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Abstract

Network inference is becoming increasingly central in the analysis of complex
phenomena as it allows to obtain understandable models of entities interac-
tions. Among the many possible graphical models, Markov Random Fields
are widely used as they are strictly connected to a probability distribution as-
sumption that allow to model a variety of different data. The inference of such
models can be guided by two priors: sparsity and non-stationarity. In other
words, only few connections are necessary to explain the phenomenon under
observation and, as the phenomenon evolves, the underlying connections that
explain it may change accordingly.
This thesis contains two general methods for the inference of temporal graph-
ical models that deeply rely on the concept of temporal consistency, i.e., the
underlying structure of the system is similar (i.e., consistent) in time points
that model the same behaviour (i.e., are dependent). The first contribution is a
model that allows to be flexible in terms of probability assumption, temporal
consistency, and dependency. The second contribution studies the previously
introduces model in the presence of Gaussian partially un-observed data. In-
deed, it is necessary to explicitly tackle the presence of un-observed data in
order to avoid introducing misrepresentations in the inferred graphical model.
All extensions are coupled with fast and non-trivial minimisation algorithms
that are extensively validate on synthetic and real-world data. Such algorithms
and experiments are implemented in a large and well-designed Python library
that comprehends many tools for the modelling of multivariate data.
Lastly, all the presented models have many hyper-parameters that need to be
tuned on data. On this regard, we analyse different model selection strategies
showing that a stability-based approach performs best in presence of multi-
networks and multiple hyper-parameters.

i



Publications

Some ideas and figures have appeared previously in the following publica-
tions.

journal publications

Veronica Tozzo, Clohé-Agathe Azencott, Samuele Fiorini and Annalisa Barla.
Where do we stand in regularization for life science studies? Submitted. (2019)

conference proceedings

Veronica Tozzo, and Annalisa Barla. "Multi-parameters Model Selection for
Network Inference." International Conference on Complex Networks and Their Ap-
plications. Springer, Cham. (2019)

Federico Tomasi, Veronica Tozzo, and Annalisa Barla. Temporal Patterns De-
tection in Time-Varying Graphical Models. Submitted. (2019)

Federico Tomasi, Veronica Tozzo, Alessandro Verri and Saverio Salzo. Forward-
Backward Splitting for Time-Varying Graphical Models. Proceedings of the Ninth
International Conference on Probabilistic Graphical Models, in PMLR (2018) pp.
72:475-486

Federico Tomasi*, Veronica Tozzo*, Saverio Salzo and Alessandro Verri. Latent
variable time-varying network inference. Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (2018). pp.2338-
2346

Veronica Tozzo, Federico Tomasi, Margherita Squillario and Annalisa Barla.
Group induced graphical lasso allows for discovery of molecular pathway-
pathway interactions. Machine Learning for Health (ML4H) Workshop at NeurIPS
(2018) - arXiv181109673T

posters and oral presentations

Veronica Tozzo and Annalisa Barla. Modelling of gene expression time series
with the latent time-evolving graphical lasso. 3rd Annual MAQC Society Confer-
ence (2019).

Veronica Tozzo, Federico Tomasi, Margherita Squillario, Saverio Salzo and An-
nalisa Barla. Regularized extension of the latent graphical lasso allows prior
imposition. International seminar and workshop on Stochastic dynamics on large
networks: Prediction and inference (2018).

ii

arXiv181109673T


Acknowledgements

I am extremely grateful to all the people that helped me during my PhD. I
would like to thank my advisor, Annalisa Barla and all the members of the
research group, who thought me almost everything I know. Special thanks to
Federico Tomasi for contributing to the main core of the thesis in many ways
through endless discussions, coding tricks and paper writing (his contribu-
tions are partially present in Chapter 4, 5, 6 and 7). To Vanessa D’Amario for
constant support and collaboration in the analysis on neural data. To Davide
Garbarino for all the encouragement in this last month, the theoretical explan-
ations and corrections of both Chapters 4 and 5. To Samuele Fiorini for helping
me understand the machine learning basics always and again. To Margherita
Squillario for the biological validation on Neuroblastoma data (Chapter 7). I
am grateful to Saverio Salzo for teaching me everything I know on optimisa-
tion and for the active contribution on Chapter 4, Appendix A and B.
Thanks to all the 309 guys, especially to DOCS. It has been an adventure, you
all made it great.
Thanks to my parents that support me, and this research career, even if it will
bring me far from home. Thanks to my sister, Laura, for being enthusiast and
proud of everything I do, even when I am not. Finally, thanks to Federico for
being by my side during these three years with patient, understanding and
love.

iii



Contents

Introduction 1

i background 7

1 regularized markov models 8

1.1 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Gibbs Random Fields . . . . . . . . . . . . . . . . . . . . . 10

1.2 Markov Random Fields and the Exponential Families . . . . . . . 11

1.2.1 Exponential Families . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Exponential-family based Graphical Models . . . . . . . . 12

1.3 Network Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 `1 Penalisation . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Penalized MLE for Generalized Graphical Models . . . . . 15

1.3.3 Sparsistency and persistence . . . . . . . . . . . . . . . . . 17

1.4 Gaussian Graphical Models (GGMs) . . . . . . . . . . . . . . . . . 18

1.4.1 Lasso Penalisation . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Ising Graphical Models (IGMs) . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Lasso penalisation . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Poisson Graphical Models (PGMS) . . . . . . . . . . . . . . . . . . 21

1.6.1 Lasso penalisation . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Temporal extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7.1 Temporal consistency . . . . . . . . . . . . . . . . . . . . . 24

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 gaussian graphical models with missing data 27

2.1 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Expectation Maximization Algorithm . . . . . . . . . . . . . . . . 30

2.2.1 Initalisations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 GGMs with Partial Data . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Synthetic Data Experiments . . . . . . . . . . . . . . . . . . 34

2.4 GGMs with Latent Data . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Non-Convex Approach . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Convex Approach . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.3 Synthetic Data Experiments . . . . . . . . . . . . . . . . . . 39

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ii contribution 41

3 hyper-parameters selection and performance evaluation 42

3.1 General network inference functional . . . . . . . . . . . . . . . . 43

3.2 Performance Metrics for Graphical Models . . . . . . . . . . . . . 44

3.2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Multi-parameters Model Selection for Network Inference . . . . . 47

3.3.1 Likelihood scores for multi-parameters model selection . 48

iv



contents v

3.3.2 Stability-based multi-parameters model selection . . . . . 51

3.3.3 Synthetic data experiments . . . . . . . . . . . . . . . . . . 56

3.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 methods for generalised temporal network inference 62

4.1 Temporal Consistency and Dependency . . . . . . . . . . . . . . . 63

4.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Stationary Kernels . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.3 Minimisation Algorithm . . . . . . . . . . . . . . . . . . . . 67

4.2 Automatic Inference of Temporal Dependencies . . . . . . . . . . 67

4.2.1 Minimisation Algorithm . . . . . . . . . . . . . . . . . . . . 68

4.3 Kernel Temporal Graphical Lasso . . . . . . . . . . . . . . . . . . . 69

4.3.1 Synthetic data experiments . . . . . . . . . . . . . . . . . . 70

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Temporal Ising Graphical Models . . . . . . . . . . . . . . . . . . . 72

4.4.1 Synthetic data experiments . . . . . . . . . . . . . . . . . . 74

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Temporal Poisson Graphical Models . . . . . . . . . . . . . . . . . 76

4.5.1 Synthetic data experiments . . . . . . . . . . . . . . . . . . 78

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Multi-class problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 Synthetic experiments . . . . . . . . . . . . . . . . . . . . . 80

4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 temporal graphical lasso with missing data 88

5.1 Missing values in temporal models . . . . . . . . . . . . . . . . . . 89

5.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Partial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Latent Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 Synthetic Data Experiments . . . . . . . . . . . . . . . . . . 94

5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Latent Variables Marginalisation . . . . . . . . . . . . . . . . . . . 96

5.3.1 Minimisation Algorithm and Automatic Kernel Discovery 98

5.3.2 Synthetic Data Experiments . . . . . . . . . . . . . . . . . . 98

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Prior on latent variables identity . . . . . . . . . . . . . . . . . . . 103

5.4.1 Synthetic data experiments . . . . . . . . . . . . . . . . . . 104

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 regain 108

6.1 Implemented models . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Related Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Usage Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



contents vi

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

iii applications and conclusions 116

7 real-world applications 117

7.1 Food search trends . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Stock market prices . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Neuroblastoma gene expression profiles . . . . . . . . . . . . . . . 120

7.4 Weather data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Conclusions 132

iv appendix 135

a minimisation of tggmκ , tigmκ , tpgmκ 136

a.1 K and Z0 step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

a.1.1 Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

a.1.2 Ising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

a.1.3 Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

a.2 Zs step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

a.3 Termination Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 142

a.4 The problem is separable . . . . . . . . . . . . . . . . . . . . . . . 142

a.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

a.4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

a.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

b minimisation ltglκ 146

b.1 R step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

b.2 K step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

b.3 L step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

b.4 Zs and Ws step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

b.5 Termination Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 150

c synthetic data generation 151

c.1 `1 evolution schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

c.2 `2
2 evolution schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

c.3 Particles diffusion evolution schema . . . . . . . . . . . . . . . . . 152

c.4 Cluster-based evolution schema . . . . . . . . . . . . . . . . . . . . 153

c.5 Conditioning-based generation . . . . . . . . . . . . . . . . . . . . 155

c.6 Multi-class schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

bibliography 157

Acronyms 169



List of Figures

Figure 1 Example of a graphical model where the node A is in-
dependent from the nodes B, E, and D given the other
nodes. The dashed edge represents the edge we condi-
tion away by considering the note C. . . . . . . . . . . . . 9

Figure 2 Example of 2-nodes and 3-nodes: small fully connected
sub-graphs in an undirected graph of 5 nodes. . . . . . . 10

Figure 3 Graphical representation of a dataset with different pos-
sible conditions of missing values: (a) all the observa-
tions for all the variables are available; (b) all the obser-
vations for X3 are missing (i.e., X3 is latent); (c) some
values missing completely at random Little and Rubin,
2019; (d) all observations for one variables are missing
and the other variables have some missing observations. 29

Figure 4 Toy example of different initialisation strategies to deal
with partial data. In the top left corner we have the
original complete data matrix and on its right the one
that we can actually observe. On the bottom we can
see the results obtained with complete cases (left) in
which we reduced the samples size to two available
samples, available cases (middle) in which we have dif-
ferent samples for each variable and imputing (right) in
which we insert an empirical mean different from the
true one (bottom yellow row). . . . . . . . . . . . . . . . . 31

Figure 5 Average results across 10 repetitions for the comparison
in terms of ROC and PR curves of the Graphical Lasso
(GL) and the Missing Graphical Lasso (MissGL)on a
dataset of D = 10 nodes and N = 100 samples. MissGL
is applied on the dataset at different percentages of ran-
dom missing values. . . . . . . . . . . . . . . . . . . . . . 35

Figure 6 Toy example of a network structure when we consider
the latent variables. In the leftmost network we see the
complete network on all the variables, both latent and
observed, in the middle the true network only on the
observed variables while in the rightmost network we
have the network on the observed variables if we do not
consider the influence of the latent. . . . . . . . . . . . . 36

vii



List of Figures viii

Figure 7 Results comparison in terms of ROC and PR curves of
the Graphical Lasso (GL), the Latent Graphical Lasso
(LGL) and the Latent Variables Graphical Lasso (LVGLASSO)
on the inferred observed part of the adjacency matrix of
a graph with |O| = 100 observed variables, |M| = 5
latent and N = 100 samples. . . . . . . . . . . . . . . . . . 40

Figure 8 Example of 3-Fold cross-validation schema. At each round
the dataset is split in train and test with a fixed number
of samples in each split. The train sets never overlap. . . 49

Figure 9 Example of Monte Carlo cross-validation schema.At each
round the dataset is split by randomly selecting a per-
centage of samples for training. Across rounds the train
sets may overlap. . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 10 Example of construction of a Graphlet Correlation Vec-
tor (GCV) used for the computation of stability of the
inference method under multiple sub-sampling of the
input data. On the top we have the representation of 4-
nodes graphlets with the corresponding 14 orbits. Such
graphlets are searched in the graph (blue nodes one
on the left) and for each node we count how many
times a specific type of orbit touches it. The, to compute
the Graphlet Correlation Matrix (GCM) ([0, 1]14×14) we
compute the Spearman correlation coefficient of the ob-
tained results. The ravelled upper triangular part of the
GCM corresponds to the GDV of the graph. . . . . . . . 54

Figure 11 Instabilities curves obtained applying the stability-based
model selection methods for multiple parameters (m/mg-
StARS) on the Joint Graphical Lasso. On the top we have
the single edge instabilities (blue line) and their upper
bound (orange line), The vertical lines delimit the space
in which to look for graphlet stability (bottom plot line). 55

Figure 12 Results comparison in terms of ROC and PR curves of
the performance of the Joint Graphical Lasso for dif-
ferent hyper-parameters (model) selection methods as
m/mg-StARS, likelihood, BIC, EBIC and EBIC_m. . . . 57

Figure 13 Results comparison in terms of ROC and PR curves of
the performance of the Latent Graphical Lasso for dif-
ferent hyper-parameters (model) selection methods as
m/mg-StARS, likelihood, BIC, EBIC and EBIC_m. . . . 58

Figure 14 Results comparison in terms of ROC and PR curves of
the performance of the Time-Varying Graphical Lasso
model (with temporal evolving behaviour `1) considered
as single separated networks for different hyper-parameters
(model) selection methods as m/mg-StARS, likelihood,
BIC, EBIC and EBIC_m. . . . . . . . . . . . . . . . . . . . 59



List of Figures ix

Figure 15 Results comparison in terms of ROC and PR curves of
the performance of the Time-Varying Graphical Lasso
model (with temporal evolving behaviour `1) for dif-
ferent hyper-parameters (model) selection methods as
m/mg-StARS, likelihood, BIC, EBIC and EBIC_m. . . . . 60

Figure 16 Results comparison in terms of ROC and PR curves of
the performance of the Time-Varying Graphical Lasso
model (with temporal evolving behaviour `2) considered
as single separated networks for different hyper-parameters
(model) selection methods as m/mg-StARS, likelihood,
BIC, EBIC and EBIC_m. . . . . . . . . . . . . . . . . . . . 60

Figure 17 Results comparison in terms of ROC and PR curves of
the performance of the Time-Varying Graphical Lasso
model (with temporal evolving behaviour `2) for dif-
ferent hyper-parameters (model) selection methods as
m/mg-StARS, likelihood, BIC, EBIC and EBIC_m. . . . . 61

Figure 18 Examples of temporal evolving networks with Markovian
(first row) and non-Markovian temporal dependencies
(smooth, periodic and random). If we focus on time t4

(highlighted in yellow) we observe on top of the net-
work structure red rectangles that identify the time points
from which t4 is dependent on. Such dependency is
forced on the structure by a consistency function Ψ. On
the right side the related kernels that allow for the im-
position of specific temporal dependency patterns, i.e.,
they provide a more structured representation of the
rectangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 19 Performance of Time (in seconds), Matthew Correla-
tion Coefficient (MCC), Mean Squared Error (MSE) and
V-measure for the Graphical Lasso (GL), Wishart Pro-
cesses (WP), Time-varying Graphical Lasso (TGL), Ker-
nel Temporal Graphical Lasso (TGLκ) and Temporal Graph-
ical Lasso with Pattern detection (TGLS) for two ex-
periments on complex temporal dependencies: periodic
dependencies (top results) and random dependencies
(bottom results) on networks of D = 100 dimensions,
T = 20 times and increasing sample size Nt ∈ {5, 10, 50, 100, 500}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 20 Average results across 10 repetitions in terms of ROC
and PR curves for the application of different minimisa-
tion algorithm on stationary Ising model with N = 100,
D = 120 for a fixed hyper-parameter α. . . . . . . . . . . 76



List of Figures x

Figure 21 Qualitative comparison of automatic dependency pat-
terns inference for Temporal Ising Graphical Model with
periodic kernel (TIGMESS) (panel b) and Temporal Ising
Graphical Model with Pattern detection (TIGMP) (panel
c) compared to the ground truth (panel a) for the infer-
ence of dependency pattern with periodical repetitions
in T = 15 time points on D = 10 variables and Nt = 100
observations. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 22 Exemplification of the elbow behaviour in the Precision-
Recall curves. . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 23 Example of 5 neurons activity whose underlying con-
nectivity network is clustered in time (clusters are shown
at the top). By looking at the behaviour of clustered time
points we cannot observe any significative resemblance
but the inference of the underlying networks (plotted
on the bottom) guides us in the detection of similarities. 83

Figure 24 Average results across 10 repetitions in terms of ROC
and PR curves for the comparison of Temporal Ising
Graphical Model with RBF kernel (TIGMRBF) against
stationary Ising Graphical Model (IGM) for an increas-
ing number of variables D = {5, 10, 50} at T = 10 time
points with a fixed number of samples Nt = 100. . . . . . 84

Figure 25 Average results across 10 repetitions in terms of ROC
and PR curves for the comparison of Temporal Poisson
Graphical Model with RBF kernel (TPGMRBF) against
stationary Poisson Graphical Model (PGM) for an in-
creasing number of variables D = {5, 10, 20} at T = 10
time points with a fixed number of samples Nt = 100. . . 85

Figure 26 Average results across 10 repetitions in terms of Mat-
thew Correlation Coefficient (mcc, first row), precision
(second row), recall (third row) and specificity (bottom
row) for the comparison of Temporal Graphical Lasso
with Multi-Class kernel (TGLMC), Temporal Ising Graph-
ical Model with Multi-Class kernel (TIGMMC) and Tem-
poral Poisson Graphical Model with Multi-Class kernel
(TPGMMC) at increasing sample size Nt ∈ {5, 10, 50, 100}
with D = 10 variables and 5 classes for multi-class ex-
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Introduction

The understanding of complex phenomena is a problem that arises in many
applicative fields, such as finance, social science, medicine and biology (Farasat
et al., 2015; Hecker et al., 2009; Huang, Liao and Wu, 2016; Liu, Han and Zhang,
2012; Orchard, Agakov and Storkey, 2013). Examples of complex phenomena
are the evolution of a disease, the self regulation of the financial market, or,
the change in social response to political decisions. All these phenomena can
be looked at as systems composed of smaller entities that may or may not act
independently.
Often, the study of complex systems is fragmented in simpler tasks. One could
look for the set of meaningful entities that are responsible for a specific state
of the system (e.g., identifying the genes responsible for the development of a
specific cancer), or, one could learn how to predict the behaviour of the sys-
tem given the observations of its entities (e.g., given a set of gene expressions
predict the disease subtype affecting the patient). Nonetheless, these tasks are
typically guided by prior knowledge and provide a simple and interpretable
solution that, in turn, explains only a small portion of the phenomenon. There-
fore, we could say that we are not understanding the system as a whole but
we are simply describing some specific aspects of it.
On the contrary, fully understanding a phenomenon entails a comprehension
of the dynamic of interactions among entities as well as how these interac-
tions relate to different statuses. Hence, in presence of an explicit relationship
between interacting entities and status, the understanding of the phenomenon
can be simplified to the observing and learning over time how the entities that
are part of the system contribute to a certain effect by interacting with each
other.
In this thesis we propose generalised temporal inference methods for the de-
tection of the underlying evolving interactions. Our methods are effective even
when the solution computation is compromised by a great number of observed
entities.

Context

The most suitable mathematical model for the abstract representation of entit-
ies and their interactions is a graph or network, that provides a compact repres-
entation of entities as nodes and their connections as edges. In the ideal case
the graph model is known a priori, but often it needs to be inferred. The in-
ference can be performed with a variety of different approaches. In this thesis
we put ourselves in a machine learning setting: we observe the behaviour of
(possibly a subset of) the entities within the system and we infer the best ap-
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proximation of their connections under the form of a graph (Friedman, Hastie
and Tibshirani, 2008; Lauritzen, 1996). Such approach is known as network in-
ference or graphical model selection.
Network inference can be performed through different strategies, typically
based on different theoretical assumptions on the meaning of the edges. Here,
we consider Markov Random Fields (MRFs) a set of statistical models that con-
sider the connections between entities to describe conditional dependence. To
this aim, entities are modelled by random variables that are assumed to follow
a proper joint probability distribution.
The inference of a MRF on D variables becomes challenging when we are
dealing with large scale data sets, i.e., we have thousands of variables in play.
Indeed, it consists in a combinatorial problem of identifying the correct net-
work structure in a search space of possibly 2D(D−1)/2 edges. Thus, a reliable
inference requires a large number of samples that are D-dimensional vectors of
observations. Nonetheless, typically, the required sample size is not available,
therefore the number of variables is much higher than the number of samples
(N � D).
The leading strategy to cope with this issue is to assume that just a reduced
number of interactions are actually meaningful to the phenomenon under
study and, therefore, constrain the problem and reduce the search space. In
particular, we exploit regularised methods that impose a sparse prior on the
problem (Friedman, Hastie and Tibshirani, 2008; Meinshausen and Bühlmann,
2006). The sparse assumption eases the computational burden allowing us to
find an approximate solution. At the same time, given the restricted set of
resulting edges, it also improves interpretability of the graph.
While being fundamental for identifiability, regularisation can be also lever-
aged to extend graphical models in order to consider more complex scenarios
as multiple classes, longitudinal data, multi-level networks, latent variables
and many other possible conditions (Chandrasekaran, Parrilo and Willsky,
2010; Cheng, Shan and Kim, 2017; Danaher, Wang and Witten, 2014; Geng
et al., 2018; Guo et al., 2011; Hallac et al., 2017a). Throughout this thesis we
will handle only methods for the inference of MRFs based on a sparse prior
that recur to further regularisation strategies to cope with complex settings.

Motivation

Regularised methods for the inference of complex MRFs have been proposed
in the last few years in the context of continuous data (i.e., the variables are
assumed jointly Gaussian). In literature the so-called Gaussian Graphical Mod-
els (GGMs) have been considered in the presence of multi-class data (Danaher,
Wang and Witten, 2014; Guo et al., 2011), temporal data (Geng et al., 2018;
Hallac et al., 2017a), multi-level networks (Cheng, Shan and Kim, 2017), latent
variables (Chandrasekaran, Parrilo and Willsky, 2010) and many others. Here,
we mainly focus on temporal graphical models inferred from multi-variate
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time-series under different settings as they allow to study an evolving system
by modelling the underlying changes of the entities connections.
We argue that considering the temporal component is fundamental in order
to being truly able to understand a system. Indeed, as a system evolves the
interactions among the variables of which is composed may change as well.
Therefore, inferring its underlying structure in a unique steady state could be
limiting for the detection of variability patterns. Note that, in reality there are
systems for which the most suitable model is a unique structure that remains
stable over time. Nonetheless, here, we want to focus on non-stationary sys-
tems whose understanding is bound to the observation of their evolution. This
is particularly evident in some applications, such as biology, where the interest
could be to understand the response of the system to perturbation (Molinelli
et al., 2013).
To this aim, Hallac et al., 2017a proposed a regularised extension of a method
for the inference of stationary GGMs, the Graphical Lasso (GL) (Friedman,
Hastie and Tibshirani, 2008). Such extension allows for the inference of net-
works at discrete time points connected through a specific dynamical beha-
viour. This method assumes Markovianity, i.e., each time point is dependent
on the previous one. To force such dependency, it employs a temporal consist-
ency function that yields network structures close in time to be similar. This
method was shown to improve inference with respect to static methods as it
allows to consider the global evolution of the system thus providing a more
sound and stable inference of the underlying network. Moreover, it allows to
study evolving patterns that are impossible to detect otherwise.
Nonetheless, while being extremely powerful, we point out three aspects as
drawbacks of such model:

• it only considers the specific setting of continuous data (Gaussian distri-
bution assumption);

• it only allows for Markovian temporal dependency;

• it does not consider the presence of missing data (Little and Rubin, 2019)
which influence how the observable entities are perceived and, hence,
which interactions are learned (Choi, Chandrasekaran and Willsky, 2009).

The first is a very common assumption in graphical models as the Gaussian
distribution allows for the computation of the joint likelihood on the variables
and, thus, an easy inference of the adjacency matrix of the graph Wainwright
and Jordan, 2008. Nonetheless, even though it simplifies the inference process
it does not allow to model other types of real-world data as count data or
binary. In literature, many methods that infer MRFs assuming other distribu-
tions exist (Allen and Liu, 2013; Jalali et al., 2011; Ravikumar, Wainwright and
Lafferty, 2010; Yang et al., 2012, 2013, 2015), but these often lack of temporal
extensions. The second aspect assumes a specific temporal dependency which
prevents the user to exploit the knowledge of complex temporal dependency
like seasonality. Lastly, the third aspect may perturb the final results and thus,
entails the need of inserting missing data assumptions in the inference process
to avoid misrepresentations (Meng, Eriksson and Hero, 2014).
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Contribution

We propose two major contributions in this thesis that are a step in the direc-
tion of filling th aforementioned gaps:

• Generalised methods for temporal network inference — Chapter 4.
We provide a general statistical model for the inference of graphs that
is flexible to diverse distributions, consistency types and possible non-
Markovian dependencies. Such method infers a non-stationary graphical
model from multi-variate time-series that may have different nature (cat-
egorical, binary, counts, continuous) under complex temporal depend-
ency patterns. When we know such patterns a priori, we rely on kernels to
impose them during inference. When we do not know them, we provide
automatic identification techniques.

Also, we propose a specific instantiation of an a priori kernel that al-
lows to transform the problem from temporal network inference to multi-
class network inference. Thus, we generalise the multi-class approach for
GGMs (Danaher, Wang and Witten, 2014), to other types of distributions
beyond Gaussian.

• Temporal graphical lasso with missing data — Chapter 5. We propose
possible extensions of the temporal network inference with Gaussian as-
sumption in the case of missing data which may either present missing
random values or variables that are consistently never measured, and
that we define as latent. To solve these two problems we devised two
different strategies, one builds on the Expectation Maximisation method
and the second on the marginalisation of the latent variables effect. Fi-
nally, we show a case in which by exploiting partial prior knowledge
on the latent variables, we can obtain results that go in the direction of
multi-level networks.

Both our main contributions can be seen as generalisations of state-of-the-art
methods that introduce more flexibility and gain in expressivity. Indeed, with
these methods we are able to model a wider set of of multi-variate temporal
data and to analyse their temporal patterns. During the thesis we provide a
thorough assessment of the proposed statistical methods on synthetic data to
determine their reliability. Additionally, we show some real-world applications
to provide examples of how the proposed methods can be exploited to under-
stand complex dynamics. It is worth mentioning that each method comes with
a related optimisation method whose derivation is not a negligible portion of
the thesis work. Nonetheless, we defer some of the minimisation algorithms
to the Appendices to improve readability.
During the development of our two major contributions we noticed the need to
a reliable hyper-parameters selection method. Indeed, all the presented models
have more than one hyper-parameter to tune and, given the unsupervised
nature of the problem, it may be difficult to detect the best model for a specific
data set. Therefore, as a minor contribution we provide a thorough analysis of
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the available model selection methods for multiple hyper-parameter selection
providing an extension of a stability-based approach (Chapter 3).
Lastly, all the developed code related to this thesis has been developed within
a Python framework called REGAIN (REgularised GrAph INference) that con-
tains also other inference methods, model selection algorithms, results assess-
ment and plotting utils. We point this out as second minor contribution of this
thesis (Chapter 6).

Outline

This thesis comprises four main parts. Part I contains the background on
graphical model selection under different probability distribution assumptions
(Chapter 1) and the state of the art on graphical models that assume the pres-
ence of missing data (Chapter 2). This part is fundamental for the development
of the our contributions that are presented in Part II. In Chapter 3, we present
model assessment strategies and hyper-parameters selection methods that are
widely used throughout the rest of the thesis. Next, we present generalised
temporal network inference methods under the assumption of continuous, bin-
ary or counts data (Chapter 4). In Chapter 5, we present the methods for the
inference of temporal graphical lasso with possibly missing data. In Chapter 6

we present the multi-purpose Python library Regain. In Part III we conclude
our thesis by presenting some real-world application examples (Chapter 7) and
the conclusions (Chapter 8). In Part IV we provide some additional mathemat-
ical details on the more complex optimisation algorithms (Appendix A and B)
and the synthetic data generation procedures (Appendix C).



Notation

Unless explicitly specified, we denote with bold lower-case letters x uni-dimensional
vectors, with upper case letters X 2-dimensional matrices and with bold upper-
case letters X we denote tensors.
The entries of vectors, matrix or tensors are denoted by x[i], X[ij], X[kij]
respectively. In the case of tensors we may equivalently write Xk[ij]. When
we want to select an entire dimension we put a colon, e.g., if we have a 2-
dimensional matrix and we want to take the i-th row we write X[i, :]. If we
want to select all but one row we will write X[−i, :] Given a set of indices
IA = {1, . . . , j} we denote the squared sub-matrix obtained by selecting the
corresponding rows and columns as X[A]. Similarly we denote the sub-matrix
obtained by selecting the rows in the set IA and the columns in the set IB by
X[AB]. We will denote the cardinality of the set IB with |B|.
With SD

++ we denote the cone of positive definite matrices, similarly SD
+ de-

notes the cone of positive semi-definite matrices. It is equivalent to say that
X ∈ SD

++ or X � 0, similarly X ∈ SD
+ is equal to X < 0.

With 〈·, ·〉 we denote the scalar product between two vectors.
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PART I

Background

This part contains a description of the context in which this thesis
is posed. Chapter 1 presents the steady-state regularised inference
methods under different distribution assumptions. Chapter 2 fo-
cuses on the concept of missing data, both at random or latent, and
the related mechanisms to cope with this problem in steady-state
inference methods.



1
Regularized Markov Models

Throughout the thesis we will revolve around the concept of graphs or net-
works. Nonetheless, a graph could be interpreted differently depending on
the meaning we assign on the edges. In particular, Markov Random Fields
(MRFs) model conditional probability dependencies between variables. Con-
sider the following example: given two genes A and B they are linked if, given
the profiles of all other genes across all the subjects, the levels of genes A
are still predictive for the gene B and vice versa. Therefore, a connection in
a MRFs has a stronger meaning than correlation. MRFs are widely used in
many applications as a mathematical abstraction of a system that allows to
straightforwardly study its properties.
Among the methods for the inference of MRFs from data we restrict our focus
on those based on the assumption of sparsity, i.e., in high-dimensional contexts
the connections that explain the state of the system are few with respect to the
total number of possible edges between the variables.
Guided by this prior, the inference of the graph depends on the probability dis-
tribution assumed on the data. In this thesis we will analyse three probability
distribution: Gaussian, Bernoulli and Poisson that allow to model respectively
continuous, binary and counts variables.

outline In this chapter we briefly introduce the concept of Markov Ran-
dom Fields (Section 1.1). In Section 1.2 we explain how generalized linear
models can be used to infer MRFs starting from those exponential family
distributions that have linear sufficient statistics. In Section 1.3 we introduce
the problem of penalised network inference. In Sections 1.4, 1.5 and 1.6 we
present three distribution-based graphical models (respectively the Gaussian,
Ising and Poisson) and in Section 1.7 their state-of-the-art extensions that con-
sider time. We conclude in Section 1.8 with a brief summary of the chapter.

1.1 Markov Random Fields

MRFs are a set of models that belong to the wider set of probabilistic graph-
ical model, which, beyond MRF, includes Bayesian Networks, factor graphs and

8
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Figure 1. Example of a graphical model where the node A is independent from the nodes B,
E, and D given the other nodes. The dashed edge represents the edge we condition
away by considering the note C.

chain graphs (Clifford, 1990; Frey, 2002; Lauritzen, 1996; Murphy and Russell,
2002). Probabilistic graphical models allows a graph to express the conditional
dependence structure between random variables, i.e., they define a joint prob-
ability distribution on a set of variables. In order to capture the meaning of
this set of models we need to first define a graph.

Definition 1 (Graph). A graph is a couple G = (V, E) where V = {1, 2, . . . , D}
is the set of nodes or vertices and E = {(i, j)|i, j ∈}V × V is the set of edges. A
graph is said undirected if there is no distinction between the edge (i, j) and the
edge (j, i), otherwise is said directed.

The set V of vertices has a bijective correspondence to the set of variables
{X1, . . . , XD} representing entities of the system in analysis. Then, a MRF is
a probabilistic model that factorise according to a graph G = (V, E) in such
a way that the conditional dependencies between the variables X1, . . . , XD can
be directly read from the edges E. Consider the graph in Figure 1. Here, the
nodes A and B are independent given the node C, as no connections between
them exists. If the node C was not considered in the inference, we could not
condition its presence away and thus, an edge between A and B would appear
in the graph (dashed edge).

Definition 2 (Markov Random Field). A Markov Random Field (MRF) is an
undirected (possibly cyclic) graph over a set of random variables that satisfies
the Markov property.

The Markov properties are:

Definition 3 (Pairwise Markov property). Given two non-adjacent nodes u and
v they are conditionally independent given all other variables: u ⊥⊥ v|V\{u, v}

Definition 4 (Local Markov property). A variable u is conditionally independ-
ent of all other variables given its neighbours denoted byN (u): u ⊥⊥ V\N (u)|N (v)
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Figure 2. Example of 2-nodes and 3-nodes: small fully connected sub-graphs in an undirected
graph of 5 nodes.

Definition 5 (Global Markov property). Any two sets of variables A and B are
conditionally independent given a separating set S that contains all the paths
connecting the nodes in A and B: A ⊥⊥ B|S

The properties grow in strength, however they are equivalent in the case of a
positive probability (Lauritzen, 1996).

1.1.1 Gibbs Random Fields

Definition 6 (Clique). A clique C is a subset of vertices V̄ of a graph G such
that all the possible couples of nodes in the subset are adjacent, i.e., the corres-
ponding sub-graph GV̄ is complete (see Figure 2 for a visual representation).
A clique is maximal if it is not properly contained within any other clique.

The graph G completely defines a probability distribution pG over the variables
X1, . . . , XD. In order to see this more clearly we recall the Hammersley-Clifford
theorem (Clifford, 1990), that states that when the probability pG is strictly pos-
itive, a MRF is equal to a Gibbs random field. Therefore, it can be represented
as a sum of functions on the graphs cliques.
Given the graph G we can represent the related joint distribution pG over
the variables X1, . . . , XD as the product of compatibility functions that depend
only on the subset of variables corresponding to its cliques. Let C be the set of
cliques of the graph G and let {φc(Xc), c ∈ C} be a set of clique-wise sufficient
statistics that depends on the probability assumed on the data then, any dis-
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tribution within the graphical model family represented by the graph G, takes
the form (Clifford, 1990; Wainwright and Jordan, 2008)

pG(X1, X2, . . . , XD) ∝ exp{∑
c∈C

θcφc(Xc)} (1)

Then, given the set C of cliques of the graph, an MRF is a collection of distri-
butions that factorise as

pG(X1, X2, . . . , XD) =
1
A ∏

C∈C
exp(θcφC(XC))

where A is a log-normalisation constant chosen to ensure that the distribution
sums up to 1 (Wainwright and Jordan, 2008). Note that the use of all cliques
may be a redundant definition but allows for easier computation while not
yielding to loss of generality (Wainwright and Jordan, 2008). Often, it may be
useful to use the direct factorisation of the joint probability, defined as

pG(X1, X2, . . . , XD) = ∏
v∈V

p(Xv|XN (v))

where N (v) is the set of variables in the neighbourhood of the variable v.

1.2 Markov Random Fields and the Exponential
Families

Exponential families can naturally be interpreted as probabilistic graphical
models and more specifically Markov Random Fields. This is due to the fact
that exponential families are represented as the summation of weighted func-
tions similarly to the form in Equation (1).

1.2.1 Exponential Families

Exponential families are a very flexible family of distributions that includes
many of the most known distribution such as Bernoulli, Gaussian, Multino-
mial, Dirichlet, Gamma, Poisson and Beta.

Definition 7 (Exponential family). Given a sample space X D on which it is
defined a measure ν and random vector (X1, X2, . . . , XD) ∈ X Dwe define a col-
lection of functions φ = (φα : X D → R)α∈I called sufficient statistics to which
we associate their exponential parameters θ = (θα)α∈I . Then, the associated ex-
ponential family is defined as the following parametrised collection of density
functions

pθ(X1, X2, . . . , XD|θ) = exp{〈θ, φ(X)〉+ h(X)− A(θ)}

where h(X) is a function of only the samples and A(θ) is the log normalisation
function that ensures the probability to be properly normalised and it is defined
as

A(θ) = log
∫
X D

exp〈θ, φ(X)〉ν(dX).
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By fixing the sufficient statistics φ we identify a particular type of exponential
family (e.g., Poisson or Bernoulli). By also fixing the exponential parameters θ

we define a specific member of such family (i.e., a specific probability distribu-
tion).

1.2.2 Exponential-family based Graphical Models

It is possible to reason in terms of MRFs for any exponential family distribu-
tion (Wainwright and Jordan, 2008; Yang et al., 2012, 2015). This representation
is particularly suited when the sufficient statistics are linear in the variables as
it allows to obtain a straightforward inference algorithm.
Suppose we are given a univariate exponential family distribution

p(X) = exp(〈θ, φ(X)〉+ h(X)− D(θ)) (2)

with log normalisation function D(θ).
Consider a D-dimensional random vector X = (X1, X2, . . . , XD) and an undir-
ected graph G = (V, E) over D variables. Suppose now that the distribution
on the variable Xv given the rest of the nodes X−v has the form in Equation (2)
with sufficient statistics {φ(Xs)}s∈N(v). Then such distribution is a linear com-
bination of k-th order products of univariate functions

p(Xv|X−v) = exp
{

θvφ(Xv)− h(Xv) + D̄(X−v)+

φ(Xv)

(
∑

s∈N (v)
θvsφ(Xs)

+ ∑
s2,s3∈N (v)

θvs2s3 φ(X2)φ(X3)

+ ∑
s2,...,sk∈N (v)

θvs2 ...sk

k

∏
j=2

φ(Xsj)

)}
(3)

where h(Xv) defines the exponential family and D̄(X−v) is the log-normalization
constant. By the Hammersley-Clifford theorem the related joint distribution is

p(X1, X2, . . . , XD|θ) = exp
{

∑
s

θsφ(Xv) + ∑
v∈V

∑
s∈N(v)

θvsφ(Xs)

+ ∑
v∈V

∑
s2,s3∈N (v)

θvs2s3 φ(X2)φ(X3)

+ ∑
v∈V

∑
s2,...,sk∈N (v)

θvs2...sk

k

∏
j=2

φ(Xsj)) + h(Xv)− A(θ)

}
(4)

Then, under the assumptions:

1. the joint distribution factorise according to a graph G which has clique-
factors of size at most k;



1.3 network inference 13

2. the node-conditional distribution follows an exponential family;

the conditional and joint distributions are given by (3) and (4) respectively
(Besag, 1974; Clifford, 1990; Wainwright and Jordan, 2008; Yang et al., 2012,
2015).
This strictly connects exponential family with MRFs as the exponential para-
meters are nothing else but the connections of cliques of different size in the
graph.

When the joint distribution has factors of size at most two (k = 2) and the
sufficient statistics are linear functions φ(Xv) = Xv than the conditional dis-
tribution is a generalized linear model Nelder and Wedderburn, 1972 with
conditional distribution of the form

p(Xv|X−v) = exp

{
θvXv + ∑

s∈N (v)
θvsXvXs + h(Xv)− D̄(X−v, θ)

}
(5)

and joint distribution

p(X1, . . . , XD|θ) = exp

{
∑
v

θvXv + ∑
(v,s)∈E

θvsXvXs + ∑
Xv

h(Xv)− A(θ)

}
(6)

1.3 Network Inference

Network inference or graphical model selection aims at selecting the most probable
graph from observations of the variables. It arises in lots of applications when
the underlying graph structure of variables is not known (Barabasi and Oltvai,
2004). Suppose to have D random variables denoted X1, . . . , XD of which we
can observe N samples X ∈ X N×D where X[i, :] = (X[i1], . . . , X[iD]) for i =
1, . . . , N. We aim at inferring the set E of edges of the graph G = (V, E), that
better fits the data.
Such goal can be reached with inference methods based on Maximum Likeli-
hood Estimation (MLE) . The concept of MLE relies on the maximization of
a likelihood function of the model. Indeed, such value tells us how much ob-
servations are likely given a model defined by a set of parameters. In our case
the model corresponds to the graph G, whose parameters θ we represent by
its adjacency matrix K.

Definition 8 (Likelihood). Given data X and the parameters K the likelihood
L(X|K) of the graph G is any function of K proportional to the density function
p(X|K).

Note that the likelihood is a function of the parameter K for fixed X whereas
the probability is a function of X for fixed K.
It is common, for optimisation problems, to use the log-likelihood `(X|K) ( the
natural logarithm of the likelihood function L(X|K)) as it allows to remove
products and exponentials within the function to optimise, plus avoiding nu-
merical issues when D � N.



1.3 network inference 14

Suppose now that, for fixed data X, we have two possible values for the para-
meters K, K′ and K′′, and that L(X|K′) ≥ L(X|K′′). This means that K′ is at
least likely as K′′ and, therefore, it is the one the better supports the data. This
naturally leads to the concept of Maximum Likelihood:

Definition 9 (Maximum Likelihood). A maximum likelihood estimate of K
is a value, K∗, that maximizes the likelihood L(X|K) — or the log-likelihood
`(X|K).

1.3.1 `1 Penalisation

The inference of graphical models through MLE still remains a difficult prob-
lem given the dimension of the possible search space. If we consider D vari-
ables, it is combinatorial in the number of possible edges, 2D( D−1

2 ). We can
reduce the search space by assuming sparsity of the solution. Such assumption,
by constraining the problem, eases the identification of the graph, improves in-
terpretability of the results and reduces the noise. It is fundamental especially
when the number of variables is higher than the number of available samples
(the so-called D � N problem).
Formally, this translates into the addition to a MLE problem of a sparsity-
enforcing penalty called `1-norm. Such norm is a convex non-smooth function
that is often used as a relaxation of the non-convex `0-norm that enforces the
number of edges to be small. Given the adjacency matrix K of the graph G, the
`1-norm is defined as

‖K‖1,od = ∑
ij
|Kij| (7)

Such norm penalises the weight of edges between the variables shrinking their
value and forcing those edges that have values in an interval [−α, α] to be
zero, thus selecting only a subset of possible connections. Here, α measures
the strength of the penalty on the problem, the higher the α the higher the
number of zero edges (Hastie, Tibshirani and Wainwright, 2015).
Such penalisation approach has been widely used in literature, and the very
first model exploiting such idea was proposed and developed by (Meinshausen
and Bühlmann, 2006) for a neighbourhood estimation of Gaussian Graphical
Models.

Definition 10 (Neighbourhood estimation). Penalised neighbourhood estima-
tion infers the conditional independence separately for each node in the graph
solving a lasso-like problem where the considered variable is the dependent
variable and the others are considered as independent covariates.

Consistency proofs of such approach are provided (Meinshausen and Bühl-
mann, 2006), and they can be extended for logistic regression (Wainwright, Laf-
ferty and Ravikumar, 2007). In particular, in (Wainwright, Lafferty and Raviku-
mar, 2007) they provide sufficient conditions on the number of samples, dimen-
sions and neighbourhood size to estimate the neighbourhood of each node
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simultaneously. Neighbourhood estimation, nevertheless, has been shown to
be an approximation of the exact problem (Friedman, Hastie and Tibshirani,
2008; Yuan and Lin, 2007) as it does not yield to the MLE when there is no
equality between the (possibly perturbed) empirical covariance matrix and the
estimated one. In (Friedman, Hastie and Tibshirani, 2008) the authors bridge
the conceptual gap between this and the exact problem proposing the graph-
ical lasso method, based on the work of (Banerjee, Ghaoui and d’Aspremont,
2008). Later, the concept of an `1 penalised MLE was proposed also for non-
Gaussian distributions (Banerjee, Ghaoui and d’Aspremont, 2008). Again in-
ference is performed via neighbourhood selection as the computation of the
joint likelihood is infeasible (Bien and Tibshirani, 2011; Meinshausen and Bühl-
mann, 2006; Ravikumar, Wainwright and Lafferty, 2010; Ravikumar et al., 2011;
Wainwright, Lafferty and Ravikumar, 2007; Yang et al., 2012, 2013; Yuan and
Lin, 2007).

other penalisation Adding constraints through penalisation also offers
the possibility to impose prior information on the resulting graph. All the
regularised methods for graph inference assume sparsity. In literature, though,
we can find other penalties that allow to force a specific behaviour on networks.
In particular, Guo et al., 2011; Honorio and Samaras, 2010; Kolar et al., 2010;
Varoquaux et al., 2010; Xie, Liu and Valdar, 2016 estimate multiple networks
at one by using a group lasso norm (`21) which helps with the joint selection
of features across multiple graphs. Cheng, Shan and Kim, 2017, instead, by
imposing a group lasso norm learn a bipartite network of features and group
of features. Chandrasekaran, Parrilo and Willsky, 2010 uses a low rank norm
to learn a marginalisation of the network that allows to subtract the contribute
of latent variables. Hallac et al., 2017a enforce temporal similarity between
consecutive graph in time. This latter idea is the main idea to which temporal
network inference relies on and will be explained in Section 1.7 and massively
used throughout the thesis.

1.3.2 Penalized MLE for Generalized Graphical Models

We perform network inference exploiting a penalised version of MLE. In par-
ticular, we aim at estimating the parameters of a graphical model based on
exponential family distribution that has joint probability specified as in Equa-
tion (6). We estimate the graph G via neighbourhood estimation as, except for
the Gaussian distribution, we are not able to compute the normalisation factor
that allows us to consider the joint distribution of the variables.
Thus, we will reason in terms of the conditional distribution in Equation (5). It
can be rewritten considering the adjacency matrix K formed by the parameters
of the distribution. In particular we define

K[vs] =

{
θvs if v 6= s

0 otherwise
.
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Then the conditional probability is defined as

pG(Xv|X−v) = exp

{
Xv

(
∑

s∈N (v)
K[vs]Xs

)
+ h(Xv)− D

(
∑

s∈N (v)
K[vs]Xs

)}

and the related conditional log-likelihood on each variables is defined as

`(X|K[v :]) = − 1
N

log
N

∏
i=1

pG(X[iv]|X[i,−v], K[vs])

= − 1
N

N

∑
i=1

X[iv](〈K[v :], X>[i, :]〉)− D(〈K[v :], X>[i, :]〉).

Then, the likelihood of the global model is defined as a summation of the
likelihoods on the single variables

`(X|K) = ∑
v∈V

`(X|K[v :])

and it adapts to different distributions depending on the function D. The pen-
alised MLE of the adjacency matrix K is then performed by minimising the
following functional

minimise
K

− `(X|K) + λ‖k‖1. (8)

Such problem is separable, given the definition of the global likelihood. There-
fore, it is possible to estimate the neighbours of each node individually and
then merge them together. Each neighbourhood for a variable Xv is obtained
by observing the non-zero entries of the row K[v, :]. Note that, in this way the
neighbourhood selection is not symmetric, i.e., the matrix K is non-symmetric
and, therefore, while the variables v and s may be estimated to have an edge
when we are minimising on the node v, this may not happen when we minim-
ize on the node s. Thus, the final graph has to be obtained by merging the two
neighbourhoods. This can be done either by union or intersection of the edges.
Therefore the value of the edge (v, s) = (s, v) to make the matrix K symmetric
is determined as

max/min{|sign(K[v, s]|, |sign(K[s, v])|} ∀v 6= s (9)

where we use the maximum if we want to use the union and the minimum
if we want to intersect. Note that it is possible to circumvent the problem
by imposing a symmetric constraint and optimising all the variables together
rather then separately. We will use this concept in Chapter 4 for the inference
of temporal models.

alternative methods Often, in literature, we can find methods that ex-
ploit Gaussian based inference plus some transformation based on copula (Liu,
Lafferty and Wasserman, 2009; Liu et al., 2012) or log2 transforms (Changy-
ong et al., 2014). Such methods leverage on the properties of the Gaussian
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distribution that allows to minimise directly the joint distribution in a con-
vex optimisation problem Friedman, Hastie and Tibshirani, 2008. Nonetheless,
these methods were proved to be less effective in retrieving the original graph
than methods based on more appropriate distributions and, as such, we will
not discuss these methods in depth as the probability distributions we analyse
are sufficient to model the vast majority of real-world data.

relation with maximum a posteriori estimates Typically, the in-
ference is performed as a Maximum Likelihood Estimate because it simplifies
the computation. Nonetheless, such problem is strictly connected to a Max-
imum A Posteriori (MAP) problem (Murphy, 2012). Indeed, given an assumed
probability distribution p(X|K) and a Laplace prior (Kotz, Kozubowski and
Podgorski, 2012) of the form

Laplace(µ, b) =
1
2b

e−
|x−µ|

b

we can write the problem as follows

argmax
K

[
log

N

∏
i=1

p(Xi|K) + log
Γ

∏
j=0

1
2b

e−
|Kj |

b

]

where Γ is the set of indices of the upper-triangular of K.
It can be shown that this has the exact same form of Equation (8). Indeed, if
we instantiate the probability with the Gaussian we obtain

argmax
K

[
log

N

∏
i=1

1

(2π)D/2det(K−1)1/2 exp
(
−1

2
XiKX>i

)
+ log

Γ

∏
j=0

1
2b

e−
|Kj |

b

]
=

argmax
K

[
N

∑
i=1
−D

2
log(2π) +

1
2

log det(K)− 1
2

XiKXi −
1
b

Γ

∑
j=0
|Kj|

]
=

argmin
K

[
tr(X>XK)− Nlog det(K) +

2
b

Γ

∑
j=0
|Kj|

]
=

argmin
K

[
tr(X>XK)− Nlog det(K) + λ

Γ

∑
j=0
|Kj|

]

Such Bayesian perspective of the problem can also be adopted in the case
of joint network inference which is our main setting. A detailed example is
provided in Li, McCormick and Clark, 2018, where they present a new class of
priors that allows to perform group and fused graphical lasso similarly to the
MLE approach proposed in (Danaher, Wang and Witten, 2014).

1.3.3 Sparsistency and persistence

To define a model is useful to study its properties in terms of sparsistency and
persistence (Lam and Fan, 2009). The first one was introduced in (Ravikumar
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et al., 2009b) and it is the shorthand for “consistency of the sparsity pattern of
a parameter”, which in our case are the edges E. The second one is defined in
(Greenshtein and Ritov, 2004) and it is basically a consistency of the risk which
estimates how many edges we need to infer so that the risk of the inferred
graph is close to the best graphs in the search space S. These two should be
analysed to establish sufficient conditions when the parameters of the model
vary with the number of observations N. For parameters we mean the number
of nodes D, the maximum node degree D and the size of the search space M.
The sparsistency is defined as (Ravikumar et al., 2009b)

P[ÊN = E∗]→ 1 N → +∞

while the persistence is defined as (Greenshtein and Ritov, 2004)

E[−`(K̂N |X)]− inf
K∈S

E[−`(X|K)]→ 0.

In this thesis we will not provide such results on the proposed models as they
are still under investigation. We include the definition here for completeness
and to help the reader whenever these concepts are mentioned.

1.4 Gaussian Graphical Models (GGMs)

Gaussian Graphical Models (GGMs) are widely used, for example in psycho-
logy (Damaraju et al., 2014; Epskamp, Borsboom and Fried, 2018), biology
(Jones et al., 2011; Stegle, Teichmann and Marioni, 2015) and neurology (Smith
et al., 2011) and they are particularly suited for the modelling of continuous
variables. This means that the sample space is defined as X = R.
GGMs are probabilistic graphical models which variables are jointly distrib-
uted according to a multivariate Gaussian distribution N (µ, Σ) where µ ∈ RD

is the mean vector, and Σ ∈ SD
++ is the D×D covariance matrix. For simplicity,

unless otherwise specified, throughout this thesis the normal distributions are
assumed to be centred in 0, i.e., µi = 0 ∀i = 1, . . . , D. This is assumed without
loss of generality as we let the variables to be completely explained by the
covariance matrix Σ (Choi et al., 2011).
If Σ is a well-defined covariance matrix, (i.e., is positive definite), then the
conditional independence between variables in the multivariate normal distri-
bution is associated to zero entries in its inverse (Dempster, 1972).

Proposition 1. Let X ∼ N (0, Σ) be a random vector drawn from a multivariate
normal distribution, where K = Σ−1 is the precision matrix of the distribution.
Let Γ be the set of entries in Σ. Then, for each v, s ∈ Γ with v 6= s,

Xv ⊥⊥ Xs|Γ \ {v, s} → K[vs] = 0.

This result follows from standard linear algebra, details and proof of the pro-
position can be found in (Lauritzen, 1996, Section 5.1.3). Therefore, the preci-
sion matrix is associated to the graph G, where an edge exists if and only if the
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two variables have a value different than zero in the corresponding entry of
the precision matrix K. For this reason, the precision matrix can be considered
as the weighted adjacency matrix of G, encoding the conditional dependences
between variables.
The Gaussian distribution is the only exponential family distribution for which
it is feasible to compute the normalisation constant. Indeed, such value is
defined as the integral over all the possible values of the random variables,
and, only with the Gaussian distribution, we can compute a finite form Wain-
wright and Jordan, 2008. Therefore, this allows to reason in terms of joint
distribution which leads to more consistent results (Friedman, Hastie and Tib-
shirani, 2008). Let X = (X1, . . . , XD) ∼ N (0, Σ) indicate a random vector, and
X the dataset containing N realisations of the D variables in such a way that
X ∈ RN×D, then the density function is defined as

p(X|Σ) = 1

(2π)D/2det(Σ)1/2 exp
(
−1

2
XΣ−1X>

)
. (10)

Given the set of N iid samples in D dimensions in matrix X, based on Equa-
tion (10), the Gaussian log-likelihood is defined as

`(X|Σ) = log
N

∏
i=1

p(Xi|Σ) = −
N
2

log det(Σ)− N
2

tr
(

1
N

X>XΣ−1
)

.

This likelihood is expressed in function of Σ but, in literature, it has been
shown that estimating the precision matrix K leads to better results (Banerjee,
Ghaoui and d’Aspremont, 2008; Bien and Tibshirani, 2011; Friedman, Hastie
and Tibshirani, 2008; Lauritzen, 1996; Meinshausen and Bühlmann, 2006; Raviku-
mar et al., 2011; Wainwright, Lafferty and Ravikumar, 2007; Yuan and Lin,
2007). We re-write the likelihood in terms of the precision matrix K as

`GGM(X|K) ∝ N log det(K)− tr
(

1
N

X>XK
)
+ c (11)

where log det denotes the logarithm of the determinant of the matrix K, tr
is the trace function defined as tr(·) = ∑i(·)[ii], i.e., the sum of the diagonal
elements of the matrix and c is a constant term.

1.4.1 Lasso Penalisation

Given the sparsity assumption we want to force some entries of the precision
matrix K to be zero, as introduced in Section 1.3.1 (Meinshausen and Bühl-
mann, 2006) . A model for the inference of K including the sparse prior is the
graphical lasso (GL) what writes out as (Friedman, Hastie and Tibshirani, 2008;
Hastie, Tibshirani and Wainwright, 2015):

minimize
K

−`GGM(K|X) + α ‖K‖od,1 , (12)

where ‖·‖od,1 is the off-diagonal `1-norm. Equation (12) has a lasso-like form
(Tibshirani, 1996). For this reason, the problem can be solved by coordinate des-
cent, using a modified lasso regression on each variable in turn, thus leading
to a simple, efficient and fast procedure.
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The graphical lasso has been shown to have good asymptotic properties in
terms of persistence and sparsistency (Ravikumar et al., 2011; Rothman et al.,
2008).

1.5 Ising Graphical Models (IGMs)

The Ising Graphical Model (IGM) is suited for the modelling of binary or cat-
egorical variables (Jalali et al., 2011; Ravikumar, Wainwright and Lafferty, 2010)
and it is the most used example of pairwise graphical model as it is derived
from Bernoulli variables of which we consider only the pairwise interaction
(Bresler, 2015; Ravikumar, Wainwright and Lafferty, 2010). The Bernoulli as-
sumption can be applied on a variety of different applications: voting patterns
(Banerjee, Ghaoui and d’Aspremont, 2008), single nucleotide genetic muta-
tions, neural spikes (Schneidman et al., 2006), gases or magnets in statistical
physics (Ising, 1925), computer vision (Geman and Geman, 1987) and social
network analysis. The Bernoulli distribution belongs to the class of exponen-
tial family distribution, therefore this method can be solved via Generalized
Linear Model (Yang et al., 2012) (as we introduced in Section 1.2).
An IGM assumes each variable to take values X ∈ {0, 1}, and to have density

p(X) = pX(1− p)1−X

where p is the probability of x to assume value equal to 1.
Consider now D binary variables sampled in the space X = {0, 1}D (or equi-
valently {−1, 1}D), it can be easily shown that the sufficient statistic for their
univariate Bernoulli distribution is Xi and, if we only consider the pair-wise in-
teractions between them, the conditional probability of a variables Xv is again
a Bernoulli with probability

p = ∑
s∈N (v)

K[vs]Xs

that, if we denote xv as the realisation of Xv, writes out as

pIGM(xv|x−v) =
exp(cxv ∑s∈N (v) K[vs]xs)

exp(cxv ∑s∈N (v) K[vs]xs) + 1
(13)

for all v = 1, . . . , D where c = 1 if Xv ∈ {0, 1} and c = 2 if Xv ∈ {−1, 1}.
Then, the joint IGM distribution has a linear sufficient statistics φ(Xs, Xt) =

XsXt and is defined as:

pIGM(X|K) = 1
A(K)

exp

{
∑

v∈V
∑

s∈N (v)
K[vs]XvXs

}
, (14)

where the normalisation constant A(K) is intractable and cannot be directly
computed.
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Suppose now that we are given a collection of N samples in the form of a mat-
rix X ∈ {−1, 1}N×D where each row Xi ∈ {−1, 1}D is iid and drawn from the
distribution pIGM of the form in Equation (14). The conditional log-likelihood
of this problem is defined as

`IGM(X|K) = − 1
N ∑

v∈V
log pG(X[: v]|X[:,−v])

= − 1
N ∑

v∈V

{ [
log
(

exp(K[v, :]X−v + exp(−K[v, :]X>
)]

− K[v, :]µ[vs]
} (15)

where µ[vs] = 1
N X[:, v]>X[:, s] are empirical moments.

1.5.1 Lasso penalisation

Given the sparsity assumption we can force some elements of the matrix K
to be zero. Note that the conditional distribution in Equation (13) can be in-
terpreted as a logistic regression problem where the response of the variable
Xv is the output of a classification task where the other D − 1 variables are
the covariates (Ravikumar, Wainwright and Lafferty, 2010) — similarly to the
neighbourhood selection in GGMs (Meinshausen and Bühlmann, 2006). The
regularised regression problem then becomes

minimise
K∈−1,0,1D×D

− `IGM(X|K) + α‖K‖1,od (16)

that can be easily minimised for each variables via neighbourhood selection.
The final graph is then retrieved unifying the neighbourhoods following the
method in Equation (9). Such problem can be solved separately for each vari-
able by solving a logistic regression problem that, given the ι iterations needed
for convergence has an inner complexity of N. Thus, the complexity of the
problem is O(DNι).

1.6 Poisson Graphical Models (PGMS)

Poisson Graphical Models (PGMs) were proposed to satisfy the need of model-
ling counts data properly (Allen and Liu, 2013; Yang et al., 2013). Indeed, with
the advances in Next Generation Sequencing (Metzker, 2010) a lot of graphical
model based on non-parametric GGMs (Nikoloulopoulos and Karlis, 2009a,b)
were used without exploiting the nature of NGS data that born as counts. Non-
etheless, other data present the same peculiarity for example climate studies,
user-ratings data, term-document counts, site visits and many others. In (Yang
et al., 2012, 2015) they proposed a model that exploits the sums of independ-
ent Poisson variables which becomes easily intractable with high-dimensional
data and it is able to model only positive correlations. Later on in (Yang et
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al., 2013) they proposed a Truncated Poisson Distribution to overcome this is-
sue showing promising results. We rely on the model proposed in (Allen and
Liu, 2013) where the authors use the exponential family idea to obtain a joint
distribution that is based only on the neighbourhood of each node therefore
satisfying only the Local Markov Property instead of the global.
Given D variables X1, . . . , XD taking values in the space X = N, whose realisa-
tions are denoted as x1, . . . , xD, each is assumed to have a univariate Poisson
distribution parameter λv for v = 1, . . . D defined as

p(xv) = e−λv
λxv

i
xv!

and has sufficient statistics φ(xv) = (xv,− log(xv)). The joint PGM distribution
is

pPGM(X|K) = exp

{
∑

v∈V
(− log(Xv!)) + ∑

v∈V
∑

s∈N (v)
K[vs]XvXs − A(K)

}

where the normalization constant A(K) has to be finite to ensure the probabil-
ity to be well-defined. Such quantity is defined as (Allen and Liu, 2013)

A(K) = log

[
∑

Xv,Xs∈X
exp

(
∑

v∈V
(− log(Xv!)) + ∑

v∈V
∑

s∈N (v)
K[vs]XvXs

)]
.

The term K[vs]XvXs dominates the summation and, thus, must be finite for
infinite values of Xv and Xs. This implies that for A(K) to be finite K[vs] ≤
0 , ∀v 6= s. Therefore, the PGM is only able to detect negative conditional
dependencies (Yang et al., 2012, 2015).
This restriction in the joint distribution prevents its direct use, the model pro-
posed in (Allen and Liu, 2013) overcome this issue by basing the model only
on the node-conditional Poisson distribution without specifying a joint model.
The conditional distribution is defined as

p(Xv|X−v, K) = exp

{
− log(Xv!)) + ∑

s∈N (v)
(K[vs]XvXs − A(K[vs]))

}

here A(K[vs]) is the log-partition term of the Poisson distribution, computed
as the union of the local conditional Poisson modules for each variable:

A(K[vs]) ≈ log[E(Xv|Xs = x, ∀s ∈ V\v, K)]

= ∑
s∈N (v)

(K[vs]XvXs)

which satisfies both the pair-wise and local Markov properties (Allen and Liu,
2013).
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As before, given N observations of D variables in the form of a matrix X ∈ NN×D

the conditional log-likelihood is given by

`PGM(X|K) =− 1
N ∑

v∈V

N

∑
i=1

log p(X[i, v]|X[i,−v]) =

− 1
N ∑

v∈V

N

∑
i=1

[
X[iv]X[i, :]K>[v, :]− exp(X[i, :]K>[v, :])

] (17)

1.6.1 Lasso penalisation

The inference problem can be solved through penalised MLE as previously
done for the Gaussian and the Ising models (Banerjee, Ghaoui and d’Aspremont,
2008; Ravikumar, Wainwright and Lafferty, 2010). The minimisation problems
writes out as

minimise
K∈{0,1}D×D

− `PGM(X|K) + α‖K‖1,od, (18)

and can be solved through neighbourhood estimation followed by the intersec-
tion or union of the results of the inferred neighbourhood (Equation (9)).
The optimisation algorithm has, similarly to the Ising model, a complexity of
O(DNι) where ι are the iterations needed for convergence.

1.7 Temporal extensions

Problems in Equation (12), (16) and (18) aim at recovering the structure of the
system at fixed time (static network inference). However, complex systems may
have temporal dynamics that regulate their overall functioning (Albert, 2007).
Hence, the modelling of such complex systems requires a dynamical network
inference, where the states of the network are intended as co-dependent.
Indeed, the analysis of a set of variables which describe the system at a par-
ticular time point could not provide enough information on the more global
and general behaviour of the system. As an example, one may consider the
analysis of genes observations under the presence of a particular phenotype.
Static network inference would answer to the question regarding a particular
status of the cell. The answer to the same question asked later in time could
lead to a different answer.
The idea of time-varying network inference is to continue the inference pro-
cess in time. It could be seen as a generalisation of a static inference process
that infers separately networks at different point in time. The addition is that
time-varying network inference exploits the temporal component during the
optimisation. This can improve performances as, in static network inference,
there is no theoretical guarantee that the network at step t would be similar
to the network at step t + 1, while one may intuitively expect so. Dynamic
network inference instead will embed prior knowledge on the evolution of the
network which could help in presence of noise in particular time points of the
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network. Indeed, changes in the network at a particular time point may be due
to external perturbation, noise or a particular developing state of the system.
The dynamism can be modelled in different ways:

1. by assuming a specific temporal dynamic modelled by differential equa-
tions (Abegaz and Wit, 2013; Hertz, Roudi and Tyrcha, 2011) ;

2. by assuming stochasticity on the edge of the networks (Geng et al., 2018;
Pereira, Ibrahimi and Montanari, 2010);

3. by assuming a temporal consistency modelled through a similarity func-
tion between contiguous time points (Bianco-Martinez et al., 2016; Hallac
et al., 2017a).

The first and second options are suitable for many applications but they, in
turn, require a wide knowledge on the applicative domain. Temporal consist-
ency, instead, allows us to be broad on the possible applications. In this thesis,
as we do not have a specific domain in mind, we focus and exploit the concept
of temporal consistency.

1.7.1 Temporal consistency

In order to exploit temporal consistency we need to assume that the network
models a non-stationary distribution that may change at each time point. This
implies that to different time points correspond different states of the system
that cannot be expressed by a unique model.
We assume a consistency (or similarity) between consecutive states of the net-
work, as, for sufficiently close time points, a system would show negligible
differences (Hallac et al., 2017a). The same consistency principle can be exploit
in other contexts as multi-class (Danaher, Wang and Witten, 2014; Guo et al.,
2011) or multi-layer (Cheng, Shan and Kim, 2017) network inference.

Definition 11 (Consistency). Two inferred networks are said to be exactly con-
sistent if the distance between the related network structures, in terms of some
norm, is zero.

The more the distance grows the less consistent the networks are.
The inference of a dynamical network that assumes temporal consistency of
consecutive time points can be performed through a regularised approach that
extends the stationary model with the imposition of a penalty (Gibberd and
Roy, 2017).
The main example of this type of dynamical inference is the context of GGMs
and it is the time-varying graphical lasso (TVGL) (Hallac et al., 2017a) where the
inference of a network at a single time point t is guided by the states at adjacent
time points. Throughout the thesis this model will be also referred to as TGL.
When we mention it as TVGL we intend the original version proposed in (Hal-
lac et al., 2017a) while when we call it TGL we intend our re-implementation of
such model. We will try to explicitly mention this when there is an ambiguity.
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Consider now a system formed by D entities measured over T time points. For
each time point t we have Nt samples randomly drawn as

X =
(
X1, . . . , XT

)
∼
(
N (0, Σ1), . . . ,N (0, ΣT)

)
where Xt ∈ RNt×D for t = 1, . . . , T.
The goal, since we are in the Gaussian case, is to infer the precision matrices

K =
(
K1, . . . , KT

)
∈ R

(
D×D

)
×T. that encode the conditional dependencies at

each time point (Hallac et al., 2017a). The TVGL problem is defined as follows:

minimize
Kt∈SD

++

T

∑
t=1
−Nt `GGM(Xt|Kt) + α ‖Kt‖od,1 + β

T−1

∑
t=1

Ψ(Kt+1 − Kt), (19)

where Ψ is a function that encodes prior information on the temporal beha-
viour of the network. The related parameter β imposes a certain strength on
the consistency of such behaviour in time.

penalty functions Hallac et al., 2017a proposed different consistency
functions that guarantee a fast optimisation of the related problem. In particu-
lar, we can choose among:

• Ψ(·) = `1(·) = ∑ij | · |, which is the lasso penalty that encourages few
edges to change between subsequent time points while the rest of the
structure remains the same (Danaher, Wang and Witten, 2014).

• Ψ(·) = `12(·) = ∑j ‖ ·j ‖2, iwhich s the group lasso penalty that encour-
ages the graph to restructure at some time points and to stay stable in
others (Gibberd and Roy, 2017; Hallac, Leskovec and Boyd, 2015).

• Ψ(·) = `2
2(·) = ∑ij(·ij)2, which is the Laplacian penalty which encourages

smooth transitions over time, for slow changes of the global structure
(Weinberger et al., 2007).

• Ψ(·) = `∞(·) = ∑j(maxi | ·ij |), which is the max norm penalty which
encourages a block of nodes to change their structure with no additional
penalty with respect to the change of a single edge among such nodes.

• Ψ(·) = minV:A=V+V> ∑j ‖Vj‖p, which is the row-column overlap penalty
that encourages a major change of the network at a specific time, while
the rest of the system is enforced to remain constant. Choosing p = 2
causes the penalty to be node-based, i.e., the penalty allows for a per-
turbation of a restricted number of nodes (Mohan et al., 2012).

1.8 Summary

In this chapter we provided background on graphical models inference meth-
ods based on various probability distribution assumptions. In particular, we
showed how it can be possible to exploit a penalised Maximum Likelihood
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Estimation strategy to infer a graphical model that assumes a distribution be-
longing to the Exponential Family class. We described in details the inference
for Gaussian Graphical Models, Ising Graphical Models and Poisson Graph-
ical Models. Lastly, we discuss the state-of-the-art temporal extensions to these
models focusing on the one that extends GGMs with temporal consistency.
We want to remark that it would be interesting to consider in the future other
distributions as the Multinomial (Yang et al., 2013) or the exponential (Yang
et al., 2015) as well as combinations of all the distributions (Lee and Hastie,
2015; Yang et al., 2014; Žitnik and Zupan, 2015).



2
Gaussian Graphical Models with
Missing Data

Whenever analysing real-world systems it would be appropriate to consider
missing data in order to devise a non-biased analysis and therefore end up
with better estimate of the statistical model parameters. Indeed, it is likely to
get incomplete observations of all the variables acting in a phenomenon. Of
the possible types of missing observations we can distinguish two cases: latent
and partial variables (Little and Rubin, 2019).
Latent variables are defined as un-observed variables that need to be inferred
from observed ones. Since we cannot measure them we may not know how
they influence the system. As an example, such variables could be experi-
mental conditions that were not taken into account during the measurement
of the system. Partial variables, instead, are those variables for which some
observation is missing but we are still able to partially detect their behaviour.
Therefore, we can analyse them but we may incur in problems related to the
holes in the dataset. Note that latent variables are a degeneration of partial
variables where none of the observations is present.
As previously introduced, the inference of graphical models from observations
is a difficult task as the solution lies in a combinatorial space. For this reason
inference methods assume that the underlying graph is sparse to improve its
identifiability (see Section 1.3.1). The presence of latent and/or partial vari-
ables makes such inference even a harder task as partial variables convey bias
in the estimated edges, while, the presence of latent variables leads to loc-
ally dense structure in the graph. Given the assumption of sparse graphs this
induces an identifiability problem since there are infinitely many possible mar-
ginalisation on the graph that induce the same dense structure.

In this thesis, we focus on methods that estimate Gaussian Graphical Models
(GGMs) when data may be partial or latent (Chandrasekaran, Parrilo and Will-
sky, 2010; Städler and Bühlmann, 2012; Yuan, 2012). We restrict ourselves to
the Gaussian case as it easily allows to include missing data assumptions in
the model.

27
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outline This chapter is organised as follows. In Section 2.1 we introduce
the concept of missing data. In Section 2.2 we describe in general terms the
Expectation-Maximization algorithm widely used in partial and latent vari-
ables contexts. In Section 2.3 we present a method based on EM for the in-
ference of Graphical Lasso with partial data while in Section 2.4 we present
two algorithms for the inference of a network in presence of latent data. We
conclude with Section 2.5, a summary of the chapter.

2.1 Missing data

Definition 12 (Missing data). Missing data are un-observed values that would
be meaningful for the analysis if observed: a missing value might hide a mean-
ingful value.

Missing data can be of different types, we depicted the ones we are interested
to deal with in Figure 3. We identify missing values with dashed squares.
In particular we focus on panel (b) that shows a dataset in which we have
factored data (Little and Rubin, 2019), i.e., the variable X3 is never observed
and, we will call it from now on latent. And also panel (c) in which we have
randomly positioned missing values.
In the analysis of these types of data being aware of the mechanism that in-
duced missing data is crucial in order to better develop analysis method and
interpret the results. In this thesis we will consider data in which the mech-
anism that induces missing values is ignorable (Little and Rubin, 2019). More
specifically, we consider data that are Missing At Random.
Suppose we have N observations of D variables (X1, . . . , XD) ∼ N (0, Σ) in
a data set X ∈ RN×D and, for each sample i, two sets of indices IMi =

{1, . . . , Mi} and IOi = {Mi + 1, . . . , D}. We denote with X[i, :] = (X[i, Oi], X[i, Mi])

the i-th random sample for i = 1, . . . , N and with

X[O] = (X[1, O1], X[2, O2], . . . , X[N, ON ])

the set of observed variables across all samples. The notation is similar for
X[M].

Definition 13 (Missing At Random). The variables are Missing At Random
(MAR) if observed values are a random sub-sample of the sampled values,
in this case the mechanism is ignorable. On the contrary, if the probability
that X[iv] is observed depends on the value of X[iv] then the missing-data
mechanism is non-ignorable.

Let now pG(X|K) = pG(X[M], X[O]|K) be the density function of the joint dis-
tribution over the parameters K. In a graphical model problem, p factorises
according to a graph G and the parameters K denote the adjacency matrix
of the graph. The marginal probability on the observed variables can be com-
puted summing the missing values

pG(X[O]|K) =
∫

pG(X[M], X[O]|K)dX[M].
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Figure 3. Graphical representation of a dataset with different possible conditions of missing
values: (a) all the observations for all the variables are available; (b) all the observa-
tions for X3 are missing (i.e., X3 is latent); (c) some values missing completely at
random Little and Rubin, 2019; (d) all observations for one variables are missing
and the other variables have some missing observations.

Theorem 1 (6.1A Little and Rubin, 2019). Let K be the parameters of the graph-
ical model pG and ψ the unknown generative mechanism of missing data. The
latter is ignorable for the inference of K if the following two conditions hold:

• the parameters K and ψ are distinct, in the sense that the joint parameter
space (K, ψ) is the product of the parameter spaces.

• the full likelihood factorises as

L(X, R|K, ψ) = L(X[O]IK)L(X, R|ψ)

where R is an indicator function defined as

R(i, v) =

{
1 if X[iv] is observed

0 if X[iv] is missing

Given the theorem the MLE of the parameters K can be obtained by maxim-
ising the marginal likelihood on the observed data, defined as

L(X[O]|K) ∝ pG(X[O]|K).

Hence, the MLE of the parameters K on complete or only observed data is
equivalent, as it is based on the marginal likelihood provided that the missing
data mechanism can be ignored.

difference between partial and latent variables The formal dif-
ference between partial and latent variables lies in how the set of indices IM

and IO are defined. Indeed, if data are partial these sets change for each sample
as we would expect that we have random missing values that change their po-
sition across samples. If the data are latent, instead, the sets IM and IO are
stable across samples, i.e., the variables in the set IM are never observed and,
therefore, they may not be comprised in the input data matrix.
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2.2 Expectation Maximization Algorithm

The modelling of data through statistical methods involve the inference of un-
known parameters from observations. As an example we may want to infer the
mean and the variance of a univariate normal distribution. In some contexts
the unknown parameters may be coupled with missing values in the data. The
Expectation Maximisation (EM) algorithm is an iterative method to find Max-
imum Likelihood or a posterior estimates in these statistical models where
there are two types of unknowns (Dempster, Laird and Rubin, 1977). The two
sets of unkowns are the parameters K and the missing variables X[M]. Given
these unknowns the MLE becomes a set of intertwined equations in which the
inference of the parameters requires the values of the missing variables and
vice-versa.
The EM algorithm is based on a simple idea: we can pick arbitrary values for
one of the two sets of unknowns (either for K or for X[M]) and use them to
estimate the second set, then use these new values to find a better estimate of
the first set, and keep alternating between the two until both the resulting val-
ues converge to fixed points (Dempster, Laird and Rubin, 1977). This translates
into the alternation of two steps:

• the Expectation (E) step, in which we estimate the missing data based on
the likelihood of the available data and the parameters K at the previous
iteration;

• the Maximization (M) step, in which we maximize the likelihood given
the complete data estimated during the E step.

More formally, given the statistical model, a set X[O] of observed data, a set
of missing values X[M], a vector/matrix of unknown parameters K and a
likelihood function

L(X[O], X[M]|K) ∝ pG(X[M], X[O]|K)

the MLE of the unknown parameters is determined by maximizing the mar-
ginal likelihood of the observed data

L(X[O]|K) = pG(X[O]|K) =
∫

p(X[O], X[M]|K)dX[M].

Nevertheless, this quantity is often intractable. Therefore, EM algorithm seeks
to find the MLE of the marginal likelihood with two steps:

expectation step (e step) We denote with Q(K|X[O], Kι) the expected
value of the log likelihood function of K with respect to the current conditional
distribution of X[M] given X[O] and the current estimates of the parameters
Kι.

Q(K|X[O], Kι) = EX[M]|X[O],Kι [`(K|X[O], X[M])] .
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Algorithm 1 EM algorithm

1: θ ← initialise values
2: repeat
3: pk

M ← (XM|θ) // compute the probabilities of the missing variables
4: θk ← maximize L(XM|θ) // maximise parameters given the probabilities
5:
6: until convergence

Figure 4. Toy example of different initialisation strategies to deal with partial data. In the
top left corner we have the original complete data matrix and on its right the one
that we can actually observe. On the bottom we can see the results obtained with
complete cases (left) in which we reduced the samples size to two available samples,
available cases (middle) in which we have different samples for each variable and
imputing (right) in which we insert an empirical mean different from the true one
(bottom yellow row).

maximization step (m step) Given Q(K|X[O], Kι) we find the paramet-
ers K that maximize such quantity as

K(ι+1) = argmax
K

Q(K|X[O], Kι).

This translates into a simple algorithm presented in Algorithm 1 which can be
proved to reach a local minimum of the cost function (Dempster, Laird and
Rubin, 1977).
In some cases EM can be used to compute iterative MLE by creating fully
missing variables in such a way that in M step is non-iterative.

2.2.1 Initalisations

The very first step of EM (Algorithm 1) is the initialisation of the values which
can be performed with different strategies when we have missing data (Little
and Rubin, 2019). We reported a visual representation in Figure 4 that illus-
trates the various initialisation methods. With partial variables we can use:



2.3 ggms with partial data 32

1. Complete cases. We restrict the analysis to the cases where all the D vari-
ables are present. This approach is simple and allows comparability of
statistics but leads to potential loss of information or bias as the complete
cases are a random sub-sample of the original cases.

2. Available cases. It uses all the available information by including all the
cases where the variable of interest is present. Its main disadvantage is
the explicit difference in each variable that depends on the pattern of
missing data. In GGMs inference this could lead to non-positive definite
covariance matrices. An evolution is the pairwise available-cases method
that uses samples based on the co-presence of pairs of variables.

3. Imputing. It consists in inserting some heuristics in place of the miss-
ing values in the input data matrix. There are different techniques to
compute the heuristic value to put as the mean, the mode or the most
frequent of the available values.

In presence of latent variables we can randomly generate data in place of the
missing ones under the constraints specified by the problem. This could lead
to reach bad local minima in the optimisation function but always ensure the
problem to be well defined. Such approach is suitable also in the case of partial
data.

2.3 GGMs with Partial Data

In high dimensional contexts the problem of inferring a GGMs has been widely
studied (Friedman, Hastie and Tibshirani, 2008; Ravikumar et al., 2009a; Wain-
wright, Lafferty and Ravikumar, 2007). Nontheless, it is crucial to consider that
often datasets contain missing values (Little and Rubin, 2019). The estimate of
mean values and covariance matrices becomes difficult when the data is incom-
plete and no explicit maximisation of the likelihood is possible. In (Städler and
Bühlmann, 2012) the authors proposed a method for estimating the inverse co-
variance matrix in a high-dimensional multivariate normal models in presence
of partial data. This method allows for the inference of a graph structure while
supporting imputation on the original data matrix.
A simple way to estimate the adjacency matrix K, that in GGMs corresponds
to the precision matrix, is to delete all the cases containing missing values and
then estimating the covariance by solving the graphical lasso (GL) problem us-
ing only the complete cases (Friedman, Hastie and Tibshirani, 2008). However,
the exclusion of cases can result in a substantial decrease of the sample size
available and to a consequent bias, especially when D � N. Another possible
method is imputing the missing values with the corresponding mean and then
solving the GL.
While both these approaches are effective it is shown that they work more
poorly than the following method called Missing Graphical Lasso (MissGL) (Städler
and Bühlmann, 2012). This method is based on the inference of the precision
matrix K by maximising the observed log-likelihood `GGM (Eq. (11)), under the
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assumption that the underlying missing data mechanism is ignorable. Assum-
ing D � N the functional to maximise to estimate K ∈ SD

++ is

minimise
K�0

− `GGM(X[O]|K) + λ‖K‖1 (20)

which, despite the concise appearance, tends to be a complicated non-convex
functional for any general missing data pattern with the possible existence of
multiple stationary points (Schafer, 1997; Städler and Bühlmann, 2012).
The optimisation of such model can be performed through EM algorithm fol-
lowing the steps in Algorithm 1. In particular the maximisation step translates
into the optimisation of the Graphical Lasso (GL) problem with the estimated
complete data empirical covariance matrix.
To derive the EM algorithm we note that the complete data X follows a mul-
tivariate normal distribution that belongs to the regular exponential family
with sufficient statistics

µC = X> ID = (
N

∑
i=1

Xi1,
N

∑
i=1

Xi2, . . . ,
N

∑
i=1

XiD) (21)

C = (X>X) =


∑N

i=1 X2
i1 ∑N

i=1 Xi1Xi2 . . . ∑N
i=1 Xi1XiD

∑N
i=1 Xi2Xi1 ∑N

i=1 X2
i2 . . . ∑N

i=1 Xi2XiD
...

...
...

∑N
i=1 XiDXi1 ∑N

i=1 XiDXi2 . . . ∑N
i=1 X2

iD

 (22)

where µC is the empirical sample mean, C is the empirical covariance matrix
and the matrix ID denotes the identity matrix of dimension D × D (Städler
and Bühlmann, 2012). Note that, differently from other network inference case,
we cannot assume the mean to be 0. Indeed, while with the graphical lasso
problem on complete data we would re-centre the data using the empirical
mean, given the holes in our dataset doing so would convey bias. Therefore,
we are forced to infer the means as well.
The complete data log-likelihood can be expressed in term of the sufficient
statistics as

`c
GGM = −N

2
log det(K) +

1
2

tr(KC) +
N
2

µ>Kµ− µ>KµC + λ‖K||1

Therefore the E step at the ι-th iteration of the EM algorithm estimates the
sufficient statistics by filling the holes of the dataset with their expected value.
In particular we compute:

E[X[iv]|X[iOi], Kι, µι] =

{
X[iv] if X[iv] both observed

ci[v] if missing

where the vector ci ∈ R|Mi | for i = 1, . . . , N are the values that we substitute
in place of the missing values. In particular, a good value to substitute is the
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expected mean of each variables. In order to find it we observe that the missing
values are still distributed normally in the following way

X[i, Mi]|X[i, Oi] = N
(

µ[Mi] + K[Mi]
−1K[MiOi](X[Oi]− µ[Oi]), K[Mi]

−1
)

.

Therefore,

ci = µι[Mi]− (K[Mi]
ι)−1K[Mi, Oi]

ι(X[i, Mi]− µ[Oi]
ι)

Similarly, we compute the expectation for the second sufficient statistics as

E[X[iv]X[iv′]|X[iOi], Kι] =


X[iv]X[iv′] if both observed

X[iv]ci[v′] if X[iv′] missing

(K[v, v′]ι)−1 + ci[v]ci[v′] if both missing

Missing values are thus replaced by the conditional mean given the set of val-
ues observed for that observation. These conditional means and the non-zero
conditional covariances are easily found from the current parameters estimates.
The M step is straightforward and consists in optimising the GL to obtain the
precision matrix K and to simply take the mean of the computed sufficient
statistic µC to compute the mean µ. We obtain the means as

µι+1 =
1
N
(µC)ι+1

while for the estimate of Kι+1 we solve the GL problem (Equation (12)) with
empirical covariance matrix on the complete data defined as

C[vv′]ι+1 =
N

∑
i=1

E[X[iv]X[iv′]|X[iO], Kι]. (23)

2.3.1 Synthetic Data Experiments

We wanted to show the efficacy of the proposed method compared to the
graphical lasso (GL) (Friedman, Hastie and Tibshirani, 2008). In particular, we
generated a network of D = 10 nodes each of them connected with at most 3

other nodes in the network following the Barabasi-Albert random graph gen-
eration provided by the NetworkX python package (Albert and Barabási, 2002;
Hagberg, Swart and S Chult, 2008). We randomly generated with uniform dis-
tribution weights for the edges in the interval [−1, 1] and we then sampled
N = 100 from the corresponding multivariate normal distribution.
We applied GL and Miss-GL on the data. To simulate missing data we removed
the 5, 10, 15, 20, 25% of the data for 10 times. We used a fixed hyper-parameter
α on all the inference methods to better compare the results that are shown in
Figure 5. We observe that while GL always performs better than MissGL the
difference is not so significative. Also, MissGL is stable under an increasing
percentage of missing values which make it suitable for large set analysis.
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Figure 5. Average results across 10 repetitions for the comparison in terms of ROC and PR
curves of the Graphical Lasso (GL) and the Missing Graphical Lasso (MissGL)on a
dataset of D = 10 nodes and N = 100 samples. MissGL is applied on the dataset
at different percentages of random missing values.

2.4 GGMs with Latent Data

Latent variables cause observations to do not correspond to what we expect.
Indeed, by externally influencing the system they cause a non-sparse graph
were spurious dependencies between observed variables are introduced (Choi,
Chandrasekaran and Willsky, 2009; Choi et al., 2011).
In Figure 6 we report a toy example of the effect of the latent variables on
the inferred network. We can observe that the true network on the observed
variables (middle one) has less edges than the one that does not consider latent
variables (right one). This is due to the fact that connections existing with the
latent variables are forced to be explained by the observed variables only, thus
introducing spurious links (dashed one in right network).
Methods for the inference of GGMs can be extended in order to consider latent
variables able to represent factors which are not observed in the data. Note
that, these latent variables are not principal components, since they do not
provide a low-rank approximation of the graphical model. On the contrary,
such factors are added to the model in order to condition the statistics of the
observed variables. In particular, one can consider both latent and observed
variables to have a common domain (Choi et al., 2011).
Given N random samples X1, . . . , XN of length |O| ≤ D, these observations can
be viewed as the first components of a random sample X[i, :] = (X[iO], X[iM])

of a multivariate distribution N (µ, Σ) such that X[iO] are the observed data
and (X[iO], X[iM]) are the complete data both observed and latent. Note that
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Figure 6. Toy example of a network structure when we consider the latent variables. In the
leftmost network we see the complete network on all the variables, both latent and
observed, in the middle the true network only on the observed variables while in
the rightmost network we have the network on the observed variables if we do not
consider the influence of the latent.

the set of missing values denoted by the set IM does not vary with samples
but remains stable such that M = M1 = M2 = · · · = MN and O = O1 =

O2 = · · · = ON , i.e. the missing values are patterned into a group of variables
that are never observed. In this case we can assume the mean µ to be zero
without introducing bias in the analysis and, thus, semplifying the inference.
The distribution of such block data depends on a covariance (or its inverse the
precision) matrix, that can be represented as

Σ =


Σ[M] Σ[MO]

Σ[OM] Σ[O]


Similarly, we can define the precision matrix K of the joint distribution of both
latent and observed variables partitioned into four blocks:

K = Σ−1 =


K[M] K[MO]

K[OM] K[O]


. (24)

Both matrices lie in SD
++ and their blocks represent the conditional dependen-

cies among latent variables (K[M]), observed variables (K[O]), between latent
and observed (K[MO]), and vice-versa (K[OM]).
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The distribution of the missing and observed part are then conditioned on the
other as follows

X[M]|X[O] = N
(

K[M]−1K[MO]X[O], K[M]−1
)

and similarly

X[O]|X[M] = N
(

K[O]−1K[OM]X[M], K[O]−1
)

The marginal precision matrix of the observed variables is then given by the
Schur complement w.r.t. the block KM (Chandrasekaran, Parrilo and Willsky,
2010; Horn and Johnson, 2012):

K̂[O] = K[O]− K[OM]K[M]−1K[MO] = K[O]− L. (25)

The estimation of a graphical model with these type of data is more difficult
as there are identifiability issues. Indeed, there are possibly infinite marginal-
isation of latent variables that lead to the same sparse estimate of K[O].
In order to infer the GGM is possible to proceed in two ways: by estimating
the latent variables through an EM approach that provides a complete estim-
ate of K but, in turn, is a non-convex procedure or, by exploiting the Schur
complement form and estimating a marginalisation of the latent variables that
does not provide a complete estimate of K. This latter approach has the major
advantage of being a convex problem.

2.4.1 Non-Convex Approach

The method proposed for the inference of GGMs with partial data can be
used also for latent data as they are a partial data particular case. The same
idea proposed in (Städler and Bühlmann, 2012) for partial data has been pro-
posed separately for latent data in (Yuan, 2012) but it is, indeed, the same
thing. We call such method Latent Variable Graphical Lasso (LVGLASSO) (Yuan,
2012). LVGLASSO exploits the EM algorithm to minimise directly the problem
presented in Equation (20). The EM provides an estimate of the complete data
covariance matrix allowing for the inference of a network also on the latent
part of the precision matrix K.
The procedure, similarly to the one for partial data infers the global precision
matrix by estimating the latent part. Then, similarly to MissGL, after the ex-
pectation step the problem translates in a standard graphical lasso problem
(Friedman, Hastie and Tibshirani, 2008). Let

C =
1
N
(X[O], X[M])>(X[O], X[M])

be the complete data sufficient statistic and

C[O] =
1
N
(X[O])>(X[O])
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Algorithm 2 EM-LGL
1: for ι = 1, . . . do
2: C[OM] = X[O]>X[O]K[OM]K[M]−1

3: C[M] = K[M]−1 + (K[M]−1K[MO](X[O]>X[O])K[OM]K[M]−1)

4: C =


C[M] C[OM]>

C[OM] C[O]


.

5: Kι = argmin
K�0

tr(CK)− log det(K) + α‖K‖1

return K

the observed sufficient statistic (empirical covariance matrix). Complete data
statistic can be estimated in the same way described in Equation (23). As we
assume the mean to be zero, we ignore the µC sufficient statistic.
The related problem is non-convex. Therefore, Algorithm 2 may reach local
optima dependent on the initialisation of the initial parameters. Nevertheless,
LVGLASSO presents good performance in terms of structure recovery whilst
opening the road for the estimate of the latent variables themselves.

2.4.2 Convex Approach

A regularised convex approach for GGM selection with latent variables, namely
Latent Graphical Lasso (LGL), was proposed in (Chandrasekaran, Parrilo and
Willsky, 2010). The intuition of this method lies in the decomposition of the
precision matrix of the marginal distribution on the observe variables sparse
component plus a low-rank component. These two parts are regularised sep-
arately with an `1 norm and a nuclear penalty.
The two main assumptions of LGL for the identifiability of the two matrices
are complex and derive from theoretical evaluations in (Chandrasekaran et al.,
2011).

1. The rank r of the matrix L is the number of latent variables, by definition.
In order to being able to identify such matrix we need to assume that r =
|M| � |O|, i.e., there are few latent variables compared to the number of
observed ones.

2. The effect of the marginalisation is scattered over many observed vari-
ables. In other words, in the network the latent variables are conditionally
dependent with the majority of the observed ones. This is fundamental to
not confound their marginalisation with the true underlying conditional
sparse structure of K[O].

The two parts, corresponding to the two parts of the Schur complement in
Equation (25), specify respectively the conditional statistics (K[O]) and a sum-
mary of the marginalisation effect over the latent variables (L). Typically the
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conditioned K̂[O] is not sparse, but the subtraction (marginalisation) of the
latent factors contribution allows for the recovering of the true sparse GGM.
The LGL model is defined by the following functional (Chandrasekaran, Par-
rilo and Willsky, 2010; Ma, Xue and Zou, 2013)

minimise
(K,L)

K�0,L�0
rank(L)≤r

− `GGM(X[O]|K− L) + λ(γ‖K‖1).

Such functional, though, is non-convex because of the rank constraint. It is
possible to relax such constraint by imposing a nuclear norm as follows

minimise
(K,L)

K�0,L�0

− `GGM(X[O]|K− L) + λ(γ‖K‖1 + ‖L‖∗),

where

‖ · ‖∗ = `∗(·) = tr(
√
·T·) =

D

∑
i=1

σi(·) (26)

where each σi denote a singular value. While not being a strong constraint
this norm encourages the matrix L to have small rank. For this model, with a
suitable choice of λ, there exist a range of values of γ for which the estimates
(K, L) have, with high probability, the same sparsity and sign pattern and
rank as K∗[OM](K∗[M])−1K∗[MO] (Chandrasekaran, Parrilo and Willsky, 2010,
Theorem 4.1).
The functional, for simplification of the optimisation algorithm, can be also
rewritten as (Ma, Xue and Zou, 2013):

minimise
(K,L)

K�0,L�0

− `GGM(X[O]|K− L) + α‖K‖od,1 + τ‖L‖∗,

In Chapter 5 we rely on this last form which allows to model the two penalties
(`1- and `∗) separately.

2.4.3 Synthetic Data Experiments

We want to show the effectiveness of LGL and LVGLASSO compared to the
baseline Graphical Lasso (GL) (Friedman, Hastie and Tibshirani, 2008). We
generated a network on |O| = 100 observed variables and |M| = 5 latent from
which we sampled N = 100 observations.
We applied GL, LGL and LVGLASSO on data changing the hyper-parameters
as the model changes. Results, in the form of ROC and PR curves, are shown
in Figure 7. In particular in Figure 7a and Figure 7b we observe that LGL is the
method that performs best, while LVGLASSO and GL have similar perform-
ances. This is due to the fact that while both LGL and LVGLASSO consider
latent variables the second is non-convex and therefore it may require mul-
tiple initialisations to obtain the best result. Nonetheless it offers an estimate
of the latent variables impossible to obtain with LGL.
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Figure 7. Results comparison in terms of ROC and PR curves of the Graphical Lasso
(GL), the Latent Graphical Lasso (LGL) and the Latent Variables Graphical Lasso
(LVGLASSO) on the inferred observed part of the adjacency matrix of a graph with
|O| = 100 observed variables, |M| = 5 latent and N = 100 samples.

2.5 Summary

In this chapter we provided a background knowledge on the concept of miss-
ing data and the possible declinations into partial and latent variables. We
showed the inference methods that can be used to infer GGMs that cope
with these type of data. We exploited regularised optimisation methods . In
literature we can find other methods that deal with latent data as (Beal and
Ghahramani, 2003) that finds a structural EM approach to estimate latent vari-
ables in Bayesian Networks (Friedman, 1998) as well as latent variables in a
Baysian dynamic model (Beal et al., 2004). Li, Jia and Yao, 2015 estimate Gaus-
sian latent variables from observed categorical variables, while Robin, Am-
broise and Robin, 2018 perform EM assuming a tree structure between latent
and observed nodes. Also, Fan et al., 2019 adopt an ADMM optimization pro-
cedure to infer a precision matrix with noisy and missing data.
Here, we focused on the Gaussian distribution as it has nice property that sim-
plify the inference process also in presence of missing data. Methods that deal
with missing data also assuming other distributions are present in literature
(Anandkumar et al., 2013; Anandkumar et al., 2012; Schwing et al., 2012). We
are aware of their importance but we leave their temporal extension to future
work.



PART II

Contribution

Part 2 describes the original contribution of this thesis. In particular
in Chapter 3 we introduce the main measures and model selection
techniques in the context of network inference methods together
with our extension for stability-based model selection. Chapter 4

describes the generalised models for Markov models with the pos-
sibility to impose different probability distribution assumptions as
well as different pattern of time dependency. Chapter 5 presents
the temporal extension to models with missing data variables and,
lastly, Chapter 6 describes the Python framework containing the
code of this thesis as well as other utilities and algorithms.



3
Hyper-parameters Selection and
Performance Evaluation

Part of this chapter content is present in the following publications:
Veronica Tozzo, and Annalisa Barla. Multi-parameters Model Selection for Network
Inference. International Conference on Complex Networks and Their Applications.
Springer, Cham. (2019)

Methods for the inference of graphical models allow to consider a large variety
of different real-world data. These methods lie in the unsupervised machine
learning category, for which two questions easily arise: how do we measure the
goodness of a new proposed model? How do we select the hyper-parameters
that are suitable for a specific dataset? In this chapter we try to address this
two problems. As for the first question, in literature possible outlines for a
rigorous analysis ar provided. They often rely on evaluating the model on
synthetic data that are simulated as close as possible to the real-data we aim
at modelling. The answer to the second question is more challenging given
the unsupervised nature of the problem. Indeed, while many methods for
model selection exist in the supervised settings this is not always true in the
unsupervised setting case. In particular one may rely on model selection based
on likelihood scores or on the stability of the solution. While the first one is
easily extendible to our main case study (the multi-parameter multi-networks
case), the second requires some further consideration.

outline This chapter is organised as follows: in Section 3.1 we formalise
a generic form for a multi-network multi-penalty inference functional; Sec-
tion 3.2 we present the metrics used throughout the thesis to measure the per-
formances of inference methods on synthetic data. In Section 3.3 we present
our generalisation of model selection criteria for network inference methods.
We conclude in Section 3.4 with a summary of the chapter and future research
directions.

42
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3.1 General network inference functional

Probability-based multiple network inference aims at estimating T graphs
Gt = (V, Et) for t = 1, . . . , T where V = {1, . . . , D} are the nodes and Et ⊆
V × V is the set of edges that connect such nodes in the network t. The infer-
ence of the weighted adjacency matrices of such graphs K = (K1, . . . , KT) is
performed from observations X = (X1, . . . , XT) ∈ RN1×D × · · · ×RNT×D. We
define a generic form for the inference problem as

minimize
K,Kt�0

T

∑
t=1

[
− `(Xt|Kt) + α‖Kt‖1,od

]
+

P

∑
p=1

βpPp(K1, . . . , KT) (27)

where ‖Kt‖1,od is the off-diagonal `1 norm that enforces sparsity on the off-
diagonal elements of each adjacency matrix Kt and Pp is typically a sum of
penalties, controlled by the hyper-parameter βp, applied on combinations of
the precision matrices. The main hyper-parameter, α, regulates the sparsity
of the solution, a fundamental assumption to reduce the complexity of the
problem at hand.
Such functional is associated with a solver denoted with ζ, i.e., an optimisation
algorithm . Such algorithm ζ takes in input the set of matrices X and the hyper-
parameters of the model. It returns as output the set of adjacency matrix of the
graph K, that will depend, therefore, on the input hyper-parameters.
We can provide examples of instantiation of the general functional in the case
of GGMs. Indeed, in this chapter, in order to assess the reliability of stability-
based model selection criteria against likelihood-based we will use GGMs as
they allow to compute the joint likelihood of the model. In this case, data
are assumed to be sampled from a multivariate normal distribution and each
graph Gt is inferred from samples Xt ∈ RNt×D ∼ N (0, K−1

t ) If we substitute
`GGM in the functional (27) we can obtain different multiple GGMs:

• by taking T = 1 and P = 0 Equation (27) has the same form of the stand-
ard Graphical Lasso problem (Friedman, Hastie and Tibshirani, 2008);

• by taking T to be the number of classes present in the problem P = 1 and
the related penalty P1 = ∑T

t=1 ∑t′ 6=t Ψ(Kt − Kt′) we are considering the
Joint Graphical Lasso problem (Danaher, Wang and Witten, 2014; Guo et
al., 2011). Where ψ is the distance function among the precision matrices
of the classes;

• by taking T as the number of time points in a time series, P = 1 and
the related penalty P1 = ∑T−1

t=1 Ψ(Kt+1 − Kt) we are considering the
Time-Varying Graphical Lasso. Here, again, the function Ψ is the tem-
poral consistency function (Hallac, Leskovec and Boyd, 2015; Hallac et
al., 2017a).
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3.2 Performance Metrics for Graphical Models

The developing of a model is tricky mainly for the assessment of its perform-
ances in real-world contexts. Indeed, every model has some assumptions that
may or may not be reflected in the data on which it is used. It is therefore
necessary to pair its development with a quantitative and robust performance
assessment strategy to prove its generalisation skills.
According to the learning task and to the experimental setting different per-
formance metrics may be used. Nonetheless, the metrics should address two
main questions:

(a) how much likely is a model for new (i.e., unseen) data?

(b) Does the model represent the true structure of the system?

Question (a) could be address by observing the value of the likelihood as data
changes. Indeed, it provides a direct indicator of the goodness of the model
whilst not requiring the ground truth distribution by only the inferred model
and on the data at hand. Therefore, it can be used also in the context of real-
world data where the true underlying graph is not known. The likelihood,
though, leads to over-fit and it is not suitable for distributions different from
the Gaussian as it is impossible to compute. This topic will be further investig-
ate later in Section 3.3.

Question (b), on the contrary, requires the knowledge on the true structure
to perform comparison. Such question can be addressed under two different
perspectives depending on how we are interested in approximating the system,
if we consider it:

• as a regression problem, we aim at approximating each edge weight;

• as a classification problem, we aim at approximating the structure.

3.2.1 Metrics

Since we are in the context of Markov Random Fields, the analysed graphs are
undirected and, consequently, the adjacency matrix symmetrical. Let K be the
true multiple graphical model, and K̂ its prediction, we consider their upper
triangular part y = K(u) and ŷ = K̂(u) respectively. These two vectors have
dimension L = TD(D− 1)/2.

structure learning as regression If we consider the problem as a
regression task we want to measure how good we are predicting the value
of the edges. To this purpose we use a common metric called Mean Squared
Error (MSE) that incorporates bias and variance of the model. This measure is
scale-dependent and measures the distances between the entries of the inferred
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precision matrix with respect to the entries in the true underlying precision
matrix. It is defined as follows:

MSE(ŷ, y) =
1
L

L

∑
i=1

(ŷi − yi)
2,

structure learning as classification The presence or absence of
an edge in the graph, often, plays a more crucial role than its weight as it
entails a connections (or its absence) between two nodes.Therefore, typically
we want to assess whether we are able to detect the right edges by interpreting
the edges as classes: class 1 is the existence of an edge, class 0 is its absence.
We define true/false positive (TP/FP) to be the number of correctly/incorrectly
existing inferred edges, while true/false negative (TN/FN) as the number of
correctly/incorrectly missing inferred edges Hecker et al., 2009. The following
classification metrics can be used for the assessment of the inference method:

• Accuracy consists in the percentage of correct predictions with respect to
the total number. It ranges in the interval [0, 1] with 1 being the maximum
score and chance being the percentage of the most represented class over
the total number of edges.

A(ŷ, y) =
1
L

L

∑
i=1
1(ŷi = yi).

The accuracy has the drawback of being inaccurate in the case of highly
unbalanced classes.

• Balanced Accuracy is a simple extension taking into account the num-
ber of samples in each class. Balanced accuracy score (BA) ranges in the
interval [0, 1] and, for random classifier, is constrained to return 0.5 inde-
pendently from the number of samples in each class.

BA(ŷ, y) =
1
2
·
[

TP
TP + TN

+
TN

TN + FP

]
.

• Precision measures the positive predictive value as the fraction of posit-
ive samples over the total number of samples classified as positive:

P(ŷ, y) =
TP

TP + FP
.

It ranges in the interval [0, 1].

• Recall also known as sensitivity or true positive rate, ranges in the in-
terval [0, 1] and measures the proportion of positive samples correctly
classified as positive:

R(ŷ, y) =
TP

TP + FN
.
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• F1-score The F1-score is the harmonic mean of precision and recall, and
it can be used to control both of them at the same time.

F1(ŷ, y) =
2TP

2TP + FN + FP
.

• Specificity also known as True Negative Rate, measures the proportion of
negative samples which are classified as negative, thus including false
positive samples.

TNR(ŷ, y) =
TN

TN + FP
.

It ranges in the interval [0, 1].

• False Positive Rate also known as fall-out, it measures the proportion of
negative samples which are incorrectly classified as positive, over all of
the negative samples.

FPR(ŷ, y) =
FP

FP + TN
.

It ranges in the interval [0, 1].

• Matthews Correlation Coefficient provides a balances measure of the
quality of a binary classifications and it can be used even if the classes
are of very different sizes. It is the correlation coefficient between the
observed and predicted binary classifications and returns a value in the
interval [−1, 1] where MCC= 0 corresponds to chance.

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

other structural scores Throughout the thesis we will encounter many
synthetic experimental validations that will require additional measures aside
the structural ones. In particular when dealing with latent data we will check
whether the inferred marginalisation has a rank closed to the number of latent
variables. Also, we will have a clustering procedure (Chapter 4) and we will
validate the clustering accuracy using the V-measure.

• Mean Rank Error estimates the precision on the rank of an inferred mat-
rix. Given an estimated matrix L̂ = (L̂1, . . . , L̂T) and the ground truth
L = (L1, . . . , LT) is defined as:

MRE =
1
T

T

∑
t=1

∣∣rank(Lt)− rank(L̂t)
∣∣.

A value close to 0 means that we are inferring the true number of lat-
ent variables over time, while, viceversa, a high value indicates a poor
consideration of the contribution of the latent variables.

• V-measure is an entropy-based measure used to measure the goodness
of a clustering algorithm by measuring how successfully the criteria of
homogeneity and completeness have been satisfied. It ranges in an in-
terval [0, 1] where 0 is a bad clustering algorithm and 1 is a perfect one
Rosenberg and Hirschberg, 2007
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precision-recall and roc curves Throughout this thesis we will of-
ten recur to the use of plots that summarise the goodness of the inferred graph.
These graphs are the Receiver Operating characteristic Curve (ROC) and the
Precision-Recall curve (PR).
Such curves depict the ability of a method (considered as a classification prob-
lem) to retrieve the truth as the weights of the edges varies. The ROC curve
is created by plotting the true positive rate (TPR), or recall, against the false
positive rate (FPR) at various thresholds of the edges weights and provides an
intuition of the Type I error of the method. PR curves, instead, summarise the
trade-off between the true positive rate (Precision) and the positive predictive
value (Recall) at various thresholds of the edges weights.
Often, to obtain a number that gives us a general indicator of one curve we
compute the Area Under the Curve (AUC) which is the integral of the area
under the selected curve, an AUC equal to 0.5 means that the model performs
as a random classifier, an AUC equal to 1 means that the model is perfectly
accurate.

3.3 Multi-parameters Model Selection for Net-
work Inference

Complex network inference methods have the major drawback of a high num-
ber of hyper-parameters that need to be tuned. Such problem is also known as
model selection and it is one of the most challenging task in machine learning.
Indeed, even if some theoretical bounds exist for network inference methods
often they do not work in practice (Liu, Roeder and Wasserman, 2010). This
is due to the fact the assumed sample size is typically not available as we put
ourselves in high dimensional contexts in which N � D. The optimal models
are therefore selected by empirically evaluating the performance on data. In
the context of network inference this task is particularly difficult given the un-
supervised nature of the problem, which therefore relies on likelihood scores
(Bogdan, Ghosh and Doerge, 2004; Broman and Speed, 2002; Chen and Chen,
2008; Cheng, Shan and Kim, 2017; Danaher, Wang and Witten, 2014; Foygel
and Drton, 2010; Hallac et al., 2017a; Siegmund, 2004) or stability measures
(Liu, Roeder and Wasserman, 2010; Meinshausen and Bühlmann, 2010; Müller,
Bonneau and Kurtz, 2016).
Likelihood and its penalisations (BIC (Guo et al., 2011) or AIC (Danaher, Wang
and Witten, 2014)) are widely used in literature nested in a cross-validation
schema. The best model is selected by taking the one that performs best in
mean on multiple validation sets. The very first drawback is that this model
selection strategy may lead to over-fit (Wasserman and Roeder, 2009). The
second drawback is that likelihood-based scores may be conditionally applied
based on the assumed probability distribution as the computation of the nor-
malisation constant of the joint distribution may be infeasible — this is the
case for Poisson, Ising, and Exponential graphical models (Allen and Liu,
2013; Ravikumar, Wainwright and Lafferty, 2010; Yang et al., 2013). On the
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other hand, likelihood-based scores are easily extendible to the multi-network
multi-hyper-parameters case. A valuable alternative are stability-based meth-
ods whose aim is to find the optimal value of the hyper-parameters that max-
imises stability of the inferred graph at multiple re-sampling of the data (Liu,
Roeder and Wasserman, 2010; Meinshausen and Bühlmann, 2010). These cri-
teria have proved, in the case of single network inference, to be more effective
than likelihood-based scores (Liu, Roeder and Wasserman, 2010). Also, with
assumptions of Poisson, Multinomial and other types of data they are the only
possible choice. Such stability criteria were later extended to consider graph-
lets stability i.e. to verify the presence of non-isomorphic sub-graphs across
experimental sub-sampling (Müller, Bonneau and Kurtz, 2016; Pržulj, Corneil
and Jurisica, 2004).

In this section we provide a comprehensive description of the available likelihood-
based scores for multi-parameters model selection; we then extend stability-
based methods to the multi-parameters case, also including graphlets stability
(Liu, Roeder and Wasserman, 2010; Meinshausen and Bühlmann, 2010; Müller,
Bonneau and Kurtz, 2016).

3.3.1 Likelihood scores for multi-parameters model selection

Likelihood-based model selection methods rely on the possibility of comput-
ing the likelihood of the model under analysis. Therefore, as previously men-
tioned it is not possible to use the rest of the definition for some MRFs (e.g.,
Ising, Poisson, Exponential (Allen and Liu, 2013; Yang et al., 2013, 2015)).
This type of score can be used in a cross validation schema where, for each
hyper-parameter combination, the model is trained on the learning set and
the likelihood of the model is estimated on the independent test set. The
hyper-parameters are selected based on the average maximum likelihood of
the model across multiple splits of the data set.
When we have a set grid of hyper-parameters we can perform different cross-
validation strategies:

• K-fold where data are partitioned in K folds, one is retained for valida-
tion and the remaining K− 1 are used for train (see Figure 8).

• Monte Carlo Cross-Validation (MCCV) (Molinaro, Simon and Pfeiffer,
2005) that repeatedly splits the N samples of the data set in two mutually
exclusive sets. For each split, n · (1/ν) samples are labelled as validation
set and the remaining n · (1− 1/ν) as learning set (see Figure 9).

When the hyper-parameters grid is not fixed we can either select the hyper-
parameters at random in a specific interval (Bergstra and Bengio, 2012) or
select them using Gaussian process-based Bayesian optimisation procedures
(Snoek, Larochelle and Adams, 2012). The latter tends to reduce the compu-
tational times by choosing the best combination of hyper-parameters for each
analysed data set, based on the Expected Improvement (EI) strategy.
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Round 1

76%Validation accuracy:

Round 2

88%

Final accuracy: average(Round 1, ..., Round k)

... Round k

81%

Train

Test

Figure 8. Example of 3-Fold cross-validation schema. At each round the dataset is split in
train and test with a fixed number of samples in each split. The train sets never
overlap.

Round 1

79%Validation accuracy:

Round 2

86%

Final accuracy: average(Round 1, ..., Round M)

... Round M

82%

Train

Test

Figure 9. Example of Monte Carlo cross-validation schema.At each round the dataset is split
by randomly selecting a percentage of samples for training. Across rounds the train
sets may overlap.
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Inside each cross-validation schema different scores can be used. Such scores,
based on likelihood, are easily extendible to the multi-parameters multi-networks
case as it suffices to take the mean of the scores on the single networks. Let
us consider T graphs in D variables, for which we have X = (X1, . . . , XT)

observations each of them having Nt samples. We denote Λ the generic hyper-
parameters tuple of a model of the form in Equation (27) and the inferred
adjacency matrices inferred with the specific choice of hyper-parameters are
denoted as KΛ. Then, the generalised scores are:

generalized likelihood score It is the mean of the likelihoods com-
puted on the single networks and it is defined as

``GGM(KΛ|X) =
1
T

T

∑
k=1

[
1

Nt
`((KΛ)t|Xt)

]
such score was used in Hallac et al., 2017a; Tomasi et al., 2018b to perform
model selection on time-varying network inference.

generalised bayesian information criterion(bic) It penalises the
likelihood by considering the degrees of freedom of the model in order to prevent
overfitting for an increasing complexity of the model in analysis. In a graphical
model selection problem the degree of freedom are the number of non-zero ele-
ments in the matrix (Stoica and Selen, 2004; Zou, Hastie and Tibshirani, 2007).
Here, we take into account for the incremented number of degree of freedom
given by the T graphs.

BIC(KΛ|X) = ``GGM(X|KΛ)−
( T

∑
t=1

log(Nt)

Nt

)
‖KΛ‖od,0

where ‖KΛ‖od,0 is the number of non-zero elements in the off-diagonal of the
matrix KΛ. The BIC is a common score method for unsupervised problem
as it leads to asymptotically consistent model selection when the number of
variables D is fixed and the number of samples Nt increases. The AIC method
for multi-networks (Danaher, Wang and Witten, 2014; Sakamoto, Ishiguro and
Kitagawa, 1986) differs from this formulation only for the penalty that, instead
of being proportional to the number of samples, is simply multiplied by 2. Due
to this resemblance, we do not include it in the following comparison.

generalised extended bic (ebic) It further penalises the likelihood
with respect to BIC by adding a multiplicative part that depends on the num-
ber of variables

EBIC(KΛ|X, ε) = ``GGM(X|KΛ)−
T

∑
t=1

(
log(Nt)

Nt
+ 4ε

log(D)

Nt

)
‖KΛ‖od,0.

This score proposes a trade-off between the positive selection rate and the
false discovery rate based on the choice of the positive parameters ε, which
following the literature is selected as ε = 0.5 (Bogdan, Ghosh and Doerge,
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2004; Broman and Speed, 2002; Chen and Chen, 2008; Foygel and Drton, 2010;
Siegmund, 2004). A similar extension suitable when analysing large graphs is
defined as (Cheng, Shan and Kim, 2017).

EBICm(KΛ|X, ε) = ``GGM(X|KΛ)−
T

∑
t=1

(
log(Nt)

Nt
+ 4ε

log(TD(D− 1)/2)
Nt

)
‖KΛ‖od,0

where TD(D − 1)/2 is the total number of off-diagonal elements in the T
precision matrices.

3.3.2 Stability-based multi-parameters model selection

Model selection approaches based on stability of the result are widely used
in unsupervised settings as clustering (Lange et al., 2004; Von Luxburg, 2010).
In the context of graphical models they were proposed in (Liu, Roeder and
Wasserman, 2010; Meinshausen and Bühlmann, 2010). The two methods dif-
fer slightly, the first one propose the use of random sub-sampling to obtain
more stable regularization paths while the second propose sub-sampling to
directly detect the regularization parameter. Also, the first under-selects the
edges while the second over-selects. The need of over-selecting the graph lies
in the fact that it is computationally and manually easier to scan the detected
edges for false positive rather than scanning all the missing edges looking for
false negative. Indeed, the main assumption throughout this thesis is that the
underlying graph of a system is sparse therefore the true number of edges
between variables is low with respect to the total number of possible edges.
Also, from an applicative perspective, it is better to falsely identify two vari-
ables that may have a connections rather than discarding a true connection
between variables that may be important for the analysis of the system. The
most used is called Stability Approach to Regularisation Selection (StARS) (Liu,
Roeder and Wasserman, 2010), in which the best model is selected as the one
that uses the minimum amount of regularisation still producing a sparse and
stable graph under random sub-sampling of the initial dataset. StARS selects
the best value for the hyper-parameter α by analysing the trend of stability
as α varies. Indeed, as α → ∞ the inferred graph is completely sparse, i.e.,
no edges are present. Therefore for α = ∞ the graph is stable under random
sub-sampling of the data. On the other hand, the same holds when α = 0
as the graph is complete and therefore there is no variation in the inferred
edges. Their approach selects the best α based on the possibility to order the
regularisation parameters from the strongest regularisation to the weakest.

multi-parameters relation order In the context of multi-parameters
the ordering is trickier as different parameters act on different part of the in-
ference which may or may not impact sparsity and stability. Here, we define
a single parameter Λ = (α, β I , . . . , βP−th) as a tuple of hyper-parameters. Such
hyper-parameters are not randomly positioned within the tuple but according
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to their impact on the sparsity of the problem. Therefore, α that directly acts
on the `1 penalty is the most important hyper-parameter, followed by a certain
order of the βs such that β I acts on edges stability more than β I I and so on
and so forth. Note that in this case β I does not necessarily denote β1 but the
one that has the highest impact on sparsity. When performing model selection,
given the possible ranges for all the hyper-parameters and their order, we com-
pute a grid of values naming each point of the grid as Λi = (αi, βi

I , . . . , βi
P−th).

We order the tuples Λi following the inverse lexicographic order so that αi is
the parameter that changes less frequently. In this way to the first tuple Λ1

corresponds the most regularised (and therefore sparse) graph.

Example 1. We provide an example in the context of TVGL (Hallac et al.,
2017a), here we have two hyper-parameters α and β, the former directly acts
on the `1 penalty and it is therefore the most important while the latter acts
on the temporal consistency. The generic tuple is defined as Λ = (α, β). Let us
suppose that we take α ∈ {0, 0.1, 0.5, 1} and β ∈ {0.01, 0.1, 1, 10} than all the
possible combinations, in lexicographic order, are:

Λ1 = (1, 10), Λ2 = (1, 1), Λ3 = (1, 0.1), Λ4 = (1, 0.01),

Λ5 = (0.1, 10), Λ5 = (0.1, 1), Λ6 = (0.1, 0.1), Λ7 = (0.1, 0.01),

. . .

Λ14 = (0, 10), Λ14 = (0, 1), Λ15 = (0, 0.1), Λ16 = (0, 0.01),

The goal is to choose Λ∗ such that the true graph E is contained in E(Λ∗), i.e.
the graph is over-selected.

sub-sampling Let z = (z1, . . . , zT) be the number of sub-samples drawn at
random without replacement from each dataset Xt, such that each zt ∈ [1, Nt]

is proportional to the original number of samples for each point t, i.e., if Nt′ ≥
Nt then zt′ ≥ zt. The suggested choice for zt is

zt = min(10
√

Nt, 0.9Nt)

which allows to select a reasonable amount of sub-sample from the original
dataset even when the original sample size is low (Liu, Roeder and Wasser-

man, 2010). Given the selected zt there are possibly Mt =

(
Nt

zt

)
sets of of

possible sub-samples without repetitions. Ideally, one would sub-sample all
the possible sub-sets,

M = min(M1, . . . , MT),

but, for computational reasons, this is often un-feasible. We therefore opt to
sub-sample a high number of times (M ≈ 100) with the guarantee to reach the
same stability results (Politis, Romano and Wolf, 1999).

3.3.2.1 Single-edge stability computation - m-StARS

Given the choice of z and M we end up with estimated edge matrices Em, m =

1, . . . , M for each Λ. Let Km
Λ be the precision matrix obtained from the general
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application of a graphical model solver ξ to the sub-sampled matrix Xm. We
want to obtain the probability that an edge is present across multiple repeti-
tions. We approximate such value with a U-statistic of order M. Consider the
binarised version of Km

Λ denoted with K̄m
Λ we compute such approximation as

K̂z
Λ =

1
M

M

∑
m=1

K̄m
Λ

Now we define

ξ̂z
Λ = 2K̂z

Λ(1− K̂z
Λ)

which is an estimate of twice the variance of the Bernoulli indicator of the
edges of the matrices. It can be easily interpreted in the following way: for
each pair of graphs obtained with the same parameter we compute how often
they disagree on the existence of an edge. The value ξ̂z

Λ ∈ [0, 1
2 ] is the fraction

of times they disagree. For each Λ its ξ measure the instability of the edges
across sub-samples. This value is therefore compute for each possible edge
(i, j) for i, j = 1, . . . , D and each possible sub-graph t for t = 1, . . . , T. Then the
parameter is selected as

Λ∗ = arg min
Λ


min


∑T

t=1 ∑i<j(ξ̂
z
Λ)tij

T

(
D

2

)
 ≤ β


(28)

where β = 0.05 is the significance level (Liu, Roeder and Wasserman, 2010).
With this minimisation problem we take the highest monotonised values that
is below the accepted threshold β. Note that, the result Λ∗ depends on the
block size z and therefore this method may have some efficiency loss in low
dimension.

3.3.2.2 Graphlets stability computation - mg-StARS

StARS relies only on the single-edge stability which, by definition, ignores
higher order stability relations. In Müller, Bonneau and Kurtz, 2016 they pro-
posed an extension whose basic idea was to look for stability not only on the
single edges but also for more complex topological structures known as graph-
lets(Pržulj, 2007; Pržulj, Corneil and Jurisica, 2004).

Definition 14 (Graphlet). A graphlet is a small (typically 4 or 5 nodes) connec-
ted non-isomorphic sub-graph of a network.

Graphlets have to contain all the edges of the bigger networks between the
nodes that are considered. They are widely used to characterize networks or
to compare them. In particular, it is possible to count the number of time a
certain type of graphlet appears in the graph obtaining a Graphlet Degree
Vectors (Milenković and Pržulj, 2008; Pržulj, 2007). This vector can be used to
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Orbit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GDV(A) 2 1 1 0 0 1 0 0 0 0 0 0 0 0 0

GDV(B) 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

GDV(C) 2 1 1 0 0 1 0 0 0 0 0 0 0 0 0

GDV(D) 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
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Graphlet Correlation Vector (GCV)

Figure 10. Example of construction of a Graphlet Correlation Vector (GCV) used for the com-
putation of stability of the inference method under multiple sub-sampling of the
input data. On the top we have the representation of 4-nodes graphlets with the
corresponding 14 orbits. Such graphlets are searched in the graph (blue nodes one
on the left) and for each node we count how many times a specific type of orbit
touches it. The, to compute the Graphlet Correlation Matrix (GCM) ([0, 1]14×14)
we compute the Spearman correlation coefficient of the obtained results. The rav-
elled upper triangular part of the GCM corresponds to the GDV of the graph.

compute the Graphlet Correlation Matrix (GCM) (Sarajlić et al., 2016) where
we can store for each vertex its graphlet degree vector and then compute the
GCM between two graphs. The lower triangular of this matrix is the so-called
Graphlet Correlation Vector (GCV) (Sarajlić et al., 2016) and can be used to
compute distances between networks. Figure 10 shows a visual representation
of the process necessary for the definition of a GCV.
Given the m-StARS approach we estimate m = 1, . . . , M graphs with binarised
adjacency matrix K̄m

Λ for each Λ. Each estimated graph has associated a GCV,
here, since we have T graphs we would have a tuple of GCVs vectors ρm

Λ =

((ρm
Λ)1, . . . , (ρm

Λ)T). Then the graphlet variability (or instability) for fixed Λ over
M estimates is defined as the avarage Euclidian distance among all GCVs:

d̂z
Λ =

2
TM(M− 1)

T

∑
t=1

∑
m′>m

‖(ρm
Λ)t − (ρm′

Λ )t‖2.

Such measure goes to zero for very sparse and very dense graphs, but dif-
ferently from the measure used in StARS it is highly variable and therefore
cannot be monotonised. Nonetheless, such measure can be used to support
m-StARS by requiring simultaneously edge and graphlet stability.
This is achieved by selecting the Λ in an interval that is detected by looking
at single edge stability, in particular we determine the best hyper-parameters
tuple as
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Figure 11. Instabilities curves obtained applying the stability-based model selection methods
for multiple parameters (m/mg-StARS) on the Joint Graphical Lasso. On the top
we have the single edge instabilities (blue line) and their upper bound (orange line),
The vertical lines delimit the space in which to look for graphlet stability (bottom
plot line).

Λ∗ = argmin
Λ∈[Λlb,Λub]

d̂z
Λ

where the value Λlb is selected as in Equation (28) and Λub is selected as

Λub = arg min
Λ


min


(

∑T
t=1 ∑i<j 4(ξ̂z

Λ)tij(1− (ξ̂z
Λ)tij)

)
T

(
D

2

)
 ≤ β


note that in this way we are defining an upper-bound curve of the single-edge
instability curve (this can be visually observed in Figure 11, where in the top
panel the orange curve lies above the blue curve).

Proposition 2. The value ∑T
t=1 ∑i<j 4(ξ̂z

Λ)tij(1− (ξ̂z
Λ)tij) is an upper-bound value

of ∑T
t=1 ∑i<j(ξ̂

z
Λ)tij.

Proof. This can be proved easily as

2
4(
D

2

) T

∑
t=1

∑
i<j

ξ̂z
Λ

1− 1

T

(
D

2

) T

∑
t=1

∑
i<j

ξ̂z
Λ

 ≥
2(
D

2

) T

∑
t=1

∑
i<j

ξ̂z
Λ

is true if and only if

1(
D

2

) T

∑
t=1

∑
i<j

ξ̂z
Λ ≤

1
2

that is trivially true given that ξ̂z
Λ ∈ [0, 1

2 ] (Liu, Roeder and Wasserman, 2010).
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3.3.3 Synthetic data experiments

We designed four experiments to assess the efficacy of the proposed model
selection method. We tested m-StARS and mg-StARS against likelihood-based
model selection schema. We also included a comparison with the single para-
meter model selection StARS, when possible. For the model selection with
likelihood-based scores we used a 3-fold cross-validation schema training the
model on a subset of data and testing it on the remaining part. We tested
all model selection strategies on three GGMs model with multiple hyper-
parameters, in particular the Joint Graphical Lasso (JGL) (Danaher, Wang and
Witten, 2014), the Time-varying Graphical Lasso (TGL) (Hallac et al., 2017a)
and the Latent Graphical Lasso (LGL) (Chandrasekaran, Parrilo and Willsky,
2010) . We generated data in the following way:

• for JGL experiment we generated a random graph of 20 nodes each of
the having degree 3 using the Networkx package (Hagberg, Swart and
S Chult, 2008). This randomly generate graph represent the set of edges
that is shared across all the classes, that we chose to be three (T = 3). In
order to generate the graphs of the single classes we randomly add some
edges.

• for TGL, we devised two experiments in which we generated 10 time-
evolving networks of D = 100 variables (T = 10) with two different
evolution schema: smooth changes (TGL-`2) and punctual changes (TGL-
`1). In this specific case we compared also with the model selection per-
formed on single parameters, i.e., we considered each of the 10 networks
separately and used the Graphical Lasso. We called such experiments
(GL-`1) and (GL-`2).

• for LGL, we generated a perturbed observed network on 100 observed
variables with 5 latent (therefore we do not have multi-networks infer-
ence and T = 1). For the generation of the data that satisfies the the-
oretical constraints (see Section 2.4) we followed the generation schema
presented in (Yuan, 2012).

Both JGL and TGL have two hyper-parameters α that regulates sparsity and
β that regulates the similarity of the network across classes/times, we sorted
them as Λ = (α, β). LGL has two hyper-parameters α that regulates sparsity
and τ that controls the amount of estimated latent variables, we ordered them
as Λ = (α, τ). For all the experiments and all the classes/times we generated
N = 100 samples. We adapted the range of parameters to the specific case and
we used 4-nodes graphlets in the mg-StARS computation. For all experiments
we computed Precision-Recall (PR) and ROC curves by considering the edges
of the graphs as binary classes.
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Figure 12. Results comparison in terms of ROC and PR curves of the performance of the
Joint Graphical Lasso for different hyper-parameters (model) selection methods as
m/mg-StARS, likelihood, BIC, EBIC and EBIC_m.

3.3.4 Results

Stability-based methods for model selection provide better results in terms of accuracy
in structure recovery than likelihood-based strategies.
In Figure 11 an example of instabilities obtained applying our method for the
experiment on JGL. It is noticeable that the instabilities assume a sort of step
ascent, which assesses the validity of ordering the hyper-parameters according
to their impact to sparsity. We can observe that in this case the model selected
with m-StARS or with mg-StARS is different. In the other experiments, that
we do not report, both algorithms selected the same model. The differences
among the performances of m-StARS, mg-StARS, and likelihood-based scores
is reported in the of Figure 12. Looking at the curves we observe that the model
selected for mg-StARS performs worse than likelihood-based scores, while, if
we simply use m-StARS we obtain better results.
In Figure 13 we report the results obtained for the experiments on LGL, which
is the only case in which we have multiple hyper-parameters but only one
inferred network. Again m/mg-StARS perform better than likelihood-based
scores. In this case it is particularly evident as we generated synthetic data
from a spurious precision matrix. Therefore likelihood scores tend to over-
fit the dataset while m-StARS, that seeks for a stable result, obtain higher
scores. Lastly, in Figures 14, 15, 16, 17 we show the curves obtained for TGL-`1

and TGL-`2 in the single network (14, 16) and multiple network (15, 17) cases.
Note that, m-StARS (which is equivalent to mg-StARS) is the one providing
the best performance, both in single and in multiple network case. It is also
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Figure 13. Results comparison in terms of ROC and PR curves of the performance of the
Latent Graphical Lasso for different hyper-parameters (model) selection methods
as m/mg-StARS, likelihood, BIC, EBIC and EBIC_m.

worth mentioning that, when considering the 10 networks as single independ-
ent networks, GL-`1 and GL-`2 experiments, the results are always notably
worse with respect to considering them as a time evolving network. Lastly, we
wanted to point out that there is no consistent difference between likelihood
and its penalisation when inserted in a cross-validation schema. None of these
scores outperforms the others.

3.4 Summary

In this chapter we presented the measured to assess the goodness of an in-
ferred graphs when the ground truth is known and we presented an extension
for model selection based on stability of the result for network inference meth-
ods that present more than one hyper-parameter. We showed the validity of
the proposed stability-based criterion on Gaussian Graphical Models compar-
ing m-StARS and mg-StARS with likelihood-based cross validation schema
noticing that m-StARS always provides a better estimate of the model. We
remark that, in cases of non-Gaussian data, stability-based model selection
criteria are the only possible choice. Therefore, a suitable method for multi
hyper-parameters selection is necessary for further exploring more complex
models on other distributions (Lee and Hastie, 2015; Yang et al., 2014; Žitnik
and Zupan, 2015). From the methodological perspective graphlets stability has
proved to be less effective than single edge stability. For future work it would
be interesting to exploit other types of stability possibly looking at topolo-
gical descriptors capturing higher order relations such as persistent homology
(Bergomi et al., 2019). Also, it could be of interested to further validate the
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Figure 14. Results comparison in terms of ROC and PR curves of the performance of the Time-
Varying Graphical Lasso model (with temporal evolving behaviour `1) considered
as single separated networks for different hyper-parameters (model) selection meth-
ods as m/mg-StARS, likelihood, BIC, EBIC and EBIC_m.

proposed stability-based method to check for other ordering of the tuples Λ
and observe their empirical performance.
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Figure 15. Results comparison in terms of ROC and PR curves of the performance of the
Time-Varying Graphical Lasso model (with temporal evolving behaviour `1) for
different hyper-parameters (model) selection methods as m/mg-StARS, likelihood,
BIC, EBIC and EBIC_m.
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Figure 16. Results comparison in terms of ROC and PR curves of the performance of the Time-
Varying Graphical Lasso model (with temporal evolving behaviour `2) considered
as single separated networks for different hyper-parameters (model) selection meth-
ods as m/mg-StARS, likelihood, BIC, EBIC and EBIC_m.
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Figure 17. Results comparison in terms of ROC and PR curves of the performance of the
Time-Varying Graphical Lasso model (with temporal evolving behaviour `2) for
different hyper-parameters (model) selection methods as m/mg-StARS, likelihood,
BIC, EBIC and EBIC_m.



4
Methods for Generalised Temporal
Network Inference

Part of this chapter content is present in the following publications:
Federico Tomasi, Veronica Tozzo, and Annalisa Barla. Temporal Patterns Detection in
Time-Varying Graphical Models. Submitted. (2019)

The main focus of this thesis is to study and extend methods for the inference
of dynamic graphical models, able to describe a system as it changes. Dynamic
graphical models consider the change of the system behaviour as a change in
the structure of the network itself. We argue that the use of such models is
fundamental in the analysis of real-world systems as they are typically com-
posed of many entities (that we mathematically model with variables) which
may behave and interact differently in time. The inference can be guided by a
certain consistency in how these entities behave in close time points, a concept
that we identified as temporal consistency (see Section 1.7) Such concept has
been exploited only in the case of Gaussian Graphical Models (GGMs) (Bianco-
Martinez et al., 2016; Hallac et al., 2017a; Harutyunyan et al., 2019) but not for
other type of probability distributions. We argue that it would be necessary to
extend it to other distribution as real-worlds observations may be of different
type, e.g., continuous, binary or counts (Yang et al., 2015). Also, temporal con-
sistency used in GGMs (Hallac et al., 2017a) only considers Markovianity, i.e.,
each time point exclusively depends on the previous one. Markovianity may
be a shortcoming when the analysed phenomenon presents long term or recur-
rent relationships among time points. Here, we propose a general model for
network inference that can be instantiated in principle with any log-likelihood
allowing for the analysis of different data types, for considering possibly non-
Markovian relationships among time points. We also show how, in case of no
knowledge on the type of temporal dependency, it can be automatically in-
ferred. Lastly, we show how one could instantiate our general model also to
consider multi-class problems which, again, are present in literature only for
GGMs (Danaher, Wang and Witten, 2014).

62
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outline The rest of this Chapter is organised as follows. Section 4.1 intro-
duces the problem of inferring a dynamical graphical models under different
assumptions. Section 4.2 illustrates a clustering approach that can be coupled
with such model for the automatic inference when the temporal dependencies
are not known a priori. Section 4.3, 4.4 and 4.5 present the three instantiations
of the model in case of Gaussian, Ising or Poisson models with the related syn-
thetic data experiments. Section 4.6 shows the use of our general model for the
inference of multi-class graphs. Section 4.7 concludes with a brief discussion
on our contribution and future research directions.

4.1 Temporal Consistency and Dependency

The concept of temporal consistency that we introduced in Section 1.7.1 is
deeply connected to how we considered time points to be related. Indeed, our
definition of consistency (Definition 11) states that two points are consistent if
their distance (defined by a function Ψ) is small. In Hallac et al., 2017a they
defined temporal consistency by assuming Markovianity. This implies that one
point is dependent only to the previous one and, therefore, their structure is
consistent, i.e., given two points t and t+ 1 they have a small distance Ψ(Kt+1−
Kt).
Nonetheless, reality often presents more complex dependencies than Markovian-
ity. Consider as an example weather data, that presents highly seasonal, weekly
and daily recurrence of conditions. In this case, the network structure of vari-
ables in a one hour time span would be dependent not only on the previous
hour but also on the previous day at the same time, the previous week and
same season the year before.
Therefore, we couple the concept of consistency with the one of temporal de-
pendency. Consistency is a function of two given networks that provides a
measure of how much they are similar in structure. Dependency is a func-
tion of time that provides temporal instants in which the phenomenon under
analysis presents similarly to the current time point.

Definition 15 (Dependency). Two time points are said dependent if they model
the same behaviour of the system under observation.

Thereby, if the phenomenon at time point t is dependent on the phenomenon at
time point t′, this implies that the vice-versa holds (t′ is dependent on t). As we
assume network structure and the evolution of the system to be bi-univocally
linked, temporal consistency and dependency translate in a similarity of the
network structures of dependent time points.
Our goal is to provide a general model that allows to consider any probab-
ility distribution under possibly non-Markovian temporal dependencies. In
Figure 18 we provide an example of possible situations we aim at modelling.
If we consider time t4, the red rectangles in each row define the networks to
which t4 is dependent from. Their height indicates how much t4 should de-
pend (or be similar) to the other networks where the similarity is defined by
the consistency function Ψ.
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Markovian

non
Markovian

Smooth

Periodic

Random

Ψ

Kernel

Discrete

Gaussian

Periodic

Random

Figure 18. Examples of temporal evolving networks with Markovian (first row) and non-
Markovian temporal dependencies (smooth, periodic and random). If we focus on
time t4 (highlighted in yellow) we observe on top of the network structure red
rectangles that identify the time points from which t4 is dependent on. Such de-
pendency is forced on the structure by a consistency function Ψ. On the right side
the related kernels that allow for the imposition of specific temporal dependency
patterns, i.e., they provide a more structured representation of the rectangles.

If we know a priori the type of dependency of data we are analysing, such
knowledge can be easily embed in any temporal network inference method
through a stationary kernel κ that, at each time point, tells us which are the de-
pendent others (see the right side of Figure 18). Therefore, by decoupling con-
sistency type (Ψ) and dependency type (κ) we are able to model higher-order
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temporal relations such as smooth changes (2nd row of Figure 18) and period-
icity (3rd row of Figure 18). Note that, for type of dependencies as smooth or
periodic, we can easily recur to a mathematical definition of the kernel. While
for cases like the random one (4th row of Figure 18) we may need to manually
construct the kernel. An example of this case is a neurological study in which
we provide various stimuli to a subject at random instant in time
Temporal consistency and dependency could improve the inference of dy-
namic networks when the amount of samples available per each time point
is small, as information from distant dependent time points is exploited to
retrieve the true network structure.

4.1.1 Model

We consider a dynamic undirected graph G = [V, Et], where V = {1, . . . , D} is
a finite set of nodes that represent variables, and Et ⊆ V×V is the set of edges
between the nodes at a particular time t, for t = 1, . . . , T. We define a dynamic
graphical model as a non-stationary probability distribution pG belonging to the
exponential family on X1, . . . , XD that factorises according to the graph G.
The conditional independence between two variables Xi and Xj given all the
others at time t is encoded in Et, in particular they are independent if (i, j) /∈ Et.
Such conditional independence can also be encoded in an adjacency matrix K
that contains the structure of G in such a way that Kt(i, j) = 0 if and only if
(i, j) /∈ Et (Lauritzen, 1996).
At each time point t, consider a set of Nt observations Xt ∈ X Nt×D where each
sample is a D-dimensional vector drawn from a multivariate distribution pG
whose sample space is the set X . In particular, as explained in Section 1.4, 1.5
and 1.6 we have that X = R, X = {−1, 1}, X = N for the Gaussian, Bernoulli
and Poisson distribution assumptions respectively.
We want to define a general network inference method that, from such obser-
vations, learns a series of adjacency matrices K = (K1, . . . , KT). Note that the
number T is a choice that we need to do a priori, indeed each network at time
t is considered as a discretisation of the time-series in time points. Therefore,
given multi-variate time series of length τ we split them in chunks of equal
temporal span in such a way that each chunk has length Nt =

τ
T . We consider

each observations in a chunk to be i.i.d. (Hallac et al., 2017a).
The inference is thus guided by temporal consistency with possibly non-Markovian
dependencies. In order to define which are the dependent time points we in-
troduce in the model a stationary kernel.

Definition 16. A kernel κ ∈ ST
+ is a positive semi-definite matrix that en-

codes, at each entry κ(t, t′), the strength of dependency between the adjacency
matrices at time t and t′.

Such kernel encodes the strength of how much two network at different time
points should be similar in such a way that, samples belonging to different
(but related) time points, can drive the inference toward a better estimation of
the structure.
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In order to impose possibly non-Markovian temporal dependencies we add a
penalty PΨ,κ(K). Such penalty depends on the kernel κ that encodes the type of
dependency and the consistency function Ψ that defines the type of similarity
between dependent graphs (possible choice for Ψ are presented in Section 1.7)
and it is defined as

PΨ,κ(K) =
T

∑
s>t

κstΨ(Ks − Kt) =
T−1

∑
t=1

T−t

∑
t′=1

κtt′Ψ(Kt+t′ − Kt′). (29)

Such penalty is applied to a joint inference of T graphical model selection
problems as follows

minimize
K∈ST

T

∑
t=1

[
− Nt`(Xt|Kt) + α ‖Kt‖od,1

]
+ PΨ,κ(K) (30)

where `(Kt|Xt) is the log-likelihood to be instantiated, different choices of `

lead to different inferred networks. The penalty ‖ · ‖od,1 is the off-diagonal
`1-norm, which promotes sparsity in the adjacency matrices (excluding the di-
agonal). The constraint Kt ∈ ST forces the adjacency matrices to be symmetric.
Note that the functional in Equation (30) has the same form of Equation (27)
in Section 3.1 thus allowing for the use of all the model selection strategies
previously introduced (Chapter 3).

4.1.2 Stationary Kernels

We exploit stationary kernels to model the pair-wise similarities dependency
strength as they are defined based only on the distance between two points
and not on their identity. A strength equal to zero (κ[t, t′] = 0) implies that
time t and t′ are independent from each other and, therefore, no consistency
is forced on them during the inference.
A particular kernel reflects the prior information on the behaviour of the sys-
tem. Here, we introduce three kernels that will be used in this thesis: the dis-
crete, Gaussian and periodic kernel (see right side of Figure 18 for a visual
representation of the three kernels with T = 11). For a comprehensive over-
view of possible kernel functions see Rasmussen, 2003, Chapter 4.
Consider now two time points ti and tj, and a generic distance d.

discrete A kernel which enforces similarity only on consecutive points
can be defined as

κ(ti, tj) =


1, if ti = tj

β, if ti = tj+1 or ti = tj−1

0, otherwise

(31)

where β > 0 measures the strength of how similar ti and tj are. This kernel
assumes all points to be equally distant and the sequence to be Markovian, that
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is two points are related if consecutive, otherwise are deemed as independent.
Note that using this kernel with Gaussian data assumption leads to the TGL
model (Hallac et al., 2017a).

periodic Periodic trends, appearing at regular intervals over a time series,
may be captured by using a periodic kernel. A common choice for this type of
kernel is the exponential-sine-squared (ESS), of the form

κESS(ti, tj) = exp
(
− 2

s2 sin2
(

πd(ti, tj)

p

))
,

where p is the periodicity and s the length scale of the kernel.

radial-basis function Patterns that decay slow, highly influencing their
neighbouring time points and less the further time points, may be captured by
using a radial-basis function (RBF) kernel of the form

κRBF(ti, tj) = exp

(
−

d(ti, tj)
2

2s2

)
,

where s the length scale of the kernel.

4.1.3 Minimisation Algorithm

We consider three different exponential class sub-families for the instantiation
of the likelihood `: the Gaussian, the Bernoulli (Ising) and the Poisson. We call
the related inference methods, which depend from a particular kernel κ, Kernel
Temporal Graphical Lasso (TGLκ), Kernel Temporal Ising Graphical Model (TIGMκ),
and Kernel Temporal Poisson Graphical Model (PIGMκ) respectively. Note that
the name of the first method, TGLκ, slightly differs from the other two to
be consistent with the naming used in the state-of-the-art for Gaussian based
network inference methods.
The minimisation algorithm of these model is based on the Alternating Direc-
tions Method of Multiplier (ADMM), an optimisation method that divides the
problem into sub-problems. Such division makes the optimisation algorithm
easily customisable for any distribution assumption, indeed the likelihood
enters only in one of the step necessary for the minimisation. Furthermore,
given the form of the functional the algorithm is guaranteed to converge to a
global optimum of the problem (Boyd et al., 2011). For readability, we put all
the mathematical derivations in Appendix A.

4.2 Automatic Inference of Temporal Dependen-
cies

In the previous section we made an important assumption: the dependency
pattern is known a priori. Nevertheless, this assumption is not always satisfied.
Hence, the imposition of a kernel in the model is not feasible.
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Algorithm 3 Automatic inference of non-Markovian dependencies
Inputs: s (length scale), β strength, k number of network clusters.
κ0 = RBFβ

for ι = 1, . . . do
Kι = TGL/TIGM/TPGMκι−1

compute Sι as from Equation (32)
clustersι = AgglomerativeClustering(Sι, k)
compute Cι as from Equation (33)
κι = κ0 + βCι

if Cι == Cι−1 then
break

To overcome this issue we propose to couple the previous TGLκ, TIGMκ and
PIGMκ with a clustering procedure that automatically detects the most similar
(and therefore dependent) networks in time. Following the same naming cri-
teria we call such methods Temporal Graphical Lasso with Pattern detection(TGLP),
Temporal Ising Graphical Model with Pattern detection (TIGMP), and Temporal Pois-
son Graphical Model with Pattern detection (PIGMS).
We simultaneously infer both the clusters and the networks. We do not impose,
to networks belonging to the same cluster, the exact same structure. Related
approaches can be found in literature. In the context of GGMs, starting from
a dynamical network, Ho, Song and Xing, 2011 cluster the single networks in
time. Hallac et al., 2017b jointly estimate a dynamical network and patterns of
network similarity. This approach (TICC) is the most similar to our automatic
inference but, differently from us, imposes for each cluster the same network
structure, which may be limiting in real cases where the structure of the dy-
namical network may be similar but not necessarily identical at different time
points.

The coupling with a clustering algorithm introduces two problems: we need a
further hyper-parameter k, i.e., the number of clusters; the functional has now
two unknowns (κ and K) which multiply each other and make the problem
non-convex.

4.2.1 Minimisation Algorithm

The minimisation of the problem with the two unknowns is performed with
an alternating minimisation procedure. We fix the inferred networks to find
the clusters and then, given the clusters, we improve network inference. This
is repeated until convergence. Consider the model in Equation (30) with fixed
Ψ and unknown kernel κ. We could explore the initial similarities between
time points by using an initial kernel that we will call κ0 which impose only a
temporal similarity through an RBF kernel (also a discrete would be a suitable
choice). The resulting network inferred at iteration ι is used to compute a sim-
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ilarity matrix S that depends on the function Ψ. In particular, at each iteration
ι, we compute

Sι[t, t′] = 1−
Ψ(Kt − Kt′)− min

m,m′=1,...,T
Ψ(Km − Km′)

max
m,m′=1,...,T

Ψ(Km − Km′)
(32)

Each entry of the matrix Sι has a value in the interval [0, 1] where 1 means
that the network at time t and t′ are identical and 0 corresponds to the most
dissimilar networks. The matrix Sι is then used as input for a Hierarchical
Clustering algorithm (Defays, 1977) which provides in output k clusters. Of
these clusters we build the connectivity matrix Cι as follows:

Cι[t, t′] =

{
1, if t’ and t belong to the same cluster

0, otherwise
(33)

which is a symmetric matrix with diagonal 1. The final kernel is thus defined
as

κι = κ0 + βCι

where k0 is the initial RBF kernel that allows for the exploitation of dependen-
cies on consecutive time points and β is how strongly we want networks that
belong to the same cluster to be similar.
Given κι we minimise the related TGLκι , TIGMκι or PIGMκι . We keep alternat-
ing the two minimisation steps until Cι is equal to Cι−1.
The pseudo-code of this procedure is presented in Algorithm 3. Note that we
could not use directly the similarity matrix Sι to define the kernel to not rely
too deeply on the first exploratory step.
We want to remark that, while we propose such automatic inference for tem-
poral model, this approach can also be suitable for inference of both clusters
and networks also in the case of multi-class problems (see Section 4.6).

4.3 Kernel Temporal Graphical Lasso

The Gaussian assumption is the most explored in literature given its theoret-
ical properties that simplify the inference process. Therefore, in the state of
the art we can find methods on GGMs that use temporal consistency, ker-
nels or clustering. In particular temporal consistency is exploited to model
multivariate time series in (Bianco-Martinez et al., 2016; Hallac et al., 2017a;
Harutyunyan et al., 2019; Tomasi et al., 2018a,b). Hallac et al., 2017a also con-
sider asynchronous observations, i.e., where networks may be not all equally
spaced in time. Kernels are also widely used to model temporal variables, for
example, Gaussian or Wishart Processes (WP) infer the covariance matrix in
time. By definition, this approach does not estimate sparse graphs, which is
critical in high-dimensional settings when the number of variables exceeds the
number of available samples (N � D) (Fox and West, 2011; Rasmussen, 2003;
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Wilson and Ghahramani, 2011). Kernels were also used in (Chang, Yao and Al-
len, 2019) for the inference of latent temporal graphical models by computing
a kernel-dependent covariance matrix.
In case of Gaussian data we consider a dynamic graphical model as a non-
stationary zero-mean normal multivariate probability distribution

pG =
(
N1(0, K−1

1 ), . . . ,NT(0, K−1
T )
)

on X1, . . . , XD that factorises according to a graph G. The related TGLκ model is
then obtained from the model in Equation (30) instantiated with the Gaussian
likelihood `GGM in Equation (11), as follows

minimize
K�0,K∈ST

T

∑
t=1

[
− `GGM(Xt|Kt) + α ‖Kt‖od,1

]
+ PΨ,κ(K) (34)

Note that in this case we also need a positive definite constraint, K � 0 to
ensure the log det function to be well-defined.

4.3.1 Synthetic data experiments

Here, we compare the performance of methods with the Markovian assump-
tion and without it, i.e., exploiting kernels. To this aim, we devised two syn-
thetic experiments. In the first experiment, data show periodic temporal de-
pendencies, while, in the other, data are characterised by random temporal
dependencies. The data set used in the experiments followed the cluster-based
generation schema (see Appendix C.4), with periodic and random pattern for
D = 100 dimensions and T = 20 time points. For each data set we gener-
ated an increasing number of samples (Nt ∈ {5, 10, 50, 100, 500}) by sampling
from the related multi-variate normal distribution. We generated the datasets
10 times for each experiment to perform stability evaluation.
In both cases, we evaluated the modelling performance of TGLESS (i.e., TGLκ

with ESS periodic kernel), and TGLP compared to the Time-Varying Graphical
Lasso (TGL), Wishart Processes (WP) and the baseline graphical lasso (GL)
(Friedman, Hastie and Tibshirani, 2008; Hallac et al., 2017a; Tomasi et al., 2018b;
Wilson and Ghahramani, 2011). As our experiments are set in the N � D
scenario we could not consider TICC (Hallac et al., 2017b), the method that
automatically clusters the networks.
The hyper-parameters of the methods (with the exception of WP) were selected
through a stratified k-fold based on log-likelihood score (Molinaro, Simon and
Pfeiffer, 2005) that relies on a Gaussian process-based Bayesian optimisation
procedure (see Section 3.3.1). For all methods, we fixed the maximal amount of
iterations at 500. For WP, which do not assume sparsity, we apply a threshold
(ε = 10−5) to discard links with low weight and we take the maximum-a-
posteriori estimate selected across the last 75% iterations (the first 25% were
discarded for burn-in).
We computed the divergence from the ground truth in terms of structure of the
network and edges weight. We also computed the V-measure to compare the
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Figure 19. Performance of Time (in seconds), Matthew Correlation Coefficient (MCC), Mean
Squared Error (MSE) and V-measure for the Graphical Lasso (GL), Wishart Pro-
cesses (WP), Time-varying Graphical Lasso (TGL), Kernel Temporal Graphical
Lasso (TGLκ) and Temporal Graphical Lasso with Pattern detection (TGLS) for
two experiments on complex temporal dependencies: periodic dependencies (top
results) and random dependencies (bottom results) on networks of D = 100 di-
mensions, T = 20 times and increasing sample size Nt ∈ {5, 10, 50, 100, 500}.
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inferred clusters with the ground truth (see Section 3.2). For TGLESS, TGL, WP
and GL, which do not include a way to cluster graphs over time, we estimated
a V-measure by first inferring the dynamic network and then run a cluster-
ing algorithm a posteriori. We provide an indication on the average time of
convergence for each method, to demonstrate the scalability of TGLESS and
TGLP.

4.3.2 Results

TGLESS and TGLP perform better than the methods that do not consider non-Markovian
temporal dependencies. TGLP recovers the clusters with high accuracy. Figure 19

shows a visual representation of the different inference methods in the two
experimental settings, where we averaged the results across repetitions. Res-
ults are visualised for an increasing number of samples available at each time
point. In Table 1 we zoom in and show more details on the performance for
Nt = 50 available samples. Both cases show how a temporal kernel is benefi-
cial to better infer the underlying system structure. Indeed, TGLESS and TGLP

outperform the competitors in terms of MCC, MSE and V-measure, especially
when N � D.
TGLESS has high performance scores when data exhibit a periodic pattern
(Figure 19a). Indeed, prior information on the behaviour of the network is
crucial for a reliable inference, fact that is reflected in the improvement of
precision and MSE. Also, TGMESS converges in the same amount of time as
TGL even though it considers a higher number of relations between networks.
TGMP requires more time to converge due to the two-step alternating min-
imisation procedure. Nonetheless, TGLP outperforms in almost all measures
the other methods, including TGLESS, by increasing the accuracy in structure
inference and reducing the error in the estimation of the dynamical network.
Both Figure 19 and table 1 show for TGLP high V-measure which indicates
how automatic pattern discovery is appropriate to detect both random and
non-random patterns.

4.4 Temporal Ising Graphical Models

The Ising Graphical model (IGM) has been studied in the stationary case in
(Ravikumar, Wainwright and Lafferty, 2010; Yang et al., 2015). Based on the
stationary models, methods that studied its temporal evolution have been pro-
posed in the context of neural spikes modelling. In particular Roudi, Tyrcha
and Hertz, 2009 proposed a method that, for neural spikes time series, re-
trieves a unique stationary connectivity model. Later on, Hertz, Roudi and
Tyrcha, 2011 proposed a temporal Ising model based on the combination of
standard graphical model coupled with differential equations that model the
dynamic of neurons. The proposed algorithms, that infer respectively a station-
ary and a non-stationary network, have the limitation of focusing on neural
spike activity and thus embedding a specific dynamic in the model. As we
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experiment method BA P MCC MSE V-measure

(a) Periodic-pattern

GL 0.505± 0.002 0.029± 0.003 0.093± 0.017 0.190± 0.003 0.790± 0.096

TGL 0.558± 0.005 0.301± 0.014 0.122± 0.003 1.470± 0.015 0.791± 0.089

WP 0.498± 0.002 0.022± 0.001 0.002± 0.007 1.133± 0.003 0.730± 0.137

TGLκ 0.560± 0.008 0.372 ± 0.046 0.117± 0.005 0.148 ± 0.007 0.800± 0.090

TGLP 0.577 ± 0.003 0.341± 0.014 0.130 ± 0.002 0.707± 0.211 0.822 ± 0.113

(b) Random-pattern

GL 0.505± 0.001 0.029± 0.003 0.094± 0.014 0.191± 0.002 0.802± 0.088

TGL 0.560± 0.004 0.299± 0.011 0.122± 0.004 1.475± 0.012 0.788± 0.093

WP 0.497± 0.003 0.022± 0.001 0.007± 0.005 1.130± 0.006 0.766± 0.099

TGLκ 0.553± 0.007 0.284± 0.033 0.113± 0.005 0.173 ± 0.017 0.804± 0.088

TGLP 0.574 ± 0.004 0.331 ± 0.015 0.130 ± 0.003 0.758± 0.181 0.811 ± 0.081

Table 1. Performance in terms of balanced accuracy (BA) average precision (P), Matthews
correlation coefficient (MCC), mean squared error (MSE) and V-measure for TGLκ

and TGLS with respect to GL (baseline), TGL and WP for a graph of D = 100 nodes
with Nt = 50 samples per T = 20 time points.

introduced in previous chapters, this thesis work is not application-driven but
aims at tackling the temporal aspect of processes. Therefore, we extend the
Ising model to include a temporal evolution without using prior knowledge
on a specific domain. Indeed, even if the Ising model is the most appropriate
model for neural signals (Schneidman et al., 2006) it can also be suitable for
the modelling of other types of data as voting patterns (Banerjee, Ghaoui and
d’Aspremont, 2008), single nucleotide genetic mutations, behaviour of gases
or magnets (Ising, 1925) and many others. Moreover, the simultaneous cluster-
ing and inference of networks would allows us to detect repetitions patterns
without imposing any prior knowledge.

We consider a dynamic graphical model as a non-stationary probability distri-
bution

pG(X1, . . . , XD|K) =
(

pIGM(K1), . . . , pIGM(KT)
)

on X1, . . . , XD that factorises according to the graph G. The TIGMκ model
takes the form in (30) instantiated with the Ising conditional likelihood `IGM
in Equation (15) and it is defined as

minimize
K∈ST

T

∑
t=1

[
− `IGM(Xt|Kt) + α ‖Kt‖od,1

]
+ PΨ,κ(K) (35)

Note that, in this model the imposition of a symmetry constraint is funda-
mental as we cannot simply reason in terms of single variables because of the
penalty PΨ,κ.
An example of a possible application of TIGMκ is presented in the context of
neural data in Figure 23. Here, we generated a simulation of neural activity fol-
lowing a repeating networks pattern. By observing the spikes on different neur-
ons it is really difficult to observe a consistent temporal behaviour between
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time spans that have the same underlying network (blue cluster). Thus, we
could employ inference techniques to detect similarities of networks in time.

4.4.1 Synthetic data experiments

The evaluation of TIGMκ is performed via three experiments. For all experi-
ments we sampled the Nt independent observations from the generated dy-
namic network using the Metropolis-Hastings algorithm where each sample
is generated after 100 repetitions for burn-in (Epskamp, 2015). We selected the
hyper-parameters using the stability-based model selection strategy proposed
in Chapter 3.

stationary minimisation comparison

We consider the stationary case and we want to assess which minimisation
algorithm to use for the optimisation of the Ising model considering the fol-
lowing three strategies:

(a) Single-FBS: a Forward Backward Splitting (FBS) procedure that performs
neighbourhood selection separately on the D variables, and then uni-
fies the neighbourhoods in a post-processing step (Allen and Liu, 2013;
Ravikumar, Wainwright and Lafferty, 2010).

(b) Logistic Regression: a Logistic regression problem that similarly is ap-
plied on the D variables considering in turn one variable as the output
and the remaining D − 1 as independent covariates; again the final net-
work is retrieved in a post-processing step (Ravikumar, Wainwright and
Lafferty, 2010; Wan et al., 2016).

(c) Global-FBS: a FBS procedure that simultaneously optimises on the entire
adjacency matrix through the imposition of symmetry constraint on the
solution.

We generated a stationary network using the Networkx package (Hagberg,
Swart and S Chult, 2008) with D = 20 nodes and N = 100 samples and we
repeated the experiment 10 times to obtain mean values of three minimisation
algorithms.

static vs temporal comparison

The second experiment aims at assessing the goodness of the temporal model
with respect to the static one.

We performed three experiments with an increasing number of variables D =

{5, 10, 50} keeping Nt fixed to 100 for T = 10 times for a totality of T(D(D−
1)/2) unknowns using an `1 generation schema (see Appendix C.1). We gener-
ated data sets 10 times and fit the static IGM (with Globlal-FBS optimisation)
and TIGMκ instantiated with an RBF kernel.
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method Global-FBS Logistic Regression Sigle-FBS

P 0.73± 0.04 0.71± 0.01 0.76± 0.06

R 0.76± 0.1 0.76± 0.06 0.57± 0.1

F1 0.74± 0.04 0.73± 0.03 0.65± 0.06

S 0.4± 0.15 0.37± 0.13 0.62± 0.18

BA 0.58± 0.04 0.56± 0.04 0.6± 0.05

MCC 0.48± 0.11 0.46± 0.11 0.45± 0.1

Time(s) 10.34± 0.27 0.04± 0.01 91.98± 3.4

Table 2. Performance in terms of Precision (P), Recall (R), F1 score (F1), Specificity (S), Bal-
anced Accuracy (BA), Matthews Correlation Coefficient (MCC) and Time in second
for different minimisation algorithms for the stationary Ising model, in particular
the Global-FBS, Logistic Regression and Single-FBS on a network of D = 20 nodes
with N = 100 samples.

prior kernels vs pattern detection

The third experiment assesses the improvement we obtain using a kernel and,
thus, taking advantage of a strong prior as well as the ability of automatic
pattern dependencies discovery.
We generated cluster-based networks (see Appendix C.4) with 3 cluster repres-
entatives of D = 10 variables in a T = 15 dynamic network with a periodic
pattern. We sampled Nt = 100 observations for each time point.

4.4.2 Results

We assessed the results only in terms of structure recovery as considering the
problem as a regression task (see Section 3.2) is not meaningful. Indeed, the
Ising model only has edges with values {−1, 0, 1}.

stationary minimisation comparison

Global-FBS performs better than the other minimisation methods despite requiring
more computational time than Logistic Regression. In Table 2 and Figure 20 we
show the results obtained comparing optimisation methods for stationary in-
ference. Global-FBS optimisation procedure is the one that overall has the best
performance. Indeed, from the execution time point of view Global-FBS is not
faster than the Logistic Regression but it produces more accurate results in
terms of recovery of the network structure. Single-FBS has higher precision
and specificity with a consequently higher balanced accuracy but the results
for Global-FBS are comparable. The ROC and PR curves seems to indicate the
same conclusion as, for both, Global-FBS has a higher mean AUC (0.51 and
0.72 respectively).

static vs temporal comparison

TIGMκ performs better than its stationary counterpart especially when the number
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Figure 20. Average results across 10 repetitions in terms of ROC and PR curves for the
application of different minimisation algorithm on stationary Ising model with
N = 100, D = 120 for a fixed hyper-parameter α.

of variables increases with respect to the available samples. We compared TIGMRBF

fixing ψ = `1 with IGM. Results are presented in Table 3 and Figure 24. We ob-
serve that the ROC and PR curves show a consistently higher performance on
the temporal implementation with respect to the stationary case, which is also
supported by a smaller time to convergence of different order of magnitudes
(see last row of Table 3). If we observe the structure performance in Table 3 we
note that results are consistent as the number of variables increases. Also, even
if recall and F1 score are higher for the stationary Ising model, we still have
comparable results especially when the number of variables increases. TIGMκ

has significantly higher scores when looking at specificity.

prior kernels vs pattern detection

TIGMESS better recovers the structure while TIGMP better recovers the dependency
pattern. We compared TIGMESS with TIGMP for the recovery of both struc-
ture and clusters with a periodical recurrence. Structure recovery perform-
ances (Table 4) are highly similar but we can still observe a slightly higher
performance for TIGMESS given by the true prior imposed on the solution. In
turn, by looking at Figure 21 we can observe that TIGMP produces a better
estimate of the true clusters of networks (i.e., networks with similar and thus
dependent structure).

4.5 Temporal Poisson Graphical Models

The Poisson Graphical Model (PGM) has been studied in different state-of-
the-art papers in the stationary case (Allen and Liu, 2013; Yang et al., 2012,
2013, 2015). Nonetheless, to the best of our knowledge it was never extended
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5 variables 10 variables 50 variables

Metric IGM TIGMRBF IGM TIGMRBF IGM TIGMRBF

P 0.71± 0.06 0.78± 0.05 0.69± 0.08 0.77± 0.09 0.73± 0.02 0.74± 0.02

R 0.89± 0.05 0.59± 0.09 0.90± 0.04 0.70± 0.16 0.49± 0.03 0.46± 0.03

F1 0.78± 0.02 0.66± 0.05 0.78± 0.04 0.71± 0.06 0.59± 0.03 0.57± 0.03

S 0.18± 0.05 0.61± 0.16 0.17± 0.09 0.50± 0.28 0.64± 0.02 0.69± 0.03

BA 0.53± 0.02 0.60± 0.06 0.53± 0.03 0.60± 0.06 0.56± 0.02 0.57± 0.02

Time(s) 1.5e10 ± 5.3e2 5.7e2± 4.8e1 1.5e10 ± 4.9e2 5.2e2± 1.2e1 1.5e10 ± 4.7e2 5.8e2± 9.3e1

Table 3. Performance in terms of Precision (P), Recall (R), F1 score (F1), Specificity (S), Bal-
anced Accuracy (BA), Matthews Correlation Coefficient (MCC) and Time in second
for Kernel Temporal Ising Graphical Model (TIGMRBF) and stationary Ising Graph-
ical Model (IGM) for an increasing number of variables D = {5, 10, 50} with a fixed
number of samples Nt = 100.

(a) True dependency pattern (b) Inferred pattern with
TIGMESS

(c) Inferred pattern with TIGMP

Figure 21. Qualitative comparison of automatic dependency patterns inference for Temporal
Ising Graphical Model with periodic kernel (TIGMESS) (panel b) and Temporal
Ising Graphical Model with Pattern detection (TIGMP) (panel c) compared to the
ground truth (panel a) for the inference of dependency pattern with periodical re-
petitions in T = 15 time points on D = 10 variables and Nt = 100 observations.

to consider a longitudinal component. We argue that it would be extremely
interesting to have such temporal model given its natural predisposition to
handle counts data, such as in the case of NGS sequencing data (Metzker,
2010). While current literature solves the problem by using GGMs after suitable
transformation, a temporal Poisson graphical models would be better suited
to model dynamical biological data that are intrinsically not Gaussian.
We consider a dynamic graphical model as a non-stationary probability distri-
bution

pG(X1, . . . , XD|K) =
(

pPGM(K1), . . . , pPGM(KT)
)

on X1, . . . , XD that factorises according to the graph G. The TPGMκ model is
then defined as Equation (30) instantiated with the Poisson conditional likeli-
hood `PGM in Equation (17).
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Score TIGMESS TIGMP

P 0.71 0.71

R 0.61 0.49

F1 0.66 0.58

S 0.57 0.65

BA 0.59 0.57

Table 4. Performance in terms of Precision (P), Recall (R), F1-score (F1), Specificity (S),
Balanced Accuracy (BA) and time in seconds of Kernel Temporal Ising Graphical
Model (TIGMESS) and the Temporal Ising Graphical Model with Pattern detection
(TIGMP) for the inference of networks with periodical repetitions in T = 15 time
points on D = 10 variables and Nt = 100 observations.

5 nodes 10 nodes 20 nodes

Metric Static Temporal Static Temporal Static Temporal

P 0.97± 0.05 0.96± 0.05 0.75± 0.08 0.73± 0.07 0.56± 0.02 0.50± 0.02

R 0.88± 0.1 0.89± 0.09 0.66± 0.09 0.77± 0.08 0.66± 0.04 0.80± 0.04

F1 0.92± 0.07 0.92± 0.06 0.70± 0.06 0.74± 0.04 0.60± 0.02 0.61± 0.02

S 0.96± 0.02 0.98± 0.02 0.85± 0.07 0.80± 0.09 0.81± 0.01 0.72± 0.03

BA 0.93± 0.06 0.94± 0.05 0.75± 0.04 0.79± 0.04 0.74± 0.02 0.76± 0.01

Time 1.5e9 ± 2.3e3 2.7e3± 1.4e2 1.5e9 ± 2.2e3 2.7e3± 8.8e1 1.5e10 ± 2.3e24 2.7e3± 6.1e1

Table 5. Performance in terms of Precision (P), Recall (R), F1-score (F1), Specificity (S), Bal-
anced Accuracy (BA) and time in seconds of Temporal Poisson Graphical Model
(TPGMRBF) against stationary Poisson Graphical Model (PGM) for an increasing
number of variables D = {5, 10, 50} with a fixed number of samples Nt = 100 and
T = 10 time points.

minimize
K∈ST

T

∑
t=1

[
− `PGM(Xt|Kt) + α ‖Kt‖od,1

]
+ PΨ,κ(K) (36)

This model requires the symmetry constraint given the imposition of the pen-
alty PΨ,κ.

4.5.1 Synthetic data experiments

We performed one experiment with an increasing number of variables D =

{5, 10, 20} keeping Nt = 100 for T = 10. For each D we used and `1 evolution
schema letting three edges change per each time (see Appendix C.1). For the
generation of the Nt independent observations we used the approach proposed
by (Allen and Liu, 2013; Karlis, 2003). At each time t, the sample matrix Xt ∈
X = NNt×D is generated by the following model

Xt = YBt + E
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where Y ∈ NN×D(D−1) such that each element of the matrix Yij ∼ Poisson(λ∗)
and E ∈ NNt×D is such that Eij ∼ Poisson(λnoise). The matrix B encodes
the true underlying graph structure denoted by the adjacency matrix K ∈
{0, 1}D×D such that

Bt =

[
ID; P� (1Dtri(Kt)

>)

]>
where P is the D× (D(D− 1)/2) pair-wise permutation matrix, � denotes the
Hadamard or element-wise product and tri(Kt) denotes the D(D − 1)/d × 1
vectorized upper triangular portion of the adjacency matrix Kt. We fixed a high
signal-to-noise level λ∗ = 1, λnoise = 0.5. We compare PGM with TPGMRBF

with Ψ = `1 after selecting the hyper-parameters using the stability-based
model selection strategy proposed in Chapter 3.

4.5.2 Results

TPGMRBF performs better than PGM as D increases compared to the number of
samples Nt. Results are presented in Table 5 and Figure 25. By looking at the
table we observe that TPGMRBF always requires less time to converge than
stationary PGM applied on the 10 networks. We can also observe that with
5 nodes TPGMRBF has a better performance in structure recovery according
to all the measure while, for 10 and 20 nodes, the stationary PGM has a
slightly higher precision and specificity. Nonetheless, if we look at the ROC
and Precision-Recall curves in Figure 25 we can observe that the behaviour of
the two methods with 5 nodes is the same in terms of balances between True
Positive and False Positive rates as well as in terms of precision-recall balance.
As the number of nodes increases the temporal models performs better than
the stationary one (higher AUC scores).
In the Precision-Recall curves (Figure 25) it is possible to observe a fast drop
of Recall that remains then stable. This is due to the diagonal presence in the
matrix, indeed the diagonal values are typically higher than the non-diagonal
elements. Therefore, when the thresholds are computed there is a certain point
in which only the diagonal element remains, this causes a drop in recall while
the precision remains stable. This behaviour is shown in Figure 22, where we
can observe the drop in recall after a certain threshold.

4.6 Multi-class problem

During this chapter, we heavily discussed the problem of inferring graphical
models from temporal data where each time points has its own distribution.
A strongly related problem is the one of inferring networks from samples be-
longing to different classes, that may have close but different underlying dis-
tributions. Such problem has been previously tackled in (Danaher, Wang and
Witten, 2014; Guo et al., 2011) in the context of GGMs. They suggested that
two graphical models inferred from different classes of the same population
should be similar to one another as they share the most common structure
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Figure 22. Exemplification of the elbow behaviour in the Precision-Recall curves.

with some differences that differentiate them into classes. Danaher, Wang and
Witten, 2014 proposed the Joint Graphical Lasso (JGL), a method that jointly es-
timates multiple graphical models. They imposed a similarities between these
models trough a penalty, as follows

minimize
K�0

T

∑
t=1

[
− `GGM(Xt|Kt) + α ‖Kt‖od,1

]
+ β

T

∑
t=1

∑
m>t

Ψ(Kt − Km).

Note, that this model corresponds exactly to our general model in Equation (30)
in the case of Gaussian assumption and with the following kernel:

κMC(ti, tj) =

0, if ti = tj

β, if ti 6= tj

Therefore, our general model besides providing an increased modelling power
in the context of temporal models also allow to extend the Ising and Poisson
model easily to the multi-class case without introducing a further optimisation
procedure.

4.6.1 Synthetic experiments

We provide preliminary results on the ability of TGLMC, TIGMMC and TPGMMC
to infer multi-class networks. We devised two experiments, Random-Graph
where we generated the initial network on D = 10 nodes using the Erdős-
Rényi algorithm (Erdős and Rényi, 1960) and the Preferential-Attachment where
we generated the initial network following the Barabasi-Albert (Albert and Bar-
abási, 2002) random model. The generation of K = 5 classes is performed fol-
lowing the schema presented in Appendix C.6. For each time point we gener-
ated an increasing number of sample Nt ∈ {5, 10, 50, 100} to assess if structure
recovery improves as the samples become more. We repeated the experiments
10 times to check for stability of the results. We applied on these data TGLMC,
TIGMMC and TPGMMC with Ψ = `1 and Ψ = `1, where we suitable selected
the values of the edges and the sampling process according to the distribu-
tion. For all the models we fixed the β of the kernel to 1 and we fixed the
hyper-parameters α.
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4.6.2 Results

Results are presented in Figure 26 and Figure 27 for the Random-Graph and
the Preferential-Attachment, respectively.

random-graph

TIGMMC with `1 consistency performs better than the other methods and the other
type of consistency. Figure 26 we observe that TIGMMC with `1 consistency has
MCC that goes from 0.25 to 0.75 as the number of available samples increases.
TGLMC and TPGMMC have a flat trend where TPGMMC performs slighlty bet-
ter. The `2 consistency produces worst results for all methods.

preferential-attachment

TPGMMC performs better than TGLMC and TIGMMC independently from the type of
consistency applied. In Figure 27 we observe that all methods perform equally
on the data independently on the type of consistency Ψ. TPGMMC model per-
forms significantly better than the other two models which show an MCC
score close to zero. Moreover, TGLMC and TIGMMC have flat trends of scores
as the number of samples increases differently from TPGMMC.

We want to remark that we kept the hyper-parameters fixed for all the models,
therefore a suitable model selection procedure on the specific model could
improve its performances. We plan on further assessing this extension in future
work.

4.7 Summary

In this chapter we presented a generalised temporal model that allows to be
flexible in terms of probability assumptions, temporal consistency and pat-
terns of dependencies. We instantiated such models with three different like-
lihoods, Gaussian, Bernoulli and Poisson. We presented thorough validation
on TGLκ and preliminary synthetic validation of TIGMκ and TPGMκ. We also
showed that our general model can be used for the inference of multi-class
problems providing a single way to modelling and optimising on a variety of
possible real-world data. We plan to further validate our models with a bigger
comparison in terms of imposed kernels as well as a deeper assessment of
the simultaneous inference of temporal similarities. We also need to check for
more signal-to-noise ratio settings in the Poisson model. Furthermore, we plan
to extend the current sequential implementation to consider parallel tasks that
will further speed up the time needed for convergence.
We would like to remark that the general model proposed in Equation (30)
could be instantiated, in principle, with all the possible likelihood allowing
for the consideration of mixed graphical models (Yang et al., 2014) as well as
for integrated one (Žitnik and Zupan, 2015). Indeed, the modular optimisa-
tion presented in Appendix A is easily extendible to any problem minimised
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through coordinate descent, FBS or ADMM procedures. This would allow to
easily consider both temporal and multi-class extensions of many network in-
ference methods.
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Figure 23. Example of 5 neurons activity whose underlying connectivity network is clustered
in time (clusters are shown at the top). By looking at the behaviour of clustered
time points we cannot observe any significative resemblance but the inference of
the underlying networks (plotted on the bottom) guides us in the detection of
similarities.



4.7 summary 84

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Chance

Mean roc IGM (AUC = 0.42 ± 0.06)

Mean roc TIGM (AUC = 0.49 ± 0.05)

(a) ROC curve 5 nodes

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

Chance

Mean pr IGM (AUC = 0.69 ± 0.04)

Mean pr TIGM (AUC = 0.72 ± 0.05)

(b) Precision-Recall curve 5 nodes

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Chance

Mean roc IGM (AUC = 0.44 ± 0.06)

Mean roc TIGM (AUC = 0.52 ± 0.03)

(c) ROC curve 10 nodes

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

Chance

Mean pr IGM (AUC = 0.68 ± 0.07)

Mean pr TIGM (AUC = 0.73 ± 0.06)

(d) Precision-Recall curve 10 nodes

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Chance

Mean roc IGM (AUC = 0.48 ± 0.01)

Mean roc TIGM (AUC = 0.50 ± 0.01)

(e) ROC curve 50 nodes

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

Chance

Mean pr IGM (AUC = 0.67 ± 0.01)

Mean pr TIGM (AUC = 0.71 ± 0.01)

(f) Precision-Recall curve 50 nodes

Figure 24. Average results across 10 repetitions in terms of ROC and PR curves for the com-
parison of Temporal Ising Graphical Model with RBF kernel (TIGMRBF) against
stationary Ising Graphical Model (IGM) for an increasing number of variables
D = {5, 10, 50} at T = 10 time points with a fixed number of samples Nt = 100.
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Figure 25. Average results across 10 repetitions in terms of ROC and PR curves for the
comparison of Temporal Poisson Graphical Model with RBF kernel (TPGMRBF)
against stationary Poisson Graphical Model (PGM) for an increasing number of
variables D = {5, 10, 20} at T = 10 time points with a fixed number of samples
Nt = 100.
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Figure 26. Average results across 10 repetitions in terms of Matthew Correlation Coefficient
(mcc, first row), precision (second row), recall (third row) and specificity (bottom
row) for the comparison of Temporal Graphical Lasso with Multi-Class kernel
(TGLMC), Temporal Ising Graphical Model with Multi-Class kernel (TIGMMC)
and Temporal Poisson Graphical Model with Multi-Class kernel (TPGMMC) at
increasing sample size Nt ∈ {5, 10, 50, 100} with D = 10 variables and 5 classes
for multi-class experiments with Erdő-Rényi random networks in case of `1 (first
column) and `2 (second column) consistencies.



4.7 summary 87

5 10 50 100
0.00

0.25

0.50

0.75

1.00

m
cc

= 1

5 10 50 100
0.00

0.25

0.50

0.75

1.00
= 2

5 10 50 100
0.00

0.25

0.50

0.75

1.00

pr
ec

isi
on

5 10 50 100
0.00

0.25

0.50

0.75

1.00

5 10 50 100
0.00

0.25

0.50

0.75

1.00

re
ca

ll

5 10 50 100
0.00

0.25

0.50

0.75

1.00

5 10 50 100
Sample size

0.00

0.25

0.50

0.75

1.00

sp
ec

ifi
cit

y

5 10 50 100
Sample size

0.00

0.25

0.50

0.75

1.00

TGLMC TIGMMC TPGMMC

Figure 27. Average results across 10 repetitions in terms of Matthew Correlation Coefficient
(mcc, first row), precision (second row), recall (third row) and specificity (bottom
row) for the comparison of Temporal Graphical Lasso with Multi-Class kernel
(TGLMC), Temporal Ising Graphical Model with Multi-Class kernel (TIGMMC)
and Temporal Poisson Graphical Model with Multi-Class kernel (TPGMMC) at
increasing sample size Nt ∈ {5, 10, 50, 100} with D = 10 variables and 5 classes
for multi-class experiments with scale-free random networks in case of `1 (first
column) and `2 (second column) consistencies.



5
Temporal graphical lasso with
missing data

Part of this chapter content is present in the following publications:
Federico Tomasi*, Veronica Tozzo*, Saverio Salzo and Alessandro Verri. Latent variable
time-varying network inference. Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (2018). pp.2338- 2346

Veronica Tozzo, Federico Tomasi, Margherita Squillario and Annalisa Barla. Group in-
duced graphical lasso allows for discovery of molecular pathway-pathway interactions.
Machine Learning for Health (ML4H) Workshop at NeurIPS (2018) - arXiv181109673T

Real-world observations often contain missing values. Consider the two fol-
lowing examples: during a medical trial patients subject to a survey refuse to
answer some questions providing only partial information on their status; or, a
genetic experiment measures genes through micro-arrays that provide inform-
ation on only part of the whole genome. In the first example the resulting data
matrix will have missing entries randomly positioned, while, in the second
example, the data matrix will contain measurement of fewer variables than
the one that are in play in the system. These two types of situations lead to
two different concepts: in the first case, values are randomly missing and we
call the corresponding variables partial, while, in the second case, values are
missing with a pattern and the variables are latent.
These two types of missing data need to be analysed carefully and the related
network inference methods should embed the missing data assumption. In-
deed, ignoring the presence of missing values would lead to the inference of
non-reliable graphs.
In literature, this problem has been tackled in the stationary case. In particular,
(Städler and Bühlmann, 2012) and (Little and Rubin, 2019) considered partial
data while (Anandkumar et al., 2013; Chandrasekaran, Parrilo and Willsky,
2010; Choi et al., 2011; Jalali et al., 2011; Yuan, 2012) considered latent data. All
these methods assume data to be Gaussian is it allows to easily marginalise out
the missing values. While the concept of missing data should be handled also
for the other distribution, in this chapter we restrict to the Gaussian Graphical
Models (GGMs) as well.
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In particular, we take the temporal model presented in Section 4.3, and we
study it under different conditions of missing data proposing extended models
that take them naturally in consideration.

outline The rest of this chapter is organised as follows. Section 5.1 intro-
duces the reader to the problems induced by missing data and the model for
the inference of temporal GGMs from missing data. Section 5.2 describes in
details the optimisation of such model based on the EM algorithm for both
missing and latent data. Section 5.3 presents the convex alternative model for
the inference of networks with latent variables. Section 5.4 illustrate a special-
isation of the EM latent variable model that sees the latent variables as groups.
Finally, Section 5.5 concludes with a discussion and future research directions.

5.1 Missing values in temporal models

The concept of missing values was introduced in Chapter 2, in particular we
intend them as values that are un-observed and meaningful for a specific ana-
lysis. There, we also theoretically define the concept of data Missing at Ran-
dom , i.e., the mechanism that induces to un-observe data is ignorable. In
addition we distinguished between two types of missing values:

• Partial: in absence of measurements randomly positioned in each sample;

• Latent: (or factored) in consistent absence of some variable measure-
ments across all samples.

These two types of missing values introduce different problems during the
inference of networks (Little and Rubin, 2019).

partial variables Partial data consist in a matrix X where missing val-
ues are randomly positioned with respect to both samples and variables. These
holes in the matrix make impossible to directly perform computation on it
without pre-processing or adopting ad-hoc inference mechanism. The pre-
processing approaches could be the complete cases in which we discard the
samples that do not have complete measurements on the variables or imput-
ing using, as an example, the empirical mean. A visual representation of these
two approaches can be seen in Figure 4. Note that, in the complete cases we
reduce the sample size drastically which may impede the correct inference of
the underlying graph especially when N � D.
On the other hand, imputing seems appealing as it induces to believe that we
can reason in terms of complete data. Actually, imputing is dangerous as it
introduces substantial bias in the estimated solution (Little and Rubin, 2019;
Madow, Nisselson and Olkin, 1983).
Consider samples X = (X[O], X[M]) separated in observed and missing val-
ues. We could estimate the mean for each variables only on the observed part
X̄[:, v] = 1

N ∑i∈Ov
X[i, v] where with IOv we denote the set of indices of the

samples that contain observations for the variable v. It can be shown that, the
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sample variance obtained after imputing data with these means, has a res-
caling factor of |O|−1

D−1 (Little and Rubin, 2019). Hence, imputation distorts the
empirical distribution of the variables which consequently leads to bias in the
estimate of the underlying graph. To solve this problem Städler and Bühlmann,
2012 proposed a EM algorithm in the stationary case that automatically estim-
ated the partial value (see Section 2.3).

latent variables Latent variables can be seen as entities that are un-
observed, thus we may not know their number nor the relationship they have
with the observed variables. Their presence in the system though, if not taken
into account leads to spurious edges, i.e., links that would be conditioned away
if the latent variables could have been observed (see Figure 6 for a visual de-
scription of the spurious edges) (Chandrasekaran, Parrilo and Willsky, 2010).
The presence of latent variables was tackled with different approaches in the
stationary case: by fixing their number and possibly the structural relationship
between latent and observed and use the EM algorithm to fit the parameters
(Dempster, Laird and Rubin, 1977; Tozzo et al., 2018; Yuan, 2012). This ap-
proach has the draw-back of being non-convex, thus the optimisation could
return local optima. Differently, Chandrasekaran, Parrilo and Willsky, 2010;
Chandrasekaran et al., 2011 proposed a convex approach in which they estim-
ate a graphical model on the observed variables and marginalise out the effect
of the latent variables in order to delete the spurious edges.
The presence of missing values, both partial and latent, has never been tackled
in the context of temporal models. In this chapter we address the problem of
solving the Kernel Temporal Graphical Lasso (TGLκ) problem in Equation (34)
in presence of missing data. We argue that temporal consistency and depend-
ency could improve network inference of dynamic networks as dependent time
points would help with the absence of observations. We propose two possible
minimisation approaches: the EM algorithm for partial and latent variables
and the convex approach proposed by Chandrasekaran, Parrilo and Willsky,
2010 in the stationary case extended to the temporal case.

5.1.1 Model

At each time t = 1, . . . , T we are given a matrix of observations Xt ∈ RNt×D

sampled from a multivariate normal distribution N (µt, Σt). Such distribution
is connected to a dynamical graphical model G through the precision matrices
Kt = Σ−1

t that encode the conditional dependencies among variables. The ob-
servations of such variables may be non-complete, i.e., some values may be
missing in the matrix Xt. For each time t and sample i we denote with IOi and
IMi the set of indices of observed and missing variables, respectively. Such sets
allow us to divide the sample i in the following way

Xt[i, :] =
(
Xt[iOi], Xt[iMi]

)
.
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We want to remark that the sets Oi and Mi may change in time, so that sample
i at time t may miss the observation of the variable v but it may have such
observation at time t + 1.
Then, under the hypothesis of incomplete observations, the goal is the infer-
ence of a dynamical GGM performed through the estimate of the precision
matrices

K =
(
K1, . . . , KT

)
∈ R(D×D)×T

and the means

µ = (µ1, . . . , µT) ∈ RD×T.

The estimate of the means in this particular case is fundamental. Indeed, in
presence of partial data it is impossible to assume zero mean as we did in
previous chapters. This is due to the impossibility of computing the empirical
mean and recentre the data without introducing bias. In fact, we would distort
the empirical distribution in the same way imputation did.
The modelling and the inference of GGMs from these type of data is aid by the
factorisation properties that hold for the multivariate normal distribution. In
particular for each sample i it is possible to define a block precision matrices
that groups the set of observed variables and the set of missing. From this
grouping it is possible to obtain a conditional distribution that is still a mul-
tivariate normal distribution with parameters connected to the original one
(Little and Rubin, 2019).
Given the sets Oi and Mi for every i we decompose each precision matrix Kt,
for t = 1, . . . , T as in Equation (24). Similarly we can decompose the mean
vectors µt = (µt[Mi], µt[Oi]).
With this separation, the inference problem can be defined as a MLE on the
observed part of the data (see Theorem 1 in Section 2.1).
We recall to attention that we are always under the assumption of both tem-
poral consistency and possibly non-Markovian temporal dependencies as we
are extending the model presented in Section 4.3. Therefore, we assume matrices
to be similar if they are close in time or if there is some complex variability
pattern (e.g., seasonality) present in the system (see 4.1 for a more thorough
description).
Given a kernel κ that models temporal dependencies and a function Ψ that
defines the type of temporal consistency, the functional can be written as

minimise
K,µ

Kt�0

T

∑
t=1

[
1
2

Nt

∑
i=1

(
log det

(
K−1

tOi

)
+
(
XtOi − µ>tOi

)(
K−1

tOi

)−1(XtOi − µtOi

))

+ α‖Kt‖od,1

]
+ PΨ,κ(K)

where PΨ,κ(K) is the penalty defined in Equation (29).
It can be expressed in terms of sufficient statistics of the Normal distribution.
At each time t we have two sufficient statistics: the sample means µC

t (Equa-
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tion (21)) and the empirical covariance matrices Ct = X>t Xt (Equation (22)).
The problem then becomes

minimise
K,µ

Kt�0

T

∑
t=1

[
− Nt

2
log det

(
Kt
)
+

1
2

tr(KtCt) +
Nt

2
µ>t Ktµt + µ>t Ktµ

C
t

+ α‖Kt‖od,1

]
+ PΨ,κ(K)

(37)

Note that the functional that we just presented, under the assumption of com-
plete data, is identical to the functional of Equation (34) plus the estimate of
the mean. Indeed the loss could be rewritten as − 1

2`GGM(Kt|Xt) +
Nt
2 µ>t Ktµt +

µ>t Ktµ
C
t . It also has a form consistent with the one in Equation (27), thus allow-

ing for the use of all model selection techniques we introduced.

5.2 EM Algorithm

The model in Equation (37) allows for the inference of graphical models in case
of both partial data, latent variables or a combination of the two (Little and
Rubin, 2019; Städler and Bühlmann, 2012; Yuan, 2012) and can be optimised
through the EM algorithm (see Section 2.2).
Problem (37) is non-convex, this may lead the related minimisation method to
get stuck in local optima. For this reason we may require multiple initialisa-
tions in order to detect the final best reliable network.
We call such method Kernel Missing Temporal Graphical Lasso (MTGLκ), and
given its suitability for both partial and latent data, we call the related ap-
proaches MTGLP

κ and MTGLL
κ to differentiate. Note that the subscript κ entails

the dependency from a specific kernel as in previous chapter, when we omit
the subscript we are assuming a discrete kernel (see Equation (31)).

5.2.1 Partial Data

The EM algorithm for the complete data case is described in Algorithm 4. In
particular the E-step is composed of two steps that computes the expectation
of the sufficient statistics on the missing values. For each time t and each
sample i the variables Mi are distributed according to a multivariate normal
distribution

Xt[:, Mi]|Xt[:, Oi] ∼ N
(

µt[Mi]+Kt[Mi]
−1Kt[MiOi](Xt[:, Oi]−µt[Oi]), Kt[Mi]

−1
)

Then, the missing values could be substituted with the mean of this conditional
distribution. In particular we have that

E[Xt[iv]|Xt[Oi], µι−1
t Kι−1

t ] =

{
Xt[iv] if variable v is observed for sample i

cti[v] if is missing
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Algorithm 4 EM algorithm for MTGLP

Inputs: Ψ consistency function, κ temporal dependencies, X samples,
α sparsity hyper-parameters
for ι = 1, . . . , do

//E-step
for t = 1, . . . T do

E[Xι
t[iv]|Xt[:, Oi], µι−1

t Kι−1
t ]

E[Cι
t|Xt[:, Oi], µι−1

t Kι−1
t ]

//M-step
for t = 1, . . . T do

µι
t =

1
Nt
(∑Nt

i=1 Xi1, . . . , ∑Nt
i=1 XiD)

Kι = argmin
K�0

∑T
t=1[−Nt`GGM(Cι

t|Kt) + α‖Kt‖] + PΨ,κ(K)

Algorithm 5 EM algorithm for MTGLL

Inputs: Ψ consistency function, κ temporal dependencies, X samples,
α sparsity hyper-parameters
for ι = 1, . . . , do

//E-step
for t = 1, . . . T do

E[Cι
t|Xt[O], µι−1

t Kι−1
t ]

//M-step
Kι = argmin

K�0
∑T

t=1[−Nt`GGM(Cι
t|Kt) + α‖Kt‖] + PΨ,κ(K)

where cti[j] is the j− th entry of the vector cti ∈ R|Mi | defined as the mean of
the conditional distribution

cti = µt[Mi] + Kt[Mi]
−1Kt[MiOi](Xt[:, Oi]− µt[Oi]) (38)

The computation of the expectation of the empirical covariance is computed
similarly, exploiting the mean and computing

E[X[iv]X[iv′]|Xt[Oi], µι−1
t Kι−1

t ] =


Xt[iv]Xt[iv′] if v, v′, observed

Xt[iv]cti[v′] if v observed

(Kt[Mi]
−1)vv′ + cti[v]cti[v′] otherwise

where cti is computed as in Equation (38).
Then the entry vv′ of the covariance matrix is computed as

Cι
t[vv′] =

Nt

∑
i=1

E[X[iv]X[iv′]|Xt[Oi], µι−1
t Kι−1

t ]

5.2.2 Latent Data

Dealing with latent data allows us to take two assumptions that simplify the
inference process.
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1. The mean is zero for all variables: such assumption can be taken in the
case of latent variables as we are not introducing any bias given the
presence of all values for the observed variables.

2. The missing values are always the same for all the samples: this is im-
plied by latent variables definition. Indeed, for all the samples and for
all the time points, such variables are un-observed and therefore latent.
This also implies that, given the fact that we cannot observe them, we
may also not know how many they are.

Consider now the model presented in Equation (37), in a real system formed
by latent variables and observable variables we can define two sets of indices
as IM = 1, . . . , M and IO = M + 1, . . . , D for the latent and observed variables
respectively. Given these two sets we can define a simpler model as follows:

minimise
K,Kt�0

T

∑
t=1
−`GGM(Xt[: O]|Kt[O]) + α‖Kt‖od,1

+ PΨ,κ(K) s.t.|M| = r.

(39)

Note that the constraint |M| = r states that the cardinality of the set IM should
be r, i.e., we have r latent variables. The newly introduced hyper-parameter
r can be imposed if prior knowledge is available or identified via model se-
lection strategies (see Chapter 3 for details on the possible methods). When
knowledge on the number of latent variables, or their identity, is known it
could be possible to further guide the inference. We study such case later in
Section 5.4.
The algorithm for the minimisation of the functional is described in Algorithm 5.
Differently from Algorithm 4, it requires less step as we do not need to estim-
ate the mean. Moreover, the computation of the expectation of the covariance
matrix can be performed in blocks.
We define the matrix ct as

ct = Kt[M]−1Kt[MO]Xt[O]

then the expectation is computed as

E[Cι
t|Xt[O], µι−1

t Kι−1
t ] = X>t Xt =

[
Kt[M]−1 + ctct> ctXt[O]>

Xt[O]c>t Xt[O]>Xt[O]

]

Note that, by optimising Problem (39) we obtain an estimate of the precision
matrix also in the part corresponding to the latent variables Kt[M]

5.2.3 Synthetic Data Experiments

We need to assess the reliability of both MTGLP
κ and MTGLL

κ . Given the latent
nature of the second, though, we post-pone the narration of its synthetic ex-
periments to next section to include also the model that marginalise the latent
effect.
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We devised one experiment that puts in comparison MTGLP
κ with the Ker-

nel Temporal Graphical Lasso (TGLκ), both with an RBF kernel. We generate
T = 10 temporal precision matrices letting them evolve with an `1 behaviour
(see Appendix C.1). From each distribution given by the precision matrices
we sample NT = 100 samples for D = {20, 100} variables. We apply TGLκ

on such data and then we randomly inserted some missing values with per-
centage {10, 20, 30} of the total number of available samples. Higher percent-
ages would lead the algorithm to non-convergence. We selected the hyper-
parameters using Bayesian search optimisation (Molinaro, Simon and Pfeiffer,
2005). We repeated data generation and inference 10 times to assess the reliab-
ility of the method.

5.2.4 Results

TGLRBF has excellent performance in retrieving the dynamic network while MTGLP
RBF

is able to retrieve the network under an increasing percentage of partial values with
good approximation.
Figure 28 and Figure 29 show the ROC and Precision-Recall curve obtained
for D = 20 and D = 100 respectively. TGLRBF performs consistently better
than MTGLP

RBF when the percentage of missing data increases. Nonetheless,
MTGLP

RBF performances are above chance and remain consistent as the num-
ber of available values decrease. Interestingly, in both experiments we observe
that for a percentage of 30% of partial values the algorithm has higher AUC
than with other inferior percentages. Nonetheless, if we observe Table 6 where
we present the scores for the algorithms, we note that MTGLP

RBF has a consist-
ently decrease in scores as the number of missing values increases. We want to
remark that the 10 repetitions were performed by randomly generating a new
dataset each time. Therefore, possible re-initialisation of the algorithm would
lead to better performances.
A comparison in terms of time to converge of the two methods is present in
Chapter 6 (Figure 33 and Figure 34).

D = 20 D = 100

TGL (10%) (20%) (30%) TGL (10%) (20%) (30%)

P 0.68± 0.02 0.40± 0.41 0.40± 0.42 0.5± 0.41 0.35± 0.41 0.01± 0.01 0.02± 0.01 0.01± 0.01

R 0.96± 0.01 0.36± 0.36 0.29± 0.29 0.05± 0.04 0.69± 0.39 0.28± 0.38 0.22± 0.30 0.21± 0.30

F1 0.80± 0.01 0.38± 0.39 0.33± 0.34 0.09± 0.07 0.15± 0.08 0.02± 0.02 0.02± 0.01 0.01± 0.02

S 0.95± 0.00 0.93± 0.05 0.95± 0.03 0.99± 0.01 0.70± 0.36 0.73± 0.37 0.77± 0.31 0.80± 0.28

BA 0.95± 0.00 0.65± 0.20 0.62± 0.16 0.52± 0.02 0.69± 0.16 0.50± 0.01 0.50± 0.01 0.50± 0.01

Table 6. Average performance across 10 repetitions in terms of Precision (P), Recall (R),
F1-score (F1), Specificity (S) and Balanced Accuracy (BA) for the comparison of
Temporal Graphical Lasso (TGLRBF) with the Missing Temporal Graphical Lasso
with Partial data at different percentages of missing values for two networks of
D = {20, 100} nodes, Nt = 100 samples and T = 10 times.
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Figure 28. Average results across 10 repetitions in terms of ROC and PR curves for the
comparison of Temporal Graphical Lasso with RBF kernel (TGLRBF) and Missing
Temporal Graphical Lasso for Partial data with RBF kernel MTGLP

RBF for the
inference of a network on D = 20 nodes, with Nt = 100 samples and T = 10
time points at an increasing number of missing values {10, 20, 30}.

5.3 Latent Variables Marginalisation

The MTGLκ model is non-convex. In case of latent variables we can overcome
this problem by optimising a different but related method that 1. is convex
thus is guaranteed to converge to a global optimum; 2. allows to decouple
the temporal behaviour between latent and observe variables allowing for an
increase in expressive power. Such method, that we call Kernel Latent Variable
Temporal Graphical Lasso (LTGLκ), does not directly estimate the latent variables
but learns their effect allowing for it to be marginalised out of the final solu-
tion. Consider the model in Equation (39), the r latent variables that are not
measured lead to perturbed observations. If we do not consider the entire
multi-variate distribution but only the observed portion this will have another
distribution that strictly depends on the complete one. In particular we would
have samples from a perturbed dynamical graphical model as follows(

X1, . . . , XT
)
∼
(
N (0, Σ̃)1, . . . ,N (0, Σ̃)T

)
where, Σ̃i = K̃t[O]−1 and, for each t = 1, . . . , T, the perturbed observed preci-
sion matrix is defined as the Schur complement in Equation (25).
This idea was presented in (Chandrasekaran, Parrilo and Willsky, 2010) in
the stationary case (see Section 2.4) and in (Foti et al., 2016) for the analysis of
MEG time-series. The goal is the inference of both Kt[O] and Lt simultaneously
in such a way that the matrix Lt contains the effect of the latent variables on
the system and allows it to be marginalised out. Note that, by definition, the
matrices Lt have rank r that corresponds to the number of latent variable |M|,
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Figure 29. Average results across 10 repetitions in terms of ROC and PR curves for the
comparison of Temporal Graphical Lasso with RBF kernel (TGLRBF) and Missing
Temporal Graphical Lasso for Partial data with RBF kernel MTGLP

RBF for the
inference of a network on D = 100 nodes, with Nt = 100 samples and T = 10
time points at an increasing number of missing values {10, 20, 30}.

therefore, similarly to the constraint |M| = r in Equation (39) we need to
impose such value during the optimisation.
Ideally, we would impose the constraint rank(Lt) = r, which, in turn, would
lead to a non-convex problem. Nonetheless, we can relax it through the nuclear
norm, in Equation (26) that keeps the problem convex while still retaining
guarantees of retrieving the true underlying model (Chandrasekaran et al.,
2011)
Chandrasekaran et al., 2011 showed that given this model, for the correct iden-
tification of the terms Kt[O] and Lt we require two strict assumption on the
data. In particular we have that the number of latent variables r must be low
respect to the number of observed and their effect must be spread out on the
observed variables. This second assumptions translates in the fact that the lat-
ent variables are connected with the majority of the observed variables (see
Section 2.4.2)
The inference is then aimed at inferring a set of sparse matrices K[O] =

(K1[O], . . . , KT[O]) and a set of low-rank matrices L = (L1, . . . , LT) such that,
at each time point t, Kt[O] encodes the conditional independences between the
observed variables, while Lt provides the summary of marginalisation over
latent variables on the observed ones. Similarly to the other models we want
to impose temporal consistency and dependency. The peculiarity of the de-
coupling between latent and observed parts is that we can also decouple the
types of temporal consistency we impose on the observed and latent part of
model allowing for more expression power. We use two consistency function:
Ψ that acts on the observe part of the network and Φ that acts on the latent
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marginalisation. The temporal dependency are instead specify by the kernel κ.
The Kernel Latent-variable Time-varying Graphical Lasso (LTGLκ) model takes the
following form:

minimise
Kt∈SD

++,Lt∈SD
+

T

∑
t=1

[
− `GGM(Xt|Kt − Lt) + α‖Kt‖1,od + τ‖Lt‖∗

]
+ PΨ,κ(K) + PΦ,κ(L).

(40)

The main advantage of this model is its convexity that guarantees to reach
the global optimum. Indeed, under the assumptions of low-rank and spread
influence of the latent variables effect, the model converges to a solution that
is accurate with high probability (Chandrasekaran et al., 2011). It also permit
more flexibility in the imposition of temporal consistency allowing for complex
patterns retrieval.

5.3.1 Minimisation Algorithm and Automatic Kernel Discovery

The minimisation algorithm of LTGLκ, with fixed kernel, is based on the al-
ternating direction method of multipliers (ADMM) (Boyd et al., 2011). The
derivation of such algorithm is non-trivial, therefore, to improve readability
we provide its description in Appendix B.
Nonetheless, as for the generalised temporal models, the knowledge on the
kernel κ may be limited. Therefore, we can recur to automatic identification
of temporal dependencies (see Section 4.2). We propose such extension only
in the case of the LTGLκ model as it has guarantees of always reaching the
global optimum. Indeed, MTGLκ already entails a non-convex minimisation
approach and inserting it in a further optimisation procedure may lead to non
reliable results. The minimisation procedure for the automatic inference of the
kernel is the same proposed in Section 4.2 and we call this variation Latent-
variables Time-varying Graphical Lasso with Pattern discovery (LTGLP).

5.3.2 Synthetic Data Experiments

We performed experiments on synthetic data assessing the performance of
MTGLL

κ and LTGLκ in terms of recovery of the structure on the observed and
latent part of the graph. The hyper-parameters were selected with a Bayesian
optimisation procedure based on expected improvement strategy (Snoek, Larochelle
and Adams, 2012) through a 3-fold cross-validation.

missing-data methods comparison

In this experiment we wanted to assess the goodness of MTGLP
RBF, MTGLL

RBF
and LTGLRBF. We generated a dataset with `1 evolving behaviour (see Ap-
pendix C.1). The observed variables were |O| = 100 and the latent |M| = 5
for a total of D = 105 variables. We sampled Nt = 100 observations at each
time t = 1, . . . , 10 from the perturbed distribution. In order to apply MTGLP
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Figure 30. Average results across 10 repetitions in terms of ROC and PR curves for the
comparison of the Latent Temporal Graphical Lasso (LTGL), the Missing Temporal
Graphical Lasso for Partial data (MTGLP) and the Missing Temporal Graphical
Lasso for Latent data (MTGLL) for the inference of a network on D = 105 nodes
(100 observed and 5 latent), with Nt = 100 samples and T = 10 time points. The
MTGL methods were applied with different instantiation of the hyper-parameter r
(number in round brackets) that sets the number of latent variables.

we add r columns on the input matrix containing NaN values. All the hyper-
parameters were cross-validated except the hyper-parameter r corresponding
to the number of latent variables in MTGLP and MTGLL that we fixed a priori.
We applied the methods with an increasing value of r to see if the methods
were able to infer correctly the precision matrix disregarding the number of
latent variables. We repeated the experiments 10 times to assess the reliability
of the methods in presence of different datasets.

comparison of convex methods

We compare LTGL with discrete kernel with the Graphical Lasso (GL) (Fried-
man, Hastie and Tibshirani, 2008), the Latent Variable Graphical Lasso (LGL)
(Chandrasekaran, Parrilo and Willsky, 2010; Ma, Xue and Zou, 2013) and Time-
Varying Graphical Lasso (TVGL) (Hallac et al., 2017a). We devised two types
of temporal consistency: `2

2 perturbation (p2) (Appendix C.2) and `1 perturb-
ation (p1) (Appendix C.1). For (p2) we generated a dataset with |O| = 100,
|M| = 20, T = 10 and Nt = 100 samples. For this reason, in this setting, the
contribution of latent factors is predominant with respect to the network evol-
ution in time. For (p1) we generated a dataset with |O| = 50, |M| = 5, T = 10
and Nt = 100 samples. In this setting, the temporal component affects the
network more than the latent factor contribution.
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perturbation method
score

F1 ACC MRE MSE

`2
2 (p2)

LTGL (`2
2) 0.926 0.994 0.70 0.007

LTGL (`1) 0.898 0.993 0.70 0.007

TVGL (`2
2) 0.791 0.980 - 0.003

TVGL (`1) 0.791 0.980 - 0.003

LVGLASSO 0.815 0.988 2.80 0.007

GL 0.745 0.974 - 0.004

`1 (p1)

LTGL (`2
2) 0.842 0.974 0.29 0.013

LTGL (`1) 0.880 0.981 0.28 0.013

TVGL (`2
2) 0.742 0.950 - 0.009

TVGL (`1) 0.817 0.968 - 0.009

LVGLASSP 0.752 0.964 0.74 0.013

GL 0.748 0.951 - 0.007

Table 7. Performance in terms of F1-score (F1), Accuracy (ACC), Mean Rank Error (MRE)
and Mean Squared Error (MSE) for the comparison of Latent Temporal Graphical
Lasso with discrete kernel (LTGL), the Time-Varying Graphical Lasso (TVGL), the
Latent Variable Graphical Lasso (LVGLASSO) and the Graphical Lasso (GL) for two
different types of evolutionary patterns (`1 and `2

2)

non-markovianity

We compare LTGL with discrete kernel, LTGLESS and LTGLP with automatic
pattern discovery. Given T = 20 times in D = 100 and Nt ∈ {5, 10, 50, 100, 500}
we generated data according to the temporal conditioning schema (see Ap-
pendix C.5) with evolution decided with a cluster-based generation (see Ap-
pendix C.4). The latent factor, in this case, is given by the conditioning on the
previous time stamp.

5.3.3 Results

missing-data methods comparison

MTGLP and MTGLL have similar results also with different numbers of estimated
latent variables and, both, outperform LTGL.
Figure 30 shows the Precision-Recall and ROC curves of the comparison between
MTGLP, MTGLL and LTGL. The results show that MTGLP and MTGLL per-
form similarly, which is in line with the fact that, except for the mean es-
timation, they are identical methods. Note that the difference in the imposed
number of latent variable does not impact significantly on the estimate of the
precision matrix. This means that the selection of a further hyper-parameter is
not a major concern in the use of these two methods. On the other hand, LTGL



5.3 latent variables marginalisation 101

Figure 31. Distribution of inferred ranks across all time points for the Latent Temporal Graph-
ical Lasso (LTGL) and the Latent Variable Graphical Lasso (LVGLASSO). The
vertical line indicates the ground truth rank, around which all detected ranks lie.
Note that, in (p2), Lt ∈ R100×100, therefore the range of possible ranks is [0, 100].
For (p2), Lt ∈ R50×50, hence the range is [0, 50].

performs poorly. We argue that this could be, in fact, due to the tuning of its
four hyper-parameters, especially τ that controls the number of latent vari-
ables. We noted that the combination of τ and α is non-stable and it requires
further theoretical investigation.

comparison of convex methods

LTGL outperforms all convex state-of-the-art methods under temporal and latent vari-
able data. Table 7 shows the performance of LTGL compared with the other
methods for both types of perturbation `2

2 (p2) and `1 (p1). Note that MRE
is not available for all the methods since neither GL or TVGL consider latent
factors. LTGL and TVGL are used with two temporal penalties according to
the different perturbation models of data generation. In this way, we show
how the correct choice of the penalty for the problem at hand results in a
more accurate network estimation. In both (p2) and (p1), LTGL outperforms
the other methods for graphical modelling. In (p2), in particular, LTGL cor-
rectly infers almost 99,5% of edges in all the dynamical network both with
the `2

2 and `1 penalties. Nonetheless, the use of `2
2 penalty enhance the qual-

ity of the inference as expected from the theoretical assumption made during
data generation. Both the choice of a penalty that reflects the way in which
data are generated and time consistency are reflected in a low MRE, which
encompasses LGL ability in detecting latent factors (Figure 31). In (p2), in fact,
the number of latent variables with respect to both observed variables and
samples is high. Therefore, by exploiting temporal consistency of the network,
LTGL is able to improve the latent factors estimation. Simultaneous considera-
tion of time and latent variable also positively influences the F1 score. Above
considerations also hold for the (p1) setting. Here, LTGL achieves the best res-
ults in both F1 score and accuracy, while having a low MRE. The adoption of
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Figure 32. Performance of Time (in seconds), Matthew Correlation Coefficient (MCC), Mean
Squared Error (MSE) and V-measure for the Latent Temporal Graphical Lasso,
with ESS kernel (LTGLκ), with automatic Pattern inference (LTGLP) and with
discrete kernel (LTGL) for one experiment on complex temporal dependencies on
a network of D = 100 dimensions, T = 20 times and increasing sample size
Nt ∈ {5, 10, 50, 100, 500}.

`1 penalty improves structure estimation and latent factors detection, consist-
ently with the data generation model. Such settings were designed to show
how the prevalence of latent factors contribution or time consistency affects
the outcome of a network inference method. In (p2), where the latent factors
contribution is prevalent, network inference is more precise when considering
latent factors. In (p1), instead, the number of time points is more relevant than
the contribution of latent factors, hence it is more effective to exploit time con-
sistency (both for latent and observed variables), evident from the results of
Table 7. LTGL benefits from both aspects.

non-markovianity

In presence of complex temporal dependency the use of kernels improves structure
identification while pattern detection infers the correct clusters with high accuracy.
Figure 32 depicts the trend of scores as the number of samples increases keep-
ing fixed the number of dimensions. Results show that, as in Chapter 4, consid-
ering a temporal kernel is beneficial to better approximate the evolution of the
system under analysis. Indeed, LTGLESS and LTGLP perform better than LTGL
with discrete kernel especially when N � D. LTGLP require more time to con-
verge given the two-steps alternating minimisation procedure. Table 8 shows
a detailed performance when Nt is fixed to 50. Here, LTGLESS has higher per-
formance than LTGLP that, in turns, shows a better V-measure. The imposition
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LTGL LTGLκ LTGLP

BA 0.509± 0.002 0.521 ± 0.016 0.500± 0.000

P 0.278± 0.003 0.299 ± 0.045 0.251± 0.002

MCC 0.082± 0.010 0.107 ± 0.117 −0.001± 0.002

MSE 12.229± 0.279 11.861 ± 0.483 13.711± 0.117

V-measure 0.497± 0.037 0.492± 0.058 0.580 ± 0.047

Table 8. Average performance across 10 repetitions in terms of balanced accuracy (BA), pre-
cision (P), Matthews correlation coefficient (MCC), mean squared error (MSE) and
V-measure for the comparison of the Latent Temporal Graphical Lasso, with ESS
kernel (LTGLκ), with automatic Pattern inference (LTGLP) and with discrete kernel
(LTGL) on a dynamical network of T = 20 time points and D = 100 variables at
sample size Nt = 50.

of the ESS kernel drives the model to outperform the competitors in terms of
balanced accuracy, average precision and MCC.

5.4 Prior on latent variables identity

The MTGLL model allows to obtain an estimate on the latent part of the preci-
sion matrix. Here, we want to exploit the presence of prior knowledge to guide
the inference towards multi-layer inference of networks. Indeed, under the as-
sumption that latent variables should be few with respect to the observed and
connected to a great number of them we could think of a latent variable as
a group of observed ones. For example, in biological contexts one may want
to “marginalise” out from the graph the effect of groups of genes, where dif-
ferent groups (latent variables) may lead to changes in the observed part of
the network. Groups in this case may be pathways, biological processes, mo-
lecular functions and others (Tozzo et al., 2018). We call such method Missing
Temporal Graphical lasso with Group imposition (MTGLG)
Such approach is similar to the method proposed by (Cheng, Shan and Kim,
2017) where a group-lasso penalty on the network groups genes within path-
ways. This approach, nonetheless, forbid links from genes belonging to differ-
ent pathways to be inferred. In other words they assume the pathway-pathway
interactions to completely explain the dynamics of the system. We argue that
this may be reductive in practice where more complex connections may be in
play.

Consider Nt observations on D variables where the set IO is the set of observed
ones. We can only observe Xt ∈ RNt×O drawn from a multivariate Gaussian
distribution N (0, Σ̃t[O]), where Σ̃t[O] is a perturbed covariance matrix whose
inverse Kt[O] has the same form as in Equation (25). Here, the variables in-
dexed with the set IM are not simply latent but are assumed to be groups of
observed variables. We can codify the membership of each observe variables
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(e.g., gene) to a specific group (e.g.pathway) in a binary matrix G ∈ {0, 1}|O|×|M|
where Gom = 1 if the observed variable o belongs to the group m and 0 other-
wise. Note that groups can overlap but they are stable in time, indeed we do
not expect for example genes to belong to different pathways as time passes.
Also, we do not expect such memberships to exhaustively explain all links
between observed variables. In other words, we do not assume the system to
be completely explained by the un-observed variables. Our goal is to estim-
ate the precision matrices K = (K1, . . . , KT) of the form Equation (24) where
Kt[M] and Kt[O] represent the precision matrices between groups and single
variables respectively. Note that in the inferred Kt[OM] sub-matrix a non-zero
entry should be found in correspondence of non-zero entries of G. The prior
knowledge on the groups can be easily imposed in the model (39) by using a
matrix penaliser instead of the parameter α as follows:

minimise
K,Kt�0

T

∑
t=1
−`GGM(Xt[: O]|Kt[O]) + ‖A� Kt‖od,1

+ PΨ,κ(K) s.t.|M| = r

(41)

where � denotes the element-wise product between matrices and A is defined
as

A =



0 . . . α µḠ11 . . . µḠO1

α . . . α µḠ12 . . . µḠO2
...

...
...

. . .
...

α . . . 0 µḠ1M . . . µḠOM

µḠ11 . . . µḠ1H 0 . . . α

µḠ21 . . . µḠ2H α . . . α
...

. . .
...

. . .

µḠO1 . . . µḠOH α . . . 0


. (42)

Here, the value µ is needed to determine how strongly the structured regular-
isation Ḡ = 1− G is enforced on the solution. Indeed, in the ideal context in
which we know exactly all connections between the groups and the observed,
we want to impose that precise structure on the network and therefore be strict
on the regularisation.
The minimisation of Problem (41) uses the same minimisation schema of Al-
gorithm 5 with the only difference that TGLκ needs a weighted version in the
`1 penalty. This is easily done given the separability of the `1 norm.

5.4.1 Synthetic data experiments

We compare the performance of MTGLG with LTGL and MTGLκ with discrete
kernel. We want to assess that the availability of prior knowledge can be used
to obtain better performance on the estimation of the latent layer while re-
taining good performance on the observed network. We generated data using
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r=4 r=20

score LTGL MTGLL MTGLG LTGL MTGLL MTGLG

P 0.91± 0.01 0.93± 0.01 0.93± 0.01 0.92± 0.02 0.70± 0.03 0.70± 0.02

R 0.61± 0.01 0.71± 0.01 0.71± 0.02 0.61± 0.02 0.87± 0.09 0.86± 0.01

F1 0.73± 0.00 0.81± 0.00 0.80± 0.01 0.73± 0.01 0.78± 0.01 0.77± 0.01

S 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00

BA 0.81± 0.00 0.85± 0.01 0.85± 0.01 0.80± 0.01 0.93± 0.00 0.92± 0.00

MSEobs 0.00± 0.00 0.00± 0.00 0.05± 0.00 0.01± 0.00 0.00± 0.00 0.13± 0.07

MSElat 0.00± 0.00 0.00± 0.00 0.04± 0.00 0.00± 0.00 0.00± 0.00 0.13± 0.07

MRE 61.72± 0.38 fixed to 4 fixed to 4 61.54± 0.39 fixed to 20 fixed to 20

Table 9. Average performance across 10 repetitions in terms of Precision (P), Recall (R), F1-
score (F1), Specificity (S), Balanced Accuracy (BA), Mean Squared Error on the
observed part (MSEobs ), MSE on the latent part (MSElat and Mean Rank Error
(MRE) for the comparison of the Missing Temporal Graphical Lasso with Group
imposition (MTGLG), the Missing Temporal Graphical Lasso for Latent variables
(MTGLL) and the Latent Temporal Graphical Lasso (LTGL) all with discrete kernel
on the observed part of the network for two datasets with a fixed number of observed
variables |O| = 200 and latent variables set respectively to r = 4 and r = 20. Note
that when variance equal to 0.00 is due to rounding to the significant digits.

a diffusion evolution schema (see Appendix C.3) with |O| = 200 observed,
|M| = {4, 20} latent variables and T = 10 times.
The hyper-parameters are selected on the learning set by a Bayesian optim-
isation procedure based on expected improvement strategy (Snoek, Larochelle
and Adams, 2012) through a 3-fold cross-validation. The score used is the gen-
eralised log-likelihood. Since MTGLκ is non-convex once we have the hyper-
parameters we re-fit the model on the test set 10 times and we take the mean
of the scores for the comparison in order to study the stability and reliability
of the results.

5.4.2 Results

Group imposition does not effect the accuracy of structure inference on the observed
part of the network but highly improves the recovery of the latent network
Table 9 shows the performance measures that are obtained for LTGL, MTGLL

and MTGLG on the observed sub-network while Table 10 shows the perform-
ance in structure recovery on the latent network for both MTGLL and MTGLG.
Note that MTGLG estimates the latent variables if provided with their number,
therefore, for comparison purposes, we had to impose the same number also
to MTGLL. We set this number to r, the true number of latent variables as pre-
vious experiments showed how little, setting different values of r, affects the
final result.
Note that, scores in structure recovery on the observed part are quite similar
across al three methods. We also observe that MTGLG has a higher MSElat
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r=4 r=20

score MTGLL MTGLG MTGLL MTGLG

P 0.80± 0.38 0.89± 0.00 0.99± 0.01 0.94± 0.03

R 0.30± 0.35 0.86± 0.00 0.13± 0.03 0.65± 0.26

F1 0.20± 0.06 0.88± 0.00 0.23± 0.04 0.72± 0.24

S 0.8± 0.4 0.99± 0.00 0.99± 0.01 0.99± 0.00

BA 0.55± 0.02 0.93± 0.00 0.57± 0.02 0.83± 0.13

Table 10. Average performance across 10 repetitions in terms of Precision (P), Recall (R), F1-
score (F1), Specificity (S), Balanced Accuracy (BA), Mean Squared Error on the
observed part (MSEobs ), MSE on the latent part (MSElat and Mean Rank Error
(MRE) for the comparison of the Missing Temporal Graphical Lasso with Group
imposition (MTGLG), the Missing Temporal Graphical Lasso for Latent variables
(MTGLL) with discrete kernel on the latent part of the network for two datasets with
a fixed number of observed variables |O| = 200 and latent variables set respectively
to r = 4 and r = 20. Note that when variance equal to 0.00 is due to rounding to
the significant digits.

error that may be due to the higher sparsity of model, possibly causing higher
values of the retrieved edges. Nevertheless, MTGLG is able to obtain optimal
results in terms of structure recovery on the latent part (Table 10). In fact, in
both experiments (r = 4 and r = 20) the F1 score is higher than 0.7 and the
specificity is close to 1. When r = 20 the increase in the number of latent
variables induces a decrease in recall which still has an acceptable value.
Conversely, MTGLL does not perform well in terms of recall on the latent
variable structure estimation. Indeed, without using the prior knowledge on
the links, MTGLL tends to infer an identity matrix on the Kt[M] block, keeping
a full matrix in the block Kt[OM]. This explains why the precision is high while
the recall is extremely low.

5.5 Summary

In this chapter we presented two possible methods that deal with latent or
partial data in the context of Gaussian Graphical Models. We presented one
non-convex method based on EM algorithm and one convex approach optim-
ised through ADMM. We also analysed the case in which prior knowledge
is available on the latent variables that are seen as groups of the observed
ones. Our LTGLκ method has already been exploited in (Chang, Yao and Al-
len, 2019) for the inference of brain connectivities which proved the efficacy of
our method to deal with complex real-world data.
In the future we plan to provide theoretical bounds in terms of number of
samples per each time Nt, number of missing variables |M| and observed |O|
in order to have guarantees of an accurate inference. Indeed, we argue that the
theoretical bounds provided in literature for the stationary case may be less
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strict for dynamic network given the employment of temporal dependency
and consistency.



6
REGAIN

REGAIN is short for REgularised GrAph INference and it is a vast Python library
that provides a straightforward implementation of recent advances of graph-
ical models as well as utilities and plotting functions for their assessment and
visual representation.
The main minimisation algorithms that we exploit are the alternating direction
method of multipliers (ADMM) (Boyd et al., 2011) and the forward-backward
splitting (FBS) (Combettes and Wajs, 2005) for convex functionals. We use the
Expectation Maximisation (EM) algorithm (Dempster, Laird and Rubin, 1977)
for non-convex optimisation problems that typically involve missing data.
We designed REGAIN in such a way to be fully compatible with the Scikit-
learn library (Pedregosa et al., 2011) which is the most used machine learning
library in the Python language. This compatibility allows us to use the model
selection methods, scoring utilities and many other tools that Scikit-learn of-
fers. REGAIN is heavily based on the popular low-level numerical libraries
for linear algebra Numpy (Oliphant, 2006–) and SCIPY (Jones, Oliphant and
Peterson, 2001–).

outline This chapter is organised as follows. In Section 6.1 we list all the
methods implemented within the REGAIN package. In Section 6.2 we present
the related packages that implement similar or the same algorithms, and, in
Section 6.3, we compare some of our implementations. In Section 6.4 we show
how the library can be installed and in Section 6.5 an example of usage of the
library. We conclude in Section 6.6 with a brief recap and further analysis to
perform on the library.

6.1 Implemented models

REGAIN provides a great variety of algorithms that assume Gaussian distri-
bution, indeed it contains the implementation for the recent proposed time-
varying graphical models in (Hallac et al., 2017a; Tomasi et al., 2018a,b), steady-
state graphical models (Chandrasekaran, Parrilo and Willsky, 2010; Friedman,
Hastie and Tibshirani, 2008; Ma, Xue and Zou, 2013) as well as a Bayesian sub-
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module where we implemented a Bayesian graphical lasso (BGL) following
the procedure of (Moghaddam et al., 2009) and Wishart process (WP) (Wilson
and Ghahramani, 2011).
It includes methods for the estimation of GGMS with missing data as the
Latent variable Graphical Lasso (LGL) (Chandrasekaran, Parrilo and Willsky,
2010; Ma, Xue and Zou, 2013), the missing Graphical Lasso (MissGL) (Städler
and Bühlmann, 2012) and its version for the latent variables (Yuan, 2012). RE-
GAIN contains also the implementation of MRFs with other distribution as-
sumptions (Yang et al., 2015), in particular at the moment it contains the Ising
model (Ravikumar, Wainwright and Lafferty, 2010) and the Poisson model (Al-
len and Liu, 2013). The library includes all the temporal models presented in
this thesis, and the notebooks that test them.
We provide in Table 11 and Table 12 the summary of all the models presented
in the REGAIN library with all the features that identify them. We highlighted
in blue the models, addition and minimisation algorithms that are an original
contribution of this thesis.
The package includes utilities for data generation on all the considered distri-
butions as well as different evolution schemas (see Appendix C). It provides
all the proximal operators for the temporal consistency functions Ψ (see Sec-
tion 1.7) and popular norms computation. REGAIN includes the stability-
based model selection method generalised to any number of penalties and of
networks (see Chapter 3) as well as the generalised scores based on the likeli-
hood of the model. Note that, for any grid search or random search procedure
it is sufficient to nest our implementations in Scikit-learn pipelines.

6.2 Related Packages

REGaIN inherits the structure and basic functionalities from the scikit-learn
package. Scikit-learn includes the graphical lasso estimation, which is min-
imised using a coordinate descent algorithm. In this implementation we ex-
ploit the ADMM to have a uniform implemented throughout all implemen-
ted methods. For the latent variable graphical lasso, our implementation fol-
lows the model as proposed by (Chandrasekaran, Parrilo and Willsky, 2010)
and implemented via ADMM by (Ma, Xue and Zou, 2013). Ma, Xue and Zou,
2013 included a link to download their Matlab implementation1, but no open-
source library includes such code. For MissGL with the version with latent
variables there is a R package called LVGLASSO which is implemented us-
ing the expectation-maximisation (EM) method, as proposed by (Yuan, 2012).
The joint graphical lasso is implemented in an R package 2. The time-varying
graphical lasso (Hallac et al., 2017a) has already been implemented in Python
using ADMM. However, the implementation relies on CVXOPT3, which has
shown to be less optimal for the computational constraints and scalability with

1 https://www.math.ucdavis.edu/~sqma/ADMM-LVGLasso

2 https://rdrr.io/cran/JGL/man/JGL.html

3 https://cvxopt.org/

https://www.math.ucdavis.edu/~sqma/ADMM-LVGLasso
https://rdrr.io/cran/JGL/man/JGL.html
https://cvxopt.org/
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respect to plain Numpy and Scipy (Tomasi et al., 2018b). For the graphical
models with other distribution based on generalised linear models there is a
package XMRF in R (Wan et al., 2016) that provides both data generation and
inference algorithms.

6.3 Scalability

We now want to provide an assessment of how the models perform in com-
parison with others in terms of time to convergence as the number of un-
knowns increases. All the compared methods are initialised in the same man-
ner, i.e., with all variable interactions set to zero. For all methods we fixed the
maximum number of iterations to 100. We ran all experiments on a machine
provided with two CPUs (2.4 GHz, 8 cores each).

comparison of ltgl , tgl and mtgl . We performed a scalability ana-
lysis of the Latent Temporal Graphical Lasso (LTGL), our implementation of
the TIme-varying Graphical Lasso (TGL) (Hallac et al., 2017a) and the Missing
Temporal Graphical Lasso in the case of Latent (MTGLL) and Partial (MTGLP)
variables. The first two are based on ADMM while the last is based on EM
whose maximisation step consist in minimising a TGL functional. We gener-
ated data according to an `1 evolution schema (see Appendix C.1) with T = 10,
Nt = 100 and D = {5, 10, 80, 200, 500, 1000}. The temporal complexity of LTGL
and TGL are similar up to a constant while MTGL has higher complexity, the
unknowns are T D(D+1)

2 for TGL, 2T D(D+1)
2 for LTGL and 2

(D(D+1)
2 + D

)
for

MTGL. Results are presented in Figure 33 and are in line to what we expected.
Indeed, TGL has the lowest number of unknowns and the lowest time to con-
verge that is quite similar to the LTGL one. MTGLL and MTGLP have the same
trend ad the number of variable increases but have convergence time grater
than 1 or 2 order of magnitude more than TGL. This is expected as well as the
fact that MTGLP has the worst performance considering it needs to also estim-
ate the means. In Figure 34 we also plotted the number of iterations needed
for convergence. Note that LTGL is the one requiring more iterations wile still
having good time of convergence. MTGLP, instead, requires few iterations but
it contains a further nested minimisation of the TGL problem thus it requires
more time to converge. MTGLL is the most un-stable as it reaches the fixed
maximum number ot iterations two times.

comparison of ltgl , lvglasso and tgl . We performed a scalability
analysis using Latent Temporal Graphical Lasso (LTGL) with respect to dif-
ferent ADMM-based solvers. We evaluated the performance of our method
in relation to Latent Graphical Lasso (LVGLASSO) (Ma, Xue and Zou, 2013)
and the Time-Varying Graphical Lasso (TGL) (Hallac et al., 2017a), both imple-
mented with closed-form solutions to ADMM sub-problems. In general, the
complexity of the three compared solvers is the same (up to a constant). We
generated different data sets X ∈ (RN×D)T with different values of T and D. In
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Figure 33. Scalability comparison in terms of seconds for convergence of the Latent Temporal
Graphical Lasso (LTGL), our implementation of the TIme-varying Graphical Lasso
(TGL) and the Missing Temporal Graphical Lasso in the case of Latent (MTGLL)
and Partial (MTGLP) variables.
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Figure 34. Scalability comparison in terms of iterations for convergence of the Latent Tem-
poral Graphical Lasso (LTGL), our implementation of the TIme-varying Graphical
Lasso (TGL) and the Missing Temporal Graphical Lasso in the case of Latent
(MTGLL) and Partial (MTGLP) variables.

particular, D ∈ [10, 400) and T = {20, 50, 100}. We ignored the computational
time required for hyper-parameters selection.
Figure 35 shows, for the three different time settings, the scalability of the
methods in terms of seconds per convergence considering different number
of unknowns of the problem (i.e., 2T D(D+1)

2 with D observed variables and
T times). In all settings, LTGL outperforms LVGLASSO and TVGL in terms
of seconds per convergence. In particular, the computational time for conver-
gence remains stable disregarding the number of time points under considera-
tion.

comparison of two implementations of lgl We compared our im-
plementation of the Latent Graphical Lasso (LGL) (Chandrasekaran, Parrilo
and Willsky, 2010) with the one available online (LVGLASSO) (Yuan, 2012).
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Figure 35. Scalability comparison in terms of seconds for convergence of the Latent Temporal
Graphical Lasso (LTGL), our implementation of the TIme-varying Graphical Lasso
(TVGL) and the Latent Variable Graphical Lasso (LVGLASSO).

101 10210 2
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Figure 36. Scalability comparison in terms of seconds for convergence of our implementation
of the Latent Graphical Lasso (LGL) and the original (LVGLASSO).

The first one is based on ADMM, the second one on EM. We generated station-
ary data for D that varies in the interval [10, 100] and Nt = 100. Results are
shown in Figure 36 where we can observe that the slope of LGL is less than the
one of LVGLASSO. Also, LVGLASSO, while having a convergence time similar
for D = 10, became rapidly distant with one order of magnitude difference.

comparison of tglκ , tigmκ , tpgmκ . We analysed the time of conver-
gence of the three TGLκ, TIGMκ, TPGMκ methods assuming different dis-
tributions. We generated the same data with T = 10, Nt = 100 and D =

{5, 10, 80, 200, 500}. We then applied our implementations assuming an RBF
kernel.
Results are in Figure 37 where we can see that while the ascendant trend is
similar across all algorithms. TPGMκ is the one which requires more time to
converge while TIGMκ and TGLκ show comparable performance.The worst
performance of TIGMκ and TPGMκ is probably due to the non-closed form of
one step of the ADMM minimisation procedure used for the optimisation that,
thus, requires a nested minimisation algorithm that slows down convergence.
This may improved by parallelising the algorithm.
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Figure 37. Scalability comparison in terms of seconds for convergence of the Kernel Temporal
Graphical Lasso (TGLκ), the Kernel Temporal Ising Graphical Model (TIGMκ) and
the Kernel Temporal Poisson Graphical Model (TPGMκ

6.4 Installation

REGaIN is available as an open-source Python library, distributed under BSD-
3-Clause, at https://github.com/veronicatozzo/regain or https://github.

com/fdtomasi/regain. The library depends on Numpy, Scipy and scikit-learn.
It can be installed via the Python package managers pip or conda:

$ pip install regain

or

$ conda install -c fdtomasi regain

Alternatively, REGaIN can be installed from source, using the following com-
mands:

$ git clone https://github.com/veronicatozzo/regain

$ cd regain

$ python setup.py install

The library includes numerous Jupyter notebooks showing usage examples of
the implemented classes.

6.5 Usage Example

The following example show a basic example of the usage of REGaIN, gener-
ating the data and inferring the precision matrix associated to the data under
the influence of latent factors (see Chapter 5).

>>> import numpy as np

>>> from regain.covariance import LatentTimeGraphicalLasso

>>> from regain.datasets import make_dataset

>>> from regain.utils import error_norm_time

https://github.com/veronicatozzo/regain
https://github.com/fdtomasi/regain
https://github.com/fdtomasi/regain
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>>>

>>> np.random.seed(42)

>>> data = make_dataset(n_dim_lat=1, n_dim_obs=10)

>>> X = data.data

>>> theta = data.thetas

>>>

>>> mdl = LatentTimeGraphicalLasso(max_iter=50).fit(X)

>>> print("Error: %.2f" % error_norm_time(theta, mdl.precision_))

6.6 Summary

The presented library contains many algorithms, some original of REGAIN
and others present only in R or Matlab. We aim at improving the optimisation
of some of the implemented algorithm by exploiting the separability of the
variables by parallelising the algorithm, and, thus, accelerating their time to
converge. We argue that REGAIN provides a useful tools to researchers in
the graphical modelling field who wants to use Python, one of the most used
language for machine learning.
We are still working on the library adding features on a daily basis. We plan on
further validating the presented methods to find eventual bugs and we plan
to reach a stable release in the next few months.



PART III

Applications and conclusions

Part 3 includes some applications and the conclusions of this thesis.
Chapter 7 described applications of the previously introduces meth-
ods on real-world datasets. Chapter 8 presents a recap of the pro-
posed work with some lines for future research directions.



7
Real-world applications

During the development of the thesis we applied our inference methods on
some real-world dataset to assess their ability to detect patterns or infer inter-
esting connections between variables. In particular we used two datasets on
which we applied more than one method:

1. food search trends that we analysed with MTGLG and TGLP;

2. stock market prices that we analysed with MTGLG and LTGL.

Then, we also applied MTGLL with prior on Neuroblastoma gene expression
profiles, and, LTGLκ on weather data. We would like to point out that, while
the majority of methods are designed with biological applications in mind, is
not quite easy to obtain public temporal dataset of this type. Therefore we had
to rely on other type of data.
Nonetheless, on all applications we retrieved interpretable patterns that rein-
force our beliefs on the utility of our proposed methods for the analysis of
real-world phenomena. We want to point out that the only application that
had the support of an a posteriori analysis by an expert in the field is the one
on Neuroblastoma data, while the other applications were more of support of
the method.

outline The rest of this chapter is organised as follows. In Section 7.1 we
show the analysis of food trend search. In Section 7.2 we present results ob-
tained analysing stock market prices with different methods. In Section 7.3
we present results obtained with the groups imposition on a stationary neuro-
blastoma dataset. In Section 7.4 we present results obtained on weather meas-
uring sensors data. We conclude in Section 7.5 with a summary of the chapter
and future work directions.

7.1 Food search trends

We analysed Google© food trend search data. We downloaded the food dataset
from http://rhythm-of-food.net. It contains records of food searches in the
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US from 2004 to 2016, in particular data is formed by weekly scores of 201

different food. We discarded four as they were specific for regions outside the
US, ending with 197 variables.
The aim of our analysis is to detect similarities within a year, therefore, given
the high annual periodicity of the data we merged years together in order to
have more samples per time point ending up with 52 time points on 197 ob-
served variables with 13 samples per time point. We applied Log2 transform
to ensure normality of the data. We analysed these data with two methods:
MTGLG in which we imposed group knowledge on the data in terms of food
group e.g., artichokes and aubergine are vegetables while chicken and pork are
meat. Ideally, we aim at finding correlations between data that are explained
by the food group rather than by the specific food. We used food groups down-
loaded from foodb.ca eliminating those groups that had no connections with
the 197 food ending up with 18 groups.
Given the non-convexity of MTGLG we repeated the experiments multiple
times to get mean results. Then we analysed the same data with TGLP try-
ing to infer, only from observations, similarity patterns across the weeks of the
year.
For both experiments we utilised a `2

2 temporal consistency function. In order
to find the best hyper-parameters we used Bayesian search on all data.

results

Results show that people tend to search similar terms before any major holiday. They
also show that the group prior imposition allows to obtain interesting insights that are
in line with results obtained with TGLP.
In Figure 38 we present the results obtained by applying MTGLG. In particu-
lar we depicted the non-constantly zero correlations between groups of foods
obtaining 15 interesting mean trends over 10 repetitions of the experiments.
These curves show interpretable peaks. We note that major peaks are present
right before the major US holidays. Let us consider the correlation meat-baking
depicted in panel (e), here we can observe three distinct peaks right before Me-
morial Day (pink vertical line), Thanksgiving (black vertical line) and Christ-
mas (orange vertical line) which may possibly indicate a correlation in research
for typical baked holidays plates based on meat. Another interesting correla-
tion can be found in panel (h) that corresponds to meat-beverages in the spring
period. We argue that, in this period people tend to have more barbecue and
therefore try best combinations of meat and beverages. We also found obvious
results in panel (i) that shows a positive correlation, always non-zero, among
dishes and herbs and spices. Clearly people tend to search for the best spices to
put in recipes throughout the years and not only in specific periods. Another
similar behaviour can be found in panel (n) fruit-vegetables.
The results of the application of TGLP are depicted in Figure 39 where we
represented a circular heat-map representing a hierarchical clustering of the
weeks. Each layer considers an increased number of clusters. Hence, the outer
layer has the finest-grain on the patterns in time. If we consider the outer
layer we can observe that the weeks corresponding to holidays periods or fest-
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ivity are clustered together (light green cluster), indicating that people tend
to search traditional recipes terms in those periods. We refer for example to
the weeks during Christmas (52-1), Thanksgiving (47-48), Easter (15-16) and
many others. This result is in line with the results obtained with MTGLG that
showed peaks right before holidays periods meaning that there is a sort of
similar behaviour in the search trends in those periods of the year.
We then observed in details two specific networks corresponding to the light
green cluster (that we identified as the holiday cluster) and then we also ob-
served the network corresponding to the blue cluster. We plot only the com-
mon edges among the networks in the cluster in Figure 40 and 41. Recall that,
TGLP does not force networks to be identical, therefore, some edges may be
added to the plotted networks to retrieve the members of the cluster. In the
first one we can observe that one major hubs related to the search of term
macaron and a second one is related the term kale. While the first hub seems
surprising giving the french nature of these cookies, we discovered that ma-
carons gained a lot of attention in North America in the 2010s, becoming one
of the most common sweet. The second hub is less surprising as some of the
typical holidays recipes in US are based on kale. This is true also for brussel
sprouts.
The hubs related to moscow-mule, quinoa and chia and also kale are present in
the majority of the networks over the 52 weeks. Indeed, we can also observe
them in Figure 41. For the last two terms we impute this fact to these last
years tendency of healthier diets, that introduced these types of aliments in
daily regimes. Regarding the Moscow mule cocktail, we argue it is due to the
US origin of this cocktail that was born in the 1940s but regained popular
interested in 2007.

7.2 Stock market prices

Finance is another example of a complex dynamical system suitable to be
analysed through a graphical model. Stock prices, in particular, are highly
related to each other and subject to time and environmental changes, i.e.,
events that modify the system behaviour but are not directly related to com-
panies share values (Bai and Ng, 2006). Here, the assumption is that each
company, while being part of a global financial system, is directly depend-
ent from only a subset of others. For example, it is reasonable to expect that
stock prices of a technology company are not directly influenced by trend of
companies on the primary sector. In order to show this, we analysed stock
prices in a period ranging from 1998-2013. We analysed them with MTGLG
with `2

2 temporal consistency imposing, as a prior, the sector to which the
companies belonged. We downloaded the sectors from https://datahub.io/

core/s-and-p-500-companies. Then, on the ICT sector, we exploited LTGL to
perform a further analysis during the financial crisis of 2007-2008. Data were
downloaded from https://quantquote.com/historical-stock-data. We used

https://datahub.io/core/s-and-p-500-companies
https://datahub.io/core/s-and-p-500-companies
https://quantquote.com/historical-stock-data
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a a group lasso (`2) penalty to detect global shifts of the network. We used
Bayesian search to identify the best hyper-parameters of the model.

results

Latent variables allow to detect triggering events of the 2008 financial crisis while
prior on sectors break the latent variables influence in more interpretable facts.
Some of these results were partially presented in (Tomasi et al., 2018b).
Figure 42 shows the results obtained using MTGLG, in particular the global be-
haviour of latent part of the system is shown in panel B. By looking at panel A
we can see that such behaviour splits in groups that reveal interesting insights
on the data.. In particular we can see that there is a high correlation in the late
90s between the Information Technology sector and Financials, Health-Care,
Consumer Discretionary, Energy and Industrials that is in line with the spread
of technology in the market that changed the products. This belief is reinforced
by the stable correlation that we have with sectors like Materials or Real Estate
that are not heavily influences by ICT. In all the relations, though, we observe
abrupt changes in the period right after the crisis (highlighted in orange). This
period changes the equilibrium of the majority of the companies in the world
so it is difficult to say something particularly specific. Therefore, we further
analyse such period with LTGL only for the companies belonging to the ICT
sector. Results are shown in Figure 43 were we can observe two major changes
in both components of the network (latent and observed), in correspondence
of late 2007 and late 2008. In particular, during October 2008 a global crisis of
the market occurred, and this effect is especially evident for the shift of latent
variables. Also, the observed network changes in correspondence of the latent
variables shift or immediately after, caused by the effect of the crisis on the
stock market. The latent factors influence explains how the change of the net-
work was due to external factors that globally affected the market, and not to
normal evolution of companies relationships. We further investigated on the
causes for the first shift. Indeed, we found that in late 2007 it happened a drop
of a big American company that was later pointed out as the beginning of the
global crisis of the following year.

7.3 Neuroblastoma gene expression profiles

Genetic data are the main data we have in mind when we developed all the
methods presented in this thesis. Nevertheless, we could not find recent time-
series dataset on these type of data. Thus, we show one analysis performed on
a stationary one. We applied MTGLG on Neuroblastoma stationary RNA-Seq
data downloaded from https://portal.gdc.cancer.gov/projects/TARGET-NBL.

For computational ease, we considered a subset of genes known in literature
to be involved in Neuroblastoma disease based on Phenopedia (Yu et al., 2010).
The resulting list of 203 genes was provided to Webgestalt (Wang et al., 2013)
for a functional characterisation through a gene enrichment analysis. We ended
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up considering 116 KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kane-
hisa and Goto, 2000) pathways where the subset of genes was found enriched.
We then applied MTGLG to this data by imputing the empirical covariance
matrix of the gene expression and the membership of each gene to one or
more pathways. Given the non-convexity of our model we optimise it 20 times
with different initialisations, which led to different solutions. We retained the
links present at least 70% of the 20 times.

results

Retrieved pathway-pathway interactions are significant for Neuroblastoma as well as
hub genes in the co-expression network.
These results were previously presented in (Tozzo et al., 2018).
Figure 44 shows the pathway-pathway interactions while Figure 45 shows
the gene-gene interactions. The inferred co-expression network (Figure 45) in-
cludes four common genes that emerge above others. These genes are PLEKHA4,
IL6, S100B and NTRK. While the relevance of IL6 (Totaro et al., 2013; Zhao et
al., 2018) and NTRK (Lipska et al., 2009) in neuroblastoma is a known fact,
the role of the remaining two genes is still under investigation. Differently
from PLEKHA4 which is poorly annotated, S100B is a well characterized gene
whose chromosomal rearrangements and altered expression are known to be
implicated in several neurological, neoplastic, and other types of diseases, in-
cluding Alzheimer’s disease, Down’s syndrome and epilepsy. The hubs genes
are: MICA, EGFR, NEFL, MYO10, VDR, HFE, HLA-C, GHR, PDLIM1, APOE,
DAB2, PALU, CEBPA, IL-33. The involvement in Neuroblastoma of the first 7

genes of this list is present in literature (Bini et al., 2012; Borriello et al., 2016;
Capasso et al., 2014; Cheng et al., 1996; Mrowczynski et al., 2017; Wang et al.,
2018). Also Figure 44 shows that “Alzheimer’s disease” and “One carbon pool
by folate” are the two most strongly connected pathways. Folic acid has been
recently connected to childhood cancer (Moulik, Kumar and Agrawal, 2017),
while the one-carbon pathway was linked to Alzheimer’s (Fuso et al., 2011). We
also have a clique between “Wnt signaling”, “Ubiquitin mediated proteolysis”
and “One carbon pool by folate” pathway. It is known that WNT signaling
pathway plays significant roles in the survival, proliferation, and differenti-
ation of human neuroblastoma (Suebsoonthron et al., 2017) and “Ubiquitin
mediated proteolysis” is crucial in the regulated degradation of proteins in-
volved in neuroblastoma proliferation and survival (Hämmerle et al., 2013).

7.4 Weather data

We applied LTGLESS to sensor readings measuring every 5 minutes average
temperature, light and humidity during summer in Melbourne (Australia). We
considered readings in the location of Docklands Library, from December 15th,
2014 to January 17th, 2015 to avoid missing values, and we grouped together
time stamps of available data for each hour resulting in 1-hour-long granu-
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larity. Such data exhibit intrinsic recurrent temporal patterns over the days.
However, the patterns cannot be detected by only considering a two hour-long
sliding window (consecutive time points), while a periodic kernel spanning
24 time points would possibly lead to a reliable inference of the underlying
system. We used LTGLESS with a periodicity of 24 hours to be able to detect
1-day long patterns and remove external influence on the time series (e.g., the
particular month of the year).

results

High periodicity in the data can be exploited to retrieve recurring behaviour in the
data. Sensors weather data reveal a change in the temperature-light correlation every
day at 6AM and 18PM. In turn, temperature and humidity change their correlation
at 12PM and 6AM.
Figure 46 shows the results on the sensor readings data, in particular the estim-
ated covariance, precision and latent factor contribution matrices. Note that the
contribution of the latent variables in the covariance matrices is not factorised
out. In this case the covariance is given by the inverse of the difference between
the precision and latent contribution matrices at each time point. As expected,
temperature and light have always a positive correlation over time. Instead, the
humidity have an inverse correlation both with light and temperature. While
the covariance includes the correlation between all pairs of variables, the pre-
cision matrix includes the information on the graph between such variables,
that is their conditional independence. Indeed, plotting the precision matrices
over time (Figure 46, middle row) shows Light to be conditionally independent
from Humidity given the information coming from Temperature, as its value
is almost null over time. Conversely, Temperature is conditionally dependent
on Light. Also in this case, the results are in line with the intuition that the
effect of Light on Humidity is not as strong as the effect of Temperature. The
latent factors contribution over time (Figure 46, bottom row) shows a both pos-
itive and negative effect on Temperature-Humidity: positive during the day,
negative during the night.
Figure 47 in a shorter period of time that allows us to see more details. As
by previous intuition, temperature and light have always a positive correlation
over time (note that negative values in the precision matrix correspond to pos-
itive correlation). Also, light is shown to be conditionally independent from
humidity given the information coming from temperature, as the correspond-
ent entries are almost null over time. Again, the results are in line with the
intuition that the effect of light on humidity is not as strong as the effect of
temperature, and therefore values of humidity are explained in terms of tem-
perature and not on light. Moreover, considering a periodic kernel over time
we note that the variables change their relations at 5am (between temperature
and humidity) and at 8am and 5pm (between temperature and light), which
are the inflection points in which the atmospheric conditions change every day.
We observed that using our kernel-based method that incorporates periodicity
is beneficial to understand external variables affecting the system, such as, in
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this case, the particular time of the day in which the system is sampled, that
otherwise could not be captured by only considering subsequent time points.

7.5 Summary

In this chapter we showed some real-world data analysis example where we
mainly applied Gaussian-based models. Given the generality of our proposed
models there are many datasets suitable to be analysed with our methods.
We plan to exploit the temporal Ising model to analyse neural data as well
as the temporal Poisson model for genomic data. Nonetheless, as previously
mentioned, it is generally difficult to find open temporal dataset of molecular
biology problems that are the most suited for TPGMκ.
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Figure 38. Temporal correlations between 15pairs of food groups that showed a non-constant
zero correlation in time. We repeated the analysis 10 times and show mean and
standard deviation of the temporal behaviour. With the vertical coloured lines we
indicate the periods of major holidays in US, as we noticed that for some relations
there are interesting peaks right before these periods.
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Figure 39. Hierarchical clustering representation of weeks of the year obtained analysing in-
ferred adjacency matrices on food search trends. Each layer corresponds to a dif-
ferent number of clusters, that increases going from the centre to outside letting
explore clustering behaviour at various scales.
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Figure 40. Inferred network related to holidays weeks (light green cluster of Figure 39) con-
sidering nodes degree higher than 4 and their connected 1-degree neighbours. The
hubs, in order of degree, are the following terms: macaron, cauliflower, moscow-
mule, quinoa, taco, brussel sprouts, kale, chia.
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Figure 41. Inferred network related to holidays weeks (blue cluster of Figure 39) considering
nodes degree higher than 4 and their connected 1-degree neighbours. The hubs, in
order of degree, are the following terms: kale, chia, moscow-mule, brussel sprouts,
quinoa.
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Figure 42. Results obtained applying the Missing Temporal Graphical Lasso with Group im-
position on stock market prices in the period 1998-2013 with group prior on their
industrial sectors. In panel (A) we show the temporal conditional correlations
between the ICT sector and the others, while in panel (B) we show the global
temporal deviation of the latent marginalisation on all sectors. In orange we high-
lighted the period of the financial crisis.
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Figure 43. Temporal deviation for stock market data in the period of time 2007-2009. Two
peaks are present in correspondence of late 2007 and late 2008, in particular they
correspond to the subprime mortgage crisis and the later Lehman Brothers collapse
that are the two major trigger events of the financial crisis.

No. Description

4060 Cytokine cytokine receptor interaction

5010 Alzheimer’s disease

670 One carbon pool by folate

4630 jak STAT signaling pathway

4120 Ubiquitin mediated proteolysis

5142 Chagas disease american trypanosomiasis

4010 MAPK signaling pathway

4150 mTor signaling pathway

4310 wnt signaling pathway

4810 Regulation of actin cytoskeleton

Figure 44. Pathway-pathway interaction network obtained analysing Neuroblastoma TCGA
data with Missing Temporal Graphical Lasso with Group imposition with KEGG
pathways as group prior. The darker colour of the node denotes its degree while the
darker colour of the edge denotes the probability of its existence.
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Figure 45. Gene-gene interaction network obtained analysing Neuroblastoma TCGA data
with Missing Temporal Graphical Lasso with Group imposition. The darker col-
our as well as the dimension of a node denote its degree while the darker colour of
the edge denotes the probability of its existence.
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Figure 46. Covariance, precision and latent marginalisation temporal values obtained apply-
ing Latent Temporal Graphical Lasso with periodic kernel (LTGLESS) on 15 days
span of sensor for humidity, light and temperature in a location in Melbourne.
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Figure 47. Precision temporal values obtained applying Latent Temporal Graphical Lasso with
periodic kernel (LTGLESS) on 4 days span of sensor for humidity, light and tem-
perature in a location in Melbourne.



Conclusions

We conclude this thesis presenting a brief recap of the major contributions as
well as future research directions.
This thesis focuses on general network inference methods able to modelling
temporal observations of real-world phenomena. In the last years there has
been a major increase in the availability of multi-variate time-series data sets
that possibly contain diverse data types (e.g., neural spikes - binary, genomic
- counts, sensors - continuous). Such data may have complex and intertwined
temporal dependencies that may or not be known a priori. To the aim of mod-
elling such data, we propose a general model for the inference of dynamical
graphical models from multi-variate time-series (Chapter 4). Such model is
suitable for different probability assumptions, temporal consistency function
and temporal dependency patterns. We proposed a related minimisation al-
gorithm that can be easily adapted to more distributions belonging to the ex-
ponential family class.
The second main focus of the thesis are missing data in the form of partial and
latent variables. To cope with this type of data, that are naturally present in
real-world measurements, we propose a temporal network inference method
in the specific case of dynamical GGMs as the Gaussian assumption allows to
easily deal with the problem. We are aware, though, of the need of dealing with
this type of problem also for other distributions. Chen et al., 2016; Nussbaum
and Giesen, 2019 for the Ising model, and, Vinci et al., 2018 for the Poisson
model, proposed a network inference method with Gaussian latent variables
solved via the same marginalisation proposed in Chandrasekaran, Parrilo and
Willsky, 2010. We exploit such marginalisation for the development of the our
LTGL model in Section 5.3, therefore, a possible future work could the exten-
sion to latent variables also for other distributions.
We validated the proposed methods on synthetic and, partially, on real data.
While we plan to extend their experimental validation we also want to study
their theoretical properties deriving from the assumption of non-stationary dis-
tributions connected trough a consistency function (Tran and Jung, 2018). We
expect the bounds for sparsistency (i.e., the sparsity pattern of the graph) to
be less restrictive than the ones in the stationary case (Ravikumar et al., 2009a;
Ravikumar, Wainwright and Lafferty, 2010; Yang et al., 2013, 2015). This is due
to the fact that temporal dependency and consistency leverage on knowledge
from dependent time points thus allowing for the use of less samples to re-
trieve the network structure with the same accuracy. While we have empirical
proof of such phenomenon we want to analyse it more rigorously.
We also plan to develop an on-line inference method that, given the previous
states of a network, is able to predict the network at time t+ 1, possibly guided
by some measurements at that time (Chen, Meng and Zhang, 2019). We aim

132
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at applying this prediction together with a regression technique for complex
regression tasks. In particular we want to estimate the daily cost of energy that
is needed to industries to propose a market price to the energy they sell.
From a more applied perspective we want to employ our temporal Ising model
on neural data. The validity of using graphical models for the inference of
neural functional connections has been extensively proved (Belilovsky, Varoquaux
and Blaschko, 2016; Chang, Yao and Allen, 2019) and in particular the ability
of the Ising model to correctly represent neural connections (Schneidman et al.,
2006). We want to assess the validity of our method on neural data from pa-
tients subject to different stimuli at known time points (Somatosensory evoked
data). Then, if the method with automatic kernel inferenc, correctly identifies
the different stimuli, we plan on using such method on focal epilepsy data to
detect interesting functional connections that may help in the identification of
onset zone (Marsh et al., 2010).

We want to remark that research related to graphical modelling of time-series
with and without missing data is still in its early days. The methods proposed
in this thesis are an attempt to study this topic under different perspectives.
Although not conclusive, this thesis points out new challenges and possible
new possible solutions for the analysis of the increasingly available time-series
datasets. In particular, there are three main aspects that are strictly related
to the thesis and still open for further research: algorithmic complexity, time
division, and causality.
Further improvements could be done regarding complexity to reach solutions
in less time or iterations. We tried different approaches in Appendix A for spe-
cific settings of convex Gaussian models. Nevertheless, other methods could be
employed for the optimisation of non-convex models. In particular, the EM al-
gorithm could be optimised via typically faster Variational Inference methods
(Bernardo et al., 2003; Blei, Kucukelbir and McAuliffe, 2017).
The problem related to time division lies in the main assumption of the pro-
posed methods: time can be divided a priori in chunks without introducing
bias. This is a strong assumption and should be further investigated and ex-
plored, possibly by inferring a network at each time point rather than at each
chunk. Moreover, it would be interesting to extend the inference to an on-line
version that allows for prediction of future time points.
Finally, a concept that is strongly related to this thesis is causality as it fol-
lows naturally from the modelling of the same variables in time. Nonetheless,
the relation between Markov Random Models and causal graph is non-trivial.
Causal graphs, typically called Bayesian Networks (Murphy and Russell, 2002),
are defined as directed acyclic graphs that satisfy the Markov property. Thus,
the two probabilistic models have a discrepancy in the structure definition
which results in MRFs modelling correlation and Bayesian Networks model-
ling causation (Elwert, 2013). We suppose that a step towards causality may be
done by conditioning each time stamp with respect to the previous ones, thus
removing the edges possibly caused by some temporal effect, but this idea
needs to be further refined.
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To conclude, we argue that the methods developed in this thesis are a valuable
contribute that lies in a wider set of models appropriate for time series and
data analysis, which aim at a better understanding of underlying complex
processes.



PART IV

Appendix



A
Minimisation of TGGMκ, TIGMκ, TPGMκ

Problems TGLκ, TIGMκ, TPGMκ respectively Equations (34), (35) and (36) are
convex, providing that the penalty function Ψ is convex, and coercive because
of the regularisers, hence retaining convergence guarantees to the global op-
tima.. In practice, however, finding such solution may be not trivial due to
the high number of unknowns of the problem. Considering T time points and
D variables, the total number of unknowns is TD(D + 1)/2. We resort to the
Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011), that
has been shown to be suitable to minimise complex functionals subject to con-
straints.
The ADMM procedure divides the original problem in sub-problems easier
to minimise. Thanks to this separation the minimisation of the three different
functionals in Equations (34), (35) and (36) is equal except for the step contain-
ing the likelihood. It also allows for more flexibility in the temporal patterns
that the variable interactions follow.
Let us define two projections:

PLm : (RD×D)
T → (RD×D)

T−m
PRm : (RD×D)

T → (RD×D)
T−m

A 7→ (A1, . . . , AT−m) A 7→ (Am+1, . . . , AT)

(43)

with m ∈ [1, T − 1].
In order to decouple the involved matrices, we define two dual variables Z0

and Z = (ZL, ZR), where ZL = (ZLm)1≤m≤T−1 and ZR = (ZRm)1≤m≤T−1. To
ease the notation, let Z = (ZL, ZR) where ZL = (ZLm)1≤m≤T−1 and ZR =

(ZRm)1≤m≤T−1. The general problem (30) becomes:

minimize
(K,Z0,Z)

T

∑
t=1

[
− `(Kt|Xt) + α‖Kt‖od,1

]
+

T−1

∑
m=1

T−m

∑
t=1

[
κΨ

mtΨ(ZRmt − ZLmt)
]

s.t. Z0 = K, ZLm = PLmK, ZRm = PRmK.



136



A.1 K and Z0 step 137

The Lagrangian then becomes:

Lρ(K, Z, U) =
T

∑
t=1

[
− `(Kt|Xt) + α ‖Z0,t‖od,1

]
+

T−1

∑
m=1

T−m

∑
t=1

κmtΨ(ZRmt − ZLmt)

+
ρ

2

T

∑
t=1

[
‖Kt − Z0,t + U0,t‖2

F − ‖U0,t‖2
F

]
+

ρ

2

T−1

∑
m=1

T−m

∑
t=1

[
‖Kt − ZLmt + ULmt‖2

F − ‖ULmt‖2
F

+ ‖Kt+m − ZRmt + URmt‖2
F − ‖URmt‖2

F

]

(44)

Then, the ADMM algorithm for problem (44) writes down as

Algorithm 6 ADMM algorithm for the minimisation of TGLκ, TIGMκ and
TPGMκ

1: for k = 1, . . . do
2: Kι+1 = argmin

K
Lρ(K, Zι, U ι

0, U ι)

3: Zι+1
0 = argmin

Z0

Lρ(Kι+1, Zι, U ι
0, U ι)

4: Zι+1 =

[
Zι+1

L

Zι+1
R

]
= argmin

Z
Lρ(Kι+1, Z, U ι

0, U ι)

5: U ι+1
0 = U ι

0 +
[
Kι+1 − Zι+1

0

]
6: U ι+1 =

[
Yk

L

Yk
R

]
+

[
PLKι+1 − Zι+1

L

PRKι+1 − Zι+1
R

]

before, that is the iterative optimisation of K, Z, U, respectively.

a.1 K and Z0 step

The computation of K and Z0 can be performed separately for each t. We put
this two steps together as, for the Ising and Poisson temporal models we solve
them in a unique minimisation procedure while for the Guassian case, as they
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allowed separate closed-form solution we solve them separately. The K step at
tie t is defined as

Kι+1
t = argmin

K
`(Kt|Xt) +

ρ

2Nt

[
‖K− Z0,t + U0,t‖2

F

+
T−1

∑
m=1

(
δt≤T−m ‖K− ZLmt + ULmt‖2

F

+ δt≥m+1 ‖K− ZRmt + URmt‖2
F

)]
= argmin

K
`(Kt|Xt) +

Tρ

2Nt
‖K− At‖2

F

(45)

with

At =
1
T

[
Z0,t −U0,t+

T−1

∑
m=1

δt≤T−m(ZLmt −ULmt) + δt≥m+1(ZRmt −URmt)

]
since 1 + ∑T−1

m=1(δt≤T−m + δt≥m+1) = T. Note that the last equality in (45) fol-
lows from the symmetry of K.
Problem (45) needs to be solved differently depending on the type of likeli-
hood. If the likelihood is Gaussian it can be solved in closed form, if the likeli-
hood is either Ising or Poisson it requires a nested minimisation algorithm.
The Z0 step at time t is defined as

Zι+1
0,t = argmin

Z
α ‖Z‖od,1 +

ρ

2
‖Kt − Z + U0,t‖2

F

= argmin
Z

α ‖Z‖od,1 +
ρ

2
‖Z− Bt‖2

F

with Bt = Kt + U0,t.

a.1.1 Gaussian

Here we are solving the problem presented in Equation (34), i.e.we are instan-
tiating the likelihood with `GGM. Note that, with this likelihood the symmetry
of K also guarantees the log det to be well-defined. In this case problem (45)
can be explicitly solved. Indeed, Fermat’s rule yields:

Ct −
ρ

Nt

Aι
t + Aι>

t
2

= K−1 − Tρ

Nt
K. (46)

Then the solution to Equation (46) is

Kι+1
t =

Nt

2Tρ
V ι

(
−Eι +

√
(Eι)2 +

4Tρ

Nt
I

)
Vk>

where V ιEιV ι> is the eigenvalue decomposition of Ct − Tρ
Nt

Aι
t+Aι>

t
2 .
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The solution for Zι+1
0,t can still be performed in closed form as

Zι+1
0,t = soft-thresholding(Kt + U0,t,

α

ρ
).

a.1.2 Ising

Here we are solving the problem presented in Equation (35), i.e., we are instan-
tiating the likelihood with `IGM. For each Kt we have to solve D neighbour-
hood selection problems, indeed the problem cannot be solved in closed form.
Given the constraint Kt ∈ SD, i.e., the inferred adjacency matrix needs to be
symmetrical we nest the neighbourhood selection problems in a global min-
imisation procedure in order to guarantee such constraint. Differently from
the Gaussian case, here we unify the K and Z0 step, and therefore we use a
Forward-Backward splitting (FBS) algorithm (Combettes and Wajs, 2005), an
iterative procedure that computes the gradient on the differentiable part of
the functional and then use a proximal operator on the non-differentiable part.
Given the functional in Equation (35) we define for each time t and each vari-
able v

f (Kt[v, :]) =log
{

exp(XtKt[v, :]>)

+ exp(−XtKt[v, :]>)
}
− 1

Nt
(Xt[:, v]>XtKt[v, :]>)}

+
Tρ

2
‖Kt[v, :]− At[v, :]d‖2

F

with

At =
1
T

T−1

∑
m=1

δt≤T−m(ZLmt −ULmt) + δt≥m+1(ZRmt −URmt)

and

g(Kt[v, :]) = α‖Kt[v, :]]‖1

Then the minimisation for each Kt is performed as in Algorithm 7 where the
gradient of the function f can be computed for each variable v given the de-
composability of the function as:

∇Kt[v,:] f =Xt[:, \v]
(

exp(XtKt[v, :]>)− exp(−XtKt[v, :]>

exp(XtKt[v, :]>) + exp(−XtKt[v, :]>)
− 1

Nt
Xt[:, v]

)
+ Tρ(Kt[v, :]− At[v, :])
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Algorithm 7 K step for Temporal Ising model

γ = 0.001
ε = 0.001
K = zeros(T, D, D)

G = zeros(T, D, D)

for ι = 1, . . . do
for v = 1, . . . , D do

for t = 1, . . . , T do
Gt[v, :] = ∇Kt[v,:] f

Kι = Kι−1 − γG
Kι = soft-thresholding(Kι, γα)

if ‖Kι − Kι−1‖2
2 < ε then

break
return Kι

The setting γ = 0.001 has been decided after empirical validation of the values.

a.1.3 Poisson

Here, we are solving the problem presented in Equation (36), i.e.we are instan-
tiating the likelihood with `PGM. Again for each Kt we have to solve D neigh-
bourhood selection problems and we solve together the K and Z0 step, using
FBS algorithm (Combettes and Wajs, 2005). We couple such algorithm with a
line-search procedure to find the best gradient step (Wan et al., 2016). Given
the functional in Equation (36) we define for each time t and each variable v

f (Kt[v, :]) = `PGM(Xt|Kt[v, :]) +
Tρ

2
‖Kt[v, :]− At[v, :]‖2

F

with

At =
1
T

T−1

∑
m=1

δt≤T−m(ZLmt −ULmt) + δt≥m+1(ZRmt −URmt)

and

g(Kt[v, :]) = α‖Kt[v, :]]‖1

the minimisation algorithm for each time t is presented in Algorithm 8 where
the gradient of f in variable v is defined as

∇Kt[v,:] f =− 1
Nt

Nt

∑
i=1

[
Xt[i, v]Xt[i, \v]− Xt[i, \v]exp(Xt[i, \v]K>t [v, \v])

]
+ Tρ(Kt[v, :]− At[v, :])
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Algorithm 8 K step for Temporal Poisson model

γ = 1
ε = 0.001
K = zeros(T, D, D)

G = zeros(T, D, D)

for ι = 1, . . . do
for t = 1, . . . , T do

Gt[v, :] = ∇Kt[v,:] f

while f (Kι
t) > f (Kι−1

t )− Gt(Kι
t − Kι−1

t ) + 1
2γ‖Kι

t − Kι−1
t ‖2

F do
γ = γ/2
Kι

t = Kι−1
t − γGt

Kι
t = soft-thresholding(Kι

t, γα)

if ‖Kι
t − Kι−1

t ‖2
2 < ε then

break
return Kι

t

a.2 Zs step

Variables

ZL = (ZLmt)1≤m≤T−1,1≤t≤T

ZR = (ZRmt)1≤m≤T−1,1≤t≤T

are easily separable. Hence, the minimisation on them can be applied to their
single components.

[
Zι+1

Lmt

Zι+1
Rmt

]
= argmin

ZL,ZR

κΨ
mt Ψ(ZR − ZL)

+
ρ

2

[
‖Kι

t − ZL + Yι
Lmt‖

2
F + ‖K

ι
t+m − ZR + Yι

Rmt‖
2
F

]
.

(47)

Let Ψ̂
[

ZL

ZR

]
= Ψ(ZR − ZL). Then, Problem (47) can be solved with an unique

update:

[
Zι+1

Lmt

Zι+1
Rmt

]
= prox κΨ

mt
ρ Ψ̂(·)

([
Kι

t + Yι
Lmt

Kι
t+m + Yι

Rmt

])
.

The solution of the proximal operators of the different Ψ functions are available
in (Hallac et al., 2017a).
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a.3 Termination Criterion

The termination criterion is based on the primal and dual residuals ‖rι‖2
2 ≤

εpri and ‖sι‖2
2 ≤ εdual (Boyd et al., 2011). At each iteration ι such values are

computed as:

‖rι‖2
2 = ‖Kι − Zι

0‖
2
F + ‖PLKι − Zι

L‖
2
F + ‖PRKι − Zι

R‖
2
F

‖sι‖2
2 = ρ

( ∥∥∥Zι
0 − Zk−1

0

∥∥∥2

F
+
∥∥∥Zι

L − Zk−1
L

∥∥∥2

F
+
∥∥∥Zι

R − Zk−1
R

∥∥∥2

F

)
εpri = c + εrel max

(
Dι

1, Dι
2
)

εdual = c + εrelρ
(

Dι
3
)

where c = εabsdT, εabs and εrel are arbitrary tolerance parameters, ‖Dι
1‖

2
F =

‖Zι
0‖

2
F + ‖Z

ι
L‖

2
F + ‖Z

ι
R‖

2
F, ‖Dι

2‖
2
F = ‖Kι‖2

F + ‖PLKι‖2
F + ‖PRKι‖2

F and ‖Dι
3‖

2
F =

‖U ι
0‖

2
F + ‖U

ι
L‖

2
F + ‖U

ι
R‖

2
F.

a.4 The problem is separable

Particular instantiation of the problems above, in particular when we select
Ψ = `1 or Ψ = `2

2 makes the problem separable, in such a way to consider
the minimisation of a single variable in time ignoring the behaviour of the
other when solving the problem. This is particularly indicated in contexts like
Bernoulli or Poisson where the minimisation is naturally done in a single vari-
able and can be extended to kernel inclusion easily. In (Tomasi et al., 2018a) we
studied this case for the TGL problem proposing a solution based on Forward-
Backward Splitting (FBS) that relied on line searches for the parameters of the
algorithm and relax the assumptions, so to include the type of problems we
are interested in, while maintaining strong theoretical convergence guarantees
(Salzo, 2017). We do not want to go into many technical details but we show
some experimental comparison that show how FBS can be a valuable alternat-
ive to ADMM.

a.4.1 Experiments

The performance of the proposed methods has been assessed on synthetic data
in terms of the number of iterations, execution time, and space scalability.
In particular, we compared the two version of the FBS based algorithm FBS-
LS(γ) and FBS-LS(γ, λ) that are different depending on how the line search is
performed, with the ADMM algorithm proposed in (Hallac et al., 2017a).

convergence Data were generated starting from a set of precision matrices
K = (K1, . . . , KT), related in time according to a specific behaviour while guar-
anteeing that Kt ∈ SD

++ for t = 1, . . . , T. In particular, we generated two
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precision 0.1 0.01 0.001

score iter. time [s] iter. time [s] iter. time [s]

`1

FBS-LS(γ) 22± 1 4.8± 0.7 24± 1 5.1± 0.4 26± 1 5.0± 0.3

FBS-LS(γ,λ) 22± 1 4.6± 0.7 24± 1 5.4± 0.5 26± 1 5.6± 0.5

ADMM 1060± 553 75.2± 39.8 2623± 1757 184.3± 122.3 4312± 1536 301.6± 107.4

`2
2

FBS-LS(γ) 72± 19 7.9± 2.7 107± 30 11.7± 4.1 137± 40 14.9± 5.5

FBS-LS(γ, λ) 72± 19 8.3± 2.8 104± 31 12.1± 4.5 129± 41 14.9± 6.0

ADMM 192± 24 13.2± 1.7 252± 42 17.3± 3.1 453± 66 30.4± 3.8

Table 13. Average results in terms of average number of iteration and CPU time in seconds
for the comparison of the minimisation of the Time-Varying Graphical Lasso with
the FBS with two different types of line search and the ADMM across different
runs and for two types of temporal consistency functions. Results are shown as the
accuracy in approximating the solution increases.

data sets according to different temporal behaviours, consisting of Nt = 200
samples in RD with D = 200 and T = 10 time stamps. The first data set was
obtained by modelling the interactions between variables across time accord-
ing to a square waveform. Under such schema, the interactions may be zero
or positive at particular time points, but the transition between those states is
non-smooth. The second data set is generated modelling variable interactions
according to a smooth sinusoidal behaviour. Hence, the interactions were con-
strained to change slowly in time.
We considered the time-varying graphical lasso with the two temporal penal-
ties (TGL-`1) and (TGL-`2

2), according to the type of the data set. As for the
hyperparameters (α, β), we considered the search space [0.1, 1] × [0.1, 5] for
(TGL-`1) and [0.1, 1] × [0.01, 0.1] for (TGL-`2

2). We performed a Bayesian op-
timisation procedure, and we checked that the best hyper-parameters lie in
the interior of the search space (do not belong to the boundary). In particu-
lar, (α∗, β∗) = (0.111, 4.855) for (TGL-`1), while (α∗, β∗) = (0.789, 0.020) for
(TGL-`2

2). Then, we set a grid on the search space and ran the two proposed al-
gorithms FBS-LS(γ) and FBS-LS(γ, λ) as well as ADMM, for the corresponding
values of the hyper-parameters.
We evaluated the performance of the proposed methods with respect to the
ground truth. We computed the mean squared error (MSE) for each algorithm
after convergence. The achieved MSE was the same for each algorithm (0.648 ·
10−4 for (TGL-`1), 0.498 · 10−4 for (TGL-`2

2)).
Table 13 reports the performance of the three algorithms across the different
runs in terms of the number of iterations and CPU times for achieving a given
precision. For each pair of hyper-parameters, the minimum m∗ is estimated as
the best value obtained in 500 iterations among the different algorithms.
In this experiment, both FBS-based algorithms clearly outperform the ADMM.
FBS-based algorithms are able, in only a few iterations, to increase the pre-
cision of order of magnitudes, for both `1 and `2

2 set of experiments. We
note, however, that the difference in the convergence behaviour with respect to
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Figure 48. Representation of the relative objective value of the FBS with two different types
of line search procedures and the ADMM as iterations increase.

ADMM is less substantial in the case of `2
2. In the case of `1, FBS has a higher

cost per iteration with respect to ADMM. This is due to the computation of
the proximity operator of the fused lasso penalty. In the case of `2

2, instead, the
cost is lower because the proximity operator of the nonsmooth (penalty) term
simplifies to a soft-thresholding. Finally, for (TGL-`2

2), we point out the better
performance of FBS-LS(γ, λ) against FBS-LS(γ).
Figure 48 shows the relative objective value across the first 100 iterations and
multiple runs for FBS-based algorithms and ADMM.The relative value is ob-
tained as |objι−m∗|

|m∗| , where m∗ is the minimum objective value obtained across
500 iterations, and objk is the value of the objective function at iteration ι. The
averaged value is depicted in bold line. In particular, in the case of the (TGL-
`1), FBS-based algorithms clearly surpass the ADMM in terms of convergence
rate (Figure 48a). We note that the two algorithms FBS-LS(γ) and FBS-LS(γ, λ)
completely overlap in the case of (TGL-`1), whereas FBS-LS(γ, λ) shows to con-
vergence slightly faster than FBS-LS(γ). The poor convergence rate of ADMM
may be due to the need of reaching a consensus among a large number of
variables which a typical scenario in the inference of time-varying networks.
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Figure 49. Memory requirement for FBS and ADMM minimisation algorithms for the Time-
Varying Graphical Lasso (TVGL) as the number of unknowns increases keeping
T fixed to 50 and letting D vary. The matrices are stored in memory in double
precision.

a.4.2 Scalability

FBS-based and ADMM-based optimisations feature different memory require-
ments. In particular, FBS-based implementation requires O(2D2T) in space, for
keeping in memory both the precision and empirical covariance matrices at all
time points. Instead, ADMM-based implementation requires more variables
due to the consensus framework and the presence of dual variables. More spe-
cifically, in our setting, it requires O(4D2(2T − 1)) space complexity (Hallac
et al., 2017a). The difference between the two complexities consists in a mul-
tiplicative factor which, however, may have an impact in the analysis of large
data sets.
Figure 49 shows the difference in space complexity as the number of un-
knowns (TS(S + 1)/2) of the problem grows. We note that such computa-
tions do not take into account the use of optimised data structures for sparse
data. Better performance may be achieved by exploiting the structure and the
sparsity of the involved matrices, but we leave such investigation for future
work.

a.5 Summary

In this appendix we presented the minimisation algorithms for TGLκ, TIGMκ,
TPGMκ based on ADMM optimisation algorithm. We also presented a brief
overview of an alternative minimisation approach in the Gaussian case that
can be used in presence of specific temporal consistency functions. This may be
particularly suited for Ising and Poisson problems that work on single variable
neighbourhood estimation and it is worth to further investigate.



B
Minimisation LTGLκ

Problem (40) is convex, provided that the penalty functions Ψ and Φ are con-
vex, and it is coercive because of the regularisers, so it admits (global) solu-
tions Tomasi et al., 2018b. Nonetheless, its optimisation is challenging in prac-
tice due to the high number of unknown matrices involved (2T, for a total
of 2T d(d+1)

2 unknowns of the problem). In line with the recent advances of
graphical models Danaher, Wang and Witten, 2014; Hallac et al., 2017a; Ma,
Xue and Zou, 2013; Tomasi et al., 2018b we recur to the ADMM minimisation
algorithmM (Boyd et al., 2011) similarly to what we did for TGLκ. The most
computationally expensive task performed by our solver is represented by two
eigenvalue decompositions, with a complexity of O(D3), to solve both R and
L steps.
In order to decouple the involved matrices, we define three dual variables R,
Z = (Z1, Z2) and W = (W1, W2). Given the two projections in Equation (43)
with m ∈ [1, T − 1]. Problem (40) becomes:

minimize
(K,L,R,Z,W)

Lt�0

T

∑
t=1

[
− nt `(St, Rt) + α‖Kt‖od,1 + τ‖Lt‖∗

]
+

T−1

∑
m=1

T−m

∑
t=1

[
κΨ

mtΨ(ZRmt − ZLmt) + κΦ
mtΦ(WRmt −WLmt)

]
s.t. R = K − L, ZLm = PLmK, ZRm = PRmK,

WLm = PLmL, WRm = PRmL.


To ease the notation, let Z = (ZL, ZR) and W = (WL, WR), where ZL =

(ZLm)1≤m≤T−1 and ZR = (ZRm)1≤m≤T−1 (the same applies for WL, WR, PL,
PR).

146
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The corresponding augmented Lagrangian is:

Lρ(K, L, R, Z, W , X, Y , U)

=
T

∑
t=1

[
− nt `(St, Rt) + α ‖Kt‖od,1 + τ ‖Lt‖∗ + I(L � 0)

]
+

T−1

∑
m=1

T−m

∑
t=1

[
κΨ

mtΨ(ZRmt − ZLmt) + κΦ
mtΦ(WRmt −WLmt)

]
+

ρ

2

T

∑
t=1

[
‖Rt − Kt + Lt + Xt‖2

F − ‖Xt‖2
F

]
+

ρ

2

T−1

∑
m=1

T−m

∑
t=1

[
‖Kt − ZLmt + YLmt‖2

F − ‖YLmt‖2
F

+ ‖Kt+m − ZRmt + YRmt‖2
F − ‖YRmt‖2

F

]
+

ρ

2

T−1

∑
m=1

T−m

∑
t=1

[
‖Lt −WLmt + ULmt‖2

F − ‖ULmt‖2
F

+ ‖Lt+m −WRmt + URmt‖2
F − ‖URmt‖2

F

]

(48)

where X, Y = (YL, YR), U = (UL, UR) are the scaled dual variables.
The related ADMM algorithm for problem (48) writes down as:

Algorithm 9 ADMM algorithm for the minimisation of LTGLκ

for k = 1, . . . do
Rι+1 = argmin

R
Lρ(Kι, Lι, R, Zι, W ι, X ι, Y ι, U ι)

Kι+1 = argmin
K

Lρ(K, Lι, Rι+1, Zι, W ι, X ι, Y ι, U ι)

Lι+1 = argmin
L

Lρ(Kι+1, L, Rι+1, Zι, W ι, X ι, Y ι, U ι)

Zι+1 =

[
Zι+1

L

Zι+1
R

]
= argmin

Z
Lρ(Kι+1, Lι+1, Rι+1, Z,

W ι, X ι, Y ι, U ι)

W ι+1 =

[
W ι+1

L

W ι+1
R

]
= argmin

W
Lρ(Kι+1, Lι+1, Rι+1, Zι+1,

W , X ι, Y ι, U ι)

X ι+1 = X ι +
[
Rι+1 − Kι+1 + Lι+1]

Y ι+1 =

[
Yk

L

Yk
R

]
+

[
PLKι+1 − Zι+1

L

PRKι+1 − Zι+1
R

]

U ι+1 =

[
Uk

L

Uk
R

]
+

[
PLLι+1 −W ι+1

L

PRLι+1 −W ι+1
R

]
.
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b.1 R step

Rι+1
t = argmin

R
tr(StR)− log det(R) +

ρ

2nt
‖R− Kι

t + Lι
t + Xι

t‖
2
F

= argmin
R

tr(StR)− log det(R) +
ρ

2nt
‖R− At‖2

F

(49)

with At = Kι
t − Lι

t − Xι
t. Note that the last equality in (49) follows from the

symmetry of R — which also guarantees the log det to be well-defined. Equa-
tion (49) can be explicitly solved. Indeed, Fermat’s rule yields:

St −
ρ

nt

Aι
t + Ak>

t
2

= R−1 − ρ

nt
R. (50)

Then the solution to Equation (50) is

Rι+1
t =

nt

2ρ
V ι

(
−Eι +

√
(Eι)2 +

4ρ

nt
I

)
Vk>

where V ιEιVk> is the eigenvalue decomposition of St − ρ
nt

Aι
t+Ak>

t
2 .

b.2 K step

Kι+1
t = argmin

K
α ‖K‖od,1 +

ρ

2
‖Rt − K + Lt + Xt‖2

F

+
ρ

2

T−1

∑
m=1

δt≤T−m ‖K− ZLmt + YLmt‖2
F

+
ρ

2

T−1

∑
m=1

δt≥m+1 ‖K− ZRmt + YRmt‖2
F

= argmin
K

α ‖K‖od,1 +
Tρ

2
‖K− Bt‖2

F

with

Bt =
1
T

{
Rt + Lt + Xt +

T−1

∑
m=1

δt≤T−m(ZLmt −YLmt)

+
T−1

∑
m=1

δt≥m+1(ZRmt −YRmt)

}
.

Hence, the solution is

Kι+1
t = soft-thresholdin α

Tρ
(Bt),
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b.3 L step

Lι+1
t = argmin

L
τ tr(L) + I(L � 0) +

ρ

2

∥∥∥Rι+1
t − Kι+1

t + L + Xι
t

∥∥∥2

F

+
ρ

2

T−1

∑
m=1

δt≤T−m ‖L−WLmt + ULmt‖2
F

+
ρ

2

T−1

∑
m=1

δt≥m+1 ‖L−WRmt + URmt‖2
F

= argmin
L

τ tr(L) + I(L � 0) +
Tρ

2
‖L− Cι

t‖
2
F

= argmin
L

τ tr(L) + I(L � 0) +
Tρ

2

∥∥∥∥L− Cι
t + Ck>

t
2

∥∥∥∥2

F

(51)

where

Cι
t =

1
T

{
Rt + Lt + Xt +

T−1

∑
m=1

δt≤T−m(WLmt −ULmt)

+
T−1

∑
m=1

δt≥m+1(WRmt −URmt)

}
.

Note that the last equality in (51) follows from the symmetry of L. The solution
to Problem (51) is:

Lι+1
t = V ιẼVk>,

where V ιEιVk> is the eigenvalue decomposition of Cι
t, and

Ẽjj = max
(

Eι
jj −

τ

Tρ
, 0
)

.

b.4 Zs and Ws step

Variables in

ZL = (ZLmt)1≤m≤T−1,1≤t≤T

ZR = (ZRmt)1≤m≤T−1,1≤t≤T

are easily separable. Hence, the following minimisation may be applied to their
single components.

[
Zι+1

Lmt

Zι+1
Rmt

]
= argmin

ZL,ZR

κΨ
mt Ψ(ZR − ZL)

+
ρ

2

[
‖Kι

t − ZL + Yι
Lmt‖

2
F + ‖K

ι
t+m − ZR + Yι

Rmt‖
2
F

]
.

(52)
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Let Ψ̂
[

ZL

ZR

]
= Ψ(ZR − ZL). Then, Problem (52) can be solved with an unique

update:

[
Zι+1

Lmt

Zι+1
Rmt

]
= prox κΨ

mt
ρ Ψ̂(·)

([
Kι

t + Yι
Lmt

Kι
t+m + Yι

Rmt

])
.

The same applies to W variables. For the particular derivation of different
proximal operators, see (Hallac et al., 2017a).

b.5 Termination Criterion

The ADMM algorithm is said to converge when the primal and dual residuals
are sufficiently small, i.e., At each iteration k such values are computed as:

‖rι‖2 = ‖Rι − Kι + Lι‖2
F + ‖PLKι − Zι

L‖
2
F + ‖PRKι − Zι

R‖
2
F

+ ‖PLLι −W ι
L‖

2
F + ‖PRLι −W ι

R‖
2
F

‖sι‖2 = ρ
( ∥∥∥Rι − Rk−1

∥∥∥2

F
+
∥∥∥Zι

L − Zk−1
L

∥∥∥2

F
+
∥∥∥Zι

R − Zk−1
R

∥∥∥2

F

+
∥∥∥W ι

L −W k−1
L

∥∥∥2

F
+
∥∥∥W ι

R −W k−1
R

∥∥∥2

F

)
εpri = c + εrel max

(
Dι

1, Dι
2
)

εdual = c + εrelρ
(

Dι
3
)

where c = εabsD(T(2T − 1))1/2, εabs and εrel are arbitrary tolerance
parameters, ‖Dι

1‖
2
F = ‖Rι‖2

F + ‖Zι
L‖

2
F + ‖Zι

R‖
2
F + ‖W ι

L‖
2
F + ‖W ι

R‖
2
F,

‖Dι
2‖

2
F = ‖Kι − Lι‖2

F + ‖PLKι‖2
F + ‖PRKι‖2

F + ‖PLLι‖2
F + ‖PRLι‖2

F and
‖Dι

3‖
2
F = ‖X ι‖2

F + ‖Y ι
L‖

2
F + ‖Y

ι
R‖

2
F + ‖U

ι
L‖

2
F + ‖U

ι
R‖

2
F.



C
Synthetic data generation

Throughout this thesis we performed a huge variety of synthetic data exper-
iments to assess the ability of the proposed network inference methods of
retrieving the true underlying graph. We now describe in details the mechan-
isms through which we generated the synthetic data evolution in time. All the
presented methods are available in the REGAIN library.

c.1 `1 evolution schema

The evolution behaviour based on `1 norm implies that at dependent time
points t and t′ (typically close in time) their distance Ψ computed as ‖Kt−Kt′‖1

is small, Figure 50 provides a graphical example of evolving network with `1

evolution schema.
Given D nodes and T time points, to simulate such situation we generate an
initial random graph by fixing the maximum degree of each node (the default
value is 2). Then, given this initial graph we randomly select an edge between
all the possible edge. If such edge already exist we prune it inserting a zero in
the related adjacency matrix, if it does not exist we generate a suitable value
v depending on the assumed distribution, and we insert it in the adjacency
matrix. More synthetically, we randomly remove or add a connection at each
time point.
Then, depending on the distribution, we generated Nt nodes per each ran-
domly generated graph.

with latent variables When we are in presence of latent variables, in
the context of GGMs, we require to pay more attention to the generation of
data. Indeed, we need to satisfy the constraints that the matrix L containing
the marginalisation of the latent variables is positive semi-definite and that,
the perturbed precision matrix obtained with the subtraction K− L is positive
definite. Therefore, given |O| observed variables and |M| latent ones, we gen-
erated T time points according to the schema previously introduced and then
we compute the Schur complement (see Equation (25)) of such matrix and we
use the result to generate the Nt samples.
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Figure 50. Example of generation of network with `1 evolution behaviour. Each time has the
same structure as the one before plus or minus one edges.

c.2 `2
2 evolution schema

The evolution behaviour based on `2
2 norm implies that at dependent time

points t and t′ (typically close in time) their distance Ψ computed as ‖Kt −
Kt′‖2

2 is small. Given D nodes and T time points, the first adjacency matrix
is generated at random by fixing again the number of degree per each node
to 2. In order to comply with the evolving behaviour we add to the initial
matrix a random random matrix of small `2

2 norm in such a way that the
differences between two consecutive matrices is small and bounded over time,
i.e., ‖Kt−Kt′‖F ≤ ε for i = 2, . . . , T. The bound ε on the norm is chosen a priori
equal to 0.01.

with latent variables In presence of latent variables (in GGMs) we
update Lt by maintaining consistency with the theoretical model where Lt =

Kt[OH]Kt[OH]>. Therefore, the update is obtained by adding a random matrix
with a small norm to Kt′ [OH]. In this way, the rank of Lt remains the same as
the number of latent variables and constant over time.

c.3 Particles diffusion evolution schema

This approach is taken from (Yuan, 2012) and simulates the evolving in time
as a diffusion process of particles. Given |O| observed and |M| latent variables
and T = 10 times, we randomly pick the locations of variables in the space
[0, 1]2 where each position (x, y) is sampled from a uniform distribution. Given
their positions, we connect a pair of nodes with probability ψ( d√

D
) where d is

the Euclidian distance between the two variables (see Figure 51 for a visual
representation). We impose the observed ones to have at most 4 edges and
we set their value to 0.245, as for the latent variables we link each of them to
|M|+|O|

2 variables (both latent and observed) with a value set to 0.98/ |M|+|O|2 to
ensure positive definiteness. The evolution in time is simulated by letting the
nodes move in space and updating, for each time point, their probability to be
connected. The connections between latent and observed are kept fixed. From
the resulting evolved network we sample Nt samples per each time point t.
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Figure 51. Example of generation of network using particle diffusion approach. We represen-
ted two time points t1 and t2 in which we let particles (variables) move in space.
Such particles are connected with an edge with a certain probability depending on
their distance.

c.4 Cluster-based evolution schema

In this case we want to emulate a situation in which we have recurrences of
networks in time with or without a specific repetition pattern. In particular
given T time points and the number of possible networks to repeat k < T
(that we will call cluster representatives) we randomly select the location of
this k networks in time. Note that we can specify if the recurrence should
be periodical, for example given networks A, B and C we may want them to
repeat as “ABCABC” or “AABBCCAABBCC" or we can specify a completely
random type of recurrence. Figure 52 shows a toy example of this evolution
schema with 3 cluster representative, 15 time points and periodic recurrence
“ABCABC”.
Given the positions we generate the networks corresponding to the cluster
representatives. Then, suppose one representative is at time t and an other one
at time t′ such that there is no other representative in the interval [t, t′]. If t−
t′ = d > 0 we generate d networks that slowly evolve from one representative
to an other. The evolving is computed by selecting all the differences (existence
or not of an edge) between the two representatives. Let us say that the set
of differences has cardinality K, then we impose K/d changes to the middle
networks to simulate an evolution. In this way each adjacency matrix is non
trivially assigned to a specific cluster.
After we generated such evolution we can sample from the related distribution
Nt samples for each time t.
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Figure 52. Example of generation of network with repetition in times. In the top row we have
three cluster representatives randomly generated. Then, they are periodically posi-
tioned in 15 time points. The networks in the middles (black nodes networks) are
built by adding or deleting edges in order to smoothly evolve from one representat-
ive to an other.
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t1 t2 t3 t4

t 1
t 2

t 3
t 4

K

Kw

w

Figure 53. Example of block matrix used to generate conditioned Gaussian samples. On the
diagonal block we have the true network structure corresponding to the ones de-
picted on top. We focus on time t1 (the block highlighted in green) as we want
to sample from its conditioned distribution. In order to simulate temporal depend-
ency we fixed a window of length w = 2 that indicates how man previous time
points we should consider (in this case t)2 and t3). We compute the conditioned
precision matrix using the Schur complement (see Equation (25)). On the non-
diagonal we have symmetric random blocks were the colour indicates a different
random generation.

c.5 Conditioning-based generation

In all data previously generated, we simulated the temporal dependency
through a consistency in network structure. Nonetheless, it is possible to fur-
ther emphasise this dependencies by conditioning each time on the previous
ones. This approach is taken from Hallac et al., 2017b and is suitable only in
case of GGMs. Consider T times in D variables, we can generate the true adja-
cency matrices with any schema of the ones previously introduced. Now, let us
insert this adjacency matrices in a bigger matrix K̂ of dimension (TD)× (TD)

as in Figure 53. Then, fixed a time point t we can condition on the previous
w time points were w is an integer number that defines the time window we
want to use for perturbing the distribution.
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Figure 54. Example of generation of network for multi-class problems. The first row contains
the initial adjacency matrix that is perturbed by adding or removing at most 4
edges to obtain 5 adjacency matrices representing 5 different classes.

Therefore, given the adjacency matrix Kt at time t and the block corresponding
to the window w we define the precision matrix of the multivariate normal dis-
tribution using the Schur complement. In the indexing we identify the blocks
of the matrix K̂

K(t, w) =K̂[t, t]− K̂[t, t− w : t]K̂[t− w : t, t− w : t]K̂[t− w : t, t]>

from this matrix K(t, w)we sample Nt observations.

c.6 Multi-class schema

The generation of a multi-class network inference problem is similar to the `1

evolution schema. In particular, given k classes and D variables. We generate
an initial random network that represents the basic structure similar across all
classes (see Figure 54).
The generation of this initial matrix is performed using the NetworkX package
(Hagberg, Swart and S Chult, 2008) either with Erdő-Rényi (Erdős and Rényi,
1960) (with attachment probability p = 0.2) or the Barabasi-Albert (Albert and
Barabási, 2002) (where each new node is attached with 2 edges to existing
nodes) random models. Then, the generation of the k classes is performed by
randomly adding or deleting at most 4 edges per each class. We then sample
Nk samples from each class distribution.
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(2016). ‘Graphlet-based characterization of directed networks’. In: Scientific
reports 6, p. 35098.

Schafer, Joseph L (1997). Analysis of incomplete multivariate data. Chapman and
Hall/CRC.

Schneidman, Elad, Michael J Berry II, Ronen Segev and William Bialek (2006).
‘Weak pairwise correlations imply strongly correlated network states in a
neural population’. In: Nature 440.7087, p. 1007.



bibliography 166

Schwing, Alexander, Tamir Hazan, Marc Pollefeys and Raquel Urtasun (2012).
‘Efficient structured prediction with latent variables for general graphical
models’. In: arXiv preprint arXiv:1206.6436.

Siegmund, David (2004). ‘Model selection in irregular problems: Applications
to mapping quantitative trait loci’. In: Biometrika 91.4, pp. 785–800.

Smith, Stephen M, Karla L Miller, Gholamreza Salimi-Khorshidi, Matthew
Webster, Christian F Beckmann, Thomas E Nichols, Joseph D Ramsey
and Mark W Woolrich (2011). ‘Network modelling methods for FMRI’. In:
Neuroimage 54.2, pp. 875–891.

Snoek, Jasper, Hugo Larochelle and Ryan P Adams (2012). ‘Practical bayesian
optimization of machine learning algorithms’. In: Advances in neural inform-
ation processing systems, pp. 2951–2959.

Städler, Nicolas and Peter Bühlmann (2012). ‘Missing values: sparse inverse
covariance estimation and an extension to sparse regression’. In: Statistics
and Computing 22.1, pp. 219–235.

Stegle, Oliver, Sarah A Teichmann and John C Marioni (2015). ‘Computational
and analytical challenges in single-cell transcriptomics’. In: Nature Reviews
Genetics 16.3, p. 133.

Stoica, Petre and Yngve Selen (2004). ‘Model-order selection: a review of in-
formation criterion rules’. In: IEEE Signal Processing Magazine 21.4, pp. 36–
47.

Suebsoonthron, Junjira, Thiranut Jaroonwitchawan, Montarop Yamabhai and
Parinya Noisa (2017). ‘Inhibition of WNT signaling reduces differentiation
and induces sensitivity to doxorubicin in human malignant neuroblastoma
SH-SY5Y cells’. In: Anti-cancer drugs 28.5, pp. 469–479.

Tibshirani, Robert (1996). ‘Regression shrinkage and selection via the lasso’. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1, pp. 267–
288.

Tomasi, Federico, Veronica Tozzo, Alessandro Verri and Saverio Salzo (2018a).
‘Forward-Backward Splitting for Time-Varying Graphical Models’. In: In-
ternational Conference on Probabilistic Graphical Models, pp. 475–486.

Tomasi, Federico, Veronica Tozzo, Saverio Salzo and Alessandro Verri (2018b).
‘Latent variable time-varying network inference’. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing. ACM, pp. 2338–2346.

Totaro, Francesca, Flora Cimmino, Piero Pignataro, Giovanni Acierno, Mari-
lena De Mariano, Luca Longo, Gian Paolo Tonini, Achille Iolascon and
Mario Capasso (2013). ‘Impact of interleukin-6–174 G> C gene promoter
polymorphism on neuroblastoma’. In: PloS one 8.10, e76810.

Tozzo, Veronica, Federico Tomasi, Margherita Squillario and Annalisa Barla
(2018). ‘Group induced graphical lasso allows for discovery of molecu-
lar pathways-pathways interactions’. In: Proceedings of Machine Learning 4
Health NeurIPS 2018.

Tran, Nguyen Q and Alexander Jung (2018). ‘On the sample complexity of
graphical model selection from non-stationary samples’. In: 2018 IEEE In-



bibliography 167

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, pp. 6314–6317.

Varoquaux, Gaël, Alexandre Gramfort, Jean-Baptiste Poline and Bertrand
Thirion (2010). ‘Brain covariance selection: better individual functional con-
nectivity models using population prior’. In: Advances in neural information
processing systems, pp. 2334–2342.

Vinci, Giuseppe, Valérie Ventura, Matthew A Smith, Robert E Kass et al.
(2018). ‘Adjusted regularization in latent graphical models: Application
to multiple-neuron spike count data’. In: The Annals of Applied Statistics
12.2, pp. 1068–1095.

Von Luxburg, Ulrike et al. (2010). ‘Clustering stability: an overview’. In: Found-
ations and Trends® in Machine Learning 2.3, pp. 235–274.

Wainwright, Martin J, Michael I Jordan et al. (2008). ‘Graphical models, expo-
nential families, and variational inference’. In: Foundations and Trends® in
Machine Learning 1.1–2, pp. 1–305.

Wainwright, Martin J, John D Lafferty and Pradeep K Ravikumar (2007). ‘High-
Dimensional Graphical Model Selection Using `1-Regularized Logistic Re-
gression’. In: Advances in neural information processing systems, pp. 1465–
1472.

Wan, Ying-Wooi, Genevera I Allen, Yulia Baker, Eunho Yang, Pradeep Raviku-
mar, Matthew Anderson and Zhandong Liu (2016). ‘XMRF: an R package
to fit Markov Networks to high-throughput genetics data’. In: BMC systems
biology 10.3, p. 69.

Wang, Jing, Dexter Duncan, Zhiao Shi and Bing Zhang (2013). ‘WEB-based
GEne SeT AnaLysis Toolkit (WebGestalt): update 2013’. In: Nucleic Acids Re-
search 41.W1, W77–W83. doi: 10.1093/nar/gkt439. eprint: /oup/backfile/
content_public/journal/nar/41/w1/10.1093_nar_gkt439/3/gkt439.pdf.
url: http://dx.doi.org/10.1093/nar/gkt439.

Wang, Xiqian, Jing Li, Xiao Xu, Jiachun Zheng and Qingbo Li (2018). ‘miR-129

inhibits tumor growth and potentiates chemosensitivity of neuroblastoma
by targeting MYO10’. In: Biomedicine & Pharmacotherapy 103, pp. 1312–1318.

Wasserman, Larry and Kathryn Roeder (2009). ‘High dimensional variable se-
lection’. In: Annals of statistics 37.5A, p. 2178.

Weinberger, Kilian Q, Fei Sha, Qihui Zhu and Lawrence K Saul (2007). ‘Graph
Laplacian regularization for large-scale semidefinite programming’. In: Ad-
vances in neural information processing systems, pp. 1489–1496.

Wilson, Andrew Gordon and Zoubin Ghahramani (2011). ‘Generalised Wishart
processes’. In: Proceedings of the Twenty-Seventh Conference on Uncertainty in
Artificial Intelligence. AUAI Press, pp. 736–744.

Xie, Yuying, Yufeng Liu and William Valdar (2016). ‘Joint estimation of mul-
tiple dependent Gaussian graphical models with applications to mouse
genomics’. In: Biometrika 103.3, pp. 493–511.

Yang, Eunho, Genevera Allen, Zhandong Liu and Pradeep K. Ravikumar
(2012). ‘Graphical Models via Generalized Linear Models’. In: Advances in
Neural Information Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges,
L. Bottou and K. Q. Weinberger. Curran Associates, Inc., pp. 1358–1366.

https://doi.org/10.1093/nar/gkt439
/oup/backfile/content_public/journal/nar/41/w1/10.1093_nar_gkt439/3/gkt439.pdf
/oup/backfile/content_public/journal/nar/41/w1/10.1093_nar_gkt439/3/gkt439.pdf
http://dx.doi.org/10.1093/nar/gkt439


bibliography 168

url: http : / / papers . nips . cc / paper / 4617 - graphical - models - via -

generalized-linear-models.pdf.
Yang, Eunho, Pradeep K Ravikumar, Genevera I Allen and Zhandong Liu

(2013). ‘On Poisson graphical models’. In: Advances in Neural Information
Processing Systems, pp. 1718–1726.

Yang, Eunho, Yulia Baker, Pradeep Ravikumar, Genevera Allen and Zhandong
Liu (2014). ‘Mixed graphical models via exponential families’. In: Artificial
Intelligence and Statistics, pp. 1042–1050.

Yang, Eunho, Pradeep Ravikumar, Genevera I Allen and Zhandong Liu (2015).
‘Graphical models via univariate exponential family distributions’. In: The
Journal of Machine Learning Research 16.1, pp. 3813–3847.

Yu, W., M. Clyne, M. J. Khoury and M. Gwinn (2010). ‘Phenopedia and Genope-
dia: disease-centered and gene-centered views of the evolving knowledge
of human genetic associations’. In: Bioinformatics 26.1, pp. 145–146. doi: 10.
1093/bioinformatics/btp618. eprint: /oup/backfile/content_public/
journal/bioinformatics/26/1/10.1093_bioinformatics_btp618/2/

btp618.pdf. url: http://dx.doi.org/10.1093/bioinformatics/btp618.
Yuan, Ming (2012). ‘Discussion: Latent variable graphical model selection via

convex optimization’. In: The Annals of Statistics 40.4, pp. 1968–1972.
Yuan, Ming and Yi Lin (2007). ‘Model selection and estimation in the Gaussian

graphical model’. In: Biometrika 94.1, pp. 19–35.
Zhao, Qian, Mei Jin, Da-Wei Zhang, Wen Zhao, Xi-Si Wang, Zhi-Xia Yue,

Chao Duan, Cheng Huang and Xiao-Li Ma (2018). ‘Serum Interleukin-
6 Level and the rs1800795 Polymorphism in its Gene Associated with
Neuroblastoma Risk in Chinese Children’. In: Chinese medical journal 131.9,
p. 1075.

Žitnik, Marinka and Blaž Zupan (2015). ‘Gene network inference by fusing
data from diverse distributions’. In: Bioinformatics 31.12, pp. i230–i239.

Zou, Hui, Trevor Hastie and Robert Tibshirani (Oct. 2007). ‘On the “de-
grees of freedom” of the lasso’. In: Ann. Statist. 35.5, pp. 2173–2192.
doi: 10.1214/009053607000000127. url: https://doi.org/10.1214/
009053607000000127.

http://papers.nips.cc/paper/4617-graphical-models-via-generalized-linear-models.pdf
http://papers.nips.cc/paper/4617-graphical-models-via-generalized-linear-models.pdf
https://doi.org/10.1093/bioinformatics/btp618
https://doi.org/10.1093/bioinformatics/btp618
/oup/backfile/content_public/journal/bioinformatics/26/1/10.1093_bioinformatics_btp618/2/btp618.pdf
/oup/backfile/content_public/journal/bioinformatics/26/1/10.1093_bioinformatics_btp618/2/btp618.pdf
/oup/backfile/content_public/journal/bioinformatics/26/1/10.1093_bioinformatics_btp618/2/btp618.pdf
http://dx.doi.org/10.1093/bioinformatics/btp618
https://doi.org/10.1214/009053607000000127
https://doi.org/10.1214/009053607000000127
https://doi.org/10.1214/009053607000000127


Acronyms

ADMM - Alternating Direction Method of Multipliers

BA - Balanced Accuracy

FBS - Forward Backward Splitting

GL - Graphical Lasso

GGM - Gaussian Graphical Model

EM - Expectation Maximisation

IGM - Ising Graphical Model

JGL - Joint Graphical Lasso

KEGG - Kyoto Encyclopedia of Genes and Genomes

LGL - Latent Graphical Lasso

LTGLκ - Latent Temporal Graphical Lasso

LVGLASSO - Latent Variable Graphical Lasso

MAR - Missing At Random

MissGL - Missing Graphical Lasso

MLE - Maximum Likelihood Estimation

MRF - Markov Random Field

MTGLG - Missing Temporal Graphical Lasso with Group prior

MTGLκ - Kernel Missing Temporal Graphical Lasso

MTGLL - Missing Temporal Graphical Lasso with Latent data

MTGLP - Missing Temporal Graphical Lasso with Partial data

169



bibliography 170

REGAIN - REgularised GrAph INference library

PGM - Poisson Graphical Model

TIGMκ - Kernel Temporal Ising Model

TIGMP - Temporal Ising Model with automatic Pattern identification

TGL - Temporal Graphical Lasso

TGLκ - Kernel Temporal Graphical Lasso

TGLP - Temporal Graphical Lasso with automatic Pattern identification

TPGMκ - Kernel Temporal Poisson Model

TPGMP - Temporal Poisson Model with automatic Pattern identification

TCGA - The Cancer Genome Atlas

TVGL - Time-Varying Graphical Lasso

WP - Wishart Process



Declaration

I hereby declare that except where specific reference is made to the work of
others, the contents of this dissertation are original and have not been submit-
ted in whole or in part for consideration for any other degree or qualification
in this, or any other university. This dissertation is my own work and con-
tains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements.

Genova, Italy
December 2019

Veronica Tozzo


	Dedication
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Code Listings
	Introduction
	Background
	1 Regularized Markov Models
	1.1 Markov Random Fields
	1.1.1 Gibbs Random Fields

	1.2 Markov Random Fields and the Exponential Families
	1.2.1 Exponential Families
	1.2.2 Exponential-family based Graphical Models

	1.3 Network Inference
	1.3.1 1 Penalisation
	1.3.2 Penalized MLE for Generalized Graphical Models
	1.3.3 Sparsistency and persistence

	1.4 Gaussian Graphical Models (GGMs)
	1.4.1 Lasso Penalisation

	1.5 Ising Graphical Models (IGMs)
	1.5.1 Lasso penalisation

	1.6 Poisson Graphical Models (PGMS)
	1.6.1 Lasso penalisation

	1.7 Temporal extensions
	1.7.1 Temporal consistency

	1.8 Summary

	2 Gaussian Graphical Models with Missing Data
	2.1 Missing data
	2.2 Expectation Maximization Algorithm
	2.2.1 Initalisations

	2.3 GGMs with Partial Data
	2.3.1 Synthetic Data Experiments

	2.4 GGMs with Latent Data
	2.4.1 Non-Convex Approach 
	2.4.2 Convex Approach
	2.4.3 Synthetic Data Experiments

	2.5 Summary


	Contribution
	3 Hyper-parameters Selection and Performance Evaluation
	3.1 General network inference functional
	3.2 Performance Metrics for Graphical Models
	3.2.1 Metrics

	3.3 Multi-parameters Model Selection for Network Inference
	3.3.1 Likelihood scores for multi-parameters model selection
	3.3.2 Stability-based multi-parameters model selection
	3.3.3 Synthetic data experiments
	3.3.4 Results

	3.4 Summary

	4 Methods for Generalised Temporal Network Inference
	4.1 Temporal Consistency and Dependency
	4.1.1 Model
	4.1.2 Stationary Kernels
	4.1.3 Minimisation Algorithm

	4.2 Automatic Inference of Temporal Dependencies
	4.2.1 Minimisation Algorithm

	4.3 Kernel Temporal Graphical Lasso
	4.3.1 Synthetic data experiments
	4.3.2 Results

	4.4 Temporal Ising Graphical Models
	4.4.1 Synthetic data experiments
	4.4.2 Results

	4.5 Temporal Poisson Graphical Models
	4.5.1 Synthetic data experiments
	4.5.2 Results

	4.6 Multi-class problem
	4.6.1 Synthetic experiments
	4.6.2 Results

	4.7 Summary

	5 Temporal graphical lasso with missing data
	5.1 Missing values in temporal models
	5.1.1 Model

	5.2 EM Algorithm
	5.2.1 Partial Data
	5.2.2 Latent Data
	5.2.3 Synthetic Data Experiments
	5.2.4 Results

	5.3 Latent Variables Marginalisation
	5.3.1 Minimisation Algorithm and Automatic Kernel Discovery
	5.3.2 Synthetic Data Experiments
	5.3.3 Results

	5.4 Prior on latent variables identity
	5.4.1 Synthetic data experiments
	5.4.2 Results

	5.5 Summary

	6 REGAIN
	6.1 Implemented models
	6.2 Related Packages
	6.3 Scalability
	6.4 Installation
	6.5 Usage Example
	6.6 Summary


	Applications and conclusions
	7 Real-world applications
	7.1 Food search trends
	7.2 Stock market prices
	7.3 Neuroblastoma gene expression profiles
	7.4 Weather data
	7.5 Summary

	Conclusions

	Appendix
	A Minimisation of TGGM, TIGM, TPGM
	A.1 K and Z0 step
	A.1.1 Gaussian
	A.1.2 Ising
	A.1.3 Poisson

	A.2 Zs step
	A.3 Termination Criterion
	A.4 The problem is separable
	A.4.1 Experiments
	A.4.2 Scalability

	A.5 Summary

	B Minimisation LTGL
	B.1 R step
	B.2 K step
	B.3 L step
	B.4 Zs and Ws step
	B.5 Termination Criterion

	C Synthetic data generation
	C.1 1 evolution schema
	C.2 22 evolution schema
	C.3 Particles diffusion evolution schema
	C.4 Cluster-based evolution schema
	C.5 Conditioning-based generation
	C.6 Multi-class schema

	Bibliography
	Acronyms
	Declaration


