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Abstract 

 
  In everyday life, we are frequently exposed to different smart technologies. From our 

smartphones to avatars in computer games, and soon perhaps humanoid robots, we are surrounded 

by artificial agents created to interact with us. Already during the design phase of an artificial agent, 

engineers often endow it with functions aimed to promote the interaction and engagement with it, 

ranging from its “communicative” abilities to the movements it produces. Still, whether an artificial 

agent that can behave like a human could boost the spontaneity and naturalness of interaction is still 

an open question. Even during the interaction with conspecifics, humans rely partially on motion cues 

when they need to infer the mental states underpinning behavior. Similar processes may be activated 

during the interaction with embodied artificial agents, such as humanoid robots. At the same time, a 

humanoid robot that can faithfully reproduce human-like behavior may undermine the interaction, 

causing a shift in attribution: from being endearing to being uncanny. Furthermore, it is still not clear 

whether individual biases and prior knowledge related to artificial agents can override perceptual 

evidence of human-like traits.  

A relatively new area of research emerged in the context of investigating individuals’ 

reactions towards robots, widely referred to as Human-Robot Interaction (HRI). HRI is a 

multidisciplinary community that comprises psychologists, neuroscientists, philosophers as well as 

roboticists, and engineers. However, HRI research has been often based on explicit measures (i.e. 

self-report questionnaires, a-posteriori interviews), while more implicit social cognitive processes 

that are elicited during the interaction with artificial agents took second place behind more qualitative 

and anecdotal results. The present work aims to demonstrate the usefulness of combining the 

systematic approach of cognitive neuroscience with HRI paradigms to further investigate social 

cognition processes evoked by artificial agents.  

Thus, this thesis aimed at exploring human sensitivity to anthropomorphic characteristics of 

a humanoid robot's (i.e. iCub robot) behavior, based on motion cues, under different conditions of 

prior knowledge. To meet this aim, we manipulated the human-likeness of the behaviors displayed 

by the robot and the explicitness of instructions provided to the participants, in both screen-based and 

real-time interaction scenarios. Furthermore, we explored some of the individual differences that 

affect general attitudes towards robots, and the attribution of human-likeness consequently. 
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SECTION I - INTRODUCTION1 

  

                                                 
1 Part of this section has been published as Ghiglino, D., & Wykowska, A. (2020). When robots (pretend to) think. In Artificial Intelligence (pp. 49-

74). Mentis. 
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1.1 Mental activity and mindreading 

 

Mental activity is a fascinating mystery that humans have tried to unveil since the very beginning of 

philosophy. According to the Cambridge dictionary the verb “to think” refers to activities such as “to 

consider”, “to meditate”, “to remember”, “to wish”, “to desire” or “to intend”. There is one common 

feature that links all these verbs: reference to the content, the direction toward an object (Brentano, 

1874), or the feature of “aboutness” (Burgos, 2007; Millikan, 1984) – something that has been 

highlighted by philosophers, as the key feature of mental states (Brentano, 1874), reflected in 

language structures of “propositional attitudes” (Russell, 1905) inherently containing “aboutness” (I 

believe that… I worry that…I hope that…). According to Searle (1980), what differentiates a natural 

human thought from a computer program can be illustrated by the famous “Chinese room” thought 

experiment:  although a computer might be able to perfectly operate on the syntax and symbols of a 

language, it will not understand the meaning, the “aboutness” related to all mental processes of 

humans. 

  In terms of etymology, in languages originated from Latin, the verb “to think” is derived from 

“pensum”, which used to be the quantity of wool assigned to the weavers in Roman times. It described 

a simple material, which could be transformed into something complex through work and dedication. 

Whereas for Latins the activity of thinking was connected with practical and manual activities, 

ancient Greeks had already developed and entrenched the concept of “νοῦς” (noûs), which referred 

to the intellectual perception of reality from the “thinker” perspective. Since Anaxagoras, 

philosophers, psychologists, neuroscientists, and researchers tried to explain what it means “to think” 

and what are the underpinning mechanisms involved in such an activity. Reviewing theories of 

thinking is beyond the aims of this chapter, but it is interesting to point out that after more than two 

thousand years, the debate on the materialistic or abstract nature of thinking is still heated. According 

to neuroscientific accounts, the activity of thinking is considered to be the result of the elaboration of 

information collected by our sensory system. Therefore, from a biological point of view, the mind 

itself can be treated as a result of brain activity, which can be explained in terms of electrochemical 

signals. On the other hand, certain philosophical perspectives postulate that this explanation seems to 

be too reductive. Various degrees of mind-body dualism or non-reductionism have been proposed 

since Descartes.  Fodor, for example, pointed out that it is impossible to infer high-level properties 

exhibited by a system just from knowing lower-level properties (Fodor, 1975). Similarly, Putnam 

claims that micro-properties of molecules or atoms are not sufficient to explain macro-properties of 

a behavior (Putnam, 1975). The debate about what constitutes thinking and whether the mind is 
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reducible to brain activity continues to be extremely prominent in the philosophy of mind, but it is 

outside the scope of this chapter. 

 Despite the lack of agreement about the nature of thinking, attribution of thoughts to others 

has undeniably practical consequences in everyday life. When we are interacting with others, we 

probably do not ponder over the etymology or the meaning of the concept of “thinking”, but we still 

formulate hypotheses, predictions, expectations, and, more broadly, representations of the others’ 

goals, desires, and intentions, and behaviors following from those. We “think” spontaneously about 

others’ and our own mental states. In order to survive in the complexity of the world we are living, 

our species phylogenetically developed flexible strategies of understanding others’ thoughts, 

strategies that adapt to the situation that is being experienced at a given moment and/or to the 

interaction partner.  In the last fifty years, growing interest in social cognition led researchers to 

investigate new questions related to the attribution of thoughts to others. Social cognition refers to 

the cognitive processes that underlie social interactions, including perceiving, interpreting, and 

generating responses to intentions, disposition, and behaviors of others (Green, Horan, 2010). The 

ability to infer and predict intentions, thoughts, desires, intuitions, behavioral reactions, plans, and 

beliefs of other people is a crucial facet of social cognition (Frith, Frith, 2012) and is often referred 

to as “mindreading” or “mentalization”. Mindreading is a concept developed to describe the process 

of understanding or predicting other people’s behaviors in terms of their thoughts, feelings, wishes, 

beliefs, or desires.  It represents all the processes that allow us to understand behavior in terms of 

underpinning internal states and making behavior meaningful (Fonagy, 2018). This ability enables 

individuals to assess or understand other’s mental states in a specific situation and, thus, to interpret 

and anticipate their behaviors (Bèrubè, 2013).  

Mindreading is activated through the attribution of mental states to others, which may differ from 

one’s own (Korkmaz, 2011; Sabbagh, 2004). Some authors postulated that such ability is driven by 

innate neural mechanisms dedicated to mental state reasoning (Fodor, 1983; Sholl, Leslie, 1999; 

Karmiloff-Smith et al., 1995). Other authors claimed that that reasoning about others’ mental states 

requires the capability to empathize with someone else, and that this depends on personal experience 

(Lillard, Kavanaugh, 2014; Taylor, Carlson, 1997). The study of these mechanisms constantly 

requires a revision of models at multiple levels, which are valuable as far as each captures different 

phenomena, and no single level can be eliminated (Schaafsma et al., 2015). Despite the differences 

in such models, the ability to read another agent’s mind seems to be recruited every time we predict 

the behavior of other agents. This requires tracking and representing: (1) the agent that displays the 

behavior, (2) particular bits of information from the environment that surrounds the agent, and (3) the 
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relation between the two (based on cues relevant to the mental state of the agent) (Baron-Cohen, 

2013). Then, we use those representations to predict and/or interpret the action(s) of the agent. It is 

now widely recognized that mindreading presents universal features and its pattern of development 

in humans is remarkably similar across different cultures. For example, it has been shown that 

understanding false belief emerges in children of the Baka, a preliterate tribe in Cameroon (Avis and 

Harris, 1991), at a similar age to children living in the Western world. A meta-analysis of children’s 

false belief studies provides parallel developmental trajectories of mindreading abilities in Chinese 

and North American children, coupled with differences of approximately two years in acquisition 

timing across communities (Liu et al., 2008). These data support the idea that mindreading abilities 

constitute a human “universal”. However, specific, experiential factors (i.e. peculiar educational 

practices, social habits) may impact temporal aspects of this ability (Brüne & Brüne-Cohrs, 2006).  

According to some anthropologists, primitive forms of mindreading abilities can be retraced in other 

mammals. Jolly and Humphery, in 1966 and 1976,theorized one of the best-known evolutionary 

hypotheses for mindreading (i.e. “Machiavellian intelligence hypothesis”) according to which: "the 

social environment might have been a significant selective pressure for primate intelligence" (see 

Byrne & Whiten, 1997). Primates show a “surplus” of intelligence that overcomes the immediate 

survival needs, like eating, avoiding predators, feeding offspring, etc. According to the Machiavellian 

intelligence hypothesis, this surplus intelligence should be advantageous for social manipulation, 

deception, and cooperation (Speber, 2002). This suggests a slightly independent evolutionary history 

of mindreading abilities from that of language.  

Notably, more recent computational models of mindreading and language suggest a strong co-

evolution of such abilities. If, from one side, language relies on mindreading for recognizing 

communicative intentions, mindreading abilities profit from language in turn, for expressing mental 

states explicitly, and for transmitting the knowledge of such mental states to others. Given this 

interdependence, it has been hypothesized that language and mindreading have co-evolved, due to 

the social pressure characterizing most mammals’ environment (Kapron-king, Kirby, & Woensdregt, 

M, 2020). Indeed, primates are essentially social animals, and group living certainly confers adaptive 

advantages on the individual such as better protection from predation and food sharing (Alexander, 

1987). On the other hand, group living incurs the cost of directly competing for resources and sexual 

partners. This situation may have created specific selective pressures in primates to evolve ‘social 

intelligence’ (Whiten, 2000). Crucial in the context of primate group living with strong mutual 

dependency and complex interactions is the ability of individuals to identify others who cooperate 

and, even more importantly, who try to defect (Brune, 2006). That is, if an individual trusts that 
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cooperation will be reciprocated, cheating could be an even more successful strategy for another 

subject. Thus, to counteract cheating one must be able to detect deception (Trivers, 1971). Premack 

and Woodruff (1978), studying chimpanzee social abilities, inferred that an agent display 

mindreading abilities every time it imputes mental states to himself and others. A system of inferences 

of this kind is properly viewed as a theory (aka “Theory of Mind”, ToM), because such states are not 

directly observable, but used to make predictions about the behavior of others.  

Nowadays, this evolutionary mindreading model appears to be limited (Martin, 2016), 

especially because it does not give any clues about the nature of the construct. In 1978, Dennett 

suggested the use of “false-belief” tasks to study the mechanisms underlying mindreading. 

Developmental psychologists rapidly adopted mindreading models to explain the acquisition of a 

‘mental perspective’ in children (Wimmer and Perner, 1983). Some authors hypothesized that the 

capacity to understand that others can hold beliefs that might differ from one’s own is acquired at age 

5–6 years (Perner and Wimmer, 1985). This acquisition includes the capacity to distinguish between 

mental and physical objects, interpret the gaze of others, and understand their mental states, desires, 

and intentions. More recent studies showed that precursors of these abilities may be acquired around 

2-3 years (e.g. Perner, 2001). According to Goldman (1992), pretense and pretend could be 

considered as key factors for the development of such skills, and provide useful insights to the 

neuropsychological approach to mindreading. Indeed, pretense and pretend plays enable the infant to 

decouple and construct secondary representations, and has been renamed as ‘meta-representation’ 

(Leslie, 1987). From a neuropsychological perspective, the brain may possess a “mind-reading” 

system, composed of an “Intentionality Detector” (ID), an “Eye Direction Detector” (EDD), and a 

“Shared Attention Mechanism” (Baron-Cohen, 1995). The ID is proposed to be a perceptual device 

that interprets ‘primitive volitional’ mental states such as goals and desires (i.e. “the agent wants”). 

These are seen as basic mental states required for making basic sense of the movements of all 

organisms in the environment (Goldman, 2006). The second innate mechanism (EDD) has three basic 

functions of detecting the presence of eye-like stimuli, computing whether eyes are directed towards 

it or towards another direction, and inferring from the observation that the organism’s eyes are 

directed at something else that it actually sees something (Macrae, 2002). Finally, the SAM is 

considered to be a higher-order skill that allows the individual to form what is called ‘triadic 

representation’ (Langavant, 2011). Triadic representations conceptualize relations between an Agent, 

the Self, and an Object (which can be another agent). The SAM builds triadic representations by 

perceiving the perceptual state of another agent and computes shared attention by comparing another 

agent’s perceptual state with the self’s current perceptual state (Nader-Grosbois, 2011). These claims 
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go well beyond the tepid functional proposal made by Premack and Woodruff (1978). Problems that 

before 1978 would have been deemed as falling under categories such as metacognition, attribution 

theory or “Piagetian” developmental studies are now being called “mindreading research” (Flavell 

and Miller, 1998: 853); even putative deficits in mindreading have become an explanatory concept 

for autism, schizophrenia, and related disorders (Baron-Cohen, Leslie and Frith, 1985; Frith and Frith, 

2003).  

 

1.2 Ascribing a “mind” to artificial agents 

 

1.2.1 The intentional stance and mindreading  

 

The advent of new technologies - seemingly smart artificial agents, such as Apple’s Siri, 

Amazon’s Alexa or Google Home assistant is giving researchers new tools to test mindreading 

models, pushing the cognitive flexibility of the human social brain from the natural domain to towards 

the artificial.  Such technologies seem to display a certain degree of “artificial thinking” that 

resembles (but only to a very limited extent) human thought. But do artificial agents lead people to 

treat them like “thoughtful” agents? Artificial intelligence that these agents seem to display might 

enhance humans’ tendency to anthropomorphize agents for which they lack specific knowledge and, 

as a cascade effect, this might lead towards maindreading. Whether it is possible, or desirable, to 

attribute mental states toward artificial agents is still an open question. However, addressing this point 

is important not only for theoretical purposes but also for practical and ethical consideration about 

the design and development of social artificial agents.Already in the seventies, Dennett proposed an 

account addressing how humans understand and predict the behavior of various systems (Dennett, 

1971). The author postulated the existence of different strategies, called stances. According to 

Dennett, when we are interacting with inert objects, such as a leaf falling from a tree, we explain the 

behavior we might see in terms of physical laws. A leaf falling to the ground is just an effect of the 

gravity pull. Thus, we adopt the physical stance to understand the behavior of a physical system and 

predict its consequences. The very same model can be applied to a ball rolling down the street, whose 

behavior is explained in terms of acceleration, gravity pull, attrition, etc. However, when the object 

we are perceiving is a complex artifact, such as an airplane landing at the airfield or a car moving 

through a street, relying on physical information might not be an efficient (or accessible) strategy to 

explain and predict the behavior we are observing. To predict efficiently the behavior displayed by 

such complex entities we might need to rely on their functionality and design, using what Dennett 
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calls the design stance. The fact that a car is moving is not explicable just in terms of inertial motion, 

but it becomes clearer as we start thinking about the design of the motor or the brake. When we are 

interacting with very complex agents, such as humans, neither the physical nor the design stance can 

provide an efficient model of explanation. For example, if a person talking to us and repetitively 

moves her head in the direction of a clock, neither the physical proprieties of the agent nor the 

anatomy underpinning the neck movement might be a reliable source of information to make efficient 

predictions regarding the person’s behavior.  In the depicted scenario, the behavior displayed by the 

agent might be due to her boredom or her intention to leave us as soon as possible. Therefore, to 

understand and predict her behavior, we need to include in our model a representation of the agent's 

internal states, adopting what Dennett calls intentional stance. Adopting the intentional stance means 

to treat the acting agent as an intentional being, who is aware of their behavior and who acts to 

maximize the likelihood of achieving a pre-set goal. In other words, adopting this attitude allows us 

to treat the behavior as a consequence of a mental act, which is directed toward an object. Here, the 

terms “intentionality” is related to Brentano’s conceptualization, since adopting an intentional stance 

implies the understanding of an immanent interconnection between mental phenomena and objective 

contents towards which the phenomena are directed (the “aboutness”) (see Mayer-Hillebrand, 1951; 

Jacquette, 1991).  It is important to point out that the adoption of such strategies does not necessarily 

imply the ascription of a mind to the perceived agent. For example, when we are interacting with 

agents that display artificial intelligence, the most efficient way to interact with them might be the 

adoption of the intentional stance. When we need to ask our smart assistant about the weather 

condition or the latest news, the easiest way to communicate our request is to treat it as if it was an 

intentional being. This does not imply that we represent it as a “true believer” (Dennett, 1981), 

equipped with mental states. The intentional stance seem to be adopted by default when interacting 

with other humans, but it might allow individuals to deal with unknown entities as well, or with 

artifacts whose behavior is ambiguous or impregnable. This tendency to attribute intentionality 

towards unknown entities might depend on the natural tendency humans have to attribute 

anthropomorphic traits towards entities for which they lack a specific knowledge. Indeed, the 

adoption of these three stances depends on the knowledge, the experience, and the representation that 

humans build around the acting agent. This means that when such knowledge and representation 

changes, also the strategy we are adopting toward the agent might change. This flexibility is essential 

since our cognitive system needs to constantly deal with an overwhelming amount of information 

coming from the environment, relying on a limited pool of resources. Therefore, when a certain 

explanation model is inefficient, resources need to be allocated toward another model that can grant 
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rapid adaptation of the entire system. On the other hand, when a simpler and less cognitively 

demanding model is efficient to explain and predict an agent’s behavior, resources shall be shifted 

toward this latter model.  

Therefore, we can define the “intentional stance” as the disposition to treat an entity as a 

rational agent, possessing mental states, which can be used to interpret and predict the behavior it 

displays (Frith & Frith, 2006). In this sense, the intentional stance can be considered a crucial 

component of mindreading. Indeed, mindreading is an extremely complex cognitive function that 

refers to the entire process of ascribing and reasoning about an agent’s mental states. Dennett himself, 

in 1987,  described the intentional stance as follows: “Here is how it works: first you decide to treat 

the object whose behavior is to be predicted as a rational agent; then you figure out what beliefs that 

agent ought to have, given its place in the world and its purpose. Then you figure out what desires it 

ought to have, on the same considerations, and finally you predict that this rational agent will act to 

further its goals in the light of its beliefs. A little practical reasoning from the chosen set of beliefs 

and desires will in most instances yield a decision about what the agent ought to do; that is what you 

predict the agent will do”. In other words, the behavior of an agent is the principal source of 

information for making attributions about their mental states, but such information is only used in 

this way when we adopt an intentional stance. This implies that the intentional stance could be 

adopted towards any artifact as long as it fulfils the stance’s assumption that it is a “rational” agent. 

Therefore, the main requirement of a system for being treated as intentional is displaying a behavior 

that could be well explained by adopting the intentional stance. This does not necessarily require 

perceiving the system itself to have mental states (Marchesi et al., 2019). Thus, we might even 

consider the intentional stance as one of the key “prerequisites” for mindreading (Abu-Akel et al., 

2020). Specifically, while the intentional stance corresponds to the general attitude that an individual 

takes towards explaining others’ behaviors, mindreading refers to explaining a particular behavior in 

a particular context, with reference to the underpinning mental states. 

 

1.2.2 Empirical approaches to studying intentional stance towards artificial agents 

 

As mentioned above, new technologies provided researchers with new tools to explore in more 

complex interactive scenarios the question of attribution of intentionality to artificial agents. In 

particular, robots are of interest, as they are embodied, thus introducing physical (and potentially 

social) presence in the environment, they can manipulate the environment, thus introducing artificial 

agency. Yet, they still offer excellent experimental control, as they can be programmed to behave in 
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an exactly specified and controlled way. In this context, it is therefore promising to examine whether 

and when humans adopt an intentional stance to robots. 

 Some authors claim that implicit social signals lead humans to perceive automatically an agent 

behavior as the reflection of mental operations (for a review see Frith, Frith, 2008). We speculate that 

designing artificial agents that can closely imitate humans’ behavior, even at the level of implicit 

social signals, would induce humans to perceive them as intentional agents.  Some recent studies 

suggest that the perception of the intentionality of action might be an automatic and immediate 

process. In 2007, Terada et al. investigated whether such an automatic process happens when 

participants are exposed to reactive movements of non-humanoid artificial agents (a chair or a cube 

with wheels). In their experimental setup, participants were observed while they were freely 

interacting with an artificial agent in an empty room. The movement of the artificial agent was 

remotely controlled and could be periodic or reactive. While in the first case, the movement of the 

artificial agent was random, in the reactive condition the movement was happening immediately after 

the movement of a participant. At the end of the interaction, participants were asked to fill 

questionnaires in order to evaluate whether the movement of the agent was perceived as intentional 

or not. Results showed that the physical appearance of the agent (chair vs cube) did not affect the 

attribution of intentionality, while the movement profile (periodic vs reactive) played a significant 

role in such attributions. In their experiment, authors demonstrated that when the behavior of an 

artificial agent is contingent on human behavior, participants tend to evaluate it as goal-directed. In 

their study, the authors claim that enhancing the sense of intentionality perceived toward a robot is 

the key to smoothing communication between these agents and humans. The same authors 

demonstrated in a follow-up experiment (Terada et al., 2008) that other factors might affect 

intentionality attribution toward artificial agents. For example, context and participant’s expectations 

might have an impact on the attribution of intentionality. In line with this, Wiese, Wykowska et al. 

(2012) showed that what mattered in evoking engagement in joint attention with a robot avatar was 

the belief that participants held regarding its agency, rather than the actual physical characteristics of 

the agent. The authors manipulated the instruction that they have given to the participants of their 

study. In one condition, participants were instructed that the robot face they were observing was 

controlled by a human, while in another condition, they received an instruction that it was just a pre-

programmed automaton. Joint attention (measured in the form of gaze cueing effects, Friesen & 

Kingstone, 1998; Driver et al., 1999) was evoked to a larger extent when participants believed the 

robot’s behavior was controlled by a human, relative to the belief that it was only preprogrammed. 

Interestingly, the physical features of the observed avatar were identical across conditions. In a 
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follow-up EEG study (Wykowska, Wiese, et al., 2014), the authors showed that this effect is reflected 

at early stages of attentional processing while Özdem et al. (2017) identified – in an fMRI study – 

neural correlates of such belief manipulation.  

In a recent study, Thellman et al. (2017) asked a large number of people (N=93) with various 

backgrounds to interpret and explain behaviors displayed by two different agents (i.e. a human and a 

humanoid robot) involved in every-day activities (such as cleaning the floor or cooking). Specifically, 

the authors presented to their participants' pictures depicting the two agents doing the same actions 

and proposing, for each scenario, a possible explanation of the behavior. All explanations were 

referring to mental states both when the depicted agent was a robot, and when the depicted agent was 

a human. After observing each scenario, participants were asked to rate the explanation in terms of 

plausibility and to rate the general behavior displayed by the agent in terms of intentionality, 

desirability, and controllability. Results of their experiment showed that there was no difference 

between the two agents in terms of plausibility, intentionality, and desirability ratings between the 

conditions. However, when the behavior was displayed by the human agent, participants evaluated 

that the behavior was controlled by the agents themselves. On the contrary, when the behavior was 

displayed by the artificial agents, the behavior seemed controlled by external causes or was evaluated 

as programmed. Results of this experiment suggest that humans might adopt the intentional stance to 

some extent towards artificial agents as well. Yet, the existence of some differences in ratings 

supports the idea that different strategies are used to interpret artificial agents and human behaviors. 

Recently, Kamide et al. (2015) used the “Anshin” questionnaire to explore the reactions of more than 

nine hundred Japanese participants to videos depicting several robots. They discovered that aspects 

like perceived humanness, proficiency, and comfortability with a robot changed from robot to robot 

and from behavior to behavior. Specifically, they noticed that usually, the more the humanoid 

resembled a human in physical appearance, the higher participants were evaluating the comfort of the 

interaction and the proficiency of behaviors. In some situations, they found that exposure to more 

machine-like robots made humans feel stressed, but their results confirm that attributions towards 

artificial agents can fluctuate according to several factors. It is important to point out, however, that 

both Thellmann and colleagues as well as Kamide and colleagues used pictures or videos as stimuli 

in their experiments. Such “offline” experiments might not be sufficient to capture the social 

mechanisms involved during “live” interactions. In this context, it is crucial to address the question 

of whether behavioral parameters of an observed agent in more “live” naturalistic protocols affect the 

attribution of intentionality. In line with this hypothesis, Weiss and Bartneck (2015) pointed out that 

evaluations of likeability, anthropomorphism, and human-likeness of a robot using their Godspeed 
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questionnaire are dramatically influenced by the interaction with a robot rather than by its physical 

appearance. 

In a recent study, Wykowska et al. (2015) designed two experiments that might help to clarify 

this aspect. In the first experiment, the authors showed their participants a non-humanoid robot 

(mechanical arms attached to a picture depicting the face of a human). Participants were asked to 

observe the behaviors of the robot, trying to identify which one of those behaviors was pre-

programmed and which one was remotely controlled by a confederate located in another room. In a 

second experiment, the same design was adopted, but the artificial agent was a humanoid robot NAO 

(SoftBank Robotics). In addition to the explicit discrimination task, the authors implemented in both 

experiments a visual letter discrimination paradigm, to collect an implicit measure of engagement. 

While participants were observing the behavior of the robot and rating its agency, they were also 

asked to discriminate between two letters (“T” or “F”) appearing on a screen located behind the robot. 

Results of both experiments suggest that humans are quite sensitive in detecting subtle differences 

between movements displayed by an artificial agent. Indeed, participants were able to discriminate 

accurately when a movement was remotely controlled by a confederate and when it was pre-

programmed. Furthermore, this study provides information about the implicit aspects of social 

interaction with artificial agents. The results suggested that when artificial agents show a certain 

degree of anthropomorphism, implicit social processes of engagement (in joint attention, in the case 

of this study) are activated.  

The recruitment of mindreading abilities to understand and predict the behavior displayed by 

an artificial agent seems to be modulated also by the knowledge that individuals possess regarding 

that specific agent. From an anthropological perspective, the limited knowledge our ancestors 

developed around natural phenomena, like the rain or the earthquakes, might be the reason why they 

attributed such phenomena to the “God’s mind”. When knowledge has become more developed and 

accessible, such interpretations have been substituted with physical explanations of the phenomena.  

Thus, it seems that when we are interacting or observing the behavior of an unknown (or not 

understandable) entity or phenomenon, we refer to the intentional model, as this might be the most 

available and default model that we possess. In fact, we are probably most experienced with 

intentional explanations, rather than scientific or technical explanations of various systems we 

observe in the environment. However, when our knowledge about an entity changes, the strategy we 

adopt to understand its behaviors changes as well. Similar reasoning can be applied to robots: if a 

person with no formal education who had never seen a robot before is exposed to a human-like robot, 

s/he might be more likely to adopt the default intentional stance towards the robot, as compared to a 
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person who is experienced with robotics, or has acquired sufficient level of general education (physics 

and engineering included). This suggests that it is important to take into consideration levels of 

education and experience with robots and perhaps also various age groups when testing attitudes 

towards robots.  

Several factors might modulate individuals’ tendency to ascribe a mind towards robots. 

Indeed, in human-human interactions, countless factors affect the way we perceive and understand 

our conspecifics’ behavior, from personality traits to mood (Lopes et al., 2005; Cozolino, 2014). For 

example, it has been widely demonstrated that introverted people show difficulties in communicating 

(Sallinen‐Kuparinen et al., 1991; Schoemaker, Kalverboer 1994) and that people in a depressed mood 

tend to avoid social interaction (Young, Leyton 2002; Erber et al., 1996). Internal dispositions and 

states seem to be strictly connected with the attitude we show during our everyday life interactions. 

Therefore, we can speculate that as it happens for mindreading abilities (Platek et al., 2003; Nichols, 

Stich, 2003), intentional stance might be influenced also by self-awareness and self-reflective 

abilities. Few studies demonstrated that self-processing abilities affect mental state attribution to 

others, and, specifically, that psychiatric populations with deficits in self-awareness show 

impairments in the attribution of mental states to other agents (Williams, 2010; Moriguchi et al., 

2006). Studying whether such influences affect interactions with robots as well might help in the 

development of new explanatory models about human social abilities.  Although human-computer 

interaction (HCI) and human-robot interaction (HRI) studies are focused on designing artificial 

interfaces that can satisfy the needs of humans, understanding the way humans interact with artificial 

agents can also improve our knowledge about human cognition in general. Theories and models of 

human cognition can be tested using such technologies, offering new challenges (Dautenhahn, 2007). 

Cognitive architecture models, for example, are largely used to develop artificial intelligence (Kelley, 

2006; Metta et al., 2010). A case of particular interest might be the humanoid robot iCub, mentioned 

in the studies that we reported in previous sections. Its developers and designers took inspiration from 

models of cognitive architectures and implemented similar functions in the robot (Vernon et al., 

2007). Specifically, the synthetic architecture that is fitted to the iCub is composed of components 

such as a distributed multi-functional perceptual-motor network, a system of inhibitory modulation, 

and a system of action simulation. These systems originated from research and models proposed by 

neuroscientists, such as the presence in the brain of specific networks responsible for action selection 

(Chevalier, Deniau, 1990; Deniau, Chevalier 1985) or models about action simulation (Shanahan, 

2005).  Implementing a robot with such functions help researchers to clarify the ecological validity 

of their models, providing new insights into the functioning of the human brain.   
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1.2.2.1 Impact on Human-Robot Interaction 

 

It is in this context that our theoretical questions about adopting the intentional stance, 

characteristics of robot behavior, or inter-individual differences need to be addressed. One of the most 

interesting questions is whether endowing robots with intentionality is crucial for evoking adoption 

of the intentional stance, or rather whether emulation of human-like behavior is sufficient. This 

question is analogous to the issue of the Turing test (Turing, 1950): Is it possible to produce responses 

in the Turing test that would make participants believe they are interacting with an intelligent agent, 

even though it is just an algorithm? Or rather, is it indispensable to have genuine intelligence in order 

to pass the Turing test. In simple words, is it possible to “fake” intelligence or intentionality thanks 

to very well-designed behavioral characteristics? At present, researchers are still far from developing 

artificial agents that can be perceived as human-like. Although some technologies provided with 

artificial intelligence might be able to pass the Turing test, humans are still fully aware of the 

boundaries between artificial agents and living beings (Kahn et al., 2006). The open question is 

whether it is only a matter of technological advances to “fake” intentionality, or is it in principle 

impossible.  

Evoking the adoption of the intentional stance towards artificial agents might be desirable in 

certain applications. For example, pathological traits, such as autistic traits, severely compromise 

social interaction and a multitude of studies demonstrated that individuals diagnosed with autism 

spectrum disorder (ASD) are often unable to deal with the complexity of human social interaction 

(Wing, Gould, 1979; Frith, 2003; McConnell, 2002). Specifically, children diagnosed with ASD often 

display less interest in behaviors aimed at generating and maintaining social interaction (Vivanti, 

Nuske, 2017). The severity, onset time, and specificity of such deficits captured the attention of 

clinicians and neuroscientists, stimulating the development of innovative evidence-based therapeutic 

approaches (Yates, Couteur, 2016; Fernandez et al., 2018). Recent literature suggests that robots 

might be efficiently used as clinical tools to enhance the social competencies of children affected 

with social impairments (Diehl et al, 2012; Feil-Seifer, Mataric, 2010; Kajopoulos et al., 2015; 

Carlson et al., 2018). Several studies demonstrated that the advantages of using such artificial agents 

rely on their physical appearance and the extensive control that clinicians and scientists can exert on 

their behaviors (Scassellati et al., 2012; Robins et al., 2005; Liu et al., 2008). Robots may represent 

a safe, predictable, and coherent environment to train social interaction skills in people that display 

difficulties in interaction with other humans (Dautenhahn, Werry 2004). It seems that artificial agents 

can significantly improve therapeutic efficiency in patients affected with social impairments. For 
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example, in 2013, Zheng et al. demonstrated that after only four sessions with a specific rehabilitation 

protocol carried out with a robot, children with ASD improve their social skills (Zheng et al., 2013). 

Concerns might be raised about the development of a certain social dependence that the patient can 

develop toward assistive technology. However, some studies demonstrated that learning acquired 

during the activities with robots is automatically transferred to everyday-life activities and interaction 

with other humans (Francois et al., 2009; Robins et al., 2005). We speculate that robot behaviors that 

evoke the adoption of intentional stance shall be even more efficient in training social skills that can 

be then transferred to human interactions. This is because adopting an intentional stance towards 

other humans is a natural process in the social interactions of typically developing individuals. 

Difficulty in effortless adopting of the intentional stance towards others is likely part of the problem 

in social skill deficiencies (Griffin & Dennett, 2008). Therefore, evoking an intentional stance in 

therapies with robots should have beneficial effects for transferring the skills trained with robots to 

interactions with humans. 

Apart from the application of social robots to healthcare, social robots are supposed to have a 

potential application also in elderly care. Robots that are designed for elderly care provide support in 

everyday-life activities (eating, bathing, etc.), mobility, housekeeping, and monitoring the health 

condition of the user. Several researchers focused their attention on consequences caused by the 

introduction of assistive robots (Pollak et al., 2002; Graf et al., 2004) and assistive smart 

environments (Bahadori et al., 2003) in elderly care. Results showed that the introduction of robots 

in elderly care does not only improve the quality of life of people in terms of perceived autonomy but 

also in terms of psychological wellbeing (Broekens et al., 2009; Sharkey, Sharkey 2012). This is 

because such robots can provide social feedback to the user, and can be treated as “companions”. 

Companion robots seem to increase positive mood while reducing the perception of loneliness and 

stress (for a review, see Broekens et al., 2009 and Bemelmans et al., 2012). Results emphasize the 

usefulness of robots that can induce some degree of social attunement. These applications will be 

needed in the near future, considering that the elderly population is constantly increasing, while the 

availability of healthcare professionals is decreasing (WHO, Investing in the health workforce 

enables stronger health systems, in the Fact sheet. 2007: Belgrade, Copenhagen). To maximize the 

efficiency of healthcare professionals, repetitive and frustrating activities can be assigned to assistive 

robots. In parallel, this would allow lower institutionalization of medical care and higher autonomy 

for individuals. Also in the case of elderly care, robots that evoke adoption of intentional stance might 

prove more beneficial than those that not, due to the potential higher degree of bonding.  However, 

some studies pointed out the risks that such social devices might entail. In the last decades, the main 
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application of robots was industry. Recently, however, domestic robots started entering our homes. 

Some authors question the safety granted by new technologies, in terms of producing reliable and 

non-harmful behavior (Denning et al., 2009; Sharkey & Sharkey, 2010), others point out the issues 

related to psychological risks, such as social isolation (Sparrow, 2006; Hampton et al., 2009) or 

addiction to technology (Veruggio, 2005). Finally, one of the most discussed controversial aspects 

related to robots is the issue of privacy. Privacy is an ancient concept, developed by ancient Greeks 

as a distinction between public and private life. Nowadays, privacy is conceived as the possibility of 

controlling one’s data. Recently, privacy management has caught the attention of media and 

legislative authorities. although no robot or artificial intelligence was involved in the 2018 scandal of 

Facebook, Facebook admitted that information of eighty-seven million users was given to Cambridge 

Analytica without their permission. If we think about assistive and domestic robots, one of the 

necessary requirements for them to function adequately in their role is collecting, processing, and 

potentially recording data from users. Some of the commercial house assistants, like google home, 

need to save information gathered during the interaction with the user in the cloud. In the context of 

the intentional stance, perhaps also in this area, if robots induce adoption of the intentional stance, 

they might be more likely to collect more personal or intimate information from the user, relative to 

robots that would be treated only as mechanistic artifacts. This is because humans might be more 

inclined to reveal their intimate information towards agents that are perceived as intentional (to make 

it more evident: we are certainly more likely to confide in another human than in an artifact such as 

a coffee machine). Thus, designing robots that evoke the adoption of the intentional stance in users 

might have consequences for the type of data that is recorded and potentially stored. Companies 

producing robots for daily home use must guarantee privacy protection of such information, to avoid 

third parties accessing those data without the consent of the user. 

In this context, it is crucial to inform users about all the aspects involved in interacting with 

technology. The more we aim to introduce technology in everyday life, the more we need to inform 

users about the potential risks, as well as benefits provided by having access to such tools. Giving as 

much information as possible to users, and educating them on how to use technology would on the 

one hand circumvent certain fears produced often by popular culture (e.g., the fear of robots “taking 

over the world”) and would reduce the unnecessary hype related to AI and robotics that is based on 

misconceptions about what AI is capable of. Some authors, for instance, claimed that assistive robots 

are unethical since their effectiveness depends on deceiving users creating an illusion of 

companionship (Sparrow, 2002; Turkle et al., 2006; Wallach, 2009). However, it is crucial to avoid 

creating illusions and misconceptions related to new technologies. We argue that adopting an 
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intentional stance towards artificial agents might be beneficial in some contexts, and is not necessarily 

something to be afraid of, given how automatic and default this mechanism is (Heider, Simmel, 1944; 

Gray et al., 2007; Wiese, Metta, Wykowska, 2017). However, it is generally important to provide 

sufficient information about robot technologies to all users, to avoid potential risks of misconceptions, 

misuse of private data as well as unnecessary fears related to fantasies created by popular culture. 

Studying the conditions and consequences of implementing human-like behaviors on artificial 

agents that can potentially induce the adoption of intentional stance is fascinating from a theoretical 

perspective, and extremely important for the future of our societies.  From the theoretical perspective, 

it can be informative concerning the mechanisms of human social cognition – how flexible is our 

socio-cognitive system. How far can the human brain go in extending mechanisms of social cognition 

from natural to artificial agents? What consequences does adopting the intentional stance have for 

other (perhaps more implicit) mechanisms of social cognition? Can we develop models of 

intentionality for artificial systems? Is endowing artificial systems with intentionality necessary for 

evoking adoption of intentional stance or is it sufficient to emulate human-like behaviors?  

From the perspective of applications of robots and future societal impact, it is important to discuss 

whether and when treating artificial agents as intentional systems is desirable. It is also important to 

keep in mind that proper information for the end-users regarding the capabilities of the artificial 

systems can avoid misconceptions and hype on the one hand and fears and risks on the other. All 

these issues need to be discussed not only among the scientific community but also with the general 

public. This would allow strengthening people’s awareness about the technology, avoiding misuse 

and misjudgment.  

1.2.2.2 The development of the InStance questionnaire2 

 

In order to address the question of whether humans adopt the intentional stance toward a 

robot, Marchesi et al. recently created a tool (the Intentional Stance Questionnaire, ISQ) that should 

probe the adoption of intentional stance toward a specific robot platform, a humanoid robot (Marchesi 

et al., 2019). The aim of their study was twofold: (1) Developing a tool that would allow for measuring 

whether humans would adopt, in some contexts, the intentional stance toward a robot; (2) Exploring 

if humans would sometimes adopt the intentional stance toward robots. Each item of ISQ consisted 

of pictorial scenarios, depicting the iCub robot interacting with objects and/or humans. Each item 

included two sentences, in addition to the scenario. One of the sentences was always explaining 

                                                 
2 Part of this paragraph was published as Marchesi, S., Ghiglino, D., Ciardo, F., Perez-Osorio, J., Baykara, E., & Wykowska, A. (2019). Do we adopt 

the intentional stance toward humanoid robots?. Frontiers in psychology, 10, 450. 
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iCub’s behavior referring to the design stance (i.e., mechanistic explanation), whereas the other was 

always describing iCub’s behavior referring to mental states (i.e., mentalistic explanation). 

Participants were asked to move the slider towards the sentence that better described the scenario 

according to them. Results of this study indicated that participants showed a slight bias toward the 

mechanistic explanation when they were asked to evaluate robot actions, which is in line with the 

essence of the concept of the intentional stance (Dennett, 1987). The authors speculate that, to 

understand the behavior of a robot, humans are more prone to adopt the design, rather than the 

intentional, stance – and this is in spite of the natural tendency to anthropomorphize unknown entities 

(Epley et al., 2007). However, and interestingly, the design stance descriptions were not always 

chosen by their participants to explain the iCub’s actions. This indicates that participants have (at 

times) also chosen mentalistic explanations of the given scenarios. Therefore, in principle, it might 

be possible to induce adoption of intentional stance toward artificial agents. The likelihood of 

adopting the intentional stance might depend on the context in which the robot is observed, its 

behavioral characteristics (e.g., contingency of its behavior on participant’s behavior, cf. Willemse et 

al., 2018), cultural background (attitude toward humanoid robots is strongly associated with culture 

(for a review see Haring et al., 2014) and also individual differences of participants. Indeed, humans 

possess many types of vocabulary for describing nature of mindless entities, and for describing 

intentional agents, but might lack a way of describing what is between the two (Davidson, 1999). 

This is also in line with Dennett’s proposal (Dennett, 1981) of intentional stance: when we find a 

model that is most efficient to explain a behavior, we take its prototypical explanation, and do not 

necessarily search for explanations that are in the fuzzy zones of in-between models. In each scenario 

of the ISQ questionnaire, the robot was always the same, but the action and the environment/context 

around it changed across conditions, modulating participants’ ratings. However, the ISQ ratings 

became quite polarized once there was a bias toward either the mentalistic or the mechanistic 

explanation. This might be a consequence of a general tendency of people to form discrete categories 

rather than continuous fuzzy concepts (Dietrich and Markman, 2003) but it does also suggest the 

existence of a certain degree of flexibility that allows humans to shift between such categories. Based 

on such results, the authors argue that the adoption of mentalistic or mechanistic models to explain a 

robot’s action do not rely only on intrinsic properties of the agent, but also on contingent factors 

(Waytz et al., 2010) and on the observer’s dispositions (Dennett, 1990), in a similar way as it occurs 

for human-likeness and anthropomorphism (Fink, 2012). The study proposed by Marchesi et al. 

showed that it is possible to induce adoption of the intentional stance toward the iCub robot at times, 

perhaps due to its human-like appearance. However, further research needs to explore what are the 
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exact factors (individual difference, cultural context, specific characteristics of robot appearance or 

behavior) that influence the adoption of intentional stance. 

1.3 Rationale of the project 

 

In short, individuals spontaneously generate representations of other agents’ goals, desires, and 

intentions. This natural tendency enables individuals to understand human behavior in terms of 

underlying mental states, making the behavior meaningful (Fonagy, 2018). However, while 

interacting with artifacts (i.e. computers, smartphones, etc.), humans usually tend to rely more on 

their functionality and design rather than on their intentional states (Dennett, 1971). This hypothesis 

might not hold in the case of complex artificial agents, such as robots, which create the illusion of 

human-likeness, due to their physical appearance and due to the behavior that they can display. 

Indeed, the design of artificial agents able to display human-like behaviors can be fundamental to 

increase the naturalness perceived by the human counterpart during the interaction and, consequently, 

facilitate social attunement. Several characteristics have been identified as crucial to enhance 

engagement during the interaction with artificial agents, and one of these characteristics is variability 

(Gielniak, Liu, & Thomaz, 2013). The advent of complex robotic systems allows researchers to 

implement highly variable human behaviors in artificial agents, to study more in detail on which 

information humans rely the most when evaluating biological motion. Understanding mechanisms of 

human perception of synthetic motion can facilitate, in the future, human-robot interaction (Heider, 

F., & Simmel, 1944). Embedding social robots with human-like behaviors may also lead to the 

adoption of mindreading strategies, and, as a cascade effect, to attune (on a social level) with the 

artificial agent. Studies on biological motion perception demonstrated that motion cues influence 

social attunement towards artificial agents, triggering even empathetic and mindreading processes 

(Miller & Saygin, 2013; Frith & Frith, 1999). However, it is still unclear to what extent it is possible 

to manipulate the perception that humans have toward an artificial agent by manipulating the 

behaviors displayed by the latter. Thus, we designed a series of human-robot interaction scenarios 

aimed at testing the tendency to attribute human-likeness and intentions towards artificial agents. We 

used the humanoid robot iCub (Metta et al., 2008) both in real-time interaction and in screen-based 

experiments. Through the adoption of a systematic approach, we exposed large sets of participants to 

subtle manipulations of the robot’s behavior and tested their reactions using explicit and implicit 

measures, combined with questionnaires assessing their individual differences. Importantly, we based 

the implementation and the manipulation of the robot's behaviors on pre-recorded human behaviors. 
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Such a comprehensive approach to the topic allows for a deeper understanding of the perceptual and 

cognitive processes that are involved during the interaction between humans and artificial agents.  

 The first two studies, reported in Publication I and Publication II, examine individuals’ 

sensitivity to hints of human-likeness displayed by an avatar of the iCub robot and by the same 

embodied robot, respectively. For these two studies, we adopted a self-report questionnaire to assess 

participants’ tendency to attribute anthropomorphic traits and intentions towards artificial agents. In 

the subsequent studies, reported in Publication III and Publication IV, we examined whether hints of 

human-likeness affect individuals’ attentional engagement during the visual processing of the iCub 

robot’s behavior. To this end, we combined self-report questionnaires used in the first two studies 

with implicit measures (i.e. eye-tracking data). 

Publication I  

The first study of the PhD thesis, reported in Publication I, aimed at investigating whether 

implementing robots with behaviors reflecting attentional capture modulate individuals’ perception 

of its human-likeness. Thus, we implemented pre-recorded humans’ behaviors in a virtual version of 

the iCub robot. Such recordings were acquired through an inertial sensor mounted on the head of a 

group of participants (N = 20), while they were engaged in a solitaire card game task, and a series of 

distracting stimuli were presented. Behavioral reactions of participants were extracted and 

implemented in the iCub simulator. We examined whether parameters of the movement implemented 

in the robot (i.e. angle amplitude, overall time spent on a target) modulate participants’ ratings of its 

human-likeness, and potential correlation with sociodemographic factors (i.e. gender, age). Our 

results suggested that the temporal dynamic characterizing the behaviors affected individuals’ ratings 

more than spatial information. Thus, we concluded that it is fundamental to take into account the 

temporal profile of behaviors implemented in artificial agents if the aim is to make them appear 

human-like. 

Publication II 

The second study, reported in Publication II, aimed at understanding human processing of subtle hints 

of human-likeness displayed by an embodied artificial agent (i.e. the iCub robot). The paradigm 

consisted of an observation of the robot and was aimed to assess whether humans can perceive subtle 

differences in the robot's behavior when they have either no information regarding the behavior itself 

or explicit information regarding the process of implementation of the behavior. We exposed 

participants to a robot behaving as a human being (based on pre-recorded data, collected during the 
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study reported as Publication I) or in a machine-like way (this behavior was pre-programmed to be 

stereotypical and repetitive). Participants were asked to complete several self-report questionnaires 

after each session with the robot. Then, data collected after each session were compared, as well as 

differences between the two groups of participants that received different information. Our results 

highlighted a crucial role of individuals’ knowledge on their sensitivity to human-based behavior 

displayed by an artificial agent, as well as on their attribution of anthropomorphic traits towards the 

same agent. We concluded that individuals’ knowledge-related biases might override perceptual 

evidence of human-likeness when observing the behavior of a robot. 

Publication III 

The third study, reported in Publication III, examined behavioral correlates of perceptual processing 

of a humanoid face during a screen-based paradigm. In particular, the study focused on perceptual 

and attentional processing underpinning human-robot interaction. The hypothesis is that 

decomposing the robot behavior in its single components might lead to a better comprehension of the 

perceptual processes elicited in the human during the observation of robot behavior. The present study 

aimed to combine self-report and eye-tracking measures to understand human explicit and implicit 

processes associated with a systematic variation of the same robot’s behavior. As a secondary aim, 

we assessed the discrepancy between explicit and implicit measures of engagement, to further 

investigate the processes associated with the interpretation of humanoid behavior. Our results pointed 

out that individuals display higher attentional engagement when the robot displays a human-like 

behavior than when the artificial agent is behaving mechanically. Additionally, we found that 

individuals tend to attribute higher ratings of human-likeness to slow, rather than fast, behaviors. We 

concluded that implementing human-like behaviors in an artificial agent might facilitate attentional 

processes required for communicating with it, although explicit attributions of human-likeness 

towards it might depend upon other factors (i.e. temporal dynamics of the behavior).  

Publication IV 

The final study reported in this thesis, Publication IV (Experiment 1 and Experiment 2), was aimed 

at investigating whether humans are facilitated in the visual processing of information conveyed by 

a human or by a robot. We manipulated both agents’ behaviors in order to display either active, 

mentalistic behaviors, or passive, repetitive behaviors. In Experiment 1, we combined eye-tracking 

and performance measures with self-report data, to understand the relationship between visual 

processing, decision making, and explicit awareness with the nature of the agent and the behavior 
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displayed in a screen-based experiment. In Experiment 2, we used the same set of stimuli in an online 

study to evaluate individuals’ tendency to attribute anthropomorphic traits based on the behavior 

displayed by the two agents (i.e. the human and the iCub). Our results showed that individuals’ 

attention was more engaged when observing seemingly intentional behaviors than when observing 

mechanical ones. Furthermore, individuals recognized intentional behaviors more accurately than 

mechanical ones. We concluded that, among human-based behaviors, the ones showing a clear intent 

spontaneously engage individuals’ attention, and modulate human-likeness attribution towards the 

agent displaying them.  

 

Publication I constitutes the manuscript of the paper “Ghiglino, D., De Tommaso, D., & Wykowska, 

A. (2018, November). Attributing human-likeness to an avatar: the role of time and space in the 

perception of biological motion. In International Conference on Social Robotics (pp. 400-409). 

Springer, Cham.” 

Publication II constitutes the manuscript of the paper “Ghiglino, D., De Tommaso, D., Willemse, 

C., Marchesi, S., & Wykowska, A. (2020). Can I get your (robot) attention? Human sensitivity to 

subtle hints of human-likeness in a humanoid robot’s behavior. In Proceedings of the 42nd Annual 

Virtual Meeting of the Cognitive Science Society (Cogsci 2020) (pp. 952-958)” 

Publication III constitutes the manuscript of the paper “Ghiglino, D., Willemse, C., De Tommaso, 

D., Bossi, F., & Wykowska, A. (2020). At first sight: robots’ subtle eye movement parameters affect 

human attentional engagement, spontaneous attunement, and perceived human-likeness. Paladyn, 

Journal of Behavioral Robotics, 11(1), 31-39.” 

Publication IV constitutes the manuscript of the paper “Ghiglino, D., Willemse, C., De Tommaso, 

D., & Wykowska, A. (under submission, 2020). Mind the eyes:  artificial agents’ eye movements 

modulate attentional engagement and anthropomorphic attribution. Currently under submission to 

Frontiers in Robotics and AI.” 

  



 

 

 

 

30 

 

 

 

 

 

 

 

 

 

 

SECTION II -PUBLICATIONS 
  



 

 

 

 

31 

2.1 Publication I: Attributing human-likeness to an avatar: the role of 

time and space in the perception of biological motion 
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2.1.1 Abstract 

Despite well-developed cognitive control mechanisms in most adult healthy humans, attention can 

still be captured by irrelevant distracting stimuli occurring in the environment. However, when it 

comes to artificial agents, such as humanoid robots, one might assume that their attention is 

“programmed” to follow a task, thus, being distracted by attention-capturing stimuli would not be 

expected. We were interested in whether a behavior that reflects attentional capture in a humanoid 

robot would increase its perception as human-like. We implemented human behaviors in a virtual 

version of the iCub robot. Twenty participants’ head movements were recorded, through an inertial 

sensor, during a solitaire card game, while a series of distracting videos were presented on a screen 

in their peripheral field of view. Eight participants were selected, and their behavioral reactions (i.e. 

inertial sensor coordinates, etc.) were extracted and implemented in the simulator. In Experiment 2, 

twenty-four new participants were asked to rate the human-likeness of the avatar movements. We 

examined whether movement parameters (i.e. angle amplitude, overall time spent on a distractor) 

influenced participants’ ratings of human-likeness and if there was any correlation with 

sociodemographic factors (i.e. gender, age). Results showed a gender effect on human-likeness 

ratings (t=2.425, p=.024). Thus, we computed a GLM analysis including gender as a covariate. The 

main effect of the time of movement (F=9.179, p=.006) surviving Bonferroni correction (p<.05) was 

found. We conclude that humans rely more on temporal than on spatial information when evaluating 

properties (specifically, human-likeness) of the biological motion of humanoid-shaped avatars. 

Keywords: Human-likeness of robot behavior, Biological Motion, Humanoid robots. 

2.1.2 Introduction 
 

In designing artificial agents that are to appear human-like to increase perceive naturalness and 

facilitate social attunement, many researchers address the issue of creating human-like behavior. 

Several characteristics have been identified, and one crucial characteristic is variability (Gielniak, 

Liu, Thomaz, 2013): behavioral observations demonstrate that humans never display the same 

behavior twice. For example, several studies demonstrated that subjects tend to adopt unique patterns 

of kinematic strategies to attend the very same target (Freedman and Sparks, 2000; Stergiou and 

Decker, 2011; Desmurget et al., 1995). The recent advent of complex humanoid systems, allow 

researchers to implement fragmentized human behaviors in artificial agents, to study more in detail 

on which information humans rely the most when evaluating biological motion. Furthermore, a 

deeper understanding of the human perception of synthetic motion will facilitate, in the future, 

human-robot interaction (Khatib et al., 2004). This stems in part from the fact that humans, when 
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interacting with other mammals (Fox, 2006), easily understand goals, motivation, and beliefs behind 

human-like behaviors (Blakemore and Decety, 2001), also relying on motion clarity. It is not clear 

whether artificial motion patterns of a robot would be as easily understood and predicted. Therefore, 

it is of high importance to examine what parameters of robot behavior make it well-understood by 

human users. Evidence from literature pointed out that motion cues might influence the social 

attunement perceived towards artificial agents, enhancing even empathetic and mentalizing processes 

(Miller and Saygin, 2013; Heider and Simmel, 1944, Frith and Frith, 1999). Starting with observing 

and recording human motion, several techniques can be used to transfer movement parameters in 

artificial agents (Pollard et al., 2002; Lee and Lee, 2006; Aggarwal and Cai, 1999). However, given 

the huge variability of humans’ motion, it is still unclear which components of observed behaviors 

affect the most perception of human-likeness. The projection of human motion in a simulated 

environment might be a suitable method to study systematically these factors. 

 

2.1.2.1 Aim of the study 

  

The goal of the present study was to investigate how human participants perceive biological 

movement displayed in an artificial agent in terms of human-likeness. We selected an attention-

capture scenario because attention capture seems to be a very human-like phenomenon. Humans (and 

several other animal species) have developed mechanisms to attend relevant events in the 

environment. The “decision” of the brain to attend to a given event in the environment is made 

through a combination of bottom-up characteristics of the stimulus (e.g., the salience of the stimulus) 

and internal top-down factors of the agent (e.g., bias towards emotional stimuli, or a particular sound 

of, for example, one’s own child’s voice). However, in many cases, the brain attends to stimuli that 

“capture” attention through their salience, although this disrupts a given task at hand. Think, for 

example, of driving. The driver should be focused on the road ahead of him/her and on keeping the 

car in the assumed lane. However, if there is a very loud distracting sound or bright light flashing in 

the peripheral vision, the driver might be attracted by this event, and in consequence lose focus on 

the task, potentially causing an accident. Therefore, although evolutionarily adaptive, the attentional 

capture phenomenon can be disruptive for a task. In this context, one might think that artificial 

intelligence should be better adapted to the successful completion of a given task, and not allow being 

distracted by peripheral events that might result in sub-optimal performance in a task. We reasoned, 

that “being distracted” – especially with variable ways of reacting to the distracting stimuli might be 

perceived as an essentially human-like feature. We, therefore, set out to test if equipping a humanoid 
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robot with behaviors reflecting attentional capture would make it be perceived as human-like, and 

which particular aspects of the behavior would be crucial for attributions of human-likeness. To this 

aim, we recorded human head and eye movement during an attentional capture paradigm. The 

recorded behaviors were filtered, and eight different movement profiles were implemented on an 

iCub (Metta et al., 2008) simulator. Then, a group of participants was asked to rate the human-likeness 

of the movements of the simulator. 

2.1.3 Materials and Methods 
 

2.1.3.1 Attentional capture with humans 

 

Selection of Distracting Stimuli. Sixty HD quality videos were selected from YouTube accordingly 

to the following criteria: (1) presence of a single salient sound in the whole sequence (i.e. a phone 

ring, a woman laugh, a door slam, etc.); (2) absence of inappropriate contents (i.e. politic, racism, 

sexism, etc.); (3) more than 100 M views. Selected videos were edited using Apple Final Cut Pro, in 

order to make all of them last for the same amount of time (twenty seconds). Fifty-five anonymous 

Italian participants were asked to rate the emotional content of the videos through an online platform 

(soscisurvey.de, Leiner, 2018), using a ten-point Likert scale (0=not emotional at all; 10=strongly 

emotional). One subgroup (n=26) was asked to rate only the audio tracks of the videos. The other 

subgroup (N=30) was asked to rate both the audio and the visual component of the videos. After 

collecting the data, the ratings of the two groups were compared. Four of the sixty initial stimuli were 

excluded because of the inconsistency between the ratings of the two groups. The remaining fifty-six 

videos were categorized into “Affective” and “Non-affective” stimuli, using the median score of the 

raters as a cutoff value between the two categories. Eighteen videos were then extracted, according 

to the following criteria: the nine with the lowest score (“Non-affective” videos) and the nine with 

the highest score (“Affective” videos). By using Apple Final Cut Pro, audio tracks of the final 

eighteen videos were manipulated, in order to increase the salience of one single sound per video (i.e. 

the phone ring, the woman laugh, the door slam). Furthermore, we edited the videos in order to ensure 

that the physical properties of the sounds (i.e. volume and sampling rate, 44.1 kHz) were consistent. 

For each video, the volume of the single salient sound was increased, while all the other sounds were 

reduced. The final pool of videos was implemented in an attentional capture paradigm as distracting 

stimuli. 

 

2.1.3.2 Recording of humans’ behaviors 
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Participants. Twenty-two healthy young adults (9 females; 19-34 years of age) were recruited. All 

participants were native Italian language speakers with no history of psychiatric or neurological 

diagnosis, substance abuse, or psychoactive medication. All participants had normal or corrected-to-

normal vision and reported no history of hearing impairment. Experimental protocols followed the 

ethical standards laid down in the Declaration of Helsinki and procedures were approved by the local 

Ethics Committee (Comitato Etico Regione Liguria). Each participant provided written informed 

consent to participate in the experiment. Participants were not informed regarding the purpose of the 

study before the experiment but were debriefed upon completion. 

Experimental design. Participants were seated in a sound-attenuated experimental booth with dimmed 

light, in front of a notebook screen (HP Stream 14-ax011nl, 1366 x 768) (Fig. 1).  

 

 

Fig. 1. Experimental setup: (a) participant is engaged in a solitary game on the laptop; (b) 

participant reacts to a distracting stimulus. 

They were instructed to perform a solitary card game (spider one-suit) on the notebook and to pay 

attention to the game. While participants were engaged in the card game, distracting stimuli were 

presented in the far periphery of their field of view (100° on the right, 227 cm of distance), on a 

second computer screen (DELL S2716DG, 2560 x 1440 pixels). The audio tracks of the distracting 

stimuli were played through loudspeakers (Logitech LGT-Z130), located under the second screen. 

The experiment was programmed and run on OpenSesame (Mathot, Schreij and Theeuwes, 2012). 
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Participants’ eye movements were recorded throughout the entire duration of the experiment with a 

mobile eye-tracking device (TobiiAB, 2015). Head movements were recorded using an inertial sensor 

(Bosch Sensortec BNO055 Intelligent 9-Axis Absolute Orientation Sensor (Sensortec, 2014) 

mounted on the eye-tracker and integrated into the OpenSesame experiment. We implemented a 

periodic task, running at 50Hz, that requests every 20ms the Euler angles to the inertial sensor. The 

absolute values of these angles, together with the sampling timestamp (Timestamp, Yaw, Pitch, and 

Roll) were saved in a .csv file, one for each distractor stimulus. Specifically, the periodic task was 

synchronized with the video stimuli, so that the duration of each inertial measure was aligned with 

the duration of the video. For each experiment, we collected 18 sessions for each participant, in total 

360 .csv files. 

Data Analyses. Participants’ data were extracted from the eye-tracker and the inertial sensor through 

Tobii Pro Lab and OpenSesame, respectively. Two participants were excluded due to the poor quality 

of their data. Participants’ reactions to distracting stimuli were defined as head rotations of at least 

30° on the yaw axis (horizontal plane) of the inertial sensor. Reactions of participants were treated 

and analyzed as a count variable. For each subject, three final parameters were extracted: (1) total 

amount of distractions during the whole experiment, (2) total amount of distractions that occurred 

during “Affective” stimuli, and (3) total amount of distractions occurred during “Non-affective” 

stimuli. A Wilcoxon matched-pairs test was used to verify a potential difference between “Affective” 

and “Non-affective” conditions. Furthermore, to explore gender differences in distractibility among 

participants, a Fisher exact test was used to compare males and females, separately for “Affective” 

and “Non-affective” conditions. In order to apply the Fisher Exact Test, the number of reactions was 

converted into a relative percentage estimated on the single subject. Finally, a binomial test (n=20, 

p=50%, 1-α=.95) was used to identify the most distracting stimuli of our pool. Two sounds (a gun 

shot and a woman’s orgasm) survived the .95 threshold, meaning that at least 70% of our sample 

reacted to sound with a distraction).  

 

2.1.3.3 Implementation of humans’ behaviors in an iCub simulator 

 

Selection of behaviors. During the attentional capture paradigm, fifteen participants reacted to the 

sound “gun shot” and fourteen participants reacted to the sound “woman orgasm”. Thus, we took into 

consideration the resulting twenty-nine reactions. For each reaction, we extracted two main 

parameters: (1) amplitude (°) of the movement; (2) time (s) spent on the distractor. The first parameter 

represented the angle of rotation of the head toward the distracting screen and was calculated as the 

difference between the average position assumed by the head of the participant during the whole 
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video and the maximum distance reached on the horizontal plane (yaw axis of the inertial sensor) 

during the same temporal window. The time spent on the distractor was estimated as the time spent 

by the subject on a point of the horizontal plane exceeding two standard deviations from the average 

position of the head. Setting this high threshold allowed us to extract thirteen reactions from the initial 

pool.  Then, the median value of the amplitude (Mdn=51,108°) and the median value of the time 

spent on the distractor (Mdn=1,664 s) were calculated and used as a cutoff to classify the reactions. 

Specifically, reactions were divided into four categories, accordingly to the combination of the 

amplitude of the movement and the time spent on the distractor, namely: 

Amplitude and time above the median; (2) Amplitude above the median and time below the median; 

(3) Amplitude and time below the median; (4) Amplitude below the median and time below the 

median. 

For each condition, the two most representative reactions were extracted (one for the “gun shot” and 

one for the “woman orgasm”). Eight reactions from eight different participants were selected as the 

final pool. 

Reproduction of the head movements on the iCub simulator. The iCub simulator (Fig. 1) has been 

designed to reproduce the physics and the dynamics of the robot.  

 

 

Fig. 2. Example of the iCub simulator. 

It has been implemented collecting data directly from the robot design specifications in order to 

achieve a replication as accurately as possible. Moreover, the software architecture is the same used 

to control the physical robot. Specifically, we decided to use the Direct Position Control algorithm 

(see http://wiki.icub.org/images/c/cf/ICub_Control_Modes_1_1.pdf) for sending the joint positions 

to the iCub head. According to the specifications available in the iCub Wiki 

(http://wiki.icub.org/wiki/ICub_joints#Head_2.0), the head joints are the ones with indexes 0, 1, and 

2, respectively the neck Pitch, Roll, and Yaw. At first, we needed to normalize the Euler angles 
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recorded with the inertial sensor to get relative angles concerning the initial head pose at the onset of 

the stimulus. In such a way, we transferred on the robot the relative rotation due to the distractor, 

assuming always the same starting head pose. The experiment was designed to guarantee, with good 

approximation, this assumption. In fact, the participants were always looking straight at the screen 

whenever a video stimulus occurred. We excluded all the other recordings not satisfying this 

condition. This preprocessing of the data was enough to reproduce on the iCub simulator the head 

movements using the Direct Position Control algorithm. This control technique is used whenever 

joint positions are sent at a high frequency because no trajectory generation in between is needed.    

 

2.1.3.4 Human-likeness survey 

 

Participants. Twenty-four participants (13 females; 26-60 years of age) completed an online survey 

evaluating the human-likeness of the iCub simulator. Data collection was conducted in accordance 

with the ethical standards laid down in the Code of Ethics of the World Medical Association 

(Declaration of Helsinki), procedures were approved by the regional ethical committee (Comitato 

Etico Regione Liguria). 

Experimental design. Eight videos of six seconds each were recorded from the simulator. Videos 

were then uploaded on an online platform (soscisurvey.de) and associated with the following 

question: “On a scale from 1 (extremely mechanistic) to 10 (extremely human-like), how would you 

rate iCub behaviors in terms of human-likeness?”. Each video and the associated question was 

presented ten times during the survey, mixed with the other items in random order. Participants rated 

the human-likeness of the simulations, relying only on motion information. They were not informed 

that the behaviors were all based on previous recordings of humans’ motions, but they were debriefed 

after the survey. To investigate whether the ratings were influenced by subjective factors, participants 

were also asked to complete the Empathy Quotient (EQ) questionnaire [Baron-Cohen] after the 

survey. 

Data analyses. A two-sample T-Test was used to assess gender differences in our sample’s ratings. 

Pearson’s correlations were applied to evaluate possible correlations between participants’ global 

ratings and subjective measures (EQ). 

To explore how the components of biological motion (amplitude of the movement and time spent on 

the distractor) affect ratings of human-likeness, statistical analyses were applied. The amplitude of 

the movement and time spent on the distractor was entered as two-level within-categorical predictors 
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in the context of the General Linear Model (GLM). The gender of our participants was included in 

the model as a nuisance covariate. Post hoc effects were estimated by calculating the Bonferroni test.  

2.1.4 Results 
 

2.1.4.1 Recordings of human behaviors 

 

Statistical analyses performed on the average number of reactions across participants revealed a 

significant difference between Non-affective and Affective stimuli. 

Specifically, the Wilcoxon Matched Pairs Test detected a significant difference (N=20, T=3.5, 

Z=3.789, p<.001) between the average number of reactions that occurred during Non Affective 

stimuli (M=2.30, SD=2.00) and Affective stimuli (M=5.60, SD=2.46) (Fig. 2). 

For both Non-affective and Affective conditions, Fisher Exact Test revealed no significant effect of 

gender (p>.05) on distractibility during the experiment (Fig. 3). 

 

Fig. 3. Differences between males and females on the percentage of reaction displayed during Non-

affective (Non-aff) and Affective (Aff) stimuli; vertical bars denote standard deviation of the data. 

 

2.1.4.2 Human-likeness survey 
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The two-sample T-Test revealed a significant difference (T=2.425, p<.05) of gender on the human-

likeness ratings, pointing out that females (M= 6.39, SD=1.38) usually rate higher human-likeness 

than males (M=4.90, SD=1.64) (Fig. 4). No correlation was found between ratings and subjects’ 

Empathy Quotient scores. 

The analyses modeled in the General Linear Model revealed no significant interaction between the 

amplitude of the movement and time spent on the distractor (F=0.48, p=.50). Furthermore, no main 

effect was found for the amplitude (F=0.18, p=.68), although results showed a significant main effect 

of the time spent on the distractor (F=9.18, p<.01) (Fig. 5) surviving Bonferroni correction (p<.01). 

Specifically, results suggest that longer time spent on the distractor might determine higher human-

likeness ratings. 

 

 

Fig. 5. The main effect of the “Time spent on distractor” on human-likeness ratings; vertical bars 

denote confidence intervals; Cousineau procedure was applied for correcting bars for within-

participants comparisons. 

2.1.5 General discussion 

Our study aimed to examine parameters of biological motion implemented on a humanoid robot 

avatar that determine the perceived human-likeness of the motion. 

In Experiment 1 we focused on the recording of human behaviors. We recorded participants’ head 

and eye movements during an attentional paradigm. Before implementing the recorded data on an 

iCub simulator, a preliminary check of the data was required. Thus, we investigated whether 
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differences between participants (males vs females) or between conditions (Non-affective vs 

Affective) affected our results. No difference was found between males and females, suggesting that 

we could use all participants’ recordings regardless of their gender for subsequent implementation. 

At the same time, we found a difference between our experimental conditions. Specifically, results 

showed that Affective stimuli (i.e. a laugh, a cry, a scream, etc.) elicited more frequent reactions 

compared to Non-affective ones (i.e. a phone ring, a metal drop, a door closing, etc.). We combined 

this result within the binomial test, to extract the most representative behaviors recorded during the 

attentional capture paradigm.  

Then, eight behaviors of different participants were selected, extracted, and, subsequently, 

implemented on an iCub simulator. An independent sample of participants was asked to rate the 

human likeness of the robot in the simulator, relying only on motion information. Our results showed 

that females ratings of human-likeness were generally higher than males’ ratings. This might suggest 

that females might be more prone to attribute human likeness than males to a robot simulator, 

regardless of the physical properties of the movement displayed. In line with previous research (Bisio 

et al., 2014), we also confirmed that humans, when asked to judge biological motion, rely more on 

temporal, than on spatial information. Interestingly, although all movements were copied from human 

behaviors, the average rating of participants was around 5.48. This might suggest that regardless of 

the naturalness of the movement, humans are still biased by additional visual information (the robot 

shape) when evaluating biological motion. Furthermore, a large variability was detected between 

participants’ ratings. Despite the lack of correlation between the Empathy Quotient and the ratings, 

we hypothesize the existence of personality traits that might influence participants’ ratings. Further 

studies should investigate which factors might explain this variability. 

2.1.6 Conclusion 

Our results showed that temporal features of a movement are crucial in the perceived human-likeness 

of a movement exhibited by an avatar of a humanoid robot. Thus, particular attention shall be paid to 

temporal trajectory when using avatars (or robots) to reproduce humans’ behavior. Furthermore, large 

variability detected in participants’ ratings of human-likeness and the gender difference suggests the 

necessity of investigating more in detail individual differences, especially when exploring attribution 

of human-likeness to an artificial agent.   
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2.2.1 Abstract 

Designing artificial agents that can closely imitate human behavior, might influence humans in 

perceiving them as intentional agents. Nonetheless, the factors that are crucial for an artificial agent 

to be perceived as an animated and anthropomorphic being still need to be addressed. In the current 

study, we investigated some of the factors that might affect the perception of a robot's behavior as 

human-like or intentional. To meet this aim, seventy-nine participants were exposed to two different 

behaviors of a humanoid robot under two different instructions. Before the experiment, participants' 

biases towards robotics as well as their personality traits were assessed. Our results suggest that 

participants’ sensitivity to human-likeness relies more on their expectations rather than on perceptual 

cues.  

Keywords: Human-robot interaction, humanoid robot, social cognition, intentional stance, mental 

states, instruction manipulation 

2.2.2 Introduction 

 

In everyday life, we are frequently exposed to different smart technologies. From our smartphones to 

avatars in computer games, and soon perhaps humanoid robots, we are surrounded by artificial agents 

created to interact with us. Already during the design phase of an artificial agent, engineers often 

endow it with functions aimed to promote interaction and engagement with it, ranging from its 

“communicative” abilities to the movements it produces. The idea that an artificial agent able to 

behave like a human being would boost the spontaneity and naturalness of interaction is well 

supported by the literature (Ficocelli, Terao, Nejat, 2015; Mirning et al., 2017; Wiese, Metta & 

Wykowska, 2017). Providing an artificial agent with human-like behaviors might increase social 

attunement toward it, and this aspect might be crucial for deploying artificial agents in environments 

where social interaction with them is desirable (e.g., robot-assisted training for individuals diagnosed 

with autism; Scassellati, Admondi, Matarić, 2012). In fact, several authors demonstrated the 

advantages of providing artificial agents with human-like behaviors on the quality of interaction with 

humans (Hancock et al., 2011; Thepsoonthorn, Ogawa & Miyake, 2018).  

Perceiving human-likeness from an artificial agent’s behavior appears to be modulated by its 

behavioral capabilities, ranging from the kinematics of the movement (Gielniak, Liu & Thomaz, 

2013) to the agent’s responsiveness to external stimuli (Willemse & Wykowska, 2019). Even during 

the interaction with conspecifics, humans rely partially on motion cues when they need to infer the 

mental states underpinning behavior. Similar processes might be activated during the interaction with 

embodied artificial agents, such as humanoid robots. At the same time, a humanoid robot that can 



 

 

 

 

46 

faithfully reproduce human-like behavior may undermine the interaction, causing a shift in 

attribution: from being endearing to being uncanny (Mori, 1970). Furthermore, it is still not clear 

whether individual biases and prior knowledge related to artificial agents can override perceptual 

evidence of human-like traits (Hinz, Ciardo & Wykowska, 2019). We hypothesize that human 

sensitivity to such characteristics varies depending on individual differences and available contextual 

information. The current study aims to investigate human sensitivity to anthropomorphic 

characteristics of robot’s behavior, based on motion cues, under different conditions of prior 

knowledge. To meet this aim, we manipulated the human-likeness of the behavior displayed by the 

robot and the explicitness of instructions provided to the participants. As a secondary aim, we 

explored some of the individual differences that affect general attitudes towards robots, and the 

attribution of human-likeness consequently.  

2.2.3 Methods 
 

2.2.3.1 Participants 

 

Seventy-nine participants took part in the experiment (mean age = 24.0, SD = 4.4, 50 females). All 

participants reported no history of psychiatric or neurological diagnosis, substance abuse, or 

psychiatric medication. Our experimental protocols followed the ethical standards laid down in the 

Declaration of Helsinki and were approved by the local Ethics Committee (Comitato Etico Regione 

Liguria). Each participant provided written informed consent to participate in the experiment. 

Participants were not informed regarding the purpose of the study before the experiment but were 

debriefed upon completion. 

 

2.2.3.2 Stimuli and Apparatus 

 

  In the current study, we sat our participants in a dimly lit sound-attenuated room, in front of an iCub 

robot (Metta et al. 2008; Natale et al. 2017) that was “playing” a solitaire card game on a laptop 

located in front of it. We placed a screen connected to a loudspeaker on the right of the iCub robot, 

on which we played scenes of various movies that were aimed to “distract” the robot from the game. 

Neither of the screens’ displays was visible from the participant’s position, but the sound produced 

by the loudspeaker was audible to everyone in the room (Fig. 1). The setup of the current study was 

the replica of a previous attentional capture experiment, which involved human participants playing 

the same solitaire card game while being distracted by the same sequence of movie scenes (see 

Ghiglino, De Tommaso & Wykowska, 2018 for details). 
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Figure 1. Experimental setup.  

 

Experimental design and procedure. Before the experiment, we asked all participants to complete a 

brief sociodemographic questionnaire along with the Autism Quotient test (AQ, Baron-Cohen, et al., 

2001), the Big Five Inventory (BFI, John & Srivastava, 1999), and the Negative Attitude Towards 

Robots Scale (NARS, Syrdal, et al., 2009). We adopted these questionnaires as they are all freely 

available, easy to administer, and vastly used to broadly assess individual differences that might affect 

human-robot interaction (see, for example, Schweinberger, Pohl & Winkler, 2020; Muller & Richert, 

2018). 

All participants of the present experiment were exposed to two different conditions determined by 

the behavior displayed by the robot: human-like or machine-like. The order of these conditions was 

counterbalanced between participants. Each behavior consisted of an 8-minutes sequence of eye- and 

head-movements.  

In the human-like condition, the robot’s behavior was derived from the recordings of a human 

participant’s eyes and head movement collected using an eye-tracker (Tobii Pro Glasses 2) and an 

inertial sensor (Bosch Sensortec BNO055 Intelligent 9-Axis Absolute Orientation Sensor) during the 

attentional capture experiment mentioned above. Human data recorded in our previous experiment 

were transferred to the iCub head and eyes using a minimum-jerk controlling algorithm. It is 

important to point out that the behavior observed in the recordings of the human participant was 

highly variable: each reaction to a distracting stimulus was different from the others in terms of 

temporal and spatial kinematics (ranging from minimal and fast to wide and slow movements). The 

behavior displayed by the robot in the "human-like" condition was aimed to embody the same 

variability and unpredictability of the behavior recorded from the human.  
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In contrast, for the machine-like condition, we programmed the robot to display repetitive, 

predictable, and constant behavior. Thus, the machine-like behavior consisted of only one pattern of 

neck and eye movements, based on the average temporal and spatial movement dynamics extracted 

from the human recording of the aforementioned experiment. To maximize the difference between 

the two conditions, during the machine-like behavior, the robot was programmed to move its eyes 

from left to right repetitively while “playing” the solitaire card game and to react to each distracting 

stimulus with exactly the same head turn.  

We asked the first forty participants (mean age = 24.1±3.73; mean education = 15.8±2.3; 24 females) 

to carefully observe the robot’s behavior during both conditions without adding any further 

instruction or information. The remaining thirty-nine participants (mean age =24.3 ± 5.07; mean 

education = 15.2 ± 2.0; 26 females) were told explicitly, from the beginning of the experiment, that 

the robot would display two different behaviors, and that their task would be to identify which one 

was based on a human’s recordings.  

After each condition, all seventy-nine participants filled out the GodSpeed questionnaire (Bartneck 

et al., 2009) to assess the tendency to attribute anthropomorphic, animated, and likable traits to a 

robot, and they took part in the InStance test (Marchesi et al., 2019) to investigate the tendency of 

humans to explain the behavior of a robot using either a mentalistic or a mechanistic vocabulary. 

After the completion of both experimental sessions and the questionnaires, all participants were asked 

if they noticed any difference between the two behaviors displayed by the robot. In case of a positive 

answer, participants were asked to elaborate on their answer, explicating which one of the two 

behaviors they thought was more similar to human behavior and why. We expected that participants 

who noticed the difference between the two conditions would be unanimous on the “correct” 

attribution of human-likeness. However, we received unexpected human-likeness attributions toward 

the machine-like condition that we kept into consideration during the data analysis. Eventually, this 

final explicit question allowed us to differentiate people in terms of sensitivity to the behavioral 

manipulation and terms of correctly attributed/misattributed human-likeness. 

2.2.4 Data Analysis 
 

 To explore the effects of our experimental manipulation, several mixed effect general linear models 

(GLM) were applied in R studio. In each model, we considered the responses in the GodSpeed 

questionnaire and the InStance test as separate dependent variables and each participant's intercept as 

a random factor. We included instruction manipulation (Explicit vs No Instructions) and the behavior 
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displayed by the robot (HumanLike vs MachineLike) as fixed factors. This family of models allowed 

us to explore the main effects of the single factors and the interaction between the two. 

Additionally, we aimed at exploring the effect of participants’ attribution of human-likeness on the 

InStance and the GodSpeed ratings. Thus, we further grouped our participants based on their 

sensitivity to the subtle differences between the robot’s behaviors and on the explicit attribution of 

human-likeness (provided at the end of the experiment). To avoid confounding effects and/or 

overfitting of the data, we analyzed participants that received explicit instructions separately from 

participants that received no instructions. This decision was made also taking into consideration the 

way participants distributed themselves in the three response groups across the two instructions 

conditions (under no instructions: 14 correctly attributed human-likeness, 9 misattributed human-

likeness, 17 no attribution; under explicit instructions: 31 correctly attributed human-likeness, 8 

misattributed human-likeness, 0 no attribution). This between-group difference was tested using a 

chi-squared test. For all the mixed models, pairwise posthoc comparisons were estimated using the 

Tukey method. Due to the way linear mixed models partition variance, and the lack of consensus on 

the calculation of effect sizes for individual model terms (Rights and Sterba, 2019), we estimated 

standardized effect sizes only in posthoc analyses.  

To investigate individual differences that affect human sensitivity to subtle hints of human-likeness 

in a humanoid robot’s behavior, we calculated Pearson’s correlation coefficients between the AQ, 

BFI, NARS, sociodemographic information, GodSpeed questionnaire, and Instance tests. Since we 

were interested in assessing individual differences that might play a role in the general attitude 

towards robots, for each participant we used the averages of the GodSpeed subscales and InStance 

scores as input variables of the correlation matrix.  

2.2.5 Results 
 

2.2.5.1 Instruction Manipulation and Robot Behavior 

 

Instance ratings. We did not find any significant effects on the InStance scores due to the instructions 

manipulation (F(1, 77)=0.41, p=.522), of the behavior displayed by the robot (F(1, 77)=2.16, p=.146) 

or of the interaction between the two (F(1, 77)=0.57, p=.455) (Fig. 2).  

 

GodSpeed ratings. We found a significant interaction effect on the Anthropomorphism scores 

between instructions manipulation and behavior displayed by the iCub (F(1, 77)=5.64, p=.020), 

paralleled by a main effect of the behavior (F(1, 77)=11.11, p=.001). A null effect of instructions 
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manipulation emerged from the data on this subscale (F(1, 77)=0.05, p=.82). Under explicit 

instructions, planned comparisons revealed a significant difference in Anthropomorphism scores: 

participants tended to attribute higher anthropomorphism to the human-like behavior than to the 

machine-like behavior (t(77)=4.01, p<.001). The same pattern was found on the Animacy subscale 

scores, highlighting the interaction between the instructions and the behavior (F(1, 77)= 9.33, 

p=.003), a main effect of the behavior (F(1, 77)= 9.08, p=.004) and a non-significant effect of the 

instructions (F(1, 77)=0.20, p=.654). Planned comparisons pointed out a significant difference in the 

Animacy scores between the human-like and the machine-like behaviors in the group that received 

explicit instructions (t(77)=4.26, p<.001). Interestingly, for the Likeability subscale scores, we found 

a single main effect of the instruction manipulation (F(1, 77)=12.14, p<.001), but neither a significant 

effect of behavior (F(1, 77)=3.50, p=.065) nor of interaction (F(1, 77)=2.03, p=.158). Post-hoc 

comparisons revealed a significant difference between the two instructions provided to the participant 

on the perceived likeability of the robot both after the human-like (t(77)=-2.71, p=.038) and after the 

machine-like (t(77)=-3.93, p<.001) behaviors (see Fig. 2 for details). 

 

2.2.5.2 Robot’s Behavior and Participants’ attribution 

 

The frequencies of participants' human-likeness attribution were different between the two 

instructions we provided them with (𝜒2(2)= 23.47, p<.001). Thus, we ran the subsequent analyses 

separately for the two instruction groups. 

 

No instructions group. No main effect of the robot’s behavior was found on the InStance ratings (F(1, 

37)=0.06, p=.805), nor on the Anthropomorphism (F(1, 37)= 0.35, p=.558), Animacy (F(1, 37)= 0.59, 

p=.448) and Likeability (F(1, 37)=0.23, p=.638) subscales of the GodSpeed.  

Similarly, participant’s human-likeness attribution did not affect neither InStance ratings (F(2, 

37)=1.04, p=.363), nor   Anthropomorphism (F(2, 37)=1.95, p=.157), Animacy (F(2, 37)= 0.52, 

p=.602) or Likeability scores (F(2, 37)=0.42, p=.662).  

No interaction between robot’s behavior and participants’ attribution was found on the InStance (F(2, 

37)=1.76, p=.186) and Anthropomorphism (F(2, 37)=2.21, p=.124). An interaction between behavior 

and attribution was found on Animacy (F(2, 37)=6.16, p=.004) and Likeability (F(2, 37)=7.65, 

p=.002) scores. The effect on the Animacy scores did not survive posthoc comparisons. Post-hoc 

analysis revealed that participants misattributing human-likeness tended to attribute higher likeability 

to the robot displaying the machine-like behavior, compared to the human-like behavior (t(37)=3.77, 

p=.035, d=1.24).  
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Explicit instructions group. No main effect of the robot’s behavior was found on the InStance ratings 

(F(1, 37)=0.01, p=.940), or on the Anthropomorphism (F(1, 37)=0.51, p=.477), Animacy (F(1, 

37)=0.19, p=.669) and Likeability (F(1, 37)=0.22, p=.639) subscales of the GodSpeed.   

No main effect of participant’s attribution was found on the InStance ratings (F(1, 37)=0.40, p=.529), 

or on the Anthropomorphism (F(1, 37)= 1.45, p= .235), Animacy (F(1, 37)=0.00, p=1.00) and 

Likeability (F(1, 37)=0.45, p=.504) subscales of the GodSpeed. 

A significant interaction between the robot’s behavior and participant’s human-likeness attribution 

was found on the InStance ratings (F(1, 37)=4.31, p=.045), and on the Anthropomorphism (F(1, 37)= 

16.89, p<.001), Animacy (F(1, 37)= 25.40, p<.001) and Likeability (F(1, 37)=4.36, p=.044) scores 

(Fig. 3). The interaction effect on the InStance scores did not survive posthoc comparisons. Planned 

comparisons revealed that participants making the correct human-likeness attribution provided higher 

ratings on Anthropomorphism (t(37)=5.33, p<.001, d=-1.75), Animacy (t(37)=6.04, p<.001, d=-1.98) 

and Likeability (t(37)=2.82, p=.036, d=-0.92) subscales after seeing the human-like behavior. 

Additionally, participants providing the unexpected attribution rated higher than participants 

providing the expected attribution after seeing the machine-like behavior on the Anthropomorphism 

(t(37)=-3.23, p=.010, d=-0.30) and the Animacy (t(37)=-2.97 p =.021, d=-0.72) subscales. 

 

 

Figure 2: Bar charts showing the fixed effect on questionnaire scores due to the interaction between 

the instructions provided to the participants and the behavior displayed by the robot (GLM). Error 

bars: +/- 1. SE. Asterisks denote significant comparisons. Numbers indicate the mean value of each 

cell. 
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Figure 3: Bar charts showing the fixed effect on the GodSpeed scores due to the interaction 

between the instructions provided to the participants and the behavior displayed by the robot 

(GLM). Error bars: +/- 1. SE. Asterisks denote significant comparisons. Numbers indicate the mean 

value of each cell.  

2.2.5.3 Individual differences  

 

Our analyses showed small negative correlations between the InStance score and years of education 

(r(77)=-.257, p=.022)   and AQ scores (r(77)=-.246, p=.029). We also found small negative 

correlations between the Likeability subscale of the GodSpeed questionnaire and the three subscales 

of the NARS (“Situations of Interaction”: r(77)=-.27, p=.018; “Social Influence”: r(77)=-.23, p=.040; 

“Emotions in Interaction” r(77)=-.29, p=.008). Additionally, our results pointed out a systematic, 

although small, set of correlations between BFI and NARS subscales. Specifically, the 

Conscientiousness subscale of the BFI correlates negatively with the subscales “Situations of 

Interaction” (r(77)=-.32, p=.004) and “Social Influence” (r(77)=-.28, p=.012) of the NARS. Besides, 

the Neuroticism subscale of the BFI correlates positively with the subscales “Situations of 

Interaction” (r(77)=.24, p=.036) and “Emotions in Interaction” (r(77)=.28, p=.011) of the NARS.  
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2.2.6 Discussion 
 

The main aim of the current study was to assess whether the information available before the 

interaction with an artificial agent modulates human sensitivity to subtle hints of an agent’s human-

likeness. Our data showed that prior knowledge related to the behaviors that we implemented in the 

robot affected the sensitivity to behavioral manipulation. When we provided no a-priori information 

related to the nature of the behaviors implemented in the robot, participants overlooked the details of 

the behaviors. Consequently, nearly half of the sample provided with no instructions was not able to 

recognize any difference between the human-like and the machine-like behaviors. Furthermore, even 

those participants who spotted the differences between the behaviors often misattributed human-

likeness. In addition, we could not find any significant differences in their InStance and GodSpeed 

scores between conditions. In contrast, all the participants who received the explicit instructions 

detected a difference between the two behaviors, and this was reflected in the anthropomorphism, 

animacy, and likeability attributed to the robot. 

When we prompted our participants' attention to notice hints of human-likeness in the behaviors of 

the robot, they tended to differentiate more their answers in the GodSpeed questionnaire between 

conditions, as if their perception of anthropomorphism, animacy, and likeability depended mainly on 

their belief of what a human-like movement should look like. This suggests that subtle evidence of 

behavioral human-likeness might be too weak of a signal during tasks merely involving the 

observation of artificial agents’ behavior. This might be related to the fact that in natural interactions 

with humans, we are usually not monitoring (or not being asked to monitor) the human-likeness of 

the counterpart’s behavior. Thus, human-likeness might be an implicit feature of human behavior, 

which we derive only if needed to explain the behavior of a non-human agent. Therefore, during 

everyday life, our sensitivity to such subtle hints might be low, as we more likely perceive “gestalt” 

relations between behavioral and contextual elements rather than pure and distinct behavioral features 

(Spelke, 1990; Hamlyn, 2017).  

Our results suggest that the concept of human-likeness itself varies across individuals, overriding 

perceptual evidence – our participants tended to confirm their own biases and modulated their 

responses on the GodSpeed questionnaire based on their own perception of human-like behavior, 

rather than the actual human-like behavior of the robot. This casts a shadow on the idea that having 

artificial agents able to behave exactly like human beings would, improve social interaction with 

them, as people appear to have very different priors related to the concept of human-likeness. Indeed, 

participants perceived the robot as more likable when they received no information related to its 
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behaviors, regardless of its human-likeness. In other words, perceived, but not actual, human-likeness 

influenced the likeability of the robot. Thus, the attractiveness of interacting with a humanoid robot 

might be independent of the subtle behaviors it displays, but might rather depend on the users' 

attitudes toward it. This further suggests that the less an individual knows about the process of 

implementation of behavior in a robot, the more they enjoy the interaction with it and perceives it as 

more engaging. Taken together, these results suggest that the differences in knowledge between 

participants override perceptual evidence and tweak individual sensitivity to behavioral cues. 

The presence of individual differences that affect the way humans interact with artificial agents is 

further supported by the correlation between BFI and NARS subscales. Our results showed that 

certain personality traits, such as neuroticism and conscientiousness, influenced participants’ 

attitudes towards robots. High neuroticism scores are often associated with the tendency to experience 

negative emotions during social interaction (Kaplan et al., 2015). The positive correlation between 

neurotic traits and NARS scores supports previous literature, suggesting that neurotic people might 

experience discomfort during the interaction with artificial agents, similarly to how they feel in 

interactions with other humans (Müller & Richert, 2018). On the other hand, high conscientiousness 

often relates to better self-regulation and emotional stability, which positively affect social interaction 

(Smith, Barstead, Rubin, 2017), and might as well ease the interaction with artificial agents. The 

negative correlation between InStance and AQ scores further supports the idea that social abilities 

affect humans’ general attitude towards artificial agents. Indeed, people with higher autistic traits 

appeared to have difficulties with explaining the behavior of a robot in terms of the underpinning 

mental states, relying more on mechanistic terms rather than on mentalistic vocabulary. This might 

be due to the familiarity that a person has regarding a certain vocabulary when interpreting behaviors 

in general. Besides, we also found a negative correlation between the Instance test score and the 

participants' education. We speculate that participants with a higher level of education might be more 

familiar with the design and functionality of technology in general. This prior knowledge might bias 

them to explain our robot’s behavior relying more on its mechanical apparatus rather than its “desires” 

and “intentions”. We postulate that personality traits and attitudes that play a role in the interaction 

between humans translate into different approaches towards artificial agents as well. This hypothesis 

is further supported by the negative correlation between NARS subscales and the perceived 

Likeability of the robot, indicating that participants’ attitudes towards robots affect their engagement 

during the interaction. Future studies should further explore individual differences that affect 

participants’ behavior and attitudes toward robots to understand whether they play a similar role 

during human-human and human-robot interactions.  
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In conclusion, our study suggests that individual knowledge, beliefs, and biases play a major role in 

modulating human perception of an artificial agent’s behavior. These influences seem to be even 

stronger than perceptual evidence during observational scenarios and need to be taken into 

consideration in future studies. 
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2.3.1 Abstract 
 

Human-robot interaction research could benefit from knowing how various parameters of robotic eye 

movement control affect specific cognitive mechanisms of the user, such as attention or perception. 

In the present study, we systematically teased apart control parameters of Trajectory Time of robot 

eye movements (rTT) between two joint positions and Fixation Duration (rFD) on each of these 

positions of the iCub robot. We showed recordings of these behaviors to participants and asked them 

to rate each video on how human-like the robot’s behavior appeared. Additionally, we recorded 

participants’ eye movements to examine whether the different control parameters evoked different 

effects on cognition and attention. We found that slow but variable robot eye movements yielded 

relatively higher human-likeness ratings. On the other hand, the eye-tracking data suggest that the 

human range of rTT is most engaging and evoked spontaneous involvement in joint attention. The 

pattern observed in subjective ratings was paralleled only by one measure in the implicit objective 

metrics, namely the frequency of spontaneous attentional following. These findings provide 

significant clues for controller design to improve the interaction between humans and artificial agents. 

 

Index Terms— Behavioral sciences, Biological control systems, Robot control, Humanoid robots, 

Eye movements 

2.3.2 Introduction 

The human eyes play a special role in daily interactions with others. With gaze, we efficiently 

communicate to others our internal mental states and our interest in the external environment 

(Kobayashi & Kohshima, 2001; Emery, 2000). Sometimes, just by looking at a person’s, we are able 

to infer the other’s intentions, emotions, or action plans. During interaction with another human, the 

eye region typically is the most attended of all facial features and the most used source of information, 

independent of the specific characteristics of the interaction (Itier and Batty, 2009).  

In order to improve the quality of the interaction, Pelachaud and Bilvi (2003) proposed a 

communicative model of gaze for embodied conversational agents. The authors claimed that simple 

variations in the temporal components of gaze behavior might induce different attributions toward 

the artificial agent. Other authors tested the implementation of gaze behavior in artificial agents 

during different activities, such as storytelling, conversation and reading (for a review, see Ruhland 

et al., 2015) and concluded overall that this implementation requires integration of knowledge from 

a large number of disciplines, from neuroscience to computer graphics. In order to design such 

behaviors, a better understanding of human gaze is needed.  
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From a practical point of view, robot designers developed several tools to improve the naturalness of 

their artificial agents’ behaviors. Biologically plausible controllers might facilitate communication 

during human-robot interaction. Indeed, the implementation of human-like behavior in an artificial 

agent might encourage the adoption of the same mental models humans spontaneously adopt towards 

their conspecifics. However, additional studies are needed in order to test this hypothesis and provide 

designers additional guidelines defining the best design of such controllers. In this context, we present 

a systematic approach of exploring not only the reliability of theoretical models but also participants’ 

perception of an artificial agent displaying various types of gaze behaviors. We use objective (eye-

tracking) and subjective measures (ratings) in order to obtain a comprehensive picture of how various 

gaze behaviors are received by the user. 

2.3.2.1 Aims 

 

In this work, we investigate how different configurations of the same robot controller may affect 

cognition and attentional engagement of the user, as well as subjective impression of the robot’s 

human-likeness while maintaining the same task for all the conditions. We aim to provide roboticists 

with novel methods, grounded in cognitive psychology, for developing customizable controllers and 

for using effective strategies to configure the existing ones.  To address the aims of our study, we 

filmed an iCub robot (see Metta et al., 2008; Natale et al., 2017) that was systematically manipulated 

to display two specific parameters of eye movements in the iCub controller: Trajectory Time (rTT) 

and Fixation Duration (rFD). rTT refers to the time required for the robot’s pupil to shift from one 

fixed position to one other fixed position in space. rFD refers to the amount of time that the robot’s 

pupil spends on a given target before moving again.  We administered a rating scale to examine how 

these manipulations affected subjective attributions of human- likeness. Furthermore, to tease apart 

how human cognitive and attentional mechanisms are affected by these manipulations, we tracked 

participants’ eye movements, as eye movement patterns are closely related to attention and cognition 

(Deubel and Schneider, 1996).  We expected variations in rTT and rFD to affect subjective 

attributions of human-likeness as well as characteristic features of attentional engagement and 

cognitive resources related to observing the robot behavior.  

2.3.3 Methods 
 

2.3.3.1 Participants 

 

Thirty-four participants were recruited for this experiment (mean age = 25; S.D. = 3.9 years; 21 

females). All participants reported normal or corrected-to-normal vision and reported no history of 
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psychiatric or neurological diagnosis, substance abuse or psychiatric medication. Our experimental 

protocols followed the ethical standards laid down in the Declaration of Helsinki and were approved 

by the local Ethics Committee (Comitato Etico Regione Liguria). Each participant provided written 

informed consent to participate in the experiment. Participants were not informed regarding the 

purpose of the study before the experiment but were debriefed upon completion. 

 

2.3.3.2 Stimuli 

 

In the current study, we estimated an average human-like TT by applying the model proposed by 

Baloh et al. (1975), using the following formula: 𝑇𝑇 = 37 𝑚𝑠 + 2.7 ∗ |𝛼|, where α represents the 

visual angle (in degrees) between two targets. For small angles, the calculated trajectory times would 

be beyond the iCub physical constraints, thus we selected a visual angle of 60 degrees between the 

two joint positions. Based on this angle, an average TT of 200 ms was estimated. In the present study, 

we manipulated the velocity profile and the periodic state of TT. While the first refers to the speed of 

the eye movement, the latter refers to the variability displayed during the trial.  

Overall, we considered the implementation of the following behavior in the iCub robot:  

(1) A fixed, behavior, showing no variability, calculated as an “average human behavior”. 

(2) A “human-range variable” behavior based on literature and human’s eye models, showing 

variability.  

(3) A “slow-range variable” behavior, designed to be considerably slower than the human-range 

behavior.  

This design allowed us to define the effect of periodic state manipulation by comparing behavior (1) 

and (2), and the effect of velocity profile by comparing behavior (2) and (3). 

Consequently, we defined three conditions for rTT: a fixed behavior (𝐹𝑇𝑇) during which rTT was 

constant, a human-range variable (𝐻𝑅𝑉𝑇𝑇) behavior and a slow-range variable behavior (𝑆𝑅𝑉𝑇𝑇). 

With regard to rFD, previous studies suggested that for humans, the typical pause time between two 

subsequent eye movements (i.e. fixation duration) is approximately 200 ms (Salthouse and Ellis, 

1980). We decided to refer to this lower bound and to explore the same variability range adopted for 

rTT. Therefore, we adopted the same approach used for rTT, defining three conditions for rFD: a 

fixed behavior (𝐹𝐹𝐷) during which rFD was constant, a human-range (𝐻𝑅𝑉𝐹𝐷) behavior during which 

rFD was variable (Andrews and Coppola, 1999), and a slow-range variable behavior (𝑆𝑅𝑉𝐹𝐷). Then, 

we combined these two factors in a 3 X 3 repeated-measures design, generating 9 final conditions 

(Table 1). 
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Robot Fixation Duration (rFD) 

300 ms 200-400 ms 400-600 ms 

 

 

Robot 

Trajectory 

Time (rTT) 

200 ms 𝐹𝑟𝑇𝑇 - 𝐹𝑟𝐹𝐷 𝐹𝑟𝑇𝑇 -𝐻𝑅𝑉𝑟𝐹𝐷 

 

𝐹𝑟𝑇𝑇 - 𝑆𝑅𝑉𝑟𝐹𝐷 

 

100-300 ms 𝐻𝑅𝑉𝑟𝑇𝑇 - 𝐹𝑟𝐹𝐷 

 

𝐻𝑅𝑉𝑟𝑇𝑇 -𝐻𝑅𝑉𝑟𝐹𝐷 

 

𝐻𝑅𝑉𝑟𝑇𝑇 - 𝑆𝑅𝑉𝑟𝐹𝐷 

 

300 - 500 ms 𝑆𝑅𝑉𝑟𝑇𝑇 - 𝐹𝑟𝐹𝐷 

 

𝑆𝑅𝑉𝑟𝑇𝑇 -𝐻𝑅𝑉𝑟𝐹𝐷 

 

𝐻𝑅𝑉𝑟𝑇𝑇 - 𝑆𝑅𝑉𝑟𝐹𝐷 

 

 

Table 1. Summary of the experimental conditions for rTT and rFD. 
 

Based on our experimental conditions, we implemented the nine different behaviors in the iCub robot. 

The behaviors were filmed using a 4K Handycam FDR-AX53 by Sony (Minato, Tokyo, Japan). Each 

video started with the robot looking straight-ahead (2 sec). Then, the eyes started moving from the 

initial position (I) to either position A (right) or B (left). Then, the eyes moved from one position to 

the other, for another ten seconds. Immediately after, the robot eyes returned to the I position. 

Subsequently, the head of the robot turned either to the right or to the left with a 70 degrees amplitude. 

Eventually, the head and the eyes returned to the initial position. The manipulation of occasional head 

movement was introduced in order to test whether participants would engage in a spontaneous 

attentional following (measured by fixations that would land laterally with respect to the face, in the 

same direction as the head movement) and whether their spontaneous attentional following would 

depend on the robot behavior. Importantly, for the measures of the spontaneous attentional following 

would depend on the robot behavior. Importantly, for the measures of the spontaneous attentional 

following, the stimuli remained identical across conditions(i.e., the head movement was always the 

same). Therefore, any differential effects would be due to some sort of “priming” by preceding robot 

behavior (fixed, variable, human-range or slow-range). Each behavior was filmed twice (one starting 

from I to A and one starting from I to B). Consequently, we filmed 18 videos to be used for the 

experiment. 

 

2.3.3.3 The iCub’s gaze controller 
 

In this study, we used the Cartesian 6-DoF gaze controller developed for the iCub robot (Roncone et 

al.,  2016). We implemented this to control the trajectories of the neck (TN) and of the eyes (TE) of 
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the robot for looking at 3D Cartesian fixation points in space. This controller fits well with our 

requirements since it allows specifying the point-to-point execution time for the neck (TN)  and the 

eyes (TE). 

Therefore, we implemented the robot’s eye movements simply by tuning the TE parameter, 

considering the nine different conditions shown in Table 1.  

We implemented a Python script interfacing with the IGazeController Yarp class (Paul et al., 2014). 

The functions for controlling both the eyes and the neck are shown in Listing 1. In the moveEyes 

method, we controlled the robot to move the eyes between two pre-defined fixation points for a total 

duration of 10 seconds. 

The fixation points are provided in relative angles (azimuth, elevation, and vergence) according to 

the controller’s specifications. Once 10 seconds had elapsed, the moveNeck method was called for 

shifting the gaze in a pre-defined location (to the left or right). In this case, we released the block on 

the neck to let the robot rotate the head along the yaw angles. 

1. def moveEyes(FD_MIN, FD_MAX, TT_MIN, TT_MAX):  

2.     IGazeControl.blockNeckYaw()   

3.     IGazeControl.blockNeckPitch()   

4.     IGazeControl.blockNeckRoll()   

5.     while True:   

6.        fd = random.uniform(FD_MIN, FD_MAX)   

7.        tt = random.uniform(TT_MIN, TT_MAX)   

8.        fp = gaze_positions.next()   

9.        IGazeControl.setEyesTrajTime(tt)     

10.        IGazeControl.lookAtRelAnglesSync(fp)   

11.        time.sleep(fd)   

12.    

13. def moveNeck():   

14.     IGazeControl.blockNeckYaw()   

15.     IGazeControl.lookAtRelAnglesSync(YAW_POS)  

16.     time.sleep(DISTRACTOR_TIME)   

17.     IGazeControl.lookAtAbsAnglesSync(INIT_GP)   

Listing 1: Python functions for controlling the eyes and the neck of the robot in the different 

condition of the task. 

2.3.3.4 Apparatus 

 

The experimental session took place in a dimly-lit room. Stimuli were presented on a 22” LCD screen 

(resolution: 1366 x 768). A chinrest was mounted on the edge of a table, in order to maintain a 

distance of 63 cm between participants’ eyes and the screen for the entire duration of the experiment. 

Consequently, the forward-looking robot’s face subtended 5.5º by 7.1º of visual angle. We used a 

screen-mounted SMI RED500 eye-tracker by iMotion (Boston, Massachusetts, USA) with a sampling 
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rate of 500 Hz and spatial accuracy of 0.4º to record binocular gaze data. The experiment was 

programmed in and presented with OpenSesame 3.1.8 (Mathot, Schreij and Theeuwes, 2012) using 

the Legacy backend and the PyGaze library.  

 

2.3.3.5 Procedure 

 

We instructed participants to carefully watch the videos and to evaluate, on a 6-point scale how much 

the behavior displayed by the robot was human-like (0=not at all, 5=extremely). Each video was 

repeated six-times across the whole experiment (108 trials in total) in a random order of presentation. 

The experiment consisted of four blocks of 27 trials to allow for self-paced breaks. During each trial, 

log messages were sent to the eye-tracker at the video onset, the onset of the robot head movement, 

and the video offset. For details on the trial structure, see Fig. 1. 

Prior to the task and before starting the second half of the experiment, a 9-point calibration and 4-

point validation thereof were carried out (mean accuracy = 0.89º; S.D. = 0.70). Additionally, 

participants were recalibrated when deemed necessary (e.g. when a participant moved their head from 

the chinrest). 

 

Fig. 1. A planar view of the iCub robot used in this study. The picture depicts the typical trial 

sequence, illustrating the iCub’s behavior (staggered panels) and the subsequent human-likeness 

rating screen (bottom-right). In this example, the robot moves from I to A and turns the head to the 

right. 
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2.3.3.6 Analyses 

 

In order to explore the potential effects of rTT and rFD on participants’ ratings, a mixed model was 

applied in R Studio. We considered participants’ responses as the dependent variable and intercept 

as a random factor. Then, we computed rTT and rFD as fixed factors of the model. This procedure 

allowed us to explore the main effects of the single factors and the effect of interaction between the 

two. Pairwise post hoc comparisons were estimated using the Tukey method.  

For the purpose of investigating whether the eye movements implemented in the iCub controller 

affected participants' eye movements during the videos, analyses on the eye-tracking data were 

performed. Three participants (mean age = 24.67; S.D. = 1.53; 1 female) were excluded from these 

analyses due to technical errors in the eye-tracker recordings. In order to facilitate processing of the 

eye-tracking data, we defined an Area of Interest (AoI): the eye region of the robot. (see Fig. 2 for 

details).  

 

 

Fig. 2. A frame of the trial sequence depicting the iCub robot. The figure indicates the Area of 

Interest (AoI)used for the analyses, defined as the red rectangle. 

 

For each participant, we calculated proportional dwell time (the amount of recorded gaze samples 

within the AoI regardless of eye movement type) and total fixation count to investigate where our 

participants attended. We examined the average fixation duration to underpin the temporal 

characteristics of these mechanisms on the AoI per condition between the onset of the video and the 

iCub’s head movement. Finally, we investigated whether a fixation lateral to the face occurred within 

2,500 ms after the robot head movement in each trial as a measure of spontaneous gaze following. 
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We then processed the landing position -the horizontal vector- of the first lateral fixation in the same 

direction as the head movement.  

Considering the skewed distribution of our data, we computed these metrics as the dependent 

variables of different Mixed Models. Each model’s output provided us with predicted values of all 

the metrics input as dependent variables. Such predicted values derive from raw data and were 

corrected based on the effects taken into account in the Mixed Models. In order to maximize 

comprehensibility and graphical rendering of the effects, we plotted predictive values instead of the 

raw data. Subsequent pairwise post hoc comparisons were estimated using the Tukey method.  

2.3.4 Results 
 

2.3.4.1 Subjective reports 

 

For the human-likeness ratings, we found that the slow-range variable (SRV) condition was evaluated 

as most human-like. We observed a main effect of condition both on rTT (F=7.67, p<0.001, Fig. 3, 

left) and on rFD (F=34.61, p<0.001, Fig. 3, right).  

 

 

Fig. 3. Human-likeness ratings across the study. On the left: robot’s Trajectory Time (rTT) main 

effect on participants’ ratings (F: Mean=2.08, S.D.=1.30; HRV: Mean=2.12., S.D.=1.29; SRV: 

Mean=2.25, S.D.=1.32). On the right: robot’s Fixation Duration (rFD) main effects on participants’ 

ratings (F: Mean=2.02, S.D.=1.12; HRV: Mean=2.08., S.D.=1.35; SRV: Mean=2.35, S.D.=1.33).  
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Predicted values are plotted on the y-axes in order to facilitate the interpretation of results. Vertical 

bars denote +/- 1 standard error. Horizontal bars denote differences surviving post hoc comparison. 

 

Post hoc comparisons revealed that our participants evaluated the SRV condition significantly more 

human-like than the other two conditions. No significant differences were found between the fixed 

and human-range conditions (see Table 2 for detailed comparisons).  

 

  
Contrast z.ratio p.value 

Fixation Duration 𝐹𝑟𝐹𝐷 vs 𝐻𝑅𝑉𝑟𝐹𝐷 -1.377 0.3528 

𝐹𝑟𝐹𝐷 vs 𝑆𝑅𝑉𝑟𝐹𝐷 -7.803 <0.0001* 

𝐻𝑅𝑉𝑟𝐹𝐷 vs 𝑆𝑅𝑉𝑟𝐹𝐷 -6.419 <0.0001* 

Trajectory Time 𝐹𝑟𝑇𝑇 vs 𝐻𝑅𝑉𝑟𝑇𝑇 -0.614 0.8123 

𝐹𝑟𝑇𝑇 vs 𝑆𝑅𝑉𝑟𝑇𝑇 -3.660 0.0007* 

𝐻𝑅𝑉𝑟𝑇𝑇 vs 𝑆𝑅𝑉𝑟𝑇𝑇 -3.046 0.0066* 

Table 2. Z ratio and p values resulting from the post hoc comparisons for the human-likeness 

ratings; asterisks denote the significant results. 

2.3.4.2 Objective measures: eye-tracking data 
 

The eye-tracking data is visualized in Fig 4. Heat maps suggested the presence of differences in 

fixation patterns due to TT manipulation. 

Our results in the objective implicit eye-tracking measures showed a somewhat different pattern than 

the subjective explicit reports.  



 

 

 

 

68 

 

Fig. 4 Fixation heat maps for each rTT condition across the experiment. On the left: trial onset until 

head movement; on the right: head movement until the end of the trial). 

 

 

Human-range variability condition (HRV). Importantly, the eye-tracking data showed that at the 

implicit level of processing, human-range variability (HRV) engaged participants’ attention more 

than the slow-range variability (SRV) – a differential effect on fixation durations, and evoked higher 

degree of spontaneous joint attention than the other two conditions – an effect on the range of lateral 

fixations and speed of attentional following. In more detail, our results showed that participants 

fixated on the eye region longer for the HRV condition, as compared to SRV, as evidenced by the 

significant main effect of rTT for the eye region (F=4.84, p=0.01) in the average fixation duration, 

and significant difference between HRV and SRV, (z=3.03, p=0.01), planned comparison. No 

significant differences were found between F and HRV (z=-2.13, p=0.08) or between SRV and F 

(z=0.93, p=0.63) (Fig. 5. left). Furthermore, participants showed a higher degree of spontaneous 

attentional following in the HRV condition, relative to the other conditions: analyses on lateral 

fixations recorded after the robot head movement revealed a significant main effect of rFD on the 

horizontal vector of the first fixation location (F=4.41, p=0.01). Planned comparisons revealed a 

significant difference between F and HRV condition (t=-2.81, p=0.01). A marginal difference was 

found between HRV and SRV condition (t=2.24, p=0.07), while no differences were found between 

F and SRV (t=-0.58, p=0.83) (Fig 5, right).  
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Fig. 5. Fixation patterns across the study. On the left: robot’s Trajectory Time (rTT) main effect on 

participants’ fixation duration (F: Mean=439ms, S.D.=309ms; HRV: Mean=460ms., S.D.=321ms; 

SRV: Mean=428ms, S.D.=275ms). Log-transformed (Ln) predicted values are plotted on the y-axis 

in order to facilitate the interpretation of results. On the right: robot’s Fixation Duration (rFD) main 

effects on the absolute horizontal vector of the first fixation. (F: Mean=2.6°, S.D.=1.8°; HRV: 

Mean=4.2°., S.D.=3.0°; SRV: Mean=3.8°, S.D.=2.4°). Location was estimated as the distance from 

the center of the iCub face. Predicted Blom inverse normal transformed values (INT) are plotted on 

the y-axis in order to facilitate the interpretation of results. Vertical bars denote +/- 1 standard error. 

Horizontal bars denote differences surviving post hoc comparison. 

 

Fixed-behavior condition (F). Interestingly, also the fixed behavior condition elicited distinctive gaze 

patterns, compared to other conditions, which was also – similarly to the HRV condition - not in line 

with the subjective ratings. 

Specifically, we found that participants’ gaze was directed toward the eye region significantly more 

(in terms of dwell times) during the Fixed-behavior condition, than during the other two conditions, 

as evidenced by a main effect of rTT on participants' proportion of dwell times on the eye region of 

the iCub (F=4.01, p=0.02), and the significant differences between SRV (z=2.48, p=0.04) and HRV 

(z=2.43, p=0.04) conditions (Fig. 6, left). Analyses did not reveal any effects of rFD on eye region 

dwell time or of either TT or FD on the dwell time on the whole face. 

Furthermore, a significant main effect of rTT was found on the number of fixations that occurred in 

the eye region (F=4.46, p=0.01). In the Fixed-behavior condition, the number of fixations was larger 
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than in the HRV condition (z=2.96, p=0.01). No significant differences were found between SRV 

and F (z=1.12, p=0.50) or HRV and SRV (z=-1.82, p=0.16) (Fig. 6, right). 

 

 

 

Fig. 6. Fixation patterns across the study. On the left: robot’s Trajectory Time (rTT) main effect on 

participants’ proportional dwell time (eye region) (F: Mean=0.82, S.D.=0.27; HRV: Mean=0.80., 

S.D.=0.29; SRV: Mean=0.80, S.D.=0.28). Normalized predicted values of dwell time are plotted on 

the y-axis in order to facilitate the interpretation of results. On the right: robot’s Trajectory Time 

(rTT) main effects on participants’ amount of fixations (F: Mean=20.41, S.D.=9.89; HRV: 

Mean=19.51, S.D.=10.11; SRV: Mean=20.03, S.D.=9.83). Predicted values of fixation count are 

plotted on the y-axis in order to facilitate the interpretation of results. Vertical bars denote +/- 1 

standard error. Horizontal bars denote differences surviving post hoc comparison. 

 

Slow-range variable condition (SRV). The slow-range variable condition elicited a distinctive pattern 

only in the frequency of instances of attentional following, and this is the only result from the implicit 

measures that follow the explicit subjective reports. The generalized linear model revealed a 

significant main effect of rTT on the occurrence of spontaneous gaze following (𝑋2(2)=6.82, 

p=0.03). Specifically, planned comparisons revealed a significant difference between SRV and HRV 

(z=-2.46, p=0.04). No difference were found between F and either HRV (z=0.48, p=0.88) and SRV 

(z=-1.97, p=0.11) (Fig. 7).  
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Fig. 7. Spontaneous gaze following of participants during the study. Robot Trajectory Time (rTT) 

main effect on participants’ on the proportion of participants’ occurrence of gaze following 

behavior (F: 35.7% of total F events, HRV: 35.7% of total HRV events, SRV: 39.6% of total SRV 

events). Logit transformed predicted proportion is plotted on the y-axis. Vertical bars denote +/- 1 

standard error. Horizontal bars denote differences surviving post hoc comparison 

 

2.3.5 Discussion 
 

 The aim of our study was to examine how various parameters of humanoid eye movements affect 

the subjective impression of human-likeness and attentional engagement, measured with implicit 

objective measures (eye-tracking). We manipulated the behavior of the iCub humanoid to display 

either fixed patterns (fixed trajectory times and fixed fixation durations) or variable trajectory times 

and fixation durations with a human-range variability (HRV) or a slow-range variability (SRV).  

Our results showed that the SRV elicited the highest degree of human-like impression, as reported in 

subjective ratings. Interestingly, when asked to elaborate on their choices, 59% of our sample reported 

that the “slower” behavior showing variability seemed to be more natural than the others were. Some 

of them reported that this specific behavior seemed to be fluid, while the “faster” behavior seemed 

“glitchy”. We speculate that when humans approach a robot, they automatically adopt most available 

strategies to interpret and predict robot behavior (see Marchesi et al., 2019 for a more elaborate 

argumentation along these lines). These strategies might be influenced by prior assumptions, 
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knowledge3, expectations (all not necessarily realistic) that participants have regarding how a human-

like behavior looks like. 

 Importantly for the purposes of our study, the implicit objective measures showed a different, more 

informative, pattern. The eye-tracking data indicated that HRV attracted more attention and evoked 

more attentional engagement, as evidenced by longer fixation durations on the eye region in this 

condition, compared to the SRV condition. Furthermore, the human-range variability affected joint 

attention, as participants showed a larger degree of following iCub’s directional cues (further location 

of a lateral fixation elicited by the iCub’s head movement), as compared to the other conditions. These 

results show that participants’ implicit (perhaps more automatic) attentional mechanisms became 

(socially) attuned with the robot behavior when it displayed human-range variability and that this 

kind of behavior elicits more attentional engagement.  

On the other hand, the fixed, repetitive, “mechanical” behavior of the robot, although also showed a 

divergent pattern of results than the explicit subjective measures, affected the cognitive mechanisms 

of participants in a different way than the HRV condition. Specifically, it induced a larger number of 

fixations and visits (proportional dwell times), as compared to the other conditions. This might 

indicate that participants “scanned” iCub’s face more (showed a higher number but shorter fixations) 

in the mechanistic condition, perhaps because the brain perceived it as unnatural and unfamiliar 

behavior. This is in line with literature investigating immediateness of biological motion recognition, 

and suggest the existence of low-level processes that we use to discriminate biological and non-

biological motion (Dittrich, 1999). We speculate that humans require a higher amount of fixations to 

scan an agent displaying unnatural behaviors, while fewer fixations are needed when the behavior is 

biologically plausible.  

Finally, the pattern of results observed in the subjective ratings was paralleled by only one implicit 

measure, namely the proportion of instances of attentional following (Fig. 7). This indicates that 

perhaps the general frequency of attentional following was detected at the higher-level of cognitive 

processes, while other, more implicit and subtle cognitive mechanisms were not. This speculation is 

based on the following reasoning: explicit measures pinpoint cognitive processes that are accessible 

to conscious awareness, hence they are higher-level than those that can be captured by implicit 

measures. In our study, participants reported that the SRV condition appeared most human-like. This 

might have been a consequence of detecting that at a lower level of processing, they followed the 

                                                 
3 Our participants’ education, for example, negatively correlated with the ratings, suggesting that the more a person 

might be informed about technology, science or research, the more s/he avoids attributing high human-likeness toward 

an artificial agent (r=-0.35, p=0.04). 
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head movements of the robot more when it displayed a slower range of eye movements, relative to 

faster ranges. In contrast, the other measures (i.e. fixation duration, predicted fixation location, Fig. 

5) – although clear markers of attentional engagement – were too low-level to reach the conscious 

(and thereby reportable) level of processing.  

An alternative explanation might be that at the higher-level of processing, participants’ responses 

were prone to various biases, such as assumptions regarding what constitutes a “human-like” behavior 

or expectations related to robot behavior. Those biases might have affected conscious reports. As a 

consequence, the frequency of following the head movements of the robot (fig. 7) was influenced by 

those higher-level biases, which would be in line with previous literature on top-down biases in 

attentional following (Ozdem et al., 2017; Wiese et al., 2012; Wykowska et al., 2014). Interestingly, 

the more other mechanisms of attentional engagement (reflected by fixation durations and range of 

following) were not prone to top-down biases, as they were presumably at a much lower-level of 

processing. 

Overall, our results show that explicit subjective reports alone do not provide a comprehensive picture 

of cognitive mechanisms evoked by observation of (or interaction with) a robot. Objective measures 

are necessary to complement subjective reports by addressing specific, and often low-level implicit 

cognitive processes, an argument put forward in previous literature, due to a dissociation that has 

been observed between explicit and implicit measures (Kompatsiari et al., 2018).  

 Related to robot implementations directly, the differences we found in human attentional 

engagement, as well as a subjective impressions evoked by superficially similarly looking conditions 

hint that users' interaction with a robot can be qualitatively affected by subtle differences in its 

behavioral design. This will be investigated further in our future work. Our findings suggest different 

strategies to use for the iCub' gaze controller depending on the type of interaction the scenario requires 

to establish with the user. TE values between 300-500 ms may evoke the impression of more 

'naturalness' in the robot's movements. Faster eye movements may appear less smooth (TE values 

below 300 ms), but if they involve human-range variability (100-300 ms), they should evoke higher 

attentional engagement. In this context, the TE default value (TE = 250 ms) could be reconsidered to 

be increased. Importantly, the variability of TE values among different fixations is a parameter which 

should certainly be considered in robot behavioral design. Our results showed that added variability 

induces a higher impression of human-likeness, and is more attentionally engaging. A human-like 

range of trajectory time elicits most attentional engagement, and attunement in the form of 

spontaneous joint attention.  
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2.3.6 Conclusions 

In summary, our results confirmed that both implicit and explicit measures need to be taken into 

account when evaluating the user’s reception of a robot behavioral design. Our data show that at the 

level of conscious subjective impressions, the variability of behavior (trajectory times in the case of 

our experiment) create the most human-like impression. Fixed-time mechanistic trajectories do not 

only appear as least human-like, but they also induce fragmented, scattered and short “glimpses”, 

which might have a distracting effect on the user and impair smoothness of interaction. Finally, 

variable robot behavior with human-range of trajectory times attracts attentional focus most, and 

thereby is most engaging, even though this might not reflect in subjective conscious impressions. 

 Throughout the present study, we proposed an approach that uses research methods from 

cognitive psychology to test engineering parameters. Combining such approaches is beneficial for 

the future of both disciplines, by facilitating the interaction between humans and artificial agents and 

by improving our knowledge about ourselves.  
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2.4 Publication IV: Mind the eyes:  artificial agents’ eye movements 

modulate attentional engagement and anthropomorphic attribution 

 

 

Ghiglino D.1-2 , Willemse C. 1, De Tommaso D.1, Wykowska A.1 

 

1 Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genova, Italy 

2 DIBRIS, Università degli Studi di Genova, Via Opera Pia, 13, 16145, Genova, Italy 

2.4.1 Abstract 
 

Artificial agents are on their way to interact with us daily. Thus, the design of embodied artificial 

agents that can easily cooperate with humans is crucial for their deployment in social scenarios. 

Endowing artificial agents with human-like behavior may boost individuals' engagement during the 

interaction. We tested this hypothesis in two screen-based experiments. In the first one, we compared 

attentional engagement displayed by participants while they observed the same set of behaviors 

displayed by an avatar of a humanoid robot and a human. In the second experiment, we assessed the 

individuals' tendency to attribute anthropomorphic traits towards the same agents displaying the same 

behaviors. The results of both experiments suggest that individuals need less effort to process and 

interpret an artificial agent's behavior when it closely resembles one of a human being. Our results 

support the idea that including subtle hints of human-likeness in artificial agents' behaviors would 

ease the communication between them and the human counterpart during interactive scenarios. 

    

Keywords: Humanoid robot, Attentional engagement, Intentional Stance, Mindreading, Eye 

movements 

2.4.2 General Introduction 
 

"Deep", "sparkling", "expressive", "curious", "sad": these are only a few of the adjectives that we can 

use to describe someone's eyes. Some writers even referred to this sense as the window to the soul, 

as it can provide information related to others’ mental states, emotions, and intentions (Vaidya, Jin & 

Fellows, 2014). Indeed, every one of us has experienced the feeling to resonate with someone else 

just at first glance, by making eye contact. If we think about our everyday life, for example, it may 

happen that we meet a stranger and we immediately understand whether he is sad or happy, just by 

the look in his eyes (Lee & Anderson, 2017). Neurotypical individuals are usually quite sensitive to 
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the information conveyed by the eyes and are relatively proficient in inferring other agents' mental 

states using such a limited source of information (Baron-Cohen et al., 2001). For example, When 

engaged in a joint action with another person, like moving a heavy object, people are spontaneously 

inclined to monitor the partner’s eyes to infer his/her mental states (Huang et al., 2015).  

The relevance of the ability to “read” mental states through the eyes has been widely studied in the 

literature. A number of studies demonstrated that understanding another agent’s gaze direction and 

pattern could be crucial to accomplish a joint task. For example, gaze can cue attention towards an 

intended object (Sebanz, Bekkering & Knoblich), it can signal interests in an event happening in the 

environment (Meyer, Sleiderink & Levelt, 1998), and even anticipate motor actions (Johansson et al., 

2001). Indeed the ability to understand such cues is fundamental in social environments (Butterworth, 

1991).  

Thousands of years of interaction contributed to the development of this ability (Hauser, 1996; Scott-

Phillips, 2010), to the point that people appear to notice gaze cues even when the agent that is 

displaying them is artificial (Fiore et al., 2013). This may be due to the spontaneous adoption of 

cognitive strategies that are similar to those involved in interpreting human-like behaviors displayed 

by non-human agents (Chaminade et al., 2012). Previous research showed, for example, that 

biologically plausible eye-movements displayed by an artificial agent engage an individual's attention 

more than mechanistic movements (Ghiglino et al., 2020a).   

We speculate that endowing subtle hints of human-likeness in the behaviors displayed by an artificial 

agent would promote the implicit association between that agent’s behavior and the behaviors 

individuals experience during every-day interactions (Banks, 2019). Indeed, even the tendency to 

attribute a mind towards an artificial agent appears to increase linearly with its perceived human-

likeness (Krach et al., 2008).  Therefore, equipping artificial agents with a behavioral repertoire that 

is typical of human beings may create the impression that the behavior they display is motivated by 

mental states and intentions and, consequently, facilitate social attunement  (Wiese, Metta & 

Wykowska, 2017). As a cascade effect, this impression would facilitate the understanding of the 

behaviors that the artificial agent displays and would increase the chance of attributing 

anthropomorphic traits to the agent. Understanding how these spontaneous associations work would 

provide useful insights for artificial agents’ developers, and smoothen the inclusion of artificial agents 

in contexts where the interaction between technology and human is required (Dautenhahn, 2007). 

To investigate this role of human-like eye-movements, we designed two screen-based experiments. 

Specifically, we explored attentional engagement towards a humanoid and towards a human avatar 

displaying the same behaviors. In the first experiment, we focused on implicit engagement (i.e. 
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attentional focus, decision times) displayed by individuals while observing the behaviors of the two 

agents. In the second experiment, we explored individuals’ explicit attribution of anthropomorphism 

towards the robot and the human displaying the same behavior (self-report scales). Finally, we 

compared the results of both experiments, to understand whether subtle hints of human-likeness affect 

only implicit processing as well as explicit attribution of anthropomorphic traits.  

2.4.3 Experiment 1 
 

Our first experiment investigated whether the appearance of the agent (natural vs artificial), the 

behavior displayed by the agent (seemingly intentional vs mechanistic), and the context in which the 

agent is acting (congruent or incongruent with the behavior)  modulate spontaneous attentional 

engagement, during the observation of other agents involved in a task. As a secondary aim, we 

explored whether these factors affected the ability to recognize an agent’s behavior during a decision-

making task.  

 

2.4.3.1 Methods 

 

Participants. Fifty-three participants were recruited for this experiment (mean age = 25.2 years SD = 

5.0, 37 females). All participants reported normal or corrected-to-normal vision and no history of 

psychiatric or neurological diagnosis, substance abuse, or psychiatric medication. Our experimental 

protocols followed the ethical standards laid down in the Declaration of Helsinki and were approved 

by the local Ethics Committee (Comitato Etico Regione Liguria). All participants provided written 

informed consent to participate in the experiment.  

Due to a technical problem with the eye-tracker, we excluded twenty-one participants from data 

analyses (more than 30% of their data were corrupted). Excluded subjects were all individuals with 

corrected-to-normal vision wearing glasses or corrective lenses. Despite passing the calibration 

procedure successfully, a large portion of their eye-tracking data was not recorded. Therefore, our 

final sample consisted of thirty-two participants (mean age = 24.5 years ± 3.63, 22 females). 

 

Stimuli. To address the aims of our first experiment, we filmed the face of a human actor while he 

was either actively Reading a text on a monitor located in front of him (“intentional”, highly variable 

behavior in terms of temporal and spatial dynamics) or passively following a dot that was moving 

across the same monitor (“mechanistic”, repetitive behavior). This latter behavior closely resembled 

the procedure for Calibrating an eye-tracker, requiring the subject to fixate on a dot that appears on 
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the screen in several locations. While the actor was filmed, we recorded his eye-movements using a 

Tobii Pro Spectrum eye-tracker (TobiiAB Stockholm, 2015). The eye-tracker recorded the cartesian 

coordinates of the gaze point relative to the screen during both actions, at a sampling rate of 600 Hz. 

We implemented the eye movement kinematics recorded from the human in a humanoid agent, the 

iCub robot (Metta et al., 2010), which was filmed while emulating the human’s behavior. Then, based 

on the recordings of the human and the iCub, for each agent, we generated two videos where the 

agents were “Reading a text” and two videos where they were “Calibrating”. The duration of each 

video was fourteen seconds. The videos of the robot were coupled with the videos of the human so 

that both agents displayed the very same eye-movements (either "Reading” or “Calibrating") at the 

same time-frequency. 

 

 
Figure 1 – Examples of videos used in the experiment 

 

Procedure and Apparatus. Before starting the experiment, we informed participants about the content 

of the videos we generated, showing example videos of both agents displaying the “Reading” and the 

“Calibrating” behaviors. During this familiarization phase, we informed them that the two displayed 

behaviors corresponded either to the “Reading” or to the “Calibrating”. 

During the experiment, videos were presented on a 23.8′′ LCD screen (resolution: 1920 × 1080). 

Participants’ head position was limited by a chinrest that was mounted at the edge of the table, at a 

horizontal distance of 60 cm from the screen. We recorded the participants’ binocular gaze data with 

a screen-mounted Tobii Pro Spectrum eye-tracker with a sampling rate of 600 Hz. The illumination 

of the room was kept constant throughout the experimental sessions. Videos and questions were 

displayed with OpenSesame 3.2.8 (Mathôt, Schreij & Theeuwes, 2011).   
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We instructed participants to carefully watch the videos to detect, as quickly as possible, whether the 

behavior displayed by the agent was either “Reading” or “Calibrating". Participants provided their 

responses by pressing the buttons of a keyboard corresponding to the letters M and Z, counterbalanced 

across the blocks. After providing their response, participants were asked to rate the confidence in 

their decision. When this last rating was provided, or in case of a timeout, a new trial started, with a 

fixation cross presented for five seconds. 

Participants’ decision times (DTs), the accuracy of the detections, and confidence ratings were saved 

along with the eye-tracker data (fixation duration and fixation count). 

 

Analyses. To explore the effects of Agent, Behavior, and Context on the participants’ attentional 

engagement during the task, we adopted various mixed models on our eye-tracking data, using R 

Studio (RStudio Team, 2015). We defined three main areas of interest (AOI) a priori: (1) the area 

corresponding to the eye region of the agents; (2) the area corresponding to the face region of the 

agents (excluding the eyes); and (3) the area corresponding to the background behind the agents 

(excluding the face). 79.07% of total fixations were recorded within the first AOI (eye region), 5.84% 

within the second (face region), and 15.09% within the third (background region). Considering the 

insufficient amount of data points in the non-eye AOIs, we focused our analyses mainly on the eye 

region. We excluded trials in which the participants provided the incorrect attribution (less than 1% 

of the total trials) from the analysis. 

Fixation duration was the dependent variable of a linear mixed model. Agent, behavior, and context 

were treated as fixed factors and the subjects’ intercept as a random factor. Then, we converted each 

participants’ fixation count relative to each AOI into fixation proportions (i.e. the ratio of fixations 

directed towards each AOI compared to the total number of fixations). Considering the negatively 

skewed distribution of fixation proportion on the eye-region, data were arcsine transformed before 

the analyses. Then, the arcsine transformed fixation proportion on the eye region was included as the 

dependent variable of another mixed model, where agent, behavior, and context were treated as fixed 

factors and the subjects' intercept as a random factor. 

Finally, we analyzed participants’ DTs with an additional linear model. We adopted a minimal a 

priori data trimming (Harald Baayen, R., & Milin, 2010). Given the positively skewed distribution of 

DTs, we applied a logarithmic transformation to the data. Then, log-transformed DTs was included 

as the dependent variable of a final mixed model, where agent, behavior, and context were treated as 

fixed factors and the subjects' intercept as a random factor.  
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To compensate for the lack of consensus on the calculation of standardized effect sizes for individual 

model terms (Rights & Sterba, 2019), for each model we calculated parameters estimated (β) and 

their associated t-tests (t, p-value) using the Satterthwaite approximation method for degrees of 

freedom. Furthermore, for each parameter estimated we reported the corresponding bootstrapped 

95% confidence intervals. We reported mean values of each dependent variable divided by conditions 

in the Supplementary Materials to ease the reading of the results. To avoid redundancy, in the main 

text we reported only statistics relative to significant results. Non-significant results can be found in 

the Supplementary Materials, along with the original script used for data analysis.  

 

2.4.3.2 Results 

 

Fixation duration. To assess the effect of the Agent, its Behavior and the surrounding Context on 

attentional processing, we first analyzed the inter-trial differences in fixation duration. No interaction 

effects were found between Agent, Behavior and Context on fixation duration (all p-values > .05). 

We found a main effect of the Agent [β = -11.80, t(340)= -11.80, p = .028, 95% CI = (-22.14, -1.45); 

Figure 2A] and a Main effect of the Context [β = 19.01, t(340)= 3.52, p < .001, 95% CI = (8.57, 

29.45); Figure 2B]. Planned comparisons revealed that longer fixations occurred when the Agent was 

Human compared with the Robot (t(340) = 4.73, p < .001), and when the Context was Non-

Informative compared with both Congruent and Incongruent contexts(Congruent vs Non-

Informative: t(340) = -7.74 p < .001; Incongruent vs Non-Informative: t(340) = -7.83, p < .001).  
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Figure 2 – Raincloud plots showing the fixed effect on Fixation Duration due to the main effects 

of Agent (A), and Context (B) (GLM). Boxplots associated with the raincloud plots depict median 

values (black horizontal lines), interquartile ranges (black boxes), and upper-lower quartile intervals 

(black whiskers). 

Fixation proportion. We also analyzed the effects of the Agent, its Behavior and the Context on 

fixation proportion. Here, our analysis indicated a significant three-way interaction between Agent, 

Behavior and Context [β = -0.08, t(341) = -2.01, p = .045, 95% CI = (-0.16, -0.01); Figure 3A] and a 

significant two-way interaction between Agent and Behavior [β = 0.10, t(341) = 3.65, p < .001, 95% 

CI = (0.05, 0.16); Figure 3B]. Planned comparisons showed that participants tended to fixate more 

often on the eye region of the human during the Calibrating behavior rather than during the Reading 

behavior, when the context was congruent (t(341) = 5.85, p < .001). A similar difference between the 

behaviors was found when the context was non-informative (t(341) = 3.33, p = .045).  Similarly, 
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when the context was congruent, participants tended to fixate more often on the robot than on the 

human when these agents were displaying the Reading behavior (t(341) = 5.42, p < .001). Likewise, 

we found a difference between the agents when the context was incongruent (t(341) = -3.58, p = 

.020). These results were confirmed by planned comparisons performed on the two-way interaction, 

highlighting that the behavior that required fewer fixations was the human’s Reading compared to 

the human’s Calibrating (t(341) = -7.86, p < .001) and to the robot’s Reading (t(341) = -7.01, p < 

.001). Overall, the Reading behavior required a lower amount of fixations than the Calibrating 

behavior, as highlighted by the main effect of the Behavior [β = -0.12, t(341)  = -5.85, p < .001, 95% 

CI = (-0.16, -0.08)] and subsequent planned comparisons (t(340) = -7.30, p < .001). The interaction 

was paralleled by a main effect of the Agent [β = -0.18, t(32, 341) = -6.32, p < .001, 95% CI = (-0.24, 

-0.13)], indicating that participants were faster to identify the behavior when displayed by the robot 

(t(341) = 7.87, p < .001). Finally, we found a main effect of the Behavior too [β = -0.22, t(32, 341) = 

-7.71, p < .001, 95% CI = (-0.28, -0.17)], indicating that the Reading behavior was faster to identify 

than the Calibrating behavior (t(341) = 12.34, p < .001).  
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Figure 3 – Histograms and raincloud plots showing respectively the thee-way interaction 

between Agent, Behavior, and Context (A) and the two-way interaction between Agent and 

Behavior (B) (GLM). Vertical bars of the histograms denote +/- 1 standard error, dots denote mean 

values, horizontal bars denote differences surviving post hoc comparison. Asterisks define the level 

of significance of the comparison (*p<.05, **p<.01, p<.001). Boxplots associated with the 

raincloud plots depict median values (black horizontal lines), interquartile ranges (black boxes), and 

upper-lower quartile intervals (black whiskers).  

 

Decision times. To investigate the effect of Agent, Behavior, and Context on the ability to recognize 

behaviors during the task, we also analyzed our participants’ decision times. The analysis pointed out 

a two-way interaction between the Agent and the Behavior [β = 0.17, t(341) = 4.25, p < .001, 95% 

CI = (0.09, 0.25); Figure 4]. Planned comparisons revealed that the behavior that took longer to 

identify was the Calibrating behavior displayed by the human when compared to the robot Calibrating 

(t(341) = 10.19, p < .001) or to the human Reading (t(341) = 13.36, p < .001). Furthermore, the 
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Calibrating behavior displayed by the robot took longer to be identified than the Reading behavior 

displayed by the same agent (t(341) = 4.10, p < .001). 

 

 
 

Figure 4 - Histograms and raincloud plots showing the two-way interaction between Agent and 

Behavior (GLM). Boxplots associated with the raincloud plots depict median values (black 

horizontal lines), interquartile ranges (black boxes), and upper-lower quartile intervals (black 

whiskers). 

 

The interaction was paralleled by a main effect of the Agent [β = -0.18, t(32, 341) = -6.32, p < .001, 

95% CI = (-0.24, -0.13)], indicating that participants were faster to identify the behavior when 

displayed by the robot (t(341) = 7.87, p < .001). Also a main effect of the Behavior was observed [β = 

-0.22, t(32, 341) = -7.71, p < .001, 95% CI = (-0.28, -0.17)], indicating that the Reading behavior was 

faster to identify than the Calibrating behavior (t(341) = 12.34, p < .001). 

 

2.4.3.3 Discussion 

 

With this experiment, we investigated attentional engagement during a novel task that required the 

observation of a human and a robot displaying the same set of behaviors. The results indicated that 

participants displayed longer fixations towards the eye region of the human compared with the same 

region of the robot. Fixation duration is often used as an implicit measure of attentional engagement 

(Ghiglino et al., 2020a; Nummenmaa, Hyönä & Calvo, 2006). Longer fixations are thought to indicate 

higher interest than shorter ones (Geisen & Bergstrom, 2017). Indeed, a human agent might engage 
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individuals’ spontaneous attention more than an artificial agent, due to the natural acquaintance 

people have with their conspecifics (Byrne, 1991).  

The interactions we found on fixation proportion are in line with this hypothesis. Indeed, 

participants explored the area surrounding the eyes mainly when the agent was the human, and when 

he was displaying the Reading behavior. Conversely, individuals explored the face and the 

background regions less when the agent was the robot relative to the human, and when the behavior 

was  Calibrating compared with Reading. This suggests that, during the task, participants' attentional 

resources were focused almost solely on the eye movements of the agent when the agent was artificial, 

and when the behavior was “mechanistic”. The ratio of on-target versus all-targets fixations (i.e. the 

proportion of fixations on a specific area) is often associated with the processing of critical visual 

information (Holmqvist et al., 2011). We, therefore, conclude that participants required less 

attentional efforts to interpret the behavior that they were able to relate to the most (i.e. the Reading), 

especially when the human face, to whom we are more accustomed, displayed it. Indeed, 

understanding intentional behaviors should be easier than attempting to identify mechanistic ones 

(Mele & William, 1992).  

This is in line with the results we found on participants’ decision times. Specifically, we found that 

Reading behavior was relatively fast to identify, while the Calibrating behavior required more time 

to be recognized. Importantly for the aim of the study, the condition that costs the longest decision 

time corresponded to the stimuli where the human was displaying the Calibrating behavior as if 

observing an “intentional” agent that displays a mechanistic behavior requires higher processing 

effort. Interestingly, participants were faster in recognizing both behaviors when the robot displayed 

them than when the human was. This peculiar effect can be explained by taking into account the 

expectations that individuals might have towards the two agents. From a purely anecdotal point of 

view, during the debriefing, a small group of participants reported that they were surprised seeing the 

human behaving “like a robot” (i.e. during the Calibrating behavior). We claim that humans approach 

artificial agents and their conspecifics with different attitudes that could modulate the way they 

interpret behaviors (Hinz, Ciardo, Wykowska, 2019). Based on our results, we can also speculate that 

participants were expecting the robot to display a variety of behaviors (i.e. to behave like a human), 

but they were not expecting the human to behave in a repetitive, mechanistic way (i.e. to behave like 

a robot).  

Along with the effects of Agent and Behavior, we also found the effect of Context on attentional 

processing. In particular, when the Context was non-informative, participants’ fixations on the eye 

region were longer. This may indicate that our participants were more engaged by both agents’ 
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behaviors when they were not distracted by the semantic content of the context (i.e. when the context 

was congruent and incongruent). This is in line with past research investigating the relation between 

local con global features of visual information (De Cesarei & Loftus, 2011). Indeed, the presence of 

a "realistic" context might have distracted our participants from the behavior and the agent, attracting 

their attention towards the background. Thus, the cognitive cost associated with the processing of 

Congruent and Incongruent backgrounds could explain the presence of shorter fixation on the eye 

region of both agents. The three-way interaction we found on fixation proportions is in line with this 

hypothesis; indicating that the interaction between the Agent and the Behavior is particularly strong 

when the Context is congruent with the Behavior. Thus, we can claim that context could prime the 

attention towards local cues.  

Taken together, these findings highlight the complex interplay between visual information and 

attentional engagement, suggesting that intentional agents and seemingly intentional behaviors 

spontaneously attract individuals' attention. However, it might also be the case that the effects we 

discussed could be biased by familiarity. Perhaps both the Human-agent and the Reading behavior 

were simply more familiar to the participants than the Robot who was Calibrating, respectively. 

Indeed, we had to provide examples of the Calibrating behavior to participants before the experiment, 

as it is not common behavior for a human being. In a natural environment, this kind of behavior is 

displayed only during medical visits (eye-exam). On the contrary, Reading is an action commonly 

used in everyday life, and this might have facilitated individuals in the early detection of such 

behavior. Therefore, the results we found with Experiment 1 might have been biased due to the 

disparity of the behaviors we selected in terms of prior exposure.  

Therefore, after Experiment 1, we needed to clarify whether the effects we found could be 

explained with reference to the familiarity participants had with the two behaviors, rather than with 

reference to the degree of intentionality displayed in the behaviors. For this reason, we designed a 

second experiment, in which we focused more on the self-report impressions that the second group 

of participants had towards the behaviors used in Experiment 1. Thus, we tested the familiarity of the 

participants with the behaviors along with their attribution of anthropomorphic traits towards the 

human and the robot. 

2.4.4 Experiment 2 
 

Our second experiment investigated how individuals explicitly interpret the behaviors displayed by 

two different agents, namely the iCub robot and a human. We exposed our participants to several 

videos depicting the humanoid and the human engaged in certain activities on a computer, and we 
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asked them to infer what the agent was doing. We explored our participants’ spontaneous attributions 

as well as their tendency to attribute anthropomorphic traits towards the two agents. This allowed us 

for a deeper comprehension of the results we found in Experiment 1.  

 

2.4.4.1 Methods 

 

Participants. Fifty participants took part in this experiment and were tested via Prolific (Prolific, 

2015), an online recruiting platform (mean age = 26.1 ± 6.0, 20 females). All participants reported 

normal or corrected-to-normal vision and no history of psychiatric or neurological diagnosis, 

substance abuse, or psychiatric medication. All participants declared that their first language was 

English. Each participant provided a simplified informed consent (adapted for online studies) before 

the beginning of the experiment. Our experimental protocols followed the ethical standards laid down 

in the Declaration of Helsinki and were approved by the local Ethics Committee (Comitato Etico 

Regione Liguria). 

 

Stimuli and Apparatus. To address the aim of our second experiment, we used the same pool of 

stimuli used in Experiment 1, with a few modifications. Since here we were interested exclusively in 

the interpretation of the behavior as a function of the agent displaying it, we removed the background 

information from the videos (i.e. we used the original green-screen background). We also included a 

third behavior that we filmed at the same time as the Calibrating and the Reading behaviors, which 

corresponded to the agents Watching movies. We excluded this behavior from Experiment 1, as we 

wanted to have a clear distinction between the active, more “mentalistic” behavior (i.e. Reading) and 

the passive, more “mechanistic” behavior (i.e. Calibrating). Human eye-movement while watching 

movies is a visually-guided behavior, but it is not purely stimulus-driven and might constitute a fuzzy 

category between “intentional” and “non-intentional” behaviors (Peters & Itti, 2007). Furthermore, 

in Experiment 2 we also wanted to clarify whether the differences between the Calibrating and 

Reading (found in Experiment 1) were due to the familiarity with the behaviors (i.e. Calibrating being 

unfamiliar to most of the participants) or to the proprieties of the behavior (i.e. mentalistic vs 

mechanistic). Thus, by adding Watching, we included an additional behavior that was qualitatively 

different from the Reading yet with similar familiarity. Consequently, we generated a pool of 12 

videos fitting a 2 (agent; human, robot) x 3 (Behavior; Reading, Calibrating, Watching) design.  

 

Procedure. We ran the experiment online, using Prolific to recruit participants and SoSci Survey 

(Leiner, 2016) to present the stimuli and collect individuals’ responses. We instructed participants to 
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carefully watch the videos depicting the human and the iCub robot engaged in multiple activities on 

a computer screen. Before the beginning of the experiment, we asked participants to think about all 

the activities that a person can do with a computer (i.e. playing videogames, browsing, taking part in 

a meeting, etc.) and that their task would be to infer what the agents depicted in the videos were doing 

when we filmed them. Participants were allowed to type their answers without a word limit. After 

providing their attributions, participants were asked to report whether the behavior displayed by the 

agent looked familiar to them (two-alternative forced-choice: yes/no), and to rate, on a 10-point Likert 

scale, how much the agent was aware, focused, and interested, as well as the naturalness of the 

displayed behavior. 

 

Analyses. We extracted the verbs used by the participants to describe the actions depicted in the 

videos.  Then, we converted each verb into its non-personal form (gerund). Thus, for each video, we 

excerpted fifty verbs describing the behavior enacted by the agent, according to participants’ answers. 

We then performed a text mining analysis on the verbs to determine the frequency of their use across 

the entire experiment. Then, we compared the frequencies of the most common verbs across 

conditions, using a series of generalized linear mixed models (GLMM) in R Studio. Agent and 

Behavior were treated as fixed factors of the model, and the subjects’ intercept was treated as a 

random factor. Given the nature of our dependent variable (frequency of use), Poisson’s frequency 

distribution was used as a reference function for the models. 

Separately, we analyzed the familiarity reported by participants with each video. We used a GLMM 

to compare conditions. Agent and Behavior were treated as fixed factors and the subjects' intercept 

was treated as a random factor. Since the dependent variable was binary (familiarity), we used the 

binomial distribution as the reference function of the model.   

Finally, we analyzed participants’ ratings on their perceived naturalness of the behavior as well as 

their ratings on perceived awareness, focus, and interest displayed by the agent. Considering the 

negatively skewed distribution of ratings, data were arcsine transformed before the analyses. Then, 

we applied a series of linear mixed models (GLM) to investigate the effects of the Agent and 

Behavior, treated as fixed factors, on the ratings, given the subjects’ intercept as a random factor. 

To clarify whether the effects found on the ratings could be better explained by participants’ 

familiarity with the behaviors, rather than by our experimental design, we estimated four final 

alternative linear models that comprised familiarity as the only fixed factor and each rating as a 

dependent variable. Then, we evaluated the adequacy of each model fit based on a Chi-square 

difference test and the Akaike's Information Criterion (AIC) associated with each model.  
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2.4.4.2 Results 

 

The ten most used verbs to describe the agents’ behaviors were: reading (count = 207), looking (count 

= 94), watching (count = 86), playing (count = 36), browsing (count = 25), following (count = 24), 

staring (count = 17), moving (count = 13), meeting (count = 12), working (count = 12) (Figure 5). 

Only the first three verbs led to converging models, therefore we excluded all the other verbs from 

data analysis to avoid overfitting of data (Finnoff, Hergert & Zimmermann, 1993).   

 

 
 

Figure 5 – Frequency plot of the ten most used verbs used by participants to describe the agents’ 

behaviors. 

 

Regarding the frequency of use of the verb “reading”, we found a significant main effect of the 

Behavior [β = 2.69, t(293) = 6.37, p < .001, 95% CI = (1.86, 3.51)], indicating that this verb was used 

significantly more to describe the Reading behavior rather than for the Calibrating (z(297) = 8.97, p 

< .001) and Watching (z(297) = 9.09, p < .001) behaviors. We found a complementary main effect 

of the Behavior on the frequency of use of the verb “looking” [β = -1.99, t(293) = -3.24, p = .001, 

95% CI = (-3.20, -0.79)], indicating that this latter verb was used less frequently to describe the 

Reading behavior than to describe the Calibrating (z(297) = -4.48, p < .001) or the Watching (z(297) 

= -3.84, p < .001) behaviors. We also found a trend of the Behavior on the frequency of use of the 

verb “watching” [β = 0.58, t(293) = 1.74, p = .082, 95% CI = (-0.07, 1.23)] that did not reach 

significance, but suggested that such verb was used to describe the Watching behavior more often 
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than for the Reading behavior (z(297) = 4.33, p < .001). In addition, participants used the verb 

“watching” slightly more often after the Watching behavior than after the Calibrating one (z(297) = 

2.16, p = .078), and more often after the Calibrating behavior than after the Reading behavior (z(297) 

= 2.63, p = .023). 

When we analyzed the evaluation of familiarity attributed to the videos, we observed a main effect 

of both the Agent [β = -1.70, t(293) = -3.23, p = .001, 95% CI = (-2.72, -0.67); Figure 6A] and the 

Behavior [β = 2.74, t(293) = 3.15, p = .002, 95% CI = (1.04, 4.45); Figure 6B]. The main effect of 

the Agent indicated that videos depicting the human agent were rated as more familiar than videos 

depicting the iCub (z(297) = 3.94, p < .001). The main effect of the Behavior indicated that the 

Reading behavior was perceived as more familiar than both the Calibrating (z(297) = 4.82, p < .001) 

and Watching (z(297) = 6.10, p < .001) behaviors. Surprisingly, the Calibrating behavior was 

evaluated as slightly more familiar than the Watching behavior (z(297) = 2.38, p = .046). 
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Figure 6 – Histograms representing participants’ familiarity with the Agent (a) and with the 

Behavior (b). Horizontal bars denote differences surviving post hoc comparison, asterisks define the 

level of significance of the comparison (*p<.05, **p<.01, p<.001). 

 

Our analyses on participants’ ratings of anthropomorphic traits pointed out a systematic main effect 

of the Agent on all the attributes (i.e. “Naturalness”, “Awareness”, “Focus”, “Interest”). Specifically, 

the human always received higher ratings than the iCub (see Supplementary Materials for detailed 

comparisons). Furthermore, we found a systematic main effect of the Behavior, indicating that the 

Reading behavior received higher ratings than both the Calibrating and the Watching behaviors (see 

Supplementary Materials for detailed comparisons). There was no interaction effect between Agent 

and Behavior.  

Finally, we compared whether the effects on participants’ ratings could be better explained by their 

Familiarity with the behaviors, rather than by the intrinsic characteristics of the Agent and the 

Behavior. For all comparisons, the most predictive models were the ones including the Agent and the 

Behavior as fixed factors, instead of the Familiarity (see Table 1 for detailed comparisons). 

 

Table 1 - Detailed Akaike’s Information Criterion (AIC) of models for each comparison 

 

Measure Fixed Factor(s) AIC χ2 p 

Naturalness Familiarity -1040 
 

Agent*Behavior -1085.5 53.52 < 

.001 

Awareness Familiarity -1056.4 
 

Agent*Behavior -1107.3 58.95 < 

.001 

Focus Familiarity -1108.2 
 

Agent*Behavior -1114 13.86 0.008 

Interest Familiarity -959.93 
 

Agent*Behavior -984.17 32.248 < 

.001 

 

2.4.4.3 Discussion 

 

With our second experiment, we tested individuals' familiarity with the behaviors and agents used in 

Experiment 1.  When asked to infer the Agents’ actions, participants were highly accurate in 

identifying the Reading behavior, which we designed to be the “intentional” behavior of our stimuli. 

Indeed, the eye-movements recorded during the Watching and the Calibrating behaviors were 

dependent on the occurrence of visual stimuli, or, in other words, to a bottom-up oculomotor capture 
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(Troscianko & Hinde, 2011). On the other hand, the eye-movements performed during the Reading 

behavior were actively controlled by the agent himself, who was indeed displaying a top-down 

modulated action (Radach, Huestegge & Reilly, 2008). Observing an “intentional” behavior (i.e. the 

Reading behavior in our experiment) may elicit social cognitive mechanisms related to mindreading, 

which would, consequently, facilitate its identification. This facilitation may sound trivial when 

applied to a natural human-human interaction, as we usually assume human behavior to be driven by 

underpinning mental states and intentions (Dennett, 1971). However, it may be less intuitive when 

applied to artificial agents, as the same facilitation may not apply during observation of robot 

behavior. Indeed, robots do not possess a proper mind to read, but eliciting the ascription of a mind 

towards them could foster human-robot interaction, potentially smoothing the communication 

between natural and artificial systems (Wiese, Metta & Wykowska, 2017). Indeed, our result suggests 

that for our participants it was easier to identify the correct behavior when the action displayed was 

seemingly intentional. We claim that embedding intentional behaviors into embodied, artificial agents 

could boost social engagement by smoothing communication.   

In line with this hypothesis, participants rated the Reading behavior as more natural than the other 

behaviors. Furthermore, when either the human or the robot was displaying it, participants tended to 

rate the agent as more focused, interested, and aware. This suggests that behavioral cues of 

intentionality may affect individuals’ tendency to attribute anthropomorphic traits towards an 

artificial agent.  

It is important to point out that participants perceived the Reading behavior as the most familiar of 

the set, regardless of the agent that was displaying it. Additionally, the nature of the Agent affected 

the attribution of naturalness towards the Behavior, along with the perceived focus, interest, and 

awareness of the Agent (i.e. participants reported high familiarity with the videos that were depicting 

the human agent). However, the model comparisons revealed that the nature of the Agent and the 

Behavior explain our data better than the familiarity ratings alone. This supports the idea that 

familiarity alone cannot fully explain the differences we found in participants’ attributions. At the 

same time, we recognize that intentionality alone might not be the only factor affecting individuals’ 

attribution of anthropomorphic traits towards natural and artificial agents.  

 

2.4.5 General Conclusions 
 

In the current study, we presented two experiments aimed at investigating how individuals perceive 

and attribute human-likeness traits towards natural and artificial agents depending upon the level of 



 

 

 

 

95 

“intentionality” displayed by their behaviors. Taken together, the results of both experiments suggest 

that observing a human and a humanoid displaying the same set of behaviors evokes different implicit 

attentional processes and, consequently, different explicit attributions.  

Our first experiment highlighted the differences in spontaneous attentional engagement during the 

visual processing of the behavior displayed by the two agents. Processing behaviors that appeared as 

“intentional” (i.e. controlled by the agent itself) required less attentional effort than the “mechanistic” 

ones (i.e. purely stimulus-driven). Based on the results of our second experiment, we associate 

attentional engagement with the attribution of human-like traits towards the agent that displays the 

behavior. Indeed, in our second experiment, participants evaluated the seemingly intentional behavior 

as the most anthropomorphic of the set. Additionally, the word-choice participant made to describe 

the behaviors was extremely accurate for the “intentional” ones, suggesting that it is easier for the 

observer to recognize the behavior of an artificial agent when the intent behind it is clear. It is 

important to point out that such facilitation does not depend solely upon the familiarity that 

participants perceived with the behaviors, but mostly to the degree of perceived intentionality and 

anthropomorphism. In other words, the degree of intentionality displayed by an artificial agent may 

affect attentional engagement, which, in turn, affects perceived familiarity and anthropomorphism. 

Thus, facilitating attentional engagement may be desirable to improve communication with artificial 

agents.  

In this sense, endowing artificial agents with human-like behaviors may boost communication and 

attunement towards them, a crucial aspect for deploying robots in environments where social 

interaction is inevitable (e.g., assistive robotics) (Leite, Martinho & Paiva, 2013). Our results bring 

further clarity to these hypotheses, highlighting the complex interplay between explicit attribution of 

anthropomorphic traits and attentional engagement. We claim that the attribution of anthropomorphic 

traits towards an artificial agent is the consequence of the perceived difficulty in processing the 

information related to its behavior. In turn, such perceived complexity may be modulated by the ease 

to ascribe intentions towards the artificial agent. However, it is important to point out that clarifying 

the causal relationship between attentional processing and attribution of anthropomorphism goes 

beyond the scope of the current work, and should be investigated in future research. 

The acceptance of robots as social agents might depend upon their ability to elicit adequately the 

same social cognitive processes that are required during human-human interaction, even at an implicit 

level (Dennett, 1971). At the same time, their behavior needs to be easy to predict and to understand 

from the user perspective (Leite, Martinho & Paiva, 2013). In the last decade, we have been exposed 

to seemingly smart devices daily. Technological progress made the interaction with technology 
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increasingly smooth and dynamic due to the implementation of human-like characteristics in the way 

artificial agents behave and communicate (González, Ramírez, & Viadel, 2012). The implementation 

of human-based and human-inspired behaviors in artificial agents may positively affect both implicit 

attentional processing and explicit attributions, and the spontaneity and naturalness of interaction 

(Dautenhahn, 2007). Furthermore, providing artificial agents with human-like behavior affects 

positively the quality of the interaction (Ghiglino et al., 2020b). In particular, when the physical 

aspect and the behavioral repertoire of artificial agents resemble one of the human beings, individuals 

tend to attribute spontaneously to the agent anthropomorphic traits, including mental states, 

intentional agency, and anthropomorphic traits (Ghiglino et al., 2020b). Subtle hints of human-

likeness displayed by a humanoid robot seem to affect attentional engagement and attribution of 

anthropomorphic traits (see, for example, Thepsoonthorn, Ogawa & Miyake, 2018; Martini, Buzzell 

& Wiese, 2015). However, we demonstrated that such claims could not be generalized to all possible 

behaviors that artificial agents might display during spontaneous interaction with the users. 

In conclusion, the current study supports the hypothesis that embedding robots with human-inspired 

behaviors may facilitate the interaction between them and humans. However, our results suggest that 

it is not sufficient to generate human-like behavior to ease the interaction. Besides, it may be crucial 

that the behavior exhibited by the agent displays traits that can be interpreted as intentional.  
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Supplementary material 
 

Table 2 – Average Fixation Duration (FD) divided per condition and AOI 

 

Agent Behavior Context Average FD 

(Eye Region) 

Average FD 

(Face Region) 

Average FD 

(Background 

Region) 

Human Calibrating Congruent 101.25 69.04 68.08 

Incongruent 98.91 78.65 66.26 

Neutral 126.87 78.27 91.75 

Reading Congruent 98.07 61.36 95.31 

Incongruent 99.16 70.39 93.68 

Neutral 120.16 69.85 105.15 

Robot Calibrating Congruent 89.46 70.54 62.85 

Incongruent 85.76 63.74 63.96 

Neutral 116.28 77.26 84.89 

Reading Congruent 88.44 75.71 76.36 

Incongruent 92.33 73.45 75.53 

Neutral 103.44 72.36 93.89 

 

 

Table 3 – Detailed interactions and main effects on Fixation Duration (FD) in the AOI corresponding 

to eye region 

 
Effect on FD t - Value p value β - Values C.I. 

2.5% 

C. I. 

97.5% 

Agent -2.21 .028 -11.795 -22.141 -1.449 

Behavior -0.60 .432 -3.18 -13.526 7.166 

Context 3.52 <.001 19.012 8.575 29.448 

Agent x Behavior 0.29 .746 2.16 -12.472 16.791 

Agent x Context 1.03 .991 7.81 -6.879 22.512 

Behavior x Context 0.41 .183 3.422 -11.618 17.773 

Agent x Behavior x 

Context 

-1.39 .176 -14.905 -35.643 5.832 

Table 4 – Average Fixation Proportion (FP) divided per condition and AOI 

 
Agent Behavior Context Average FP 

(Eye Region) 

Average FP 

(Face Region) 

Average FP 

(Background 

Region) 

Human Calibrating Congruent 81.30 4.06 14.64 

Incongruent 81.01 5.12 13.87 

Neutral 79.83 5.71 14.46 

Reading Congruent 72.47 7.80 19.74 

Incongruent 73.85 6.14 20.01 

Neutral 74.16 6.50 19.34 
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Robot Calibrating Congruent 81.88 5.28 12.84 

Incongruent 81.91 5.73 12.36 

Neutral 82.46 6.02 11.52 

Reading Congruent 80.46 5.56 13.98 

Incongruent 79.75 5.76 14.50 

Neutral 79.71 6.43 13.86 

 

 

Table 5 – Detailed interactions and main effects on Fixation Proportion (FP) in the AOI 

corresponding to eye region 

 
Effect on FP  t - Value p value β - Values C.I. 

2.5% 

C. I. 

97.5% 

Agent  0.26 .799 0.005 -0.033 0.044 

Behavior  -5.85 <.001 -0.117 -0.156 -0.079 

Context  -1.29 .891 -0.026 -0.065 0.013 

Agent x Behavior  3.65 <.001 0.103 0.049 0.158 

Agent x Context  1.23 .735 0.034 -0.02 0.09 

Behavior x Context  1.79 .075 0.051 -0.004 0.106 

Agent x Behavior x 

Context 

 -2.01 .045 -0.081 -0.158 -0.003 

 

 

Table 6 – Average Decision Times (DTs) divided per condition 

 

Agent Behavior Context Average 
DTs 

Human Calibrating Congruent 5372.65 

Incongruent 5353.54 

Neutral 5399.91 

Reading Congruent 4235.94 

Incongruent 4204.50 

Neutral 4316.05 

Robot Calibrating Congruent 4502.33 

Incongruent 4654.01 

Neutral 4570.06 

Reading Congruent 4199.00 

Incongruent 4181.08 

Neutral 4167.55 

 

Table 7 – Detailed interactions and main effects on Decision Times (DTs) in the AOI corresponding 

to eye region 

 
Effect on DTs t - Value p value β - Values C.I. 

2.5% 
C. I. 
97.5% 

Agent -6.32 <.001 -0.181 -0.237 -0.126 
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Behavior -7.71 <.001 -0.221 -0.276 -0.165 

Context 0.06 .958 0.001 -0.054 0.057 

Agent x Behavior 4.25 <.001 0.172 0.094 0.251 

Agent x Context 0.23 .604 0.028 -0.068 0.088 

Behavior x Context 0.35 .679 -0.015 -0.064 0.092 

Agent x Behavior x Context -0.67 .800 -0.038 -0.149 0.072 

 

Table 8 – Detailed effects of Agent and Behavior on participants' ratings of Naturalness, Awareness, 

Focus, and Interest 

 

Measure Effect Contrast β t(293)  p 2.5 % CI  97.5 % CI 

Naturalness Agent 
 

-0.05 -6.82 < .001 -0.06 -0.03 

Human  
- 
Robot 

- 11.76 < .001 - - 

Behav. 
 

0.03 4.74 < .001 0.02 0.05 

Calibrating  
-  
Reading 

- -7.14 < .001 - - 

Calibrating  
-  
Watching 

- -1.52 .028 - - 

Reading  
-  
Watching 

- 5.62 < .001 - - 

Awareness Agent 
 

-0.04 -5.41 < .001 -0.05 -0.02 

Human  
- 
Robot 

- 8.59 < .001 - - 

Behav. 
 

0.02 3.04 .003 0.01 0.03 

Calibrating  
–  
Reading 

- -5.27 < .001 - - 

Calibrating  
-  
Watching 

- 1.54 .272 - - 

Reading  
-  
Watching 

- 6.81 < .001 - - 

Focus Agent 
 

-0.03 -5.13 < .001 -0.04 -0.02 

Human 
-  
Robot 

- 6.75 < .001 - - 

Behav. 
 

0.02 2.63 .009 0.00 0.03 

Calibrating  
-  
Reading 

- -4.77 < .001 - - 
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Calibrating  
-  
Watching 

- 0.35 .936 - - 

Reading  
-  
Watching 

- 5.12 < .001 - - 

Interest Agent 
 

-0.04 -4.37 < .001 -0.05 -0.02 

Human  
-  
Robot 

- 7.03 < .001 - - 

Behav. 
 

0.02 2.73 .007 0.01 0.04 

Calibrating  
–  
Reading 

- -3.81 .001 - - 

Calibrating  
-  
Watching 

- 1.77 .183 - - 

Reading  
-  
Watching 

- 5.57 < .001 - - 
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SECTION III - GENERAL DISCUSSION 
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3 Synopsis of Results 
The work described in this thesis aimed at identifying some of the behavioral parameters that might 

make robots appear more human-like. This, in turn, may facilitate interaction and communication 

between artificial agents and their users. Specifically, studies reported in Section II could provide 

useful insights for robot developers and designers, as we highlighted that human-based behaviors 

boost attentional engagement and the attribution of anthropomorphic traits. As a cascade effect, we 

speculate that this might maximize attunement with the artificial agent and smooth communication 

between the agent and its user. Furthermore, we showed the importance of combining both explicit 

and implicit measures to assess individual differences and how humans behave during HRI scenarios.  

Publication I aimed at pinpointing the effects on human-likeness attribution towards a virtual agent 

(i.e. an avatar of the iCub robot) due to spatial and temporal information of the behavior it displays. 

Results of the study showed that temporal features of the movement displayed by the agent modulate 

the attribution of anthropomorphic traits more than spatial features. In detail, considering the set of 

behaviors implemented in the avatar, slower movements were rated by participants as more human-

like. This result suggests that human-likeness attribution does not rely only on pure kinematic 

patterns, but also on temporal dynamics. We found also a gender difference in our sample (i.e. females 

tended to rate higher the human-likeness of the avatar than males, regardless of the features of the 

behavior), supporting the idea that individual differences could bias the attribution of 

anthropomorphic traits.  

Following the results of Publication I, Publication II aimed at investigating more in detail individuals’ 

sensitivity towards human-based behaviors implemented in an embodied artificial agent (i.e. the iCub 

robot). The results of the study suggest that individuals’ a priori knowledge of the behavior displayed 

by the agent strongly affect their sensitivity in HRI scenarios. Specifically, the information that we 

provided to our participants before interacting with the robot overrode empirical evidence 

accumulated during the interaction and affected the attribution of anthropomorphic traits towards the 

iCub robot. In this study, we also further explored individual differences that could play a role during 

the interaction with artificial agents. Our results suggest that sociodemographic characteristics (i.e. 

years of education) and psychological traits (i.e., Conscientiousness and Neuroticism) that play a role 

during the interaction with other humans may affect also the interaction with humanoid robots or, at 

least, their attitudes towards them. 

In Publication III we tested the use of implicit measures (i.e. eye-tracking measures) to assess 

individuals’ reactions in HRI scenarios, along with self-report questionnaires. The study aimed at 

identifying potential differences in terms of visual processing and attentional engagement due to 
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subtle hints of human-likeness displayed by an artificial agent in a screen-based experiment. Results 

of the experiment showed that participants tended to attribute higher human-likeness to movements 

that were markedly slow and variable, rather than movements that were within the human temporal 

range. This result is partially in line with Publication I, as it seems that movements displaying a slower 

temporal dynamic are perceived as more anthropomorphic than faster ones. Interestingly, our 

analyses of eye-tracking measures pointed out that attentional engagement was higher when 

participants observed human-range behaviors rather than when they were observing slow or non-

variable behaviors. Furthermore, considerably mechanistic behaviors (i.e. non-variable) recruited the 

use of a different scan path than human-range behaviors (i.e. variable), characterized by a greater 

number of fixations. Taken together, our results suggest that the explicit attribution of 

anthropomorphic traits does not necessarily reflect the easiness of processing behavioral information 

conveyed by an artificial agent. Indeed, explicit attributions may be biased by individuals’ priors 

towards robotics, which might be too strong to be modulated during short interactions with a robot 

during experimental protocols in the lab. This claim is in line with what was reported in Publication 

II.  

Publication IV complements results of Publication III, and combines, once again, implicit measures 

(i.e. eye-tracking data, decision times) with more explicit measures (i.e. self-report questionnaires). 

The aim of the last study presented in this thesis was to define differences in the processing of 

behaviors displayed by avatars either of a human being or a humanoid robot (i.e. the iCub robot). In 

the first experiment of this study, we focused on behaviors that can be defined as intentional (i.e. 

reading a text on a screen) and semi-intentional (i.e. following a dot moving on a screen. Results of 

this experiment pointed out a higher attentional engagement towards the human agent rather than the 

humanoid robot. Additionally, our results suggest that lower processing efforts\ is required to identify 

the “intentional” behavior. This result is in line with Publication III, as it suggests that, at the 

attentional level, highly variable human-based behaviors seem to be easier to process than repetitive, 

mechanistic behaviors (as in the case of following a dot on the screen). This supports the hypothesis 

that implementing human-based behavior into artificial agents can smoothen communication and, 

possibly, interaction. Furthermore, Experiment II of Publication IV highlighted that individuals are 

more accurate in the identification of intentional behaviors displayed by a robot than when it 

displayed more passive/mechanical behaviors. This is in line with Publication II and III, adding an 

important finding: implementing pure human-based kinematic patterns in an artificial agent might 

not be sufficient to elicit anthropomorphic attribution and to facilitate HRI if the intentions behind 

the behavior are not clear.  



 

 

 

 

108 

 

 

3.1 Implications for the investigation of social cognition in human-robot 

interaction 
 

Robots embedded with social abilities are designed to assist humans in daily routines.  Social robots 

are supposed to interact and support humans in several contexts, from the domestic to the healthcare 

environments. In order to smoothen the interaction and maximize the support that such technologies 

can provide, robots should be embedded with enough “social intelligence” to understand the needs 

of the user and provide an appropriate behavior. Tailoring the behavior of an artificial agent to the 

requests and needs of the human interacting with it is a huge challenge for social robotics. Aside from 

the development of appropriate technical solutions, it is crucial to understand, from a cognitive point 

of view, how humans interact with artificial agents. Indeed, the success of human-robot interaction 

depends not only on the technical capabilities and behavioral repertoire of the artificial agent but also 

on the ease with which humans attune and coordinate with it. Previous literature suggested that 

performance during human-robot interaction (HRI) may be boosted when the human socially attunes 

with the artificial agent, treating it as if it possessed mental states and anthropomorphic traits (see, 

for example, Wiese, Metta, & Wykowska, 2017).  However, social cognitive mechanisms displayed 

by humans during HRI scenarios could be influenced also by personality traits, demographic 

characteristics, cultural belonging, and previous experience with artificial agents. Indeed, the same 

interaction with the same robot could be perceived as smooth or stressful, depending on the user's 

biases and prior beliefs.  Several individual differences might concur in the attribution of mental states 

and intentional agency towards artificial agents. Still, the complex interplay between individual 

differences and artificial agents’ behaviors requires further systematic investigation. In particular, it 

is still unclear whether priors and biases towards social robots could be modulated by exposing 

individuals to direct HRI. Our results and, in particular, results of Publication II, suggest that exposing 

individuals to direct HRI might not be sufficient to modulate priors and biases. Conversely, some 

individuals’ dispositions towards artificial agents, including knowledge and experience with robotics, 

might override empirical evidence provided by the robot behavior and might modulate the attitude 

displayed during the interaction (Ciardo et al., 2020). Results reported in this thesis suggest the need 

of assessing such differences more in-depth, to better understand which personality traits and 

individual factors affect HRI. This includes the adoption of assessment tools that are typical of 

psychological research, to define whether the factors that affect human-human interaction influence 
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human-robot interaction as well. Exploring such a research topic is fundamental, as new technologies 

have become inexorably an integral part of our everyday life. However, it will be not sufficient to 

investigate HRI solely relying on the assessment of individuals’ dispositions and explicit measures 

of human-likeness attribution. As suggested by our results, HRI research should focus also on the 

investigation of individuals' automatic (and, often, implicit) reactions during interactive scenarios. 

The adoption of implicit measures able to discriminate whether an individual engages and attunes 

with an artificial agent is crucial for maximizing the communication between the two agents. 

Indeed, we are exposed to seemingly smart devices on a daily basis, and this makes the interaction 

with technology increasingly smooth and dynamic (Gonzàles et al., 2012). Recent literature well 

supports the idea that artificial agents able to behave like human beings facilitate the spontaneity and 

naturalness of interaction (Wiese, Metta & Wykowska, 2017). Providing artificial agents with human-

like behavior affects positively the quality of the interaction (Thepsoonthorn, Ogawa & Miyake, 

2018). In particular, when the physical aspect and the behavioral repertoire of artificial agents 

resemble one of the human beings, individuals tend to spontaneously attribute to the agent 

anthropomorphic traits, including mental states, intentional agency, (Martini, Buzzell, & Wiese, 

2015). The studies included in this thesis support this hypothesis and showed consistently that not 

only the attribution of human-like traits towards an artificial agent but also spontaneous attentional 

engagement can be modulated by the behavior it displays. We hypothesize that facilitating attentional 

engagement would cause, as a cascade effect, the improvement of the communication with artificial 

agents. Indeed, we consistently showed that intentional, human-like behaviors tend to be easier to 

process for the participants of our experiments. Thus, embedding artificial agents with human-like 

behaviors is supposed to boost social attunement towards them, and this aspect could be particularly 

crucial for deploying social robots in environments where social interaction is desirable (e.g., assistive 

robotics) (Leite, Martinho, & Paiva, 2013). Indeed, treating artificial agents as if they were 

anthropomorphic entities with a synthetic “mind” may help individuals during natural interactions, 

as these processes allow us to predict and explain the behaviors displayed by other individuals in 

every-day interactions with our conspecifics (Barresi & Moore, 1996). Previous research showed that 

similar mechanisms might be activated in interaction with artificial agents (Krach et al., 2008), and 

vary depending upon individual differences and available contextual information (Hinz, Ciardo, 

Wykowska, 2019). Our results bring further clarity to these hypotheses, highlighting the complex 

interplay between individual differences, explicit attribution of anthropomorphic traits, mind-

ascription, and attentional engagement. In particular, individual differences do not affect the implicit 

processing of visual information, which might rely on more low-level components of social-
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cognition. Indeed, attentional engagement seems to be mainly driven by the behavior of the artificial 

agent, rather than by the individual’s dispositions towards the agent itself. This provides useful insight 

that might be used for the development of artificial agents that will interact, in the future, with human 

users on a daily basis. The acceptance of robots as social companions might actually depend on their 

ability to adequately elicit such social cognitive processes during the interaction, even at an implicit 

level (Ghiglino et al., 2020). At the same time, social robots need to be able to understand the users’ 

needs, feelings, and intentions in order to adapt their skills and behaviors accordingly (Leite, 

Martinho, & Paiva, 2013).  

Previous studies investigated how attitudes and biases towards robotics could affect the interaction 

with artificial agents (Perez-Osorio et al., 2019), along with personality traits and cultural differences 

(Weiss, Evers, 2011). However, such systematic investigation of such individual differences has been 

scarce so far. Most of the past research relies solely on the administration of questionnaires and online 

surveys. Nevertheless, biases and attitudes towards social robots could be modulated during HRI 

scenarios, through the accumulation of empirical shreds of evidence (Cross, Hortensius, Wykowska, 

2019). In the current thesis, we explored the hypothesis that prior beliefs and attitudes towards 

artificial agents may affect social interaction with social robots, which, in turn, could modulate priors 

and attitudes, in circular logic. Indeed, it is still unclear whether eliciting mind ascription and human-

like traits towards social robots during the interaction could reduce negative attitudes and biases 

towards robots. Considerable progress has been made in recent years in terms of the technical 

realization of artificial agents. However, further interdisciplinary research is required to complement 

technical solutions with the understanding of social cognitive processes that are uniquely adopted 

during the interaction with social robots (Shellen, Wykowska, 2019).  Indeed, the ability of robots to 

socially and intuitively interact with the users is still limited, and future research on the psychological 

underpinning of HRI could improve both the design of artificial agents and our understanding of 

social cognitive mechanisms in humans. The work presented in this thesis supports the idea that the 

investigation of social cognition mechanisms elicited in HRI scenarios needs to comprise the 

collection of explicit and implicit measures, assessing individual’s differences/attitudes towards 

robots as well as attentional engagement during interaction with artificial agents. In particular, the 

combination of surveys and questionnaires with eye-tracker and behavioral measures allows for a 

better understanding of spontaneous social mechanisms elicited by HRI.  
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3.2 Limitations and Future Directions 

Results reported in Section II highlight the importance of adopting a neuroscientific approach to HRI 

research. The integration of explicit and implicit measures of attunement and anthropomorphic 

attribution is desirable to explore how individuals interact with artificial agents. However, some 

limitations emerged during the studies that are reported in this thesis. First, we identified the lack of 

proper explicit measures that allow for a comprehensive understanding of individuals’ propensity to 

treat artificial agents as mentalistic, human-like entities. Furthermore, despite the existence of 

validated tools to evaluate participants' attitudes towards artificial agents, we identified a lack of tools 

that can assess properly individuals’ familiarity with robotics, which might affect attunement with a 

robotic agent. To compensate for these potential limitations, we developed two ad-hoc solutions: (1) 

the InStance questionnaire (Marchesi et al., 2019), which is aimed to evaluate individuals’ tendency 

to describe the behavior of an artificial agent with reference to mental states and intentions or with 

reference to its functioning; (2) the RobEx questionnaire (Perez-Osorio et al., 2019), which is aimed 

to assess individuals’ mastery with robotics. These measures provide useful pieces of information 

that should be taken into consideration for future research in HRI. However, future research should 

investigate more in-depth the relationship between such measures and other individuals’ 

characteristics that might affect HRI (i.e., personality traits, general attitudes towards robots), to 

provide the HRI community with a comprehensive battery of tests that can properly assess 

individuals’ dispositions.  

Another potential limitation of the studies proposed in this thesis is the nature of the presented 

experiments, which were either observational or screen-based. Indeed, natural and spontaneous 

interactions with artificial agents might lead to different social-cognitive processes than those 

reported in Section II. In particular, we speculate that the exposure to artificial agents that display 

hints of human-likeness during more interactive scenarios may boost social attunement, thus 

overriding individual priors and biases. Indeed, future research should investigate scenarios in which 

the “intentions” of the agents become crucial for the execution of a task. However, it is important to 

point out that the work reported was meant to lay grounds for further research by providing well-

controlled experiments addressing specific and “dissected” parameters of artificial agent behavior. 

Further research can extend these paradigms into more ecologically valid scenarios.  

3.3 Conclusions  

In the near future, social robots could assume roles of great relevance in the assistive care for 

vulnerable people, such as elderly or hospitalized patients. Therefore, the development of tailor-made 
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solutions that can ease the interaction between social robots and their users is crucial. In the current 

work, we proposed an innovative approach to the investigation of social cognition mechanisms that 

use the combination of technological solutions (robotics) and neuroscientific methods (eye-tracking). 

Indeed, before implementing robots with the ability to adapt to their users, it is fundamental to identify 

(1) individual differences that play a role in social attunement toward artificial agents and (2) specific 

robot behaviors that might facilitate social attunement, attentional engagement, and communication. 

From one side, a deep understanding of individuals’ priors and biases towards robotics would 

optimize technical solutions aimed to bolster social interaction. In particular, it is crucial to 

understand the user’s behavioral and personality indicators of reduced comfort, stress, and poor 

mental state attribution during HRI scenarios, as such factors could undermine the social acceptability 

of artificial agents (Whelan et al., 2018). At the same time, it is fundamental to investigate what are 

the characteristics of artificial agents’ behavior that play a role in the ascription of mental states and 

intentions, as those might facilitate predictability and explainability of robot behavior, thereby 

boosting social attunement.  
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