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Abstract

In the framework of structural mechanics, the classical beam theories that are commonly
adopted in many applications may be affected by inconsistencies, because they are not able
to foresee higher-order phenomena, such as elastic bending/shear couplings, restrained
torsional warping and 3D strain effects. Depending on the problem, those limitations can
be overcome by using more complex and computationally expensive 2D and 3D models or,
alternatively, by adopting refined beam models, to which many scientists have dedicated
their research over the last century. One of the latest contributions to the development
of advanced models, including variable kinematic beam theories, is the Carrera Unified
Formulation (CUF), which is the main subject of the research discussed in this thesis.

According to CUF, the 3D displacement field can be expressed as an arbitrary ex-
pansion of the generalized displacements. Depending on the choice of the polynomials
employed in the expansion, various classes of beam models can be implemented. In this
work, for instance, Taylor-like and Lagrange polynomials are adopted. The former choice
leads to the so-called TE (Taylor Expansion) beam models, whereas LE (Lagrange Expan-
sion) beam models with only pure displacement variables are obtained by interpolating
the problem unknowns by Lagrange polynomials. The strength of CUF lies in the fact
that, independently of the choice of the polynomials, the governing equations are written
in terms of fundamental nuclei, which are invariant with the theory class and order.

In this thesis, both strong and weak form governing equations for arbitrarily refined
CUF models are derived. Subsequently, exact closed-form and approximate solutions are
sought. Exact solutions of any beam model with arbitrary boundary conditions are found
by formulating a frequency-dependant Dynamic Stiffness (DS) matrix and by using the
Wittrick-Williams algorithm to carry out the resulting transcendental eigenvalue problem
for free vibration analysis. Conversely, a linear eigenvalue problem is also derived by
approximating the strong form governing equations by Radial Basis Functions (RBFs).
On the other hand, weak form solutions are discussed by Finite Element Method (FEM),
which still deserves important attentions due to its versatility and numerical efficiency.
The various problems of the mechanics are addressed, including static, free vibration and
dynamic response problems.

Based on CUF and the proposed numerical methods, advanced methodologies for the
analysis of complex structures, such as aircraft structures and civil engineering construc-
tions, are developed. Those advanced techniques make use of the Component-Wise (CW)
and the Multi-Line approaches. The CW method exploits the natural capability of the LE
CUF beam models to be assembled at the cross-section level. This characteristic allows
the analyst to use only CUF beam elements to model each component (e.g., stringers,
panels and ribs) of the structure and purely physical surfaces are employed to construct
the mathematical models. In the ML framework, on the other hand, each component
of the structure is modelled via TE beam elements of arbitrary order. Compatibility of
displacements between two or more components is then enforced through the Lagrange
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Abstract

multipliers method.
The second part of this thesis deals with aeroelasticity. In particular, the Vortex (VLM)

and the Doublet Lattice Methods (DLM) are employed and extended to CUF to develop
aeroelastic models. VLM is used to model the steady contribution in the aerodynamic
model, whereas DLM provides the unsteady contribution in the frequency domain. The
infinite plate spline approach is adopted for the mesh-to-mesh transformation. Finally,
the g-method is described as an effective means for the formulation of the flutter stability
problem. Particular attention is given to the extension of this methodology to exact DS
solutions of CUF beams.

Simplified, discrete, dynamic gust response analysis by refined beam models is also
discussed. In this work, vertical gusts and one-minus-cosine idealization is addressed. Ac-
cordingly, gust loads in terms of time-dependent load factors are formulated. Subsequently,
the mode superposition method is briefly introduced in order to solve the linear dynamic
response problem in the time domain by using both weak and strong form solutions of
CUF models.

In the final part of the work, extensions of 1D CUF models for Fluid-Dynamics prob-
lems are carried out. CUF approximation of laminar, incompressible, Stokes flows with
constant viscosity was introduced in a recent thesis work and it is here extended to the hi-
erarchical p-version of FEM, which makes use of Legendre-like polynomials to interpolate
the generalized unknowns along the 1D computational domain.

Finally, the structural, aeroelastic and fluid-dynamics formulations are validated by
discussing some selected results. In particular, regarding structures, the efficiency of the
various numerical approaches when applied to CUF is investigated and simple to complex
problems are considered, including metallic and composite wings. The aeroelastic anal-
yses show that classical beam models are not adequate for the flutter detection, and at
least a third-order beam model is required. Contrarily, classical beam models can be quite
accurate in dynamic gust response analysis if no coupling phenomena occur, i.e. when
the response is dominated by only pure bending modes. Regarding fluid-dynamics, it is
demonstrated that CUF models can reproduce the results by finite volume codes for both
simple Poiseuille and complex non-axisymmetric fluids in cylinders. In general, the capa-
bility of the proposed CUF models to provide accurate results with very low computational
efforts is firmly highlighted. Similar analyses are possible only by using 3D models, which
usually require a number of degrees of freedom that is some two order of magnitude higher.

Keywords: Component-wise, one-dimensional refined models, Carrera Unified Formula-
tion, Finite Element Method, Dynamic Stiffness Method, Radial Basis Functions, Doublet
Lattice Method, aircraft structures, aeroelasticity, structural dynamics, fluid dynamics,
composite materials.
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Sommario

Nel campo della modellizzazione strutturale, le teorie classiche delle travi che sono usual-
mente adottate nei modelli matematici sono affette da inconsistenze fisiche, quali ad esem-
pio l’impossibilità di descrivere correttamente fenomeni di accoppiamento flessione/taglio,
warping e deformazioni tridimensionali. Queste limitazioni, a seconda del problema, pos-
sono essere surclassate tramite l’utilizzo di modelli 2D o 3D, a spese di un maggior costo
computazionale, oppure adottando modelli trave rifiniti, a cui molti scienziati hanno de-
dicato le proprie ricerche nel corso dell’ultimo secolo. Uno degli ultimi contributi allo
sviluppo di teorie avanzate, comprese le teorie trave a cinematica variabile, è la Carrera
Unified Formulation (CUF), la quale rappresenta il tema principale di questo lavoro di
tesi.

Secondo la CUF, il campo di spostamenti tridimensionale può essere espresso come
una espansione generica degli spostamenti generalizzati. A seconda della scelta dei poli-
nomi adottati nell’espansione, si possono implementare diverse classi di modelli trave. Nel
presente lavoro, ad esempio, sono stati impiegati polinomi di tipo Taylor e Lagrange. Nel
primo caso, si hanno i cosiddetti modelli TE (Taylor Expansion), mentre, se si utilizzano i
polinomi di Lagrange, si ottengono i modelli LE (Lagrange Expansion), che sono caratte-
rizzati da sole incognite di spostamento. La potenza del metodo CUF risiede nel fatto che,
indipendente dalla scelta di questi polinomi, le equazioni di governo sono scritte in temini
di nuclei fondamentali, i quali sono indipendenti dalla classe e dall’ordine del modello.

In questa tesi, vengono derivate le equazioni di governo sia in forma forte che in for-
ma debole per modelli trave CUF di ordine arbitrario. Si ricavano, quindi, soluzioni
esatte in forma chiusa e approssimate. Soluzioni esatte per qualsiasi modello trave sog-
getto a generiche consizioni al contorno sono ricavate formulando una matrice dipendente
dalla frequenza, la cosiddetta matrice Dynamic Stiffness (DS), e applicando l’algoritmo di
Wittrick-Williams per la risoluzione del problema non-lineare agli autovalori. Al contrario,
una soluzione approssimata dello stesso problema viene ricavata per mezzo di interpola-
zione delle equazioni differenziali tramite funzioni Radial Basis (RBFs). Le soluzioni delle
equazioni in forma debole vengono, invece, ricavate per mezzo del Metodo agli Elementi
Finiti (FEM), che tutt’oggi merita importante attenzioni per via del suo successo, la sua
versatilità e efficienza numerica. Vengono discussi i vari problemi della meccanica, inclusi
problemi di risposta statica, vibrazioni libere e risposta dinamica.

Sulla base dei modelli CUF formulati e i vari metodi numerici adottati, si sviluppano
quindi metodologie avanzate per l’analisi di strutture complesse, quali strutture aero-
nautiche e civili. Queste metodologie fanno uso delle tecniche Component-Wise (CW) e
Multi-Line (ML). Il metodo CW sfrutta la naturale caratteristica dei modelli CUF LE di
essere assemblati sulla sezione della trave. Tale proprietà permette all’analista di utiliz-
zare meramente elementi CUF 1D per modellizzare ogni componente strutturale (ad es.,
correnti, longheroni, pannelli e centine) e di utilizzare semplicemente le superfici fisiche
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Sommario

per delimitare il modello matematico. Nel caso della tecnica ML, invece, ogni componen-
te della struttura viene modellizzato tramite elementi TE di ordine qualsiasi. Quindi, la
compatibilità degli spostamenti all’interfaccia tra gli elementi viene imposta per mezzo di
moltiplicatori di Lagrange.

La seconda parte della tesi riguarda applicazioni di tipo aeroelastico. In particolare,
si estendono i metodi Vortex (VLM) e Doulber Lattice (DLM) ai modelli CUF per svi-
luppare modelli aeroelastici avanzati per lo studio dei fenomeni di flutter. Il VLM viene
utilizzato per modellizzare il contributo stazionario nel modello aerodinamico, mentre il
DLM viene sfruttato per formulare il contributo non-stazionario nel dominio delle frequen-
ze. L’apprioccio infinite plate spline è adottato per il passaggio delle informazioni dalla
mesh strutturale e quella aerodinamica. Infine, il g-method viene descritto e utilizzato per
la formulazione del problema di stabilità aeroelastica dinamica. Particolare attenzione è
stata posta nell’estensione di questa metodologia alle soluzioni DS esatte dei modelli CUF.

Vengono anche discusse analisi semplificate di risposta alla raffica dicreta per mezzo
di teorie trave rifinite. Raffiche verticali modellizzate per mezzo dell’approssimazione
uno-meno-coseno vengono in particolare prese in considerazione. I carichi di raffica sono,
quindi, formulati in termini di fattori di carico dipendenti dal tempo. In seguito, il metodo
di superimposizione modale è brevemente descritto e utilizzato per risolvere il problema
linare di risposta dinamica nel dominio del tempo, utilizzando sia modelli CUF in forma
debole e forte.

Estensioni dei modelli CUF 1D a problemi fluidodinamici sono, infine, presentate nel-
l’ultima parte dell’elaborato. L’approssimazione tramite CUF di flussi di Stokes, laminari,
imcomprimibili e a viscosità costante sono stati recentementi proposti in un lavoro di tesi.
Tale formulazione viene qui estesa alla p-version del metodo FEM, il quale fa uso di poli-
nomi gerarchici di tipo Legendre per interpolare le incognite generalizzate lungo il dominio
mono-dimensionale.

Le formulazioni strutturale, aeroelastica e fluidodinamica sono validate per mezzo di
alcuni esempi selezionati. In particolare, riguardo le strutture, viene discussa l’efficacia
dei vari metodi numerici applicati ai modelli CUF, prendendo in considerazione problemi
semplici e complessi, comprese ali in materiale metallico e composito. Le analisi aeroe-
lastiche dimostrano che i modelli classici sono assolutamente inadeguati per l’analisi dei
fenomeni di flutter essendo necessario almeno un modello trave del terzo ordine. Al con-
trario, i modelli trave classici possono essere abbastanza accurati per le analisi di risposta
alla raffica, purchè la risposta sia dominata da puri modi flessionali. Per quanto concerne
la formulazione fluidodinamica, viene dimostrato che i modelli CUF 1D possono riprodur-
re i stessi risultati di codici ai volumi finiti sia nel caso di semplici flussi di Poiseuille,
sia nel caso di flussi non-assialsimmetrici all’interno di cilindri. In generale, si evidenzia
fermamente la capacità dei modelli CUF proposti di assicurare risultati accurati al prezzo
di costi computazionali asssolutamente esigui. Analisi di tale accuratezza sono altrimenti
possibili solamente utilizzando modelli 3D, che solitamente richiedono un numero di gradi
di libertà di alcuni ordini di grandezza maggiore.

Parole chiave: Component-wise, modelli rifiniti mono-dimensionali, Carrera Unified
Formulation, Metodo agli Elementi Finiti, Dynamic Stiffness Method, Funzioni Radial
Basis, Doublet Lattice Method, strutture aeronautiche, aeroelasticità, dinamica strutturale,
fluidodinamica, materiali compositi.
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Chapter 1

Introduction

1.1 Reinforced-shell structures for aerospace vehicles

Primary aircraft structures are essentially reinforced thin shells [21]. These are the so-
called semimonocoque constructions (see Fig. 1.1), which are obtained by assembling three
main components: skins (or panels), longitudinal stiffening members (including spar caps)
and transversal stiffeners (ribs). The determination of stress/strain fields in these struc-
tural components and their dynamic behaviour is of prime interest for structural analysts.

Many different approaches were developed in the first half of the last century. These
are discussed in major reference books [21, 134] and more recently in [24]. Among these
approaches the so-called Pure Semimonocoque (PS) (or “idealized semimonocoque”) is the
most popular, since it assumes constant shear into panels and shear webs, according to the
simplification outlined in Fig. 1.2. The main advantage of PS is that it leads to a system of
linear algebraical equations. However, the number of such equations rapidly increases for
multi-bay box structures with high redundancies. The number of resulting equations (and
redundancies) can be strongly reduced by coupling PS with the assumptions from Euler-
Bernoulli (Euler-Bernoulli Beam Model, EBBM) [69] or Timoshenko theories (Timoshenko
Beam Model, TBM) [155, 156]. Many works are known to overcome limitations related
to constant shear hypotheses, see [57, 86, 64, 65, 20] as examples. The systematic use of
matrix methods in aircraft structure analysis was introduced by Argyris and Kensley [4].
Here, the PS approach and force methods were used to describe an automatic technique to
build compliance matrices. This automatic technique is one of the pioneering contributions
to the development of Finite Element Methods (FEM).

Ribs

Spar caps

Longeron

Skin

Spar web

Figure 1.1: Simplified sketch of a wing structure
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(a) (b)

Figure 1.2: Reinforced-shell structure (a) and related semimonocoque simplification (b)

Due to the advent of computational methods, mostly FEM, the analysis of complex
aircraft structures continued to be made using a combination of solids (3D), plates/shells
(2D) and beams (1D). These were implemented first in Nastran codes (see for example
[113]). Many others commercial Finite Element (FE) codes have been developed and used
in aerospace industries. Nowadays FEM models with a number of unknowns (Degrees Of
Freedom, DOFs) close to 106 are widely used in common practise. The possible manner
in which stringers, spar caps, spar webs, panels, ribs are introduced into FE mathematical
models is part of the knowledge of structural analysts. A short discussion of this follows.

A number of works have shown the necessity for a proper simulation of the stiffeners-
panel “linkage”. Satsangi and Murkhopadhyay [138] used 8-node plate elements assuming
the same displacement field for stiffeners and plates. Kolli and Chandrashekhara [105]
formulated an FE model with 9-node plate and 3-node beam elements. Gangadhara [83]
carried out linear static analyses of composite laminated shells using a combination of
8-node plate elements and 3-node beam elements. Recently, Thinh and Khoa [154] have
developed a new 9-node rectangular plate model to study the free vibrations of shell
structures with arbitrary oriented stiffeners.

It is often necessary to model stiffeners out of the plate/shell element plane. In this
case, beam nodes are connected to the shell element nodes via rigid fictitious links. This
methodology presents some inconsistencies. The main problem is that the out-of-plane
warping displacements in the stiffener section are neglected, and the beam torsional rigid-
ity is not correctly predicted. Several solutions have been proposed in the literature to
overcome this issue. Patel et al. [125] introduced a torsion correction factor. Vörös
[166, 167] proposed a procedure to model the connection between the plate/shell and the
stiffener where the shear deformation of the beam is neglected and the formulation of the
stiffener is based on the well-known Bernoulli-Vlasov [164] theory. In Vörös’ method the
stiffener element has two nodes with seven degrees of freedom per node. In order to main-
tain the displacement compatibility between the beam and the stiffened element, a special
transformation was used, which included torsional-bending coupling and the eccentricity
of internal forces between the stiffener and the plate elements.

3D finite element models are usually implemented as soon as the wing structural layouts
are determined. Because of their complexity, solid models are generally used only within
optimization procedures. In fact, despite the availabilities of even cheaper computer power,
these FEM models present large computational costs and their use in multi-field iterative
processes, such as aeroelastic analyses, is quite a burden. Nowadays the trend is to use
equivalent, simplified, lower fidelity 1D FEM models (the so-called “stick-model”) of the
wing structure to be used within iterative algorithms. There are numerous papers dealing
with wing stick models in the literature, such as [1, 129, 68]. These methodologies are based
on the extraction of the structural stiffness of the wing with respect to its principal axes.
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Those stiffness properties are then employed to generate the wing stick model. Simplified
models are created along the wing elastic axis. This applies a geometrical constraint so
that the stick model principal torsional axis act as the wing elastic axis. It could be
concluded that the development of computationally cheaper models compared to those by
standard FE models, but with high accuracy, still plays a crucial role in aircraft structure
analysis.

1.2 Higher-order beam theories

In this thesis, various 1D beam theories for the analysis of aircraft structures have been
developed. The classical and best-known beam theories are EBBM and TBM. The former
theory does not account for transverse shear deformations, whereas the latter assumes a
uniform shear distribution along the cross-section of the beam, together with the effects of
rotatory inertia. These models yield reasonably good results when slender, solid section,
homogeneous structures are subjected to bending. However, the analysis of deep, thin-
walled, open section beams may require more sophisticated theories to achieve sufficiently
accurate results, see [115]. Over the last century, many refined beam theories have been
proposed to overcome the limitations of classical beam modelling. Different approaches,
including the introduction of shear correction factors, the use of warping functions based
on de Saint-Venant’s solution, the variational asymptotic method (VAM), the generalized
beam theory (GBT), and others have been used to improve beam models. A general
review of beam modelling, in which static, buckling, free-vibration and wave propagation
analyses are taken into account, was proposed by Kapania and Raciti [101, 102]. Some
selective references and noteworthy contributions are briefly discussed below.

Early investigations focused on the use of appropriate shear correction factors to in-
crease the accuracy of classical 1D formulations, see, for example, Timoshenko and Goodier
[157], Sokolnikoff [147], Stephen [148], Hutchinson [95], and the recent work by Nguyen
et al. [114]. However, a review paper by Kaneko [97] and a recent paper by Dong et al.
[62], have highlighted the difficulty of defining a universally accepted formulation for shear
correction factors.

Another important class of refinement methods reported in the literature is based on
the use of warping functions. The contributions by El Fatmi [66, 67], Ladevèze et al. [108],
and Ladevèze and Simmonds [109] are some excellent examples.

The asymptotic type expansion, in conjunction with variational methods, was proposed
in the work by Berdichevsky et al. [14], in which a noteworthy review of previous works
on beam theory developments is also given. Some recent valuable contributions on VAM
are those by Rajagopal and Hodges [132], Wang and Yu [168], Yu and Hodges [176, 177],
and Kim and Wang [104].

The generalized beam theory was originally proposed by Schardt [140, 141]. GBT
improves classical theories through the use of a piece-wise beam description of thin-walled
sections. GBT has been widely employed and extended in various forms by Silvetre [144],
Nunes et al. [116], Silvestre and Camotim [145], and De Miranda et al. [59].

1.2.1 CUF, state-of-the-art

This work falls within the framework of the Carrera Unified Formulation (CUF), which is a
hierarchical theory allowing for the automatic and straightforward development of higher-
order kinematics with no need of apriori assumptions. According to CUF, in fact, 3D
problems are reduced to 2D or 1D ones in a unified manner, that is, by exploiting arbitrarily
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rich expansions of the unknown variables. In the structural mechanics scenario, CUF was
initially devoted to the development of refined plate and shell theories, see [22, 23]. In
recent works [33], CUF has been extended to beam modeling that is the case of interest
for this thesis; hence, a brief review about 1D CUF follows.

1D CUF models were first proposed to study isotropic compact and thin-walled struc-
tures in [31, 32]. In these works, 1D Taylor-like polynomials were used to describe the
cross-sectional displacement field, and closed-form and FE solutions were considered. Com-
prehensive expansion order convergence analyses have shown how the adoption of higher-
order models can lead to 3D-like accuracy with small computational costs (see also [25]).
A new class of 1D CUF models was presented in [47], were Lagrange polynomials were
used to model the cross-section displacement field. The adoption of Lagrange polynomials
led to the development of models that have only pure displacement unknowns. Further-
more, Lagrange beams can easily be used to model geometric discontinuities and localized
boundary conditions; they can also be used to refine the beam model locally.

CUF beam theory was extended to the free vibration analysis of isotropic structures
by Carrera et al. [49] via FEM. Closed-form solutions were considered in [84] instead. The
shell-like capabilities of the 1D CUF were highlighted in this paper. In other words, it
was shown that 1D CUF models can detect those modal shapes that are characterized by
severe transverse distortions.

Composite structures have been investigated through 1D CUF models by Catapano
et al. [51] and Carrera and Petrolo [48]. The former considered Taylor beam models
and closed-form, Navier-Type solutions. The latter exploited Lagrange beam models and
complex structures, such as aeronautic longerons, were considered. The results showed
the enhanced capabilities of 1D CUF models to detect 3D stress fields with 10-100 times
fewer DOFs than solid FEs. Further enhancements of the 1D CUF for composites were
proposed in [30] by exploiting polynomial, trigonometric, exponential and zig-zag displace-
ment fields. Accurate displacement/strain/stress fields were obtained for both slender and
short structures.

The enhanced capabilities of refined models are often only required for some portions
of the structures, e.g. close to geometrical and mechanical boundary conditions. This
requirement has recently led to the development of techniques that can be used to couple
lower- and higher-order models. Biscani et al. [15] exploited the Arlequin method to cou-
ple different beam models along the axis of the beam. Lower computational costs were
obtained without any accuracy penalties. Carrera et al. [42] obtained similar results by
exploiting the Lagrange multipliers method. In [36, 37], multi-line elements were intro-
duced by further extending this coupling technique to the cross-section level, and they are
also discussed in this thesis.

Other important contributions are [161], which extended the 1D CUF models to biome-
chanics; [85], where thermo-mechanical analyses were proposed; and [107, 112], in which
piezo-electric beam structures and related electro-mechanical analyses were discussed.

1.2.2 The component-wise approach

CUF methodology has recently been extended to the so-called Component-Wise (CW)
approach [44]. In a CW model, each component of a complex structure is modeled by 1D
elements. The use of Lagrange polynomials to expand the cross-sectional unknowns makes
the assembling of each component straightforward because it can be conducted at the in-
terface level by imposing displacement continuity. Furthermore, 1D, 2D, and 3D structural
elements can be modeled through 1D models since the arbitrarily rich displacement fields
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of the 1D CUF allow very short and thin-walled beams to be dealt with.

CW models have been widely used in the framework of aircraft structures, where each
component (i.e. ribs, stiffeners, and longerons) can be modeled through the 1D CUF.
Carrera et al. [39, 40] exploited the CW to carry out the static and free vibration analysis
of complex aerospace structures. Those papers demonstrated the natural capability of
CW approach to allow the modeling by only using physical surfaces and without the need
for fictitious links connecting the various components. Furthermore, comparisons with 3D
models and analytical solutions highlighted the high accuracy of the present formulation
and its computational efficiency. The same approach was successfully applied to civil
structures by Carrera et al. [43] and Carrera and Pagani [41], where complex structures
such as industrial and civil engineering buildings have been addressed.

Regarding composite materials, CW can be considered as a multiscale approach. In
fact, CW can be used to model different scale components - layers, fibers, and matrices - by
accounting for their material characteristics and with no need for coupling techniques. In
other words, no homogenization techniques are needed for the material properties and the
different scale models can be straightforwardly assembled since only 1D FEs are employed.
Refined models at the microscale level can be employed solely where required, for instance
where failure can occur, whereas macroscale models can be used elsewhere (see [34, 35]).

Some of the CW results discussed in the papers above are briefly reported in this
thesis, where CUF beam models of wing structures are used for structural and aeroelastic
analysis, including gust response. Aeroelasticity defines important parameters in modern
design of aircraft and spacecraft and it is shortly discussed in the following for the sake of
completeness. However, some details about the numerical methods adopted in this thesis
are given before.

1.2.3 Adopted numerical methods

In the majority of the literature about 1D CUF, FEM has been used to handle arbitrary
geometries and loading conditions. Pagani et al. [118, 121, 120] extended 1D CUF to the
Dynamic Stiffness Method (DSM) to obtain closed-form solutions with arbitrary boundary
conditions for free vibrations of both metallic and composite structures. DSM and the
related extension to CUF models are also discussed in this thesis.

DSM has been quite extensively developed for beam elements by Banerjee [7, 6, 8, 9, 10],
Banerjee et al. [11], and Williams and Wittrick [171]. Plate elements based on DSM were
originally formulated by Wittrick [172] and Wittrick and Williams [174]. Recently, DSM
has been applied to Mindlin plate assemblies by Boscolo and Banerjee in [17, 18] and to a
higher order shear deformation theory by Fazzolari et al. [74, 73]. In those papers, a more
comprehensive review on the use of DSM can be found.

The DSM is appealing in dynamic analysis because, unlike the FEM, it provides the
exact solution of the equations of motion of a structure once the initial assumptions on
the displacements field have been made. This essentially means that, unlike the FEM and
other approximate methods, the model accuracy is not unduly compromised when a small
number of elements are used in the analysis. For instance, one single structural element
can be used in the DSM to compute any number of natural frequencies to any desired
accuracy. Of course, the accuracy of the DSM will be as good as the accuracy of the
governing differential equations of the structural element in free vibration. In fact, the
exact Dynamic Stiffness (DS) matrix stems from the solution of the governing differential
equations.

Nevertheless, the main drawback of DSM is that it results in a nonlinear, transcendental
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eigenvalue problem and iterative procedures may be needed (see [173]). Thus, a further
methodology based on Radial Basis Functions (RBFs) method is proposed in this thesis as
an alternative method for the solution of strong form equations of motion for CUF beams
in free vibration (see [122]). The use of alternative methods to FEM and DSM for the
analysis of structures, such as the meshless methods based on collocation with RBFs, is
attractive due to the absence of a mesh and the ease of the collocation techniques. In recent
years, RBFs method showed excellent accuracy in the interpolation of data and functions.
The RBFs method was first used by Hardy [89, 90] for the interpolation of geographical
scattered data and later used by Kansa [98, 99] for the solution of partial differential
equations. Afterward, Ferreira successfully applied RBFs to the analysis of beams and
plates [75, 76]. RBFs method is appealing because it results in a linear eigenvalue problem
in the case of free vibrations. However, numerical instabilities may be encountered and
they are discussed later in this thesis.

1.3 Aeroelastic phenomena

Aeroelasticity is the multidisciplinary field of study that concerns with the interaction
between an elastic structure and the aerodynamic forces due to an airstream. Aeroelastic
phenomena have played a major role throughout the history of flight [93]. However,
torsional divergence phenomena were a major factor in the predominance of aircraft design
until the early 1930s, when metallic structures were first introduced. The first recorded and
documented case of aircraft flutter occurred in 1916 to the Handley Page O/400 bomber
(see Fig. 1.3), which experienced violent tail oscillations due to the coupling of a fuselage
torsion mode and an antisymmetric elevator mode. Since then, and after the publication
of the now famous report by Theodorsen [153], flutter became a major design concern and
remained so today.

A vast range of aerodynamic models has been used in aeroelastic problems in the
last 80 years, from strip theories to Reynolds-averaged Navier-Stokes (RANS). Excellent
reviews of these methodologies are presented in [178, 142]. The Doublet Lattice Method
(DLM) emerged in the late 1960s (see [2]). More recently, an improved version of DLM
has been proposed by Rodden et al. [136], and this version is used in this thesis. Three
main features are responsible for DLM success [178]: (i) it offers good accuracy (unless
transonic regimes are considered or separation occurs); (ii) DLM is cost competitive with
respect to simpler methods such as strip theories; (iii) and fairly complex geometries can
be analysed.

Figure 1.3: Historical picture of the Handley Page O/400
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One of the aims of this thesis is to present aeroelastic models based on highly accurate
1D CUF structural models and low-fidelity aerodynamic tools. An important effort to
apply refined beam models to aeroelastic problems was made by Librescu and his co-
workers, who incorporated a number of non-classical effects in order to study the static
and dynamic aeroelastic response of beam structures (see for example [111]). In recent
works, Varello et al. [162] extended CUF 1D to steady aeroelasticity by using the Vortex
Lattice Method (VLM), whereas DLM was used by Petrolo [128, 127] in the framework
of CUF for flutter analyses. During the research activities discussed in the present thesis
particular efforts have been made to extend the Petrolo’s formulation to DSM, which is here
used along with CUF models of isotropic and composite wings. Mode shapes are hence
used with reference to DLM to carry out flutter analyses, whereas mode superposition
method is exploited to conduct some representative pulse gust dynamic responses.

1.4 One-dimensional models for fluid-dynamics

The last part of the present thesis deals with minor extensions and validation of the work
initiated by Varello in [160], where 1D CUF models have been extended to fluid-dynamics
problems. Because of the 3D intricate nature of fluids, 1D models in fluid-dynamics are
less common than the structural mechanics counterparts. However, 1D models may be of
interest in some applications, such as flows in vessels and pipes. A very brief review of 1D
models for fluid-dynamics follows.

The one-dimensional modelling of the human arterial system was probably introduced
by Euler [70], who derived the partial differential equations expressing the conservation
of mass and momentum for inviscid flows. Since then, various numerical techniques and
modelling strategies have been developed and disclosed. Hereinafter, the attention is
focused on some noteworthy contributions of the last years. Formaggia et al. [80] devised a
1D model of the incompressible Navier-Stokes equations by integrating the fluid equations
over each section normal to the axis of the computational domain. Similarly, Smith et
al. [146] developed a finite difference model of blood flow through the coronary vessels
by integrating axial velocity of the 3D equations. Sherewin et al. [143] carried out 1D
analyses of a vascular network by using a a spectral/hp element spatial discretization with a
discontinuous Galerkin formulation and a second order Adams-Bashforth time integration
scheme. In [81], a family of 1D nonlinear systems for modelling the blood pulse propagation
in compliant arteries were investigated.

The literature shows the clear interest in 1D models for Fluid-Dynamics, which can
play an important role, for example, in fluid-structure coupled systems. The computa-
tional complexity of 1D models is, in fact, several orders of magnitude lower than that
of multidimensional models based on the Navier-Stokes equations. Nevertheless, most of
the works in the literature deal with 1D models providing just averaged information. In
this thesis, a 1D CUF model with 3D-like capabilities is discussed. The attention is fo-
cused on the simplest problem of Stokes flows in rigid pipes. However, the results provide
encouragement for future applications, including fluid-structure coupled problems.
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Chapter 2

Carrera Unified Formulation

Depending on the problem, classical beam theories are usually affected by inconsistencies
since they are not able to foresee higher-order phenomena, such as elastic bending/shear
coupling, restrained torsional warping and 3D strain effects. A large amount of literature
has been therefore produced over the years in order to improve Euler-Bernoulli and Tim-
oshenko theories. In this chapter, a novel approach that unifies and enhances the modern
theory of structures is described. Kinematics of beam is in fact obtained in a compact
form, which is independent of the order of the theory. Hence, higher-order refined models
can be straightforwardly implemented in a hierarchical and automatic manner.

2.1 Preliminaries

The adopted rectangular cartesian coordinate system is shown in Fig. 2.1, together with
the geometry of a beam structure. The cross-section of the beam lies on the xz-plane and
it is denoted by Ω, whereas the boundaries over y are 0 ≤ y ≤ L. Let us introduce the
transposed displacement vector,

u(x, y, z; t) =
{
ux uy uz

}T
(2.1)

The time variable (t) is omitted in the remaining part of this chapter for clarity purposes.
The stress, σ, and strain, ε, components are expressed in transposed forms as follows:

σ =
{
σyy σxx σzz σxz σyz σxy

}T
ε =

{
εyy εxx εzz εxz εyz εxy

}T (2.2)

x

z

y

W

Figure 2.1: Geometry and adopted reference system
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Figure 2.2: Fiber orientation angle

In the case of small displacements with respect to a characteristic dimension in the plane
Ω, the strain-displacement relations are

ε = Du (2.3)

where D is the following linear differential operator matrix

D =



0 ∂
∂y 0

∂
∂x 0 0

0 0 ∂
∂z

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x 0


(2.4)

Constitutive laws are now exploited to obtain stress components to give

σ = C̃ε (2.5)

In the case of orthotropic material the matrix C̃ is

C̃ =



C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃16

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66


(2.6)

Coefficients C̃ij depend on Young and Poisson moduli as well as on the fiber orientation
angle θ that is graphically defined in Fig. 2.2, where “1”, “2”, and “3” represent the
Cartesian axes of the material. For the sake of brevity, the expressions for the coefficients
C̃ij are not reported here, but they can be found in standard texts, see for example Tsai
[159] and Reddy [133]. More generally, in the case of anisotropic materials, matrix C̃ is fully
populated, see [28]. Furthermore, it should be underlined that models with constant and
linear distributions of the in-plane displacement components, ux and uz, require modified
material coefficients to overcome Poisson locking, see [26]. The explicit expressions of the
reduced material coefficients is not reported here; the reader is referred to [33], where they
are given together with a more comprehensive analysis of the effect of Poisson locking and
its correction.
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Figure 2.3: Differences between Euler-Bernoulli (a) and Timoshenko (b) beam theories

2.2 From classical to variable kinematic beam theories

A number of refined beam theories have been proposed over the years to overcome the
limitations of classical beam models, as already mentioned in the introductory section. Ac-
cording to the rectangular Cartesian coordinate system shown in Fig. 2.1, and considering
a beam under bending on the xy-plane, the kinematic field of EBBM (Euler-Bernoulli
Beam Model) can be written as:

ux = ux1

uy = uy1 − x
∂ux1

∂y

(2.7)

where ux and uy are the displacement components of a point belonging to the beam
domain along x and y, respectively. ux1 and uy1 are the displacements of the beam axis,
whereas −∂ux1

∂y is the rotation of the cross-section about the z-axis (i.e. φz) as shown in
Fig. 2.3a. According to EBBM, the deformed cross-section remains plane and orthogonal
to the beam axis. EBBM neglects the cross-sectional shear deformation phenomena. Shear
stresses play an important role in several problems (e.g. short beams, composite structures)
and their neglect can lead to incorrect results. One may want to generalize Eq. (2.7) and
overcome the EBBM assumption of the orthogonality of the cross-section. The improved
displacement field results in the TBM (Timoshenko Beam Model),

ux = ux1

uy = uy1 + x φz
(2.8)

TBM constitutes an improvement over EBBM since the cross-section does not necessarily
remain perpendicular to the beam axis after deformation and one degree of freedom (i.e.
the unknown rotation φz) is added to the original displacement field (see Fig. 2.3b).

As already discussed in Section 1.2 and in [115], classical beam theories are reliable
only for a narrow range of problems, such as bending of slender, solid structures. When
more complex phenomena are analysed, refined kinematics may be necessary. For example,
one of the main problems of TBM is that the homogeneous conditions of the transverse
stress components at the top/bottom surfaces of the beam are not fulfilled, as shown in
Fig. 2.4. One can impose, for instance, Eq. (2.8) in order to have null transverse strain

components (γxy = ∂ux
∂y +

∂uy
∂x ) at x = ± b

2 . This leads to the third-order displacement field
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x

y

Actual distribution
of shear stresses

Shear stress
distribution according

to TBM

b/2

Figure 2.4: Homogeneous condition of transverse stress components at the unloaded edges
of the beam

known as the Reddy-Vlasov beam theory [164, 91],

ux = ux1

uy = uy1 + f1(x) φz + g1(x)
∂ux1

∂y

(2.9)

where f1(x) and g1(x) are cubic functions of the x coordinate. It should be noted that
although the model of Eq. (2.9) has the same number of degrees of freedom of TBM,
it overcomes classical beam theory limitations by foreseeing a quadratic distribution of
transverse stresses on the cross-section of the beam.

The above theories are not able to include any kinematics resulting from the application
of torsional moments. The simplest way to include torsion consists of considering a rigid
rotation of the cross-section around the y-axis (i.e. φy), see Fig. 2.5. The resulting
displacement model is:

ux = z φy
uz = −x φy

(2.10)

where uz is the displacement component along the z-axis. According to Eq. (2.10), a
linear distribution of transverse displacement components is needed to detect the rigid
rotation of the cross-section about the beam axis. Beam models that include all the
aforementioned capabilities can be obtained by summing all the contributions discussed
above. By considering the deformations also in the yz-plane, one has

ux = ux1 + z φy

uy = uy1 + f1(x) φz + f2(z) φx + g1(x)

(
∂ux1
∂y

+ z
φy
∂y

)
+ g2(z)

(
∂uz1
∂y
− xφy

∂y

)
uz = uz1 − x φy

(2.11)

z

x

fy

fyz

fyx

Figure 2.5: Rigid torsion of the beam cross-section
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N M Fτ
0 1 F1 = 1
1 3 F2 = x F3 = z
2 6 F4 = x2 F5 = xz F6 = z2

3 10 F7 = x3 F8 = x2z F9 = xz2 F10 = z3

...
...

...

N (N+1)(N+2)
2 F(N2+N+2)/2 = xN F(N2+N+4)/2 = xN−1 . . . FN(N+3)/2 = xzN−1 F(N+1)(N+2)/2 = zN

Table 2.1: MacLaurin’s polynomials

where f1(x), g1(x), f2(z), and g2(z) are cubic functions1.

These beam models, however, are not able to account for many higher-order effects,
such as the second-order in-plane deformations of the cross-section. As discussed in Sec-
tion 1.2, many refined beam theories have been proposed over the last century to overcome
the limitations of classical beam modelling. Nonetheless, as a general guideline, one can
state that the richer the kinematic field, the most accurate the 1D model becomes [169].
However, richer displacement fields lead to a higher amount of equations to be solved and,
moreover, the choice of the additional expansion terms is problem dependent.

2.2.1 Taylor Expansion (TE)

According to Carrera Unified Formulation (CUF), the generic displacement field can be
expressed in a compact manner as an expansion in terms of arbitrary functions, Fτ ,

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1,2, ...,M (2.12)

where Fτ are the functions of the coordinates x and z on the cross-section; uτ is the vector
of the generalized displacements; M stands for the number of terms used in the expansion;
and the repeated subscript, τ , indicates summation. The choice of Fτ determines the class
of the 1D CUF model.

Taylor Expansion (TE) 1D CUF models consists of MacLaurin series that uses the 2D
polynomials xi zj as Fτ basis. Table 2.1 shows M and Fτ as functions of the expansion
order, N , which represents the maximum order of the polynomials used in the expansion.

According to CUF, Eqs. (2.7) to (2.11) consist of particular cases of TE theories. For
example, it should be noted that Eqs. (2.7), (2.8), and (2.10) are degenerated cases of the
linear (N = 1) TE model, which can be expressed as

ux = ux1 + x ux2 + z ux3
uy = uy1 + x uy2 + z uy3
uz = uz1 + x uz2 + z uz3

(2.13)

where the parameters on the right-hand side (ux1 , uy1 , uz1 , ux2 , etc.) are the displacements
of the beam axis and first derivatives of displacements. Higher-order terms can be taken
into account according to Eq. (2.12). For instance, the displacement fields of Eqs. (2.9)

1 In the case of rectangular cross-section, the cubic functions from Vlasov’s theory are

f1(x) = x− 4

3b2
x3, g1(x) = − 4

3b2
x3, f2(z) = z − 4

3h2
z3, g2(z) = − 4

3h2
z3

where b and h are the dimensions of the cross-section along the x- and z-axis, respectively.
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Figure 2.6: Cross-section L-elements in natural geometry

and (2.11) can be considered as particular cases of the third-order (N = 3) TE model,

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

+ x3 ux7
+ x2z ux8

+ xz2 ux9
+ z3 ux10

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10
(2.14)

A more comprehensive treatise about TE CUF models can be found in [33], where
details about the derivation of classical models from the linear (N = 1) TE model and
various numerical experiments are also given.

2.3 Lagrange Expansion (LE)

In this work, another CUF class of models has played an important role and it is referred to
as Lagrange Expansion (LE) class. The LE models exploit Lagrange polynomials to build
1D higher-order models; i.e., as Fτ cross-sectional functions. In this thesis, three types
of cross-sectional polynomial sets have been adopted as shown in Fig. 2.6: three-point
elements (L3), four-point elements (L4), and nine-point elements (L9). The isoparametric
formulation is exploited to deal with arbitrarily shaped geometries. The Lagrange poly-
nomial expansions can be found in Ref. [117], although the interpolation functions in the
case of an L4 element are given in the following as an example:

Fτ =
1

4
(1 + r rτ )(1 + s sτ ) τ = 1,2,3,4 (2.15)

where r and s vary from −1 to +1, whereas rτ and sτ are the coordinates of the four points
whose numbering and location in the natural coordinate frame are shown in Fig. 2.6b. The
displacement field of a beam model described by one single L4 element is

ux = F1 ux1 + F2 ux2 + F3 ux3 + F4 ux4
uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4
uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4

(2.16)

where ux1 , ..., uz4 are the displacement variables of the problem and represent the transla-
tional displacement components of each of the four points of the L4 element. For further
refinements, the cross-section can be discretized by using several L-elements as in Fig. 2.7,
where two assembled L9 elements are shown.

Further details about LE models can be found in the original work by Carrera and
Petrolo [47] and in [44]. In this thesis, LE models are exploited to build component-wise
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2.3. Lagrange Expansion (LE)

z

x

Figure 2.7: Two assembled L9 elements in actual geometry

models of complex structures as described in Chapter 5, where more details about LE and
its differences with respect to TE can also be found.
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Chapter 3

Strong Form Solutions for Free
Vibrations

Free vibration analysis is an important aspect of engineering. In the design of aircraft
structures, for example, the results of modal analysis are generally used to compute the
aeroelastic proprieties and the dynamic response of a wing or to evaluate the acoustic
performance of the fuselage. Moreover, avoiding resonance failures is a major concern
in every structure project. For these reasons, accurate solutions and models that can
accurately describe the dynamic behavior of complex structures, such as aerospace ones,
are needed. In this chapter, the equations of motion for higher-order CUF models in free
vibration are provided. Strong form solutions are then sought both exactly, by applying
the dynamic stiffness method, and approximately, by collocating the unknowns and their
derivatives via radial basis functions.

3.1 Equations of motion of the N-order TE model

The principle of virtual displacements is generally used in this thesis to derive the equi-
librium equations. In the case of a beam in free vibration, it holds

δLint =

∫
V
δεTσ dV = −δLine (3.1)

where Lint stands for the strain energy and δLine is the work done by the inertial loadings.
δ stands for the virtual variation operator. The virtual variation of the strain energy can
be written by using Eqs. (2.3), (2.5) and (2.12). After integrations by part, it reads

δLint =

∫
L
δuTτ Kτsus dy +

[
δuTτ Πτsus

]y=L

y=0
(3.2)

where Kτs is the differential linear stiffness matrix and Πτs is the matrix of the natural
boundary conditions in the form of 3 × 3 fundamental nuclei. The components of Kτs

are provided in the following in the case of orthotropic material and they are referred
to as Kτs

(ij), where i is the row number (i = 1, 2, 3) and j denotes the column number
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Chapter 3. Strong Form Solutions for Free Vibrations

(j = 1, 2, 3):

Kτs
(11) = E22

τ,xs,x + E44
τ,zs,z +

(
E26
τ,xs − E

26
τs,x

) ∂
∂y
− E66

τs

∂2

∂y2

Kτs
(12) = E26

τ,xs,x + E45
τ,zs,z +

(
E23
τ,xs − E

66
τs,x

) ∂
∂y
− E36

τs

∂2

∂y2

Kτs
(13) = E12

τ,xs,z + E44
τ,zs,x +

(
E45
τ,zs − E

16
τs,z

) ∂
∂y

Kτs
(21) = E26

τ,xs,x + E45
τ,zs,z +

(
E66
τ,xs − E

23
τs,x

) ∂
∂y
− E36

τs

∂2

∂y2

Kτs
(22) = E66

τ,xs,x + E55
τ,zs,z +

(
E36
τ,xs − E

36
τs,x

) ∂
∂y
− E33

τs

∂2

∂y2

Kτs
(23) = E16

τ,xs,z + E45
τ,zs,x +

(
E55
τ,zs − E

13
τs,z

) ∂
∂y

Kτs
(31) = E44

τ,xs,z + E12
τ,zs,x +

(
E16
τ,zs − E

45
τs,z

) ∂
∂y

Kτs
(32) = E45

τ,xs,z + E16
τ,zs,x +

(
E13
τ,zs − E

55
τs,z

) ∂
∂y

Kτs
(33) = E44

τ,xs,x + E11
τ,zs,z +

(
E45
τ,xs − E

45
τs,x

) ∂
∂y
− E55

τs

∂2

∂y2

(3.3)

The generic term Eαβτ,θs,ζ above is a cross-sectional moment parameter

Eαβτ,θs,ζ =

∫
Ω
C̃αβFτ,θFs,ζ dΩ (3.4)

The suffix after the comma in Eq. (3.3) denotes the derivatives. As far as the boundary
conditions are concerned, the components of Πτs are

Πτs
(11) = E26

τs,x + E66
τs

∂

∂y
, Πτs

(12) = E66
τs,x + E36

τs

∂

∂y
, Πτs

(13) = E16
τs,z

Πτs
(21) = E23

τs,x + E36
τs

∂

∂y
, Πτs

(22) = E36
τs,x + E33

τs

∂

∂y
, Πτs

(23) = E13
τs,z

Πτs
(31) = E45

τs,z , Πτs
(32) = E55

τs,z , Πτs
(33) = E45

τs,x + E55
τs

∂

∂y

(3.5)

The main property of the fundamental nuclei is that their formal mathematical expression
does not depend either on the order of the beam theory or on the geometry of the problem.

The virtual variation of the inertial work is given by

δLine =

∫
L
δuτ

∫
Ω
ρFτFs dΩ üs dy =

∫
L
δuτM

τsüs dy (3.6)

where Mτs is the fundamental nucleus of the mass matrix and double over dots stand as
second derivative with respect to time (t). The components of matrix Mτs are

M τs
(11) = M τs

(22) = M τs
(33) = Eρτs

M τs
(12) = M τs

(13) = M τs
(21) = M τs

(23) = M τs
(31) = M τs

(32) = 0
(3.7)

where ρ is the material density and

Eρτs =

∫
Ω
ρFτFs dΩ (3.8)
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3.2. Dynamic Stiffness Method (DSM)

The governing equations of the undamped dynamic problem can be therefore written
in the following compact form:

δuτ : Kτsus = −Mτsüs (3.9)

where us = {uxs uys uzs}T is the vector of the unknown generalised displacements and

δuτ the corresponding virtual variation. Letting Pτ (y; t) =
{
Pxτ Pyτ Pzτ

}T
to be

the vector of the generalized forces applied at the ends of the beam, the natural boundary
conditions are

δuτ : Ps = Πτsus (3.10)

For a fixed theory order N , Eqs. (3.9) and (3.10) have to be expanded using the indices
τ and s from 1 to M = (N + 1)(N + 2)/2 in order to obtain the equations of motion and
the natural boundary conditions of the desired model.

The strong form of the equations of motion of the higher-order beam in free vibration
have been solved both in closed-form and numerically in the present thesis. In the former
case, we use the Dynamic Stiffness Method (DSM), which brings to a non-linear eigenvalue
problem. On the other hand, we describe the Radial Basis Functions (RBFs) method for
approximate solutions.

3.2 Dynamic Stiffness Method (DSM)

The procedure to obtain the Dynamic Stiffness (DS) matrix for a structural problem can
be summarised as follows: (i) Seek a closed form analytical solution of the governing
differential equations of motion of the structural element in free vibration; (ii) Apply a
number of general boundary conditions equal to twice the number of integration constants
in algebraic form that are usually the nodal displacements and forces; (iii) Eliminate the
integration constants by relating the harmonically varying amplitudes of the generalized
nodal forces to the corresponding generalized displacements that generates the frequency
dependent DS matrix.

These passages are briefly described below and the DS matrix is formulated. The
Wittrick-Williams algorithm is finally introduced as an effective methodology to solve
transcendental eigenvalue problems.

3.2.1 Solution of the differential equations

In the case of harmonic motion, the solution of Eqs. (3.9) is sought in the form

us(y; t) = Us(y) eiωt (3.11)

where Us(y) is the amplitude function of the motion, ω is an arbitrary circular or an-
gular frequency, and i is the imaginary unit. Equation (3.11) allows the formulation of
the equilibrium equations and the natural boundary conditions in the frequency domain.
Substituting Eq. (3.11) into Eq. (3.9), a set of three coupled ordinary differential equations
(ODEs) is obtained which can be written in a matrix form as follows:

δUτ : Lτs Ũs = 0 (3.12)

where

Ũs =
{
Uxs Uxs,y Uxs,yy Uys Uys,y Uys,yy Uzs Uzs,y Uzs,yy

}T
(3.13)
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Chapter 3. Strong Form Solutions for Free Vibrations

and Lτs is the 3 × 9 fundamental nucleus of the matrix containing the coefficients of the
ordinary differential equations. The components of matrix Lτs are provided below in the
case of orthotropic materials and they are referred to as Lτs(ij), where i is the row number

(i = 1,2,3) and j is the column number (j = 1,2, ...,9)

Lτs(11) = −ω2Eρτs + E22
τ,xs,x + E44

τ,zs,z , Lτs(12) = E26
τ,xs − E

26
τs,x , Lτs(13) = −E66

τs

Lτs(14) = E26
τ,xs,x + E45

τ,zs,z , Lτs(15) = E23
τs,x − E

66
τs,x , Lτs(16) = −E36

τs

Lτs(17) = E12
τ,xs,z + E44

τ,zs,x , Lτs(18) = E45
τ,zs − E

16
τs,z , Lτs(19) = 0

Lτs(21) = E26
τ,xs,x + E45

τ,zs,z , Lτs(22) = E66
τ,xs − E

23
τs,x , Lτs(23) = −E36

τs

Lτs(24) = −ω2Eρτs + E66
τ,xs,x + E55

τ,zs,z , Lτs(25) = E36
τ,xs − E

36
τs,x , Lτs(26) = −E33

τs

Lτs(27) = E16
τ,xs,z + E45

τ,zs,x , Lτs(28) = E55
τ,zs − E

13
τs,z , Lτs(29) = 0

Lτs(31) = E44
τ,xs,z + E12

τ,zs,x , Lτs(32) = E16
τ,zs,x − E

45
τs,z , Lτs(33) = 0

Lτs(34) = E45
τ,xs,z + E16

τ,zs,x , Lτs(35) = E13
τ,zs − E

55
τs,z , Lτs(36) = 0

Lτs(37) = −ω2Eρτs + E44
τ,xs,x + E11

τ,zs,z , Lτs(38) = E45
τ,xs − E

45
τs,x , Lτs(39) = −E55

τs

(3.14)

For a given expansion order, N , the equations of motion in the frequency domain can be
obtained in the form of Eq. (3.15), as given below, by expanding Lτs for indexes τ and s.
It reads:

L Ũ = 0 (3.15)

Note that the matrix L is hierarchical. This means that the L matrix related to the
N -order model actually contains the L matrix related to the (N − 1)-order beam model.

Similarly as above, the boundary conditions of Eqs. (3.10) can be written in a matrix
form as

δUτ : Ps = Bτs Ûs (3.16)

where

Ûs =
{
Uxs Uxs,y Uys Uys,y Uzs Uzs,y

}T
(3.17)

and Bτs is the 3 × 6 fundamental nucleus which contains the coefficients of the natural
boundary conditions

Bτs =

 E26
τs,x E66

τs E66
τs,x E36

τs E16
τs,z 0

E23
τs,x E36

τs E36
τs,x E33

τs E13
τs,z 0

E45
τs,z 0 E55

τs,z 0 E45
τs,x E55

τs

 (3.18)

For a given expansion order, N , the natural boundary conditions can be obtained in the
form of Eq. (3.19) by expanding Bτs in the same way as Lτs to finally give

P = B Û (3.19)
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3.2. Dynamic Stiffness Method (DSM)

Equation (3.15) is a system of ODEs of second order in y with constant coefficients.
A change of variables is used to reduce the second order system of ODEs to a first order
system,

Z =
{
Z1 Z2 . . . Zn

}T
= Û ={

Ux1 Ux1,y Uy1 Uy1,y Uz1 Uz1,y . . . UxM UxM,y UyM UyM,y UzM UzM,y

}T
(3.20)

where Û is the expansion of Ûs for a given theory order, M is the number of expansion
terms for the given N -order beam theory, and n = 6×M is the dimension of the unknown
vector as well as the number of differential equations. In [119], an automatic algorithm to
transform the L matrix of Eq. (3.15) into the matrix S of the following linear differential
system was described:

Z,y(y) = SZ(y) (3.21)

Once the differential problem is described in terms of Eq. (3.21), the solution can be
written as follows: 

Z1

Z2
...
Zn

 =


δ11 δ21 . . . δn1

δ12 δ22 . . . δn2
...

...
. . .

...
δ1n δ2n . . . δnn



C1eλ1y

C2eλ2y

...
Cneλny

 (3.22)

where λi is the i-th eigenvalue of the S matrix, δij is the j-th element of the i-th eigenvector
of the S matrix and Ci are the integration constants which need to be determined by using
the boundary conditions. The above equation can be written in a matrix form as follows:

Z = δCeλy (3.23)

Vector Z does not only contain the displacements but also their first derivatives. If only
the displacements are needed, according to Eq. (3.20), only the lines 1,3,5, . . . , n−1 should
be taken into account, giving a solution in the following form:

Ux1(y) = C1δ11eλ1y + C2δ21eλ2y + . . .+ Cnδn1eλny

Uy1(y) = C1δ13eλ1y + C2δ23eλ2y + . . .+ Cnδn3eλny

Uz1(y) = C1δ15eλ1y + C2δ25eλ2y + . . .+ Cnδn5eλny

...

UzM (y) = C1δ1(n−1)e
λ1y + C2δ2(n−1)e

λ2y + . . .+ Cnδn(n−1)e
λny

(3.24)

Once the displacements are known, the boundary conditions are obtained by substituting
the solution of Eq. (3.23) into the boundary conditions (Eq. (3.19)). In fact, it should be
noted that Û is equal to Z (Eq. (3.20)). It reads

P = BδCeλy = ΛCeλy (3.25)

where Λ = Bδ. The boundary conditions can be written in explicit form as follows:

Px1(y) = C1Λ11eλ1y + C2Λ12eλ2y + . . .+ CnΛ1neλny

Py1(y) = C1Λ21eλ1y + C2Λ22eλ2y + . . .+ CnΛ2neλny

Pz1(y) = C1Λ31eλ1y + C2Λ32eλ2y + . . .+ CnΛ3neλny

...

PzM (y) = C1Λn1eλ1y + C2Λn2eλ2y + . . .+ CnΛnneλny

(3.26)
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Figure 3.1: Boundary conditions of the beam element and sign conventions

3.2.2 Dynamic stiffness matrix

Once the closed form analytical solution of the differential equations of motion of the
structural element in free vibration has been sought, a number of general boundary condi-
tions - which are usually the nodal displacements and forces - equal to twice the number
of integration constants in algebraic form needs to be applied (see Fig. 3.1).

Starting from the displacements, the boundary conditions can be written as

At y = 0 :

Ux1(0) = −U1x1

Uy1(0) = −U1y1

Uz1(0) = −U1z1
...

UzM (0) = −U1zM

(3.27)

At y = L :

Ux1(L) = U2x1

Uy1(L) = U2y1

Uz1(L) = U2z1
...

UzM (L) = U2zM

(3.28)

By evaluating Eqs. (3.24) in y = 0 and y = L and applying the boundary conditions of
Eqs. (3.27) and (3.28), the following matrix relation for the nodal generalized displacements
is obtained:

U1x1
U1y1
U1z1

...

U1zM
U2x1
U2y1
U2z1

...

U2zM



=



−δ11 −δ21 . . . −δn1
−δ13 −δ23 . . . −δn3
−δ15 −δ25 . . . −δn5

...
...

. . .
...

−δ1(n−1) −δ2(n−1) . . . −δn(n−1)

δ11eλ1L δ21eλ2L . . . δn1eλnL

δ13eλ1L δ23eλ2L . . . δn3eλnL

δ15eλ1L δ25eλ2L . . . δn5eλnL
...

...
. . .

...

δ1(n−1)e
λ1L δ2(n−1)e

λ2L . . . δn(n−1)e
λnL





C1

C2

C3

...
Cn

2

Cn
2
+1

Cn
2
+2

Cn
2
+3

...
Cn



(3.29)

The above equation can be written in a more compact form as

U = AC (3.30)
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3.2. Dynamic Stiffness Method (DSM)

Similarly, boundary conditions for generalized nodal forces are as follows:

At y = 0 :

Px1(0) = −P1x1

Py1(0) = −P1y1

Pz1(0) = −P1z1
...

PzM (0) = −P1zM

(3.31)

At y = L :

Px1(L) = P2x1

Py1(L) = P2y1

Pz1(L) = P2z1
...

PzM (L) = P2zM

(3.32)

By evaluating Eqs. (3.26) in y = 0 and y = L and applying the boundary conditions of
Eqs. (3.31) and (3.32), the following matrix relation for the nodal forces is obtained:

P1x1
P1y1
P1z1

...

P1M1

P2x1
P2y1
P2z1

...

P2M1



=



−Λ11 −Λ12 . . . −Λ1n

−Λ21 −Λ22 . . . −Λ2n

−Λ31 −Λ32 . . . −Λ3n

...
...

. . .
...

−Λn1 −Λn2 . . . −Λnn
Λ11eλ1L Λ12eλ2L . . . Λ1neλnL

Λ21eλ1L Λ22eλ2L . . . Λ2neλnL

Λ31eλ1L Λ32eλ2L . . . Λ3neλnL

...
...

. . .
...

Λn1eλ1L Λn2eλ2L . . . ΛnneλnL





C1

C2

C3

...
Cn

2

Cn
2
+1

Cn
2
+2

Cn
2
+3

...
Cn



(3.33)

The above equation can be written in a more compact form as

P = RC (3.34)

The integration constants in vector C from Eqs. (3.30) and (3.34) can now be eliminated
by relating the harmonically varying amplitudes of the generalized nodal forces to the
corresponding generalized displacements to give the DS matrix of one beam element as
follows:

P = KU (3.35)

where
K = RA−1 (3.36)

is the required DS matrix.
The DS matrix given by Eq. (3.36) is the basic building block to compute the exact

natural frequencies of a higher-order beam. The global DS matrix can be obtained by
assembling elemental matrices as in the classical way of Finite Element Method (FEM)
(see Chapter 4). As far as the boundary conditions are concerned, they can be applied by
using the well-known penalty method (often used in FEM) or by simply removing rows
and columns of the stiffness matrix corresponding to the degrees of freedom which are
zeroes. In this paper, the penalty method is used and more details can be found in [119].
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Chapter 3. Strong Form Solutions for Free Vibrations

3.2.3 Application of the Wittrick-Williams algorithm

For free vibration analysis of structures, FEM and collocation methods, such as RBF
method, lead to a linear eigenvalue problem. By contrast, the DSM leads to a transcen-
dental (non-linear) eigenvalue problem for which the Wittrick-Williams algorithm [173]
can be used. The basic working principle of the algorithm can be briefly summarised in
the following steps:

(i) A trial frequency ω∗ is chosen to compute the DS matrix K∗ of the final structure;

(ii) K∗ is reduced to its upper triangular form by the usual form of Gauss elimination

to obtain K∗4 and the number of negative terms on the leading diagonal of K∗4 is
counted; this is known as the sign count s(K∗) of the algorithm;

(iii) The number, j, of natural frequencies (ω) of the structure which lie below the trial
frequency (ω∗) is given by:

j = j0 + s(K∗) (3.37)

where j0 is the number of natural frequencies of all individual elements with clamped-
clamped boundary conditions on their opposite sides which still lie below the trial
frequency ω∗.

Note that j0 is required because the DSM allows for an infinite number of natural fre-
quencies to be accounted for when all the nodes of the structure are fully clamped so that
one or more individual elements of the structure can still vibrate on their own between
the nodes. j0 corresponds to U = 0 modes of Eq. (3.35) when P = 0. Assuming that j0
is known, and s(K∗) can be obtained by counting the number of negative terms in K∗4 ,
a suitable procedure can be devised, for example the bi-section method, to bracket any
natural frequency between an upper and lower bound of the trial frequency ω∗ to any
desired accuracy.

Once the natural frequency has been computed and the related global DS matrix
evaluated, the corresponding nodal generalized displacements can be obtained by solving
the associated homogeneous system of Eq. (3.35). By utilizing the nodal generalized
displacements U, the integration constants C of the element can be computed with the
help of Eq. (3.30). In this way, using Eq. (3.24), the unknown generalized displacements
can be computed as a function of y. Finally, by using Eqs. (3.11) and (2.12), the complete
displacement field can be generated as a function of x, y, z and the time t (if an animated
plot is needed). Clearly, the plot of the required mode and required element can be
visualised on a fictitious 3D mesh. By following this procedure, it is possible to compute
the exact mode shapes using just one single element, which is impossible in weak-form
solutions and other numerical methods.

3.3 Radial Basis Functions (RBFs)

DSM, although interesting, exact and elegant from a mathematical point of view, requires
an iterative procedure and faster approaches can be sometimes desirable at the expense
of accuracy. In this thesis, RBFs functions method has been used for this reason.

RBFs approximations are collocation schemes that can exploit accurate representations
of the boundary, are easy to implement and can be spectrally accurate. In solid mechanics,
they are essentially used to approximate the unknowns derivatives and this is the case of the
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3.3. Radial Basis Functions (RBFs)

methodology described hereinafter. For this purpose, Eqs. (3.12) and (3.16) are rewritten
in the following equivalent forms:

δUτ : (Kτs − ω2Mτs)Us = 0 (3.38)

δUτ : Ps = ΠτsUs (3.39)

where matrices Kτs, Πτs and Mτs are those from Eqs. (3.3), (3.5) and (3.7), respectively.
In Eq. (3.39) the load Pτ (y; t) has been assumed harmonic with amplitude equal to Pτ (y).

In the framework of the RBFs method, the amplitude of the harmonically varying
generalized displacement Us(y) is approximated with a linear combination of the radial
basis functions φi.

Us(y) = αs iφi (‖y − yi‖2) , i = 1, ..., n (3.40)

where yi is a finite set of n distinct points (centers) and ‖y− yi‖2 is the Euclidian distance
ri, which in the case of 1D problems corresponds to |y−yi|. In Eq. (3.40), index i indicates
summation. Derivatives of Us(y) over y can be treated similarly.

Us,y(y) = αs iφi,y (|y − yi|) , i = 1, ..., n
Us,yy(y) = αs iφi,yy (|y − yi|) , i = 1, ..., n

(3.41)

In the present thesis, uniform and Chebyshev grid distributions of points yi are used. The
latter distribution, in particular, is known to be the best choice in terms of stability (see
for example [79, 175, 78]). A Chebyshev grid is defined by

yi =
L

2

[
1− cos

(
i− 1

n− 1
π

)]
, i = 1, ..., n (3.42)

Several RBFs have been formulated over the years and they are covered in a large
literature. In the present work, locally supported Wendland’s C6 functions [170] are chosen
as φi

φi(ri, c) = max
(
(1− c ri)8, 0

)
+
(
32 c3r3

i + 25 c2r2
i + 8 c ri + 1

)
(3.43)

where c is a positive shape parameter. The shape parameter c is known to play a very
important role in collocation with RBFs for approximating functions and solving partial
differential equations, see for example [137, 130]. The accuracy of the solution can vary
significantly depending on the choice of the shape parameter indeed. In the literature,
several solutions for the evaluation of an optimal value of c have been proposed depending
upon the number of nodes, the distance between the nodes and the type of the RBFs. For
instance, in [72] a shape parameter inversely proportional to the square root of the number
of grid points was proposed in the case of multiquadrics RBFs. However, finding a good
value of the parameter c is not always an easy task. As specified in [77], smaller values of
c generally lead to higher accuracy. On the other hand, unstable numerical solutions may
occur as the value of c is decreased (see [139]). In the present thesis, a constant value of
c is used and no optimization procedures are employed. An optimization technique, such
as the one recently introduced by Fantuzzi et al. [71], will be the subject of future work.

3.3.1 From a differential problem to a eigenvalue problem via RBFs

Let the domain of the problem be denoted by Γ and let ∂Γ be its boundary. We consider
nI nodes in Γ and nB nodes on ∂Γ, with n = nI + nB. In the particular case of 1D
beam theories as in this work, nB = 2 (i.e. the two ends of the beam). By substituting
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Chapter 3. Strong Form Solutions for Free Vibrations

Eqs. (3.40) and (3.41) into Eq. (3.38), the differential equations of motion are reduced to
a classical eigenvalue problem. For a node yj ∈ Γ, it reads:

(Kτsij − ω2Mτsij)αs i = 0 (3.44)

where Kτsij and Mτsij are the 3× 3 fundamental nuclei which contains the coefficients of
the algebraic equations of motion. In the case of orthotropic material, the components of
matrix Kτsij are

Kτsij(11) =
(
E22
τ,xs,x + E44

τ,zs,z

)
φij +

(
E26
τ,xs − E

26
τs,x

)
φij,y − E66

τsφij,yy

Kτsij(12) =
(
E26
τ,xs,x + E45

τ,zs,z

)
φij +

(
E23
τ,xs − E

66
τs,x

)
φij,y − E36

τsφij,yy

Kτsij(13) =
(
E12
τ,xs,z + E44

τ,zs,x

)
φij +

(
E45
τ,zs − E

16
τs,z

)
φij,y

Kτsij(21) =
(
E26
τ,xs,x + E45

τ,zs,z

)
φij +

(
E66
τ,xs − E

23
τs,x

)
φij,y − E36

τsφij,yy

Kτsij(22) =
(
E66
τ,xs,x + E55

τ,zs,z

)
φij +

(
E36
τ,xs − E

36
τs,x

)
φij,y − E33

τsφij,yy

Kτsij(23) =
(
E16
τ,xs,z + E45

τ,zs,x

)
φij +

(
E55
τ,zs − E

13
τs,z

)
φij,y

Kτsij(31) =
(
E44
τ,xs,z + E12

τ,zs,x

)
φij +

(
E16
τ,zs − E

45
τs,z

)
φij,y

Kτsij(32) =
(
E45
τ,xs,z + E16

τ,zs,x

)
φij +

(
E13
τ,zs − E

55
τs,z

)
φij,y

Kτsij(33) =
(
E44
τ,xs,x + E11

τ,zs,z

)
φij +

(
E45
τ,xs − E

45
τs,x

)
φij,y − E55

τsφij,yy

(3.45)

The components of matrix Mτsij are

Mτsij
(11) = Mτsij

(22) = Mτsij
(33) = Eρτsφij

Mτsij
(12) = Mτsij

(13) = Mτsij
(21) = Mτsij

(23) = Mτsij
(31) = Mτsij

(32) = 0

(3.46)

In Eqs. (3.45) and (3.46), φij stands for φi(|yj − yi|). For a given theory order N , the
eigenvalue problem describing the motion of the beam in free vibration is obtained by
expanding Kτsij and Mτsij for τ = 1,2, ...,M , s = 1,2, ...,M , i = 1, ..., n, and j = 1, ..., nI .
The final problem essentially holds

(KI − ω2MI)α = 0 (3.47)

where the superscript I denotes the fact that Eq. (3.47) applies in Γ. In a similar way, the
natural boundary conditions can be written in algebraic form by substituting Eqs. (3.40)
and (3.41) into Eq. (3.39). For a node yj ∈ ∂Γ, it reads:

Ps j = Bτsij αs i (3.48)
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3.3. Radial Basis Functions (RBFs)

where the components of the algebraic fundamental nucleus Bτsij are as follows:

Bτsij(11) = E26
τs,xφij + E66

τsφij,y , Bτsij(12) = E66
τs,xφij + E66

τs,xφij,y , Bτsij(13) = E16
τs,zφij

Bτsij(21) = E23
τs,xφij + E36

τsφij,y , Bτsij(22) = E36
τs,xφij + E33

τsφij,y , Bτsij(23) = E13
τs,zφij

Bτsij(31) = E45
τs,zφij , Bτsij(32) = E55

τs,zφij , Bτsij(33) = E45
τs,xφij + E55

τsφij,y
(3.49)

For a given expansion order N , the natural boundary conditions can be obtained in the
form of Eq. (3.50) by expanding Bτsij for τ = 1,2, ...,M , s = 1,2, ...,M , i = 1, ..., n, and
j = nI + 1, ..., n. In the case of homogeneous natural boundary condition one has

BB α = 0 (3.50)

where superscript B denotes the fact that Eq. (3.50) applies on ∂Γ. Matrix BB is not
derived in this thesis in the case of essential boundary conditions for the sake of brevity.
Essential boundary conditions can be applied by imposing a certain value to the amplitude
of the harmonically varying generalized displacement Us(y) = Us(y).

Once matrices KI , MI , and BB are obtained, the final eigenvalue problem can be solved([
KI

BB

]
− ω2

k

[
MI

0

])
αk = 0 (3.51)

where αk is the k-th eigenvector. It is well known that some RBFs produces ill-conditioned
matrices and this problem increases as the number of grid points rises. Some authors
reduce the conditioning number by using preconditioners, see [100]. Moreover, the results
discussed later in this thesis shows that, increasing the expansion order N , the problem
can be severely ill-conditioned. However, scaling the matrices KI and MI as well as the
matrix of natural (not essential) boundary conditions BB by the maximum coefficient of
the stiffness matrix itself, was sufficient to obtain a well-conditioned problem for each case
considered. Nevertheless, in order to further improve the accuracy of the solution, the
generalized displacements on the boundary centers could be condensed with respect to
those on the internal nodes, as presented in [158].

27



28



Chapter 4

Finite Element Method

The finite element method has acquired a predominant role in the analysis of structures.
The historical reason is due to the limitations of analytical solutions, which are often
available only for a few particular cases that represent coarse simplifications of reality.
Although the exact solution of the free vibration problem of CUF models has been addressed
in the present research by dynamic stiffness method for arbitrary boundary conditions and
geometries, the finite element method still deserves particular attention for the ease it
allows to face the various problems of mechanics as well as for its numerical stability and
efficiency. In this chapter, the weak form of the 1D CUF governing equations for static
and dynamic problems are thus formulated in terms of finite element approximation. The
fundamental nuclei of the elemental stiffness, mass, and loading arrays are provided as
well.

4.1 Weak form governing equations

In the previous chapter, the strong form ODEs related to CUF models have been solved
both exactly - by using the DSM - and by reducing them into algebraic equations via
RBFs. The weak form of the same mathematical problem is discussed hereinafter and
presented as a weighted integral equation relaxing the strong form into a domain-averaging
statement, thus holding solution only with respect to certain test functions. Weak form
governing equations of CUF models are here obtained by means of the principle of virtual
displacement and solved via Finite Element Method (FEM).

In the framework of FEM, the CUF generalized displacements uτ (y) (see Eq. (2.12)) are
expressed as a weighted linear combination of arbitrary test functions (or shape functions);
i.e.

uτ (y) = Ni(y)qτi, i = 1,2, ..., p+ 1 (4.1)

where Ni stands for 1D shape functions and qτi is the nodal displacement vector,

qτi =
{
quxτi quyτi quzτi

}T
(4.2)

Similarly to τ index (see Section 2.2.1), i represents a summation over the p+ 1 nodes of
the 1D FEM element of order p. Thus, summarizing, the kinematic approximation by 1D
CUF in the framework of FEM holds

u(x, y, z) = Fτ (x, z)Ni(y)qτi, τ = 1,2, ...,M i = 1,2, ..., p+ 1 (4.3)

In this thesis, mostly Lagrange shape functions are used for the mechanical problem.
Two-node linear (p = 1), three-node quadratic (p = 2), and four-node cubic (p = 3)
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Chapter 4. Finite Element Method

shape functions are considered. Lagrange 1D shape functions can be found in many
reference books, for instance in [12]. However, they are also reported herein for the sake
of completeness. In the case of B2 element, the shape functions are:

N1 = 1
2(1− r), N2 = 1

2(1 + r),

{
r1 = −1
r2 = +1

(4.4)

where the natural coordinate, r, varies from −1 to +1 and ri indicates the position of the
node within the natural beam boundaries. In the case of B3 elements one has

N1 = 1
2r(r − 1), N2 = 1

2r(r + 1), N3 = −(1 + r)(1− r),


r1 = −1
r2 = +1
r3 = 0

(4.5)

Finally, B4 shape functions hold

N1 = − 9
16(r + 1

3)(r − 1
3)(r − 1), N2 = 9

16(r + 1
3)(r − 1

3)(r + 1),

N3 = +27
16(r + 1)(r − 1

3)(r − 1), N4 = −27
16(r + 1)(r + 1

3)(r − 1),


r1 = −1
r2 = +1
r3 = −1

3
r4 = +1

3
(4.6)

4.1.1 Static response analysis

One of the main advantages of FEM is that it allows the handling of various problems of
mechanics in a relatively straightforward and easy manner. In this thesis, FEM has been
used for static, free vibration and dynamic response analyses of structures.

In the case of static analysis, the principle of virtual displacements holds

δLint = δLext (4.7)

where Lint stands for the strain energy as discussed in Chapter 3 and Lext in the work
done by the external loadings. In the case of FEM, the virtual variation of the internal
work reads

δLint = δqTKq (4.8)

where q is the global vector containing the generalized nodal unknowns and K is the
assembled global stiffness matrix whose derivation in the framework of CUF is briefly
described in Section 4.2. On the other hand, the virtual variation of the external energy
is

δLext = δqTP (4.9)

where P is the vector of the generalized nodal forces (see Section 4.4). By substituting
Eqs. (4.9) and (4.8) into Eq. (4.7), the final algebraic system of equations is obtained

Kq = P (4.10)

4.1.2 Free vibrations

Free vibration analysis investigates the equilibrium between elastic and inertial forces.
As already discussed in Chapter 3, the principle of virtual displacements in this case is
formulated as

δLint = −δLine (4.11)
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4.2. Stiffness matrix

Introducing the FEM approximation, the virtual variation of inertial forces is written in
the following form:

δLine = δqTMq̈ (4.12)

where M is the global mass matrix as presented in Section 4.3 and q̈ is the vector containing
the nodal generalized accelerations. By substituting Eqs. (4.9) and (4.12) into Eq. (4.11),
the equations of motion become

Kq + Mq̈ = 0 (4.13)

Considering the solution q to be harmonic with amplitude Q and angular frequency ω,
Eq. (4.13) can be reduced into a classical eigenvalue problem as in the case of RBFs method
(see Section 3.3) (

K− ω2M
)
Qeiωt = 0 (4.14)

4.1.3 Dynamic response

In the more general case, both internal, external and inertial energy contributions are
accounted for. In this case, the principle of virtual displacements reads

δLint = δLext − δLine (4.15)

which in the FEM form becomes

Kq + Mq̈ = P (4.16)

The solution of this equation in the time domain requires the use of a numerical technique.
More details about dynamic response problems are given in Chapter 7, where the mode
superposition method as a means to solve Eq. (4.16) in discussed in details and the effect
of structural damping is also addressed.

4.2 Stiffness matrix

The virtual variation of the strain energy is recalled here for the sake of clarity

δLint =

∫
V
δεTσ dV (4.17)

The fundamental nucleus of the elemental structural stiffness matrix of the 1D CUF FE
model is derived by substituting the constitutive laws (Eq. (2.5)), the geometrical relations
(Eq. (2.3)), and the kinematic assumptions of Eq. (4.3) into Eq. (4.17). One has

δLint = δqTτiK
τsijqsj (4.18)

The derivation of the FE stiffness matrix and the other arrays is not reported here, but
they can be found in [33, 27], where more details about CUF and FEM are also given.
However, the components of the 3×3 fundamental nucleus of the stiffness matrix are given
below and they are referred to as Kτsij

(rc) , where r is the row number (r = 1,2,3) and c is
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the column number (c = 1,2,3).

Kτsij
(11) =

(
E22
τ,xs,x + E44

τ,zs,z

)
Jij + E26

τ,xsJij,y + E26
τs,xJi,yj + E66

τsJi,yj,y

Kτsij
(12) =

(
E26
τ,xs,x + E45

τ,zs,z

)
Jij + E23

τ,xsJij,y + E66
τs,xJi,yj + E36

τsJi,yj,y

Kτsij
(13) =

(
E12
τ,xs,z + E44

τ,zs,x

)
Jij + E45

τ,zsJij,y + E16
τs,zJi,yj

Kτsij
(21) =

(
E26
τ,xs,x + E45

τ,zs,z

)
Jij + E66

τ,xsJij,y + E23
τs,xJi,yj + E36

τsJi,yj,y

Kτsij
(22) =

(
E66
τ,xs,x + E55

τ,zs,z

)
Jij + E36

τ,xsJij,y + E36
τs,xJi,yj + E33

τsJi,yj,y

Kτsij
(23) =

(
E16
τ,xs,z + E45

τ,zs,x

)
Jij + E55

τ,zsJij,y + E13
τs,zJi,yj

Kτsij
(31) =

(
E44
τ,xs,z + E12

τ,zs,x

)
Jij + E16

τ,zsJij,y + E45
τs,zJi,yj

Kτsij
(32) =

(
E45
τ,xs,z + E16

τ,zs,x

)
Jij + E13

τ,zsJij,y + E55
τs,zJi,yj

Kτsij
(33) =

(
E44
τ,xs,x + E11

τ,zs,z

)
Jij + E45

τ,xsJij,y + E45
τs,xJi,ij + E55

τsJi,yj,y

(4.19)

where the generic term Eαβτ,θs,ζ is a cross-sectional parameter as defined in Eq. (3.4), whereas

Jij =

∫
L
Ni(y)Nj(y) dy, Ji,yj =

∫
L
Ni,y(y)Nj(y) dy

Jij,y =

∫
L
Ni(y)Nj,y(y) dy, Ji,yj,y =

∫
L
Ni,y(y)Nj,y(y) dy

(4.20)

are the integrals of the product of shapes functions and related derivatives along the beam
axis. The shape functions integrals are calculated by means Gauss integration [152]. In
particular, selective reduced integration scheme is adopted in order to attenuate the shear
locking phenomena (see [12, 160]).

The fundamental nuclei in FEM have the same properties of the strong form counter-
parts; hence, they neither depend on the expansion order or the choice of the Fτ expansion
polynomials. Thus, with only nine coding statements, it is possible to implement any-order
of multiple class theories. In fact, the assembly procedure of the global stiffness matrix is
straightforwardly accomplished by using the four indexes τ , s, i, and j, which are oppor-
tunely translated into loop cycles in the coding statements. The automatic derivation of
the elemental stiffness matrix is depicted in Fig. 4.1, whereas Fig. 4.2 shows the classical
FEM assembly of the global arrays from the element matrices. Once the global matrix is
obtained, boundary conditions are applied by the penalty method in the present work.

4.3 Mass matrix

As discussed in Section 3.1, the virtual variation of the inertial work is given by

δLine =

∫
V
δuTρ üs dV (4.21)
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Figure 4.1: Derivation of the element stiffness matrix from the fundamental nucleus
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Figure 4.2: Classical FEM assembly procedure of element matrices

Retrieving the 1D CUF FE approximation of the displacement field (Eq. (4.3)), it is easy
to demonstrate that

δLine = δqTτi

(∫
L
NiNj dy

∫
Ω
ρFτFs dΩ

)
q̈sj = δqTτi

(
EρτsJijI

)
q̈sj (4.22)

where I is a 3× 3 identity matrix and Eρτs has been defined in Eq. (3.8). The terms into
brackets in Eq. (4.22) represent the fundamental nucleus of the FE mass matrix Mτsij ,
which is clearly diagonal.

Mτsij = EρτsJijI (4.23)

The derivation of the global mass matrix is completely analogous to the stiffness assembly
discussed in the previous section.

4.3.1 Localized inertia

In the present thesis, the effect due to non-structural masses is also investigated (see [124]).
Localized inertia can in principle be arbitrarily placed into the 3D domain of the beam
structure. In the framework of CUF, this is easily realized by adding the following term
to the fundamental nucleus of the mass matrix:

mτsij = I
(
Fτ (xm, zm)Fs(xm, zm)Ni(ym)Nj(ym)

)
m̃ (4.24)
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where m̃ is the value of the non-structural mass, which is applied at point (xm, ym, zm).

4.4 Loading vector

The loadings vector that is variationally coherent to the hierarchical model can be derived
with relative ease in the case of a generic concentrated load F acting on the application
point (xp, yp, zp),

F =
{
Fx Fy Fz

}T
(4.25)

Any other loading conditions, such as line and surface loads, can be similarly treated. The
virtual work due to F is

δLext = δuTF (4.26)

After using Eq. (4.3), Eq. (4.26) becomes

δLext = δqTτiFτNiF = δqTτiP
τi (4.27)

where Fτ and Ni are evaluated in (xp, zp) and yp, respectively. The last equation allows
the identification of the components of the nucleus that have to be loaded; i.e., it allows
the proper assembling of the loading vector by detecting the displacement variables that
have to be loaded.

4.4.1 Inertial loads

In this thesis, the special case of inertial loads (see [124, 45, 46]) has been considered; e.g.,
for gust response analysis in Chapter 7. When using classical beam theories, translational
as well as rotational acceleration are usually applied with respect to the reference axis -
or with respect to the shear axis if transverse stresses are also included. The derivation
of the FEM loading vector due to generic accelerations in the framework of CUF models,
which are opportunely able to take into account the effects due to 3D distributions of
inertial loads, is described hereinafter. Let the following acceleration field be applied to
the structure:

ü0(x, y, z) =
{
üx0 üy0 üz0

}T
(4.28)

The virtual variation of the external work, δLext, due to the acceleration field ü0 is given
by:

δLext =

∫
V
δuTρ ü0 dV (4.29)

Equation (4.3) is substituted into Eq. (4.29). It reads:

δLext = δqTτi

(∫
L
NiNj dy

∫
Ω
ρFτFs dΩ

)
q̈sj0 (4.30)

where the term between square brackets is the fundamental nucleus of the mass matrix
Mτsij . The virtual variation of the external work is therefore written as

δLext = δqTτi Mτsij q̈sj0 = δqTτiP
τi
ine (4.31)

where Piτ
ine is the nucleus of the loading vector due to the given acceleration field.
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Chapter 5

Component-wise

The analysis of multi-component structures, such as aircraft frames, generally requires the
adoption and the coupling of various mathematical models, even in the framework of finite
element method. As a consequence, artificial techniques are usually involved to connect,
for example, 1D and 2D finite elements. This may result in numerical and physical un-
certainties, especially if higher-order models are employed. In this chapter, two innovative
approaches are presented. The component-wise approach, which is based on LE, exploits
the natural capability of Lagrange polynomials to be assembled on the beam cross-section.
Multi-line approach, on the other hand, is based on 1D TE finite elements, which are
placed on different beam axes and connected together at boundaries via Lagrange multipli-
ers method.

5.1 Multi-component structures

Most of the engineering structures are composed of different components, which are com-
monly characterized by different scales and geometries in order to accomplish the technical
requisites. In the structural analysis and design of wings, for example, each component
(i.e. ribs, stringers, panels, etc.) is commonly modelled through different elements (beams,
shells, or solids). For instance, by considering a simplified wing-box (see Fig. 5.1), stringers
are usually considered as beams, whereas panels and ribs are modelled with 2D plate el-
ements in modern analysis techniques. If necessary, 3D elasticity elements could be also

Components

Reinforced-shell
structure

Panel

Stringer

Rib

Figure 5.1: Multi-component structure
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TE model:
N=1 (9 DOFs)
...
N=3 (30 DOFs)
...

�

�

�

�

LE model,
1x1 L4 discretization
(12 DOFs)

LE model,
1x2 L4 discretization
(18 DOFs)

LE model,
2x2 L4 discretization
(27 DOF)

Figure 5.2: Differences between the TE and LE models

used for stringers or both stringers and panels. The choice of the models to involve in the
mathematical formulation of the whole structure is part of the knowledge and expertise of
the structural analysts.

Other examples of multi-component structures are composites, which are composed of
laminae, fibres, core, and matrix; civil engineering structures, which are made of columns,
floors, walls, etc.; and naval engineering structures, which are very similar to aerospace
ones.

5.2 Component-Wise (CW) approach

The refined TE models described in Chapter 2 are characterised by degrees of freedom
(displacements and N-order derivatives of displacements) with a correspondence to the
axis of the beam (see Fig. 5.2). As already mentioned, the CUF expansion can also be
made by using only pure displacement values, e.g. by using Lagrange polynomials. The
resulting LE can be used for the whole cross-section or can be introduced by dividing the
cross-section into various sub-domains (see Fig. 5.2). The resulting approach is referred to
as Component-Wise (CW) because Lagrange elements are used to model the displacement
variables in each structural component at the cross-sectional level. This characteristic
allows us to separately model, for instance, stringers and panels in aerospace structures
design. In the present work, CW has been developed in the framework of FEM (see
Chapter 4) and it is briefly discussed below.

The CW approach when applied to the two-stringer spar of Fig. 5.3a is discussed as
an example. Figure 5.3b shows a possible CW model of the spar where each component
is modelled via one 1D LE element. Each LE element is then assembled above the cross-
section to obtain the global stiffness matrix based on the 1D formulation. Since panels
could not be reasonably modelled via a 1D formulation, 1D CW models can be refined by
using several L-elements for one component. This aspect is shown in Fig. 5.3c, where the
panel is modelled via two 1D LE elements. In the case of the wing structures, as considered
in this thesis, LE expansions are adopted for each wing section component (spars, stringer,
panels), including ribs. This methodology allows us to tune the capabilities of the model
by (1) choosing which component requires a more detailed model; (2) setting the order of
the structural model to be used.

One of the primary advantages of the CW approach is that the FE mathematical
models can be built by using only real boundaries; artificial lines (beam axes) and surfaces
(plate/shell reference surfaces) are no longer used. Up to now, this result could only
be obtained using solid finite elements. Moreover, thanks to the CW approach, each
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(a) Two-stringer spar
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(b) Each of the two stringers
and the panel are modelled with
one LE 1D element
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z
y
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z y
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z
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(c) The panel is modelled with
two 1D LE elements

Figure 5.3: Component-wise approach through LE elements

component of the structure is described by means of the same 1D model (i.e. the same
FE arrays) and artifices to coupled model with different closures (e.g. beams and shell
elements) are avoided.

5.3 Multi-Line (ML)

Considerable efforts have been made during the research activities in order to allow TE
models to efficiently address multi-component structures. In fact, since the generalised
unknowns are placed on the beam axis in the case of TE CUF models, the solution by high
expansion orders N may become increasingly inaccurate as the distance from the reference
axis of the beam increases when complex cross-sections are considered. Moreover, it may
be desirable to tune the model order for each structural component.

To address these challenges, Multi-Line (ML) beam models have been introduced. In
the ML beam modelling approach, a slender body is discretized by means of multiple
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Higer-order beam
elements

Interface
boundary

(a)

Global Stiffness Matrix K

Beam-lines Stiffness Matrices

(b)

Figure 5.4: Multi-line approach for the analysis of slender bodies (a) and assembly of the
global stiffness matrix (b)

beam axes that are placed in different regions over the problem domain. Different-order
refined beam elements can be adopted for each beam-line in ML models. Then, once each
beam axis has been discretized with 1D elements, Lagrange multipliers are used to impose
constraints on displacement variables at a number of connecting points at the interface
boundaries between each beam-line. The number of beam-lines and the order of the beam
elements used to discretize each beam-line, as well as the number and the location of
connecting points at the boundary interfaces, are all parameters of the ML model.

5.3.1 Lagrange multipliers

The method of Lagrange multipliers provides the stationary conditions of a constrained
functional. The application of Lagrange multipliers to CUF has recently been introduced
in [42], where Lagrange multipliers are used to implement higher-order 1D models with
variable kinematic field along the beam axis. A more generic discussion of the Lagrange
multipliers method can be found in [58, 149], whereas Zienkiewicz and Taylor [179] show
the use of multipliers in FEM for contact and tied interfaces, for multibody coupling and
to avoid the necessity of C1 continuity for the problem of thin plates.

In the present thesis, Lagrange multipliers are used to implement ML models. In
Fig. 5.4a a slender structure discretized by two different beam axes is shown. Higher-order
elements of arbitrary order are placed on each beam-line, which separately describes a
given sub-region of the whole structure. Lagrange multipliers are then used to impose
compatibility on displacement variables at a number of connecting points at the interface
boundary between beam-lines.

If we consider two points, 1 and 2, sharing the same position on the interface boundary,
the Lagrangian that has to be added to the original problem in order to impose the equality
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5.3. Multi-Line (ML)

of displacements is

Π = λT
(
u1 − u2

)
(5.1)

where u1 and u2 are the displacements of points 1 and 2, respectively. Points 1 and
2 belong to different beam-lines. λ is the vector containing the Lagrange multipliers.
Equation (5.1) is rewritten in terms of CUF with the help of Eq. (4.3).

Π = λTBq (5.2)

where the fundamental nucleus of the matrix B is

Bτi =
(
F 1
τN

1
i − F 2

τN
2
i

)
I (5.3)

I is the identity matrix with dimensions 3 × 3. F 1
τN

1
i and F 2

τN
2
i are the products of

the cross-sectional functions of Eq. (2.12) and the shape functions along the beam axis
computed at points 1 and 2, respectively. The superscripts ”1” and ”2” also denote the
fact that, generally, different beam axes can be modeled with different beam theories and
discretized with different FE meshes. More details about the use of multipliers in refined
beam theories can be found in [42].

The solution of the problem is given by finding q and λ from the following linear
system: 

Kq +
∂Π

∂q
= P

∂Π

∂λ
= u

(5.4)

where P is the loadings vector and u is equal to 0 for homogeneous conditions. K is
the global stiffness matrix. K is built by assembling the stiffness matrices of each beam-
line - which are computed according to the previous chapter - as shown in Fig. 5.4b.
Equation (5.4) is rewritten using Eq. (5.2). In a matrix form it reads[

K BT

B 0

] [
q
λ

]
=

[
F
0

]
(5.5)

The use of the multipliers method offers many advantages. However, the main disadvan-
tage of its use in structural problems is that the matrix of Eq. (5.5) is not, in general,
positive definite.

5.3.2 ML models for the analysis of composites

ML models have demonstrated enhanced capabilities also in the analysis of composite
structures [37]. In a ML framework, in fact, each layer of the composite laminate is
modelled by one or more TE beam lines, each having its own properties and kinematic.
The resulting methodology mimics layer-wise models, both in terms of idea and accuracy.

39



40



Chapter 6

Aeroelastic Model

Aeroelasticity plays a critical role in the design of modern aerospace vehicles. Among
others, flutter is a catastrophic aeroelastic phenomenon that must be avoided at all costs.
In this chapter, an unsteady aerodynamic model based on the vortex and doublet lattice
methods is briefly described. The aeroelastic stability problem is therefore formulated and
solved with particular reference to the g-method. The attention is focused on the capability
of the presented methodology to be applied to both FE and strong formulations of 1D refined
CUF models.

6.1 Hypotheses

A continuation of the work initiated in [126] - where CUF FE models were coupled with
an unsteady aerodynamic formulation based on panel methods for flutter analyses - has
been carried out during the research activities described in this thesis. In particular, the
DSM CUF formulation (see Chapter 3) has been coupled with the aeroelastic model in the
present work. Therefore, a brief description of the adopted aerodynamic and aeroelastic
theories are described hereinafter for the sake of completeness.

According to [126, 128, 127, 123], the formulation described here is limited to planar
lifting surfaces and subsonic incompressible flows. Moreover, the following hypotheses
hold:

1. Lifting surfaces are modeled as infinitely thin sheets of discrete singularities (vortices
and doublets).

2. Viscosity is neglected.

3. Boundary conditions (namely the non-penetration condition) are imposed on a num-
ber of control points placed on a mean surface.

4. A system of linear algebraic equations is solved to determine singularity strengths.

5. Thickness effect is ignored.

6.2 Oscillating lifting surfaces

The fundamental equation that, for a given oscillating surface, relates normalwash veloci-
ties to pressure jumps in different points of the surface is provided in the following. This
equation is derived from the linear aerodynamic potential equation, whose comprehensive
description can be found in [16].
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Chapter 6. Aeroelastic Model

A notation that uses non-dimensional quantities is adopted. If ω is the frequency, W
is the normalwash perpendicular to an oscillating surface, and ∆P the pressure jump, the
following relations can be written:

w =
W

V∞
; ∆p =

∆P
1
2ρ∞V

2
∞

(6.1)

Where V∞ is the free-stream velocity and ρ∞ is the air density. In the case of harmonic
motion,

w = w eiωt; ∆p = ∆p eiωt (6.2)

Following [110] or [2], the normalwash in a point with coordinates x, y due to the pulsating
pressure jump ∆p in the point ξ, η has the following expression:

w =
1

8π

∫
A

∆p K (x0, y0, ω,M) dA (6.3)

where M is the Mach number and

x0 = x− ξ; y0 = y − η (6.4)

The formal expression of the kernel function, K (x0, y0, ω,M), is not reported here for the
sake of brevity; it can be found in [110]. Equation (6.3) can be numerically solved by
means of the Doublet Lattice Method (DLM). However, as it will be clear later in this
chapter, the steady part of the normalwash is calculated via the Vortex Lattice Method
(VLM) (see [136]), which is briefly introduced in the next section.

6.2.1 Vortex Lattice Method (VLM)

In the framework of panel methods, such as VLM and DLM, a lifting surface is discretized
into a number of panels. The key equation of the VLM is the following: named V i

j the
velocity on the panel i (at the control point P iC) induced by the vortices of the sending
panel j, the influence coefficients are defined as

aΓ
ij = Vi T

j · ni (6.5)

where ni is the unit vector orthogonal to panel i.
The wall tangency condition has to be imposed for all panels of all surfaces. Considering

the assumption that the freestream velocity, V∞, is direct along +x, for the panel i the
wall tangency condition is

aΓ
i1Γ1 + aΓ

i2Γ2 + aΓ
i3Γ3 + ...+ aΓ

iNΓN + V∞
(
iT · ni

)
= 0 (6.6)

where Γ1, Γ2, ..., ΓN are the circulations of the sending panels, and i is the unit vector
parallel to the x axis. Assuming small perturbations, the following simplification holds:

iT · ni = −dZi loc

dx
(6.7)

where Zi loc is the vertical displacement of the receiving panel i at the correspondent
control point, which is located at the center of the panel’s three-quarter chord line. It is
easy to realize that dZi loc

dx is equal to the normalized normalwash at panel i, wi. Hence,
Eq. (6.6) can be formulated as

aΓ
i1Γ1 + aΓ

i2Γ2 + aΓ
i3Γ3 + ...+ aΓ

iNΓN = V∞wi (6.8)
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6.2. Oscillating lifting surfaces

The un-dimensional pressure jump, ∆pj , at the j-th sending panel is retrieved into the
formulation by recalling the following relation:

Γj =
1

2
V∞∆xj∆pj (6.9)

where ∆xj is the length of the panel j in the streamwise direction. Therefore, the final
form of the wall tangency condition at panel i reads

1

2
∆x1a

Γ
i1∆p1 +

1

2
∆x2a

Γ
i2∆p2 +

1

2
∆x3a

Γ
i3∆p3 + ...+

1

2
∆xNa

Γ
iN∆pN = wi (6.10)

Equation (6.10) allows one to evaluate the steady contribution to the normalwash at panel
i. For further details about VLM, the reader is referred to [103].

6.2.2 Quartic Doublet Lattice Method (DLM)

According to Rodden et al. [136], Eq. (6.3) is reduced into the following linear system of
equations:

wi =

NAP∑
j=1

Dij∆pj (6.11)

where Dij are the normalwash factors and NAP is the number of aerodynamic panels. Dij

is given by

Dij = D0ij +D1ij (6.12)

where D0ij is the stationary part calculated by means of VLM. According to Eq. (6.10),
D0ij is expressed as

D0ij =
1

2
∆xja

Γ
ij (6.13)

On the other hand, by following Rodden et al. [136], D1ij is

D1ij =
∆xj
8π

∫ +ej

−ej

Q1 (η̂j)

r2
dη̂j (6.14)

where η̂j is the local spanwise coordinate in the plane of the sender panel j; ej is the
semi-length of the j-th panel along the η̂j direction; r is the cylindrical radius from the
sending doublet; and Q1 (η̂j) is the quartic approximation to kernel operator, i.e.

Q1 (η̂j) = A1η̂
2
j +B1η̂j + C1 +D1η̂

3
j + E1η̂

4
j ≈

(
e−

iωx0
V∞ K1 −K10

)
T1 (6.15)

In order to calculate the coefficients A1, B1,..., the polynomial function is imposed to be
equal to the approximated function on the right-hand side, where K1 is a factor in the
numerator of the kernel andK10 the correspondent steady contribution. It is therefore clear
that this condition shall be imposed in five points for each sending panel j. The points
are placed in the following positions: inboard, inboard intermediate, center, out-board
intermediate and outboard. However, the five coefficients A1, B1,..., are not given here for
the sake of brevity, but they can be found in [136, 126]. Nevertheless, the expression of
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Chapter 6. Aeroelastic Model

D1ij is provided as follows:

D1ij =
∆xj
8π

{[
ŷ 2
i A1 + ŷiB1 + C1 + ŷ 3

i D1 + ŷ 4
i E1

]
F

+

[
ŷiA1 +

1

2
B1 +

3

2
ŷ 2
i D1 + 2 ŷ 3

i E1

]
ln

(ŷi − ej)2

(ŷi + ej)
2

+ 2 ej

[
A1 + 2 ŷi D1 +

(
3ŷ 2
i +

1

3
e2
j

)
E1

]} (6.16)

where ŷi is the coordinate of the receiving point relative to the midpoint of the sending
panel, and F is the Hadamard’s finite part (see [135]).

6.3 Unsteady aeroelastic analysis

Under the assumptions of linear potential aerodynamics, it is justified to consider only the
displacement components perpendicular to the lifting surfaces. In this work, the references
surfaces are considered with null initial angle of attack and null dihedral angle. Moreover,
according to [60], these surfaces are discretized by means of the following guidelines: (i)
the local x axis of an aerodynamic lifting surface is always the global x-axis direction of the
flow; (ii) each aerodynamic reference surface is divided into strips of panels; (iii) low-order
modeling is used, in which each panel has a load point (it is the point at the center of the
panel’s quarter chord line) and a control point. The locations of these points are the same
for both the vortex and the doublet lattice methods.

6.3.1 Modal shapes and boundary conditions

The unsteady aeroelastic analysis is carried out by considering a set of modal shapes as
generalized motions for the unsteady aerodynamic generalized force generation. Each set
of modal shapes, φm, can be considered as a displacement vector defined on a set of
points above the structure. Slopes and displacements at control and load points of the
aerodynamic panels are then given by

∂Z
∂x

= A · φm (6.17)

Z̃ = Ã
? · φm (6.18)

Z = A? · φm (6.19)

where Z̃ and Z are the displacements at load and control points, respectively. A, Ã
?
,

and A? are computed through the Infinite Plate Spline (IPS), see [88]. For the sake of
brevity, the explicit expressions of these matrices are not reported here, they can be found
in [60]. IPS was chosen in order to better exploit the shell-like capabilities of the present
1D structural formulation, as shown by Varello et al. [163].

Under the assumption of simple harmonic motion, it is possible to demonstrate that the
vector that contains the dimensionless normalwash of all panels included in wing surface
has the following expression (the boundary condition is enforced on all control points of
wing surface):

wm = i
ω

V∞
Z +

∂Z
∂x

(6.20)
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6.3. Unsteady aeroelastic analysis

where all the vector quantities have to be understood as vectors of amplitudes of the
harmonic motion and i is the imaginary unit.

6.3.2 The g-method

The generalized aerodynamic matrix for a given reduced frequency (k) is given by

Qij(ik) =

NAP∑
N=1

∆pNj (ik) Z̃Ni AN (6.21)

where

� k = ωb/L, b is the reference length (equal to the half of the reference chord) and L
is the length of the structure.

� ∆pNj (ik) is the pressure jump due to the j-th set of motions, acting on the N -th
aerodynamic panel and evaluated for a given reduced frequency. The computation
of the pressure jump is performed by means of the DLM.

� Z̃Ni is the i-th motion set evaluated at the N -th aerodynamic panel. Starting from
the i-th modal shape given by a structural formulation, the i-th motion set is then
mapped on the aerodynamic panels by means of the splining process.

� AN is the area of the N -th panel.

Q(ik) is a square matrix with Nmodes×Nmodes elements, where Nmodes indicates the total
number of natural modes adopted. Typically, Nmodes ranges from 10 to 20.

The g-method was introduced by Chen [55] and it is based on a damping perturbation
technique and a first-order model of the damping term. Its derivation exploits the aero-
dynamics in the Laplace domain and can be found in [55]. The basic assumption of the
g-method is based on the following approximation of the generalized aerodynamic matrix:

Q̃(p) ≈ Q̃
∗
(ik) + gQ̃

∗′
(ik), for g � 1 (6.22)

where p is the nondimensional Laplace parameter ( p = g + ik ), g = γk and γ is the
transient decay rate coefficient. Equation (6.22) leads to the g-method equation of the
aeroelastic problem[(

V∞
b

)2

M̃ p2 + K̃− 1

2
ρV 2
∞Q̃

∗′
(ik) g − 1

2
ρV 2
∞Q̃

∗
(ik)

]
q(p) = 0 (6.23)

where the contribution of the structural damping has been neglected and M̃ and K̃ are
the generalized mass and stiffness matrices, respectively (see Section 6.4).

The generalized aerodynamic matrix, Q̃
∗
(ik), is provided by the unsteady aerodynamic

model (DLM) in the frequency domain. Q̃
∗
(ik) is then obtained for a given number of

k values and the computation of Q̃
∗′

(ik) has to be performed numerically. A central
difference scheme can be used, for example. Three new matrices are introduced,

A =
(
V∞
b

)2
M̃

B = 2ik
(
V∞
b

)2
M̃− 1

2ρV
2
∞Q̃

∗′
(ik)

C = −k2
(
V∞
b

)2
M̃ + K̃− 1

2ρV
2
∞Q̃

∗
(ik)

(6.24)
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Equation (6.23) therefore becomes[
g2A + gB + C

]
q = 0 (6.25)

This is a second-order linear system in g; the g-method targets to find those solutions
having =(g) = 0. Equation (6.25) is rewritten in the state-space form,

[D− gI] X = 0 (6.26)

where

D =

[
0 I

−A−1C −A−1B

]
(6.27)

A so-called reduced-frequency-sweep technique is adopted to find the solution having =(g) =
0; i.e.

� a range of k values is chosen, along with a step ∆k;

� at each step i, the eigenvalues of D are computed for ki = ki−1 + ∆k;

� a sign change of the imaginary part of each eigenvalue is searched for;

� if the sign change occurs AND <(g) > 0, the reduced flutter frequency will be
computed by means of a linear interpolation.

Once k is found, the flutter frequency ωf and damping are given by:

ωf = k (V∞/b) (6.28)

γ = 2 ζ =
2 <(g)

k
(6.29)

6.4 Generalized mass and stiffness matrices

The generalized mass matrix is given by:

M̃ = φT M φ (6.30)

Where

� φ is a matrix containing a given number of modal shapes, dimension: NDOF×Nmodes.
NDOF is the total number of DOFs of the structural model.

� M is the mass matrix of the structure, dimension: NDOF×NDOF .

M̃ is a square diagonal matrix with Nmodes×Nmodes elements.
In the case of FEM, the evaluation of M is straightforward (see Section 4.3). On the

other hand, in the case of DSM (Section 3.2), matrix M can be computed as follows:

M =
K−K(ωi)

ω2
i

(6.31)

where K is the (“static”) structural matrix and it is evaluated as the DS matrix of
Eq. (3.36), K, at null frequency. ωi is the oscillatory frequency associated to the i-th
modal shape.

Similarly, the generalized stiffness matrix is a square diagonal (Nmodes×Nmodes) matrix.
Both in the case of FEM and DSM it is given by

K̃ii = ω2
i M̃ii (6.32)
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Chapter 7

Discrete Gust Response

Gust loadings can affect different aspects of the aircraft’s operation, such as its dynamic
load, flight stability and safety, and control. In this chapter, simplified discrete gust re-
sponse is discussed. First, basic ideas and formulas about vertical gust are given. The
one-minus-cosine discrete gust idealization is then introduced and the corresponding time
dependent incremental load factor is obtained. Next, in the second part of this chapter, the
mode superposition method is described and used as an effective means for the solution of
the linear, time-domain dynamic problem.

7.1 Vertical gust

Gusts loads, whether due to discrete gusts or continuous turbulence, are generally con-
sidered to be the result of a change in angle of attack due to a component of the gust
velocity (U). In the case of vertical gust, such as the one depicted in Fig. 7.1, the change
in angle of attack (∆α), in radians, is approximately equal to the gust velocity divided by
the forward speed (V∞) of the aircraft; i.e.

∆α ≈ U

V∞
(7.1)

V
¥

U
Resultant

Figure 7.1: Vertical gust

The change in lift due to the gust is

∆L =
ρ∞
2
V 2
∞SCLα∆α (7.2)

where
ρ

2
V 2
∞ is the dynamic pressure, ρ∞ being the air density; S is the reference wing

area; and CLα is the lift curve slope. Equation (7.1) is substituted into Eq. (7.2). It reads

∆L =
ρ∞
2
V 2
∞SCLα

U

V∞
=
ρ∞
2
UV∞SCLα (7.3)
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Chapter 7. Discrete Gust Response

Dividing by the airplane weight W , one has the incremental load factor ∆n

∆n =
∆L

W
=

ρ∞
2
UV∞(
W

CLαS

) (7.4)

7.2 One-minus-cosine discrete gust idealization

Gusts are random in nature and their profile tends to be continuous and irregular. Gen-
erally, when the profile is continuous, the gust structure is spoken of as turbulence. When
the gust structure consists of more or less isolated pulses, the single pulse is referred to as
a gust.

U0

x,t

U

Gradient distance (H)
or semi-duration (t /2)g

Figure 7.2: One-minus-cosine discrete gust idealization

The usual individual gust, or discrete gust, idealization of the gust structure consists
of a one-minus-cosine pulse as shown in Fig. 7.2. The one-minus-cosine pulse can be
either spatially distributed or temporarily distributed. In the former case, according to
the notation adopted in Fig. 7.2, one has

U(x) =
1

2
U0

(
1− cos2πx

2H

)
(7.5)

where H is the gust gradient distance and U0 is the design gust velocity. Analogously,
temporarily distributed gusts [150] can be expressed as follows:

U(t) =
1

2
U0

(
1− cos2πt

tg

)
(7.6)

where tg is the duration of the gust. In this latter case, by substituting Eq. (7.6) into
Eq. (7.4), the time-dependant incremental load factor is obtained

∆n =

ρ∞
2
U0V∞(
W

CLαS

) (1− cos2πt

tg

)
(7.7)

In this thesis, temporarily distributed gusts are addressed; hence, Eq. (7.7) is used to
formulate the time-dependant loadings to be used in dynamic response analyses.

Discrete gust dynamic analyses are generally superseded by the continuous turbulence
models [92]. However, it is well-known that aircraft companies perform dynamic discrete
gust analyses for their own information, in addition to the continuous turbulence analysis
on which primary reliance is based. The advantages of the discrete gust approach is the
easier visualization of how the airplane is responding and its ease of use.
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7.3. Solution of equations of motion in dynamic analysis

7.2.1 Effect of aeroelastic deformation on CLα

As the aircraft encounters a gust, the structure deforms in response to the forces developed.
As a consequence, the aerodynamic forces vary. In using the gust loads in Eq. (7.7), it is
reasonable to account for aeroelastic effects and use the appropriately modified value of
CLα . Generally, as the result of the bending deformation of classical swept-back wings,
the aeroelastic effects translate into a reduction in CLα . In fact, as the wing bends up,
a streamwise section will experience a greater deflection at the trailing edge than at the
leading edge, because the trailing edge corresponds to a more outboard location along the
wing structural axis. However, this aeroelastic phenomenon decreases as the sweep angle
of the wing becomes small and it is almost negligible for straight wings [92].

In a first approximation analysis, it can be reasonable to neglect the reduction of the
CLα due to aeroelasticity. This is the case of the simplified analyses conducted in the
present thesis.

7.3 Solution of equations of motion in dynamic analysis

The equilibrium governing equations of the linear dynamic response of a multi-DOFs
system can be expressed as follows [165]:

Mq̈(t) + Cq̇(t) + Kq(t) = P(t) (7.8)

where M, C, and K are the mass, damping, and stiffness matrices; q is the generalized
displacements vector; and P is the time-dependant loading vector that is calculated from
Eq. (7.7) in the case of gust response analysis (see Section 4.4.1 for the formulation of
inertial loads in the framework of CUF). The dot stands for derivative with respect to
time (t).

Equation (7.8) represents a system of linear differential equations of second order with
constant coefficient. In principle, the solution could be obtained by standard procedures
(see for example Section 3.2.1). Nevertheless, in practical dynamic response analysis, we
are interested in a few effective numerical methods, which can be subdivided into two main
categories: direct integration and mode superposition.

In direct integration methods (e.g., central difference, Houbolt, and Newmark meth-
ods), Eq. (7.8) is integrated using a numerical step-by-step procedure [12, 50]. The term
“direct” means that no transformation of the equations is performed prior to the numerical
integration. Direct integrations methods are very effective and largely used for both linear
and non-linear dynamic problems. However, large computational times may be required
and they could be affected by possible instability due to error growth. In this thesis, we
focus the attention on mode superposition method.

7.4 Mode superposition

We propose the following transformation on the n nodal1 generalized displacements in q:

q(t) = Tx(t) (7.9)

1Note that this procedure can be applied to all the numerical techniques described in this thesis (FEM,
DSM, RBFs, etc.).
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where T is a n × n matrix and x(t) is a time-dependent vector of order n. The trans-
formation matrix T must be non-singular (i.e. rank(T) = n) in order to have a unique
relation between any vectors q and x. In practice, an effective transformation matrix is
established using the solution of the un-damped free-vibration equations of motion, which
is reduced into a linear (e.g. in the case of FEM or RBFs, see Sections 4.1.2 and 3.3
respectively) or non-linear (in the case of DSM, see Section 3.2) eigenvalue problem by
assuming a harmonic solution. Briefly, the eigenproblem of the n-DOFs system under
consideration yields the n eigensolutions (ω2

1,Φ1), (ω2
2,Φ2), ..., (ω2

n,Φn), where Φi are the
M-orthonormalized eigenvectors (see Section 6.4) and ωi are the corresponding natural
frequencies (rad/s).

We define a matrix Φ whose columns are the eigenvectors Φi, and a diagonal matrix
Ω2 that stores the eigenvalues ω2

i

Φ = {Φ1,Φ2, ...,Φn} , Ω2 =


ω2

1

ω2
2

. . .

ω2
n

 (7.10)

Since the eigenvectors are M-orthogonal, we can demonstrate that

ΦTKΦ = Ω2, ΦTMΦ = I (7.11)

where I is the n× n identity matrix.
It is clear that matrix Φ would be a suitable transformation matrix T in Eq. (7.9)

q(t) = Φx(t) (7.12)

Hence, substituting Eq. (7.12) into the governing equations (Eq. (7.8)), pre-multiplying
each term by ΦT , and in light of the relations in Eq. (7.11) we obtain the equations of
motion that correspond to the modal generalized displacements

ẍ(t) + ΦTCΦẋ(t) + Ω2x(t) = ΦTP(t) (7.13)

The initial conditions on x(t) are obtained by using Eqs. (7.12) and (7.11)

x(0) = ΦTM q(0), ẋ(0) = ΦTM q̇(0) (7.14)

7.4.1 Analysis with damping neglected

Equation (7.13) shows that if the damping is not included into the analysis, the equations
of motion are decoupled. It reads

ẍ(t) + Ω2x(t) = ΦTP(t) (7.15)

Equation (7.15) represents a system of n individual equations of the form

ẍi(t) + ω2
i xi(t) = ri(t)
ri(t) = ΦiP(t)

}
i = 1,2, ..., n (7.16)

with initial conditions as defined in Eq. (7.14)
The solution of each equation in (7.16) can be derived, for example, by using the

Duhamel integral

xi(t) =
1

ωi

∫ t

0
ri(τ) sinωi(t− τ) dτ + αi sinωit+ βi cosωit (7.17)
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where αi and βi are derived from the initial conditions (Eq. (7.14)).
For a complete response, the solution to all n equations in (7.16) must be computed;

hence, q(t) is obtained by superposition of the response in each mode

q(t) =

n∑
i=1

Φixi(t) (7.18)

However, the essence of the mode superposition method is that, generally, only a small
fraction of the total number of decoupled equations needs to be considered in order to
obtain a good approximate solution. Most frequently, only the first m equations of motion
in (7.16) need to be used, with m � n. This means that we need to solve only for the
lowest m eigenvalues and corresponding eigenvectors of the free-vibration problem, and
we only sum in Eq. (7.18) the response in the first m modes. It reads:

qm(t) =
m∑
i=1

Φixi(t) (7.19)

where qm(t) approximates the exact solution q(t) of Eq. (7.18).

7.4.2 Analysis with damping included

In general, when damping is included into the analysis, Eq. (7.13) cannot be decomposed
into a system of decoupled equations. However, since generally the derivation of the
damping properties cannot be carried out explicitly but only approximately, it is reasonable
to use a damping matrix that allows an effective solution of the equations of motion and
still includes all required effects.

The mode superposition method is particularly effective when assuming a proportional
damping matrix of the form

ΦT
i CΦj = 2ωiξiδij (7.20)

where ξi is a modal damping parameter and δij is the Kronecker delta (δij = 1 for
i = j, δij = 0 otherwise). Equation (7.20) guarantees that the eigenvectors are also
C-orthonormal and Eq. (7.13) reduces into n decoupled equations as follows:

ẍi(t) + 2ωiξiẋi + ω2
i xi(t) = ri(t) (7.21)

where ri(t) and the initial conditions have already been defined in Eq. (7.16). Therefore,
the response can be calculated by evaluating the following Duhamel integral

xi(t) =
1

ωi

∫ t

0
ri(τ)e−ξiωi(t−τ) sinωi(t− τ) dτ + e−ξiωit (αi sinωit+ βi cosωit) (7.22)

where ωi = ωi

√
1− ξ2

i and αi and βi are calculated from the initial conditions (Eq. (7.14)).

A special case of proportional damping that satisfies Eq. (7.20) is the Rayleigh damping

C = αM + βK (7.23)

where α and β are constants. In this thesis, Rayleigh damping is used for some numer-
ical applications. For more details about dynamic response analysis and related solution
methodologies the reader is referred to [165, 12].
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Chapter 8

Computational Fluid-Dynamics by
CUF

Flow fields are described by the well-known Navier-Stokes equations, whose resolution is
extremely challenging in almost every real situation. The main difficulties are due to turbu-
lence and the mixing of different lengths it entails; accurate methods are therefore needed.
In this chapter, a new higher-order 1D model for the computational fluid-dynamics is in-
troduced. This model is formulated in the framework of CUF, which allows the physical
quantities involved in the problem to be approximated by arbitrary accuracies through the
use of generic polynomial expansions. The hierarchical p-version FEM is then discussed
and used as an effective means to solve the related Galerkin formulation. Although the
present methodology is here applied to the simplified problem of Stokes flows, its enhanced
capabilities and efficiency is clear and provide confidence for future research in this direc-
tion.

8.1 Preface and notation

We consider the basic fluid mechanics of laminar, incompressible flows with constant (high)
viscosity. This part of the thesis is due to the outstanding work initiated in [160], where
CUF models were extended to Computational Fluid-Dynamics (CFD). In the research
activities carried out in the present thesis, the previous work has been extended to include
the p-version of FEM as approximation numerical technique. This extension is discussed
hereinafter, together with a brief description of the Stokes equations and related 1D CUF
approximation.

x

z

y
W

GS

Figure 8.1: Computational domain Ω
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Chapter 8. Computational Fluid-Dynamics by CUF

We mainly consider 1D flows, namely pipe flows. The computational domain, con-
sidered fixed, is therefore assumed in a Cartesian coordinate system and having a ge-
ometry such as the one depicted in Fig. 8.1. In this chapter, we denote with Ω the
three-dimensional volume domain in order to adopt the same notation as used in reference
texts. Ω is usually called computational domain or control volume. It is bounded, and its
bounding surface is denoted by ∂Ω, whereas Γ is the symbol used to refer to a generic
surface (two-dimensional) in the domain. The outwardly oriented unit vector normal to
the boundary ∂Ω is indicated with n.

8.2 Stokes equations

The Navier-Stokes equations leads to a non-linear set of ordinary differential equations
because of the presence of the convective term (see [131]). This makes both the analysis
and the numerical solution more difficult. However, when the fluid is highly viscous, the
contribution of the non-linear convective term may be neglected.

Let the Reynolds number Re to be defined as follows:

Re =
|U| D
ν

(8.1)

where D is a representative dimension of the domain Ω (e.g., the length of a tube wherein
the fluid flow is studied); U is a representative fluid velocity (e.g., the free stream velocity);
ν = µ/ρ is the kinematic viscosity [m2/s]; and µ is the dynamic viscosity [kg/(ms)].
The Reynolds number measures the extent at which convection dominates over diffusion.
When Re � 1 the convective term can be omitted, and the Navier-Stokes equations for
incompressible flows with constant viscosity reduce to the so-called Stokes equations that,
in the case of mixed Dirichlet−Neumann homogeneous boundary conditions, holds



− ν∆u + ∇p = f in Ω

∇ • u = 0 in Ω

u = 0 on ΓD

ν
∂u

∂n
− pn = 0 on ΓN

(8.2)

where the first equation represents the momentum conservation equation, and the second
one represents the continuity equation. In Eq. (8.2), ΓD ⊂ ∂Ω is the domain boundary
where the Dirichlet (or prescribed) boundary conditions are imposed; ΓN ⊂ ∂Ω is the do-
main boundary where the Neumann (or applied stress) boundary conditions are imposed1;
u [m/s] is the velocity vector; p [m2/s2] is the pressure scaled with respect to density;
and f [N/kg = m/s2] is the vector of body forces (per mass unit) applied to the fluid.
From Eq. (8.2), it is clear that the derivative with respect to time has also been neglected
from Navier-Stokes equations. In fact, a Stokes flow is steady and has no dependence on
time other than through time-dependent boundary conditions. For more details about the
Navier-Stokes equations and the Stokes problem, the reader is referred to [131].

1It is intended that ΓD ∪ ΓN = ∂Ω.

54



8.2. Stokes equations

8.2.1 Weak formulation of the Stokes equations

The weak form of Stokes equations is formally obtained by taking the scalar product of
the momentum equations with a vector function v (called test function) belonging to a
suitable functional space V (called test function space), integrating over the computational
domain Ω and applying the Green integration formula. Similarly, the continuity equation
is multiplied by a scalar test function q belonging to a suitable test functional space Q and
integrated over the computational domain Ω.

The momentum conservation equation for the Stokes problem multiplied by a test
function v and integrated over Ω is:∫

Ω

[
− ν∆u • v + ∇p • v

]
dΩ =

∫
Ω

f • v dΩ (8.3)

By using the Green formula for the Laplacian operator and after some mathematical
passages (see [160]), Eq. (8.3) becomes∫

Ω
ν∇u :∇v dΩ −

∫
Ω
p∇ • v dΩ =

∫
∂Ω

(
ν
∂u

∂n
− pn

)
• v dΓ +

∫
Ω

f • v dΩ (8.4)

∀v ∈ V . The term ∇u :∇v in Eq. (8.4) is

∇u :∇v = tr
(
∇uT ∇v

)
(8.5)

where the symbol tr stands for the trace of a square matrix.

The mass conservation of the Stokes equation (second expression in Eq. 8.2) multiplied
by a test function q, belonging to a suitable functional space Q, and integrated over Ω is:

−
∫

Ω
q∇ • u dΩ = 0 (8.6)

∀ q ∈ Q. It should be noted that the negative sign in Eq. (8.6) has been included only for
the sake of convenience.

Nonhomogeneous boundary conditions

In the more general case of mixed Dirichlet−Neumann nonhomogeneous boundary condi-
tions; i.e.,  u = gD on ΓD

ν
∂u

∂n
− pn = tN on ΓN

(8.7)

the weak form of the Stokes equations is

∫
Ω
ν∇u :∇v dΩ −

∫
Ω
p∇ • v dΩ =

∫
∂Ω

(
ν
∂u

∂n
− pn

)
• v dΓ +∫

Ω
f • v dΩ ∀v ∈ V

−
∫

Ω
q∇ • u dΩ = 0 ∀ q ∈ Q

(8.8)
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Homogeneous boundary conditions

When mixed Dirichlet−Neumann homogeneous boundary conditions are considered, the
corresponding weak form can be seen as a particular case of Eq. (8.8). In fact, the integral
term on the boundary ∂Ω in Eq. (8.8) can be expressed as a summation of two integrals
over ΓD and ΓN . On the other hand, the test function space V is chosen in such a way
that the test functions v vanish over ΓD. It is therefore straightforward to demonstrate
that, in the case of homogeneous boundary conditions,∫

∂Ω

(
ν
∂u

∂n
− pn

)
• v dΓ = 0 (8.9)

Hence, the weak form of the Stokes problem with mixed Dirichlet−Neumann homogeneous
boundary conditions in Eq. (8.2) is

∫
Ω
ν∇u :∇v dΩ −

∫
Ω
p∇ • v dΩ =

∫
Ω

f • v dΩ ∀v ∈ V

−
∫

Ω
q∇ • u dΩ = 0 ∀ q ∈ Q

(8.10)

8.2.2 Galerkin approximation

The Galerkin approximation of the Stokes problem in Eq. (8.10) has the following form:

Find uh ∈ Vh, ph ∈ Qh such that
∫

Ω
ν∇uh :∇vh dΩ −

∫
Ω
ph∇ • vh dΩ =

∫
Ω

f • vh dΩ ∀vh ∈ Vh

−
∫

Ω
qh∇ • uh dΩ = 0 ∀ qh ∈ Qh

(8.11)

Let the bilinear forms a : V × V → R and b : V ×Q→ R to be now defined as follows:

a (u, v) =

∫
Ω
ν∇u :∇v dΩ (8.12)

b (u, q) = −
∫

Ω
q∇ • u dΩ (8.13)

With this notation, the Galerkin approximation of the Stokes equation reads

Find uh ∈ Vh, ph ∈ Qh such that{
a (uh, vh) + b (vh, ph) = (f , vh) ∀vh ∈ Vh

b (uh, qh) = 0 ∀ qh ∈ Qh

(8.14)

where Vh ⊂ V andQh ⊂ Q represent two families of finite dimensional subspaces depending
on a real positive discretization parameter h.
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8.3 One-dimensional CUF models for Stokes flows

Several types of flows in nature can be considered as mono-dimensional, e.g. flows in
arteries and pipes. It is, therefore, reasonable to approximate the fluid mechanics equations
via 1D models. Nevertheless, simplified models cannot account for higher-order phenomena
and refined models may be necessary.

1D CUF models introduced in Chapter 2 are here used along with FEM to approximate
the Galerkin formulation of the Stokes equations. The attention is focused on TE models
and on the hierarchical capabilities of CUF, which enables one to automatically formulate
higher-order 1D models able to provide very accurate results with low computational
efforts.

8.3.1 Velocity and pressure field approximations

According to CUF, the velocity field uh is assumed to be an expansion of generic functions
FUτ on the cross-section (ΓS in Fig. 8.1) of the 1D domain; i.e.

uh (x, y, z) = FUτ (x, z) uτ (y), τ = 1, . . . , MU (8.15)

where the repeated subscript τ indicates summation; MU is the number of terms in the
expansion, MU = (NU + 1)(NU + 2)/2; and NU is the theory expansion order, which
is a free parameter of the formulation. According to TE, in fact, the cross-sectional FUτ
functions consists here of MacLaurin polynomials of order NU as detailed in Section 2.2.1.
The choice of cross-sectional functions in the framework of CUF is arbitrary although.

Similarly, the discrete pressure field ph is assumed to be an expansion on the cross-
section ΓS by generic functions FPm

ph (x, y, z) = FPm (x, z) pm (y) m = 1, . . . , MP (8.16)

where m indicates summation; MP is the number of terms used in the expansion, MP =
(NP + 1)(NP + 2)/2; and FPm are MacLaurin polynomials of order NP . It is noteworthy
that, in general, NU must not be necessarily equal to NP .

FEM discretization

The generalized velocity and pressure quantities, uτ (y) and pm, are discretized by FEM
along the longitudinal axis. By following Chapter 4, one has

uτ (y) = NU
i (y) q τi, i = 1, . . . , pU + 1 (8.17)

pm (y) = NP
t (y) pmt, i = 1, . . . , pP + 1 (8.18)

where i and t represent summation; q τi and pmt are the nodal velocity and pressure
unknowns, respectively; pU is the order of the 1D FEM element used to discretize the
velocity field; and pP is the order of the 1D FEM element used to discretize the pressure
scalar field.

The shape functions NU
i and NP

t can be arbitrary and in general different. In this thesis
both Lagrange (see Eqs. (4.4) to (4.6)) and Legendre-like hierarchical shape functions have
been used for the approximation of the fluid-dynamics problem. The latter shape functions
result in the well-known p-version FEM (see [152]), which essentially exploit the following
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one-dimensional shape functions:

N1 = 1
2(1− r)

N2 = 1
2(1 + r)

Ni = φi−1(r), i = 3,4, ..., p+ 1

(8.19)

with

φj(r) =

√
2j− 1

2

∫ r

−1
Lj−1(y) dy

=
1√

4j− 2

(
Lj(r)− Lj−2(r)

)
, j = 2,3, ...

(8.20)

where N1, N2,..., Np+1 are either NU
i or NP

t shape functions; p is either pU or pP ; and Lj(r)
are the Legendre polynomials [152]. These shape functions are attractive in computational
mechanics because of the orthogonality property of the Legendre polynomials.

Combining the FE approximation in Eqs. (8.17) and (8.18) with CUF (Eqs. (8.15)
and (8.16)), the final expressions of the approximated velocity and pressure fields by the
present 1D higher-order model hold

uh (x, y, z) = FUτ (x, z)NU
i (y) q τi, τ = 1, . . . , MU i = 1, . . . , pU + 1 (8.21)

ph (x, y, z) = FPm (x, z)NP
t (y) pmt, m = 1, . . . , MP t = 1, . . . , pP + 1 (8.22)

8.3.2 CFD fundamental nuclei

According to 1D CUF, the generic discrete test functions vh ∈ Vh and qh ∈ Qh are
approximated in a manner equivalent to Eqs. (8.21) and (8.22), respectively. It is sufficient,
therefore, that the Galerkin approximation in Eq. (8.11) is verified for each function of
the basis of Vh and Qh, because all the functions in the space Vh and Qh are a linear
combination of the basis functions (see [19, 131]). Hence, the solution of the Galerkin
approximation in the framework of CUF comes from the following system of equations:

Find uh ∈ Vh, ph ∈ Qh such that{
a (uh, ϕτie) + b (ϕτie, ph) = (f , ϕτie) ∀ τ, ∀ i, ∀ e

b (uh, φmt) = 0 ∀m, ∀ t

(8.23)

with τ = 1, . . . , MU , i = 1, . . . , pU + 1, e = 1, . . . , 3, m = 1, . . . , MP , t = 1, . . . , pP + 1.
The index e refers to the three components of the velocity field, and

ϕτie (x, y, z) =


δ1e F

U
τ (x, z)NU

i (y)

δ2e F
U
τ (x, z)NU

i (y)

δ3e F
U
τ (x, z)NU

i (y)

 (8.24)

where δie = 1 if e = i, 0 otherwise. Similarly

φmt (x, y, z) = FPm (x, z)NP
t (y) (8.25)

For the sake of convenience, indexes s (instead of τ) and j (instead of i) are introduced
into Eq. (8.23) for the CUF approximation of the discrete solution uh (see Eq. (8.21)).
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After extensive mathematical manipulations (see [160]), Eq. (8.23) becomes the following
system of algebraic equations: Aτ sij qsj + Bτmit T pmt = Fτi

Bmstj qsj = 0
(8.26)

where Aτ sij is the fundamental nucleus related to the bilinear form a (uh, ϕτie) of the
1D CUF model;

Aτ sij =

[
ν

∫
L
NU
i N

U
j dy

∫
ΓS

FUτ,x F
U
s,x dΓ + ν

∫
L
NU
i,yN

U
j,y dy

∫
ΓS

FUτ FUs dΓ +

ν

∫
L
NU
i N

U
j dy

∫
ΓS

FUτ,z F
U
s,z dΓ

]
I

(8.27)

Bτmit T is the fundamental nucleus of the bilinear form b (ϕτie, ph);

Bτmit T =



−
∫
L
NU
i N

P
t dy

∫
ΓS

FUτ,x F
P
m dΓ

−
∫
L
NU
i,yN

P
t dy

∫
ΓS

FUτ FPm dΓ

−
∫
L
NU
i N

P
t dy

∫
ΓS

FUτ,z F
P
m dΓ


(8.28)

Bmstj is the fundamental nucleus of the the bilinear form b (uh, φmt);

Bmstj =



−
∫
L
NP
t N

U
j dy

∫
ΓS

FPm FUs,x dΓ

−
∫
L
NP
t N

U
j,y dy

∫
ΓS

FPm FUs dΓ

−
∫
L
NP
t N

U
j dy

∫
ΓS

FPm FUs,z dΓ



T

(8.29)

and Fτi is the fundamental nucleus related to the term (f , ϕτie).

Fτi =

∫
Ω
FUτ NU

i f dΩ (8.30)

In Eq. (8.27), I is the 3× 3 identity matrix.
Similarly to CUF models for elasticity, the mathematical expressions of the nuclei are

formally independent of the theory orders (NU and NP ) and on the FEM shape functions
(pU and pP ). The fundamental nuclei above have to be expanded on the indexes τ , s, m,
i, j, and t. This expansion leads to the construction of the elemental FE arrays associated
to the Galerkin approximation of the Stokes problem. The expansion is carried out by
following a scheme very similar to the one described in Section 4.2 and Fig. 4.1. Assembling
all the finite elements, the final system of equations is formulated as{

A q + BTp = F

B q = 0
(8.31)

It is interesting to note the following relation between the nuclei of the matrices BT and
B:

Bmstj T = Bτmit (8.32)

which is formally true aside from the use of different indices.
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8.4 Boundary conditions

Equation (8.31) does not include boundary conditions prescribed on the boundaries. A
typical problem considered in this thesis is shown in Fig. 8.2, where the boundary surface
∂Ω of a tube are divided into inlet, outlet and lateral surfaces, namely ∂Ω = Γ in ∪ Γout ∪
Γ l. Subscripts in Fig. 8.2 indicate that either Dirichlet (D) or Neumann (N) boundary
conditions are applied.

x

z

y

GD

in

GN

out

GD

l

Figure 8.2: Pipe with circular cross-section

Regarding homogeneous Neumann boundary conditions2, they are implicitly satisfied
by the solution of the problem in Eq. (8.31). On the other hand, the imposition of Dirichlet
boundary conditions requires the involvement of some mathematical passages. Briefly, let
the generic Dirichlet boundary condition be defined as follows:

u|ΓD = gD (8.33)

where gD is an arbitrary known function and ΓD is either a generic cross-section of the
tube (e.g. Γ in

D ) or the lateral surface Γ l
D. Equation (8.33) is imposed by formulating the

correspondent Galerkin approximation; i.e.,

Find uh ∈ Vh such that∫
ΓD

uh • vh dΓ =

∫
ΓD

gD • vh dΓ ∀vh ∈ Vh
(8.34)

By substituting CUF and FEM approximation into Eq. (8.34), the imposition of the Dirich-
let boundary condition is written in terms of fundamental nuclei as in the following linear
system:

Aτ sij
BC qsj = Fτi

BC (8.35)

In the case of boundary condition applied on a tube cross-section, the fundamental nuclei
are

Aτ sij
BC =

[
NU
i (yg)N

U
j (yg)

∫
ΓD

FUτ FUs dΓ

]
I (8.36)

Fτi
BC = NU

i (yg)

∫
ΓD

FUτ gD dΓ (8.37)

2Nonhomogeneous Neumann boundary conditions are not considered in this thesis.
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where yg is the coordinate along y of the cross-section where the condition is imposed. In
the case of boundary condition applied on Γ l

D, the fundamental nuclei are

Aτ sij
BC =

[∫
L
NU
i N

U
j dy

∫
γS

FUτ FUs dγ

]
I (8.38)

Fτi
BC =

∫
ΓD

NU
i F

U
τ gD dΓ (8.39)

where γS is the contour of the cross-section.
The nuclei of the Dirichlet boundary conditions have to be expanded according to the

summation indexes, assembled, and then imposed to Eq. (8.31) by penalization method;
i.e., {

[A + αABC ] q + BTp = [F + αFBC ]

B q = 0
(8.40)

where α is a high penalty value. Equation (8.40) represents the final algebraic system
of equations to be solved. For further details about the CUF formulation of the Stokes
problem, the reader is referred to [160].
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Chapter 9

Numerical Results

Selected analyses and results are discussed in this chapter. In the first part, the proposed
structural CUF models are assessed. Both strong and weak form solutions for free vibra-
tions of beams are provided. Multi-line and component-wise analyses of simple and complex
structures, including composite materials, are subsequently presented. In the second part,
flutter instabilities and gust response of various aircraft structures are discussed. Finally,
CUF models for fluid-dynamics are validated. The attention is focused on the capability
of the proposed methodology to carry out enhanced analyses of complex problems with very
low computational efforts.

9.1 Comparison of FEM, DSM and RBFs for free vibrations

The strong form solutions for free vibrations of classical and refined CUF 1D models as
discussed in Chapter 3 are assessed in this section. Both solid and thin-walled metallic
structures as well as a composite laminate are considered. Results by RBFs and DSM
methods are compared to FEM approximations of CUF models and of those available in
commercial codes and in the literature. Further results can be found in [119, 121, 120, 38,
122]. The attention is focused on the accuracy of the diverse numerical methods adopted
and on the higher-order capabilities of the TE CUF models.

9.1.1 Rectangular cross-section beam

A beam with a solid rectangular cross-section such as the one shown in Fig. 9.1 is considered
first. For illustrative purposes, it is assumed that the beam has a square cross-section
(a = b), with b = 0.2 m and length L such that L/b = 10. The material data are: Young
modulus, E = 75 GPa, Poisson ratio, ν = 0.33, material density, ρ = 2700 kg/m3.

x
z

b

a

Figure 9.1: Solid rectangular cross-section
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No. Elem. p EBBM TBM N = 1 N = 2 N = 3 N = 4

I Bending mode
FEM

10 1 2.873 2.842 2.842 2.847 2.843 2.843
20 1 2.846 2.816 2.816 2.818 2.813 2.813
40 1 2.840 2.809 2.809 2.810 2.806 2.806
10 2 2.838 2.807 2.807 2.808 2.803 2.803
20 2 2.838 2.807 2.807 2.808 2.803 2.803

DSM
2.838 2.807 2.807 2.808 2.803 2.803

II Bending mode
FEM

10 1 11.775 11.292 11.292 11.378 11.304 11.304
20 1 11.350 10.904 10.904 10.931 10.864 10.863
40 1 11.247 10.810 10.810 10.823 10.758 10.757
10 2 11.216 10.782 10.782 10.791 10.726 10.725
20 2 11.213 10.779 10.779 10.788 10.723 10.722
40 2 11.213 10.779 10.779 10.787 10.723 10.722
10 3 11.213 10.779 10.779 10.787 10.723 10.722

DSM
11.213 10.779 10.779 10.787 10.723 10.722

III Bending mode
FEM

10 1 27.587 25.209 25.209 25.611 25.266 25.260
20 1 25.409 23.409 23.409 23.526 23.245 23.241
40 1 24.905 22.988 22.988 23.042 22.775 22.771
10 2 24.777 22.881 22.881 22.916 22.653 22.649
20 2 24.743 22.852 22.852 22.886 22.623 22.619
40 2 24.740 22.850 22.850 22.884 22.621 22.617
10 3 24.740 22.850 22.850 22.884 22.621 22.617
20 3 24.740 22.849 22.849 22.884 22.621 22.617
40 3 24.740 22.849 22.849 22.884 22.621 22.617

DSM
24.742 22.849 22.849 22.884 22.621 22.617

IV Bending mode
FEM

10 1 51.823 44.543 44.543 45.676 44.680 44.647
20 1 44.865 39.400 39.400 39.707 38.995 38.975
40 1 43.339 38.236 38.237 38.371 37.713 37.697
10 2 43.038 38.006 38.005 38.097 37.448 37.432
20 2 42.860 37.868 37.868 37.950 37.309 37.292
40 2 42.848 37.859 37.859 37.940 37.300 37.283
10 3 42.849 37.860 37.860 37.941 37.301 37.284

DSM
42.853 37.858 37.858 37.939 37.298 37.282

Table 9.1: First to fourth non-dimensional bending frequencies ω∗ = ωL2

b

√
ρ
E for the SS

square beam; L/b = 10

Table 9.1 shows the first four bending natural frequencies in non-dimensional form

(ω∗ = ωL2

b

√
ρ
E ) for a simply-supported (SS) square beam using both DSM and FEM solu-

tions based on TE models. Higher-order TE finite elements by Lagrange shape functions
with 2, 3 and 4 nodes were used in the FEM solutions, or in other words, linear, quadratic

64



9.1. Comparison of FEM, DSM and RBFs for free vibrations

(a) (b) (c)

Figure 9.2: First (a), second (b) and third (c) bending modes for a SS square beam
(L/b = 10); DSM N = 4 TE model

Model I Bending II Bending I Torsional II Torsional

MSC Nastran model
Solid 1.016 6.088 8.852 26.516

Classical and refined TE, DSM solutions
N = 5 1.013 6.069 8.868 26.603
N = 4 1.013 6.070 8.871 26.619
N = 3 1.014 6.075 9.631 28.893
N = 2 1.015 6.107 9.631 28.893
TBM 1.008 6.069 -∗ -

Classical and refined TE, RBFs solutions
N = 5 1.011 6.075 8.872 26.605
N = 4 1.012 6.078 8.875 26.623
N = 3 1.013 6.081 9.634 28.895
N = 2 1.014 6.115 9.634 28.895
TBM 1.007 6.076 - -

*: not provided by the model

Table 9.2: Non-dimensional natural periods ω∗ = ωL2

b

√
ρ
E for the CF square beam; L/b =

10

and cubic approximations along the y-axis were adopted. Classical beam theories (TBM),
linear (N = 1), quadratic (N = 2), cubic (N = 3) and fourth-order (N = 4) TE models
are considered. It is clearly shown that, as far as FEM solutions of CUF higher-order
models are concerned, the number of beam elements that are necessary to obtain accurate
results - provided by the DSM - increases as natural frequencies as well as beam theory
order increase.

Figure 9.2 shows the first three bending modes of the beam with SS boundary con-
ditions obtained from the DSM analysis when using a N = 4 TE model. It should be
emphasized that DSM results are mesh independent and the mesh used in Fig. 9.2 is
merely a plotting grid for convenience.

One of the most important features of the DSM is that it provides exact solutions for
any kind of boundary conditions. Moreover, TE higher-order theories are able to take into
account several non-classical effects such as warping, in-plane deformations, shear effects
and bending-torsion couplings as demonstrated in [33]. In Table 9.2, the first two bending
modes and the first two torsional modes for a clamped-free (CF) short (L/b = 10) square
beam are shown. In this table, RBFs solutions of classical and higher-order TE models
are compared to exact solutions by DSM. RBFs results are obtained by considering 37
collocation points and a shape parameter c = 2.4

L . Results obtained by 3D FEM models
using MSC Nastran [113] are also shown in Table 9.2. The generic three-dimensional
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(a) (b)

(c) (d)

Figure 9.3: First bending (a), second bending (b), first torsional (c) and second torsional
(d) modes for a CF square cross-section beam (L/b = 10); DSM N = 5 TE model

FEM solution is herein referred to as “Solid”. In the results shown in Table 9.2, Solid
is built using 8-node CHEXA Nastran elements. Figure 9.3 shows some representative
modal shapes by DSM for the fifth-order TE model of the CF beam. Some comments are
relevant:

� According to 3D MSC Nastran solution, the present lower-order TE models are able
to characterize the bending behaviour of solid cross-section beams.

� DSM provides exact solutions. Although, FEM and RBFs methods give reliable
results when applied to CUF refined beam models of compact cross-section beams.

� A fourth-order (N = 4) TE model is necessary to correctly detect torsional frequen-
cies.

9.1.2 Thin-walled cylinder

A thin-walled cylinder is considered to further highlight the higher-order capabilities of
the present structural formulation. The cross-section geometry is shown in Fig. 9.4. The
cylinder has the outer diameter d equal to 2 m, thickness t = 0.02 m, and length L = 20
m. The structure is made of the same metallic material as in the previous example.

Table 9.3 shows the natural frequencies of the thin-walled cylinder for different bound-
ary conditions (BCs). In particular, free-free (FF), clamped-free (CF), clamped-clamped
(CC), as well as simply-supported (SS) ends are considered. Both classical TBM and

x
z

dt

Figure 9.4: Cross-section of the thin-walled cylinder
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9.1. Comparison of FEM, DSM and RBFs for free vibrations

BCs Model I Bending II Bending I Shell-like II Shell-like I Torsional II Torsional

SS Shell 13.978 51.366 14.913 22.917 80.415 160.810
N = 5, DSM 14.022 51.503 18.405 25.460 80.786 161.573
N = 5, RBFs 14.294 51.567 18.608 25.574 80.639 162.551
N = 3, DSM 14.022 51.520 34.935 61.300 80.787 161.572
N = 3, RBFs 14.295 51.583 35.049 61.353 80.847 161.712
TBM, DSM 14.182 53.542 -∗ - - -
TBM, RBFs 14.459 53.604 - - - -

CC Shell 28.498 68.960 17.396 30.225 80.415 160.810
N = 5, DSM 28.576 69.110 20.484 32.222 80.786 161.573
N = 5, RBFs 28.354 69.096 20.463 31.974 80.838 161.596
N = 3, DSM 28.605 69.199 38.690 70.333 80.787 161.572
N = 3, RBFs 28.259 68.921 38.889 70.056 80.838 161.596
TBM, DSM 30.302 76.443 - - - -
TBM, RBFs 30.435 76.489 - - - -

CF Shell 5.059 29.001 14.235 17.435 40.209 120.620
N = 5, DSM 5.076 29.088 17.805 20.580 40.394 121.181
N = 4, DSM 5.077 29.090 23.069 25.239 40.393 121.181
N = 4, RBFs 5.047 29.002 23.003 24.979 40.431 121.203
N = 3, DSM 5.079 29.104 26.882 49.252 40.393 121.181
N = 3, RBFs 5.059 28.953 26.934 49.356 40.431 121.203
TBM, DSM 5.108 30.237 - - - -
TBM, RBFs 5.060 30.312 - - - -

FF Shell 30.829 76.806 14.129 14.171 80.415 160.810
N = 5, DSM 30.932 77.041 17.709 17.777 80.788 161.576
N = 4, DSM 30.932 77.043 22.987 23.053 80.789 161.577
N = 4, RBFs 30.945 77.052 22.864 23.048 80.787 161.592
N = 3, DSM 30.935 77.090 22.987 34.700 80.789 161.576
N = 3, RBFs 31.121 77.099 23.043 34.678 80.787 161.592
TBM, DSM 31.338 80.275 - - - -
TBM, RBFs 31.341 80.286 - - - -

*: not provided by the model

Table 9.3: Natural frequencies (Hz) of the thin-walled cylinder for different boundary
conditions; Comparison of RBFs and DSM solutions

higher-order CUF beam models are shown in Table 9.3, where the results by the RBFs-
based method are compared to exact DSM higher-order TE beam models and MSC Nas-
tran 2D FE (Shell) solutions obtained by using CQUAD4 elements. In the case of RBFs,
a number of centers equal to 31 and a shape parameter c = 2.4

L were used. It is shown that
classical and lower-order beam models are able to capture bending and torsional modes,
whereas 1D higher-order theories are mandatory in order to detect local shell-like modes
in accordance with 2D solutions.

Figure 9.5 shows the percentage error between the present RBFs method and exact
reference solution from DSM. In Fig. 9.5 the first bending, torsional, and shell-like modes
for different expansion orders N and boundary conditions are considered. It is shown that,
for fixed values of the parameters c and number of centers n, bending and torsional modes
exhibit a good convergence for all the boundary conditions and theory order considered.
On the other hand, shell-like modes become instable if higher than fourth-order (N = 4)
models and CF or FF boundary conditions are examined. This is the reason why in
Table 9.3 only up to N = 4 models are considered for those boundary conditions in the
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Figure 9.5: Percentage error between the RBFs and exact DSM solutions for various
expansion orders and boundary conditions; Thin-walled cylinder

case of RBFs.

Figure 9.6 shows the important modes of the cylinder for CC boundary condition by
the fifth-order (N = 5) TE DSM model. The following comments arise:

� Only the flexural modes are provided by the classical beam theories.

� Torsional modes are correctly detected by the linear TE (N = 1) model in the case
of axisymmetric structures.

� 1D higher-order model are necessary to detect shell-like modes as evident from the
2D FEM solutions provided by MSC Nastran.

� Instabilities may occur in the case of RBFs when thin-walled structures are consid-
ered.

9.1.3 Four- and two-layer beams

The capabilities of the proposed methodology when applied to laminated composite struc-
tures is further verified. The beam has a square cross-section and a length-to-side ratio,
L/h, equal to 15 with h = 25.4 mm. The material adopted is a AS4/3501-6 graphite/epoxy
composite in accordance with [54].
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9.1. Comparison of FEM, DSM and RBFs for free vibrations

(a) (b)

(c) (d)

(e) (f)

Figure 9.6: First flexural (a), second flexural (b), first shell-like (c), second shell-like (d),
first torsional (e) and second torsional (f) modes for a CC thin-walled cylinder; DSM
N = 5 TE model

DSM RBFs References
TBM N = 2 N = 4 N = 6 TBM N = 2 N = 4 N = 6 Ref. [56] Ref. [53]

Mode 1a 1.993 2.112 1.987 1.962 1.993 2.123 1.995 1.976 1.845 1.981
Mode 2b 2.067 2.144 2.084 2.045 2.067 2.153 2.103 2.071 -∗ -
Mode 3a 5.261 5.577 5.188 5.134 5.261 5.579 5.206 5.164 4.987 5.217
Mode 4b 5.641 5.852 5.687 5.579 5.641 5.878 5.738 5.647 - -
Mode 5c -∗ 10.627 9.241 9.131 - 10.633 9.265 9.169 - -
Mode 6a 9.793 10.342 9.553 9.474 9.793 10.344 9.579 9.516 9.539 9.691
Mode 7b 10.898 11.319 10.990 10.782 10.898 11.369 11.089 10.920 - -
Mode 8a 15.278 16.088 14.756 14.663 15.278 16.088 14.785 14.719 13.474 10.535
Mode 9d 15.174 15.472 15.307 15.092 15.174 15.496 15.370 15.177 15.292 15.098
a: Flexural on plane yz; b: Flexural on plane xy; c: Torsional mode; d: Axial/shear (plane xz) mode
∗: Mode not provided by the theory

Table 9.4: Non-dimensional natural frequencies, ω∗ = ωL2

b

√
ρ
E11

, of a CC [+45/ − 45/ +

45/− 45] antisymmetric angle-ply beam

Table 9.4 shows the main non-dimensional natural periods (ω∗ = ωL2

b

√
ρ
E1

) for a

[+45/−45/+45/−45] antisymmetric angle-ply lamination scheme in the case of clamped-
clamped (CC) boundary conditions. The results by classical and refined beam theories
from the present CUF method by both DSM and RBFs are compared to those from the
literature. It is shown that higher-order effects can be detected if sufficiently enriched
kinematics are considered. In the case of RBFs solutions, a uniform grid of 40 centers
and a shape parameter c = 4× 10−3 were used. It is clear that torsional and coupled ax-
ial/shear modes are foreseen by the presents models if a sufficiently higher-order kinematics
is adopted.

To show the capability of the present models to deal with arbitrary laminations, Fig. 9.7
shows the effect of increasing the angle of orientation θ on the natural periods of two
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Figure 9.7: Effect of ply orientation angle on first flexural natural frequencies of two-layer
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Figure 9.8: Effect of material anisotropy on first flexural natural frequencies of angle-ply
and cross-ply CF beams; DSM N = 4 TE model versus [53]

lamination schemes [θ/ − θ] and [0/θ]. The present fourth-order (N = 4) CUF-DSM
model is compared to the solution available from [53], where a 1D FE model based on a
higher-order shear deformation theory was used.

Finally, Fig. 9.8 shows the effect of material anisotropy on fundamental frequencies.
Also for this analysis case, the results by the present N = 4 TE-DSM model are validated
with those from the literature. It is noted that in Fig. 9.8 the value of E1 is varied, whereas
the other elastic parameters are kept constant. It is clear that the angle-ply configuration
tends to lower the frequencies more rapidly than the cross-ply beam.

9.2 Analysis of thin-walled and composite structures by ML

The accuracy and efficiency of Multi-Line (ML) models presented in Chapter 5 are dis-
cussed in this section. The results are retrieved from [36, 37], where static analyses of
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x

z

h

w

t1

t2

B

A

Figure 9.9: I-section beam geometry and verification points

thin-walled and composite laminated beams were discussed.

9.2.1 I-section beam

A cantilever beam with a I-shaped cross-section such as the one shown in Fig. 9.9 is
considered. It is assumed that the beam has a height h = 100 mm and a width w =
96 mm. The length to height ratio, L/h, is 10. The thickness of the flanges is t1 = 8 mm,
whereas the thickness of the web is t2 = 5 mm. The material data are: elastic modulus
E = 200 GPa and Poisson ratio, ν, equal to 0.29. A vertical force Fz = −2000 N is applied
at point B (see Fig. 9.9) at the free end of the beam.

Table 9.5 shows the vertical displacements, uz, at the tip of the beam, at points A
and B, which are shown in Fig. 9.9. The number of the degrees of freedom (DOFs) is
also given for each model in Table 9.5. The results are compared with 3D (Solid) and
2D (Shell) FEM solutions obtained using the commercial code MSC Nastran. The Solid
model was constructed by using 8-node CHEXA elements having approximately a unitary
aspect ratio. On the other hand, the Shell model was obtained with 4-node CQUAD4
shell elements. The analytical result achieved through Euler-Bernoulli beam theory is also
given for comparison purposes, uzb = FzL3

3EI , where I is the cross-section moment of inertia.
The results by classical and refined CUF TE single-line models are shown in rows 6 to 15,
where up to eight-order (N = 8) beam models are considered. The last rows of Table 9.5
give the results by the Multi-Line (ML) models of the I-section beam.

Figure 9.10 shows the difference between the single-line and the present ML models. In
the single-line approach, 10 cubic Lagrange beam elements are placed on one beam axis.
Conversely, in the ML models of the I-shaped cross-section structure, three beam axes are
used. Specifically, one beam-line is placed on the web and one beam-line is placed on each
flange. 10 cubic Lagrange beam elements are used for each beam-line. Compatibility of
displacements is subsequently imposed at three points per beam node on the interfaces
between flanges and web through Lagrange multipliers (see Chapter 5). Unlikely the
problems discussed in [42] where the number of connecting points was chosen on the basis
of a convergence study, for the present ML models it was found that the convergence of
the solution is guarantee with a few connecting points. For this reason the attention is not
focused on this problem in the present example. The ML models of the I-section beam
are here referred to as MLNf ,Nw , where Nf is the expansion order of the beam elements
placed on beam-lines of the flanges and Nw is the expansion order of the beam elements
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−uzA (mm) −uzB (mm) DOFs

−uzb = FzL3

3EI = 0.951, mm
MSC Nastran models

Solid 0.956 2.316 355800
Shell 1.006 (2.437) 61000

Classical and refined single-line models
EBBM 0.951 0.951 93
TBM 0.964 0.964 155
N = 1 0.964 0.978 279
N = 2 0.956 0.978 558
N = 3 0.989 1.018 930
N = 4 0.989 1.287 1395
N = 5 0.993 1.481 1953
N = 6 0.992 1.462 2604
N = 7 0.997 1.560 3348
N = 8 0.997 1.851 4185

Multi-line models, MLNf ,Nw
Nf Nw

1 1 1.016 1.016 837
2 1 0.990 1.028 1116
2 2 0.951 1.940 1674
3 1 0.994 1.104 1488
3 2 0.950 1.984 2046
3 3 0.952 2.186 2790
4 1 0.983 1.201 1953
4 2 0.951 2.008 2511
4 3 0.954 2.197 3255
4 4 0.952 2.230 4185

Table 9.5: Vertical displacement at points A and B on the free end of the cantilever
I-section beam

Flanges

Web

(a) Single-line beam model

Beam
elements

Beam-lines

(b) Multi-line beam model

Figure 9.10: Single- and multi-line approaches to the analysis of the I-section beam

placed on the beam-line of the web.

Figure 9.11 shows the deformation of the free end of the beam. ML models are com-
pared to the eight-order single-line (N = 8) TE model and to the Solid model. Finally,
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9.2. Analysis of thin-walled and composite structures by ML

Figure 9.11: Tip cross-section deformation of the I-section beam

(a) ML2,1 (b) ML3,2 (c) ML4,3 (d) Solid

Figure 9.12: Normal stress distribution, σyy, at the clamped end of the I-section beam

Fig. 9.12 shows the distribution of axial stresses, σyy, at the clamped end for different
structural models. Based on these results the following comments can be made:

� Classical and lower-order single-line models cannot detect the cross-sectional distor-
sions due to the bending-torsional load according to MSC Nastran results.

� Lower-order elements can be effective when used in a ML approach. In fact, third-
order (ML3,3) and fourth-order (ML4,2, ML4,3, and ML4,4) ML models match Shell
and Solid solutions both in terms of displacement and stress fields.

� The number of the degrees of freedom of ML models is extremely reduced if compared
to MSC Nastran and single-line refined models.

9.2.2 Symmetric laminated beam

The analysis of a symmetric cross-ply [0 ◦/90 ◦/0 ◦] laminated cantilever beam is carried out
next. The beam is considered to be rectangular with width b and height h. The length-to-
height ratio is L/h = 4 . The three layers have the same thickness. The non-dimensional
proprieties of the adopted orthotropic material are

E1/E2 = 25 G12/G22 = 2.5 ν12 = ν22 = 0.33

The ML scheme adopted is depicted in Fig. 9.13, together with the loading condition.
The ML models addressed make use of three beam-lines. Two ML configurations are

considered: (1) in the first case a second-order (N = 2) expansion is used in the three
layers; (2) in the second case a third-order (N = 3) expansion is used in the top/bottom
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x

z y
q0

h

L

Figure 9.13: Symmetric laminated [0/90/0] beam and related ML model

Model u∗z −σ∗yy −σ∗zz DOFs

Multi-line models, ML
ML 2/2/2 17.69 32.72 1.01 1188
ML 3/2/3 17.83 25.69 1.03 1716

MSC Nastran model [29]
Solid 17.98 30.58 1.03 103920

Classical and higher-order ESL models [29]
N = 6 with ZZ 17.84 27.36 1.03 1914
N = 6 17.14 25.29 0.99 1848
N = 3 with ZZ 17.83 31.17 1.02 726
N = 3 16.76 28.38 1.04 660
TBM 14.02 36.52 0.00 110
EBBM 6.22 36.52 0.00 66

Table 9.6: Non-dimensional displacement at the tip and stress components, symmetric
cross-ply beam; σ∗yy at (b, 0, 0.867h) and σ∗zz at (b, L/2, 0)

layers, whereas a parabolic distribution on the cross-section is assumed in the central layer.
ML models of the symmetric laminated beam are referred to as MLα/β/γ, where α is the
expansion order of the beam discretizing the bottom layer, β is the expansion order of the
central layer, and γ is the expansion order of the top layer.

The results are shown in Table 9.6, where the non-dimensional vertical displacement
at the tip is given together with stress components. The results are non-dimensionalized
as follows:

u∗z = 100
bh3E2

q0L4
uz, σ∗ij =

σij
q0
, with i, j = x, y, z (9.1)

where L is the length of the beam, whereas b and h are the dimensions of the rectangular
cross-section. q0 is the intensity of the load uniformly distributed over the lower face of
the beam. In Table 9.6 the values of σ∗yy at (b, 0, 0.867h) and σ∗zz at (b, L/2, 0) are shown
(the verification points are measured from the bottom left corner). The last column of
Table 9.6 gives the number of the DOFs for each model considered. The results by ML
models are compared to classical and ESL (Equivalent Single Layer, i.e. single-line TE)
theories from [29] and to a solid FE model by MSC Nastran. For both ML and ESL beam
models, seven four-node Lagrange 1D elements were used along the beam axes.

ML analysis shows some convenience with respect to ESL, even though they are im-
proved through Zig-Zag (ZZ) Murakami functions. The stress distributions shown in
Fig. 9.14 confirm this conclusion, even if it is evident from the figure that ESL models
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(a) σyy at y = 0 (b) σyz at y = L
2

(c) σzz at y = L
2

Figure 9.14: Distribution of axial, σ∗yy, and transverse, σ∗yz and σ∗zz, stresses for the sym-
metric laminated beam

without through-the-thickness ZZ functions are not able to correctly detect transverse
stress trends. On the other hand, both ESL with ZZ and ML models are able to deal
with solid-like analysis with very low computational costs.

9.3 Analysis of aircraft structures by CW

The enhanced capabilities of CUF models when applied to aircraft structures are discussed
in this section. The attention is mainly focused on the Component-Wise (CW) 1D models
(see Chapter 5), which are able to reproduce 3D-like accuracy with very low computational
costs. Both static and free vibration analyses are proposed, ranging from simple wing box
to complex wing structures, including composites. Unless differently specified, all the CUF
models have been discretized by means of FEM and by using 10 four-node (cubic) Lagrange
1D elements that provided convergence for most of the cases considered. For more results
about aerospace structures by CW the reader is referred to [39, 40, 28, 46, 124, 45].

9.3.1 Static analysis of a trapezoidal wing box

The following analysis case is carried out on the three-bay wing box for which analyt-
ical solutions were given in Rivello’s book [134]. The considered structure is shown in
Fig. 9.15a, whereas Figs. 9.15b and c show its variations. These examples highlight the
capability of the present advanced 1D models to accurately describe the effects due to ribs
and open sections. The structures consist of three wing boxes each with a length, l, equal
to 0.5 m. The cross-section is a trapezium with height b = 1 m. The two webs of the spars
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Figure 9.15: Different structural configurations of the three-bay wing box

Full model No ribs case Open mid-bay case

uz × 102 (m) DOFs uz × 102 (m) DOFs uz × 102 (m) DOFs

MSC Nastran
Solid/Shell 1.412 100026 3.051 89400 1.963 89621

Classical beam theories
EBBM 0.464 495 0.464 495 0.464 495
TBM 0.477 495 0.477 495 0.477 495

TE-based refined models
N = 3 0.793 1650 0.794 1650 0.873 1650
N = 5 1.108 3465 1.203 3465 1.500 3465
N = 7 1.251 5940 2.158 5940 1.745 5940
N = 9 1.325 9075 2.649 9075 1.836 9075

LE-based refined models
CW 1.397 10750 2.981 10560 1.919 10446

Table 9.7: Displacement values, uz, at the loaded point and number of DOFs for the
considered structural configurations of the three-bay wing box

have a thickness of 1.6 × 10−3 m, whereas h1 = 0.16 m and h2 = 0.08 m. The top and
the bottom panels have a thickness of 0.8× 10−3 m, as well as the ribs. The area of each
stringer is As = 8 × 10−4 m2. The wing is completely made of an aluminium alloy 2024,
having G/E = 0.4. The cross-section in y = 0 is clamped and a point load, Fz = 20 kN,
is applied at (b, 2× l, h22 ).

Table 9.7 shows the vertical displacement values uz and the computational costs for
each model. Results related to the CUF models are validated by an MSC Nastran model
built both with solid (for stringers) and shell (for panels) FE elements and it is referred
to as “Solid/Shell”. The CW models were obtained by using both L4 and L9 elements on
the beam cross-section (see [39]).

Figures 9.16, 9.17 and 9.18 show the spanwise variation of the axial and the shear stress
components for the three different configurations. Results by the present CUF models and
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Figure 9.16: Stress components distribution along the wing span; Comparison of analytical,
MSC Nastran and CUF models of the full model of the three-bay wing box
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Figure 9.17: Stress components distribution along the wing span; Comparison of MSC Nas-
tran and CUF models of the three-bay wing box with no ribs

-50

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

σ y
y 

(M
P

a)

y (m)

NASTRAN
N=7

(a) Bottom right spar cap; σyy at x = b, z = −h2
2

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

σ y
z 

(M
P

a)

y (m)

NASTRAN
N=7
CW

(b) Rear spar; σyz at x = b, z = 0

Figure 9.18: Stress components distribution along the wing span; Comparison of MSC Nas-
tran and CUF models of the three-bay wing box with open mid-bay
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Full model No ribs case Open mid-bay case

Model σyy (MPa) σyz (MPa) σyy (MPa) σyz (MPa) σyy (MPa) σyz (MPa)

Solid/Shell 80.598 120.730 178.147 155.368 123.841 115.351
CW LE 80.404 120.603 177.018 151.876 118.684 115.810

Table 9.8: Stress components, σyy at (b, l2 , −
h2
2 ) and σyz at (b, l2 , 0), of the different

structural configurations of the three-bay wing box

MSC Nastran are compared to analytical solutions, which are retrieved from [134]. Those
analytical, classical solutions are referred to as BS (Beam Semimonocoque) and PS (Pure
Semimonocoque). In PS, stringers are considered as concentrated areas carrying only
axial stresses, while webs and panels carry only shearing stresses. In BS, beam theories
are also applied to PS assumptions (see [24, 39]); hence, structural redundancies can be
generally eliminated and the equilibrium can be determined by only using the equations of
the statics. In fact, the structure considered has three redundancies and the equilibrium
equations are not sufficient for PS. As in [24], the principle of virtual displacements is here
used to “correct” the BS solution. For the complete resolution of the trapezoidal wing box
the reader is referred to [134, Chap. 11 p. 301].

Table 9.8 finally reports the numerical values of the stress components of both CW
and comparison models. The following remarks can be made:

� CW models correctly predict ribs and local effects, as they match the results obtained
with solid/shell models.

� Higher than sixth-order TE models are required to correctly predict the cross-section
deformability.

� The PS method is quite accurate in the description of the full configuration of the
three-bay wing box. Conversely, the BS method is not suitable as the structure is
statically indeterminate.

9.3.2 Free vibrations of a complete NACA wing

The free vibration analysis of a cantilever, complete aircraft wing is further discussed.
The cross-section of the wing is shown in Fig. 9.19. The NACA 2415 airfoil was used and
two spar webs and four spar caps were added. The airfoil has the chord, c, equal to 1
m. The length, L, along the span direction is equal to 6 m. The thickness of each panel
is 3 × 10−3 m, whereas the thickness of the spar webs is 5 × 10−3 m. The dimensions
of the flanges of the longerons can be found in [40]. The whole structure is made of an
isotropic material. The material data are: the Young modulus, E, is equal to 75 GPa; the
Poisson ratio, ν, is 0.33; the density is ρ = 2700 kg/m3. For the present wing structure, two
different configurations have been considered. Configuration A has no transverse stiffening
members. In Configuration B the wing is divided into three equal bays, each separated by
a rib with a thickness of 6× 10−3 m.

X

Z

c

Figure 9.19: Cross-section of the wing
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9.3. Analysis of aircraft structures by CW

Table 9.9 shows the main modal frequencies of both structural configurations of the
wing. In this table, the results obtained through the CUF models are compared to those
from classical beam theories and to those from 3D MSC Nastran (Solid) models. In the
last two rows of Table 9.9, the frequencies of the first two shell-like modes are quoted.

EBBM TBM N = 1 N = 2 N = 3 CW Solid

Configuration A
DOFs 93 155 279 558 930 21312 186921

Global modes
I Bendingx

∗
4.22 4.22 4.22 4.29 4.26 4.23 4.21

I Bendingz 22.10 21.82 21.82 21.95 21.87 21.76 21.69
II Bendingx 26.44 26.36 26.36 26.66 26.25 25.15 24.78
I Torsional - - 132.93 50.27 48.46 31.14 29.18
III Bendingx 73.91 73.35 73.35 73.99 71.64 59.26 56.12
II Bendingz 134.66 124.68 124.68 124.99 122.77 118.39 118.00

Local modes
I Shell-like - - - - - 86.36 75.13
II Shell-like - - - - - 88.94 73.85

Configuration B
DOFs 84 140 252 504 840 23976 171321

Global modes
I Bendingx

∗
4.12 4.12 4.12 4.19 4.17 4.14 4.12

I Bendingz 21.56 21.30 21.30 21.50 21.42 21.28 21.22
II Bendingx 25.71 25.63 25.63 26.00 25.61 25.00 24.92
I Torsional - - 131.24 49.57 47.48 39.45 39.22
III Bendingx 71.44 70.90 70.90 71.80 69.49 64.84 63.88
II Bendingz 131.11 121.49 121.49 122.23 120.06 115.76 115.40

Local modes
I Shell-like - - - - - 85.61 75.01
II Shell-like - - - - - 91.54 78.61
∗ Bendingξ: bending mode about the ξ-axis

Table 9.9: Global and local modal frequencies (Hz) of the complete NACA aircraft wing

(a) Mode 10 (89.35 Hz) (b) Mode 26 (142.91 Hz)

Figure 9.20: Shell-like modes of the wing (Configuration A) evaluated with the CW model

To deal with complex structures, such as the one considered in this section, the CW
models were included into the commercial software MSC Nastran, which was used to solve
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Figure 9.21: Shell-like modes of the wing (Configuration A) evaluated with the CW model;
Mid-span cross-section
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Figure 9.22: Shell-like modes of the wing (Configuration A) evaluated with the Solid
model; Mid-span cross-section

the eigenvalue problem through DMAP alters, and MSC Patran was used for the post-
processing of the CW model of the wing. Two shell-like modes evaluated by means of the
CW model are shown in Fig. 9.20 for Configuration A.

To further underline the component-wise capability of the CW approach, in Figs. 9.21
and 9.22 the deformed mid-span cross-sections for different shell-like modes are plotted.
Moreover, the enhanced capabilities of the present methodology is definitely assessed by
the MAC matrix shown in Fig. 9.23, in which the CW eigenvectors are compared to those
from the 3D model. The MAC is, in fact, defined as a scalar representing the degree of
consistency (linearity) between one modal and another reference modal vector (see [3]) as
follows:

MACij =
|{φAi}T {φBj}|2

{φAi}T {φAi}{φBj}{φBj}T
(9.2)
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Figure 9.23: MAC values between the CW models and the Solid model; NACA aircraft
wing (Configuration A)
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z

xy

b

h

t

Figure 9.24: Cross-section of the laminated box beam

where {φAi} is the ith eigenvector of model A, while {φBj} is the jth eigenvector of model
B. The modal assurance criterion takes on values from zero (representing no consistent
correspondence), to one (representing a consistent correspondence). The following consid-
erations hold:

� The bending modes of the wing are correctly detected by both the lower-order and
higher-order TE models.

� At least a cubic expansion on the displacement field (TE, N = 3) is necessary to
correctly detect the torsional modes.

� The CW models match the 3D solutions; in fact, shell-like modes can be obtained
by means of CW beam elements.

� The computational effort of a higher-order beam model is significantly lower than
the ones requested by solid models.

9.3.3 Free vibrations of composite wing boxes

In this section a hollow rectangular cross-section laminated box beam is considered for
verification. Clamped-free boundary conditions are addressed. The same structure was
used for experimental [52] and analytical [5] investigations in previous works. The cross-
section geometry is shown in Fig. 9.24. The dimensions of the beam are as follows: length
L = 844.55 mm, height h = 13.6 mm, width b = 24.2 mm, and thickness t = 0.762 mm.
The box beam is made of six layers with the following orthotropic material properties:
E1 = 141.96 GPa, E2 = E3 = 9.79 GPa, ν12 = ν13 = 0.42, ν23 = 0.5, G12 = G13 = 6.0
GPa, G23 = 4.83 GPa, and ρ = 1445 kg/m3. The six layers have the same thickness. Dif-
ferent lamination schemes are considered for the box beam under consideration. Both CAS
(Circumferentially Asymmetric Stiffness) and CUS (Circumferentially Uniform Stiffness)
stacking sequences are addressed and they are detailed in Table 9.10.

Lay-up Flanges Webs
Top Bottom Left Right

CAS2 [30]6 [30]6 [30/− 30]3 [30/− 30]3
CAS3 [45]6 [45]6 [45/− 45]3 [45/− 45]3
CUS1 [15]6 [−15]6 [15]6 [−15]6
CUS2 [0/30]3 [0/− 30]3 [0/30]3 [0/− 30]3
CUS3 [0/45]3 [0/− 45]3 [0/45]3 [0/− 45]3

Table 9.10: Various stacking sequences of the box beam
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Lay-up Mode CW TE Exp. Analytical Shell
24 L9 TBM N=3 N=7 [52] [5] [87]

CAS2 1a 20.06 20.96 21.39 20.60 20.96 19.92 19.73
2b 38.21 41.76 40.51 39.42 38.06 −∗ 37.53
3a 125.44 131.01 133.76 128.71 128.36 124.73 123.32

CAS3 1a 14.75 15.00 15.24 14.69 16.67 14.69 14.58
2b 25.41 26.38 26.16 25.44 29.48 − 25.01
3a 92.35 93.88 95.44 94.83 96.15 92.02 91.23

CUS1 1a 29.51 32.36 30.29 29.19 28.66 28.67 28.37
CUS2 1a 34.69 35.09 34.91 34.61 30.66 34.23 34.29
CUS3 1a 33.03 33.11 33.10 33.01 30.00 32.75 32.35
a: Flexural on plane yz, b: Flexural on plane xy, ∗: Not provided

Table 9.11: Natural frequencies (Hz) for different stacking sequences of the laminated box
beam.

The values of the natural frequencies obtained from these box beam configurations are
listed in Table 9.11, where the results from the present LE/CW and TE models are com-
pared to those from the literature. In particular, TBM, the third- and the seventh-order
TE models as well as a LE model made with 24 L9 elements are compared to experimental
data [52], analytical solutions [5] and a 2D FE model (Shell) by ANSYS [87]. Regarding
the 24 L9 model, it was obtained by using one single L9 element per layer on each flange
and web. Both TE and CW models were discretized with 7 cubic (p = 3) Lagrange 1D
elements along the axis for this analysis case.

The following comments can be made:

� Classical TBM and lower-order TE models overestimate the natural frequencies of
the proposed composite box beam.

� The present beam formulations can deal with both CAS and CUS lay-up box beam
configurations. The results by the present CW and higher-order TE models are, in
fact, in good agreement with those from analytical solutions and experimental data.

� Unlike the theory by Armanios and Badir [5], the present beam models can deal with
bending modes in both yz- and xy-planes.

� Both CW and the seventh-order (N=7) TE models can detect the solution from a
2D shell FE model.

9.4 Application of CW models to civil engineering struc-
tures

During the research activities proposed in this thesis, the enhanced capabilities of the
CW methodology has been widely tested over a large range of structures, including civil
engineering structures. CW models for this kind of structures have been broadly discussed
in [43, 41]. In this section, multi-floor buildings are discussed as an example.

A single-floor flat (Configuration A, Fig. 9.25a) is considered first. This structure is
composed by one floor and four columns clamped to the ground. The main dimensions
are given in Fig. 9.25a and Fig. 9.26, where the cross-section of the floor is shown. As
it is clear from Fig. 9.26 the columns and the frames of the floor were made of Material
1, whose characteristics are E = 210 GPa, ν = 0.28, ρ = 7850 kg/m3. The internal part
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Figure 9.25: Multi-floor buildings

Configuration A Configuration B Configuration C

CW Solid CW Solid CW - coarse CW - finer Solid
(DOFs) (3396) (181875) (6300) (78975) (11592) (19548) (218286)
Mode 1 9.43b 8.79b 3.63b 3.07b 10.18b 9.97b 9.51b

Mode 2 9.43b 8.79b 3.63b 3.07b 10.20b 9.98b 10.04b

Mode 3 13.86t 12.44t 5.32t 4.22t 17.59t 17.26t 13.63t

Mode 4 23.07f 21.67f 10.64b 9.69b 21.72f 13.74f 16.18f

Mode 5 36.80f 36.66f 10.64b 9.69b 25.71f 15.45f 16.61f

Mode 6 36.80f 36.66f 15.60t 13.36t 27.59b 26.67b 24.78b

Mode 7 40.59f 37.59f 16.45b 16.42b 27.70b 26.69b 25.04b

Mode 8 72.41f 77.07f 16.45b 16.42b 32.11f 25.85f 28.48f

Mode 9 115.85c 84.49c 21.16f 20.54f 37.04f 26.88f 28.94f

b: bending mode; t: torsional mode; f : floor mode; c: column mode

Table 9.12: Natural frequencies (Hz) of multi-floor civil buildings

of the floor was made of Material 2, which is characterized by the following properties:
E = 48 GPa, ν = 0.28, ρ = 1570 kg/m3. The natural frequencies of this structure are
shown in columns 2 and 3 of Table 9.12. The results by the CW model are compared to
those by a MSC Nastran solid model, which is referred to as Solid. As far as the CW
model is concerned, the single-floor building was modeled as a beam whose axis lays along
the coordinate y (see Fig. 9.25a). The cross-section of the floor, which is defined on the
xz-plane, was discretized by means of 9 L9 elements (see [41]). One single L9 elements

Material 1

Material 2

20 cm

5 m

5 mz
x

Figure 9.26: Cross-section of the floor
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(a) Mode 1, CW (b) Mode 3, CW (c) Mode 4, CW (d) Mode 4, Solid

Figure 9.27: Modal shapes of multi-floor buildings; Configuration A

(a) Mode 3, CW (b) Mode 5, CW (c) Mode 9, CW (d) Mode 9, Solid

Figure 9.28: Modal shapes of multi-floor buildings; Configuration B

was used for each component (i.e. column, frame, etc.). Some representative modes by
the CW model and the Solid model of the structure under consideration are shown in
Fig. 9.27.

The natural frequencies of the three-floor building (Configuration B, Fig. 9.25b) are
also given in Table 9.12. The dimensions of the structure are shown in Fig. 9.25b and in
Fig. 9.26. The results in Table 9.12 suggest the high efficiency on the present CW models
in dealing with both global and local modes. Bending, torsional as well as local modes
involving the single components (e.g. floor and columns) are in fact detected in accordance
with the solid reference solution by MSC Nastran. This conclusion is also confirmed by

(a) Mode 1, CW (b) Mode 3, CW (c) Mode 4, CW (d) Mode 4, Solid

Figure 9.29: Modal shapes of multi-floor buildings; Configuration C
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Fig. 9.28, where some mode shapes of the three-floor building are shown.

A complete building (Configuration C) is considered as the last example and it is shown
in Fig. 9.25c. The supporting structure is the same as in the case of the three-floor building
(Configuration B) considered above, with the difference that walls, windows and a door
were added in Configuration C. Moreover, in this configuration case, the inner part of the
floors (see Fig. 9.26) and walls were made of a material with the following characteristics:
E = 2.1 GPa, ν = 0.28, ρ = 1570 kg/m3. The first nine natural frequencies are given
in columns 6, 7 and 8 of Table 9.12 and the results by two different CW models are
compared to a solid MSC Nastran model. The two CW models differ in the cross-sectional
distribution of the L-elements and more details can be found in [41]. The CW model with
a coarse mesh on the cross-section was mainly built with L4 elements. On the contrary, the
second CW model had a finer mesh and mainly L9 elements were used. The results in table
and the comparison of the modes shown in Fig. 9.29 finally demonstrate the effectiveness
of the proposed formulation even when applied to civil engineering structures.

9.5 Flutter analysis of flat-plate wings

Flutter analyses of isotropic and composite structures as discussed in [123] are proposed
in this section. Fig. 9.30 shows the notation adopted and the positive directions of sweep
and fiber orientation angles. An 8 × 30 aerodynamic mesh was exploited since this mesh
offers good accuracy as shown by Petrolo [128, 127]. The first ten natural modes were
used to build the generalized matrices according to Chapter 6.

9.5.1 Isotropic plate wing

An isotropic wing modeled as a flat plate is first considered. The investigated wing model
has the following characteristics: L = 305 mm, c = 76 mm, and thickness t = 1 mm.
The material is an aluminum alloy with elastic modulus E = 73.8 GPa, shear modulus
G = 27.6 GPa and density ρ = 2768 kg/m3. This model was retrieved from [106].

Table 9.13 shows the first three natural frequencies for a swept back configuration
(Λ = 30◦). Different beam models have been considered, classical (EBBM and TBM)
and higher-order TE (from N = 1 to N = 4). The results were obtained through the
CUF-DSM methodology (see Chapter 3) and they are compared with FEM results from
[128]. Bending and torsional modes were detected.

Table 9.14 shows the flutter velocity of the forward swept configuration (Λ = −30◦).
Again, the DSM are compared against FEM [128] and the influence of the beam model is
evaluated. The results from the classical and the linear (N = 1) models are not reported

"

!

L
c

Figure 9.30: Sweep and fiber orientation angles
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Model Method f1 f2 f3

EBBM FEM 8.967 56.192 157.335
DSM 8.968 56.191 157.336

TBM FEM 8.966 56.189 157.320
DSM 8.967 56.190 157.320

N = 1 FEM 8.966 56.185 157.308
DSM 8.965 56.186 157.308

N = 2 FEM 7.199 44.462 97.939∗

DSM 7.180 44.338 97.863∗

N = 3 FEM 7.125 43.778 74.316∗

DSM 7.105 43.654 74.412∗

N = 4 FEM 7.093 43.529 73.296∗

DSM 7.070 43.389 73.370∗

∗Torsional mode

Table 9.13: Effect of the TE expansion order (N) on the vibration frequencies (Hz) of the
isotropic plate wing by means of DSM and FEM; Λ = 30◦

Model Method Velocity (m/s)

N = 2 FEM 84.206
DSM 84.086

N = 3 FEM 59.202
DSM 59.366

N = 4 FEM 58.050
DSM 58.188

Table 9.14: Effect of the TE expansion order (N) on the flutter velocities of the isotropic
plate wing by means of DSM and FEM; Λ = −30◦

since no flutter conditions were detected by those models. In fact, as it is clear from
Table 9.13 and from previous analyses, the classical and the linear (N = 1) structural
models are not able to foresee torsion and coupling phenomena, which are fundamental in
flutter modelling.

The influence of the sweep angle on the flutter velocity is reported in Table 9.15. On
the other hand, the influence of the beam models on the flutter condition is shown in
Tables 9.16 and 9.17. Finally, Fig. 9.31 shows the damping and the frequency of the first
three modes versus the free-stream velocity of the swept back wing. From Fig. 9.31, it
is clear that flutter occurs as the damping crosses the zero-line and the first two modes
coalesce. The following comments stem from the results that were obtained for the isotropic
case:

� The 1D DSM results perfectly match the FEM solutions. Since in [128] the FEM
solutions by means of CUF 1D models were successfully compared against those
ones by 2D plate models [106], it can be stated that the present 1D DSM models
can detect flutter conditions of wings with plate-like accuracy.

� At least a third-order beam model (N = 3) is needed to have reliable flutter analyses.
This is due to the need of a proper description of torsion and of the bending-torsion
coupling to detect flutter conditions.
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9.5. Flutter analysis of flat-plate wings

Λ Method Velocity (m/s)

−30◦ FEM 58.050
DSM 58.186

−20◦ FEM 51.109
DSM 51.560

−10◦ FEM 46.029
DSM 46.371

0◦ FEM 68.406
DSM 68.523

10◦ FEM 64.262
DSM 64.506

20◦ FEM 60.684
DSM 59.130

30◦ FEM 57.339
DSM 57.216

Table 9.15: Flutter velocities of the isotropic plate wing for different sweep angles by
means of DSM and FEM; N = 4 TE model

Λ N = 2 N = 3 N = 4

−30◦ 84.086 59.366 58.188
−20◦ 64.769 51.559 51.559
−10◦ 49.676 46.210 46.371
0◦ 69.388 68.503 68.523
10◦ 65.441 64.305 64.506
20◦ 66.408 61.046 59.130
30◦ 70.145 57.747 57.216

Table 9.16: Effect of the expansion order (N) on the flutter velocity (m/s) of the isotropic
plate wing by means of DSM

Λ N = 2 N = 3 N = 4

−30◦ 64.773 52.181 51.668
−20◦ 61.616 56.737 56.581
−10◦ 62.020 59.816 59.746
0◦ 40.002 39.029 38.995
10◦ 38.362 37.361 37.352
20◦ 36.736 35.095 34.793
30◦ 34.156 31.887 31.616

Table 9.17: Effect of the expansion order (N) on the flutter frequency (Hz) of the isotropic
plate wing by means of DSM
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Figure 9.31: Frequency and damping vs free-stream velocity for the isotropic plate wing;
Λ = 30◦, DSM N = 4 TE model

� The N = 3 and N = 4 models provide similar results. This means that the conver-
gence to the exact solution with respect to the beam order is almost obtained.

� The N = 2 model provides reliable results for moderate or null sweep angles.

9.5.2 Composite plate wing

In the second analysis case, composite wing structures are considered. Composite plate
wing models were retrieved from [96] and from [94]. A graphite/epoxy composite material
with the following characteristics is used: E1 = 98.0 GPa, E2 = 7.90 GPa, G12 = 5.60
GPa, Poisson ratio ν = 0.28 and ρ = 1520 kg/m3. The length of the wing (L) is equal
to 305 mm and the chord (c) is equal to 76.2 mm. The total thickness of the laminate is
0.804 mm.

First, symmetric six-layer laminates with constant thickness layers are considered. The
plate wing is straight (Λ = 0◦). Table 9.18 shows the flutter velocities for various stacking
sequences and various beam models. The results from the present CUF DSM refined
elements were compared with those from CLT (Classical Laminate Theory) plate models
and with experimental results from the literature.

An eight-layer symmetric stacking sequence is then considered. The stacking sequence
is [−22.5/67.5/22.5/ − 67.5]s, whereas the thickness sequence is [0.09/0.12/0.16/0.63]s,
where each term indicates the thickness ratio of each ply with respect to the half of the
thickness of the laminate. For instance, the thickness of the first layer is the 9% of the half
thickness of the laminate. Two sweep angles are considered, Λ = 0◦ and Λ = 30◦. The
natural frequencies and the flutter velocities are given in Tables 9.19 and 9.20, in which
the results from the present variable order 1D DSM models are compared with those from
plate models and from experiments. Finally, the nodal lines of the first sixth mode shapes
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9.5. Flutter analysis of flat-plate wings

(a) Mode 1, 5.6 Hz (b) Mode 2, 34.2 Hz (c) Mode 3, 59.2 Hz

(d) Mode 4, 95.3 Hz (e) Mode 5, 180.1 Hz (f) Mode 6, 185.7 Hz

Figure 9.32: Mode shapes of the eight-layer swept (Λ = 30◦) plate wing; DSM N = 4 TE
model

of the swept wing (Λ = 30◦) via the N = 4 DSM beam model are shown in Fig. 9.32. The
flutter analyses of the composite wings confirm the previous conclusions and demonstrate
that the proposed method allows for accurate and efficient flutter analysis of both isotropic
and composite plate wings.

Stacking N = 2 N = 3 N = 4

[02/90]s
CLT, 23.0 EXP, 25 23.3 23.3 23.2

[45/− 45/0]s
CLT, 40.1 EXP, > 32 43.3 40.4 40.4

[452/0]s
CLT, 27.5 EXP, 28 32.5 26.9 26.7

[302/0]s
CLT, 27.1 EXP, 27 29.3 26.3 26.3

Table 9.18: Flutter velocities (m/s) for the six-layer straight plate wing; DSM CUF beams
vs CLT [96] and experimental [94] results
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Model f1 f2 f3 f4 f5 Vf
N = 2 7.4 46.1∗ 59.1 129.5∗ 182.7 38.2
N = 3 7.2 45.1∗ 59.1 126.5∗ 182.4 38.2
N = 4 7.2 45.0∗ 59.1 126.4∗ 182.3 38.1
CLT [96] 7.3 45.4∗ 59.1 127.7∗ 182.3 38.8
∗Torsional mode

Table 9.19: Natural frequencies (Hz) and flutter velocities (m/s) of an eight-layer straight
plate wing via different models

Model f1 f2 f3 f4 f5 Vf
N = 2 5.6 34.7 76.5∗ 97.5 193.3∗ 38.6
N = 3 5.6 34.4 60.1∗ 95.9 187.0∗ 31.5
N = 4 5.6 34.2 59.2∗ 95.3 180.1∗ 31.7
CLT [96] 5.6 34.4 60.0∗ 95.4 182.0∗ 32.4
∗Torsional mode

Table 9.20: Natural frequencies (Hz) and flutter velocities (m/s) of an eight-layer swept
(Λ = 30◦) plate wing via different models

9.6 Dynamic and gust response analyses

In this section, dynamic and gust response analyses of simple and complex structure are
discussed. The analyses are carried out according to Chapter 7 by using both TE and CW
CUF models. First a simple dynamic problem is considered to asses the mode superposition
method as an effective means to conduct time-history analyses. Discrete gust responses of
plate-like as well as complete wing structures are subsequently presented.

9.6.1 Square cross-section beam subjected to sinusoidal loading

A simply-supported square cross-section beam is considered in order to validate the mode
superposition method, which has been described in Chapter 7 for the solution of time-
domain dynamic problems.

Each side of the cross-section of the beam is equal to 0.1 m, whereas the span-to-
height ratio L/h is equal to 100. The structure is considered to be made of an aluminium
alloy with elastic modulus equal to E = 69 GPa, Poisson ratio ν = 0.33, and density
ρ = 2700 kg/m3. A single sinusoidal load, with amplitude Pz0 = −1000 N and angular
frequency ω = 7 rad/s, is applied at the mid-span section

Pz(t) = Pz0 sin(ωt) (9.3)

CUF models are discretized by FEM and 10 cubic (p = 3) Lagrange 1D elements are used
along the beam axis for the analysis under consideration.

The same problem was addressed by Carrera and Varello [50] by means of the New-
mark direct integration scheme. Analytical solutions are also provided in the following as
addressed in [165]. In order to be consistent with reference and analytical results, only
EBBM models are discussed as TE models. However, also a 1 L9 LE model is addressed
in order to demonstrate the versatility of the present mode superposition method.

Time-history of the transverse displacement uz at the mid-span section is shown in
Fig. 9.33. Only the first mode shape has been used for mode superposition and this ensure
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Figure 9.33: Vertical displacement at the mid-span cross section of the EBBM beam
subjected to sinusoidal load

a perfect agreement with reference results. However, more then one single mode shape
might be necessary for correct dynamic analyses in some cases, e.g. when (i) the loading
frequency is comparable or higher then the first natural frequency of the structure; (ii)
more then one mode participates to the dynamic response due to non-symmetrical loadings
or structural/material couplings. For this reason, converge analyses versus the number of
mode shapes to include into mode superposition analysis are necessary in most of the
problems of practical interest, such as discrete gusts analyses discussed in the following
sections.

9.6.2 Sweep angle effect on gust response of metallic plate wings

Discrete one-minus-cosine response of the same isotropic plate wing as considered in Sec-
tion 9.5.1 and in Pagani et al. [123] is addressed hereinafter. The aircraft is supposed flying
at altitude h = 3097.82 m (i.e., ρ∞ = 0.9 kg/m3) with speed V∞ = 15 m/s. The wing
loading is W/S = 40.77 kg/m2. At time t = 0, a vertical gust with amplitude U0 = 15 m/s
and duration tg = 0.4 s is encountered. The wing is supposed to fly at null incidence with
CLα = 2π rad−1. The following results are given in terms of displacement variations with
respect to equilibrium state. No structural damping is taken into consideration.

The Λ = 30◦ swept-back wing is considered first. DSM was used to calculate mode
shapes and natural frequencies of the wing structures to be used in conjunction with mode
superposition to conduct dynamic gust responses. From convergence analyses it was clear
that at least the first two mode shapes are necessary for mode superposition. Free vibration
results of the structure under consideration are given in Section 9.5.1. The necessity for
the adoption of refined models is clear from Fig. 9.34, where the vertical displacement
variation, ∆uz, of the trailing edge at the tip cross-section via various classical and higher-
order TE models is shown. Gust pulse profile is also shown in Fig. 9.34. In addition,
Fig. 9.35 further demonstrates the need for at least a fourth beam model (N = 4) for the
gust response of the 30◦ swept-back wing. In fact, the figure shows the bending torsional
coupling as the difference of the deflections of the leading and trailing edges.

The fourth order (N = 4) TE model is therefore used in the following analysis, which
is summarized in Fig. 9.36 where the effect of the sweep angle Λ on the time history
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Figure 9.34: Vertical displacement variation at the tip trailing edge for the Λ = 30◦

swept-back wing undergoing a gust load
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Figure 9.35: Vertical displacement variations of the leading and trailing edges at the tip
for the Λ = 30◦ swept-back wing undergoing a gust load; Fourth-order (N = 4) model

of the vertical displacements is shown. As expected, swept wings are more sensitive to
gust loadings than straight wings. Nevertheless, for the given gust, Table 9.21 shows that
inertial effects are more important in straights wings than in swept wings for the case
under consideration. In fact, Table 9.21 quotes the dynamic load factors (DLF) for each
wing configuration, where DLF is the ratio between the dynamic pick response and the
static response, evaluated by neglecting inertial terms in Eq. (7.8).

92



9.6. Dynamic and gust response analyses

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.1  0.2  0.3  0.4  0.5  0.6
-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

∆u
z 

(m
m

)

U
 (

m
/s

)

t (s)

Λ=30
Λ=20
Λ=10

Λ=0
Gust

Figure 9.36: Effect of the sweep angle Λ on the maximum vertical displacement variations
of the metallic plate wing undergoing a gust load; Fourth-order (N = 4) model

Λ ∆uzmax , dyn (mm) ∆uzmax , st (mm) DLF

0 5.255 4.912 1.070
10 5.692 5.343 1.065
20 6.186 5.940 1.041
30 7.138 6.894 1.035

Table 9.21: Dynamic load factor for the metallic plate wing undergoing a gust load;
Fourth-order (N = 4) model

9.6.3 Composite plate wing

Gust response analyses of the six-layer composite straight plate wings, whose free vibration
and flutter characteristics have been investigated in Section 9.5.2 and in Pagani et al. [123],
are addressed hereafter. The aircraft is supposed to fly at the same conditions as in the
previous analysis case. The intensity and the duration of the discrete gust is the same as
well.

Results by a fourth-order (N = 4) model are provided in the following and DSM
was used to extract the first two mode shapes and related natural frequencies out of
the structure. An higher-order TE model is exploited because of the ineffectiveness of
the classical and lower-order models as demonstrated in the previous example and in
Table 9.22, where the effects of the TE theory order on the maximum displacements at
the leading and trailing edges of the [45/45/0]s plate wing are highlighted.

Figure 9.37 shows the time history of the maximum vertical displacement for the
composite wings with various stacking sequences subjected to gust. The displacement
values are given in terms of variations with respect to an equilibrium state.

The effect of the gust duration, tg, on the maximum displacement variation for each
plate wing lamination is shown in Fig. 9.38. As expected, the position of the maximum
pick response is different for different stacking sequences: For a given lamination, the
maximum dynamic load factor (hence, the most critical case characterized by the maximum
displacement) fall into a region close to the value of tg such that 2π/tg = ω1, where ω1 is
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Model ∆uzmax (mm)
Ld. edg. Tr. edg.

EBBM 18.36 18.36
N = 1 19.19 19.19
N = 2 25.02 21.74
N = 3 25.23 22.24
N = 4 25.33 22.28

Table 9.22: Effect of the theory order on the maximum vertical displacements for the
composite plate wing undergoing a 0.4 s gust load; [45/45/0]s lamination
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Figure 9.37: Maximum vertical displacement variations of various composite wings under-
going a 0.4 s gust load; Fourth-order (N = 4) model

the first natural frequency (in rad/s) of the structure. The reason is that the first natural
mode shape dominates the gust response.

Conflicting conclusions can be extrapolated from the analysis described here and from
the results provided in Section 9.5; it is therefore clear that dynamic gust response may
play an important role for the final design of swept and composite wings.

9.6.4 Complete NACA aircraft wing

The complete wing with NACA 2415 airfoil section is considered as the last example
about gust response. Geometrical and mechanical characteristics as well as free vibrations
analysis of the wing can be found in Section 9.3.2 and in Carrera et al. [40]. The three-bay
configuration is used for the following analysis. The airplane has a wing loading W/S equal
to 378.6 kg/m2 and it is supposed to fly at sea level (ρ∞ = 1.225 kg/m3) with velocity
V∞ = 80 m/s. At 1-g flight condition, a vertical gust with intensity U0 = 10 m/s and
duration tg = 0.4 s is encountered. A CLα = 7.6 rad−1 was estimated by means of XFLR5
[61] and XFoil [63] computer programs and by supposing inviscid flow.

No damping is assumed for the first analysis in Fig. 9.39, where the effect of the number
of modes for mode superposition on the maximum displacements by CW model at leading
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Figure 9.39: Effect of number of modes, m, in mode superposition solution for the gust
response analysis of the complete NACA wing; CW model

and trailing edges is shown. The gust velocity profile is also depicted in Fig. 9.39. It
should be noted that a few modes (m = 4) were necessary to ensure the convergence
of the response; indeed, the mechanics of the structure is dominated by bending modes,
which occupy the first positions in the eigenvector matrix Φ (see Eq. (7.10)). Figure 9.39
also demonstrates that a slight torsion is produced under discrete gust loading for the
structure under consideration.

In the second analysis case of the NACA 2415 wing, the effects due to a concentrated
non-structural mass (e.g. engine) are investigated. For this analysis, a β coefficient equal
to 5 × 10−3 for Rayleigh damping (see Eq. (7.23)) is assumed. The gust and the other
analysis data are the same as in the previous case. The mass (300 Kg) is placed at the
wing underside in correspondence of the intersection between the first rib at y = 2 m and
the front spar. Figure 9.40 shows the difference in maximum deflections between classical
EBBM and CW model. Moreover, Table 9.23 quotes the maximum displacements for
dynamic and related static analyses as well as maximum DLF’s by various models. It
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Figure 9.40: Comparison of maximum displacements at leading and trailing edges by
EBBM and CW model; β = 5× 10−3

With no lumped mass With lumped mass
Model uzmax , dyn (mm) uzmax , st (mm) DLF uzmax , dyn (mm) uzmax , st (mm) DLF

EBBM 86.163 67.322 1.280 125.268 90.827 1.379
TBM 86.204 67.346 1.280 124.975 90.629 1.379
N = 2 82.840 65.169 1.271 119.040 87.173 1.366
CW 85.541 66.965 1.277 123.159 89.449 1.377

Table 9.23: Dynamic load factor for the complete NACA wing undergoing a gust load;
tg = 0.4 s and β = 5× 10−3

is noticed that: (i) even classical beam models such as EBBM provide good results for
the case under consideration, at least for the configuration with no lumped mass; (ii)
the non-structural mass obviously deteriorates the dynamic response capabilities of the
wing since inertial effects are more important. This latter conclusion is also supported by
Fig. 9.41, which shows the effect of the discrete gust duration on the maximum static and
dynamic vertical displacement by the CW model of the wing. Also, maximum DLF’s are
given in Fig. 9.41 for each case and both up- and down-gusts are considered. It might
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wing; CW model
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be deduced by this last figure that static gust analyses (i.e. inertial terms are neglected)
are conservative only in a narrow range of tg and dynamic response should be considered
otherwise.

9.7 Stokes flows

In this section, the results from the fluid-dynamics CUF formulation (see Chapter 8) is
assessed and compared versus analytical solutions and OpenFOAM [82], an open source
finite volume software. Velocity and pressure trends are investigated in a circular cross-
section domain as shown in Fig. 8.2. The pipe has a length L = 6 m and radius r = 1 m.
In all the following analyses, a homogeneous Dirichlet boundary condition is prescribed
on the lateral surface Γl

D which means a no-slip condition at the pipe wall. A homoge-
neous Neumann boundary condition is instead prescribed on the outlet section Γout

N . On
the contrary, a nonhomogeneous Dirichlet boundary condition (different for each case) is
assigned to the inlet section Γin

D . No body forces are applied to the fluid, which means
f = 0 in Eq. (8.2). Finally, a kinematic viscosity ν equal to 10−2 m2/s is considered,
which the reader can verify resulting in very low Reynolds numbers (Re � 1) for all the
cases below. For all the discussed analyses, CUF models are discretized with 10 1D FEM
elements, which ensured convergent results.

9.7.1 Poiseuille flow

In the Poiseuille flow, the fluid flow is axisymmetric and the velocity u does not de-
pend on the position along the longitudinal axis y. In particular, the axial velocity uy is
paraboloidal on the two-dimensional cross-section, and the maximum axial velocity occurs
at point (x = 0, z = 0) of each section. In order to simulate this flow, the following
Dirichlet boundary condition is applied on Γin

D :
ux = 0
uy = 10−4

(
1− x2 − z2

)
on Γin

D

uz = 0
(9.4)

According to the Poiseuille flow, over the cross-section an accuracy of the second-order for
the velocity and of the “zero-order” (constant trend) for pressure should be sufficient to
detect the solution. In the framework of CUF, this means that a 1D model with NU = 2
and NP = 0 should be sufficient to detect the exact solution, which is demonstrated by
Table 9.24. In this table, CUF and OpenFOAM results are compared with those from
analytical solution [13, 151] and the number of degrees of freedom (DOFs) is also given
for each model. Regarding OpenFOAM results, the SimpleFoam steady-state solver for

Model ep (%) euy (%) DOFs

OpenFOAMA −0.72 −2.56 10560
OpenFOAMB −0.25 −0.97 54400
OpenFOAMC 0.21 −0.39 435520
CUF −0.05 −0.05 389

Table 9.24: Inlet pressure and maximum axial velocity in terms of percentage errors versus
analytical solution for the Poiseuille flow; Comparison of CUF (NU = 2, NP = 0, pU = 2,
pP = 1) and OpenFOAM results
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Figure 9.42: Poiseuille flow velocity profile at y = 3 m

incompressible, laminar, Newtonian flows was used. In Table 9.24 the model OpenFOAMA

was constructed with 2640 finite volumes (132×20 mesh, where 132 stands for the number
of volumes on the cross-section and 20 is the discretization along the y-axis), OpenFOAMB

has 13600 (340 × 40) finite volumes, and OpenFOAMC has 108800 (1368 × 80) finite
volumes. The efficiency of the present methodology for the problem discussed here is
widely demonstrated and confirmed by Fig. 9.42, which shows the velocity profiles at the
mid-span cross-section by different models.

Both in Table 9.24 and Fig. 9.42, quadratic Legendre shape functions (see Eq. (8.19))
were used for the velocity field (pU = 2) and linear Legendre shape functions were used
for the pressure field (pP = 1) in the FEM approximation along the y-axis. However,
particular attention should be focussed on the choice of these polynomial orders in the
case of fluid-dynamics analyses. As detailed in [160], in fact, finite elements of the same
polynomial degree for both velocity and pressures are in general unstable. This sentence is
verified by Fig. 9.43, which shows the variation of the discrete pressure p along the beam
axis for various choices of shape functions. It is noteworthy that spurious modes appear
as pP = pU . Moreover, instabilities reduce as the polynomial degrees increase.

9.7.2 Fourth-order velocity profile

The results shown in the previous section may be easily reproduced by classical 1D models
for Stokes flows. A more complex flow is therefore introduced hereinafter to show the 3D-
like capabilities of CUF models. The following fourth-order velocity profile is enforced at
the inlet cross-section: 

ux = 0

uy = 10−4
(
1− x2 − z2

)2
on Γin

D

uz = 0

(9.5)

Note that the flow is still axisymmetric.
According to the conclusions made previously about stable spaces and shape functions,

the parameters pU and pP are respectively set equal to 4 and 3 and Legendre shape
functions are used. Table 9.25 shows the effect of the theory expansion orders NU and
NP on the maximum inlet pressure and axial velocity at the middle cross-section.

Table 9.25 demonstrates that the CUF model NU = 6, NP = 4 provides convergent
results. This model is therefore used in Fig. 9.44, where pressure and axial velocity trends
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Figure 9.43: Pressure trends along y for the Poiseuille flow by CUF (NU = 2, NP = 0);
Comparison of various combinations of Lagrange and Legendre shape functions

Model p× 105 (m2/s2) uy × 105 (m/s) DOFs

OpenFOAM
OpenFOAMA 1.70 6.50 10560
OpenFOAMB 1.79 6.53 54400
OpenFOAMC 1.87 6.36 435520

CUF
NU NP

10 9 1.86 6.66 9823
8 7 1.86 6.66 6651
8 6 1.86 6.66 6403
6 5 1.86 6.66 4095
6 4 1.86 6.66 3909
6 3 1.78 6.66 3754
4 3 1.79 6.66 2155
4 2 1.79 6.66 2031
4 1 1.60 6.66 1938

Table 9.25: Maximum inlet pressure and maximum axial velocity at y = 3 by various
models of the fourth-order inlet velocity flow; CUF models discretized by pU = 4 and
pP = 3 Legendre FEM elements
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Figure 9.44: Pressure (a) and axial velocity (b) trends along x-axis at z = 0 and at y = 0,
y = 0.15 m, y = 0.3 m, y = 0.45 m, y = 3 m, and y = 6 m for the fourth-order inlet
velocity flow; Comparison of CUF (NU = 6, NP = 4, pU = 4, pP = 3) and OpenFOAMC

results

at various sections are shown and compared to the results by the model OpenFOAMC . It
is interesting to note that the velocity field is fully developed at y = 3 m and it approaches
a paraboloidal Poiseuille profile as analyzed in the previous section; hence, velocity profile
at y = 6 m is not provided in Fig. 9.44b. The transition from the inlet pressure profile to
the constant pressure profile is also well depicted in Fig. 9.44a. The results show the great
advanced capabilities of the proposed CUF models for complex Stokes flows. The slight
differences between CUF models and the OpenFOAM ones may be due to the lack of the
convective terms that are neglected in the proposed CUF approximation.

9.7.3 Fifth-order velocity profile

A non-axisymmetric flow is studied as the last example, where a fifth-order nonhomoge-
neous Dirichlet boundary condition is prescribed on the axial velocity uy as follows:

ux = 0
uy = 10−4

(
1− x2 − z2

)(
1/4 + xz + x3

)
on Γin

D

uz = 0
(9.6)

The 1D mesh is not changed with respect to the previous case for CUF models, hence
pU = 4 and pP = 3 in the following analyses. Table 9.26 shows the effect of the 1D CUF
expansion orders NU and NP on the maximum inlet pressure and maximum axial velocity
at y = 3. In this table, CUF results are compared with those from OpenFOAM and
the number of DOFs is also given for each model implemented. Table 9.26 clearly shows
that at least a NU = 6 model is necessary to correctly detect the maximum value of the
pressure field at the inlet. Furthermore, Fig. 9.45 shows the effects of the pressure theory
order NP on the pressure profile at the inlet. It is clear that at least NU = 6, NP = 5
expansions are needed for CUF approximation in order to detect the convergent solution.
This model is therefore used in the remaining analyses.

The axial velocity profiles at various cross-section till y = 3 m (where the flow is
fully developed) are shown in Fig. 9.46. It is clear that a flow transition occurs downline
of the inlet section. Nonetheless, the profiles of velocity uy gradually approach the more
natural condition of axisymmetry, because of the outlet Neumann boundary condition and
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Model p× 106 (m2/s2) uy × 105 (m/s) DOFs

OpenFOAM
OpenFOAMA 7.20 2.43 10560
OpenFOAMB 8.17 2.44 54400
OpenFOAMC 9.08 2.35 435520

CUF
NU NP

10 9 9.52 2.50 9823
8 7 9.48 2.50 6651
8 6 9.57 2.50 6403
6 5 9.23 2.50 4095
6 4 10.72 2.50 3909
6 3 10.72 2.50 3754
5 4 10.80 2.50 3048
5 3 10.80 2.50 2893
5 2 8.03 2.50 2769

Table 9.26: Maximum inlet pressure and maximum axial velocity at y = 3 by various
models of the fifth-order inlet velocity flow; CUF models discretized by pU = 4 and pP = 3
Legendre FEM elements
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Figure 9.45: Effect of the parameter NP on the pressure trends along x-axis at (y = 0, z =
0) for the fifth-order inlet velocity flow; Comparison of CUF (NU = 6, pU = 4, pP = 3)
and OpenFOAMC results
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Figure 9.46: Axial velocity profile along x-axis at z = 0 and at y = 0, y = 0.15 m,
y = 0.3 m, y = 0.45 m, and y = 3 m for the fifth-order inlet velocity flow; Comparison of
CUF (NU = 6, NP = 5, pU = 4, pP = 3) and OpenFOAMC results

the lateral homogeneous Dirichelt boundary condition, which is obviously axysimmetric.
Similarly to what observed for the fourth-order inlet profiles, the velocity u tends towards
the paraboloidal behavior typical of the Poiseuille flow.

Map plots of the three components of the velocity field at y = 0.3 m are shown in
Figs. 9.47 to 9.49. From these figures, one can easily note that the Dirichlet homogeneous
boundary condition on the pipe wall is satisfied. Moreover, it is clear that in the transition
zone the flow is completely non-axisymmetric.

The behaviour of the flow in the transition zone is further investigated by Figs. 9.50
and 9.51. The fifth-order velocity inlet profile case is an important assessment for the 1D
CUF FE model for fluid-mechanics, because it demonstrates its capability to predict the
evolution of complex flows (not violating the equations governing the fluid-dynamics) also
in case of non-axisymmetric complex flows. The key point is that this feature is not typical

(a) CUF (b) OpenFOAM

Figure 9.47: Velocity profiles ux at y = 0.3 m for the fifth-order inlet velocity flow;
Comparison of CUF (NU = 6, NP = 5, pU = 4, pP = 3) and OpenFOAMC results
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(a) CUF (b) OpenFOAM

Figure 9.48: Velocity profiles uy at y = 0.3 m for the fifth-order inlet velocity flow;
Comparison of CUF (NU = 6, NP = 5, pU = 4, pP = 3) and OpenFOAMC results

(a) CUF (b) OpenFOAM

Figure 9.49: Velocity profiles uz at y = 0.3 m for the fifth-order inlet velocity flow;
Comparison of CUF (NU = 6, NP = 5, pU = 4, pP = 3) and OpenFOAMC results

Figure 9.50: Axial velocity profiles along the transition zone at y = 0, y = 0.15 m,
y = 0.3 m, y = 0.45 m, and y = 0.6 m for the fifth-order inlet velocity flow; CUF model
(NU = 6, NP = 5, pU = 4, pP = 3)
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Figure 9.51: Pressure profiles along the transition zone at y = 0, y = 0.15 m, y = 0.3 m,
y = 0.45 m, and y = 0.6 m for the fifth-order inlet velocity flow; CUF model (NU = 6,
NP = 5, pU = 4, pP = 3)

for classical (i.e. standard) 1D reduced order models. Moreover, it should be remembered
that the analysis accuracy is a free parameter of the CUF model, thus allowing for the
automatic implementation of 1D refined models able to foresee complex phenomena with
very low DOFs.
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Chapter 10

Conclusions

10.1 Work outline

Advanced modelling techniques for structural, aeroelastic and fluid-dynamic analyses have
been discussed in this thesis. The main novelty of the work lies in the use of refined,
hierarchical, one-dimensional theories based on the Carrera Unified Formulation (CUF),
which allows for the systematic approximations of 3D problems by arbitrary accuracy.

CUF has been widely presented in the framework of solid-mechanics: Starting from
classical beam models, Chapter 2 has shown that higher-order phenomena (e.g. actual
shear strain distribution, torsion, etc.) can be taken into account by opportunely enriching
the displacement field. Variable kinematic beam models have been therefore developed
with CUF by expressing the 3D displacement field as a N -order truncated expansion
series of the generalized unknowns (i.e. displacements and displacement derivatives). The
resulting beam models have been referred to as TE (Taylor Expansion) because Taylor-
like polynomials are used. On the other hand, beam models with only pure displacement
variables have been formulated in the same chapter and they have been referred to as
LE (Lagrange Expansion). LE refined models are developed in the framework of CUF by
interpolating the cross-sectional unknowns with linear, bi-linear, or quadratic Lagrange
polynomials or a combination of them.

Particular attention has been focussed on free vibration analysis, which has played an
important role in the whole research activities described in this thesis, including aeroelas-
tic flutter instability analysis and dynamic gust response. Thus, strong form solutions for
accurate modal analysis have been presented in Chapter 3. First, the equilibrium equa-
tions and the related natural boundary conditions of the generic N -order beam model have
been derived; according to CUF, in fact, the governing equations do not depend on the
problem characteristics and the theory order. Subsequently, both exact and approximate
solutions have been devised. Exact solutions of any beam model with arbitrary boundary
conditions have been found by formulating a frequency-dependant Dynamic Stiffness (DS)
matrix and by using the Wittrick-Williams algorithm to carry out the resulting transcen-
dental eigenvalue problem. Conversely, a linear eigenvalue problem has been derived by
approximating the strong form governing equations by Radial Basis Functions (RBFs).

Chapter 4 has been dedicated to weak form solutions and the finite element approx-
imation of the proposed CUF models. The Finite Element Method (FEM) still deserves
important attentions due to its versatility and numerical efficiency. The various prob-
lems of the mechanics have been addressed, including static, free vibration and dynamic
response problems. The strength of CUF is particularly clear when dealing with FEM
because it allows one to express the elemental stiffness and mass matrices in terms of 3×3
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fundamental nuclei, which are automatically expanded and assembled once the theory
order and class are established.

Based on CUF, advanced methodologies for the analysis of aircraft structures have
been reviewed in Chapter 5. In particular, multi-component structures have been intro-
duced first. Next, the Component-Wise (CW) approach has been discussed. The CW
method exploits the natural capability of the CUF beam models based on LE to be as-
sembled at the cross-section level. This characteristic allows the analyst to use only CUF
beam elements (i.e. the same stiffness matrix) to model each component of the struc-
ture; hence, purely physical surfaces are employed to construct the mathematical models.
From the CAD/CAE scenario standpoint, this means that fictitious curves (e.g. stringers
reference axes), surfaces (e.g. skins mid-planes) and links (e.g. multi-point constraints)
are no more needed. Based on this idea, CW approach has also been extended to TE
models and referred to as Multi-Line (ML). In the ML framework, each component of the
structure is modelled via TE beam elements of arbitrary order. Compatibility of displace-
ments between two or more components is then enforced through the Lagrange multipliers
method.

The second part of this thesis deals with aeroelasticity. In particular, in Chapter 6,
the Vortex (VLM) and the Doublet Lattice Methods (DLM) have been employed and
extended to CUF models to develop aeroelastic models. According to the previous works,
the infinite plate spline approach has been chosen for the mesh-to-mesh transformation in
order to better exploit the shell-like capabilities of the structural models adopted. VLM
has been used to model the steady contribution in the aerodynamic model, whereas DLM
has provided the unsteady contribution in the frequency domain. Finally, the g-method
has been described as an effective means for the formulation of the flutter stability problem.
Particular attention is given to the extension of this methodology to exact DSM solutions
of CUF beams.

Simplified, discrete, dynamic gust response analysis is discussed in Chapter 7. In this
work, vertical gusts and one-minus-cosine idealization have been addressed. Accordingly,
gust loads in terms of time-dependent load factors have been formulated. Subsequently, the
mode superposition method has been briefly introduced in order to solve the linear dynamic
response problem in the time domain by using both weak and strong form solutions of
CUF models.

In the last part of the present work, minor extensions of 1D CUF models for fluid-
dynamics problems have been carried out and they are discussed in Chapter 8. CUF
approximation of Stokes flows was introduced in a recent thesis work and it has been
here extended to the hierarchical p-version of FEM, which makes use of Legendre-like
polynomials to interpolate the generalized unknowns along the 1D computational domain.
For the sake of completeness, Stokes flows have been briefly discussed in Chapter 8 along
with the correspondent Galerkin approximation. Then, the 3D velocity and scalar pressure
fields have been approximated by arbitrary CUF expansions, which, similarly to the solid
mechanics counterpart, allow the formulation of arbitrarily accurate 1D models of the
Stokes equations.

Finally, some selected and noteworthy numerical results have been discussed in Chap-
ter 9. In this chapter, the structural, aeroelastic and fluid-dynamics models have been
validated. The results by the proposed CUF-based methodologies have been, in fact,
widely compared to analytical solutions and to those from the literature and commercial
codes, including finite element and finite volumes tools. Some conclusions and impor-
tant remarks extrapolated from the numerical investigations are briefly summarized in the
following section.
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10.2 Concluding remarks

The results from the structural analyses have highlighted the following key-features of the
1D CUF approach:

� The adoption of refined 1D models allows for overcoming the well-known limitations
of classical theories. Namely, torsion, coupling, and local effects, such as severe in-
plane distortions, as well as shell-like modes can be accurately detected for a wide
variety of configurations, including thin-walled cross-sections. Conversely, classical
beam models can be effective in describing the bending behaviour of slender and
moderately slender structures.

� CW and ML models have demonstrated their capabilities in dealing with multi-
component and composite structures. In particular, the enhanced features of the
CW approach to accurately deal with both static and dynamic analyses of aircraft
structures have been highlighted.

� Highly accurate analyses are possible by CUF with very low computational efforts.
Similar analyses are possible only by using shell/plate and solid models, which usually
require a number of degrees of freedom that is some two order of magnitude higher.

Some interesting comments have also emerged from the comparison of FEM, DSM and
RBFs methods when applied to free vibration analysis via CUF models:

� DSM is an elegant, effective method that allows for obtaining exact solutions for any-
order beam model, independently from the problem characteristics and the boundary
conditions. Thanks to DSM, one can in principle evaluate all the modal character-
istics of a structure by utilizing one single element. However, DSM results in a
non-linear eigenvalue problem and an iterative procedure is required.

� RBFs is a collocation method that allows the solution of the strong form equations
in a very easy way. It results in a linear eigenvalue problem in the case of modal
analyses. However, the solution may depend on the shape parameter used to for-
mulating the RBFs and some numerical instabilities may appear if no optimization
procedures are employed.

� Convergence analyses are needed in the case of FEM in order to obtain sufficiently
accurate solutions. However, nowadays FEM is numerically stable and sufficiently
mature to allow its usage in various fields of the mechanics, including those discussed
in this thesis.

In the second part of Chapter 9, flutter analyses of various plate-like wings have been
carried out by CUF and DLM. Moreover, the effects of lamination schemes and sweep
angles have been investigated by using both FEM and DSM. The results have supported
the following conclusions:

� Classical beam models are not adequate for flutter analysis. Refined 1D models are
mandatory instead.

� At least a third-order (N = 3) beam model is needed to correctly predict the flutter.
In fact, this phenomenon is usually accompanied by bending torsional couplings.

� Both FEM and DSM are effective for the flutter detection when applied to CUF
models.
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Before addressing gust responses, the mode superposition method has been validated in
Section 9.6 versus a Newmark direct integration scheme and an analytical solution. Then,
gust response by both TE and CW models of wing structures have highlighted the following
remarks:

� Classical beam models can be quite accurate in dynamic gust response analysis if
no coupling phenomena occur, i.e. when the response is dominated by only pure
bending modes.

� In the case of composite wing structures, or in the presence of sweep angles, or when
localized inertiæ play a role in the torsion of the wing, refined models are mandatory.

� Static gust analyses (i.e. inertial terms are neglected) are conservative only if suffi-
ciently short or sufficiently long gusts are encountered. Dynamic response should be
considered otherwise.

The last part of the present thesis work has dealt with 1D CUF models of Stokes flows
in rigid pipes. The results discussed in Chapter 9 have finally underlined the following
comments:

� The proposed CUF models can reproduce the results by 3D finite volume codes with
very low computational costs in the case of incompressible, viscous, laminar flows.

� Both simple Poiseuille and complex non-axisymmetric fluids can be successfully an-
alyzed with the proposed methodology.

� Particular attention has to be focussed on the choice of the polynomial orders for the
FE approximation in the case of Fluid-Dynamics analyses. Finite elements of the
same polynomial degree for both velocity and pressures may be, in fact, unstable.

10.3 Future work

Many different perspective developments of the present formulation appear to be inter-
esting. Regarding the structural formulation, the most promising developments deal with
the extension to more complex composite aircraft structures; the extension to non-linear
analysis, including both large strains and displacements; and buckling analysis. Neverthe-
less, the extension to fluid-dynamic problems of CUF models appear extremely interesting
and challenging. Possible work in this direction might be conveyed to the extension to
more complex fluids (e.g., by introducing convective and unsteady phenomena) and to
fluid-structure interactions, including the analysis of compliant vessels.
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