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Abstract

In this thesis, we studied deep learning based approaches to estimate different 3D properties
of an object. As a result, we proposed methods that make use of either a single image or a
single point cloud to reason about an object’s geometry.

We started from a very recent problem, 3D shape reconstruction from a single-view RGB
image. We observed that some of the existing methods work for synthetic images only and
they fail when they are executed for real images (with background). While other approaches
can extract 3D shapes from real images, however, their estimations are not smooth, sharp
and complete. By considering the background as a major limitation of the existing methods,
we proposed two solutions. The first solution (baseline solution) enables the execution of the
synthetic methods for the real dataset. The solution is based on two modules; a segmenter and
a reconstruction. The segmenter module takes a real image, segments the object of interest,
and pastes the segmented object in the center of the white image. The processed image
(which seems similar to the synthetic image) is passed to the reconstructor that estimates the
object’s 3D shape. We found that the solution has increased the performance of the existing
synthetic approaches for real images.

Since the baseline solution is based on a segmenter module, it can not be considered an
optimal solution. It is due to the fact that the reconstruction accuracy is totally dependent on
the output of the segmenter – if the object is not segmented accurately, the reconstructor will
not reconstruct the accurate 3D shape. To solve this problem, we present a second solution
that removes the requirement of the segmenter module. Instead of segmenting the object
from the image, it separates the features of the object of interest by filtering the features of
the background. The object’s features are later used to reconstruct the object’s 3D shape. The
reconstructed shapes are compared with those of the State-Of-The-Art (SOTA) approaches.
It is found that the proposed approach outperforms them by estimating comparatively more
accurate, smooth, sharp and complete 3D shapes.
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The proposed two object reconstruction solutions produce 3D shapes always in the canonical
pose. However, for many applications such as object grasping manipulators, pose information
is required. Considering that the object pose can be estimated using the keypoints, we
conducted research to estimate such keypoints from images in a supervised way and from
point clouds in a self-supervised setting.

Our first keypoints estimation approach takes a single-view RGB image as input, extracts
pixel-wise features and uses them to estimate keypoints in 3D space. The designed network
is trained in a fully supervised way using the ground truth human-annotated keypoints.
Moreover, the approach also estimates a confidence score for every keypoint representing
its validity. Based on the confidence scores, the network separates valid keypoints from
the estimated N keypoints based on the object’s geometry. The valid keypoints are used
to estimate the relative pose between different views of an object. It is found that the
angular distance error of the proposed approach is comparatively lower than that of the SOTA
approaches.

The first presented keypoints estimation approach uses only RGB images to estimate 3D
keypoints without using any 3D/depth information as input. Thus in some cases, the keypoints
are not accurately predicted. Therefore as a second approach, we present a teacher-student
architecture to estimate the keypoints from a single-view RGB image. The network is trained
in two steps: first, the teacher module is trained to extract 3D features from point clouds, and
second, the teacher module teaches the student module to produce 3D features from RGB
images that are similar to those achieved from point clouds. During inference, the network
only uses only the student module and extracts 2D and 3D features directly from an RGB
image to estimate keypoints in 3D space. The keypoints are compared with those of the
existing approaches, including the previously proposed keypoints estimation approach. The
results show that the keypoints estimated by the proposed approach are more accurate for
computing relative pose between different views of an object.

It can be observed that the above two keypoints estimation solutions are fully supervised
and require a huge dataset with ground truth human-annotated keypoints. This limits the
reusability of the approaches since very limited datasets contain accurate keypoint annotations.
Therefore, as a third approach, we present an approach that estimates keypoints in a self-
supervised without using any ground truth information. Although estimating keypoints
similar to human-annotated ones without supervision is a challenging task, the proposed
approach estimates the keypoints that best characterize the object’s shape. We achieved this
by utilizing a combination of loss components that forces the estimated keypoints towards
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the object’s surface and prevents them from moving away from the object. The approach is
tested for rotated, noisy and decimated point clouds, and it is found that it outperforms the
SOTA un-/self-supervised approaches.

Apart from the contributions and comparisons with the competitor approaches, the thesis
also presents limitations, possible extensions and real-world applications of the proposed
approaches.
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Chapter 1

Introduction

Detecting objects in an environment and characterising them with 3D information, such as
3D shape or pose, is an important research area in Computer Vision, with a high impact
in multiple sectors including: Augmented/Virtual Reality (AR/VR), medical imaging (CT
Scans, MRI, etc.), Autonomous Driving, Human Robot Interaction (HRI) in a collaborative
environment (considering sensitive objects in the surroundings, like a human, etc.), biologi-
cal/chemical science (understanding of cell-to-cell interactions and growth), etc. Estimating
the 3D shape or the pose of one object can be done by exploiting different input modalities
and can rely on different representations for the objects, depending on the nature of the
specific problem that one sets out to solve. We start by discussing these two aspects before
going into the details of the problems we addressed in this thesis.

Multiple input modalities, such as RGB cameras, depth cameras, LiDARs, can be considered
as input to estimate the shape or pose of an object. The most prominent input modality is the
image – with objects being detected and their properties being estimated from RGB images.
This is a direct consequence of the fact that cameras are ubiquitous: we have them on phones,
on cars, the security cameras are mounted on city infrastructure, in medical instruments like
endoscopes, and in industrial setups to guide the robots to perform autonomous tasks such as
bin packing and arranging, etc. Depth-enabled cameras are becoming more common, as can
be seen in some gaming consoles, as well as some consumer-grade cell phones. They allow
such devices not only to capture the 2D image but also the 3D depth information. The depth
in such devices can be estimated using either structured light or time-of-flight techniques.
The depth is a strong cue for object detection and localisation. LiDAR (Light Detection and
Ranging) also captures the distance of the object’s surface from the sensor in terms of sparse
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points and generates Point Cloud Data (PCD). LiDAR is particularly useful in surveying
operations (such as 3D mapping) to generate 3D point clouds of the environment. They
are commonly used in robotics (autonomous cars to generate a 3D map of the environment
by estimating 3D shapes of the surrounding objects), Astronomy (NASA uses the LiDAR
technology to explore space objects), forestry and farming (to monitor the growth rate),
augmented reality (to interact with real 3D objects), etc. In some cases, the point cloud of
an object is used as input for the 3D pose and shape estimation. Such point clouds can be
derived from the combination of multiple input data (RGB, depth images, LiDAR) or from
the synthetic models of the objects. In this thesis, we propose methods that use either RGB
images or PCDs as inputs for estimating the 3D shape of an object or its 3D keypoints.

An object’s 3D shape can be represented in multiple ways, from a 3D bounding box, to
voxel grids, to point clouds, to a mesh and to a set of keypoints. The 3D bounding box
represents the box that best fits the shape of an object. For example, this representation can
be useful in object detection and tracking. However, it may not highlight an object’s shape
or geometry. On the contrary, the voxel grid represents a shape using 3D cells, similar to
the pixels in 2D space. They require huge memory to represent an object (since the memory
grows cubically with the resolution), thus, they are discouraged from using in deep learning
tasks. In comparison, point cloud based representation is memory and computationally
efficient. However, they lack connectivity information between the points and are limited to
a fixed number of points. Mesh representation uses vertices and faces to model an object’s
3D shape. However, estimating a mesh often requires having a template mesh of the object
class [110, 76, 46, 42]. A set of keypoints can be used to represent an object’s structure
(using the minimum number of possible points). Sets of keypoints are helpful in computing
the relative pose between different views of an object or in finding correspondences between
different objects. They are easy to handle and process, however, they can not be used to
represent the fine details of an object’s surface. In recent research, another representation
called “implicit function” is used to represent an object. It computes the (continuous)
boundary of an object in terms of a non-linear function (such as the Signed Distance Function
(SDF)). The working principle is similar to a classifier that classifies an object’s inner and
outer regions. Generally, meshes are used to visualize shapes estimated/defined by the
implicit function.

Depending on the application, it is convenient to use any of the above-mentioned represen-
tations. For instance, for a robotic grasping of an object, a rich representation like a mesh
could be a better option. While for estimating the relative poses between views of the same



3

object, a simpler representation like a 3D keypoints can be preferred. In this thesis, we use
these two representations to estimate the object’s shape and the keypoints that are used to
model its structure.

In this thesis, We initially focused on estimating the 3D shape of one object based on one
image. This is important, for example, when one wants to model an object and visualize it in
virtual reality. The method we proposed improves the accuracy of the shape estimation on
real images (as opposed to images with a white background, which are commonly used in the
literature) compared to the results achieved by existing methods. Then we shifted our focus to
object poses, and for this goal, we decided to use the simpler representation of 3D keypoints.
Detecting 3D keypoints for one object given one image is important, especially when only
2D information is available as input, but one wants to reason in 3D space, i.e., computing
correspondences between 2D images and the 3D models (2D to 3D matching), aligning 3D
shapes with respect to the objects present in images (determining 3D pose, motion capturing
and animation for an avatar), generating an object’s skeleton, 3D shape deformation, pose
transformation for 3D characters, etc. [86, 81, 39, 149, 125, 74, 20, 47, 80, 52, 59]. We
proposed a solution that estimates 3D keypoints using only a single image that outperforms
the existing approaches by estimating more accurate 3D keypoints. In a continuation of that
work, we developed another algorithm to solve the same problem, which exploits the 3D
point clouds which are available at training time, following a teacher-student strategy. The
comparison with the State-Of-The-Art (SOTA) approaches shows that keypoints estimated by
the presented method are comparatively more accurate for relative pose estimation. Finally,
we developed a self-supervised approach for estimating 3D keypoints from a point cloud.
The importance of this method can be highlighted by the fact that it does not require human-
annotated ground truths, which are expensive to acquire.

In the remainder of this chapter, we describe the problems that are addressed in this thesis in
detail, present the SOTA approaches that are proposed in the literature to solve the addressed
problems, highlight their limitations, and finally present our solutions to the problems. We
divide the addressed problems into three sections: 3D shape reconstruction from a single-
view RGB image, supervised keypoints estimation from a single-view RGB image, and the
self-supervised keypoints estimation from a Point Cloud Data (PCD).
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1.1 3D shape reconstruction from a single-view RGB image

Reconstructing 3D shapes from images is considered as a demanding problem in Computer
Vision and has actively been tackled by the scientific community. It is due to the fact
that the objects’ 3D models are required in several real-world applications, including the
movie industry, video games, virtual simulated environments, etc. Several deep-learning
approaches have been proposed that are based on point clouds, depth, multi-view, or single-
view images [13, 116, 146, 45]. Considering the large availability of cameras in our daily
life, we aimed to use only a single RGB image to solve the 3D reconstruction problem.

Existing approaches and limitations:

Most of the existing 3D shape reconstruction methods work for synthetic images only and
fail to reconstruct objects from real images in the presence of natural background [17, 68, 12].
On the other side, the approaches that reconstruct 3D shapes from real images are not very
accurate [31]. Their reconstructions are not smooth, sharp and complete, especially in the
presence of occlusions. As an example, the reconstructed shapes of the Mesh R-CNN [31]
are shown in Fig. 1.1.

Figure 1.1 Execution of the Mesh R-CNN [31] on a real image containing two mini-sofas
and a table. Right, there is an input image where the table is occluding one of the sofas. Left,
the output of the approach, the reconstructed 3D shape where the table and the right sofa are
not fully reconstructed due to the occlusion. Moreover, the reconstructions are not smooth,
sharp and complete.

The image, as illustrated on the left side in the figure, contains three objects: two sofas
and a table. The approach separates objects using Mask R-CNN [35] and reconstructs their
3D shape. It can be observed that the right sofa is not reconstructed accurately due to
occlusion with the table. Moreover, the reconstructed objects are not smooth and sharp, and
the edges/surface are not properly estimated.
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Proposed baseline solution:

We first present a baseline solution to enable the existing approaches designed to deal with
synthetic images (such as CvxNet [17] and ONet [68]) to reconstruct 3D shapes from real
images. This approach is based on two modules: the segmenter and the reconstructor. The
segmenter module separates the part of the image that contains the object of interest, applies
padding and centering on the separated image part in order to make it similar to a synthetic
image – an image with a white background with an object in the center. The reconstructor
module uses the processed images (output of the segmenter module) and reconstructs the 3D
shape. As a reconstructor, we use the original versions of the CvxNet and ONet. To compare
the performance of the CvxNet and ONet with and without the baseline solution, in the first
step, we execute them directly on the real images of the Pix3D dataset. In the second step,
we integrate them in the baseline solution (in place of the reconstructor module) and test for
the same Pix3D dataset. We observed that the baseline solution has significantly improved
the performance of the CvxNet and ONet.

Proposed end-to-end solution:

Although the proposed baseline solution can be used to test the existing synthetic approaches
on real images, it can not be considered as an optimal solution. That is due to the fact that
the solution is not end-to-end since it is based on two different networks that are trained
independently. Also, the performance of this solution is completely dependent on the
performance of the segmenter, thus it would suffer in the case of inaccurately segmented
objects.

To overcome the limitation of the proposed baseline solution, we propose an end-to-end
approach that removes the need of a segmenter by computing stable features for an object
of interest from a real image by reducing the influence of the image background. Our
network achieves this goal by utilising two images simultaneously: a synthetic image with
white background and its realistic variant with a natural background. During training, the
method uses two encoders simultaneously in order to compute features for the synthetic
and the realistic image. Both the features are compared in order to force the model to
produce the same features for both input versions. Since the same part of both images is
the part presenting the object, the common features represent the features of the object.
During the testing, only a single encoder is used to extract the features from the real or
realistic image. The extracted features (features of the object) are used to reconstruct the
3D shape, allowing the model to predict an accurate 3D object surface from the image. The
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approach is evaluated for both real images of the Pix3D [97] dataset and realistic images
rendered from the ShapeNet dataset [9]. The results are compared with SOTA approaches in
order to highlight the significance of the proposed approach. Thanks to these contributions,
the method we propose achieves a higher accuracy for shape reconstruction than existing
methods. This work has been published in the conference ICIAP–2021 [147].

1.2 Supervised keypoints estimation from a single-view
RGB image

The method proposed in the previous section estimates the 3D shape of an object, but it does
so in a canonical pose, i.e., no information is produced about the pose of the observed object.
However, the object’s pose plays a vital role in several real-world applications, such as the
object grasping with an articulated gripper. Thus we decided to consider the object’s pose
estimation from a single-view RGB image as the next problem.

Existing approaches and limitations:

In the literature, we found that the pose can be estimated by predicting the 3D keypoints on
the object. The keypoints provide an object’s structural representation using the minimum
number of points, which are easy to process further in comparison to complete 3D point
clouds or meshes. Moreover, in some cases, keypoints also contain semantic information
by ensuring their unique order. Most of the existing approaches either use point clouds
[135, 89, 128, 6] or multiple images (RGB or depth) [98, 28] for computing keypoints.
However, we estimate the keypoints using a single RGB image as input.

Proposed solution 1:

In this solution, we estimate an object representation that encodes not only the essence of the
shape of one object but also its orientation, i.e., a set of keypoints. In supervised methods,
keypoints represent the minimum points that are closer to human annotations. Whereas in
un-/self-supervised approaches, they can be considered as the points that best characterize
the shape of the object. For example, the minimum possible points that can be considered as
the keypoints for the chair category are shown in Fig. 1.2. The last two columns show 12
points selected from the same object, either using Farthest Point Sampling (FPS) [55] (which
does not produce keypoints), or selected by a user to represent the shape of the object. It can
be observed that the 12 points highlighted in the box do not represent the structure of the
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chair. Whereas 12 points shown in the last column best represent the object’s shape and thus
can be considered as keypoints.

Figure 1.2 Keypoints – the minimum possible points that can represent a geometry of an
object. The original object contains 2000 points. The object can be recognized until we
down-sample the points up to 200 points using Farthest Point Sampling (FPS) [55]. If we
down-sampled the object further, with the same method, the object can not be recognized
anymore. In comparison, the last column also contains the 12 points, they can represent the
object’s structure, and thus can be considered as the keypoints.

In the literature, it is found that most of the existing methods either use point clouds or
multiple RGB/depth images to estimate the 3D keypoints. In comparison, we propose an
approach which requires only a single-view RGB image. It extracts 2D features from an
image and converts the 2D features to pixel-wise representations such that every pixel instead
of representing the pixel value represents pixel features. These features are then used to
predict 3D coordinates (positions) of the N keypoints. Where N is the total number of
predicted keypoints and is predefined. The predicted positions are compared with the ground
truth keypoints. To penalize the wrong predictions, we use several loss functions between
the predicted and the ground truth keypoints. The network also maintains the semantic order
of the keypoints. The order localizes every keypoint with respect to the original object, a
property which can be used to establish keypoints correspondences. Moreover, the network
also computes a confidence score of every keypoint that enables it to predict a different
number of keypoints (out of predicted N keypoints) based on an object’s shape. Therefore,
unlike existing approaches, the network can be trained to address several categories at
once. We compare the relative angular distance error computed between the keypoints sets
estimated for the two views of an object by our approach and those of the SOTA approaches.
The results show that the error of our approach is lower than that of the SOTA approach. This
work has been published in ICIAP–2021 [148].
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Proposed solution 2:

The above proposed keypoints estimation method learns from images without considering
any 3D information as input. Since, at training time, it is common to have complete point
clouds of the object, those can be used to improve the locations of the estimated 3D keypoints.
Thus as an extension, we decided to employ a hallucination technique for improving the
accuracy of the Keypoints estimates.

In this solution, we designed a knowledge distillation framework that exploits 3D information
of the objects during training to improve the keypoints estimation. It is based on a teacher-
student network that is trained in two steps: In the first step, the teacher is trained to extract
3D features from a point cloud of an object, which are used in combination with 2D features
(of an image of the same object) to estimate the 3D keypoints. In the second step, the
teacher teaches the student module to hallucinate the 3D features from the input RGB image
that are similar to those extracted from the point cloud. This procedure helps the network
during inference to extract 2D and 3D features directly from images without requiring point
clouds as input. Similarly to the previous approach, this network estimates an ordered list of
keypoints along with their confidence scores. We compare the angular distance error between
the keypoints estimated for two views of the same object with those of the SOTA approaches.
The results show that the proposed approach remains successful in estimating the keypoints
in different poses with minimum angular distance error, with better accuracy compared to the
previously described approach. This work is under review in the Pattern Recognition Journal.

1.3 Self-supervised keypoints estimation from a Point Cloud
Data

The methods we proposed in the previous sections estimate 3D keypoints of objects from
images in a supervised setting. Considering the difficulty in creating the ground truth
annotations for this problem, we decided to design an unsupervised method. However, using
only images for unsupervised keypoints estimation is a very challenging task, and most of
the existing methods use point clouds as inputs. For this part of our work, we choose to do
the same, i.e., use PCDs as input.

Existing approaches and limitations:

The literature presents that the keypoints can be estimated in an unsupervised way by taking
advantage of the geometric properties of the objects. However, such approaches suffer a
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lot in estimating the semantic and aligned keypoints over all the parts of an object’s shape
and hence their performance reduces in the downstream tasks [89]. Some of the existing
unsupervised approaches estimate 3D keypoints and use them to generate an object’s skeleton.
Although their keypoints well describe the skeleton of the object, they do not characterize
its shape [89]. Similarly, some approaches learn to produce keypoints by considering the
object’s symmetry. Such approaches are very sensitive to the object’s shape and fail to
estimate good keypoints for asymmetric objects [24]. Considering the above-mentioned
limitations, our goal is to estimate semantically consistent keypoints that well characterize
the object’s shape. They should be independent of the object’s geometry, and robust against
common perturbations.

Proposed solution:

We propose a new method to infer keypoints from arbitrary object categories in practical
scenarios where PCDs are arbitrarily rotated, noisy, and sub-sampled. Our proposed model
adheres to the following principles: i) keypoints inference is fully unsupervised (no anno-
tation given), ii) keypoints position error should be low and resilient to PCD perturbations
(robustness), iii) keypoints should not change their indexes for the intra-class objects (seman-
tic coherence), iv) keypoints should be close to or proximal to PCD surface (compactness).
We achieve these desiderata by proposing a new self-supervised training strategy for key-
points estimation that does not assume any a priori knowledge of the object class and a model
architecture with coupled auxiliary losses that promotes the desired keypoints properties.
We compare the keypoints estimated by the proposed approach with those of the SOTA
unsupervised approaches [24, 89]. The experiments show that our approach outperforms
them by estimating keypoints with high coverage while being semantically consistent that
best characterizes the object’s 3D shape for downstream tasks. This is under review in
CVPR–2023.

1.4 Contributions

The list of chapter-wise contributions is as follows;

• 3D shape reconstruction from a single-view RGB image

We proposed an approach to reconstruct an object’s 3D shape in an end-to-end man-
ner from natural images, even in the presence of a background. Unlike the existing
approaches, it extracts features from realistic images that are closer to those extracted
from similar synthetic images. Our results are comparable to those obtained us-



1.4. CONTRIBUTIONS 10

ing a combination of SOTA methods for segmentation and 3D reconstruction from
background-less synthetic images. Moreover, our approach minimizes the requirement
of the segmentation approach by separating the object’s features from the features of
the background.

• 3D keypoints estimation from A single RGB image

We proposed an approach to estimate 3D keypoints from a single-view RGB image.
Unlike the existing approaches, it estimates a confidence score for every keypoint,
which allows the selection of valid keypoints from the set of estimated keypoints. The
estimated keypoints also provide order-wise semantic information that is independent
of the object’s view. It is a flexible approach that can predict geometry based number of
keypoints, to accommodate inter-and-intra-class shape variations. Unlike the existing
approaches, our approach can be trained for various categories simultaneously and is
capable of estimating keypoints of the self-occluded parts of the objects. The estimated
keypoints can be used for downstream tasks such as shape alignment and relative pose
estimation between two objects.

• CDHN: Cross-Domain Hallucination Network for 3D keypoints estimation

We proposed an approach, as an extension of the method proposed as task 2, to estimate
3D keypoints from single-view RGB images by leveraging information learnt from
3D data during training. The approach presents a way to produce 3D features directly
from RGB images without requiring point clouds or depth information. The approach
outperforms SOTA approaches for all the selected categories.

• SC3K: Self-supervised and Coherent 3D Keypoints estimation from rotated, noisy, and

decimated PCD

We proposed a network to estimate 3D keypoints in the same pose as the pose of the
input point cloud, thus minimizes the need of aligned objects. It is robust enough
to maintain the correspondences between keypoints estimated for randomly rotated
versions of the same object. The keypoints preserve an order-wise semantic consistency
between the different objects of the same category regardless of their orientation. The
keypoints are estimated close to the object’s surface and are well distributed, thus best
characterizing the 3D shapes. On average, the presented approach outperforms the
SOTA approaches by estimating keypoints on the surface of the objects.
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1.5 Publications

1.5.1 Published Papers

• M. Zohaib, M. Taiana, M. Gajanan Padalkar, A. Del Bue, “3D keypoints Estimation
From Single-view RGB Images”, 21st International Conference on Image Analysis
and Processing, Italy, pp. 27 – 38, 2022.
DOI: https://doi.org/10.1007/978-3-031-06430-2_3

• M. Zohaib, M. Taiana, A. Del Bue, “Towards Reconstruction of 3D Shapes in a Real-
istic Environment”, 21st International Conference on Image Analysis and Processing,
Italy, pp. 3 – 14, 2022
DOI: https://doi.org/10.1007/978-3-031-06430-2_1

1.5.2 Under-review Papers

• M. Zohaib, A. Del Bue, “U3DK: Unsupervised 3D Keypoints Estimation from Rotated,
Noisy, and Decimated Point Cloud Data”, IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023

• M. Zohaib, M. G. Padalkar, P. Morerio, M. Taiana, A. Del Bue, “CDHN: Cross-
Domain Hallucination Network For 3D keypoints Estimation”, Pattern Recognition
journal, 2022

1.6 Thesis organization

The thesis is organized as follows.

Chapter 2 reports the literature on the existing approaches. We divide the chapter into three
sections. First, we discuss approaches related to the 3D reconstruction task; second, we
present supervised and un-/self-supervised approaches for 3D keypoints estimations from
images and PCDs; third, we provide details of the datasets used in this research along with
our modifications.

Chapter 3 presents the first task, 3D shape reconstruction from a single RGB image. It
highlights the problems associated with the 3D reconstruction approaches and presents two
solutions; the baseline solution to execute existing approaches and the end-to-end solution
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that extracts features of the object in the presence of the background to estimate accurate 3D
shape.

Chapter 4 reports the second task, the supervised approach for 3D keypoints estimation from
RGB images. It describes the methods proposed in the literature that either use point clouds
or multiple modalities to estimate 3D keypoints and then shows how the proposed approach
estimates the same keypoints from only RGB images. The presented approach achieves this
goal by combining different loss functions to localize the keypoints at a specific position
with respect to the ground truth annotations.

Chapter 5 describes the third task, CDHN: Cross-Domain Hallucination Network For 3D
keypoints Estimation, as an extension of task 2. It presents the two steps of the training
procedure, teacher and student training, and highlights the process of knowledge distillation
from the teacher to student module. This training process allows the network to infer 2D
and 3D features directly from RGB images to estimate more accurate 3D positions of the
keypoints.

Chapter 6 presents the fourth task, SC3K: Self-supervised and Coherent 3D Keypoints
estimation from rotated, noisy, and decimated PCD. It highlights the limitations of the existing
supervised approaches, i.e. the requirement of huge datasets containing human-annotated 3D
keypoints, which are difficult to generate and can consume a lot of resources. As a solution, it
then reports the un-/self-supervised approaches that estimate the 3D keypoints without using
the ground truth keypoints. Finally, by describing the constraints of the available solutions,
it presents a self-supervised approach that estimates coherent 3D keypoints from rotated,
decimated and noisy PCDs.

Chapter 7 concludes the thesis by providing a short description of every chapter. It reports
the problem tackled in the conducted research, highlights their limitations and presents the
possible future directions.



Chapter 2

Literature Review

This chapter presents the most recent works that are closely related to the two followed
research directions; 3D reconstructions and 3D keypoints estimations. Moreover, the datasets
used in the experiments are also described.

2.1 3D shape reconstruction from an image

Estimating the 3D shape of an object from images is considered a challenging task that still
needs to be fully explored. Part of the interest is generated by the fact that emerging tech-
nologies such as AR and VR are demanding high-quality reconstruction results. Considering
the wide range of applications, the scientific community has been focusing on reconstructing
the object’s 3D shapes using geometrical reasoning. As a result, several approaches have
been proposed in the last few years.

Mescheder et al. [68] presented ONet, a system for 3D reconstruction based on a contin-
uous 3D occupancy function. It discretizes a volumetric space continuously by evaluating
occupancy probability. Deng et al. presented CvxNet [17], an approach for geometry repre-
sentation based on primitive decomposition. It models the shape of one object as the union of
a small set of convex components. The number of convexes needs to be specified at training
time, which negatively affects the flexibility of the reconstruction system. BSP-Net [12], a
similar approach proposed by Chen et al., generates 3D meshes via binary space partitioning,
relieving the need for specifying the number of components. It performs a recursive subdivi-
sion of space to obtain convex sets, thus not relying on a fixed number of elements for object
decomposition.

13
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The approaches mentioned above focus on solving the 3D object reconstruction problem in a
simplified setting: the input images are obtained by projecting 3D object models onto images
with a white background. In an effort towards extending the capabilities of reconstruction
algorithms to natural images, Wu et al. [114] substituted the white background in their input
data with randomized real images. A decisive step towards object reconstruction in the wild
was taken with the disclosure of the Pix3D benchmark [97], a dataset composed of natural
images for which the poses of the visible objects have been accurately estimated, exploiting
a combination of human labelling and automatic optimization. An approach ShapeHD [115]
combines deep volumetric convolutions networks with adversarially learned shapes before
estimating the 3D shapes. This approach is similar to [114], however, it uses an additional
module “deep naturalness model” that penalizes the shape estimator if the estimated shape
is unnatural. Pix2Vox++ [120] exploits multiple views of one object to generate multiple
3D shapes. It reports results on synthetic images and natural images from Pix3D, restricted
to the ’chair’ category. 3D-GMNet [122] reconstructs 3D shapes from a single image using
Gaussian distribution. The technique reduces memory footprint compared to those use
volume-based occupancy estimation. PGNet [137] presents an approach that takes a single
RGB image and semantic projections of an object’s parts (partial projection images) as input
and reconstructs the object’s parts separately using a recurrent generative network. In the end,
all the reconstructed parts are combined to gather in order to form a complete object’s shape.
Other similar works [29, 23, 75, 124] also learn to produce object 3D shapes in the presence
of background. However, they aim to estimate shapes in the form of either a point cloud or a
voxel grid. Both representations have their own limitations; point clouds lack connectivity
information while memory requirements grow cubically with resolution in voxel grids.

On the other hand, SIST [44], a self-supervised approach for an image to 3D shape translation,
uses an implicit field decoder to estimate a continuous object’s 3D surface. However, SIST
was not tested on natural images but on Pix3D images whose background had been painted
white, exploiting ground truth segmentation information. Mesh R-CNN [31] separates itself
from the rest of the field because it was designed to work on natural images. As impressive
as its performance is, Mesh R-CNN achieves a lower reconstruction accuracy with respect
to the other existing approaches, e.g., ONet and CvxNet. Salvi et al. presented a method
that improves ONet by introducing a self-attention module in the encoder [85]. Whereas
the decoder is the same as ONet. Although they have tested the approach on natural images
taken from the online product dataset [71], they have not presented any quantitative results.
Secondly, it is obvious since ONet is trained on synthetic data, it performs poorly on images
with a background at inference.
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2.2 3D Keypoints estimation

3D keypoints have been used in several geometrical problems as they require minimum
processing and are easy to handle in comparison with complete point clouds or meshes. [88].
Moreover, they highlight the most important regions of an object’s 3D structure, i.e. corners,
joints, etc. [2, 109, 139]. Furthermore, in some cases, they also contain semantic information
by ensuring their unique order. In the literature, different modalities have been used for 3D
keypoints estimation in 3D space, including point clouds, depth and RGB images. Based on
these modalities, some of the recent approaches are described below.

2.2.1 Image-based 3D keypoints estimation

Considering only the RGB images increases the complexity of the 3D keypoints estimation
task. Such approaches are less accurate compared to methods that use depth images or 3D
point clouds [8]. KP-Net [98], proposed by Suwajanakorn et al., trains models for each
object category by computing 3D keypoints from dual view images. During inference, it uses
single-view RGB images. However, their estimates are in the form of 2D pixels and depths.
The authors present results for four different versions of their approach: 1) supervised KP-Net
that learns from ground truth 2D pixels and corresponding depths, 2) supervised KP-Net with
a pretrained Orientation Network (O-Net) that provides an object’s orientation information,
3) KP-Net (unsupervised) with O-Net, and 4) KP-Net without O-Net. Their results show
that the unsupervised KP-Net without O-Net estimates the most accurate keypoints. The
method in [148] estimates keypoints from RGB images directly in a 3D space. Although it
utilizes the original point clouds for computing the loss functions, it does not utilize them for
feature extraction. Thus due to the lack of 3D features, some keypoints are not estimated at
the appropriate 3D positions.

2.2.2 Using 2D keypoints for reasoning in 3D space

Some of the recent works have used 2D keypoints estimation for reasoning on an object’s
3D geometry as a further inference step. An approach that uses 2D keypoints for 3D object
detection is presented in [3]. The approach estimates 2D keypoints from an RGB image
and transforms these keypoints into a 3D model of an object taken from a predefined set
of 5 CAD templates only. The intrinsic camera parameters are known. Lu et al. present
an approach that uses keypoints for finding the pose of a robotic arm [64, 65]. Initially,
keypoints are sampled on the kinematic chain and are filtered in order to select optimal
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ones using RANSAC [25]. A similar approach that finds semantic correspondence between
two images using both appearance and geometry reasoning by incorporating 2D keypoints
is presented by Han et al. in [34]. The approach uses these semantic correspondences to
produce a warped version of two images. Another approach, presented in [104], estimates
semantic 2D keypoints for visual representation. In supervised training, the approach uses
2D ground truth labels. Given a camera calibration, the approach estimates 3D positions
and projects them to a 2D plane for computing loss. However, in self-supervised training,
it uses multiple images of a scene simultaneously. A similar 3D object detection approach,
“SMOKE”, is presented in [61]. It defines a 2D keypoint on the image plane that represents
center of the 3D object. For 3D to 2D projection, known camera parameters are used. Zhou
et al. present the “StarMap” [145] approach that estimates 3D keypoints, which depend on
the 2D keypoints/heatmaps. The approach is evaluated for the subset of the validation set
that is non-truncated and non-occluded objects. Moreover, the presented results validate that
the approach does not consider the occluded areas of an object, e.g., the hidden parts (i.e.,
the back side of a car or the back legs of a sofa).

2.2.3 RGBD-based keypoints estimation

Some works use multiple modalities including RGB and depth images (RGBD). The point-
wise 3D keypoints voting network (PVN3D) [37] estimates 3D keypoints by fusing the
appearance and geometrical features extracted from RGBD images. The estimated keypoints
are used to compute an object’s pose in six Degrees of Freedom (6-DoF) by applying the Least
Squares fitting algorithm. Georgakis et al. [28] present an approach that uses RGB and depth
images to compute object 3D pose by matching predicted keypoints to the corresponding
CAD model. Another RGBD image based approach is presented in [107] that uses estimated
3D keypoints for tracking an object’s pose. Although their network does not require 3D
shapes during training, during inference the method can work only with objects that are
relatively similar to those used in training [19].

2.2.4 Point-cloud-based keypoints estimation

In literature, most of the approaches use point clouds for estimating 3D keypoints. Several
approaches have been proposed to estimate 3D keypoints in a supervised way [113, 37, 136,
56, 148, 53, 130]. Such approaches require human-annotated datasets, which are limited
to a smaller set of objects since annotating shapes is a time-consuming process. Therefore,
the research community is focusing on estimating the same 3D keypoints similar to human
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annotations in un-/self-supervised ways, without using the ground truth labels. Some of the
recent approaches are presented here.

Liu et al. present an approach [57] that uses 3D keypoints features extracted directly from
point clouds to solve object recognition and 6-DoF pose estimation. Their framework consists
of two phases. In the first phase, it generates a database of the keypoints sampled from
synthetic point clouds. In the second phase, the features extracted from the test scenes are
matched to the database using the K-D tree voting method for object recognition. Shah
et al. use the keypoints for surface representation in [87]. Their approach estimates 3D
keypoints and computes the geometrical relationships between them by considering their
relative distance. Based on the minimum distance, subsets of the keypoints are selected that
are used in surface representation. Chen et al. present an approach that learns to identify
semantically consistent points in the same category in an unsupervised way from an object’s
PCD [11]. Their network is based on the PointNet++ backbone [79] that assigns a probability
(of being a keypoint) to each element of the PCD. The final keypoints are computed using
a convex combination of the points weighted by the probabilities. Yuan et al. present an
approach that uses two different objects of the same category to estimate semantically ordered
3D keypoints [131]. Jakab et al. [41] use 3D keypoints (unlike [138] that uses the complete
point cloud) for aligning two shapes. Their network takes two shapes and finds the keypoints
for shape deformation from a set of randomly sampled surface points.

Chen et al. [70] present an unsupervised approach that computes keypoints from the object’s
point cloud to represent good abstraction and approximation of the input 3D shape. Li et al.
present an approach that first generates another variant of the PCD by random transformation
and then utilizes both PCDs for estimating the keypoints. Their network first generates
clusters from the input point clouds and then it estimates a keypoint for every cluster [48].
A similar approach is presented by Sun et al. in [95]. During training, their network takes
two randomly rotated versions of a PCD and computes K capsules containing the attention
mask for every point in the input PCD and the corresponding features. Based on the attention
masks, points are arranged to K parts of the object. Fernandez et al. present an approach
that estimates symmetric 3D keypoints from PCD [24]. The network estimates N nodes
(keypoints) and applies non max-suppression for selecting the final keypoints. However,
the approach is very sensitive to object symmetry. Also, its performance may decrease for
irregular shapes, i.e. airplanes or guitars, whose geometries vary consistently within the
category [89]. The authors in [89] present “Skeleton Merger” (SM) to detect aligned and
semantic keypoints from PCDs in an unsupervised fashion. It uses the keypoints to generate
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a skeleton of the object. Both keypoints and the skeleton are used to reconstruct the PCD.
A similar approach, LAKe-Net [99], uses the keypoints for the shape completion task. It
localizes the aligned keypoints (using an unsupervised detector), generates surface-skeleton
using the keypoints, and uses them to refine the object’s shape. SK-Net, proposed in [117],
generates random spatial keypoints in 3D space and converges them to an object’s point
cloud by learning geometric features. Unlike the other approaches, the spatial keypoints are
not a part of the object’s point cloud. Another similar approach that finds correspondences
between different objects of the same category is presented in [14]. You et al. [127] present a
method that uses geodesic consistency loss for producing dense semantic embeddings among
different objects of the same category. They also create a new dataset “CorresPondenceNet”
(CPNet), by annotating the keypoints that semantically correspond between the intra-class
objects.

2.3 Datasets

We divide the datasets into two parts considering the different natures of the conducted
research. First, we describe the datasets that are used in the 3D reconstruction task. Such
datasets commonly contain images and corresponding objects’ 3D models. Second, we
present datasets that are used in keypoints estimations. Such datasets contain ground truth
labels in the form of human-annotated 3D keypoints. We also present our modifications in
the existing datasets in order to evaluate the proposed approaches. The details of the datasets
are as follows.

2.3.1 3D Reconstruction

In the 3D reconstruction task, we mainly used three datasets. We used the original syn-
thetic ShapeNetCore.v1 [9] to train and test the existing synthetic approaches such as
[68, 17]. However, the approach we proposed requires realistic images (synthetic images
with real backgrounds). So to generate a new realistic dataset, we used synthetic images from
ShapeNetCore.v1 and background images from the SUN [119]. Whereas to evaluate our
approach or real images, we use the Pix3D [97] dataset. However, for some categories (i.e.
car, airplane, bench, etc.) images are taken from PASCAL [118] and COCO dataset [54].

ShapeNet: ShapeNet is a widespread dataset that is commonly used for 3D reconstruction
problems. It contains 3D CAD models along with textures organized in WordNet hierarchy.
We use a subset of the dataset provided by Choy et al. [16] for training our model. The
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subset contains models for 13 categories, with images rendered from 24 random viewpoints,
and occupancy points/labels.

SUN2012: The SUN [119] dataset is a collection of indoor, outdoor, Urban, and Nature
scenes. The dataset is widely used for scene understanding, object detection, classification,
etc. We use a subset of the dataset “SUN2012” that contains 16,873 images. We randomly
select images from the pool and use them as a background for generating realistic images.

Pix3D: We selected Pix3D [97] as the benchmark for evaluating the proposed approach
because it contains natural images with accurate pixel-level aligned 3D models. Pix3D
contains 395 3D models of nine different categories. Tab. 2.1 shows the number of images
and models per category in the Pix3D dataset.

Table 2.1 Number of images and models per category in the Pix3D dataset.

Category Bed Bookcase Chair Desk Misc Sofa Table Tool Wardrobe Total

Images 994 361 3839 700 68 1947 1870 47 143 9969
Models 20 17 221 23 13 20 63 8 10 395

The data in the Pix3D dataset is not homogeneous: part of the images are natural, while
others depict the foreground object on a white background.

2.3.2 Keypoints estimation

For the supervised and unsupervised 3D keypoints tasks, we use the KeypointNet [130]
dataset. In unsupervised settings, the labels are not used. The details of the dataset and the
changes we made to train the proposed networks are given below.

KeypointNet: The keypointNet dataset contains 8329 3D models of 16 object categories,
corresponding point clouds, and 83231 keypoints. All the objects in the dataset are in
canonical form, always at the origin and in the canonical pose. Moreover, the dataset does not
contain images similar to those present in the ShapeNet subset rendered by Choy et al. [16].

By considering the procedure followed by Choy et al. [16], we render images in 24 views
by placing the object’s models (of the KeypointNet dataset) at the center of the reference
frame and cameras at 24 different locations pointed towards the origin. However, the camera
locations are not the same (fixed) for all objects, i.e. locations are randomly selected for every
object. Tab. 2.2 shows the number of cameras used in the image rendering for the airplane
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category. It can be observed that 98.54% and 99.01% of the test and validation cameras are at
positions not seen during training, respectively. For better understanding, the positions of the

Table 2.2 Camera positions for the airplane category. The unique positions are computed
with respect to the positions of the cameras in the training set. More than 90% of the test and
validation cameras positions are not seen during the training.

Objects Cameras Unique positions

Train 715 17160 –
Test 205 4920 4848

Validation 102 2448 2424
Total 1022 24528 7272

cameras in the 3D space are shown in Fig. 2.1. The green, red, and purple dots illustrate the
camera positions for the train, test, and validation set, respectively. Only a fraction (30%) of
the unique camera locations are displayed in the figure for the sake of a better visualization.

Figure 2.1 Positions of the cameras in 3D space. The green, red, and purple dots illustrate
the camera positions for the train, test, and validation set, respectively. Only a fraction (30%)
of the unique camera locations are displayed for the sake of a better visualization.

Moreover, for data consistency, the object’s point clouds and the ground truth keypoints are
also required to transform in the same poses that are used to render the images. This allows us
to train the network by feeding images, point clouds and ground truth keypoints in the same
pose to the network, such that it can estimate keypoints in different poses. Therefore, we use
the same camera parameters (used for the images rendering) and transform the original point
clouds/keypoints in the same 24 poses. The same data split as provided by KeypointNet is
used in all the experiments.



Chapter 3

3D Shape Reconstruction From A
Single-view RGB Image

This chapter presents the 3D reconstruction task from a single RGB image. It highlights the
significance of the task in real applications, reports limitations of the existing approaches
and proposes an approach to solve the addressed limitations. Estimating 3D object shapes
from images is a relevant problem that has actively been tackled by the scientific community.
As a result, several approaches have been proposed in the last few years. Most of those
approaches are valid for synthetic images with no background or with white background.
Such approaches fail to estimate 3D object’s shape for real images containing the natural
background. Considering the background as a vital limitation for the reconstruction ap-
proaches, we aimed to propose an approach that can tackle the background. To make it easy
to understand, in this chapter, we differentiate color background images as; real and realistic.
Where a real image represents a natural image, i.e., an image with real background and a
real object. Realistic image refers to that generated synthetically by rendering the synthetic
object in front of the real background, i.e., the image with a real background containing a
synthetic object at the center.

Recent advancement in computer vision and deep learning has brought 3D object reconstruc-
tion to a level useful for a variety of applications, including Augmented Reality (AR),
autonomous driving, robotics applications and game development. Reconstruction ap-
proaches in the literature rely on data from one or more input modalities: from simple
images [112, 68, 17, 31, 94], depth images [123, 33], to point clouds [32, 126, 62]. The
field of 3D object reconstruction from 2D images is evolving quickly, with part of the field

21



22

focused on estimating very accurate 3D shapes in simplified settings, i.e., using images with
a blank background as input, while another part strives to estimate 3D object shapes in the
wild.

Some of the most recent efforts in 3D object reconstruction from images have been focused
on solving a simplified problem: reconstructing objects from synthetic images which present
no background clutter and perfect foreground/ background segmentation [68, 17]. Data for
training and evaluating such systems is collected by rendering 3D object models on a white
background. A commonly used source for the 3D models is the ShapeNet dataset [9]. Object
reconstruction systems trained on this kind of data achieve high reconstruction accuracy,
however their performance drops dramatically for natural images. On the other hand, some of
the current research approaches focus on reconstructing 3D objects from natural images [31].
These systems have the advantage of being applicable to real-world images, but this comes
at the cost of lower reconstruction accuracy.

In comparison in this chapter, we propose an end-to-end approach that estimates the 3D
shape of an object from a real image. The approach learns to generate features from an image
with a background that are similar to the features that would be generated from the same
image without a background. These features allow the model to estimate a comparatively
accurate object shape from a real image. During training, both versions of the image are fed
to an encoder in parallel that extracts common features. Whereas during inference, only the
real images are used. A sketch of the proposed approach is illustrated in Fig. 3.1. The main
contributions are as follows:

• The proposed approach reconstructs 3D shapes in an end-to-end manner from natural
images, even in the presence of a background.

• Unlike the existing approaches, our approach extracts features from realistic images
that are closer to those extracted from similar synthetic images without background.

• Our results are comparable to those obtained using a combination of State-Of-The-
Art (SOTA) methods for segmentation and 3D reconstruction from background-less
synthetic images.

• The presented approach does not require any segmentation approach.
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Figure 3.1 Overview of the presented approach. Reconstruction systems with high accuracy
do not perform well when applied to natural images directly (top). An instance segmentation
algorithm can be considered as a simple solution for removing the background (middle). In
comparison, the proposed approach reconstructs accurate 3D shapes by estimating common
features for realistic and white background images (bottom).

3.1 Methodology

Given a single real image, the research aims to estimate an accurate 3D shape for the depicted
object. In this regard, an end-to-end approach is proposed that learns to extract object features
from realistic images – containing a synthetic object with a background. These features
allow the approach to decode comparatively accurate 3D shapes from natural images. The
designed model is inspired from Occupancy Network (ONet) [68]. It is based on two main
modules: feature extractor and 3D shape predictor. The first module extracts object features
in the presence of a background, whereas the second module estimates a 3D object boundary
in the form of an occupancy function. The process is described in detail in the following
subsections. The architecture of the proposed method is illustrated in Fig. 3.2.

Feature extractor
The module extracts object features that are required for 3D shape reconstruction. It is
based on an encoder that takes two images, a synthetic image along with its variant with
added background, in parallel fashion and produces two feature vectors. The vectors are
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Figure 3.2 Architecture of the proposed approach. During training, an image with and without
a background is fed to the encoder in parallel, producing two feature vectors; synthetic and
realistic. The vectors are compared in order to enable the encoder to extract common features
from both image versions. The shape predictor module based on an occupancy function
uses the feature vector (coming from a realistic image) for object boundary estimation. The
boundary is evaluated by computing volumetric and surface loss. At inference time, only the
real image is fed to the system.

compared in order to instruct the encoder to produce common features for both images. In the
beginning, the encoder produces different features; however, after some learning iterations, it
starts extracting the same features. We calculate Mean Absolute Error (MAE) for features
comparison as

Lenc =
1
M

M

∑
m=1

| f (S)m − f (R)m |, (3.1)

where f (S)m and f (R)m denote features extracted from synthetic and realistic image. m are the
indices of the elements of a feature vector of size M. The loss Lenc is only used to update
the weights of the encoder. The process of Lenc computation and the weights update is
highlighted in the left part of Fig. 3.2.

Shape predictor
The shape predictor estimates an object’s 3D shape by utilizing an occupancy function in a
similar way as defined in ONet [68, 85]. The function F : R3 → [0;1] evaluates N uniform
sample points in space for estimating occupancy probability for each point. Where 0 and
1 represent if the samples are outside or inside the object boundary, respectively. It is a
combination of 5 fully-connected ResNet blocks. Each block contains a pair of Conditional
Batch-Normalization (CBN), ReLU activation functions, and a fully connected layer. The
output of the last block is downsampled to a 1D vector and passed through a sigmoid



3.1. METHODOLOGY 25

activation function in order to obtain estimated probabilities. For a detailed visualization
of the occupancy function see Fig. 2 of [85]. The shape predictor takes common features
extracted by the feature extractor and a set of uniformly sampled 3D points. It first computes
256D features for every point using a fully connected network and passes them along with
common features to the occupancy function. The function estimates volumetric occupancy
for every point with respect to the object’s boundary. The estimated occupancies indicate
whether the points belong to the object or its surroundings. These occupancies are compared
with corresponding GT values. We use Binary Cross-Entropy (BCE) Loss for comparison as

O = F ( fcom,Pi) | i : 1 to N

Lvol = LBCE(O,Q),
(3.2)

where fcom represents common features, Pi are the N 3D points for evaluation and the
corresponding output of occupancy function for all the points is depicted by vector O .
The volumetric loss Lvol is a BCE loss between predicted (O) and label (Q) occupancies.
The loss improves the geometry of the predicted shape by reasoning on the 3D volumetric
space. The mesh extractor module produces meshes in a two-step process; by applying
Multiresolution IsoSurface Extraction (MISE) [68] that utilizes occupancy function in order
to achieve the required resolution and by using the Marching Cubes algorithm [63] for final
mesh extraction.

Additionally, in order to improve the surface of the predicted shape, a surface loss is intro-
duced. Since comparing meshes is a complex and resource consuming task, random points
are sampled for predicted (X) and GT (Y ) mesh. These sample points are used to calculate
Chamfer L1 Distance as

Lsur f =
1

nX
∑
x∈X

min
y∈Y

|x− y|+ 1
nY

∑
y∈Y

min
x∈X

|y− x|, (3.3)

where x and y represent a single sample from set X and Y , respectively. nX and nY show
the total number of samples in each set, which is the same in our case. The overall shape
prediction loss can be defined as

Loverall = Lvol +Lsur f . (3.4)

Unlike encoder loss, the shape prediction loss (Loverall) contributes in updating the weights
of the whole model.
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Inference
At inference, the lower part of the feature extractor is removed from the model as highlighted
in Fig. 3.2. Real images are fed to the encoder for 2D feature extraction. The extracted
features are then used by the second module for producing occupancy probabilities for all
the sample points in a 3D volumetric space.

3.2 Experimental setup

In this section, we describe the experimental details we used to assess the performance of the
proposed approach in comparison with SOTA. The proposed approach is validated using two
types of data; real from Pix3D and rendered from ShapeNet in the presence of a background.

3.2.1 Implementation details

Unlike [85], in our approach, we use ResNet18 [36] encoder (without self-attention module)
with pre-trained weights for ImageNet dataset [18]. The last layers are modified to obtain a
256D feature vector. We train the model using synthetic and realistic images that are rendered
from ShapeNet objects on white and random backgrounds, respectively. We set the learning
rate and weight decay to 1e-5. The rest of the hyperparameters are set to the same values as
used in [68].

3.2.2 Datasets

Mainly three datasets are used in the experiments. The details of the datasets can be found in
Sec. 2.3 of Chap. 2. For training the proposed network, we use synthetic images rendered
by Choy et al. [16] and realistic images that are generated by adding random backgrounds
to the synthetic images. The background images are taken from the SUN dataset [119].
For evaluation on real images, we use the Pix3D dataset [97]. We select only the object
categories in Pix3D for which ONet, Mesh R-CNN, and YOLACT [7] were trained, i.e.
tables, chairs, and sofas. The details of the selected test samples from the Pix3D dataset
based on a comparison of YOLACT and Mask R-CNN [35] segmentation are provided in
Sec. 3.4. For evaluation on some other categories (e.g., car, airplane, bench), real images are
taken from PASCAL [21] and COCO dataset [54].
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3.2.3 Performance measurement

We use the Chamfer L1 distance and F1 score for evaluation. The Chamfer distance computes
the average distance between predicted and ground truth meshes with the help of surface
sample points. We select 100k sample points randomly from the surface of the predicted and
the ground truth mesh and use a KD-tree to associate each point with its nearest neighbour
from the other mesh. The final value for the Chamfer distance (as depicted in Eq. 3.3) is an
average of all the absolute L1 distances measured in both directions: from the estimate to
the ground truth and vice versa. The F1 score describes how accurate a prediction is, given
the tolerance factor τ (surface thickness) and is computed as the harmonic mean between
precision and recall. Precision is defined as the fraction of points that have a distance below
τ when going from the estimated mesh to the ground truth mesh. The recall is defined as
the fraction of points that have a distance below τ when going in the opposite direction. We
chose the value of 0.001 for τ from the ones present in the literature because it is the one
that better highlights the difference in performance in our experiments. Better performances
correspond to lower values of the Chamfer L1 distance and higher values of the F1 score. We
report F1 score values as percentages of its range [0,1].

3.2.4 Performance evaluation criteria

Comparing the performance of the proposed system with that of Mesh R-CNN [31] is not
trivial: CvxNet [17] and ONet [68] are trained to produce estimates in a canonical pose
and of a specific size, while Mesh R-CNN produces estimates whose pose is dependant on
the viewpoint of the input image. Furthermore, the size of the reconstructed objects is not
comparable in the two cases. To ensure a fair comparison, we define an evaluation criterion
that first normalizes the ground truth object models and the estimated shapes so that the
longest side of any shape has a length 1. To counter the effect of pose variability in the
estimates from Mesh R-CNN, we applied a registration algorithm (Iterative Closest Point,
ICP) to align each estimate with the ground truth model. Now, since all the shapes are in the
same size and pose, they can be used for performance evaluation.

3.2.5 Baselines

We compare our results with SOTA baselines including Mesh R-CNN, CvxNet, and ONet.
We use a pre-trained model of Mesh R-CNN. Whereas, CvxNet and ONet are trained on
the realistic dataset. This is done because the model trained on white background images
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could never perform well on natural images. Additionally, we also present a setup that
enables CvxNet and ONet, which are trained on the synthetic dataset, to produce 3D shapes
in the presence of a background. The setup integrates an instance segmenter before the 3D
reconstruction module. The segmenter processes natural images, partitioning the pixels into
two groups: foreground and background. The foreground pixels represent segmented objects.
We separate an object of interest and use the segmentation information in order to paint the
background pixels with a uniform white color. In order to make it identical to a synthetic
sample, we center the object and apply padding by considering the dimensions of the images
used during training. The resulting image is then processed by the reconstruction module,
which outputs an estimate of the 3D shape of the object. The proposed system is presented
graphically in Fig. 3.3.

Figure 3.3 Setup to execute CvxNet and ONet on real images. The approaches can produce
good results for real images if the input image is processed appropriately; separating an
object by applying an instance segmentation algorithm, pasting it on the center of the white
image, and padding the image in order to make it similar to synthetic.

We chose YOLACT [7] as the instance segmentation algorithm for the system. For differenti-
ating from the original versions CvxNet and ONet that are trained on the realistic dataset, we
are using the letter M (mask) with them. So, the CvxNet-M and ONet-M show the versions
when the segmenter is integrated with them.

To evaluate the performance of the CvxNet-M and ONet-M with respect to the CvxNet
and ONet, we conduct an experiment. We use pre-trained models of YOLACT and ONet.
For CvxNet, instead, we decided to train it on the three categories that are present in both
the ShapeNet and the Pix3D datasets: chairs, sofas, and tables. For training CvxNet, we
use the data group employed by Choy et al. [16]. For the rest of the training details,
e.g., the number of hyperplanes, we closely followed the details in the CvxNet paper [17].
We test both the approaches using the raw images and using a version of the images for
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which the background was removed using the segmentation from YOLACT. We found that
both approaches have achieved an improvement in accuracy when they are executed for
background-less (segmented) images. The improvement on a scale of F1 score is more
than 22% for the chair and table, and 12% for the sofa category. A bar chart explaining
category-wise improvement in accuracy (due to the background segmentation) is presented
in Fig. 3.4. The experiment highlights the significance of the proposed setup (Fig. 3.3) for
the 3D reconstruction approaches that are valid only for synthetic datasets.
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Figure 3.4 Category-wise improvement (on scale of F1 score) in CvxNet and ONet. Executing
the approaches on the masked images produced a much better performance in all cases.

3.3 Results and analysis

We conduct experiments in three different settings. First, we test the SOTA and our approach
for white and color background images of the Pix3D dataset. The goal of this experiment
is to highlight the significance of the background in 3D shape reconstruction. For this, we
divide the dataset into sets; white background images and real (color) background images.
Second, we repeat the evaluation for the complete Pix3D dataset without separating the white
and color background. Third, we show the qualitative results of the proposed approach for
other categories.
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3.3.1 Experiment 1: Results for the Pix3D white and real background
images

The section presents results to test the generalization, i.e., validation of the proposed approach
in different settings. We evaluate the performance on white and color background images. For
that, we divide the Pix3D dataset into two groups; white background and color background
images. Moreover, in these experiments, both the CvxNet and ONet are trained for the
synthetic dataset.

In the first attempt, we conduct an experiment by considering first the group of the test
set – real images with a white background. Here we compare reconstructions of CvxNet,
ONet, and Mesh R-CNN. Since the images contain only white background, they are treated
similar to synthetic ones. Therefore CvxNet and ONet produce good results. The results are
illustrated in Fig. 3.5. Although the Mesh R-CNN directly estimates 3D shape from real
images, its reconstructions are not comparatively very accurate, smooth and complete. Thus
the experiment validates that CvxNet and ONet can produce more accurate results than Mesh
R-CNN in simplified (white background) settings.

Image GT CvxNet ONet Mesh R-CNN

Figure 3.5 Qualitative comparison of CvxNet, ONet and Mesh-RCNN (MR-CNN) for white
background Pix3D images.

In the second attempt, we consider the next group of test set containing images with color
backgrounds. Initially, the object mask is computed using YOLACT, which helps in separat-
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Table 3.1 Quantitative comparison between the baselines and our approach. Columns
marked with BG and white correspond to experiments when the color or white background
images were used as input. The columns marked as Mask represents results when masked
versions of the color images are used. Executing CvxNet and ONet on the masked images
produced a much better performance in all cases. The proposed method (ours) achieves better
reconstruction accuracy for the sofa and table categories, while CvxNet retains an advantage
for masked versions of the table category. The best values for Chamfer L1 distance and F1
Score are highlighted in bold.

Category
CvxNet

CvxNet-M
ONet

ONet-M
Mesh R-CNN Ours

BG White BG White BG White BG White

F1 Score (%), τ=0.001 ↑
Chair 25.04 49.01 46.30 23.38 52.31 45.19 37.56 38.06 41.83 48.37
Sofa 37.21 57.30 54.45 38.37 58.40 52.15 51.06 56.75 61.28 62.04
Table 22.37 47.44 44.82 20.61 46.19 43.87 45.18 48.42 48.27 49.72

Average 28.21 51.25 48.52 27.45 52.30 47.07 44.60 47.74 50.46 53.38

Chamfer L1 Distance ↓
Chair 3.52 2.32 1.93 3.13 1.56 1.54 2.02 1.85 1.96 1.79
Sofa 2.95 1.51 1.72 2.75 1.73 1.84 1.85 1.72 1.65 1.61
Table 6.04 4.21 3.9 5.61 3.81 3.01 2.93 2.63 2.34 2.05

Average 4.17 2.68 2.52 3.83 2.37 2.13 2.27 2.07 1.98 1.82

ing an object from a background. The separated object is pasted in the center of an image
with a white background. The images are used for the evaluation of CvxNet-M and ONet-M.
In contrast, the rest of the approaches use images directly without any processing.

An overall quantitative analysis highlighting the performance of the approaches is illustrated
in Tab. 3.1. The results are depicted for color (BG) and white background images separately.
Based on both metrics (F1 score and Chamfer L1 distance), it can be validated that all the
approaches perform well on white images and worst on color (BG) images. It is due to the
fact that images with a white background are similar to synthetic images for which the models
were trained. The table also presents a comparison of the approaches that process input
images by applying instance segmentation with the proposed approach. The corresponding
columns are highlighted in grey color for straightforward discussion. Both metrics show that
our approach performs overall well. In comparison with Mesh R-CNN, its performance is
high for every category. However, only for chair category CvxNet-M and ONet-M outperform
ours on F1 score and L1 distance, respectively. It is due to the fact that most of the images in
the chair category contain multiple objects of interest at various positions. In CvxNet-M and
ONet-M, the segmenter selects only one object with the highest score; hence the reconstructor
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produces a good shape. Whereas, in our approach, the encoder considers all the prominent
objects in an image for gathering the features.

3.3.2 Experiment 2: Results for complete Pix3D dataset

In this section, we discuss the results of the baseline approaches and compare them with
the results of our approach. CvxNet, ONet, Mesh R-CNN, and the proposed approach are
tested using natural images without any pre-processing. However, CvxNet-M and ONet-M
compute a masked version of the original image and then reconstruct the 3D shape. All the
approaches are tested on the Pix3D dataset. Qualitative results are illustrated in Fig. 3.6.
Where input real RGB images, detection of the object from the image, generated masked
versions using the detection and the expected 3D shapes for every category are shown in
the first three rows, respectively. The next rows illustrate reconstructions by the baselines
and the proposed approach (last row). The results of the Cvxnet-M and ONet-M are more
accurate than those of CvxNet and ONet. That is due to the fact that they use the segmented
foreground part of an image. Reconstructions of the Mesh R-CNN are not complete. In many
scenarios, the self-occluded regions are not accurately reconstructed. In comparison, the
presented approach outperforms by estimating sharp and smoother surface without requiring
any pre-processing on the images.

A quantitative analysis highlighting the performance of the approaches on the Pix3D dataset
is illustrated in Tab. 3.2. The CvxNet-M and ONet-M perform well for both metrics in

Table 3.2 Quantitative comparison between the baselines and the approach on the Pix3D
dataset. Our approach achieves better reconstruction accuracy on a scale of F1 score in all
the cases, while ONet-M retains an advantage for the masked version of the chair category
for Chamfer L1 distance. The best values are highlighted in bold.

Category CvxNet ONet Mesh R-CNN CvxNet-M ONet-M Ours

F1 Score (%), τ=0.001 ↑ / Chamfer L1 Distance ↓
Chair 35.43/2.73 34.21/2.45 37.63/1.99 46.88/1.91 46.24/1.54 47.16/1.82
Sofa 41.99/1.94 42.45/1.91 53.61/1.76 58.35/1.68 53.73/1.75 61.58/1.63
Table 33.15/5.07 28.79/5.01 48.12/2.41 44.98/3.72 45.19/2.79 48.91/2.14

Average 36.86/3.25 35.15/3.12 46.45/2.05 50.07/2.44 48.39/2.03 52.55/1.86

comparison with CvxNet and ONet. This validates that feeding masked images to a 3D
reconstruction approach that is trained on synthetic images is beneficial. Second, CvxNet-M
and ONet-M show better results than Mesh R-CNN, with the exception of the table class.
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Figure 3.6 Qualitative comparison of the proposed approach (ours) with the baselines. The
masked images are obtained by removing the background, centering the object and padding.
CvxNet-M and ONet-M use masked images, whereas the rest of the approaches i.e., CvxNet,
ONet, Mesh R-CNN (MR-CNN), and ours use natural images.
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The problem with the table class originates at the segmentation stage: when the segmentation
is not accurate, the 3D reconstruction suffers. In comparison, our approach performs overall
well on both metrics. However, for the chair category, ONet-M outperforms ours on Chamfer
distance. That is because most of the images in the chair category contain multiple objects of
interest and at various positions. In ONet-M, the segmenter selects only one object with the
highest score and hence the reconstructor produces a good shape. Whereas, in our approach,
the encoder considers all the prominent objects in an image for gathering the features.

For testing on realistic images, we train CvxNet, ONet, and our approach on the realistic
dataset. The results are presented in Table 3.3. Although the CvxNet and ONet are trained
on the realistic dataset, they still could not perform well on the test set. That is due to the
fact that they consider background for feature learning, which is variant. On the other hand,
our approach performs well as it is trained to extract object features in the presence of the
background.

Table 3.3 Quantitative results for the realistic dataset. The performance of our approach is
comparatively better than CvxNet and ONet on both metrics.

Category Chair Sofa Table Airplane Bench Phone Display Vessel Car Avg.

F1 Score (%), τ=0.001 ↑
CvxNet 49.13 62.39 49.87 71.21 54.23 62.93 47.10 53.20 50.83 55.65
ONet 53.21 68.02 62.32 58.76 60.72 66.78 40.82 47.20 64.33 58.02
Ours 58.32 71.23 65.93 73.30 62.43 68.11 52.21 54.74 66.32 63.22

Chamfer L1 Distance ↓

CvxNet 1.83 0.87 1.82 1.01 1.32 1.19 1.95 0.92 0.87 1.31
ONet 1.52 0.91 0.83 1.22 1.58 1.27 2.06 1.06 0.92 1.26
Ours 1.48 0.78 0.71 0.93 1.21 1.03 1.89 0.87 0.83 1.08

3.3.3 Experiment 3: Quantitative results for other categories

In order to highlight the robustness of the proposed approach and the presented setup for
CvxNet and ONet, we present reconstruction results for some other categories in Fig. 3.7. For
every sample, we show two views of the reconstructed shapes. It can be observed that CvxNet
and ONet could not produce reasonable 3D shapes for real images. However, for masked
images, their reconstructions are quite good. The last column depicts shapes reconstructed by
our approach. The approach shows promising results by accurately estimating the boundary
of the objects without requiring any pre-processing on the test images.
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Image CvxNet ONet Masked CvxNet-M ONet-M Ours

Figure 3.7 Qualitative comparison among CvxNet-M and ONet-M and our approach. CvxNet-
M and ONet-M are evaluated for the masked versions of the input images. In comparison,
the proposed approach (ours) uses input images directly without any pre-processing.
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3.4 Ablation study

Comparison of YOLACT and Mask R-CNN: We consider Mesh R-CNN as one of the
baselines that computes instance segmentation in the early stage using Mask R-CNN. On
the other hand, we utilize YOLACT for the same purpose in CvxNet-M and ONet-M, as
discussed in Sec. 3.2.2. These three baselines are dependent on a segmentation method,
therefore, for unbiased experiments, we first compare the performance of YOLACT and
Mask R-CNN. Their performance on the selected categories of the Pix3D dataset is reported
in Tab. 3.4. We find that YOLACT can segment a smaller portion of images than Mask
R-CNN. The difference is large for the table category because YOLACT is trained to detect
dining tables, so it does not perform well on other kinds of tables.

Table 3.4 Missed detection by YOLACT and Mask R-CNN on the Pix3D dataset. YOLACT’s
performance is worse, especially for the table category.

Pix3D Test Set Missed Detection (%)
Category Images YOLACT Mask R-CNN

Chair 3839 4.87 0.16
Sofa 1947 5.55 0.05
Table 1870 39.36 0.21

Overall 7656 13.47 0.14

For the comparison between our and the SOTA approaches (as presented in this chapter),
only those images are selected for which both YOLACT and Mask R-CNN produce a
segmentation. The number of images for each category was thus reduced. Furthermore, by
taking into account the nature of the considered problem, we divided the test set into two
groups based on their background. All the images with the white background are added
into the first group, whereas the second group contains the rest of the images with color
backgrounds. Tab. 3.5 depicts the quantity of images in every category of the reduced test
set.

Table 3.5 Test set with color and white background (BG) group

Category Color BG White BG Total
Chair 3163 468 3631
Sofa 1375 461 1836
Table 1005 105 1110

Overall 5543 1034 6577
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3.5 Chapter summary

The objective of this chapter is to reconstruct 3D shapes from a single real image. In this
regard, an end-to-end approach is proposed that strives to extract object features from a real
image by reducing the influence of the image background. During training, a synthetic image
is fed to the encoder with its realistic version. The encoder extracts common features from
both images that represent features of the object. The extracted features are used by the
model to estimate the object’s 3D shape. During inference, we test on real images. The
proposed approach outperforms SOTA approaches which are validated by conducting a series
of experiments. Furthermore, a baseline system is designed that enables CvxNet and ONet to
extract accurate 3D shapes from real images. That system entails segmenting the object of
interest from the input images and removing the image background before passing them to
the reconstruction algorithms.

The proposed solutions estimate the 3D shape in the canonical pose irrespective of the pose
of an object in the input image. However, for many real-world applications, such as the
interaction of an articulated robot with an object, require knowledge of the object’s pose.
In the next chapter, we present a method to estimate the 3D keypoints of an object from an
RGB image, which can be used to compute the pose information.



Chapter 4

3D Keypoints Estimation from A Single
RGB Image

This chapter introduces a method to estimate keypoints in 3D space from single-view RGB
images. The 3D keypoints preserve an object’s structural information; shape, position
and orientation, which are required for solving several scene-understanding tasks, including
object detection and matching, geometrical reasoning, human-robot interaction, manipulation,
navigation in cluttered environments, path planning, etc.

Recent research has shown that these tasks can be addressed using keypoints [4, 51, 142]
as they represent Points of Interest (PoI) which are invariant to transformations including
rotation, translation, scaling, etc. [96, 1, 5, 55, 91, 93, 98]. Moreover, the ordered list of
semantic keypoints could be helpful in finding correct correspondences between the points in
two images (using 2D keypoints) [140], point clouds or meshes (using 3D keypoints) [130,
22, 90, 102, 130, 135]. Also, the correspondences between the 2D keypoints from multi-view
images can help estimate the depth [57].

Most of the recent studies use 3D keypoints for various human-related applications including
joint detection, motion capturing, pose estimation, etc., which deal with a single category
(human) and a fixed number of keypoints [58, 101, 73, 134, 106, 105, 50, 72]. On the other
hand, keypoints are also used in applications related to rigid objects (i.e. cars, chairs, etc.),
where an object’s structure and the number of keypoints may vary depending on the category.
To simplify the problem, the existing approaches train their network separately for every
category for a fixed number of keypoints.

38
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In the literature, the existing approaches for 3D keypoint estimation select the keypoints from
the given 3D data using classification techniques. This rationale inherently constrains the
selection of points only from those lying on the given object and, therefore, performing overall
well [135, 15, 89, 128, 113, 6]. Differently, the problem becomes more challenging when the
3D keypoints position has to be estimated using single-view RGB images [66, 98, 145]. This
is because the problem is severely ill-posed, and the estimated points may not necessarily lie
on the object in 3D, even if visualised correctly on the 2D image plane. Therefore, in general,
the image based approaches either estimate 2D keypoints [u, v] for two views of the same
object and then use triangulation to estimate the depths [d] [98], or estimate 2D keypoints
using RGB, RGBD and/or silhouettes and project them to the object’s 3D shapes in order to
find the 2D-3D correspondences [28]. Since such approaches use 2D keypoints to estimate
depths which do not guarantee accuracy, their performance is not as good as the point cloud
based methods [37].

In comparison, we present an approach that uses a single-view RGB image and estimates an
ordered list of keypoints in 3D space. Moreover, keypoints estimated by our approach are
equivariant (not in canonical pose), i.e., the pose of the keypoints is the same as the pose of
an object in the input image. An overview of our approach is shown in 4.1, highlighting the
key difference with the existing approaches.

Figure 4.1 Comparison with the other paradigms. Some existing methods use point clouds
(top) or multiple images representing different views of an object (middle) as inputs and
compute 2D/3D features for keypoints estimation. In comparison, the proposed approach
considers a single-view RGB image, extracts object 2D features, and use them for estimating
3D keypoints (bottom).

Our main contributions are as follows;

• The proposed approach estimates keypoints from a single-view RGB image.
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Figure 4.2 The proposed architecture. An RGB image is fed to a feature extractor to produce
object features that are up-sampled in order to achieve a Pixel-wise Representation (PWR).
Finally, a Multilayer Perceptron (MLP) is added that uses PWR for estimating 21 keypoints
in 3D space along with confidence scores.

• Unlike the existing approaches, the proposed approach estimates a confidence score
for every keypoint, which allows it to select valid keypoints from the set of estimated
keypoints.

• The estimated keypoints provide order-wise semantic information that is independent
of the object’s view.

• Our method is a flexible approach that can predict a geometry-based number of
keypoints, to accommodate inter-and-intra-class shape variations.

• The approach can be trained for various categories simultaneously and is capable of
estimating keypoints of self-occluded parts of the objects.

• The estimated keypoints can be used for downstream tasks such as shape alignment
and relative pose estimation between two objects.

4.1 Methodology

Given an RGB image, our work aims at estimating an ordered list of 3D keypoints that are
semantically and geometrically consistent across different instances of an object category.
For this, an end-to-end approach is proposed that extracts an object’s features from an image,
computes a Pixel-wise Representation (PWR) and uses the representation for the estimation
of 3D keypoints along with confidence scores. The architecture of the approach is illustrated
in Fig. 4.2.
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The presented approach is based on three modules. The first module (feature extractor) takes
an RGB image as input and produces feature vectors. These extracted features are converted
to PWR in the second module. The PWR has the same width and height as the input image.
However, instead of representing the RGB value, every pixel represents a feature for the
corresponding pixel of the input image. The third module contains a Multi-Layer Perceptron
(MLP) based on four linear layers. The PWR features are flattened to a 1D tensor before
feeding to the MLP. The MLP uses them for estimating 21 keypoints. For every keypoint, a
position in 3D space [x,y,z] and a confidence score (from 0 to 1) is computed. The confidence
score reflects how confident the network is that the keypoint exists for the object. If such a
value is greater than 0.5, it means that the predicted keypoint exists for the object, and it is
considered as a valid keypoint. Otherwise, it is discarded. In this way, the network selects
an object’s valid keypoints from the predicted 21 keypoints. So, the total number of valid
keypoints could be different for different shapes of objects.

The network is trained separately for every category (as followed in literature) as well as
jointly for all the categories. We found that the results with both methods are approximately
the same. So, we report the results of a network trained jointly for all the categories. The
network minimizes five losses: 3D position loss, 2D projection loss, separation loss, shape
consistency loss and the confidence score loss.

Estimation of the keypoints 3D postions

Considering N to be an upper bound for the number of keypoints across all the shape classes,
the valid keypoints for every object could be less than or equal to N. For example, objects in
the cars category would, in general, have a different number of valid keypoints than those in
the chairs category. Moreover, there can also be intra-class variations. In other words, the
valid keypoints are those that exist for an object and, therefore, vary with geometry.

In the ground truth, keypoints are arranged in an ordered list. Consider a set CQ = {cq1, . . . ,cqN}
representing keypoint validity in the ground truth such that cqk = 1 if keypoint exists at index
k else cqk = 0. If the object contains M valid keypoints, then we have ∑

N
k=1 cqk = M. We then

create two sets P = {pk|k = 1, ...,N i f cpk == 1} and Q = {qk|k = 1, ...,N i f cpk == 1}
containing the predicted and ground truth 3D positions, respectively, for the valid keypoints.
Here, the cardinality of the sets is |P|= |Q|= M.
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Using the above notations, the 3D position loss that measures the accuracy of the predicted
3D positions is computed using the Mean Square Error (MSE) as:

Lpos =
1
M

M

∑
i=1

∥∥pi −qi
∥∥2

2. (4.1)

where pi ∈ P and qi ∈ Q are the corresponding predicted and ground truth 3D positions,
respectively. In order to predict a more accurate position of the keypoints, we also compute
the loss in 2D space. To do so, both, the valid estimated (pi) and ground truth (qi) keypoints
are transformed from 3D ([x̄i, ȳi, z̄i]

⊤ and [xi,yi,zi]
⊤) to 2D ([ūi, v̄i]

⊤ and [ui,vi]
⊤) pixel

coordinates using the known transformation P (camera intrinsic and extrinsic) [98]. For the
2D projection loss (Lpro j) we take the Mean Absolute Error (MAE) between estimated and
ground truth 2D pixels as:

pi = [xpi,ypi,zpi]
⊤, qi = [x̄qi, ȳqi, z̄qi]

⊤,

[ui,vi]
⊤ = P(pi), [ūi, v̄i]

⊤ = P(qi),

Lpro j =
1
M

M

∑
i=1

∥∥∥[ui,vi]
⊤− [ūi, v̄i]

⊤
∥∥∥, (4.2)

Without any additional constraints, the network can predict more than one keypoint at the
same 3D location, which is not realistic. To address this, we penalize the condition when the
Euclidean distance between the predicted keypoints is less than a pre-defined hyperparameter
δ 2 using the separation loss (Lsep) defined as:

Lsep =
1

M2

M

∑
i=1

M

∑
j ̸=i

max(0,δ 2 −
∥∥pi − p j

∥∥2
2), (4.3)

where pi and p j represent the ith and jth predicted keypoints, respectively. We use δ 2 = 0.05
in our implementation to have a sufficiently large separation between the predicted keypoints.

Unlike the existing point cloud based approaches, in case of image based approach, the
keypoints may also be predicted in the object’s surrounding (or on the image background
in case of 2D predicted keypoints). We overcome this limitation by introducing a shape
consistency loss (Lshape) that forces the network to estimate keypoints closer to the object’s
surface. The loss minimizes the distances of the predicted keypoints from their nearest
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neighbor points in the ground truth point clouds. The loss can be described as:

di =
∥∥pi − kNN(pi,PC )

∥∥
2,

Lshape =
min(1,C)

max(1,C)

M

∑
i=1

di, if di > γ,
(4.4)

where, kNN() is a function that finds the nearest neighbor of a valid predicted keypoint pi

from a point cloud PC of an object which is available during the training time. The value di

is the distance of a keypoint pi from its nearest neighbor point. C is a count of considered
distances that are greater than the threshold (γ). It is used as a way to average the distances,
and when C is zero, the Lshape is set to zero. We select γ as 0.05 that represents a tolerance
distance. The final loss (Lshape) is an average of the considered distances.

Estimation of confidence scores

Confidence scores play a vital role in the proposed approach because the total number
of valid keypoints may not be the same for all the objects. During training, the ground
truth information about the valid and invalid keypoints is available in the set CQ discussed
earlier. However, since the ground truths are not available during inference, it becomes very
challenging for a network to identify the valid keypoints from the predicted ones.

The existing approaches solve this problem by either estimating a fixed number of keypoints
for all the objects in the dataset or by training their model separately for every category
(by keeping fixed keypoints for all the objects of a category). Their solutions are not ideal
because of two reasons: 1) fixing the number of keypoints may not accurately represent
objects of different shapes of the same category i.e., two chairs of different structures could
require a different number of keypoints for representing the shape more precisely, 2) training
a network separately for every category is not a generalized solution, as such networks may
work well only for those objects that have a geometric structure similar to the ones used in
training. In comparison, we solve the problem of identifying valid keypoints, by estimating a
confidence score for every predicted keypoint.

Let CP = {cp1, . . . ,cpN} represent the predicted confidence scores. We then compute the
confidence score loss (Lcon f ) as:

Lcon f =
1
N

N

∑
k=1

∥∥cpk − cqk
∥∥, (4.5)
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where cpk ∈CP could range from 0 to 1, and cqk ∈CQ could be either 1 or 0, representing
the keypoint validity in the ground truth.

So the overall network loss (Loverall) can be defined as a weighted sum of all the above
losses as:

Loverall = αpos.Lpos +αpro j.Lpro j +αsep.Lsep +αshape.Lshape +αcon f .Lcon f . (4.6)

In order to balance the effect of every loss [αpos,αpro j,αsep,αshape,αcon f ] are selected as [1,
0.33, 1, 1, 1], respectively.

Inference
During inference, the network predicts 21 3D keypoints along with their confidence scores
from a single image. All the keypoints having a confidence score greater than 0.5 are selected
as valid keypoints. The rest of the keypoints are discarded. For better visualization, the
predicted valid keypoints are illustrated on the original point cloud of the object (i.e. 4.4).

4.2 Experimental setup

The section presents the experimental details, an arrangement of the dataset, and explains
metrics selected for performance evaluation.

4.2.1 Implementation details

The feature extractor module is based on ResNet-18 that is pre-trained on ImageNet dataset
[18]. We discard its last two layers to extract features of dimensions 512x5x5. The network
is implemented in PyTorch and trained with Adam optimizer. The learning rate is 10−3, and
the batch size is 512.

4.2.2 Dataset

As extensively evaluated in previous approaches, we use the KeypointNet dataset [130] to
analyse the performance of our approach. We load pairs of the images in random views and
corresponding ground truth 3D keypoints. The images are fed to the proposed network to
estimate 3D keypoints in the same pose as the pose of input image. The 3D ground truth
keypoints are used to evaluate the accuracy of the estimated keypoints.



4.3. RESULTS AND ANALYSIS 45

4.2.3 Performance measurement

We compare our results with those of KP-Net [98]. Unlike the existing point cloud based
methods [130, 24, 41, 11, 117], their approach (in inference) uses single image and estimates
3D keypoints (pixel [u,v] and depth [d]). It estimates 3D keypoints for two views of an object.
The keypoints are then used for finding a pose (rotation matrix) between the object views.
The estimated pose is compared with the ground truth pose by computing an angular distance
error.

We follow the same procedure and estimate keypoints for two views (A and B) of an object
using our approach. However, for evaluation, we use these keypoints in two different methods.
The first method is exactly the same as KP-Net, where we compute the relative rotation
matrix (R̄) between object views using Procrustes analysis and then calculate the angular
distance error (ET ) between computed and ground truth relative rotation matrix (R) as:

ET = 2 arcsin
(

1
2
√

2
||R̄−R||F

)
, (4.7)

where ||.||F is a Frobenius norm.

As a second evaluation, we transform the estimated keypoints of view A (A = {ai|i =
1, ...,M}) using the predicted (R̄) and the ground truth (R) rotation matrix and call them
Ap = {api|i = 1, ...,M} and Aq = {aqi|i = 1, ...,M}, respectively. Generally, both the
keypoints Ap and Aq should lie on the same positions as the keypoints of view B (see
Fig. 4.4). Every keypoint api/aqi of Ap/Aq is considered as a vector from the origin
(api,aqi). An angular distance error (EP) between Ap and Aq is computed using vector dot
product as:

EP =
1
M

M

∑
i=1

arccos
(

api ·aqi

|api| |aqi|

)
, (4.8)

where M is the total number of estimated valid keypoints. For a fair comparison with the
KP-Net, we consider the first evaluation. Nevertheless, for validation on other categories,
results from both evaluations are presented.

4.3 Results and Analysis

This section evaluates the performance of the proposed approach. First, we present the
results of our approach for those categories of the KeypointNet dataset that are not tested
by the KP-Net [98]. Second, we test our approach for the three categories considering [98]
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(airplane, car and chair) and compare the results with those of the KP-Net. Third, we show
the significance of the confidence scores by computing the results for the keypoints selected
based on the estimated confidence scores with those of ground truth confidence scores.

4.3.1 Performance of the proposed approach

The proposed approach is evaluated using images with white background of 13 different
categories of the KeypointNet dataset – 10 more than the KP-Net [98]. For that, two views
of the same object are passed to the network for estimating 3D keypoints for every view. The
Procrustes analysis is used that utilizes the estimated keypoints to compute a relative pose
(rotation matrix) between the keypoints estimated in the two views. The estimated relative

Table 4.1 Error in pose estimation between two views of an object. Angular distance error
is computed in degrees between; 1) estimated and ground truth rotation matrices (Eq. 4.7)
and 2) 3D positions (Eq. 4.8) of the predicted keypoints in two views. This experiment is
conducted for white background images.

Category
ET EP

Mean Median Mean Median

Airplane 6.581 3.145 5.963 2.565
Car 6.761 2.980 5.316 2.456
Chair 13.562 5.017 11.247 4.566
Table 23.919 3.635 18.079 2.975
Vessel 14.652 4.392 11.655 3.478
Bed 28.598 12.422 25.332 9.049
Cap 16.904 8.193 13.634 6.261
Helmet 26.947 16.058 23.504 15.243
Knife 25.330 13.006 20.599 12.490
Motorcycle 9.467 3.226 6.490 2.507
Guitar 19.559 5.289 7.247 2.926
Mug 18.470 9.135 10.320 5.942
Bottle 17.118 14.854 14.674 12.013

Average 16.962 7.690 12.822 6.190

pose is compared with the original pose between in the input images (ground truth pose)
to compute the angular distance errors using the defined evaluation metrics (Eq. 4.7 and
Eq. 4.8). The angular distance errors are depicted in Tab. 4.1.
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Table 4.2 MSE is computed between the 3D positions of the predicted and ground truth
keypoints. Consider the maximum error as

√
3, the error for the estimated keypints is very

small for all the categories. This validates that the keypoints are estimated very close to the
ground truth keypoints.

Category
MSE

Mean STD

Airplane 0.006 0.017
Car 0.008 0.040
Chair 0.015 0.049
Table 0.053 0.159
Vessel 0.026 0.075
Bed 0.094 0.163
Cap 0.031 0.063
Helmet 0.062 0.076
Knife 0.008 0.006
Motorcycle 0.011 0.045
Guitar 0.003 0.006
Mug 0.026 0.056
Bottle 0.023 0.027

Average 0.028 0.060
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The error is comparatively high for some categories. That is due to the structural variation
(single/bunk beds, tables), different keypoints for similar object shapes (helmet, knife, etc.),
and differences in center of rotation and the center of mass of the object (i.e., mug).

Furthermore, to evaluate the keypoints positions to show how accurately the keypoints are
localized with respect to the positions of the ground truth keypoints. To do so, we compute
the Mean square error between the estimated and the ground truth keypoints’ 3D locations.
In Tab. 4.2 we show the mean and Standard Deviation (STD) of the error (MSE) between
predicted and ground truth 3D keypoints. Since the keypoints are normalized in a unit
volume, the maximum error (distance between the keypoints) could be

√
3. In comparison, it

can be seen that the error is very small. This validates that the keypoints are estimated very
close to the ground truth keypoints.

Qualitative results are depicted in Fig. 4.3. The first and the fourth row show the test images,
the second and the fifth row present the estimated keypoints on top of the original point
clouds of the objects, and corresponding ground truth keypoints are shown in the third and
the sixth row. It can be observed that the keypoints are estimated approximately on valid 3D
positions and are in semantic order with respect to the ground truth keypoints. Moreover, the
proposed approach is able to predict 3D keypoints for the occluded parts of the objects. For
example, one leg of the table and the bed is not visible in the images because of self-occlusion.
However, keypoints are accurately estimated for them.

4.3.2 Comparison with KP-Net

To compare our results with the KP-Net, we consider the same three categories (cars,
airplanes, and chairs) as reported in [98]. Moreover considering the same settings, we use
transparent images in this experiment. For the evaluation, we compute the angular distance
error between the estimated and ground truth pose of two views of an object using only the
Eq. 4.7 (as used by KP-Net). The error is depicted in Tab. 4.3. In the KP-Net, authors have
presented results for four different versions of their approach; 1) supervised KP-Net that
learns from ground truth 2D pixels and corresponding depths, 2) supervised KP-Net with a
pretrained Orientation Network (O-Net) that provides an object’s orientation information,
3) KP-Net (unsupervised) with O-Net, and 4) KP-Net without O-Net. It is reported that the
KP-Net without O-Net performs overall well. The first four rows of Tab. 4.3 present results
of the four versions of the KP-Net. The fifth row shows the results of the proposed approach.
The lower values show better results. It can be observed that our results are more accurate
than those of the KP-Net.
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Figure 4.3 Qualitative results of the proposed approach for other ten categories. Row (1,
4) show the input images, row (2, 5) and row (3, 6) present the corresponding estimated
and ground truth keypoints, respectively. It can be visualized that the proposed approach
estimates a semantically ordered list of keypoints even for the occluded parts of the objects.
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Table 4.3 Error in pose estimation between two views of the same object. Mean and median
angular distance errors are calculated (in degrees) between ground truth rotation and the
rotation computed by Procrustes estimates between predicted keypoints of the two views.
Results of the baselines (first four rows) are the same as reported in [98]. All the results are
produced for transparent images.

Method
Car Airplane Chair

Mean Median Mean Median Mean Median

Supervised KP-Net 16.268 5.583 18.350 7.168 21.882 8.771
Supervised KP-Net with O-Net 13.961 4.475 17.800 6.802 20.502 8.261
KP-Net with O-Net 13.500 4.418 18.561 6.407 14.238 5.607
KP-Net 11.310 3.372 17.330 5.721 14.572 5.420
Ours 5.190 2.073 3.257 2.053 10.732 4.096

Qualitative results are illustrated in Fig. 4.4. Columns (a) and (b) show two views of the
same object. The corresponding estimated keypoints are presented in columns (c) and (d),
respectively. Finally, the keypoints (and point clouds) of view A after transformation using
estimated (Aest) rotation are illustrated in (e). It can be visualized that the pose of the
transformed keypoints (e) is the same as the pose of keypoints of view B (d). The experiment
highlights that; 1) the estimated keypoints can be used for computing a pose between two
views, 2) the keypoints are in semantical order, which is independent of the object view, and
3) the network can predict keypoint of the occluded part of the object (i.e., back legs of the
chair).

4.3.3 Significance of confidence score

Furthermore, we present another experiment that highlights the significance of the confidence
score. We compare the predicted valid keypoints (to whom the network assigns confidence
greater than 0.5) with the keypoints known to be present because of ground truths. The
results are approximately the same in both cases, which validates that the confidence score
helps the network in classifying the valid keypoints for every object. The results are given in
Tab. 4.4 and Tab. 4.4 for RGB and RGBA images, respectively. The tables show the mean
angular distance error and the Standard Error (SE), which is calculated as σ/

√
n, where σ is

the standard deviation of n angular distance errors.

In a nutshell, it can be inferred that if a network could not estimate the confidence scores, it
should predict fixed numbers of keypoints as followed by the existing approaches. Otherwise,
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(a) View A (b) View B (c) KP A (d) KP B (e) KP Aest

Figure 4.4 Computing pose between two views (a) and (b) of an object. The corresponding
estimated keypoints are shown on the original point clouds in (c) and (d). The keypoints of
view A (c) are transformed to view B using estimated truth rotation matrix as illustrated in
(e).

Table 4.4 Results for white background images (RGB). Comparison of the keypoints predicted
as valid by our network based on confidence scores (Pred.) with the keypoints selected using
ground truths (GT). The pose estimation error in two views of an object is approximately the
same in both cases; either the Pred. or GT keypoints are used. Mean and SE of the pose error
(calculated in both the methods using (a) rotation matrices (Eq. 4.7) and (b) keypoints 3D
positions (Eq. 4.8)).

Category Metric
ET EP

Pred. GT Pred. GT

Airplane
Mean 3.257 3.267 2.805 2.797

SE 0.075 0.076 0.001 0.001

Car
Mean 5.190 5.187 4.040 4.057

SE 0.277 0.280 0.004 0.004

Chair
Mean 10.73 10.71 7.53 7.54

SE 0.330 0.327 0.006 0.004



4.4. ABLATION STUDY 52

Table 4.5 Results for transparent images (RGBA). Comparison of the keypoints predicted as
valid by our network based on confidence scores (Pred.) with the keypoints selected using
ground truths (GT). The pose estimation error in two views of an object is approximately the
same in both the cases; either the Pred. or GT keypoints are used. Mean and SE of the pose
error (calculated in both the methods using (a) rotation matrices (Eq. 4.7) and (b) keypoints
3D positions (Eq. 4.8))

Category Metric
ET EP

Pred. GT Pred. GT

Airplane
Mean 6.581 6.552 5.963 5.974

SE 0.195 0.194 0.003 0.003

Car
Mean 6.761 6.764 5.316 5.334

SE 0.318 0.318 0.004 0.004

Chair
Mean 13.56 13.56 11.25 11.25

SE 0.340 0.340 0.004 0.004

It may not be possible for the network to separate valid keypoints from the total predicted N
(21) keypoints. Moreover, the confidence score allows jointly training a network for several
categories with a different number of keypoints. Otherwise, either the network can be trained
for a single category, or the total keypoints should be fixed for all the categories.

4.4 Ablation study

4.4.1 Network without the PWR module

We revise the experiments for the transparent images of the three categories by removing
the PWR module from the proposed network. The network can still attain better results than
KP-Net [98]. However, the accuracy has reduced slightly in comparison with the complete
network (with the PWR module). The comparison is shown in Tab. 4.6.

Table 4.6 Results for the architecture with and without the PWR module

Method
Cars Planes Chairs

Mean Median Mean Median Mean Median

Ours with PWR 5.190 2.073 3.257 2.053 10.732 4.096
Ours without PWR 6.293 2.538 4.924 2.860 13.569 5.721
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4.4.2 Test for realistic images

We evaluate our approach for images with real backgrounds that are taken from SUN
dataset [119]. The angular distance error (in degrees) in pose estimation between two views
of an object is depicted in Tab. 4.7.

Table 4.7 Results of our approach for images with a real background. The angular distance
errors are calculated in degrees between the predicted and the ground truth rotation matrix
using Eq. 4.7.

Method
Car Airplane Chair

Mean Median Mean Median Mean Median

Ours with real background 41.47 12.84 51.01 29.27 70.782 61.52

Qualitative results of the proposed approach for realistic images are shown in Fig. 4.5.
Column (a) shows the input images, whereas columns (b) and (c) depict the estimated and the
corresponding ground truth keypoints. The experiment shows that the results of real images
are much worse than those of synthetic images; RGB with a white background or RGBA
with transparent background. That is due to the fact that the network could not separate the
object from the background and hence estimates some keypoints in the surrounding. This
is our future task to improve the network for estimating more accurate 3D keypoints from
images with real background.

4.4.3 Distribution of angular distance error

We present the distribution of the angular distance error computed between predicted and
ground truth rotations (using Eq. 4.7). We consider RGB (white background) and RGBA
(transparent background) images. The corresponding histograms representing the computed
distributions are shown in Fig. 4.6. It is observed that in both the cases RGB (Fig. 4.6a)
and RGBA (Fig. 4.6b), the error for most of the test samples lies within 0 to 5 degrees. The
error is less when RGBA images are used. Moreover, the error is comparatively high for the
airplane category.

4.5 Chapter summary

The chapter presents an end-to-end solution for 3D keypoints estimation from a single-view
RGB image. The proposed approach extracts object features from an image, computes
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(a) Input Image (b) Estimated keypoints (c) GT keypoints

Figure 4.5 Qualitative results of our approach for realistic images. (a) shows test images con-
taining an object with a random background, (b) and (c) illustrate predicted and corresponding
ground truth keypoints on the object’s point cloud, respectively.
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(a) RGB images
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Figure 4.6 Distribution of angular distance error calculated between predicted and ground
truth rotations computed using Eq. 4.7. (a) and (b) show results for RGB (white background)
and RGBA (transparent) images, respectively.

pixel-wise features by upsampling, and uses them for estimating 3D keypoints along with
confidence scores that reflect the validity of the keypoints. It enables the network to predict a
different number of keypoints based on the object’s shape. The keypoints are estimated in an
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ordered semantic list, which increases its significance. Moreover, the network can be trained
together for all the classes. The approach is evaluated by computing the pose between two
views of an object. The presented results show that the proposed approach outperforms the
SOTA approaches.

We observed that the presented approach learns to estimate keypoints only from images
without considering any 3D information as input. The estimations can be improved by
utilizing complete point clouds of the objects. As an extension of the approach we have
presented in this chapter, in the next chapter, we propose a teacher-student network that
leverages point cloud data during training to estimate the keypoints. During inference, the
network estimates the same keypoints from only RGB images.



Chapter 5

CDHN: Cross-Domain Hallucination
Network For 3D keypoints Estimation

This chapter presents a novel approach “Cross-Domain Hallucination Network For 3D
keypoints Estimation” (CDHN) that extends the method presented in the previous chapter
(Chap. 4), “Supervised Approach for 3D Keypoints Estimation From RGB Images”. In this
chapter, we call the previously proposed approach “Ours w.o. H-Net”. Where, the H-Net
represent the Hallucination network, which is the major difference between both the proposed
approaches. It can be observed that the method (Ours w.o. H-Net – as shown in Fig. 4.2) uses
only the RGB images to estimate 3D keypoints. Estimating 3D information directly from 2D
information is a difficult task. Such approaches those only based on the images, generally
could not achieve an accuracy as good as those using point cloud data as input. We observed
that we could improve the accuracy of the keypoints estimation approach as presenting in
the previous chapter (Fig. 4.2) by distilling the knowledge from point clouds of the original
objects that are not required during the inference. Therefore as an extension, in this work we
present an approach to distil knowledge from a teacher module of our network trained with
3D point cloud data and feed this information to a student module that learns to predict the
features of the teacher module directly from single-view RGB images. The framework of our
approach (which is inspired from [43, 27, 103, 38, 26]) is illustrated in Fig. 5.1.

In step 1, the network is trained with the teacher module (encoder E3 fed with point cloud
data) to estimate 3D keypoints from images and point clouds. In step 2, the student module
(encoder E2) learns from the pretrained teacher module to hallucinate (i.e., produce) 3D
features from RGB images. In step 3, at inference time, instead of using the teacher module,

57
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Figure 5.1 Overview of the proposed approach. In the first step, the network is trained with
a teacher module (encoder E3) to estimate 3D keypoints from images and point clouds. In
step 2, the hallucination student module (encoder E2) learns to produce 3D features using
the pretrained teacher module. In step 3, the network uses the student module instead of the
teacher in order to estimate 3D keypoints only from images. In addition, the network also
predicts confidence scores to identify valid keypoints among the predicted ones.

the network uses the student module and estimates the 3D keypoints from single-view images
without using the point cloud data.

Our contributions are as follows:

• We present an approach that leans to produce 3D features directly from RGB images
without using point clouds

• The proposed approach estimates keypoints from single-view RGB images by leverag-
ing information learnt from 3D data during training.

• Our approach outperforms the State-Of-The-Art (SOTA) approaches for all the cate-
gories.

5.1 Proposed approach

Given a single-view RGB image we seek to estimate an ordered list of 3D keypoints that
best describes the PoI of an object. Such keypoints should be semantically and geometrically
consistent for different viewing angles of an object. The proposed approach estimates total N

keypoints along with their confidence scores. These scores indicate the probability of the
predicted keypoints being valid for an object. So, the number of valid keypoints could vary
for different objects.

The architecture of the proposed approach is illustrated in Fig. 5.2. It is based on three basic
modules: feature extractor, residual blocks and 3D keypoints estimator. For extracting the
features from images and point clouds, three different encoders are used. Encoders E1 and E2
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Figure 5.2 Proposed architecture – In first step, the teacher module (E3) that extracts 3D
features (F3D) from point clouds is used in the network along with the encoder E1 that
extracts 2D features (F2D) from images. Both the 2D and 3D features are concatenated and
are utilized in the network training for estimating the 3D keypoints. In second step, keeping
the teacher modules frozen, the student module (E2) is trained to learn from the pretrained
teacher module E3 to produce 3D features (F3D) from RGB images that are similar to those
of F3D. In third step, during inference, the student module E2 is used in the network that
enables estimating 3D keypoints only from images. Furthermore, the network also estimates
confidence scores that represent a validity of every estimated keypoint.

use the ResNet backbone [36] to extract 2D (F2D) and 3D (F3D) features, respectively, from
the given RGB image. The encoder E3 is based on PointNet [78] and it extracts 3D features
(F3D) form point clouds during training. The 2D (F2D) and 3D (F3D or F3D) features are
concatenated and passed to the three cascaded residual blocks. Each residual block (detailed
in Fig. 5.3) contains a pair of linear layers with batch normalization connected via ReLU,
and a skip connection with a single linear layer. Finally, the refined features of the residual
blocks are used by keypoints estimator (having two branches based on linear layers) that
estimates keypoints’ position in 3D space [x,y,z] and their respective confidence scores [0 to

1]. The confidence scores reflect probabilities of the keypoints to be valid for an object. All
the keypoints with the score greater than the threshold (τ) are considered as valid for the test
object. We select τ as 0.5.

The network is trained in a teacher-student fashion. In the first step, the teacher module (E3)
is trained with the network to estimate 3D keypoints from both single-view RGB images
and point clouds. In the second step, the student module (E2) is trained to learn from the
pretrained teacher module E3 to hallucinate (i.e. produce) 3D features (F3D) from RGB
images that are similar to those of point clouds (F3D). At this time, the teacher module is
frozen so only the E2 module is updated. During inference, the pipeline uses modules E1

and E2 to extract the features F2D and F3D, respectively, from a single RGB input image.
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Figure 5.3 Architecture of the residual blocks. Cin and Cout are the respective lengths of the
input and output features, and B denotes the batch size.

Estimation of 3D keypoints position

The 3D positions are estimated by minimizing four losses, viz., 3D position loss, 2D projec-
tion loss, separation loss and shape consistency loss. The loss functions are exactly the same
as the ones used in the earlier proposed approach presented in Chap 4. However, for easy
visualization, we write the functions here. For the detailed description, see Sec. 4.1 of the
Chap. 4.

Considering N to be an upper bound for the number of keypoints across all the shape classes,
the valid keypoints for every object could be less than or equal to N. In the ground truth,
keypoints are arranged in an ordered list. Consider a set CQ = {cq1, . . . ,cqN} representing
keypoint validity in the ground truth such that cqk = 1 if keypoint exists at index k else
cqk = 0. If the object contains M valid keypoints, then we have ∑

N
k=1 cqk = M. We then

create two sets P = {pk|k = 1, ...,N i f cpk == 1} and Q = {qk|k = 1, ...,N i f cpk == 1}
containing the predicted and ground truth 3D positions, respectively, for the valid keypoints.
Here, the cardinality of the sets is |P|= |Q|= M.

Using the above notations, the loss functions to estimate the 3D position of the keypoints can
be described as follows;

– Position loss (Lpos): computes an error between 3D positions of the estimated and the
ground truth keypoints.

Lpos =
1
M

M
∑

i=1

∥∥pi −qi
∥∥2

2

– Projection loss (Lpro j): computes an error between the 2D projected positions (pixel
coordinates) of the estimated and the ground truth keypoints.
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pi = [xpi,ypi,zpi]
⊤, qi = [x̄qi, ȳqi, z̄qi]

⊤,

[ui,vi]
⊤ = P(pi), [ūi, v̄i]

⊤ = P(qi),

Lpro j =
1
M

M

∑
i=1

∥∥∥[ui,vi]
⊤− [ūi, v̄i]

⊤
∥∥∥

– Separation loss (Lsep): penalizes the condition where the Euclidean distance among the
keypoints estimated for a single object is less than the pre-defined hyperparameter δ 2 which
is selected as 0.05.

Lsep =
1

M2

M
∑

i=1

M
∑
j ̸=i

max(0,δ 2 −
∥∥pi − p j

∥∥2
2)

– Shape loss (Lshape): computes the distance (di) between every keypoint from its nearest
neighbour point in the ground truth point cloud. Thus, it forces the keypoints to be estimated
closer to the object.

di =
∥∥pi − kNN(pi,PC )

∥∥
2,

Lshape =
min(1,C)

max(1,C)

M

∑
i=1

di, if di > γ,

where, γ represents the tolerance threshold and is selected as 0.05.

Estimation of confidence scores

Confidence scores play a vital role in the proposed approach because it helps the network,
during the inference, in identifying the valid keypoints out of the estimated N keypoints.
A detailed description of the confidence scores has been presented in the previous chapter
(Chap 4).

To estimate the confidence loss, instead of using the absolute loss between the prediction
and the ground truth labels as we did in the previous chapter, we use the cross entropy loss.
The notion is to consider the confidence score estimation as a classification problem that
classifies the keypoints with respect to the object’s shape. The confidence score loss (Lcon f )
can be defined as:

Lcon f =− 1
N

N

∑
k=1

cqk · log(cpk)+(1− cqk) · log(1− cpk), (5.1)

where cpk ∈CP = {cp1, . . . ,cpN} could range from 0 to 1, and cqk ∈CQ could be either 1 or
0 representing the keypoint validity in the ground truth.
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The confidence and keypoints position losses are used to update the weights of the image
based 2D (E1) and the point cloud based 3D (E2) encoder. So the combined loss (Lmodel)
can be defined as a weighted sum of all the above losses as:

Lmodel = αpos.Lpos +αpro j.Lpro j +αsep.Lsep +αshape.Lshape +αcon f .Lcon f . (5.2)

In order to balance the effect of every loss [αpos,αpro j,αsep,αshape,αcon f ] are selected
heuristically (by considering the ablations presented in Tab. 5.6) as [1, 0.33, 1, 0.5, 1],
respectively.

Estimation of 3D features (F3D)

Since our objective is to estimate 3D keypoints from single-view RGB images, the network
estimates 3D features from the same RGB images which are used to extract the 2D features.
To do so, the network uses a ResNet based encoder E2. For the encoder’s optimization,
we compute the feature loss (L f eature) by comparing the 3D features (F3D) computed from
images (by encoder E2) with those (F3D) computed from the point clouds (by encoder E3). It
can be described as:

L f eature =
1
K

K

∑
i=1

∥∥∥F3D −F3D

∥∥∥
1
, (5.3)

where K is the total number of extracted features. The loss is used to update weights of the
encoder E2, by freezing the rest of the network modules.

Inference

During inference, the network does not require point clouds. Instead it uses only the
single-view images to extract both 2D (F2D) and 3D (F3D) features. Both the features are
concatenated before forwarding to the residual blocks. The rest of the network modules
(residual blocks and keypoint estimator) are the same as training network. Moreover, the
network uses the confidence scores for classifying the valid keypoints instead of using ground
truth information.

5.2 Experimental setup

In this section, we present implementation details, the dataset that is used in the experiments,
and the performance evaluation metrics.
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5.2.1 Implementation details

For image based encoders (E1 and E2) we use the ResNet-18 which is pretrained on the
ImageNet dataset [18]. Both the encoders have same architecture, however, their weights are
not shared. We update the last layers in order to get the features of dimension 512×1. For
extracting the features from point clouds, we use a classification network of the PointNet
(E3). However, instead of using the Multilayer Perceptron (MLP) after the global feature
layer, we add linear layers to produce features of the same dimensions as the dimensions
of the features of E1 and E2 (512×1). Moreover, it is trained from scratch. The proposed
network is implemented in PyTorch and trained using the Adam optimizer. We perform two
trainings; first, we train the encoder E1 and E3, and second, we train the encoder E2. The
learning rate in both cases is set to 10−5.

5.2.2 Dataset

We use the KeypointNet [130] dataset in our experiments. Moreover, we use our extended
version of the KeypointNet dataset with 24 random rotations. We load the data images, point
clouds, and the corresponding ground truth keypoints simultaneously in every batch. The
images and point clouds are passed to the proposed network in pairs to estimate the keypoints
in 3D space. The ground truth keypoints are used to evaluate the estimates. We use the same
data splits as provided by KeypointNet dataset. We evaluate the proposed approach for the
public categories of the KeypointNet dataset. However, for comparison with the KP-Net and
StarMap, we consider the same three categories as considered by KP-Net.

5.2.3 Performance metrics

We test the proposed network for two views (A and B) of the same object. The network
estimates two sets of valid keypoints, one for each view. We use Procrustes analysis [82]
to estimate transformation (ET ) between both sets of the predicted keypoints. We evaluate
the performance of our approach by considering the same two metrics as we used in the
previous chapter (Chap. 4). Using the first metric, we compute the angular distance error
(ET ) between the estimated (Rest) and the ground truth (Rgt) transformation matrices as:

ET = 2 arcsin
(

1
2
√

2
||Rest −Rgt ||F

)
.

Using the second metric, we compute the angular distance error between the 3D positions
(Aest = {aei|i = 1, ...,M}) of the valid estimated keypoint and the corresponding positions
(Agt = {agi|i = 1, ...,M}) of the ground truth keypoints as:
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EP = 1
M

M
∑

i=1
arccos

(
aei . agi
|aei| |agi|

)
.

For a fair comparison with the KP-Net, we consider the first evaluation. Nevertheless for
validation on other categories, results from both evaluations are presented.

5.3 Results and comparison

Comparison with baseline approaches

We compare against KP-Net [98], StarNet [145] and the previously proposed approach in
the Chap. 4 as being the methods that compute 3D keypoints from a single-view RGB
image at a testing time as we do. Since, the major difference between our previous and the
newly proposed approach is the Hallucination Network (H-Net), in this chapter we call the
previously proposed approach is as “Ours w.o. H-Net”.

By following the same procedure as reported in the KP-Net paper [98], we load the test set in
pairs of images, representing two random views of the same object. The network estimates
the keypoints for both views which are later used for computing the relative pose. The error
in estimated and ground truth poses is calculated using ET as done by KP-Net. We consider
the results of KP-Net as reported in [98], whereas, we use the publicly available StarNet’s
model that is trained on Pascal3D+ dataset [118]. For a fair comparison, we test on the same
synthetic test set (in the next sections, we also present its performance for a realistic test set).
Furthermore, before computing the relative pose we normalize the 3D keypoints estimated
by the StarMap with respect to the corresponding ground truth point clouds. The comparison
is given in Tab. 5.1.

Angular distance errors between the keypoints estimated in two views by the proposed CDHN
are always (for all the categories) lower than those of the SOTA approaches, i.e. four versions
of the KP-Net, StarMap and our approach without H-Net. The performance of the CDHN is
superior because, unlike our method, the 3D keypoints estimation module of the KP-Net and
StarMap rely on 2D key points, so their 3D estimation may contain errors [49]. Secondly,
they do not use 3D data during training for reasoning in the 3D space (i.e., finding the 3D
positions). In comparison, our method leverages point cloud data for estimating a sparse
set of 3D keypoints and learns to generate 3D features directly from single-view images.
Interestingly, the error is relatively high for chair category in all the approaches. This happens
because of large intra-class shape variation for this category, yet the angular distance error
for CDHN is lower than that of SOTA approaches.
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Table 5.1 Comparison with the SOTA approaches based on ET . Mean and median angular
distance errors are calculated using the ground truth and the estimated rotations between two
views of a same object.

Method
Airplane ↓ Car ↓ Chair ↓

Mean Median Mean Median Mean Median

Sup. KP-Net 18.350 7.168 16.268 5.583 21.882 8.771
Sup. KP-Net + O-Net 17.800 6.802 13.961 4.475 20.502 8.261
KP-Net + O-Net 18.561 6.407 13.500 4.418 14.238 5.607
KP-Net 17.330 5.721 11.310 3.372 14.572 5.420
StarMap 57.89 64.04 64.31 67.93 61.39 69.01
Ours w.o. H-Net 3.257 2.053 5.190 2.073 10.732 4.096
Ours (CDHN) 3.171 2.048 5.057 2.057 9.582 4.084

(a) View A (b) View B (c) KP A (d) KP B (e) Rest(KP A)

Figure 5.4 Visualizations of the keypoints estimated by CDHN, for computing a pose between
two views (a) and (b) of an object. The corresponding estimated keypoints are shown on the
original point clouds in (c) and (d). The keypoints of view A (c) are transformed to view B
using the estimated rotation matrix as illustrated in (e). It can be seen that the keypoints in
(d) and (e) lie in very similar places. Also, their semantic order is maintained.

The qualitative results of CDHN are given in Fig. 5.4, showing the predicted keypoints
(Fig. 5.4c, Fig. 5.4d) for two views A and B (Fig. 5.4a, Fig. 5.4b) of the same object. Rest

denotes the estimated transformations between views A and B. The transformed version of
the predicted keypoints for view A using Rest are shown in Fig. 5.4e. It can be observed
that the predicted keypoints for view B (Fig. 5.4d) and the transformed version of view A
(Fig. 5.4e) look very similar. This indicates that the estimated pose is almost the same as the
ground truth pose.
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(a) KP-Net [98]
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(b) StarMap [145]
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(c) Ours w.o. H-Net
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(d) Ours (CDHN)

Figure 5.5 Distribution of angular distance error between ground truth and predicted relative
rotations for two random views of an object. The error distribution is averaged across car,
airplane, and chair categories.

We also present a comparison (in Fig. 5.5) based on the distribution of the angular distance
errors between ground truth pose and the pose estimated by the SOTA approaches between
the two views of an object. It shows that the maximum pose error of CDHN lies between 0◦

to 20◦ which is lower than those of SOTA approaches. Moreover, 61.2% of the pose error
lies between 0◦ to 5◦ in case of the CDHN which is approximately 6.2% and 3.2% more than
those of KP-Net (55%) and our approach without H-Net (58%), respectively. Furthermore,
the errors also lie from 170◦ to 180◦ in the case of the KP-Net which is not the case in our
approach. The errors of the StarMap lie between 0◦ to 150◦, which shows that the estimated
keypoints are not more useful for relative pose estimation. For more clarity, we also present
the Cumulative Distribution Function (CDF) of the average angular distance errors in Fig. 5.6.
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Figure 5.6 Cumulative Distribution Function (CDF) of the average angular distance errors
depicted in the Fig. 5.5.

It can be observed that the CDF of the CDHN (continuous green plot) is comparatively higher
than the other approaches (i.e., CDHN reaches the maximum CDF value before the other
approaches).

A conclusion from this experimental evaluation is that the proposed CDHN outperforms the
existing SOTA approaches as well as the previously proposed approach without H-Net.

Evaluations for other categories

The proposed approaches (with and without H-Net) are evaluated for the other KeypointNet
categories. In this experiment, results are evaluated using both the performance metrics
ET and EP as given in Tab. 5.2. The proposed approaches remain successful in estimating
keypoints for other categories. The lower angular distance error shows a correspondence
between the keypoints predicted in the two views. It can be observed that the errors for all
the categories are lower in case of CDHN. The error is slightly high for some categories due
to different reasons including the structural variation (single/bunk beds, tables), different
keypoints for similar object shapes (helmet, knife, etc.), and differences in the center of rota-
tion and the center of mass of the object (i.e. mug) and symmetry of the shapes. Qualitative
results are given in Fig. 5.7. Rows 1 and 4 represent the images used for the evaluation. Rows



5.3. RESULTS AND COMPARISON 68

Table 5.2 Performance evaluation of the proposed approaches (with and without H-Net) for
the other categories. Angular distance error in the pose estimated between two views is
calculated using the both performance metrics (ET and EP).

Category
Ours w.o. H-Net [148] Ours (CDHN)
ET ↓ EP ↓ ET ↓ EP ↓

Mean Median Mean Median Mean Median Mean Median

Table 23.92 3.63 18.08 2.97 20.32 3.36 16.03 2.82
Vessel 14.65 4.39 11.66 3.48 11.80 4.18 9.29 3.36
Bed 28.60 12.42 25.33 9.05 27.32 8.36 19.03 7.82
Cap 16.90 8.19 13.63 6.26 15.52 8.01 12.32 6.19
Helmet 26.95 16.06 23.50 15.24 23.37 14.23 17.74 10.36
Knife 25.33 13.01 20.60 12.49 22.76 12.62 18.19 11.43
Motorcycle 9.47 3.23 6.49 2.51 9.01 3.05 5.08 2.28
Guitar 19.56 5.29 7.25 2.93 18.13 4.85 6.76 2.87
Mug 18.47 9.14 10.32 5.94 13.01 7.07 9.63 4.68
Bottle 17.12 14.85 14.67 12.01 15.84 13.19 13.72 11.03
Average 20.10 9.02 15.15 7.29 17.71 7.89 12.78 6.28

2 and 5 show the keypoints estimated by the proposed approach, and their corresponding
ground truth keypoints are illustrated in rows 3 and 6. These results indicate that the proposed
method successfully estimates the 3D keypoints, not just for the airplane, car and chair
categories, but also for other categories having varying and complex geometries.

Comparison on the realistic dataset

To test our approach on more realistic images (close to real images), we render the images
by placing the object in the center of the real backgrounds selected randomly from the SUN
dataset [119]. The rest of the evaluation procedure is the same as discussed earlier. Since
KP-Net [98] has not reported quantitative results for real/realistic dataset in their paper, we
compare our approach with the StarMap. The comparison is given in Tab. 5.3. This can be
observed that the angular distance error of StarMap is almost the same for both the datasets;
synthetic and realistic. It is due to two reasons; first, the 3D keypoints are estimated using the
2D keypoints, which are the same for both datasets, second, the 3D keypoints are estimated
for non-occluded regions and thus are not feasible for relative pose estimation. Therefore,
the error is comparatively high for all the evaluated categories. In comparison, CDHN
outperforms the SOTA approaches including the previously proposed network without H-Net.
This validates the significance of the H-Net in the presented CDHN.
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(a) Table (b) Vessel (c) Bed (d) Cap (e) Helmet

(f) Knife (g) Motorcycle (h) Guitar (i) Mug (j) Bottle

Figure 5.7 Qualitative results of the proposed approach for remaining categories. Row (1,
4) show the input images, row (2, 5) and row (3, 6) present the corresponding estimated
and ground truth keypoints, respectively. It can be visualized that the proposed approach
estimates a semantically ordered list of keypoints even for the occluded parts of the objects.

5.4 Ablation studies

5.4.1 Significance of the confidence scores in our approach

Since, the confidence scores help in classifying the valid and invalid keypoints from the
predicted N keypoints, here we evaluate their classification accuracy. To do so, first we
classify the estimated keypoints using the confidence scores and the ground truth information.
Then the similarity in the classified valid and invalid keypoints is computed, that represents a
classification accuracy of the confidence scores. Since, the confidence score is based on the
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Table 5.3 Evaluation of the proposed approach on the realistic dataset. The relative angular
distance error between two views of an object has been improved by the proposed CDHN.

Method
Airplane ↓ Car ↓ Chair ↓

Mean Median Mean Median Mean Median

StarMap 60.17 64.34 64.42 69.70 76.11 85.81
Our w.o. H-Net 51.010 29.270 41.470 12.840 70.782 61.520
Our (CDHN) 37.324 14.302 29.147 8.638 59.322 46.849

threshold τ , we repeat the experiment for its different values. The classification accuracy (in
%) is given in the Tab. 5.4. It can be noticed that the accuracy of the valid selections is above
93% for τ ≤ 0.5.

Table 5.4 Classification accuracy (in %) of the valid estimated keypoints by the confidence
scores w.r.t. those using the ground truth information. The results for different values of τ

are presented.

τ 0.99 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
Airplane 91.99 92.34 92.67 92.88 93.02 93.15 93.25 93.36 93.44 93.56
Car 96.76 96.92 97.07 97.15 97.22 97.26 97.31 97.37 97.42 97.47
Chair 96.29 96.33 96.32 96.29 96.25 96.17 96.10 96.02 95.88 95.68

Furthermore, a bar chart illustrating the count of the estimated valid keypoints is shown in the
Fig. 5.8. It can be observed that the total classified valid keypoints are approximately equal
in both the cases; either we use predicted confidence scores or the ground truths for valid
keypoints selections. We identified that the 95.53% of the keypoints are correctly classified
for τ ≥ 0.5. The percentage slightly increases for τ < 0.5, however, it may consider a wrong
keypoint with probability less than 0.5.

5.4.2 Estimated (τ ≥ 0.5)s. ground truth valid keypoints

Furthermore, we show the error in estimated pose between the two views of an object using
the valid predicted keypoints selected for τ ≥ 0.5 and the keypoints identified using ground
truth information. This comparison is shown in Tab. 5.5 for both the performance metrics (ET

and EP). The Standard Error (SE) is calculated as σ/
√

n, where σ is the standard deviation
of n angular distance errors. From Tab. 5.5, we observed that the two sets of keypoints lead
to similar results.
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Figure 5.8 Average valid keypoints per category. Comparison of the valid keypoints selected
based on confidence scores for different τ with the ground truth keypoints (leftmost).

5.4.3 Performance for selected losses.

In order to identify the contribution of every loss in the proposed approach, we train our
network by omitting each loss one by one from the five keypoints estimation losses. The
results as given in Tab. 5.6 highlight that the network with all the losses performs overall
well. Moreover, the position and the confidence score loss significantly influence the model’s
performance. It is because the prediction of an accurate 3D position and the identification of
valid keypoints are the essential elements for 3D keypoints estimation. Shape loss plays a
vital role by forcing the keypoints towards the object’s surface, where as the contribution of
the projection and the separation loss is comparatively low. These losses are more important
for the approaches that estimate 2D keypoints first and then use them to estimate depth
information. The qualitative results for every experiment are illustrated in Figs. 5.9 to 5.13.
In every figure, columns (a) and (d) show two different test images; the predicted keypoints
are illustrated in (b) and (e), and (c) and (f) are the corresponding ground truth keypoints,
respectively.

The performance of the network without Lsep (Fig. 5.9) and Lpro j (Fig. 5.10) is slightly
decreased in comparison with the network with all the losses. The results of the network
trained without Lshape are illustrated in Fig. 5.11. It can be observed that some of the
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Table 5.5 Comparison of the valid estimated keypoints selected by the confidence scores
(Conf.) for τ ≥ 0.5 with those selected using the ground truth information (GT). Mean and
Standard Error (SE) of the angular distance error between two views of an object is computed
using both the evaluation metrics.

Category
ET ↓ EP ↓

Mean SE Mean SE
Conf. GT Conf. GT Conf. GT Conf. GT

Airplane 3.171 3.169 0.074 0.072 2.816 2.794 0.001 0.001
Car 5.058 5.057 0.238 0.215 3.893 3.859 0.005 0.004
Chair 9.597 9.582 0.325 0.310 7.287 7.273 0.007 0.004

(a) Input (b) Prediction (c) GT (d) Input (e) Prediction (f) GT

Figure 5.9 Qualitative results of the proposed network trained without Lsep.

keypoints are predicted outside the object (in the surrounding). this is because we have
ignored the loss (Lshape) that minimizes the distances of the estimated keypoints from the
surface of the object.

Fig. 5.12 shows the keypoints estimated by the network that is trained without the confidence
loss (Lcon f ). The network predicts random confidence which could be correct or incorrect.
We select the keypoints for which the confidence scores are greater than or equal to 0.5.
It can be observed that the number of predicted valid keypoints are less than those in the
ground truth. Moreover, sometimes invalid keypoints are also classified as valid due to the
incorrect confidence scores. Due to these erroneous keypoints, the error in pose estimation is
increased.
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Table 5.6 Performance of the proposed approach (CDHN) for selected losses.

Loss
Airplane ↓ Car ↓ Chair ↓ Avg. Err. inc.↓

Mean Median Mean Median Mean Median Mean Median

ET
All losses 3.17 2.05 5.06 2.06 9.58 4.08 – –
w.o. Lsep 3.18 2.05 5.06 2.06 9.59 4.09 0.01 0.01
w.o. Lpro j 3.19 2.09 5.09 2.07 9.94 4.09 0.14 0.02
w.o. Lshape 4.39 2.88 7.45 2.57 12.84 4.92 2.29 0.73
w.o. Lcon f 40.39 19.75 32.36 10.18 35.95 14.80 30.29 12.18
w.o. Lpos 79.10 72.96 94.59 99.54 75.26 65.90 77.05 76.73

EP
All losses 2.79 2.03 3.86 2.06 7.28 4.07 – –
w.o. Lsep 2.80 2.03 3.86 2.06 7.28 4.07 0.01 0.01
w.o. Lpro j 2.83 2.04 3.89 2.07 7.45 4.08 0.08 0.01
w.o. Lshape 3.94 2.47 6.10 2.38 9.60 4.64 1.90 0.45
w.o. Lcon f 26.39 12.76 19.74 8.48 20.54 10.15 17.58 7.75
w.o. Lpos 56.00 54.18 68.44 70.34 56.58 47.91 55.70 54.76

(a) Input (b) Prediction (c) GT (d) Input (e) Prediction (f) GT

Figure 5.10 Qualitative results of the proposed network trained without Lpro j.

Fig. 5.13 shows the visualizations of the keypoints estimated by the network that is trained
without the position loss (Lpos). All the estimated keypoints are correctly identified and
these lie on the surface of the objects. However, they are in random 3D positions, i.e., their
order is not maintained. These experiments highlight that confidence and position loss can
have a significant influence on performance.
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(a) Input (b) Prediction (c) GT (d) Input (e) Prediction (f) GT

Figure 5.11 Qualitative results of the proposed network trained without Lshape.

(a) Input (b) Prediction (c) GT (d) Input (e) Prediction (f) GT

Figure 5.12 Qualitative results of the proposed network trained without Lcon f .

5.4.4 Performance of the Hallucinated module.

This ablation highlights the performance of the hallucinated 3D features from the student
(E2) module of the network. The proposed approach is evaluated separately for both the
teacher (E3) and the student module. It is found that the error in pose estimation is low
when the teacher module is used. However, in the case of the student module, the error has
increased by 1.09◦ and 0.9◦ on scale of ET and EP, respectively (compared in Tab. 5.7). This
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(a) Input (b) Prediction (c) GT (d) Input (e) Prediction (f) GT

Figure 5.13 Qualitative results of the proposed network trained without Lpos.

Table 5.7 Performance of the approach for the teacher and the student module.

Metric Module
Airplane ↓ Car ↓ Chair ↓

Mean Median Mean Median Mean Median

ET
Teacher (E3) 2.847 2.016 4.062 2.019 7.628 4.039
Student (E2) 3.171 2.048 5.057 2.057 9.582 4.084

EP
Teacher (E3) 2.212 2.013 3.233 2.014 5.773 3.340
Student (E2) 2.794 2.024 3.859 2.055 7.273 4.068

result is due to two reasons: first, the features extracted by the teacher module from the point
clouds (F3D) are more accurate than those (F3D) extracted by the student module from the
images, and second, the student module can learn up to a limited level. Nevertheless the
angular distance error of the network using the student module (5.936◦) is 8.46◦ lower than
that of KP-Net (14.40◦).

5.5 Chapter summary

The chapter presents an approach that estimates 3D keypoints from single-view RGB images.
During training, it exploits 3D features extracted from the object’s point clouds to learn to
produce similar 3D features from RGB images. In inference, the network extracts both the
2D and 3D features from images without requiring the object’s point clouds. The estimated
keypoints are compared with those of SOTA approaches by utilizing them for finding the
pose between two views of an object. Moreover, unlike the existing approaches, the proposed
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approach computes confidence scores for every predicted keypoint. The scores allow the
network to classify valid keypoints from the total N predicted keypoints. Thus, the approach
is not limited to a fixed number of keypoints, it can predict different keypoints based on the
object’s shape. Furthermore, this characteristic of the proposed approach allows it to train
jointly for several categories.

The presented results validate that the estimated keypoints can be used to compute the
relative pose between objects. Moreover, they can also be used to estimate an object’s pose,
especially in 3D reconstruction tasks [17, 147, 12], which estimate an object’s shape without
pose information.

Although the approach presented in this chapter outperforms the existing image based
approaches, it is a supervised approach and hence requires a huge dataset containing human-
annotated ground truth keypoints. Creating such datasets and annotating all the objects,
especially in real scenes is a resource-consuming task. Due to this limitation, very limited
datasets have been created so far [89]. Moreover, supervised approaches may not be consid-
ered as generalized solutions as they are applicable to a fixed list of categories depending
upon the dataset.

Consider an unsupervised approach as a solution to the above-mentioned problems of the
supervised methods, in the next chapter, we present a novel architecture that estimates the
3D keypoints from PCDs which out requiring ground truth keypoints.



Chapter 6

SC3K: Self-supervised and Coherent 3D
Keypoints Estimation from Point Clouds

This chapter presents an approach to estimate 3D keypoints on the surface of an object in
a self-supervised way. Unlike the previously proposed approaches, this approach does not
require human-annotated keypoints to train the network. Therefore the estimated keypoints
are different in nature then those estimated by the supervised approaches. The supervised
approach estimates the keypoints closer to the ground truth keypoints which are selected by
a person, whereas, the presented self-supervised approach estimates the keypoints that best
characterize the object’s shape. This is achieved by combining different loss functions that
force the keypoints to cover the complete object and appear closer to its surface. This chapter
also addresses problems associated with the supervised keypoints estimation methods and
the presents un-/self-supervised approaches as a solution.

The literature reports that representing 3D objects using a set of keypoints [11, 48, 101] is
a common and fundamental step for several geometrical reasoning tasks, including shape
registration, object tracking, pose estimation, action recognition, shape deformation, retrieval
and reconstruction [89, 129, 108, 143, 41]. Because extracting such keypoints is the first
processing step, it is crucial that keypoints are extracted reliably from Point Cloud Data
(PCD) of object shapes, as an error might affect negatively any further high-level tasks.

The solution to this problem was initially cast as a supervised learning task: given a dataset
of manually annotated PCDs with keypoints, a computational model infers the keypoints
position given a PCD as input [113, 148, 60, 40, 130]. While these methods provided
impressive results on the dataset they were trained on, they also made clear the limitations of

77
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supervised approaches. The basic issue is the requirement of having large enough datasets
containing well defined ground truth annotations for every object. Annotating such datasets
is hard, finding keypoints in 3D requires a long time from the user, noise or missing data on
the PCD can compromise quality, and highly symmetric/smooth objects might confuse the
annotator in finding the correct keypoints.

Considering such limitations, recent methods have focused on not-supervised approaches
to bypass the need for human annotations. Self-supervision methods define proxy tasks
for which a large number of annotations can be obtained during training [111, 77, 129,
10, 133], e.g. geometrical transformations, canonical mapping, reconstruction to learn
the prototype of intra-class object, etc. [84, 141, 83, 95, 100]. Unsupervised approaches
differently promote keypoints that are implicitly given by reasoning on the object geometry,
e.g. point-level clustering, object’s skeleton, consistency between object’s symmetry, part
contrasting, etc. [67, 121, 92, 41, 131].

The shift to these learning paradigms clearly allows to generalise keypoint extraction but
not without drawbacks. No having human annotations means that the exact identification
of a specific keypoint in a particular semantic 3D region is not guaranteed when intra-class
variations are present (see Fig. 6.1) and especially when some shape elements might be
missing or repeated (e.g. a table can have 4 or more legs). Moreover, for several applications
such as shape registration, it is paramount to maintain the semantic consistency of keypoints,
i.e., their vector ordering, as an output of the network architecture. Intra-class variations
might also bias the network to localise keypoints where no PCD is present simply because
in some shape instances we have a semantic region there (e.g. an additional leg of a table
in some object samples). In addition to all these considerations, keypoints extraction has to
be robust against common perturbations of PCDs, semantic ordering and the accuracy in
localising the keypoints should be preserved even if PCDs are rotated, noisy and sub-sampled
(decimated) as shown in Fig. 6.1.

To this end, we propose a self-supervised training strategy and model architecture to train
a keypoints detector with such desired properties. Our training strategy feeds pairwise
randomly rotated versions of the same object PCD for each sample in the class. For each
rotated shape, the network estimates independently a set of 3D keypoints. This initial
keypoints estimation backbone optimises a loss promoting keypoints that are not-overlapping,
close to the original PCD and covering the volume of the whole shape. These two sets of
keypoints are then refined in two steps. First, we transform both the sets in their known
canonical pose and then we compute one-to-one consistency between the corresponding
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Figure 6.1 Self-supervised and unsupervised keypoints estimation from point cloud data has
to be robust to perturbations such as rotations, intra-class shape variations, noisy data and an
arbitrary number of input 3D points. The keypoint localisation has not only to be accurate
and pertain to the object surface but it should also preserve semantic coherence, as shown
in this figure by the green keypoint which is always associated with a specific object region
despite arbitrary variations in the point cloud.

keypoints of the sets. Introducing a component of the loss function that penalises incorrect
matches allows the estimation of consistent keypoints irrespective of the pose of the input
PCD. Second, to refine the position and semantic coherence of the estimated keypoints, we
compute the relative pose between the two sets of keypoints as a proxy task and we then
minimise the error against the known relative pose of the PCDs pair. Such training strategy
and network architecture promote the inference of keypoints that are semantically coherent,
robust to perturbations, and with high accuracy.

To summarise, the main contributions of this work are as follows:

• The proposed network estimates 3D keypoints from a single PCD in a generic pose as
opposed to the other methods in the State-Of-The-Art (SOTA) which require a PCD in
a canonical pose.

• The presented two-step learning procedure allows to estimate keypoints that are seman-
tically consistent for intra-class objects regardless of perturbations, such as rotation,
noise, or down-sampling;

• On average, the presented approach outperforms the SOTA approaches and it is able to
generalise to novel object poses.
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6.1 Proposed approach - SC3K

This section describes every module of the proposed network and provides details of the loss
functions used during training and the experimental setup.

6.1.1 Proposed Architecture

Given a PCD of an object, the goal of the proposed approach, named SC3K, is to esti-
mate keypoints that are semantically coherent and accurate despite arbitrarily rotated PCDs
and perturbations, without requiring ground annotations. The architecture of the SC3K is
illustrated in Fig. 6.2.

Figure 6.2 Network architecture – The proposed network takes a PCD of N points as input
and extracts M global features for every point using PointNet encoder. The features are
passed by two cascaded residual blocks followed by a convolutional and a softmax layer in
order to estimate K ×N features. Where K is the number of keypoints and N defines the
weights of the points in the input PCD to be selected as keypoints. Finally, K 3D keypoints
are computed as weighted average points of the input PCD. To make the estimated keypoints
pose coherent and semantically consistent, we first estimate keypoints for two randomly
rotated versions of the PCD and then compute a mutual loss between keypoints in two steps
(as highlighted in navy blue). First, both the keypoints sets are transformed to the canonical
pose and are used to compute one-to-one consistency between the corresponding keypoints.
Second, the relative pose between the two keypoints sets is compared with those of the
original PCDs. The proposed network is illustrated in lower part of the figure and the residual
block 1 and 2 are the same as shown in the right part.
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The approach uses a PointNet [78] backbone to extract M features for every point in the input
PCD (Proposed Network in Fig. 6.2). The extracted features pass through two consecutive
residual blocks that reduce the features from M to 256. Each residual block (right scheme in
Fig. 6.2) contains a pair of linear layers with batch normalisation connected via ReLU, and a
skip connection with a single linear layer. The refined features are later projected to a conv1D
and a softmax layer to estimate K ×N probabilities, where K represents the total number
of keypoints and N (probabilities) represents the weight for every point in the input point
cloud to be selected as the keypoints. The weights of every keypoint (N×1) are multiplied to
the original PCD (3×N) in order to estimate the final keypoint (3×1). The final keypoint
represents a weighted average point of the PCD. We repeat this process K times to estimate
all the keypoints (3×K).

6.1.2 Training procedure

The proposed training procedure accepts as input an object PCD that is then randomly rotated
twice to obtain two PCDs. These PCDs are then processed by the proposed network that
outputs two sets of keypoints. This pairwise set will be used as a self-supervised signal
to enforce keypoints semantic consistency. For each set of keypoints, a loss with four
components is computed, based on how well the keypoints fit the single shape of the original
PCD. We call this loss “position loss”. Then, the two sets of keypoints from the two randomly
rotated PCDs are used to compute “mutual dependency loss” in two steps. In the first step,
both the keypoints sets are transformed to the (known) canonical pose to compute the one-to-
one consistency between the corresponding keypoints. In the second step, the relative pose
of the keypoints are compared with those of the input PCDs to refine the keypoints position
and the semantic coherence. The network is trained to minimise both loss functions. In the
following, we will present these two losses in detail.

6.1.3 Position loss

The proposed network takes a single shape P = [p1, p2, ..., pN ] ∈R3×N as input and outputs
a set of K keypoints K = {k1,k2, ...,kK},∈ R3×K with K ≪ N. We use the original P and
the estimated K to compute the position loss. The desired keypoints properties are that
keypoints should not overlap with each other, be relatively separated and cover as much as
possible the whole object volume while still being close to the PCD. We will describe in
detail these four loss components in the next paragraphs.
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Overlap loss: To avoid multiple keypoints being estimated at the same 3D position we define
the overlap loss as:

Loverlap =
1

K2

K

∑
i=1

K

∑
j=1

[∥∥ki − k j
∥∥

2 < τ1
]
, i ̸= j

[∥∥ki − k j
∥∥

2 < τ1
]
=

1 if true

0 otherwise

(6.1)

where [.] is the Iverson bracket. The loss Loverlap counts the total number of overlapping
keypoints. Two keypoints are considered as overlapping if the Euclidean distance between
them is less than the threshold τ1, which is 0.05.

Separation loss:

This loss (Lsep) maximises the distance of every keypoint (ki) from its k-nearest neighbour
keypoints (kNN(ki,K )) in K thus promoting more spread out configurations of points. The
loss is defined as:

Lsep =
1

max( 1
K

K
∑

i=1

∥∥ki − kNN(ki,K )
∥∥

2,0.01)
, (6.2)

where, 0.01 in the denominator is to avoid division by zero.

Shape loss: Since Lsep moves away keypoints from their neighbours without any maximum
distance limit, keypoints might move easily far from the object PCD and even further.
Therefore, we use the shape loss (Lshape) that enforces keypoints being closer to the object’s
shape. The loss minimises the distance of every keypoint ki in K from its nearest neighbour
point in the original P . The loss can be defined as:

Lshape =
1
K

K

∑
i=1

∥∥ki − kNN(ki,P)
∥∥

2. (6.3)

Volume loss: The Lsep and Lshape losses do not consider how the keypoints are distributed
over the whole shape of the object. Therefore to estimate keypoints that cover the entire
object, we compute the volume loss as Lvolume. The loss computes the difference between
the longest diagonal of the 3D bounding box of the estimated keypoints with that of the
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original PCD as:
Lvolume = smoothL1(vol(K )− vol(P)), (6.4)

where vol() is the function that accepts a set of points (K or P), identifies a maximum and
a minimum point from the accepted set, and returns their difference (i.e., the longest diagonal
distance of the object’s bounding box). We consider this diagonal distance as approximate
volume by following [24]. To find the difference in volume, we use smooth L1 loss as this
loss is less sensitive to outliers compared to the MSE loss [30].

The total position loss can be summarised as a weighted sum of the above four loss compo-
nents;

Lposition = wsep ·Lsep +wovr ·Loverlap +wsh ·Lshape +wvol ·Lvolume, (6.5)

where, {wsep, wovr, wsh, wvol} are not optimised hyperparameters fixed to {0.05, 0.05, 4, 1}
respectively.

6.1.4 Mutual dependency loss

In order to refine the positions of the keypoints and to make them semantically coherent
across different rotations of an object, we use the mutual dependency loss. Differently from
the positional loss, here we consider the pair of keypoints obtained from the randomly rotated
shapes. The loss is given by two components as described below.

In detail, suppose that the two randomly rotated versions of the input PCDs are PA =

[a1,a2, ...,aN ] ∈ R3×N and PB = [b1,b2, ...,bN ] ∈ R3×N while the K keypoints estimated
by the proposed approach for each input PCD can be represented as KA = [ka

1,k
a
2, ...,k

a
K],∈

R3×K and KB = [kb
1,k

b
2, ...,k

b
K],∈ R3×K , respectively. Then the loss functions can be de-

scribed as given below.

Step 1 – Keypoints consistency loss:

Consider that Ra ∈ R3×3 and Rb ∈ R3×3 are the rotations associated to PA and PB,
respectively. We use these rotation matrices and transform the keypoints (KA and KB)
back to their canonical pose. The keypoints are said to be coherent if they overlap in this
common reference system and if their indexes exactly match. To introduce this desiderata,
we compute the consistency loss (Lconsist) between the corresponding keypoints in both the
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transformed sets as:

Lconsist =
1
K

K

∑
i=1

∥∥R−1
a ka

i −R−1
b kb

i
∥∥2

2. (6.6)

In this way, to push the keypoints with the same indexed to be in the same 3D location, we
penalise the keypoints with the wrong ordering and 3D position.

Step 2 – Pose loss: In order to emphasise even more the estimation of coherent keypoints
that are less sensitive to the object’s pose, we train the network to solve an auxiliary and
self-supervised keypoints registration task, by estimating the rotation matrix that aligns the
two sets against the (known) ground truth. Suppose Rest is the relative pose between the
estimated keypoints KA and KB, computed by using orthogonal Procrustes Analysis. Then
the pose loss (Lpose) can be computed using the Frobenius norm between the Rest and relative
pose of the PCDs (Rba = Ra ·RT

b ) as:

Lpose = 2 arcsin
(

1
2
√

2
||Rest −Rba||F

)
. (6.7)

It can be observed that if the keypoints in the canonical pose are not aligned/overlapped, the
Rest will be erroneous, and hence the loss will be high. In other words, the lower pose loss
validates the accuracy of the correspondences in the two sets of keypoints.

The mutual dependency loss can be defined as the weighted sum of the above two losses:

Lmutual_dependency = wcon ·Lconsist +wpose ·Lpose, (6.8)

where {wcon, wpose} are defined as {1, 0.05}. The overall training loss is the sum of the
position and the mutual dependency loss;

Loverall = Lposition +Lmutual_dependency. (6.9)

Inference
During inference, the proposed approach takes only an arbitrarily rotated PCD as input and it
estimates a semantically ordered list of K keypoints in the same pose as the pose of the input
PCD.
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6.2 Experimental setup

This section presents implementation details, the dataset that is used in the experiments,
performance evaluation metrics with their significance, and a comparison between our
approach and the SOTA approaches.

6.2.1 Implementation details

The network is implemented in PyTorch and trained using the Adam optimizer with a learning
rate of 1e−3. We do not freeze any part of the network. In all the experiments, the batch size
is set to 32 and trained on a 12GB GPU. We train UCLS [24], SM [89] and our network for
200 epochs and evaluate them using the best trained model (with the minimum validation
loss).

6.2.2 Dataset

We use KeypointNet dataset [130] in our experiments. It contains 8329 objects (3D model
and PCDs of 16 object categories) for a total of 83231 keypoints. We do not use the ground
truth keypoints. Whereas, we rotate every object in 24 random poses since during training
we need to feed two rotated versions of the same object to the proposed network. We use
the same rotation matrices that are used in ONet [68] with a validation and testing split that
differs from the training set. For a fair comparison, we use the original (not-rotated) dataset
to evaluate our and the SOTA approaches.

6.2.3 Metrics for unsupervised keypoints estimation

To compare the performance of the proposed approach, we first define the two standard
metrics: inclusivity and coverage [24]. The inclusivity metric [24] computes the percentage
of the keypoints (K ), which are estimated close to points of the input P . A keypoint ki

whose distance di to the nearest neighbour point in P is below the predefined threshold τ2 is
considered as a close keypoint. The metric is defined as:

di =
∥∥ki − kNN(ki,P)

∥∥
2

Inclusivity = 100× 1
K

K

∑
i=1

[di < τ2] ,
(6.10)
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where [.] is the Iverson bracket (as described in Eq. 6.1). Although the inclusivity loss
computes how close the K are estimated from the original P , it does not evaluate how
well the keypoints cover the whole object. Therefore, evaluation is further supported by the
coverage metric [24], which compares the distance between the longest diagonals of the 3D
bounding boxes of the K with that of the P . Assuming that the K and P are normalized,
the metric can be defined as:

Cov = 100×
[

1− |vol(P)− vol(K )|
vol(P)

]

Coverage =

Cov if vol(K )≤ 2× vol(P)

0 otherwise,

(6.11)

where vol() is the same as used in Eq. 6.4. The coverage will be 100% if both bounding
boxes fully overlap and it will decrease if the bounding box of the K is either smaller or
greater than the one of P .

6.3 Results and analysis

We compare our results with the SOTA approaches UCLS [24] and SM [89] that estimate
the 3D keypoints in an unsupervised way. We trained and tested the UCLS and SM using
KeypointNet [130] dataset (keeping the PCDs in canonical pose). However, considering
the nature of our approach, we train it for rotated PCDs. We test our approach under two
conditions: SC3K_rot (the PCDs with the random rotation) and SC3K_can (i.e PCDs in the
canonical pose). The random rotations are used to evaluate the accuracy of our approach
irrespective of the object’s pose. However, to be consistent with our competitors (UCLS and
SM), we also test our method for the original PCDs in a canonical pose.

Tab. 6.1 presents a comparison among UCLS, SM and our approach (SC3K_can and
SC3K_rot) based on the two performance metrics as discussed in Sec. 6.2.3. Higher
values correspond to better performance for every metric. The first inclusivity metric shows
that, on average, the proposed approach (SC3K_rot) outperforms the SOTA approaches by
estimating the keypoints close to the object’s surface. However, SC3K_can achieves results
better than those of UCLS and comparable to those of SM. The metric depends on the total
number of keypoints and the tolerance threshold τ2. To validate this, we train our network
separately for different numbers of keypoints, and calculate the inclusivity for different τ2. It
is found that inclusivity is higher for fewer keypoints and it increases with the increase of the
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Table 6.1 Performance comparison between the proposed approach and SOTA approaches
(UCLS [24] and SM [89]) based on KeypointNet dataset. We test our approach for PCDs in
canonical pose (SC3K_can) and the PCDs rotated in random poses (SC3K_rot). The results
are calculated for 10 keypoints and the threshold τ2 for the inclusivity is selected as 0.1. For
all the metrics, higher values are best. The comparison validates that on average the proposed
approach outperforms the SOTA approaches for all the metrics.

Category
Inclusivity Coverage

UCLS SM SC3K_can SC3K_rot UCLS SM SC3K_can SC3K_rot

Airplane 71.02 72.05 87.20 74.30 88.63 92.59 96.34 94.37
Bed 67.00 71.89 80.00 72.29 94.17 84.28 98.20 92.85
Bottle 75.44 72.84 77.36 84.01 80.93 91.44 97.95 94.16
Cap 57.50 59.50 56.25 67.14 60.83 85.01 94.64 91.81
Car 71.32 71.95 76.05 74.45 83.69 90.69 89.84 90.19
Chair 68.54 69.67 56.65 72.33 83.92 85.87 95.31 90.22
Guitar 50.14 69.29 96.47 69.04 79.83 85.65 97.64 92.17
Helmet 64.10 72.41 55.00 74.68 79.87 82.09 90.50 90.44
Knife 52.05 92.03 98.33 93.15 76.84 77.39 98.77 88.77
Motorbike 78.43 95.28 85.00 87.74 78.87 86.12 94.34 91.33
Mug 47.42 65.87 46.25 82.37 89.63 83.15 95.15 91.22
Table 60.06 79.13 79.15 73.05 82.97 91.31 97.40 92.32
Vessel 76.89 94.24 92.90 95.24 78.79 85.28 97.18 90.03
Average 64.61 75.86 75.89 78.44 81.46 86.22 95.63 91.53

τ2. Fig. 6.3 shows the average inclusivity (of the test set) for different values of τ2. We select
τ2 as 0.10 and consider 10 keypoints for the experiments and comparison. The coverage
metric shows that on average the proposed approach is successful in estimating the keypoints
whose 3D bounding boxes best overlap those of the original PCDs. For all the categories,
SC3K_can achieves better results.

A qualitative comparison between the keypoints estimated by SC3K and the SOTA approaches
is depicted in Fig. 6.4. For better understanding, the estimated keypoints (in different colours)
are shown on top of the original PCDs (in Gray). The colour of the keypoints represents
their semantic ID information, i.e. a point with the same colour should stay in the same area
despite perturbations. Columns 1 and 2 illustrate the keypoints estimated by UCLS [24] and
SM [89], respectively. In contrast, two views of the keypoints estimated by the proposed
approach are depicted in columns 3 and 4. The comparison validates that our keypoints are
estimated close to the surface, highlighting the corners, thus best characterizing the object’s
shape.

To evaluate the semantic consistency between the keypoints estimated for different objects of
a same category, we compute the Dual Alignment Score (DAS) metric [89]. By following
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Figure 6.3 Average inclusivity of the proposed approach for different keypoints and threshold
values (τ2). The inclusivity increases with an increase in the τ2, and it is higher for fewer
keypoints.

the same procedure, we define the ratio of a set of reference keypoints for each category that
are semantically aligned w.r.t. the corresponding human annotated keypoints. To compare
our approach with [131], we consider the results reported in the paper, since the code is not
shared publicly. The comparison is depicted in Tab. 6.2. On average, our approach (SC3K)
outperforms the other approaches.

Unlike the existing approaches, we also evaluate the coherence property of the keypoints by
computing the Matching Error (ME). This error is a localisation error of the keypoints given
PCD perturbations. We first estimate keypoints for different rotated versions of the same
object PCDs and transform them to the canonical pose using the known rotations. Since the
estimated keypoints are with the correct order, we compute order-wise position error between
the corresponding keypoints on the canonical reference frame. A low error would indicate
that 2D position of a keypoint is rather unaffected by variations of the PCD. We repeat this
procedure for all the instances of a category and calculate the ME in terms of mean error (µ)
and the standard deviation (σ ). The quantitative results are depicted in Tab. 6.3.

The qualitative results of this experiment are illustrated in Fig. 6.5. Columns 1 and 2 (on the
left side) show the keypoints estimated for two transformed versions of the same objects.
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Figure 6.4 Qualitative comparison. Columns 1 and 2 present keypoints estimated by UCLS
and SM, respectively. Columns 3 and 4 show the keypoints estimated by SC3K. It can be
observed that some of keypoints of the UCLS are estimated outside the object (airplane).
The keypoints estimated by SC3K best characterize the object’s shape, as they are estimated
on the surface and cover the complete object.

Table 6.2 Comparison based on the semantic consistency between the keypoints estimated for
different objects of the same category. The baseline results are the same as reported in [131].
The higher value is best.

Category UCLS [24] SM [89] ISS [144] MR [131] SC3K

Airplane 61.40 77.70 13.10 81.00 82.86
Chair 64.30 76.80 10.70 83.10 87.04
Car – 79.40 8.00 74.00 75.19
Table – 70.00 16.20 78.50 76.03
Guitar – 63.10 8.70 61.30 65.67
Mug – 67.20 11.20 68.20 89.35
Cap – 53.00 13.10 57.10 59.72
Mean 62.85 69.60 11.57 71.89 76.55
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Table 6.3 Pose coherent test: The keypoints estimated for randomly rotated versions of the
same object are first transformed to the canonical pose. Then ME (in terms of µ and σ ) is
computed between the corresponding keypoints of all the keypoints sets. The error is very
small considering that the maximum error could be

√
3.

ME Airplane Bed Bottle Cap Car Chair Guitar Helmet Knife Bike Mug Table Vessel Mean

µ 0.041 0.072 0.058 0.057 0.061 0.045 0.047 0.071 0.055 0.072 0.039 0.072 0.040 0.056
σ 0.019 0.057 0.056 0.038 0.042 0.021 0.020 0.052 0.034 0.040 0.023 0.051 0.031 0.037

It can be seen that the corresponding keypoints are semantically consistent irrespective of
the object’s pose, this validates the keypoints are coherent. The keypoints on the right side
of the same Fig. 6.5 (columns 3, 4 and 5) illustrate the keypoints estimated for different
rotated objects of the same category. It can be observed that the keypoints also maintain the
correspondences across the different intra-class variations of the object class.

Figure 6.5 Shape pose variations and semantic correspondence: columns 1,2) keypoints esti-
mated for two rotated versions of the same object are pose coherent; columns 3-5) keypoints
semantically correspond to intra-class variations – they correspond to those estimated for
different objects of the same category.
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6.4 Ablation studies

This section presents three ablations: i) effect of the number of keypoints computed and their
effect on the metrics; ii) evaluation and performance of the network with combinations of the
different training losses; iii) effect of varying noise ratio and decimations of the PCDs.

6.4.1 Effect of the number of keypoints

We evaluate our approach by varying the number of computed keypoints from the PCD. We
found that for most of the shapes (e.g. bottle, guitar), our approach estimates keypoints over
the surface of the object. However, for the detailed objects with gap between the parts (i.e.,
airplanes have relevant empty spaces between a wing and the tail), some of the keypoints are
estimated outside the object (in the gaps). This effect appears only when a high number of
keypoints are considered (higher than 35). As an example, different number of keypoints
estimated by our approach for the cup and airplane category are shown in Fig. 6.6.

Figure 6.6 Estimation of different number of keypoints for the same object. The keypoints
are estimated on the object’s surface if they are less than or equal to 35 in number. They are
predicted outside the object (in case of more than 35 keypoints), especially for the detailed
objects having empty spaces among the object’s parts.
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Figure 6.7 Performance of our approach with different combinations of losses. The leftmost
figure shows the keypoints when the network is trained for all the losses. In the remaining
figures, the model is trained without a specific loss which is mentioned at the top of every
figure.

6.4.2 Performance for the selected losses

In order to highlight the significance of every loss in the proposed approach, we train and
evaluate the network by ignoring each loss one by one. The results are illustrated in the
Tab. 6.4. The conditional formatting green-to-red shows high-to-low values. The table shows
that the network performs overall well when all the loss functions are used. The overlap loss
contributes comparatively low and is required only at the beginning of the training when the
keypoints are estimated randomly. The contribution of the separation loss is comparatively
higher than the overlap, shape and volume loss since it maintains the distance between
the estimated keypoints, thus enforcing the keypoints to move over the whole object and
toward the surface. Shape loss avoids the estimation of the keypoints outside the object. The
contribution of the volume loss is comparatively lower than the other loss functions. The
consistency and pose losses allow the estimation of the corresponding and pose coherent
keypoints. Ignoring both losses at the same time affects the overall performance of the
proposed approach. The qualitative results of the proposed approach trained without the
selected loss function are illustrated in Fig. 6.7.
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Table 6.4 Performance of the proposed approach for selected losses. Where ME represents
matching error (coherence). The conditional formatting “green-to-red” represents the “good-
to-bad” performance. The results are the average values of the test set of the keypointNet
dataset.

w.o. loss Inclusivity Coverage DAS ME

All loss components 78.44 91.53 74.00 0.056

Loverlap 77.09 90.72 53.80 0.061
Lsep 63.01 85.70 67.38 0.081
Lshape 76.05 90.31 58.45 0.064
Lvolume 77.35 90.90 63.14 0.066
Lconsist 76.52 91.03 42.44 0.103
Lpose 76.76 91.04 53.89 0.095
Lconsist + Lpose 70.15 88.07 41.95 0.103

6.4.3 Robustness to perturbations

This ablation highlights the performance of the proposed network for noisy and down-
sampled PCDs of the airplane category. Noisy PCDs are generated by adding Gaussian
noise of different variances to the original PCDs. For decimating the PCD, we use the
Farthest Point Sampling (FPS) as used in [69, 132] to sample points from original PCDs for
different sampling ratios. Fig. 6.8a and Fig. 6.8b show the keypoints estimated for noisy
and down-sampled PCDs, respectively. Here the network is able to successfully estimate the
consistent keypoints at accurate positions for the noisy and down-sampled PCDs.

Quantitative results for the noisy and down-sampled PCDs are illustrated in Fig. 6.8c and
Fig. 6.8d, respectively where to fix the DAS in the plots [0 to 1], we show DAS/100. The
results show that the ME increases and the DAS decrease with the increase in the noise level
(scale). Similarly, DAS decreases if down-sampling ratio is reduced to 6 times the original
PCD. The ME remains approximately the same for down-sampled PCDs, validating that
down-sampling does not affect the keypoints position. In the next section (Sec. 6.5), we
also present quantitative results of the other categories for noisy and down-sampled PCDs.
The presented visualizations show that the presented approach has successfully estimated
keypoints for all the categories.
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(a) Visualizations of the noisy PCDs

(b) Visualizations of the down-sampled PCDs
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Figure 6.8 Performance of the proposed approach for noisy and decimated PCDs. (a) and
(b) represent qualitative results, whereas, (c) and (d) show plots illustrating the effect of the
noisy and down-sampling PCDs, respectively.
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6.5 Qualitative results

In this section, we present the keypoints estimated by the proposed SC3K for intra-class,
noisy and down-sampled objects.

Qualitative Comparison with Intra-class objects:

The qualitative results of the experiments reported in Tab. 6.1 are shown in Fig. 6.9. The
figure compares the keypoints estimated by the SC3K for intra-class objects. Four randomly
selected objects are shown in the figure validating the fact that the keypoints are proximal to
the original PCDs, semantically in order (coherent), and pointing to the sharp edges of the
objects.

Visualisation of the noisy PCDs:

This section shows the qualitative results (extension of Fig. 6.8a) of the presented approach
for different noisy PCDs. We add the Gaussian noise of different scales to the original PCDs
of different categories. The noise scale is written in the beginning of every row where “0.00”
mean original PCD without noise. The estimated keypoints are shown in Fig. 6.10. It can be
observed that the proposed SC3K remains successful in estimating the 3D keypoints from the
noisy PCDs. Moreover, the keypoints are always estimated close to the outermost points in
the PCDs (i.e. close to the noisy surface). However, the accuracy decreases with the increase
in the noise scale.

Visualisation of the Down-sampled PCDs:

This section presents the performance of our approach for down-sampled PCDs as an
extension of the results shown in Fig. 6.8b. For decimating the PCD, we use the Farthest
Point Sampling (FPS) as used in [132] to sample points from original PCDs for different
sampling ratios. We test our pre-trained network to estimate the 3D keypoints from the
down-sampled PCDs. The results are shown in Fig. 6.11. The figure is horizontally divided
to fix all the objects on one page. Each column presents the results of a different object. The
sampling ratio is shown at the beginning of every row. The “0×” shows the original PCD
without sampling (zero times sampling). It can be observed that the SC3K has estimated
approximately accurate keypoints for the down-sampled PCDs. However, the keypoints
are not estimated at the same positions as the positions of the corresponding keypoints of
the original PCDs (without sampling) when the PCDs are scaled 32 times (32×). The 32×
sampling means a PCD containing only 64 points, considering that the original PCD contains
2048 points.
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Figure 6.9 Qualitative results of the proposed SE3K for different categories. Every row
shows four objects (in different poses) of the same category. The keypoints (coloured points)
are estimated on the surface and in the same pose as the pose of the original PCDs (small
gray points). Moreover, they are semantically consistent for all the intra-class objects.
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Figure 6.10 Performance of the proposed approach for the noisy PCDs. Gaussian noise
of different scales (as mentioned at the beginning of every row) is added to the input
PCDs. “0.00” represents the original PCD (without noise). The SC3K remains successful in
estimating the semantically consistent keypoints for noisy PCDs. However, the accuracy has
decreased with an increase in the noise scale.
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Figure 6.11 Performance of our method for down-sampled PCDs. The input PCDs are down-
sampled for different scales, as mentioned at the beginning of every row. The “0×” shows
the original PCDs. The proposed SC3K remains successful in estimating the approximately
accurate 3D positions of the keypoints.
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6.6 Chapter summary

The chapter presents a method to estimate 3D keypoints from a single PCD such that they
express the following properties: robust – minimum position error across different rotated
versions of the same PCD; compact – close or proximal to the PCD surface, coherent – in
semantic order for all the intra-class instances. Similarly, the proposed method is repeatable

– can estimate the accurate keypoints irrespective of the noise and down-sampling or rotation
of the input PCD; and self-supervised – can estimate the same keypoints from single PCD
without requiring any labels (pseudo or human annotation) during the inference. We achieve
these desiderata by training the network with a new self-supervised strategy that does not
require human annotations, instead, it computes the relative pose between the two sets of
keypoints as a proxy task and then minimises the error against the known relative pose of the
input PCDs pair. The proposed approach is compared with the SOTA keypoints estimation
approaches using the KeypointNet dataset. The results validate that the presented approach
outperforms the SOTA approaches by estimating the coherent keypoints close to the object’s
surface, characterising the object’s shape.

There are two limitations of the presented approach: first, it may fail to estimate keypoints
close to the object’s surface for a number of keypoints higher than 35, and second, its
performance may decrease for symmetrical shapes. For some categories, such as bikes or
cars, it is challenging to differentiate between the front and back wheels. In the same way, the
huge geometrical variation also negatively affects the performance, i.e. it’s hard to compute
semantically coherent keypoints between a single and a bunk bed. Our approach is dependent
on several loss functions, so considering fewer loss components while achieving a similar
performance can be considered a future task.



Chapter 7

Conclusions and Future Directions

In this chapter, we summarize the work presented in this thesis. Based on the nature of the
addressed problems, we divide them into three sections: 3D shape reconstruction from a
single-view RGB image, supervised keypoints estimation from a single-view RGB image
and the self-supervised keypoints estimation from a PCD. In every section, we describe our
solution(s) to the addressed problems, explain the limitations of the proposed solutions and
suggest possible future directions. In the end, we summarize the thesis by presenting the
conclusions.

7.1 3D shape reconstruction from a single-view RGB image

Proposed method: The first task presented in the thesis is related to 3D reconstruction.
Considering the background information a basic limitation for the existing reconstruction
approaches, in the task, we proposed a solution that estimated 3D keypoints from natural
images in the presence of the real background. The proposed approach is compared with
“Mesh R-CNN”, which is considered as a State-Of-The-Art (SOTA) approach for 3D recon-
struction from real images. Our approach outperforms the Mesh R-CNN by estimating the
complete, smooth, and sharp 3D shape of an object.

Baseline solution: Moreover, we also present a baseline solution to execute existing ap-
proaches that are valid for only synthetic images – images with no/white background. The
approach is based on two modules: segmenter and reconstructor. The segmenter module
converts a real image into an image similar to the synthetic (single object in the center of a
white background image) by exploiting a segmentation approach. The reconstructor module
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uses the output of the segmenter (processed image) and reconstructs the 3D shape. Any
approach that is valid only for synthetic images can be used as a reconstructor.

Limitations: Although the presented method allows estimation of more accurate 3D shape
estimation, it has some limitations. First, it can reconstruct a single object at a time, i.e. the
input image should contain only a single object. Second, the performance will be affected
negatively if the object is moved away from the center of the image (translated). It is due to
the fact that the network is trained for images those contain objects approximately around
the center. However, rotation does not affect the performance since the network is trained
for different randomly rotated objects. Third, the network does not estimate the object’s
pose, i.e., the reconstructed objects are always in the same canonical pose. Whereas for
several downstream tasks, the pose information is required. Fifth, some of the parts of the
objects are not accurately estimated due to different reasons. For example, sometimes it’s
difficult to separate an object from the surrounding (another object/background) due to the
color combination or occlusions. Similarly, some of the parts are not so common across the
objects in a category. Fig. 7.1 illustrates the execution of the SOTA approaches to highlight
the inaccurate reconstruction of the leg joints and the back of the chair.

Figure 7.1 Execution of the Mesh R-CNN [31], ONet [68] and CvxNet [17]. The original
input image is directly fed to the Mesh R-CNN. However, the masked version of the same
image is used to test the ONet and CvxNet, because they work only for synthetic images
with white backgrounds. It can be observed that the leg joints and the chair back are not
reconstructed accurately by any of the approaches.

Future directions: Considering the above-mentioned limitations, the proposed approach
can be improved in many ways. It can be extended for multiple objects’ shape reconstruction
from a single image by taking into account the working principle of Mesh R-CNN. For that,
objects can be segmented from the image background using any segmentation algorithm.
Then the reconstruction approach can be used to reconstruct all the separated objects. By
doing this, the objects could be reconstructed in the canonical pose. However, to reconstruct
the whole scene, the approach should also estimate the pose of every object in the image.
This will allow the generation of the complete 3D scene by combining all the reconstructed
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shapes with respect to their original pose. This future direction will also solve the translation
limitation of the proposed approach. However, similar to the Mesh R-CNN, this solution will
be based on the two modules, which is not an optimal end-to-end solution.

The pose of the reconstructed object can be estimated by adding another branch in the
network that estimates the object’s pose during training. However, to do so, we need the
ground truth information of the pose of every object in the image. Another possible way is to
estimate the 3D keypoint that can preserve the object’s pose information and hence can be
used to predict the relative pose between the estimated keypoints and the ground truth point
clouds. The relative pose can be used to compute the transform of the estimated 3D shape
during the training.

7.2 Supervised keypoints estimation from a single-view
RGB image

Considering that the pose information in the 3D shape reconstruction task can be achieved
using the keypoints, in this section, we aimed to estimate the keypoints from single-view
RGB images in a supervised way. For this, we proposed two methods; first, without using a
hallucination network and second, using the hallucination network for knowledge distillation.
The details of both methods are as follows;

Proposed method 1: The approach takes an image as input and computes 3D keypoints in a
fully supervised way. The locations of the estimated keypoints are corrected by comparing
them with the corresponding ground truth keypoints. The loss, based on different components,
is used to train the network. The estimated keypoints are used to compute the angular distance
error between two views of an object. It is found error is comparatively lower than those of
the SOTA approaches.

Proposed method 2: We observed that in method 1, we estimate the keypoints directly
from the 2D features that are extracted from RGB images, so some of them (in some cases)
are estimated outside the object. This can be improved by using 3D features that can be
extracted from the original point clouds of the object to train the network. Therefore, as
an extension, we present an upgraded version of method 1 that exploits the object’s points
clouds during training to learn to produce 3D features from RGB images that are simial to
those extracted from the point clouds. During inference, the method uses only RGB images,
by removing the need of point clouds, to extract 2D and 3D features that are later used to
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estimate 3D keypoints. The proposed approaches are compared with the SOTA approaches
that estimate 3D keypoints from images. It is found that the upgraded version (method 2)
outperforms them by estimating keypoints that are comparatively good for computing relative
pose between different views of an object.

Limitations of both methods: Although the network architectures and training procedures
of both the presented methods are different, the overall main functionality is the same.
Therefore, their limitations are the same as described below. First, they are fully dependent
on the ground truth keypoints, thus, are applicable to a limited number of categories. It is
due to the fact that annotating keypoints for every object is a hard task and requires great
human assistance. That is why there are very limited human-annotated datasets are present.
Second, in a similar way, the approaches estimate keypoints from synthetic images only
and may fail to provide good keypoints for real images. It is due to the fact that they are
trained for synthetic images containing objects of the same size positioned always in the
center. Third, the approach considers only one object at a time that is approximately present
close to the center of the object. This means that it may fail to produce good keypoints if
the object is located far from the center. This limitation is also a barrier that does not allow
the approaches to perform well on real images. Fourth, intra-class shape variations, such as
single and bunk beds, make the problem more challenging. The network fails to estimate
optimal keypoints in some similar scenarios. Fifth, the symmetry within the object’s parts
also reduces the performance of the proposed approaches. It is due to the fact that it is very
hard to differentiate between the front and back wheels of the bike or car. The problem
becomes more difficult when we consider object pose (rotated object), as we are considering,
in our case, by rendering the objects in 24 different views. For two 180◦ rotated versions of
the same object, the network can mix the front and the back wheel and hence can estimate
semantically incorrect keypoints (i.e., the keypoints of the front wheel can be estimated on
the back wheel).

Future directions: Considering the above-mentioned limitations, the presented approach
can be extended in the following ways. Depending on a real dataset that contains pairs
of an image and the point cloud of the object along with the corresponding 3D keypoints
annotations, the approach can be trained to estimate 3D keypoints of an object from real
images, i.e. images containing different sizes of objects at different positions on the image.
Similarly, tackling multiple objects at the same time using some segmentation techniques can
be considered as a future task. Moreover, the intra-class variations are difficult to consider
by modifying the architecture. Adding more samples to the dataset or using augmentation
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techniques to generate similar samples can be helpful in this case. It can also be solved
by considering it as a domain shift problem. In the same way, considering symmetry is a
challenging task. In real scenarios, the surrounding objects or background can play a helpful
role in differentiating between the symmetric parts of any object.

7.3 Self-supervised keypoints estimation from a PCD

Proposed method: As a fourth task in the thesis, we present an approach that estimates
3D keypoints in a self-supervised way using the object’s point clouds. Since the approach
does not use any ground truth information for localizing the keypoints, their estimations are
different than those estimated using the supervised approaches. The keypoints instead of
highlighting the ground truth keypoints positions, highlight the shape of the original object.
The approach is compared with SOTA approaches which use PCD to estimate the same
keypoints. The results show that the presented approach outperforms by estimating keypoints
that best characterize the shape of the object. Moreover, it is also shown that the approach
can estimate accurate keypoints even for rotated, noisy and decimated PCD.

Limitations: The proposed approach has the following five limitations. First, the huge
geometrical variation and the symmetrical parts of an object negatively affect the performance
of the proposed approach. This limitation generally exists for all the (supervised and un-
/self-supervised) keypoints estimation approaches. It is due to the fact that the object’s same
structured and symmetrically same parts (circular types of bikes or cars) are very difficult
to identify. An example of a semantically wrong vs correct estimation of the keypoints for
the symmetric parts of an object is shown in Fig. 7.2. Fig. 7.2a shows that the approach
has localized the keypoints close to the object, however, their semantic order is wrong. The
keypoints that are estimated on the front wheel for the original object (row 1) are estimated
on the back wheel after the 180◦ rotated version (row 2). Whereas Fig. 7.2b shows that the
keypoints are estimated with correct semantic information for both the versions, before and
after the rotation. The difference in the semantic colors of the keypoints is due to the fact that
the outputs are generated from two networks that are trained separately in different settings
(e.g. number of keypoints).

Third, it may fail to estimate keypoints close to the object’s surface for a number of keypoints
higher than 35. Forth, the presented approach is dependent on several structural loss functions.
Thus it is complex as it has to check many parameters during the training process. Fifth, the
approach estimates fix a number of keypoints for all the objects. And it is trained separately
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(a) Semantically wrong keypints (b) Semantically correct keypoints

Figure 7.2 Wrong (semantic) prediction for symmetric parts of an object when an object is
rotated to for 180◦ due to symmetric parts of an object. (a) Wrong semantic information – the
network could not differentiate the front and the back tyres and mixed the semantic order of
the estimated keypoints. (b) Correct semantic information – the network remains successful
in predicting the semantic order of the estimated keypoints for the symmetric parts of the
object (tyres) even after 180◦ rotation.

for different categories considering that a fixed number of keypoints can not be used to
represent objects of the different structures. This shows that there is a need to select a
different number of keypoints with respect to the category.

Future directions: The first two limitations of this approach are exactly the same as those
of other keypoints estimation approaches. Their possible solutions are described earlier.
However, improving the network architecture such that it can (1) estimate keypoints higher
than 35, (2) be trained for a different number of keypoints, and (3) be trained together for
all the categories can be considered as a future task. The confidence scores, as estimated
in the proposed supervised technique, can be used to solve the fourth and fifth limitations.
However, for estimating the confidence scores, we need ground truth information which is not
available in the self-supervised settings. The most significant improvement in the proposed
approach would be the use of the minimum number of loss functions while achieving the
same performance.

Furthermore, apart from the improvement in the proposed approach, there could be some
other future directions. Such as keypoints estimation from the partial or noisy PCD (those
similar to the LiDAR data). This allows the direct applicability of the approach to real
scenarios. In a similar way, the keypoints can be used to track moving objects like an outdoor
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car. Another direction could be the object shape completion using the object’s symmetric
parts and the corresponding keypoints.

7.4 Conclusions

In this thesis, we developed deep learning models to investigate problems associated with
the 3D properties of an object. We start with the 3D shape reconstruction problem. We
observed that some of the existing 3D reconstruction approaches are valid only for synthetic
images, whereas others methods fail to produce complete, smooth and sharp 3D shapes
from real objects. Considering the limitations, we proposed two solutions. The first solution
enables the existing synthetic approaches to produce comparatively good 3D shapes from real
images by segmenting an object from a background using a segmentation module. Although
this solution improves the reconstruction accuracy, it can not be considered as an optimal
solution. It is because the solution is not end-to-end, and the performance is dependent on the
segmentation module. To overcome this limitation, we present an end-to-end solution that
removes the need of the segmentation module and reconstructs the shape from real images
by separating the features of the object from the features of the background. To separate
the object’s features, the network is trained using pairs of color and white background
images. The proposed approach is compared with the SOTA approaches, which shows that it
outperforms them by estimating smooth, sharp and more accurate 3D shapes.

We observed that the proposed solution for the 3D reconstruction problem always estimates
the 3D shape in a canonical pose. The literature reports that keypoints can be used to estimate
an object’s pose. Thus, we considered keypoints estimation as the next task. We estimate the
3D keypoints in a fully supervised way by using ground truth keypoints that are available in
the dataset. The presented approach uses only a single image to estimate the keypoints. The
keypoints are used to estimate the relative pose between different views of an object, and it is
found that it outperforms the existing SOTA approaches. However, since only the images are
used to train the network, it estimates some of the keypoints outside the object in some cases.

we extended the previously proposed keypoints estimation approach and presented a teach-
student network to distil knowledge from the point clouds during training. The network
is trained in two steps; first, the teacher module is trained to extract 3D features from the
point clouds, and then the student module learns from the teacher module to produce similar
3D features from images. During inference, only the images are used to extract 2D and
3D features that are later used to estimate 3D keypoints. The approach is compared with
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the previously proposed approach and the other SOTA approaches that estimate keypoints
from images. The proposed approach remains successful in estimating the keypoints that are
comparatively more accurate for relative pose estimation.

The above proposed two approaches are fully supervised, and hence they require a huge
dataset with human annotations. Creating such datasets is a hard task as it consumes a
lot of time and requires a human assistant to label every object in a category. This is why
limited datasets have been created so far. To overcome this problem, we present an approach
that estimates 3D keypoints from PCDs in a self-supervised setting. The approach, by
removing the need of the ground truth keypoints, increases its viability for a large number of
datasets (such as the real datasets that contain decimated and noisy objects). The approach
is compared with the existing un-/self-supervised approaches. It is found that our approach
outperforms them by estimating keypoints that best characterize an object’s shape, even for
rotated, decimated and noisy PCDs.
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