works are proposed as an alternative to such sensors. Cheaper link force-
torque sensors, combined with a tactile skin, can be integrated in a whole-
body dynamics estimation framework [Traversaro, 2017, chap. 4] which
estimates the external contact forces and all the joint torques, using direct
measurement of link accelerations, instead of their estimation from joint
accelerations and Forward Kinematics, thus avoiding: propagation errors
across the robot kinematic tree; the amplification of high frequency noise
due to the numerical differentiation of joint velocities.

For that purpose, we present in Chapter 4 a direct, local estimation of
link linear and angular accelerations using inertial sensors. This method is
dependent on accurate measurements from accelerometers. The calibration
of such sensors is addressed in Chapter 3.
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Chapter 3

Accelerometers and Joint
Encoders Offsets Calibration

3.1 Introduction

During the first two decades of the twenty first century, the research in
humanoid robotics has been greatly facilitated by advances in model-based
control approaches. The effectiveness of such approaches depends on the
accuracy of the kinematic and dynamic models of a robot as well as the
reliability and accuracy of the sensors, and particularly the sensing of joint
angles. More specifically, when torque sensors are not available, the joint
position sensing may play a critical role in the estimation of joint torques
within a multi-link submodel, propagating the link angular and linear ac-
celerations in the submodel [Traversaro, 2017, Chapter 4 section 4.4.2].

The forward kinematics requires an accurate parametric model, which,
for standard robot platforms, or even robot units produced in small series,
are typically acquired from a CAD model [Rajeevlochana et al., 2012] as
well as painstaking calibration procedures. Regardless of how much care is
put to this process, a key issue remains in the model and sensor deviations
due to wear and tear as well as reassembly/repair work on such robots. The
effort being invested in repeated calibration becomes increasingly relevant
and has motivated research in self-calibration methods as in [D’Amore et al.,
2015], [Mittendorfer and Cheng, 2012], [Roncone et al., 2014]. A related sub-
problem is that sensor calibration parameters usually have to be estimated
a lot more frequently than model kinematic or dynamic parameters.

Joint angle measurements from an encoder are typically subject to an
offset [Hollerbach et al., 2008]. Unlike model kinematic parameters, encoder
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offsets cannot be extracted from detailed CAD diagrams as they are assem-
bly dependent, and so, require a fine calibration procedure once installed
and after any kind of mechanical repair tasks on the robot.

While in some cases, the accurate a priori knowledge of joint hardware
limits can mitigate this problem, in several advanced humanoid robot plat-
forms the physical joint limits cannot always be reached on all the joints
due to constraints induced by wiring, casings or even the complexity of the
joint structure. This problem is equally present with absolute encoders, but
it is aggravated with relative encoders which require a re-calibration at each
power up of the robot system. Therefore, a fast, accurate and automatic
joint offset identification method is a real necessity towards testing and de-
ploying humanoid robots in general, an more specifically for accurate joint
torque estimation and control, which is our current main concern.

In the context of industrial robots, approaches have been proposed for
joint offset calibration using kinematic constraints [Hollerbach et al., 2008]
[Liu et al., 2009], some form of kinematic ground truth [Chen et al., 2008] or
the effect of added known masses on FT sensors measurements [Ma et al.,
1994]. Such approaches may turn to be unfeasible in real-world conditions,
due to the difficulties like anchoring the floating base of a humanoid robot, or
mounting every DoF (Degrees of Freedom) within fixed constraints. An al-
ternative is to perform model calibration involving alternative sensor modal-
ities, such as inertial sensors [Canepa and Hollerbach] [Wieser et al., 2011].
In particular, the low costs of MEMS accelerometer devices have made it
feasible to incorporate multiple such devices on a robot, eventually exploit-
ing the presence of sensor processing boards for other modalities such as
tactile sensing [Maiolino et al., 2013].

Such multimodal distributed sensors have already been used to develop
techniques, as in [Mittendorfer and Cheng, 2012], [Mittendorfer et al., 2014],
where the authors focused on the full kinematic calibration in order to obtain
the model forward kinematics. In that case, the calibration problem is split
in two: the 3-D shape, i.e. ”body schema” reconstruction, and the joint
axis reconstruction (joint axis position and orientation) in the accelerometer
frame. For the two complementary methods, the prior knowledge of the
exact pose of the inertial sensors with respect to the link frame was not
required, but was instead estimated.

The method in [Mittendorfer and Cheng, 2012] was based on the mini-
mization of an error function with two components: the standard deviation
of the measured gravity vector; the error between measured and computed
accelerations. No clear proof was given regarding the existence of a global
minimum of the error function, which would guarantee the uniqueness of the
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solution. Furthermore, the used cost function was badly conditioned when
including the full set of offsets, which compelled the authors to identify the
joint DH (Denavit-Hartenberg) parameters one joint at a time. The main
objective of the method was to demonstrate the possibility to discriminate
the structural dependencies of a kinematic chain using inertial sensors, along
with a first approximation of the DH parameters.

In [Mittendorfer et al., 2014], the same authors built upon their prior
work, focusing on identifying the joint axis position and orientation, one
joint after the other, through a circle point analysis. Three distinct opti-
mization problems were solved for identifying the joint axis unit vector, the
rotation tangential unit vector and the radial distance from the joint axis
to the accelerometer frame, which are the critical vectors of the circle point
analysis. Despite the improvements achieved by this approach with respect
to [Mittendorfer and Cheng, 2012] or older studies using circle point analysis
[Canepa and Hollerbach], the obtained accuracy was still not satisfactory for
an accurate positioning in the task space, with significant angular deviations
of 2.8◦ and 5.15◦ respectively for the joint axis tilt and the joint offset.

Another method, using arbitrary distributed and positioned accelerom-
eters, was lead by the same research group. It was based on the global
optimization of a rotation quaternion [Wieser et al., 2011], for identifying
the joint axis orientation estimation, but leaving out the joint offset estima-
tion.

We propose here a joint offset identification methodology which also
uses a distributed set of accelerometers, but in a simpler procedure with
respect to existing methods. Our approach focuses on estimating all the joint
offsets of a serial chain, although the method could be applied seamlessly
to the whole kinematic tree. All the other model kinematic parameters are
assumed to be known: the link kinematic parameters, the joint orientations
and rough offsets. The joint offsets are known with an error of ±5◦, and
the identification procedure goal is to decrease that error to a value within
±1◦. The estimation is done in a single step after acquiring the inertial
measurements while executing a single slow motion trajectory. Our approach
is based on the following requirements: (i) There is at least one accelerometer
every 3 DOFs of the chain, as depicted in Fig. 3.4; (ii) The relative pose of
each accelerometer with respect to its support link frame is known accurately
a priori; (iii) The joints are moving slowly enough for the sensors to measure
only the gravity; (iv) Either the floating base link of the robot is fixed to a
static pole, or it is equipped with at least one accelerometer and in this case
doesn’t have to be static.

There are no requirements on the 3-axis accelerometers defects compen-
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sation: a prior full calibration can be performed if the one from the vendors
is not sufficient. A method is presented here for that purpose, in addition to
the joint offsets calibration. Its novelty is based on the combination of the
following three features: (i) it calibrates each accelerometer independently
from the joint encoders offsets and without knowing the sensor pose with re-
spect to the link it is attached to, hence avoiding a loop dependency between
the two calibration procedures; (ii) in addition to identifying the individual
axes offsets and gains, it identifies the cross-axis sensitivity present in single
proof-mass MEMS accelerometers [Serrano et al., 2014] [Sun et al., 2010,
Table III], i.e. the full three by three calibration matrix; (iii) it performs
the identification in-situ, dropping the need to unmount the sensor.

Considering the listed requirements are met and the accelerometers cali-
brated, we pose the problem of joint offsets identification as an unconstrained
nonlinear least squares optimization as we will explain further on. We can
apply this optimization independently on each kinematic serial chain, and
for proof of concept we applied it to one of the robot iCub legs. We will
define a simple trajectory with a minimal set of joint configurations for cap-
turing the training data set. Furthermore, we will compare the obtained
offsets against the offsets measured manually (with a level or a laser). Re-
garding the accelerometers calibration, we will detail the method iterations
that were required for improving the results repeatability.

This chapter is organized as follows : Section 3.2 sets the background
concepts; Section 3.3 details separately both calibration methods respec-
tively for the accelerometers and the joint offsets; Section 3.4 details the ex-
periments that were conducted and the obtained results; Section 3.5 draws
the conclusions.
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3.2 Background

3.2.1 Notation specific to this chapter

W Inertial reference frame or world frame.
Fi Reference frame associated with link i.
Sj Reference frame associated with sensor j.
ARB For any frame A or B, rotation matrix that applied to a 3D vector

expressed in frame B, return the same vector expressed in frame
A. ARB ∈ SO(3).

αg
i Body i proper classical acceleration expressed in body frame Si.

This would be the same acceleration measured by an accelerometer
fixed to body i, with a sensor frame coinciding with Si (refer to
Appendix section B.3.3). αg

i ∈ R
3.

x̂ Estimated variable. This could be an estimation of any accelera-
tion, proper acceleration, the gravity vector, and so on.

Ag Ground truth gravitational field vector expressed in an arbitrary
frame A, Ag ∈ R

3.
x∧ cross product in R

3 , 3 × 3 skew symmetric matrix of vector x
(x ∈ R

3).
C Accelerometer’s calibration matrix. C ∈ R

3×3.
o Accelerometer’s offset. o ∈ R

3.
r Accelerometer’s raw measurement. r ∈ R

3.

3.2.2 Problem statement

Let’s highlight the fact that a joint encoder offset is a relative parame-
ter which definition depends on the sensors assembly procedure and on
the modeling process that generates the URDF (Universal Robot Defini-
tion File describing the robot’s kinematic tree model) model from the real
robot CAD drawings as illustrated in the diagram 3.1. That process goes
through a series of steps: we start from the CAD model initially generated
by Creo 1; a shrink-wrapped version of the CAD model is created (the Creo
assembly file), grouping the parts into lumped parts moving together (the
sub-assemblies); from there, an XML model describing the links and joint
axes frames is created, along with the meshes (STL format), through the
Mathworks tool “Simmechanics Link”; finally an open source tool developed
in Python at the Italian Institute of Technology converts the XML model
and meshes into an URDF. Let’s consider one of the 1 DoF joints defined in

1CREO is a commercial software for 3D CAD modelling.
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Fig. 3.1 Generation process of a Universal Robot Definition File (URDF)
from a Creo CAD file, through a series of conversions from CREO feature
tool, Mathworks ”Simmechanics Link” tool, and an open source tool devel-
oped in Python at IIT. 78



Fig. 3.2 Kinematic tree model of an articulated system of rigid bodies (links)
B0, B1, B2 and B3 connected by joints J1, J2 and J3. Source: [Featherstone,
2014, section 4.2, figure 4.7].
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the URDF, that we name Ji, and the formalism described in [Featherstone,
2014, section 4.2]: the joint Ji connects its parent link Bλ(i) to its child link
Bi; the joint frame Fλ(i),i pose is defined with respect to the parent link
frame Fλ(i); one of the axes of the joint frame gives the orientation of the
joint rotation axis; the child link frame Fi rotates around that axis by an
angle defined as qi, and coincides with the joint frame for the initial joint
position (qi = 0). In 3.2, Bλ(i), Bi and Ji could be respectively B1, B2 and
J2. In short, the joint frame pose Fλ(i),i gives the reference orientation of
the link frame Fi with respect to the parent link frame Fλ(i) for qi = 0, and
in that configuration, a joint encoder properly mounted on the joint axis
should read θi = 0.

The accuracy of robot parts dimensions, their positioning and assem-
bling, as well as the mounting of joint encoders are often subject to uncer-
tainties, also referred to as the manufacturing tolerance. These uncertainties
usually result in an offset in the encoder measurements. Typically, for ab-
solute joint magnetic encoders like the ones installed on the iCub (AS5045)
2, there is a rotating magnet mounted on the shaft and a Hall array sens-
ing chipset mounted on the motor group frame, as shown in Figure A.1.
The positioning of each of these parts is a source of non-linearity errors and
an offset error. The offset is the most significant error, which the method
presented in this chapter can fix.

For most kinds of encoders, we can derive a simple relationship between
the joint angle and the encoder measurement as,

θi = qi + δθ̃i (3.1)

where θi is the reading from the encoder on the joint i, qi is the joint
rotation angle defined by the robot CAD or URDF model, and δθ̃i is the
encoder offset. If we define a reset reference joint configuration (vector of
joint angles q = 0, q ∈ R

N ) matching a given alignment of the joint axis and
links, the offsets vector δθ̃ is then defined by the encoders reading in that
configuration (δθ̃ ∈ R

N ). For instance, let’s consider the manual calibration
of the iCub right leg: we align the hip pitch, knee and ankle pitch joint
axes as illustrated in figure 3.3; as per the URDF model, the knee joint
expected position is qknee = 0; the reported joint encoder offset is then
δθ̃knee = θknee − qknee. There exists many techniques for achieving that
specific joints alignment, using external tools or kinematic constraints as
already mentioned. Instead, our method uses the gravitation field vector as

2These encoders are used on the main joints for sensing the joint position of the output
shaft.
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(a) (b)

Fig. 3.3 Calibration of the iCub right leg with a laser (red dotted line) aided
alignment of the hip pitch, knee and ankle pitch joint axes. The knee joint
expected position qknee = 0. (b) actual leg under the covers, exposing the
carvings that can be used as the laser aim.

a reference direction, which is measured by the distributed accelerometers
as a proper acceleration (as defined in Appendix B.3). As described further,
aligning those measurements allows us to compute the joint offsets.

3.2.3 Cost function for a Least Squares optimization

Let us consider a N DoF kinematic chain within the kinematic tree of the
robot, including the set of links L0 to LN and respective link frames F0 to
FN . For a given instantaneous joint configuration vector q = [q1, . . . , qN ]⊤,
and an inertial sensor Sj located on link Li, with 1 ≤ i ≤ N , the expected link
proper acceleration α̂g

j(i) as it would be measured by the sensor j, expressed
in the sensor frame, can be computed from the gravity vector and the joint
encoder readings as follows: we account for the composition FiRF0

(q1, . . . , qi)
of all the rotations transforming the coordinates from the base (waist) frame
F0 to the frame Fi of link Li; we replace every parameter qi by its definition
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Fig. 3.4 Link, inertial and sensor frames depicted on the links of a kinematic
chain: the iCub left leg. For the joint offsets optimization problem, the hip
joints can be grouped into a 3-DoF single joint (here qi).

(3.1):

α̂g

j(i)(θ, δθ̃) = − SjRFi

FiRF0
(θ1 − δθ̃1, . . . , θi − δθ̃i)

F0g (3.2)

= − SjRF0
(θ, δθ̃)F0g (3.3)

Where (−F0g) is the proper acceleration, either measured by an ac-
celerometer mounted on the base link, either computed from the theoretical
gravitation field expressed on the base frame.

Note. For instance, assuming that iCub is fixed on a perfectly vertical pole,

we can write F0g =
[

0 0 −g
]⊤

.

All the expected accelerations α̂g

j(i) and the actual measured accelera-

tions αg

j(i) should match, but δθ̃ is unknown. So we start with any initial

hypothesis δθ(0) and define the global error function eT as the distance be-
tween expected and measured accelerations, resulting from the gap δθ̃− δθ.
The function eT sums the error across all the M sensors and all the joint
configurations p ∈ [1 . . . P ] reached through the whole trajectory of the se-
rial kinematic chain. The problem of finding the correct joint offsets ˜δθk can
then be posed as a non linear least squares optimization problem where the
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optimal offsets vector δθ∗ minimizes the total error eT :

δθ∗ = arg min
δθ

eT , eT =
P
∑

p=1

M
∑

j=1

∥

∥

∥
αg
p,j − α̂g

p,j

∥

∥

∥

2
, (3.4)

where αg
p,j and α̂g

p,j are respectively the measured and expected acceler-
ations of sensor j for the joint configuration p. This approach has been used
in Mittendorfer and Cheng [2012] for estimating the full forward kinematic
Denavit-Hartenberg parameters of a robot, for which they are constrained
to use specific movement patterns on one single joint at a time, and as many
optimization cycles. In our approach, one single optimization is run for the
complete set of joint offsets. This is possible due to the following choices:

• we focus on estimating only the joint offsets while assuming all the
other kinematic parameters to be known, so the problem to solve is
simpler with less unknown variables,

• this should reduce the chances for parameter sloppiness and improve
the identifiability of the joint offsets,

• the only measured acceleration is the constant proper acceleration
(−Sjg), as we perform very slow motions, so we stay in the trained
manifold of the calibrated accelerometers (calibration done measuring
the gravitation field only).

3.3 Proposed Method

3.3.1 Error function minimization: Unicity and convexity

As mentioned in Section 3.1, we need to verify that the error function min-
imization has a global minimum. We now consider a serial kinematic chain
with N +1 links, L0 to LN , connected by N 1-DoF joints, with N=1,2 or 3,
and the equivalent kinematic chain composed of the two end links L0 and
LN and a single N-DoF joint connecting the two. At least one accelerometer
is attached to each link L0 and LN . In the following subsections, the analy-
sis on the equivalent 2-link kinematic chain shows that the computation of
the joint position from the gravity measurements gives a unique solution,
i.e. the global minimum, if the following requirements are met:

• for 1-DoF joints: acquire measurements for at least one joint posi-
tion
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• for 2 or 3-DoF joints: acquire measurements for at least two posi-
tions

• in all cases: none of the axis should ever be aligned with the gravity
vector, or mutually aligned (singularity).

The actual multidimensional joint position qi ∈ R
N and measurements

θi ∈ R
N would match a unique joint offset δθ̃i ∈ R

N . This can easily
be extended to a generalized kinematic chain having at least one accelerom-
eter attached to each link, and joints with no more than three DoF, or an
equivalent serial kinematic chain with only 1-DoF joints and having at least
one accelerometer every three links. Moreover, the optimization problem
might not be convex depending on the distribution of the inertial sensors
and the measurements noise. A full observability and convexity study is out
of the scope of this thesis. We detail below the offset computation analysis
on the 2-link kinematic chain.

Offset computation for a 2-link / one 3-DoF joint chain

As an example for understanding the requirements stated above, we will
analyze here the problem of identifying the joint offsets in a much simpler
case of a 2-link kinematic chain, with an accelerometer attached to each link,
and with a 3-DoF joint composing the 3 Euler angles rotation φi,θi,ψi. As
shown in Fig. 3.5, we consider the sensor frames Si−1, Si, the link frames
Fi−1, Fi, the joint frame Fi−1,i. The joint frame is defined by the condition
[φi, θi, ψi] = [0, 0, 0] : Fi−1,i = Fi, meaning that at the joint original position,
the joint frame coincides with the link frame Fi. As the sensors are firmly
attached to the respective links, and their pose is accurately known, for this
particular analysis we simplify the problem by assuming Si−1 = Fi−1 and
Si = Fi. We now can define the overall rotation projecting any vector from
frame Fi−1 to frame Fi as:

FiRFi−1
= Rz(ψi) ·Ry(θi) ·Rx(φi) (3.5)

Where φi, θi, ψi are unknown but can be easily estimated from the rota-
tion matrix Fi−1RFi

using a known method as the one described in [Diebel,
2006, sec.5.6.3]. This method gives a unique solution, as long as we avoid
the representation singularities of Euler angles [Siciliano, 2009, Section 2.4].
Let us focus on computing the rotation matrix FiRFi−1

. It can be done using
the Orthogonal Procrustes algorithm introduced in [Schönemann, 1966]. We
need to define a pair of free vectors [u, v], with fixed orientation with respect
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to the world frame, expressed in a frame Fi−1 as A =
[

Fi−1u, Fi−1v
]

, and ex-
pressed in another frame Fi as B =

[

Fiu, Fiv
]

, and define the transformation
of Fi−1 coordinates to Fi coordinates as follows:

A =
[

Fi−1u, Fi−1v
]

B =
[

Fiu, Fiv
]

B = FiRFi−1
A

(3.6)

This approach was used in [Mittendorfer et al., 2014] for the automatic
identification of a kinematic model, but was using tangential acceleration
vectors and rotation axis as reference directions in space for doing the map-
ping between transformed frames. Another method was using the same
principle for calibrating the frame poses of the IMU sensors attached to a
robot, using a global angular velocity as the reference vector [Rotella et al.,
2016, Section V]. The whole robot was rotated in the air, with all its joints
locked, hence was considered like a single rigid body, and all the IMU sensors
mounted on the robot would measure the same angular velocity vector. In
our case, we only use the gravity as the reference direction, and on top of
that, our goal here is to define a minimal simple trajectory still guaranteeing
the uniqueness of the optimization solution. The estimation itself is done
by the optimizing algorithm.

The gravity vector can be used as a fixed vector with respect to the
world frame. Each sensor measures the gravity and provides the respective
coordinates in the sensor frame. But we only have one fixed vector available.
We show below how we can overcome this problem in three steps:

(i) we first match the gravity measurement in Fi−1, with the gravity
measurement in Fi as follows:

Fig(1) = Rz(ψi) ·Ry(θi) ·Rx(φi)
Fi−1g, (3.7)

(ii) we then rotate link i of an angle β about the joint axis closer to the
link i−1 (axis x), such that the gravity measurement vector appears rotated
in Fi, and we get a new match for the measurements:

Fig(2) = Rz(ψi) ·Ry(θi) ·Rx(φi) ·Rx(β)
Fi−1g (3.8)

= Rz(ψi) ·Ry(θi) ·Rx(φi) · Fi−1gβ , (3.9)

where Fi−1gβ = Rx(β)
Fi−1g is an apparent vector resulting from the rotation

of the gravitational vector Fi−1g by β about the axis x. We now redefine the
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2 pairs of vectors A and B as follows:

A = [Fi−1g, Fi−1gβ ], B = [Fig(1),
Fig(2)], (3.10)

and considering the transformation:

B = FiRFi−1
A, (3.11)

we get:

A⊤ Fi−1RFi
= B⊤ (3.12)

(iii) as mentioned earlier, this can be posed as a minimization prob-
lem and solved with the Orthogonal Procrustes algorithm. Although our
currently used methodology is not solving the problem this way, the demon-
stration above shows that by measuring the gravitational vector in two dif-
ferent positions of φi, apart by an angle β, allows to identify from those
measurements a unique joint offset solution.

Offset computation for a 2-link / one 1-DoF joint chain

The 2-DoF joint offset problem is similar to the 3-DoF joint problem, but the
1-DoF problem requires only one single joint position for finding a unique
solution, as explained further. We consider a parent link Li−1, a child link
Li, the respective link frames Fi−1 and Fi, the joint i connecting both links
and the respective joint rotation axis ∆i.

As seen previously, we need to define a pair of free vectors [u, v], fixed
with respect to the world frame, for defining the transformation (3.6). We
can chose the rotation axis unit vector ∆i ∈ R

3, considered fixed, as the
vector u, and the gravity vector as the vector v. A single joint position
qi, resulting in the rotation matrix R∆i

(qi) = FiRFi−1
, will give us a set

of vector coordinates A and B, as defined in (3.6), required for solving the
minimization problem and Orthogonal Procrustes problem. In the presence
of significant noise, we build a data set of M stacked measurements captured
over P positions instead of just two, for more accuracy and stable results.

Note. for both problems, If the gravity vector g is aligned with the joint axis
∆i, the rotation has no effect on the vector and the equation (3.12) has an
infinity of solutions. As we can see in the figure 3.5, only the component
g⊥ is rotated by R∆i

(qi). The greater the angle between ∆i and g, the better
the problem is conditioned for an accurate solution. The ideal angle would
be π/2 but for avoiding collisions we chosed an angle around 30 degrees.
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Fig. 3.5 2-link, 1DoF-joint chain: computing the rotation matrix transform-
ing the gravitational vector from the world to the each sensor frame.

3.3.2 Defining joint trajectories

We define here the joint trajectories to follow when capturing the training
data set for the joint offsets calibration. This is performed while meeting the
requirements listed in the previous section and measuring only the gravity
acceleration.

Minimal Motion: We now assume we selected a set of joint configurations
(
⋃P

p=1 q(p)) to use for capturing the training data, as per the requirements
defined in section 3.3.1. For avoiding oscillations or simply the higher linear
accelerations due to the motion stop and start, a minimum jerk [Kyriakopou-
los and Saridis, 1988] [Huang et al.] slow trajectory is used for reaching those
selected positions:

• for 1-DoF joints, we select a fixed position for the whole data capture,

• for 2-DoF and 3-DoF joints, rather than cycling through a sequence
of purely static joint configurations, we rotate one of the axis in its
partial or full range, while keeping the two other axis fixed, in order
to span a set of positions that include the two required positions for
3-DoF joints. This will improve the accuracy of the global minimum
estimation as well as the convexity of the cost function, reducing the
risk of falling into local minima.

By these means, we can define an acquisition trajectory running through a
minimal set of positions required for solving the optimization problem.
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Remark 3.1. In any case, the rotating axis must never be aligned with the
gravity vector, since in that condition the accelerometers are not sensitive to
a change in the respective joint position.

Measuring only gravity For the acceleration due to the joints motion,
also known as the coordinate acceleration (B.3), to be negligible with re-
spect to the gravity, we need to limit its normal and tangential components
(αtan and αcp) that could be measured by any of the inertial sensors in the
system. So for a given joint J , its maximum angular velocity (q̇J,max) and
acceleration (q̈J,max) depend on the greatest distance dJ to any accelerom-
eter moved by that joint during the calibration, and on the desired gravity
measurement accuracy ∆α. So these acceleration components are tolerated
if ‖ αtan ‖≤ ∆α and ‖ αcp ‖≤ ∆α. Let O be a point on the joint rotation
axis, Si the origin of the accelerometer frame and ωJ ∈ R

3 the joint angular
velocity (refer to definition in Appendix section B.3.5), and ω̇J ∈ R

3 its
acceleration, all expressed in the joint J frame. We then have:

‖ αtan ‖ =‖ ωJ,max
∧
(

ωJ,max
∧OSi

)

‖≤ ∆α ⇒ q̈J,max ≤ ∆α

dJ
(3.13)

‖ αcp ‖ =‖ ω̇J
∧OSi ‖≤ ∆α ⇒ q̇J,max ≤

√

∆α

dJ
(3.14)

On top of that, we can verify, for each trajectory, that the norm of the ac-
celeration is constant and equal to the approximated norm of earth’s gravi-
tational field as defined in Appendix section B.3.4.

3.3.3 Error function optimization

The error function is a sum of squares subject to bounding constraints on
the offsets δθ. Considering that the described procedure is a fine calibration,
the lower and upper boundaries can be set to ±20◦ 3. We are tuning the
δθ offsets vector as an input parameter to error function optimization, so
the dimension of the problem is no greater than the number of DoF of the
robot. If we assume to have one or more sensors for each link, a Model-
Fitting algorithm for over-constrained systems, like for instance a trust-
region-reflective algorithm, is suited for this problem [Conn et al., 2000]
[Berghen, 2004]. Other algorithms were tested, like the Levenberg-Marquardt
algorithm, but produced less accurate results.

3It turned out that the algorithm could consistently converge without the use of bound-
aries for the initial offset.
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Note. The trust-region-reflective algorithm does not require the gradient of
the error function, although this would potentially improve the accuracy and
the processing performances [Conn et al., 2000].

3.3.4 Accelerometers calibration

The performance of the optimization problem previously described depends
directly on the accuracy of the accelerometers measurements. Even high
performance 3-axis accelerometers can have different gains and bias (offset)
for each axis, as well as some cross-axis sensitivity due to the interaction
between the axes, intrinsic to a single-proof mass design, and to the manu-
facturing tolerance [Serrano et al., 2014] [Sun et al., 2010, Table III].

Sensor model fitting

For canceling out the axes bias and gain differences, we need to fit a model
to the sensor behaviour, relating the 3-axis raw measurements vector r to
the actual sensor proper acceleration αg expressed in the sensor frame. In
the current section 3.3.4, αg will be denoted a for the sake of simplification.
In general we assume that this model is affine [Serrano et al., 2014] [Maj
and Napieralski, 2017], having an offset o accounting for the biases and an
invertible calibration matrix C accounting for the axis gains and cross-axis
sensitivity. These calibration parameters are also assumed to be constant:

a = C(r − o) (3.15)

where r is the sensor output already converted to acceleration units
(m s−2) with a default gain. If the acceleration αg spans a unit sphere in
the 3 dimensional space, the raw measurement r spans an ellipsoid that can
be rotated with respect to the sensor frame Sj .

Proof. Assuming that (3.15) is a good model of the inertial sensor, we can
easily show that the model is equivalent to an ellipsoid equation. An ellipsoid
implicit equation can be written as [Olver and of Standards and Technology ,
U.S.]:

ex21
s21

+
ex22
s22

+
ex23
s23

= ex⊤ T ex = 1 (3.16)

ex ∈ R
3, T =





s−2
1 0 0

0 s−2
2 0

0 0 s−2
3



 (3.17)
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where ex is the position of any point of the ellipsoid surface, expressed in
a frame which axes e1, e2 and e3 are aligned respectively with the semi-axes
s1, s2 and s3 of the ellipsoid. We can express x in any frame A where the
ellipsoid is tilted and which orientation is given by aR

e . We then write (3.17)
as:

ax⊤ (aReT
eRa)

ax = 1

⇐⇒ ax⊤M ax = 1 (3.18)

with M = (aReT
eRa) . (3.19)

(3.19) is equivalent to a singular value decomposition of M where T
is the real square diagonal matrix and the singular values are the squared
ellipsoid semi-axes s21, s

2
2 and s23 [Meyer, 2000]. M is positive definite. So

if for a sensor converting a physical variable (the sensor proper acceleration
a) into an measurement r, we can write r = Da and D is invertible, such
that a = D−1 r, then we get:

a = D−1 r

a⊤a = r⊤D−⊤D r

r⊤
(

D−⊤D

||a||

)

r = r⊤M r = 1,

and if ||a|| is constant, the space of r is an ellipsoid which is skewed
with respect to the sensor frame depending on the values of D (actually the
cross-axis gains). This will be observed in the experiment results in section
3.4.

Unlike the 6-point tumble calibration procedure which consists in mea-
suring the gravity in six complementary orientations (x, −x, y, −y, z, −z)
[STMicroelectronics, 2015], we opted for an in-situ procedure, thus avoiding
removing and remounting the devices and thus better cope with the eventual
drift of sensor properties. The drawback is that we cannot anymore estimate
C and o from the raw measurements of gravity along all the 6 semi-axes of
the sensor frame: +x,−x,+y,−y,+z,−z. For that reason we’ve used an
alternative method based on an ellipsoid-fitting algorithm from [Hunyadi,
2013]. Through this fitting we can reconstruct the ellipsoid manifold from
a limited span of the raw measurements, captured using reachable joint
configurations.
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Fig. 3.6 Generating a grid dataset for spanning the accelerometer ellipsoid
manifold. ψ and θ give the orientation of the gravity vector in the repre-
sented link frame. The link frame z axis is always aligned with the joint
axis setting ψ.

Generating a “grid” training data set

We wish to rotate the accelerometers frames while measuring the gravity, for
spanning a fraction of the raw measurements manifold as broad as possible.
If the robot kinematic architecture allows, we move as a single body all the
links supporting the sensors. We perform slow motion rotations, using two
orthogonal revolute joints in order to cover a grid of orientations as the ones
defined by the two angle parameters ψ and θ, of a polar coordinate system,
similar to what was done in [Traversaro et al., 2015], and illustrated in figure
3.6. We then run the ellipsoid-fitting algorithm on the generated training
data set.

Extracting the calibration parameters

The ellipsoid-fitting algorithm returns the parameters of the implicit equa-
tion defining the ellipsoid, F (x, y, z) = 0, but also the explicit parame-
ters of the ellipsoid: its centre, centre ∈ R

3; the lengths of its 3 semi-
axis, s1, s2, s3 ∈ R

3; the quaternion quat ∈ R
4 and the rotation matrix

eRsj ∈ R
3×3 defining the skew of the ellipsoid. Actually, eRsj describes the

rotation transform from the sensor frame Sj coordinates into the coordinates
on a frame E aligned with the skewed ellipsoid semi-axis. For building the
calibration matrix we follow the sequence transforming the space of raw
vectors (ellipsoid manifold) into the space where the actual ”calibrated” ac-
celerations span a spherical manifold: (i) remove offset; (ii) rotate to the
frame E (skewed ellipsoid frame); (iii) apply the semi-axes gains compensa-
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Fig. 3.7 Affine transformation r 7→ C (r − o) transforming vectors from the
ellipsoid space (r) into vectors of the sphere space (calibrated acceleration
sja∗j ).

tion; (iv) rotate back to sensor frame.
We can now extract the calibration parameters from the model:

o = centre ∈ R
3 (3.20)

C = eR⊤

sj
g diag(s1, s2, s3)

−1 eRsj (3.21)

With g the norm of earth’s gravitational field (refer to Appendix sec-
tion B.3.4). Using these values on (3.15) allows to generate a corrected
measurement from any raw measurement, following the affine transform
r 7→ C (r − o) as illustrated in figure 3.7.

3.4 Experiments

The proposed method was tested on the iCub humanoid robot (for more
details refer to Section 1.2). As we initially stated, the calibration procedure
is done independently on each kinematic serial chain: one full leg, one full
arm or the torso along with the head. We tested the method on both legs,
but for brevity, we report here only the results on the left leg, which had
the most complete set of working inertial sensors. The leg has 6 chained
DoF: hip pitch / roll / yaw, knee, ankle pitch / roll. All of the controlled
DoF use absolute joint encoders which specifications on the accuracy and
repeatability are detailed in the appendix section A.1. The robot is equipped
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Fig. 3.8 Locations of the accelerometers (in green) integrated into the sensor
processing modules of the iCub tactile skin.

with skin sensor units distributed all over the arms, legs and torso. Each of
these units has a processing module that embeds a 3-axis high performance
linear accelerometer (STMicroelectronics LIS331DLH). The leg holds 13 of
a total 44 of these modules distributed as depicted in Fig. 3.8. Additional
details on the tactile sensing electronic boards may be found in [Maiolino
et al., 2013].

3.4.1 Sensors and setup for data acquisition

Joint configuration and trajectory control For the calibration of the
accelerometers and the joint encoders, the robot is mounted on a pole, the
base link (waist) being tightly screwed to the pole such that the feet don’t
touch the ground and so legs and arms can move freely. This is a comfortable
choice, although not mandatory, that also requires less supervision. All
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the joints are controlled through a high gain position control loop. While
the leg is moving, all other joints are configured to a fixed position. As
per the requirement defined in paragraph 3.3.2, the position control is run
through the minimum jerk trajectory generator from the iCub low-level
control interface, parametrized with the start and end positions of the joint
angle, and a maximum linear velocity of 2 deg /s, which is actually ≤ vmax.
vmax was computed from the robot geometry (hip to foot distance dhf ∼
0.5m) and the desired gravity measurement accuracy (∆α = 10−2ms−2, so
∆α

α
∼ 0.1%): vmax ∼ 8 deg /s. In the experiment, we move the joints at

4 deg /s.

Joint encoders accuracy The magnetic absolute encoders (AS5045) in-
stalled on the main joints of iCub have two moving parts: a rotating magnet
fixed on the shaft and a Hall array sensing chipset fixed on the motor group
frame, as shown in Figure A.1. The alignment between the magnet and the
sensing chipset is subject to tolerance requirements, and any misalignment
beyond the defined tolerance can cause non-linearity errors, as described
in Appendix Sections A.1 and A.1.1. For the experiments, we rely on the
compensation of eventual errors at a firmware level, and can consider the
encoder measurements to be linear.

Inertial data acquisition The accelerometers support user selectable full
scales of +-2g/+-4g/+-8g, and the current selection is +-2g. The sensors are
running at 100 Hz, and the data was collected by the calibration application
at that same rate. Prior to any calibration procedure, the sensors data
need to be filtered. While the joint encoders signal has very low noise,
the accelerometers measurements have a noise level around 0.2m.s−2, which
is significant against a signal of 10m.s−2. The signal also presents some
outliers due to motor vibrations that we wish to eliminate. We are using
a Savitzky-Sgolay filter offline, whose parameters are tuned manually. A
simple tool was implemented for this tuning, and integrated in the main
joint offset calibration tool. The selected optimal parameters are: a large
window size F ( 600 samples) and a high polynomial order K of 5, which is
actually the order used by the low jerk trajectory generator.

3.4.2 Accelerometers calibration

We are using 3-axis high performance linear accelerometers, but their offsets
and the gain differences across the 3 axis are significant enough for generating
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a badly shaped measurement error distribution as we can see in the results
of Fig. 3.9.

Non-linear optimization algorithm for fitting the ellipsoid manifold

We apply the method presented in paragraph 3.3.4 for fitting each accelerom-
eter model and extracting the respective calibration parameters. The used
ellipsoid-fitting algorithm, ellipsoidfit, defined in [Hunyadi, 2013], was imple-
mented in the free Matlab package quadfit 4. This algorithm fits an ellipsoid
by minimizing the point-to-surface distance between the training samples
and the ellipsoid model. It defines a cost function based on that distance
and uses the Matlab optimization solver lsqnonlin parameterized with the
Levenberg-Marquardt algorithm for minimizing that cost. The starting point
for the optimization is an initial solution from a simple least-squares fitting.
The algorithm can take boundary constraints for the fitted variables. Our
initial approach uses an unconstrained optimization.

Trajectory for generating a ”grid” training data set

As described in the section 3.3.4, we have to span the raw measurements
manifolds along a grid by rotating the iCub’s leg. We configure the leg joints
as follows: the hip pitch, knee and ankle joints are fixed to 0 deg; the hip
roll joint [min,max] = [20, 80] deg, the grid step = 15 deg; the hip yaw joint
[min,max] = [−60, 60] deg, the grid step = 20 deg. In figure 3.6: the upper
leg link frame matches the frame depicted in the figure, such that the hip
yaw axis is always aligned with the z axis of that frame; the hip roll matches
the θ angle and the hip yaw matches the ψ angle.

In fig. 3.10 we depict the results on the calibration of six of the lower
leg accelerometers. In fig. 3.9 we can see a plot showing the projection
of the measurements on the spherical manifold of the ground truth gravity
vectors (a), and the distribution of the measurement errors with respect to
the ground truth gravity norm. The distribution of those errors, i.e. stan-
dard deviation and the mean value, is clearly improved by the calibration,
converging to a residual Gaussian noise (fitting of the red curve).

Calibration procedure validation

For validating the calibration procedure, we have analyzed the variance of
the identified parameters over a series of consecutive calibration iterations:

4http://www.mathworks.com/matlabcentral/fileexchange, file ”fitting-quadratic-
curves-and-surfaces”
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(a) (b) (c)

Fig. 3.9 Calibration of one accelerometer on the left lower leg (MTB 11).
The error distribution of the gravitational vector measurements (||aj ||−|g|),
and the norm time series of the vector are depicted, before and after the
calibration.

five iterations with intervals of five minutes, and with intervals of one week,
as illustrated in figure 3.11 for two of the accelerometers attached to the left
leg of iCub: MTB 4 and MTB 9. Tables 3.1 and 3.2 give the mean values
and standard deviations of the three axis offsets and the six parameters in
the lower triangular part of the symmetric calibration matrix C, for all the
tested acceleroemeters on the leg link:

o =





x
oy
oz



 C =





cxx · ·
cyx cyy ·
czx czy czz



 (3.22)

The results show that for consecutive calibration iterations giving the
same quality of fitting with a low residual error equivalent to a Gaussian
noise (µ < 10−3ms−2, σ < 0.1m s−2), the identification of the calibration
parameters is subject to high uncertainties. This characterizes the parame-
ters as being ”sloppy”.

Fixing the loose-fitting with a constrained ellipsoid offset

The most probable causes for these uncertainties are the high level of noise in
the measurements and the fact that the portion of accelerations manifold we
are using for fitting the ellipsoid is too small. We have two ways to overcome
this problem: either we increase the training manifold, by changing the joint
configurations trajectory; either we add constraints to the fitting algorithm.
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Sensors Offsets matrix C gains
ox oy oz gxx gyy gzz gyx gzx gzy

MTB 10b1 -0.0734 0.613 -0.566 0.969 0.952 0.959 0.0234 -0.00591 0.0105
MTB 10b2 -0.206 1.14 0.194 0.964 0.92 0.961 0.034 -0.00483 0.00923
MTB 10b3 -0.292 0.566 0.446 0.977 0.939 0.969 0.0398 0.00186 -0.0036
MTB 10b4 0.218 0.216 0.887 0.991 0.956 0.999 0.0226 0.0018 0.00144
MTB 10b8 -1.66 2.04 0.845 0.916 0.887 0.935 0.0379 0.0122 -0.0158
MTB 10b9 -2.61 3.85 -0.517 0.871 0.833 0.875 0.0662 -0.00753 0.0205
MTB
10b10

-2.7 0.947 -4.51 0.866 0.879 0.79 0.0241 -0.0435 0.0119

MTB
10b11

0.0252 -0.0728 0.525 0.997 1.02 1.01 0.0176 0.00157 -0.000396

Table 3.1 Mean values of the identified accelerometers offsets and gains
parameters: old procedure. Refer to figure 3.11.

Sensors Offsets matrix C gains
ox oy oz gxx gyy gzz gyx gzx gzy

MTB 10b1 0.528 0.412 0.6 0.0477 0.0429 0.0542 0.0102 0.0169 0.0152
MTB 10b2 0.424 0.68 0.297 0.0396 0.0538 0.0326 0.0159 0.00722 0.0103
MTB 10b3 0.579 1.03 0.118 0.0579 0.0819 0.0411 0.0231 0.00355 0.00456
MTB 10b4 0.585 0.773 0.0956 0.0534 0.0637 0.0337 0.0194 0.00309 0.00362
MTB 10b8 4.81 4.44 1.71 0.173 0.164 0.129 0.0384 0.0149 0.0177
MTB 10b9 4.55 7.9 2.33 0.163 0.215 0.148 0.0377 0.0102 0.02
MTB 10b10 4.75 1.87 7.87 0.173 0.149 0.218 0.00844 0.0441 0.0145
MTB 10b11 0.171 0.113 0.302 0.0191 0.0152 0.0297 0.00395 0.0087 0.00618

Table 3.2 Uncertainties (standard deviation) in the identification of the
accelerometers offsets and gains parameters: old procedure. Refer to figure
3.11.
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Fig. 3.10 Calibration of the accelerometers MTB 10B1 to 10B3 on the
upper leg and 10B9 to 10B11 on the lower leg. We depict the mean value
and standard deviation of the distributions as described in fig. 3.9, before
and after the calibration.

adding a constraint on the offset turned to be the most efficient solution,
considering the limits in the iCub leg mobility. We perform the calibration
in two steps: in the first step we calibrate the offset of the accelerometer;
in the second step we use the identified offset as a constraint in the original
full ellipsoid-fitting algorithm.

First step - standalone offset o∗ identification: At this point, we
exploit a method similar to the 6-point tumble calibration, but just for cal-
ibrating the offset calibration. We perform two measurements of the same
acceleration vector (for instance the gravitation vector −g in static con-
ditions), for two orientations s1Rw and s2Rw of the sensor frame S, with
respect to the world frame W , such that s1Rs2 = s1Rw

s2R⊤
w = −I3. The

respective projections of the same acceleration vector in the sensor frame
are then parallel with opposite orientations:

s1g = −s1Rw
wg

s2g = −s2Rw
wg

}

⇐⇒ s1g = s1Rw
s2R⊤

w
s2g = s1Rs2

s2g

s1g = −s2g (3.23)

s1Rs2 = −I3 represents a rotation of π rad about a unit rotation axis
denoted by nr ∈ R

3, orthogonal to the vector g.

Proof. Euler’s rotation theorem states that in three-dimensional space, any
displacement of a rigid body such that a point on the rigid body remains fixed,
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(a) (b)

(c) (d)

Fig. 3.11 Uncertainty analysis of the identified accelerometer parameters
through a series of five calibration iterations. These results were obtained
from the old procedure where o and C are fitted simultaneously. The un-
certainty affects mostly the offsets.
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is equivalent to a single rotation about some axis that runs through the fixed
point. This means that any composition of rotations resulting in a rotation
matrix R represents a single rotation about an axis nr (unit vector in R

3)
of a given angle ψ. The rotation matrix can then be defined with respect to
the rotation vector Ψ := ψnr as follows [Mäkinen, 2008, Section 3]:

R := I3 +
sinψ

ψ
Ψ∧ +

1− cosψ

ψ2

(

Ψ∧
)2

(3.24)

For ψ = π, we get:
R = I3 + 03×3 + 2

(

n∧r
)2
, (3.25)

and if the rotation axis nr is orthogonal to the rotated vector x ∈ R
3, we

get:
Rx = I3 x− 2 I3 x = −x (3.26)

Note. For an accelerometer fixed to a body link Li of a given kinematic
chain, rotating with a parent joint Ji, these measurements can be achieved
through the following steps: (1) align the joint rotation axis with the hor-
izontal plane, i.e. in a direction perpendicular to the gravity vector g; (2)
acquire the first measurement r1; (3) apply the defined rotation s1Rs2 by
rotating the joint Ji by πrad; (4) acquire the second measurement r2.

We consider r1 and r2 the respective raw measurements of s1g and s2g.
In view of (3.15) and (3.23), and all vectors being expressed in the sensor
frame, we can write:

r1 = C−1 s1g + o
r2 = C−1 (−s1g) + o

}

⇐⇒ o =
1

2
(r1 + r2) (3.27)

where ri ∈ R
3, a ∈ R

3, o ∈ R
3, and C ∈ R

3×3.
We run those measurements on the same iCub left leg. The total an-

gle rotation required between the two orientations is greater than the range
allowed (between hard limits or cover limits) for each of the joints consid-
ered alone. Despite that limitation, we can combine two joints in singular
configuration for meeting that requirement: in the case of the iCub leg, we
combine the hip pitch with the hip yaw when both joints axes are aligned,
i.e. the hip roll is set to 90 deg. In that configuration the two axes rotation
vectors have the same orientation. For the two opposite sensor frame ori-
entations S1 and S2 we set the respective two joint configurations q(1) and
q(2), as illustrated in 3.12.
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(a) (b) (c)

Fig. 3.12 Visualization (a)(b) of the left leg accelerometers offsets ”tumble”
like calibration: joint configurations (a) q(1) = [−30,+90,−60, 0, 0, 0]⊤ and

(b) q(2) = [+30,+90,+60, 0, 0, 0]⊤. The respective plot (c) of the proper
acceleration of accelerometer MTB 11, result of the actual experiment on
the real robot.

Second step - calibration matrix C∗ identification: As described in
Section 3.4.2, the fitting of the ellipsoid model is done through a non lin-
ear optimization using the Levenberg-Marquardt algorithm, which can take
boundary constraints for the fitted variables. We now exploit this feature
applying upper and lower boundaries, lb center and ub center, to the
ellipsoid centre fitting. These boundaries are computed from the offset cal-
ibrated in the first step o:

lb center = o− 0.01

ub center = o+ 0.01
(3.28)

and then set in the parameterization of the lsqnonlin solver in the ellipsoidfit
function which was modified for that purpose with minor changes.

Experiment Results: For validating the new calibration procedure, we
first verified that the identified offsets were consistent over several trials.
Actually, a single iteration of the new standalone offset calibration repeats
three times the measurement of the pair r1 and r2, and averages the mea-
surements. We compared four iterations of the offset calibration: at day
one two consecutive iterations were performed, a few minutes apart; seven
days later, we repeated the procedure. The iterations performed the same
day a few minutes apart give identical results (the differences were below
10−2ms−2). When comparing any pair of iterations seven days apart from
each other, the differences can be one order of magnitude of the identified
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offsets. So we can consider that the accelerometer offsets drift quite fast,
and probably require an online slow compensation.

We now have to check if the axes gains and cross-sensitivity gains drift
as well. For that purpose we ran the full calibration using the identified
offsets as a constraint. Once more we analyzed the variance of the identified
parameters over a series of three consecutive calibration iterations. Two
sets of iterations were run eight days apart: a first set of two iterations,
a second with three. For each iteration, both the offsets then the gains
were calibrated. The results, displayed in figure 3.13 and tables 3.3 and 3.4,
show significant improvements, with a standard deviation reduced by an
order of magnitude for most of the accelerometers. Accelerometers MTB 1
to MTB 4 show small variations in the offsets and constant gains, while
accelerometers MTB 8 to MTB 11 show significant offset changes and some
variability in the gains between the two sets of iterations. But this could be
a side effect of the significant and permanent vibrations of the motors on
the leg inducing additional noise in the inertial measurements. We can see
such vibrations in figure 3.12 when calibrating the offsets with the tumble
like procedure.

3.4.3 Joint encoders calibration

Trajectory for generating the training data set The leg joints are
equipped with absolute joint encoders. We remind that the kinematic model
gives us the encoders pose with an uncertainty up to 3 or 4 degrees due to
the assembly inaccuracy, so we are doing fine calibration here. As proposed
in 3.3.2, we run a minimal trajectory for capturing the training data set from
the leg sensors (joint encoders and link accelerometers), staying in the same
working conditions as during the calibration of the accelerometers, i.e. the
measurements lie in the manifold of constant gravity norm | g |. For more
simplicity, the joints are numbered from the base to the foot, J1 −→ J6,
matching respectively the leg joints hip pitch / roll / yaw, knee, ankle pitch
/ roll in that order. The requirements described in 3.3.2 apply to the iCub
leg as follows. First we group the leg DoFs depending on the position of the
accelerometers:

• the gravity vector is assumed to be known in the base link frame

• the accelerometers are located on the links upper leg, lower leg, foot.

• So the grouped DoFs are: hip pitch / roll / yaw, (1x 3-DoFs joint);
knee, (1x 1-DoF); ankle pitch / roll, (1x 2-DoF) joint
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(a) (b)

(c) (d)

Fig. 3.13 Uncertainty analysis of the accelerometer parameters identified
with the new procedure: o and C fitted separately. These are reprocessed
data. Real dates are: 06/12/2018 (first two iterations); 14/12/2018 (Three
last iterations). The offsets were calibrated the same day and hour as the
gains.
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Sensors Offsets matrix C gains
ox oy oz gxx gyy gzz gyx gzx gzy

MTB 10b1 0.238 0.188 -0.0756 0.999 0.979 0.995 0.0157 0.00772 -0.0109
MTB 10b2 0.269 0.248 0.154 1.01 0.995 0.983 0.015 -0.00702 0.00565
MTB 10b3 0.244 0.0417 0.228 1.03 0.986 0.977 0.0253 -0.00733 0.00365
MTB 10b4 0.259 0.0121 0.363 0.998 0.974 0.997 0.024 -0.0137 0.0212
MTB 10b8 -0.0498 -0.821 -0.237 0.98 1.07 1.01 -0.00127 0.015 0.0447
MTB 10b9 -0.032 -0.824 -0.126 1.01 1.09 0.905 0.0152 0.00426 0.0195
MTB 10b10 0.00598 -0.759 -0.111 1 0.968 0.973 0.00478 0.012 -0.06
MTB 10b11 0.00519 -0.689 -0.0562 0.999 1.04 1.06 -0.00895 -0.0106 0.0426

Table 3.3 Mean values of the identified accelerometers offsets and gains
parameters: new procedure. Refer to figure 3.13.

Sensors Offsets matrix C gains
ox oy oz gxx gyy gzz gyx gzx gzy

MTB 10b1 0.0165 0.0137 0.0124 0.00267 0.00322 0.00275 0.00371 0.00321 0.00196
MTB 10b2 0.0138 0.0139 0.00802 0.00377 0.00474 0.00276 0.00524 0.00205 0.00159
MTB 10b3 0.00982 0.00562 0.00496 0.00136 0.00243 0.00439 0.00149 0.00143 0.00106
MTB 10b4 0.00768 0.00869 0.00722 0.00141 0.00163 0.00229 0.00075 0.00187 0.00178
MTB 10b8 0.383 1.02 0.59 0.0311 0.107 0.0506 0.0227 0.0182 0.0417
MTB 10b9 0.341 0.887 0.531 0.0271 0.0968 0.00818 0.0211 0.0273 0.0197
MTB
10b10

0.322 0.789 0.467 0.0302 0.00758 0.0407 0.0247 0.02 0.0363

MTB
10b11

0.272 0.719 0.405 0.0196 0.0333 0.047 0.0279 0.00647 0.0494

Table 3.4 Uncertainties (standard deviation) in the identification of the
accelerometers offsets and gains parameters: new procedure. Refer to figure
3.13.
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We then apply the control rules described in 3.3.2:

• 3-DoF hip joint: select fixed appropriate positions for the first two
joints (pitch,roll), for instance J1 = 0 deg, J2 = 20 deg.. Rotate J3
spanning its reachable range. Whatever the angular position of J3,
the axis of J4 (knee) will never be aligned with the gravity vector.

• 1-DoF knee joint: select one fixed position, for instance J4 = 0,
which reduces the operation space.

• 2-DoF ankle joint: select one fixed position for the joint pitch, for
instance J5 = 0. Rotate J6 (roll) over its reachable range.

Checking the sanity and accuracy of the obtained results The ob-
tained data across all the poses was distributed randomly into 5 buckets of
200 samples, each bucket then being an input to the least squares optimiza-
tion. The mean and the standard deviation across the 5 solution vectors δθ∗

were computed for testing their accuracy.
The method was implemented in Matlab using the Matlab Optimiza-

tion Toolbox solver lsqnonlin along with the trust-region-reflective algo-
rithm, with a termination tolerance of 10−7 on the function and of 0.1deg
on δθ since that corresponds to the joint encoders resolution (refer to the
appendix A.1 for more details). This method has been made freely available
under an open source license5.

Note. Although the resolution of the joint absolute encoder AS5045 (used
on the main iCub joints) is quite high for a magnetic encoder, bringing
the LSB value down to 0.1 deg, its accuracy is much lower, around 0.5 deg,
as it depends on the non-linearity due to the sensor signal processing and
amplification, and to the magnet sensor misalignment. As a result, the
measurements are subject to the Integral Non-Linearity error, which typical
value is 0.5 deg (A.1.1, table A.1).

The trust-region-reflective algorithm was preferred to the levenberg-marquardt
since our example system is an over-constrained problem: indeed the iCub
leg is equipped with 13 accelerometers providing as many measured accel-
eration vectors that the expected accelerations have to match, while the
leg has only 6 DoF. On top of that, the trust-region-reflective algorithm
doesn’t require the gradient of the error function for searching its minimum,
although this would potentially improve the accuracy and the processing
performances.

5https://github.com/robotology-playground/sensors-calib-inertial.git
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Fig. 3.14 The Angle of sensors measurement VS estimation.

3.4.4 Encoder calibration results

We depict in table 3.5 the joint offsets obtained from the least squares opti-
mization equation (3.4). We can see that there is no major difference with
the offsets measured manually. The gap is always below 1 degree, except for
joints J3 and J6. Further work is ongoing for analyzing the accuracy of these
results, as well as a thorough observability study. The standard deviation
across 5 buckets of the capture data is under or equal 0.1 degrees. The low
magnitude of the standard deviation is indicative of the robustness of the
proposed method to the pose of the robot, i.e. regardless of what poses are
considered for the minimization, in the range of reachable positions for a
3-DoF joint (3.4.3), the resulting optimal joint offsets are nearly identical.
This robustness is essential in order to be able to generalize the approach
across different robot morphologies and taken into account practical con-
siderations in their deployment. For validating the calibration results, we
evaluate the angle error between the measured and the estimated gravity
vector across all the sensors, but this time running a different joint trajec-
tory, for instance following the same type of grid shaped trajectory defined
in Section 3.3.4 for calibrating the accelerometers. As we can see in Fig.
3.14, this error has been overall reduced by an average factor of 3.

3.5 Conclusion

In this chapter, we propose two contributions in the context of the calibra-
tion of joint position and link inertial sensors. We first propose a joint offset
identification methodology which uses a distributed set of accelerometers,
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Left leg joints J1 J2 J3 J4 J5 J6

Offsets (deg)
Manual calibra-
tion

0.1 -4.0 -0.5 -3.8 -4.3 4.3

Auto-calibration -0.1 -4.7 2.5 -4.5 -4.6 6.0
Gap 0.2 0.7 -3 0.7 0.3 -1.7

Table 3.5 Example of joint offsets (degrees) estimated from manual calibra-
tion or from automatic calibration using accelerometers.

but in a simpler procedure with respect to prior existing methods. All the
model kinematic parameters but the joint encoder fine offsets are assumed
to be known: the link kinematic parameters (orientation and position be-
tween two consecutive joint axes), the joint orientations and rough offsets.
The joint offsets are known with an error of ±5◦, and the identification
procedure goal is to decrease that error to a value within ±1◦. The estima-
tion is done in a single step after acquiring the inertial measurements while
executing a single slow motion trajectory.

The problem of identifying the joint offsets was then posed as an uncon-
strained nonlinear least squares optimization minimizing the gap between
expected and measured accelerations, acquired in different joint configura-
tions. We demonstrated the requirements for getting a global minimum
solution. For that purpose, a single slow trajectory was defined, running
through a minimal set of joint configurations, while acquiring accelerome-
ters data, satisfying two main requirements: the measured acceleration was
always only due to the gravitational acceleration; the joint axis was never
aligned with the gravity vector, which would make the measurement insen-
sitive to any rotation offset. The method was validated on one kinematic
chain of the robot iCub, and the accuracy of the offset computation was
demonstrated by: comparing the results to offsets measured manually, al-
though manual calibration cannot be considered a ground truth; measuring
the angle deviation between the expected and measured accelerations; per-
forming a qualitative test where the calibrated kinematic chain is controlled
in torque, gravity compensation is applied and joint friction is partially
compensated (in this configuration, the joints are subject to drift in case
the encoder offsets are not properly compensated).

The algorithm we have presented can work in a chain-wise fashion, thus
each limb of a humanoid can be calibrated either independently or simultane-
ously depending on the need. there is no need to reach the joint limits. This
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in particular is ideal for robots that cannot reach joint limits due to collisions
with plastic casings and problems in wiring. Two additional requirements
for our method are however: the availability of multiple accelerometers with
at least one every three links—given the low-cost easy availability of MEMS
inertial sensors, our approach makes a strong case for incorporation of such
sensors on all links of a humanoid robot; the need for accurate knowledge
of link to sensor frame pose—this may not be an issue for commercial hu-
manoids as accurate CAD diagrams can be typically utilized to extract this
information.

The second contribution is about identifying in-situ the full calibration
matrix and axes offsets of any accelerometer mounted on the kinematic
chain, without knowing the sensor pose with respect to the link it is attached
to, nor the joint configurations. Additionally, we give a particular attention
to the identification of the cross-axis gains and their dependency with respect
to the drifting axes offsets, unlike other existing methods which assume the
calibration matrix to have only diagonal terms.

We defined a grid shaped trajectory for generating the spherical mani-
fold of a constant vector (Earth’s gravitation field vector) spanning all the
directions. The obtained manifold is a fraction of the sphere due to the joint
limits. The location of the fraction on the sphere depends on the orientation
of the sensor frame with respect to the world frame. But since the physical
quantity to be measured is isotropic, any sheer or stretch effect due to the
sensor defects (offsets, differences between the axes gains and the cross-axis
sensitivity) can be characterized w.r.t. the sensor frame alone, i.e. the fitted
model can be expressed in the sensor frame regardless of the frame orien-
tation in space. Hence the model parameters do not depend on the pose
of the sensor in the link frame, and even less on the joint configuration.
The model mapping the raw measurements to the measured accelerations
was assumed affine and identified with an ellipsoid fitting algorithm from
an open source library. Further we defined the conversion from the ellipsoid
explicit parameters to the sensor calibration parameters. The method was
validated on one kinematic chain of the robot iCub, which is equipped with
a dozen of single proof-mass MEMS accelerometers The method required
an improvement consisted of a prior, separate identification of the offsets,
still not dependent on the sensor frame orientation, but requiring the first
joint in the kinematic chain to be orthogonal to Earth’s gravitational field
vector. Once identified, the offsets were used as an additional constraint in
the fitting algorithm, which improved significantly the results repeatability.

As a possible future extension of this work, the source of the accelerom-
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eters offsets drift could be analyzed, in order to implement some compensa-
tion process. In addition, the algorithm could be improved in order to relax
some constraints on the trajectories that can otherwise raise issues with re-
spect to the joint limits. Among these constraints we can find the following:
the rotation axis has to be orthogonal to the gravitational field vector; the
angle between the two extreme positions used in the accelerometers offsets
calibration has to be of 180◦ for removing the dependency on the calibration
matrix.

Regarding the validation of the identified encoders offsets, the qualita-
tive tests in torque control with gravity compensation can be improved by
reducing further the friction, hence increasing the sensitivity to the encoders
offsets. This can be achieved typically by adding dithering like it was done
in [Capurso et al., 2017], and using the friction parameters identified in
Chapter 2.

In order to run the joint calibration procedure faster and anywhere, we
need to get rid of any external fixture previously required as a support while
moving the legs. For that intent, an accelerometer should be mounted on
the base, and the joint trajectories should be integrated in a balancing task,
for just relying on the ground contact, and eventually a third temporary
contact as a support. On top of that, the algebraic computation of angular
accelerations would improve the Forward Kinematics and allow to include
the accelerometer coordinate acceleration in (3.3). This would make the
algorithm applicable for faster motions.

The calibrated accelerometers can be used along with gyroscopes for
estimating the joint accelerations algebraically, i.e. without numerical dif-
ferenciation, as presented in Chapter 4. Once the angular and linear link
accelerations are available, along with the accurate joint positions, these can
be used directly in inverse dynamics algorithms [Traversaro, 2017, Chapter
4, Section 4.4.2] decomposed in a “sensor-based net force-torque estimation,
followed by a joint torque estimation. This approach reduces the errors
otherwise accumulated when propagating the link accelerations through the
composition of joint accelerations from the root to the leafs of a kinematic
tree.
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Chapter 4

Link Angular Acceleration
Estimation

4.1 Introduction

The link angular acceleration can be used in dynamics computations that
estimate: the motion compensated inclination with respect to the gravita-
tion vertical vector; the joint positions, velocities and accelerations without
relying on joint encoders; the rate of the angular momentum of a humanoid
robot in a whole-body controller loop; or the external wrenches and internal
joint torques.

Joint torques can be measured by joint torque sensors, or estimated in a
framework using embedded force-torque sensors and inverse dynamics [Nori
et al., 2015b] [Traversaro, 2017], or just joint encoders measurements and
the robot dynamic model [Capurso et al., 2017], [Linderoth et al., 2013]
[Stolt et al., 2015a]. For the third option, a model observer estimates the
external forces based on the deviation of the measured link momentum from
the value predicted by the model. The force is estimated by solving a con-
vex optimization problem. Because of the high cost of joint torque sensors,
the mentioned alternatives are often preferred. In [Traversaro, 2017, Chap-
ter 4], the framework estimating joint torques using force-torque sensors
and inverse dynamics can take directly link accelerations as described in
[Traversaro, 2017, Chapter 4 section 4.4.2], referred to as the sensor-based
net force-torque estimation, followed by the joint torque estimation. This
approach reduces the errors propagation, while speeding up the computa-
tions, since we relate only on local data from sensors attached to the link
closest to the target joint. Hence, the first step is to improve the estima-
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tion of link linear and angular accelerations. These are commonly estimated
through the forward kinematics and joint position derivatives [Khalil and
Dombre, 2004, chap 5] [Featherstone, 2014, sections 2.2, 4.4]. Joint posi-
tions can be directly measured by rotary encoders of two possible distinct
types: absolute or incremental. Absolute encoders produce a unique dig-
ital code for each distinct angle of the shaft, while most common designs
of incremental encoders produce two cyclical quadrature signals. The joint
velocity can be obtained by measuring the digital signal change frequency
in the first case or the cyclic output signals frequency in the second case, or
even by computing a numerical derivative approximation of consecutive po-
sitions. As the numerical differentiation is very sensitive to high frequency
noise affecting the encoder measurements, it requires filtering and thus in-
troduces lag, which can compromise the system controller performance. In
any case, these methods produce measurements with a limited resolution.
For this reason, in this chapter we discuss on an alternative method for es-
timating link accelerations using other sensor modalities. Gyroscopes and
inertial sensors like accelerometers, as well as a combination of these sensors
as we can find in IMUs, are good candidates, providing more accurate and
high resolution measurements.

4.2 Related Work and Innovation

4.2.1 An alternative to direct sensing

The research on the estimation of link velocities and accelerations directly
from IMUs mounted on these links is getting a growing attention, in partic-
ular MEMS (MicroElectroMechanical Systems) based IMUs. MEMS based
inertial sensors are low cost, robust and immune to local magnetic distur-
bances. The estimation of joint velocities and accelerations from the respec-
tive link kinematics is quite trivial. But while angular velocities are directly
measurable by gyroscopes, it is not the case for link angular accelerations.
It’s hard to find sensors that measure directly angular accelerations, as small
as MEMS. For instance, Columbia research laboratories provide angular ac-
celerometers, like the SR 100FR 1 shown in figure 4.1, based on a fluid
rotor concept, highly accurate, that provide good bias stability and linear
acceleration rejection. The drawback is its size and power consumption inap-
propriate for light duty robotics systems or humanoid robots: the SR 100FR

1https://www.crlsensors.com/product.cfm?cat=force-balance&sub=

angular-accelerometers&prod=sr-100fr
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(a) (b)

Fig. 4.1 Three-axes direct sensing angular acclerometers: (a) fluid rotor
model SR-100FR by Columbia Research Laboratories, providing high sen-
sitivity from 0.1. Source: https://www.crlsensors.com; (b) piezoresistive
model 7302BM4 by MEGGITT, of much smaller dimensions, but with lower
sensitivity (5mV per krad s−2). Source: http://www.akron.be.

weights 1.58kg, has a diameter of 16cm, which is for instance, respectively
5% of a iCub’s total weight and almost as large as iCub’s head. Compared
to a MEMS sensor, it can draw thirty times more power than a single of the
MEMS gyroscopes used on iCub (ST Microelectronics L3GD20H). Another
sensors manufacturer, MEGGIT, proposes a smaller model, the 7302BM4 2,
piezoresistive, of much smaller dimensions, but far less sensitive than the
SR-100FR. These are a couple of examples to illustrate the usual compro-
mise between small size and high sensitivity.

The current alternative is to use the fused measurements from accelerom-
eters and gyroscopes and a model relating the angular acceleration with the
linear accelerations across a distributed set of body points, and this way,
sensing the body full motion state.

In [Vihonen et al., 2013] a configuration with single-axis and biaxial ac-
celerometers are combined into a set of 6 axes, and completed with one triax-
ial gyroscope, as shown in Fig. 4.2, for estimating the full joint motion state,
i.e. position, angular velocity and acceleration, of all three joints in a copla-
nar kinematic chain. The authors first propose an algebraic, fast method
(with a lag below 1ms) for estimating each joint angular acceleration us-
ing the multi-MEMS configuration instead of any differentiation technique,
and for that reason referred to as “direct sensing”. When compared to the
double differentiation of the joint encoders or the direct differentiation of a
gyroscope’s measurements, the method scores improved accuracy, with up to
five times less error, even if still subject to significant high frequency noise.

2http://www.akron.be/pdf/endevco/7302BM4.pdf
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Fig. 4.2 Configuration of six linear accelerometers (single axis) for the direct
sensing of angular acceleration. Straight arrows are accelerometer axis, arced
arrows are gyroscope axis. Source: Vihonen et al. [2013]

The authors then use the estimated angular acceleration for distinguishing
the link coordinate acceleration from the gravitation acceleration in the in-
ertial sensor’s measurements, in the context of sensing the inclination of a
link with respect to the gravity vertical. Although the result turns to be too
noisy for the inclination sensing itself, the author used it effectively in the es-
timation of the joint positions, achieving a position error below ± 1 deg. For
that purpose, they implemented a discretized PI-type complementary filter
where the motion compensated inclination was used for bias cancellation.
The filter gave very good results compared to encoders benchmarks. Re-
garding the joints angular acceleration, the estimation was done iteratively
on one DoF at a time, from the base to the end effector, as it depended on
the composition of accelerations in the supporting tree 3.

That approach was improved later by the same authors in [Vihonen et al.,
2015].

In Rotella et al. [2016] the authors proposed a similar solution formulated
in a simpler way, also using six accelerometer axes for each link, hence
the equivalent of two IMUs, and applicable to floating base systems. Each
joint acceleration θ̈i is estimated from the joint velocity θ̇i and the linear
accelerations measurements from one IMU on the parent link i − 1, and
from two IMUs on the link i 4, respectively denoted by ai−1, ai, and ãi in
the article.

3Joints in the kinematic path between the base and the current processed joint.
4The link i− 1 is the parent link of joint i, which supports the link of same index i.
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4.2.2 Towards a local acceleration estimation

Our approach is similar to the first two, is also applicable for floating base
systems, but directly estimates the link angular acceleration without requir-
ing the computation of joint velocities θ̇i, the joint positions defining the
rotation iRi−1, nor the measurements from any IMU fixed to the parent
link ai−1 nor any other link. All the measurements are local to the link be-
ing estimated. We pose the problem as a linear system, similarly to what is
done in [Rotella et al., 2016]. Each sensor proper acceleration 5 depends on
the link’s angular velocity ωA,L and acceleration ω̇A,L, the linear coordinates
acceleration of the link itself Ap̈A,L, the pose of the sensor frame with respect
to the inertial frame A, and the gravitation acceleration g. We compute and
compare the linear accelerations of two sensors, which allows us to remove
the dependency to the link orientation LRA, the link acceleration Ap̈A,L, as
well as the gravity, and depend on the relative poses of the sensor frames
w.r.t. each other, instead of the absolute poses. As for [Rotella et al., 2016],
we relate these two IMU with a third one fixed on the link for getting a
unique solution for ω̇i. A minimal filtering can be used for canceling or at
least attenuating the inertial sensors noise, as the sensors distribution in a
small sized link might make the algorithm very sensitive to measurement
errors. It is crucial to define a filtering that would not introduce too much
lag. The system is easily scalable, as the algorithm update is trivial for each
new added IMU to the predefined set.

Note. We don’t assume that the accelerometers are assembled as three single
axis accelerometers, but rather single proof-mass MEMS, as it is the case in
the iCub sensor framework. Hence we consider the worst case scenario where
the accelerometers have a cross-axis sensitivity, which we can compensate by
applying the calibration procedure seen in chapter 3, section 3.3.4.

We will address how the relative IMU positions condition the angular
acceleration observability. As a first intuition, it is likely that the IMU
positions should be as far as possible from each other, as for a given rotation
velocity, the contribution of the noise to the final estimation error should
decrease with that distance . For instance, we can use the configuration
depicted in fig. 4.2 replacing p1i and p2i by one IMU each.

This paper is organized as follows : in Section 4.3 we present the sen-
sor framework and the background concepts; in Section 4.4 we describe the
improved acceleration estimation method, the filtering done on the measure-
ments and the estimated quantities, and the application of the method to

5appx:rigidBodyDynamics-frameKinematics-properAcc
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the whole-body dynamics computations; Section 4.5 details the experiments
that were conducted and the obtained results; finally, Section 4.6 draws the
conclusions.

4.3 Background

4.3.1 Notation and Definitions

The notation used for describing the models and the algorithms in this
chapter is based on the notation presented in section B. We list below the
simplified notation specific to this chapter:

A,B, Sk cartesian coordinate frames
Sk cartesian coordinate frame of sensor k
ApB coordinates of origin of frame B expressed in frame A
BαSk

proper acceleration of sensor k projected on a given frame B
αSk

proper acceleration of sensor k expressed in sensor frame
[A] orientation frame associated to A
B[A] frame with same origin as frame B and same orientation as

frame A
ARB rotation transformation (∈ SO(3)) of a 3D vector from B to

A
x∧ 3 x 3 skew symmetric matrix of vector x (x ∈ R

3)
Y ∨ vector such that (Y ∨)∧ = Y (Y ∈ R

3)
CvA,B linear component of CvA,B
CvA,B× matrix representation of the twist cross product
CvA,B×∗ matrix representation of the wrench (twist dual) cross product
x̂ estimate of vector x
Ag gravitational acceleration vector (Ag ∈ R

3) written in frame
A

In identity matrix

We choose A as the world inertial frame.

4.3.2 Problem formulation and assumptions

We consider a single floating link L or a link from a kinematic chain but
for which we don’t have an accurate measurement of the support joints 6

positions, velocities and accelerations. The link is equipped with at least one

6joints in the sub-chain connecting the link to the robot base
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gyroscope measuring the angular velocity, and two accelerometers S1 and S2
fixed to that link. We wish to define a linear system of kinematic equations
allowing to estimate the link angular acceleration from the accelerometers
and gyroscopes measurements.

The first step is to compute the linear part of the coordinate acceler-
ation of any of the accelerometers sensor frames Sk as a function of the
link coordinate acceleration, the link angular velocity and the sensor frames
poses.

From now on all the velocities and accelerations are defined with respect
to the world inertial frame denoted A, which will be omitted in the notation
for the sake of clarity. We write the position of the sensor frame origin
expressed in the world frame as follows:

ApSk
= ApL + ARL

LrL,Sk
, (4.1)

where ApSk
is the sensor frame origin position in the world frame and

LrL,Sk
is its respective fixed position in the link reference frame. We then

compute the sensor frame velocity through the first time derivative:

AṗSk
= AṗL + AṘL

LrL,Sk
= AṗL + AṘL

AR⊤

L
ArL,Sk

, (4.2)

and, using the definition of the right trivialized angular velocity given in
B.3.5, AωL := AṘL

AR⊤

L , we get:

AṗSk
= AṗL + AwL

∧ ArL,Sk
. (4.3)

We now write the sensor frame acceleration as the second time derivative,
applying the distributive property of the cross product in R

3 with respect
to the differentiation:

Ap̈Sk
= Ap̈L + AẇL

∧ ARL
LrL,Sk

+ AwL
∧
d

dt

(

ARL
LrL,Sk

)

= Ap̈L + AẇL
∧ ARL

LrL,Sk
+ AwL

∧ (AwL
∧ ARL

LrL,Sk
) (4.4)

Given the definition of the accelerometer measurement in B.3, as being
the sensor proper acceleration expressed in the sensor frame, we can write:

αSk
:= SkRA

(

Ap̈Sk
− Ag

)

(4.5)

In view of (4.4) and (4.5), we rewrite the same measurement expressed
in the link frame:

116



LαSk
=LRSk

SkRA

(

Ap̈L + AẇL
∧ ARL

LrL,Sk

+ AwL
∧
(

AwL
∧ ARL

LrL,Sk

)

− Ag
) (4.6)

LαSk
=LRA

Ap̈L + LRA
AẇL

∧ LrL,Sk

+ LwL
∧
(

LwL
∧ LrL,Sk

)

− Lg
(4.7)

Remark 4.1. We did not simplify on purpose the elements LRA
Ap̈L and

LRA
AẇL. We recall the meaning of Bm̈ for any position or motion vector

m and any arbitrary frame B:

Bm̈ :=
d2

dt2
(

Bm
)

.

Following the above definition, Lp̈L = 0 and so LRA
Ap̈L 6= Lp̈L. The case

of LRA
AẇL is less trivial. We can write:

AωL = ARL
LωL

Aω̇L = AṘL
LωL + ARL

Lω̇L

= AṘL
AR⊤

L
AωL + ARL

Lω̇L

= AωL
∧ AωL + ARL

Lω̇L ,

and since the first term is null, we get:

Aω̇L = ARL
Lω̇L ,

hence:
LRA

Aω̇L = Lω̇L , (4.8)

We specify in section B.1, remark B.1, the definition of the dot operator
(−̇).

So (4.7) can be rewritten as follows:

LαSk
= LRA

Ap̈L + LẇL
∧ LrL,Sk

+ LwL
∧
(

LwL
∧ LrL,Sk

)

− Lg (4.9)

From here, the common base idea is to define a series of relations like
(4.7), relating other accelerometers and gyroscopes measurements, either
from the same link L, either from multiple links, building up a linear system
and solving it for Lω̇L.
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4.4 Methodology

4.4.1 Base Algorithm: Local Estimation

System Definition

Starting from (4.9), it is a known approach to pose the difference between
the measurements from two sensors (αS0

− αS1
), in order to cancel out

the gravitational field and the link coordinate acceleration (and with it the
dependency on the link pose with respect to the world frame), which is
equivalent to what was done in [Rotella et al., 2016], [Vihonen et al., 2013]
and [Vihonen et al., 2015], only these previous works use a composition of
angular velocities and linear accelerations from neighbor links while here
we will use kinematic variables and measurements solely from a single rigid
body link L. We rewrite (4.9) as:

(

LrS1,S2

)∧ Lω̇L = LαS1
− LαS2

+ (Lω∧

L)
2 LrS1,S2

, (4.10)

allowing us to get rid of the gravitational field Lg and the link acceleration
Ap̈L. The goal is to solve the system for Lω̇L, but it does not have a unique
solution since the matrix

(

LrS1,S2

)∧
has rank two.

Proof. We consider the Hermitian inner product on a complex vector space
C
n denoted by 〈·, ·〉, verifying the following properties:

〈λu, v〉 = λ〈u, v〉
〈u, λv〉 = λ̄〈u, v〉
with λ ∈ C and u, v ∈ C

n ,

(4.11)

If a real matrix A is skew symmetric, it verifies A⊤=−A, and we can write:

∀u, v ∈ C
n, 〈Au, v〉 = (Au)⊤ v = u⊤A⊤v = −u⊤Av

〈u,−Av〉 = −u⊤Av = 〈Au, v〉
so, 〈Au, v〉 = 〈u,−Av〉 (4.12)

Considering that every eigen value and respective eigen vector of A verify
Av = λv, and considering the inner product on C

n as well as the properties
(4.11) and (4.12), we can write:

λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈v,−Av〉 = 〈v,−λv〉 = −λ̄〈v, v〉 ,
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and we conclude that λ = −λ̄, i.e. that λ is purely imaginary. For a real
matrix, complex eigenvalues come in conjugate pairs, so the rank must be
even, i.e. if A ∈ R

3×3, then rank(A) = 2.

So we need at least a third accelerometer for obtaining a unique solution,
hence we add an additional line to (4.10) as shown below:

[

(LrS0,S1
)∧

(LrS0,S2
)∧

]

Lω̇L =

[

LαS0
− LαS1

+ (Lω∧

L)
2LrS0,S1

LαS0
− LαS2

+ (Lω∧

L)
2LrS0,S2

]

, (4.13)

The augmented linear system, now over constrained, defines a linear
least-squares optimization problem. If the matrix of sensor positions mul-
tiplying Lω̇L has a rank three, i.e. if the accelerometers S0,S1 and S2 po-
sitions are well distinct and well distributed, we can solve the problem for
Lω̇L through the computation of a Moore-Penrose pseudoinverse.

minimal number of sensors and required relative positions

For finding a unique solution to the system, the matrix of sensor positions
needs to be full rank, i.e. rank three. In [Zappa et al., 2001] a similar
analysis was done on a system with twelve single axis accelerometers and no
gyroscopes, but computing the determinant of the square matrix of sensor
positions. The additional accelerometers were required for compensating
the absence of angular velocity measurement, which is not our case since
we are using gyroscopes. The first trivial condition is to avoid singular
cases (LrS0,S1

∼ LrS0,S2
), placing the three accelerometers S0, S1 and S2 at

three distinct positions, as far as possible from each other. This condition
is clearly mentioned in previous studies like [Rotella et al., 2016], but for
identifying further conditions, we need to actually compute the rank. Let
the sensor positions be defined as follows:

LrS0,S1
=





x1
y1
z1



 , LrS0,S2
=





x2
y2
z2



 , C =

[

(LrS0,S1
)∧

(LrS0,S2
)∧

]

(4.14)

We then perform a rank computation through a Gaussian Elimination
(row reduction):

119



C =

















0 −z1 y1
z1 0 −x1
−y1 x1 0
0 −z2 y2
z2 0 −x2
−y2 x2 0

















→
(1)

















z1 0 −x1
−y1 x1 0
0 −z1 y1
0 −z2 y2
z2 0 −x2
−y2 x2 0

















→
(2)

















z∗1 0 0
0 x∗1 0
0 0 y∗1
0 −z2 y2
z2 0 −x2
−y2 x2 0

















,

by applying the operations (1) and (2) specified below:

(1) swap rows 1 and 2, then 2 and 3 (counting from the top starting at 1),

(2) subtract row 5 ×x1

x2
from row 1, then subtract row 6 ×y1

y2
from row 2,

then subtract row 4 × z1
z2

from row 3.

From the Gaussian Elimination, we get a matrix with three pivots x∗1, y
∗
1

and z∗1 . For C to have rank three, all pivots must be non null:

z1x2 − z2x1 6= 0
x1y2 − x2y1 6= 0
y1z2 − y2z1 6= 0







⇐⇒
(

LrS0,S1

)∧ (

LrS0,S2

)

. (4.15)

(4.15) states that for the system to have a unique solution (rank(C) = 3),
the sensors S0, S1 and S2 should never be aligned. The analysis would be
similar for a system scaled to an arbitrary numberN of three-axis accelerom-
eters, with N ≥ 3.

4.4.2 A more Scalable Formulation

Although the minimum set of accelerometers for estimating the angular ac-
celeration is three, we might have many more inertial sensors available on
the estimated link. In the previous formulation of the estimation system,
we realize that the measurements from one of the sensors, namely S0, are
used more often than the others, which impacts the weight of the respec-
tive data in the least squares optimization. That difference might become
significant typically if we select systematically S0 for the same purpose, i.e.
as a reference to the others, while increasing the number of accelerometers
used in the estimation process. In order to cope with this inconvenience, we
rewrite (4.9), replacing the link coordinate acceleration and the gravity by
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the link proper acceleration as it would be measured by a virtual accelerom-
eter which sensor frame is the frame L: αL = LRA

(

Ap̈L − Ag
)

. We rewrite
(4.9) as follows:

[

(LrL,S1
)∧ −I3

(LrL,S2
)∧ −I3

] [

Lω̇L

αL

]

=

[

−LαS1
+ (Lω∧

L)
2LrL,S1

−LαS2
+ (Lω∧

L)
2LrL,S2

]

(4.16)

Solving this new system for [Lω̇L αL]
⊤ requires the matrix multiplying

it to have rank six (full rank), while as is, the matrix has at most rank four.
For that reason we need to add at least an additional accelerometer to the
system, as with the base algorithm in the previous section. (4.16) can then
be re-written as follows:





(LrL,S1
)∧ −I3

(LrL,S2
)∧ −I3

(LrL,S3
)∧ −I3





[

Lω̇L

αL

]

=





−LαS1
+ (Lω∧

L)
2LrL,S1

−LαS2
+ (Lω∧

L)
2LrL,S2

−LαS3
+ (Lω∧

L)
2LrL,S3



 (4.17)

⇐⇒
[

L ˆ̇ωL

α̂L

]

= C+





−LαS1

−LαS2

−LαS3



+ C+





(Lω∧

L)
2LrL,S1

(Lω∧

L)
2LrL,S2

(Lω∧

L)
2LrL,S3



 (4.18)

Where C =





(LrL,S1
)∧ −I3

(LrL,S2
)∧ −I3

(LrL,S3
)∧ −I3



 and C+ = (C⊤C)−1C⊤. (4.19)

Where L ˆ̇ωL and α̂L are respectively the estimated angular and linear
link accelerattions. Note that the gravity doesn’t appear in the system
above as also happens with (4.13), such that gravity compensation is not
necessary. Note that Lω̇L is the time derivative of AωL projected into the
frame L. This quantity can differ from the result of the numerical derivative
of the measurement from a gyroscope mounted on the link. Actually, this
is not an issue since the time derivative of AωL projected into the frame L
is the quantity required by the internal joints torque estimation algorithm
described in [Traversaro, 2017, Chapter 4 section 4.4.2]. All other quantities
are measured, like the accelerometers measurements αSi

, the gyroscopes
measurements ωL, or known, like the sensor relative poses extracted from
the robot CAD model or calibrated offline.

minimal set of sensors

As we need a rank six matrix for solving the system, we require at least one
three-axis gyroscope and three distinct three-axis accelerometers.
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Remark: As six independent equations in the system are required, we
only need two axis per accelerometer, so we could have defined a system
with six single axis accelerometers.

4.4.3 Optimizing the acceleration computation

In order to regroup the measured dynamic variables apart from the con-
stants, we wish to rewrite (4.17) as follows:

[

L ˆ̇ωL

α̂L

]

= C+R





αS1

αS2

αS3



+ C+D vec
(

LωL ⊗ Lω⊤

L

)

+ C+P
(

Lω⊤

L
LωL

)

(4.20)

Where [α⊤

S1
α⊤

S2
α⊤

S3
]⊤ and the terms in LωL are the measured quantities,

and R, D and P are the constant values that depend on the sensor poses and
can be computed offline. This should reduce significantly the computation
cost at runtime.

Computing R





−LαS1

−LαS2

−LαS3



 =





−LRS1
0 0

0 −LRS2
0

0 0 −LRS3









αS1

αS2

αS3





= − diag
(

LRS1
, LRS2

, LRS3

)





αS1

αS2

αS3



 . (4.21)

We defined the diag(-) operator in the section B.2.

Computing D and P

Computing the squared skew matrix (Lω∧

L)
2 once and using it in a single

matrix multiplication is more efficient than executing a cross product twice
for each sensor position LrL,Sk

. We convert the squared skew matrix (Lω∧

L)
2

into a combination of simple matrix inner product:
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(ω∧)2 r =





0 −z y
z 0 −x
−y x 0









0 −z y
z 0 −x
−y x 0



 r

=





−z2 − y2 yx zx
xy −z2 − x2 zy
xz yz −y2 − x2



 r

=
(

ω ⊗ ω⊤ − ω⊤ω I3

)

r

= ω ⊗ ω⊤ r − ω⊤ω r (4.22)

We can re-write the first term of (4.22) as:

ω ⊗ ω⊤ r =

(

(

ω ⊗ ω⊤ r
)⊤

)⊤

=
(

r⊤
(

ω ⊗ ω⊤

))⊤

= vec
(

r⊤
(

ω ⊗ ω⊤

))

=
(

I3 ⊗ r⊤
)

vec
(

ω ⊗ ω⊤

)

The last line is obtained using the vectorization property, demonstrated
in section B.2, that states: vec(AB) = (Im ⊗A) vec(B), for any matrices A,
B and where m is the number of columns of B.

Since ω⊤ω is a scalar, we can re-write the second term of (4.22) as r ω⊤ω.
We then get the following decomposition:





(Lω∧

L)
2LrL,S1

(Lω∧

L)
2LrL,S2

(Lω∧

L)
2LrL,S3



 =





I3 ⊗ Lr⊤L,S1

I3 ⊗ Lr⊤L,S2

I3 ⊗ Lr⊤L,S3



 vec
(

LωL ⊗ Lω⊤

L

)

−





LrL,S1

LrL,S2

LrL,S3





(

Lω⊤

L
LωL

)

(4.23)

In view of (4.21) and (4.23) we can rewrite (4.18) as (4.20), and generalize
to N sensors as follows:

[

L ˆ̇ωL

α̂L

]

= J
(

LrL,Si

)

y
(

αSi
, LωL

)

, (4.24)

123



with:

J
(

LrL,Si

)

=
[

C+R C+D C+P
]

,

y
(

αSi
, LωL

)

=















αS1

...
αSN

vec
(

LωL ⊗ Lω⊤

L

)

(

Lω⊤

L
LωL

)















,
(4.25)

and:

C+ = (C⊤C)−1C⊤, C =







(LrL,S1
)∧ −I3

...
(LrL,SN

)∧ −I3






, (4.26)

R = − diag
(

LRS1
, · · · , LRSN

)

,

D =







I3 ⊗ Lr⊤L,S1

...
I3 ⊗ Lr⊤L,SN






, P = −







LrL,S1

...
LrL,SN






,

(4.27)

where J
(

LrL,Si

)

is what we will call the “configuration matrix” of the ac-
celerometers set, and y

(

αSi
, LωL

)

is the vector of all accelerometers and
gyroscopes measurements.

4.4.4 Sensors Anisotropic Sensitivity and bias compensation

The MEMS inertial sensors are characterized by a slow time varying bias
on each axis, different axis gains, cross axis sensitivity. We addressed in
chapter 3 the analysis and compensation of those defects in the case of the
accelerometers, and here we assume them to have been calibrated offline.

In this thesis we consider the gyroscopes to be affected only by an offset,
having an isotropic sensitivity along the three axes. The gyroscopes offsets
can be compensated online but that is out of the scope of this Thesis, and
will be addressed in a future work. Here we consider the offsets calibrated
offline.

4.4.5 Impact of the Sensor Noise on the Estimated Quanti-
ties

The MEMS inertial sensors are affected by an additive high frequency noise.
Unlike the accelerometers used in our experiments, the gyroscopes have some
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filtering integrated in the sensor chipset for canceling the measurement noise.
For this reason, the accelerometers noise will be the only perturbation con-
sidered throughout this chapter. Their measurements can then be expressed
as follows:

α̃Si
= αSi

+ ηSi
, (4.28)

where αSi
is the sensor measurement without any perturbation, and

ηSi
the high frequency noise affecting the sensor. If we integrated that

perturbation in the link acceleration estimate (4.24) we get:

[

L ˜̇ωL

α̃L

]

= C+R







α̃S1

...
α̃SN






+ C+D vec

(

LωL ⊗ Lω⊤

L

)

+ C+P
(

Lω⊤

L
LωL

)

= C+R







αS1

...
αSN






+ C+D vec

(

LωL ⊗ Lω⊤

L

)

+ C+P
(

Lω⊤

L
LωL

)

+ C+R







ηS1

...
ηSN







[

L ˜̇ωL

α̃L

]

=

[

L ˆ̇ωL

α̂L

]

+ C+R







ηS1

...
ηSN






=

[

L ˆ̇ωL

α̂L

]

+ LηL, (4.29)

where x̃ and x̂ are the quantities estimated respectively with and without
noisy measurements, and LηL is the cumulated contributions of the sensors
noise to the estimation.

Remark 4.2. If we look closer to the impact of the sensors positions on the
estimation sensitivity to the measurements noise, we write:

∥

∥

LηL
∥

∥ ≤
∥

∥C+R
∥

∥

∥

∥

∥

∥

∥

∥

∥







ηS1

...
ηSN







∥

∥

∥

∥

∥

∥

∥

, (4.30)

and,
lim

∀i,LrL,Si
→+∞

∥

∥C+R
∥

∥ = 0,
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so,
lim

∀i,LrL,Si
→+∞

∥

∥

LηL
∥

∥ = 0.

This result shows that, in the simple case of a pure rotation about a given
axis, and that axis runs through the link frame origin, the contribution of the
inertial sensors noise to the estimated angular acceleration noise decreases
with the distance between the sensors and the rotation axis.

Note. A more accurate analysis of the propagation of uncertainties due to
noise measurements would require a proper analysis of the properties of the
given noise distribution, in order to infer which probability tools to use. For
instance, if the measurements noise could be modeled by a Gaussian distri-
bution, we could address the problem with the Bayesian estimation on linear
models. The analysis of the noise distribution and the derived uncertainties
propagation analysis are out of scope of this thesis dissertation.

4.5 Experiments

4.5.1 Sensors framework

For validating the algorithm presented in this chapter and evaluating its
performance, we have run the experiments on the robot iCub, which archi-
tecture we already presented in the section 2 and 3, along with the sensors
framework.

4.5.2 Simulations

Prior to running the experiments on iCub, a series of tests were performed
on Matlab for assessing the impact of the sensors positions and sensors
measurements noise on the estimation algorithm performance.

The Cube Link Model: The first model we have tested was a cube, 1m
large, with eight triaxial accelerometers placed at its vertices, roughly 80cm
from the centre, and two gyroscopes at its centre. The cube was attached to
a fixed base through a rotary actuated joint with vertical axis. Several joint
motion trajectories were tested: fixed position; constant velocity; constant
acceleration; sinusoidal acceleration; random smooth trajectory.

Note. The random trajectory was obtained through a sum of sinusoidal tra-
jectories of random amplitudes and frequencies. This allowed to define the
velocity and acceleration analytically.
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The joint positions, velocities and accelerations, were defined analyti-
cally and sampled at 100Hz. The sensor measurements were then emulated
through forward kinematics from the input joint trajectory variables, by
using a dynamics library 7 for the computations. For simulating the mea-
surement noise, we added to the generated samples an uncorrelated white
noise, i.e. a random signal with white frequency spectrum and Gaussian
amplitude distribution, also referred to as Normal distribution. The noise
component, denoted η = N

(

0, σ2
)

, has zero mean and a standard deviation
sigma ∼ 0.29.

The link angular acceleration is estimated and expressed at the centre
of the cube. A noise level of 1% of the measurement full scale applied
to the accelerometers will not affect the estimated angular acceleration, as
the distance from the centre of the cube to the accelerometers frames is
significant with respect to the noise level. It will not be the case for a model
with a distribution of sensors closer to the link centre.

iCub upper leg Link Model: The following simulation tests were run on
a model of iCub left thigh. The model is defined by a URDF (Unified Robot
Description Format 8) and related meshes. In Chapter 3 we addressed more
in detail the protocol used for describing a kinematic tree and how a URDF
is generated from a CAD model.

An iCub thigh (also referred to as “left/right upper leg”) is equipped with
two gyroscopes (gyro eb6, gyro eb7 ) integrated in interface boards (EMS6,
EMS7) mounted on the link, and seven triaxial accelerometers mounted on
the interior side of the thigh covers, more specifically five on the front cover
(acc 10b1 to acc 10b5 ) and two on the rear cover (acc 10b6 and acc 10b7 ).
The Matlab test script imports the URDF model 9 and retrieves from it the
sensors frames positions and orientations. Figure 4.3 illustrates the spatial
distribution of the sensors.

We describe below the test procedure. We wish to have the exact same
trajectory run on the simulation and on the real robot:

1. we initially run a test on the real robot, which is fixed on a pole. The
initial left leg joints position is such that the leg is straight, making
an angle of 30deg w.r.t. the gravitation field. We then rotate the hip

7iDynTree: https://github.com/robotology/idyntree.
8wiki.ros.org/urdf
9https://github.com/robotology/icub-models/blob/master/iCub/robots/

iCubGenova04/model.urdf
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(a) Front right view (b) Front left view

(c) Rear view

Fig. 4.3 URDF model with mesh of iCub left upper leg (thigh). Front (a,b)
and rear (c) views. The accelerometers MTB 1 to 5 are mounted on the
front cover, MTB 6 and 7 on the rear cover. They can be seen through the
covers made transparent for clarity.

128



yaw DoF from limit to limit in fast position control motion in order
to get a significant acceleration about the yaw axis,

2. the leg joint encoders and inertial sensors data are acquired and fed
to the Matlab script,

3. we then filter the joint encoder positions q using a Finite Impulse
Response (FIR) filter defined with coefficients generated from the
Savitsky-Golay algorithm [Press, 1992, chapter 14], and used the same
polynomial approximation for computing the derivatives q̇ and q̈,

4. we compute the expected sensor measurements from the filtered q, q̇, q̈
using a Forward Kinematics algorithm from the iDynTree dynamics
library, and add to those the same uncorrelated white noise used on
the previous cube model,

5. we compute the same way as in the previous step the expected link lin-
ear and angular accelerations, by adding a virtual angular accelerom-
eter and a virtual linear accelerometer to the leg link model depicted
in figure 4.3. Note that this step uses Forward Kinematics as well to
compose and propagate the link velocities and accelerations.

6. we estimate the link linear and angular accelerations using the al-
gorithm proposed in 4.4.3, and compare them against the respective
expected values.

First we started with noise free measurements and verified that the es-
timation is perfectly tracking the expected acceleration computed by the
dynamics library, as we can observe in figure 4.4.

Note. The oscillations observed in the first and last seconds of the time
frame are due to the Savitsky-Golay filter. Actually, we have implemented a
simpler version of the filter, without the “buffer-in” , “buffer-out” sub filters
allowing to smooth in and out the signal when the main filter buffer window
is partially filled. This has no impact on our analysis, as we will just ignore
the edges of the plots time-frames, i.e. the time-frame will be considered
valid from 3s to 20s.

We can actually already compare in 4.4 the result of our angular accel-
eration estimation algorithm with a classic numerical derivative defined by
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(4.31), which has already some noise (numerical computations noise) even
with noise free measurements.

ω̇∗ (tk) =
ω (tk)− ω (tk−1)

tk − tk−1
(4.31)

Remark 4.3. If for a given application a delay of one sampling period
Ts = tk − tk−1 is acceptable before getting the derivative result, we use an
alternate definition of the numerical derivative as follows, more reliable than
(4.31):

ω̇∗ (tk−1) =
ω (tk)− ω (tk−2)

tk − tk−2
(4.32)

Adding Estimation Filters

We now introduce noise in the measurements: we size the sensors noise
through a signal-to-noise (SN) ratio which is then applied to the each ac-
celerometer or gyroscope sensor full-scale value.

We set a SN of 1% and will use that level of noise throughout all the
experiments in this section. We have tried four different types of estimators
and compared their performance achieved with noisy measurements:

estimator 1: the numerical derivative method applied on LωL (4.31),

estimator 2: our method proposed in this chapter (4.24),

estimator 3: estimator 2 extended with a regularization term minimizing
the distance between consecutive estimations of L ˆ̇ωL,

estimator 4: estimator 3 regularized by the numerical derivative (estima-
tor 1 ).

We can see in figure 4.5 how estimators 1 and 2 perform almost equally
bad with 1% SNR. But if we look closer, we notice that the noise spikes
generated by the estimator 1 can be twice as high as those from estima-
tor 2. We plotted the probability distribution of the errors with respect to
the reference expected link accelerations. Both estimators results exhibit a
Gaussian like error distribution with zero mean and a high variance. The
measurements noise has significantly been amplified in the angular acceler-
ation estimate L ˆ̇ωL, while it barely affects the estimated link linear acceler-
ation α̂L. Actually, the condition number of the matrix C defined in (4.26)
is quite high, which is probably due to the proximity of the accelerometers
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.4 Simulation results when rotating the hip yaw between two limit
joint positions (fast motion in minimum jerk position control): (a) filtered q,
q̇ and q̈; (b) simulated accelerometer acc 10b1 measurements; (c) estimated
against expected link linear acceleration; (d) mean of simulated gyroscopes
gyro eb6 and gyro eb7 ; (e) estimated against expected link angular acceler-
ation; (f) numerical derivative of the angular velocity.
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with the rotation axis and the origin of the frame where we estimate the
link acceleration.

For compensating that perturbation we wish to regularize the least squares

estimation of the 6-D acceleration
[

L ˆ̇ω⊤

L , α̂
⊤

L

]⊤

tk
, from the estimator 2, with

respect to the 6-D acceleration estimated at the previous sampling time tk−1.
We follow an approach similar to the TRLS (Tikhonov-Regularized Least
Squares) problem [Golub et al., 1999].

Regularization with respect to previous estimate based on TRLS
(estimator 3): We wish to solve an over-constrained system,

Ax = b,

through a Least Square optimization problem. So we pose the cost function
to minimize:

Γ = ‖Ax− b‖22 + λ ‖x− xk−1‖22 ,
where the second l2-norm term is the regularization term forcing the LS
(Least Squares) minimization problem to converge to an optimum x close,
in euclidean distance, to xk−1 which is a known input to the problem. As
the l2-norm is differentiable, we can solve the problem with the gradient
descent:

x∗ = arg min
x

Γ(x) ,

the the optimal vector x∗ is the one for which the gradient of Γ with respect
to x is 0. so we can write:

∇Γ(x) =
1

n
(Ax− b)⊤ (Ax− b) + λ ‖x− xk−1‖22

=
2

n
A⊤ (Ax− b) + 2λ (x− xk−1)

= A⊤ (Ax− b) + λn (x− xk−1)

=
(

A⊤A+ λnIn

)

x−
(

A⊤b+ λnxk−1

)

,

so,

∇Γ(x∗) = 0

⇐⇒x∗ =
(

A⊤A+ λnIm

)−1 (

A⊤b+ λnxk−1

)

, (4.33)

where m is the dimension of x. If we transpose this new LS formulation to
our inital problem, and in view of (4.24), (4.25), (4.26) and (4.27), we get:
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A := C, x :=

[

L ˆ̇ωL

α̂L

]

, b :=
[

R D P
]

y
(

αSi
, LωL

)

,

and we redefine the initial algorithm as follows:

• C,R,D and P are still defined as in (4.26) and (4.27),

• we redefine C+ =
(

C⊤C + λnI6
)−1

C⊤,

• we define C+
R = λn

(

C⊤C + λnI6
)−1

,

• and:
[

L ˆ̇ωL

α̂L

]∗

= C+
[

R D P
]

y
(

αSi
, LωL

)

+ C+
R

[

L ˆ̇ωL

α̂L

]

k−1

. (4.34)

Regularization with respect to the numerical derivative (estima-
tor 4): We now start from the estimator 3 and add a regularization term
defined from the numerical derivative of the measured angular velocity (sim-
ulated measurement). We recall the estimator 3 system definition:

C

[

L ˆ̇ωL

α̂L

]

=
[

R D P
]

y
(

αSi
, LωL

)

+ C C+
R

[

L ˆ̇ωL

α̂L

]

k−1

.

We extend the system by adding the line about the constraint on Lω̇L, i.e.
dt I3

Lω̇L = LωL,k − LωL,k−1:

• C is redefined to,

C =











(LrL,S1
)∧ −I3

...
(LrL,SN

)∧ −I3

dt I3 03×3











,

• R,D, P,C+ and C+
R stay unchanged with respect to C,

• and:
[

L ˆ̇ωL

α̂L

]

=C+

[

R D P
03×N 03×9 03×1

]

y
(

αSi
, LωL

)

+ C+
R

[

L ˆ̇ωL

α̂L

]

k−1

+C+

[

03N×1
LωL,k − LωL,k−1

]

.

(4.35)
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Estimation Filters Results

We can see in figure 4.6 that we improved significantly the accuracy with the
estimators 3 and 4, reducing the estimation error standard deviation respec-
tively by 2 and 3. The estimator 4, combining both regularizations, is the
best performer, constraining the estimation variation between consecutive
sampling times, and regularizing with respect to the numerical derivative of
LωL. Each of them is less effective than this combination.

4.5.3 Tests on the Real Robot

Filters on the sensor measurements

As the link acceleration estimator is expected to work online, we did not
consider non-causal filters, usually used offline on the sensors measurements,
like the Savitsky-Golay filter, and typically applied with a filtering window
of hundreds of samples for instance in the case of accelerometers or joint
offsets calibration. On top of that, we preferred to filter or regularize the
estimated quantity instead of a large set of sensors, which would probably
reduce significantly the computation cost.

Note. The gyroscopes already have a low pass filter at the hardware level,
such that no noticeable noise is observed in the measurements. The sensor
has integrated low-pass and high-pass filters with user-selectable bandwidth
spanning from 16Hz to 110Hz (refer to table 21 of the datasheet). We cur-
rently do not have access to those parameters through the robot interface

Estimation Filters Results

The results on the robot with any of the estimators 1 to 4 are affected by
significant noise. Figure 4.7 depicts the results obtained on the same link
used in the simulations. Figure (a) and (b) show the joint positions and
accelerations, comparing the raw against the filtered ones. We would expect
the angular acceleration estimation in the figure (d) to match or track the
filtered joint acceleration (hip yaw) in figure (b), black thick line.

Results on sensor data filtered offline

In view of the link acceleration estimation results obtained on the real robot,
we checked if the measurement noise affecting the accelerometers was the
main perturbation deteriorating the estimation accuracy. For that purpose
we filtered the sensors data offline using a non-causal Finite Response Filter
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.5 Simulation results from measurements affected by noise with SNR
= 1%. Time series signal on the left, respective probability distribution on
the right: (a)-(b)-(c)-(d) Link acceleration computed by estimator 2 (our
proposed algorithm); (e)-(f) Link acceleration computed by estimator 1 (nu-
merical derivative). The estimated link linear acceleration aL is not affected
by noise.
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(a) (b)

(c) (d)

Fig. 4.6 Simulation results from measurements affected by noise with SNR
= 1%. Time series signal on the left, respective probability distribution
on the right: (a)-(b) Link angular acceleration computed by estimator 3
(minimizes ω̇ − ω̇k−1, λ = 0.01); (c)-(d) estimator 3 regularized with the
numerical derivative.
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(a) (b)

(c) (d)

Fig. 4.7 Test results on the real robot. (c) we can see a high level frequency
noise, of great amplitude, with punctual spikes in the accelerometers mea-
surements. (d) The angular acceleration estimation is not tracking properly
the expected link acceleration (upper leg rotating with the hip yaw oscilla-
tions), while the double numerical derivative of the encoder (b) gives better
results.
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(FIR) defined from the Savitsky-Golay algorithm, and verified that it was
the case.

4.6 Conclusion

This chapter proposes a algorithm for estimating algebraically the angular
and linear acceleration of a floating body from the measurements of a set
of MEMS inertial sensors attached to that body, namely gyroscopes and
accelerometers. It is still hard to find small sized sensors, for robotic ap-
plications, measuring directly the angular acceleration, with a good bias
stability, high sensitivity and linear acceleration rejection. The classical
alternative is to use the double numerical derivative of the joint encoders
measurements combined with forward kinematics for estimating link acceler-
ations and propagating the, but numerical derivation is subject to high level
noise which is then propagated through the Forward Kinematics. Noise can
be filtered but this introduces lag, and does not avoid propagation of errors.
The algebraic direct computation of the angular acceleration from MEMS
sensors data avoids these issues. It should be less sensitive to noise, in-
troduce less lag since low pass filtering is not required, and propagate less
errors since it uses only local sensor data. It is derived from higher resolution
measurements.

Our approach is based on a model relating the angular velocity and
acceleration with the linear accelerations across a distributed set of body
points. It can be applied to any link of a fixed or floating base system as
long as it has at least three attached accelerometers and one gyroscope.
Previous works have used a similar model of the link angular acceleration
but were either dependent on the composition of accelerations across the
supporting tree or chain, or depended on measurements from neighbor links
in the kinematic chain, thus depending on the configuration of the connect-
ing joints which are subject to uncertainties. Our approach rely only on
local data from the attached link sensors, and does not depend on any joint
configuration measurement.

As done in previous studies, we pose the problem as a linear system
to solve for the link angular and proper linear accelerations as it would
be measured respectively by a virtual angular accelerometer and linear ac-
celerometer, both sharing a sensor frame coinciding with the root link frame.

The first step is to compute the proper acceleration of a given accelerom-
eter k sensor frame Sk as a function of the link coordinate acceleration, the
link angular velocity and acceleration, the sensor frames poses with respect
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to the link frame, and the link pose with respect to the world frame, all
projected in the link frame. It is a known approach to pose the difference
between the measurements from two sensors (αS0

− αS1
), in order to cancel

out the gravitational field and the link coordinate acceleration (and with it
the dependency on the link pose with respect to the world frame). The sys-
tem can then be solved through a linear least squares optimization (pseudo-
inverse), as a causal memory-less estimation. We demonstrated that for the
system scaled to N sensors to have a unique solution, the sensors configura-
tion matrix, i.e. the vertical concatenation of the skew symmetric matrices
derived from the sensor frame positions, needs to be full rank, i.e. rank
three. That condition is met if the minimal number of accelerometers is
three and they must not be aligned. We have shown that scaling the prob-
lem to N sensors from this formulation results in an uneven contribution of
the different sensors to the link acceleration estimation.

To cope with this problem the initial formulation was revisited. Instead
of canceling the link coordinate acceleration and the gravity, these are re-
placed by the link proper acceleration αL as it would be measured by a
virtual accelerometer which sensor frame coincides with the link frame L,
such that we now solve the new system for both angular and linear com-
ponents of the link acceleration. We get a scalable new system (4.16), for
which a new line is added for every additional sensor. All the information
on sensors poses in the link acceleration computation (4.24) can be grouped
in a single configuration matrix computed offline, hence optimizing the es-
timation.We analyzed the system sensitivity to noise and showed that, in
the simple case of a pure rotation about a given axis, the contribution of
the inertial sensors noise to the angular acceleration estimation uncertainty
decreases with the distance of the sensors to the axis. This is typically the
case for large sized industrial robots, but for a child size humanoid robot
like iCub, we get the opposite effect as the links are quite small: the sensors
noise is amplified.

We performed simulation tests on Matlab on a simple model for verifying
the impact of the sensors distribution on the estimation accuracy. Further-
more we validated the algorithm on an iCub simulation model. Normal
(Gaussian) distribution noise was added to the sensors data for analyzing
the robustness of the algorithm with respect to measurement noise. While
the original algorithm (Section (4.24)) only showed slightly better perfor-
mance than the numerical derivative of the gyroscopes measurements, an
additional regularization based on the TRLS (Tikhonov-Regularized Least
Squares), limiting the gap between estimation iterations, significantly re-
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duced the estimation noise.
The estimation results on the real robot exhibit a noise level significantly

higher than the one observed in simulation, preventing the angular accelera-
tion to be tracked properly, even when the regularization on the output step
is applied. We verified that the measurement noise affecting the accelerom-
eters was the main perturbation deteriorating the estimation accuracy, but
we wish to avoid using any low pass filter that would add significant lag to
the measurements and the estimation.

As a possible future extension of this work, we consider a few directions
for improving the estimation results and make it suitable for being integrated
in the joint torque estimation framework. Most probably, a simple exponen-
tial or averaging filter will not remove spikes or wavelet like perturbations
in the measurements. For that, a wavelet filter, or else a Savitsky-Golay
[Press, 1992] filter with a short filtering window including only past samples
could be used. Actually, the Savitsky-Golay algorithm generates smoothing
polynomials to be applied as FIR (Finite Impulse Response) filters on the
sliding window of past, present and future samples (ahead of the processed
time instant). When the processing reaches the last time series sample, the
actual used polynomial was generated for the case where only past sam-
ples exist. That is the typical polynomial we would use for filtering the
accelerometers measurements.

In order to better choose the best strategy to follow for improving the
estimation accuracy, an accurate analysis of the measurements noise distri-
bution is required, as well as the according noise propagation trough the
linear model used by the presented estimation algorithm. In case the mea-
surements noise has a Gaussian component, a Bayesian estimation on linear
models could be used as done in [Nori et al., 2015a] [Latella and Nori, Section
4.6.1]: the link acceleration variable to be estimated and the input inertial
measurements would be represented by two random Gaussian vectors; the
linear model used by the link acceleration estimator would relate both ran-
dom Gaussian vectors and we would use the Gauss-Markov theorem [Latella
and Nori, Section 4.6.1] for computing the joint variable distribution and the
conditional distribution holding the variance of the noise in the estimation
result.

The research presented in this chapter on the accurate and fast estima-
tion of link angular and linear accelerations was motivated by the following
objectives: the estimation, in dynamic conditions, of the error between the
expected sensor proper acceleration and the respective measurements, for
identifying model kinematic parameters, like joint encoder offsets, as an ex-
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tension of the research presented in Chapter 3; the joint accelerations as
an additional input variable to a dynamic friction model used in identifi-
cation or in control; the accurate estimation of net forces on each body of
a kinematic tree, using local inertial sensors data only and thus avoiding
propagation errors; the use of these net forces in the estimation of joint
torques which in turn are a critical feedback in the joint friction parameters
identification presented in Chapter 2.
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Appendix A

Incremental and Absolute
Rotary Encoders Integrated
in iCub

The iCub humanoid robot is equipped with different types of rotary encoders
for measuring the state of its 53 DoF. The major joints (arms, legs, torso)
are actuated by motor groups composed of a Moog brushless motor and
an harmonic drive in a very compact configuration. For the joint position
sensing, the group contains a 12-bit resolution, absolute hall-effect encoder
(AS5045 microchip from Austria Microsystems [Microsystems, 2013]). It is
located at the joint side, after the harmonic drive, such that it measures the
links relative angular position and not the motor’s rotation [Parmiggiani
et al., 2012, section 4.3]. This encoder’s resolution turned to be insufficient
for measuring the velocity of dynamic motions as the smallest detectable
velocity obtained through pulse counting was ∆q/Ts = 0.088◦/0.001s =
88◦ s−1 Ts being the encoder sampling period. For improving the velocity
measurement accuracy, an optical 13-bit incremental encoder was mounted
inside the motor housing as shown in figure A.1. As the encoder resolution
is combined with the reduction drive ratio of 1:100, we get the equivalent
resolution at joint level of 360/(213 × 100) = 0.0004◦, and the smallest
detectable velocity becomes ∆q/Ts = 0.0004◦/0.001s = 0.4◦ s−1 [Tsagarakis
et al., 2009, section A].

Because of space constraints, the absolute encoder (joint side) was mounted
behind the rear end of the motor shaft (figure A.1), but still being connected
to the output shaft across the hollow shaft of the motor.
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Fig. A.1 Motor group cross section, showing the Moog brushless motor, the
harmonic drive and the angle position encoders. Source: [Parmiggiani et al.,
2012, Fig.3]

Definition - Absolute and relative (incremental) encoders: Rela-
tive encoders provide the linear or angular displacement measured since the
instant they were turned on and the sensing activated. Absolute encoders
provide the displacement with respect to a chosen position previously pro-
grammed or set by design.

A.1 Joint Side Absolute Encoders

In this section, we describe the key features, application interface and per-
formance indicators of the AS5045 magnetic absolute encoder mounted on
the major iCub joints (legs, torso, shoulders and elbows), measuring the
output shaft position. All this information can be found in the datasheet
[Microsystems, 2017].

The AS5045 is a contactless magnetic position sensor for accurate angu-
lar measurement over a full turn of 360◦. It is a system-on-chip, combining
integrated Hall elements, analog front end amplifier, digital signal processing
and a serial interface in a single device.

To measure the angle, only a simple two-pole magnet, rotating over the
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(a) (b)

Fig. A.2 Typical arrangement for placing the rotating magnet close to the
sensing surface of the AS5045 chipset. Source: [Microsystems, 2017]

center of the chip, is required. The magnet (diametrically magnetized) may
be placed above or below the IC as the typical arrangement shown in figure
A.2. On a typical motor group configuration from iCub, the magnet is fixed
on the output shaft tip appearing at the back of the motor as shown in
Figure A.1.

The Coordinate Rotation Digital Computer (CORDIC) combines the
magnitudes of the Hall sensors array signals for estimating the angular po-
sition of the rotating magnet. The estimation is provided with a typical
delay of 384µs (in slow mode) and a resolution of 0.0879◦ = 4096 positions
per revolution. As illustrated in the block diagram A.4, this digital data
is available: as a serial bit stream through a serial interface; or as a Pulse
Width Modulated (PWM) signal.

A.1.1 Accuracy and Repeatability

The accuracy is defined by the error between the measured angle (digital
output of the sensor) and the real angular position of the magnet rotating
over the sensing area, and depends on several factors: - the non-linearity
of the analog signal processing and amplification, - the non-linearity due to
the magnet misalignment with respect to the ideal central position.
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Fig. A.3 Integral and differential non-linearity errors. Source: [Microsys-
tems, 2017, Fig.9]

These factors cause mainly three types of errors illustrated in Figure A.3:

• the Integral Non-Linearity (INL) error is the maximum deviation be-
tween the estimated position (”actual curve” in the plot) and the real
position (”ideal curve” in the plot). For a perfectly centered mag-
net, this error is ±0.5 degrees at 25 ◦C and further increases for any
misalignment,

• the Differential Non-Linearity (DNL) is the maximum deviation of the
step length on the ”actual curve” with respect to the step length on
the ”ideal curve” from one position to the next (1 LSB),

• the Transition Noise (TN) is the repeatability of an estimated position,
i.e. the standard deviation of the INL for any fixed chosen real position
over many measurement trials.

We describe in tables A.1 and A.2 some of the system specifications—
digital output resolution, error values due to the system non-linearity, tran-
sition noise.
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Symbol Parameter Conditions Max Units

RES Resolution 12 bit

1LSB
Less
Significant Bit
step length

0.088 deg

INLopt

Integral
non-linearity
(optimum)

Maximum error with re-
spect to the best line fit.
Centered magnet with-
out calibration, TAMB
= 25 ◦C

±0.5 deg

INLtemp

Integral
non-linearity
(optimum)

Maximum error with re-
spect to the best line fit.
Centered magnet with-
out calibration, TAMB
= -40 ◦C to 125 ◦C

±0.9 deg

INL
Integral
non-linearity

Best line fit = (Er-
rmax – Errmin) / 2
Over displacement tol-
erance with 6mm di-
ameter magnet, without
calibration, TAMB = -
40 ◦C to 125 ◦C

±1.4 deg

DNL
Differential
non-linearity

12-bit, No missing codes ±0.044 deg

TN
Transition
noise

1 sigma, fast mode
(MODE = 1)

±0.06 deg
RMS

1 sigma, slow mode
(MODE=0 or open)

±0.03 deg
RMS

Fs(Ts)
Sampling
rate (period)

1 sigma, fast mode
(MODE = 1)

10.42 kHz

1 sigma, slow mode
(MODE=0 or open)

2.61 kHz

Table A.1 Resolution and accuracy characteristics. Source: [Microsystems,
2017, Fig.8]
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Symbol Parameter Conditions Max Units

q̇max

Max. joint
velocity
@RES 12 bit

1 sigma, fast mode
(MODE = 1)

16 rad s−1

1 sigma, slow mode
(MODE=0 or open)

3.97 rad s−1

Table A.2 Maximum recommended speed at slow and fast modes. Source:
[Microsystems, 2017, Fig.12]

Fig. A.4 AS5045 block diagram. Source: [Parmiggiani et al., 2012, Fig.2]
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Fig. A.5 AEDR-850x encoder output waveform. Source: [Technologies,
2011, Page 2]

A.2 Motor Side Incremental Encoders

In this section, we describe the key features, application interface and per-
formance indicators of the Avago AEDR-850x high resolution, three channel
optical incremental encoder mounted on the major iCub joint motors, mea-
suring the motor angular position as illustrated in Figure A.1. The encoder
provides two channel quadrature digital outputs for position and direction
sensing, and an index digital output. It has a built-in interpolation with
a factor of 1x, 2x and 4x selectable via external pinouts, and an encoding
resolution of 12 lines/mm.

We can see in Figure A.5 a typical waveform readout for an anti-clockwise
codewheel rotation, having a leading channel A. The typical codewheel,
shown in Figure A.6, is a reflective disk with a circular pattern of opaque
radial tracks (lines). Each track defines a relative angular position and each
transition between two consecutive tracks is detected as a sequence of four
events in the channel waveforms A and B: rising edge of A → rising edge
of B → falling edge of A → falling edge of B. This sequence generates four
counts within the total amount of counts in a full 360◦ rotation. Hence, the
Counts Per Rotation (CPR) defines the encoder resolution and is computed
as described in Figure A.7. On iCub motors, the codewheel operation radius
ROP = 13.298mm, so we get CPR = 1000 lines × 4 counts/line = 4000. An
interpolation factor of 2x in the actual iCub sensors configuration rises the
CPR to 8000, with a resulting resolution of around 0.05◦.
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Fig. A.6 Typical codewheel with a special index track. Source: [Technolo-
gies, 2011, Page 5]

Fig. A.7 AEDR-850x built-in interpolation. Source: [Technologies, 2011,
Page 6]
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Appendix B

Overview on the Rigid Body
Dynamics

B.1 Overview of the Notation

The notation used for describing the models and the algorithms in this thesis
is mostly based on spatial vectors, as defined in [Featherstone, 2014] and in
[Traversaro, 2017], as shown below. The notation presented below is the
general notation, but each chapter can present its own simplified notation
when necessary.
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A,B cartesian coordinate frames
p an arbitrary point
oB origin of frame B
[A] orientation frame associated to A
B[A] frame with origin oB and orientation [A]
Ap coordinates of p written in A
AoB coordinates of oB written in A
ARB rotation transformation (∈ SO(3)) of a 3D vector from B to

A
AHB homogeneous transformation (∈ SE(3)) of a 4 x 1 homoge-

neous vector from B to A
AXB transformation of a twist (or spatial motion vector) from B to

A

AX
B wrench transformation from B to A

CvA,B twist (∈ R
3) velocity of body frame B w.r.t. body frame A

written in frame C. Same notation for an
acceleration (CaA,B)

kvi,j equivalent to the notation CvA,B but having the A, B and C
frames respectively indexed as i, j and k

Bf coordinates of the wrench f written in B
y∧ cross product in R

3 , 3× 3 skew-symmetric matrix of vector y
(y ∈ R

3)
Y ∨ vector such that (Y ∨)∧ = Y (Y ∈ R

3×3)
CvA,B linear component of CvA,B
CvA,B× matrix representation of the twist cross product in R

6 (refer
to B.3)

CvA,B×∗ matrix representation of the wrench (twist dual) cross product
in R

6 (refer to B.3)
x̂ estimated twist or wrench ∈ R

3

Ag ground truth gravity vector (∈ R
3) written in frame A

R set of real numbers
In identity matrix ∈ R

n×n

0n zero column vector ∈ R
n

0n×m zero matrix ∈ R
n×n

Remark B.1. One important difference with the notation used in [Feather-
stone, 2014] is the dot operator ˙(−). Throughout this thesis, given a position
vector ∈ R

3 or a velocity vector in ∈ R
3 or ∈ R

6, we define the dot operator
˙(−) as the total time derivative of the quantity. Thus, given a 6-D vector
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Cv expressed in the frame C, we have

C
v̇ =

d

dt

(

C
v
)

B.2 Math Preliminaries

• For n matrices of arbitrary dimensions M1,M2, · · · ,Mn, we define the
operator diag(M1, · · · ,Mn) as follows:

diag(M1, · · · ,Mn) =







M1

. . .

Mn






,

with the matrices M1 to Mn being the only non null elements.

• Given two matrices A ∈ R
p×q, B ∈ R

q×m, and the identity matrix Im,
we then have the property vec(AB) = (Im ⊗A) vec(B).

vec(AB) = vec
([

Ab1 Ab2 · · · Abm
])

(B.1)

=











A 0 · · · 0
0 A · · · 0
...

. . .
...

0 0 · · · A





















b1
b2
...
bn











(B.2)

= (Im ⊗A) vec(B) , (B.3)

where bi is a column vector of dimensions q × 1.

B.3 Frame Kinematics

B.3.1 Inertial Frame

As per Newton’s laws of mechanics, an inertial frame is a frame where a
point mass, which is not subject to an external force, runs a trajectory at
constant velocity and following a straight line.

In a formalism where the gravity effect is considered as a force, which
is a common practice in robotics problems near the earth’s surface, i.e. in

162



low atmosphere or on the ground, we refer to an inertial absolute frame, or
world frame W , a frame fixed to the lab ground. this concept disregards
any non-inertial effect due to the Earth’s motion in space, more specifically
the Coriolis effect due to the rotation around its own axis. An inertial frame
would then be any frame which motion, with respect to the absolute frame
W , follows a straight line at constant velocity. This is the definition that we
will use throughout this and the following chapters.

B.3.2 Coordinate Acceleration

The coordinate acceleration of a rigid body is the total time derivative of its
velocity with respect to the world frame W (or any inertial frame). For a
moving point P whose position in the world frame is given by the coordinates
vector p, the linear acceleration of P with respect to frame W , expressed in
frame W , would be:

waw,p =
d2p

dt2
= p̈ .

B.3.3 Proper Acceleration

The proper acceleration is the apparent acceleration measured by a linear
accelerometer, such that if the sensor is fixed to an inertial frame, the sensor
will measure −g, with g being the vector defining the gravitation field. If
the sensor is fixed in a moving body B, has a sensor frame denoted S, and
the sensor frame origin position in the world frame is given by oS ∈ R

3, the
sensor measures the quantity:

αg = sRw

d2oS
dt2

− sg = sRw ös − sg .

Note. Here the sensor is assumed flawless, i.e. the measurements are
isotropic: all axes have the same gain and zero offset; the cross-axis gains
are null.

B.3.4 Gravitational Field Numerical Approximated Value

In this thesis, we will consider Earth’s gravity as a locally uniform field with
the approximated value of 9.81m s−2.

B.3.5 Body Angular Velocity

We define two coordinate frames A and B with the same origin O. Let P
be a fixed point in B, pA and pB the respective coordinates in A and B.
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The coordinates transformation from A to B can be described by a rotation
operator that belongs to the Special non-commutative Lie-group of proper
Orthogonal linear transformations, SO(3), defined as:

SO(3) :=
{

R : R3 → R
3|R⊤R = I3, det R = 1

}

(B.4)

where R is the 3× 3 matrix representing the rotation transformation [Mars-
den and Ratiu, 2013, Section 9.2]. We have chosen here the notation R
instead of ARB for the sake of simplicity. We can then write:

pA = RpB (B.5)

An angular motion of the frame B being reflected in a change of R, the
angular velocity could be represented by the time derivative of Ṙ:

ṗA = Ṙ pB (B.6)

But we can define a more compact representation of the angular velocity,
with a 3× 1 vector operator instead of the 3× 3 matrix Ṙ. In view of (B.6),
we can write:

ṗA = ṘR⊤ pA, (B.7)

and we can show that ṘR⊤ is skew-symmetric:

RR⊤ = I3 ⇒ ṘR⊤ +RṘ⊤ = 03,

ṘR⊤ = −RṘ⊤,

ṘR⊤ = −
(

ṘR⊤

)⊤

,

which is the property of the set so(3) of 3 × 3 skew-symmetric matrices
[Marsden and Ratiu, 2013, Section 9.2]:

so(3) :=
{

S ∈ R
3×3|ST = −S

}

(B.8)

Given a vector w ∈ R
3, we define the operator “hat”, mapping w to the

skew-symmetric matrix w∧:

w∧ =





x
y
z





∧

:=





0 −z y
z 0 −x

−y x 0



 ∈ so(3) (B.9)

Given a skew-symmetric matrix W = w∧, we define “vee”, the inverse op-
erator of “hat”, mapping W to the vector w =W∨:

W∨ =





0 −z y
z 0 −x

−y x 0





∨

:=





x
y
z



 ∈ R
3 (B.10)
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Remark B.2. For any given vectors w =
[

x y z
]⊤ ∈ R

3 and m =
[

m1 m2 m3

]⊤ ∈ R
3, the cross product between these vectors can be written

as:




0 −z y
z 0 −x

−y x 0









m1

m2

m3



 =





x
y
z





∧ 



m1

m2

m3



 = w∧m (B.11)

We can then rewrite (B.6) as follows:

ṗA = Aω∧

A,B pA (B.12)

where Aω∧

A,B = ṘR⊤ represents the angular velocity of frame B with respect
to frame A expressed in A (right trivialized), or instead write:

R⊤ṗA = Bω∧

A,B pB (B.13)

where Bω∧

A,B = R⊤Ṙ represents the angular velocity of frame B with respect
to frame A, expressed in B (left trivialized).
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Appendix C
iCub Main Motors Datasheet

Fig. C.1 MOOG C2900584 Datasheet
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Appendix D

From Phase Winding
Currents to a Rotating
Magnetic Field

In order to understand how the phase currents combine in space for gen-
erating a rotating magnetic field space vector, we first consider the initial
model for a single phase, let it be the phase U, as shown in figure 2.15, and
express the current and voltage quantities in a Fresnel diagram.

Axiom D.1. Any scalar time varying sinusoidal quantity of angular velocity
ω can be expressed in the complex plane (O,R,I) as the projection of a
temporal vector rotating clockwise at the angular velocity ω. A voltage e(t) =
A cos(ω t+φ) would be the projection of E = Aejωt eφ. We will refer to the
Real (R) axis as the Reading Axis, to E as the Voltage Time Vector, to e(t)
as the Voltage Time Scalar. The described complex plane is a Time Fresnel
plane.

Such representation of vectors are used in Fresnel diagrams. So we rep-
resent the phase model current and voltages as complex vectors rotating at
the same velocity ω as the rotor: namely the phase input voltage Eu and
current Iu, the voltages on the winding resistance r Iu and self-inductance
voltage jLω Iu. For the sake of simplicity we just consider Eu and Iu from
now on.

We now consider any three Time Vectors E1, E2 and E3 of equal ampli-
tude, phase-shifted by 120 degrees such that E1 +E2 +E3 = 0 in the Time
Fresnel plane. The respective projections e1, e2 and e3 on the ”reading” axis
R (Time Fresnel diagram D.1a) can alternatively be expressed as the projec-
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(a) (b)

Fig. D.1 Time Fresnel diagram (a): instantaneous tri-phase voltages e1, e2
and e3 as projections of complex rotating Time Vectors E1, E1 and E3 on
a single Reading Axis, the Real axis Re. Space Fresnel diagram (b): e1, e2
and e3 as projections of a single complex rotating Time Vector E on three
Reading Axes phase-shifted by 120 degrees. Source: [Dixneuf and Gilabert,
2005]

-B· 1 

Figure 9.9 

Axe2 

Sam 

J..1.1.:> lu.tH.dH c; S t1 == 1 cos(rot - cp), 

Axe 1 

Fiaure 9.10 Fig. D.2 Interaction between the rotor magnetic moment ~Mj and the com-

bined stator magnetic rotating field ~BI : Cem = ~Mj ∧ ~BI or Cem = ~Bj ∧ ~Ms

with ~Ms = ~u i Sam where Sam is the winding apparent surface (a). Time and
Space Fresnel diagram describing the combined rotating field ~BI . Source:
[Dixneuf and Gilabert, 2005]
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tions of a single rotating vector E on three ”reading” axes phase-shifted by
120 degrees [Dixneuf and Gilabert, 2005] as shown below and in the Space
Fresnel diagram D.1b:

E1 = ~u1E
√
2 ejωt e1 = E

√
2 cos(ωt) (D.1)

E2 = ~u1E
√
2 ejωt e−j 2π

3 e1 = E
√
2 cos(ωt− 2π

3
) (D.2)

E3 = ~u1E
√
2 ejωt e−j 4π

3 e1 = E
√
2 cos(ωt− 4π

3
) (D.3)

E1 + E2 + E3 = 0 e1 + e2 + e3 = 0 (D.4)

But if we define the space vectors ~E1 = ~u1 e1, ~E2 = ~u2 e2 and ~E3 = ~u3 e3,
we can compute their sum using Leblanc’s and Ferraris’s theorems and we
get:

~E1 + ~E2 + ~E3 =
3

2
E (D.5)

We can do this computation on the three winding current space vectors
~iu, ~iv and ~iw, as well as the respective produced field space vectors ~Bu, ~Bv

and ~Bw. Our Fresnel frame used in the above demonstration can be defined
by the Real axis (R) coinciding with the winding U axis or stator X axis, and
the Imaginary axis (I) coinciding with the stator Y axis (figure 2.19). The
combination of the phase currents then results in a rotating current space
vector ~I and the respective field ~BI space vector aligned to it, as follows:

~Iu + ~Iv + ~Iw =
3

2
I, ~BI ∝ ~I, (D.6)

with I = ~uuI
√
2ejωt (D.7)

The combined field space vector ~BI interacts with the rotor magnetic
moment ~Mj (D.2) creating a couple that can be computed as follows:

Cem = ~Mj × ~BI ∝ I sin
(

~Mj , ~BI

)

(D.8)

Where I is the amplitude of the winding current in a single phase. So if
the generated rotating field ~BI is always in quadrature with the rotor direct
axis, the torque is constant, maximal and depends only on the phase current
amplitude.
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