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Abstract

For many years, robots have been used in specific repetitive tasks, especially in industrial
contexts. However, in recent years, robots start to be deployed in interactive and collabora-
tive contexts with humans. The cognitive capabilities of robots are one of the main open
challenges for effective interactions. Shared Perception is one of the important skills that
are important for effective collaboration. In robotics, shared perception was studied from
the human perspective (how to enable shared perception in an interaction with a robot).
In the cognitive architectures side of research, shared perception was never studied except
for some skills that are important to enable shared perception (perspective talking, gaze
understanding, and gaze following). Therefore, my research firstly bases five general re-
quired skills for robotics in shared perception which are Having a common representation,
Expressing effective communication, Spatiotemporal coordination, Affective modulation
mechanism, and Understanding the other. Indeed, it is a complex skill and requires more
than a Ph.D. to cover all concepts. Therefore, the main research activities were building
cognitive architectures that try to address different concepts within the first three skills. The
main aim is to build cognitive architectures that take the robots one step towards shared
perception cognitive architecture. The architectures are built sequentially and based on
each other. The approach to building these architectures has four characteristics Biological
inspiration, Multi-modality more specifically audio and vision, Generalization (Not targeting
a specific task), and Attention-based (Starting with state-of-the-art attention models and
building upwards to include higher cognitive capabilities). Following this, the Ph.D. has
three main research questions as the following:

1. How can we integrate state-of-the-art vision and audio models to allow the robot to
jointly attend to the environment with a human partner? Is the behavior of the robot
effectively received by the human partner? and What is the mutual influence between
the robot and the human partner during the interaction using this architecture?
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2. How can this integrated audio-visual attention architecture be used by the robot to
understand a complex audio-visual environment? How can uncertainty be handled?
How can the robot actively perceive the environment?

3. Can this perception architecture be generalized to different robots and applied to a
complex task that requires coordination with another agent?

Each question of these three questions is related to one or more skills within the first
three required skills from the mentioned five skills above. Trying to address these questions,
I designed a series of architectures that are implemented cumulatively and showed how
different cognitive blocks can be integrated to improve the perception capabilities of the
robot, dealing with uncertainty, and noise in general conditions. The validation of these
architectures was done using multiple robotic platforms (iCub, Pepper robot, and Essex
agricultural robot) in different conditions with the robot only, with the existence of a human
partner, with another robotic agent, and in a real-world application.

Further, I did some research activities related to improving the auditory modality. This
was due to the outcomes of the experiments where audio processing was the main bottleneck
process in the system. The improvements were building a developmental pipeline for audio.
I used this pipeline to create an alternative model for audio localization that achieved very
promising results. The second activity in auditory improvements was exploring alternative
learning processes other than deep learning models that are more lightweight and suitable
for robotic applications. Although the proposed architectures don’t address all the required
skills of shared perception, they address some points in that direction and also some open
challenges in the field of cognitive architecture. More specifically, mutual influence in
human-robot interaction scenarios, cross-modal interaction, and general unified perception
modeling. The last integrated proposed architecture is a solid base for the development
of a shared perception cognitive architecture for robots. Finally, this work opens multiple
research lines in the future. The future development research lines can be divided into three
main categories which are Integrating other cognitive components, Improving the individual
modalities, and Applications, and Modeling the impairments.

Key-words: Cognitive Architectures, Shared Perception, Multisensory Integration, Cross-
Modal Interaction, Biological Inspiration.
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Chapter 1

Introduction

Rational discussion is useful only when there
is a significant base of shared assumptions.

Noam Chomsky

1.1 Motivation

Robotics showed a great impact on human life in different ways. In industrial settings,
robotics are now deployed in many activities to advance automation such as packing, assem-
bly, inspection, painting, and welding. This use of robotics improved industrial productivity
increased the quality level and reduced the costs of production. In healthcare applications,
robotics showed advancements in rehabilitation robotic devices, robotic prosthetics, and
assisting in surgeries. This shows the great positive impact of robotic technologies on
humans.

Reaching these success levels of robotics applications is also attributed to the improve-
ments of the sensory and motor technologies that have reached (or almost reached) the
required necessary levels including accuracy and speed. One other aspect of robotics is cog-
nition. Cognition in robotics is the set of skills and processing capabilities that empower the
robot with the requirements of understanding and interaction in the surrounding world. It is a
multidisciplinary field of research that involves cognitive science, psychology, neuroscience,
and artificial intelligence. The development in the cognitive organization of robotics is still
emerging and in the early stages. The limitation in the cognitive robotic capabilities is the
main reason why the deployed applications of robotics in the real world are mainly in a
setting where the environment is controlled, the task is repetitive, and the social interaction
with humans is minimal [217].
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Figure 1.1 The robot market growth estimation by 2030 in the UK [84]

The cognitive development of robotics is aiming to endow the robots with human-
like cognition. A robot with a human-like cognition is expected to understand human
partners during an interaction and respond to human behavior in a way that is natural for
humans. This will lead to more effective and safe interactions as well as solving more
complex cognitive tasks. Additionally, human-like cognition is enabling robots to be socially
integrated into human societies, unlike passive machine behaviors. In the meantime, the need
for interactive robots with better cognitive capabilities is increasing especially in human-robot
interaction scenarios, including social interactions, collaborative tasks, and autonomy in
shared environments.

The challenges in the development of cognitive robotics exist in different cognitive
capabilities such as perception, learning, action planning, natural language understanding and
processing, and dealing with uncertainty. The development of robotic cognition is partially
lagging behind the recent developments in cognitive science, neuroscience, and behavioral
psychology. However, Robots can be also used as a tool to understand human cognition. For
this reason, the research in cognitive robotics is important for creating effective collaborative
agents that can support humans and also help us to understand human cognitive capabilities
and behaviors. The research in cognitive robotics also tries to address explainability. Unlike
the end-to-end models (Classical machine and deep learning models) that solve complex
problems but do not provide reasoning for the decisions and actions taken by these models.

A recent report on the robotics impact in the UK [84] showed the expected growth of
robotics in different sectors until 2030 (as shown in the figure 1.1). The report also highlights
the challenge of acting and performing in unstructured and hard environments. Thus, the
focus on cognitive architectures that endow the robots with better cognitive skills is an
important requirement that will strongly address this challenge.
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Accordingly, building architectures that achieve human-robot shared experiences is one
of the main research focuses in the meantime [65]. Endowing the robot with a shared
experience with a human partner will have an impact on human-robot social collaborations
and interactions. On this premise, modeling shared perception on robots is important for
the goal of having social robotic collaboration. Shared perception is the perception of the
shared environment/stimulus by two (or more) observers simultaneously which also includes
the effect of the partner’s implicit and explicit actions on the observed stimulus/element
in the environment. Shared perception is a crucial skill during an interaction that enables
safe, efficient, and effective collaborative work in the shared environment. In the literature,
shared perception is addressed from the human side (how a robot affects the perception of
the human is a shared scenario), or partially from the robot side by addressing some skills
such as perspective taking and gaze understanding and gaze following. But looking from a
broader point of view, enabling human-robot shared perception for both agents (not only the
human) requires the robot to have a set of skills. We categorize these skills as the following:

• Having a Common Representation: Sharing the same understanding of the human
partner about the environment as well as objects and agents within the environment.
This skill also includes the capability of dealing with uncertain information due to
existing noise, the lack of redundancy from different modalities in some cases, and
inconsistencies in the perceived sensory information. Having a common representation
engages different levels of commonality from a basic common understanding of
feature space to a much higher level of commonality that shares a common affective
representation.

• Expressing Effective Communication Effective implicit and explicit communication
through different sensory channels with the other agents in the environment. This
includes evoking the communication cues within the shared environment that can be
interpreted by the human partner as meaningful social communicative cues.

• Spatiotemporal Coordination Perceiving, acting in the environment and reacting
to the cues from other agents in the environment in real-time consistently. It enables
active interaction and needs high-level planning and execution of an agreed policy
between the agents.

• Affective Modulation Mechanism Affective modulation is a core element in shared
perception. It is the influence of the affective state of others on the observer’s perception
in the shared context [221]. Robots need to be capable of expressing an affective state.
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Additionally, to achieve a human-like shared perception, the perception state of the
robot should be influenced by the affective state of the human partner. This includes the
capability of expressing emotions and other affective states (i.e. trust, comfortability,..
etc.) and understanding the other agent’s (human) states.

• Understanding Others Interpreting the implicit and explicit actions of the other agent
(human). This includes social cues (i.e. Gaze, facial expressions, ...etc.), perspective
taking, and intentions.

These skills are strongly interconnected, linked together, and need to be studied and
modeled on robots. Additionally, it is required for all these skills to engage multimodality
in their processes. Interpreting, coordinating, and integrating information from different
modalities (i.e. vision, audio, tactile, ..etc) enables building a more complete and accurate
representation of the surroundings. On the other hand, acting using multimodality also
increases the kinds of interactions and the cues that the robot can execute.

1.2 Aim and Approach

My research focuses on building different cognitive architectures for robots in the direction
of having a human-like shared perception cognitive architecture for robots. These cognitive
architectures have four main characteristics as the following:

• Biological Inspiration. Getting inspired by neuroscience, cognitive science, and
behavioral psychology in the implementation of the architecture.

• Multimodality. Or more specifically, audio and vision.

• Generalized settings. A general approach that can be deployed in different robotic
platforms, applied in different conditions and applications, and task-irrelevant to insure
expandability and modularity.

• Attention Based. Modeling the human process by starting with attention and moving
toward higher cognitive processes.

Indeed, the focus of the research is on a set of skills and not addressing all aspects of shared
perception. However, the aim is to build a scalable base starting from existing models of
attention towards a unified architecture for multimodal shared perception for robots.
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1.3 Research Questions

Following the main aim of my research, I divided the research into three main research
questions that have been formulated as the following:

RQ1: How can we integrate state-of-the-art vision and audio models to allow the robot to
jointly attend to the environment with a human partner? Is the behavior of the robot
effectively received by the human partner? and What is the mutual influence between
the robot and the human partner during the interaction using this architecture?

RQ2: How can this integrated audio-visual attention architecture be used by the robot to
understand a complex audio-visual environment? How can uncertainty be handled?
How can the robot actively perceive the environment?

RQ3: Can this perception architecture be generalized to different robots and applied to a
complex task that requires coordination with another agent?

[RQ1:] is aiming to take a step toward having a common attentional representation of the
environment (the robot and a human partner jointly attend to the stimulus). Additionally, it
examines the efficiency of the robot’s expressions and how they influence the attention of the
human partner. Finally, it deals with how the existence of human partners and their actions in
the environment affects the attentional behavior of the robot.

[RQ2:] is focusing more on building a common representation of the environment by
adopting a bioinspired modeling approach. Additionally, it addresses how motor actions can
be engaged to improve the perception processes (endowing the robot with proactive behavior
in perception like humans).

[RQ3:] is addressing the action coordination in the spatiotemporal domain with other
agents. Additionally, it addresses how the architecture can be applied in different robotic
platforms and how the architecture can be generalized in a real-world task.

Figure 1.2 shows the connection between the research questions and the relative shared
perception required skills. It shows the first three categories (which have the main focus
of this thesis) and some of the skills within the category. Also marks the relevance of
the research questions with the corresponding skill. It is also important to note that the
used graphical images for the skill category are trying to give a visual representation of the
category which will be used in this thesis in other figures.

In this thesis, I explain how the research is addressing these research questions using the
explained approach (four characteristics). Additionally, it tries to address the limitations that
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Figure 1.2 Research Questions and Shared Perception Skills Connections

were faced during the thesis. These limitations are generally in auditory processing and a
dedicated part of this thesis is explaining the approaches to tackle these limitations.

1.4 Thesis Structure

As shown in Figure 1.3, the thesis comprises of five parts. For each chapter within the part,
the figure also indicates the main contribution of this chapter. Additionally, the figure also
connects the chapters with the research questions and the shared perception category (by
using its graphical representation besides the contribution of the chapter/part). This section
will briefly talk about these five parts as the following:

Part I "Background" : is for giving a general background and the state of the art in Chapter
2. It goes through shared perception in robotics, cognitive architectures, and each of
the four characteristics of the thesis approach in detail.

Part II "Audio-Visual Cognitive Architecture For Joint Attention" :This part of the thesis
describes the development of a biologically inspired integrated audio-visual attention
architecture, the behavior of the robot in a joint task with a human partner, and the
mutual influence between them. This is mainly to address [RQ1]. This is done
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Figure 1.3 Thesis Structure. Showing the five parts of the thesis and the different chapters
with their connections to the Shared perception skills and the research questions.
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through two versions of the architecture. Chapter 3 is presenting the first version
a preliminary study. In this study, the main contribution is in the attention model
integration. while Chapter 4 is the extended version of the study using a modified
version of the attention architecture (Version 2) and extending it to include other
cognitive components (Working Memory, and Decision Making).

Part III "Proactive Audio-Visual Cognitive Architecture For Perception" is addressing the
general perception audio-visual model and addresses both RQ2 and RQ3. It consists of
three chapters. Chapter 5 explain in detail the main architecture, how the architecture
is structured using what and where pathways, how it addresses cross-modal interaction,
and how it uses the previous associated experiences in perceiving the environment.
Chapter 6 is exploring how can actions be included in the architecture to improve
the perception focusing on the effect on a sub-part of the architecture which is sound
localization. The final Chapter in this part is Chapter 7 is addressing the generalization
of the architecture and the implementation of the use case in a real-world coordination
task.

Generally, [Part II] and [Part III] are presenting different versions of the architecture
which represent the development journey. Each version of the architecture is presented
in a separate chapter starting by Chapter 3 to Chapter 7. Each chapter goes throw the
biological inspiration, the implementation of the architecture, the executed experiment
to examine this architecture, and finally the discussion and conclusions that can be
drawn from the results of the experiment.

Part IV "Improving Audio Pathways: Alternative Pipelines For Developing Robot’s Audi-
tion" : This Part aims to address the limitations that were shown in the behavior of the
robot using the developed architectures in the previous parts (Part Two, and Three).
These limitations are generally related to auditory processing due to the complexity
of the audio signals and the noise. Therefore, this point was addressed by proposing
different developmental pipelines for robot audition. This part is divided into two
chapters. (Chapter 8 is proposing a novel pipeline for sound source localization. and
(Chapter 9 is exploring alternative learning techniques in for auditory classification.

Part V "Conclusion": It has the summary and discussion chapter (Chapter 10) where an
overview and discussion of the outcomes of the thesis, novelty and future work will be
drawn. Finally the Epilogue of the thesis (Chapter 11).



Part I

Background



Chapter 2

General Concepts

If I have seen further than others, it is by
standing upon the shoulders of giants.

Isaac Newton

In the first chapter, I explained the main motivation, the aim, the research approach,
and the research questions. In this chapter, I will explain in detail these points and the
state-of-the-art regarding them. Firstly, I will go through the motivation (Shared perception
in robotics) then I will explain in brief some concepts related to cognitive architectures and
their components that are relevant to my research work. Further, I will go through each of
the four points of my approach (Biological Inspiration, Multi-Modality, Generalization, and
Attention Based). Finally, I will summarize this chapter as sort of positioning my research
work in relation to the research community.

2.1 Shared Perception in Robotics

With the increasing role of robotics in human life, having effective socially collaborative
robots has become an important requirement. In collaborative human-robot interaction
scenarios, the robot and the human partner/s are sharing together the same environment.
Perception is one of the important components in effective collaborations. Perception is
the cognitive process that an agent performs by processing the information from the scene
and understanding it. In the context of multiple agents observing the same environment
simultaneously, the perception is shared in the social context between these agents. It is
shared because of the social effect on the way one agent perceives the shared cue in the scene
(with the other social agent) [145].
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2.1.1 Integrating other’s attention, perspective, actions, and inner states

Shared perception is a new term in robotics. It is framed based on how biological creatures
are integrating the other’s cognitive process, more specifically, attention, perspective, and
actions. The following paragraphs will explain these components in the context of shared
perception.

Attention Staring with integrating other’s attention, gaze following and joint attention
are two of the cognitive skills that can be represented as an integration of other’s attention.
Butterworth has defined gaze following as "looking where someone else is looking" [31].
when looking at joint attention, the skill requires a higher level of cognitive processing than
gaze following as it is a triadic interaction between two agents. Joint attention skills are
developed in infants between 9 and 15 months [238].

Perspective Moving forward, perspective talking is what we refer to here with integrating
other’s perspectives. In this research field, many pieces of research had been conducted on
different aspects including modeling perspective talking in robotics [58], using robots to
help children in perceiving the world from its perspective [126], and studying the effects of
perspective taking in a human-robot interaction scenario [144].

Actions The actions of others may create an effect on one’s perception. More specifically,
humans are capable of understanding implicit cues within the action that leads to the per-
ception of some information. For example, Kaiser et al. showed that children can estimate
the weight of an object from the observations of videos [104]. These observations further
improve the accuracy of perceptual judgments [73]. These studies influenced the robotics
community to study the effect of robotic actions on the perception of the human observer
[130, 222].

Inner States One way of understanding the behavior of others is mentalization. It is
understanding the other’s inner states including needs, thoughts, feelings, goals, and reasons.
It is also common in literature by the term “Theory of Mind” [193]. This social cognitive
skill is been hypothesized to be developed starting from infancy [149] and gradually over
years[237]. Recent studies represent the inferences of other’s inner state as a top-down
modulation process for perception [12]. In fact, research showed that implicit information
from the action and explicit knowledge about the intention of the person who does the action
leads to modulation of the action-perception [91]. Also, other studies showed a modulation in



2.1 Shared Perception in Robotics 12

following the gaze [233] and the cycle of perception and action [137]. To summarize, others’
inner states have an effect on the perception of the environment as well as the collaboration
with them.

In robotics, many studies have been conducted to examine the effect of the robot’s inner
states and showed that the inner states of the robot are affecting the human perception and
action processes (check [234] for a review).

We demonstrated here, how perception is integrating others’ attention, perspective,
actions, and inner states. This integration helps infants to develop their cognitive skills
(both social and non-social skills), leads to the creation of common ground, and improves
collaboration mechanisms. Additionally, studies showed that robots can invoke this shared
perception behavior with their human partner.

2.1.2 Shared Perception From the Robot’s Side

Currently, as shown in the previous section, in the shared perception context, researchers
are typically addressing the human side or a specific skill that is required to be enabled in
robotics to accomplish a shared perception scenario for the human side. However, some
topics related to shared perception were studied separately (Not in the context of shared
perception) for the robot’s side such as perspective taking, gaze understanding, and gaze
following. Modeling the shared perception processes in the robot would import the shown
advantages of this behavior such as developing cognitive skills and effective collaborations.
But this is a challenging task especially because the studies conducted to understand this
behavior on the human side are bypassing a lot of primary skills that are currently missing
in the robots. For example, the spatiotemporal coordination between humans that shared
perception occurs in between. Both humans have coordination in time and space (there is
almost no lag of perception if they both are looking to the same object). While in robotics,
robots might need a longer time to process some information in comparison to a human
partner.

Therefore, we first framed the general development directions or skill categories for the
robot side to enable shared perception for both the robot and the human (mutual influence).
We briefly presented them in the motivational part (section 1.1) which are:

• Having a Common Representation Recent studies showed that the robot has to
find the same stimuli salient and have similar ways of using their sensory systems to
promote mutual behavior [25]. According to this, we suggest that to reach an effective
level of shared perception, the robot has to have a human-like representation. The idea
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in the cognitive architecture domain is commonly known as a biologically inspired
approach (which will be discussed in section 2.3). Thus, using human-like models in
attention, perception, and action is a key point. It is also important to point that there
are multiple levels of commonality, a basic minimal level can be the representation of
the scene’s feature in space and time. and a higher level representation can be sharing
the affective states. Indeed, it is a circular process, which means that human-like
modeling increase the shared representation, and the shared representation leads to
sharing more commonalities (creates a common ground).

• Expressing Effective Communication Empowering the robot with the capabilities
of expressing communicative signals that can be understood correctly by the human
partner. These signals can be explicit or implicit. This is a crucial aspect to enable
shared perception on the human side. This importance is shown in the study which
elaborated on the differences between the mechanical robot and social robot in enabling
shared perception [145]. Currently, robots have the capability of expressing such cues.
However, the execution of these cues has to be enabled actively based on the perception
of the robot. Unlike the currently applied methodologies in the experiment where the
robot is programmed to act in a passive way.

• Spatiotemporal Coordination Coordination in time and space is a very important
point in any shared task. So when it comes to sharing the perceptual events and states,
the coordination has to be in perceiving the event and responding to it. This includes
the low-level attentional response time and up to high-level action planning. This
coordination has to have an agreed policy to occur. This policy can be part of the
perceptual representation in a bottom-up fashion and explicitly agreed on as a top-down
property.

• Affective Modulation Mechanism In this point, we point to the skill of communicating
affective cues that are capable of modulating others’ emotions. In fact, this skill can be
categorized under the communication point. However, we categorize it to highlight the
importance of the affective aspect. The importance of this skill in shared perception
started to get more attention in recent years. In fact, a recent special issue was published
to highlight this aspect [221].

• Understanding Others Encoding the implicit and explicit cues of others through
processing their attention, perspective, actions, and inner states. Further, building a
model about their goals and intentions through this information. In this category, some
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advancements had been made such as in perspective-taking, and gaze understanding.
However, these skills have to be integrated together and encoded through prediction

We mentioned the skill categories that are required to reach a mutually shared perception
between the robot and a human partner. To summarize, the current use of the current robotic
perception models that are designed for better human-robot collaboration is limited to high-
level behaviors. This does not allow the robot to have organized low-level sensorimotor
modalities [2]. Accordingly, adopting a human-like perception in robotics would be an
automatic way of understanding the human partner [59]. In fact, it has been suggested that
robots have to exhibit similar attentional characteristics [26] and use sensories to be intuitive
[25]. A recent study also showed the importance of shared perception in collaborative human-
robot interaction [144]. The study showed that better performance was achieved when the
robot adopt a shared perception strategy for the decision-making of suggestions to the human
collaborative partner. Another study showed that when the robot and a human partner take
mutual adaptive decisions the performance of the human-robot team increases [173]. Thus
we take this as the motivation for our research and the general theme of the thesis. For each
part of the thesis, I will be reviewing the recent work in more specific domains of cognitive
architectures and robotics.

2.2 Cognitive Architecture

Cognitive architecture refers to the structural organization of the process involved in human
cognition. It provides a comprehensive description of the functionalities and their interaction.
Cognitive architectures often have a principal representation and a computational implemen-
tation that show how the information is processed, stored, and transformed in the mind. We
suggest reading the review by Kotseruba and Tsotsos for the cognitive architectures that were
developed last 40 years ago for more comprehension [120].

2.2.1 Cognitive Architectures Core Functionalities

The components of cognitive architecture can vary from one architecture to another based on
the main focus of the architecture. These components are generally the core components of
human cognition.

Attention Attention is a cognitive process that allows the agent to focus on a discrete
amount of information in the scene while ignoring the rest of the perceived data. Attention
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has been defined as a selection process or as an allocation of limited resources. Attention as a
selective process is referring to the agent’s skill of actively selecting stimuli or information to
process while ignoring the rest. Selective attention processing emphasizes the importance of
the active role of the agent to influence the attentional process (the top-down process) as well
as the bottom-up environmental salience-based influence. On the other hand, the other idea
about attention as an allocation of limited resources describes attention as limited processing
cognitive capacity. It is based on the view of limited processing capabilities an agent can
perform at an instant of time. Although attention has been studied extensively in different
research domains, It is difficult to draw a general definition for it. Therefore, different studies
focused on different kinds of attention (i.e. selective attention, divided attention, executive
attention, etc.).

Perception is the process of organizing and interpreting the sensed information from
different sensor modalities (i.e. Visual, Auditory, and Haptic). The perception process allows
the agent to understand the environment including objects, people, events, and actions.

Action and action selection are the proactive process that changes in the state (typically
the physical). Cognition studies usually focus on planning, selecting, and executing the
action. Additionally, the direct and proactive role of actions on other cognitive processing
such as perception, memory, and learning.

Memory is the cognitive component where the information is stored. The stored informa-
tion or knowledge can vary in types and functionalities such as short-term memory, working
memory, long-term memory, and associated memory.

2.2.2 The Three Types of Cognitive Architectures

In the last decade, many cognitive architectures have been proposed. A recent common cate-
gorization method for these architectures is based on the kind of represented and processed
information in these architectures. It divides the architectures into three major taxonomies.
the symbolic architectures (cognitivist), the emergent architectures, and finally the hybrid
approach architectures. The symbolic (cognitivist) approach is the classical one which is
using rules to manipulate symbolic representations of the concepts. This approach embraces
the view of cognition as a kind of symbolic computation. On the other hand, the emergent
approach is more into real-world temporal processing using connected, dynamic, and enactive
methodologies. It is based on the view of cognition as an organizational process in different
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nodes. Due to the limitations of each of these two approaches (both of them aren’t capable
of addressing all major processes of cognition), the hybrid approach tries to combine the
advantages of both the symbolic and emergent approaches together.

2.2.3 Cognitive Robotics

In the robotics field, the focus of development on the software side has different directions. In
2019, Murphy referred to the approach that focuses on developing tools and blocks using the
models of traditional artificial intelligence as "intelligent robotics". However, the cognitive
robotics field is not the same as intelligent robotics. The cognitive robotics term originated
in the 1990s. From that time on, multiple definitions have been proposed [230, 28, 44, 133].
The most recent definition that we believe that it gives an excellent comprehensive definition
of cognitive robotics is the one proposed by Cangelosi and Asada is: "Cognitive Robotics is
the field that combines insights and methods from AI, as well as cognitive and biological
sciences, to robotics." [32]. So, It goes beyond AI and includes interdisciplinary fields. Going
more in practical terms, cognitive robotics is a sub-domain of robotics research focusing on
how to endow a robotic agent with cognitive capabilities such as perception, learning, and
reasoning. It deals with the robots as embodied agents in the environment, more specifically
in real-time interactions.

In recent years, cognitive robotics has received the attention of researchers under many
research projects funded by financial institutions including DARPA, the European Commis-
sion, the UK government’s office of science and technology, Japan Science and Technology
Agency Exploratory Research, and others. This actually shows the importance and potential
of this field.

One of the uses of cognitive architectures is the examination of modeling human cognition
and behavior including brain activities [232]. Following this concept, cognitive robots can be
used to validate the proposed architectures and implementations. The advantage of robotics
over the classical computational approaches and artificial systems is that robots provide
realistic and time-oriented interactions with the environment. Additionally, the environment
can include other social and non-social agents during the interaction.

In the research of cognitive robotics, there are different branches of robotics in the
community. They can be divided based on their cognitive functionality (i.e. cognitive
perception, cognitive navigation, cognitive manipulation, and social cognition). Another way
of categorization is based on applied behavior. (i.e. swarm cognitive robots, soft cognitive
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Figure 2.1 Cognitve Robotic System Layers

robots, developmental cognitive robots.) The software implementation of cognitive robotics
has different layers which I will present in the following section.

Implementations layers of the cognitive robotics

The development of cognitive robotics generally consists of three layers shown in figure 2.1
The embedded mechatronics system, the middleware and processing units, and finally the
cognitive architecture.

Embedded Layer The embedded layer is the lowest layer in processing. it deals with
sensors and actuators. Also, it defines the embodiment of the robot based on the shape,
fixation, and capabilities (degrees of freedom) of the design. In this layer, digital signal
processing units are usually associated with the sensors and actuators. The highest part of
this layer is a generic unit that communicates with the upper layer. This general unit is the
main low-level processor of the robot.

Middleware The middleware layer is responsible for connecting different processing units
altogether including the robot. The processing units can be other PCs or GPUs in the network.
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Middlewares are designed to offer communication channels with different devices, differ-
ent operating systems (Linux, Windows, macOS), and different software languages (Python,
C++, Java, ..etc.).

YARP (Yet Another Robot Platform) [150] is the developed middleware for the iCub
robot. Alongside YARP, ROS (Robot Operating System) [195] is a widely used middleware
in different robots. One of YARP’s advantages is that it has a bridge to operate alongside
ROS. So, different modules developed on top of ROS can easily communicate with other
modules in YARP and vise-versa.

The cognitive architecture The cognitive architecture layer is the top layer of the whole
system. It is built using the middleware of the system. This layer consists of the different
modules (components) of the architecture. Each module is operating as a separate entity that
communicates with other modules through the connections. The connections generally send
and receive data or commands.

2.2.4 Examples of Cognitive Architectures

In recent years, a lot of cognitive models have been proposed for robots. In this section, we
will mention a brief about these models based on cognitive processes.

Among the cognitive architectures, CLARION [231], SOAR [125], and ACT-R [6] are
one of the common architectures. The most presented modality in the literature is vision.
Most of the proposed models are operating with very specified scenarios/tasks and generally
use computer vision methodologies and toolkits. Only a few models such as ART [179],
SASE [252], Leabra [179], and Darwin [223] are biologically inspired and are designed to
model a specific process and limited applications in control environments.

On the other hand, auditory perception models are less common in cognitive robotics
research. Most of the focus in the auditory models for robots was on the linguistic information
carried in the audio in the context of speech commands to the robotic agent [120] such as
CORTEX [210] and Ymir [235]. Some other models have an auditory perception component
to study the multimodal integration or for specific tasks such as localizing speakers in the
scene [120, 72].
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2.3 Biologically Inspired Cognitive Architectures

The term Biologically Inspired Cognitive Architecture (BICA) started to rise through a
program funded by DARPA in 2005. Further, the term was adopted in different research
communities [69]. In general, BICA is designed to show and simulate similar functionalities
of the biological brain, based on structuring the cognitive process and their connectivity.
BICAs get inspiration from the brain for representing knowledge and, unlike the subsection
of the cognitive architectures that are modeling the mind process almost exclusively [122].
It was also suggested that biological inspiration is one of the keys to the next generation of
artificial cognitive agents [38].

The gap that BICAs are trying to fulfill is generally in three main domains as the
following:

• An approach to understanding intelligence. Modeling complex integrated behaviors
can examine existing ideas about cognitive processing. Consequently, a better under-
standing of these processes and hopefully addressing new solutions for impairment
and diseases.

• Developing embodied machines (Robots) that behave like a human. This point is to
address the physical and social interaction between the robot, environment, and other
agents in a natural way.

• The efficiency of using the sensory and computational resources. BICAs are generally
trying to minimize the resources such as using binaural hearing instead of solving
the problems by increasing the dimensionality of the sensories/processing power
for example using a microphone matrix instead of dual microphones for sensorial
processing and using a huge dataset in learning processes.

The main objective was to develop artificial models for the human-intelligence. Using
these models, artificial machines are equipped with the required intelligence to solve complex
tasks in complex environments. Thus, the machines are also capable to adopt and learn
effectively with autonomy [216]. In the meantime, there are several challenges associated
with the BICAs. The complexity of biological intelligence makes modeling it a challenging
task. This is one of the primary challenges for BICAs. Another challenge is the requirement
for interdisciplinary collaboration within the research community. This includes psychology,
neuroscience, engineering, and cognitive science. The collaboration will foster development
which can be seen in some recent research.
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One of the advantages of having human-like computational behavioral models is improv-
ing the efficiency of the task in the human-robot interaction scenario. For example, it was
shown that a human-like gaze improved the timing of a handover task between a robot and a
human [157]. Another research showed that the human-like gazing and pointing behavior
has enabled the effect of shared perception and positively improved the accuracy and reduced
the perceptual errors in a shared task [145].

Finally, we would like to suggest the review by Samsonvich for more informative details
about the biologically inspired cognitive architecture [216]. It is not a very recent review.
However, it elaborates on the challenges and the road map of this field.

2.4 Multimodality

Humans are receiving a stream of information from multiple sensory modalities (i.e. Vision,
audio, touch, .. etc.). The brain receives this information and integrates them coherently to
create a unified representation of the environment. The integration of the information coming
from different sensors is usually called sensor data fusion in robotics [110] and features
integration in cognitive science [260].

Perceiving the world using multiple senses gives more information about the environment
which creates a higher level of situational awareness. Multimodal perception improves the
robustness and accuracy of perception. Additionally, it increases confidence and decreases
ambiguity. This is due to the capability of integrating information from multiple sources and
not relying only on a single source. Indeed the information coming from different modalities
has some redundancy as well as complementary parts. Therefore, having a multimodal
artificial system is a big advantage that increases the range of applications where this system
can be deployed and used. However, integrating the information (sensor fusion, or feature
integration) is a complex process which is usually a challenge. These challenges will be
discussed further in this section.

Many proposed cognitive architectures are having two or more sensory modalities. The
integration methodology varies usually based on the level of abstraction in the architecture.
However, none of these architectures addressed cross-modal interaction. Cross-modal
interaction is a widely agreed phenomenon with evidence from neuroscience and psychology.
Basically, it is the effect of one sensory modality on altering another sensory. Altering
the senses induces different effects (i.e. McGurk effect [143], Ventriloquist effect [41],
Double-flash illusion[225, 224] ). These effects actually give us more information about
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the biological cross-modal integration but to the best of our literature research, cross-modal
interaction is not addressed in the cognitive architecture domain [120].

In summary, there are some challenges in multi-sensory integration in cognitive architec-
ture as the following:

• Handling data-related fusion aspects. Multi-sensory integration generally (not only
in the domain of cognitive architecture), has a challenge on the methodologies of
handling the data fusion-related challenges which includes uncertainty, inconsistency,
disparateness, and conflict situations.

• Cross-model interaction. As mentioned in a previous section, this domain is not yet
addressed in any of the previously proposed architectures

• Generalization. Most of the proposed multimodal architectures that consider gener-
alization among sensor modalities are very task specified. For example, in [138], the
authors proposed a system for multimodal emotional intelligence that generalizes the
understanding of emotions using different modalities. Although it performs a general-
ization on multiple modalities, it is a trained model for a specific task (Recognizing
and expressing emotions). Generally, the architectures which are designed to perform
sensor fusion are operating under specific conditions and to reach a specified goal.
And there isn’t a universal proposed solution in the robotics domain. This is also
related to encoding the knowledge in generalized approaches with different varieties
of formalization that can be transferred from one modality to another, and from one
task to another [127].

2.5 Generalization

As robots are now engaged in more applications, the environments where the robot is
operating are usually complex. Therefore, It is important for a cognitive robot to be able to
generalize the processed information from the different senses. This includes handling the
uncertainty of the perceived elements in the environment, behaviors of human partners, and
also communicated goals. This has been highlighted in a very recent survey for cognitive
robotics [226].

Trying to address this point and as mentioned, most of in multi-model cognitive architec-
ture didn’t address a unified technique to integrate the information from different senses, I
put the generalization as a core point in the thesis approach. This means that the aim isn’t
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towards solving a specified task in the robotics domain, but more towards a generic approach.
Also, the approach while designing the architectures is to focus on handling the uncertainty
which is generally a consequence of operating in complex and unstructured environments.
Of course, when testing the architecture, it has to be within defined processes, but the goal
of this point is to minimize the constraints, design architectures that can fit different tasks,
address real-world scenarios, and use different robotic platforms. Both generalization and
multi-modality are two key challenging points of the next-generation robotic platforms that
will be interacting in diverse natural conditions [255].

2.6 Attention Architectures

Attention is an important component of cognition. Attention is a set of proactive processing
mechanisms that are not only affecting perception but also other cognitive processes. There
are different taxonomies of the attention mechanisms that are generally differentiated by the
kind and amount of the suppressed information and information in the current attentional
focus.

2.6.1 Visual Attention

Visual attention is the type of attention that has received the most focus. In cognitive
architectures, attention as a selection process is the most common viewpoint. From the
computational side of view, Itti and Koch proposed a bottom-up selective attention model.
The model is computed as an integrated saliency attentional map [239] [212]. The integrated
map is a linear combination of multiple low-level saliency features map such as (Edges,
chrominance, and intensity). Based on this computational model, PROVISION (PROactive
VISual attentION) architecture has been implemented [201] and used in robotics in multiple
applications [247, 72]. The PROVISION model includes actions in the process of attention
which included prediction, top-down control, and proactive action in the attentional process.
This can also be considered an extension of the proposed model of Itti and Koch. The
PROVISION model provides a modular tool for bottom-up visual attention enabling the
ability to tune the importance of particular visual stimuli, for example, forcing the attention
towards a bright object by putting more weight on the intensity value.
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2.6.2 Auditory Attention

Although most of the focus was on visual attention, auditory attention is an important skill
when dealing with the environment. The most common example of applications related to
the use of this skill is the cocktail party problem [81]. Modeling auditory attention is more
difficult than visual attention due to the complexity of the auditory signal which in most
cases has some noise and multiple sources. Additionally, the validation process is more
complex as there is no direct way to observe the attended cue as in vision (tracking the
gaze). Auditory attention is based on multiple acoustic characteristics such as sound sources,
rhythm, intensity, and harmonics). In robotics, auditory attention is usually modeled based
on source localization (Spatial based attention). Check [108, 167] for a review.

The development of the auditory attention in this thesis is based on an existing bio-
inspired Bayesian audio localization model [119]. The auditory attention component os built
to redirect the attention of the robot toward salient auditory signals. The system is based on
the biological basis of how humans perform sound localization. Humans use different cues
to localize sound sources: the interaural time difference (ITD) and interaural level difference
(ILD). Both are differently recruited by the auditory system to derive the direction of sound
arrival. In our implementation, we focused on the ITD cue as the principal computational
method since there is a robust literature that uses ITD for sound localization in artificial
systems [8]. The general idea behind ITD is to infer the direction of a sound from the
difference in time of arrival (TOA) between the two ears. Different approaches have been
proposed in robotics to computing the TOA, the most common one is based on correlation
metrics [89]. This approach performs well but is sensitive to noise and reverberation, which
is problematic, especially in presence of ego noise produced by robots. Other biological
systems in nature use ITD cues to localize sound by employing either bank of coincidence
detectors connected by delay lines, as in the avian brainstem [98], or more complex phase-
tuned mechanisms as in the mammalian brainstem [75]. The audio localization model used
in this research modeled the spectral decomposition of the human basilar membrane with
a gammatone filterbank and modeled delay-tuned units in the auditory pathway as banks
of narrow-band delay-and-sum beamformers. To further deal with the spatial ambiguities
associated with interaural cues [21], the model uses a Bayesian regression model that infers
the location of the sound source using the previous results of the spatial localization values.
As a result, the location is reliably estimated in the robot’s allocentric coordinate frame as a
probability distribution of sound source locations across azimuthal angles. This probability
distribution is used to create an allocentric saliency map of the sound locations.
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2.6.3 Audio-Visual Attention

Audio-visual attention is the combined attentional processing that is responsive for both
modalities. The computational modeling of audio-visual attention in robotics is still lacking
[64]. Only a few models have been proposed. For example, in [3] and [182], the authors
modeled the audio-visual attention to explore the cross-model attention mechanism in humans.
Some other models In robotics, the focus There are really few models that addressed audio-
visual attention in robotics [64]. In these models [212, 128, 72] integrated the audio as
a visual feature map in the linear combination process of visual attention. Yet, there is
no evidence from the biological processing that this is the case. The focus of previously
proposed audio-visual models in robotics focused mainly on the multisensory binding and
for a specified task mostly speaker localization (e.g. [246, 198]) ignoring the low-level
attentional selection and dynamics [64] It is clear that there is a gap in this direction and a
need at the same time, especially in interaction scenarios where multiple agents are interacting
with the robot.

2.7 Research Positioning

This thesis is a development base for shared perception cognitive architectures for robotics.
This is through tackling some of the required skills for shared perception in robotics. The
choice of skills was based on the complexity of the required processing. The starting point
was the state-of-the-art models for audio attention and visual attention.

The PROVISION attention model [201] and the Bayesian audio localization model
[200] are the starting point of the development of the thesis. A Bayesian localization
model is an active approach that was developed on the iCub robot. The model is based
on the interaural time difference (ITD) phenomenon. The model computes the posterior
Bayesian probability and gives an output of a 360 degrees Bayesian map for the azimuth
angle. The PROVISION model is an implementation of state-of-the-art biological attention
methodologies. It computes a combined saliency map based on visual early features. My
main research part is based on these two models. In my research, I took these two models
further and developed different cognitive processes on top of them.

2.7.1 The Contribution

In this thesis, I present my research which contributes to the community with the following:
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• In part I (Background) which is this chapter, I framed theoretically the requirement
and research directions toward human-robot shared perception.

• In part II, my contribution is the design, implementation, and evaluation of an audio-
visual cognitive architecture. The main novelty of the designed architecture is the
biologically inspired time-variant decision-making process that addresses the speed-
accuracy trade-off in the attentional decision. Additionally, we contribute with the
evaluation process of this architecture as it considers a point that has been ignored in
other audio-visual attention systems which is the mutual influence between the robot
and the human in the attentional task that they jointly perform.

• In part III, we build on the top of the novel audio-visual architecture and proposed
a more complex architecture for audio-visual perception. This architecture is quite
unique in its novelty as the following:

– It is so far the first cognitive architecture that addresses the cross-modal interac-
tion in perception.

– The biological bases of the architecture as it adopts multiple biological processes
and organization in different levels of the architectures.

– Unlike other audio-visual perception systems, my proposed architecture is gen-
eralized to different tasks and not specifically addressing one single task.

Additionally, we contribute to active sound source localization with a framework for
analyzing different head motor strategies to improve the performance of the sound
localization system. This framework is actually a sub-part of perception architecture.

We push further with our architecture and implemented it in multiple robotic platforms
and applied the architecture in a real-world application (use case).

• Part IV, is a supplementary part in which I propose two development pipelines for
robot audition. The first pipeline is mainly for sound localization and the second one
is for environmental sound classification. These pipelines are addressing challenges
related to auditory perception in robotics.

2.7.2 Detailed Reviews In The Chapters

For the contributions presented in parts II and III, each of the points is connected to the main
aim of the thesis which is pushing toward shared-perception cognitive architecture. In each
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chapter we will be providing a detailed review of the required background and state-of-the-art
methodologies as the following:

• In chapter 3, I will review joint attention and its context in the context of human-
robot interaction. While in chapter 4, I will review the working memory role in the
attentional tasks as well as the time-variant decision-making process. The reviews in
these chapters are the required topics to draw a complete understanding of the proposed
architecture that addresses the mutual influence in the human-Robot Joint Attention
Task.

• In chapter 5, three concepts will be discussed, dual visual and audio pathways in the
brain, perceptual inference, and spatial memory in the context of scene understanding.
These concepts are the implemented concepts to address cross-model Interaction.
Further in chapter 6, the importance of proactive perception will be addressed, and
finally, in chapter 7, the generalization challenge in robotics will be reviewed, and how
the proposed perception architecture is applied to different robots and in a real-world
application.

Additionally, during my research, I targeted to discover and propose alternative devel-
opmental pathways for the robotic audition for the existing common approaches to tackle
the challenges in the robotic audition. This will be in chapter 8 and chapter 9. In these
chapters, I will review sound source localization in robotics in detail and learning methods
for audio classification. Then I will connect the review to the proposed alternative develop-
ment pathway for audio localization and shallow models and continues learning for audio
classification.

In this chapter, I reviewed the relevant points to my research approach. Following this, In
the following chapters, deeper reviews will be presented related to relevant topics to each
chapter. As the second part of the thesis is focusing on building an architecture for joint
attention, in chapter 3, topics related to joint attention will be reviewed. Further, in the same
part chapter 4 will review the related work done in the concepts used in the architecture
which are the working memory and the time-variant decision-making process.

The third part of the thesis focuses on building architecture for perception, the model
is based mainly on three phenomena. What and Where pathways, perceptual multi-model
inference, and finally spatial memory and scene understanding. These three concepts will be
reviewed in the first chapter of this part (chapter 5).

In the fourth part, chapter 8 will review the related work in sound source localization for
robotics.
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2.8 Chapter Conclusion

This chapter gives a general overview of the thesis. Firstly, It explains the main motivation
of the whole research which is having a human-robot shared perception to promote effective
collaboration. It also frames the requirements and research directions toward this aim
theoretically. Following this, the chapter gives a brief explanation of cognitive architectures
and the reasons for each element in our approach (Biological inspiration, multimodality,
generalization, and attention based). After that, the chapter mentions the starting point of
the development and the contribution of the research work. Finally, the chapter point to a
detailed review of the required background in their corresponding chapters.
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Audio-Visual Cognitive Architecture For
Joint Attention



Chapter 3

First Implementation of an Integrated
Audio-Visual Architecture For Attention

Rapport demands joint attention – mutual
focus. Our need to make an effort to have such
human moments has never been greater, given
the ocean of distractions we all navigate daily.

Daniel Goleman

Joint attention is a vital skill in human-robot interaction. Modeling the attentional process
on robots would help in understanding the attentional process in humans. This chapter
introduces an integrated audio-visual attentional architecture based on the PROVISION
attention, and the Bayesian auditory localization model. The model follows the latest
propositions of integration of visual and audio attention. The novelty of the model is in two
aspects. Firstly, it proposes a new method of attention selection that moves to an acyclic
technique instead of winner takes all traditional method as found in the latest attention
models [13, 176]. Secondly, it moves from the 2D space to the 3D world and connects
attention with actions in the 3D world. Further, a preliminary experiment was conducted.
The experiment is a joint attentional task between a robot and a human participant to study
the attentional timing of the robot (in comparison with the human participant), and the effect
of mutual presence using two kinds of stimulus. (Audio only, Audiovisual) The results
of the experiment showed good performance when the audio-visual stimulus is presented,
the complexity of the task generally and especially for the audio-only stimulation, and
the incoordination between perception and action cycle. To address the drawbacks of the
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performance, the study suggested integrating other cognitive processing and decision-making
process.

3.1 Introduction

Joint attention (JA) is defined as the shared attentional focus on the same perceptual event
by multiple individuals that coexist in the same environment [158]. The joint attention
phenomenon has been studied in cognitive sciences [219] and psychology [63, 101] typically
on infants and autistic children [164, 29]. It is also an important social cognitive skill for
the development of infants [161, 162, 20]. Additionally, it improves the coordination in
the collaborative interactions [27, 206]. This draws the importance of joint attention in
human-robot collaborative interactions.

There are multiple levels of Joint attention that are developed in infancy [29, 158]. To
understand these levels, a recent typology has been proposed that defined the different levels
of joint attention as a level of jointness [228]. The typology defined a scale of four different
levels (monitoring attention, common attention, Mutual attention, and shared attention) based
on the common knowledge between both agents. Another topology of defining the levels of
joint attention is based on the ability of knowledge perception and processing [163] which is
associated with the development process of joint attention. This topology defines three levels
of joint attention. The lowest level is sharing the gaze with the other agent on the same object
which is the attention ability toward the shared stimulus in the environment in both spatial and
time perspectives. Followed by dyadic joint attention behavior, which is understanding the
social interaction between two agents such as when making eye contact, smiling, cooing, etc.
Finally, the highest joint attention behavior is the triatic behavior that involves two agents and
the environment. The triatic behavior engages multiple processes with different complexities
such as understanding the intentionality of the other agent, initiating a joint attention bid,
and maintaining the self and other intentionality. Joint attention is initiated by a bid from
one agent such as pointing or directing the gaze towards an object, or from a shared stimulus
in the environment with a shared intentional goal for both agents. Yet, understanding the
development of Joint attention and its levels is an open challenge [107, 228, 160]. To address
the challenges related to joint attention, modeling the joint attention process on robots was
strongly suggested in many articles [107, 46].

In recent years, different computational models of attention for artificial agents have
been developed [121, 166, 93, 240] to respond to visual stimuli [94], auditory stimuli
[105], and audio-visual stimuli [14, 3]. The role of joint attention during the interaction
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of human and artificial agents has been investigated through the study of attention timing
of gaze patterns [185]. On the other hand, other studies focused on the human side of
a human-robot interaction scenario and studied joint attention with the use of robotics
[37, 118, 251]. However, only a few attention systems have been designed and evaluated
to specifically address the context of collaboration between the human and the physically
present robot partner [1]. In particular, aspects such as the attention-timing and focus
redeployment strategies, are not addressed in the computational modeling of the attention
system. This neglect the impact of mutual presence in the human-robot interaction. Such
mutual influence has a fundamental importance, especially when assessing joint attention,
and yet this dimension is often not considered in joint attention studies. Adding to this, all of
the proposed models that address the joint attention were using only visual environment and
none of these models considered the multi-sensory environment. This aspect is important as
a recent study [16] explained the importance of nonverbal cues on joint attention and how
non-verbal cues enhance and extend joint attention capabilities.

Having human-robot joint attention as a motivational objective, the main aim of the work
presented in this part of the thesis (chapter 3, and 4) is to build an audio-visual cognitive
architecture for attention with the consideration of the existence of a human partner in a joint
task. Additionally, to study the mutual influence of such an interaction. In particular, how
the action of the robot such as pointing and gaze action would influence the attention of the
human partner. Additionally, to examine the attentional spatiotemporal performance of the
robot with the existence of a human partner in the scene versus this partner.

The contribution in this chapter has dual objectives: first, to improve the existing multisen-
sory systems for attentional redeployment in order to address joint attention in collaborative
tasks, and second, to demonstrate the performance of our solution by evaluating the whole
collaborative group comprising both the human and the robot participants.

3.2 Methodology

In our work, we developed starting from the existing PROVISION system: a Proactive
saliency-based selective visual attention model which was implemented for iCub robot [201].
In its bottom-up implementation, the attention system decomposes the visual scene into a
list of feature maps. The features are linearly combined with a specific weight for each of
them. We integrated the PROVISION system with an auditory attention system based on the
Bayesian sound localization model developed for the humanoid robotic platform [119]. As
well as PROVISION, the auditory attentive system is a biologically inspired model that uses
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Figure 3.1 The overall structure of the cognitive architecture

only binaural sensing (two microphones in the head of the humanoid robot iCub) in order to
calculate a Bayesian allocentric probability map for the location of the sound source. Thus,
we extracted an egocentric map from the allocentric output from the auditory localization
system and map the angles that are in the field of vision to a cartesian saliency map. The
cartesian saliency map is taken as an additional input feature to the spatial linear combination
of the topographic saliency maps. The objective is to allow the robot to have an attention
mechanism based on the audio source in combination with visual attention and to reinforce
the selectivity of the targets by relying on both visual and auditory features instead of visual
features only.

Our first new contribution aims at investigating how a biologically plausible multisensory
attention system should redesign attentional timing and focus redeployment strategies to
promote joint attention between humans and robots. The preliminary step is to move from
cyclical selection of attentive focus, typical of attentive systems implemented on robots,
to the temporal asynchronous attention selection in sensorial landscapes. This allows for
the resembling of asynchronous attentional redeployment of a human partner which in turn
facilitates joint attention. This feature is implemented through the acyclic extraction of a
saliency “hot point”. A saliency “hot point” is a spatial location in the scene that is extremely
salient when compared to the rest of the scene. It is not only the most salient point in the
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scene, but it also has a high salience compared to the whole scene. This spatial location is
what is identified as worth attending by the attention of human interactions when a stimulus
is presented. Therefore, we compare the maximum salient point with the whole distribution
of attentive responses across the entire combined saliency map. If the value of the maximum
point exceeded the triple of the standard in comparison to the mean value with a certain
threshold, then it is considered a hot point. It means that this point is extremely salient
compared relatively to the full scene. The threshold here represents a tuning parameter for
the sensitivity of the system. From this point of the paper, we will refer to (maxValue –
meanValue – 3 σ ) as “ gamma Value”.

Γ = (maxValue−meanValue−3σ)

{
hot point if Γ > threshold
not a hot point if Γ ≤ threshold

(3.1)

σ : standard deviation of the combined saliency image

The second contribution of this work is the projection of the retinotopic response into
allocentric spatial representation for motor control. The motor control system in humans is
expecting the allocentric world-based 3D location from the location of the target in the scene
to properly respond and initiate motor commands [40]. Similarly, We provide this by using
prior knowledge about the contextualization of the environment. It is reasonable to assume
that in the context of the interaction is the shared working space. Therefore, we defined the
attentive plane as the geometrical plane where the speakers and bulb lie on. Knowing the
plane and using the single image the 3D projected location of a point in the given image is
expected from the origin of the robot. Mathematically, this is done by computing the 3D
projection (x,y,z) of the pixel location (u,v) in the image on the plane defined by the equation
“aX + bY + cZ + D + 0”. The attentive plane can be represented as the pre-defined region
which includes the selected stimuli that require a response in a specific context. It is the area
of the cooperative task between the human and the robot. This bit of information is a shared
prior knowledge between the robot and the human. Finally, the point will satisfy the response
execution if the expected 3D point is in the pre-defined cooperative area of the task. The
following equation shows the simple form of the projection 3D image projection where f is
the focal length of the camera.

3.2.1 Software Infrastructure

The system is developed using Yarp [150] in C++ and python. In the design of the software
infrastructure, we opted for modularity and for multiple connections between modules.
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(
u
v

)
= f/z

x
y
z

 (3.2)

2D to 3D projection
u: the vertical component of the vector in the image

v: the horizontal component of the vector in the image
z: the pre-defined depth of the plane

x,y,z: the £D location in space
f: focal length of the camera

@default@default

Figure 3.2 Software infrastructure integrating auditory and visual attention systems in order
to provide attentive motor commands. The PROVISION model is shown in yellow, the audio

Bayesian model is shown in green, and the new components are shown in red.

Figure ?? shows the overall structure of the system implementation and Figure 3.2 showed
the detailed structure highlighting the contribution. The PROVISION model is shown in
yellow and the Bayesian auditory localization system is in green. Generally, the model is
integrating the auditory as a feature in the PROVISION system (Saliency map). The newly
added modules/process are shown in red background.

For the audio-visual model, we had to implement an integration algorithm where both
visual attention and audio attention are aligned and have the same representation. This
integration is designed to be processed in the integration and high-level processing component
of the audio-visual perception block. In this component of the architecture, auditory attention
is integrated together with the visual attention system. We remapped the allocentric auditory
map into a visual egocentric saliency map. The map is then added as a feature to the linear
combination of the attention system (already developed in the visual attention PROVISION
model [201]). The sound then reinforces the visual saliency map at the corresponding
azimuthal location only if the source of sound is located within the field of view. The aim of
this process is to provide a unified multi-sensory saliency map that enables the identification
of salient points from both auditory and visual signals.

After sensory integration, the output of the integration process is a saliency-integrated
map. Next, the saliency selection process happens, in which the system selects the point the
model needs to attend to. Therefore, we implemented a temporal asynchronous selection
process at salient changes in the landscape of the perceptual sensors (as mentioned in the
previous part). This is done in the attention manager component which allows the system to
resemble the asynchronous attentional redeployment of humans.
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These added modules are explained as follows:

Egocentric audio cropper in this module, we generate the cartesian saliency map from
the allocentric audio Bayesian map. The allocentric audio Bayesian map can be represented
as an array of 360 probabilistic values corresponding to the 360 degrees centralized across
the axis of the robot. Based on the current head azimuth angle and the gaze angle we cut
only the relative angles that represent the field of vision (FOV). If the maximum probability
of the sound source location is among the field of vision exceeded a certain threshold a strap
is created in that location and then extended to a 2D cartesian image. This Cartesian image is
then sent as a cartesian feature map to the PROVISION attention model. In this architecture,
we present the maximum probability as the confidence value of the cartesian image of the
audio. o achieve this task, the module needs to know the current state of the locations of both
the head and camera in the azimuth direction. The process of extracting the egocentric map
is based on the current locations on the camera and head in the azimuthal direction and the
camera parameters. The camera parameters specify the width of the area of vision, while
the location states of the camera and the head specify the middle value in the area of vision
range. Knowing the middle angler value and the angular width of the sound source, the
module computes the starting and ending degree angles which then are extracted from the
allocentric map. This is the first stage of the audio egocentric module which has an output of
a subset from the allocentric saliency map of the audio. The second stage involves scaling
these values vertically and horizontally to be in equal size with the frame size of the visual
image. The horizontal scaling assumes that the audio source is from the horizontal level in
the scene as we only consider the azimuth plane in the audio localization module. The output
of the scaling stage is now ready to be integrated as a feature in the PROVISION attention
system with a defined weight in the linear combination part.

Attention Manager This module is a controller for the whole attention system. It is also a
middle module between attention and any other applications or modules. It is responsible for
the computational process of the hot point as well as sending/ receiving commands with ex-
ternal systems. It receives the combined cartesian saliency image after the linear combination
and also communicates with the action execution part with the required information. This
module has full control to suspend and resume the attention process as well as manipulate the
parameters of the PROVISION system as well as the audio integration stage. This module
represents the gate for any external modules that need to communicate with the attention
system.
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Attention Action Linker is the module that estimates the 3D location of the point of
interest in the scene and checks if it is inside or outside the attentive plane. It gets the
hot point from the attention manager module. It is also communicating with the attention
manager and sharing the state of the action. This module limits the action execution to be
done under certain pre-defined conditions. The conditions are location constraints in the
3D world. We build this module as a decision-making layer to decide when and how the
action will be executed. Additionally, it sends the state of the action execution to the attention
manager so that the manager is able to suspend the attention system and the gaze during the
action execution and resume them after finishing the action.

3.2.2 The Experiment

The aim of the experiment is to examine the performance of the robot’s attention using the
proposed architecture on a joint task with a human participant. Thus, the existence and the
actions (movements) of the human participant affect the attentional system. Also, this setup
will allow the study of the robot’s effect on the participant’s attention. This experiment is the
pilot study which is mainly aiming to understand the dynamics of the proposed architecture
and further develop the required improvements to study the mutual effect between the robot
and the participant. The analysis is done by applying two kinds of sensorial stimulations.
The first one is based exclusively on auditory stimuli only and the second one combines
audio-visual stimuli. We used the humanoid robot iCub [151] in our study. It is equipped
with different sensors including two cameras (eyes) and two microphones (ears) which we
used in our experiment to perceive the environment. In the experiment, the subject is sitting
on a chair facing the robot. In between the subject and the robot, there is a black table with
the stimuli distribution on it. The audio stimuli are produced using four identical black
Bluetooth speakers distributed in a horizontal line fifteen centimeters apart. The audio stimuli
are 240 Hz sin wave. The distance between the speakers’ line and the robot is 65 centimeters
while for the human is 45 centimeters. The first speaker on the left side of the subject is
coupled with a colored bulb which represents the visual stimuli. In this experiment, we used
a fixed color (blue). Figure 3.3 shows the setup of the experiment.

The experiment consists of 32 rounds for each subject. In each round, a random number
is selected between one and four corresponding to the location of the stimuli. Then the
stimuli are activated exclusively for the selected speaker. If the round is running for the first
speaker then the bulb will turn on in a synchronic way with the speaker. The turn-on duration
is 10 seconds. The subject is requested to react as fast as possible by pressing the two buttons
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Figure 3.3 Experimental setup

corresponding to the activated stimuli using both of his/her index fingers and returning them
back to the initial position on the edge of the table. The buttons in the keyboard are selected
to be approximately equal in distance from the initial position. The time between the round
is 10 seconds so the total time of the round is 20 seconds. The location pattern is randomized
but with the same sequence for all subjects as the following sequence: (S1, S0, S1, S3, S2,
S2, S0, S3, S1, S3, S2, S0, S3, S2, S3, S1, S0, S2, S3, S0, S1, S0, S0, S2, S1, S3, S1, S2, S0,
S1, S3, S0).

3.2.3 Measurements

The main goal is to compare the attention performance of the human and the artificial agents
in the same cooperative task. Therefore, and for the human side, we recorded the reaction of
the human in which keys are pressed. For the robot, we recorded the profile of the audio as
well as the full attention system and the action execution commands. The profile of the audio
consists of the value of the maximum confidence as well as its egocentric location. From the
full system, we recorded the analysis of the combined scene to have the gamma value and its
expected location in the 3D world.
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3.3 Results and Discussion

In order to compare the performance of the robot and related with the performance of the
human in the joint attention task, we analyzed the overall performance of their temporal
response after the stimulus is presented. The stimulus presented is characterized as auditory
only when the auditory stimulus is reproduced by one of the speakers and characterized as
audiovisual when the stimulus is produced by the light of a bulb and the sound from the
speaker. We considered the time window of 20sec representing the cyclic stimulus production.
In the cycle, the first 10sec the stimulus is provided in the first 10sec whereas, in the second
10sec, no other stimulus is produced in the scene.

3.3.1 Overall performance

The overall performance of the humanoid robot is compared with the response of human
participants. This result is shown in figure3.4 (shows the error count), and figure 3.5 (shows
the creation time). In particular, we indicate the number N wrong as the number of false
attended locations L attended computed according to the following formula: N wrong =
N wrong + 1, if |L target - L attended | > θ . The threshold θ = 0.10[m] since the distance
between two consecutive stimulus locations is 0.15[m]. For the robot, it is computed knowing
the fixation point commanded by the attention system and for the human participant, it counts
the number of wrong stimulus selections at the keyboard. The number of wrong-attended
locations is comparable only for trials where a visual-auditory stimulus is presented whereas
there is a significative difference between the performance of the robot and the human
participant when the stimulus is exclusively auditory. It is worth noting that especially for
auditory stimulation the task is difficult for the human participants and the robot since the
auditory localization of pure tone without head movement provided within an azimuthal
angle range is perceptually challenging.

Comparing instead the performance of the robot and the human participants on average,
it is worth noting how the robot has wider variability in response time RT robot but the
response time is not significantly different with respect to human participant‘s response time
RT human. This is also true if we discard RT human > 5[s] as human subjects’ mistakes. In
fact, if both keys failed to be synchronously pressed the system does not record the human‘s
response. The robot instead shows an immediate response indicating quick detection of the
presence of a new stimulus but it is also not as accurate as a human participant in localizing
the stimulus source in space.
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Figure 3.4 The Error Count for both the robot and the human participants. The marked trials
with (A+V) are the audio-visual stimulation trials which were executed with S0 using both

the bulb and the speaker)

Figure 3.5 Reaction time in seconds for both the robot and the human participants
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Figure 3.6 Confidence value γ profile. In the figure, an increase during the first 10 seconds
(when the stimulus is on), and a decrease after that (when the stimulus is off)

3.3.2 Temporal analysis

For the temporal analysis of the auditory attention behavior of the humanoid robot iCub the
value γ indicates the confidence that a salient auditory stimulus is present in the scene. In
average figure 3.6 shows how the value γ changes during the 20 seconds of the trial cycle and
in particular how the confidence increases for the first 10 seconds and decreases for the last
10 secs of the trial. All the values of γ that exceed the threshold TH indicate the presence of
the salient auditory stimulus and the localization process of the auditory stimulus is initiated.

The value of TH is a fundamental parameter that impacts the number of errors since a
lower TH will activate localization even when the Bayesian network is not confident enough
about the stimulus location but also impact the reaction time since a higher level will prevent
the system from attending the auditory stimulus. In the correct implementation, we opted
for TH = 0.0082 which has an impact on fast reaction time but also on the high number
of errors. For the temporal analysis of the visual attentive behavior of the humanoid robot
iCub involved in an attentional task, we focus on the 20 seconds after the stimulus on-set
observing in particular how the attentive system responds in presence of the stimulation (first
10 seconds) and in absence of the stimulation (second 10 seconds).

In figure3.7 we report the average of the Γ progression in the 20 sec time window for
all the subjects and all the trials. In particular, the Γ value, which is the value that indicates
the uniqueness of the most salient stimulus, increases for the first 10 seconds and decreases
in absence of the salient stimulus. When the Γ value exceeds the threshold, the multimodal
attention system detects the presence of a unique salient stimulus significantly different from
the rest of the scene and it proceeds for the 3D spatial localization of the target stimulus.
It is worth observing the swift increment of confidence in the average Γ value (<500ms on
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Figure 3.7 average gamma value Γ (±st.error) temporal profile for all the trials involving
visual-auditory stimulation. There are three observations. Firstly, a swift increase in the first

second (exceeding the threshold). Secondly, an increase after the 10th second. Finally,
exceeding the threshold for some trials around the 18th second.

average) that explains the faster response rate RT robot with respect to the RT human. In
absence of the stimulus (after 10 secs) the Γ increases because other stimuli in the scene
become salient with respect to the rest of the scene. The process is gradual but the Γ

value exceeds the TH Γ on average after 18 secs generating new responses of saliency and
consequently new target localization attempts. This is where most of the wrong attended
locations are generated thus explaining the greater number of errors in stimulus localization.

Concerning the process that spatially determines the position of the most salient stimulus
in the scene, the performance is especially promising for the localization of visual-auditory
stimuli. Figure 3.8 shows the error along the y-axis (the direction of the speaker deployment
and azimuthal angle for the robot) since the x (depth) and z (elevation) axis do not show
significative changes. As shown in figure 3.8, as soon as the stimulus is set the error Error y
drops to 0.05[m] in less than 500ms. Such (RT robot) observed even before is comparable
to reaction time with respect to the (RT human). On average for the first 5 seconds, the
error oscillates around 0.05[m] and only partially adjusts in the second 5 seconds remaining
on average below 0.10[m]. After the stimulus stops (after 10secs) the robot attends other
locations not necessarily corresponding to the target of this trial. Such behavior of the robot
in absence of salient stimulus is comparable with the unconstrained behavior of the human
participants who in absence of stimulus attends other salient locations in the scene (not
necessarily the target of the trial) and sometimes even the robot partner.
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Figure 3.8 Localization error for an attentive task involving visual-auditory stimulation. A
decline in the localization error can be observed in the first 10 seconds (when the stimulus is

on)

3.3.3 Discussion and Future Work

The architecture proposed for audio-visual attention in the context of human-robot joint
attention tasks shows promising behavior although not comparable with the attentive pattern
of the human counterpart. It is clear that, whereas the visual attention system swiftly and
correctly captures changes in the visual field that correctly drive the attentive system, auditory
attention remains a challenge for both the human participant and the robot. In particular, the
majority of the subject mentioned the difficulty in localizing the source of sound when only
the pure tone is produced. The interesting question for our future study focuses on the test
with complex tone sounds or speech which is richer in terms of auditory features for sound
recognition and localization. Whereas the human participant can refine the estimation of the
stimulus location by head rotations and then solve the auditory problem [30] the robot does
not fully leverage its motor capabilities to disambiguate the uncertain situation. Therefore,
we plan to endow the humanoid robot iCub with motor control finalized for the refinement of
its estimation and to ask the human participants to wear an eye-tracking system that can give
insights into the degree of involvement of head rotation and eye fixation process. Further,
the auditory attentive system can be automatically adapted to the contextualization of the
specific task. It is more efficient to reallocate the limited computational resources of the
robot in the direction of assessing exclusively what is happening in the task (e.g.: limiting
the auditory beams to the exclusive area in front of the robot, adjusting the frequency bands
to the range of interest) and this can make the robot more efficiently react to the auditory
stimulation. In fact, the task for the human participant is to locate the stimulus from one of
four known locations but this is not the case for the robot as it tries to solve the localization
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problem across all azimuth angles. Another interesting point is that multisensory information
equally supports the attentive process of both the human observer and the robot observer. In
situations where both the auditory and visual stimuli mutually reinforce, both the human
partner and the humanoid robot iCub improve their attending performance. This indicates
that a richer testbed with multisensory stimulation (auditory and visual) for all the stimulus
locations in our following experiment might give us insights into the benefit of multisensory
integration across different locations. The last point to discuss is the robot’s system stability.
From the results and the observed behavior during the experiment, it is clear that the robot’s
reaction is not stable. In particular, the robot reacts multiple times to the same stimulus
and also reacts to other stimuli in the scene but unrelated to the task. For example, the
participant’s movements. This is due to the fact that the robot doesn’t track the stimulus and
also doesn’t track his own action. This suggests that other cognitive components might be
required to endow the robot with the capability of performing this task in a stable way.

3.4 Conclusion

If robots are going to be used to support daily activities, it is important to understand how
the process of joint attention work in typical human-robot interactions. Joint attention is
an important mediator for efficient collaborations between the interactants however, it is
challenging to endow robotic platforms with such complex cognitive capabilities. This is
also due to the challenge of sharing the same attentional timing and precision capabilities
(reaction time and localization accuracy) as human partners. Our contribution aims at
improving existing auditory and visual attention systems with specific mechanisms that
promote attention in human-robot collaborations. We focus specifically on the examination
of the attentional mechanism in a joint task. We demonstrated that the performance of
the proposed system is comparable with the performance of human participants when the
multisensory stimulation (auditory and visual) is presented at the same time to both the
human participant and the robot. On the other hand, the challenge of attending only auditory
stimuli is only partially fulfilled for the humanoid robot since the robot correctly recognizes
the presence of salient new stimulation but shows limitations in the correct localization of
the stimulus. This limitation in the auditory channel is generally due to the complexity
of the signal and the time the bayesian system needs to converge to an acceptable level
of confidence. Another important aspect that is important to mention, the system doesn’t
differentiate between new stimuli and already detected stimuli. Indeed, the architecture
wasn’t designed to track the stimulus but this is an important point to close the loop between
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perception (attention in this case) and action. Therefore, it is suggested to integrate other
cognitive components such as memory and decision-making components to track the stimulus
and also to address the tradeoff between accuracy and time which is generally in auditory
processing due to the required time of reaching an acceptable level of confidence. In this
chapter, we proposed an audio-visual cognitive architecture and evaluated the performance
of this architecture on the iCub humanoid robot in a joint task with a human participant. The
experiment showed promising results but also some limitations. In the following chapter, we
present how we addressed these limitations.



Chapter 4

The Extended Version of The Integrated
Audio-Visual Architecture Using Memory
Based Decision Making

The true art of memory is the art of attention

Samuel Johnson

The results of the experiment presented in the previous Chapter (3) suggested the need for
other cognitive components to coordinate the actions that are executed toward a represented
stimulus in the scene. Also suggested the need for a decision-making process that addresses
the time-accuracy tradeoff. In this chapter, an expanded version of the architecture is
proposed taking into consideration the propositions from the previous experiment. Taking a
biologically inspired approach, the architecture added two main biological components to the
previous architecture. The first component is time-variant decision-making, and the second
component is working memory. Further, an extended version of the previous experiment was
conducted using eye-tracking glasses to track the human gaze during the experiment and a
new set of identical audio-visual stimulation devices. The experiment studied the robotic
and the participant’s attentional behavior, and how the robotic action (gaze + pointing) is
affecting the attention of the human participant. The results showed that the new version
of the architecture stabilized the attention and action cycle and was capable of tracking
the stimulus and the robot was capable of tracking its own behavior. For the attentional
timing, the robot’s attention was comparable to the human’s performance in the audio-visual
stimulation condition. However, it was relatively slower in the auditory-only condition.
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4.1 Background

4.1.1 Attention and Working memory

Working memory has been defined as short-term memory used in order to reinterpret infor-
mation to operate better in the environment proactively. It temporarily stores and manipulates
important information for complex cognitive tasks. The term was first introduced by Miller,
Galanter, and Pribram in 1960 [154] in cognitive psychological studies and further adopted
and used in other research domains including neuroscience and cognitive robotics. Re-
searchers from psychology, neuroscience, and cognitive sciences widely agreed and showed
the interaction between the attention process and working memory. They demonstrate the
influence and the interaction between the working memory and the attention mechanism in
different ways [11]. For selective attention, working memory is argued to contribute to the
control of attention by holding the relevant information of the perceptual task, controlled
action, and templates of the targets [175]. However, this interaction is rarely addressed in
cognitive architectures, especially in the collaborative robotics field. The different models
proposed for visual attention and auditory attention for robots didn’t consider the working
memory role in the attention focus redeployment. We conclude that the role of the working
memory in the attention cognitive architectures for robotic agents isn’t yet addressed.

4.1.2 Time Variant Decision Making Process

From research theories elaborated in the previous decade, visual processing in humans and
animals triggers a decision-making mechanism in the form of a higher-level process, relying
on the extraction of low-level features and properties from visual input [244]. This process is
meant to evaluate the perceptual output properties and their relevance to the current goal and
expectations.

Decision-making processes inspired by time-invariant models have been adopted for
decades by the computational neuroscience community[199]. These models are based on
a decision-making signal, which is triggered by a fixed threshold. The process integrates
confidence over time and once the confidence reaches the fixed threshold, the decision is
made and the signal is executed. Recent studies [165] [49] [39] [215] have shown that the
time dependency of the decision-making process and the urgency of signals are invoked
by humans. These findings show that humans may make decisions with different levels
of confidence based on urgency. The more urgent the decision, the less confidence may
be accepted. This urgency-based process allows humans to adopt time-variant pressure to
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execute actions (execution pressure) as a time-variant variable. The first study also showed
the existence of neural gain modulation for urgency generation in humans, which implies the
existence of modulation signals. These signals are initiated to express urgency and modulate
the confidence level.

4.1.3 Aims and Approach

In this work we intend to endow the robot with the ability to rely on working memory,
to reinterpret the information acquired in previous instances and states in order to better
attend to the environment. Different possible computational models of working memory
have been provided in different cognitive studies [204] and in robotics applications [186].
Inspired by these previous works, we provided the robot with a simple implementation of
working memory that improves the attentive performance of the cognitive architecture for the
humanoid robot iCub [152]. The implementation engages the working memory component
in a biologically inspired decision-making process.

Thus, we propose and evaluate the performance of a computational cognitive architecture
for memory-based multi-sensory joint attention. Our goal with this study is to validate
emergent joint attention guided by our cognitive framework. The architecture includes a
multi-sensory attentional model, a working memory, a decision-making element, and an
action executor (motor controller) to solve audio-visual stimuli localization with human-like
performance. We implemented a bio-inspired decision-making strategy [165] for multi-
sensory integration that will take into consideration both cognitive models of attention and
the processing of working memory. We aimed at studying how the cognitive architecture
responds in collaborative tasks between the iCub robot [152] and a human partner. We
address the concept of joint attention emerging from a biologically-inspired multi-sensory
selective attentional process defined as the selection of the relevant stimulus while ignoring
irrelevant stimuli in the current environmental state [174]. With the goal of endowing an
artificial agent with the ability to attend to salient objects as humans do (accurate in location
estimation and with optimal timing), we can promote emergent memory-based joint attention
in collaborative scenarios. To evaluate the attentional performance in a joint task during
an unconstrained interaction (where the action of the human might affect the attentional
system) and to exploit mutual influence between the robot and the human participant, we
compared human performance with the robot performance in a task in which both agents
are exposed to the same salient audio or audio-visual stimuli. In particular, we focused on
decision-making as our main contribution, and we then addressed perceptual performance
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(localization accuracy and reaction time) during the task. Our main testing and performance
analysis is structured around three main hypotheses:

H1: Memory-Based Decision-Making Process: Empowering the cognitive architecture
with a memory-based decision-making process will stabilize the attentional perfor-
mance.

H2: Audio-Visual vs Audio Only: The stimulus localization accuracy and reaction time of
the robot in audiovisual tasks is better than in audio-only tasks;

H3: Robot Performance The performance (accuracy and reaction time) of the robot will
be as good as the performance of the human participants in localizing the stimulus.

4.2 Methodology: The Proposed Architecture and Its Im-
plementation

Getting inspired by the two biological processings which are the Working memory role in
attention and the time-variant decision-making process, we proposed a cognitive architecture
for audio-visual attention shown in Figure 4.1. We designed this cognitive architecture
with three main contribution goals to the scientific community. The first goal was to build
a multi-modal (audio-visual) attention computational system to facilitate joint attention
between a robot and a human during an interactive task. The second goal was to address the
accuracy-time trade-off in attentional decision-making inspired by human behavior. The third
goal was to improve the attention, decision-making, and action execution cycle by including a
working memory component. The first goal relates to the audio-visual perception component
while the second goal concerns the decision-making process. Finally, the third one addresses
the role of working memory in the decision-making process and the stability of the attentional
system. We also contribute to the research community with the implementation of this novel
architecture and applying it to operate in real-time on robots.

Our Cognitive architecture is composed of four main building blocks. In this section, we
will explain in detail the four blocks (Audio-Visual Perception, Decision Making, Working
Memory, and Action Execution). The details will include the biological inspiration, the
overall process, and the connections between the different blocks. The perception block
uses early features from both the sensory inputs (the audio and the vision) to trigger the
start of the decision-making process. The decision-making process modulates perception
to meet the task requirements and further sends commands to the motor control for action
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Figure 4.1 Overall cognitive architecture with all the main layers
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Figure 4.2 The detailed representation of the proposed architecture. The colors of the
modules indicated the contribution of this version in blue, the edited modules from the
previous version presented in chapter 3 in orange, and the contribution of the previous

version (with no edits) in red.
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execution. Finally, the memory governs the entire process and is shared between all of the
units. We will also explain the technical implementation for each component of the cognitive
architecture after mentioning the overall functionalities of the component. Figure 4.2 outlines
the structure and connections of our model’s modules.

4.2.1 Audio-Visual Perception

The integration of audio and visual modalities is done exactly the same as in the previous
version presented in chapter 3. The output of the audio Bayesian localization model is
transferred to an egocentric saliency map which is then added as a feature in the PROVISION
linear combination stage. The new components of this part are the power trigger and the
prior knowledge integration. However, this integration is only performed when the sound
exists (the power of the sound exceeds a certain threshold)

The second difference in comparison with the previous version is the attentional selection
mechanism. Instead of a fixed threshold Th for the gamma value Γ, the threshold is time-
variant in this version. This threshold is defined based on a confidence-urgency trade-off
from the decision-making block (a new block in this version which will be discussed in the
following section). The Audio-Visual Perception block is also connected to the working
memory, in order to update the perceptual states in the memory for a better memory-based
decision-making process. In this process, a confidence-urgency trade-off is performed based
on the time state and the stimulation states. More details concerning this will be discussed in
4.2.3 Working Memory.

Another added component in audio-visual perception is the integration of prior knowledge
for audio perception. The prior knowledge is the spatial locations of possible stimulation
sources. This knowledge influences the perceptual abilities of the robot. This process is
inspired by biological evidence about the importance of prior knowledge in decreasing
cognitive load, improving learning abilities, and improving perception [45, 43]. In Figure
4.2, the PROVISION model is highlighted with a yellow background color, and the audio
Bayesian model is highlighted with a green background color. The following part of this
section is explaining in detail the implementation of the added components to the audio-visual
perception block which was mentioned above in brief.

Trigger, and Prior Knowledge Integration

In order to overcome false positives coming from ambient sound in the environment, we
integrated a power detection algorithm along with our sound localization system as a relevant
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Figure 4.3 The visualization of the trigger and the prior knowledge integration for the
auditory maps. The right side figures show the process when the trigger is on and the left

side figures are when the trigger is off. The Bayesian map is colored from blue (probability
= 0) to red (probability = 1).

attentive mechanism in human audition [214]. We aimed to test the reliability of the sound
power as an early informative feature. We added the calculations of the sound power in an
early stage (audio prepossessing module) of the audio input. Using a fixed threshold on the
total power for both audio channels, the system can determine whether the audio signal is high
enough to be considered a valid sound or is just ambient noise. Indeed, a relative threshold
would be more efficient in handling the noisy environment but for simplicity, we used a
fixed threshold that is autonomously extracted from the environment in the calibration phase
(assuming a fixed power level for the noise which is a true assumption for the experimental
phase). However, an adaptive power trigger is adopted in a later part of the thesis (chapter
7). The instantaneous sound power is used as an input to the trigger block. The trigger
module receives the audio power processed by the audio prepossessing module. Based on
a defined threshold for the instantaneous power, the trigger outputs signal to a higher level
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audio perception module (Prior Knowledge integration & saliency transformation) and also
to the decision-making block. Additionally, it updates the working memory which will be
explained in a separate section.

Moving to the prior knowledge integration and saliency transformation module, we
define two aspects of prior information for audio stimulation. The first aspect is the possible
locations of the stimulation. As the current audio system only considers the azimuth angle,
this information is in a form of two lists. The first list is of angles describing where in
azimuthal space the audio stimulation might be occurring and the second list is the spatial
resolution of the angles, which reflects the size of the stimulation source. Thus for each
stimulation source in the scene, we express the location in azimuthal allocentric angles from
the robot’s head axis as (X degrees +/- resolution). These angles and their resolutions are
the only locations that are considered from the allocentric probability map and the rest are
ignored. The allocentric probability map is the output of the audio localization model, which
is a set of 360 values that represent the probability of the sound source’s location at any arrival
angle around the robot. These probabilistic values correspond to the 360 degrees centralized
around the head axis. After considering the prior defined locations only, the resulting map
is normalized to keep the Bayesian representation in the form of a probability distribution.
By integrating this prior knowledge, we force the model to only focus on pre-biased defined
locations. The prior knowledge is generally added in a top-down fashion from a higher level
of perception which can be from vision or other modalities. In our implementation, we give
architecture the prior knowledge as a parameter (a list of allocentric azimuth angles that
present the possible location of sound sources in the scene). This is valid in our case as the
experiment we conduct doesn’t involve changes in the robot’s position in the environment.
The second prior for the audio stimulation is the stimulation audio power. It is used to identify
the threshold level of the sensitivity of the trigger. The trigger gives a high output if the audio
power exceeded the threshold, which is the defined stimulation power level. Conversely, the
trigger gives a low output if the audio power is less than this threshold. This signal is used
to activate the transmission of the Bayesian map after adding the priors to the next stages.
Otherwise, the transmitted map is a zero map. The trigger supports the prior knowledge
module with the trigger signal to activate and deactivate the map transmission.

The next process is saliency transformation. The input of this process is the resultant
Bayesian map after adding both priors (the stimulation activation level and the sources
angles). The whole map is then multiplied by the total audio power and a scale factor. The
audio power multiplication gives more importance to high stimulation than low stimulation
(both are above the threshold level) and the scale factor transforms from Bayesian values
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(0-1) to the values of the monocular image (0-255). Figure 4.3 visualizes the process of
integrating the prior knowledge and the transformation to saliency maps.

Attention Manager

The attention manager is a central control module. We used an enhanced version of the
previous version. It receives a combined scene (the saliency map output of the linear
combination module of the PROVISION). It is also responsible for analyzing this combined
scene. The analysis is basically computing a confidence level (the gamma value Γ). We use
the previously proposed novel approach (in the previous chapter) to recognize the unique
target point of the scene based on gamma value ( Γ )measurement. The Γ value gives
information about the confidence level of uniqueness. Higher values are more likely to be
a unique target whereas low values mean that in the scene there are multiple salient points
with similar levels of saliency. When a unique target is recognized (( Γ ) value is greater than
the current confidence threshold), it sends the selected point to the next connected elements
in the architecture which is the decision-making controller in the decision-making block.

Additionally, the attention manager block receives manipulation commands for the
threshold value from the decision-making layer. The threshold here represents the level
of confidence in which action is required. Therefore, the attention manager here can be
presented as a trigger that acquires an action execution process for that current scene from the
decision-making block. Also, the module is able to fully control the process of suspending and
resuming the attention process as well as the linear combination parameters. To summarize
this part, the attention manager presents the main control unit of attention. It has the ability
to change the attention parameters (weights of the linear combination and the threshold). It
receives commands from the decision-making component, communicates with the working
memory and the PROVISION model, and updated the working memory with combined
information about the current scene.

4.2.2 Decision Making

From research theories elaborated in the previous decade, visual processing in humans and
animals triggers a decision-making mechanism in the form of a higher-level process, relying
on the extraction of low-level features and properties from visual input [244]. This process is
meant to evaluate the perceptual output properties and their relevance to the current goal and
expectations.
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Decision-making processes inspired by time-invariant models have been adopted for
decades by the computational neuroscience community[199]. These models are based on
a decision-making signal, which is triggered by a fixed threshold. The process integrates
confidence over time and once the confidence reaches the fixed threshold, the decision is
made and the signal is executed. Recent studies [165] [49] [39] [215] have shown that the
time dependency of the decision-making process and the urgency of signals are invoked
by humans. These findings show that humans may make decisions with different levels
of confidence based on urgency. The more urgent the decision, the less confidence may
be accepted. This urgency-based process allows humans to adopt time-variant pressure to
execute actions (execution pressure) as a time-variant variable. The first study also showed
the existence of neural gain modulation for urgency generation in humans, which implies the
existence of a modulation signal. These signals are initiated to express urgency and modulate
the confidence level.

Inspired by the biological evidence of the time-variant decision-making processes, we
propose a model for the decision-making process that recruits a time-variant decision-making
signal with the aid of working memory. The model performs four main tasks as the following:

• The first one is tracking the changes in the working memory and listening to the trigger
to detect the state change of the stimulation.

• The second task is threshold manipulation based on urgency. This second process is
the main element that addresses the time-variant feature of the decision-making block.

• The third task is analyzing the relevance of the received status within a predefined
context and defining the urgency. At this point, the context has to be given for the
model as input. In our implementation, the context is the defined spatial working area.
The stimulus is urgent if it lies within this defined working area.

• The last task is sending the action execution signal to the action execution block based
on the required actions which are also defined in the context.

These tasks are defined in three parallel processes. The first process is reading the states
from the working memory, the second process is doing the threshold manipulation threshold,
and the third process is checking the context, updating the threshold manipulation with
the required urgency signal, and sending the action signals. These parallel processes are
implemented in the decision-making controller module which will be described in detail in
the following part.
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Figure 4.4 The Detailed Process of The Decision-Making Controller Module showing the
connections with Attention Manager module, Working Memory, and Action Execution Block

Decision Making controller

The decision-making controller block is the module responsible to control the flow of
decisions, manipulating the threshold of the confidence level in the attention manager,
analyzing the salient perception output based on the context, and finally sending the request
to the action execution system. Figure 4.4 is showing the detailed implementation. The
control flow consists of three parallel processes explained as the following:

Process 1: Reading The States This process is periodically reading from the working
memory. It reads the states of the stimulus including gamma value Γ and the stimulus position
in the image plane. It also reads the current threshold level as well as the state of the action
execution.

Process 2: Threshold Manipulation This is the main process of the module. In fact, this
is the main novelty of the architecture. It reads the current state of the threshold which is
streamed from the first process (Reading The States). Based on an urgency signal, which
is perceived from the third process (Context checking) the threshold is manipulated. The
manipulation process is basically a deduction from the threshold based on the urgency value.
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For each time step, the new threshold is less than the current threshold by σ*Fixed Value
(Where σ is the urgency value between 0-1). Additionally, the threshold manipulation process
resets the threshold when it receives that the action for the stimulus has been triggered. There
are three behaviors for this process as the following:

• Idle: When the urgency signal is equal to zero and when the action is executed for the
stimulus.

• Manipulate the threshold: when the action is not yet executed and the urgency signal
has a value.

• Reset the threshold: When the action is executed, and the current threshold is lower
than the initial threshold.

Process 3: Context Checking This process is receiving the stimulus states coming from the
first process and sends an urgency signal to the threshold manipulation process. Additionally,
it reads the salient hot point from the attention manager, analyzes the relevance of this point
based on the given context, and finally sends action execution commands if it fulfills the
action requirements. Finally, it updates the working memory with the action execution state.
This process also receives a trigger command from the audio power trigger. Once received, it
checks the relevance of the state, and based on that, it executes the urgency signal. Once the
attention manager sends a hot point (when Γ exceeds the threshold). Once received, it starts
the evaluation of this point in the task context. The evaluation is the relevance of the 3D
projection of this point to the predefined working area in the environment. Knowing the 2D
coordinates of the hot point received from the attention manager and the equation of the plane
of the working area, we calculate the 3D location in the environment. Based on the defined
task, the decision is made whether to do the action or not and which action to do based on the
projected 3D location of the hot point. Once the action is executed, the urgency signal is set
to zero and the action state is updated in the working memory. Following the assumption of
ignoring the vertical component in the audio stimulation, we implement a function to force
the vertical component of the 2D hot point to meet the location of the stimulation sources
(defined in the context). This is done by estimating the vertical component given the current
head altitude angle and the vertical field of vision. The robot identifies the stimulation source
by calculating the distances between the projected 3D location and all the stimulation sources.
The source corresponding to the minimum distance is the winning location.

The context is stored information related to the task and environment. This means that in
this block, the task is defined with its requirement. The task is a defined action under a certain
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stimulation condition. The task-related information is information about the stimulation
conditions, the starting level of confidence of the stimulation, the modulation rate which
defines the urgency-accuracy trade-off, and finally the required action when the conditions
are applied. On the other hand, the environment-related information in the action execution
layer is a higher level of information. It includes the locations of the relevant stimulation
sources, the working plane, and the action execution parameters. This information helps the
robot to project the action from the 2D egocentric frame of the vision to the 3D world and
execute it in a proper way. More information related to this section will be explained in the
experimental setup section of the chapter.

To summarize this, the process starts with the audio power trigger. The trigger is
perceived by the third process (Context checking). Based on the states and the task, the
context-checking block executes the urgency signal to the threshold manipulation process.
The threshold manipulation reads the current threshold, deducts from it based on the urgency
value, and updates the threshold in the working memory and attention manager. Once the Γ

value of the combined scene exceeds the threshold, the Hotpoint is streamed. It goes back to
the context-checking process, which computes the 3D location of the stimulus, identifies the
stimulus, executes the action, updates the urgency, and finally set the action execution state
in the working memory. Once the threshold manipulation receives a zero urgency signal and
the state of the action is executed, it resets the threshold to the initial value and updates the
attention manager and the working memory.

4.2.3 Working Memory

The concept of working memory has emerged in psychology literature as a broad set of
mechanisms that explain this accumulation of perceptual information over time. Psychology
researchers have shown the relationship between attention and working memory [220, 60].
They have shown the irreplaceable role of working memory in solving cognitive problems
by maintaining some essential information for certain tasks that involve monitoring the
environment. Based on this information, we added a working memory element in our model
to endow the robot with this ability. The working memory in our model maintains essential
environmental and internal states for understanding the current scenario and for executing
the correct action in the defined task. As shown in figure 4.2, the working memory block
is bidirectionally connected to both the decision-making and perception components. In
our implementation, we developed a state of working memory. It stores the states of the
stimulation, action, and threshold (confidence) level to enable better interaction with the
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environment. The stimulation states define whether the stimulation is currently on or off
and track it (for both the audio-visual scene and also for audio specifically). The reason for
having a specific audio stimulation state is that it is a process that requires some time to be
localized, unlike the visual modality. The audio stimulation state is set based on the audio
trigger, while the combined audio-visual stimulation state is defined by the gamma value Γ

of the scene with respect to the threshold level. If the gamma value exceeds the threshold,
there is an on-stimulation. The attention manager block is responsible for maintaining the
stimulation state. While the action states define whether the robot is executing the action
or has finished the execution or still hasn’t executed it for the current active stimulation.
The decision-making controller maintains the state of the action execution as well as the
confidence threshold as explained in the previous section. The attention manager and the
decision-making blocks are recalling these states in their processes. The working memory
block ensures a stable robotic behavior for attention, decision-making, and action execution
cycle.

Another aspect of the working memory system is the habituation process. It is a perceptual
stage necessary for the robot to memorize the specific conditions of the environment, as
well as details about the human partner. Habituation is a well-studied process in psychology
and neuroscience. It is the simplest form of learning [196]. It is defined as the process of
learning how to filter out irrelevant stimulation and focus only on the important stimulation.
[76] [248]. It is an important biological process for effective learning. In this work, we
implement a simple form of habituation that allows the robot to learn the baseline sensorial
characteristics of the environment and of the human partner in order to properly compensate
during the task.

From the implementation point of view, we developed a habituation process for the
cognitive architecture. The process can be represented as auto-calibration of the thresholds
in the architectures. More specifically, the initial confidence threshold for the audio-visual
scene which is the one the decision-making block is manipulating, and the threshold of the
auditory power. This habituation (auto-calibration) process is executed after receiving a
habituation signal that is sent to the decision-making block. This signal changes the current
task to calculate some parameters from the scene in a defined time period. The parameters
are the maximum, minimum, average, and standard deviation of the gamma value Γ and the
audio power. The habituation also informs the process that the stimulation will be presented,
and it is required to see the effect of this stimulation and memorize it. The effect of the
stimulation is the changes in the gamma value when the stimulation is present. After the
defined time period for the habituation process, the initial threshold of the confidence is set by
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the maximum Γ value during the habituation process, minus a fixed value as a sensitivity zone.
The initial threshold value is one of the relevant details in the human-robot collaboration
with the human partner. In particular, this threshold changes based on the visual environment,
which includes the presence of the human subject, and the lighting condition. Similarly, the
audio threshold is also calibrated this way. But since the auditory environment does not
particularly change much with the existence of the human (of course if he doesn’t speak), the
habituation process has been executed once.

4.2.4 Action Execution

The action execution block receives commands from the decision-making block and then
executes these commands by performing whole-body motor execution of a required action.
The action is previously learned by the robot. The motor action execution is expecting an
allocentric location in the working environment. By providing a reasonable assumption
about the task, its context, and working area, we were able to define the attentive plane in a
geometrical representation. Applying projection on this plane we estimate the allocentric
representation of the required point. Based on the task, we assess the spatial relevance of this
point and check if this point relies on the predefined working area of the current task. The
implemented module for the action execution is called the attention action linker.

Attention Action Linker The attention action linker interprets the decision and executes
the motor commands. The decision-making layer gives the command to the action execution
layer with the result of the decision task. The linker also controls the motor action by enabling
or by disabling it. The actions are predefined in the current task. In corresponding to the
stimulation source there are two actions, the gaze action, and the point action. This part
of the architecture is more task oriented. In this module, the response actions of the robot
are defined based on the stimulus location. The main goal of putting this module in the
architecture is to enable taking actions after finishing the perception process and making an
attentional decision. In the Experimental part, we will talk about the Implemented actions
for the defined task in the experiment.

4.2.5 Incremental Approach

To sum up, our main contribution in this chapter and the previous chapter (chapter 3) is the
integration of perceptual processes, working memory and its rule in attention, time-variant
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decision-making, and finally the action execution into a complete cognitive architecture.
Delving deeper into the details there are five main contributions as the following:

• Audio Salient Based Allocentric Attention Representation: adding new modules
on the top of the audio Bayesian localization model to transfer the Bayesian map to a
saliency map.

• Audiovisual Integration: by embedding the audio saliency map as another feature
map in the linear combination of the PROVISION model.

• Prior knowledge Integration Into the Audio Attention Component to improve
the localization abilities of the robot. (The priors are given explicitly in this version,
however, it can be given as a top-down modulation knowledge from a higher perceptual
process using vision or other cognitive modalities)

• Computational Implementation of The Time-variant Decision Making (Thresh-
old Manipulation) which addresses the confidence-urgency trade-off in perceptual
decisions.

• Working Memory Integration in the Cognitive Architecture to regulate the attention
action cycle and track the state of the stimuli and the action.

The second two points are the main scientific novelty of this work. We introduce the time-
variant decision-making process with the aid of working memory in the attentional decision
task. This process is biologically inspired. It is embedded in an audio-visual cognitive
architecture for attention and applied to the iCub robot to operate actively in real-time.

4.3 The Experiment

We test our three hypotheses mentioned in section 4.1.3 by performing a joint human-robot
attentional task in an unstructured environment. The rationale behind the design of this
experiment is the facilitation of the decision-making process evaluation, the performance
of the system in different stimulation modes (audio-visual vs audio only), and finally, the
comparison between human and robot performances. Figure 4.5 shows the experimental
setup. The robot is facing the human participant. In between, there is a table that has the
stimulation board and a keyboard in front of the human participant. The stimulation board is
approximately centralized between the robot and the human with 57 centimeters of distance
to both. The height of the chair where the participant sits is configured so that the human is
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Figure 4.5 Experiment setup showing the positioning of the robot and the participant. Also,
the four stimulation boxes and their locations. Far left "FL", Middle left "ML", Middle right

"MR", and Far right "FR"

on the same level as the robot. This height places the stimulation board within an optimal
location for the field of vision for both the robot and the participant.

4.3.1 Participants

We conducted the experiment with 21 healthy participants (female: 14, male: 9) aged between
26 and 43 years old, with an average age equal to 30.5 ± 4. All participants voluntarily
participated and signed an ethical and informed consent approved by an ethical committee at
San Martino Hospital in Genoa, Italy. All the participants work within the institution with no
direct involvement in the research.

4.3.2 Stimulation

We built a stimulus setup that consists of four identical boxes. The boxes are placed
horizontally on the same line. We noted the names of the boxes with respect to the robot’s
frame of reference: (FL) for the far left box, (ML) for the middle left box, (MR) for the
middle right box, and (FR) for the far right box. Each box can produce both audio stimuli
and visual stimuli. The visual stimuli are produced by a smart bulb. The smart bulb emits up
to 800 luminous fluxes. We use red color with the maximum luminosity. The audio stimuli
are produced by a three-watt Bluetooth speaker. Both the bulb and speakers are embedded
inside the box. The top layer of each box has holes where the light and sound waves can
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propagate through, but that hides the smart bulb. The width of the box is 9 cm. The boxes are
placed with a 15-centimeter separation distance (center to center). Therefore, the distance
that separates the boxes is 6 cm. We placed the stimulation boxes in this configuration with
the given spacing to make sure that all boxes are within the direct field of view (the view
with a zero yaw angle for the face) of both the robot and the human participant. Additionally,
we made the task more challenging by minimizing the distance between the boxes. As it
is proven that human perception matches sound sources and visual sources for angles as
large as 30 degrees apart [95]. we selected a long distance as half of 30 degrees and a short
distance as one-fourth of these 30 degrees. This drove our choice for the configuration setup.
We use a complex tone with a 1 kHz fundamental frequency and 3 harmonics for audio
stimulation. The visual stimulus is a red light emitted from a smart bulb. The choice of the
complex frequency and the red color is because of their high saliency compared to other
colors for the vision, and simple tone for the audio. This was chosen to ease detection for
both humans and robots.

4.3.3 Task description

The task for both the human and the robot is to identify the active stimulation box and react
as quickly as possible. There are two types of activation for the stimulation boxes. The first
type is audio-only stimuli and the second type is audio-visual stimuli. Only one box can be
activated at a time. The stimuli are activated for a fixed time (10 seconds). The time between
rounds is also fixed at 10 seconds. The experiment consists of 32 trials for each participant.
The stimulation trials were distributed equally over the four boxes. So, each box was turned
on 25% of all trials. Also, the stimulation types were distributed equally. 50 % of the trials
were auditory-only and the other 50% are audio-visual. Each box was activated for 8 trials, 4
of them were audio-only and the other 4 were audio-visual. The sequence of trials and the
type of stimulation were randomized but fixed across participants.

In the implementation section, we mentioned that the user defines the task for the robot
and gives the system the required information for the task and its environment. Therefore,
we defined the task on the top of the attention system. The task is to localize the stimulation
from a set of defined sources located horizontally in front of the robot. After localizing
the location, the robot should execute the gaze action (to look to the stimulation source)
and point action (to point with the arms to the stimulation source). We provided the robot
with environment-related info which is the working plane where the stimulation sources
are located, and the working area on this plane. Additionally, we informed the robot that
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the stimulation sources are in that defined area in the space. Consequently, any localized
stimulation within this area is considered as relevant to the task. If the localized stimulation
is outside this area, then the robot ignores it as it is irrelevant stimulation. Extra environment
information was added to the robot here, including the stimulation sources count and location.
After localizing the 3D location of stimulation, the robot should identify the source of this
stimulation from the defined set of sources. To sum up, the task is stimulation localization
which is estimated in the decision-making layer. This task is divided into 2 stages, the first
stage is localizing the stimulation within the 2D frame and the second stage is to check the
relevance of this stimulation when the 2D location is projected into the 3D world. If it is
relevant, then the robot will execute the action. The next section is describing the defined
actions for the robot and also for the human participant.

4.3.4 Participants’ Reaction and Robot’s Reaction

We placed a keyboard in front of the human participant. On this keyboard, eight buttons were
highlighted in four groups. Each group consisted of two side-by-side buttons. The human
participants were requested to react as fast as possible by pressing any of the two buttons
within the buttons group, which correlated to the activated stimulation box. We decided to
use two buttons on the keyboard to increase the pressing area in order to simplify the action
and minimize the execution time. For the robot, we defined two actions associated with each
localized stimulation box. The first action is a pointing action using the arm, the hand, and
the fingers while the second action is a gaze action using the head and the cameras (eyes)
of the robot. For the right-side boxes, the robot will point to the selected box (FR, MR)
using its right hand. Similarly, the left hand is used for the left side boxes (FL, ML). For
the gaze action, movements in the head and the cameras are involved. The reaching action
is a biological and human-like movement that recruits not only the entire upper body of
the humanoid robot iCub but also the control of the head and gaze of the robot. The gaze
action brings the fixation point (line of sight) on the target with optimal coordination of
the 6 degrees of freedom of the head and eyes. Pointing with the index finger of the most
opportune hand brings the robot to assume a new posture in less than two seconds. The
coordination between head movement and upper body movement is designed in detail and
makes the whole body movement look natural and human-like. It is possible that the human
participant‘s attention is biased by this movement, but this is useful information in order to
estimate the human-robot mutual influence in joint tasks.
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4.3.5 Measurements and rounds

The robot and the human do the task together at the same time. Before the first trial for
each subject, we introduced visual stimulation for the robot and the human. The robot
performed the habituation process with the starting signal during this stimulation introduction
period. Our first aim was to compare the performance of the robot versus the performance
of the human participants in terms of both accuracy and reaction time. In general, we were
also interested in measuring how much one participant influences the other in human-robot
collaboration. In order to measure accuracy and reaction time for the human participant we
recorded the pressed keys and their correspondence to the target as well as the reaction time.
For the robot’s accuracy and reaction time, we recorded the action execution commands
of the robot and the internal triggering commands of these actions as relevant information
about the timing and selected location. Additionally, we aimed to analyze all components
of the decision-making processes. Thus, we recorded the threshold profile (indicating the
urgency to act) as well as the integrated scene analysis which includes the Γ value (indicating
confidence in the target localization process) during the whole trial. The second aim was
to understand the behavior of the human participants considering the presence of the robot.
Specifically, in this experiment, we focused on gaze behavior. We recorded the gaze data
during the whole experiment using Tobii pro glasses. This data includes the 2D gaze location
within the field of view of the camera and the gaze event (Fixation / Saccade). This is the
main data from the eye tracker that we focused on. For better analysis, we developed a
program to ensure synchronization between the eye tracker time stamp and the time stamp
from our system. The idea of the program is to send a timestamp instance from our system
to the Tobii pro glasses, and in the analysis stage, we map the timestamp of the eye tracker
to our system’s timestamp. The synchronization process ensures the transfer of the trials’
information to the gaze data. The trials’ information mainly includes the current state of the
stimulation, the active box, the starting time of the trial, and the type of stimulation.

4.4 Results

We primarily focused on the assessment of the performance of the memory-based cognitive
architecture for the attention task (jointly with the human). To perform an extensive evaluation
of the system, we subdivided the analysis into two main sections. The first section is an
analysis related exclusively to the performance of the cognitive architecture. This includes
the evaluation of the whole system dynamics which is mainly the decision-making process
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and the overall performance (localization accuracy and reaction time) by comparing it with
human performance.

The second part of the results is a detailed analysis of the gaze patterns. Given a thorough
description of how the focus of attention was jointly redeployed, we focused our secondary
analysis on the gaze patterns of both the robot and human participants. Such gaze behaviors
are a direct result of attentional processing but more importantly tend to cause mutual
influence between the robot and the human. Humans tend to look where their partner directs
their gaze [63]. Also, it is an important component in joint attention [257]. So, the actions
of the robot which are the gaze movement and pointing might influence the attention of the
human toward a specific location. On the other hand, the gaze action of the human changes
the visual features of the scene while the head moves. Consequently, this creates changes in
the saliency map of the robot which might change its behavior, and this is what we want to
analyze.

4.4.1 The performance analysis

The Memory Based Decision-Making Process

We evaluated the memory-based decision-making process to report how the cognitive archi-
tecture makes the decision to act, averaged across all trials. The process is based on working
memory, the confidence measure (Γ value), and the confidence time-variant threshold (the
threshold at which if confidence is reached, the agent will make a decision) as core factors of
the decision-making process. The cognitive system makes the decision to act in presence of
the event of crossing between the confidence measure and the threshold curve. Therefore, we
analyzed the decision-making behavior to assess the effect of working memory as well as the
performance of the confidence measure and the confidence threshold, which are core factors
of the decision-making process.

Adding working memory allowed the robot to track the stimulation state of the trial
(presence of a stimulation), and the state of his own action (whether the action is done, in
progress, or not yet executed). This has a clear advantage with respect to other work done in
the recent past [71] endowing the robot with the tracking capability and the understanding
of the current state instead of direct control of the robot’s behavior through a hard-coded
state machine for a specific task. Once the robot executed an action for a certain stimulus,
it could realize that the task is done and there is no need to execute the action again until
the current stimulus stops. This represents its internal working memory of the active motor
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actions. When the stimulus stops the working memory is updated, allowing the robot to reset
and wait for another stimulus.

Analyzing the stability of the system, the robot was successfully able to execute the
action in the right time frame (after the stimulus turned on and before it turned off) in 95.8%
of the trials. Comparing this result with the previous version presented in chapter 3 the
behavior of the robot has been stabilized. Clarifying this point more, previously the robot was
executing multiple actions to the same stimulus during the on time and also executing actions
during the off time. The main added component is the decision-making mechanism. The
decision-making controller with the aid of working memory stabilizes the action cycle and
also allows the execution of the action based on meaningful environmental and internal states.
This leads us to accept the first hypothesis "Empowering the cognitive architecture with a
memory-based decision-making process will stabilize the attentional performance.".

Moving to the analysis of the confidence measure (Γ value) and the confidence threshold
manipulation process, we present here the results by showing three figures as the following:

• Figure 4.6 is showing both the confidence measure Γ and the threshold for a trial to
illustrate the behavior.

• Figure 4.7 is showing the confidence threshold profile averaged across all trials for
both audio-only and audio-visual conditions.

• Figure 4.8 is showing the confidence measure Γ averaged across all trials for both
audio-only and audio-visual conditions.

In this part, I will explain these three figures. Starting from the first one (Figure 4.6), it
shows a single trial taken from one participant. Once the simulation starts, the threshold
of confidence starts to decrease in time with a decreasing factor from the initial value (the
parameter is specific to the participant, computed during calibration, and kept in memory by
the system). The level of confidence indicated by the Γ function and the threshold profile
progresses in time under their proper temporal dynamics until the Γ value and the threshold
cross each other. At this point, the cognitive architecture makes a decision and acts, by
consequently pointing to the estimated source of stimulation. Once the stimulation ends
(after 10 seconds from its beginning) the system then resets the threshold to the initial value
(the upper bound).

Moving to the second figure (Figure 4.7), it shows the average threshold profile with
audio-only trials in blue and audio-visual trials in orange. The initial value of the threshold
(the upper bound) is different for each participant. This is due to the habituation (Calibration)
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Figure 4.6 Gamma measure (Γ) and the threshold profiles in one of the trials across the
whole trial time (20 seconds). The crossing occurs around the second 5

process, as the system memorizes a different initial value for the threshold for each participant.
The process runs at the beginning of the experiment for each participant because this initial
threshold is dependent on the visual features of the environment including the human
participant in the field of view. The starting time of the threshold modulation process is based
on detecting the existence of the stimulation. Thus, the exact starting time of the modulation
signal is different from one trial to another. The confidence measure is incriminating in time
which is due to the behavior of the Bayesian auditory model. Both the threshold modulation
and the incremental value of confidence are defining the action execution time (the time
when the confidence value crosses the threshold value). Therefore, the linear decrease of the
threshold (manipulation process) explained in the first figure (Figure 4.6) became curved
when the response is averaged across all trials. In the audio-visual condition, the threshold
stops decreasing earlier. This is because the action is typically executed earlier due to the
greater level of confidence in target localization. After the multi-sensory stimulation stops
( experimentally fixed in time after 10 seconds from the beginning of the stimulation), the
threshold resets again to the initial value. In this exact moment, in the audio-only trials, the
threshold starts from a lower value. This reflects the lower confidence and consequently the
longer response time to take a decision to act.

On the other hand, by looking at the third figure (Figure 4.8), we observe that the Γ

function in audio-visual trials (orange curve) produces a spike almost instantaneously after
the beginning of the stimulation. This is due to the visual saliency of the stimulation, which
provides a strong, unique visual stimulation in the field of view. In the audio-only trials,
the Γ function shows that the confidence decreases at the beginning as a causal effect of
proactive sensing (the robot tries to eliminate the effect of the environment noise) and it
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Figure 4.7 Confidence threshold profile across the whole trial time (20 seconds) for both
audio-visual and audio-only trials

Figure 4.8 Confidence profile (gamma measure Γ ) across the whole trial time (20 seconds)
for both audio-visual and audio-only trials

starts to increase (after approximately 6 seconds in average) till the stimulation ends. When
the threshold profile and the Γ measure cross on each other, the cognitive system makes a
decision that triggers the action of pointing to the target stimulus.

The starting and stopping of the trial stimulation are autonomously detected by the system
based on the audio power in the audio signals received by both the microphones as presented
here in figure 4.9. The resetting of the threshold profile to the original value occurs after the
end of stimulation is detected.

The overall performance (accuracy and Reaction time)

To assess the performance of the robot, we compared the attention system of the robot
with human performance in response to the same multi-sensory stimulation and mutual
sensorial influence. We analyzed the overall performance based on a) the reaction time
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Figure 4.9 Audio power profile across the whole trial time (20 seconds) during all the trials

Figure 4.10 Overall performance across the different types of stimulation for both the robot
and the human participants. It can be observed that the robot is less accurate and slower

especially in the audio-only condition.

and b) accuracy as the primary source of evaluation. In particular, we characterized the
performance based on the two stimulus typologies: audio-only stimulus and audio-visual
stimulus. Figure 4.10 shows the measure of the reaction time and accuracy for both the robot
and the human participants averaged across all the trials/participants. The bars in orange
indicate the performance of the robot and the blue bars indicate the performance of the human
participant. The participant and robot‘s choice is considered wrong if the identified box
wasn’t the active box or if the action didn’t execute. Looking into the accuracy for each of the
stimulus types separately, the robot records similar performance to the human in audio-visual
attention tasks. The robot autonomously identified the source of the stimulation with 89%
average accuracy. On the other hand, the robot performed with 43% average accuracy in the
audio-only trials. The audio-only trials were more challenging for humans as well.
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To assess performance, we performed multiple t-tests to compare the behavior of the
human in the audio-visual task vs audio-only task, and similarly for the robot. The results of
all the tests demonstrated significant differences as shown in Table 4.1:

Comparison t-value (40) p-value
Human audio-visual reaction time vs human audio-only reaction time -3.7527 < 0.001
Human audio-visual accuracy vs audio only accuracy 2.1436 0.0382
Robot audio-visual reaction time vs robot audio-only reaction time -9.6 < 0.001
Robot audio-visual accuracy vs robot audio only accuracy 12.2 < 0.001
Table 4.1 Comparison of audio-visual vs. audio-only performance accuracy and reaction

time

So there are significant differences in both reaction time and accuracy between the audio-
visual condition and audio-only condition for the human participants and also for the robot.
The differences in the case of the robot were all significant (p < 0.001). As the average
accuracy value for audio-visual is higher, and the reaction time is lower compared to the
audio-only task (shown in Figure 4.10), we accept our second hypothesis that "The stimulus
localization accuracy and reaction time of the robot in the audio-visual task is better
than in the audio only tasks".

We also performed t-tests to compare the performance (reaction time and accuracy) of
the robot vs the performance of the human in the localization task. The statistical tests
showed significant differences between both performances shown in Table 4.2:

Comparison t-value (40) p-value
Human audio-visual reaction time vs Robot audio-visual reaction time -4.99 < 0.001
Human audio-visual accuracy vs Robot audio-visual accuracy 4.06 < 0.001
Human audio-only reaction time vs Robot audio-only reaction time -9.7 < 0.001
Human audio-only accuracy vs Robot audio-only accuracy 14.9 < 0.001

Table 4.2 Comparison of human and robot performance (Accuracy and reaction time)

Thus, we reject our third hypothesis The performance (accuracy and reaction time) of
the robot will be as good as the performance of the human participants in localizing the
stimulus.

We did further statistical investigations using Wilcoxon signed ranked test [205] to test
how different the performance of the robot was compared to the human. We found that
the accuracy drop in the audio-visual condition is statistically less than 20% of the human
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Table 4.3 Robot’s Failure types percentages

Failure Percentage from total Failures
Type 1 Wrong Identification 89.4%

Type 2
No action (Wrong action type in previous trial) 60% 6.4%
No action (low confidence ) 40% 4.2%

accuracy. Also, the difference in reaction time of the robot in the audio-visual condition
compared to the reaction time of the human is less than one second which is 70% of the
increase in human reaction time. For the audio-only condition, the difference was much
bigger than for the audio-visual condition. The differences in the audio-visual condition
are comparable considering the complexity of the system and the processing speed of the
machine. The audio-only condition is more complex compared to the audio-visual condition
for both the human and the robot. However, the complexity of the audio-only localization task
does not entirely explain the considerable gap. To understand the reasons for this performance
drop, we more thoroughly investigated the conditions of wrong actions. The results are
shown in Table 4.3. There are two conditions in which we consider the behavior of the robot
to be worse. The first condition is when the action is executed but the identification of the
active box was wrong and is annotated with "wrong identification". The second condition
occurs if the action is never executed during the time of the trial and we annotate this behavior
as "no action". For humans, all the wrong action trials were due to wrong identification.
For the robot, the first condition occurred most of the time (89% of the total failures). On
the other hand, there were two causes for no action failures. The first cause is when the
robot executes an action in the off time of the stimulation due to some confusion from visual
features in the scene. More specifically, it was observed that for some participants the robot
got confused from the hand of the participant, indicating once again how mutual influence
impacts attentive tasks. The participants’ hands worked as visual stimulation and the robot
identified the closest box to the hand as a source of stimulation during the off time. If the
robot executed an action during the off time, the robot does not reset the exception event
before the end of stimulation of the next trial. The consequence of this is a (no action) failure
for the trial next to the off time when the robot executed the action. This actually happened
very few times (15 times) across all trials, which consists of 6% of the total failures. This is
60% of the second type of robot failure (No action failure). The remaining 40% of no-action
failures are due to low confidence levels. The robot did not execute an action a few times
because the confidence value (Γ value) never reached the threshold during the time of the
trial. This type of failure only forms 4% of the total failures.
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Based on these analyses, the major cause of failure is wrong identification. Therefore,
it is also important to analyze in detail the attentive process in time. More specifically, the
audio components need to be analyzed, because the difference in performance lies in the
temporal response of the attention system. So, in the next section, we analyze the temporal
responses of the audio probabilities, which are the base of the localization process during the
audio-only condition.

Detailed analysis of the audio-only trials (probability profile)

Since the behavior of the decision-making process does not show erroneous behavior, but
instead the decision is made in the right time frame with a reasonable level of confidence,
we believe that the reason for the worse performance in audio-only trials is to be found in
the localization process. As shown by a more detailed analysis for audio-only trials, the
localization process is based on the level of confidence that each box is the target, in other
words, the probability that each one of the four locations is the target. Such probability
changes over time for each potential location of a stimulation source. In the audio-only
condition, the probability profile is extracted from the Bayesian map, which is the output of
the audio localization system. The temporally detailed analysis of the probability profile is
carried out during the 20-second time frame of the trials. During the first 10 seconds, the
auditory stimulation is generated by the target box only.

Figures 4.11 and 4.12 show the probability profiles for the 4 locations of the stimulation
sources when the active box is the far left one and the middle left one respectively. The
response is averaged across all trials. The first relevant point of these figures is that the shape
of the curves is similar for the boxes located on the same side, independent of the location of
the source of stimulation. In other words, the probability profile over time of the far right is
similar to the one middle right and similarly, the probability profile of the far left is similar
to the middle left. Such results indicate that there are differences in the time progression of
the probability profile between the left and right boxes from the location where the robot is
standing. The such difference has an impact on the localization of the sound target since
the certainty of sound location changes over time differences between the left and right
boxes. Similar difficulty from one side over the other was actually reported by most of the
participants. Another aspect that might have an impact on the localization of the source of
sound is that the probability profile of the sound sources from the same side evolves similarly.
This makes the discrimination task complex for the robot, but also for the human participant.
It was challenging for them to identify which box between the 2 boxes on the same side is the
stimulation source in audio-only trials. The similarity between a human-robot participant on
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Figure 4.11 Audio probabilities profile for the trials that the far left box (FL in red colour)
was activated

Figure 4.12 Audio probabilities profile for the trials that the middle left box (ML in green
color) was activated

the same side during sound discrimination suggests that the Bayesian modeling implemented
in the cognitive architecture shares some similarities with human behavior.

Another relevant point relates to the temporal profile of the probabilities for the different
salient locations. The probability corresponding to the right location increases with time
as long as the stimulus is active, (in the first 10 seconds) which is the right and required
behavior. However, the probabilities of corresponding matches between the source of sound
and different locations do not always start from zero and have equal values. This indicates
that before the activation of the stimulation, the localization system believes that one location
is more likely to produce sound than another location. Each probability goes to an initial
value that is not equal to zero and also not equal to other locations’ probabilities. Our
speculation explains the presence of these two phenomena as the result of acoustic noise in
the environment. The acoustic noise equally affects the performance of the robot and of the
human participant. It would be wise to remove the constant acoustic noise in the environment
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to eliminate its effect on the Bayesian map probabilities first, and then integrate evidence
from the actual stimulation over time.

The final consideration regards the time the system requires to make the right decision.
From both graphs, we observe that it takes in approximately 7.5 seconds for the far left box
to be the box with the highest probability and 6.5 seconds for the middle left box. For the
boxes located on the right side of the robot, the value for the middle right is similar and is
approximately 7 seconds. For the far left box, the system struggles due to the noise, the
probability for the far left never reaches the maximum when the box was activated within the
on-time frame (10 seconds). The decision-making process is tuned with some parameters to
react faster than the required time. So the average reaction time of the robot for audio-only
stimulus was measured to be around 4.34 seconds (STD: 1 second), definitely faster than the
time necessary for the temporal probability profile to converge on the correct stimulation.
Thus, we note that the attentive system can localize the target with a higher accuracy if the
decision-making process is allowed a longer reaction time. However given enough time, the
auditory localization process is always correct and the probability of the correct target always
exceeds the probability of the others. For example, the audio probability profile for the far
left box is the highest after 7.5 seconds. For the middle left box the audio probability profile
for the middle left target is the highest after 6.5 seconds. Such fine refinement is actually
doable in the cognitive architecture proposed since by adjusting the tuning parameter we can
refine the decision-making process and adjust the decreasing rate of the threshold.

In conclusion, we assessed that the task results are also difficult for the human participants
according to an interview in the debriefing phase of the experiment. Another relevant
observation in regard to the numerous comments of many participants indicates the change
in the auditory landscape as the most meaningful cue to localize the target. The suggestion
convinced us to look at the change rate of the confidence level for the different possible
targets. In figure 4.13 and 4.14 we show the change rate of the confidence probabilities for
the four locations for the trial respectively when the target is FL and ML. We noticed that
the attentive system can localize the target correctly in a shorter time if the decision-making
process analyzes the change rate of the confidence probability instead of the confidence
probability. For example, for the target in FL (see 4.13) the correct detection of the target
can occur as early as approximately 3.0 seconds, and for the target in ML (see 4.14) the
correction detection the target can occur as early as at approximately 2.5 seconds.
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Figure 4.13 Derivative of the audio probabilities profile for the trials that the far left box (FL
in red color) was activated

Figure 4.14 The derivative of the audio probabilities profile for the trials that the middle left
box (ML in green color) was activated

4.4.2 The behavioral gaze analysis of the human and the robot

The behavioral analysis of the human participants gives us relevant insight into the mutual
influence between the two partners. The behavioral analysis relies on data from the eye
tracker. We were able to record the gaze data of the human participants. The gaze data is the
2D location of the gaze and the gaze event. The gaze events can be one of two types: fixation
and saccade. We aimed to count the fixation events on the stimulation boxes and also on the
robot’s face during each trial. So, we had to define where the 2D location is projected in
the 3D world. We are interested in 5 regions (the 4 stimulation boxes, the robot’s head, and
other areas ). The eye tracker gives the 2D location of the gaze in the camera frame, which
changes when the participant moves their head with respect to the world. In order to cluster
the fixation events based on the 2D location into 6 clusters, we had to transfer the 2D location
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from the camera moving frame to a global fixed frame. We achieved this by extracting a
reference point in the scene that always exists and then we track this point. This point works
as a reference point and all interested regions are defined with respect to this point.

From the 21 subjects of the experiment, we could extract the gaze data perfectly from all
12 of them. Three subjects were moving their head very rapidly, and due to this, the process
of extracting the reference was not accurate enough. The gaze data of 5 participants weren’t
accurate enough to be considered because the eye tracker failed to calibrate their eyes. So
in this section, we only consider the data of the 12 subjects for which the calibration was
accurate and the reference extraction process was sufficient. The robot’s behavior in this
experiment consists of its actions, which are the gaze movement toward the selected box and
the pointing action with the arm. Fig 4.15 is showing the fixation distribution in trials. It
is divided into 4 panels based on the location of the simulation. (FL, ML, MR, and FR for
top left, top right, bottom left, and bottom right panel respectively). The y-axis shows the
fixation counts. The x-axis here is the five defined regions of interest (4 stimulation boxes
and the robot’s head). We also categorize it based on the stimulation type: audio only in blue
and audio-visual in orange. Similarly, Fig 4.16 shows the gaze of the robot. The robot only
does one fixation event during each trial, which is the action of the task. So, the graph also
represents the action distribution of the robot. The fixation counts on the active stimulation
box are marked with a red rectangle surrounding the bars of this location in each of the panels
for both the robot and the human participants. We divide our findings into two parts. The
first part is for audio-only trials and the second part is for audio-visual trials.
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Figure 4.15 The gaze behavior of the human

Figure 4.16 The gaze behavior of the robot
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The first observed information is that in audio-visual trials the participants do fixation
events on the active stimulation box more than other boxes in FL, ML, and MR trials. But in
trials during which the FR box was active, the participants do more fixation events on the
MR box on average. This drives us toward the second observation. Looking into the robot’s
gaze behavior, we found that in the FR trials, the robot was confused toward the MR box
and sometimes performed gaze actions toward the MR box instead of FR. The next three
observations are in the audio-only trials. In the FL trials, the robot mostly was driven toward
the ML box. This records the highest average in comparison with the other boxes. Similarly,
the participants also do more fixation events on the ML box, even more, the correct active
box which is FL. The second observation in audio-only trials is in the ML trials. In these
trials, both the robot and the participants do fixation events on the correct box more than
on other boxes. Thirdly, in MR trials the confusion of the robot was between the right box
(MR) and the ML box. But it is less than the confusion in FL trials. On the other hand, the
participants’ gaze record the highest count on the right box (MR) and the second highest is
the ML box. Finally, it is clearly shown that the participants also spend time looking to the
robot’s head in all trials for all conditions.

4.5 Discussion & Conclusion

Joint attention is a fundamental component for better collaboration in real-world scenarios,
such as in industrial environments where the robot and the human worker have to be aware of
the products being manufactured (indicated by machinery through visual and audio features).
They will be able to coordinate their actions and activities when initiated through their
joint attention directed to the same target. The proposed biologically inspired cognitive
framework, based on a multi-sensory attention system and supported by memory, constitutes
the computational model used to evaluate emergent joint attention between the human
participant and the artificial agent. The study had three main hypotheses. H1-Memory-
based Decision-Making process: Empowering the cognitive architecture with a memory-
based decision-making process will stabilize the attentional performance, H2-Audio-visual
vs Audio-only: The stimulus localization accuracy and reaction time of the robot in the
audiovisual condition will perform better than in the audio only condition. H3-Robot
performance: The performance of the robot will be as good as the performance of human
participants. To answer the hypothesis we designed a multi-sensory task and presented the
task to the human participant and the robot. The setup includes stimulation boxes, which are
a general model for real-world applications. Thus, we were able to compare the performance
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of the robot with the performance of a human participant in the same task which is an
important aspect of defining the quality of the interaction. The comparison focuses on the
assessment of both agents in terms of the execution of the same localization task with the
same response time. The rationale behind the co-assessment of both the participants is that
we intend to assess the performance of the robot and the human to measure how much they
can coordinate in the joint task and to also measure the mutual influence between the robot
and the participant.

The statistical analyses resulted in accepting the first two hypotheses (H1-Memory-based
decision-making process: Empowering the cognitive architecture with a memory-based
decision-making process will stabilize the attentional performance and H2-Audio-visual
vs Audio-only: The stimulus localization accuracy and reaction time of the robot in the
audiovisual condition will perform better than in the audio-only condition) and rejecting
the last one H3-Robot performance: The performance (accuracy and reaction time) of
the robot will be as good as the performance of the human participants in localizing the
stimulus.

However, further statistical analyses showed that the performance of the robot in the
audio-visual condition is comparable, as the accuracy drop was less than 20% of the human
accuracy and the reaction time differences were less than one second which is less than 170%
of the human reaction time. These values are acceptable considering the machine processing
speed of such complex computational processes. Indeed the cognitive system is less reactive
in audio-only stimulation and only partially influenced in the different internal processes
by the presence of the human partner. Although the audio-only condition is in general a
challenge for both the human and the robot participant, the analysis showed that the main
cause of the performance drop in the audio-only condition is the false audio localization,
which is caused by the acoustic egocentric noise. The main source of the egocentric is the fan
on the back side of the iCub head. It disturbs the auditory localization system and moves the
localization towards it which is further translated in the front field. The front-back confusion
is one of the characteristics of the interaural time difference which is the method the Bayesian
auditory localization model is based on.

Furthermore, we performed a more detailed analysis of the cognitive processes, and we
realized that the decision-making process is robustly designed to swiftly guide the system
to make a decision with excessively fast temporal dynamics. On the contrary, the auditory
attention system requires longer time periods to make the Bayesian network converge, and
thus localize the auditory target. Whereas the auditory localization process is correct in
inferring the location, also in presence of environmental noise (typical in robotic applications),
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the temporal dynamics of the system require longer periods for the processing of the auditory
stimulation. However, the specific inefficiency is of simple resolution for two reasons that we
intend to verify in future work. First, the specific modular structure of the developed cognitive
architecture and its parametric configuration is designed to allow for fast re-adaptation of the
decision-making process. As one possibility, by reducing the urgency to act parameters in the
decision-making process, we can allow more time for the Bayesian network to converge, and
consequently, we can guarantee improved accuracy. However, although the specific solution
improves the accuracy it does not guarantee a faster reaction time. Secondly, thanks to the
margin for faster response during auditory localization, the process allows us to provide more
auditory evidence for Bayesian integration in the same time interval. Faster processing of
auditory stimulation is expected to improve the reaction time of the auditory localization
system and make it more similar to the reaction time of human participants.

Undoubtedly, the temporal dynamics of how auditory evidence is integrated is a very
important aspect. We noticed in human participants that changes in the auditory landscape are
more meaningful for target localization than a static auditory landscape. The same process
based on changes in the Bayesian network facilitates the process of inference over the stimuli
localization. The importance of relative changes in the auditory landscape, together with the
importance of proactively creating such changes in the auditory landscape (self-programmed
head movements) is a promising area of study, and we are planning to exploit it further in
future work. Nevertheless, even without these improvements, the cognitive architecture has
been demonstrated to be effective, and it shows a natural and robust joint attentive behavior
for Human-Robot interactive tasks. Furthermore, for a thorough understanding of behavior
related to the mutual presence and its mutual influence, we also analyzed the gaze behavior of
the human participants. The results showed that in the conditions in which the robot confused
the location of the active box, the human participants tended to do more fixation events on
the wrong box, suggested by the wrong behavior of the robot. Also, the participants spend
time looking at the head of the robot during the experiment, which shows how the human
participant and the robot mutually influence each other in similar interactive tasks. This
brings us to conclude that the behavior of the robot may reinforce the gaze of the human
toward the robot‘s chosen box. This is reinforced by the robot’s behavior which is both built
on the directed gaze and the pointing actions. In the future, we intend to investigate this
aspect further with more statistical evidence, and we intend to know whether this hypothesis
of mutual reinforcement is confirmed and what exactly drives it: whether the gaze or the
pointing or a combination of both have a stronger effect on the human partner.
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Finally, we believe that the proposed system paves the way to human-robot collaboration
since coordinated joint attention is proven to facilitate coordination between the interacting
parts. Such an optimal mechanism of coordination is considered one of the main facilitation
mechanisms in multi-partner interaction tasks. We also showed that the robot affects the gaze
behavior of the participants. Furthermore, with this cognitive architecture, we demonstrate the
importance of implementing a complete cognitive architecture (including working memory)
in order to attend to salient targets in the environments as humans do. By sharing the same
attentional focus redeployment mechanism with the human partner we provide effective joint
attention that essentially emerges from environmental stimulation and reinforces natural
human-robot collaboration.

With this work, we conclude this part of the thesis and answered the first research question
[RQ1:] How can we integrate state-of-the-art vision and audio models to allow the robot
to jointly attend to the environment with a human partner? Is the behavior of the
robot effectively received by the human partner? and What is the mutual influence
between the robot and the human partner during the interaction using this model?).
The next part of this thesis will go beyond the attentional mechanisms and explore a higher
level of perception activities to endow the robot with human-like environmental proactive
understanding and action coordination skills.



Part III

Proactive Audio-Visual Cognitive
Architecture For Perception



Chapter 5

Main Implementation for The
Audio-Visual Architecture for Perception

The tendency of our perceptions is to
emphasize increasingly the objective elements
in an impression, unless we have some special
reason, as artists have, for doing the opposite

Bertrand Russell

The previous part of the thesis focused on addressing an attentional cognitive architecture
for the robot to perform a joint attention task with a human partner and the mutual influence
between them. The first part addressed the first research question of the thesis. Going one
step further in the research, this part of the thesis is focusing on the implementation of a
cognitive architecture for a human-like perception. With the target of endowing the robot
with the skill of common representation of the environment with the human. The part will
address this through three chapters (this chapter and the following two chapters). This chapter
is addressing the main implementation of the architecture, followed by a chapter that explains
the research to enable proactive behavior, and the last chapter of this part of the thesis will
address how we applied this architecture in different robotic platforms and in a real-world
scenario that requires high-level action coordination.

5.1 Background

In daily activities, humans are continuously stimulated in various senses. At any given
time, the environment is perceived through multiple sensory modalities. The human brain is
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capable of integrating or segregating this sensory information and building an understand-
ing of the current scene. For a situation where multiple stimulation sources are existing
(e.g. two guitarists on a stage and one of them is playing guitar), the brain must explore
and analyze the sensory input and then identify the playing guitarist correctly. Although
these perceptual tasks seem trivial, it is computationally complex. These complexities are
due to the differences between the representation of sensory information, and perceptual
inference. The representation of each sensory information has its frame of reference as well
as processing speed. For these reasons, cognitive studies proposed that the brain must adjust
the information from different sensories to a unified metric before integration [9, 191, 51].
Following the adjustment, the inference of the information takes place based on the statistical
probabilities of the information coming from each modality and combined into a multisensory
representation [34, 48]. From a computational perspective, it is widely accepted that the
inference mechanism is following the Bayesian strategy that leads to an optimal integration
[53, 57]. In detail, the integration is performed as a weighted sum using the perceptual
confidence (inverse of the sensory variance of the information coming from each modality)
as the weights for the integration[117].

Another important point in multisensory is the cross-modal interaction. It refers to
how sensory modality affects (influences) other modalities. This effect occurs in different
perceptual levels including attention [50] and sensory integration [48]. One of these effects
is due to prior knowledge and expectations. It is one of the important factors in cross-
modal interaction and integration that has been recently shown in different studies [52, 36].
Prior knowledge refers to concluded information from the previous scenes that someone
experienced. In the context of sensory integration, it is particularly how different sensory
features are integrated together. Prior knowledge is a supporting factor in learning and
adaptation activities that the brain does [68].

The research presented in this chapter aims to build a cognitive architecture (based on the
previously presented work in part II of the thesis) for the audio-visual robotic perception that
adopts the discussed multisensory perceptual processes (Bayesian multisensory inference,
cross-modal interaction, and prior knowledge) and applies it to operate in real-time. Thus,
we endow the robot with a human-like multisensory representation. Looking at the literature,
some multisensory cognitive architectures and systems for robots have been proposed. For
example, [246, 111, 33, 7, 172] proposed audio-visual systems for speaker detection and
localization. [67] proposed an audio-visual system for navigation, Although their system uses
both modalities, it doesn’t do sensory inference which is one approach in the applications
that doesn’t require high accuracy in mapping the sources of stimulus. Also, a recent neural
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network model (AVOT) was proposed for audio-visual object tracking [253] that has been
applied to videos (not in real-time).

So far, the previously developed audio-visual systems are designed to solve a specific task
and use basic inference mechanisms. Additionally, none of these models address the cross-
interaction between modalities [120] and some of them are applied in the real robot while
others are not. Having a unified framework that does the biological inference processing
with the use of hierarchical integration of priors is the challenge as mentioned in a recent
review [129].

We propose a novel biologically inspired architecture for robot perception that aims
to address these challenges which are, the inference mechanism, cross-modal interaction,
applying it in real-time, and finally the generalized approach that is not task specific. In this
chapter, I explain the main development of the architecture which is targeting the common
representation skill category of shared perception (the second research question RQ2). The
following section is giving a brief about the biological inspiration for my architecture.

5.1.1 Biological Inspiration

What and Where Pathways Ungerleider and Mishkin proposed a model for the visual
pathways in the brain in the 80s [155, 242]. The idea has been well-established and proven
throughout the years. It describes the processing of visual information in the brain. Which is
segregated into two different specialized pathways. The ventral pathway, which is specialized
in recognition (what), and the dorsal pathway which is specialized in localization (where).
More recently, the two pathways for auditory processing were proposed and evidence was
found in humans and other animals [140, 102, 203]. The dual pathway theory suggests that
the what and where pathways are parallelly running and interacting with each other to create
an overall perception of the world (Visual or Auditory) [123, 131]. Although there is some
criticism of the dual pathway theory, it is widely accepted in the research community and
supported by many studies. The other point that is related to the dual pathways is who then
these pathways are integrated and create a perceptual object. The perceptual object (auditory
or visual) is a distinct unit that the brain integrates from the dual pathways which is the result
of the scene analysis [74, 155].

Perceptual Inference Perceptual inference is the process of interpreting sensory informa-
tion and combining them together to form a representation of the environment. The inference
processing is not just mapping the knowledge that comes from the senses but it also involves
a reasoning process that integrated prior experiences as recently proposed [36]. For example,
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when a sound is heard, the brain interprets what is beyond this sound by recalling the previ-
ous knowledge about this sound which is formed previously. Perceptual inference is a key
aspect of perception as it allows a complete understanding of the environment using multiple
sensory channels. Bayesian probability theory [116] explains the inference processing in
the brain and how it combines the information from different sensories as well as the prior
knowledge in a probabilistic way. This is done by computing the evidence from the senses
and integrating the priors using Bayes’ rule. Sensory integration decides whether two signals
from different senses are emitted from the same source or two independent sources. This
integration is done through the estimation of the spatiotemporal properties of the signals as
well as the priors (reasoning based on previous knowledge). Due to this strategy, different
senses are affecting each other which is called cross-modal interaction. This is also associated
with the cross-binding problem [211]. The cross-binding problem is defined as the difficulty
of binding or integrating the right cues from different modalities together as a multimodal
object in a certain situation. The situation can occur due to the processing and cognitive
limitations of the brain. It can also happen due to damage in the brain that stops or limits
some of the brain processes.

Scene understanding and spatial working memory Humans have a remarkable ability
to perceive and understand complex scenes in the real world. This understanding of the
environment is guided by spatial working memory. It refers to the ability to store information
that is related to the spatial scene. Evidences showed this relations in attention [10] and

Spatial memory has a profound role in perception and many researchers in neuroscience
showed this [229, 42]. Recent evidence showed that some cross-modal association processing
is storing the focus of attention in working spatial memory [159]. So spatial working memory
has an important role in cross-modal association. This inspired me to model this processing
in my architecture. (Check [194] for a review on the latest research on multisensory working
memory )

5.2 The Design and The Implementation of The Proposed
Architecture

Figure 5.1 shows the overall structure of our proposed cognitive architecture. Our contribu-
tion is the design and implementation of the architecture. It consists of different kinds of
blocks (shown in different colors) based on the type of processing the block performs. The
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complexity of the information increases from bottom to up. In architecture, there are two
streams (vision and audio) that are integrated at a higher level. Each stream has attention,
what pathway, where pathway, and a manager. Following this stage, information from each
of the managers is sent to the short-term memory block. Also, the managers send commands
to the action block. The multisensory manager governs the integration process with the aid of
the long-term and short-term memory blocks. Also, it sends commands to the Action block
and finally gives an output which is a set of audiovisual objects in the spatial space each time
frame.

In the next parts of this section, we will explain in detail the implementation of the mod-
ules within each of these blocks and the information flow. Figure 5.2 shows the architecture
in detail (modules level and their connections).

5.2.1 Audio and Visual Perception

The unisensory stage for both audio and visual streams consists of four main blocks as the
following:

• Attention

• What Pathway

• Where Pathway

• Manager / Decision Maker

In this part of the chapter, each of these processes will be explained in detail for both audio
and visual streams.

Visual Attention This architecture is an extension of the previous architectures with some
modifications in the integration process. Therefore, the visual attention component in the
architecture is still the PROVISION model. However, we added in this version a new module
which is the Inhibition of Return (IOR) module.

The inhibition of return module suppresses the already attended zones/objects on the
scene. This process allows the robot to shift its attention toward new spatial zones/objects.
In this module, I defined the suppression zone as a circle with a gaussian faded distribution.
The IOR process is a well-known and studied phenomenon in visual attention. It refers to
the process of reducing/suppressing the priority or importance of a stimulus in a spatial
location that was already observed (attended). This process acts as an orientational attention
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Figure 5.1 The Overall Structure of The General Audio-visual Proposed Perception
Architecture.
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Figure 5.2 The Detailed Structure of The General Audiovisual Perception Architecture
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mechanism that gives lower priority to the attended stimulus which actually helps to scan
the scene and avoid keeping the focus of attention on a target (in the case this target has
the highest saliency). It was first discovered by Posner and Cohen’s in the 80’s [189, 190].
Following this, IOR has been highly investigated and studied from different research lines
in neuroscience, and cognitive behavior [142, 115]. Recently, the process of the IOR was
implemented in robotics models [212, 178, 241].

The inhibition process module creates an inhibition map for each time frame. The
inhibition map is integrated with the combined saliency map in the attention manager. The
attention manager then gives the output which is the inhibited combined saliency map. The
inhibited map is then sent to the inhibition process to close the loop between the attention
manager and the inhibition process. The attention selection is then applied (by the attention
manager) on the inhibited map. The output of the attention selection is a 2D point, which is
the selected hot Point as previously presented in the first part of the thesis.

Audio Attention The audio attention in this architecture is part of the Bayesian localization
model with some modifications as well. So the first module of the Bayesian localization
model is the audio preprocessor. The first stage of audio preprocessing is filtering the audio
to a specific range of frequencies. In this architecture, we represent auditory attention as a
restriction mechanism where only a process

Based on a specifically defined range of frequencies selected and other ranges are
suppressed. Following this, an adaptive power trigger is used. In the previous part, the
audio power trigger was presented and used. However, the threshold, in that case, was fixed.
The problem with the fixed thresholds is that they aren’t adaptive to different contexts and
have to be tuned to specific conditions. We addressed this drawback by implementing an
adaptive threshold. The adaptive threshold is automatically tuned based on the ambient
power level which is a bottom-up approach. Additionally, it accepts top-down commands
from the manager (In case the agent requires a higher level of audio sensitivity ). For the
bottom-up process, the threshold is set based on the average and the standard deviation of
the audio power over a defined period of time. The adaptive trigger constantly computes the
average and the standard deviation of the power across this defined audio frame and changes
the threshold accordingly. The adaptive threshold has two different modes of operation. The
first mode is setting the threshold to a slightly larger value than the maximum value and
the second a larger value than the average (defined by a buffer value). The update of the
threshold is only made when the standard deviation is low. Using this method, the threshold
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is adapting the auditory seen and sets the value based on the level of the sound power when
there is no stimulation.

Visual What Pathways For the visual modality, What pathway in our architecture is
a simple color segmentation module and a feature extractor. The color segmentation is
streaming the segments. The segments are represented with the ID of the color, and the
boundary box which is defined by 2 points (top left and bottom right point). The feature
extractor works as a communication channel between the manager and the color segmentation
module. It receives a request command with a 2D point (Point of focus) and then replies with
the features of this point/region. It replies with the color and the area of the focused point as
well as a confidence value. The confidence value is calculated based on the temporal changes
at this point in the scene. It is accumulated over time frames. So for example, in the case of
observations, while the robot is moving, the scene will be changing over time. Consequently,
the confidence rate will be low. To summarize this part, the visual what pathway is analyzing
the features of the scene and replying to the request from the managers with a set of features
and a confidence level for these features. This confidence level is computed and updated
temporally.

Auditory What Pathways On the other hand, the auditory what pathway is a features
extractor and a pre-trained audio classification module. The classification module receives a
classification request signal from the audio manager. Once received, the classifier replies
with the predicted class of the audio with a confidence rate. The classifier is also receiving
a stream of features for an audio signal with a buffer size. As the auditory signal requires
some time frames to be processed (unlike the visual image), the classifier doesn’t reply
immediately to the manager. Instead, it takes some time (1 second minimum) to observe
the sound and try to recognize it. Further, it keeps classifying the auditory signal until the
manager sends a stop signal. The classifier used in our implementation was a trained SVM
model to classify the four kinds of complex wave signals. It also gives a confidence level.

Visual Where Pathways The visual where pathway is doing an allocentric localization
in the 3D space. The output is a 3D position in the space for the 2D point of focus. For
simplicity, we used a 3D projection method which was adapted before in the previous version
of the architecture in part II of the thesis.
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Auditory Where Pathways Similarly to the visual where pathway, we used the Bayesian
localization model with the integration of the prior knowledge that was previously imple-
mented and used in part II of the thesis. However, in this version, another module was added
which is the audio allocentric localizer. This module localization is using the time-variant
decision-making concept that was implemented before to localize the auditory stimulation.
This is possible with using the use of working memory.

Visual and Auditory Managers The processes of the visual and audio managers are
identical. They perceive a signal from the attention system. Afterward, they acquire data
from both what pathway and where pathway by sending a request to each of the pathways.
After sending signals to the pathways they wait for the replies from the pathways. Once
received a reply from what and where they bind the data together into an object and send it to
the short-term memory. The object consists of three main elements, the 3D spatial location,
the features set, and finally the confidences. There are three confidences associated with the
object. The first confidence is spatial confidence which represents how accurately the robot
was localizing this stimulus. The second confidence is class confidence which represents
how accurate the robot is in classifying this stimulus. And finally, the object confidence
which represents the overall confidence about this object based on equation 5.1. W-what
and W-where are the weights of the importance of the what pathway and where pathway.
They are parameters for the architecture. We used equal weights (0.5 for each of them) in
our experimental settings.

Conob j =Wwhat ∗Conwhat +Wwhere ∗Conwhere (5.1)

Confidence of a Unisensory Object Instance (Visual/Audio Manager)

5.2.2 Short-term Memory

Short-term memory holds 4 kinds of memory. The state working memory, the allocentric
spatial visual memory, the allocentric spatial auditory memory, and finally the spatiotemporal
association memory.

State Working Memory The state working memory is the one implemented and used
in the previous versions of the architecture in part II of the thesis. It supports the decision-
making process in localization and tracks the state of the stimulation and the action. It also
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tracks the state of the multisensory-associated object. The state is defined by the existence of
the stimulation and automatically set by false after a defined period.

Allocentric Spatial Visual/Auditory Memory The allocentric spatial memory is the place
where unassociated objects are preserved for a short time. The unisensory object is perceived
from the manager module, and then the object is added to the memory. The adding process
is done through a Bayesian integration. In this process, the priors are integrated with the
received stimuli in a Bayesian integration if they have the same class and are perceived within
a defined range of distance in space. These are the two conditions that have to be met to
perform the Bayesian integration process. Otherwise, the perceived object is considered
another new object in space. The Bayesian integration is done based on the confidence of the
priors and the current confidence using the equation 5.2. The Pos can be one of any of the
axis (X, Y, Z) in the cartesian space in the case of Vision, and angels and radius (ℵ, β , R
)in the spherical representation. Further, the posterior confidence is then calculated. Also
the confidence is updated using equation 5.3. It is a weighted summation of the confidence
noting that it is normalized. This means that the summation of the weights should be equal
to one.

Posnew =
Conprior

Conprior +Concurrent
∗Posprior +

Concurrent

Conprior +Concurrent
∗Poscurrent (5.2)

Spatial Position Equation For The Unimodal Instance Considering The Priors (Visual/Audio
Spatiotemporal Memory)

Connew =Wprior ∗Conprior +Wcurrent ∗Concurrent (5.3)

Prior Experience Inference For The Unimodal Instance Considering The Priors
(Visual/Audio Spatiotemporal Memory)

Spatiotemporal Association Memory In the spatiotemporal associated memory, the
objects from the sensories are integrated with all possibilities. The associations are created,
between each visual object with each auditory object. The association is done based on
equation 5.4 and the final location of the associated object is computed based on equation
5.5.

The associated instances here are representing all possible combinations of the existing
unisensory instances and the memory doesn’t take a perceptual decision on the final associa-
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tion. It is just an initial stage of association. The perceptual decision is taken by the manager
which will be addressed in subsection 5.2.4

Conassociation =Wvisual ∗Convisual +Waudio ∗Conaudio +Wdistance ∗d(Ob jaudio,Ob jvision)
(5.4)

Associated Confidence Equation For the Multisensory Associated Instances (Short-Term
Memory)

Posassociated =
Convision

Convision +Conaudio
∗Posvision +

Conaudio

Convision +Conaudio
∗Posaudio (5.5)

Spatial Position Equation For the Multisensory Associated Instances (Short-Term Memory)

The spatiotemporal association memory also matches the visual space (which is repre-
sented in Cartesian space) with the auditory space (which is represented in spherical space).
Thanks to the allocentric localizers of both modalities, both coordinates share the same origin.
Technically, this is done by knowing the internal state of the robot’s head angles (including
the eyes’ positions).

One important point related to short-term memory is the elimination of the content. We
implemented this based on time constraints. Each instance will be removed if it remains in
the memory for a defined amount of time.

5.2.3 Long-term Memory

Long-term memory stores the past binding states of the multisensory features of the perceived
objects. This information is stored as a list of items. Each Item has its visual features, auditory
features, accumulated confidence, and count of the perceived experiences of this association.
The perceived instances are decided by the multisensory manager module. The manager sends
the experience to long-term memory. The experience has visual features, audio features, and
confidence. If the features are matched with a previous experience, the count is incremented
by one and the confidence is updated according to the equation 5.6. This is implemented in
the Associated Experiences memory module.
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Countold ∗Conold +Connew

Countold +1
(5.6)

Accumulated Confidence Update Equation (Long-Term Memory)

5.2.4 Multisensory Manager / Decision Making

The multisensory manager is a connection between short-term memory, where the instances
are stored temporarily, and long-term memory where the associated experiences are stored.
The manager has two modules. The memory recalling module, and the multisensory decision-
making/inference module.

Memory Recalling The memory recalling module deals with both short-term and long-
term memory. It recalls the whole content of the spatiotemporal association memory in each
frame. Also, it sends a list of queries to the long-term memory component (the associated
Experience Module) to recall the experiences that have the same associated features (for
each possible association that was recalled from the short-term memory). The query has
both the visual features and the audio features of the associated instance. The reply from
long-term memory is the accumulated confidence and count this associated instance was
perceived in the past. If the experience is completely new, it will receive zero for both
the confidence and the count. Further, the set of possible associations (from the spatial
association memory) and the prior experiences (from the associated long-term experiences)
are sent to the decision-making module.

The Decision-Making The decision-making module applies prior inference to each of the
possible associations based on equation 5.7. This process ranks the associated possibilities.
This rank is then used in the decision. The objects are decided based on this rank. After
deciding D on an association that has a visual object V and an audio object A, the associations
that consider the unisensory objects V and A in the association list are dropped as they have
already been considered. The count of the possibilities is then decreased to (N-1)*(M-1).
This process of selection and dropping until the list of association probabilities is finished. In
case of unequal count for the visual and auditory count, there will be remaining unassociated
objects. These objects are considered in the perceptual decision as a unisensory experience.

Rank =Wprior ∗Conexperience +Wcurrent ∗Coninstance +Wcount ∗Count (5.7)

Prior Experience Inference Ranking Equation
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Conscious Output The output of the architecture is what I called conscious output. It is
the output of the spatiotemporal integration and inference processing of the prior knowledge
that includes the statistical characteristics of perception and previously learned experiences.
It is a representation of what the robot is perceiving at each time frame. It is a collection of
objects and their spatial location in space.

5.2.5 Incremental Approach

Overall, the architecture goes from the low level to higher level processing by passing
through an attention stage for each of the unisensory modalities (Vision and Audio), then two
parallel processes as dual pathways (what and where) for each modality. Further, the manager
controllers the dual pathways and the attention components, acquire the spatial location from
the where pathway, acquires the features from the what pathway, temporally integrates the
acquired data (reply from what pathway and the reply from where pathway), and finally
creates an object. Both managers (Audio manager, and visual manager) are then sending the
object to the spatiotemporal short-term memory. The memory temporarily holds the required
information about the objects with their perceived confidence. The spatial position and the
confidence are also updated in the memory following a Bayesian way (multiple instances
from the managers are perceived). In the spatial association memory, each existing object in
the unisensory spatiotemporal memory is associated with all objects from the other modality
as association possibilities. This is generating N*M possibility for the associations where N is
the count of the visual instances and M is the count of the auditory instances. Each associated
possibility has a degree of confidence based on spatial factors and the confidence of the
object from each modality. The closer the perceived location the higher the confidence value
of the association in the associated memory. At this point, the decision on the association is
not yet finalized. It only considers the structural factors that come from the environment. The
multisensory manager block then acquires the associated set of multisensory objects with
their confidences. Additionally, it requires the learned associations (which were stored from
previous decisions) from long-term memory. The priors from the long-term memory bias
the confidence of the associated possible sets and change their confidence values. Further,
the conscious decision on the whole scene is made based on the biased confidence values.
Once an associated instance id been decided, some other instances are dropped (because
the unisensory object is already associated). Finally, the manager updates the long-term
associated experience with the final decision to update the stored experiences. The working
memory component tracks the states of the stimulation and the robot which regulate the
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Figure 5.3 The Experimental Setup To Evaluate the Performance of The Proposed Cognitive
Architecture For Perception

decision-making process of the unisensory managers as well as the multisensory manager.
This facilitates the update of the memory only once for each stimulation event.

5.3 The Experiment

This experiment aims to examine the architecture as a whole and see if the robot will be
capable of understanding the presented scene using this architecture. We designed this
cognitive architecture to enable cross-modal interaction. In particular the interaction in the
localization and identification task. The specific point that we would like to examine in
this experiment is whether if the architecture is capable of capturing the association of the
presented features of the stimulus in the scene and using these features to solve an ambiguity
in the scene.

5.3.1 The Setup

The setup that was designed to test this architecture was focusing on capturing the right
stimulus on its location. The setup used in the experiment of chapter 4 was used but without
human participants, as shown in Figure 5.3. In particular, four audiovisual stimulation boxes
were placed in front of the robot (all in a single line, with a 6cm difference between the
boxes which is 15 cm center to center). The experiment consists of two phases that will be
explained in section 5.3.3.
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Table 5.1 The audiovisual stimulation objects with their IDs and features

Object ID Vision Auditory
Visual Feature ID Audio Feature ID

0 Red 0 1.5 kHz with 3 harmonics 0
1 Green 1 1 kHz with 3 harmonics 1
2 Yellow 2 500 Hz with 3 harmonics 2
3 Blue 3 250 Hz with 3 harmonics 3

5.3.2 Stimulation

The main focus of the experiment is to examine the accuracy of the system in localization and
classification and how the association of the features will be learned by the system. In this
experiment, we adopted four different audio signals and four different visual colors. Addi-
tionally, we associated each color with an audio signal to result in four different audiovisual
stimulation as shown in Table 5.1.

5.3.3 The Experimental Phases

As mentioned the experiment is divided into two phases, the first phase is to learn the
association, and the second phase is for testing what the robot learns and whether the
architecture would be able to solve a complex scene. We recorded the final output of the
robot (The conscious output). Additionally, the long-term memory and its updates across
time were also recorded. Indeed, this is the final output of the system, and many other
inside nodes (modules) could be recorded and tested. However, we focused only on the final
output of the whole architecture to simplify the analysis. In the future, we aim to dig deeper
in the analysis of each single module and show its behavior. The main task of the robot
is perceiving the scene and describing which objects and cues are presented and where in
space. As part of the architecture, detecting the features of the objects (Colors for vision,
Complex tone in audio) is one of the prior capabilities as the robot uses trained modules
in the architecture. However, the robot has to learn which cues are associated together to
create an internal representation of the object throughout the stages of the experiment. The
multmodal objects are shown in Table 5.1. Additionally, we visualize the process of both
phases in Figure 5.4 and will explain the phases as the following:
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Figure 5.4 The Stimulus Behaviour During The Two Phases of The Experiment

Phase one: Learning the association The first phase of the experiment was turning on
one object for both modalities at one of the four locations. The selection of the object and the
place is random. This phase of the experiment consists of 100 trials. The trial is 10 seconds
of on-set time and 10 seconds of off-set time. The aim of this phase for the robot is to create
an internal representation of the associated features as a single multimodal object with a
confidence level. The difficulty of this task is to correctly localize the audio stimulation
and the visual stimulation and integrate them together in a single object. Further, use the
knowledge acquired from the experiences to build up a confidence level starting from a low
level of confidence as firstly the robot doesn’t have any, to an increased level of confidence
when the experience is repeated.

Phase two: Cross-binding The second phase of the experiment is more challenging for the
robot. One audiovisual stimulus will be presented but this time with the existence of a visual
disturbance signal. The disturbance signal is a visual-only stimulus that is always from one of
the neighbor’s stimulation boxes. (the right or left box next to the audio-visual stimulation).
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The selection of the position (The active box/s) was random. The only constraint was that
the audiovisual stimulation and its disturbance has to be next to each other with no box in
between. The main aim of this phase is to examine if the architecture would be capable of
capturing the right audiovisual stimulation and understanding the scene correctly. This task is
a complex one as it requires solving a cross-binding problem. The robot has to decide which
visual object is associated with the auditory signal. It is also based on the learned associations
in the first phase. The efficiency of the first phase will directly affect the performance of the
robot in the second phase.

5.4 Results & Discussion

The results of the experiment are divided into two components. The first component is from
the first phase of the experiment which is the internal representation of the presented objects.
On the other hand, the second component is from the second phase which is the accuracy of
the output of the model in the cross-binding scenarios.

5.4.1 Object Internal Representation (First Phase)

Figure 5.5 shows the accumulated confidence profile. The confidence profile is the different
confidence levels of the objects in long-term memory across the trials of the experiment.
The figure shows seven lines which means that robot learns seven objects indexed from 0
to 6. Each of the lines is representing a multisensory object which is a bundle of audio
features and visual features. In our case, the visual feature is the color, and the audio feature
is the sound class as previously explained. Three of seven objects (in the graph) had a low
unchanged value. Also, they appeared at different points in time (trial). The starting point of
the line represents the trial in which this object was perceived for the first time. The values
of the other four objects were increasing until they reach confidence equal to one. which
is a saturated value for confidence. This means that the robot learned a strong association
between visual features and audio features for these four objects. To understand more what
are these features and whether the learned associations are correct, I add here Table 5.2 which
shows the latest version of the long-term memory. Comparing the values in the table with the
correct values shown previously in Table 5.1, we can identify the wrong associations which
are marked in gray in the Table. Also, we can observe the strongly evident associations (the
four objects that reached the saturation level) are the correct objects. The wrong associations
happened due to a false classification for the audio class or the visual class. These results
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Figure 5.5 The Confidence Profile For The Objects in The Long-term Memory

demonstrate that the architecture endowed the robot with the capability of associating the
correct features together and learning the multisensory perceived objects. This learning
process is dependent on multiple internal processes in the architecture including the dual
pathways of both audio and visual modalities, the spatial working memory, the perceptual
inference, and the prior integration from the long-term memory.

Table 5.2 The Saved Object Features Associations in The Long-term Memory At The End of
The First Phase of The Experiment. The Wrong Associations Are Marked in gray

background.

id Visual Feature Audio Feature Experience Count Accumelated Confidence
0 BLUE 2 1 0.596003
1 RED 0 23 1.000000
2 GREEN 1 23 1.000000
3 BLUE 3 24 1.000000
4 YELLOW 2 21 1.000000
5 YELLOW 3 1 0.529363
6 GREEN 2 1 0.630290
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Figure 5.6 The Accuracy of the Identification and Localization of the Stimulus Across Their
Different Locations

5.4.2 Accuracy of Solving the Binding Problem (Second Phase)

In the second phase, the presented scenes to the robot were more complex compared to the
first phase. In the second phase, the robot has to identify and localize the audio-visual object
as well as the disturbance (a visual object next to the audiovisual object). We analyzed the
output of the system which is the final decision of the robot for the perceived environment.
The output is a list of objects and their corresponding spatial location. Each object can be an
audio object or visual object or audio-visual object. Figure 5.6 is showing the accuracy of
the scene description of the robot. The description is considered true if the robot recognizes
and localizes both the stimulation and the disturbance in the right way. The stimulation is
right if the output includes the object with the correct audio-visual features and in the correct
spatial position. And the disturbance is correct if it is recognized and localized correctly and
not associated with an auditory feature. This is the correct binding way in which the robot
binds the auditory feature with the correct visual feature in the scene. For localization, it
is considered right if the error is below 5 cm (Outside the frame of the stimulation box) in
each plan (X, Y, Z). Combining all stimulus locations (FR, MR, ML, FL), the architecture
achieved 91% accuracy in the second phase. The figure is showing the accuracies for each
location which are all above 83% accuracy.

The experiment aimed to examine the overall behavior of the architecture which is our
main focus. In particular to evaluate if this architecture would give the robot the capability
of resolving a complex scene in which the robot has to integrate or segregate the features
from different modalities (auditory and vision). The analyzed results of the experiment
that the robot was capable of resolving the complex presented scenes and describing them
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correctly. The proposed architecture is biologically inspired and implemented multiple
biological processes internally. The experiment showed the efficiency of this approach. This
architecture is a dynamic one that is not trivial to evaluate every single module such as the
Inhibition of Return (IOR). More specified experiments can be performed on this architecture
to show the behavior of every single module within this architecture in real-time on the robot
and also in simulation.

5.5 Conclusion

One of the important skills for the robot to share the perception with a human partner is
to have a common representation of the environment. This means that the robot creates a
similar understanding of the scene with respect to human understanding. This understanding
goes beyond object recognition and auditory classification and includes the spatiotemporal
dynamics of the processing mechanism. Therefore, we proposed a cognitive architecture that
does audiovisual processing for the scene inspired by the biological process. The process
starts from the previously developed architecture in Part II with some modifications and
added processes. In brief, the architecture starts with attention processing for each modality.
Following this, dual unimodal pathways (What, and where) are processing the data under the
organization process and decision-making that are processed by the manager. The manager
is then integrating the information from the pathways into an object taking into consideration
the confidence processing. The objects are then sent to the spatiotemporal working memory,
where Bayesian processes are applied to create a set of possible associations. Further, the
multisensory manager decides about the scene and creates an output which is what we called
the conscious output. This output is considering the long-term associations that are stored
in the long-term memory as priors and consider them in the decision-making process. The
output (conscious output) of the architecture is a set of objects that are present in the scene
which is given for each time frame.

The architecture was examined in two phases. The first phase was to examine two
behaviors. The first behavior is understanding a simple environment (One audiovisual object)
and the second behavior is learning the associations. On the other hand, the second phase
was focused on examing the behavior of the architecture while presenting a complex cross-
binding scene (One audiovisual object + visual disturbance). The result of the first phase
showed a learning curve for the association until it reached saturation for the right features. In
the second phase, the robot was capable of solving the complex scenario and giving the right
expected output which accurately describes the presented objects. The accuracy of the system
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across both phases was 91% considering both the localization and recognition processes. The
proposed architecture can be technically applied to any perceptual audio-visual process. It is
not specified for a specific task such as human localization or navigation.

My contribution to this chapter is in the design and implementation of the audio-visual
perception architecture. The main novelty of this architecture is in the following four points:

• Consideration of the cross-modal interaction in perception cognitive processing

• Integrating the prior knowledge and experiences in different levels of perception
(auditory localization processing, spatiotemporal dynamics in the short-term unimodal
processing, and in association using the long-term memory).

• The time-variant and confidence-based decision-making process in the managers
(visual perception manager, auditory perception manager, and multisensory perception
manager).

• The generalization of our approach. It is a general modal, that is not limited to a
specified application. From one application to another, the architecture can be used by
only tuning the attention parameters and embedding the required recognition modules
for both audio and vision. (An applied example will be explained in chapter 7.

The limitation of this architecture is only in the auditory localization processing. Gener-
ally, it takes around 5 seconds to converge. However, with this slow response, the robot was
able to rely on the other processing pathways to perceive the environment correctly. This
shows the strength of this approach.

The experiment explained in this chapter shows the overall behavior of the architecture.
However, there are much more experiments that can be performed in the future to show the
internal processing of each module and the internal dynamics. It is important to note that the
architecture is very modular which is another strength of this architecture. It can be used in
different applications to choose the required process and disable the pathways that are not
useful in the designed task. This will be demonstrated in chapter 7 which is the work done to
answer the third research question RQ3.

Using this architecture the robot was able to learn the association over time and used
this association to create a conscious understanding of the scene and handle the uncertainty.
Further, more complex scenarios can be examined using this architecture. such as using a
higher level of feature space, or examining the illusions such as ventriloquist as a benchmark
experimental behavior vs human behavior. The presented work in this chapter answered the
first two parts of the second research question RQ2. The last part of the research question
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is about how the robot can actively perceive the environment. The architecture and the
implementation are considering the active component as shown in figure 5.1, there are action
planning and execution component. However, the next chapter will explain our research
work in this direction. The research work explained in the following chapter is focused on
proactive behavior specifically for improving auditory localization skills as it is the main
limitation of this architecture.



Chapter 6

Enabling Proactive Strategies in The
Architecture to Improve Perception

I hear and I forget. I see and I remember. I do
and I understand.

Confucius

In the previous chapter, we proposed a cognitive architecture for perception. The action
component in the proposed architecture was already represented. However, the experiment
didn’t explore the proactive role of the architecture. The proactive role of the architecture is
the action that is initiated internally to improve the performance of the perception. In this
chapter, we focus on this role. Specifically, for auditory localization. In this research part,
we try to address human-like proactive behavior in the perceptual process. The research
presented in this chapter is to tackle a part of the second research question which is How can

the robot actively perceive the environment?. The active part of perception is engaging the
action in the process of perception. Looking at the shared perception skill categories, this
work is targeting a common proactive behavior in the perception process with humans.

6.1 Introduction

In typical human-human interactions, most of our sensorial inputs coregister to provide
a complete understanding of the multisensory context in which we interact. In human-
robot interaction, visual perception has been widely addressed, whereas other perceptual
channels such as auditory perception are less well-studied. The auditory scene is dense
with information about the people and their activities around a robot. This is true even for
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sound sources that are inaccessible to vision, such as around corners and off the field of
view of the vision sensors. To make optimal use of this information, the spatial locations of
auditory events must be correctly perceived and registered into an allocentric reference frame
around the robot. Substantial research on this localization problem has yielded improving
results for both binaural and microphone array systems [8] [197]. An emerging theme in
this research is the need to exploit the complex interaction between the robot’s movements
over time and the continuously updating memory of sound locations in the space around
the robot. Binaural auditory systems, both biological and artificial, perform auditory scene
analysis by computing either (or both) interaural time differences (ITD) and interaural level
differences (ILD). However, such systems necessarily produce "phantom" images of sounds
due to ambiguities in ITD and ILD computation [21]. One solution used by biological
systems was proposed by Hans Wallach [249] [250], which involves integrating information
across head rotations. This active-hearing approach has been successfully used (e.g. by
[79],[17], [259], and [124]) to better resolve the sources in the scene. The process typically
engages head rotations and the integration of beliefs during the rotation. Optimal head
movements thus not only reorient the hearing system to better perceive the sound sources but
also improve auditory localization [79]. A key aspect of active-hearing approaches is that
they use some variation on Bayesian memory (e.g. via Kalman-like or particle filters) and
cannot exclusively rely on instantaneous evidence. Information about the pose of the robot,
as it changes in allocentric space over time, must be integrated with egocentric instantaneous
evidence about the auditory scene, to produce a posterior probability map of auditory objects.
In fact, the prior expectation of auditory information in the auditory scene is a crucial element
in human hearing, especially for priors’ expectations extracted from vision. For example,
the integration of visual evidence with auditory perception gives rise to the well-known
ventriloquist illusion of sound localization [4] and the McGurk Effect in audiovisual speech
perception [148]. In the literature, the style of motor actions that leads to optimal performance
has not been studied yet.

In this chapter, we propose a cognitive framework that includes motor control and working
memory modules to improve auditory localization in a localization task. This architecture is
part of our proposed cognitive architecture that was proposed in the previous chapter (chapter
5). It uses auditory attention, auditory where pathway, the state working memory, and action
execution. The aim of this sub-architecture is to present the proactive component of our
proposed architecture in one of the perceptual tasks and show the modularity of our proposed
architecture. Additionally, we aim to examine the possibility of using this architecture to
examine the possibility of studying motor strategies that improve sound source localization
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Figure 6.1 System diagram

(the effect of different head motor actions on the performance of sound localization). Here
we report preliminary evidence that will inform future choices of motor behavior models.

6.2 The Sub-Architecture

Figure 6.1 shows the structure of our proposed framework (Sub-Architecture). It consists
of four main elements: 1) Sensory input: the two microphones located on the head of the
robot; 2) Memory: the state working memory element; 3) Audio localization: the auditory
where component; and 4) Motor actions. Nothing particularly changed in the modules
of the architecture compared to the version in the previous chapter (chapter 5. Briefly,
the approach uses a gammatone filter bank to spectrally decompose a sound into narrow
frequency bands, and a series of swept narrow-band beamformers that approximate the
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Figure 6.2 Average accuracy & std in the three motion conditions. Blue lines indicate the
end time of the movement.

binaural temporal comparisons of ITD. Instantaneous egocentric auditory scenes are rotated
in ( audio preprocessing) module and used to update an allocentric Bayesian posterior map of
probable sound sources in the 360 degrees around the robot in (audio Bayesian processing)
module. The integration of a priori information about the auditory scene is processed in
(prior knowledge integration) module. This module is biasing the system output toward
known possible target locations. The system also solves the problem of sound onset detection,
by computing the total power of the input sound and identifying the existence of a sound
signal if the total power exceeds a predefined threshold. The off trigger is activated when
the power is not exceeding the threshold. The working memory saves the priori information,
the action state (Not executed/In progress/executed), and the state of the sound (Not present/
present). The trigger sets and resets the state of the sound in the working memory. This
trigger is connected also to the Action Linker, which executes a pre-defined motor policy
based on the trigger and the state of the action from the working memory.

6.3 Preliminary Experiment and Results

On each trial, a complex tone (1KHz with 3 harmonics) was presented for 10 seconds from
one of four identical boxes located horizontally on a table in front of the robot (-23◦ , -8◦,
8◦, 23◦ with respect to the midline). The robot’s task was to determine which of these boxes
produced the target sound. Three movement conditions were considered: no head movement,
rotation of the midline toward the direction of the target, and rotation away from the target.
Rotation was at 5 degrees/seconds for 2 seconds. The robot completed 24 trials for sounds
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from each box. From the allocentric posterior map described above, we extracted the azimuth
of maximum probability as it changed over time and expressed this as percentage of time
points at which the max probability corresponded to the target sound location. The results in
Fig. 6.2 show that the accuracy depends on both time and direction of head rotation: In all
conditions, accuracy improves quickly from chance but stabilized at 100% only when the
head rotated toward the target. Other aspects of the system were stable. The system detected
the sound almost instantaneously and the motor actions were performed correctly.

6.4 Discussion

We proposed a framework to empower the robot with motor actions with the target of
enhancing the audio perception of the robot. Demonstrating our concept practically, for
example, the model can be applied in industrial applications that use an active auditory
signal to promote interaction between the industrial robot and the human operator. Our work
will directly improve the interaction with the human by better accurate audio localization
for the sound signal in the working environment as the human localize. We tested our
implementation on the iCub robot and explored the effect of specific head movements: the
azimuthal rotation of the robot head (yaw) in two directions, relative to static pose. Overall
the frameworks worked well. The audio power-based trigger successfully captured the
starting of the sound signal, both signal and action state were tracked in the working memory
component correctly, and both the action and reset to the home position were executed in
the correct timing. Regarding the performance, the experiment showed encouraging results
regarding the use of prior information and motor actions: the system converged from chance
accuracy (25%) to near-perfect accuracy (100%) within about 2 seconds, particularly for the
optimal motion strategy. Interestingly, during the initial seconds of the trial, the solution
tended to be less stable, and the static pose also improved considerably from chance. This
means that time - and not head movements - is sufficient for a Bayesian system to achieve
relatively good localization in this task. However, beyond about two seconds, head rotation
toward, but not away from the target was necessary to achieve stable 100% accuracy. Head
rotations away from the target were not as useful, suggesting that other factors such as the
speed of the motor action and the initial orientation of the head before sound onset might
also be consequential.

This study provides insight into how auditory Artificial Intelligence might provide
relevant details about the world and human partners in the HRI context. Given that complex
human-robot interactions might present conflicting requirements for the robot to orient its
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microphones both toward a target (for optimal localization) and away from a target (in
response to an instruction or to accomplish some other behavior) it will be interesting to
explore the integration of various motor behaviors into active auditory perception. More
importantly, the evidence that motor commands improve auditory perception in humans
gives us confidence that exploiting proactive behavior for robots will help improve the next
generation of perceptual skills in interactive scenarios.

6.5 Conclusion

In this chapter, we proposed an architecture to enable proactive behavior for the robot in
auditory localization. We choose auditory localization as it is the most challenging task
in the proposed architecture compared to other tasks like visual localization or auditory
classification (as previously shown in previous chapters). The proposed architecture in
this chapter is a partial part of the whole model proposed in chapter the previous chapter.
We showed how can proactive actions be activated and further improve the perception
(audio localization in this case). The actions are inspired by human behavior of doing head
movements to improve their auditory perception. This work is integrated into the main
perception architecture presented in the previous chapter (chapter 5. By this, we finalize the
research work for the second research question RQ2. The following chapter will present the
main work done to address the last research question RQ3 which is about generalization and
coordination in a real-world application.



Chapter 7

From Sensing to High-level Planning and
Coordination: Generalization and Action
Coordination in a Real-world Application

I like to think of ideas as potential energy.
They’re really wonderful, but nothing will

happen until we risk putting them into action.

Mae Jemison

In the previous chapters, we proposed a cognitive architecture for active audio-visual
perception. Going further one step in the research, we present in the chapter the research
carried out to answer the last research question RQ3: Can this perception architecture be

generalized to different robots and applied to a complex task that requires coordination with

another agent?.

7.1 Generalization on different Robots

The aim of this work is to examine if the architecture is general enough to be used on different
robotic systems that have different embodiments and different software. This part was done
in the first abroad period at the University of Essex, UK. The work was done in two other
robots which are Pepper, and the Essex agricultural robot. In the following part, a brief
introduction about the robots will be explained followed by the implementation details to
adopt the architecture of these two robots.
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(a) Fill Body (b) Microphones and 2D Cameras

Figure 7.1 Pepper Robot

Pepper Robot Pepper is a humanoid robot that was developed by SoftBank (shown in
Figure 7.1a. It is equipped with many sensors and actuators. It has a depth camera (the eyes)
and two HD cameras in the head designed to be used in visual tasks. One Camera is placed
in the center above the eyes, and the other one is in the mouth of the robot. Both cameras are
covering different fields as shown in 7.1b. For audio, Pepper has four microphones placed as
a 2*2 matrix in the head as shown in figure 7.1b.

From the software perspective, Pepper has different software versions. The older version
(2.5 and older) is using Naoqi SDK, which allows direct access to the sensor readings and
more flexibility in controlling the robot. The software also allows the writing of customized
modules using python and C++. The new software of Pepper (2.9) is using Pepper SDK
(QiSDK) which is typically programmed as a Native android application and installed on the
tablet placed in the chest of the robot. The new software provides higher-level functions and
limits direct access to the sensors.

Beast Robot The beast robot shown in figure 7.2 is an agricultural mobile robot. It is an
assembled robotic system using multiple research and industrial robots from the market. The
base is a Husky robot. And it is equipped with 2 identical UR3 robotic arms. The robot is
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Figure 7.2 The Essex Agricultural Robot (The Beast)

designed to work on a strawberry vertical farm. The arms are fixed on the side of the robot
and in between the arms, there is an RGBD Zed mini Camera which is used in the perception
tasks related to picking and operating the strawberries. The beast robot is controlled using
ROS middleware.

7.1.1 Implementation Details

Our perception model is fully developed on Yarp. To operate on different robotic platforms,
it is required to implement modules that are capable of acquiring data from the robot and
controlling it. For the pepper robot, Four models were developed as the following:

• pepperStartup: a general module that switches on the robot and defines the operating
functions.

• pepperImageGrapper: a module that streams images over the yarp network from the
2D camera. It take the camera index as a parameter as well as the framerate.
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• pepperAudioGrapper: a module that streams the audio from the desired channels. The
module takes the buffer size and the sampling rate as a parameter.

• pepperHeadController: this module controls the hear through Yarp simple commands.

These developed modules are bridging between Yarp and Naoqi SDK. It allows Pepper to
leverage in all the functionalities developed originally for iCub using these simple modules.

On the other hand, the beast originally didn’t have microphones and the only camera
placed on the side for picking has a small field of vision of the surroundings as it is placed
only for picking. Therefore we had to add in the hardware of the beast to implement our
audio-visual perception model. We added another RGBD Zed mini camera and two identical
microphones on the Beast as shown in 7.2. The microphones were fixed facing the front of
the robot and the added zed mini camera was placed in between the microphones. Similarly
to Pepper two modules for the beast have been implemented as the following.

• beastImageGrapper: a module that streams images over the Yarp network from the
Zed mini camera. It streams both the right channel and the left channel.

• beastController: this module is a bridge module between Yarp and Ros. It takes
commands from Yarp modules and streams these commands on the Ros network to
be executed by the different ROS modules designed to control the robot Including the
wheels and the arms.

For the audio, the microphones were connected to the PC on the beast through a mixer. And
the regularly developed modules are capable of capturing the audio as it can be read on the
PC as an audio device.

7.1.2 Results and Discussion

After implementing the steamers and controller modules for both of the robots, the archi-
tecture runs smoothly on both robots without any issues. However, for Pepper robot, the
framerate of the images was low compared to iCub and the Beast. Theoretically, it can run up
to 30 fps with a low resolution. So it is a trade-off between the resolution and frame rate. In
terms of the processing unit, the architecture was running on the laptop of the Beast while for
Pepper, the architecture run on a separate machine that are connected with Pepper through
the network.

Applying the model in different robots aimed to take the architecture into practicality. We
showed that the Yarp Implementation of the architecture can easily be used on other robotic
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platforms. The only requirement is developing modules for the sensory and action levels that
do direct reading and writing functions with the sensors and actuators respectively. This is
the first step towards implementing the architecture in real-world scenarios. As real-world
applications require a high level of robustness and generalization.

Further steps on this part can be done in two directions. The first direction is to apply this
architecture in an end-to-end use case scenario (The following part of the chapter). And the
second direction is creating a stand-alone SDK that can be deployed in different hardware
operating systems with a simple installation process. This will allow other developmental
contributions by different research groups worldwide.

7.2 Use Case: Robot Coordination in a Strawberry Farm

Robots are advancing in agricultural applications. One of the applications is in strawberry
vertical farms. Monitoring the state of the berries often takes a big effort. Additionally, field
actions with the plants such as dealing with diseases or picking the ready berries is a task
that takes a big effort and resources if it not well targeted. One of the possible solutions is to
monitor the berries with a flying drone and execute actions on the ground using the Beast.
Following this, we saw potential in applying the audio-visual perception model to tackle this
application. It is also important to mention that this idea of the application was inspired by
the communication of the bees.

In this part of the chapter, we try to answer the second part of the last research question
which is to see how the perception model can be deployed in a real-world application. More
specifically in a coordination task for the beast with the drone. The task is for the Beast to
locate the drone using the audio and visual modalities in the 3D space and then navigate
in the farm to reach the position where the drone is flying. This task requires high-level
action planning from the beast and perception top-down control to coordinate with the flying
drone. The drone might be outside the field of vision which requires the Beast to rotate
trying to localize it audio-visually. Additionally, after localizing the drone, the robot needs to
navigate the farm to reach the location of the drone.This part of the task requires the robot to
coordinate the action and perception cycle to reach the right location actively. Once the robot
reaches the desired location, the robot will execute function-related actions such as picking
the strawberry (The functional-related actions are outside the scope of my Ph.D.).

We use our architecture which is based on multiple sensories and integrating attention,
perception, memory, and cross-modal interaction components to have a complete cycle of
perception and coordinated action in a real-world environment. We added new components
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in the developed perception architecture to have high-level control and edited a few modules
to fit the task. In the following section, we will explain more about the motivation of the
application and then will explain the implemented architecture. Further, we did an experiment
in the lab and a test run on the strawberry farm. More details about the experiment and results
will be carried out in the following parts.

7.2.1 Background

Bees Communication Bees are highly social insects. They use various ways of communi-
cation between them. These communications are through vision, audio, and chemical signals.
They are capable of communicating different kinds of information such as the location of
food sources, the status of the hive, the presence of a threat, and even social information to
make bonds among each other [92]. They use the auditory channel by producing different
auditory signals such as buzzing in low frequency, drumming, clicking, and singing high
pitch sounds [139, 113, 90, 92]. Inspired by bees’ communication, the idea of a drone
communicating information through audio-visual channels to a mobile robot emerged. The
drone can fly on the farm and collect information about the state of the farm and the plants
and then communicate the required action towards the farm and the plants to the mobile
robot using motion gestures. The motion gestures has also an auditory pattern that is possibly
detectable by the mobile robot.

From Intelligent Gathering to Action Execution The main use of the drone is to gather
intelligence and communicate information to the Beast Robot to act on the ground. The
importance of gathering information through a flying drone is to increase the inspection’s
speed. The drone can fly and move in the farm faster that the Beast. The drone can be
programmed to use vision in detecting diseases, check the plant state, and get the location
of the rotten berries that are ready to be picked. According to the gathered information,
the drone communicates the information to the beast to perform the required action. This
communication can be conveyed through flying gestures or a sequence of them. Such as
swing, and back flip. The action that the Beast does can be planting a pest or picking the
strawberries or spaying a pesticide. This is the main concept of the robot-coordinated task. In
this use case, we only consider a simple form of this interaction which is just communicating
the location of the drone with a back flip.
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7.2.2 Implemented Architecture

The architecture used in this task is part of the whole proposed proactive perception archi-
tecture that was proposed in chapter 5 with some added components. It uses the full visual
pathway, the localization pathway of the audio, the short-term memory, the multisensory
manager, and the action block. The added are High-Level Planning/Task Coordination,
Navigation Action Modules, and Navigation Related Long-Term Memory. The high-level
planning/Task coordination block was added to manage the task action lifecycle as well as a
top-down control of the perception modalities.

As the task of the robot did not need all the functionalities of the architecture, some parts
of the architecture were deactivated. These parts are basically the auditory what pathway,
the long-term associated experience, and the long-term prior inference in the multisensory
manager.

Figure 7.3 shows the cognitive architecture. The deactivated components are shown in
light gray color. This version has the high-level planning and task coordination block added,
in comparison to the previous version. Also, action modules and a long-term memory com-
ponent related to navigation. The following part of the chapter will present the functionalities
of each block and the added components.

Audio Attention The sound of the drone is usually a low-frequency sound. It depends
on the brand of the drone. We tuned the audio attention model to focus only on the low
frequencies (<300 Hz) as we found that this is the upper band of the drone which was used
in this work. In this version of the architecture, we implemented an adaptive power trigger
instead of the trigger that was based on an absolute threshold value that was proposed in Part
II of the thesis (specifically chapter 4). The adaptive power threshold is designed to detect
big changes in the power level of the environment. It computes the average, maximum, and
standard deviation of the power in a defined time window and then defines the threshold
based on these values. The implemented adaptive power trigger module takes the triggering
mode as a parameter. The triggering mode defines the mechanism of choosing the threshold
which can be a fixed added value tp on the average, or to the maximum. It can also be a
relative added value (based on the standard deviation) to the average or the maximum.

Audio Localization The audio localization (Where) component is identical to what we
used in chapter 5. However, it was tuned to fit and adopt the application (localizing the drone).
Tuning the localization system is defining the urgency parameter of the decision-making in
the audio manager module. This parameter controls the trade-off between the speed of the
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Figure 7.3 The Cognitive Architecture for Action Coordination and Audio-Visual
Perception. The components in gray (Audio What, and the associated knowledge in the

long-term memory) are deactivated in this version of the architecture. The added
components (in comparison to the previous version proposed in chapter 5) are the high-level

planning/task coordination block and the navigation-related memory
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localization and the accuracy. In this application, the focus was more on accuracy than speed
considering the real-world noisy environment.

Visual Attention As the drone is a moving agent, the motion feature is relevant. Therefore,
the attention model is tuned to use the motion feature as the most relevant feature. The tuning
is top-down control of the model weights. The motion weight was adjusted to one while the
rest of the weights were zero. This makes the attention sensitive to the moving elements in
the scene.

Visual What For what pathway, we used a pre-trained deep learning model for drone
detection [103] and use it in the what module. It perceives a point in the 2D image and then
replies with the confidence rate of the existence of the drone in this attended point.

Visual Where The added camera to the robot is Zed-mini Camera. Which provides a
real-time point cloud. So the localization algorithm is taking the 2D point as an input and
replies with a 3D coordinate. The 3D coordinate is then transferred to the global coordinate
system of the robot knowing the exact location of the camera on the robot.

Short-term memory The short-term memory components did not change from the main
architecture, except the working memory. The working memory is holding the processing
state and the environment states. The processing state is the current state of the processing
logic of the task (the logic will be explained in the following part of the chapter). This is an
added new state to the original version of the architecture. The environmental states are the
states of the visual and audio stimuli which are the main original part of the memory that did
not change.

7.2.3 Added Components

To achieve the requirements of the task, a few modules had to be added to our architecture to
close the perception-action lifecycle. Basically, the added components are top-level managers
and a navigation system.

High-level planning/ Task Coordination Manager This module is processing a high-level
control. It does multiple functions. Generally, it is responsible for coordinating the perception
systems, the memory, and the action based on the current state of the environment and the
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robot. It interacts with both visual and auditory perception manages and operates a top-down
control for their parameters.

Navigation System The Navigation system consists of two modules and a long-term
memory component. The first module is a navigation planner, the second module is a path
executor, and the memory component is where the map of the environment is recorded. The
navigation planner is responsible for creating a planned path knowing the current position
of the robot and the goal in a previously given map (which is recorded in the long-term
memory). The given map of the environment is an internal representation of the spatial world
using the idea of growing neural gas. The goal-directed navigation is based on the reward
fields idea. The origin of this work was proposed by [156] and developed later in [18]. The
navigation modules are added as actions in the architecture while the memory component is
located in the long-term memory block of the architecture.

7.2.4 Processing Logic

The processing logic is the responsibility of the high-level task-planning component of the
architecture. It coordinates between the components of the architecture and controls them
as a top-down modulation. Based on the defined task, the logic is defined. In our case, the
task is localizing the flying drone using both auditory and visual modalities and navigating
toward the localized 3D position.

The system process as shown in figure 7.4 starts with the trigger, which can be happened
by a top-down intentional control system or by a bottom-up signal from the environment.
The top-down signal is initiated through the high-level control mechanism of the robot which
is executed by the operator of the robot. On the other hand, the bottom-up signal is initiated
by an auditory event. In our implementation, the bottom-up trigger is initiated from the
auditory attention component which is based on the developed adaptive power trigger. The
trigger is initiated based on the changes in the power spectrum of the audio. The trigger is
on if a high step in power was detected. The step in the power in the auditory environment
happens due to the back flip action of the drone.

Once the process is triggered the robot will localize the other agent (the drone) using
the auditory where component. The audio localization system is giving an azimuth angle.
It is the estimated azimuth angle between the drone and the robot axis. Once the robot has
an estimate of the angle, this angle is set to be an action goal to the robot (rotation action).
The robot will then execute the action by rotating toward the drone and trying to localize it
using both auditory and visual modalities. The localisation and action process is dynamically
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done in a closed loop based on the error in the estimated position of the robot based on both
modalities. The multimodal localization process is processed using the short-term memory
and the bayesian integration strategy that was previously explained in chapter 5 which is one
of the core components of our architecture. Additionally, the localization processes between
the modalities are repeated in a loop until the drone is perceived and localized with enough
level of confidence.

Once the drone is localized with enough precision, the 3D location is then set as an action
goal. The robot then projects the drone’s position to the spatial map to get a target point in
the ground. The spatial map is already given to the system and stored in long-term memory.
Additionally, the navigation system is tracking the position of the robot on the map. We have
to note that the navigation system is only considered an action component in our architecture
and it is not the focus of this research. Further, the navigation system plans the path to the
goal, and then executes this path, and moves the robot toward the drone. As mentioned in the
previous section, the state of the process is saved in the state working memory and managed
(updated) by the top-level manager.
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Figure 7.4 The Higher-Level Control Process for The Robot Coordination Architecture.

7.2.5 Experiment

To test the functionalities of the system, a lab experiment was made and test runs on the
real farm were done. Both the lab experiment and the farm test run were done using the
Beast robot. The main aim of the experiment is to validate the overall processes of the
architecture and show how can our proposed architecture be used in a real-world application.
With this experiment, we would like to move from the abstract experiment in the lab using
stimulation boxes that were used in the experiments of the previous chapters toward reacting
to real-world stimulations. Applying our proposed architecture to an applied scenario will
demonstrate how the architecture can generalize to different tasks.
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Figure 7.5 Three Vertical Rows in Tiptree Strawberry Farm

Lab Experiment The lab experiment was made to measure the performance of the per-
ception system. The main focus of the experiment is to measure the accuracy and time of
the auditory processing, visual processing, and the whole system in general. The lab is
equipped with a VICON tracking system. So, we used it to record the ground truth of the
drone location and robot location in the 3D space of the lab.

The experiment was flying the drone and moving it randomly in the room in different
directions and orientations while recording the response and internal states of the robot.
The internal states are decided the location of the drone from the visual modality, and the
direction of the drone from the audio modality.

Field Visit The experiment was made on Tiptree farm 1, Essex, UK. The farm is designed
as a vertical growing farm. It consists of identical blocks. Each block has east rows and west
rows and in the passage in between. Each side of the block has 9 rows. The level of the rows
is controlled and adjusted to a specific height. The odd rows are moved together against the
even rows (if the odd rows are up, the even are down, and vice versa). Figure 7.5 shows three
rows on one side of the Farm. the figure also shows the difference in the height between the
middle row and the other two rows as the height was adjusted to raise slightly half of the
rows.

1https://www.tiptree.com/
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7.2.6 Results and Discussion

In this section, the results of both the lab experiment and the test run on the farm will be
reported and discussed.

Auditory Localization (lab Experiment) To analyze the robot’s performance of the
direction estimation, the accepted range of error was defined to be 5 degrees as it is a close
value to human capabilities. If the error of the estimated azimuth angle was more than 5
degrees, the estimation is considered wrong. Following this rule, the applied architecture on
the Beast robot achieved 71% accuracy in the lab experiment.

Visual Perception (lab Experiment) For visual perception, It is divided into three pro-
cessing, the first one is attention followed by both 3D localization (Visual Where) and drone
recognition (Visual What) blocks. After these blocks, the visual perception manager block
decides the final estimate of the localized drone.

To evaluate the visual perception part of the architecture, we compare three different
strategies for the visual perception task (Localizing the one). The first strategy is basing the
3D localization based on the attention model only. The second strategy is using the deep
neural network model of drone detection[103]. And finally, the third strategy is using the
proposed model which is based on attention, and the dual visual pathways to decide the right
location of the drone in space.

Figure 7.6 showed the accuracy of these strategies. It shows that using the proposed
model for perception led to more accurate decisions (around 75%). This accuracy is higher
than both the attention-only strategy (43%) for attention, and (60%) for the DNN algorithm.

Field Visit Observations In the Field, there were some observations as the examination
was qualitatively made.

The audio environment of the farm is very noisy, because of, the workers, fans, cars, and
tractors working close to the field. However, the environment has fewer reverberations in
comparison with the lab as the farm can be considered an open space. The auditory attention
system has to be tuned to orient the focus toward the frequencies that the drone produces.
After the tuning process, the robot was having a fairly good response to the sound of the
drone.

For the visual part, the drone detection deep learning algorithm was detecting some leaves
as a drone, however, the attention system helped to regulate this issue by only focusing on
the moving areas of the environment. As the motion feature had the highest weight in the
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Figure 7.6 Visual localization and detection accuracy using different methods on the Beast
robot in the lab experiment

linear combination system by design. Another observed point was the latency in the visual
processing affected the 3D localization.

Generally, the whole system was functioning and the robot did a complete cycle for the
process properly. The robot was capable to localise the drone actively using both audio and
visual channels. Further, the 3D point of the localized drone is projected on the map of the
environment (the farm). This projected point is then used to execute the navigation action
toward this location.

Discussion The used drone in this experiment (Dji Tello mini) is relatively a small drone.
localizing the drone is actually a challenging task using visual modality, audio modality, or
even both of them. On the farm, the distance of the drone from the beast was within 10m
distance while in the lab was within 5m considering the available space of the lab. At the
beginning of the testing trials, the drone was flown outside the Beast’s field of vision. The
robot has to decide the azimuth angle of the location of the drone and the direction of the
rotation to ensure that the drone is in the field of vision. Further, decide the location of the
drone audio-visually. Then plan the navigation path and execute it.

Although the auditory environment on the farm was very noisy, it had the advantage of
non-reverberation (open fields). This advantage allows the robot to localize the sound faster
than in the lab experiment. Surprisingly, we observed that the auditory attention after tuning
worked pretty well to filter the other noise (such as speech). This is mainly due to the low
frequency of the sound generated by the drone in comparison to the speech and other sounds
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in the environment. This demonstrates that sound filtering might be one of the solutions to
the noisy environment. Indeed, we used a simple filtering technique, but more advanced
methodologies for selection and filtering are key skills in auditory processing in robotics. In
fact, dynamic methodologies will be the gate for solving complex auditory scenes such as
the cocktail party problem [81].

The 3D localization in real time for a moving object (the drone) was having a bit of
latency. This is mainly due to the limitations of the processing power and the hardware
technologies. This latency can be solved by running the drone localization model on a pc
with a GPU, or using lightweight models for drone localization that has a lower processing
time. This is actually one of the robotics challenges while using deep architectures that
require a big amount of memory to save the parameters of the model, and the processing
power to reach high frame rates. In chapter 9, we will explain more about this challenge and
propose some alternative methods that might suit robotics applications.

Overall, the architecture efficiently was capable of performing the task. The robot was
capable of initially localizing the drone through the audio only, orienting itself towards
the localized angle and simultaneously localizing the drone through both audio and visual
channels for more accurate positioning, and finally navigating towards the localized 3D
position in the farm. The results showed that using the architectures method in the visual
perception task (combining attention with the dual pathways) improved the accuracy of
localizing the drone in comparison with relying only on using the neural network model.

The architecture was used to coordinate the robot’s actions with the behavior of another
robotic agent through audio-visual perception. This doesn’t imply human-robot interaction.
Although, the experiment is to show the capability of achieving a coordinated task with
another agent in general. Using an artificial agent while testing allows more flexibility and
eases the developmental and validation process.

7.3 Conclusion

Building a generalized architecture for robotic perception is one of the current challenges. In
the previous chapters, an audio-visual perception architecture was proposed. This chapter
demonstrates how the proposed architecture was applied on two different robotic platforms
other than iCub which are The Essex Agricultural robot (The Beast) and Pepper. For Pepper,
we only adopted the software implementation to show that our software is not specific for
iCub (the original robotic platform that this architecture was developed on). This will help the
research community to further develop and use our software (We will make it available for the
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research community). For the Beast we take it one step forward after adopting the software,
we applied the architecture in a real-world scenario using a sub-part of the architecture with
some added components to do high-level planning and coordination. We used the architecture
in an agricultural application. The application is coordinating between the Beast and a flying
drone. The drone is responsible for gathering information about the farm and trees and
communicating this information audio-visually with the Beast (By doing a backflip). The
architecture was applied on the Beast to localize and detect the drone and move towards
the projection of the location where the drone was detected. The added components to the
architecture were the connection between perception, high-level arrangement, and action.
The architecture was tested in a lab environment and in a real Farm (Tiptree, Essex, UK).
The results showed that our proposed architecture can be technically valid to be applied in a
real-world application.

Additionally, this development of the application shows the modularity and expandability
of the architecture because of the following:

• Using a sub-part of the architecture

• Adding action and task-specific processing

• Tuning the modules of the robot to fit the different hardware (robots) and the application

With this research work, we tackled the last research question RQ3 which is about
generalization and coordination in a real-world scenario. We applied the model in different
robotic platforms by adopting the inputs and outputs of the architecture to fit the robot.
High-level coordination was enabled in the architecture by adding a high-level manager that
controls the perception and action flow. Additionally, it controls the perception modalities as a
top-down behavior. The experiments done on the architecture showed the main functionalities
of the architecture. However, the architecture is very adaptive and modular which makes it
an effective tool to be used in robotics in many activities including human-robot interaction
activities.

In this part of the thesis (Chapter 5, 6, and 7), we proposed an audio-visual cognitive
architecture for robotic perception. Our contributions to the community with this architecture
are as the following:

• The architecture is addressing cross-modal interaction in which the previously per-
ceived associated features from different modalities are influencing the localization
and identification process. This is the first perception cognitive architecture that so far
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addresses this gap, to the best of our knowledge, and as explicitly mentioned in the
latest review of cognitive architecture [120].

• The architecture is biologically inspired and implements the perceptual inference with
the consideration of the prior knowledge in different perceptual levels. Alongside
perceptual inference, it adopts the organizational structure of the perceptual information
in the cognitive components such as dual pathways and spatial working memory. It also
considers high-level planning and task coordination which allow the robot to actively
interact in the environment with other agents and coordinate their work together to
achieve the goals of the required task

• The contribution wasn’t only with the theoretical idea, but we also implemented this
architecture in multiple robots and demonstrated that the architecture can be used
in real-world applications. We applied this architecture on three different robotic
platforms which are iCub in the main experiment in Chapter 5, and Pepper and the
Beast in the current chapter. We showed that the architecture can be applied to different
robotic platforms and applications by only tuning the parameters and using task-
specific components such as the drone localizer that replaces what component for the
vision as well as the audio. which makes the proposed architecture a general-purpose
perception-action architecture for different robots unlike the existing architectures that
are specific to one task (e.g. speaker localization)

• Across the development phases, we show the modularity and expandability of the
software implementation. In particular, in chapter 6 we used the auditory perception
component with the action component to validate the active behavior of the architecture
and propose a methodology to examine different active motor behaviors to improve
the auditory perception. While in this chapter (chapter 7 we disabled the auditory what
pathway and associated knowledge in the long-term memory while keeping the rest of
the architecture with added high-level planning component.

Considering this point, we present this architecture as a base implementation towards
audio-visual shared perception. The evaluation of this architecture mainly examined the
capability of the architecture of solving complex scenes. The next evaluation step is to
compare the behavior of the architecture with the human perceptual behavior. Aiming to
examine if the architecture archives the same perceptual characteristics including common
representation and spatiotemporal coordination which are two of the five shared perception
skill categories that were framed in the first two chapters of the thesis (chapter 1 and 2).
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With the proposed architecture in this part, we tried to address an architecture that shares
a common environmental representation and proactive behavior (common representation
skill category) and high-level coordination and planning (spatiotemporal coordination skill
category).

In the following part of the thesis, I will present the work done to improve the auditory
pathways. This is mainly because of the observed limitations in the auditory modality.



Part IV

Improving Audio Pathways: Alternative
Pipelines For Developing Robot’s

Audition



Chapter 8

Audio HRTF: An Alternative Pipeline for
Sound Source Localization in Robotics

Mr Watson come here i want to see you

Alexander Graham Bell in first words ever
spoken on the telephone

In the previous chapters, I demonstrated the developmental process of my perception
architecture. The bottleneck of the process that limits the speed/accuracy of the robot was
mainly the auditory localization model. This is generally due to the ego noise and electronic
noise of the robotic environment. Furthermore, the challenges even increase in more complex
scenarios in human-robot interaction such as cocktail-party, multi-speakers, and multi-agent
interactions. Trying to fulfill this gap, this work aims to develop better auditory building
blocks for robots. More specifically, is to improve the speed and accuracy, address multiple
sound sources/speakers existing in the environment at the same time, and overcome noise
and reverberation in the environment. In this chapter, we propose a developmental pipeline
for robots using Head-related transfer functions (HRTFs). The pipeline starts with the
measurement of the HRTFs for the robot, following the creation of a specialized dataset, and
finally training a model using this dataset. We applied this pipeline to develop a single-speaker
localization in the azimuth front field. The performance of the model showed promising
results that exceeded the current models for robots. Further, the aims are to increase the
dimensionality (including the distance and elevation), render more datasets that simulate the
ego noise and multiple speakers, train more models using these datasets, and finally test these
models in the real robot. Additionally, this pipeline can be a tool to analyze and understand
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different robotic auditory contexts that will hopefully help in developing better model-based
architectures and systems for robots.

8.1 Background

8.1.1 Human Sound Source localization

Sound source localization is the ability to identify the direction where the sound is coming
from. The study of sound localization is focusing on both absolute and relative localization.
Absolute localization is judging the absolute position of the sound source in the 3D spatial
world. On the other hand, relative localization is identified by the minimum audible angle
(MAA) which is the minimum detectible angular shift between two sources or locations in
space.

Humans are capable of localizing the sound source using multiple monaural and binaural
cues. The monaural cues are the cues that are due to the interaction between the sound source
and the environment through which it propagates, notably including the physical anatomy of
the head and the ears. This interaction is the effect of the anatomy of the head and pinnae on
the sound signal before the signal enters the canal of each ear, and has the effect of spectrally
filtering the sound signal. By contrast, binaural cues arise due to the differences in the sound
between the ears. The most common binaural cues are interaural time differences (ITD) and
interaural level differences (ILD). As sound waves travel in space at the same speed and the
ears are in different locations, the arrival time of the sound for each ear is different. This
difference is what ITD refers to. It can be represented as a delay between the ears which
depends mainly on the frequency of the sound. Similarly, the ILD refers to the difference
in the intensity level of the sound from one ear to another. This happens because of the
propagation of sound in space. When the sound travel in space, the energy of the wave
decrease due to the increased area where the sound is spread. Therefore, the intensity level
of the sound is higher for the closer ear from the sound source. And this is what the brain is
resolving to measure the sound direction in the horizontal space.

Although the binaural cues are significantly important in sound localization, they can
only solve azimuth sound problems and they face the problem of the cone of confusion
[22]. This is the cone-shaped set of points in the space around the listener where the sound
source might be located. As all of the sound sources located in these points produce the same
binaural effect, there is ambiguity inherent in both ITD and ILD localization. This adds a
challenge to the binaural sound localization models. One possible solution to the ambiguity
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in the egocentric and allocentric spaces is including the head movements in the computation
process [79].

In addition to the azimuthal cues provided by ITD and ILD, the asymmetrical shape
of the pinna acts as a filter that deforms the sound signal and imparts a spectral filtering
characteristic that is dependent on the vertical position of the sound. This further helps to
distinguish the right source of sound [15].

One common approach that computationally describes the characteristics of the auditory
signal modulation due to the physical shape of the head/ears is the head-related transfer
functions (HRTFs). The HRTF characterizes how a sound that comes from a point in
space will be modulated before arriving at the inner ear. The HRTFs are holding both the
binaural and monaural cues in the characteristics of the functions. Therefore they are very
specified and sensitive to changes in the shape of the head/pinna. By emulating the transfer
function of free-field sound arriving at the inner ear, the HRTFs are widely used to create (or
render) artificial auditory spatial experiences through headphones. This is often exploited
in presentation media such as in augmented reality. Although they allow the creation of
directional sound experiences that are very close to real-world experiences, a non-trivial
challenge to obtaining optimal sound rendering is the complexity of the measurement process
itself. Ideally, a custom listener-specific HRTF is used to render virtual auditory space on
headphones.

In addition to virtual auditory displays, HRTFs have an important usefulness in spatial
audio research. In many situations, it is desirable to be able to programmatically and repro-
ducibly render spatial sound cues, for example when training an artificial neural network to
extract spatial features. Displaying an auditory scene in a free field from actual loudspeakers
would require a very long time and require dedicated hardware and an acoustically controlled
space. Instead, large training sets can be rendered in silico using HRTFs and the resulting
left and right channels (ears) can be used instead of capturing true free-field audio.

8.1.2 Sound Source localization in Artificial systems

In artificial systems and robotics, much attention has been placed on machine vision systems,
however, the artificial and robotic audition is relatively less explored. The research in sound
source localization for robotics is often found in signal processing and robotics communities.
In the signal processing and robotics communities, researchres often build different models
that localise the sound source in the azimuth direction and distance. The azimuth angle
has taken most of the focus compared to the distance and elevation because it is the most
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informative dimension in human-robot interaction. In recent years, many models have been
developed using an array of microphones. Fewer models used humanoid binaural audio
(only 2 microphones) in sound source localization [136]. [8, 197] are two recent reviews
for sound source localization in robotics. There is interest in using binaural audio in the
robotics community because of the efforts to minimize the number of sensors that are directly
affecting the energy efficiency of the system, as well as representing a human-like audition.
The binaural audio models are generally divided into two different categories, the first
category is using deep-learning models whether supervised or self-supervised, while the
second category is implementing computational models for the biological audition systems.
The advantage of biologically inspired modeling is that it doesn’t need data to train like
deep learning models. So it is easier to implement in different platforms and different
environments. However, these models generally struggle to deal with noise, and it is difficult
to achieve high performance using these models. On the other hand, deep learning models
are achieving better performance and are widely used in the signal processing community
but acquire a huge amount of labeled data for robust performance.

Going further details on recent research in robotics, [70] worked on developing a self-
supervised deep learning model to acquire a dataset and train a deep neural network. The
network was trained to localize a single speaker. The dataset is acquired through an interaction
with the robot in which the robot localises the speaker visually and uses this localization
to annotate the auditory data. His model achieved good accuracy but for a large spatial
resolution which is 3 or 5 bins for the front field. Similarly, [83] developed a deep learning
model with manual annotation for the data and used the four microphones that the Pepper
robot has.

8.1.3 Challenges in Robotic Sound Source Localization

In a recent review of sound localization methods in robotics [197], they highlighted some
challenges in this domain. Dealing with the dynamic acoustic and complex environment, and
having spatial sound datasets are two of these challenges.

In many human-robot interaction scenarios, the robot is interacting with multiple agents
at the same time. Additionally, the environment has different acoustic characteristics and
might also have auditory objects such as speakers and buzzers. In general, robots work
in dynamic acoustic and complex environments. Therefore, multi-agent audio localization
models are a requirement for real interactive scenarios whether this agent is a human (speech)
or something from the environment (environmental sound). More specifically, it is important
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for the robot to have the skill to localize different kinds of audio signals while other audio
signals do exist in the scene or some even more complex situations such as the cocktail party
scenario.

The second challenge is the availability of labeled spatial data that can be used to train
different models to achieve different robot audition tasks such as localization, multi-speaker
localization, and noise cancellation. In particular, the available datasets do not replicate the
robotic environmental conditions including the ego-noise, reverberation of the sound in the
room, and generally the interaction dynamic conditions. The other use of spatial data is the
evaluation of the model-based approaches. This is due to the difficulty of getting accurate
ground truth (in degrees) considering the movements of the robot and the humans in the
scenario.

8.1.4 Motivation

We mentioned that in our architecture, the bayesian localization model which is based on the
interaural time difference was generally the bottleneck of the process. It was relatively slow
when trying to achieve an acceptable confidence rate (accuracy). This was mainly because of
the effect of the ego-noise which is due to the fan and the electrical noise in the head of iCub.
In fact, the model wasn’t designed to be fast but was designed to integrate spatial evidence
over long periods of time to build a probabilistic map for the scene.

On the other hand, the previous section of this chapter showed some of the challenges in
SSL in robotics.

In the literature, there is not much work yet done in the direction of using the HRTFs of
robots to develop spatial hearing. In [88], they overcome the computation complexity of the
HRTFs by creating a close estimate of the physical shape of the head. However, this method
can’t be generalized to be used in different robots considering the different head shapes of
the robotic platforms. [109] showed the potentiality of using the HRTFs and implemented
a localization system based on the HRTFs on the KEMAR manikin with modified human-
shaped ears. However, the system is very specific to the designed environment in which the
HRTFs were measured. If there was any change in the environment or the head has slightly
moved, the system performance will decay.

To fulfill this gap and overcome the challenges, we aimed for two goals. The first one was
to improve the localization performance using the HRTFs of the robot as an alternative to the
bayesian localization model, and the second goal was to explore the possibilities to use the
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Figure 8.1 iCub HRTFs Audio Pipeline

HRTFs to create models that solve complex auditory scenarios in human-robot interaction
such as multi-speaker localization.

8.2 Methodologies and Experiment

I propose here a developmental pipeline for sound source localization in robotics. The
pipeline is using the HRTFs to render specialized datasets, and then trains different localiza-
tion models using those HRTFs and adapted to specific required tasks. This is mainly solving
one of the mentioned challenges for SSL in robotics which is the availability of spatial audio
datasets. Using the HRTFs, it is straightforward to render a spatial dataset personalized to
the robot. Additionally, this will further help in addressing another challenge which is the
acoustic dynamic and complex environment of robots.

The pipeline is divided into three stages, the first stage is to measure the HRTFs for the
robot. The next stage involves the rendering of specialized spatial datasets. And finally,
training models are created to address the auditory task. Figure 8.1 is showing the pipeline
process. In the following part of the chapter, I will explain the process of each stage and also
what was done as a demonstration and validation of this process. The demonstration and
validation objective was to build a single-speaker localization model.

8.2.1 Stage One: HRTFs Measurements

The first stage in the pipeline is to measure the HRTFs of the robot. There are various methods
that are commonly used to measure HRTFs. In [135] the authors reviewed the measurement
methods of the HRTFs. The HRTFs are commonly used in virtual and augmented reality
to create more personalized experiences, however, it is less common in the robotics field
due to the complexity and time of the measurement process. The measurement of the HRTF
for any particular robot generally involves recording the unique impulse responses of the
head. The recordings are made at various positions (angles) with respect to the sound source
and usually in a non-reverberant environment. The impulse responses are recorded using
different kinds of excitation signals such as random noise signals, stepped-sine signals, and
sweep signals. Further, the impulse responses and the original excitation signal are used to
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Figure 8.2 Impulse Responses Measurement Setup

compute the HRTFs. The computation of the HRTFs from the impulse responses is generally
made using several methods in the frequency domain or the time domain or using the least
squares fitting method.

The Setup The HRTFs measurement process was made at Tata Lab in the University of
Lethbridge, Canada during my second period abroad. The lab is specialized for human
auditory perception and robotics research. It has a minimally-reverberant room, free field
studio monitor speakers, and an iCub head. The figure, 8.2 shows the setup of the microphone
response measurements for the iCub head. The iCub head was placed in front of the middle
speaker which was the only one used in the process. To obtain high-quality audio recordings,
a Reverb Robotics ReRo board with digital MEMS microphones was fitted to the iCub head.
This is a small-sized integrated board specialized for auditory perception in robotics research
1.

Recordings An exponential sine sweep signal was used as an excitation signal using 20Hz
as a starting frequency and 24000Hz as the maximum frequency over 20 seconds duration.
This signal is particularly useful due to its characteristics as the following:

• It covers a wide range of frequencies, which makes the measurement suitable for
different kinds of audio signals.

1https://reverbrobotics.ca/
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Figure 8.3 Summary of recording angles

• It has constant energy and time which ease the calculation of the HRTFs, and eases the
interpretation and analysis of the recorded signal compared to other signals that have
variation in energy and time.

• It also has a good frequency resolution, which will reflect of the accuracy of the HRTFs
measurement.

As a first step, we only focused on the azimuth angle in the front field with a fixed
distance. The iCub head has 40 degrees range of motion in yaw for each side (right, left). I
recorded seven rounds. In each round, the robot was placed at an initial angle with respect
to the middle speaker. (-90, -60, -30, 0, 30, 60, 90). In each round the robot was moving
from the maximum left (-40) to the maximum right (40) with a one-degree step size. For
each position of the head (degree), the excitation signal was played and the response of the
speakers was recorded. This covered azimuth degrees from -130 to 130 which covers the
whole front field and a small part of the backfield with some repetitions of the same azimuth
angle. The summary of the recordings angles is shown in Figure 8.3. From the software point
of view, a system was developed using Yarp and Rero software 2 to simultaneously record
and control the robot’s head motions. The system recorded both the microphone signals and
the head state from the encoders of the motors in the head.

HRTFs / HRIRs computation from the recordings The HRTFs can be generally obtained
by applying linear deconvolution on the recorded signal with the excitation signal in the
frequency domain. But the deconvolution process is complex in time. Instead, it is easier
to compute its representation in the time domain which is called Head Related Impulse
Response (HRIR). The HRIR is computed by applying a convolution on the recorded signal
with the inverse filter of the excitation signal. The inverse filter of the exponential sine sweep

2https://github.com/reverbrobotics/rero_core_dist
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signal is the reversed and normalized version of the same signal [55]. We followed this
method and then saved the response in both the time domain (HRIRs) and the frequency
domain (HRTFs).

8.2.2 Stage Two: Rendering a speech spatial dataset

Creating a dataset for a specific task is the second stage after the measurement and compu-
tation of the HRTFs. Recording such a dataset is generally a time-consuming and difficult
task. However, using the HRTFs to render a spatial dataset facilitate creating different kind
of binaural datasets for the robot using the existing single-channel available audio datasets.
This is done by applying convolution of the signal with the HRIR in the time domain or
multiplication of the signal with the HRTF in the frequency domain.

To focus on human-robot interaction scenarios, I created a spatial speech dataset for iCub
using the recorded HRIRs and LibriSpeech dataset [181]. LibriSpeech is a speech dataset
which is derived from audiobooks. We used the 100 hours "clean" speech version to generate
500 hours of spatial speech. Each audio sample is rendered in 5 different angles assigned
randomly between -90 to 90 (the front field). The audio files of Librispeech have variable
lengths.

8.2.3 Stage Three: Model Training and Evaluation

The final stage in the pipeline is training a model using the rendered dataset. In recent
years, many models have been proposed to solve sound localization, detection, and tracking
algorithms using deep learning [77]. Therefore, we used here ResNet50 [82] architecture as
a baseline model in deep learning. We trained a ResNet50 network with modified input and
output layers to match our data and task. We used randomly selected one-second clips of
audio for each training step. The inputs of the network were the magnitude and the phase
components of the short-time Fourier transform (STFT) of the audio signal, which is widely
used in the literature. We annotated the rendered data set with 5 degrees of spatial resolution
in different segments. This results in 36 segments for the rendered dataset. Thus, the output
layer of the network is a linear layer with 36 neurons. The segment is determined by applying
a softmax function on the output layer. Figure 8.4 visualize in brief the localization model.
For the implementation side, rendering the dataset, and training the model was done in python
using NumPy, PyTorch, and PyTorch lighting libraries. We split the dataset into training
(70%) and testing (30%) splits.
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Figure 8.4 The Model for SSL (Single Speaker)

8.3 Results

The training resulted in 94% testing accuracy and 99% training accuracy using one second
of audio. Indeed, these results are on the generated dataset. It shows that the trained model
can capture the characteristics of the sound signal using a short period (one second), with a
5 degrees resolution. The next steps of the evaluation which we aim to perform in the near
future is to evaluate the trained model using the dataset that was recorded using iCub (with
the full body) and used to train a deep-learning localization model to identify the source
from one of 5 directions (far left, middle left, center, middle right, and far right) [70]. This
will give us more insights into the performance of our approach with the comparison of the
baseline.

This is the experiment done Following the development pipeline. It showed that using this
pipeline is useful in making effective models for robotics. The network was able to capture
the characteristics of the HRTFs and learn the first task (single speaker localization). Indeed,
the next step is deploying this model in the robot and testing it in different scenarios such as
reverberant/non-reverberant environments, or different versions of the iCub (iCub Head, the
full iCub) and comparing the performances. For the task of single-speaker localization,
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8.4 Discussion and Conclusion

Sound Source Localization (SSL) is an important building block in the robotics domain.
Different challenges in this domain were demonstrated such as the dynamic and complex
environmental conditions and the availability of specialized data for robotic applications. In
this chapter, I proposed a developmental pipeline for the SSL based on the Head Related
Transfer Functions (HRTFs) for robots. The pipeline goes through three main stages: The
first stage is measuring the HRTFs of the robot, the second step is rendering a specialized
dataset, and the third step is building and training a model for the task. As a first step in
the SSL development using this pipeline, I measured the HRTFs for the iCub robot in the
azimuth front field. Then, I rendered a spatial speech dataset using LibriSpeech which is one
of the public datasets for speech. Finally, I used this dataset to train a classifier to localize
the speaker. The classifier model was a RESNET50 neural network that takes one second
of audio as input. The classifier showed robust and accurate testing results (94 % ) with a 5
degrees resolution. This resolution and accuracy are very comparable with human capabilities.
The results validate the approach and open up a new line of research using this pipeline.
This approach is showing a very strong potential to solve two of the challenges in SSL for
robotics. Rendering specialized datasets using the measured HRTFs is a solution for the
limited availability of datasets that are specialized for robotic applications and environments.
Additionally, this will give the flexibility to simulate different scenarios such as the cocktail
party, reverberation, and ego noise. The simulated scenarios can be further analyzed to
understand more about the complex acoustic environments in robotics and build suitable
systems whether model-based and inspired by biological hearing or data-driven models. The
future plan is to make iCub HRTFs and the HRTFs development software package available
for the iCub research community in partnership with Reverb Robotics. This will be through
the integration of this work into Rero software which is available under a free license. This
way will prevent other labs to reproduce the pipeline and can directly proceed in training
models for different tasks. Additionally, the datasets will be also published for the whole
robotics community. This will allow other robotics communities to use the development
software as well as the datasets so that they do not have to spend time on the software code
and only focus on running the software on their robots or training their preferred models
using the datasets.



Chapter 9

Audio Shallow Models and Continuous
Learning: Alternatives for Deep Learning
Approaches

Intellectual growth should commence at birth
and cease only at death.

Albert Einstein

In our proposed audio-visual perception model (Part III of the thesis), we trained an
auditory classifier which was presenting the "what" pathway for audio. The classifier was
trained on four complex tones. This task is relatively easy and did not take time to be trained
as we used the same exact signal in our experiment. However, this is not the case in real
interaction. For example, in the applied scenario in the strawberry farm, the next step was
communicating different kinds of information through different motion behaviors for the
drone. Real scenarios often have a more complex scenario than the experiment we have
done. Therefore, a more advanced sound classification model is required. In this chapter, we
explain our research to explore shallow models and continue learning for audio classification.

9.1 Introduction

In recent years, deep neural network models became one of the most used approaches in
intelligent systems [106]. This is due to that it achieved higher performances compared to
other traditional approaches in computer vision [19, 99], and language processing [56]. These
advancements helped in designing and performing human-robot interaction experiments.
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However, the dependency on data, the complexity of both time and space (Training, and
Storing the model), and the required computational power of this approach put a challenge in
the development of human-robot interactions in real scenarios. The small size of the available
datasets for human-robot interaction [24], and the limitation in hardware (use of the CPU
only on the robot) are the main reasons.

One of the solutions is transfer learning, which is using a pre-trained model and only train
the last layer to fit the required task. Some popular networks are VGG16 [227] or ResNet
[82] (vision), respectively, VGGish [85] or YAMNET1 (audio). Still, the required data to
create a generalized model that fit different interactive scenarios is comparably big.

One another approach is developmental learning. It originated from the inspiration
of perceptual development in infants. Instead of learning many classes once, the agent
learns incrementally by experience and exploration [218, 258]. It is also called continuous
learning (CL). In this context, the data is presented as a stream without prior knowledge
about the classes. The CL approach is associated with catastrophic forgetting [62]. It
is the main limitation of CL approaches that has been addressed by proposing different
kinds of regularization mechanisms.[114, 207, 245, 208, 183, 243, 213, 184, 256]. Further
information about CL can be found in these two recent reviews [132, 47].

One common approach to take the advantage of the convolutional neural networks (CNN)
in audio is to transform the raw audio to its spectrograms or Mel spectrum and deal with this
as an image. This allows the use of the CNN pre-trained networks like in [85, 78]. However as
mentioned before, this was using closed-set annotated data which is not always the available
case in HRI scenarios. Therefore, continuous learning and unsupervised learning might
suit the robot’s scenarios where the robot is capable of acquiring experiences continuously
during the interaction and learning using this data. This can be applied for different auditory
tasks like audio segmentation [146, 35] speaker identification [5, 97] or acoustic emotion
recognition [54, 171, 134]. I focus on the relevant task to our developed model which is sound
classification. The unsupervised learning models are usually the focus of the lightweight
research line such as in [153, 170, 61]. In there, authors use different approaches such as few-
shot learning, zero-shot learning, and open-set classification. In the robot audition community,
most of the focus was on localization, separation, and speech recognition [177]. However,
very few works have been done in the direction of environmental sound classification and
recognition. In [254, 169, 112], the authors proposed a method for noise-robust feature
extraction that considers spatial separation using HARK [168] (open-source software for
robot audition). In [209], authors propose software for detecting environmental sounds.

1https://www.tensorflow.org/hub/tutorials/yamnet

https://www.tensorflow.org/hub/tutorials/yamnet
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Recently, a convolutional neural network was proposed to perform sound localization and
classification on robots [23] but it was done in simulation (not on an actual robot).

The aim of this research part is to explore alternative methodologies for audio classi-
fication for robots. I want to close the gap between machine learning and human-robot
interaction. I used the ESC10 and ESC50 audio classification benchmarks [187], as well as a
modified dataset extracted from the ‘dcase19’ sound challenge 2 in our study. We conduct
experiments using the popular VGGish network as a performance upper bound and contrast
the results with the k-nearest neighbor algorithm (knn), which has been also a baseline for the
ESC10 and ESC50 dataset thus it serves as a representative unsupervised model. Also, we
employ an echo state network (ESN) [96], a recurrent neural network model whose training
contracts to a regression task and is, hence, faster than gradient-based training. This qualifies
ESNs for robotic applications [86, 80], however, studies on their relevance for audio tasks
(specifically within robotic settings) are still sparse [100].

9.2 Datasets, Preprocessing, and Audio Representations

As the main focus of my research is understanding the audio-visual environment, I focused
on datasets from real-world environmental sounds such as animals, alarms, ..etc. Four
classes have been selected from ‘dcase2019’ audio benchmark3, namely ’alarm’, ’blender’,
’dog bark’, and ’dish washer’ as the experimental setup used in the research involves four
audiovisual objects. A small dataset has been recorded to emulate the audio quality arriving
at the iCub microphones. This dataset will be referred to in the thesis as ‘dcase_icub’. To
understand the scalability of the used models from the number of classes perspective, ESC10,
and ESC50 4 (Environmental Sound Classification) dataset5 have been used. ESC dataset
has a wide range of classes for nature sounds (e.g. ran, baby cry, telephone, etc.). Table 9.1.
shows the summary of the datasets.

For the preprocessing part, the normalized Mel spectrum and the corresponding Mel cep-
strum coefficients have been computed from one channel of the audio signals (for simplicity).
The coefficients are a compact representation of the Mel spectrum and are obtained via a
discrete cosine transformation from the Mel log scale. After preprocessing, high inter-class
variability was found as shown in figures 9.1-9.4 for the dcase_icub dataset. This is apart
from the expected variability between different classes.

2https://dcase.community/challenge2019/index
3http://dcase.community/challenge2017/task-rare-sound-event-detection
4https://github.com/karolpiczak/ESC-50
5https://github.com/karolpiczak/ESC-50#download

https://dcase.community/challenge2019/index
http://dcase.community/challenge2017/task-rare-sound-event-detection
https://github.com/karolpiczak/ESC-50
https://github.com/karolpiczak/ESC-50#download


9.2 Datasets, Preprocessing, and Audio Representations 147

Figure 9.1 Mel spectrum for alarm.

Figure 9.2 Mel spectrum for blender.

Figure 9.3 Mel spectrum for dishes.
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Table 9.1 Summary Datasets

# samples # classes length train test sampling rate
dcase_icub 360 4 variable 288 72 48 kHz

ESC-10 400 10 fixed 320 80 44.1 kHz
ESC-50 2000 50 fixed 1600 400 44.1 kHz

Figure 9.4 Mel spectrum for dog.

9.3 Models and Experimental Settings

Different learning strategies have been used. In the following section, a summary of the
computational principles of these models will be elaborated. Additionally, the model hyper-
parameters, training parameters, and experimental configurations will be reported. Generally,
80% of the data was used for training and 30% for testing. For a fair comparison, the
ESC50 data is further split into specific folds following [188]. There are two categories of
learning strategies, the first category is classical learning strategies, and the second category
is continual learning algorithms.

9.3.1 Learning Models

Matlab 2022a was used to implement the classical learning strategies with the use of echo
state network toolbox [96].

k-nearest neighbour knn classifier is an unsupervised learning approach that clusters the
feature space to a defined set of clusters and bases the clustering on the distance between the
instance and the cluster of the k nearest neighbors.
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Mel frequency cepstrum coefficients were used as a representation for the input data. For
the cross-validation, 5-folds were used. Following [188], the choice for the K values were
10 for the ESC-10 and ESC-50 dataset. For the dcase_icub dataset, 4 folds were used for
cross-validation. A preliminary experiment showed that using the Manhattan metric performs
superior compared to the Euclidean and squared Euclidean distance. Therefore, it has been
used as well as the correlation among data samples.

Echo State Network Echo State Network (ESN) [96] implements a particular training
strategy for recurrent neural networks. It has one hidden layer which is called the reservoir.
The neurons of the hidden layer are randomly initialized in the beginning and remain fixed
without changing. When the input is fed to the network, the hidden layer acts as a kernel
and transfers the input to the output neurons readout as a feature space collected in a design
matrix X . Figure 9.5 shows a standard ESN. The training of the ESN follows the equation
9.1.

x(t) = f (u(t)Win +αx(t −1)Wres + y(t)Wf b +ν(t)) (9.1)
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Figure 9.5 Standard echo state network with sparsity hyperparameter κ , leakage α , and spectral
radius ρ of reservoir matrix Wres. For supervised learning, only the weights Wout are trained via

regression of the reservoir states X and output Y .

where f (.) is an activation function. tanh activation function was used here. and W∗ are
the layer-wise connectivity matrices for the input, reservoir, and feedback, respectively. ν(t)

is a noise term that had been omitted and not used. Finally, the output is then computed as
shown in the equation 9.2.

y(n) = g(WoutX) (9.2)

where g is a defined output function. When g function is linear, and Y (the desired output)
is known, training an ESN became a sort of a regression (here regularized [87]):
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Wout = Y XT (XXT +λ I)−1 (9.3)

where I is the identity matrix and T is the transpose operator. For λ = 0, the regression is
calculated using the pseudo-inverse:

Wout = (Y X†)T (9.4)

In the experiment, sparsity of κ = 0.1 was used (10% of the neurons in the hidden layer)
and tanh activation function. The choice of activation was done based on a preliminary
experiment to compare linear activation and tanh activation. The results of the preliminary
trials showed a better performance using tanh. For the spectral radius ρ , and α , a grid
search was performed to select suitable values but there wasn’t any big difference in the
performance, presumably due to the small size dataset. So, the used values were ρ = 0.9 and
α = 1. 20 trials were performed to measure the performance using different hidden layer
sizes as the following Nres = {100,200,400,600,800}.

VGGish network VGGish is a correspondent deep neural network to the popular VGG
network used in image classification. The input layer of the VGGish network takes only the
coefficients of the Mel spectrum. Therefore, it is important to process the raw input audio
to match the input size of the VGGish network. Further, the architecture has six cascaded
convolutional layers. Each layer has max-pooling layer and uses reLU activation. After
the convolutional stages, the architecture has a fully connected layer. This sum up of nine
trainable layers. The output layer is a regression layer that use mean-squared error (MSE) as
an optimization minimization goal. In the experiment, the pre-trained VGGish network was
used for classification without any modifications. The VGGish network is used here as the
upper bound of this study.

9.3.2 Continual Learning Algorithms

Continual learning strategies were developed on python. Librosa library [147] was used
for the audio preprocessing and the Avalanche library [141] for the implementation of
the CL strategies as both are python-based code that allows to simplify the experimental
pipeline. Opposed to batch supervised learning, CL models are evaluated incrementally by
their number of tasks, i.e. the performance metric can be evaluated every time a new class is
added. Hence, the number of tasks corresponds to the number of classes for each dataset.
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The incremental classifier and representation learning (iCaRL) algorithm [202] was the
first used CL strategy, which joins regularization and rehearsal strategies. In essence, the
algorithm learns continually feature representations jointly trained using an update function
at the classification stage which makes iCaRL architecture-agnostic. The trick of adding new
classes is that the weight space is separated into a fixed representation of the learned data
so far and a weight vector associated with an "exemplar", which is held in memory. In this
memory, other classes can be added and the training updated accordingly. Training on the
new classes while keeping the information of the previous “old" classes is achieved by a
loss function that separates into a typical backpropagation (log) loss term and a knowledge
distillation term.

As there are no constraints on the underlying feature extractor φ : S →Rd for samples S,
the algorithm qualifies for a comparison with our techniques using CNN-based audio feature
extraction. Specifically for the iCaRL algorithm applied here, we used a multi-layer ResNet
with n=5 convolutional layers for the audio feature representation. We set the learning rate
λ = 0.1, the momentum term m = 0.9, and weight decay δ = 1e−05 for all datasets and use
stochastic gradient descent optimization. The memory size to store the required exemplars is
2000. We ran 50 epochs with a mini-batch size of 16 for the dcase_icub dataset, 70 epochs
with a mini-batch size of 128 for the ESC10 dataset, and 70 epochs with a mini-batch size of
32 for the ESC50 dataset over 10 trials each.

Second, GDumb [192] algorithm was also used, which is a very general approach to
continual learning as it does not impose constraints on task boundaries, sequence order of the
tasks, etc. The approach is memory-based, i.e. some data are sampled in a greedy fashion.
Specifically, whenever a new sample from a new class is encountered, the greedy sampler
stores up to maximal k samples for that class while removing old samples. Subsequently, a
so-called learner (basically any neural network) learns a mapping fθt : x → y, where x,y ∈ Dt

are the samples and labels, respectively, while Dt represents the greedily sampled dataset at
time instant t. The prediction ŷ for any input x is defined as the Hadamard product ŷ = p⊙m,
where p are the predictions resultant from a softmax layer and m ∈ {0,1}|Yt | denotes a mask
used at inference time. We used similar settings as for the iCaRL trials. The same multi-layer
ResNet with n=5 convolutional layers backend was used for feature extraction. We set
the learning rate λ = 0.1 and weight decay δ = 1e− 05 for all datasets. I used the adam

optimizer and ran 10 trials for each dataset each trial consists of 15 epochs with a mini-batch
size of 8 for all datasets.
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9.4 Results and Evaluation

Table 9.2 reports the averaged performance over the running trials. Also, the guessing
(chance) percentage as well as the human accuracy reported for the ESC10 and ESC50. This
will be useful to compare the different performances and better understand the results. It is
important to note that in ESC50 the human accuracy is far less compared with the ESC10.
In the analysis of this Karol Piczak [188] observed that mechanistic sounds produced more
misclassification than natural sounds and separated the different classes in the ESC50 into
easy, medium, and difficult levels.

As mentioned before, VGGish acts as the upper bound in this experiment. Therefore,
it is not a surprise to have the best performance using the VGGish network. However, in
dcase_icub and ESC50, the test performance deviated strongly (up to 20 %) when compared
to the training performance. This shows that the models don’t have a high generalization
capability. Conversely, both datasets are small compared to standard machine learning
datasets comprising hundreds to thousands of data samples. Additionally, in this study, the
goal is not to opt for competitive benchmarking hence with more optimization better results
might emerge. Only for ESC-10, the results obtained mirror other results using pre-trained
deep learning models.

The unsupervised knn classification strategy and the supervised ESN achieved similar
results. For the dcase_icub dataset, the test performance was better using the knn classifier.
On the other hand, ESN performed better for the ESC10 dataset. Repeatedly, the test
performance was much lower than the training. The low testing performance of ESC50 is
aligned with the baseline results reported in [187]. The ESN performance reached 64% for
ESC10 which is also aligned with the baseline approaches like the random forest, and support
vector machines achieve between 50-70% [187]. For the dcase_icub dataset, from reservoir
size resN : 400 on, the performance doesn’t increase even when doubling the reservoir size
(more complex model). This result supports the observation of the inter-class variability in
the preprocessing stage 9.2 which makes the task difficult to be trained. This is shown in 9.6)
comparing the same network with ESC10, increasing the complexity of the model (reservoir
size ) increases the performance in relatively as shown in 9.7. This is providing more insights
for upscaling the model with the ESC50 dataset. It also shows how the number of neurons
for the hidden layer (reservoir size) in ESN is a crucial hyperparameter. However, most
importantly, the test accuracy does not scale with this observation and it can be anticipated
that with increasing reservoir size the network will eventually overfit. Therefore, providing
larger reservoirs will not necessarily yield a better feature separation for larger classification
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Table 9.2 Summary Table of The Training and Testing Accuracy for All Used Datasets and
Strategies

Dataset dcase ESC-10 ESC-50
Chance 25 15 2
Human - 95.7 81.3
Model train test train test train test
kNN 71.25 58.3 78.28 65.00 74.82 29.2
ESN 79.0 57.0 87.0 64.0 - -

iCaRL 38.78 43.81 63.63 58.00 6.67 10.28
GDumb 74.2 42.8 72.51 33.0 64.34 8.55
VGGish 95.63 76.61 93.13 81.35 88.36 68.12

tasks. Adding to these observations, the other hyperparameters like leakage did not have a
huge effect on the performance. Therefore, other models like deepESN [66] or hybrid models
incorporating other feature extraction methods will be better suited for datasets like ESC50.

In addition to the evaluation of the classical algorithms in table 9.2, Figure 9.8 shows a
comparison between the two CL algorithms. For the iCaRL algorithm, the obtained results
are roughly in parallel with the baseline models for the ESC-10 dataset. Although both knn
and the ESN perform slightly better, iCaRL does not suffer from the large deviation between
train and test performance, hence the algorithm provides better generalization capabilities,
one of the desired features in all machine learning applications. Notably, iCaRL operates in
an open-set scenario in contrast to the knn and ESN models, which learn in batches and have
seen all classes during training. Similarly, GDumb performs inferior to the two baselines
knn and ESN, however, it performs way better than the iCaRL algorithm for the dcase_icub.
This is an interesting result supporting the authors of GDumb who state that for CL learning
a lot of assumptions can be relaxed while still (out)performing other CL algorithms on
benchmarks. Also, the superior performance on a high variance dataset such as dcase_icub
may show that the sampling strategy is better suited here than for the ESC10, where GDumb
clearly performs inferior to iCaRL. However, a large deviation between the train and test
results is noted, which means that the algorithm is potentially prone to overfitting. Finally,
both continual learning strategies fail in their performance for the ESC50 dataset. While
iCaRL does not learn well at all, the behavior of the GDumb algorithm is comparable to the
knn classifier, i.e., it achieves good training results but yields mediocre test performance.
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Figure 9.6 Evaluation of the number of
reservoir neurons in the baseline ESN on the

dcase_icub dataset. While the train
performance increases steadily, the test

performance stagnates at around 400 neurons,
i.e. the reservoir size does not scale with

performance.

Figure 9.7 Example graph from a trial:
Baseline ESN evaluation on the ESC-10
dataset. While the training performance

achieves good performance up to ≥ 80%, the
test performance does not catch up and

increases only for a few percentages even
when doubling the reservoir size.
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Figure 9.8 Performance comparison for iCaRL and GDumb on all datasets (black bars
denote standard deviation). Both algorithms achieve reasonable results comparable to the

baseline models knn and ESN, which highlights the potential of continual learning for
scenarios with open-set classification as in developmental robotic learning. However, we

also observe insufficient performance for the ESC50 dataset, which suggests improvements
on the audio feature extraction and loss functions that balance the knowledge about old and

new classes.
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9.5 Discussion and Future Work

I investigated some shallow models and continual learning algorithms in the context of
environmental sound classification with the aim of applying these models to robots as an
alternative to the deep learning approach. The models are having the advantage of running
in real-time. The results of our experiment showed that both knn classifier and the ESN
produce comparatively good results for the dcase_icub and the ESC10 dataset (using the
standard audio features). Interestingly, both approaches showed a better results for the ESC10
dataset. This is explainable due to the fact that the recorded dataset (dcase_icub) has a high
nose and high variance compared to the clean audio in the ESC10. Both knn and ESN can
be considered “lightweight" as their training and test times are low (in the range of ms)
compared to intensive training involving GPUs for deep learning applications. But even if
the inference time using deep models is reasonable, i.e. applicable in real-time, often the
weights used for testing are space-consuming, which renders the direct application on robotic
platforms with limited storage capacity difficult. Therefore, these results show a promising
direction to further explore those lightweight approaches in the robotic audio domain.

On the other hand, the results showed lower performance using the incremental class
learning approach. This means that the model learns first class 1, then class 2, and so on.
For the ESC10 dataset, the differences between CL and the baseline methods are relatively
small. However, we observed that in CL the model is biased towards some classes more
than others during learning which means that representations from subsequent classes are
learned insufficiently. This might be due to the data itself, as some classes might be difficult
to be recognized in comparison with others. This has been actually pointed out in the dataset
characteristics [188]. or example, a frog makes a unique, natural sound while a blender is
mechanistic and can thus be more easily confused with another technical machine.

For both CL strategies (iCaRL and GDumb ), the performance for the dcase_icub was
lower compared to ESC50. As mentioned before, the main challenge was the high variance
in the recorded dataset which negatively impacted the performance. Analysing the strategies
individually, the GDumb tends to overfit which was observed by the big gap between the
train and test results. This specific result is actually an interesting finding as the authors
introducing GDumb state that relaxing some of the assumptions in CL training (e.g. sequence
order) do not change performance.

All the methods except VGGish were not successful when the ESC50 dataset was applied.
The performance was better than the random guessing (e.g., 29.2% vs. 2% chance for
knn), which shows a training trend but it is clearly shown in the results that the baseline
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approaches and the CL algorithms do not scale up with a large number of classes. Continual
learning has been successfully applied to image classification tasks including CIFAR-100
comprising 100 classes but less is known for large-scale applications for audio data. Until
now, more processing steps need to be incorporated for larger datasets as also shown by
[61], who highlighted that superior performance for ESC50 is achieved by the L3 and
SoundNet architectures or using pre-training [85]. The reliable feature representation is still
an open question in audio engineering as mentioned by [236]. Using data augmentation
[180] methods can also boost performance and we believe that at least the augmentation,
possibly coupled with self-supervised learning, is the next important future step building
upon our study. Further, more in deep analysis on the regularization and the effect of memory
buffer may give us more understanding of the incremental behavior of learning knowledge
while retaining the "old" knowledge. In a similar way, ESNs are not capable to be applied to
large datasets as we show that when upscaling the number of classes the performance drops.
Therefore, we suggest applying architectural variants that are likely able to classify larger
audio corpora like deepESN [66].

Our results don’t have a competition with the state-of-the-art deep learning results.
However, our study shows alternative directions (ESN models and CL algorithms). These
directions are computational schemes for robot audition that need a real-time response
without the use of high computational power (GPUs). The trade-off here can be acceptable.
Our findings have an important role in the direction of developmental robotics research. they
advance further research directions into developmental learning in robots, where reservoir-
based approaches like ESN and continual learning are underrepresented [100, 132], especially
in the audio domain.

Further, we would like to apply continual learning algorithms in a real scenario (on the
robot) and also embed them in our architecture. As we have shown for the dcase_icub data,
audio models need to capture high signal variances due to possible noise corruptions and
the introduction of high-frequency components induced by the robotic hardware (e.g. the
fan). Even for a small-scale classification task, we show how these issues negatively the
performance even for the VGGish network. Therefore, we see the potential to improve
the audio preprocessing pipeline by, e.g., adding denoising autoencoders, which are fast to
train in an unsupervised fashion and thus simple to integrate. Concurrently to the practical
application of CL, we will analyze further the relaxation of CL assumptions [192] to develop
novel strategies to facilitate their deployment in robotic audio scenarios.
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9.6 Conclusion

Deep learning models are considered state-of-the-art in many technologies including auditory
and visual solutions. However, they do not fit well with human-robot interaction. This is
mainly due to the limited availability of data, the computational capacity of robotics, and also
unlabeled data. This chapter explained the research conducted to tackle these drawbacks by
exploring alternative learning methodologies for audio classification in robotics, specifically
shallow models and continuous learning. In this research, we used three different datasets
(one is recorded from the microphones of the robot, and two benchmark datasets). The
results suggested that the proposed methodologies might have the potential of reaching good
performances. The explored methods are less complex and easier to train. Additionally, this
research directly impacts the developmental robotic applications that use open-set audio
learning. Further development is necessary for big datasets.



Part V

Conclusion



Chapter 10

Summary and Discussion

A hard beginning maketh a good ending.

John Heywood

10.1 Thesis Overview

Robotics are now integrated into human life in various applications. This includes manu-
facturing, healthcare, education, transportation, and many other domains. In recent years,
technological enhancements took the mechanical body and control systems to the required
sufficient levels. The real challenge in robotics is now mainly in the cognitive development
of robotic agents. For the applications that engage interactions with human partners, the
challenge even becomes more complex because it adds the social cognitive components to
the requirement.

One of the essential aspects of social interactions is shared perception. Shared perception
is the process of understanding a shared context by processing both the environmental cues
and the social partner/s states. This process mutually affects the perception of each of the
observers. Additionally, it has a direct impact on successful collaborations and teamwork.

In the robotics field, shared perception is often studied from the human side (How the
robot changes the perception of the human), or some related skills to share perception
(Perspective Taking, gaze understanding, and gaze following). However, endowing the robot
with shared perception skills would be the gate to effective collaborations between the robot
and the human.
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Firstly, We drew general five main skill categories that are required for the robots to
endow the robot with perception capabilities that can be shared with social partners. These
skills are indeed interconnected and very general. They are listed as follows:

• Having a common representation

• Expressing Effective Communication

• Spatiotemporal Coordination

• Affective modulation mechanism

• Understanding the other

From the cognitive point of view, these skills are in different levels of abstraction and
complexity. Additionally, some of them are dependent on each other.

Following the formation of the overall picture of the required skills, my research focuses
on building cognitive architectures that are related to the first three skill categories. This
selection of these three categories is due to the approach we decided on and the level of
complexity the required skill. The approach we decided in has Our approach has four
main characteristics Biological Inspiration., Audio Visual (Multimodality), Generalized
Settings, and Attention Based. The biologically inspired model gives the advantage of
having a human-like approach which might lead to a better understanding of the biological
process and also better socially interactive scenarios. The multi-modality in our approach
is targeted as it is a well-known challenge in cognitive architecture and different robotic
applications. The same motive is also applied to the generalization point. Finally, we started
with attention and based it on it as it is one of the first steps in perception.

Following this approach, I formed the research questions to target different skills within
the first three defined categories. The choice of these skills was purely based on their
cognitive complexity and level of abstraction as well as our research approach. These
skills are as Having a common representation which is important to automatically achieve
an understanding of the human partner that leads to effective collaboration, Expressing
Effective Communication which allows the partner to interpret the behavior of the robot
correctly, and Spatiotemporal Coordination which ensures the coordination in time and
space while interacting with the environment which is a crucial aspect in collaboration. The
addressed skills in each category are as the following:

• Having a common representation:
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– Common Attentional Representation

– Common Environmental Representation

– Common Proactive Behavior

• Expressing Effective Communication:

– Effective Gaze and Pointing

• Spatiotemporal Coordination:

– Coordination Attentional Timing

– High-level Action Coordination

These skills were framed in three research questions. In trying to answer these research
questions, I have developed different cognitive architectures that are based on state-of-the-art
audio and visual attention models. The development of the architecture is generally in two
stages. The first stage targeted audio-visual joint attention and the second stage targeted
building an active generic architecture for human-like audio-visual perception. During the
development of the architectures, auditory processing was the main bottleneck of the process
in terms of time and accuracy. Therefore, I did some research work on how to tackle this
issue and proposed alternative development pathways. In the following part, I will draw a
conclusion about each of the stages and what are the main conceptual outcomes.

10.1.1 Audio-Visual Joint Attention For Human-Robot Interaction

The first stage of the thesis answered the first research question RQ1: How can we integrate

state-of-the-art vision and audio models to allow the robot to jointly attend to the environment

with a human partner? Is the behavior of the robot effectively received by the human partner?

and What is the mutual influence between the robot and the human partner during the

interaction using this architecture? . I developed a memory-based audio-visual integrated
attention architecture that does have the same attentional characteristics as humans. Further,
I tested the mutual influence during an attentional task jointly between the robot and a human
partner. The gaze and pointing behavior were effectively perceived by the human partner.
Additionally, the robot’s behavior influenced the gaze of the human partner.
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The response of the robot using the proposed architecture was fairly comparable to
the visual stimulus. But much slower than the human when responding to auditory-only
stimulation. Additionally, the accuracy of the robot’s decision was affected negatively by
spatial congruency between the vision and audio. In the second stage of the thesis, the focus
was on the robot’s perception perspective and improving its integration capabilities.

10.1.2 Active Generic Architecture of Audio-visual Perception

In this stage, another biologically inspired multi-sensory perception architecture was pro-
posed, build, and tested. The architecture is based on the attention architecture proposed
in the first stage of the thesis but modifies the multi-sensory integration procedure, and
adds more components to the architecture. This version of the architecture adopts the dual
pathways (what and where) for both visual and auditory streams, a multi-sensory bayesian
hierarchical inference process that takes into consideration the prior perceived experiences.
The priors are stored in different kinds of short-term and long-term memory to serve the
inference and the association processing. Further, a sub-part of the architecture was used to
examine the active behavior of the robot to improve perception or more specifically audio
localization. This was to show how common proactive behaviours can be implemented
using the proposed architecture. Further, I applied the architecture in two other robots rather
than iCub which are Pepper, and the Beast. Additionally, we applied the architecture in a
real-world scenario to do multisensory coordination between the Beast and a drone in Tiptree
(a vertical strawberry farm in the UK). The applied architecture in the real world closed the
full circle between high-level action planning, low-level perception, and decision-making
processes. This stage targeted answering the second and the third research questions.

RQ2: How can this integrated audio-visual attention architecture be used by the robot to

understand a complex audio-visual environment? How can uncertainty be handled? How

can the robot actively perceive the environment?

RQ3: Can this perception architecture be generalized to different robots and applied to a

complex task that requires coordination with another agent?

10.1.3 Alternative Auditory Development Pathways

The auditory processing was always the bottleneck of the whole architecture due to its
complexity and the high noise-to-signal ratio. Therefore, the last part of the thesis was
targeting the improvements in the auditory system. These improvements were generally
done in two directions. Firstly, an alternative developmental pipeline for sound source
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localization. Secondly, alternative approaches for auditory classification (rather than Deep
learning models) that are suitable for robotics environments. We suggest in the alternative
pipeline the Head-Related Transfer functions (HRTFs) of the robot to train different models.
The pipeline goes by firstly measuring the HRTFs of the robot, following this by rendering
spatial auditory datasets, and finally training different machine learning models to the
required task. We applied this pipeline to create a model for single-speaker localization and
exceeded the state-of-the-art performance. This pipeline is tackling different challenges in
robot audition. The second part of this stage was exploring different shallow models and
continuous learning for environmental sound classification. The motive of this work was
due to the current deep learning models that are commonly used in audio processing) do not
really fit the robotics application because of the high processing power and size of the model.
So, I explored different techniques to develop auditory classification technologies that fit
human-robot interaction scenarios.

10.2 The Novelty and Contribution

This research is framing the cognitive architecture development for shared perception in
robotics. The contribution of this research is can be framed as the following:

• The theoretical developmental requirements for human-robot shared perception.
This point has been illustrated in the introduction part of the thesis. The requirements
are the five skill categories that the robot requires to enable shared perception mutually
between the robot and the human.

• The memory-based time variant decision-making strategy for audio-visual atten-
tion Although there has been audio-visual architecture for attention, our architecture
has a novel biologically inspired decision-making strategy for attentional decision-
making.

• The experimental evaluation of the audio-visual cognitive architecture We tried to
address the mutual influence between the robot (while using the attention architecture)
and the human participants in an attentional task that they are jointly doing. This has
not been addressed before for the existing architectures.

• The generic proactive audio-visual architecture for perception. We designed,
implemented, and applied on three different robots and a real-world use case an
audio-visual perception cognitive architecture. Unlike the existing architectures and
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systems, this architecture is not task-specified. It can be applied to various tasks and
applications. The architecture also addressed cross-modal interaction which has been
ignored in most of the existing architectures. It is also addressing the integration of
the priors in different perceptual levels, the proactive behavior to improve perception,
and the high-level task coordination and execution. Finally, The implementation of the
architecture was designed to be modular and scalable for future development towards
the ultimate goal (human-robot shared perception).

• Alternative auditory pathways I did research on how to solve current challenges in
robot audition by proposing two novel pipelines. The first one is for localization and the
second one is for classification, which are the dual pathways of audio in the architecture.
The first pipeline will directly help the iCub community in deploying new auditory
solutions in their groups. With the second audio developmental direction, I scratched
the surface of trying different modalities and showed that alternative methodologies
need to be discovered more as they might be sufficient in robotic applications.

10.3 Future Work

In this section, we suggest future work and the use of our research. There are three possible
directions of development for this research as the following:

• Integrating other cognitive components and skills. We focused on some skills within
three categories out of five required categories in shared perception. Integrating other
cognitive components to facilitate other skills will take the robot one more step further
for effective collaborations. Perspective-taking, gaze understanding, ad gaze estimation
are some skills that are already been studied. So they might be a good start to see how
they can be integrated into the architecture.

• Improving the individual modalities. In the architecture, we used simplified models.
For example, we used color segmentation as what pathway in vision. However, more
complex models can be used to extract more information such as shapes or object
recognition, or even more abstract representations for the objects as embedding or
other features. This goes the same for the memory and audio. Another possibility at
the sensing level is using the latest technologies in sensing the environment through
neuromorphic sensing.
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• Simulating human perception and impairment. One useful application and area of
future development is simulating human perception with the aim of testing cognitive
theories and hypotheses or developing new educational technological tools. Addition-
ally, using the architecture to simulate impairments can help in understanding and then
designing effective prevention, treatment, and adaptation technologies.

10.4 Publications

• Workshop Paper Eldardeer, O., G. Sandini, and F. Rea. "A Biological Inspired
Cognitive Model of Multi-sensory Joint Attention in Human-Robot Collaborative
Tasks, AVHRC workshop, ROMAN 2020"

• Workshop Paper Eldardeer, Omar, et al. "Auditory Perception for Interactive Robots:
a Cognitive Framework to Include Motor Commands and Working Memory in the
Process of Auditory Sound Localization, Sound in HRI workshop, HRI 2021"

• Journal Paper Eldardeer, Omar, et al. "A Biological Inspired Cognitive Framework
for Memory-Based Multi-Sensory Joint Attention in Human-Robot Interactive Tasks."
Frontiers in Neurorobotics (2021): 133.

• Submitted Manuscript Eldardeer et al. "When Deep is not Enough: Understand-
ing of Shallow and Continual Learning Models in Realistic Environmental Sound
Classification for Robots" International Journal of Humanoid Robotics.

• To be submitted (Targeting Journal Paper) From attention to long-term memory, a
general multimodal cognitive architecture for robotic life-long perception.

• To be submitted (Targeting Journal Paper) Biologically Inspired Auditory-Visual
Perception framework for Goal-directed coordination between drones and mobile
robots in Smart Farms

• To be submitted (Targeting Conference Paper) Noise robust model for multiple
speakers’ simultaneous identification and localization for robots

• To be submitted (Targeting Conference Paper) Towards A Human-Like Shared
Perception in Robotics: a Developmental Road Map
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Epilogue
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Reaching this point in the thesis, firstly, I would like to express my gratitude for your
time and efforts in reading my thesis. Then I seize this opportunity to share my thoughts,
lessons, and experiences throughout my journey.

Indeed the journey was not easy. There were many challenges in different dimensions to
overcome. Socially being away from my family and friends and doing this research work
in a country that holds a different culture, language, and individual interests, scientifically
coming from a different background that is far from cognitive studies, and mentally, in the
period of COVID-19.

Science has an effective value in my personal beliefs. It is a shared language that brings
individuals from all over the world together. This belief is what drives my passion for
scientific research, as I feel responsible for doing my best to make a positive impact on
society and individuals worldwide. I firmly believe that science is not just an academic
pursuit, but a tool for building peaceful and inclusive communities.

Having this thought in my mind was the main supporting element to overcome all the
challenges. This is also the reason that I am committed to volunteering and giving back to
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society. I am currently serving as the public relations team leader for Egypt Scholar Inc., an
NGO that supports scientific communities in Egypt and the Arabic world. This volunteering
experience has allowed me to further develop my leadership skills while contributing to a
cause that I am deeply passionate about. Ultimately, my goal as a scientist and a volunteer is
to create a world in which everyone has the opportunity to thrive and succeed without any
discrimination.

Family, friends, and colleagues provided me with invaluable sources of support and
encouragement. They offered a listening ear, a backbone to stand on, inspiration, and
practical assistance when needed. I am always grateful to all of them, words are incapable of
thanking them enough. I feel truly blessed to have you all in my life. THANK YOU ALL.

I hope reading this thesis was a pleasant experience for you. I also wish that this thesis
contributes to creating a positive impact in the field, inspires other researchers and students,
and be my first step toward better achievements.
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