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Abstract

Learning-based approaches have brought great advances to robotics in recent years. Rein-
forcement Learning (RL) methods have shown to be capable of handling highly uncertain
and complex tasks such as manipulation, locomotion, and visuomotor control, achieving
extraordinary results. Furthermore these methods have brought forward the possibility of
developing end-to-end methods that perform robot control directly from visual observations,
removing the need for custom perception systems. The drawback of these methodology
however is that such approaches often require vast amounts of training data. This scarce
sample efficiency is a critical obstacle for the training of real-world robotics tasks, where
collecting such massive amounts of data can be exceedingly expensive, if not impossible.

This thesis focuses on methods for reducing the overall data requirements of robotic
visual policies, by employing sample efficient methods and performing sim-to-real transfer
without introducing impractical computational needs.

Along the progress of this thesis, I construct a model-free architecture for learning
visual tasks structured around a Soft Actor Critic agent and a learned model of the Partially
Observable Markov Decision Process (POMDP) underlying the task.

At first, I concentrate on a simple implementation of this decoupled architecture, and show
how such an architecture is more efficient than traditional fully end-to-end techniques. The
learned POMDP model, based on a Variational formulation, learns to extract low dimensional
representations from the input images, while biasing the representations toward containing
information relevant to the task dynamics. I show that the learning of the feature extractor
via an unsupervised learning objective improves sample efficiency in comparison to simply
using the reinforcement learning reward signal, while the learning of task dynamics brings a
beneficial effect on sample efficiency and asymptotic performance.

After this analysis I focus on the domain transfer capabilities of the method, to show its
effectiveness for sim-to-real transfer. The decoupled nature of the method, with separate
vision and RL modules, allows for independent transfer of policy and feature extractor.
I show how domain transfer can be performed by only finetuning the vision section and



ii

keeping the policy unchanged. The fundamental challenge in this approach is maintaining
the latent representation expressed by the feature extractor compatible with the policy input.

I show how the presence of the dynamics model can act as a constraint to maintain the
compatibility between policy and feature extractor by experimenting on a real and simulated
table-top object pushing scenario. I then progressively explore more complex variations of
this scenario and improve the architecture to support more complex tasks, and to relax the
requirements it poses to achieve successful transfer.

In its final design the architecture demonstrates to be capable of performing sim-to-real
transfer of the object-pushing task with remarkable efficiency. In the most simple case, it
requires just a couple of hours of real-world experience, plus a couple of hours of training
in simulation. Thus solving in four hours a task that would require multiple days to train
directly in the real.

While the method has been evaluated on a simple experimental task, the architecture
is not task-specific, and could be applied to vastly different problems. This work aims
at building efficient architectures and defining effective and flexible sim-to-real transfer
techniques. The availability of such techniques is crucial to the widespread diffusion of
RL-based robotics, which has the potential of scaling to extremely complex tasks, advancing
the practical capabilities of real-world robotic systems.
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Chapter 1

Introduction

1.1 Reinforcement Learning for Robotics

Traditionally, robotics systems have been structured around precise system models and
perception pipelines designed for specific tasks. The different components of robotics
systems have usually been kept separate and modular, allowing the separate development of
each part and the focusing of engineering efforts on each component separately. Perception
and motion control systems have usually been kept modularized, and manually adapted
to specific tasks depending on the application needs. Following this framework, each of
these components - vision, sensing, actuation, control - has to be precisely defined and
tuned for the task at hand, for the environment in which the system is deployed. As tasks
become more complex, and robotics systems become more general, precise construction of
these modules grows more and more onerous, time-consuming and expensive, to the point
of becoming impractical. For example, in the case of locomotion and manipulation tasks,
proper interaction between robots and environment is essential, but at the same time the
modeling of the complex contact dynamics involved in these tasks is highly uncertain and
noisy. Properly handling tasks such as these requires considerable engineering work, and
at the same time motion control and planning can become computationally expensive at
runtime, when respecting the tight timings of online control is essential.

In this context, end-to-end reinforcement learning approaches have a strong appeal, as
they completely bypass these problematics by learning models and perceptual systems from
data. Model-free RL approaches do not require an explicit system model at all, as they
directly infer control actions from state inputs. Model-based RL approaches still have an
explicit model in their architecture, but automatically learn it from data, without the need
for extensive manual design and tuning. In end-to-end RL methods, the perception pipeline
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is also not manually designed for a specific task. Instead, it can be learned from data using
highly generic architectures in a task-agnostic manner.

This mostly task-agnostic formulation of RL methods, together with the proven effective-
ness of state-of-the-art methods such as Proximal Policy Optimization (Schulman et al., 2017)
or Soft Actor-Critic (Haarnoja et al., 2018a,b), makes them a potentially groundbreaking
tool for robotics. However, some issues have to be surpassed to make these methods readily
applicable in real-world robotics.

RL methods usually require vast amounts of experience data to be trained. While acquir-
ing such data in simulated environments can be relatively fast and inexpensive, collecting
real-world data is costly. RL methods can require days, months, years, in extreme cases
even thousands of years of experience data. Clearly, collecting these amount of data in
the real world can be not only expensive, but potentially impossible. Also, during the first
stages of training, reinforcement learning policies can behave in unexpected and unsafe ways,
potentially damaging the environment or the robot itself.

This issues can be tackled with algorithmic and architectural improvements that increase
sample efficiency in general, or by devising techniques to transfer to the real world models
trained in simulation with large amounts of synthetic data.

In this thesis I explore these two directions while focusing on visual tasks, tasks in which
the RL agent learns a policy for a control problem that operates directly from visual inputs.
These tasks, while being particularly interesting for robotics applications, are also generally
those for which RL methods require the most data.

1.2 Decoupling and Transferring RL Architectures

Standard RL algorithms such as DQN Mnih et al. (2015), PPO Schulman et al. (2017),
or SAC (Haarnoja et al. (2018a), Haarnoja et al. (2018b)) have huge data requirements,
especially for vision-based tasks. Such tasks have traditionally been solved by directly
utilizing image observations in an end-to-end manner, the same way as tasks with low-
dimensional observations are handled, directly learning to interpret visual observations from
the reward signal. In this thesis I define a reinforcement learning architecture in which control
policy training and visual feature extraction are decoupled. The feature extractor is learned
as part of a full model of the environment based on a variational formulation capable of
predicting observations and rewards. The control policy is trained as a Soft Actor-Critic agent
that acts on the latent representation defined by the aforementioned model. This architecture
is introduced in chapter 3 and then refined in chapter 5. This RL formulation is considerably
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more sample efficient than standard algorithms, as the vision section of the network is trained
from a representation learning signal, instead of just using the task reward, which may not
convey much information to support visual understanding.

The decoupled nature of the architecture also brings advantages for the sim-to-real transfer
of trained agents. The policy component and the perceptual component of the network are
completely separate, and as such they can be transferred independently, as long as their
shared state representation remains compatible. In this work I focus on the possibility of
transferring the agent by only adapting the perception section of the architecture, in the
assumption of performing transfer only across domains with limited differences in the task
dynamics. This particular setup permits to completely avoid the use of RL in the real domain,
consequently, the amount of real-world data is strongly reduced in comparison to the data
required for training the task from scratch. Chapter 4 introduces one first strategy to perform
this transfer while maintaining the compatibility between the components of the architecture,
chapter 5 refines this methodology to improve performance and support a wider variety of
tasks.

1.2.1 Experimental Evaluation

Across chapters 4 and 5, the domain transfer capabilities of the method were evaluated taking
as an exemplary case a tabletop object pushing problem, in which a Franka-Emika Panda
robotic arm is tasked with pushing a plastic cube to a predetermined destination. This task
was chosen as it is fairly simple and manageable, but at the same time presents difficulties
that make it a suitable ground for evaluating model-free reinforcement learning methods.
Non-prehensile manipulation, and specifically object pushing, is a particularly challenging
task for classic control methods due to the indeterminacy brought by friction forces, both
between the manipulated object and the ground and between object and robot. Modeling
such interactions precisely is challenging, identifying friction characteristics is a complex
problem in itself and minute errors in the modeling have large impacts in the motion of the
manipulated objects. Instead, model-free robot learning approaches such as the one proposed
in this work handle these problematics implicitly without requiring careful explicit modeling
of the system and can consequently solve this task effectively and reliably. To explore the
transfer capabilities with different degrees of difficulty sim-to-sim experiments with different
variations of the scenario were performed, starting from simple alterations to the colors of
the scene and finishing with radical changes in the camera point of view. To ensure the
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actual effectiveness of the method in a real-world scenario, sim-to-real experiments were
also performed, physically implementing the scenario.

As will be shown first in chapter 4 and then in chapter 5, the method showed remarkable
domain transfer capabilities, withstanding strong variations in the input observations, while
requiring very limited amounts of real-world data and maintaining good performance. In its
latest implementation the method is capable of learning a policy for an object pushing task
defined with a non-shaped reward in just over two hours or real time, while collecting over
three days of experience in simulation. Then, it can transfer the learned policy to the real in
just two hours.



Chapter 2

State of the Art

Summary

This chapter will present an overview of the state of the art for reinforcement learning
methods, in particular aiming at methods that tackle vision-based tasks and that are suitable
for robotics applications.

In the first section I present an overview of the history of the field, starting from the
earliest days of reinforcement learning, and arriving to mention some of the latest results of
its application to robotics.

Then, sections 2.2 and 2.3 will present first the basic theory and "classic" reinforcement
learning algorithms, and then the deep reinforcement learning methods that have been
proposed in the latest years with the advent of deep learning methods.

Section 2.4 will then discuss sim-to-real , the transfer of learned policies form simulation
to reality, and current methodology or tackling the problem.

Finally, section 2.5.1 briefly discusses decoupled and model-based RL methods, which
train policies using learned representations and models of the environment, either by just
exploiting representation learning methods for faster training of feature extractors or using
learned dynamics models for planning and generating synthetic data.

2.1 A Brief History of Reinforcement Learning

Reinforcement learning has been achieving ever more impressive results in the past few years,
becoming one of the most promising directions in the field of machine learning, and opening
the doors to new solutions for unsolved robotics problems. It has shown striking capabilities
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and proved capable to solve extremely complex tasks, both in simulated environments
(Hafner et al., 2023; Silver et al., 2016; Vinyals et al., 2019) and in the real world (OpenAI
et al., 2019; Rudin et al., 2021). Practical applications of reinforcement learning have only
started becoming widespread in the last decade, as the capabilities of learning methods
have scaled up and as new methods have shown to be capable of succeeding in areas where
traditional methodologies fail, solving tasks that before could only be performed with human
control. Such an explosion in results and applications has come thanks to new theoretical
achievements and to the support of new computational hardware, but reinforcement learning
itself has a long history.

The codification of the original idea itself of learning to interact with an environment
by trial and error, which is the core idea of reinforcement learning, can be dated back to
ethology and psychology works from the late 19th century from authors such as Alexander
Bain, Conway Lloyd Morgan, Edward Thorndike (Sutton and Barto, 2018). The term
’reinforcement’ itself, denoting the strengthening of a behaviour due to a positive stimulus,
can be rooted back to the works of Pavlov in the 1920s. Thoughts of applying this logic to
computer systems appear already in the works of Turing in 1948, when he describes a design
of a "pleasure-pain system", which would memorize received positive and negative stimuli
and subsequently use this knowledge to choose which actions to take.

The first foundational works proposing computational methods based on these concepts
come from the 1950s, when Dynamic Programming was first proposed as a methodology
for solving discrete stochastic optimal control problems. In 1957 Richard Bellman proposed
Markov Decision Processes (MDPs) as a formalization for optimal control problems (Bell-
man, 1957) and introduced the Value Iteration algorithm as a way to derive policies to solve
them. Soon after, in 1960, Policy Iteration was also proposed (Howard, 1960). These works
and the subsequent developments in the following decades set the foundations for dynamic
programming and the specific kind of optimal control that reinforcement learning focuses
on. These works at the time were not regarded as learning methods, but could very well be
considered as such in today’s terminology.

A crucial development came with the introduction of TD-Learning in the 1980s in the
works by Sutton, Barto and Anderson (Barto et al., 1983). The concept of TD-Learning,
initially proposed with the TD(0) (Witten, 1977) and TD(λ ) (Sutton, 1988) methods, revolves
around the core idea of bootstrapping the learning of state-value functions for MDPs by
using the current value estimate of temporally successive steps. This idea has been greatly
successful and influential in Reinforcement Learning, as it supported the development of
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more efficient methods and is one of the fundamental ingredients of modern value-based
algorithms.

In 1989 Chris Watkins proposed Q-Learning (Watkins, 1989), combining dynamic pro-
gramming and temporal-difference learning into an off-policy value-based algorithm. It
differed from previous value-based approches in the fact that it did not try to estimate a
state-value function V (s), but as state-action-value function Q(s,a), that would indicate the
"value" of choosing a certain action when in a certain state. Due to its flexibility, its ability to
use off-policy data and its general effectiveness, it became one of the most influential methods
in reinforcement learning. In particular, its simple off-policy strategy made it possible to
use data collected from any policy, separating the policy used for collecting data from the
solving policy being optimized, it even supports the use of data collected by demonstrations,
and it opened to the possibility of using replay buffers to store large amounts of experience
data (Lin, 1992).

Up to this point in time the indisputably prevalent approach to solving reinforcement
learning problems was value-based methods, in which some sort of state-action value function
is learned to determine a solving policy. An alternative approach was introduced in 1992
with REINFORCE (Williams, 1992). The idea behind the method was to directly optimize
an approximate policy via the gradient of the reward (Sutton et al., 1999). Methods of this
kind are slower than value-based methods but they overcome some of their limits. They are
very stable, and they can naturally learn stochastic and continuous policies, instead of only
discrete deterministic ones.

A family of methods that soon caught traction, thanks to its capability to combine together
the different advantages of value-based and policy-based approaches is that of actor-critic

algorithms. Actor-critic methods have been originally conceived well before policy-gradient
approaches, with works such as that of Barto et al. (1983). However, they really started to
shine with the advent of powerful neural network function approximators and in combination
with modern value-based methods such as Q-Learning (Degris et al., 2012).

Reinforcement Learning has been occasionally coupled with function approximation
methods and neural networks since its early days, but effective policy learning techniques
involving neural network function approximation started to be proposed only in the 1980s
with the popularization of back-propagation by Rumelhart et al. (1985). An actor-critic
method using neural network function approximation to balance and inverted pendulum was
proposed by Barto et al. (1983), a gradient-based version of TD(0) was proposed by Sutton
(1988), then REINFORCE in 1992 used a neural network to parametrize policies, and again
in 1992 Tesauro proposed TD-Gammon (Tesauro et al., 1995), which was one of the first
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methods demonstrating impressive human-level playing capabilities in a real human game.
Around the same years Rummery and Niranjan (1994) proposed an approach that used neural
network function approximators to learn Q-functions. In the subsequent years formalization
for the use approximate methods were defined, introducing fitted value iteration and proofs
of convergence bounds (Gordon, 1995, 1999, 2000).

In the early 2000s the advances in the methodology and theory of reinforcement learning
together with the availability of progressively more powerful computing resources started to
open new possibilities.

One of the most crucial theoretical advances in this period was the definition of Nat-
ural Gradient methods. First proposed by Kakade (2001), the natural policy gradient is
an enhancement on the vanilla policy gradient of REINFORCE that better directs policy
improvements leading to smoother and faster convergence. This development will be crucial
in the definition of TRPO (Schulman et al., 2015) and then PPO (Schulman et al., 2017), one
of today’s most effective and used RL algorithms.

In these years numerous practical applications of Reinforcement Learning methods in
robotics started to appear, showcasing the potential of these techniques, and demonstrating
their effectiveness in solving tasks characterized by high modeling uncertainty and noise. An
early notable work is that of Gullapalli et al. (1994) that solved peg-in-hole and ball-balancing
tasks by using REINFORCE to train a neural-network-approximated stochastic policy.

An influential series of articles were those of Peters and Schaal. They used the Natural
Actor Critic algorithm and solved progressively more complex tasks, starting from simple
control problems and arriving to demonstrate a real baseball-swinging robot (Peters and
Schaal, 2006, 2008; Peters et al., 2003, 2005).

Other notable works in the same years are those of Bagnell and Schneider (2001), in
which a model-based RL approach is used to control an autonomous helicopter, that of Kohl
and Stone (2004) that optimizes the parameters for a quadruped locomotion policy, that of
Tedrake et al. (2005) that effectively learns a linear policy for a simple small bipedal robot,
or that of Guenter et al. (2007), which employs natural actor critic to handle unmodeled
variations and obstacles in an imitation learning pipeline. A continuation of the works of
Peters was PoWER (Kober and Peters, 2008), which proposed to tackle complex exploration
problems using a learned exploration policy. The method was demonstrated on a real-
world pendulum swing-up task and, most notably, on a ball-in-cup task formulated with a
challenging reward that was based just on the final position of the ball.

In these same year, a work that proved to be crucial for the history of reinforcement
learning was proposed: Neural-Fitted Q-Learning (NQF), by Riedmiller (2005). It proposed
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to learn a neural network approximation of the Q-function of Q-Learning, using a replay
buffer to efficiently reuse off-policy data. These ideas, ten years later, will be some of
the fundamental building blocks of DQN, one of the most influential and groundbreaking
algorithms in reinforcement learning.

DQN (Deep Q-Networks), proposed by Mnih et al. (2013), was one of the first meth-
ods to show how reinforcement learning could reach human-level performance in a wide
variety of tasks, even while using visual inputs instead of carefully crafted low-dimensional
observations. It managed to reach human-level performance in 49 of the benchmarks of
the Arcade Learning Environment (Bellemare et al., 2013), a collection of famous arcade
games the likes of Breakout or Space Invaders, and did so using always the same architecture
and hyperparameters (Mnih et al., 2015). The method combined together several crucial
components: a neural-network approximation of the Q-value function trained via Q-Learning,
an extensive replay buffer for storing vast amounts of off-policy experience, Double Q-

Learning (Hasselt, 2010) to reduce instability, and a CNN feature extraction network. The
results achieved on the Arcade Learning Environment were unprecedented for a completely
end-to-end model-free method.

The most crucial limitation of DQN was that it could only handle small discrete action
spaces. A method that first effectively overcame this limit is Deep Deterministic Policy
Gradient (DDPG), proposed in the works of Silver and Lillicrap (Lillicrap et al., 2015; Silver
et al., 2014). DDPG combined the innovations brought by DQN with a novel off-policy
deterministic policy gradient approach, creating an efficient and completely off-policy actor-
critic architecture capable of handling continuous action spaces. DDPG showed to be capable
of solving complex control tasks, such as controlling a simulated gripper via torque, running
with a bidimensional "cheetah" simulation, or driving in a racing simulator, all both only
using visual input or only vector information. DDPG however was still a very brittle method,
strongly sensitive to hyperparameters, unstable, and not particularly effective at exploring
complex tasks. These limitations are being progressively surpassed by new methodologies,
one of todays most effective methods, Soft Actor-Critic (SAC) (Haarnoja et al., 2018a,b)
proposes to overcome this instability and improve the agent’s exploration of the environment
by using a stochastic off-policy actor-critic method based on a maximum entropy formulation.
Because of it’s generality, sample efficiency, stability and effective exploration characteristics,
it is one of the most effective and used reinforcement learning methods of today. Section
2.3.3 will cover more in detail this method. Other works that built upon DDPG are TD3
(Fujimoto et al., 2018) and DP4G (Barth-Maron et al., 2018).
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In these same year, parallel to the progress done in the off-policy realm by DDPG and
then SAC, important advances were also being done with on-policy methodologies. Trust
Region Policy Optimization (TRPO) was proposed by Schulman et al. (2015), by taking
forward the ideas of Natural Actor Critic with new formalizations, more generality, and
strongly improved capabilities and performance. Then, the ideas from TRPO were then taken
forward to create a more practical algorithm, Proximal Policy Optimization (PPO) (Schulman
et al., 2017). When compared with off-policy methods such as Soft Actor Critic, PPO
generally provides more stability, but, due to its on-policy nature, this comes at the expense
of greater data requirements, especially in tasks that require more articulated exploration.
Because of these characteristic on-policy algorithms are often employed by exploiting highly
parallelized simulation, like was originally done by A3C (Mnih et al., 2016), and was then
recently demonstrated with great effectiveness on a real robotic task by Rudin et al. (2021),
which managed to train a quadruped locomotion policy capable of navigating real-world
complex and articulated terrain.

Up to now our discussion focused on model-free approaches, in which the algorithm does
not try to create a model of the task it is trying solve, but instead directly defines a policy
that from a state observations chooses which action to take. An alternative to this approach
is the family of model-based methods, in which a model of the system dynamics is learned
from data and used to support the policy training. A learned dynamics model can be used for
example to generate synthetic data, or to plan trajectories.

One early work proposing a general formalization for model-based reinforcement learning
is DYNA (Sutton (1991). It proposed the training of a dynamics model from data collected
online via supervised learning, it hypothesized to use such a model for training a Q-learning
policy with synthetic data, but also considered its use for planning.

These initial ideas were progressively brought forward in numerous work, refining the
methods for the estimation of the dynamics model, and the techniques for planning or policy
improvement. Early examples of the use of a learned model are the already mentioned work
of Bagnell and Schneider (2001), in which a simple learned model is used to train a small
control policy capable of controlling an autonomous helicopter, or the method proposed by
Abbeel et al. (2006), that devises a training procedure for model optimization and uses policy
gradient to train a policy from both real and generated data together. Later, Deisenroth and
Rasmussen (2011) showed how the use of a stochastic learned model allows to train in just
tens of seconds effective policies for tasks such a double-pendulum swing-up or the riding of
a unicycle.
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The growth of deep learning methods and general computational capabilities opened
new possibilities also for model-based techniques, allowing the approximation of more
complex models and the use of visual inputs. Wahlström et al. (2015) demonstrated the use of
autoencoder architectures to learn latent low-dimensional dynamics models just from visual
observations, and employed Model Predictive Control (MPC) to effectively solve simple
control tasks such as balancing an inverted pendulum. The use of complex learned neural-
network dynamics model was instead investigated by Chua et al. (2018), demonstrating
how the use of simple feedforward networks can be coupled with MPC to solve task with
accuracy on par to model-free methods, while requiring considerably less experience data.
This methodology was then brought forward by Nagabandi et al. (2019), that showed how
such methods can efficiently solve high-dimensional robotics tasks, displaying a striking
demonstration of a 24 degrees-of-freedom hand rotating two balls around each other in
its palm. The combination of model-based reinforcement learning and visual tasks was
instead brought forward by the development of PlaNet (Hafner et al., 2019) and then Dreamer
Hafner et al. (2020, 2021, 2023). PlaNet proposed an architecture for dynamics modeling
integrating deterministic and stochastic components, combining it with MPC to perform
planning. Dreamer integrated the PlaNet architecture into a model-free approach, managing
to solve increasingly more complex tasks, up to controlling an agent within the free-world
sandboxing videogame Minecraft.

Throughout its history reinforcement learning methods have been applied to more and
more complex problems. From the application to well-defined and constrained environments
such as tabletop games with backgammon with TD-Gammon, methods progressively matured
to extremely complex, noisy and uncertain tasks. Especially in the last decade the advances
in reinforcement learning techniques translated in more and more impressive results in the
field of robotics. Most of the latest works we discussed (DDPG, SAC, TRPO, PPO) included
in their justification benchmark results on control tasks, like those included in OpenAI
Gym (Brockman et al., 2016) or the DeepMind Control Suite (Tassa et al., 2018), achieving
progressively higher sample efficiency, stability and accuracy on problems ranging from
simple control to whole-body humanoid 3D locomotion, both from vector observation and
directly from images.

At the same time real world practical results evolved from control demonstration like
those of the early papers of Peters, Schaal and Kober in the early 2000s to progressively more
articulated and autonomous policies. An exemplary work is that of Levine et al. (2016), which
used a Guided Policy Search algorithm to train an end-to-end policy capable of controlling
a robot arm via torques directly from visual input, solving real-world tasks such as hang a
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coat hanger, use a hammer or screw a bottle cap. The core novel highlight of this work was
showing how end-to-end visual RL policies are an effective way to solve real-world robotics
problems, a change of paradigm with respect to most previous works.

The growth of computational capabilities also allowed the implementation of ever more
complex architectures and training methods. The availability of extreme amounts of simulated
data permitted the development of methods such as that of Akkaya et al. (2019), in which a
24 degrees-of-freedom hand is trained to manipulate a Rubik’s cube using up to 13 thousand
years of simulated experience, achieving a remarkable resilience to perturbations, occlusions
and physical variations.

The results of recent years showed how reinforcement learning methods have started
to mature enough to be capable of solving real-world applications, for example works
on locomotion such as those of Rudin et al. (2022, 2021), Jin et al. (2023) and Hoeller
et al. (2023) showed how effective and resilient locomotion policies capable of navigating
challenging terrains can quickly be trained exploiting modern hardware.

2.2 Reinforcement Learning

2.2.1 Markov Decision Processes

The core fundamental formalization for Reinforcement Learning revolves around the concept
of Markov Decision Processes (MDPs). A Markov Decision Process is an extremely simple
but general and effective formulation for a system in which an agent interacts with an
environment. On an intuitive level, a Markov Decision Process represents possible situations
within the environment as states, from each state the agent can choose an action to perform,
depending on this action the agent will move to a subsequent state according to the system
dynamics, and will receive a reward. Such a formalization is simple, intuitive, but extremely
flexible. Depending on the choice of possible states, actions and dynamics, it can adapt to
represent very simple tasks or the most complex systems.

In a more formal manner, an MDP defines the interaction of an agent with an environment
as a temporally discrete succession of states St ∈ S that are visited by the agent at times
t = 1,2,3, .... At each timestep the agent performs an action at ∈A, and moves to state St+1

according to the stochastic environment dynamics p(st+1|st ,at). Once the agent moves to the
new state, it is informed of the state St+1 and receives a reward rt , according to a probability
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Figure 2.1 Agent-environment interaction in a Markov Decision Process.

density p(rt |st ,at)
1. Overall, the 4-tuple (S,A, p,r) composed of the state space S, the

action space A, the state dynamics and the reward density, defines the Markov decision
process for a task.

In this formulation, the objective of reinforcement learning algorithms is to find how the
agent can choose the best actions, so to maximize the total reward it collects. Not just in
the current steps, but in all future steps. The method by which the agent selects actions is
referred to as a policy.

Formally, we define a (stochastic) policy as the probability density π(at |st) which assigns
the probabilities of selecting actions at , conditioned on the current state st . A Reinforcement
Learning method will have the objective of finding an optimal policy π∗ that maximizes the
total return Gt over episodes:

Gt
.
=

T

∑
i=t

Rt (2.1)

Or, in the more general case of continuing tasks which do not have a defined duration T,
the discounted return:

Gt
.
=

∞

∑
k=0

γ
kRt+k (2.2)

1In practice the reward is often defined directly as a deterministic function r : S×S×A→ R of st , st+1
and at
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Being the policy and the state dynamics stochastic, the objective is to optimize the
expected return, for every starting state. We define the expected return for a policy, starting
from state s0, as:

Eπ [Gt |s0] (2.3)

A concept that is crucial in Reinforcement Learning formulations is that of value function.
In an MDP, the value function vπ(s) for a policy π at a state s is the expected return when
starting from state s, and following the policy π .

vπ(s)
.
= Eπ [Gt |St = s] = Eπ

[
∞

∑
k=0

γ
kRt+k

∣∣∣∣∣St = s

]
(2.4)

The value function expresses the "goodness" of a policy when starting from a specific
state, an its maximization for all possible states or at least for a set of possible starting states
is, in general, the objective of Reinforcement Learning algorithms. A policy π ′ can be can be
said to be better than a policy π if vπ ′(s) > vπ(s) for all states s ∈ S, and it is always true
that there exists a policy π∗ that is better than all other policies. π∗ is said to be the optimal

policy for the task.

2.2.2 Value Iteration

The original work by Bellman (1957) that proposed the MDP formulation already introduced
the value iteration algorithm for finding a policy capable of solving the MDP problem. The
value iteration algorithm is a dynamic programming approach built on the Bellman optimality
equation, which states an optimal value function v∗ must satisfy the following:

v∗(s) = max
a

E [Rt+1 + γv∗(St+1)|St = s,At = a]

for all s ∈ S and a ∈A
(2.5)

A policy with value function v∗ is an optimal policy, from any state it selects the action
which leads to the best possible total return.

In the x tabular case, that is if state and action spaces are finite and discrete, and if the
transition dynamics are known, the optimal value function v∗ can easily be used to construct
an optimal deterministic policy π∗ by selecting the possible action according to the value
function at each step.
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Algorithm 1 Value Iteration
Inputs:
ε: Accuracy threshold.

1: Initialize V(s) arbitrarily for all s ∈ S except for V (terminal) = 0
2: repeat
3: ∆ := 0
4: for s ∈ S do
5: v :=V (s)
6: V (s) := maxa ∑s′,r p(s′,r|s,a)[r+ γV (s′)]
7: ∆ := max(∆, |v−V (s)|)
8: until ∆ < ε

9: Output π(s) = argmaxa ∑s′,r p(s′,r|s,a)[r+ γV (s′)]

π∗(s) = argmax
a

∑
s′,r

p(s′,r|s,a)[r+ γV (s′)] (2.6)

Following this logic the problem of approximating the optimal policy reduces to the one
of approximating the value function. A first solution to this problem is the value iteration

algorithm, which was already proposed in the original work by Bellman (1957), which
introduced the MDP formulation. The value iteration algorithm iteratively evaluates and
updates a value function and its related policy. Algorithm 1 presents the value iteration
algorithm.

Value iteration can effectively produce a policy for solving generic MDPs, and is the
foundation of a large part of the most important RL methods, even today. However, it poses
requirements that are often not satisfied in practice. It requires the problem to be tabular,
meaning that action and state spaces are discrete and finite, and it requires knowledge of the
transition dynamics to update the value function and compute policy outputs. The second
requirement is the most critical one, as it prevents the practical solution even of simple tasks
when transition dynamics are not known, and, in the case in which the system dynamics
are known precisely, other methodologies such as optimal control are often a preferable
approach. This requirement can be surpassed by using sampled data and Montecarlo tech-
niques. Combining experience sampling and value iteration leads to TD-learning, another
fundamental piece of RL theory, critical to the definition of today’s most effective methods.
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2.2.3 Temporal Difference Learning

The critical step in value iteration that introduces the requirement of knowing the state-action
transition dynamics is the policy evaluation step:

V (s) := max
a ∑

s′,r
p(s′,r|s,a)[r+ γV (s′)]

:= max
a

Es′,r|s,a[r+ γV (s′)]
(2.7)

To remove this requirement Temporal-Difference Learning combines Montecarlo sampling-
based estimation with the bootstrapping of the value function update of value iteration, using
the previous approximation to perform the update. One-step TD value estimation (TD(0)),
can be performed by using sampled transitions (s,a,r,s′) composed of state, action, reward
and next state. In this case the TD update is formulated as follows:

V (s) :=V (s)+α
[
T + γV (S′)−V (S)

]
(2.8)

Such a formulation does not require knowledge of the transition dynamics of the system,
and can be used with simple (s,a,r,s′) sampled tuples, not requiring the computation of
episodes returns, which is impractical for long episodes and impossible for continual tasks.
As such, the method can be applied to a wide class of tasks, allowing to learn policies just
from data.

2.2.4 Q-Learning

Temporal Difference learning per se is only a value evaluation method, it only learns the value
function, however its combination with a policy learning approach is extremely effective.
Integrating TD-Learning with value iteration and approximating Q values instead of just the
value function, gives rise to Q-Learning, one of the most effective and successful algorithms
of reinforcement learning history.

The Q-Learning algorithm, proposed by Watkins (1989) presented in algorithm 2, was
the first to combine the most crucial features that make RL such a general and effective
approach:

• It is model-free, it does not require a model of the system to be constructed manually.
• It can be trained from data collected online, no prior data collection is needed.
• It is off-policy, meaning it can be trained on data collected by any policy.
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Algorithm 2 Q-Learning

1: Initialize Q(s,a) arbitrarily for all s ∈ S and a ∈ A except for Q(terminal, ·) = 0
2: Let πQ be a policy derived from the Q-function Q
3: for each episode do
4: s := current state
5: for each step in the episode do
6: a := πQ(s)
7: Take action a and observe the reward r and the next state s′

8: Q(s,a) := Q(s,a)+α [R+ γ maxa Q(s′,a)−Q(s,a)]
9: s := s′

10: Output πQ

• It does not require full episode trajectories at each training iteration.

These characteristics make it an extremely versatile method, as it can be applied directly
on a task without significant prior engineering of the problem, and it is remarkably data-
efficient. Furthermore, in the tabular case, it has been proven to converge with probability 1
to the optimal policy (Watkins, 1989).

The main limitation of Q-Learning however is that it only supports finite discrete action
spaces, due to the maximization performed in the Q-function update, and it cannot scale
to large or continuous state spaces while maintaining its proven tabular formulation. The
first issue has been tackled throughout the literature by using policy gradient methods
and combining them with value based approaches, creating the family of Actor-Critic RL
algorithms. These approaches are briefly discussed in the next section. The problem of
handling vast state-action space has instead being tackled by moving from exact tabular
function representations to function approximation, eventually performed with deep neural
networks, leading to Deep Reinforcement Learning techniques. This is discussed in section
2.3

2.2.5 Policy Gradient and Actor-Critic Methods

The value-based methods seen up to now have always been limited to discrete action spaces.
This results from the maximization operation performed on the action space during policy
inference. For example, in the case of Q-Learning, the maximization of the Q-function
performed to select the best action is feasible for small discrete action spaces but it becomes
progressively more computationally expensive as the action space grows.
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Policy gradient methods offer a different approach to solving the MDP formulation.
Instead of learning a value function to then derive a policy from it, they directly approximate
the policy from experience data. This can be done by defining a performance metric for a
policy, which can then be maximized to determine the appropriate policy parametrization. In
practice such a metric can be defined to be the value function for the policy:

J(θ) = vπθ
(s0) (2.9)

The theoretical backing for this family of algorithm comes form the policy gradient
theorem (Sutton et al., 1999), which states that the gradient of this performance metric can
be expressed without knowledge of the state dynamics as follows:

∇J(θ) ∝ ∑
s

µ(s)∑
a

qπθ
(s,a)∇πθ (a|s) (2.10)

Where µ is the state distribution under the policy πθ . This is a notable result, as it
shows how the direction of the gradient of policy performance can be determined without
knowledge of the system dynamics, in a model-free manner.

The first method of this kind to be proposed was REINFORCE (Williams, 1992), which
performed stochastic gradient ascent of policy performance by approximating the gradient
with data collected with the optimized policy πθ . The outer sum of the policy gradient
theorem can be seen as an expectation over states encountered by the policy, thus it can be
approximated with on-policy collected data. The same can then be performed on the action
summation, re-formulating its inner expression, obtaining the following gradient estimate:

∇J(θ) = Eπθ
[Gt

∇πθ (at ,st)

πθ (at |st)
] (2.11)

With Gt being the total episode return starting from time t, and at and st being the sampled
state and action at time t.

Policy gradient methods such as REINFORCE tend to have a high variance and be fairly
sample inefficient, due to their Montecarlo formulation. Also, the formulation relying on full
episode returns makes them difficult to apply in practice. To surpass these limits the policy
gradient formulation can be integrated with the temporal difference value-based methods
discussed in the previous sections. This combination gives birth to the greatly successful
family of Actor-Critic algorithms, which encompasses also extremely successful methods of
today such as SAC, PPO and DDPG.
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In its most simple formulation Actor-Critic changes the policy gradient definition of
equation 2.11 to use a TD estimate in place of the episode return Gt . To do so a value function
is learned simultaneously to the policy. The gradient estimate takes the following form:

∇J(θ) = Eπθ

[(
rt+1 + γ v̂φ (st+1)− v̂φ (st)

)∇πθ (at ,st)

πθ (at |st)

]
(2.12)

Where the st , at , st+1 and rt can be easily collected as on-policy experience data. The
resulting algorithm is extremely flexible and general, being able to handle continuous action
spaces, define stochastic policy, and learn online. Refined versions of it, such as Natural Actor-
Critic (Kakade, 2001), have also shown to be extremely effective in practice. However, this
formulation still suffers some limitations. One is that it is an on-policy method, consequently
it can be fairly sample inefficient as data needs to be re-collected at each iteration. This
limit can be mitigated by using importance sampling, but this solution can often result to be
convoluted and impractical. The other limit is that tasks with large state and action spaces
can still be problematic if highly complex function approximation methods are not used. We
will see in the next section how these limits can be surpassed, while scaling up the function
approximation techniques to use neural networks and deep learning techniques.

2.3 Deep Reinforcement Learning

In the 2000s and especially in the 2010s machine learning methods based on deep neural
network architectures started to take the spotlight as the most effective methodology in a wide
variety of field, from computer vision, to natural language processing and speech recognition.
This success was due at the same time to more and more refined methodologies and the
availability of exponentially more capable computing resources, which made supervised
learning techniques more and more effective.

Starting from the mid 2010s this, together with continuing algorithmical advances, gave
rise to more and more effective methods capable of handling more complex problems,
in terms of observation complexity, action dimensionality and articulation of the credit-
assignment problem. The family of the methods that combine reinforcement learning and
deep learning has taken the name of Deep Reinforcement Learning.

2.3.1 DQN

The term "deep reinforcement learning" was coined and popularized by the work of Mnih
et al. (2013), which introduced the Deep Q-Networks (DQN) method. DQN combined
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several components used in reinforcement and supervised learning in the decade previous
to its conception in a way that allowed it to display never-before seen capabilities. The
theoretical core formulation is that of Q-Learning, DQN uses a variation the Q-Learning
algorithm in which the value function is approximated via a deep convolutional network,
capable of understanding visual input. This was combined with the use of an extensive
replay buffer (Lin, 1992) to efficiently reuse off-policy data. A similar formulation had
already been explored in Neural-Fitted Q-Learning (Riedmiller, 2005), but DQN brought this
together with the use of stochastic gradient descent for the optimization of the value function,
which made the training considerably more efficient, making it practical to enlarge the value
function approximator capacity and tackle more complex problems. Furthermore, one last
ingredient was the use of Double Q-Learning (Hasselt, 2010), which made the training stable
and reliable.

The exceptionality of DQN came from the fact that it showed to be capable of solving
complex tasks directly from visual input, without requiring extensive tuning of its hyperpa-
rameters. The two works in which the method was originally explored, Mnih et al. (2013,
2015), evaluated the method on the Atari Learning Environment (Bellemare et al., 2013)
and showed how the method could reach and surpass human capabilities in playing the vast
majority of the games, all without performing task-specific hyperparameter tuning.

2.3.2 DDPG

DQN showed how the combination of reinforcement learning approaches with deep neural
architectures has a great potential and can solve complex tasks in and end-to-end fashion.
However, DQN is a purely value-based method, it follows the Q-Learning algorithm formula-
tion, and as such it is still limited to tasks characterized by small discrete action spaces, due
to the maximization over actions present in its policy formulation and in the update rule of
algorithm 2. This prevents its direct application to continuous-control tasks and the definition
of proper stochastic policies, which in some cases can be the optimal solution.

The solution to this limitation is the use of actor-critic approaches, derived from the
initial formulation described in section 2.2.5. Many approaches have been proposed to make
actor-critic an effective approach that is stable, data-efficient and general.

One direction has been the use of on-policy data through progressively more stable and
efficient methods, starting from the Natural Policy Gradient of Kakade (2001), then the more
performant Trust Region Policy Optimization (TRPO) by Schulman et al. (2015) and finally
the more efficient Proximal Policy Optimization (PPO) of Schulman et al. (2017). These
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methodologies have shown to be extremely effective and stable. And when combined with
deep neural architectures they have shown to be capable to support highly complex tasks
and the use of raw high-dimensional observations. However, they are inherently on-policy
methods and as such are naturally quite sample-inefficient. While off-policy data can be used
via importance sampling, this can result cumbersome and complex in practice.

Another direction has been the formulation of inherently off-policy actor-critic methods.
One first effective methodology has been Deterministic Policy Gradient, first introduced
by Silver et al. (2014). Deterministic policy gradient introduced a formulation for the
performance gradient of deterministic policies, which supports the use of off-policy data
without the use of importance sampling, and consequently without requiring the use of the
collector policy during gradient updates. This greatly simplified the implementation and
use of actor-critic off-policy methods, making them applicable to a much wider range of
problems.

The original policy gradient theorem was formulated on the initial hypothesis of optimiz-
ing the performance of trained policy over its own state distribution:

J(πθ ) = vπθ
(s0) = Es∼µπθ

[R(s,πθ )] (2.13)

Where R(s,πθ ) is the (discounted) total episode reward from state s using policy πθ and
µπθ

is the policy state distribution.
The crucial result of policy gradient, as seen in equation 2.10, was that the performance

gradient of a stochastic policy can be expressed without the use of the environment dynamics.
In the case of continuous state-action spaces this can be formulated as follows:

∇J(πθ ) =
∫
S

µπθ
(s)
∫
A

qπθ
(s,a)∇πθ (a|s)dads (2.14)

The on-policy nature of policy gradient derives from this formulation, as the gradient
depends on the on-policy state distribution µπθ

. Approaches such as that of Degris et al.
(2012) proposed to deal with off-policy data by altering the performance objective into using
the state distribution µβ of the collector policy β in place of µπθ

.

Jβ (πθ ) = Es∼µβ
[R(s,πθ )] (2.15)

This formulation is effective in defining a policy gradient on off-policy data, but it results
in the use of importance sampling for the approximation of the inner integral of equation
2.14. The deterministic policy gradient, instead, changes the initial assumption by using a
deterministic policy, which completely removes the action integral in equation 2.14. The
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resulting policy gradient does not depend on the behaviour policy, and can be approximated
with samples from the behaviour policy experience:

∇Jβ (πθ )≃
∫
S

µβ (s)∇aqπθ
(s,a)|a=πθ (s)∇θ πθ (s)ds

= Es∼µβ

[
∇aqπθ

(s,a)|a=πθ (s)∇θ πθ (s)
] (2.16)

The combination of this policy update with a Q-Learning based approximation for the
Q-function qπθ

results in an off-policy actor-critic method. This formulation was the first to
introduce an off-policy policy gradient method that did not use importance sampling and was
practical to use and implement. The subsequent work by Lillicrap et al. (2015) combined
this formulation with deep neural network approximators into the Deep Deterministic Policy
Gradient (DDPG) algorithm, and showed how the same concepts introduced by DQN, such
as the use of vast replay buffers, could be applied to continuous control tasks. DDPG showed
to be capable of solving simulated tasks involving simple control task, but also complex
locomotion and manipulation problem, all this both while using low-dimensional vector
information and by using raw image inputs.

2.3.3 SAC

DDPG showed how an off-policy actor critic method can scale to highly complex continuous
control problems problems with great effectiveness, while using either low-dimensional
vector observations of the system or directly from high-dimensional observations such as
images. It proved how this can be done with considerable sample efficiency, by reusing
collected data in an off-policy fashion, utilizing replay buffers in the same manner as it was
done by DQN.

However, in practice DDPG showed to be highly sensible to its hyperparameters. This is
a critical limitation, as the requirement of per-task meticulous hyperparameter tuning can
become a major obstacle in the solution of problems that require large amounts of data and
training time.

Also, the formulation of DDPG does not explicitly aim at guaranteeing good exploratory
behaviour. In practice exploration with DDPG must be incentivized by introducing a ran-
domization in the collector policy. This in practice often does not result in good exploration,
and the randomization intensity is one more tricky hyperparameter to tune.

Soft Actor-Critic, proposed by Haarnoja et al. (2018a,b), tackles these issue by changing
the problem formulation from the optimization of a deterministic policy that maximizes total



2.3 Deep Reinforcement Learning 24

reward, to the optimization of a stochastic policy that maximizes an objective composed of a
total reward term and a policy entropy term.

J(π) =
T

∑
t=0

E(st ,at)∼µπ
[r(st ,at)+αH (π(·|st))] (2.17)

WhereH is the entropy and α is a temperature weight. This objective differs from the
standard reinforcement learning objective, as it is not anymore just an optimization of policy
return, the presence of the entropy term explicitly pushes toward having a policy that behaves
as randomly as possible while solving the task.

While following this formulation, the Q-function can be optimized via a soft Bellman
update:

Q(st ,at) := r(st ,at)+ γEst+1∼p(·|st ,at),a∼π(st)

[
Q′(st+1,a)−αlogπ(a|st+1)

]
(2.18)

Where Q′ is a Q function delayed as in double Q-Learning.
Soft Actor-Critic the combines this soft Q-Learning update with a novel policy gradient,

which directly uses the learned Q function to learn an approximate policy. This is done by
optimizing the policy toward a distribution derived from the Q-function:

πnew(st |·) : = argmin
π∈Π

DKL

(
π

∣∣∣∣∣
∣∣∣∣∣eα−1Qπold (st ,·)

Zπold(st)

)
= argmin

π∈Π

(−Ea∼π [Qπold (st ,a)]−H (π(st |·)))
(2.19)

This objective simultaneously optimizes the policy for maximizing the Q-value and for
having high entropy. The iterated application of the policy evaluation step of equation 2.18
and the policy improvement step of equation 2.19 was proven to converge to the optimal
policy in the tabular case. Thanks to the maximum-entropy formulation and the policy
gradient based on the minimization of the Q-value, Soft Actor-Critic manages to optimize
a stochastic actor-critic policy completely from off-policy data, without requiring the use
of importance sampling. This makes the algorithm extremely general, stable, and sample-
efficient. Also, the use of stochastic policies allows the correct handling of problems in
which non-deterministic policies may be the optimal solution. Furthermore, the entropy
maximization is helpful for exploration, as the policy is encouraged to try out more varied
solving strategies.
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As in DQN and DDPG, Soft Actor-Critic uses neural network function approximators
to handle large continuous state-action domains and high-dimensional observations. Same
as it was for DQN and DDPG, the proven convergence guarantees are lost, but the experi-
mental evaluation of the method showed the method to be extremely effective in practice.
When compared to on-policy methods such as Proximal Policy Optimization, SAC results
considerably more data-efficient, and in comparison to other off-policy algorithms, such
as DDPG and TD3, it shows to be noticeably more stable. Also, the better exploration
properties together with the enhanced stability allow the method to solve highly complex
control tasks where previous off-policy algorithms failed, such as the control the simulated
21-degrees-of-freedom humanoid of Duan et al. (2016).

2.4 From Simulation to Reality

Despite the advances in sample efficiency made by foundational methods such as Soft Actor-
Critic, learning effective real-world control policies via reinforcement learning remains
challenging. Even simplified simulated control tasks such as those of OpenAI Gym (Brock-
man et al., 2016) or the DeepMind Control Suite (Tassa et al., 2018) still require millions of
experience steps to be solved, equivalent to days of experience time. This when having access
to the ground truth system state data, when using image observations these data requirements
grow even more. Also, solving equivalent tasks in the real necessitates even greater lengths
of time due to the increased complexity of the task, the unavoidable partial-observability of
the system state, and the time spent in managing and reorganizing the experimental setup
at each episode. Furthermore, in the first stages of learning, trained policies often exhibit
unsafe behaviours which could damage the real-world robotic hardware and the environment
surrounding it. For example, training quadruped or humanoid locomotion policies from
scratch without some underlying safety mechanism, like it is done in simulated benchmarks,
is infeasible in the real world.

For these reasons the use of simulation remains a invaluable tool in the training of
robotic policies. Being able to deploy in the real an agent trained in simulation, with limited
amounts of real-world training, would greatly reduce the impact of these issues, allowing for
easier development and application of learning-based robotic systems. However, transferring
learned models from simulation to reality, and, more in general, between domains, is non-
trivial. Numerous methodologies have been proposed to tackle this problem, in the context
of policy learning, in vision and in machine learning in general. The problem of transferring
learned models from simulation to reality is generally referred to as "Sim-to-Real".



2.4 From Simulation to Reality 26

2.4.1 Sim-to-Real

Sim-to-real RL methods exploit simulation software to efficiently train policies in virtual
reproductions of the real environment, and then transfer the learned policy to the real-world
domain by overcoming the reality gap, the discrepancy between simulation and reality.

The advantage of using simulation is first of all the possibility of generating vast amounts
of experience much more rapidly than it would be possible in the real world. This can
be achieved by simulating faster than real-time and by parallelizing multiple simulated
environments. Gorila Nair et al. (2015), A2C and A3C Mnih et al. (2016) showed how
parallelizing experience collection leads to substantial improvements in training time. More
recently, Rudin et al. (2021) exploited modern hardware and simulation software to massively
parallelize an environment for quadruped locomotion training, achieving in just 20 minutes a
PPO gait policy capable of successfully controlling a real robot on complex terrains, further
developments on this have been shown in the works of Rudin et al. (2022), Jin et al. (2023)
and Hoeller et al. (2023).

Beyond just generating huge amounts of data, simulation software can also support
training strategies that would be impossible in the real world. Pinto et al. (2018) shows
how it is possible to speed-up training considerably by using simulator state knowledge
during training, and transferred a policy trained in such a way to the real world, where this
knowledge is unavailable.

The core issue with simulation training is the reality gap, the discrepancy between the
characteristics of the simulated environment and those of the real one. These differences can
be in the dynamics of the environment, due to inaccuracies in the physics simulation, in the
observations the agent makes, due to imprecisions in the visual rendering or in the sensory
input in general, or simply in the behavior of robotic components, which may be implemented
differently in simulation and reality. Advances in realistic simulation software (Makoviychuk
et al., 2021; NVIDIA, 2020; Unity, 2020)) are progressively narrowing the reality gap, but
performing sim-to-real transfer remains complex as constructing simulations that closely
match the real world remains a challenging task that requires considerable engineering work.

The problem of sim-to-real transfer can be generalized to the concept of domain transfer,
where a method is trained in a source domain and then applied, and potentially adapted, to a
target domain. In the case of sim-to-real the source domain is a simulation and the target is
the real world, but the same concepts can be applied to sim-to-sim or real-to-real transfers in
which some characteristics are altered between source and target scenarios. This terminology
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can be applied in the same way to any learning method, being it reinforcement learning,
supervised learning or representation learning.

Numerous strategies have been proposed to perform domain transfer and overcome the
transfer gap. In general, we can distinguish between two families of techniques: those that
aim at obtaining a policy capable of operating in both the real and the simulation without
using real-world data, and those that use real-world data for adapting a model learned in
simulation to the real domain. We refer to these latter ones as domain adaptation methods.

2.4.2 Domain Adaptation

Domain adaptation tackles the domain transfer problem by adapting a source-trained method
to the target domain by using data collected in the target domain.

The most simple domain adaptation approach is to just perform policy finetuning in
the real, the same way it is often done in supervised learning settings. The policy is first
trained in simulation, then the agent is transferred to the real and the training continues in
the until satisfactory performance is achieved. This strategy is simple, intuitive and can be
very effective, however, it often still requires considerable amounts of real-world experience,
and it is not guaranteed the robot will behave properly and safely when first transferred to
the real domain. Also, if proper precautions are not taken, there is no guarantee that the
transferred models will be able to maintain the useful knowledge acquired in simulation and
only correct for the domain differences. If this knowledge is not maintained, the advantage of
performing sim-to-real is lost, as the training essentially restarts from scratch. In general, the
interpretation of different environment characteristics performed by a neural network model
is not represented in the neural network weights in a modular and interpretable fashion, and
it may not be possible to adapt each characteristic individually.

Other methods explicitly target the domain gap problem by matching the output of feature
extractors between the simulated domain and the real domain, creating feature extractors that
are invariant to the switch between simulated and real-world inputs. This can be achieved via
different approaches. Some methods try to train feature extractors for the two domains while
keeping the distributions of the two resulting feature representations similar, with losses
based on distribution distance metrics such as Maximum Mean Discrepancy (MMD) (Tzeng
et al., 2014), MK-MMD (Long et al., 2015) or others (Sun and Saenko, 2016). Others try
to keep the feature representations of samples from the two domains close via Adversarial
approaches. A discriminator network is trained to classify feature vectors between the two
domains, the feature extractor is then optimized to generate indistinguishable representations
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(Ganin and Lempitsky, 2015; Tzeng et al., 2015, 2017). Alternatively, other techniques
take inspiration from style transfer methods and directly convert target-domain samples
into source-domain samples or samples from a third "canonical" domain (Bousmalis et al.,
2018, 2017; Hoffman et al., 2018; James et al., 2019). Other methods attempt to identify
corresponding samples from source and target domain and then force the representations of
these corresponding samples to be similar. Gupta et al. (2017) does so by assuming samples
from corresponding timesteps in RL episodes should be similar, Tzeng et al. (2016) first
identifies weakly paired samples and improves on this with an adversarial approach.

Even if some of these methods work well for vision tasks, they generally do not apply
effectively to policy learning, in particular in the case of difficult exploration problems.
The aforementioned approaches either require target data to be available while performing
the original source domain training or they train the encoder with offline data. This is
problematic, as in difficult exploration problems collecting fully representative data before
completely training the policy may be impractical or impossible. In simple tasks it may be
possible to collect human-generated demonstrations, but in more complex tasks, for example
locomotion, collecting demonstrations is not trivial.

2.5 Domain Randomization

A sim-to-real approach that does not require target-domain data is Domain Randomization.
The core idea of the method is to randomize visual (Tobin et al., 2017) and physical (Peng
et al., 2017) characteristics of the simulated environment, so that once the agent is transferred
in the real world it can interpret the new domain as just another random variation. This
is approach can be seen as enlarging the source domain distribution so to include the
target domain in it, effectively reducing the size of the domain gap. A survey on domain
randomization approaches for robotics is provided by Muratore et al. (2022).

In the context of policy learning, these methods can be applied to both visual and
state-based tasks, and have been extremely successful, being able to solve even extremely
complex visuomotor control problems while maintaining strong robustness to occulusions and
perturbations. The idea of randomizing simulator parameters to improve policy robustness in
robotics tasks has been present in research for a while, Wang et al. (2010) already proposed
to use randomization for improving walking controllers more than a decade ago. The
combination and popularization of this approach with deep neural architectures for robotic
control can be traced back to the work of Tobin et al. (2017), which was the first method
to demonstrate how randomization of visual characteristics could be extremely effective
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in performing zero-shot transfer of robotics systems from simulation to reality. Peng et al.
(2017) instead applied the approach to the training of model-free reinforcement learning
policies. Then, one of the most impressive results achieved with domain randomization was
the work of OpenAI et al. (2019), which trained a policy for in-hand manipulation of a Rubik
cube, managing to achieve unprecedented manipulation ability. This last work displayed how
this methodology, if scaled to use colossal amounts of data (13 thousand years of simulated
experience) can achieve extraordinary results.

As exemplified by this last example, as tasks get more complex, they require progressively
greater amounts of simulation data, long training times, and vast computational capabilities.
To reduce these issues, various methods have been proposed to constrain the amount of
randomization to just what is necessary. Ramos et al. (2019), Possas et al. (2020) and
Muratore et al. (2021) achieve this by identifying simulator parameter distributions via
Likelihood-free Inference. Heiden et al. (2021) instead shows how it is possible to use
differentiable simulators to identify possible simulator parameters from real data.

2.5.1 Decoupled RL Architectures and Model-based RL

As we previously discussed, the possibility of directly using high-dimensional sensor ob-
servations as inputs to RL agents is extremely valuable for robotics applications, where the
system state is often inferred from a combination of image and vector readings. However,
solving tasks of this kind with standard reinforcement learning algorithms generally requires
particularly great amounts of experience data and long trainings.

When dealing with image observations, the reinforcement learning methods we discussed
up to now have traditionally been used in a monolithic manner, in which the agent directly
uses images as input, in the same manner as it would do if it had direct access to the true
system state. This formulation is derived from the use of an MDP model, where the agent
has direct access to the state of the system. This assumption is generally not satisfied in
robotics, where the system is better characterizes as a Partially Observable Markov Decision
Process (POMDP), where the agent only has access to environment observations, which may
not contain enough information to determine the exact system state.

To tackle the sample efficiency problem on vision tasks, various methods have been pro-
posed that employ a POMDP formulation and learn an RL policy separately from a perceptual
model that maps observations to state estimates. This perceptual model can be learned by
employing representation learning approaches, that use unsupervised methodologies based
for example on reconstruction or contrastive losses.
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One example of these kind of approaches is SAC+AE, by Yarats et al. (2021), which
uses an autoencoder architecture to learn a low-dimensional latent space from images, and
simultaneously uses the resulting latent vector as inputs for a Soft Actor-Critic policy.

A similar but more articulated architecture is Stochastic Latent Actor Critic (SLAC),
by Lee et al. (2020). Here a POMDP model of the system is learned with a variational
formulation, including models for image encoding, decoding and for dynamics prediction in
the latent space. The state of the system is determined using the current image observation
and previous latent representations. A SAC policy is trained concurrently to the model using
the learned state representation.

A work that follows a different direction for the learning state representations is CURL,
of Laskin et al. (2020), which instead uses a contrastive loss to learn a latent space for the
image observations.

Beyond just learning a representation of the input observations some architectures showed
how it is possible to learn a full model of the system, modeling the perceptual channel and
the environment dynamics. A learned model of the dynamics can be used for generating
synthetic data, which can be used to support the training of the RL policy, or it can be used
by the agent to perform planning. Examples of methods that use the dynamics model for
planning are PDDM (Nagabandi et al., 2019) and PlaNet Hafner et al. (2019).

The first, PDDM, learns the dynamics model as a simple architecture composed of an
ensemble of fully-connected MLP networks. These neural dynamics models are then used
with an non-linear MPC controller, which predicts future trajectories with the learned model
and uses a reward-weighted cross-entropy method (CEM) optimizer to select actions. The
method is shown to be quite effective, being able to learn complex simulated manipulation
tasks like rotating a valve with a three-fingered gripper, reorienting objects while holding
them with a 24-degrees-of-freedom hand, handwriting with a robotic hand, and, noticeably,
controlling a real-world 24-dof hand to rotate two balls around each other in its palm. All of
this with very remarkable sample efficiency, just 3 hours of training for the real-world task.

While being very effective, PDDM operates on low-dimensional vector observations,
and consequently relies on custom perception systems when applied in the real. PlaNet
(Hafner et al., 2019) is instead a learned planning-based end-to-end method, it uses directly
image observations to perform planning. This is done by learning a multi-step variational
model of the system that combines a stochastic and deterministic dynamics formulation, and
includes observation encoders for inferring latent representations from images and decoders
for reconstructing images from latent vectors. This learned mode is then used with an MPC
planner based on the cross-entropy method. The method was evaluated on manipulation
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and locomotion tasks from the DeepMind control suite Tassa et al. (2018), and proved to be
stable, precise and sample efficient.

The work on the system modeling of PlaNet was then taken forward in Dreamer (Hafner
et al., 2020, 2021, 2023). Dreamer uses the dynamics model of PlaNet to interpret image
observations and trains an Actor-Critic RL policy with latent trajectories generated with the
learned dynamics model, exploiting at the same time the differentiable learned dynamics
model to backpropagate analytic gradients from the trajectories into the RL policy. This
formulation allows the agent to be trained with huge amounts of simulated data, while
maintaining the high generality of model-free methods. Across its several iterations Dreamer
showed to be extremely effective on a wide variety of tasks, from the control tasks of the
DeepMind control suite, to Atari games, up to a complex 3D game like Minecraft.



Part II

Training and Transferring Decoupled RL
Architectures for Robotics



Chapter 3

Accelerating RL by Modeling Task
Dynamics

Summary

As we discussed in the previous chapters, vision-based Reinforcement Learning methods
have a great potential in robotics. They can be applied directly to robotics tasks and solve
them end-to-end, dealing with everything from perception to control. As such, they remove
the need for the development of custom perception systems, precisely targeted to the task at
hand. They also overcome the need for precise modeling of the system. Model-free methods
forgo the use of a system model altogether, while model-based methods learn the model from
data.

However, to effectively apply vision-based Reinforcement Learning techniques to robotics
it is crucial to have a sample efficient architecture, that does not require vast amounts of real-
world data to be trained. It is clearly impossible to collect thousand of years of experience
data, but it is also impractical to collect even just days of data. Even if it is possible to collect
days of data it is impractical to do so repeatedly, every time the tasks conditions change in
an unexpected manner, the task requirements change, or, in the case of research, when the
methodology itself is being experimented upon.

This chapter focuses on the starting point of our work, the development of an efficient
architecture for learning vision-based robotics tasks. We will see how I focused on a
decoupled architecture, using an unsupervised learning objective to support the training of
the vision section of the agent, and a Soft Actor-Critic policy to learn a control policy. We
will see how the inclusion of a dynamics model in our architecture enhances its asymptotic
performance and sample efficiency.
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3.1 Decoupling Feature Extraction

Traditional Reinforcement Learning methods usually tackle vision-based tasks in an end-
to-end manner, they assume to have direct access to the state of the system at the current
time-step, as in a standard MDP formulation. From this assumption they can optimize
approximate value functions v(st) or polices π(at |st) that are directly conditioned on the
state.

However, in real-world settings, such an assumption is usually never satisfied. This is
particularly true in robotics, where the state of the system can generally only be inferred from
indirect, noisy and partial sensory information. In a robotics scenario, the state of the system
could be composed of joint positions and velocities, object positions and orientations, or
even the state of complex or deformable objects. This state may only be observable via motor
encoders, cameras, torques and tactile sensors, giving to the agent a flow of information that
requires to be processed to be properly utilized.

Such a system can be modeled as a Partially Observable Markov Decision Process

(POMDP). In contrast to a MDP, a POMDP assumes that the agent may only observe the
state of the system st through partial observations. Observations may have a different format
and structure than the underlying states st ∈ S, as such, we define a separate observation

space containing all the possible observations, such that ot ∈ O for all observations ot . The
relation between states and observation is given by the density o(ot |ss) = P[O = ot |S =

s], which defines the agent’s perceptual channel, which introduces noise and potentially
loses information. This formulation can be formalized defining the POMDP as a 7-tuple
(S,A, p,r,γ,O,v). The first five terms represent respectively the state space, the action space,
the state transition probability density p(st+1|st ,at), the reward function r(st ,at) and the
discount factor. The last two terms represent the observation space and observation density
o(ot |st) = P[ot = o|st = s] which defines our sensory channel. This system formalization is
represented in figure 3.1.

In the POMDP formulation, when RL methods like DQN, DDPG, SAC or PPO are em-
ployed end-to-end they learn a policy π(o), that directly selects actions based on observations.
This policy is learned only through the reward signal, which usually does not directly convey
information pertaining to visual understanding.

To improve the sample efficiency of such architectures we can separate the policy op-
timization from the training of a feature extractor, dedicated to inferring the current state
from observations. Such a feature extractor can be trained efficiently via an unsupervised
representation learning objective.
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Figure 3.1 POMDP formulation. In orange the agent, in blue the sensory channel, in black
the underlying Markov Decision Process.

In our implementation, we opted for the utilization of a Variational Autoencoder (VAE)
architecture. We made this choice due to several reasons, including the VAE’s ability to ensure
the smoothness of the latent space, its capability to constrain the latent space distribution to
approximate normality, its well-established effectiveness in prior research, and its seamless
integration into the POMDP formulation.

We define our VAE architecture as a stochastic encoder eθ (zt |ot) that maps observations
ot ∈ O to latent representations zt ∈ Z and a deterministic decoder dθ (zt) that performs
the opposite transformation. Following the POMDP formulation we can see the variational
autoencoder effectively models both directions of the perceptual channel. The posterior
represents the feature extractor eθ (zt |ot). The decoder instead is an approximation of the state-
to-observation perceptual channel o(ot |st). The zt produced by the encoder is a representation
of the state of our system, we refer to this as a latent representation, and the set of its possible
valuesZ as a latent space. We can choose the shape of this latent representation by tuning the
structure of encoder and decoder, the most practical choice is to make it a low-dimensional
vector, havingZ = Rk, and choosing the latent size k depending on the degrees of freedom
of the system.

Encoder and decoder are both parametrized as neural networks, their specific architecture
being defined consequently of the kind of observations given by the task. In our experimental
setups, in the most general case, observations are mixture of visual and vector observations,
consequently encoder and decoder are composed of a vector section and an image section.
Vector encoding and decoding is performed with simple MLPs, with hidden LeakyReLU
activations and output activation defined based on the task at hand. Image encoding and
decoding has instead been done in most of our experiments with simple convolutional
networks and resize-convolution layers (Odena et al., 2016). In all our implementations the
stochastic encoder has been defined to produce a parametrization of a multivariate diagonal
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normal distribution. In practical terms this means the encoder produces in output the mean
and the standard deviation of the distribution, µθ (ot) and σθ (ot). Within the VAE architecture
these values are than sampled to generate stochastic outputs, employing the reparametrization
trick. Once the architecture is set, the variational autoencoder can be trained using the
standard variational evidence-lower-bound loss:

LVAE(θ ;ot) = DKL(eθ (zt |ot)||N (000, Ik))+αMSE(ôt ;ot)

Withzt ∼ eθ (ot)
(3.1)

Once the autoencoder is successfully trained, any RL method can be used to optimize
a policy π(at |zt) which uses latent vectors as inputs, in practice providing to the agent
preprocessed low-dimensional observations.

3.2 A Fully Decoupled Agent

With this formulation, any RL algorithm can be used to train a control policy from the latent
representations. In this thesis I will focus on the use of Soft Actor-Critic (SAC). This choice
was made as SAC presents a series of characteristics that are particularly suited for visual
tasks and for potential real-world deployment.

SAC is an off-policy stochastic actor-critic approach. Its off-policy nature enables the
reuse of data collected during the training, resulting in a remarkable sample efficiency. This

Figure 3.2 VAE-SAC architecture.
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proves particularly valuable for complex and articulated visual robotic tasks, that would
otherwise demand extensive amounts of experience data. The actor-critic nature of the
method, instead, is essential for supporting continuous action spaces, a critical requirement
for robotic control application. The incorporation of stochasticity in the policy is equally
crucial, as it enables the maximum entropy formulation of the algorithm, which in turns brings
stability and enhances the method’s efficacy in exploring complex tasks. The formulation of
Soft Actor-Critic was discussed in detail in section 2.3.3.

The use of different RL architectures would bring different advantages and disadvantages.
One method that is often used in robotics applications is Proximal Policy Optimization (PPO).
It is known for its stability and its proven capability to solve complex tasks reliably, however,
it is an on-policy method, as such it cannot reuse data from previous training iterations and
requires the collection vast amounts of experience. Many works (e.g. Rudin et al. (2021))
overcome this limit by employing highly parallelized simulation to collect new data after
every policy optimization step. While this is a valid strategy, it is clearly impractical to follow
in the real, and becomes more and more unsustainable as task complexity increases.

Algorithm 3 VAE-SAC training
Inputs:
N: number of training episodes
KVAE : number of VAE gradient steps per episode
KSAC: number of SAC training steps per episode

1: Let πφ be a Soft Actor-Critic policy parameterized by φ

2: Let θ be the parameters for the VAE encoder eθ and decoder dθ

3: Randomly initialize θ and φ

4: for N episodes do
5: Collect one episode into a dataset D according to policy πφ

6: for KVAE gradient steps do
7: Sample from D one batch B of observations ot
8: g = ∇LVAE(θ ;B)
9: θ = ADAM(θ ,g)

10: for KSAC gradient steps do
11: Sample from D one batch B of tuples (ot ,at ,rt ,ot+1)
12: Be = {(eθ (ot),at ,rt ,eθ (ot+1)) for all (ot ,at ,rt ,ot+1) in B}
13: φ = SAC_UPDAT E(φ ,Be)

Figure 3.3 Training procedure for VAE-SAC. VAE weights are updated with ADAM Kingma
and Ba (2015) and the policy is trained with SAC_UPDATE as defined in Haarnoja et al.
(2018b) as discussed in 2.3.3.
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(a) Cartpole - Balance (b) Cartpole - Swingup (c) Cheetah - Run

Figure 3.4 Tasks from the DeepMind Control Suite. For each task is shown an example
frame and its reconstruction through the VAE-SAC architecture. The observations include
frame-stacked images. The red, green, and blue channels of the image are three temporally
subsequent images of the scene, the movement of the links can be inferred from their relative
displacement in the frames. It is possible to see how the pole in the balance task is not
moving, while in the swingup task it is moving at a high velocity.

We refer to the combination of a Variational Autoencoder and a Soft Actor-Critic policy
as VAE-SAC. We train the whole architecture with data collected online, as the policy training
proceeds and the agent progressively explores the environment. Both parts of the architecture
can be trained on off-policy data, consequently we can use a single experience replay buffer to
sample data for the training of both policy and latent extractor. To maintain a strict separation
between feature extraction and policy modules, we train the respective networks completely
separately, without propagating gradients from the policy into the encoder. Figure 3 presents
the pseudocode for the VAE-SAC training procedure.

By itself this simple architecture is already capable of solving challenging control tasks,
such as those in the DeepMind Control Suite. Figure 3.4 shows some examples of such
control tasks, with the observation reconstruction produced by the autoencoder architecture.
While such a reconstruction is not used by the policy, it is a useful way to qualitatively
understand the representational capability of the architecture. Effective reconstruction of the
input observations is indicative of an effective latent representation. Quantitative results are
presented in section 3.4.

3.3 Predicting the Dynamics

The VAE-SAC architecture that we defined up to now uses the variational autoencoder to
learn an approximation of the state-observation mapping of the task’s POMDP. However, the
learned latent representation zt = eθ (ot) is only optimized to contain the information neces-
sary to reconstruct the observation ot , in the form of ôt = dθ (zt). In general, a reconstruction
error loss on the observation may not be a strong learning signal for learning features relevant
to control.
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Some important features, even if inferable from the observations, may not be strongly
reflected in the reconstruction loss value. An example of this can be seen in highly dynamic
tasks in which the observations are temporally stacked images. A situation that is common
in benchmark control tasks such as those of the DeepMind control suite, where it is common
practice to use as observations images composed of three or more subsequent frames,
so to include information concerning the speed of moving bodies in the image. From a
reconstruction perspective, precisely reconstructing the difference between the three frames
is not particularly critical. However, it is of fundamental importance for a control policy to
know the velocity of the objects within the image.

To overcome this limit, the architecture can be extended to model also the dynamics
of the system. By modeling the state-observation mapping, the dynamics and the reward
function we can effectively train a model of the whole POMDP system, a world model of
our environment. By including the dynamics and reward functions in the architecture the
learned latent representation is driven toward including all the features necessary to perform
dynamics prediction and reward computation. As these are the features that determine the
task evolution and objective, they are also features valuable as control policy inputs.

To model the task dynamics the architecture was modified to include a deterministic
dynamics predictor fθ (zt ,at) in the variational autoencoder bottleneck, and the decoder,
instead of producing observations ot was made to predict observations ot+1. With this
simple changes the architecture performs a one-step observation prediction instead of simple
observation reconstruction. An approximation of the reward function was also included in the

Figure 3.5 DVAE-SAC architecture. In blue the DVAE representation learner. In orange
the end-to-end policy composed of the DVAE encoder and the policy network, in our case
implemented with a SAC agent. For graphical simplicity the reward network of the DVAE is
omitted and incorporated in the dynamics predictor fθ .
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architecture, in the form of a learned function r(zt ,at ,zt+1). We will refer to this architecture
as DVAE (Dynamics-VAE).

The architecture is trained with a variational loss, similarly to a standard variational
autoencoder, but reconstructing ot+1 and rt instead of just ot , and introducing an action input
for the dynamics prediction. Consequently, the architecture is trained with batches of tuples
(ot ,at ,ot+1,rt) instead of batches of observations ot .

LDVAE(θ ;ot ,at ,ot+1,rt) = DKL(eθ (zt |ot)||N (000, Ik))+αMSE(ôt+1,ot+1)+βMSE(r̂t ,rt)

With: ôt = dθ ( fθ (zt ,at)))

zt ∼ eθ (ot)

α and β being hyperparameters

(3.2)

The dynamics predictor was implemented as a residual MLP network, fθ (zt) = f ′
θ
(zt)+zt .

The weight of the fθ network were initialized to have an initial output close to zero, so to
have the dynamics initialized to be close to the identity function, a reasonable initialization
for the dynamics. The reward network was also parametrized as an MLP.

The training procedure is almost identical to that of VAE-SAC, presented in the previous
section. Only the latent extractor loss is changed, together with the sampling of its training
batches. Figure 4 presents the updated training procedure.

In practice, the evaluation of the architecture through standard benchmarks showed that
the inclusion of the dynamics and reward prediction has a beneficial effect both on sample
efficiency and asymptotic policy performance.

In the next section we present a comparison on standard benchmark environments of the
two approaches, with the inclusion of the dynamics predictor and without.

3.4 Experimental Results

Here is presented an experimental analysis on the impact of the inclusion of the dynamics
prediction in the DVAE-SAC architecture. The method was evaluated on selected benchmark
environments provided by the DeepMind Control Suite (Tassa et al. (2018)).

In figure 3.7 it is possible to observe the performance of the method on the cartpole-
balance, cartpole-swingup and cheetah-run tasks. These tasks were selected as they span
different difficulties among the tasks of the DeepMind Control Suite.
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Algorithm 4 DVAE-SAC Training
Inputs:
N: number of training episodes
KDVAE : number of DVAE gradient steps per episode
KSAC: number of SAC training steps per episode

1: Let πφ be a Soft Actor-Critic policy parameterized by φ

2: Let θ be the parameters for the DVAE encoder eθ , decoder dθ , and dynamics predictor
fθ

3: Randomly initialize θ and φ

4: for N episodes do
5: Collect one episode into a dataset D according to policy πφ

6: for KDVAE gradient steps do
7: Sample from D one batch B of tuples (ot ,at ,ot+1,rt)
8: g = ∇LDVAE(θ ;B)
9: θ = ADAM(θ ,g)

10: for KSAC gradient steps do
11: Sample from D one batch B of tuples (ot ,at ,rt ,ot+1)
12: Be = {(eθ (ot),at ,rt ,eθ (ot+1)) for all (ot ,at ,rt ,ot+1) in B}
13: φ = SAC_UPDAT E(φ ,Be)

Figure 3.6 Training procedure for DVAE-SAC. VAE weights are updated with ADAM
Kingma and Ba (2015) and the policy is trained with SAC_UPDATE as defined in Haarnoja
et al. (2018b).

The cartpole-balance task is the most simple of the three. In this task the agent is tasked
with balancing an inverted pendulum attached to a cart that can move left and right on a
rail. The scene is observed via 84x84 pixel images, 3 subsequent images are provided to
the agent. We can see in figure 3.7a how the inclusion of the dynamics prediction has an
important impact on the performance of the agent in this task. The VAE-SAC architecture,
which does not include the dynamics prediction, completely fails at solving the task, while
the DVAE-SAC architecture succeeds at balancing the pole although with some instability.
For reference, a reward of 1000 corresponds to the pole being upright for the whole duration
of the episode, with zero total reward instead the pole is always hanging below the cart.

In figure 3.7b instead we can see the results for the swingup task. This task presents the
same scenario as the cartpole-balance task, but in the initial configuration the pole is not in
the upright position. From the figure we can see that the DVAE-SAC method manages to
achieve a slightly higher reward than VAE-SAC, however it does not succeed in balancing the
pole. Qualitatively observing how DVAE-SAC behaved it was possible to see that it learns to
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rotate the pole around in circles instead of balancing it upright. We can explain this failure of
the method from the fact that for successfully swinging up the pole and then stopping it in
the correct position it is necessary to estimate the bodies’ velocities with good precision.

Finally, figure 3.7c presents the performance data for the cheetah-run task. In this task the
agent must learn to control a planar cheetah robot so that it runs forward. The agent controls
the torques on the 6 actuated joints of the robot. Again, the scene is observed via 84x84
pixel images, and the 3-frame frame stacking is used. This task is the most complex of the
three, as it presents a higher state and control dimensionality, and the dynamics of the task
are particularly complex due to the contact dynamics between the cheetah and the ground.
However, both VAE-SAC and DVAE-SAC learn a policy capable of making the robot run
forward, although not at high velocity. The presence of the dynamics again shows to bring
improved performance. In figure 3.8 it is possible to observe a frame sequence obtained from
a training with DVAE-SAC, it is possible to see how the agent successfully runs forward and
how the image predictions correctly match the future frames.

3.5 Conclusions

This chapter showed how a simple decoupled architecture can be constructed to efficiently
learn vision-based tasks with reinforcement learning. Simply learning a state representation
from images using a variational autoencoder can already be an effective method, but it was
shown how the inclusion of a dynamics predictor in the architecture can considerably improve
performance. The evaluation on DeepMind Control Suite tasks showed how the inclusion of
the dynamics in general improves performance, and can enable the solution of tasks that the
simpler architecture without dynamics does not manage to resolve.

Still, the architecture cannot solve tasks that require a good precision in identifying
dynamical features, as can be concluded from the failure at solving the cartpole-swingup
task. However the intuition that the inclusion of a dynamics predictor can improve policy
performance proved to be correct. In chapter 5 I will present an extension to this architecture
that goes forward on this intuition and performs multi-step observation prediction, further
improving performance, and successfully solving the swingup task.
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(b) Cartpole - Swingup task
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(c) Cheetah - Run task

Figure 3.7 Comparison of VAE-SAC and DVAE-SAC performance on the DeepMind Control
Suite cheetah_run, cartpole_balance_sparse, and cartpole_swingup tasks.



3.5 Conclusions 44

Figure 3.8 Frames from an episode of the cheetah_run task. At each timestep we show the
input observation and the predicted next observation.



Chapter 4

Sim-to-Real: Domain Transfer via Latent
Prediction

Summary

The DVAE-SAC architecture developed in the previous chapter showed to be capable of
solving complex vision-based control tasks and effectively improving sample efficiency
when compared to standard end-to-end methods such as SAC or PPO. However, for practical
robotics applications, the amount of experience required for training such policies can still
be an insurmountable obstacle. Furthermore, the training of such control agents in the real
world is impractical, due to the unsafe behaviour of untrained policies in the early stages of
learning.

One potential solution to both sample efficiency issues and training safety is the use
of simulated environments, followed by a transfer of the trained policy to the real world
domain. However, the discrepancy in visual and physical characteristics between reality and
simulation, namely the sim-to-real gap, often significantly reduces the real-world performance
of policies trained within a simulator. This chapter proposes a sim-to-real technique that
makes use of the decoupled nature of DVAE-SAC to independently perform the transfer
of feature extractor and control policy. The presence of the dynamics model in the DVAE
architecture will prove to be crucial to the effectiveness of the transfer, as it can be exploited
as a constraint on the latent representation when finetuning the feature extractor on real-world
data.

We show how the DVAE-SAC architecture can support the transfer of a trained agent from
simulation to reality without retraining or finetuning the control policy, but using real-world
data only for adapting the feature extractor section of the network. By avoiding the training
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of the control policy in the target domain we overcome the need to apply Reinforcement
Learning on real-world data, instead, we only focus on the unsupervised training of the feature
extractor, considerably reducing real-world experience collection requirements. The method
will be evaluated on sim-to-sim and sim-to-real transfer of a policy for table-top robotic
object pushing. We demonstrate how the method is capable of adapting to considerable
variations in the task observations, such as changes in point-of-view, colors, and lighting, all
while substantially reducing the training time with respect to policies trained directly in the
real.

4.1 Efficiently Transferring RL Policies

As we discussed in section 2.4, sim-to-real is a essential methodology in robotics. The
development of robotics systems often happens initially in simulation for a variety of practical
reasons, such as cost, safety and flexibility in exploring alternative approaches. In the setting
of robot learning the use of simulation also opens the door to the use of vast amounts of
data that would be impossible to collect in the real world. Even when using sample-efficient
methods such as the one developed in chapter 3, as the task complexity increases the amount
of data required to train effective policies can become prohibitive. This is particularly true
for applications that require the reinforcement learning agent to explore a vast state space, to
learn to handle all the possible variations in a task, and to explore areas of the state space
that may be accessible only after considerable policy training. An example of this is the
tabletop object-pushing task that will be analyzed in toward the end of this chapter. Despite
its relative simplicity, such a task already presents perception and exploration complexities
that make the task impractical to train in reality, as solving it with an architecture such as
DVAE-SAC can require more than a day of experience data.

Section 2.4 discussed several approaches for sim-to-real and domain transfer, each of
them with different advantages and disadvantages. Some adaptation works that aim at making
feature extractors invariable to domain changes require target domain data during source
domain training (e.g. Gupta et al. (2017)), some even requiring paired observations between
source and target domain observations (Isola et al. (2017)). Other methods which tackle the
unpaired case may not have good characteristics for online training of complex tasks. Some,
such as for example the work of Tzeng et al. (2016), assume the availability of an observation
task that properly covers the observation space of the task, an assumption that may not be
verified for complex exploration problems. Other works (e.g. Gupta et al. (2017)) make
strong assumptions on the structure of the task to determine parings between corresponding
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source-target observations. Others, like the approach of Bousmalis et al. (2018), assume
the variations between real and simulated observations to be limited to simple low-level
alterations. Most of these issues are surpassed by domain randomization approaches, however
domain randomization generally brings and increase in data requirements, and selecting
appropriate randomizations may not be trivial for all tasks.

In this chapter I aim at performing the transfer of vision-based control policies without
knowledge of the target domain during source training, without using source data dur-
ing target-domain adaptation, while being sample efficient in simulation and reality, and
supporting complex tasks and difficult exploration problems. The combination of these char-
acteristics is highly desirable in practical robotic applications, as the method can maintain
a high generality while supporting complex use cases, not requiring long training times,
not demanding the collection of big amounts of data, and not necessitating for manual data
annotation.

4.2 Transferring Decoupled Policies

In the solution of the most complex reinforcement learning problems the need for vast
amounts of data arises from the exploration challenges of the problem. Tasks that requires
the exploration of articulated system dynamics will require great amounts of data for the
agent to discover which states offer the highest reward and which state-trajectories allow
to reach them. This is a complexity that is not present generally in supervised learning or
representation learning, where the whole data distribution is usually assumed to be easily
accessible in the training set.

The use of fully decoupled reinforcement learning methods such as the DVAE-SAC
method developed in the previous chapter separates the policy learning from the learning
of state representations that map observations to latent state. In the setting of sim-to-real
this property can be exploited to transfer the agent’s latent extractor and its control policy
independently of each other. Assuming the same behaviours learned in simulation can be
applied in reality, it is then possible to directly transfer of the complex policy behaviours
learned through reinforcement learning, only adapting the mapping between observations
and latent states and greatly reducing real-world data requirements.
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4.2.1 Problem formulation

Following this intuition, the objective is to transfer the learned state representation, learning
a new mapping between the new observation space and the latent states. As in chapter 3, we
formalize our setting as a Partially Observable Markov Decision Process (POMDP), defined
by the 7-tuple (S,A, p,r,γ,O,v). With the 7 terms representing the state space, the action
space, the state transition probability density, the reward function, the discount factor, the
observation space and the observation density. The system is represented in figure 4.1.

The overall objective of the agent is to learn a policy π(at |ot) that maximizes the expected
discounted total sum of rewards R(π) = Es0:T (∑

T
t=0 γ tr(st ,at)). However, in the sim-to-real

setting we assume the agent to be already optimized for the source domain. We want to use
this preexisting knowledge to solve the target domain with a high sample efficiency.

In the DVAE-SAC from the previous chapter, the agent is subdivided in four components:

• The control policy πφ , which selects actions based on observed latent states zt

• The encoder network eθ , which extracts latent states zt from the input observations ot

• The latent dynamics predictor fθ , which predicts latent states zt+1 and rewards rt

from latent states zt and actions at

• The decoder network dθ , which can reconstruct predicted observations ôt+1 from
latent states zt+1

The overall end-to-end policy is composed of the combination of the encoder network and
the policy, which can be chained to obtain the stochastic policy πφ (at |eθ (zt |ot)), effectively
using the encoder as a feature extractor. However, of the four components of the agent,
only the control policy πφ is trained via reinforcement learning, the encoder, decoder, and
dynamics predictor are trained via the variational representation learning objective. This
decoupling of the architecture completely separates the action-selection logic of the policy
from the observation understanding, as no gradients from the RL objective are propagated
into the encoder network.

From the sim-to-real and domain transfer perspective this allows to conceptually separate
the transfer of the observation representation from that of the control policy. Tackling these
two aspects of the transfer separately can be particularly advantageous in practice. Depending
on the task, the size of these two domain gaps can be very different. At the extreme, the
same identical task can be represented with different observations, by using different sensors,
changing environmental conditions such as the lighting or for example changing the position
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Figure 4.1 POMDP formulation of the problem. In orange the policy we implement, in blue
the sensory channel, in black the underlying Markov Decision Process.

of cameras. In the opposite way, different tasks could be observed via the same perceptual
system.

The method proposed in this chapter focuses on the former case, in which we assume
the transfer gap in the task dynamics to be negligible. Such an assumption can be limiting
in the case of highly dynamical tasks, but can still be satisfied for a wide range of transfer
scenarios. Sim-to-sim and real-to-real can satisfy this assumption exactly, as the underlying
task is indeed the same. But also, non highly-dynamical tasks can present a small gap in the
dynamics, as the physical properties of the system become less relevant to the environment
evolution. An example of such a problem, which we will tackle later in the chapter, is
an object pushing task, in the case for example of high frictional damping and a position
controlled robot. Also, this approach does not exclude the use of domain randomization,
which can still be used on the physical properties of the task to reduce the effective size of
the transfer gap.

4.3 Decoupled Transfer of DVAE-SAC

Using the DVAE-SAC architecture we can transfer policy and feature extractor through
domains independently of each other. In case the transfer gap on task dynamics is small, it is
possible to only adapt the DVAE observation model, and keep the policy as-is. However, this
cannot be done simply be retraining or finetuning the DVAE, as it is crucial to maintain the
compatibility between policy and encoder network. The RL policy within the agent is trained
to understand as input the latent representation learned by the DVAE, if this representation
was to change, a fixed control policy would not be able to adapt, it would fail to correctly
interpret its input and ultimately become unable to solve the task. Consequently, when
finetuning the observation model and using a fixed policy it is crucial to avoid alterations in
the representation, preventing changes to the state-to-latent-state mapping.
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In this chapter we tackle this representation drift problem by using the dynamics predictor
of the DVAE architecture as a constraint. When we transfer the control policy as-is, we
are assuming the dynamics of the task are not significantly changing between the source
and target domain. This assumption also allows us to also transfer the dynamics predictor
network fθ of the DVAE without adaptation.

More than being just transferred without adaptation, the source-domain dynamics predic-
tor can be used as a constraint to reduce the representational drift. By transferring the DVAE
architecture to the target domain and finetuning only the encoder and decoder sections of the
network while keeping the dynamics predictor frozen, we can obtain a latent representation
for the target domain that is compatible with the dynamics predictor of the source domain.
The following sections will show experimentally how constraining the latent representation
to be compatible with the source dynamics can be enough to maintain compatibility with the
control policy, and effectively solve the task in the target domain.

Algorithm 5 DVAE-SAC Transfer
Inputs:
N: number of training episodes
KDVAE : number of DVAE gradient steps per episode

1: Let πφ be a Soft Actor-Critic policy parameterized by φ

2: Let θe, θd , θ f be respectively the parameters for the DVAE encoder eθe , decoder dθd ,
and dynamics predictor fθ f

3: Initialize θe, θd , θ f and φ with the pretrained source-domain network weights
4: for N episodes do
5: Collect one episode into a dataset D according to policy πφ

6: for KDVAE gradient steps do
7: Sample from D one batch B of tuples (ot ,at ,ot+1,rt)
8: g = ∇LDVAE({θe,θd};B)
9: θ = ADAM({θe,θd},g)

Figure 4.2 Domain transfer procedure for DVAE-SAC. DVAE encoder and decoder weights
are updated with ADAM (Kingma and Ba (2015)).

4.4 Evaluating the Transfer

To demonstrate the method’s effectiveness, its performance was evaluated on sim-to-sim and
sim-to-real scenarios. Assessing the method requires selecting a task that poses challenging
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Observation space: [0,1]128×128×3 × [−1,1]2

Action space: [−1,1]2

Table 4.1 Object pushing environment observation and action spaces. The action space is
normalized to [−1,1], but corresponds to a displacement of maximum 2.5cm in x and y.

transfer aspects yet remains manageable, is suited for a real-world construction, and allows
for repeated execution with minimal human intervention. Also, to evaluate the transfer
performance of the method we need to have clearly identifiable characteristics of the task,
that can be altered in simulation or in the real.

Following these requirements the experimentation focused on a robotic table-top object
pushing task. This task, despite being relatively simple, already presents complex aspects
from the point of view of policy learning and control. Depending on the reward function
formulation, it can present difficult exploration challenges. And if solved with traditional
control approaches, it would require contact and friction modeling, which is often non-trivial,
together with the development of a visual perception system for identifying the pose of
the pushed object. At the same time, by using a position-controlled setup, it can be easily
constructed in the real, without the risk of robot collisions and always maintaining the
manipulated object in a bounded area.

The specific scenario we focus on is the one of a 7-DOF Franka Emika Panda robotic
arm tasked with pushing a 6cm cube to a target position. The robot arm is controlled in
cartesian space, the end-effector moves only horizontally within a 45cm square workspace
located in front of the robot itself. Each episode is initialized with a random cube position
and a random end-effector position. The target cube position is kept constant across episodes.
The agent controls the robot specifying a displacement in the bidimensional workspace of
the end-effector, resulting in a continuous 2D action space. The environment is observed
through a camera placed on the opposite side of the table with respect to the robot arm, which
produces RGB images with 128x128 pixels resolution. In addition to the images the agent
also has access to proprioceptive information from the robot, in the form of the 2D position
of the end-effector tip. Figure 4.3 shows the simulated and real scenarios, figure 4.5 displays
an example of a successful episode.

Each episode lasts 40 steps. Once the cube reaches the target position, within a 5cm
tolerance, the episode is considered successful, but it is not interrupted until the 40 steps
timeout is reached.
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(a) Simulated scenario (b) Real-world scenario

Figure 4.3 Simulated (4.3a) and real (4.3b) object pushing setups. The camera used to collect
the input images is visible in the top left in both pictures.

To speed-up the learning and ease experimentation the reward was shaped to give a strong
and directed learning signal. The reward function was defined as the composition of 3 terms,
one to encourage the end-effector tip to stay close to the cube, one for the cube to stay close
to the goal, one for the cube to be moved in any direction. We define them as follows, where
r(pc, pt) is the overall reward, rc(pc, pg) is the cube-goal term, rt(pt , pc) the tip-cube term,
rd(pc, p′c) the cube displacement term, and rb(pc, pg) is a further bonus given when the cube
is within d meters from the target. The rc and rt functions are defined as linear ramps, with
value 0 at 40cm from the target and respectively 100 and 50 at the target.

r(pc, pt) = 0.1
(
rc(pc, pt)+ rb(pc, pg)+ rt(pt , pc)+ rd(pc, p′c)

)
With:

rc(pc, pg) = 100
0.4−||pc − pg||

0.4

rt(pt , pc) = 50
0.4−||pc − pt ||

0.4
rd(pc, p′c) = 2000||pc − p′c||

rb(pc, pg) =

200d−||pc−pg||
d if ||pc − pg|| ≤ d

0 otherwise

(4.1)

This experimental scenario was implemented both in the real world and in a Gazebo

simulation (Koenig and Howard, 2004). To maintain consistency between the two setups



4.4 Evaluating the Transfer 53

and minimize implementation discrepancies, both systems were developed utilizing the
same Robot Operating System (ROS) (Quigley et al., 2009) tools. The robot arm motion
was controlled with MoveIt (Coleman et al., 2014), planning linear end-effector trajectories
according to the actions selected by the agent. In the real, the image observations are captured
using an Intel® RealSense™ camera positioned in front of the robot, and processed to obtain
white-balanced 128x128 RGB images. In the simulation the images are rendered by a camera
with the same intrinsic parameters as the real one, and are then processed through the same
pipeline. The computation of the reward function during training requires knowledge of the
position of the cube. In simulation, this information is obtained directly from the simulator.
In the real-world scenario a tracking system was implemented using a second camera and a
simple pointcloud-based pipeline that computes the 2D position of the cube. In simulation
the reset of the environment performed at the start of every episode, which involves the
position of the cube and end-effector at their respective random initial positions, is performed
by teleporting the cube and moving the arm via Moveit. In the real, the same is achieved by
moving the cube with the end effector itself, utilizing a matching hole fabricated in the top of
the cube, and then moving the arm to its required pose.

Figure 4.5 Example of one successful episode in the simulated setup. The image shows the
observed images for steps 0, 4, 8, 12, 16, 20, 24.

4.4.1 Sim-to-sim

The core objective of the methodology discussed up to now is to perform policy transfer
from simulation to reality. However, before discussing the sim-to-real transfer we analyze
a series of sim-to-sim tasks. Performing the transfer between different simulated scenarios
gives possibility of precisely controlling which variations are present across the transfer. This
allows to craft different transfer scenarios of varying difficulty, enlarging or shrinking the
size of the transfer gap, so to define a controlled and well-defined experimental setup.

The sim-to-sim evaluation was performed on a series of four scenarios of increasing
difficulty. The scenarios are constructed by maintaining a fixed source domain and defining
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(a) (b) (c)

(d) (e) (f)

Figure 4.7 Examples of the transfer scenarios: in 4.7a the source scenario, in 4.7b a minimal-
gap scenario, in 4.7c a small-gap scenario, in 4.7d a medium-gap scenario, in 4.7e a large-gap
scenario, in 4.7f the real-world scenario.

four sets of target domains, in which we alter characteristics such as the cube color, the
lighting, and the camera pose. We will refer to the different transfer gaps as Minimal Gap,
Small Gap, Medium Gap, and Large Gap.

In this section we discuss the different setups and the quantitative results achieved in
each of them. The results are also reported in table 4.3 and figure 4.9. For comparison,
figure 4.9b reports the performance achieved training from scratch in the source simulation
scenario. Table 4.2 summarizes the characteristics of the different scenarios. Figure 4.7
presents example images for the different transfer scenarios.

Minimal Gap

In this scenario we only change the color of the manipulated cube. While in the source
domain the cube is black, we define eight target scenarios with eight different colors: red,
green, blue, yellow, cyan, magenta and 2 grades of gray.

With this setup, depending on the selected color, the policy has an initial performance
that varies between 10 and 95 percent, and the method consistently reaches a 90% success
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Figure 4.8 Success rate progression in the simulated minimal-gap scenario. Each run,
corresponding to a different cube color and seed, is represented individually. Each line
represents the success rate in the 100-episode window preceding the current episode, the
background bands represent the 95% confidence interval for the average.

rate in just 110 episodes of finetuning, and then maintains a performance oscillating between
92 and 95 percent (see figure 4.8).

Small Gap

In this setup we introduce variations also in the camera pose and in the light direction. We
vary the pose by translating the camera left, right, up or down of 5cm, whithout changing its
orientation. We vary the light direction from the vertical axis of the source domain to four
possible axes with a 30 degrees inclination either toward the left, right front or back. We set
the cube color to be red across all variations of this scenario.

With these setup the agent performance is initially around a 5% success rate, which is
comparable to a random policy. Performing the encoder and decoder finetuning the agent
consistently reaches an 80% success rate in about 210 episodes and a 90% success rate in
about 950. Consistently reaching an 88% success rate considerably sooner, by episode 500.
The results are reported in figure 4.9.

Medium Gap

To further widen the transfer gap in this scenario we increment the magnitude of the camera
pose change. We move the camera of 20cm instead of 5, and we alter its orientation to
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Scenario Cube Color Light Direction Camera Position Camera Orientation

Original (Sim) Black Vertical \ \

S2S - Minimal Gap 10 colors Vertical Unchanged Unchanged

S2S - Small Gap Red 30°: Left,Right,Back,Front ∼5cm offset Unchanged

S2S - Medium Gap Red 30°: Left,Right,Back,Front ∼20cm offset Toward Center

S2S - Large Gap Red 30° Left ∼70cm offset 90° Yaw

S2R - Minimal Gap Black Multiple sources, diffused ∼5cm offset Minimal

Table 4.2 Variations from the source domain across the different experimental scenarios

maintain the manipulation area in the field of view. We maintain the cube color as red in all
tasks and vary the light direction in the same way as in the small-gap scenario.

The training performance is qualitatively equivalent to that of the small-gap scenario,
reaching 80% success rate in 320 episodes and 90% in 1250. Also in this case a performance
just under 90% is reached sooner, reaching 85% at episode 750.

Large Gap

In the hardest sim-to-sim scenario we completely change to camera point of view, while still
altering cube color and light direction. The camera is moved so that it faces the manipulation
area from the side instead of the front, with a 90 degree point of view change.

In this scenario, which goes beyond what is just a sim-to-real transfer problem, the agent
training requires about as much time as is required to train the agent from scratch. However,
notably, it succeeds in overcoming the transfer and adjust its latent representation to match
the policy. About 1200 episodes are required to reach an 80% success rate, and a maximum
performance of 86% is reached by episode 2000, performing worse than the source training
in asymptotic behaviour.
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(a) Training progress across the different simulated scenarios.

(b) From-scratch training progress in the simulated scenarios.

Figure 4.9 Success rate progress for the simulation experiments. Figure 4.9a displays the
results for all the scenarios in an aggregated form, the plots show the average performance
across seeds on a 100 episode window. For the minimal, small, medium and large scenarios
the number of random seeds was respectively 8, 12, 16, 4. The shaded area represents the
95% confidence interval on the success rate mean Figure 4.9b shows the progression for the
training from scratch performed in simulation. Two random seeds are being shown. The solid
lines represents the success rate in the 100-episode window preceding the current episode,
again the background bands represent the 95% confidence interval.
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4.4.2 Sim-to-real

Figure 4.11 Success rate progression in the
sim-to-real experiment. The solid line repre-
sents the success rate in the 100-episode win-
dow preceding the current episode, the back-
ground bands represent the corresponding 95%
confidence interval.

After the sim-to-sim evaluation the perfor-
mance of the method was investigated on
a sim-to-real transfer scenario. In the real,
the method was only evaluated on "minimal-
gap" transfer, in which we minimize the en-
vironment differences by not intentionally
introducing variations and trying to replicate
the simulated scenario for what is possible.
Despite this, the transfer still presents con-
siderable differences from the simulation,
small changes in the camera pose are present,
and the lighting and textures of the environ-
ment are more varied and complex. Also,
changes in the physical characteristics of the
task are inevitably present, for example in
the contact and friction dynamics, or in the
inertia of sthe bodies. For a reference of
the visual differences, figure 4.12 shows the
camera view and decoder reconstruction in the simulated and real scenarios.

In addition to these differences, the reward function computation is also different. It
relies on the estimated cube position to calculate the distances between the cube and the goal
and the cube and the end-effector. This estimation inevitably introduces errors, delays, and
noise, a characteristic that is not present in simulation.

In this transfer scenario the initial success rate achieved by the policy is about 10%.
The DVAE finetuning brings the success rate 80% in about 550 episodes, corresponding
to 5 hours of experience, a performance of 90% is achieved in 990 episodes, 10 hours of
experience data.

When compared to the training from scratch in simulation, the sim-to-real finetuning is
considerably faster in the first stages of learning, achieving 80% success rate in about half
the time, however reaching 90% requires almost as much time as the source training. It must
be noted however that a training from scratch in the real may require considerably more time
than in simulation, due to the higher complexity of the sensory inputs. Also, differently form
the sim-to-sim scenarios, in this case there are alteration in the physical properties of the
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(a) Input and prediction in simulation (b) Input and prediction in the real world

Figure 4.12 Input image and predicted image in the simulated (left) and real (right) setups

Scenario Success % Init. Succ. % T.T. 80% T.T. 90%

Sim. From Scratch 98% 5% 1020 Eps. 1180 Eps.

S2S - Minimal Gap 95% 50% 90 Eps. 110 Eps.

S2S - Small Gap 92% 5% 210 Eps. 950 Eps.

S2S - Medium Gap 92% 5% 320 Eps. 1250 Eps.

S2S - Large Gap 85% 5% 1200 Eps. \

S2R - Minimal Gap 92% 5% 550 Eps. 990 Eps.
Table 4.3 DVAE-SAC results on the four sim-to-sim (S2S) and the sim-to-real (S2R) scenarios.
Columns indicate respectively: the best achieved success rate, the initial success rate in the
target domain (i.e. zero-shot transfer performance), the number of episodes required to reach
80% success rate, the number of episodes required to reach 90% success rate.

system, which are not being directly tackled by the agent finetuning. No attempt was made
to do so, but these difference could be tackled by performing a final policy finetuning, or by
using domain randomization on the physical parameters of the simulated source scenario.

4.4.3 Sim-to-sim with VAE-SAC

To explore the importance of the dynamics predictor constraining for domain transfer we
evaluated the performance of a VAE-SAC agent on the sim-to-sim scenarios. As discussed
in section 3.2, the VAE-SAC agent is a version of our architecture in which the dynamics
predictor is not present. Figure 4.13a shows the achieved transfer performance. As expected
the domain transfer fails, as there is no constraint to keep the latent representation compatible
with the control policy. Even in the minimal-gap scenarios, where the zero-shot performance
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performance is not zero, the success rate rapidly descends to performance comparable to that
of a random policy. In the small-gap scenario we can see the performance initially rising, but
then decaying too to negligible success rates.

(a) Success rate progress for the sim-to-sim VAE-SAC experiments. The plots show the
average performance across seeds on a 100 episode window. The shaded area represent the
95% confidence intervals for the means.

4.5 Conclusions

Throughout this chapter I presented a methodology for transferring a DVAE-SAC decoupled
visual policy across domains, between different simulated scenarios and across the reality
gap. As was discussed, an architecture such as DVAE-SAC has the advantage of being
extremely sample efficient in its source training while maintaining a high generality and the
capability to solve tasks end-to-end, from raw observations to control actions. The possibility
to transfer such an architecture allows to deploy in the real world complex policies with small
amounts of real-world data.

The sim-to-sim experiments of section 4.4.1, focused on the object pushing task, showed
how the method can perform domain transfer across increasingly difficult scenarios. The
most simple scenarios only present simple variations in the visual observations, such as
changes in the hue of the manipulated object. The most complex ones involve radical changes
on the point of view of the camera, together with changes in lighting and hue. The method
proved to be extremely effective at surpassing the smaller domain gaps, requiring up to ten
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times less data than a from-scratch training. It also showed to be capable of solving the
most difficult transfer tasks, albeit with progressively increasing data requirements. The
experiments of intermediate difficulty, in which the camera is moved resulting in point of
view changes up to 20 degrees, are still solved with remarkable sample efficiency gains,
requiring up to four time less data than the from-scratch training. The hardest task, in which
the camera point of view is changed of 90 degrees, is still solved by the method, but requires
roughly the same amount of data as training the agent from scratch. However, in this harder
task, the domain transfer gap is already beyond what could be a typical sim-to-real gap.

The method also manages to solve the sim-to-real transfer task. It exhibits a fast initial
adaptation, reaching a success rate of roughly 50% in less than half the time required to do so
in the source training, however it then slowly settles toward an asymptotic performance worse
than the source training one. This can be explained on one side with the higher complexity
of the visual observations in the real, where more complex lighting and textures are present.
At the same time, it must be considered that the transfer of the method does not account
for differences in the physical and dynamical characteristics of the task. The SAC policy
is transferred without any adaptation, and the dynamics model is not being trained. Such
differences are inevitably present when transferring between simulation and reality, due to
modeling errors and inaccuracies. The friction coefficients and inertias of the various bodies
in the scene were not tuned carefully to match the real scenario. Such limitation can be
tackled with different approaches, which can be applied together with the current transfer
strategy. The first is to perform an accurate modeling of the system and employ system
identification techniques to identify proper model parameters. The second is to perform
policy finetuning in the real, after a period of adaptation of the representation. The third is to
use domain randomization on the physical parameters of the system.

In addition to these considerations it is also important to note that another potential
source of error is noise in the reward function, which is present in the real world setup due to
the cube detection pipeline, but is not present in simulation. This error directly affects the
representation constraining as the reward prediction is performed by the frozen dynamics
model, which is used to constrain the latent representation.

Despite these limits, the transfer strategy proposed in this chapter shows how it is possible
to perfom domain transfer of decoupled RL policies by separately adapting policy and feature
extraction. The experimental analysis focused on adaptation of the feature extraction section
of the agent, showing how it is possible to adapt a reinforcement learning policy without
using reinforcement learning in the target domain. This characteristic has the potential to
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greatly reduce data requirements for the training of complex policies, as adaptation data
requirements are not directly dependant on task complexity.

As we will see in the next chapter the transfer strategy proposed up to now comes with
strong requirements on the definition of the task. Most importantly, the presence of the highly-
structured reward function used in the pushing task proved to be essential to the effective
transfer of the policy. The next chapter will show how this requirement can be removed,
allowing to tackle more complex tasks and improving the generality of the approach.



Chapter 5

Solving and Transferring Complex Tasks

Summary

The DVAE-SAC architecture developed in chapter 3 showed to be capable of efficiently
solving complex visual-based control tasks, and the transfer methodology introduced in
chapter 4 showed how this same architecture can be used to transfer learned policies between
domains, across sizable sim-to-sim gaps and from simulation to reality.

However, the DVAE-SAC method can struggle to find satisfactory solutions in tasks
where it is challenging to extract from visual observations the information relevant to the
system’s dynamics. Also, the transfer strategy proposed in the previous chapter in practice
heavily relies on the presence of shaped rewards. Defining informative shaped rewards can
be non-trivial for complex tasks, and computing such rewards in the real can require the
development of complex perception systems, introducing considerable engineering work.

This chapter will extend the architecture to overcome these limitations. Section 5.1
discusses how predicting multi-step trajectories instead of simply generating observations
one timestep into the future can greatly improve the method’s stability and performance,
especially in highly dynamical tasks. Then, section 5.3 will explore how domain transfer
can be improved by introducing an explicit consistency loss to keep the target-domain latent
representation similar to the one trained in the source domain. Experimental results will
show how this improvement greatly enhances adaptation speed and permits to surpass sizable
domain transfer gaps even with scarcely informative almost-sparse rewards.

Section 5.2 instead explores how DVAE-SAC can scale to solve complex tasks. The focus
will be especially on tasks that present hard exploration challenges, as these are the ones
where reinforcement learning can display its most interesting and distinctive capabilities. To
explore this kind of tasks with the DVAE-SAC architecture, I will focus on extensions of
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the object-pushing task. It will be shown how the method can solve the pushing task even
when using sparse rewards, or rewards that are not fully informative of the task. Also, the
performance of the method on a more complex pushing task is explored, a "gate" will be
introduced in the center of the manipulation area, which the robot must learn to open before
successfully bringing the cube to the destination. We will see how the agent can learn to
solve this task if provided enough data, even without explicitly rewarding the interaction
with the gate.

5.1 Improving Performance: Trajectory Prediction

The intuition behind the introduction of the dynamics predictor of the DVAE-SAC architecture
in chapter 3 was that its presence would push the autoencoder architecture toward including
in the latent representations the features that are necessary for dynamics prediction. Such
features may not be clearly visible in the image observations and may not have a strong
impact in image reconstruction by itself. However reconstructing the next observation instead
of the current one can make the impact of such features bigger on the reconstruction error,
thus pushing the encoder into including these features in the latent vectors. This idea proved
to be correct, as moving from simple observation construction to observation prediction
provably improves performance. However, predicting just one observation into the future may
not always be enough to generate a strong learning signal toward representing these features.
For example, in the case of slowly moving objects the difference between reconstructing
the current frame or the subsequent one may be negligible. This can have an impact on the
quality of the learned representation, degrading the overall performance of the agent.

To strengthen this weakness the architecture can be extended to predict over multiple
steps. To do so, the dynamics predictor can be used recursively to produce latent trajectories,
and from these latent trajectories it is possible to predict full observation trajectories. To train
this architecture optimization will be performed at the same time for observation and latent
prediction. The details of the implementation are covered in the next section.

As we will see soon, this proves to greatly improve the performance of the method,
increasing stability, asymptotic performance and sample efficiency when compared to 1-step
prediction. Even allowing to solve tasks for which the previous methodology failed, such as
for example the cartpole-swingup scenario. The next section will discuss the implementation
of this new architecture, while section 5.1.2 will present the experimental results achieved
with this new implementation.
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5.1.1 Implementation

As in the previous chapters the DVAE architecture is composed of three components:

• The encoder network eθ : O → Z, which extracts latent states zt from the input
observations ot

• The latent dynamics predictor fθ : (Z×A)→ (Z×R), which predicts latent states
zt+1 and rewards rt from latent states zt and actions at

• The decoder network dθ :Z→ O, which can reconstruct predicted observations ôt+1

from latent states zt+1

This basic structure of the architecture is maintained also when performing multi-step
trajectory prediction. However, the way the architecture is used during training is considerably
different. To predict trajectories the dynamics predictor fθ can be used recursively to generate
latent trajectories {z̃t , ẑt+1, ẑt+2, ..., ẑt+T}, where we indicate with ẑi the predicted latent
vectors, and with z̃i the latent vectors obtained by directly encoding observations as eθ (oi).
To recursively generate predicted trajectories with the 1-step dynamics predictor we only
need an initial latent vector zt and a sequence of actions at...t+T−1:

ẑt+1 ≈ fθ (z̃t ,at)

ẑt+2 ≈ fθ (ẑt+1,at+1)

...

ẑt+T ≈ fθ (ẑt+T−1,at+T−1)

(5.1)

In order to appropriately train the architecture we employ three separate losses: an
observation prediction loss, a latent prediction loss and a reward prediction loss. The
observation prediction loss is based on a mean square error loss applied between predicted
and ground truth observation trajectories. The latent prediction loss is based on a mean
square error loss between the recursively predicted latent trajectories and the latent trajectories
obtained by encoding ground truth observation trajectories. The reward prediction loss is
based on the mean square error between predicted and ground truth rewards. Formally, these
losses are defined as follows:



5.1 Improving Performance: Trajectory Prediction 66

Lobs(θ ;o0...T ,a0...T ,r0...T ) =
T−1

∑
i=0

αobs,i||ôi −oi||22

Lrew(θ ;o0...T ,a0...T ,r0...T ) =
T−1

∑
i=0

αrew,i||r̂i − ri||22

Llat(θ ;o0...T ,a0...T ,r0...T ) =
T−1

∑
i=1

αlat,i||ẑi − z̃i||22

With:

ô j = dθ (ẑ j) for all j

z̃ j = eθ (o j) for all j

ẑ j+1, r̂ j+1 = fθ (z j,a j)

αobs,i,αrew,i,αlat,i being hyperparameters

o0...T ,a0...T ,r0...T being ground truth observations, actions and rewards

(5.2)

The overall loss of the architecture combines the new latent, observation and reward
losses with the KL-divergence loss of the variational formulation, that is only applied to the
initial latent vector z̃t .

LDVAEt (θ ;o0...T ,a0...T ,r0...T ) =λklDKL(eθ (z̃t |ot)||N (000, Ik))+

λrewLrew(θ ;o0...T ,a0...T ,r0...T )+

λobsLobs(θ ;o0...T ,a0...T ,r0...T )+

λlatLlat(θ ;o0...T ,a0...T ,r0...T )

(5.3)

This formulation introduces several hyperparameters. The λobs, λlat and λrew coefficients
control the importance given respectively to the reconstructions, the latent prediction and to
the reward prediction, while the αobs,i, αlat,i and αrew,i weights can be used to balance the
importance of predictions farther into the future or closer in time. In practice, the predictions
farther into the future are generally inherently harder to approximate, thus it may be needed
to reduce their weight, however it is also desirable for the architecture to not fully concentrate
on the first reconstruction ô0, which does not use the dynamics predictor. Throughout the
experimentation the α·,t weights for steps t > 0 were set according to a discount factor:
α·,t = γ t−1. The factor for step zero, for which no prediction is performed, was kept at a
lower value (e.g. 0.2 or 0.1).
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Figure 5.1 Multistep DVAE-SAC architecture in the case of 1-step trajectories. The ot
and ot+1 observations are encoded by the same encoder eθ into the latent vectors z̃t and
z̃t+1, the dynamics predictor fξ predicts the latent vector ẑt+1 and the reward rt from the
encoded latent vector z̃t and the action a. The latent vectors z̃t and ẑt+1 are the decoded in
the reconstructed observations ôt and ôt+1.

While the original DVAE architecture was trained on single transitions (ot ,at ,ot+1,rt),
this new iteration of the architecture is trained on observation-action-reward trajectories. The
computation of each loss sample requires the use of a trajectory of observations, coupled
with the corresponding action trajectory and the resulting rewards.

Like before, this experience data can be collected online and stored in a buffer, from
which the trajectories can be sampled to optimize via stochastic gradient descent. As the
computation of each sample of the loss sample requires the computation of multiple encoded
zi vectors and decoded oi observations, encoder and decoder are re-utilized multiple times
during each forward step.

Figure 5.1 shows a representation of the architecture in the case of a 1-step trajectory.
Already in the 1-step case the use of the architecture has changed with respect to chapter
3. Previously, the decoder was only used on zt+1 and the encoder was only used on ot ,
now instead the decoder is also applied to the latent vector zt to produce the reconstructed
observation ôt , and the encoder is also used on the observation ot+1 to produce the latent
vector z̃t+1. The reconstructed observation ôt is used together with the predicted observation
ôt+1 to compute the reconstruction loss Lobs, while the predicted latent vectors ẑt+1 and
z̃t+1 are used to compute the latent loss Llat . The reconstruction of ot and the encoding of
ot+1, which were not performed before, push zt and zt+1 into using the same representation,
as the two vectors now have to be compatible with the same encoder and decoder pair. In
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Figure 5.2 DVAE architecture unrolled over a 3-step trajectory. The first observation and the
action trajectory are used to produce the latent trajectory and the corresponding predicted
observations and rewards. The ground truth observation trajectory is used to compute the
reference latent trajectory for the latent loss computation.

the previous implementation of the architecture the latent representation at the output of
the encoder and at the input of the decoder could have been completely different, nothing
constrained them to be compatible. Using the same latent representation in the input and
output of the dynamics predictor is a first necessary step toward being able to use the dynamic
network recursively to predict trajectories. If the representation used in the input and out of
the dynamics predictor was same, it could already be expected that the dynamics predictor
would perform adequately when used recursively to predict trajectories, even if trained just
on 1-step transitions, however this is not true in practice and training over trajectories of
multiple is necessary to obtain good prediction over longer horizons. The number of steps
used for the training can be considered an hyperparameter, and decided depending on the
characteristics of the task. Algorithm 6 presents the proposed training procedure.

Figure 5.2 shows the architecture unrolled over a 3-step trajectory. The observation ot

and the action trajectory {at ,at+1,at+2} are given as input, as output we obtain the latent
trajectory {z̃t , ẑt+1, ẑt+2, ẑt+3}, the reconstructed observations {ôt , ôt+1, ôt+2, ôt+3}, and the
predicted rewards {r̃t , r̂t+1, r̂t+2}. The full observation trajectory {ot+1,ot+2,ot+3} is used
to produce the reference latent trajectory {z̃t+1, z̃t+2, z̃t+3}, which is only used to compute
the latent loss Llat .

5.1.2 Experiments

The impact of the multi-step dynamics prediction on the performance of the overall agent
was quantified on selected tasks from the DeepMind Control Suite. We evaluate on the
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Algorithm 6 DVAE-SAC Multi-Step Training
Inputs:
N: number of training episodes
M: number of episodes collected for each training iteration
T : trajectory length used for dynamics training
KDVAE : number of DVAE gradient steps per episode
KSAC: number of SAC training steps per episode

1: Let πφ be a Soft Actor-Critic policy parameterized by φ

2: Let θ be the parameters for the DVAE encoder eθ , decoder dθ , and dynamics predictor
fθ

3: Randomly initialize θ and φ

4: for N episodes do
5: Collect M episodes into a dataset D according to policy πφ

6: for KDVAE gradient steps do
7: Sample from D one batch B of trajectories (a0...T ,o0...T ,r0...T )
8: g = ∇LDVAEt (θ ;B)
9: θ = ADAM(θ ,g)

10: for KSAC gradient steps do
11: Sample from D one batch B of tuples (ot ,at ,rt ,ot+1)
12: Be = {(eθ (ot),at ,rt ,eθ (ot+1)) for all (ot ,at ,rt ,ot+1) in B}
13: φ = SAC_UPDAT E(φ ,Be)

Figure 5.3 Multi-step training procedure for DVAE-SAC. DVAE weights are updated with
ADAM Kingma and Ba (2015) and the policy is trained with SAC_UPDATE as defined in
Haarnoja et al. (2018b).

cartpole-balance, cartpole-swingup and cheetah-run environments as in chapter 3. We use
these three setups as benchmark as they each present different challenges.

The cartpole-balance task is the simplest of the three, but even in its simplicity extracting
dynamics-relevant features from its visual observations can be challenging. The task consists
of balancing a pole on a moving cart, consequently the evolution of the dynamics is heavily
sensitive to small changes in the velocity and position of the two bodies. This scenario
uses frame-stacked image observations, so it possible to infer the velocities of the bodies
directly from an image, however they can only be discerned from small details in the image
observations. As long as the pole is upright it is relatively easy to maintain the balance, but
once this equilibrium is broken it is not trivial to recover. To successfully solve the task it is
necessary for the agent to obtain a good estimation of the velocities of cart and pole. In the
plots in figure 5.4 it is possible to see the performance of the agent in the case in which no
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Figure 5.4 Episode return progress during training of the cartpole-balance task. The three
curve show the performance for the no-prediction VAE-SAC, for the 1-step prediction DVAE-
SAC and for the 5-step prediction DVAE-SAC. Each curve displays the average performance
over a 100-episode window and 8 separate runs with different random seeds.

dynamics prediction is used, in the case in which 1-step prediction is performed and in the
case of multi-step prediction. In this latter case the dynamics prediction was performed on
trajectories of 5 steps. Episodes are 10 seconds long, with a control rate of 25Hz, a reward of
1000 is equivalent to the pole being upright for the whole episode duration.

The swing-up task presents the same difficulties we have just discussed for the carpole-
swingup, but it starts from a non-balanced position. Consequently the agent cannot learn to
just balance the pole, it has to learn to swing it up. This requires even more precise inference
of the cart and pole velocities, as the pole must be accelerated and then stopped precisely at
the upright position. The versions of the architecture that do not use the dynamics or only
use 1-step prediction fail at solving this task. From observing the policy behaviour it was
possible to see how they converged on a local minima, a simpler policy that continuously
rotated the pole around, achieving a reward higher than random, but not actually balancing
the pole. Only considerably reducing the control frequency considerably below the chosen
default of 12.5Hz allows these policies to succeed, although in a considerably brittle fashion
and only after long training times. An explanation for this is that lower control frequency
result in greater differences between the frames of the frame-stacked observations, permitting
an easier inference of the velocities. The multi-step architecture instead succeeds at bringing
the pole upright and balancing it at a 12.5Hz control frequency. Like in the balancing task,
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Figure 5.5 Achieved episode return during training of the swing-up task. The three curve
show the performance for the no-prediction VAE-SAC, for the 1-step prediction DVAE-SAC
and for the 5-step prediction DVAE-SAC. Each curve displays the average performance over
a 100-episode window and 8 separate runs with different random seeds.

Figure 5.6 Frames depicting the behaviour of a policy successfully trained on the swing-up
task. Each pair of images shows the input observation on the left and the 1-step observation
prediction on the right. This specific sequence is from the training of a 5-step prediction
DVAE-SAC policy.

trajectories of 5 steps were used for the model training. Figure 5.5 presents a comparison
of the performance of the three methods, in figure 5.6 we can instead see an example of the
trained policy.

The last task that was examined is the cheetah task. The cheetah task is the most complex
of the three Deepmind Control Suite tasks taken for analysis. The dynamics of the task are
considerably more complex, as contact dynamics are involved in the robot-ground interaction,
and in addition to this the degrees of freedom and the action dimensionality are increased.
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(a) Average performance achieved with no dynamics, 1-step dynamics and multis-sep dynamics (5
steps).
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(b) 1-step prediction
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(c) 5-step prediction

Figure 5.7 Cheetah trainings with 1-step and 5-step prediction, seed are shown individually.

The robot is controlled on 6 joints via torque, and in addition to these degrees of freedom,
the observation model must also infer for the 2D position and velocity of the robot. From
the plot in figure 5.7a, we can see how, in the case of the cheetah the multistep prediction
does not seem to bring a clear advantage. Average performance across runs is actually worse
than the 1-step case, however, in figure 5.7b and 5.7c it is possible to see how in some
cases the multi-step architecture actually manages to match and surpass the 1-step dynamics
performance, but it often fails to learn the task and stops in a local minimum. Qualitatively
observing the agent behaviour this local minimum it can be seen that it corresponds to the
robot hopping forward instead of running.

A qualitative evaluation of the dynamics prediction can also be made from observing the
predicted observation trajectories. Figure 5.8 presents a 10-step predicted trajectory from the
fully trained cheetah task. We can observe how the predicted observations remain consistent
with the ground truth for a several steps before degrading. In the case shown in the figure the



5.1 Improving Performance: Trajectory Prediction 73

architecture was trained over 5-step trajectories, but we can see how the predictions remain
consistent up to 8-9 steps in the future.

Figure 5.8 Observation trajectory prediction in the cheetah task. The first row of images
displays a ground truth observation trajectory, the second row presents the observation
trajectory predicted by the DVAE-SAC architecture using the first observation image and
the sequence of actions. The model used to produce this output was trained over 5-step
trajectories.
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5.2 Solving Difficult Tasks

Before focusing on how to perform domain transfer of policies for complex tasks, this section
focuses on how to train these tasks in the source domain in the first place.

The first objective is to train the DVAE-SAC agent without the use of a shaped reward, but
only using a sparse or almost-sparse reward. A sparse reward is a reward that only rewards
the accomplishment of a task goal, for example in the case of the object pushing a sparse
reward could be a function which is always zero except when the cube is within the goal
position tolerance.

r(pc, pg) =

1 if ||pc − pg|| ≤ d

0 otherwise

With pc and pg being respectively the cube position and the goal position,

and d being the goal tolerance distance

(5.4)

By almost-sparse reward I refer to rewards that are not strongly shaped to guide the agent
into how to solve the task, but are still not strictly sparse. In the case of the object pushing
task an almost-sparse reward is for example a reward only based on the distance between
cube and goal. The following reward function for example gives a value of 100 when the
cube is exactly at the goal and decreases linearly as the cube gets further.

r(pc, pg) = 100
1−||pc − pg||

1

With pc and pg being respectively the cube position and the goal position

(5.5)

Supporting the use of sparse rewards is an important requirement as they are an extremely
general and simple paradigm for expressing task objectives. The use of sparse rewards
completely avoids the reward-tuning process, which can be a laborious undertaking when
tasks are complex. The use of shaped reward also relies on knowledge of the rewarded
features, which in general cannot be assumed and may require the implementation of specific
sensing systems.

However, sparse reward are inherently harder to learn from, the agent has to discover the
rewarding states and is not guided in the behaviours it has to employ, this by itself constitutes a
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difficult exploration problem. The next two sections will discuss the two different approaches
that were employed to tackle this problem with the DVAE-SAC architecture, the use of
parallelized simulation, and the use of intrinsic rewards. The effectiveness of this approach
will be evaluated on the object-pushing task already used in chapter 4. Section 5.2.3 discusses
the use of the DVAE-SAC method to solve even more complex exploration problems, taking
as an example an extension of the object pushing task in which the robot must move an
obstacle before bringing the cube to the goal.

5.2.1 More Experience Data

The most immediate and simple way to improve exploration and solve sparse reward tasks
is to use larger amounts of data and greater batch sizes in the learning of the RL policy.
Intuitively the use of larger batches smoothes the highly irregular loss landscape induced by
the sparse reward, allowing for the value and policy networks to properly converge. This is
an effective approach, in particular in the case of "exploring starts", in which the initial states
of the episodes already give good coverage of the state space. This because if rewarding
states cannot be reached with random exploration from the episode starts then the agent will
have no learning signal to follow, as it will always ever see zero returns.

In the case of the almost-sparse and strictly-sparse rewards this proved to be an effective
approach for the object pushing task. To effectively collect data for the task a new simulated
implementation of the task was developed. This new scenario was implemented using the
PyBullet simulator and removing the ROS-based robotics pipeline used in chapter 4, only
maintaining the end effector attached to a 2-DOF position-based actuation. This allowed
to effectively parallelize the simulation, exploiting high core-counts CPUs it was possible
to simulate either up to 64 environments simultaneously. The availability of these amounts
of data allowed the use of big batch sizes, in my experiments batch sizes of 128 samples
showed to already be sufficient to solve the task, but higher batch sizes improve stability and
reduce training time, a batch size of 4096 showed to be a good compromise between stability,
training speed, memory usage and computational load.

The use of a decoupled architecure such as DVAE-SAC proved to be particularly suited
for solving visual tasks that require big batch sizes. The use of large batches is only needed
for the training of the SAC policy. The vision section of the network, which accounts for the
greater part of the parameters, is not optimized with large batches, considerably reducing
memory requirements.
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(a) Almost-sparse task
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(b) Strictly-sparse task

Figure 5.9 Training progress with different batch sizes for the almost-sparse and strictly-
sparse reward cases.

In figures 5.9a and 5.9b it is possible to see the learning curves for the sparse and
almost-sparse case, with different batch sizes.

Using this approach it was possible to train solving policies in less than 3 hours of
real-world time, while collecting approximately 5 days of experience data in simulation.
The training also proved to be more reliable and stable than for the non-parallelized shaped-
reward task of chapter 4. Figure 5.10 shows a representation of the policy performance as
the training progresses.

Figure 5.10 Policy behaviour evolution during training. The green circle and the red rectangle
indicate respectively the goal area and the manipulation area. Green dots and red dots indicate
respectively the initial positions of successful and failed cube trajectories. Blue dots indicate
final cube positions. White lines indicate successful trajectories and red lines indicate failed
trajectories. Each image shows 500 trajectories collected during training, each image covers
50 epochs, where at epoch 32 episodes are collected parallely.
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5.2.2 Using Intrinsic Rewards

An alternative approach to solving the sparse reward problem is to introduce intrinsic rewards.
Intrinsic rewards are rewards formulated to encourage exploration in a task agnostic manner.
With a well-formulated intrinsic reward an agent could ideally learn to explore and cover the
state-space of a problem without receiving any task-specific reward signal. To incentivize
exploration of the state space an intrinsic reward function has to give greater rewards to states
that have been seen less and smaller rewards to states that the agent has already encountered.

In problems with small and discrete state spaces this can achieved by counting how many
times the agent visits a specific state. In continuous non-tabular setting this concept can
be extended with pseudo-count formulation (Bellemare et al., 2016). However count and
pseudo-count approaches are difficult to scale to complex tasks that require large amounts
of experience. Alternative approaches use the generalization error of learned models as an
estimator of state novelty. The work of Stadie et al. (2015), used the prediction error of a
learned dynamics model to derive an indicator of the novelty states. As the agent visits a state-
space neighbourhood more often, the dynamics model becomes more accurate in this region
and its error decreases, consequently, states with low modeling error can be expected to not
be novel, states with high modeling error can be assumed to be novel and are consequently
rewarded. Burda et al. (2018) took this intuition forward realizing that the same logic could
be applied to any model learned using states as inputs. Random Network Distillation (RND)
was defined following this intuition, using the prediction error of a network trained to distill
a static secondary randomly-initialized network.
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Figure 5.11 Success rate achieved during training using RND intrinsic exploration. The
plot averages the success along a 200-episode window and across three runs with different
random seeds. The shaded area represents a 95% confidence interval on the mean.
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RND is an extremely simple and reportedly effective method to generate intrinsic rewards.
As such it was combined with the DVAE-SAC architecture by applying it to the learned latent
state representation. This showed to be very effective, allowing to solve the almost-sparse
reward task without using huge amounts of data and a single environment. The combination
of RND with the simulation parallelization approach of section 5.2.1 showed to improve
performance and stability.

Figure 5.11 presents the learning curve for the training of the object-pushing task with
RND intrinsic exploration, with a single training environment.

5.2.3 Training Difficult Exploration Tasks

To further explore the capabilities of the DVAE-SAC method when learning from scratch
the method was evaluated on a complex exploration problem. The object pushing task was
extended to include a "gate" in the manipulation area, an obstacle that the agent has to move
to successfully push the cube to the goal. In practice this was implemented by placing
rectangular box at the center of the manipulation area, connected to a prismatic link allowing
it to slide left an right. With this configuration the manipulation area results to be divided in
two parts by the gate, which can allow passage or not depending on its position. To handles
were placed on the gate to allow the robot end effector to push it. As in the previous scenario,
cube and end-effector initial positions are chosen randomly, as such at the beginning of the
episode they an each be on either side of the gate. Figure 5.12 displays a frame sequence
of the robot successfully opening the gate and pushing the cube to the goal. The reward
function for this task was kept unaltered from the simpler object-pushing task of previous
sections, no explicit reward for the gate opening was introduced.

Figure 5.12 Frame sequence depicting a DVAE-SAC trained policy successfully opening the
gate and bringing the cube to the goal.

This task is particularly complex from an exploration point of view, as the agent must
learn to perform a complex interaction with the environment, which is not directly rewarded.
The agent must explore the environment, learn that it has to push the cube, learn that it must
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Figure 5.13 Success rate achieved during training on the gate task, average performance
of three different trainings. Each epoch corresponds to the collection of 32 episodes of 100
steps. The plot averages the success along a 100-episode window, the shaded area represents
a 95% confidence interval on the mean.

push it toward the goal, then it must learn that it can push the gate and that this allows to
bring the cube toward the goal even if it is on the wrong side of the manipulation area. All
this while using image observations.

The DVAE-SAC architecture proved to be capable of solving this problem by parallelizing
experience collection and using RND intrinsic rewards. Figure 5.13 shows the training
performance achieved using RND, batches of 2048 samples for the SAC policy training and
32 parallel environments. Figure 5.14, gives a qualitative idea of the policy behaviour by
showing sampled cube trajectories occurred during training.
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Figure 5.14 Policy behaviour evolution during training of the gate task. Each image displays
500 trajectories collected while training. The color scheme is the same as in figure 5.10.



5.3 Explicitly Constraining Decoupled Transfer 81

5.3 Explicitly Constraining Decoupled Transfer

As mentioned in the introduction to this chapter, the approach to domain transfer proposed in
chapter 4, while effective, relied on the presence of shaped rewards to maintain consistency
in the latent representation and thus successfully performing domain transfer. This section
proposes an approach for overcoming this limitation, making the methodology more general,
and opening to the possibility of applying the proposed architecture to more varied tasks.
The core idea of this methodology is to push the latent representation to be similar between
target and source domain by using the source-domain DVAE model as a constrain during
target domain training, in a similar fashion to cycle-consistency losses used in generative
models (Zhu et al., 2017). As we will see, combining this approach with the latent prediction
constraining of chapter 4 showed to be extremely effective. It allowed the architecture to
transfer without the use of shaped reward, while at the same time considerably improving
transfer sample efficiency and stability.

The next section presents the formulation and detail the implementation of this new
methodology, while section 5.3.2 presents new experimental results.

5.3.1 Consistency Losses

As we discussed in the 4 chapter, the decoupled nature of the DVAE-SAC architecture allows
to fully separate the section of the agent dedicated to interpreting observations, the latent
extractor, from the section dedicated to selecting actions, the control policy. This permits
to perform domain transfer of these two parts separately, potentially reducing considerably
the real-world data required to deploy the agent in the real. For example, by performing the
transfer adapting the latent extractor but keeping the control policy unchanged.

The difficulty when performing decoupled domain transfer is to maintain the compatibility
between the representation produced by the latent extractor and control policy. If the
representation produced by the latent extractor changes, the control policy will inevitably
fail, as its input is not anymore in the form it had during training.

The methodology proposed in chapter 4 took as an hypothesis that the dynamics would
not change much between the domains, and, relying on this fact, the dynamics were used
as a constrain on the latent representation. In practice however, this formulation turns out
to heavily rely on the presence of a shaped reward, strongly dependant on the important
features of the state space. The presence of a strongly shaped reward, which does not
change between target and source domain, acts as a supervision when performing transfer,
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connecting matching states between the two domains. Once this supervision is removed
by using a sparse or almost-sparse reward, the methodology of chapter 4 cannot correctly
adapt anymore. In the case of the object-pushing task taken in consideration in chapter 4 this
hypothesis was verified, as the reward depended on the cube and the end-effector positions,
the two most important features of the state space. However, in the general case this may not
be true.

To overcome this limit, and strengthen the general domain transfer capabilities of the
method, the target domain latent representation can be more explicitly constrained toward
being consistent with the one of the source domain. This can be accomplished by combining
the source-domain and target-domain latent extractors to perform a conversion of observations
between domains. On an intuitive level, this approach is based on the fact that, in the ideal
case in which the two latent extractors for the two domains were to use the same latent
representation, it would be possible to encode latent target-domain observations into latent
vectors and decode these latent vectors into source domain observations using the source-
domain decoder. By using target and source decoder and encoder in the opposite way it
would also be possible to convert source-domain observation to the target domain. Formally
this can be expressed as follows:

ot = d∗
θt
(e∗θs

(os))≜ c∗s→t(os)

os = d∗
θs
(e∗θt

(ot))≜ c∗t→s(ot)
(5.6)

With ot and os being respectively corresponding target-domain and source-domain ob-
servations, d∗

θt
, e∗

θt
, d∗

θs
, e∗

θs
being respectively ideal decoder/encoder pairs in the target and

source domains, and c∗s→t and c∗t→s being newly defined conversion functions.
From this formulation we can see that, under these conditions, the composition c∗s→t ◦c∗t→s

of the conversion expressions should be an identity, as we are cycling back to the same
observation domain. This fact can be used as a constrain on the latent space.

Following this reasoning we introduce a cycle consistency loss in the target domain
training, reconstructing observations through the cθ ,s→t ◦ cθ ,t→s network 1. In practice we
want to train the target domain DVAE to match an already-trained source domain model. To
do so, the weights of the source-domain DVAE can be frozen, so that the source-domain
model parameters θs do not change, and consequently eθs and dθs remain fixed while the

1The conversion networks cθ ,s→t ◦ cθ ,t→s are indicated for brevity as being parameterized by θ . In actuality,
to be more precise, they are both parameterized by θt and θs, the parameters respectively of the target-domain
and source-domain DVAE architectures.
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target domain architecture uses them. Considering a single target-domain observation sample
o we can formally express this loss, which we refer to as the target reconstruction consistency

loss, as follows:

Lcons,rec,trg(θt ;o) = MSE
(
o,cθ ,s→t(cθ ,t→s(o)

)
= MSE (o,dθt (eθs(dθs(eθt (o)))))

(5.7)

In practice, this has been used in conjunction with the multi-step architecture from section
5.1.1. As such, for every training sample this target reconstruction consistency loss has been
applied to all the observations along the trajectory, resulting, in the case of trajectory of
length T, in a per-sample loss defined as:

Lcons,rec,trg(θt ;o0..T−1) =
1
T

T−1

∑
i=0

MSE
(
oi,cθ ,s→t(cθ ,t→s(oi)

)
(5.8)

This is the core idea of this adaptation method, however, using only this loss to constrain
the latent space lets the target-domain latent extractor free to choose a latent representation
that does not use the source-domain decoder and encoder appropriately. It could converge
into using latent vectors that are outside of the distribution the source-domain decoder has
been trained on, and is thus capable of decoding appropriately. This would result in the

Figure 5.15 Graphical representation of the application of the consistency losses on the
source and target domain encoder/decoder pairs.
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source-domain decoder producing incorrect and uninformative converted observations, and
consequently failing to provide a useful training signal. To prevent this, two additional losses
can be introduced. The first, which we refer to as the latent consistency loss is aimed at
maintaining the composition of source-domain decoder end encoder dθs ◦ eθs close to the
identity function for the vectors in the latent distribution. In practice this mean that source-
domain observations produced from target-domain latent vectors should be re-encoded to the
same latent vector when using the source-domain encoder. The second one, named the source

reconstruction consistency loss, aims instead at maintaining the composition eθs ◦dθs close to
an identity, which in practice means that observations converted from target to source domain
should still be reconstructed properly when they go through the source-domain autoencoder
pipeline. The two losses are also applied to observation trajectories, and can be expressed
formally as follows:

Lcons,rec,src(θt ;o0..T−1) =
1
T

T−1

∑
i=0

MSE
(
cθ ,t→s(oi),dθs

(
eθs

(
cθ ,t→s(oi)

)))
Lcons,lat(θt ;o0..T−1) =

1
T

T−1

∑
i=0

MSE
(
eθt (oi),eθs

(
cθ ,t→s(oi)

)) (5.9)

In figure 5.15 it is possible to see a graphical representation of the architecture indicating
how the consistency losses are applied. One final detail that was found to be important is that
to maintain an equivalence between source and target domain trainings, it is useful to apply
the consistency losses also during the source domain. Using the source-domain model itself
as the imitated architecture, enforcing consistency of the model with itself. This showed to
be an important detail for the effectiveness of the method.

5.3.2 Experiments

The architecture was evaluated on the robotic object pushing task already used in chapter 4.
The analysis concentrated on the almost-sparse reward case, in which the reward depends
only on the distance between the cube and the goal. The reward was defined as follows:

r(pc, pg) = 100
0.5−||pc − pg||

0.5

With pc and pg being respectively the cube position and the goal position

(5.10)
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The source training were performed on the simplified PyBullet scenario introduced in
section 5.2, parallelizing the experience collection with 32 concurrent simulations. With this
setup it was possible to train the image-based almost-sparse reward task to a 100% success
rate in just under 3 hours.

Using this source training setup the domain transfer was evaluated targeting a series
of scenarios implemented in PyBullet, Gazebo and constructed in the real. Two sets of
tasks were defined for each scenario, the first being a minimal-gap case, in which the target
characteristics are kept as similar as possible to the source domain, the second instead
introducing camera pose changes equivalent to the medium-gap tasks of chapter 4, with the
camera point of view rotating of about 25 degrees.

In all the scenarios the method was used by training on multi-step trajectories of a variable
length sampled between 1 and 10 at each iteration, using 64x64 pixel grayscale images and
transferring by using the consistency losses while also freezing the dynamics prediction
network as was done in chapter 4. The combined use of consistency losses and dynamics
freezing proved to be crucial for successful transfer.

In figure 5.16 it is possible to see how the use of the consistency losses results in fast and
stable transfer even across difficult scenarios. The most simple transfers are solved in about
70 episodes, while the harder ones achieve good performance in about 150. When looking at
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Figure 5.16 Sim-to-sim and sim-to-real transfer success rate progression. Each of the sim-to-
sim plots is constructed from data collected with 4 different random seeds, the real-world
plots use 5 random seeds each. Averages are computed across the different seeds and on
10-episode windows.
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these results it is important to highlight that training actually starts at 50 episodes, after an
initial period of random data collection.

Overall, even if tackling a harder setting than in chapter 4, the new domain transfer
method shows to be faster and more stable, achieving better asymptotic performance. The
real-world transfers with the old approach required more than 1000 episodes to complete,
while now they can be performed in just over 100. While the experimental setup it is not
directly comparable, also in the sim-to-sim transfers the performance is vastly improved (see
figure 4.9).

To complement the quantitative analysis, figure 5.17 provides also a qualitative outlook
on the observation matching across domains, and on the kind of transfers that were performed.
From these images it is possible to see how, even in the presence of strong alterations in the
appearance of the observations the architecture is capable of converting the images between
one domain and the other, reflecting a correct alignment between the latent spaces of target
and source domain models.

5.4 Conclusions

In this chapter I presented a series of enhancements to the methods proposed in chapters 3
and 4.

The first part of the chapter extended the DVAE architecture to predict observations along
trajectories of multiple steps, instead of just predicting only one step forward. This reinforces
on the intuition that the better policy learning performance that results from the inclusion
of the dynamics predictor in the DVAE architecture comes from the necessity of includ-
ing dynamics-relevant features in the latent vectors for effectively predicting observations.
Predicting multiple steps forward requires a greater precision and, even more importantly,
it permits the dynamics predictor to model evolutions in the observations that may not be
clearly observable in 1-step transitions, such as for example low-velocity movements. This
multi-step extension of the method is a superset of the methodology of chapter 3, as the
old architecture can be recovered using 1-step trajectories and appropriately choosing loss
weights. The multi-step architecture showed to be capable of learning policies for tasks that
the original method could not solve, such as the cartpole-swingup task.

In section 5.2 I explored the capabilities of DVAE-SAC on difficult tasks, evaluating the
method on sparse and almost-sparse reward versions of the object-pushing task of chapter
4, and on a difficult exploration task, in which the agent must learn to open a "gate" before
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(a) PyBullet to PyBullet - Medium Gap

(b) PyBullet to Gazebo - Minimal Gap

(c) PyBullet to Gazebo - Medium Gap

(d) PyBullet to Real - Minimal Gap

(e) PyBullet to Real - Medium Gap

Figure 5.17 Sim-to-sim and sim-to-real frame conversion. In each figure the first row
presents 5 randomly sampled target observations, the second row presents the conversion of
each frame to the source domain via the DVAE architecture.
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pushing the object to its target location. This last task is particularly complex, as the opening
of the gate is not explicitly rewarded. The method proved to be able to solve all of these tasks
if given enough data, and using intrinsic rewards, showing how the method can potentially
scale to increasingly complex tasks.

Lastly, section 5.3 proposes a novel domain transfer approach for the DVAE architecture.
This new strategy combines the encoder and decoder sections of the source-domain and
target-domain models to convert observations between domain. Using this conversion
method, cycle-consistency losses are imposed during the training to maintain compatibility
in the latent space. The methodology is evaluated on sim-to-sim and sim-to-real transfers
of the almost-sparse reward object-pushing task, showing greatly increased performance
in comparison to the approach of chapter 4. The transfer performance is improved in both
sample efficiency and asymptotic performance, succeeding at adapting through sim-to-sim
and sim-to real tasks with just 2-3 hours of target experience data, while the source training
required almost three days of simulated experience.



Chapter 6

Conclusions

Throughout this thesis’ work I explored how Deep Reinforcement Learning methods can
be utilized and adapted to serve robotics applications. The motivation for pursuing this
direction came from the potential that reinforcement learning techniques have in robotics
applications. In the years prior to the start of this thesis work, RL had shown to potentially
have the capability of solving an extremely wide variety of tasks, being able to tackle even
particularly complex problems in the fields of control, manipulation, and locomotion. This
generality, came together with the possibility of tackling these problems end-to-end, directly
using raw sensory inputs, such as images, to control robot hardware at a low level. These
characteristics make RL an extremely promising tool for robotics. Having a reliable generic
method for solving a wide variety of tasks, without the need of extensive engineering work
for the definition of system models and perceptual pipelines, would allow to build robotics
solutions much more easily and rapidly than current tools allow.

The issue with RL methods however is that they generally require vast amounts of data
to be trained, and collecting data for real-world robotics tasks is difficult and expensive.
Data requirements become too large, collection can become impractical, if not impossible.
Furthermore Solving vision-based tasks, which are particularly interesting in robotics due to
their generality, is especially data intensive with RL.

The goal of this thesis work was thus to explore and identify methods for reducing the
amount of real-world data required for solving robotics tasks with reinforcement learning.
This exploration followed two directions: the use of decoupled RL architectures to enhance
visual-RL sample efficiency, and the adoption of sim-to-real techniques to reduce the use of
real-world data.
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Chapter 3 followed the first of these two directions and introduced the DVAE-SAC
architecture. In DVAE-SAC I combined a Soft Actor-Critic agent with a representation
learned based on a variational formulation task with learning a state representation from
images. This representation learning approach is derived from variational autoencoders
(VAE), it learns a latent representation using the evidence lower-bound loss, utilizing an
image reconstruction error and a KL-divergence component. The novelty in this approach
was that instead of applying this methodology just to reconstruct images, it is used to predict
images one step into the future, introducing a latent dynamics predictor that uses the current
latent state and action inputs to predict future latent states. While this dynamics predictor is
not used neither for planning nor for generating synthetic data, its presence has a positive
influence on the learning performance, potentially due to the better shaping of the latent state
representation, which must contain dynamics-relevant features to be able to predict future
observations. It was shown experimentally how this is true and how it results in better sample
efficiency and asymptotic performance.

This approach was then improved in chapter 5, by using the dynamics predictor to predict
multi-step trajectories. Predicting longer trajectories allows to better include in the latent
representation features that may not be clearly identifiable by 1-step transitions, allowing for
better precision and the solutions of tasks where the 1-step method failed.

Also in chapter 5, the capabilities of the DVAE-SAC method were investigated by
exploring the solution of sparse reward tasks and difficult exploration problems. It was shown
how the method can solve a sparse-reward object-pushing task and even an almost-sparse
reward task in which the agent must learn to open a gate and then push a cube to a target
location.

Chapter 4 introduced the use of sim-to-real by proposing a novel strategy for transferring
across domains decoupled architectures such as DVAE-SAC. The particular architecture
of DVAE-SAC decouples the learning of the agent’s perceptual channel, which interprets
observations into a latent representation, from the learning of the control policy. The two
components are optimized concurrently, but, apart for the influence they have on their
common data distribution, the training of the two is completely independent. The proposed
method exploits this characteristic by performing the domain transfer of the two components
separately. In exploring this methodology I concentrated on the possibility of transferring
across domains by adapting the perceptual section of the agent while maintaining the control
policy unchanged. This setting has the advantage of not requiring the use of RL methods in
the target domain, however it requires the latent representation to remain consistent across
the transfer. The core and novel idea of this approach was to use the dynamics model of
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the DVAE architecture to constrain the latent state representation to remain compatible
during transfer, consequently allowing the control policy to operate correctly in the target
domain. This strategy shows how it is possible to transfer a decoupled architecture such as
DVAE-SAC without using labeled data and without using source-domain data during the
transfer. Experimentation on an object-pushing setup showed the methodology to be effective
when perfoming finetuning of the source architecture to do the transfer and tackling a task
with an informative shaped reward.

A substantial extension to this sim-to-real approach was proposed in chapter 5, introduc-
ing a novel strategy to further constrain the latent representation of the DVAE architecture
while transferring across domains. This new strategy is based on a cycle consistency ap-
proach, and explicitly constrains latent vectors from the source-domain architecture to match
those of the transferred target-domain model. Again, this is done without using any labeled
data, and no source domain data is used during the transfer. This approach proved to be
extremely effective, allowing to transfer tasks while using an almost-sparse reward with great
data efficiency and asymptotic performance. This is a considerable enhancement from the
previous approach, which relied on the presence of shaped rewards.

Overall, the contributions of this thesis work have been the following:

• The development of the DVAE-SAC architecture, from it’s simplest definition in
chapter 3 to its multi-step version of chapter 5. The architecture is shown to be capable
of learning complex visual control tasks such as those of the DeepMind Control Suite,
and even difficult exploration problems such as the gate opening an object pushing
task of section 5.2.3.

• The dynamics-based domain transfer approach of chapter 4, which uses the dynamics
predictor of the DVAE-SAC architecture to maintain the learned latent representation
during domain transfer, without using source-domain data during transfer. This method-
ology was published as a journal article in Frontiers in Robotics and AI (Rizzardo
et al., 2023)

• The cycle-consistency-based domain transfer approach presented in section 5.3, which
allows to efficiently transfer the DVAE-SAC architecture across domains without the
use of informative shaped rewards, without the use of any labeled data and without the
use of source-domain data during target-domain transfer.

I believe these contribution to be a valuable addition to the current knowledge in the use
of reinforcement learning method in robotics. While other decoupled RL methods have been
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developed in these past years (Hafner et al. (2023), Lee et al. (2020), Yarats et al. (2021),
Laskin et al. (2020)), the analysis of the performance of DVAE-SAC showed how the mere
presence of a dynamics model in a representation learning architecture is beneficial to policy
learning, and the sim-to-real approaches introduced for the same architecture showed how
simulation data can be exploited in conjunction with decoupled RL architectures.

Notably, the main contribution of this thesis, the novel sim-to-real transfer methodologies
of chapter 3 and section 5.3, showed how it is possible to transfer decoupled architectures by
adapting latent space encoders and decoders, and transferring learned latent representations,
allowing to adapt RL policies from simulation to reality without using reinforcement learning
in the real.
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