University of Genoa

Department of Informatics, Bioengineering,
Robotics and Systems Engineering (DIBRIS)

PhD Program in Bioengineering

° ° and Robotics, XXX Cycle
Curriculum in Robotics and
]_ r]_ S Autonomous Systems

AUTHOR
Luca Buoncompagni M AINTAINING
STRUCTURED
SUPERVISOR
Fulvio Mastrogiovanni EXPERIENCES
HEAD OF THE PROGRAM FOR R OBOTS
Giorgio Cannata VIA HUMAN
DEMONSTRATIONS
THESIS JURY
Luca Iocchi
Sapienza University of Rome AN ARCHITECTURE TO
Alessandro Saffiotti CONVEY LONG-TERM
Orebro University RoBOT’S BELIEFS

December 2018 Thesis submitted for the degree of Doctor of Philosophy

Luca Buoncompagni: Maintaining Structured Experiences for Robots
via Human Demonstrations, an Architecture to Convey Long-Term
Robot’s Beliefs. © Genoa (IT), Dicember 2018

A thesis submitted for the degree of Doctor of Philosophy of
the PhD Program in Bioengineering and Robotics, XXX Cycle.
Curriculum in Robotics and Autonomous Systems. Department
of Informatics, Bioengineering, Robotics and Systems Engineering
(DIBRIS). University of Genoa.

AUTHOR:

Luca Buoncompagni luca.buoncompagni@edu.unige.it
buon_luca@yahoo.com

SUPERVISOR:

Fulvio Mastrogiovanni fulvio.mastrogiovanni@unige.it

ii

mailto:luca.buoncompagni@edu.unige.it
mailto:buon_luca@yahoo.com
mailto:fulvio.mastrogiovanni@unige.it

A MIO PADRE, MIA MADRE E MIO FRATELLO,
LORO NON SMETTERANNO MAI DI INSEGNARMI.

TO MY FATHER, MOTHER AND BROTHER,
THEY WOULD NEVER STOP TEACHING ME.

DECLARATION

I hereby declare that except where specific reference is made to the
work of others, the contents of this dissertation are original and have
not been submitted in whole or in part for consideration for any other
degree or qualification in this, or any other university. This dissertation
is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and
Acknowledgements.

Genoa (IT)
Dicember 2018

Luca Buoncompagni

ABSTRACT

This PhD thesis presents an architecture for structuring experiences,
learned through demonstrations, in a robot memory. To test our archi-
tecture, we consider a specific application where a robot learns how
objects are spatially arranged in a tabletop scenario.

We use this application as a mean to present a few software develop-
ment guidelines for building architecture for similar scenarios, where a
robot is able to interact with a user through a qualitative shared knowl-
edge stored in its memory. In particular, the thesis proposes a novel
technique for deploying ontologies in a robotic architecture based on
semantic interfaces. To better support those interfaces, it also presents
general-purpose tools especially designed for an iterative development
process, which is suitable for Human-Robot Interaction scenarios.

We considered ourselves at the beginning of the first iteration of the
design process, and our objective was to build a flexible architecture
through which evaluate different heuristic during further development
iterations.

Our architecture is based on a novel algorithm performing a one-
shot structured learning based on logic formalism. We used a fuzzy
ontology for dealing with uncertain environments, and we integrated
the algorithm in the architecture based on a specific semantic interface.

The algorithm is used for building experience graphs encoded in
the robot’s memory that can be used for recognising and associating
situations after a knowledge bootstrapping phase. During this phase,
a user is supposed to teach and supervise the beliefs of the robot
through multimodal, not physical, interactions. We used the algorithm
to implement a cognitive like memory involving the encoding, storing,
retrieving, consolidating, and forgetting behaviours, and we showed
that our flexible design pattern could be used for building architectures
where contextualised memories are managed with different purposes,
i.e. they contains representation of the same experience encoded with
different semantics.

The proposed architecture has the main purposes of generating and
maintaining knowledge in memory, but it can be directly interfaced
with perceiving and acting components if they provide, or require,
symbolical knowledge. With the purposes of showing the type of data
considered as inputs and outputs in our tests, this thesis also presents
components to evaluate point clouds, engage dialogues, perform late
data fusion and simulate the search of a target position. Neverthe-
less, our design pattern is not meant to be coupled only with those
components, which indeed have a large room of improvement.

vii

PREFACE

This thesis reports the research I made during my PhD at the EMARO-
lab, part of the DIBRIS department at the University of Genoa, from
November 2015 to December 2018. Together with my supervisor, Prof.
Fulvio Mastrogiovanni, I investigated open issues for effective knowl-
edge representation in human-robot interaction scenarios. We argued
a lack of methodologies for building memories for robots, and we
decided to investigate a framework concerning qualitative and sym-
bolic knowledge representation. Together with Teseo s.r.l., we are also
considering similar methodologies for representing knowledge for
human activity recognition in smart environments.

During this period, I also worked as teaching assistant for the course
of Software Architecture for Robotic held by Fulvio Mastrogiovanni for
the master degree in Computer Science, and for the European Master
in Advanced Robotics (EMARO™). During this experience, I had the
opportunity to propose a few projects and supervise several skilled
students on those projects. Some of the results obtained by the students
contributed to the overall work presented in this thesis as detailed
in the following list. I also visited the Cognitive Robotic Systems
laboratory at the Center for Applied Autonomous Sensor Systems
(AASS) of Orebro University, in Sweden. Thanks to the group lead by
Prof. Alessandro Saffiotti, I could certainly improve our approach for
representing knowledge toward real applications.

This thesis introduces a novel technique for representing dynamic
knowledge through a collection of papers, which are listed below. It
contains, four short papers submitted to workshops at international
conferences and two accepted conferences papers. Also, it presents
three journal papers that we aim to summit for peer-review. All of
them concern different components of the same framework, through
which, we build the architectures presented in the last part of the
thesis.

Along with the architecture for the particular scenario that we
considered, the thesis highlights some guidelines for building an
architecture in similar circumstances. Unfortunately, we were not able
to define a general framework due to the complexity of human-robot
interaction scenarios, but, in the papers proposed below, we motivate
some development patterns and tools for implementing memories for
robots.

Even if the thesis proposes examples and simple use cases, we con-
sidered the issues of a real experimental setup and, for some of them,
we propose possible solutions based on practical implementations.

ix

Indeed, the thesis addresses also some technical issues led from real
experiments where mainstream software packages were deployed.
For each paper, the thesis indicates our open repositories containing
the implementation we developed. Although there is a constant and
ongoing effort for improving our software, it is difficult to keep the
repositories up to date and bug-free. Nevertheless, I am happy to be
able to share the implementations related to the contents of this thesis.

Follow a list of the accepted publications that are chapters of this
thesis. The chapters have a different layout depending on the published
resources, but the content is unchanged. Among the chapters, the
sections with duplicated contents are removed whenever possible and
substituted with side notes.

[1] Luca Buoncompagni, Alessio Capitanelli, and Fulvio Mastro-
giovanni. “A ROS Multi-Ontology References Services: OWL
Reasoners and Application Prototyping Issues.” In: Proceedings
of the 5th Italian Workshop on Artificial Intelligence and Robotics
A Workshop of the XVII International Conference of the Italian
Association for Artificial Intelligence (AI*IA 2018). Trento, Italy:
CEUR-WS, 2018.

[2] Luca Buoncompagni, Alessandro Carfi, and Fulvio Mastro-
giovanni. “A Software Architecture for Multimodal Semantic
Perception Fusion.” In: Proceedings of the sth Italian Workshop on
Artificial Intelligence and Robotics A Workshop of the XVII Interna-
tional Conference of the Italian Association for Artificial Intelligence
(AI*IA 2018). Trento, Italy: CEUR-WS, 2018.

[3] Luca Buoncompagni and Fulvio Mastrogiovanni. “An Open
Framework to Develop and Validate Techniques for Speech
Analysis.” In: Proceedings of the 3rd Italian Workshop on Artifi-
cial Intelligence and Robotics A workshop of the XV International
Conference of the Italian Association for Artificial Intelligence (AI"IA
2016). Genova, Italy: CEUR-WS, pp. 15—20.

[4] Luca Buoncompagni and Fulvio Mastrogiovanni. “A Software
Architecture for Object Perception and Semantic Representa-
tion.” In: Proceedings of the 2nd Italian Workshop on Artificial
Intelligence and Robotics A workshop of the XIV International Con-
ference of the Italian Association for Artificial Intelligence (AI*IA
2015). Ferrara, Italy: CEUR-WS, 2015, pp. 116-124.

[5] Luca Buoncompagni and Fulvio Mastrogiovanni. “Dialogue-
Based Supervision and Explanation of Robot Spatial Beliefs: a
Software Architecture Perspective.” In: 2018 27th IEEE Interna-
tional Symposium on Robot and Human Interactive Communication
(RO-MAN). 2018, pp. 977-984.

[6]

Luca Buoncompagni, Suman Ghosh, Mateus Moura, and Ful-
vio Mastrogiovanni. “A Scalable Architecture to Design Multi-
modal Interactions for Qualitative Robot Navigation.” In: In-
ternational Conference of the Italian Association for Artificial Intelli-
gence (AI*IA 2018). Springer. Trento, Italy, 2018, pp. 96-109.

Moreover, the chapters related to papers that we are going to submit
for publication are

[7]

8]

Luca Buoncompagni, Syed Yusha Kareem, and Fulvio Mastro-
giovanni. OWLOOP: an API to Describe Dynamic OWL Axioms
in OOP Objects.

Luca Buoncompagni and Fulvio Mastrogiovanni. One-Shot
Structured Learning of Scene Categories Through Demonstrations.

Luca Buoncompagni, Fulvio Mastrogiovanni, and Alessandro
Saffiotti. One-Shot Structured Learning of Robot’s Experience in
Uncertain Environments.

Luca Buoncompagni, Carlotta Sartore, and Fulvio Mastrogio-
vanni. A Generalised Architecture to Encode, Store, Consolidate,
Retrieve, and Forget Structured Experience for Robot’s Memories.

Once again I want to thank all the coauthors, and I would like
to point the reader to Section 1.4 for an overview of the parts and
chapters of this thesis.

Xi

errare humanum est
perseverare scentiam iuvat

ACKNOWLEDGMENTS

I want to express my sincere gratitude to many people supporting
this thesis. Firstly my supervisor, Prof. Fulvio Mastrogiovanni, for the
always prompt and wise advice during my PhD experience, related
networking, and life’s problems. I could not have imagined having a
better advisor and mentor for my study.

Also, I want to thank Prof. Alessandro Saffiotti for have kindly
hosted me at the University of Orebro for a short but intense internship,
without which, I could not present results for real-world setups.

This thesis would not have been possible without the lovely support
of Aiko Dinale, who helped me in improving and writing my research.
She spares no effort for sustaining me.

All my thanks to labmates and colleagues, Alessandro Carfi, Alessio
Capitanelli, Alice Palazzo, Andrea Nistico, Barbara Bruno, Giovanna
Naselli, Roberto Menicatti and Syed Yusha Kareem, for the stimulating
discussions, for the restless time we were working together, and for
all the fun we have had in the last four years.

Thanks also to all the students I supervised, especially Carlotta
Sartore, Suman Ghosh and Mateus Moura, for helping me to review
my work from new inspiring perspectives.

Last but not least, I would like to thank my family and old friends
for their spiritual guidance that brings me here.

xiii

Abstract
Preface

Acknowledgments
Contents
List of Figures
List of Tables
List of Algorithms and Listings

I
1

II

CONTENTS

MEMORY FOR HUMAN-ROBOT INTERACTION
INTRODUCTION

1.1 Background oo oL
1.2 Objective
1.3 Contribution
1.4 Architecture and Thesis Structure

PERCEIVE FOR ACTING
AN ARCHITECTURE FOR SEMANTIC OBJECT PERCEPTION

2.1 Introduction

2.2 The Primitive Identification and Tagging (PIT) Architecture

2.3 Experimental Results
24 Conclusions L

AN OPEN FRAMEWORK FOR SPEECH ANALYSIS

3.1 Introduction
3.2 The Concept Action Grammar Generator (CAGG)
33 Exampleso
3.4 Conclusions o

MULTIMODAL SEMANTIC PERCEPTION FUsION

4.1 Introduction and Background
4.2 A Modular Software Architecture Overview
4.3 Software Interfaces for Multimodal Perception Fusion

15
17
18
19
21
23
25
26
26
29
29
31
32
32
34

XV

Xvi

CONTENTS

IIT

Iv

4.4 Implementation
4.5 Discussions and Conclusions
REPRESENT FOR REIFYING
THE OWLOOP API
5.1 Introduction L
5.2 Related Work
53 Motivation L
5.4 Contribution Lo
5.5 Description Logic Primer
5.5.1 Axioms Representation in Ontology
552 OWLReasoning
5.6 OWLOOP Overviewo
5.7 OWLOOP Descriptors
5.7.1 Descriptors Grounding
5.7.2 The Abstract Descriptor
5.7.3 Concrete Descriptors
5.7.4 Descriptors Building
58 OWLOOP APIExamples.
59 Conclusions

A ROS MuLTi ONTOLOGY REFERENCES SERVICE (ARMOR)
6.1 Introduction

6.2 System’s Architecture. Lo Lo Lo
6.2.1 The ARMOR Core: AMOR
6.2.2 The ARMOR Interface

6.3 Applications and Conclusions,

DEMONSTRATE FOR REMEMBERING
STRUCTURED LEARNING OF SCENE CATEGORIES

7.1 Introduction
72 Related Work
72.1 Contribution. o
7.3 Overview
7.4 Problem Statement 0 L.
7.4.1 Dynamic Spaces Representation

7.4.2 Algorithm-Knowledge Interface

CONTENTS

7.5 The Scene Identification and Tagging Algorithm (SIT). 77
7.5.1 Perceiving L o o 77
752 Learning 79
7.5.3 Structuring o oo 80
7.5.4 Classifying o L 81
7.5.5 Scene Similarity Measure 82
7.5.6 Algorithm Phases 84
7.6 Implementation 86
7.6.1 Software Architecture and Knowledge Representation . . . 8y
7.6.2 Experimental Setup, 89
7.6.3 Object Perception 90
7.6.4 Spatial Relations 91
7.6.5 Semantic Interface and Input Facts 93
7.6.6 Representation Complexity 94
7.7 Examples and Experimental Assessment 95
7.8 Discussions 100
79 Conclusions 103
STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS 107
8.1 Introduction 108
82 Related Work 110
82.1 Background 0 L 114
822 Contribution. 114
8.3 Problem Statement o L. 115
8.3.1 Fuzzy Cardinality Restrictions 116
8.4 The Fuzzy Scene Identification and Tagging Algorithm 117
841 InputFacts. 118
8.4.2 Perceiving o 119
843 Learning 120
8.4.4 Structuring o oL 122
8.4.5 Classifying 126
8.4.6 Complexity 129
8.5 Implementation, 130
8.5.1 Perception and InputFacts 131
8.6 Algorithm Evaluation 133
8.7 Discussions e 138

88 Conclusions 141

XVvii

XViil

CONTENTS

\
9

10

SUPERVISE TO CONSOLIDATE AND FORGET

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

9.1 Introduction

9.2 Knowledge Representation and Robot Beliefs
9.2.1 Overview o o
9.2.2 Primitive Identification and Tagging
9.2.3 Scene Knowledge Generator
9.2.4 Scene Identification and Tagging
9.2.5 A Multi Ontology References

9.3 Human-Robot Dialogue Management
9.3.1 Dialogue Manager
9.3.2 Speech Interaction Manager
9.3.3 Dialogue Types

9.4 UseCases i
941 UseCase1.........
942 UseCase2........
943 UseCase3

9.5 Conclusions

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

10.1 Introduction Lo Lo o
10.2 Cognitive Memories
103 Rationale
10.3.1 Contribution. o oL
10.4 Problem Statement00
10.4.1 SIT Functionalities
10.4.2 SlT extensions
10.5 System Overview
10.6 Memory Representation
10.6.1 Upper Ontology for Item’s States.
10.6.2 Upper Ontology for Item’s Score
10.7 Memory Funtionalities
10.7.1 Encoding Lo
107.2 Storing
10.7.3 Retrieving Lo oo
10.7.4 Consolidating
10.7.5 Forgetting L

143
145
146
148
148
149
151
151
154
154
154
155
156
161
161
162

VI
11

VII

CONTENTS

10.8 SemanticMemory oL o
10.8.1 SemanticScore oL
10.9 EpisodicMemory L o oL
10.9.1 EpisodicScore.o 0oL
10.10Memory Managment Lo oo Lo
10.10.1 Architectureo Lo oL
10.10.2 Encoding Reasoners
10.10.3Storing Reasoners,
10.10.4 Consolidating Reasoner
10.10.5 Forgetting Reasoner
10.10.6 Retrieving Reasoner
10.11Conlcusions

SUMMARY

CONCLUSIONS

11.1 Discussions e
11.2 Further Works

APPENDIX

AN ARCHITECTURE FOR QUALITATIVE ROBOT NAVIGATION

A.1 Introduction
A.2 Software Architecture
A.3 Multi-Modal Interface
A.4 SpatialReasoner
A5 SpatialKernel 0 0.
A6 UseCase i i e e e
A7 Conclusions e

REFERENCES o o o e e e e e s e

207
209
211
212

Xix

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 3.1
Figure 3.2

Figure 4.1
Figure 4.2

Figure 5.1
Figure 5.2

Figure 6.1

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5

XX

LisT OF FIGURES

An overview of the proposed architecture. 12
The PIT architecture. 19
Experiment setup and cluster visualisation. 22
Object tracking results. 23
Baxter holding an oscillating cone. 23
The representation of Listing 3.1 asatree. 27
The CAGG architecture. 28
The architecture to fuse m perception modules. 33
Example of inputs features. 34
A simple ontology used as guiding example. 46
The OWLOOP overview. 47
The UML diagram of ARMOR service.. 60
The referenced spatial scenario. 71
A taxonomy of the entities involved in the SIT algorithm. . 73
A visualisation of the memory evolution. 76
The ontology used for structure learning. 87
The scenes used for test the SIT algorithm. 88
Showing configurations of an articulated object. 104

A guiding example to present the Fuzzy SIT algorithm. . . 119

The minimal fuzzy cardinality restriction. 121
A fuzzy subsumption of experience with high degree.. . . 123
A fuzzy subsumption of experience with low degree. . . . 124
An example of experience graph based on Figure 8.1. . . . 125

Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11

Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5

Figure 10.1
Figure 10.2
Figure 10.3

Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7

Figure A.1
Figure A.2
Figure A.3
Figure A.4
Figure A.5

LIST OF FIGURES

A guiding example to present the Fuzzy SIT algorithm. . .
The scene used for validate the Fuzzy SIT..
The fuzzy degree for a vague spatial relation.
Experience graphs learned through vague knowledge.
A scene used for testing the classification behaviour.

Classification results in uncertain environment.

The experimental scenario.
Components and interfaces.
The scene experienced by the robot.
The learned memory graph for the considered use case.
The internal components of the dialogue manager.

The tabletop scenario in which we tested our architecture.
A simplified taxionomy of memory types [97, 148].

A taxonomy of the entities involved in the memory based
on the SIT algorithm.
Examples of situations that the robot experienced.
An example of semantic and episodic memory graphs. . .
The UML diagram of the architecture.
The UML temporal diagram of the architecture.

The referencing scenario.
The ROS-based software architecture.
An example of fuzzy kernels applied to the same object. .
Four instructions based on two kernels.
Two instructions based on three kernels.

127
131
132

. 133
. 135

136

146

149
150

. 152

155
168

. 170

176
180
184

199

xxi

Table 2.1
Table 3.1
Table 4.1

Table 5.1
Table 5.2
Table 5.3

Table 7.1
Table 8.1
Table 9.1

Table 10.1
Table 10.2

Xxii

List OF TABLES

Object recognition rates obtained with PIT. 21
System performances evaluated on Listing 3.2. 29
An example of multimodal inputs. 36
OWL to OOP mapping of classes expression axiom. 50
OWL to OOP mapping of individual expression axiom. . . 51
OWL to OOP mapping of properties expression axiom. . . 52

The computation of SIT processing the scenes in Figure 7.5. 96

Time for structured learning with a fuzzy ontology. 138
Knolwedge in the memory for the considered use cases. . 151
The semantic memory based on Figure 10.4. 188

The episodic memory based on Figure 10.4. 190

LisT OF ALGORITHMS AND LISTINGS

Algorithm 2.1

Listing 3.1
Listing 3.2

Listing 5.1
Listing 5.2

Algorithm 7.1

Algorithm 9.1
Algorithm 9.2
Algorithm 9.3
Algorithm 9.4

A tracking component for PIT. 20
An example of a grammar in the CAGG syntax. 26
A CAGG grammar for understanding questions. 28
An example of semantic writing with OWLOOP. 53
An example of semantic reading and building

withOWLOOP. 54
The SIT algorithm. 85
The scene arrangement dialogue. 156
The demonstrative scene dialogue. 157
The scene explanation dialogue. 158
The knowledge revision dialogue. 159

XXiii

Part 1
MEMORY FOR HUMAN-ROBOT INTERACTION
This part gives an overview of the thesis. It introduces the

motivations, objective, contribution and structure of this
thesis.

1

INTRODUCTION

In Human-Robot Interaction (HRI) scenarios, a user exploits cognitive
abilities, as autonomous mechanisms, for perceiving the environment
and learning from experiences to act toward a goal and flexibly make
a prediction [161]. In this context, the human memory is a complex
structure containing the knowledge that a user requires to perform all
those interwoven abilities, which are also undertaken while interacting
with a robot. We suppose that a robot interacts well with a user if
it can cope with such abilities up to a level that is required for a
particular task. For achieving this behaviour, we focus on the problem
of generating, using, and maintaining robots” memories represented
with the proper level of detail they require for interacting with users
toward a shared goal.

Regarding the usability of the robot through interaction, there is
an increasing interest in encoding cognitive aspects, such as social
factors for instance [44]. In particular, implementations of the theory of
mind has been proposed for HRI, as presented in [135] for instance. In
accordance with this theory, a human empathetically interacts taking
into account also a projection of the beliefs of the people interacting
with.

In a practical situation, e.g. where persons have a shared goal in
an assembly task, it has been observed that their interaction become
easier when they start to know each other. In [81], this effect has
been identified as an interaction gap, that the agents should overcome
to improve their collaboration. We consider the interaction gap to
be dependent on the context, i.e. two persons might have a small
gap while performing a task usually done together, but a big gap
for unfamiliar tasks. In other words, the persons contextualise their
knowledge and focus their attention only on some relevant aspects
of the environment. Such knowledge is structured from a different
perspective in each person’s memory, which also includes a projection
of the context from the point of view of the other persons performing
the same task [161].

Indeed, while we interact with a person, we communicate with
him or her also with the intent to understand the other’s beliefs and
correct our projection of their beliefs. Eventually, this process improves
the prediction that a person makes about the behaviour of another,

INTRODUCTION

and this reduces the gap. This suggested, that while interacting, a
user naturally attempts to identify cognitive robot’s beliefs, even if it
is supposed not to have them. Therefore, not only the robot should
memorise assessments about the environment for making itself able
to achieve a task, but also the persons should be able to understand
the robot’s beliefs based on verbal, and not verbal communication as
well. We argue that if the robot’s memory is structured similarly to
the beliefs that a person has about a situation, such a communication
will be more efficient, and this could improve their interaction.

Typically, it is considered that a person stores in the memory some-
thing that he or she learned, which, in most of the cases, is explained
to others persons for simplifying some aspects of the interaction.
Nowadays, there are many methodologies for making a robot able to
recognise a task based on data-driven learning, but those approaches
are intrinsically different from one-shot learning behaviours of hu-
mans while interacting. However, the fact that we lack systems that
can explain the knowledge they learned and why a recognition oc-
curred, is a limitation that affects the interaction. Since models learned
in a data-driven manner are not based on a representation familiar
to a person, it could be almost impossible for a user to understand
and supervise the knowledge the robot has in its memory. Moreover,
there are several approaches to fusing multi interaction modalities to
implement a more immersive experience for the user and improve
the understandings of the robot. Nevertheless, those techniques are
typically strongly dependent on the type of data perceived, as well as
on the application requirements.

A typical approach used for designing software architectures for
robots that involve several functionalities is to introduce a layer de-
scribing the data required for orchestrating the components through
a common syntax, which is used by all the other components. In
this way, the interface between the components can be flexibly de-
signed; this approach has been adopted for instance in [18, 29, 134],
where the Ontology Web Language (OWL) has been used as common
syntax [108]. OWL is a W3C standard implementation of Descrip-
tion Logic (DL) formalism [11]. Such a symbolic formalism allow to
structure knowledge in logic terms, and it provides with standard
reasoners evaluating the semantics of a given domain for inferring
new knowledge, as well as responding to queries with retrieving
purposes. OWL has been successfully used in robotic and ambient
intelligent scenarios for recognising models in a contextualised fash-
ion [83], and it has been used for representing qualitative knowledge
for performing commonsense reasoning as well. Remarkably, OWL
allows simplifying the interaction since it generates representations
that are familiar to persons and, even if DL does not assure that all
reasoning processes are always easily understandable by users, its de-

1.1 BACKGROUND

scriptive representation has been a critical feature also for developing
cognitive architectures [93], as well as planners [32].

Nevertheless, such symbolic representations lead a few issues that
we will discuss later in the thesis and, for some of them, we will
provide a possible solution. For some applications, the overhead for
maintaining a complex representation of the robot’s memory might
limit its abilities, and for some simple tasks, it would be more efficient
to use not shared data structures. On the other hand, the interaction
could be improved if the robot behaves in order to align its beliefs
with the ones of the user. Finding the correct levels of details in
the memory to be maintained, is a matter of choosing a trade-off
among the complexity of the robot’s knowledge and the richness of
its behaviour. Indeed, such a complexity trade-off relates to the effort
that the robot should spend to use the knowledge for making itself
able to perform the task, and the resources required for using the
knowledge needed for interacting purposes. In this thesis, tools and
development guidelines to design software architectures are proposed
for managing memories that have been structured through interaction.
Our approach can be used in different scenarios, and we illustrate it
through a referencing tabletop application, where we took into account
also such a trade-off.

1.1 BACKGROUND

To perform non-physical HRI, the robot should be able to cope with
qualitative knowledge, since we do not want to force users to rely on
quantitative information only. A simple, but challenging, scenario con-
cerns spatial relation between objects in a table, e.g. on the right-hand
side of, or close to. If we consider two agents that communicate for
aligning their beliefs before performing a joint task, many uncertain-
ties arise already in a simple spatial domain. For instance, a common
reference frame is required, as well as a definition of the orientation
of objects, whose shape might also influence the semantics of spatial
relations.

Although our architecture is not explicitly meant for maintaining
memories of spatially related objects only, we deployed it in this
scenario since it is simpler to validate than other domains, such as
the one involving affordance or temporal relations for instance. In
particular, we consider a robot and a user at the opposite sides of a
table where objects are spatially related and identified through some
qualitative properties, such as colour and shape. Specifically for this
scenario, we collected the responses of 190 volunteers that filled a
survey'', where pictures showing objects on a table were proposed.
Without providing an explicit reference frame and a definition of
spatial relations, we asked to reply positively or negatively to simple
statements about the pictures, e.g. “a ball is behind another”. We

1.1 https://
docs.google.com/
forms/d/ e/
1FAIpQLScoP-qfk8lNz
2MmTKMN
6YdRaswJGuR395T%
Xnj91lwu79Wwew/

vt ewform.

https://docs.google.com/forms/d/e/1FAIpQLScoP-qfk8Nx2MmTKMNJx6YdRaswJGvR39jTiXnj91wu79Wwew/viewform
https://docs.google.com/forms/d/e/1FAIpQLScoP-qfk8Nx2MmTKMNJx6YdRaswJGvR39jTiXnj91wu79Wwew/viewform
https://docs.google.com/forms/d/e/1FAIpQLScoP-qfk8Nx2MmTKMNJx6YdRaswJGvR39jTiXnj91wu79Wwew/viewform
https://docs.google.com/forms/d/e/1FAIpQLScoP-qfk8Nx2MmTKMNJx6YdRaswJGvR39jTiXnj91wu79Wwew/viewform
https://docs.google.com/forms/d/e/1FAIpQLScoP-qfk8Nx2MmTKMNJx6YdRaswJGvR39jTiXnj91wu79Wwew/viewform
https://docs.google.com/forms/d/e/1FAIpQLScoP-qfk8Nx2MmTKMNJx6YdRaswJGvR39jTiXnj91wu79Wwew/viewform
https://docs.google.com/forms/d/e/1FAIpQLScoP-qfk8Nx2MmTKMNJx6YdRaswJGvR39jTiXnj91wu79Wwew/viewform
https://docs.google.com/forms/d/e/1FAIpQLScoP-qfk8Nx2MmTKMNJx6YdRaswJGvR39jTiXnj91wu79Wwew/viewform

1.2 https://
docs.google.com/
forms/d/ e/
1FATpQLSCF6fzY
WOKvLH3BJS1G7
kP11lp9K6kcGQ1V
Rzw Wz _J3jMLhiPw
/view form.

INTRODUCTION

observed that in 17 questions over 31, the average score was of 50 +
15%, which highlights a profound disagreement among the volunteers.

If the robot has to operate in this scenario, it would necessarily
be able to adapt to each person, but it might be the case that the
representation detail of the pictures we proposed was too abstract
and led to ambiguities. Therefore, we propose to other 140 volun-
teers a similar survey'?, but with the possibility to give a rate of the
agreement through a 7-item scale. In this case, we did not notice any
statistical differences between some clusters of volunteers based on
their native language. Moreover, we observed that the distribution of
agreement among persons was not Gaussian but it could be used for
characterising the scene with a considerably lower degree of ambiguity.
This implies that with vague spatial relations, the robot could reason
on a fuzzy semantic that is familiar to many different users. However,
finding such a common representation for encoding knowledge in the
robot memory is far being trivial due to the complex behaviour of the
users, even if we considered one of the simplest scenarios.

In a typical development of Human-Computer Interaction (HCI)
applications, where the problem is to find the most suitable ways for
representing symbols in a desktop through which person interacts,
the iterative development process [82] is often used. Such a develop-
ment process is specifically designed to take into account unpredicted
behaviours of the users, which are involved already from the early
stage of the development for providing feedbacks. This process is
made of three phases that are iteratively performed until the end of
the development. The fist consists of developing a part of the system,
in the second experiments are performed, and in the third feedbacks
are evaluated form planning the first phase of the next iteration. Re-
markably, during the latter phase, small system’s changes should be
scheduled in order to make the user’s feedbacks guiding the develop-
ment as much as possible, i.e. the more iterations are done during the
development process, the better the interaction is likely to be.

We aim to use the iterative development process for guiding the
design of the representation that a robot should have for performing
specific tasks jointly with a person. In this way, we do not only want
to investigate the trade-off among different levels of representation
details to perform a specific task efficiently, but we also aim to use
the users’ feedback for building a robot that can share its beliefs with
the purposes of improving the interaction. Remarkably, this would
also be a possible system for addressing the opposite problem, i.e.
the cases where the user wants to explain its beliefs to the robot for
improving the interaction. For doing so, we require to perform as many
changes to the system and experiment as possible, with the purpose
of taking comparable measurements. Such a complex development
process should be supported from a modular system, that allows for
extensions and rearrangement of its components. Moreover, since we

https://docs.google.com/forms/d/e/1FAIpQLScF6fzYWOKvLH3BJS1G7kP1lp9K6kcGQ1VRxwWx_J3jMLhiPw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScF6fzYWOKvLH3BJS1G7kP1lp9K6kcGQ1VRxwWx_J3jMLhiPw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScF6fzYWOKvLH3BJS1G7kP1lp9K6kcGQ1VRxwWx_J3jMLhiPw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScF6fzYWOKvLH3BJS1G7kP1lp9K6kcGQ1VRxwWx_J3jMLhiPw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScF6fzYWOKvLH3BJS1G7kP1lp9K6kcGQ1VRxwWx_J3jMLhiPw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScF6fzYWOKvLH3BJS1G7kP1lp9K6kcGQ1VRxwWx_J3jMLhiPw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScF6fzYWOKvLH3BJS1G7kP1lp9K6kcGQ1VRxwWx_J3jMLhiPw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScF6fzYWOKvLH3BJS1G7kP1lp9K6kcGQ1VRxwWx_J3jMLhiPw/viewform

1.2 OBJECTIVE

are supposing to involve users already from the initial stage of the
development, the system should be completed as far as experiments
for a particular iteration are concerned. Unfortunately, if we consider
a memory that evolves through interaction, performing experiments
with the Wizard of Oz paradigm is not trivial since we require to
annotate a large amount of knowledge.

We considered ourselves at the beginning of the first development
iteration, and we want to develop an architecture that can be easily
extended for supporting the following iterations. Therefore, we do
not focus only on evaluating the interactions, but also assessing the
features of the architecture we used. In other words, we propose an
architecture that can be used as a guideline for developing knowledge
representation for other HRI applications. We based our architecture
on the Unified Modeling Language (UML), and we implemented
it on the Robotic Operative System (ROS). As we mentioned, the
architecture represents knowledge in OWL ontologies since it is a
general-purpose standard, suitable for representing and reasoning on
the HRI domain introduced above. However, we experienced a lack of
integration between OWL and ROS that we had to tackle for imple-
menting a flexible architecture for supporting iterative developments.

Indeed, some drawbacks make developers reluctant to include on-
tology in their architectures [17]. In particular, OWL implies a shift
of developing paradigm, which is not compatible with Objected Ori-
ented Paradigms (OOP). Thus, the developer not only should design
parts of the architecture using a different paradigm, but it should
also care about their interface with the other components. The in-
terface should be such not to limit either OWL representation and
ROS performances, while at the same time being flexible to changes.
Noteworthy, the memory is supposed to be shared among the entire
architecture, and changes to its representation should not affect the
other modules. However, this is not typically the case, since scripting
paradigms are used for interfacing with an ontology. Also, another
drawback is due to the reasoning complexity, which typically scales
exponentially with the size of the ontology. For this reason, only very
small ontology can be used for representing knowledge that changes
frequently, but in most of the application, a simpler and faster lower
layer is recommended to perform computations at high frequency.

1.2 OBJECTIVE

In the thesis, we discuss the advantages and drawbacks of an archi-
tecture that relies on symbolic representations of robotic memories.
We motivate why DL is a promising formalism for the development
of architectures for HRI, and we describe the issues to be taken into
account while deploying OWL ontologies in a ROS architecture.

INTRODUCTION

Due to such issues, state of the art architectures exploits a limited
part of the potential OWL features that can be used for structuring
runtime knowledge in the service of robots behaviours. Indeed, typical
architectures use ontology passively, where a single component is in
charge of maintaining the knowledge while exposing few function-
alities to the other modules. In those architectures, the ontologies
are usually devoted to reason on a static domain definition, which is
carefully designed by knowledge engineers.

Nowadays, we are still investigating robots deployed in simple
scenarios compared with the unstructured environments in which they
are supposed to be used. In many of those situations, the knowledge
the robot requires is limited, mainly due to the limited set of perception
and action functionalities it can rely on. In those situations, primitive
data structures are efficient and do not introduce any extra levels
of complexity in the design of the architecture. Nevertheless, such
a structure would sharply limit the robot if its set of functionalities
increases.

Practically, consider the case in which we want to extend an archi-
tecture with a new module that produces data, which could improve
the performances of other modules if the knowledge they generate is
aggregated and contextualised. If the architecture relies on primitive
data structures, we would need to redesign the system for updating
the structures used by each component and introducing new reason-
ing components for aggregating purposes. We argue that if a more
structured knowledge is used instead, we could design software in-
terfaces that are extendible in terms of the semantic of the data they
involve.

If we assume to have such an extendible architecture, we could
think to use it for implementing different knowledge aggregation
approaches, and this would be a crucial step toward a comparison
and evaluation of the best reasoning techniques for a specific domain.
Indeed, the state of the art systems that employ symbolic represen-
tations are mainly based on heuristic models. If they model simple
and deterministic contexts, it is possible to validate their semantic
behaviour based on common sense examples and counterexamples.
However, if the models are supposed to represent complex contexts,
involving uncertainties and structuring evolution of knowledge over
time, the validation process becomes not trivial. For this reason, in
complex scenarios, we argue for an iterative development process,
which involves a systematic comparison of different heuristics.

The lack of comparison in the literature is mainly due to the chal-
lenging problem of defining a common framework for developing
ontology-based architectures for robotics, rather than passively load an
ontology inside one component. Such a framework should allow defin-
ing interfaces not only among components but also between pieces
of knowledge they require and provide in/from memory. In this way,

1.2 OBJECTIVE

it could be possible to integrate different reasoning techniques inde-
pendently from the other components, i.e. we assume knowledge to
be given in accordance with some interface. Consequently, it could be
possible to provide each reasoner with a semantic representation of the
same context and use the architecture for evaluating and tuning them.
Remarkably, after this step, it would be possible to deploy different
reasoners in the same architecture for being contextualised and used
at runtime, as shown in Chapter 10.

With the objective of validating the feasibility of our framework,
we investigated design patterns that support the development of ex-
tensible software architectures based on symbolic representation for
HRI. Since we want the architecture to support the iterative develop-
ment process, we built a simple but complete system first (as far as
measurement and comparison are concerned), with the purpose of
extending it later toward real scenarios. Therefore, we focused on a
simplified tabletop environment concerning spatially arranged objects,
with the objective to design architectures as flexible as possible. Then,
based on an evaluation of the obtained architecture, we can conclude
its possible deployment in more complex scenarios. In particular, the
feature of the architecture we considered are

e generality, which indicates the limits of the knowledge domain it
can represent and use;

o modularity, showing the boundaries of re-using and interfacing
components in a particular domain;

e scalability, which concerns the performances of the system when
the number of modules, as well as amount of knowledge, scale

up.
To support an iterative development process for HRI, and evaluate

the features of our design pattern, we consider an architecture with
the following requirements.

e Feasibility: the computation demand should be suitable for soft
real time constraints as far as HRI is concerned.

o Shareability: it should use mainstream tools, to allow develop-
ers to integrate as many modules as possible for perceiving,
planning and acting.

o Expressibility: it should generically support the design of an
application domain, and allow developers and users to rely on
expressive semantics for representing it.

o Explicability: it should represent the knowledge in a way that a
developer can understand its content during an iterative devel-
opment process. Also, the architecture should be such to make
the robot able to explain its beliefs and intentions for reducing
the interaction gap.

9

10

INTRODUCTION

e Robustness: the architecture should be able to deal with noise
and uncertain knowledge.

o Long-term: it should be such to access and use the knowledge
with a computation complexity that does not degenerate over
time.

1.3 CONTRIBUTION

We wanted to design an architecture in which a rich data structure is
used as a central knowledge base, that distributed components use in
the service of robotic behaviours for HRI applications. In particular,
we consider a scenario where a user demonstrates to the robot some
situations that are supposed to be interesting for an application and,
though a multimodal but not physical interaction, supervises the
beliefs of the robot. In particular, during a knowledge revision phase,
the robot is an observer, that learns from demonstrations and allow
the user to — eventually — perform knowledge refining through natural
language. After such a bootstrapping phase, a structured memory
of experiences is stored, and the robot is supposed to exploit the
knowledge it contains for acting into the environment.

This thesis focusses on the knowledge bootstrap phase, and in the
maintenance of such a structured memory for long-term. We spent
effort for generalising the semantics of the knowledge that can be
structured in the robot’s memory, and we designed software interfaces
expressive enough for being flexibly used in a ROS architecture. Al-
though the design of perceiving and acting modules that are supposed
to be based on the robot memory is not in the main scope of this thesis,
for testing purposes, we had to consider a complete architecture that
spans from perception to action.

In particular, we used points cloud for perceiving objects on the
table as well as user’s gestures, such as pointing. Also, we process
natural language to engage dialogues between the user and the robot,
which the only action it performs during knowledge bootstrapping
is speaking. We design the bootstrapping phase such to generate
knowledge that can be directly used with symbolic contextualising
techniques for activity recognition or decision making, as well as for
symbolic, or subsymbolic, planning.

However, describe continuous spaces is a challenging open issue, e.g.
to be used for motion control or physical interaction, since we consider
a purely symbolic representation for facilitating verbal interaction.
Using Monte Carlo simulations performed over symbolic knowledge,
we related qualitative symbols with a spatial semantic to 2D positions
that the robot should reach. Nevertheless, apply this approach for
knowledge that does not represent a spatial domain is far from trivial.
In those cases, we argue for architectures that interface a high symbolic

1.3 CONTRIBUTION

layer to a lower layer, which evaluates functions in a numerical domain
driven by the former.

In this thesis, we wanted to investigate the issues of maintaining
robots” memories deeply. Therefore, we present the implementation
of simple proof of concept components for visual recognition, mul-
timodal integration, and dialogue managing components. In those
components, we used simple approaches for generating qualitative
data from sensors in a symbolic form, and we used it as a ground
for testing the management of the memory through interactions. Al-
though there is a large room of improvement for those components
with other states of the art approaches, we used them to show how we
generate the knowledge that we want to maintain in memory through
Sensors.

The management of the knowledge in the memory is done with the
Scene Identification and Tagging (SIT) algorithm, which is the core
of our knowledge bootstrapping approach. This algorithm performs
one-shot learning, and structured classifications of scene demonstrated
over time. The algorithm structures experiences in a logic graph and,
based on fuzzy ontology, it can take into account the uncertainties
of the perception modules as well as the vagueness of qualitative
knowledge. We used the algorithm for making a robot able to explain-
ing and correcting its belief based on dialogues with a supervisor.
Also, we propose an architecture to store, retrieve, consolidate, and
forget long-term structured experiences in contextualised parts of the
memory, i.e. based on a semantic and episodic representation of a
situation.

We tested the algorithm in a simple scenario and, through examples,
we discuss in details its interface for highlighting how it can be used in
different applications. In particular, we propose the concept of semantic
interface, which represents the knowledge that a ROS component
requires and provides in a knowledge base. This is different from a
typical interface between components, where the type and semantic
of provided and perceived data is hard coded during the architecture
development. Instead in a semantic interface, a component needs to
specify the syntax in which knowledge is stored, but the definition of
its semantic can be delegated entirely to other components in charge
of reasoning on the memory.

The deployment and test of such a novel type of interface in a robot
architecture required to develop some tools for exploiting symbolic
reasoning among distributed and general-purpose components. In
particular, we developed a ROS service that allows distributed com-
ponent to manipulate and query multiple ontologies in a thread-safe
manner. The service is based in a novel API that interfaces OWL to
OQP objects, and it allows to implement algorithms for managing the
memory in an extensible fashion through procedure injection.

11

12 INTRODUCTION
S eds0ers T External Components
SIT Perceiving Components
i Z] 3] 3]
? |_D Mt;lthodal PIT CNN
Semantic e
Interface \
Hybrid Components
Knowledge e g] g]
Representations lalogue CAGG
P 3 0 Manager
ARMOR
Acting Components
g] [] 2] g] 2]
OWLOOP Simulation Planner Controller

Figure 1.1: An UML-based overview of the proposed architecture for memory management.

1.3 we provide
open-source
implementations at
https: // githubd.
com/ EmaroLab
with prototyping
purposes.

1.4 ARCHITECTURE AND THESIS STRUCTURE

The thesis is organised in six parts, including this introduction (Part i)
and a conclusion (Part vi). In particular, Part ii introduce some simple
components that produce and use the knowledge for our testing sce-
nario. Part iii introduces the tools we used for implementing semantic
interfaces between ROS components and OWL ontologies. In Part iv
we detail the algorithm that manages the memory, while in Part v
we present two architectures we developed through a synergistically
use of the components introduced in the previous parts. The main
contribution of this thesis is presented in parts iv and vi, while parts ii
and iii give a background of the overall architecture and some details
about the scenario and the implementations we used in our tests.

Figure 1.1 shows an overview of the presented architecture, whose
components are discussed in dedicated chapters of the thesis. It has
been designed with the objective presented in Section 1.2, and dis-
cussed in Chapter 11, and its components have been tested as far as
our scenario concerned’3. Due to issues of interfacing OWL ontology
with a ROS architecture (discussed in chapters 5 and 6), for which
we had to find a solution, we could only preliminary test the overall
architecture.

The architecture is composed of modules that we can be classified
in the following categories.

e The external modules (addressed in Part ii, Chapter 9 and Ap-
pendix A) are heterogeneous concurrent components that should
respect some real time constraints. They can be further cate-
gorised in

https://github.com/EmaroLab
https://github.com/EmaroLab

1.4 ARCHITECTURE AND THESIS STRUCTURE

— perceiving modules, which are in charge to generate knowl-
edge,

— acting modules, which reacts to particular states of the mem-
ory for driving low layer controllers, e.g. a planner,

— hybrid components, which generate knowledge and requires
feedback from memory in order to implement some acting
behaviours, e.g. for dialogues.

e The reasoners (addressed in Part iv and deployed in ROS archi-
tectures in Part v) are components that elaborate the knowledge
for maintaining a semantic structure of experiences over time.

e The knowledge representations contain semantic data structures
shared among all the components of the architecture, i.e. the
robot’s memory, and provides flexible developing tools (ad-
dressed in Part iii).

We consider external components to provide (and require) knowl-
edge from memory, which will be (or have been) elaborated from
reasoners. We suppose the perception modules to proved symbolic
data, e.g. a tuple hasColor(x1, red). Acting modules should retrieve
similar statements for activating some behaviour, while reasoners are
in charge of evaluating models of the experiences the robot had and
deduces new knowledge. In other words, reasoners aggregate data
coming from perception to provide rich information for acting. For
generality, we consider reasoners that retrieve inputs from memory
instead of being directly interfaced to external components, which
consequentially has to access the knowledge representation directly.
This implies that the knowledge representation is interfaced with
many, and potentially all, the components of the architecture. For this
reason, the interface between components and the memory is crucial
for flexible designing such an architecture. This thesis proposes to
extend the definition of ROS interfaces through the specification of the
knowledge that a component requires and provide in the knowledge
representation.

Together with the novel type of interfaces involved in this architec-
ture, the main contribution of the thesis is a reasoner that we tested
with some simple external components. In particular, in Chapter 2, we
present a stack of ROS nodes called the Primitive Identification and
Tagging (PIT), which uses a Kinect to segment objects on tables and
identify some symbolic properties, such as shape and colour. While
in Chapter 4 we propose a multimodal symbolic fusion system that
can be used to create knowledge based on a combination of PIT and
neural networks for generating more robust and expressive outcomes.
Also, in Chapter 3, we present the Concept Action Grammar Gener-
ator (CAGG), which evaluates sentences based on static grammars.
The latter is a very simple way to perform natural language process,

13

14

1.4 e.g. https: //
dialogflow. com/

INTRODUCTION

but we argue that the output it provides is similar to more advanced
techniques™4, i.e. semantic tagged symbols describing parts of a sen-
tence. Based on such information we present in Chapter 9 a technique
to ground such tags in the memory in order to manage dialogues
between a robot and a human supervisor that might want to correct
its beliefs. Last but not least, in Appendix A, we present the interfac-
ing of external components for path planning based on Monte Carlo
simulation over fuzzy symbolical representations.

In the architectures proposed in chapters 9 and 10, the compo-
nents introduced above interface among each other for synchronising
purposes (links not shown in Figure 1.1), and with the knowledge rep-
resentation for storing, retrieving or manipulate data in memory. This
is done through a ROS Multi Ontology References (ARMOR), which
is presented in Chapter 6 as a service for OWL manipulations and
queries. It embeds the OWLOOP API, presented in Chapter 5, which
is a convenient tool we designed for flexibility, integrability, and main-
tainability purposes. Thanks to those components we could develop
architectures based on the novel concept of semantic interfaces.

In Chapter 7 we detail the SIT algorithm, which formalises the main
computation we performed to generate and maintain experience in
the memory. It defines a particular semantic interface that the external
components presented in this thesis respect, but we describe the
algorithm for a generic set of components that create knowledge with
a fixed syntax, but customisable semantic. In Chapter 8, we extend the
algorithm to be robust in case of uncertain environments, and we test
it in a referencing scenario that we also used in chapters 7, 9 and 10.

In particular, Chapter 10 proposes an implementation of the archi-
tecture deploying several reasoners based on SIT. This architecture has
been inspired by cognitive memory assessments, such as the division
in semantic and episodic representations of experiences, and their
association and runtime through rehearsal processes. For that archi-
tecture, we provide templates for implementing consolidating and
forgetting behaviours. Remarkably, it is based on a general representa-
tion of memory types, which could also be used also for not cognitive
architectures where contextualised knowledge representations are
required.

https://dialogflow.com/
https://dialogflow.com/

Part II

PERCEIVE FOR ACTING

This part discusses some simple components we used for
testing our architecture. Its contribution is marginal with
respect to the other parts of the thesis, but it gives the
details on how we generate symbols for encoding robot’s
experiences.

2

A SOFTWARE ARCHITECTURE FOR
OBJECT PERCEPTION AND
SEMANTIC REPRESENTATION

ABSTRACT

In the near future, robots are expected to exhibit advanced capabilities
when interacting with humans. In order to purposely understand
humans and frame their requests in the right context, one of the major
requirement for robot design is to develop a knowledge representa-
tion structure able to provide sensory data with a proper semantic
description. This paper describes a software architecture aimed at de-
tecting geometrical properties of a scene using an RGB-D sensor, and
then categorising the objects within to associate them with a proper
semantic annotation. Preliminary experiments are reported using a
Baxter robot endowed with a Kinect RGB-D sensor.

Perception - Semantic knowledge - RGB-D sensor - Software architecture

AUTHORS

Luca Buoncompagni and Fulvio Mastrogiovanni

AFFILIATION

University of Genoa.

17

Proceedings of the
2nd Italian
Workshop on
Artificial Intelligence
and Robotics, a
workshop of the XIV
International
Conference of the
Italian Association
for Artificial
Intelligence (AI*IA
2015, Ferrara, IT).

18

AN ARCHITECTURE FOR SEMANTIC OBJECT PERCEPTION

2.1 INTRODUCTION

Advanced human-robot interaction processes in everyday environ-
ments are expected to pose a number of challenges to robot design,
specifically as far as perception, knowledge representation and action
are concerned. Examples where advanced capabilities in robot cog-
nition play a central role include robot companions [165] and robot
co-workers [70], just to name a few.

It is expected that a major role in robot cognitive capabilities for
human-robot interaction will be played by a tight connection between
robot perception processes and their semantic representation. The
latter is expected to provide robot percepts with explicit contextual
knowledge, which is implicitly assumed to be present when two
humans interact and, after an adaptation process, reach a so-called
mutual understanding state [173].

In the long-term, we consider human-robot interaction processes
where a robot and a human share a workspace, and have to interact
(physically, verbally or by means of gestures) in order to perform a
certain joint operation. Examples of these processes include object
handovers, joint manufacturing tasks, or typical household activities.
In this paper, we focus on robot perception capabilities: a robot is able
to detect and track the objects present in the shared workspace and,
if they belong to known categories, to provide them with semantic
meaning. To this aim, the proposed software architecture provides two
main functionalities:

o Clustering, tracking and categorisation. Starting from RGB-D data,
the scene is processed to detect individual clusters in the point
cloud. The position of each cluster, independently of its shape
(in terms of the configuration of constituent points) is tracked
over time. If a cluster can be mapped to a known basic geo-
metric class (i.e. plane, cone, cylinder or sphere, a cube being
given by six planes in a specific configuration), they are labelled
accordingly using the Random Sample Consensus (RANSAC)
algorithm [137].

o Semantic description. When object categories are determined, an
ontology is dynamically updated to associate objects in the
workspace (i.e. instances) with their semantic description (i.e. con-
cepts). To this purpose, Description Logics (DLs) are used [10].
Once objects are classified, it is possible to tune robot behaviours
accordingly, for example associating them with specific grasping
behaviours, grounding them with proper verbal tags, using them
in action planning processes.

The paper is organised as follows: Section 2.2 describes the proposed
architecture; Section 2.3 discusses preliminary results; Conclusions
follow.

2.2 THE PRIMITIVE IDENTIFICATION AND TAGGING (PIT) ARCHITECTURE 19

[A] Kinect —D [B] Preprocessing —D [C] Clusterisation

RGB-D raw data filtered point cloud
1) down sampling. 4) supports
2) depth filtering. segmentation.
3) arm filtering. 5) objects Objects
segmentation. point cloud

%4— [E] Shape detection 4—' [D] Tracking 4—

Positioning object

) description
Geometric 7) plane detection. 6) centroids
object 8) cylinder detection. evaluation and
description 9) cone detection. memory
10) sphere detection. management.
11) shape evaluator.

Figure 2.1: Abstract representation of the system’s architecture: components (blue squares) represent
information sources and computational units, exchanged data (arrows) are related to the
internal information flow.

2.2 SYSTEM’S ARCHITECTURE

The proposed software architecture** is based on the computational 2.1 https:
design pattern [28], i.e. a sequence of basic computational steps carried /7 github. com/

out in sequence according to a pipeline structure (Figure 2.1). First, ZZZZZZZ
a raw point cloud is acquired by the Kinect component ([A] in the identification.

Figure) and, for each scan, depth data are preprocessed ([B]). Then, tracking_
the Clusterisation component ([C]) detects object supports (e.g. tables tagging.
or shelves), and segments the objects above them, by generating a
point cluster for each object. Such a mid-level representation is used
by the Tracking component ([D]), which compares each cluster in the
current point cloud with clusters already present in memory, updates
their position and, if a new cluster is detected, registers it in memory.
Finally, the Shape detection component ([E]) provides an estimate of
the object basic primitive shape, as well as its parameters.

The Preprocessing component performs a sequence of steps sequen-
tially. First, a downsampling step is carried out to decrease the number
of points in the point cloud provided by the RGB-D sensor [167]. Then,
vectors normal to all the surfaces are computed [133]. The data is
limited to all the points belonging to a semi-sphere around the Kinect-
centred reference frame, which allows for focusing on a particular area
of the workspace thereby drastically improving the overall system
performance. Finally, the point cloud is also filtered to remove the
points related to the robot’s arms. This is done by enveloping the
links related to robot arms in bounding boxes, and checking for a
point-in-parallelepiped inclusion.

The Clustering component recursively applies RANSAC to find all
the horizontal planes in the scene. This information is used to deter-
mine the points belonging to the objects located on planes (i.e. acting
as supports). Finally, an Euclidean clustering algorithm is applied to
segment the objects in the scene [132]. As a result, the component gen-

https://github.com/EmaroLab/primitive_identification_tracking_tagging
https://github.com/EmaroLab/primitive_identification_tracking_tagging
https://github.com/EmaroLab/primitive_identification_tracking_tagging
https://github.com/EmaroLab/primitive_identification_tracking_tagging
https://github.com/EmaroLab/primitive_identification_tracking_tagging
https://github.com/EmaroLab/primitive_identification_tracking_tagging
https://github.com/EmaroLab/primitive_identification_tracking_tagging

20

AN ARCHITECTURE FOR SEMANTIC OBJECT PERCEPTION

erates for each support a set of clusters related to objects located above
it. Each cluster i is represented by its visual centroid ¢! = (x¥,y?,z?),
computed as the mean of all the points in i.

Although many approaches to obtain a robust tracking are available
(see the work in [55] and the references therein), in this preliminary
work we adopted a simple geometrical approach. Our aim is to obtain
and evaluate a hybrid geometric/symbolic representation of objects.
Previously detected objects are stored in memory, specifically us-
ing their visual centroid and an associated list of cloud points. Our
current implementation of the Tracking component is depicted in Algo-
rithm 2.1. After an initialisation phase (from Line 2.1.1 to 2.1.10), first
an association between current and tracked clusters is performed (from
Line 2.1.12 to 2.1.15), then old clusters are removed (from Line 2.1.17
to 2.1.19). Given two clusters i and j detected at time instants ¢; and t;,
we refer to their visual centroids as c{(f;) and c}’(tz). We assume that j

Algorithm 2.1: The tracking component.

2. 1.1

2.1.3
2.1.4
2.1.5
2.1.6

2.1.7

2.1.8
2.1.9

2.1.10

2.1.11

2.1.12

2.1.13

2.1.14

2.1.15

2.1.16
2.1.17
2.1.18

2.1.19

Input : A vector C of n clusters belonging to the same support; a vector T of m

tracked clusters; a matrix D of n x m distances between current and
tracked clusters; a vector U of m counters to check for how many scans a
cluster has not been updated; a vector F of m Boolean values to keep
track of which clusters have been updated.

Const : The radius € € R and the threshold # € IN.
For each fi € F, fy < false
212 foreach ¢; € C do

f

Foreachi=1,...,nand j=1,...,m, Djj < 0
foreach t; € T do
dl‘,]' — diSt(Cj, t])
if d;; < € then
L Di,j < di,]'

if 3D; ; such that D;; = co then
create t; € T using ¢;
add and initialise u; € U such that uy < 0, fx € U such that f; < 0

else
do = d}; < argmin;;(D).
if f, = false then
update centroid and point cloud of ¢, using weighted average between c;
and t;
fo < true, u, <0

oreach fr € F such that fi = false do

ukeuk—i—l
if u; > 7 then

L delete tp € T,ur € U, fy € F

2.3 EXPERIMENTAL RESULTS 21

% Empty Plane Sphere Cone Cylinder

Empty 87.40 11.65 0.20 1.06 1.60
Plane 1250 8254 6.63 7.22 8.70
Sphere 0.00 0.00 93.17 0.00 0.00
Cone 0.00 0.32 0.00 66.04 0.11

Cylinder | o.10 5.49 0.00 2568 89.59

Table 2.1: Confusion matrix describing the error distribution of the RANSAC-based shape detection.

is an updated representation of i if c}’(tz) is located within a sphere of
radius € centred on c?(f1). A tracked cluster is removed from memory
if it is not updated for # consecutively scans.

Finally, the Shape detection component associates each cluster with a
possible primitive shape (i.e. plane, cone, cylinder or sphere, a cube
being given by six planes in a specific configuration), as well as its
geometrical coefficients. To this aim, we employ RANSAC to find the
best fitting shape based on the relative number of points belonging to
those primitives. Once a cluster i is associated with a primitive shape,
its representation can be augmented with a shape tag (i.e. a category),
its coefficients (e.g. the axis for cones or the radius for cylinders),
and the geometrical centroid ¢, which is computed using the primitive
shape rather than the point cloud. It is noteworthy that, in principle,
c8 is more accurate than c?, since it considers not only the visible part
of the object but its full reconstruction provided by RANSAC.

Currently, knowledge about primitive shapes is maintained within
an OWL-based ontology [108], where all the geometric object proper-
ties can be described. Two classes are used to model objects, namely
VisualObj and GeomObj. The former models objects in the form of
clusters, whereas the latter represents the associated primitive shape.
GeomObj has a number of disjoint subclasses related to primitive
shapes, including SphereObj, ConeObj, CylinderObj, and PlaneQbj.
Two data properties are used to describe visual and geometric cen-
troids, namely hasVisualCen and hasGeomCen, as well as properties
to describe shape-specific coefficients, e.g. a SphereObj has a radius
specified using hasGeomRadius. As a consequence, a description cor-
responding to a cluster 7 is an instance of VisualObj if its property
hasVisualCen contains a valid visual Centroid cf, and it does not
contain any valid description related to hasGeomCen. In formulas:
VisualObj C JhasVisualCen.Centroid M —JhasGeomCen.Centroid. A
similar description holds for GeomObj.

2.3 EXPERIMENTAL RESULTS

Two experiments have been set-up, the first aimed at evaluating the
performance of the architecture in static conditions, the second on a

22 AN ARCHITECTURE FOR SEMANTIC OBJECT PERCEPTION

set-up involving a Baxter robot. The system has been implemented in
ROS and the Point Cloud Library (PCL) [132].

The first experiment is aimed at estimating the errors in shape
detection in a static environment with multiple supports (Figure 2.2).
Acquisition is made 500 times for every shape. Results are reported
in the confusion matrix shown in Table 2.1. It is possible to see that
system’s performance is reliable specifically for planes and spheres.
Slightly lower recognition scores are present for cones and cylinders.

The second experiment focuses on the performance of the tracker
as well as the visual and geometrical centroids (Figure 2.4 on the
left hand side). A cone has been fixed to the Baxter’s end-effector
through a wire, in order to mimic a pendulum-like behaviour. When
the robot moves the arm, the cone oscillates. The wire’s length and
the cone’s mass are unknown to the robot. Figure 2.4 on the right
hand side shows the tracked point cloud. It is noteworthy that the
cluster does not represent the object completely, which affects the
visual centroid, whereas the geometrical representation of the object
allows for computing a more accurate centroid. Figure 2.3 shows the
tracking of the two centroids. Intuitively, it can be noticed that the
variance associated with c” is higher than that of c3, since the visible
part of the object changes while the object oscillates. Moreover, it can
be observed that between the two plots there is an offset due to the
geometric properties of the real object and its visible part.

Figure 2.2: Experiment set up (left) and data visualization (right), where colours identify shapes and
supports.

2.4 CONCLUSIONS

0.08 Visual Centroid over time
__ 006
E o004 Lo o °
o
N 002 ° ° ° o ° o ° W" gs° o 09 oozme e °° @ o °
0
-02
YIml ™04
0.7 0.72 0.74 0.76 0.78 X [m] 0.8 0.82 0.84 0.86 0.88
0.08 Geometric Centroid over time
T 0.06
:"0.04
0.02
0 ° 8 o o ool o oF° ° 00 oo Rm® o °0° °
0.2
Y [m[
-0.4
07 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88
X[m]

Figure 2.3: Visualisation of ¢” (top) and c3 (bottom) during a tracking experiment.

2.4 CONCLUSIONS

This paper describes an architecture to model and track a few (both
geometrical and semantic) properties of objects located on a table. The
system is still work-in-progress. One the one hand, we are interested
in exploring the possibility of using symbolic-level information to
model high-level object features, such as affordances. On the other
hand, we believe that the interplay between the two representation
levels can be exploited to increase the overall system’s capabilities.

Figure 2.4: Baxter holding an oscillating cone.

23

0.9

AN OPEN FRAMEWORK TO
DEVELOP AND VALIDATE

TECHNIQUES FOR SPEECH
ANALYSIS

ABSTRACT

This paper presents the Concept-Action Grammar Generator (CAGG)
system, which is an open source framework for natural speech-based
interaction to be used in the semantic analysis of sentences. The goal
of our framework is two-fold: (i) to deliver a formalism associating
a context-aware semantics to the words in a sentence; (ii) to provide
a common framework to benchmark different implementations of
evaluators with the aim of improving speech-based interaction. To this
aim, CAGG includes a specifically designed formalism for grammars
definition as well as parsing mechanisms to automatically create and
evaluate their structure. CAGG implements a deterministic evalua-
tor which provisional performance related to a number of natural
queries is discussed in terms of correct semantic associations and
computational time.

Speech analysis - Natural speech-based interface - Human-robot interaction

AUTHORS

Luca Buoncompagni and Fulvio Mastrogiovanni

AFFILIATION

University of Genoa.

25

Published in the
Proceedings of the
3rd Italian Workshop
on Artificial
Intelligence and
Robotics, a workshop
of the XV
International
Conference of the
Italian Association
for Artificial
Intelligence (AI*IA
2016, Genoa, IT).

26

3.1 https:
//w3c. github.
i0/ speech-api/.

3.2 https:

// support.
microsoft. com/
en-us/help/
17214/ windows -
10-what-1is.

3.3 url: http:
// www. apple.
com/ t0s/ siri/.

3.4 https:

// developer.
amazon. com/
aleza.

3.5 https:

// github. com/
EmaroLab/
concept_action_
grammar_
generator.

AN OPEN FRAMEWORK FOR SPEECH ANALYSIS

3.1 INTRODUCTION

We make, as human beings, a large use of speech-based interaction
in organising our daily activities, teaching to someone else how to do
something, understanding other people’s interests, or asking for help
in difficult situations. Therefore, a natural and context-aware speech-
based interaction if fundamental for human-robot interaction and
collaboration as well.

There is no shortage of advanced speech-to-text systems, both as
open source, e.g. CMU Sphinx [88] and HTK [171], and well-known
commercial products such as Google Now3', Microsoft Cortana3?,
Siri33 and Alexa3+. On the one hand, these systems rely on formal
grammar specifications, advanced data processing techniques, web
searching and machine learning to provide services to their users.
On the other hand, there is no widespread consensus about how to
deal with the typical ambiguities we employ during communication
and clarifying conversations, which are due to the common sense
knowledge we imbue our speech-based interactions with. When in-
teracting with robots, it is often the case that contextualised knowledge
is available as robot’s belief and it is reasonable for a robot to exploit
such information to better understand a human sentence.

An open source framework to generate grammars and to easily pro-
totype and benchmark sentence evaluators is of the utmost importance.
In this paper, we propose the Concept-Action Grammar Generator
(CAGQG) framework, which allows for: (i) the context-aware semantic
tagging of words in a sentence based on a specified grammar, and (ii)
developing and validating different evaluators. Semantic tagging is the
approach we adopt to combine different knowledge sources, e.g. the
knowledge a robot may have about its environment and the context.
CAGG comes with a deterministic multi-thread implementation of
a grammar evaluator for a basic speech-based interaction, and it is
available open source3->.

3.2 SYSTEM’S ARCHITECTURE AND INFORMATION FLOW

The CAGG framework adopts an ad hoc language based on the Backus-
Naur Form syntax [58]. The language defines a grammar with rules
and sub-rules (identified by < and >), which represent a logic expres-
sion as a binary tree. Rules have a head and a tail, separated by :.

Listing 3.1: An example of a grammar in the CAGG syntax.

311 ! start <M>;
312 <M>: <R1> {@7;@~;} | <R2> {@T;Gbb;};

313 <R1>:

(hi | hello);
314 <R2>: l!optional(good{@!T;}) bye |

'repeat (bye{@!!;},1,2);

https://w3c.github.io/speech-api/
https://w3c.github.io/speech-api/
https://w3c.github.io/speech-api/
https://support.microsoft.com/en-us/help/17214/windows-10-what-is
https://support.microsoft.com/en-us/help/17214/windows-10-what-is
https://support.microsoft.com/en-us/help/17214/windows-10-what-is
https://support.microsoft.com/en-us/help/17214/windows-10-what-is
https://support.microsoft.com/en-us/help/17214/windows-10-what-is
https://support.microsoft.com/en-us/help/17214/windows-10-what-is
url: http://www.apple.com/ios/siri/
url: http://www.apple.com/ios/siri/
url: http://www.apple.com/ios/siri/
https://developer.amazon.com/alexa
https://developer.amazon.com/alexa
https://developer.amazon.com/alexa
https://developer.amazon.com/alexa
https://github.com/EmaroLab/concept_action_grammar_generator
https://github.com/EmaroLab/concept_action_grammar_generator
https://github.com/EmaroLab/concept_action_grammar_generator
https://github.com/EmaroLab/concept_action_grammar_generator
https://github.com/EmaroLab/concept_action_grammar_generator
https://github.com/EmaroLab/concept_action_grammar_generator

3.2 THE CONCEPT ACTION GRAMMAR GENERATOR (CAGGQG) 27

X-0r
©@«R1\hello», hello x-or

@«R1\hi», hi or bye, @«»
and
Q<«bb», good bye, 0«>»
@<T\bb», bye bye, 0«»

Figure 3.1: The Semantic expression Tree (ST) generated from the grammar shown in Listing 3.1.

Within rules, a number of context-aware directives can be introduced,
denoted by !. In particular, !start specifies the root of an expression,
loptional identifies its optional parts, and !repeat enables looping
over an expression within a lower and an upper bound on the range.
Each line always ends with ;. Sub-rules or terms (i.e. words in a sen-
tence, which are an expression’s leaves) can be aggregated using: an
empty space, * ’ (to denote an and logical operator), or | (which is
a x-or operator). It is noteworthy that CAGG also supports C-like
comments and annotations. Each rule or term can be semantically
tagged using {@...;...}, which specifies an array of symbols activated
in a verified parsed path. Special tags can be used using ?, which is
replaced during compilation with the rule’s head or term. To indicate
that the last tag must be augmented with the path’s leaf, one can use ~.
Furthermore, a tag can be removed with !, while !! clears the tag list.

In Listing 3.1 shows a simple example of the CAGG syntax, which
defines a grammar having at least a solution containing the tags: R1
if the input is “hi” or “hello”, as well as «T\bb» if “bye” is given or
«bb, T\bb» for “good bye”, whereas “bye bye” returns «». Accordingly,
a tree representation is sketched in Figure 3.1.

Figure 3.2 shows the CAGG architecture. In order to build a gram-
mar evaluator, CAGG implements a parsing procedure (based on
ANTLR [117]) able to generate an Abstract Syntax Tree (AST) for
each rule. Each AST is transformed in a binary Expression Tree (ET)
via syntax manipulation and, finally, the Grammar Generator module
builds a unique Semantic Tree (ST) (e.g. Figure 3.1) by associating
semantic tags to leaves (i.e. words) and all composition of rules to
tree paths. The process can be supervised through a Graphical User
Interface and stored in memory.

When audio information is given, a speech-to-text interface (in
the current system we use the Google Speech API [141]) is used to
determine the most likely corresponding text string. The string must
be formatted. A recursive function generates different Semantic Tree
Instances (STIs). In each instance, leaf nodes are initialised with a
Boolean value by matching the word with the corresponding leaf in
the ST. Each STI represents a possible solution that must be feasible
in terms of words consequentiality and robustness with respect to
non modelled words. Our current implementation searches for all the
possible solutions recursively reducing the sentence by removing the

28 AN OPEN FRAMEWORK FOR SPEECH ANALYSIS

. Tag
CAtGG :| Commands |15t Evaluat
syntaxes -| Activator valuator .
: ST STIS
ETs Grammar |: = >| Formatter
e Generator |:
: Speech-to-Text T

Figure 3.2: The CAGG flow to create grammars for on-line speech recognition (highlighted in a dashed
box): blue boxes identify available modules, white boxes are application-specific modules.

first words until the sentence itself is empty. In this procedure, the
Formatter module searches for the occurrences of each word in the
leaves and manages possible multiple usages of the same term (e.g.
“bye bye” in Listing 3.1 and Figure 3.1) using a depth first approach. It
is noteworthy that the implementation of such an algorithm strongly
affects the overall system’s performance thus, current work is focused
on exploring other approaches. Again on Figure 3.2, as soon as a
new STI is generated it is provided to the Evaluator module, which
computes the logical expression from the leaf to the root, by adopting
an any-time approach. If the root is in true state, the solution is satisfied
and all the semantics tags related to the true leaves are returned as an
array. Finally, the Commands Activator module is in charge to map
such an array of semantic symbols into application-based services.

CAGG proposes a framework for the analysis and evaluation of
different approaches to grammar definition and evaluation, and pro-
vides a method to event-based action generation which employs the
analysis of sentences, by means of the tags array. It allows designers
and engineers to implement new Formatter or Evaluator modules based
on the ST-based representation.

Listing 3.2: A grammar for simple questions with a limited set of worlds.

3.2.1 !start <MAIN>;

322 <MAIN>: l!optional (<WH>) <QUERY> !optional (<O0BJ>{@0bj~;});

323 <WH>: what | where;

324 <QUERY>: <AUX>{@7~;} <0BJ>{@Subj~;} <VERB>{Q@7~;} | <VERB>{@7~;}
<0BJ>{@Subj~;};

325 <BE>: am | are | is;

32.6 <HAVE>: have | has;

327 <BE-HAVE>: <HAVE> | <BE>;

328 <AUX>: do | does | <HAVE>;

3.2.9 <VERB>: <BE-HAVE> | seen;

3210 <OBJ>: <PRONQOUN> | <THING>{@?7;} | <CONCEPT>{@?;};

3211 <THING>: robot | door;

3212 <CONCEPT>: name | surname;

3213 <PRONOUN>: I | you;

3.3 EXAMPLES 29

Do you have a name? 0.463 sec «AUX\do ; Subj\you; VERB\Have ; 0bj\CONCEPT\name»
What have you seen? 0.238 sec | «AUX\have;Subj\you;VERB\seen»

Are you a robot? 1.161 sec «VERB\are;Subj\you;0bj\THING\robot»

Are you a machine? 0.402 sec | «VERB\are;Subj\you»

You are smart. 1.520 sec | «»

Table 3.1: Examples of system usage using the grammar in Listing 3.2.

3.3 EXAMPLES

We discuss here a simplified grammar to analyse questions posed
in English (Listing 3.2). Table 3.1 contains a few examples, the corre-
sponding computation time and the resulting sentence analysis. We
see how the same word can be interpreted according to different se-
mantics on the basis of the question and where it is in the parsing
tree. Moreover, CAGG can deal with unknown words, which can be
identified for further assessments. It is possible to characterise the
worst case computation time, corresponding to a full parsing. This is
very important for real-world human-machine interaction scenarios.

It is noteworthy that the Evaluator module may find also other solu-
tions based on the grammar’s definition. For example, in the grammar
shown in Listing 3.1, the input “bye” could generate solutions without
any semantic tags (in place of «bb»). This can happen when paths to
such a term are verified. As an example it would not happen if the
directive !repeat (bye{@!!;},2,2) were used, e.g. Figure 3.1. An idea
to overcome this is to enable the Command Activator module to im-
prove sentences analysis over time, where the improvement is related
to the number of identified tags.

3.4 CONCLUSIONS

We propose the Concept-Action Grammar Generator (CAGG) sys-
tem, an open source framework for natural speech-based interaction
providing an efficient semantic sentences analysis. CAGG provides
an open infrastructure to easily prototype and implement grammar
evaluators for benchmarking purposes. Current work is focused on
the integration with a system for spatial reasoning in human-robot
interaction scenarios (described in Chapter 7).

A SOFTWARE ARCHITECTURE FOR
MULTIMODAL SEMANTIC
PERCEPTION FUSION

ABSTRACT

Robots need advanced perceptive systems to interact with the environ-
ment and with humans. Integration of different perception modalities
increases the system reliability and provides a richer environmental
representation. The article proposes a general-purpose architecture
to fuse semantic information, extracted by difference perceptive mod-
ules. Therefore, the article describes a mockup implementation of our
general-purpose architecture to fuse geometric features, computed
from point clouds, and Convolution Neural Network (CNN) classifi-
cations, based on images.

robot perception - multimodal perception - multimodal fusion - late fusion

AUTHORS

Luca Buoncompagni*, Alessandro Carfi* and Fulvio Mastrogiovanni

AFFILIATION

University of Genoa.

*These authors contributed equally to this work.

31

Published in the
Proceedings of the
s5th Italian Workshop
on Artificial
Intelligence and
Robotics, a workshop
of the XVII
International
Conference of the
Italian Association
for Artificial
Intelligence (AI"IA
2018, Trento, IT).

32

4.1 https:

// github. com/
EmaroLab/
mmodal_
perception_
fusion

MULTIMODAL SEMANTIC PERCEPTION Fusion

4.1 INTRODUCTION AND BACKGROUND

Multimodal perception gained much attention both for its bioinspired
nature and for the benefits that can provide in terms of reliabilities
and richness of the information. Indeed, the integration of multiple
perception modalities can increase the reliability of shared information
while adding to the final representation information exclusive of a
particular modality. Robotic systems are an interesting scenario of ap-
plication for multimodal perception since they typically have different
sensors that can be integrated to enhance the robot understanding of
the environment.

The multimodal perception paradigm requires a fusion process in-
tegrating information from all the modalities, an extensive overview
of fusion techniques is presented in [9]. The fusion process can be
performed at feature level, early fusion, or at decision level, late fu-
sion [146]. In early fusion feature extracted from the raw data are
combined and then analysed as a whole, on the contrary in late fusion
outputs from all the perceptive modules are merged to obtain the final
output. Both late [4] and early [53] fusion have been used in robotics
for multimodal recognition of objects. Late fusion offers particular
advantages in terms of modularity, each time a new sensor is installed
the module processing its data can be easily integrated into the sys-
tem. Furthermore, this approach encourages reusability and when a
well-known technique to extract information from a sensor is available
can be easily adapted to the particular use case.

To enhance modularity and reusability of code in robotic, we pro-
pose an architecture for multimodal perception using late fusion. Late
fusion requires a common representation to be shared among all the
module outputs. Because of its intuitiveness, we have designed a se-
mantic representation in which each itemn, detected by the perception
modules, is associated with a list of semantic features, which in the
paper will be simply named features. The architecture uses features
shared between different modalities to correlate items.

4.2 A MODULAR SOFTWARE ARCHITECTURE OVERVIEW

The proposed architecturet’, shown in Figure 4.1, performs a late
fusion of distinct perception modules resulting in a structure P, pro-
vided as output. The perceptive modules {M;, Vi € [0...m]} have an
unconstrained input interface I; and a well defined output structure O;.
In particular, M; generates a set of semantic items X;; C O; described
by features through a map (v;;)° that relates semantic key (s € S;) to
a value (vfj) (as shown in Table 4.1). Remarkably, we assume that
in all key-values maps, the keys are unique and we define the set
containing the semantic key of the whole system as S = |Ji; S;. The
features describing an item X;; span in a subset of S, note that it might

https://github.com/EmaroLab/mmodal_perception_fusion
https://github.com/EmaroLab/mmodal_perception_fusion
https://github.com/EmaroLab/mmodal_perception_fusion
https://github.com/EmaroLab/mmodal_perception_fusion
https://github.com/EmaroLab/mmodal_perception_fusion
https://github.com/EmaroLab/mmodal_perception_fusion

4.2 A MODULAR SOFTWARE ARCHITECTURE OVERVIEW 33
fused matching
objec’s 2] _items
features <node>» indexes <nodes
o— Features © Reasoner
p Matcher U
R :L items correlation I T
1) union tables T
£] items 4
intersection «nodez
<node> N Correlation
Feature O) Table
Selector r Manager
ol items’ O, items” O, ”L items” Om ’J“ items’
features features features features
g] g] g] g]

«meta node»
Perception Module

My

<meta node»
Perception Module
M,

«meta node»
Perception Module

M;

<meta node»
Perception Module

m

I I raw data

I /T\ raw data ...

I I raw data ...

Iy I raw data

Figure 4.1: The UML diagram of the proposed architecture with m perception modules.

be possible ﬂvﬁj. Finally, the output P has the same structure of O;,
but while the latter contains key-value maps generated from a single
module, P is created by the merging process possibly using features
from all the perception modalities.

The key-value structure is expressive, flexible and suitable as input
for further symbolic reasoning, such as Ontology Web Language
(OWL) compatible with the Robotic Operative System (ROS), e.g.
through a bridge presented in Chapter 6. Indeed, each feature of
a perceived item is represented with a semantic key, that belongs to
the symbolic domain (i.e. is encoded as a string), and a value, which
can be a boolean signal, a real or natural number, as well as another
symbol, e.g. X;; = {(radius,0.3), (cluttered, true), (color,red)}.

The architecture interfaces with the perception modules through the
Features Selector, which manages the synchronisation of the incoming
data and generated R and F. Where R is the union of all the perceived
items and F is a structure containing only the values with shared
keys. The Correlation Table Manager computes the correlation tables T
as a function of the features distance while considering only feature
contained in F. This map is used by the Reasoner to identify lists of
items that can be merged, and corresponding item indexes are stored
in U. Finally, the Feature Matcher uses indexes store in U to fuse
correlated items and provides as output a set of new items P.

34 MULTIMODAL SEMANTIC PERCEPTION Fusion

(a) A point cloud, I, used by M to extract the features (b) An RGB image, I, (RGB image) used by M; to ex-
of the Xj; items. tract the features of the X,; items.

Figure 4.2: An example of input and extracted features obtained from two perception modules.

4.3 SOFTWARE INTERFACES FOR MULTIMODAL PERCEP-
TION FusIiON

As describe in Section 4.3 the proposed architecture is designed to
work with modules that provide outputs through the O; interface,
which is formally defined as O; = {Xj;, Vj € [1...7(i)]}, where (i)
represents the number of items perceived by the i-th module, and each
item is represented with a map of features X;; = (v;;)°. Given some
output O; from different i-th modules, we define their union as the
concatenation of all the items perceived by all the modules, i.e.

R = LnJOi: {Xij,ViG [1771],]6 [117(1)]}
i=1

On the other hand, we define the intersection operator as the collection
of pairs of items Xj; and Xy, where all the features related to not
common keys are removed. And the remaining values referring to the
common keys, v; and v, where

z2 € Zpgkp = {s: Vs € S, Elvflq,vip ER, K #k} cSs,

are structured as Hﬁ
defined as

okp = 1(ng)? (0xp)? }. Finally the intersection is

=

s

i = {H’iq,kp 1 Vz € Zygrp ko h € [1...m],

i=1

g€ t.qm] pe..n®)]}.

Remarkably, our architecture correlates items perceived from different
modules based on feature with common semantic key. In particular,
if H, gy = D the hg-th and kp-th items can not be directly correlated
and, if F = @ all the items can not be correlated.

Let ® = {goz, Vz € th,kp} be a set of ¢* distance functions associ-
ated to the hg-th and kp-th items; thus, each distance can be computed

4.4 IMPLEMENTATION

as ¢* (Uzq, vip) = dj, i, € [0,inf). We define the correlation score
between the hg-th and kp-th items as

ZZ diq,kp
th,kp = tanh <_w +1¢€ [0, 1],

in this way low distances values are mapped to high-level of corre-
lation scores, and w is a parameter that can be tuned for modulate
the mapping function behaviour. Through the computation of fy;x,
for all the pairs of perceived items in F, we obtain a set of tables
T = {Ti, Vh,k € [1...m], h # k} (thus T collects m(m —1)/2 tables),
where Ty is a table of size n(h) x (k).

The system uses the correlation tables T as a grounded representa-
tion to reason on the best matching among the X;; items. Such a reason-
ing generates a set U = {U,, Ve € [1...g]}, where g is the number of
objects perceived by the architecture (i.e. real objects), and U, is a list of
indexes ij-th associated to the /-th items that can be merged to describe
the e-th real object, i.e. U, = (i,]>l From R we extract all the I-th items
{Xi]', Vi, j € Ug} which have z-th shared and y-th unique features. Fus-
ing the I-th items generates P, = (v.)* N (v¢)Y, where a function ¢
is used to compute v = ¢ (vf] Vi, j € Ue) and vy = {viyj, Vi, j € Ue}.
Finally, the architecture outputis P = {P,, Ve € [1...g]}.

4.4 IMPLEMENTATION

To provide an application example, we have built an implementa-
tion that uses images and point clouds to detect objects in a tabletop
scenario (as shown in Figures 4.2). The architecture have been imple-
mented using the ROS middleware, specifically for two perception
modules (i.e. m = 2): M; and M,. The point clouds are processed
by M; with a stack of RANSAC simulations to segment the objects
laying on the table (presented in Chapter 2). Each j-th item perceived
by M; can be described by one or more of the features contained
in S; = {time, shape, position, orientation, radius, high, vertex}.
On the other hand, M, exploits a Convolution Neural Network (CNN)
from the tensorflow tutorial [2] to detect objects and assign them a de-
scribing label. Each j-th item perceived by M, can be described by one
or more of the features contained in S, = { time, label, position}.
Therefore, common features of object detected by the two methods are
contained in Zp,; = {time, position}.

The correlation table T7, have been computed as described in Sec-
tion 4.3, while the two ¢* functions have been defined as Euclidean
distance. To finally merge information from M; and M, we have used
an algorithm that explores Tj, to find the row and column indexes of
cells which contains a high correlation score. The algorithm ensures
that each index cannot occur twice in U, (i.e. each object detected

35

36 MULTIMODAL SEMANTIC PERCEPTION FUsiON

o semantic features (s)

Yy time [h:m:s.ms] position [m] shape radius [m] label
= Xu 09:37:45.92 (.42, .13,.04) sphere .04
W X 09:37:46.03 (.37, -.21,.02) cylinder .03
g X13 09:37:46.85 (.31, -.22, .03)
= X | 09:37:47.35 (.17, .34,.04) plane
T Xn 09:37:46.20 (.45, .11, .05) ball
-E X» 09:37:46.31 (.21, .33, .03) book
5 X3 | 09:37:46.37 (34, -.19, .02)
& Xog 09:37:46.42 (.31, -.22, .03) glass

Table 4.1: An example of item’s features perceived through the inputs in figures 4.2a (provided in the
O, interface) and 4.2b (provided in the O, interface). Perceived items are shown by row,
while semantic key by columns.

from M; is associate at maximum to one object detected by M) and
conflicts are addressed to prioritise higher correlation scores. Finally,
to merge all the objects we have defined the § function for time and
position as the geometric mean.

4.5 Discussions AND CONCLUSIONS

The paper proposed a general-purpose architecture for late semantic
fusion. Indeed, it can accommodate an arbitrary set of perception
modules that process different data sources, but they have to generate
a specific type of outcomes, defined through the semantic item’s
features. Nevertheless, these semantic structures are flexible, and
the architecture uses them to correlate items perceived by different
modules, providing a fused representation as output.

The architecture relies on the distance between shared features,
computes the correlation between items, requires a reasoner for items
matching, and a function for item fusing. We deeply analysed how
to orchestrate such elements in a general scenario and we present a
simple implementation based on RANSAC and CNNE.

We argued that for a general case, it is required a further investiga-
tion of the distance functions between complex features, (e.g. color,
shape, etc.), as well as regarding the types of reasoning to be per-
formed with the computed correlation tables. On the other hand, such
tables are expressive, allowing to achieve complex decisions for the
item fusion. For example, they contain all the information to merge
objects with partially shared features, through transitivity properties.
Future developments of this work will include a wider integration of
perceptive modules and an experimental evaluation of the architec-
ture.

Part III
REPRESENT FOR REIFYING
This part introduces the formalism we used for implement-

ing the memory. It describes tools for defining semantic
interfaces between ROS components.

OWLOOP: AN API To DESCRIBE
Dynamic OWL Axioms 1IN OOP
OBJECTS

ABSTRACT

The paper presents OWLOOP, a Java-based API to interface OOP
objects with OWL axioms. It supports reasoning and building of OOP
structures that reflect OWL ontologies, and includes an exhaustive
set of standard Description Logic (DL) semantics. OWLOOP wraps
OWL API and hides the issues that are likely to occur when scripting
paradigms are used to develop complex software architectures, for
example, in typical robotic applications, where concurrent software
are also subjected to real time requirements. OWLOOP is based on
a general-purpose interface that allows synchronising a part of an
ontology in an OOP domain while subjected to dynamic reasoning.
The paper details such interface and discusses how OWLOOP maps
OWL to OOP syntactically, thereby reflecting DL representation in
OOP-like objects. We also present a simple use case to show our
preliminary implementation toward the definition of a syntactic OWL-
full to OOP map.

object oriented programming - ontology web language -
application programming interface - software architecture for robotics

AUTHORS

Luca Buoncompagni, Syed Yusha Kareem and Fulvio Mastrogiovanni

AFFILIATION

University of Genoa.

39

Paper to be
peer-reviewed.

40

TarE OWLOOP API

5.1 INTRODUCTION

Description Logic (DL) [11] is one of most used formalism for repre-
senting knowledge in an ontology. Wherein, DL axioms can be asserted.
Such axioms are not only retrievable through readable queries, but are
also used for making implicit knowledge explicit by reasoning. From
a software engineering perspective, an ontology is meant to be used
in synergy with other softwares [162], that would want to read, and
write, knowledge from/to an ontology.

DL is a general formalism that allows defining application domains,
and general purpose upper ontologies, e.g. [136].The Ontology Web
Language (OWL) [108] is a W3C standard implementation of the
DL formalism, which has logic reasoners, an example is Pellet [144].
Such reasoners were made using the OWL API [73]. The most used
reasoners perform deterministic checking, but probabilistic extensions,
such as [172], as well as fuzzy representations [24], have also been
proposed in the literature. Furthermore, frameworks such as learn-
DL [29] uses DL as an expressive interface between classifiers and
other softwares that might want to use the knowledge coming from
the classifiers.

Unfortunately, developers are typically reluctant to use ontologies
in their repositories [17]. Due to a number of reasons, among which,
one of the most relevant is that OWL formalism does not follow Object
Oriented Programming (OOP) paradigm. Indeed there are many simi-
larities between the knowledge structured in an ontology and OOP
classes, methods and fields, but there are also non-trivial differences.
For instance, an ontology class might have multiple parents, while
in standard programming languages, such as Java or C*™, it is only
possible to define a tree of classes. Another difference is that, in an
ontology the open-world assumption is adopted, while Unified Mod-
eling Language (UML) implicitly assumes the close-word assumption.
We refer the reader to [85] for an exhaustive list of the differences
between OWL and OOP.

5.2 RELATED WORK

OWL-DL representation serves the purpose of, describing qualitative
and abstract knowledge, and reasoning based on that knowledge.
Such an expressive representation can be directly shared with a user.
This is an interesting feature for a Human-Robot Interaction (HRI)
scenario. It is being used in the domain of natural language processing,
social interactions and cognitive representations, e.g. in [93]. Also, it
allows to contextualise knowledge, and this is a crucial functionality
for adaptive robots. A Large and an exhaustive ontology, such as
Knowrob [18], has been used for structuring information coming from

5.3 MOTIVATION

sensors, and reasoning on the structured information (i.e. knowledge)
for actuating specific robot behaviours.

From a software engineering perspective, several languages have
attempted to reconcile OWL expressibility with the benefits of an OOP
paradigm. In a survey [17] on modelling object-oriented ontologies,
different OWL to OOP mapping approaches are presented. In particu-
lar, the authors categorise passive and active maps, where the latter is
further divided into static and dynamic translation which, in turn, is
split into dedicated, strongly-typed and dynamic languages.

On the one hand, passive usage of OWL in an OOP program, e.g. a
Java class, is typically the approach used in robotics. In this approach,
the ontology is loaded into memory, and OWL API having a factory
design pattern, is used for exchanging one axiom at a time, between
the ontology and a Java class. On the other hand, active OWL to OOP
mapping consists of translating a serialised ontology into a static set of
classes in a target language, while dynamic-active mapping translates
OWL axioms into OOP classes at runtime, supporting some degree of
reasoning.

Furthermore, a dynamic mapping can be based on dedicated, as
well as with strong-typed, languages, but active maps based on a
dynamic translation in a dynamic language seems to be the most
promising approach. In particular for the latter approach, a phyton
implementation of an OWL-DL to OOP mapping is presented in [89],
while [87] presents a formalisation for mapping OWL-full formalism.
Also, an implementation based on such an approach is presented
in [12], where instances of python meta-classes have a type that reflects
OWL classes, based on reasoning performed on OWL individuals and
classes at run-time.

5.3 MOTIVATION

In a robotic application, if we would like to exploit OWL-DL semantics,
not only similar to a database, but also for manipulating knowledge
and reasoning based on it, e.g. for consistency checking during the
execution of a plan [32]. The fact that, we have to rely on scripting
paradigms to interface with an ontology, leads to issues. Particularly,
it requires us to define a high number of textual constants while
accessing the ontology, which could be an issue from the software
integration point of view. Also, currently, there is no possibility to
interface or extend a piece of code without having to review the script,
which creates an issue for code maintenance and ease in application
development.

It is important to consider that a typical robotic architecture is com-
posed of many concurrent modules, which have constraints for real
time generation and consumption of knowledge, from an ontology.
Since OWL reasoning is typically very complex and time-consuming

41

42

5.1 https:
// github. com/
EmaroLab/ owloop.

TarE OWLOOP API

compared to the speed the requirements of robotic scenario. It is
also essential to limit OWL reasoning operation (which is usually
performed with a frequency). This implies that many software com-
ponents have to be synchronised together within the architecture,
and developing as well as debugging such an orchestra of software
components based on scripting paradigms, is far from trivial.

Furthermore, it is essential to consider that a robot might have
several behaviours that need to be actuated differently in different
environments. This implies that while using a robot, its knowledge is
often adjusted based on the components deployed in the architecture
for a specific application. For this reason, having the possibility to
use an OOP paradigm while designing the software components,
that require an ontology’s knowledge and service of its reasoner, is a
crucial step towards robots in daily environments.

We do not intend to build a robot architecture from scratch since
there are many modules readily available and largely evaluated (i.e.
algorithms for planning, perceiving, and acting), that can be used in a
middleware such as Robotic Operating System (ROS). In practice, dure
to availability of such middlewares, a developer is not exactly free to
choose the most appropriate language for his task, because it might
not support complex behaviours that the robot needs; nevertheless,
there are powerful tools for mainstream languages such as Java, C*+
and Python. While developing a module of a robot architecture, one
should consider that the module can potentially be used in different
scenarios. If a module relies on an ontology, then even that module
should support the same flexibility (i.e. ability to be used in different
scenarios). Therefore the intention of our work is to provide an API
that enables ease of building such modules.

5.4 CONTRIBUTION

In this paper, we present the Java-based OWLOOP API>*, which is
a wrapper of the OWL API designed to allow developers interfacing
to an OWL ontology through OOP-like objects. We present an active
and dynamic mapping of OWL axiom in OOP objects but, differently
from other approaches in the literature, we do not attempt to define
a new language that maps OWL entities to OOP objects. Instead, we
design a synchronisation mechanism between copies of a fragment of
the ontology in OOP objects, which are provided with a modular and
common interface.

In the paper, we present a formalisation of OWLOQOP considering
the description of the most common OWL semantics, e.g. classes and
sub-classes, or the definition of range and domain of some data prop-
erty, as well as instances types or equivalences. With OWLOOP, it is
possible to use OWL for reasoning on such semantics at runtime with

https://github.com/EmaroLab/owloop
https://github.com/EmaroLab/owloop
https://github.com/EmaroLab/owloop

5.5 DEscrRIPTION LoGIiCc PRIMER

the objective to obtain OOP-like objects, that contain such knowledge,
and that are structured among each other as in the ontology.

Although it is not clear if for very complex semantics the expressibil-
ity of our API does not degenerate, we argue that it can exhaustively
map all the OWL axioms. In this paper, we show that it can largely
support the developing of application in the robotic domain, also in-
volving complex reasoning procedures. For instance, we are currently
using OWLOOP for implementing a one-shot learning algorithm to
represent the experiences that a robot had through the interaction
of the user, which is presented in chapters 7 and 8. Also, we used
OWLOQP for implementing a distributed reasoning system based on
a network of ontology for recognising human activities in a smart
environment [83]. OWLOQOP have also been injected in the ROS Multi
Ontology References service (ARMOR), described in in Chapter 6.,
which interfaces OWL API among the clients of robotic architectures
in a safe trade manner.

Remarkably, in this paper, we do not aim to define a semantic OWL
to OOP map, which remains a challenging open issue in state of
the art. Instead, the paper presents a syntactic OWL to OOP map,
which would reflect a DL representation in OOP-like objects, but their
semantic is always accessed in a not OOP-like manner. We design
OWLOQOP for practical reasons, and we limited the differences that a
developer would experience if the library would rely on a full OWL to
OOP map, instead of a wrapper. Nevertheless, OWLOOP introduces a
new layer of complexity, which might impact the performances, and
this limitation must be carefully taken into account, especially for a
robotic application.

As far as the presentation of OWLOOP is concerned, in the next
section, we recall the DL formalism, including specific OWL definitions
and behaviour of deterministic reasoners. In Section 5.6 we give an
overview of the API, and in Section 5.7 we detail its main component,
and how developers can use its interface. Then, in Section 5.8 we
present a toy example for showing a typical design pattern for using
OWLOOP.

5.5 DESCRIPTION LOGIC PRIMER

Let us introduce the notation and syntactic sugar that we will use
in this paper. An OWL-DL ontology consists of a set of axioms. Each
axiom is a statement describing a piece of knowledge, and is composed
of three parts: the expression £ and two elements x and y, i.e. forming a
tuple (€, x,y). The elements x and y could be of the following entity

types:
e as a class type: (synonymous to concept) is a set of instances

(synonymous to individuals). We identify it with an upper case
Greek letter (e.g. A, A).

43

44

Note we consistently
maintain this
nomenclature across
all the chapters of the
thesis. For clarity,
we also specify the
name of each element
in an ontology with
upper case letters for
classes, e.g. CLASS,
while an individual
has only the first
letter capitalised,

e.g. Individual,
and a property has
all lower case letters,

e.g. property.

TarE OWLOOP API

e as an individual type: which is an instance of a concept (i.e. class)
and it has properties. We identify it with a lower case Greek
letter (e.g. &, B),

e as a property type: which is a relationship between two individ-
uals. We write them as bold upper case Roman letters (e.g. P,
R),

e as a literal type: which represents data value such as strings or
integers. We write them as lower case Roman letters (e.g. X, y)

Properties are divided into object and data properties. The former
represents a relation between two individuals, while the latter between
an individual and a literal, i.e. a number or a string. Also, the latter
might be described through axioms that define their scope concerning
property and its domain, i.e. P.A describes that an individual a can
be involved in a relation P with g if the latter is an instance of A.

DL defines several expressions £ that are the core of the semantics
of OWL-DL axioms. Some of the £ in DL are the following: (i) negation
(i1) conjunction and (iii) disjunction between classes, e.g. =A, ATTA,
A U A; whose result is another class. As well as the (iv) universal, (v)
existential, and (vi) bounded cardinality restrictions, e.g. VP.A, 3P.A,
=nP.A, <nP.A, >nP.A (as object property restrictions), and VP.x,
dP.x, =nP.x, <nP.x, >nP.x (as data property restrictions), with
nelN. Also, it is possible to rely on (vii) inclusion (or subsumption,
which is related to implication), (viii) equivalence, and (ix) definition of
classes or properties, e.g. AC A, A=A, A=AorPC R, P=R,
P = R. It is possible to define also disjunction and equivalence between
individuals, e.g. « # f and a« = B. Last but not the least, it is possible
to describe (ix) assertions between classes and properties, e.g. A: x, and
P(a, B). The former axiom asserts that a is an individual of the class
A. While the second axiom asserts that the two individuals « and
are related to each other with the property P.

Remarkably, only assertions involve individuals, while all the other
expressions describe classes and properties. Typically, the axioms that
involve individuals are collected in the Assertional Box (ABox), while
the others are collected in the Terminological box (TBox), and in the
Role box (RBox). Those boxes contain the interwoven description of
individuals, classes and properties respectively. While the ABox could
be considered as a list of axioms, the other two can be considered as
acyclic graphs, where each edge denotes an implication among pairs of
classes (TBox) or properties (RBox). For each graph, the root is defined
as T, while the opposite operator _L is defined for representing leaves.

5.5.1 AXIOMS REPRESENTATION IN ONTOLOGY

OWL is an implementation of the DL formalism, and it allows to create
and manage data structures through boxes containing the symbols

5.5 DEscrRIPTION LoGIiCc PRIMER

defined above. Those type of data structure is an ontology, which
contains a formal definition of a specific application domain. Such
a definition is based on the following three different syntactic cate-
gories [113]

e Entities (x,y) are of different types (i.e. classes, properties, or
individuals), and are identified through a function .4 that
returns an Internationalized Resource Identifiers (IRIs), i.e. a
name. They constitute the vocabulary of an ontology, e.g. a class
A (A) = ROOM can be used to represent the set of all rooms. Sim-
ilarly, the object property .4 (P) = isLinkedTo can be used to
represent the room-corridor relationship. Finally, the individual
A (a) = Room1 can be used to represent a particular room.

e Expressions (€) represent one of the operations listed in the pre-
vious section. For example, a class expression describes a set
of individuals in terms of the restrictions on the individuals’
characteristics. While other class expressions might describe that
a class subsume another, or that an individual is equivalent to
another. Therefore, each expression can be applied only between
specific entity types.

e Axioms are statements that are asserted to be true in the domain
being described, e.g. P(«,), or A C A. In this paper, we consider
a generic axiom as a tuple A = (&, x,y) and, with expressibility
purposes, we consider more axioms involving the same expres-
sion £ and the same entity x in a single tuple through the
definition of the entity set Y = {y;, i € [1,n]}. Thus, we denote a
collection of axioms (&, x,Y), which indeed represents n OWL
axioms.

5.5.2 OWL REASONING

OWL does not only provide a standard and expressive knowledge
representation, but it has also been exploited for implementing rea-
soning procedures. In particular, the reasoner is an algorithm that
performs consistency and instance checking by interpreting the logic
description. It can react and explain inconsistencies, as well as solve
queries through specific formalism as SPARQL [143], and SWRL [74].

OWL API maintains two data structures, one is asserted, and the
other is inferred. The former contains axioms explicitly stated in the
ontology, while the latter includes deductions, i.e. new axioms, that
the reasoner could realise from the former. The reasoning task is a
synchronisation among those two structures since it is not possible to
modify the structure dedicated to the reasoner directly.

The reasoner is supposed to checks the consistency of the axioms,
the properties that an individual might have, as well as the classes hav-
ing an individual as an instance. Remarkably, with this procedure, the

45

46 TarE OWLOOP API

@ Q Class
I:I Instance
/ \ ——> Implication
H---=-=-- # Classification

A
.
.
o “
‘\
Y
-

4 -
1 -
"O ‘~‘ ' “
4 Y L] -
? 3 0—‘ - k3
Room1 Room2 Corrdidori Robot1
Y .
"'., ".. Pt "“‘ "., ““‘
%, Ttaaass T tea, IS
.

Figure 5.1: The summary of a simple ontology used for the examples in discussed in this paper.

reasoner also infers the subsumption among classes, and properties,
in the TBox, and RBox, i.e. it completes the edges of the implications
graph. Nevertheless, it cannot create new nodes due to monotonic
reasoning limitations. In other words, the reasoner can create axioms
that describe entities, but not entities themselves.

5.6 OWLOOP OVERVIEW

In the next sections, we support the presentation of our API with
a toy example concerning a topological map of an apartment. It is
based on a simple ontology which is summarised in Figure 5.1. In
particular, in the TBox, there are two disjoint user-defined classes,
i.e. ROBOT and LOCATION. The latter is in turn described through two
disjoint classes, i.e. CORRIDOR and ROOM, which subsumes LOCATION.
While in the ABox there are five individuals Loactionl, Corridori,
Room1, Room2, and Robot1, which, for simplicity, have been named
as the relative classes they are instance of. Finally, in the RBox an
object property is considered for representing that two locations are
connected, i.e. isLinkedTo, while isIn describes that the robot is in a
location.

Figure 5.2 shows the internal architecture of OWLOOP, which con-
sists of two synchronised data structures. On the one hand, we con-
sider on OWL ontology O, which is associated with a reasoner in-
terfaced trough OWL APIL On the other, there are descriptors that
are OOP-like objects. Each descriptor has a specific semantic that
is reflected in the ontology and vice versa through reading and writ-
ing operations, which are based on OWL manipulations and queries.

5.6 OWLOOP OVERVIEW 47

set () read()
— Class
-~ Descriptor -

_ N -~

ontology
build) OWL
read API <
set () OWL

— Individual
-~ Descriptor
get ()

reasoner

write()

¢

Figure 5.2: A simplified example to present an overview of OWLOOP interfaces.

Through this operation, a fragment of the ontology can be represented
with an OOP fashion, and data encoded with OOP objects can be
mapped in a part of the ontology as well. Therefore, the descriptor has
an internal state that OWLOOP is in charge to retrieve or store in the
ontology given some axioms. A user of OWLOOP should interact with
some descriptors trough get and set like methods, and not with the
ontology directly. In this way, the user can use OWL within an OOP
development and, at the same time, he or she can relay on ontologies
and reasoners that exploit the OWL language, but do not follow OOP
paradigmes.

For design OOP descriptors without limiting the expressibility of
OWL ontology, we introduce the concept of descriptor building. During
this operation, a descriptor relies on its internal state for generating
another descriptor with a different semantic. For instance, consider
a descriptor that representing only the classes of an individual D,
while another that represents the sub-classes of a given class D,. The
first descriptor should be instantiated given the name of a specific
individual, e.g. .#(«) = Room1, and after a reading procedure, its
internal state D;.get () would contain {T, LOCATION, ROOM}, if O is
as the one shown in Figure 5.1. Instead, the second descriptor should
be instantiated given the name of a specific class, e.g. .4 (A) = ROOY,
and it would have an internal state D;.get () equivalent to L.

As an example, let assume we want to define D, based on the in-
ternal state of Dj, i.e. we should find a name .#"(A) that identifies
the deepest class that has Room1 as one of its individuals. With OWL
API this would require to use the factory many times for converting
names in sets of axioms, and we discussed in Section 5.3 how this
leads to issues for complex architectures. With OWLOOP, it is possible
to instantiate the first descriptor and use the building function for
accessing the internal state of related, but semantically different, de-
scriptors. As we will discuss more in Section 5.8, with these operations
we could solve the example above by specifying only one name, i.e.
Rooml.

48

TarE OWLOOP API

Based on the example above, D1 .build () will return three descrip-
tors { D3, D4, D5} having as internal state some axioms about the T,
location, and room classes respectively. If those axioms are such to
represent sub-classes (and this is defined by D;, as we will see in
Section 5.8), it would be possible to build the obtained descriptors
again to represent OOP objects about subsumed classes. For instance,
the D3.build () would return all the classes in the ontology since it
describes the sub-classes of T. While the Dy .build() returns another
descriptor representing the class of rooms, and Ds.build () returns a
descriptor fot L, i.e. an empty set. Therefore, the descriptor D5 solves
this example, and it could be such to describe other axioms for build-
ing further descriptors as well. Remarkably, each building operation
does not merely return some knowledge in the ontology, but it returns
a synchronisable representation of a part of the ontology, which can
be interfaced and extended in an OOP fashion.

5.7 OWLOOP DESCRIPTORS

A descriptor is an object in OOP terms that (i) manages the synchro-
nisation of some axioms between the ontology and its internal state,
(ii) provides external access to such an internal state for manipulat-
ing and querying knowledge, and (iii) uses its internal state to build
further descriptors. Due to the latter point, and since a general OWL
axiom involves heterogeneous entities, we need to design a general
interface for building descriptors that represent the expression axioms
presented in Section 5.5.

For this reason, we designed the abstract descriptor as a modular
interface that allows to specifying an expressive object by injecting
procedures for describing specific sets of axioms, e.g. sub-class expres-
sion axioms or disjoint expression axioms. During the design of this
interface, we consider performances issue, and we design OWLOOP
to define modular descriptors that should be used to synchronise only
the axioms required for an application. We will discuss this design in
Section 5.8, but first we present the internal state and the interfaces of
an abstract descriptor in sections 5.7.1 and 5.7.2, while in Section 5.7.3
we discuss some concrete descriptors.

5.71 DESCRIPTORS GROUNDING

Each descriptor is featured with an ontology O, its internal state
contains a set of axioms (&, x,Y). £ is the expression defining the
axioms, X is the ground, which is an entity £-related to each element
of the entity set Y, that are all of the same type, e.g. either n classes or
n individuals. Remarkably, the type of x and y; must be consistent for
each different expressions and, after the initialisation of a descriptor,
we assume &, x, and O to be immutable for such a descriptor.

5.7 OWLOOP DESCRIPTORS 49

For instance, if we consider an axiom based on the inclusion ex-
pression, e.g. A T A, all the elements of the entity set, as well as
the ground, must be classes, e.g. ROOM. While, if we consider a class
assertion axiom, e.g. A: «, then we can define a descriptor where X is
a class, and Y contains individuals, i.e. given a class we describe all
its instances. Alternatively, it is possible to define a descriptor where
X is an individual, and Y contains classes, i.e. given an individual we
describe all its types.

As we will discuss in the following sections, such an interface
is general enough to span all the axioms in an ontology, and we
exploit such a generality for representing descriptor of descriptors. In
particular, we extended the definition of the descriptor above in order
to have an internal state containing a set of set of axioms. Formally,
we collect the internal axioms as S = {Ay, k € [1,m]}, where each Aj
is a tuple containing &, x, and Y, whose are maintained by m specific
sub-descriptors. A descriptor inherits the ontology and ground of
all its sub-descriptors, which must be consistent, i.e. all the internal
axioms of sub-descriptors involve the same grounding entity x in the
same ontology O.

5.7.2 THE ABSTRACT DESCRIPTOR

While in the previous section we presented the attribute of a descriptor,
in this section we discuss its methods for defining the interface of an
abstract descriptor. In particular, each descriptor should access its
internal state, and communicate with an ontology and its reasoner, in
order to implement the following methods

init (O, x) construct a descriptor of internal axioms involving a certain
expression £ in an ontology O,

void set(Y) changes the internal state,
Y get() returns the internal state,

Y query() returns the axioms from the ontology without changing the in-
ternal state (it is also internally used to compute other methods)

void read() modifies the internal state to be consistent with the axioms in
the ontology,

void write() modifies the ontology such to contain the axioms consistently
with the internal state,

D[] build() returns a set of n specified descriptors that represent axioms for
each y; element of the entity set.

Remarkably, OWLOOP dot automatically updates the reasoner during
the computation involved on those methods. This because we want to

50 TarE OWLOOP API

Ground | Expression Entity Set Internal State OWL Axiom
x £ y;€Y, Vie[1,n| Ak yi€Y, Vie[l,n| 1D
Equivalent OWLClass (A;) (=,40,A;) A=A D11
Disjoint OWLClass (A;) <LA A A;j) AU A, D1
OWLClass Subsume OWLClass (A;) (C, AN AT A D13
(A) Imply OWLClass (A;) (3,0, A;) AN D1y
Classify OWLIndividual (;) (A ag,) A:w; D15
Definition | OWFOOPRESEXICEIOn |\ o p Ayy | A = [T, {g; PiuA} | Dig

(q.P,A)i)

Table 5.1: The mapping of OWL class expression axiom in an OWLOOP descriptor of a class, which is
described through axioms based on any combinations of the row of the table.

limit the reasoning times since it strongly affects the performances of
a system using OWLOOP. Therefore, those methods might require to
also update the reasoner in order to write or read from a fresh inferred
ontology.

Let us consider a case where a descriptor D is made of m sub-
descriptors Dy. In this case, we design the interface in such a way that
D.read() call the read method for all Dy, and the same also occurs
for write (). Instead, for the other functionalities, we generate specific
methods, e.g. D.getD () or D.buildDy (), which consider only the
related part of axioms in the internal states, i.e. Ay.

5.7.3 CONCRETE DESCRIPTORS

Tables 5.1, 5.2, and 5.3 shows the definition of some descriptor for
classes, individual, and properties respectively. Each table shows the
parameter £, x, and Y involved in a descriptor for representing axioms
with a specific semantic. In particular, it is possible to see that in the
same table different expression share the same ground, but specific
€ and Y are involved. Nevertheless, the interface introduced in the
previous sections is always respected. For simple axioms, we could
directly use OWL objects for defining the type of each element of
the entity set, but when more complex expressions are involved, we
need to design specific data structures for representing entities y;.
Nevertheless, the ground x is always an OWL object.

Let for instance consider the classify expression define by OWLOOP
as a descriptor able to synchronise the axioms that define the classes
in which an individual is an instance of, i.e. OWLClassAssertionAxiom,
in Table 5.1. In this case, the ground is a class A, which name is given
during the construction of the descriptor, while the elements of the
entity set are n individuals &;. Therefore, through the set () method it
is possible to change the internal state by adding individuals that can
be stored in the ontology through the write () method. Alternatively, if
we set an empty entity list and we use the read () and get () methods

5.7 OWLOOP DESCRIPTORS 51
Ground Expression Entity Set Internal State | OWL Axiom
x & yi€Y, Yie[l, n] A y;€Y, Yie[l,n] | ID
Equivalent | OWLIndividual (B;) (=,u,Bi) o= p; Dy
OWLIndividual | Disjoint OWLIndividual (B;) (# & Bi) a # Bi Doy
() Type OWLClass (A;) (o, ;) Ao Doy
Property | OWLOOPLink ((P,B);) | ((),a, (P,B)i) P;(a,B;) Doy

Table 5.2: The mapping of OWL individual expression axiom in an OWLOOP descriptor of an indi-
vidual, which is described through axioms based on any combinations of the row of the
table.

it is possible to obtain the OWLNamedIndividual that are classified in
the given ground A.

Remarkably, the reading and writing operations generate only the
required changes in the ontology and the internal state. Such a change
might require to update an entity in the ontology, and OWL API needs
to query and delete the axioms describing the old entity before to add
a new entity. Therefore, the knowledge that the reasoner infers from
the ontology is not only considered during reading operations, but it
might also be queried while writing.

For the definition and property OWLOOP expression axioms, in ta-
bles 5.1 and 5.2 respectively, we design a specific object to be con-
tained in the entity set. In particular, OWLOOPRestriction is a tu-
ple yi = (q,P,A); that represent the g; restriction of the P, prop-
erty in the A; class, where g could either be an existential (), or
an universal (V), or a bounded (<n, =n, >n) quantifier. An exam-
ple of OWLOOPRestriction could be y; = (V, isLinkedTo, LOCATION)
and y, = (>1,isLinkedTo,R00OM), where y; describes a property
isLinkedTo that spans only in the instances of LOCATION, i.e. the
domain- While y, describes that the ground must have at lest two
properties isLinkedTo with two disjoint ROOMs. We consider the con-
junction of each element of the entity set, e.g. y1 M y>, which could be
the definition of the CORRIDOR class, i.e. the ground.

Similarly, we designed the OWLOOPLink object to represent a tuple
(P, B)i, which contains a property P, and an individual B;. As an
example, consider a descriptor specialised to represent object prop-
erty expression, in Table 5.2, with axioms having as a ground the
individual Corridor1. In this case, an element of the entity set could
be (isLinkedTo,Rooml), which represents in the ontology the axiom
isLinkedTo(Corridorl,Rooml). We adopted the same representation
also for data properties with the difference that j; is a concrete value
instead of an individual, e.g. a number or a text. Remarkably, Table 5.3
is consistent for both data and object properties.

We mentioned that a descriptor could be made of multiple sub-
descriptors, but we also assumed that the ground and the type of
expression is immutable for the same descriptor. Therefore, each

52 TarE OWLOOP API

Ground Expression Entity Set Internal State | OWL Axiom
x & y;€Y, Vie[l,n| A y;,€Y, Vie[l,n] | ID
Equivalent | OWLProperty (R;) (=,P,R;) P=R, D31
Disjoint OWLProperty (R;) (#,P,R;) P #£R; D3,
OWLProperty | Subsume | OWLProperty (R;) (C,P,R;) PC R; D33
(P) Imply OWLProperty (R;) (3,P,R;) P OR; D3y
Domain OWLClass (A;) (T3,P,A;) dP.T C A; Dss
Range OWLClass (A;) (TY,P,A;) T EVP.A; Dse

Table 5.3: The mapping of OWL property expression axiom in an OWLOOP descriptor of a property,
which is described through axioms based on any combinations of the row of the table.

descriptor can have sub-descriptors all sharing the ground, since
they must coincide. In other words, a descriptor can contain any
combinations of sub-descriptors spanning from the same table only,
with at most one for each type shown by raws. We used this modular
design for increasing the expressibility of the abstract descriptor and,
at the same time, limiting as much as possible the number of axioms
that are synchronised by OWLOOP.

5.7.4 DESCRIPTORS BUILDING

Let a descriptor D which contains some sub-descriptors Dy. The build-
ing method is specified for each sub-descriptor, and D.buildDy ()
would return a set of descriptors, which generic element is D,.

The built descriptor, i.e. D), would always have a ground equivalent
to the type of the element in the entity set of Di, which is always
equal also to the ground of D. In other words, we use an entity y;
as the ground of a new descriptor D;, which is instantiated with the
ontology O. D}, would have some sub-descriptors, which are defined
by Dy in order to represent some axioms for the new ground, i.e. D,
describes some specific expressions £. In this way, a new object Dj, can
be instantiated for setting and writing, or reading and getting, axioms
in/to the ontology without relying on the factory but OOP paradigms.

Remarkably, for building complex entities as OWLOOPRestriction
and OWLOOPLink we the grounding of a new descriptor is an issue,
because the internal state it would have is not directly readable or
writable in an ontology. For instance, we assume that the building
operation when y; = (P, B); returns descriptors grounded on f;, i.e.
we do not build any axioms specifically on P;. However, in the case in
which y; = (g, P, A);, it is not clear which should be the ground of the
descriptor to be built, and at the current implementation, we do not
provide any building support for OWLOOPRestriction. Nevertheless,
since the modularity of OWLOOP, we argue for systems that use
composition of descriptors, rather than implementing complex and not
always intuitive synchronisation procedures with complex grounds.

5.8 OWLOOP API ExaAMPLES

5.8 OWLOOP API ExAMPLES

This section presents a toy example to show typical design patterns
for using OWLOOP. In this example, we consider the ontology O
as in Figure 5.1, where the individual Robot1 is supposed to occur
in axioms like isIn(Robot1l,Corridorl), where VisIn.LOCATION and
ROBOT: Robot1. We want to notify the robot when some external signal
occurs, and when this happens, it should reason on the linked locations
it can reach.

We assume the robot to know the name of the individual describing
its current location, e.g. Corridorl, and as output, we expect a list
containing the reachable places express in terms of an individual and
its type. As presented in an example of Section 5.6, also in this section
we assume the type of an individual to be the deepest node in the
class hierarchy it is an instance of, e.g. Room1 is of type ROOM, while
T and LOCATION should not be considered even if they are consistent
classification of such an individual.

Listing 5.1 defines a pseudo-code for update the representation
given an external signal coming from a bigger architecture that controls
the robot. It presents a loop to check incoming signal frequently, or
with a publish/subscribe paradigm for instance. At line 5.1.2, pose is
retrieved as the actual position of the robot expressed as the relative
IRI of an individual in the ontology. At Line 5.1.3, a new instance of
the TypeLinkIndividual descriptor is created for representing axioms
in O grounded in Robot1. Since the ground is an individual, this
descriptor can contain only the sub-descriptors derived from Table 5.2.
In particular, it involves Dy3 to represent the type of the ground and
Dy to describe its properties. At Line 5.1.4, we set the internal state of
Dy, for representing that Robot1 is an individual of the ROBOT class,
and at Line 5.1.5 we set the axioms that specify the location of the
robot. At Line 5.1.6, we write the internal state of the description for
applying those axioms in the ontology. Then, we update the reasoner
for — eventually — infer further knowledge.

Listing 5.2 reasons on the knowledge generated by Listing 5.1 in
O. At Line 5.2.1, we instantiates a new descriptor which represents

53

Listing 5.1: An example of semantic writing with OWLOOP.

Descriptor : d, describes the location of Robot1.

5.2 while condition do

5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7

pose <— getNewPose()

d < new TypeLinkIndividual (O, ‘Robot1’?)
d.setType (“ROBOT’?)

d.setLink(‘“‘isIn’’, pose)

d.write()

synchroniseReasoner(QO)

54 TarE OWLOOP API

only the D,4 semantic, i.e. a LinkIndividual, involving the Robot1
ground and its possible properties. At Line 5.2.2, we set the descriptor
to synchronise the isIn property, and at Line 5.2.3 we read from the
ontology. We assume in O that the robot can have only one position
which, in accordance with the previous example, is the Corridori
individual. At line 5.2.4, we build a new description p based on such
an individual, i.e. we obtain a set of descriptors R containing a single
element that represents some axioms grounded on Corridori. We
define the sub-descriptor Dy; of LinkIndividual such to return a
set of TypeIndividual descriptors during building. The latter is a
descriptor containing D53, which would have an individual as ground,
and an entity set made of classes.

Between lines 5.2.5 and 5.2.7 we synchronise the internal state of
p in order to build the locations linked to the current position of the
robot. Therefore, at Line 5.2.8, we iterate over a set of TypeIndividual
grounded first on Rooml and than on Room2. For each of those indi-
viduals, at Line 5.2.9, we read from the ontology the classes in which
they are an instance of, and we store them in the internal state of the ¢
descriptors. Thus, at Line 5.2.10, we build such a description and we
obtain a set of descriptions grounded on the classes having Room1 or
Room?2 as their instances, i.e. {T, LOCATION, ROOM} in both cases.

Listing 5.2: An example of semantic reading and building with OWLOOP. Given an
ontology O as in Figure 5.1, this listing returns { (Room1, R00M), (Room2, ROOM) }.

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9

5.2.10

5.2.11

5.2.12

5.2.13

5.2.14

5.2.15
5.2.16

5.2.17

Descriptor : d, describes the location of Robot1.
p, describes location liked to Robot1.
r, describes all the types of locations linked to Robot1.
t, describes types that subsume the locations linked to Robot1.
d < new LinkIndividual (O, ‘Robot1’’)
d.setLink (‘‘isIn’’)
d.read()
p < d.buildLinks()[o] // 1 LinkIndividual with x=Corridori
p.setLink(‘‘isLinkedTo’’)
p.read()
R + p.buildLinks() // 2 Typelndividual, with, x={Room1, Room2}
foreach r € R do
r.read()
T < r.buildTypes () // 3 SubClass, both with x={T,LOCATION, ROOM}
foreach t € T do
t.read()
W < t.getSubTypes () // all Ajs.t. AT A;, where A is the ground x
if W.isEmpty () then
U.add((r.ground(), t.ground())) // e.g. (Room1,ROOM)
L break

return U

5.9 CONCLUSIONS

Since we defined the sub-descriptor Dj3 of TypeIndividual such
to build a set of SubClass descriptors invovling D3, t is a descriptor
that synchronises subsuming axioms in its internal state, and this is
done at Line 5.2.12. For each type of locations linked to the position
of the robot, we get the internal axioms about subsumed classes, at
Line 5.2.13. In our example, since T subsumes all the classes the con-
dition at Line 5.2.14 is not verified because the internal state contains
four classes, and this also happens for LOCATION since it has one sub-
class. In contrary, the condition at Line 5.2.14 is verified for ROOM, since
it does not have any sub-class.

In this case, the output returned by the Listing 5.2 is a structure
U = {uy,uz}, where u; = (Room1,R00M), and u; = (Room2, ROOM), i.e.
the reachable places and their types. Remarkably, since we exploit
OOP paradigms through descriptor building, we had to explicitly state
only the IRI of Robot1, isIn, and isLinkedTo, without the need to
generate further constants about the names of entities in the ontology.
Moreover, we presented how building mechanism allows extending
and interfacing descriptors between each other, through different de-
scriptors including combination of sub-descriptors in an OOP manner.

5.9 CONCLUSIONS

We presented the OWLOOP API, a library that allows to design
algorithm using knowledge contained in an OWL ontology in an OOP
fashion. We motivated why such a feature is crucial for bringing OWL
in real robotic applications due to the complex software architecture
they demand. Nevertheless, an ontology contains data structures that
do not follow OOP paradigms, and design reasoners that can maintain
an OOP-like ontology without loose knowledge expressibility is a
state of the art challenge.

In this paper, we presented a formalisation and a proof of concept
implementation that allows accessing ontology in an OOP manner,
but its core uses standard libraries. In other words, we presented a
wrapper that embeds a middle layer where we describe a fragment
of the ontology that a user can exploit based on OOP interfaces and
extensions.

The middle layer is in charge of performing the synchronisation
between OWLOOP descriptors and OWL axioms in an ontology. For
implementing such a procedure, we had to formalise a general in-
terface representing an abstract descriptor. We design this interface
to be very general, such to allows the definition of a descriptor of
descriptors. We implemented and presented the most common sub-
descriptors, and we discuss how their combination can be used for
defining OOP structures of OWL axioms with a specific semantic.

With the purpose to increase the performances, OWLOOP is de-
signed with the idea that a developer should make a particular de-

55

56

TarE OWLOOP API

scriptor for each semantic in the ontology he or she wants to use. It
this way, OWLOOP can be used for limiting as much as possible the
knowledge to be synchronised. Nevertheless, OWLOOP supports the
developer with the definition of many different sub-descriptors that
can be extended and interfaced. At the current state, the OWLOOP
functionalities cover an exhaustive set of descriptors for the most com-
mon applications, but it does not wrap all the possible OWL axioms.

A ROS MULTI-ONTOLOGY
REFERENCES SERVICE: OWL
REASONERS AND APPLICATION
PROTOTYPING ISSUES

ABSTRACT

This paper introduces a ROS Multi Ontology References (ARMOR)
service, a general-purpose and scalable interface between robot archi-
tectures and OWL reasoners. ARMOR addresses synchronization and
communication issues among heterogeneous and distributed software
components. As a guiding scenario, we consider a prototyping ap-
proach for the use of symbolic reasoning in human-robot interaction
applications.

software architecture for robotics - knowledge representation -
reasoning - description logics

AUTHORS

Luca Buoncompagni*, Alessio Capitanelli* and Fulvio Mastrogiovanni

AFFILIATION

University of Genoa.

*These authors contributed equally to this work.

57

Published in the
Proceedings of the
s5th Italian Workshop
on Artificial
Intelligence and
Robotics, a workshop
of the XVII
International
Conference of the
Italian Association
for Artificial
Intelligence (AI*IA
2018, Trento, IT),

and presented at the
Autonomous Robot
Ontology Workshop
(ROMAN 2017,
Lisbon, ES).

58

6.1 https: // www.
mongodb. com.

6.2 https:
// www. w3. org/
TR/ owl-guide.

6.3 https:
// githudb. com/
EmaroLab/ ARMOR.

A ROS MuLTI ONTOLOGY REFERENCES SERVICE (ARMOR)

6.1 INTRODUCTION

The challenge of sharing and communicating information is crucial
in complex human-robot interaction (HRI) scenarios. Ontologies and
symbolic reasoning are the state of the art approach for a natural
representation of knowledge, especially within the Semantic Web
domain, and it has been adopted to achieve high expressiveness [11].
Since symbolic reasoning is a high complexity problem, optimizing
its performance requires a careful design of the knowledge resolution.
Specifically, a robot architecture requires the integration of several
components implementing different behaviors and generating a series
of beliefs. Most of the components are expected to access, manipulate,
and reason upon a run-time generated representation of knowledge
grounding robot behaviors and perceptions through formal axioms,
with soft real time requirements.

The Robot Operating System (ROS) is a de facto standard for robot
software development, which allows for modular and scalable robot
architecture designs. Currently, some approaches exist to integrate a
semantic representation in ROS, such as the KnowRob [155] which
provide a complete framework of relevant ontologies, or the native
ROS support of MongoDB®?, which can also be used to provide a
suitable representation for semantic querying. Unfortunately, none
of these supports the study of advanced reasoning paradigms, and
they heavily rely on ad hoc reasoning solutions, significantly limiting
their scope. We argue that this fact affects the study of different ap-
proaches to semantics in Robotics. For instance, it limits our capability
to explore novel semantic representations of perceptions, which of-
fers similar but not equivalent beliefs. We lack a standardized general
framework to work with ontologies, natively supporting symbolic
logic and advanced reasoning paradigms.

The Ontology Web Language (OWL)®? is a standard representation
supporting several reasoning interfaces, e.g. Pellet [144], and logic for-
malisms, e.g. the Allen’s Algebra [5]. Thus, it can be a solid foundation
for a framework for symbolic reasoning in Robotics. OWL is based
on the separation between terminological and assertional knowledge,
referred to as different boxes (Tbox and Abox). Typically, in Robotics
scenarios, we design a static semantics for the beliefs to be represented
in the TBox. Then, we populate the ABox through individuals defined
using types and properties and, at run-time, we classify knowledge
using instance checking. We argue that, due to the high complexity of
HRI scenarios, the possibility of a dynamic semantics in the TBox is
desirable as well. For instance, it could be used to learn new types for
classification. This leads us to a study requiring reasoning heuristics
to be compared, components to be shared, and different semantics to
be adapted.

For this purpose, we propose the ROS Multi Ontology References®3

https://www.mongodb.com
https://www.mongodb.com
https://www.w3.org/TR/owl-guide
https://www.w3.org/TR/owl-guide
https://www.w3.org/TR/owl-guide
https://github.com/EmaroLab/ARMOR
https://github.com/EmaroLab/ARMOR
https://github.com/EmaroLab/ARMOR

6.2 SYSTEM’S ARCHITECTURE

(ARMOR). ARMOR is an open source service which manipulates and
queries multiple OWL ontologies. It provides access to a set of dy-
namic ontologies, handling also the synchronizations among different
components in the architecture. Therefore, it is a convenient tool for
managing knowledge representation supported by advanced reason-
ers.

6.2 SYSTEM’S ARCHITECTURE

Figure 6.1 shows a schematic representation of ARMOR. It interfaces
the OWL API [73] and reasoners through the Java-based Multi On-
tology References library (AMOR). Then, ARMOR exposes AMOR
functionalities as a service to ROS-based architectures, relying on the
support for Java in ROS (ROSJava®4). ARMOR messages have been
designed to accommodate all OWL functionalities. Nevertheless, we
have implemented only an exhaustive subset of those features so far
(i.e. only common run-time operations). Indeed, ontology managers
are not distributed across satellite components of a ROS architecture.
Instead, dedicated components are in charge of management, while
others only provide knowledge axioms, possibly at run-time. With
ARMOR, it is possible to inject in the service procedure managing
symbols from a centralized perspective, based on the functionalities
provided by AMOR. Nevertheless, complex static representations can
always be defined also off-line with dedicated software, e.g. Protégé®>.

6.2.1 THE ARMOR Core: AMOR

The core library, referred to as AMOR, contains a map of instanti-
ated ontologies, where the key is a unique name identifier used to
access the corresponding ontology in a thread-safe manner. AMOR
provides several common operations, such as those to create individu-
als, assign their properties, make them disjointed and classify them,
to name a few. Furthermore, AMOR ensures complete accessibility to
the OWL API®® features for compatibility and extendability purposes.
For example, AMOR allows for invoking reasoners by specifying their
OWLReasoner factory, i.e. the unique package of its Java implementation,
which assures compatibility with all OWL reasoners.

In the current implementation, we interface several properties that
are useful to tune the AMOR behaviour, e.g. the buffering of the
manipulations or a continuous reasoner update, using the standard
ROS Parameter Server, as well as parameters for debugging purposes
such as toggling a Graphical User Interface (GUI) for visualising
ontology states on-line.

59

6.4 https:
// github. com/
rosjava.

6.5 http:
//protege.
stanford. edu.

6.6 http:

// owlapi.
sourceforge.
net.

https://github.com/rosjava
https://github.com/rosjava
https://github.com/rosjava
http://protege.stanford.edu
http://protege.stanford.edu
http://protege.stanford.edu
http://owlapi.sourceforge.net
http://owlapi.sourceforge.net
http://owlapi.sourceforge.net
http://owlapi.sourceforge.net

60 A ROS MuLTI ONTOLOGY REFERENCES SERVICE (ARMOR)

«ROSjava package»
a ROS Multi Ontology References (ARMOR) E
<knowledge base» <«interface» «realization» <engine»
Ont()l()gy AMOR l<t————1 OWL OWL
Enquirer Enquirer Reasoner
references 1 «implements» «depends»
«library» «interface» «realization» «factory»
a Multi Ontology AMOR <t————1 OWL OWL
References (AMOR) Manipulator Manipulator API
«classy» «R0OS service» & manipulation
Injected ARMOR & query
Service interface * injected request
s :: & consistenc
*rgslgg;esi \—@J % injected (& solution Y
request % injected response

Figure 6.1: The UML diagram of ARMOR. It accepts two types of request and respond accordingly
(%, #). The request and response % are shown as an example where the Injected Service
extends the services of ARMOR using AMOR.

6.2.2 THE ARMOR INTERFACE

The ARMOR interface is based on a ROS message structure (i.e. a
triple) for the use of the AMOR functionalities from any node in
the architecture, even when the development language is different
6.7 An ARMOR from Java (e.g. Python®7 and C++ are the most common languages in

client is available at Robotics development). Such a message is composed of:
https://github.

com/ EmaroLab/ o the client name, which is used by the service to identify different
ARMOR_ py_ api. callers,

o the reference name, indicating the operation’s target reference,
and

e the command to execute, i.e. add, remove, replace, query, load,

6.8 Listed at https: mount, etc.®® Each of those commands may be further refined
// github. com/ by
EmaroLab/ ARMOR/) .
blob/master/ — the primary and secondary specifiers, which augment
commands . md. command labels, e.g. add(individual, class) or

remove (individual, property), and

— the arquments, a list of entities in the reference parameter-
ising the command, e.g. (add(class) "Sphere"), or even
(add (property, individual) "hasNorth" "LivingRoom"
"Corridor").

An ARMOR call is based on one or more messages with the same
structure. When such a request is sent, the service manipulates or
queries the ontology with the given directives. Then, it returns whether
the ontology is consistent, eventual error codes with their description,
and the names of the queried entities, if requested. In other words,
the interfaces & and & in Figure 6.1, and % can be defined for each
specific injected service, if any.

https://github.com/EmaroLab/ARMOR_py_api
https://github.com/EmaroLab/ARMOR_py_api
https://github.com/EmaroLab/ARMOR_py_api
https://github.com/EmaroLab/ARMOR/blob/master/commands.md
https://github.com/EmaroLab/ARMOR/blob/master/commands.md
https://github.com/EmaroLab/ARMOR/blob/master/commands.md
https://github.com/EmaroLab/ARMOR/blob/master/commands.md
https://github.com/EmaroLab/ARMOR/blob/master/commands.md

6.3 APPLICATIONS AND CONCLUSIONS

One advanced feature of ARMOR is the possibility of flexibly
synchronising all operations. This follows a mounting/unmounting
paradigm, where one or more nodes identified by the same client name
can prevent other nodes from manipulating a given ontology, in order
to ensure manipulation consistency. On the contrary, queries are al-
ways allowed, except during reasoning time. Calls to busy ontologies
will report a mounting issue, and the user can choose how to handle
this situation.

6.3 APPLICATIONS AND CONCLUSIONS

We are currently using ARMOR in different applications, but here
we mention only two of them. The first is aimed at implementing a
dynamic PDDL problem generator. This approach uses descriptions
of the predicates and objects in a tabletop scenario to infer unsatisfied
norms and consequently generate goals [32]. The system has been
integrated with ROSPlan®9 by substituting the internal semantic data
structure with ARMOR and a suitable ontology.

The second application is a system to learn by demonstrations
the arrangement of objects in the robot’s workspace by mapping
their properties into the TBox. In particular, we used an injected
service®° in ARMOR for performing scene learning and classification
in a scenario where a robot explains its beliefs to a human, which
might want to correct it through dialogues (in Chapter 9).

This paper introduces the ARMOR service to manipulate OWL
ontologies and query their reasoners in a ROS-based architecture.
ARMOR services are available through a flexible message allowing
for the direct access OWL features from any component of the archi-
tecture. It ensures synchronisation between client calls and flexibility
through procedure injection. Also, ARMOR allows for an easy inter-
face between robotic architectures and OWL representations, and we
practically showed it during a tutorial presented at the ROS Devel-
opment Conference 2018%*. The tutorial is focused on the control of
mobile robots based on a topological environment representation and
SLAM.

61

6.9 https:

// github. com/
KCL-Planning/
ROSPlan.

6.10 https:

// githudb. com/
EmaroLab/
injected_ armor_

pkgs.

6.11 http: // wuww.
theconstructsim.
com/ ros-
developers-
online-
conference-2018-
rdc-worldwide/
ros-developers-
conference-
speaker-alessio-
caprtanell.
Code available at
https:

// github. com/
EmaroLab/ armor_
rds_ tutorial.

https://github.com/KCL-Planning/ROSPlan
https://github.com/KCL-Planning/ROSPlan
https://github.com/KCL-Planning/ROSPlan
https://github.com/KCL-Planning/ROSPlan
https://github.com/EmaroLab/injected_armor_pkgs
https://github.com/EmaroLab/injected_armor_pkgs
https://github.com/EmaroLab/injected_armor_pkgs
https://github.com/EmaroLab/injected_armor_pkgs
https://github.com/EmaroLab/injected_armor_pkgs
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
http://www.theconstructsim.com/ros-developers-online-conference-2018-rdc-worldwide/ros-developers-conference-speaker-alessio-capitanelli
https://github.com/EmaroLab/armor_rds_tutorial
https://github.com/EmaroLab/armor_rds_tutorial
https://github.com/EmaroLab/armor_rds_tutorial
https://github.com/EmaroLab/armor_rds_tutorial

Part IV
DEMONSTRATE FOR REMEMBERING
This part presents an algorithm we develop for creating

and maintaining a graph of experiences in the robot’s
memory.

ONE-SHOT STRUCTURED LEARNING
OF SCENE CATEGORIES THROUGH
DEMONSTRATIONS

ABSTRACT

The paper presents an algorithm to learn a structure of scene categories
with classifying purposes. The algorithm is based on symbolic repre-
sentations, logic reasoning, and dynamic semantic manipulations. We
deployed it in a ROS architecture through the definition of a semantic
interface, which has been designed for parametrising the knowledge
that the algorithm can process, i.e. the space in which it learns and
structures experiences. We discuss a general-purpose implementation
of the algorithm, and we deployed it in a simplified human-robot
interaction scenario where tabletop scenes, made of objects spatially
related, are (i) learned in a one-shot manner, (ii) structured based on
sub-scenes previously experienced, (iii) classified with a similarity
value, and (iv) explained to the user.

structured learning - robot memory -
scene similarity representation - knowledge bootstrapping

AUTHORS

Luca Buoncompagni and Fulvio Mastrogiovanni

AFFILIATION

University of Genoa.

65

Paper to be
peer-reviewed.

66

STRUCTURED LEARNING OF SCENE CATEGORIES

7.1 INTRODUCTION

Many approaches in Robotics foster a vision of healthcare where as-
sistive robots take care of many aspects of our everyday life. Robots
are expected to behave as proactive butlers, smart companions or
social agents. Assistive robots will have to understand and adapt to the
peculiarities of the environment (i.e. most likely private apartments)
in which they will be deployed: not only will robots have to learn
maps (possibly semantically), they will also have to locate and arrange
objects (e.g. chairs, cups, glasses, plates, cutlery, books, etc.) in the way
the assisted person is used to. At the same time, the robot should
be aware of the person’s activities, and it should contextualise its
experiences in a structure that is suitable for specific tasks. Further-
more, preliminary evidence suggests the existence of an interaction
gap, which relates the understandability among agents to the quality
of the interaction [81]. Therefore, for having an efficient assistive robot,
the user should be able to understand its experiences and intentions
as well.

It is expected that an initial knowledge bootstrap, i.e. an understanding
of the environment, will be conducted by the assisted person (or their
relatives or caring staff) using familiar, language-based, qualitative
concepts, such as here in the kitchen, on the right-hand side of the dish
plate, or beyond the water bottle. We envision a scenario where anyone
can teach a robot how to interpret scenes based on some semantic
(e.g. spatial arranged objects), by showing and interacting. After the
bootstrap phase, the robot should be able to maintain and retrieve the
experiences it had based on the state of the environment. Once such
capabilities are obtained, an assistive robot will be able to use learned
representation for a variety of tasks, including communication pur-
poses (e.g. the cup is at the right-hand side of the plate), action planning
(e.g. swap knife and fork) or other tasks involving scene classification
(e.g. this scene corresponds to a sumptuously decked table).

In particular, we want robots to (i) learn the configuration of objects
through human demonstrations (e.g. teaching by showing, similarly to
what has been described in [122, 123]), (ii) structure the semantic pe-
culiarities of the scenes among subsequent demonstrations processes,
(iii) classify the occurrence of a configuration that is similar to expe-
riences it had, and (iv) communicate the classified experiences and
their structure to the user. Since those operations are depending on
the knowledge representation that the robot is supposed to build at
runtime, the problem of design such a dynamic structure is crucial for
implementing robots with these functionalities.

In practice, the design of the knowledge representation for robots
is driven by the requirements of the application. Usually, knowledge
representation is based on complex prior models that are assessed
with respect to the state of the environment at runtime, and this is

7.2 RELATED WORK

used for grounding the intentions and actions of the robot. We argue
for robots that aggregate prior knowledge to build models derived
from experience, and we want to investigate a formalism to define
prior knowledge that can be used with such a purpose. We want
to use that formalism as an interface for the algorithm, which is
made at the semantic level. In this way, the algorithm can be used in
different applications based on appropriate prior knowledge, which
will be exploited for learning and classifying structures of experience
represented with a suitable semantic.

Our algorithm is based on the Description Logic (DL) formalism [11],
and its operations are meant for maintaining a structure of experience
encoded using the Ontology Web Language (OWL) [108]. We exploit
OWL reasoners to organise the experiences in a hierarchy of classes
which contains the representation of the scene to be recognised. The
algorithm uses an ontology to process input facts about the scene,
which generates beliefs that are matched with categories based on
experience. As output, the algorithm returns a structure of categories
that model some parts of the scene. In the output structure, categories
are related among each other with a similarity value, which indicates
how well their model describes the environment.

In this paper, we deploy the algorithm in a ROS architecture de-
signed for a scenario aimed to highlight the behaviour of the algorithm.
We consider a scenario involving a user and a robot facing each other
at the opposite sides of a table where objects are spatially located, as
shown in Figure 7.1. We detail the computation that the algorithm
performs for some demonstrations in this scenario, and we report its
outputs. We show the behaviour and the limitations of our algorithm
through examples, which are aimed at presenting more general use
cases where our method is effective.

The paper introduces related work, it gives an overview of the
algorithm (in Section 7.3), and it formalises our problem from a set
theory perspective (in Section 7.4) with the purpose to identify the
operations to be performed by the algorithm as well as its interface.
Then, the paper introduces the DL formalism as far as it is required
for designing the algorithm, which is presented through a general-
purpose implementation in Section 7.5. Section 7.6 details the semantic
interface of the algorithm in a ROS architecture designed to evaluate
scenes with spatial arranged objects. We observe the behaviour of the
algorithm in such a scenario, and Section 7.7 reports the computation
that has been performed for some examples. Finally, in Section 7.8 we
discuss our algorithm, and conclusions follow.

7.2 RELATED WORK

Recently, the problem of representing a spatial scene using geometric
or probabilistic primitives gained significant attention in the literature.

67

68

STRUCTURED LEARNING OF SCENE CATEGORIES

A strand of approaches is focused on scene representation and un-
derstanding [157]. The need for topological, geometry-invariant and
qualitative scene representations has been advocated in [34, 40]. An
approach using relative spatial arrangements (regarding bounding
boxes and centroids) among detected objects is presented in [64, 65]
to improve the classification of 2D images. Relationships between
different frames in video streams are learned in [47]. Specifically, cor-
relations between regions with similar motions are detected. Joint
distributions of spatial relationships over scenes is computed in [84],
to recognise partially occluded objects using statistical information.
Different spatial relationships are considered, namely bounding boxes
of 3D objects, Euclidean distances and relative displacements. Scene
similarity measurements for indoor environments are proposed in [3],
where the authors model scenes (both individual objects and their
relationships) using Gaussian Mixtures.

A second strand aims at representing scenes for manipulation pur-
poses. Key structural visual features (and their relationships) are
used in [103] as a representation framework to ground towel folding
manipulation sequences. Proximity and contact relationships among
objects from RGB-D data are determined in [129], where the scene
is described by qualitative geometrical relationships in the form of a
labelled graph. Labels represent the semantics associated with those
relationships, i.e. on top of and adjacent. 3D vision histograms are used
to learn manipulation-oriented spatial relationships in [59]. Surface
patches are extracted from 3D point clouds, and histograms between
patches are used to determine the occurrence of three relationships,
namely on top of, inside and rakable. Finally, a mapping between object
geometrical parameters and their representation is learned in [46] to
represent information for manipulation tasks.

Many approaches to spatial reasoning have been proposed in the lit-
erature when the relationship in a scene are represented symbolically,
e.g. the Region Connection Calculus or the Ternary Point Configura-
tion Calculus [21, 41, 111]. However, such approaches are aimed at
reasoning, not at human-robot interaction or learning. In particular,
learning a purely symbolical model is an open issue that started to be
tackled in the literature through probabilistic logic programming as
reviewed in [56]. On the other hand, symbolic models can answer even
very complex spatial queries, but their results are not necessarily suit-
able for human-like descriptions of spatial knowledge. Nevertheless,
ontological representation has been used with interacting purposes
since the user can interpret the knowledge it contains, e.g. in [93].

A benefit given by symbolic representation is the possibility to
interface the symbols with different semantic than share the same
representative structure, without affecting the algorithm consistently.
For instance, temporal relations based on Allen’s algebra [5] have been
used for aggregate atomic activities in a smart environment (e.g. go

7.2 RELATED WORK

in the kitchen) in more complex models meant to recognise human
activities [83]. That paper presents an ontology-based algorithm that
is modular since it interfaces knowledge at the semantic level, which
might encompass the different type of sensors and activity recognition
modules, i.e. different knowledge representation sharing a common
formalism.

Unfortunately, most expressive symbolic representations cannot
deal with uncertain knowledge, and this requires to use perception
techniques not affected by noise. Probabilistic [172] and fuzzy [24]
reasoner for OWL ontologies are becoming mature, but unfortunately,
their expressiveness might be still limited. Fortunately, OWL is a W3C
standard that we used for prototype our algorithm, but we expect that
more expressive reasoners will adhere to such language.

As far as the learning of structured symbols is concerned, a broadly
investigated problem is to learn a structure of labels that characterise
part of the scene, given as an image. For instance, in [96] reinforcement
learning has been used for structuring labels segmented from an
image in a graph representing actions, such as holding and wearing.
In [147] a parser of images has been proposed to exploit knowledge
extracted from an image through a recurrent neural network, which
is structured in sentences based on recursive patterns, that explains
the scene. In [164] and end-to-end learning technique is used for
structuring the expression of a person, by considering its separated
parts, i.e. eyes and mouth.

We are not aware of a system that learns a structured representation
of scenes over time. Indeed, all the above methods structure data
within the same scene, but not among scenes experienced in different
situations. Usually, this problem is addressed with tracking techniques
that are meant to maintain the representation of the environment that
can be perceived. In a long-term scenario, this could be not suitable
since the robot cannot perceive all the objects it should interact with,
for all the time. If a tracking system is not used, the anchoring prob-
lem [42] is a known issue occurring when symbols that represented
an object in a previously experienced scene should be matched when
the object is observed again in the current scene.

7.2.1 CONTRIBUTION

We propose an algorithm that exploits a purely symbolic represen-
tation in order to (i) represent qualitative scenes and reason on the
semantic of their features, (i7) develop general-purpose implementa-
tion, and (iii) reduce the interaction gap with the user. To perform
those tasks, we pair the algorithm with an OWL ontology, based on the
DL formalism. We adopt DL since it is an expressive and computable
standard, which also provides reasoners as Pellet [144], as well as

69

70

STRUCTURED LEARNING OF SCENE CATEGORIES

language for querying knowledge [143], and inferring methods, e.g.
based on the Semantic Web Rules Language (SWRL) [74].

In particular, we address the ii point above through an interface that
assures knowledge in the ontology to be available in a conventional
format, that we define. The ontology is not limited to contains knowl-
edge only with such a format, but the algorithm structures experience
by processing only knowledge represented with our format. In other
words, the algorithm is interfaced with the ontology through a set of
known symbols that are defined in the semantic interface, and are
supposed to be the results of some reasoning tasks, i.e. the inferred
knowledge that features the scene at runtime. We design this interface
based on a common technique, which represents the environment
through a set of relations between pairs of elements (e.g. objects). Our
algorithm does not fix the semantic of relations and elements to be
considered in a scene, which are merely reduced to symbols. The
combination of those symbols defines how the algorithm categorises
experiences, as summarised in Figure 7.2.

The paper presents an algorithm that, given input facts describing
the scene, returns categories ranked with a similarity value as output.
The output is a structure containing all the previous experiences that
match the environment, i.e. sub-scenes, which model are verified in
the environment. During the learning phase of our algorithm, we learn
scene categories through the observation of input facts representing
the current scene. The algorithm implements one-shot learning, and
we exploit it every time a scene cannot be classified (i.e. not previously
experienced). Therefore, the algorithm always returns a classification
of the scene which, if concerning a new experience, is leaned on-fly.

We present the algorithm in a scenario where objects are spatially
related, and we detail the computation that is used for structuring
experiences in a graph through instance and consistency checking
performed by the OWL reasoner. Although our algorithm does not
strictly require supervision, but in our scenario we involved a user in
order to arrange the scenes that the robot should observe. Since we
argue for an interaction that might help the robot, we consider the
user as a potential supervisor, which monitors the robot perceptions,
triggers the algorithm, and evaluates its output.

7.3 OVERVIEW

This paper addresses scenarios where the robot observes compositions
of facts, i.e. scenes. The robot is supposed to learn scene categories that
are classified based on similar compositions observed over time. There-
fore, the robot maintains a structure containing categories modelling
past scenes, which are used for classifying the current scene at run-
time. For instance, it should represent that a working station is a scene

7.3 OVERVIEW 71

Figure 7.1: The reference scenario: a Baxter robot in front of a table where multiple objects (i.e. a
monitor, a keyboard and a mouse) compose a scene shown by a human.

made of a monitor, a keyboard, a mouse, and the mutual relations that
characterise them as shown in Figure 7.1.

We require the robot to reason on a symbolic (i.e. qualitative) de-
scription of the environment to simplify the interaction with a user,
which can directly access and understand the robot’s knowledge about
the current and past scenes. For instance, symbolic facts of the exam-
ple in Figure 7.1 can be based on a relation, which semantic is to be
connected to, i.e. r;. Thus, in our representation, the objects g; in the
scene will be qualitatively related to each other. The algorithm uses
an OWL ontology to reason over such a representation.

We aim to design a system that represents similarities among scenes
by focusing their attention on particular characteristics of the envi-
ronment (e.g. the colour, the shape, or the affordance of the objects
in a table), which semantic is known a priory. We exploit symbolic
representation to define general-purposes characteristics of scenes to
be learned and classified, and we consider the inclusion as a measure
of the similarity among scenes. In other words, we consider a scene
to be included in another if the former is represented with all the
facts modelling also the second, i.e. the latter is a more complex scene
which includes a simpler sub-scene: the former category.

As an example, let extend the scene in Figure 7.1 with a chair and
let us name the new category office. In this case, the working station
category would be recognised in the new scene, since there are at least
a monitor, a keyboard, and a mouse described through the relation
r;. In particular, the algorithm would infer that an office includes a
working station, and the similarity value between the two categories
would be high since they differ in only one object (i.e. the chair).

72

STRUCTURED LEARNING OF SCENE CATEGORIES

The algorithm maintains a memory of scenes through three steps, i.e.
the perceiving, the classifying and — eventually — the learning phases; all
performed at each discrete instants of time. In the perception phase, we
represent sensor data through symbolic facts, which are mapped into
beliefs about a scene, as outlined in Figure 7.2. During the classification
phase, we use beliefs for classifying the current scene with respect
to previously learned categories. If no categories are recognised, the
learning phase occurs for generating and structuring a new category
from beliefs. Otherwise, all the recognised categories are returned by
the algorithm with a similarity value, which measures their complexity
based on current beliefs.

In the next section, we formalise our problem from a set theory per-
spective, where knowledge is encoded as elements in sets summarised
in Figure 7.2. In particular, we define the perception, environmen-
tal and experience spaces, which are used to define the perceiving,
learning, structuring and classifying functions. In Section 7.5 we define
those spaces and functions with the DL formalism, and we present
how OWL reasoning can be used for implementing the classify and
structuring functions. For doing this, Section 7.4 defines the symbols
that the algorithm requires in the ontology (i.e. its semantic interface).

7.4 PROBLEM STATEMENT

We represent a scene as a collection of the facts perceived at a cer-
tain instant of time, which contains n tuples f; describing instances,
F = {fi,i€[1...n]}. Instances are particular elements of the en-
vironment that we want to take into account, e.g. they could be
objects in a tabletop scenario, or activities in scheduling applica-
tions, as well as sub-symbolic quantities such as time instants or
colours. Each tuple in F describes a fact with two instances gy
and gy, which characterise the scene through a relationship r, i.e.
fi = (rz, 8%, gy>. For instance, a fact could be a spatial relation in
a tabletop scenario fi = (right,objl,o0bj2), as well as an event
f2 = (alarm,rooml,12:37), or a property f3 = (color,cup2,white).

We define the perception space F spanning all the possible combi-
nation of observable facts. For a discrete instant of time, F contains
all f; characterising the environment through independent facts in-
volving pairs of instances (gx, gy)- At each instant of time, we want to
represent the facts of the entire scene F as a single entity to reason
with, i.e. we build a scene model. Therefore, we want to map all the
facts in a unique symbol ¢, that we call scene. The scene is defined
through a set of beliefs that are based on facts, and e is contained in
the environmental space E, which spans all the combination of beliefs
that can be generated from a facts set in [F.

7.4 PROBLEM STATEMENT 73

Semantic Interface
R= {rz, ze[l...v]} (R);

.....

5}7[?” Of , ----- 5}][”/1 Of
(R, T, T) oo™ P ‘”‘;{”Z;fﬂ """"""" (RXTxT)
_______________ ; e
Perception Space Environmental Space Experience Space
F E X
o i contains /’/1!\“\\ contains
contains containsi LeoTcontains TS

\ " Y e : A

Facts Setﬂ& Scene maps Learned maps Experience maps Output
F e (e) Category Graph Graph

Perceiving Learning X, (Pe) Structuring (@) Classifying X*(D)
Function Function Function Function
P L S C
made of n made of o<n made of q made of s~ Made of s
Fact Belief Z{”df) (jf Scene Category Similarity
fi by MSv-w-w X (D)) Value
made of 1 made of 2 (Rzx, Tyrry) ()
\)
Characteristic Typed Instance Feature made of
r €R G eT.CT Xg m<o-w-w
(R; C R) T 3 Typ) (Rzx o Ty)

Figure 7.2: A glossary of the symbols (in black), and their relations (in grey), defined in this paper
for representing the robot’s knowledge. For a quick reference, we show in red some
elements of the ontology that are relevant for implementing the related black symbols,
which are introduced in Section 7.4 and motivated during the description of the algorithm
in Section 7.5.

We define the perceiving function P as a map between a set of facts
F and some beliefs b, that define the components of the scene e, which
is represented as a point in [E

P:F—E (7.1)
Fe={b,re[l...o0]},

where each belief b, belongs to a space that restricts E based on the
z-th characteristic and the x-th and y-th instances represented in a fact
fi € F.

We want to divide E into categories (i.e. sub-spaces) that will be
used for classifying the scene. In particular, we define the collection
of all the scene categories as the experience space X C [E. Formally, X
contains a collection of sets X, where each generic set X; C X restricts
the possible beliefs b, that a scene should have to be classified, i.e.
e € X;. If this occurs, we consider the scene to be classified. Otherwise,
if X; = @, we consider the scene ¢ not being classified in the j-th
category. If this occurs for all the categories, i.e. ¢ ¢ X, we want to
learn a new category from the observations of the beliefs about ¢ and
store those in X for future classifications.

74

STRUCTURED LEARNING OF SCENE CATEGORIES

We structure the robot’s experience X as an oriented graph of cate-
gories, i.e. an ordered set of sets X DO {X L, jEl...m]; —<} represented
in X, and defined through restrictions of beliefs in [E. We call X the
experience graph, where each node is a scene category X;, which is con-
nected to another h-th category through an oriented edge iff. X; < Xj,.
The ordering operator < is a function that evaluates the similarity among
categories, which are represented trough edges in X. In this way, the
graph relates all the scene categories using a common method for
measuring similarities among all the nodes (e.g. based on categories
inclusions).

To generate categories in X from facts representing the scene E =
P (F), we define the learning function L as a map between each belief b,,
to a feature x,;, which contributes to the definition of a new restriction
of the environmental space X..

L:E—X (7.2)
e X, ={x;, g€ [l...m]}.

We assume L to generate a new category X, such to classify the scene
e observed at learning time with a perfect similarity match. Formally,
if a time t we compute L (e') = X,, then we classify ¢! € X, with the
highest similarity value, i.e. there could not be any other categories X;
classifying a future scene e!T1, with the same beliefs of ¢f, better than
Xe.

The learned category X, in X is the definition of a new set that
restricts a part of the possible beliefs in [E, but it is not a node in
the experience graph yet. In order to include a new node X, in the
graph X, the system must update the graph’s edges by computing
the ordering operation < among all the categories in the graph at the
previous instant of time (X]t._l) and X,. We perform this operation
with the structuring function

S:X, X = X (7-3)
(XH,X@) — X,

which computes a new experience graph X for the current instant of
time given (i) the experiences graph at the previous instant X'~!, and
(ii) a new learned category X..

Given the experience graph in X, we define the classify-
ing function C as the operator that finds a sub-graph X* DO
{Xx € X, Vk € [1...5]; <}, that we cal output graph. Given the cur-
rent scene ¢ and the experience graph at the current instant of time X
we define X* as

C:X,E—X (7.4)
X, e— X",

7.4 PROBLEM STATEMENT

We suppose that e belongs to all the categories X C X* by definition of
C, while the edges of X* describe the similarity among each classified
category Xj.

7.4.1 DYNAMIC SPACES REPRESENTATION

As mentioned, the algorithm involves at each instant of time the com-
putation of the perceiving, classifying and learning phases. The former
involves the perceiving function P, defined in Equation 7.1, while
the last phase involves the learning function £, in Equation 7.2. The
classification phase relies on the classifying function C defined in Equa-
tion 7.4 and, if the learning phase occurs, C would be recomputed for
updating the output of the algorithm. During the second evaluation of
the classification phase, i.e. after any learning phases, the structuring
function S, defined in Equation 7.3, is evaluated before than C.

More in particular, during the classification phase, we encode per-
ceived facts in beliefs, and we generate the representation of the
current scene e in [E. Based on restrictions of [, represented in X,
we perform classification. If no categories are classified, the learning
phase occurs for using e as a demonstration to generate a new scene
category X,. Then, we use the structuring function to arrange the new
category in the experience graph, and we perform the classification
phase once again to guarantee at least one categorisation of e for each
instant of time.

We suppose that Xf = X'~! before the computation of any phases
of the algorithm for each instant of time ¢, but during the execution
of the algorithm this might not be true. Indeed, after the learning
phase, X also contains a new category X!, and when the structuring
function has been computed X would contain a new graph X!, which
includes the new learned category in the experience graph represented
at the previous instant. Thus, the algorithm maintains an experience
graph X', which represents all the structured categories of scenes
experienced from an initial instant of time, i.e. when the first facts have
been processed. To simplify the notation, we implicitly consider that
all the symbols involved in the algorithm are related to the current
instant of time t. Otherwise, we explicitly indicate a temporal reference
using right superscripts.

Figure 7.3a represents the perception space IF which contains the
facts at the considered time instant (Ff, F**1,...). At each instant of
time, F contains some facts f; expressed through tuples of the type
(r2, 8, 8y)- Figures 7.3b and 7.3c represent both the environmental IE
and experience X spaces, but the first figure shows them during the
learning phase at the time instant ¢, while the second figure depicts the
representations during the classification phase at the time instant t 4 1.
For each instant of time, facts F are mapped into a corresponding

75

76 STRUCTURED LEARNING OF SCENE CATEGORIES

Figure 7.3: Evolution of the robot knowledge from a set theory perspective. Figure 7.3a shows the
perceived facts F!, F!*1 structured according to the proposed semantic interface at different
time instants. Figures 7.3a and 7.3b show the robot knowledge in the learning phase at time
t, where a new category X, is derived from demonstration and included as a new experience.
Figures 7.3a and 7.3c, instead, show the robot’s knowledge during the classification phase of
another scene e at time ¢ + 1, which is classified as X*. Consequently, figures 7.3b and 7.3¢c
represent the evolution of the experience space X over time.

representation of the current scene E in [E by the perceiving function
P that defines beliefs.

On the one hand, Figure 7.3b shows a case where the scene e
generated from facts at time ¢ does not belong to any categories
known from previous experience X'~!; therefore, it is necessary to
learn it. Using the learning function £, the robot gains a new scene
category X,, which can be grouped with the previous one by the
mean of the structuring function S. & computes a new graph X in
X including X, = X4 (notable from the comparison of figures 7.3b
and 7.3c), which is returned as the only category classifying the scene,
ie. X* = Xy.

On the other hand, Figure 7.3c shows the situation when the scene
e, associated with the fact FI*1 is already contained in the previous
robot experience X. Therefore, the robot can directly retrieve a subset
of categories X* by the mean of the classification function C, without
using L. In this case, C returns a sub-graph X* C X having X; and X»
as nodes (i.e. classifying categories), and edges such to identify if Xj,
or X5, is more similar to e.

7.4.2 ALGORITHM-KNOWLEDGE INTERFACE

We design the algorithm to maintain the introduced representation
over time with a general purpose set of symbols that follows a spe-
cific semantic interface. This interface represents the prior knowledge
needed for encoding input facts and generating a consistent graph
X in the experience space, which consequently identifies well posed
classified categories X*.

7.5 THE SCENE IDENTIFICATION AND TAGGING ALGORITHM (SIT)

In particular, we defined each fact to be a tuple characterising
two instances (gy,gy) through r,. We suppose the algorithm to
known the possible symbols involved in facts, which are expressed
in terms of (i) a characteristic spanning in a known set of relations
R = {r;,, Vz € [1...w]}, and (ii) two types spanning in a known set
of sets, T D {T;, Vi € [1...v]}, which is assigned to each instance, i.e.
gx € Ty and g, € T, with Ty, T, C T. Also, we assume that types
T, and T, describe each instance with a non-ambiguous type, i.e.
N; T/, = @; as shown in Figure 7.3a. Thanks to such an input struc-
ture we define .7 as the operator that returns a type given an instance,
ie. 9(&) = Tl' - T.

Therefore, the semantic interface of the algorithm can be defined as
the sets R and T used for generating a fact,

fi = <rz/gngy> €EF:F «— rZER/ ngTx' gyGTy, (7'5)

which represents the definition of a fact that the algorithm can process
and, consequently, the symbols that the ontology should contain in
order to represent collections of perceived facts over time.

Through this interface, we assure that the algorithm outcomes X*
will contain categories based on characteristics R (e.g. connected) and
types T (e.g. monitor, keyboard and mouse). Remarkably, this definition
of the semantic interface of the algorithm is enough to derive all the
dimensions spanning IF, [E and X, as we will discuss in Section 7.5.

SYMBOLIC REPRESENTATION
[...]71

7.5 THE SCENE IDENTIFICATION AND TAGGING ALGO-
RITHM (SIT)

In this section, we present an implementation of the phases of the
algorithm based on the spaces and functions presented in Section 7.4.
We suppose the algorithm to be supported from on OWL ontology
and a related reasoner, and we will map all the symbols presented
above in a DL formalism as summarised in Figure 7.2.

7.5.1 PERCEIVING

The perceiving function computes the scene as a point e = P (F)
(Equation 7.1). This function is required for mapping the beliefs re-
lated to a single symbol e from all the facts F, which involve charac-
teristics between independent pairs of instances (Equation 7.5), e.g.
(connected, gy, §y), which might occur for each possible combinations
of x,y spanning in [1...u], x # y, where u is the total amount of the

77

7.1 An OWL2-DL
primer can be found
in Chapter 5.

78

STRUCTURED LEARNING OF SCENE CATEGORIES

different instances occurring in all the facts F at time ¢, e.g. u = 3 in
Figure 7.1.

As mentioned, our algorithm requires an ontology with prior knowl-
edge describing the possible characteristics R and types T involved
in facts. In particular, we define in the ontology each characteristic
in R as a propriety R, between individuals <, and <,, which are
instances gy, gy. Moreover, types T are disjointed classes structured in
a hierarchy having I' as a root class, i.e. in the ontology all types T; are
considered as classes I'; C I'. For instance, figures 7.4a and 7.4c shows
the structured prior knowledge in the ontology regarding the semantic
interface that we used for the scenario considered in Section 7.6).

We exploit our semantic interface and specify the possible fact that
the algorithm accepts by rewriting Equation 7.5 in the DL formalism
as

fi={Re (ve,1y) s Tt v Ty iy} (7.6)
ie[l...n],ze[l...0], x,ye[l...w),

where 1 is the number of facts perceived a the current instant of time.

For instance, a fact f; in the scene in Figure 7.1 could be
connected(7y, 7y), where it is known that KEYBOARD: y, and MOUSE: 1y,
Where we assume to have prior knowledge in the ontology repre-
senting the conncted characteristics as a property in a known set of
properties R C {R;, Vz € [1...w]}, and types KEYBOARD and MOUSE as
disjointed classes in I' C {I';, Vi € [1...0]}.

The perceiving function P is used for representing in the ontology
the scene through a set of beliefs e. In particular, we define P such to
map each fact f; in a different belief b,, which is represented in the
ontology as a property that relates €, connected, KEYBOARD and MOUSE
consistently, for instance. In formula,

P(F)=P(fi) Vie[l...n], (7.7)
P (f) = 2R, 7 (7)) (& 1) 2%y f,

=% (R, Tx) (e, ’Vy) =R, (e, ’yy> = b,

where Z is a reification function based on our semantic interface that
appends the name of a characteristic .4 (R,) with the name of the
type of the instance involved in the domain of a fact 4 (Ty), i.e.
T (7vx) =Ty and 4 (T'y) = KEYBOARD.

For instance, #Z (R.I'y) =R, =connectedKEYBOARD, consequentially
a belief b, could be for instance P(f;) = connectedKEYBOARD (¢,).
In other words “the scene € has a KEYBOARD connected to 7,”. Note-
worthy, the ontology contains also I', = MOUSE: 7y, which is known
from Equation 7.6.

We suppose e to have o different beliefs b,, based on the 7 facts given
at the current instant of time. We observe that Equation 7.7 identify

7.5 THE SCENE IDENTIFICATION AND TAGGING ALGORITHM (SIT)

two equivalent beliefs from two facts iff. they share the same (i) z-
th characteristic, and (i) type I'y, and (iii) instance 7y,. When those
three conditions occur, the resulting beliefs from Equation 7.7 are
indistinguishable, and we consider them only once in the definition
of e. Therefore, at the same instant of time, the number of beliefs is
always smaller or equal to the number of facts, i.e. 0 < n.
Remarkably, % spans a space among the w-v combinations of char-
acteristics and types, i.e. the Rx T space, which is represented in the
ontology through the characteristics in R and on the types in I'. Those
combinations are supposed to be given as prior knowledge in the
ontology and are identified by the semantic interface of the algorithm.

7.5.2 LEARNING

The learning function £ creates categories in the ontology that classi-
ties the beliefs about the current scene €, which is represented as an
ontological individual defined through properties computed from P,
in accordance with Equation 7.7. We define this function as

re(l...o
L= [] 21 Rix.T (7y) (7.8)
zx,Y:b,
i€(1...m]
= |_| >kzxy sz-ry = &,

ZXY:X;

which generates a class ®. T @ that represents a new category X,
of the space X in the ontology. In Equation 7.8, we generate scene
categories as a conjunctions of features x; € X,, which are represented
in the ontology as minimum cardinality restrictions (k,, € IN) over
the axioms R, .T',, for each different beliefs b;.

It is important to notice that the restrictions spans in m=w-v-v
combinations of the Rx T x T space. The learning function £ is design
to count all the occurrences of a particular zxy-th combination defining
a belief b,. The counting value is store in k., and the sum of those
value for all the m restrictions is equivalent to the number of beliefs
o0 obtained at learning time. In other words Equation 7.8 generates o
restrictions with k;,, always equal to 1. Than, we aggregate all the
m restrictions related to the same zxy combination by summing up
all the restrictions. Since we adopted the open-word assumption, the
restrictions that are not generated form beliefs, i.e. ky,,=0, are not
represented in the ontology. Therefore, the number of features of the
learned categories ®. could be generically less than m, and if 0 < m,
than the number of features will be less or equal to than o.

Following the example in Figure 7.1, a feature of the ®. category
could be >1connectedKEYBOARD.MOUSE, identifying that € is a scene of
the @, category iff. at least one belief b, involves a connectedKEYBOARD

79

8o

STRUCTURED LEARNING OF SCENE CATEGORIES

and an instance of MOUSE. From the figure it is possible to deduce the
other feature that is >1connectedKEYBOARD.MONITOR In other words,
the learned category can be read as “scene ¢ is of the category ®,
if at least one KEYBOARD is connected to a MOUSE, and if at least one
KEYBOARD is connected to a MONITOR".

Remarkably, E is a theoretical space that represents all possible
scenes in the environment, i.e. it is a huge space, while the size of
X depends only on the robot’s prior knowledge, and it contains a
number of partitions that increases at each learning phase. At the
beginning, we suppose X = X"=@, and over time, X tends to be
equivalent to a part of [E that is observable with a semantic interface.
This occurs thank the structuring function that includes new learned
categories ®, in the experience graph.

7.5.3 STRUCTURING

We defined the perceiving and learning functions in the DL formalism
through equations 7.8 and 7.7 in order to exploit logic reasoning for
performing the structuring and classifying functions. We focus on the
former function in this section, while the latter is addressed in the
next section.

Section 7.4 introduced the structuring function S as an operator
that processes the ordering operator < for all the pairs of categories
in X. This operation builds the edges of the experience graph, which
represent categories similarities. Therefore each time a category & is
learned, S should include it as a new node in the experience graph
represented at the previous instant of time, and update all the edges
consistently before to re-performing the classification phase.

We identify the experience graph X as all the classes that are in-
cluded (C) in the ® class in the ontology. Since Equation 7.8 defines
each new category as a conjunction of ® and some features, in the
ontology the reasoner infers that ®. = L (P (F)) C ® VF in F, by
definition of L. In other words, ® is the root of the experience X im-
plemented in the ontology as an acyclic graph where we identify also
some leaves, and each edge represents a logical implication between
two scene categories ®;, @, C ®. In our implementation, the edges of
the experience graph are automatically updated by the OWL reasoners
that evaluates X; < Xj as ®; C &, for each pairs of categories j, h
experienced until the current instant of time.

If the ordering evaluation between the j-th and h-th category is
verified, we consider the category @), to be included in ®; (or ®@; implies
®),), since all the features of @), are also satisfied in the restrictions
of @, i.e. ®; = Pp, which identifies the direction of the edge in the
graph as shown in Figure 7.4b from the children to their parents.

Also we observe that a loop between two nodes in the graph repre-
sents equivalent categories that are simplified, i.e. (®; C @) A (P, C

7.5 THE SCENE IDENTIFICATION AND TAGGING ALGORITHM (SIT)

®;) = &, = d;. Moreover, in our ontology, a deeper of a node in
the experience graph represents a more complex scene, which has
common features (i.e. similarities) with their parent and assessors. In
Section 7.5.5, we design the similarity value to quantify differences in
categories complexity.

7.5.4 CLASSIFYING

Given the experience graph ® evolving based on the learning and
structuring functions, we want to classify a current scene against
previously experienced categories with some similarities. In particular,
Equation 7.4 defines the classification function C as an operator that
finds all the categories in the knowledge representation having features
matching a scene €. In Equation 7.4 we consider the classification as a
sub-graph ®* of the experience graph ®; containing learned categories
as nodes. In the ontology we represents the output graph ®* = C (®, €)
as a hierarchy of classes containing s categories ®; C ® all classifying
the current scene, i.e. Vj€[1...5], ®;: e is consistent in the ontology.
Since we implement a perceiving function (Equation 7.7) that repre-
sent the scene as individual €, and a learning function (Equation 7.8)
as an operation that generates classes, we can exploit logic reasoning
to query the classification of a scene at runtime. It is possible to express
such query with an incomplete axiom formalised with an SWRL rule

C(CD,e) i D C O — (CI)? E(I)) VAN (qD?ZG), (79)

where ? denotes a variable considered for solving the query.

Through the query, we obtain the nodes of ®* as (i) all the classed
in the ontology that implies ® (i.e. ? can be only nodes ®; in the
experience graph), which (i) classify the current scene €. We observe
that the definition of P and £ are such to assure point ii above iff. all
the features of a category ®; have restriction matching some beliefs
b, about the scene. We consider a category feature to match a scene
belief when they share the same reified relation R.,, which is applied
between € and 7,, as well as in a restriction involving I'y.

The result of the query identifies the output graph X* as a hierarchy
of classes having ® as root and the most complex categories of € as
leaves, i.e. categories with more restrictions. Remarkably, we define
the query that also returns the root of the experience graph. Therefore,
the output graph contains always ®, and if it does not contain any
further categories, the scene is considered not classified. For instance,
consider € to be represented by beliefs obtained from the first scene
presented to the robot, which has an experience graph as shown in
Figure 7.4b. In this case, the query will return an output graph ®*
composed by the root, as well as the nodes SCENE2 and SCENE1, which
is the only leaf.

81

82

STRUCTURED LEARNING OF SCENE CATEGORIES

In particular, the leaves of the output graph ®* are the categories
having a higher number of features matching the beliefs of ¢, i.e.
they are the most similar classified categories. Their parents are other
simpler categories having all the features matching a lower number
of beliefs, thus they categorise a smaller part of the scene which is
in common with their children, i.e. a sub-scene. Their ancestors are
yet more simple categorisations of €, and the root categorises empty
scenes.

7.5.5 SCENE SIMILARITY MEASURE

We compute a similarity value between the current scene € and all
the categories in @; C ®* obtained from the classifying function,
except for the root class ®, which is considered to have no similarity
with any scenes (i.e. its similarity value is always o). In particular, we
measure the similarity between the classified category as a confidence
value representing the number of beliefs matched between € and the
features of each category in ®*. We assume that more the matchings,
the more the similar the scene is with a category since it contains more
restrictions that consistently represent beliefs. A perfect match among
the beliefs of a scene and the features of a category is considered as a
classification with the highest similarity value, supposed to be 1.

For defining the similarity value between a scene € and a category
®; C ®*, we compute the scene cardinality de as the amount of different
beliefs generated from the n facts

ie[l...n

o=y, 72(P(f)) (7.10)

fieF

where & is a counting function such to returns 1 for each facts without
counting duplicated beliefs involving the symbols R;; and 7. in
accordance with the definition of P in Section 7.5.1, d is equal to the
size of ¢,i.e. .d =0 < n.

Furthermore, given a graph ®* composed by classes ®; having € as
one of their instances, we define the j-th category cardinality as

m

jd: Z kzxy/ (7-11)
zx,y:D;

which is equal to the amount of restrictions in ®; that are features
matching some beliefs of the categorised scene, ®;: €. Remarkably, /d is
equivalent to the number of beliefs o that were in the ontology during
the learning phase of the j-th category, which is obtained as the sum
of all the restrictions k.

We compute the similarity value among classified scenes as the
ration between the cardinalities defined in equations 7.10 and 7.11. In

7.5 THE SCENE IDENTIFICATION AND TAGGING ALGORITHM (SIT)

particular, we assign to each j-th node in the output graph a value /d,
identifying the similarity between the scene € and the j-th category as
. id
Jde = — €[0,1] CR, (7.12)
de
which is a real number spanning from 1, representing the highest
similarity (i.e. a perfect match between the j-th category and ¢), to
o, the lowest similarity value. This is true since d. > id, otherwise €
would not be an instance of the ®; category; therefore, ®; would not
be considered in Equation 7.11 since ®; [®*.

Remarkably, /d. = 1 iff. (i) the scene category is the one learned
in the same instant of time, or (ii) the j-th class categorises a scene
that is equivalent from the once processed during learning phase at
time ¢}, i.e. the current scene and the scene ¢/ are described with the
same beliefs. This implies, that at each instant of time the algorithm
always returns an output graph ®* containing some classification.
If the classified categories have not been obtained from previous
experience, the learning phase is used for generating a new category
with similarity value equal to 1 by definition of d]? (Figure 7.3b).
Otherwise, if a classified category has been learned from previous
experiences, ®* will contain some sub-spaces of X with equal or lower
similarity values, as shown in Figure 7.3c.

Also, it is important to note, that for the definition of £ in Equa-
tion 7.8, any learned sub-space of X does not overlap, or includes each
other, in accordance with Figure 7.3b. In particular, out representation
of the ordering function (<) do not support categories overlapping
since it is implemented in the ontology as an implication (C). Fur-
thermore, with the presented implementation it does not also support
learn categories that represent scene inclusion, i.e. it is not possible
to learn a category ®. included in another CD;*p learned at previous

time instance. This happens because <I>;7’7 would solve the query that
is implemented by the classifying function, and the learning phase
would not occur. Nonetheless, the output category CD;_p could have a
low similarity value, denoting that the category matches only a few
beliefs about the scene, but the robot would not create a more complex
category for such a scene.

For solving this issue, we extend the classification function con-
sidering the similarity values. In particular, we rewrite the query in
Equation 7.9 such to have solutions involving only classes implying
the root of the experience graph and having € as one of their instances
as

C(D,el): TP <= (D CP)A(Pr:e) A (?de > (), (7.13)

where we add the threshold ¢ such to consider as classified only the
categories ®@; having a minimum amount of features matching the

83

84

STRUCTURED LEARNING OF SCENE CATEGORIES

beliefs about €, i.e. £ is a real number in [0, 1] identifying the similarity
value of a negligible category.

In Equation 7.13, we do not classify categories of € having a low
similarity value. Therefore the learning phase might occur when cate-
gories exist in the experience graph but do not have enough features
that match the beliefs about € and are not considered in the output
graph. Remarkably, since the deep of the categories in the experience
graph is related to their complexity, when a category is not considered
since too simple, also all its parents will be disregarded. Therefore, to
provide a consistent output, we can always build an edge from the
most simpler classified categories to the root.

7.5.6 ALGORITHM PHASES

Algorithm 7.1 shows the steps performed by our algorithm during
the perceiving, learning, and classifying phases. The algorithm takes
as input some facts F at an instant of time and returns an output
graph ®* contained classified scene categories with similarity values
valid for such an instant of time. The algorithm assumes to access an
OWL ontology, which is stored as an internal field, and that contains
the memory of the robot, as well as prior knowledge respecting the
semantic interface.

Such knowledge is semantically expressed in the ontology through
symbols, some of which are required for the algorithm. We define ./
to be the function that returns a symbol related to an element in the
ontology, i.e. a IRI identifying its name. In particular, the algorithm
assumes to find in the ontology symbols described as (i) the set of
names of possible characteristic of a fact .4 (R), (ii) the set of names
of possible types involved in a fact .4 (T), and (iii) the name of the
root of the experience graph .4 (®) (e.g. Experience in Figure 7.4b).
Those values, given as prior knowledge in the ontology and constants
in the algorithm are enough to implement the semantic interface.

The algorithm starts with the perceiving phase, which uses the
semantic interface introduced in Section 7.4.2. Indeed, at Line 7.1.2,
the algorithm retrieves the characteristic R, and typed instances I'y: vy
and I'y:y, from each input fact f;, which is supposed to be repre-
sented consistently with the ontology, i.e. in accordance with the prior
knowledge. For each i€[1...n], where n is the number of input facts,
the algorithm computes a scene belief that defines a component of
the scene € in E. In particular, at Line 7.1.3, Equation 7.7 is computed
iteratively, and all the beliefs are added to the ontology at Line 7.1.4.

At Line 7.1.5, we count the number of beliefs that represents the
scene cardinality d, in accordance with Equation 7.10. The perceiving
phase ends, and the scene € € E is generated in the ontology. The
classification phase starts at Line 7.1.6, where the ontology is in charge
to reason on the beliefs of €.

7.5 THE SCENE IDENTIFICATION AND TAGGING ALGORITHM (SIT) 85

Algorithm 7.1: The SIT algorithm. At each discrete instant of time, given new facts, it
classifies, eventually learns, and returns a graph of scene categories based on previous

experience.
Const :./(R) the name of fact’s characteristics,
A (T) the name of fact’s types,
A (®) the name of the experience graph.

Field : the robot’s knowledge in the ontology onto.

Input : facts at the current time instant F C FF.

Output : a grph of similar categories ®* C X.

// PERCEIVING PHASE (P)
7aa foreach f; € F do //i€[l...n]
7.1.2 (Rz, Tx:vx, Tyiyy) < fi-semanticInterface()
713 | €li] +— Z (R, Ty) (e, ’yy) // belief set
7.1.4 onto.add(e) // Equation 7.7
715 de < €.size() // Equation 7.10
// CLASSIFYING PHASE (C,S)
71.6 onto.reason()
71y PF < onto.query (P, D A Ds:e) // Equation 7.9
718 foreach ®; € ®* do //jel...s]
719 | foreach (R, I'y) € ®; do // [1...m]
7.1.10 kzxy < ®j.getFeatureRestriction(R,y, ')
7111 Id < Jd + kzxy // Equation 7.11
7.1.12]de —]d/de // Equation 7.12
7.1.13 if jde = [then
7.1.14 t ®;.setSimilValue (d5) // Equation 7.13
7.1.15 else
7.1.16 L ®*.removeNode ()
711y if ®*.nodesCnt () > 1 then // s>1
7.1.18 onto.remove (€) // clear €
7119 | return d*
// LEARNING PHASE (L)

7.1.20 else
7.1.21 O, — D
122 foreach (R.,, 7,) € € do // [1...0]
7.1.23 | Klzx, 7 (7y)] < K[zx, 7 (7,)] +1 // generate restrictions set
7124 | foreach (R.y, 7,) € € do // [1...0]
7.1.25 L D, DM =Klzx, T ('yy)] R,y .7 (’)/y) // generate new category feature
7.1.26 onto.add (D) // Equation 7.8
7127 | goto 7.1.6 // it never reaches Line 7.1.21 again

86

STRUCTURED LEARNING OF SCENE CATEGORIES

In particular, at Line 7.1.7 we query the categories that are classi-
tying the scene, and we obtained a graph of classes, which are not
related to similarity values (Equation 7.9). For each category classi-
fied by the reasoner the algorithm computes the category cardinality
Jd (Equation 7.11, between lines 7.1.8 and 7.1.11), which is used at
line 7.1.12 for identifying the similarity value between the scene € and
the j-th category, i.e. /d. (Equation 7.12). If the similarity value is bigger
than the threshold ¢, we accept the classification, and we add to each
node of the output graph the similarity value at Line 7.1.14. Otherwise,
at Line 7.1.16, we discard the classification since the category is not
similar enough to the current scene.

At Line 7.1.17 the algorithm checks if there is some classified cate-
gories, i.e. any other note in ®* apart from the root ®. If this occurs,
the algorithm returns an output graph ®* after having removed all
the beliefs about the current scene. This is required for cleaning [E by
removing € from the ontology, which at the next instant of time will
depend only on the facts related to the instant of time t+1. Otherwise,
at Line 7.1.20, the learning phase of the algorithm occurs.

At Line 7.1.21 the learned category ®, is initialised to be equivalent
to the root of the experience graph. In the loop at Line 7.1.22, the
algorithm iterates over all the beliefs about the scene, and counts how
many features R;, relates € to an instance of the same type I',. After
this operation we build a set of restrictions indexed by (zx,y), which
is used at Line 7.1.25 for implementing the learning function £ in
accordance with Equation 7.8.

At Line 7.1.26, the algorithm adds the new category in X, and then
it goes to Line 7.1.6. Here the reasoner of the ontology is updated for
performing the structuring function S before to classify € in the cate-
gories of the experience graph as happened before. The classification
phase is performed again, and by definition of £, now ®* contains at
least the learned categories @, with a similarity value equal to 1; in
accordance with Section 7.5.5. Therefore, the condition at Line 7.1.17
is always true after the learning phase, and the algorithm terminates
by returning the output graph.

7.6 IMPLEMENTATION

To test Algorithm 7.1 in a tabletop scenario, we implemented a soft-
ware architecture based on the Robotic Operative System (ROS). In
this section, we present the design of a simple semantic interface that
involves objects (i.e. instances), geometric shapes (i.e. types), and spa-
tial relations (i.e. characteristics). In particular, we introduce a simple
implementation that we used for discussing the examples presented
in Section 7.7.

Between Line 7.1.7 and 7.1.16, the algorithm performs the classifying
function C in accordance with Equation 7.13.

7.6 IMPLEMENTATION 87

T\
/ \ spatialRelaion (R)
/ \

OBJECT EXPERIENCE

)] (P) alongX paral

ORIENTABLE SPHERE SCENE2 SCENE4 — alongY perp

/ “\\ T T alongZ coax

PLANE CONE CYLINDER SCENE1 -<«——— SCENE3 front above right
(a) (b) ©)

Figure 7.4: The classes and properties in the ontology where each arrow represents the inclusion
operator, i.e. if A T B then the arrow starts from A (the children) and ends in B (the
parent). Each fact is represented in the ontology with one characteristic of the hierarchy
shown in (c) that relates two instances of the types shown as leaves in (a). Namely, (a) and
(c) represent the semantic interface (R, T) in the spatial ontology used in the referencing
scenario. Figure 7.4b shows the experience graph having categories of scenes as nodes,
and edges indicating scenes inclusions. At the beginning we assume the experience graph
@ to do not have any children. At each learning phase, the algorithm generated a new
category @; C @, and 7.4b shows the state of the robot’s knowledge after that all the scenes
in Figure 7.5 has been experienced.

7.6.1 SOFTWARE ARCHITECTURE AND KNOWLEDGE REPRE-

SENTATION
Our architecture requires an ontology that we design with Protégé”> 7.2 https:
in order to define the prior knowledge required by the semantic in- ~ //protege.

terface adopted in the referencing tabletop scenario. In the ontology, stanford. edu/

shown in Figure 7.4, tree mains disjointed hierarchies are semantically
defined. On the one hand, to ground the semantic interface we used
the .#"(I')=0BJECT and ./ (R)=spatialRelation descriptions, which
are described in sections 7.6.3 and 7.6.4 respectively. On the other, the
hierarchy of classes having as root .4 (®)=EXPERIENCE is our repre-
sentation of the experience space X, which is generated at runtime
based on scene demonstrations through the learning and structuring
functions. Over time, the algorithm changes the TBox of the ontology,
which contains the experience graph classifying €, while the ABox
contains only individuals related to the current instant of time.

Our algorithm is implemented in a ROS architecture where compo-
nents can access ontology through the ROS Multi-Ontology References
service (ARMOR) presented in Chapter 6. Based on the OWLOOP API
(presented in Chapter 5), we extended the ARMOR services with an in-
jected procedure that implements Algorithm 7.1 with the purposes of
maintaining the experience graph in the ontology over demonstrations.
The injected service we implemented accepts requests that trigger the
algorithm assuming that the ontology contains facts that are retrieved
in accordance with the semantic interface.

https://protege.stanford.edu/
https://protege.stanford.edu/
https://protege.stanford.edu/

88 STRUCTURED LEARNING OF SCENE CATEGORIES

N A 4 i s e
? A 5 £ Vg y 7o SV)
T / / o / Te 79 Y12
3 f 5 773 1
(a) Scenel. (b) Scene?2. (c) Scene3.
."/16
715% ' 9
@ 1
’714’ 17
(d) Scene4. (e) Sceneb5. (f) Segmented point cloud of Scene5.

Figure 7.5: Examples of scenes experienced at five different instants of time (figure from 7.5a to 7.5e).
Figure 7.5f shows the perceived point cloud for the fifth scene, where each colour identifies
a cluster of points assigned to an object. The spatial relations are expressed with respect
to the robot’s orientation, which faces the table from the reader perspective in the figures
from 7.5a to 7.5e. In the last figure, we show the perspective of the user, which is aware of

AAD

the static reference frame £, shown in Figure 7.1.

Therefore, we assume that the architecture contains at least a per-
ception module that uses ARMOR to generate facts in the ontology.
We consider in the architecture also an auxiliary module that triggers
the algorithm and presents the output to the user. Though this type of
interface we made the algorithm depending on the perceiving mod-
ules at the semantic level. In this way, our implementation supports
different combinations of perception techniques, as well as semantic
interfaces, and usage of the output graph.

The paper discusses a referencing scenario where objects and spa-
tial relations, as well as the human-robot interaction, are simplified
because our objective is to focus on the structured learning of scene
categories. We formalised the algorithm for general facts semantics,
but the semantic interface adopted for a particular application affect
the features of the categories that can be represented in the ontology.
Although the problem of finding sets of characteristics and types to
be interfaced with the algorithm for an expressive representation of
scenes is out of the scope of this paper, in sections 7.7 and 7.8 we
preliminary discuss some observation in our simplified scenario.

Nevertheless, more sophisticated perception and interacting tech-
niques are indeed required for an architecture that uses our algorithm
in a real scenario. The design of such techniques is strongly related
to the application, that poses requirements of the considered scenes.
For instance, Chapter 9 presents a ROS architecture that uses the
algorithm for making a robot interacting and explaining scenes to a
human supervisor. In such an application we detailed the components
used in the architecture that used the semantic interface for processing
points clouds and engaging dialogues in a simplified English.

7.6 IMPLEMENTATION

7.6.2 EXPERIMENTAL SETUP

Figure 7.1 shows our scenario, where a robot and a user face each
other form the opposite side of a table. The robot is an observer that
uses a Kinect for processing RGB-D point clout about the table and
the objects in it, as shown in Figure 7.5f. On the other hand, the user
arranges objects on the table and triggers the algorithm to process
new facts for the current instant of time. The objects did not move
during the computations of the algorithm, which returned a graph
of categories of the scenes at each triggered time. For each node of
the output graph, the features matched in the scene and a similarity
value were shown to the user, which evaluated if such representation
was consistent. Each interval of time needed to provide new facts to
the algorithm and obtain an output was considered to be a discrete
instant of time.

In order to make the user interacting with the environment without
affecting the representation, we gave to him or her the control of
the occurrence of discrete instants of time. After the computation
performed by the algorithm, he or she was supposed to evaluate the
output. Then, after having changed the arrangement of objects on
the table, he or she was in charge to trigger the architecture again
for evaluating a new scene. We gave to the user the objects shown in
Figure 7.5, and we showed to him or her the orientation of a global
reference frame (£7)Z), which was the perspective from where scenes
where evaluated; as shown in Figure 7.1.

Our algorithm requires facts symbolically represented in the ontol-
ogy that represent discontinuous quantities, i.e. a symbol does not
smoothly change from one semantic to another, but its states are
discrete. Therefore, small changes of the facts, e.g. due to noise affect-
ing perception modules, might be enough for making the algorithm
considering drastically different beliefs, which generate inconsistent
categorisation of the scene. In other words, with symbols, the algo-
rithm could exploit the semantic of facts, but symbols are not robust
to noise. In sections 7.7 and 7.8 we further address this issues that,
for our simplified scenario, is solved by given to the user the task to
review the perceived information before to trigger the algorithm.

In particular, we mentioned that the user triggered the algorithm,
e.g. by pressing a button for acquiring a point cloud. After that, the
perceiving modules processed the point cloud for segmenting objects,
which are shown to the user. The latter was supposed to judge the
cluster position and their parameters from a qualitative inspection of
the cloud, as presented in Figure 7.5f. If the user found that the data is
not consistent with the environment, he or was supposed to press the
button for acquiring a new point cloud to be processed. Otherwise,
the user was supposed to press another, which triggered the algorithm
given facts about the environment that were assumed to be correct.

89

90

STRUCTURED LEARNING OF SCENE CATEGORIES

7.6.3 OBJECT PERCEPTION

We deployed in the architecture a perception module that processed
a point cloud based on Random Sample Consensus (RANSAC) for
identifying the geometrical shape of objects in a table. With the ROS
components described in Chapter 2, we perceived objects with a po-
sition and a shape, that is used for grounding facts in the robot’s
representation for the current instant of time. In our scenario, we seg-
mented objects on top of the table, whose are labelled as ether sphere,
or plane, or cone or cylinder, based on the parameters that RANSAC
better fitted in such a clusters of the point cloud.

The OWL reasoner inferred the shape of the objects based on a
description of their parameters, which were formalised through a
class R3 aimed in representing 3D points in space (e.g. positions and
directions) as a vector of three real numbers expressed with respect to
the reference frame £7Z. In accordance with the hierarchy shown in
Figure 7.4a, we defined an instance to be an object if it had a centre of
mass, which approximates its position,

OBJECT = T M =1hasCentre.R>. (7.14)

A sphere cannot be oriented in space, while the planes, cones, and
cylinders has an axis, thus we expressed

SPHERE = OBJECT M =1 hasRadius.R, (7.15)
ORIENTABLE = OBJECT M =1hasAxis.RR>. (7.16)

A plane is an orientable object defined with a Hessian and four ver-
texes of three coordinate each, i.e. 12 ordered real numbers R3*%. On

7.6 IMPLEMENTATION

the other hand, a cone or a cylinder has a radius, a height, and an
apex or an auxiliary point in the axis

PLANE = ORIENTABLE (7.17)
M=1hasHessian.R
M=1hasVertices.R3*4,

CONE = ORIENTABLE (7.18)
M=1hasRadius.R
M= lhasHeight.RR
M =1hasApex.R?,
CYLINDER = ORIENTABLE (7.19)
M=1hasRadius.R
M=1hasHeight.R
M =1hasPoint.RR>.

In the ontology, the reasoner analysed the definition of the above
classes and inferred a hierarchy where the leaves are the SPHERE,
PLANE, CONE and CYLINDER classes. In accordance with the semantic
interface, we considered those classes to be disjointed. This assures a
non-ambiguous shape of any perceived objects g;.

7.6.4 SPATIAL RELATIONS

In our simplified scenario, we provided the ontology with SWRL rules
based on simple geometric computations to infer spatial relationships
among pairs of instances (7, 7,). Based on equations 7.14 and 7.16,
we designed crisp spatial relations based on the relative centre of
mass of each objects pairs. We decided to keep the following spatial
representation simple since our focus is on how to learn new scene
categories from human demonstrations, not on scene modelling. Nev-
ertheless, the algorithm supports more sophisticated representations
if they can be encoded in the semantic interface.

91

92 STRUCTURED LEARNING OF SCENE CATEGORIES

Ri: Parallel To. 7 and <y, are parallel, and we write paral(y1, v2) iff.
(i) it holds that ORTENTABLE: 7y, 77y, hasAxis(7x, Ay) and hasAxis(’yy, Ay);
(ii) the vector product between the two normal vectors A, and A is smaller
than a threshold /; € R3.

Ry: Perpendicular To. <, and 7, are perpendicular, and we write perp(7y«, vy), iff.
(i) it holds that ORIENTABLE: v, 7y, hasAxis(7x, A1) and hasAxis(yy, A2);
(i7) the dot product between the two normal vectors A; and A, is smaller

than a threshold [, € R.

R3: Coaxial with. 7, and 7, are coaxial, i.e. coax(7yx, vy) iff.

(i) it is consistent that ORIENTABLE: yy, 7y, paral(7y, vy), hasAxis(yy, A1),
hasCentre(7y, G1) and hasCentre(7yy, G2);

(ii) the distance d between the axes is smaller than a threshold I3 € R, i.e.
d?> = (G + A1a — Gy)? < l%, where a can be computed to obtain the
minimum distance between the two shapes. It is reasonable to define also a
possible coaxial relationship between a Sphere and any ORIENTABLE object
when the centre of mass of the first is close to the axis of the second. In
this case, coax(<yx, 7y) still holds when the paral(7y,, v,) condition is
removed and OBJECT: v, holds.

Ry: Along x. 7y and 1, are aligned along %, i.e. alongX(yx, 7y) iff.
(i) it holds that OBJECT: <y, 7y, hasCentre(7y, G1) and hasCentre(7y,, G2);
(i7) the distances between the two centres of mass G and G along the 7 and 2
directions are smaller than thresholds /45 and I4; € R, i.e. \GW — Gy <
lay N |Giz — Gaz| < lgz. Similar relationships are defined for alongY and
alongZ (i.e. R5 and Rg, respectively).

Ry7: Right of. <, is at the right-hand side of ,, and we write right (v, vx) iff.
(i) it holds that OBJECT: 7y, 7y, hasCentre(7,, G1) and hasCentre('yy, G2);
(i7) the distance between the two centres of mass G1 and G» along the # axis
is greater than a threshold I7 € R, i.e. G — Gy = I7.

Rg: Above. 1y, is above 7, i.e. above(vx, vy) iff.
(i) it holds that OBJECT: <y, 7y, hasCentre(7y, G1) and hasCentre(v,, G2);
(i7) the distance between the two centres of mass G; and G, along the Z axis
is greater than a threshold Ig € R, i.e. G1,2 — Ga,2 > Is.

Ro: Front. 7 isin front of 7, i.e. front (v, vy) iff.
(i) it holds that OBJECT: -y, vy, hasCentre (7., G1) and hasCentre(7y,, G2);
(i7) the distance between the two centres of mass G, and G; along the % axis
is greater than a threshold Iy € R, i.e. G2z — G132 = lo.

7.6 IMPLEMENTATION

7.6.5 SEMANTIC INTERFACE AND INPUT FACTS

In our implementation, we considered each fact composed by a spatial
relation and two objects having a shape. Therefore, we reasoned on
scenes that are represented through a semantic interface involving (7)
characteristics .4 (R) C {paral, perp, coax, alongX, alongY, alongZ,
right, above, front}, ie. R;€[1...v=9], and (ii) types A (') C
{SPHERE, PLANE, CONE, CYLINDER}, i.e. T, T, €[1... w=4]. We assumed
the ontology to contain prior knowledge about spatial relations and
shape as presented in sections 7.6.3 and 7.6.4 respectively. We also
consistently assumed that Algorithm 7.1 is provided with the related
symbols, which are constant names used for retrieving information
about facts.

Remarkably, the set of characteristics used in the semantic interface
for this scenario did not contains inverse relations (e.g. left for right).
With this approach, we reduce the number of facts n than a case
where also inverse relations are considered while maintaining the
same information about the o beliefs in [E, as shown in Section 7.7.
However, SWRL rules are computed by the reasoner for all the possible
pairs of different objects (xy). Therefore the rules Section 7.6.4 are such
too infer symmetric relation when the instances are inverted, i.e. for
paral, perp, coax, alongX, alongY and alongZ. Also, it is possible to
compute the other inverse relations trivially if their semantic is given
as prior knowledge in the ontology that is not included in the semantic
interface, e.g. right ! (7x,7v,) = left(7yy, 7x). Those might be used
for simplifying the interaction with the user by reflecting the scene
representation in his or her perspective, i.e. through the inverse of all
the relations since the user and the robot face each other.

On the other hand, the set of possible types in the semantic interface
had to assure a non-ambiguous classification. Therefore the algorithm
was provided with a set of names .#'(T') that did not include abstract
concepts as OBJECT and ORIENTABLE. More generally, we considered
as possible types T only the leaves of the hierarchy I', which are
considered to be disjointed.

In our scenario, the architecture was able to identify geometric
parameters of objects in accordance with the definition in equa-
tions 7.15, 7.17, 7.18 and 7.19. The user reviewed this data and, if
it was qualitatively consistent, the user interacted with the architecture
for triggering the algorithm. When this occurs, we introduce in the
ontology an individual 7y; for each object segmented from the points
cloud.

Then, a preliminary reasoner task was used for two purposes. On the
one hand, each instance was classified in a non-ambiguous type T’;.
On the other, the spatial relations introduced in Section 7.6.4 as SWRL
rules have been evaluated based on the hasCentre property that each
OBJECT is forced to had, as well on the hasAxis knowledge, which was

93

94

STRUCTURED LEARNING OF SCENE CATEGORIES

proper of ORIENTABLE instances. Through the preliminary reasoning
task, we assured facts in the ontology to be represented in accordance
with the semantic interface. Therefore, in our implementation instead
of giving input facts to the algorithm, it was enough that the algorithm
retrieved the facts F directly from the ontology through the symbols
of the semantic interface given as constants.

Nevertheless, SWRL limits the logic and algebraic operations that is
possible to perform for asserting facts from perceived data. We want
to design an algorithm that does not depends only on such a symbolic
language for generating facts. In other words, Algorithm 7.1 do not
address the problem of computing facts, which are supposed to be
given in a specific format, i.e. the semantic interface.

Remarkably, the architecture for our scenario was in charge to per-
form also another operation in the ontology, which is not specified in
Algorithm 7.1, since facts where consider as inputs and not as knowl-
edge already in the ontology. This operation consists in the delete in
the ontology each instance y;, and consequently each characteristic
R;, when a discrete instant of time ends, i.e. when an output graph
has been computed.

7.6.6 REPRESENTATION COMPLEXITY

Let u be the number of objects segmented from the table at the current
instant of time, i.e. individuals in the ontology 7;, i€[1...u]. In the
worst case scenario, each instance characterise the scene with all the
relations involving all the other different instances, i.e. the possible
number of facts could be

n < (% + vs) (u? —u), (7.20)
where v, is the number of asymmetric characteristics, which is equal
to 3, while v; is the number of symmetric characteristics, which are 6,
i.e. v = v, + vs. In the case of symmetric characteristics, the algorithm
needs to represents both the facts R;(yx,7y) and R; (7, 7x) since we
cannot identify an non-ambiguous type of the instance involved in
the range or in the domain, i.e. the .7 operator is ill-posed, and the
perceiving and learning functions at different instant of time could
be not consistent. Remarkably, this is not the case for asymmetric
characteristics, for which we do not consider the inverse combinations.

Equation 7.20 express the maximum numbers of facts that can be
obtained from a general semantic interface. However, not all the facts
can be consistent at the same time, i.e. two objects cannot be parallel
and perpendicular currently. Also, not all the objects pairs are involved
in all the characteristics, e.g. a sphere cannot be perpendicular to any
other shape. Therefore, for a semantic interface required for our spatial

7.7 EXAMPLES AND EXPERIMENTAL ASSESSMENT

scenario the number of facts n that we perceived at a particular instant
of time is typically smaller.

We introduced in Section 7.5.1 that the environmental space E
contains o beliefs spanning in the combinations of reified features
RxT, which are applied to each y-th instance occurring in the range
of the characteristic of a fact. Therefore, in the worst case the reified
relations can describe € with respect to each object. However, similarly
to above this is not consistent for some semantic interface, and there
could be redundant facts. Thus, in general terms, it is only possible to
express that o<n.

Through the mean of the learning function £, we represented cat-
egories of € in a space X that does not depends on the number of
objects perceived at the current instant of time u, but only on the size
of the semantic interface, i.e. a span of RxTxT. Indeed, Equation 7.8
might generate at most m<v-w-w category features (144 in our sce-
nario), each of which is defined with a cardinally restriction k,,>0.
Where m<o if 0<144, since we adopted the open-word assumption.

This implies that the definition of possible characteristics R and
types T in the semantic interface fixes the spaces involved in the
algorithm. In particular, the algorithm uses its functions for mapping
grounded to abstract knowledge by the mean of the semantic interface.
In particular, IF contains facts strongly grounded on instances pairs
(72, 7y), while in E we represent beliefs, which takes into account
one instance and one type, i.e. I'y in the reified characteristic, and Yy-
Finally, X is a space that does not rely on instances anymore but only
on their types I'y and T'.

Furthermore, X contains s categories, where s is the number of
times that the learning phase occurred plus one, i.e. the root. Namely
s=1, and if s=1 we consider the scene not being recognised.

7.7 EXAMPLES AND EXPERIMENTAL ASSESSMENT

This section discusses some examples of scene based on the tabletop
scenario presented in Section 7.6. In particular, it shows the computa-
tion performed with the Algorithm 7.1 at some instants of time, which
are triggered by the user for presenting to the robot one of the scenes
shown in Figure 7.5. The section details the phases of the algorithm to
discuss its operations and outputs starting from an empty experience
graph. This implies that at ¢y the experience graph in the ontology is
represented only by the root .4 (®) = EXPERIENCE, i.e. in Figure 7.4b
the classes identifying scenes are not in the robot’s knowledge yet.
At time t; the user arranged the scene in Figure 7.5a, which was
the first experience of the robot that was represented through the
input facts F! shown in the first cell of the Table 7.1. In particular,
this first scene was composed by a CYLINDER, a CONE and a PLANE,
i.e. u=3 objects, which characterise the facts through spatial relations

95

96 STRUCTURED LEARNING OF SCENE CATEGORIES

time facts (F) beliefs (¢) structured category (X;)
SCENE1 = 4/ (P1) = P
paralCYLINDER « >1CONE

aralCYLINDER (e, 72
CYLINDER: 71, P (er72),

paralCONE(e, 1),
CONE: 75, n aralCONE « >1CYLINDER
72 perpPLANE (¢, {71,72}), P
PLANE: 73, cone() m perpPLANE .« {>1CYLINDER, >1CONE}
€,
paral: (71,72), (72,1), o }C’EII)NDER (6 73) n perpCONE « >1PLANE
b perp: ({71, 72}, 13), a1§n iCYLINDER (e 73) M perpCYLINDER - >1PLANE
(v, {71,72}), € M alongXCYLINDER. >1PLANE,
alongXCONE(e, 1), €
alongX: (71,73), (73, M), rontCONE M, M alongXPLANE . >1CYLINDER,
e {m,
front: (12, {m,73}), . htZ:;ZINDER e {71 73}) M £rontCONE . {>1CYLINDER, >1PLANE}
right: (11, {72,73}), (72,73)- e p— 7)2’73 M rightCYLINDER « {>1CONE, >1PLANE}
& n rightCONE « >1PLANE.
SCENE2 = A (P;) = &I
CYLINDER: 74, perpCYLINDER (€, 7s),
perpCYLINDER « >1CONE
PLANE: 75, perpPLANE(c, 74), n perpCONE « >1CYLINDER
t (v475), (95, 74), 1ongXCYLINDER , g
? perp: (713,75), (75,74) atong (e 75) M alongXCYLINDER. >1CONE
alongk (73,75), (15,74), alongKPLANE(e, 74), n alongXCONE « >1 CYLINDER
right: (71,75). rightCYLINDER (e, 75). M rightCYLINDER ;1PLANE
rig . > .
PLANE: 711,
CONE: 71, SCENE3 = .4 (P3) = &N

paralCYLINDER (e, {7s, 7o,
’Ylo,%z})'
paralCONE(e, {76, 19, 712}),
perpPLANE (€, {76, Yo,
70, 712}),
(e,1m1),
perpCYLINDER(€, 711),
alongXCYLINDER(€, {79, 711, 712}),
alongXPLANE (€, {7¢,79,712}),
(
(
(e

CYLINDER: 7, Y9, Y12,
SPHERE: 77, 8, 713,
paral: (s, {79,710 712}),
Y9, {6,110, 712}),
Y10, {76/79/'712})
Y12, { Y6, 79, 110}),
11, {%,79,710,712})
{76, 79,110, 712}, ’Yu)
Y6, {79,711,712})
Y9, {%,711,712})
711, { Y6, 79, 112}),

paralCYLINDER . { >3 CYLINDER, >1 CONE }
paralCONE . >3CYLINDER
perpPLANE . { >3 CYLINDER, >1CONE}
perpCONE « >1PLANE
perpCYLINDER « >1PLANE
alongXCYLINDER. { >2 CYLINDER, >1PLANE}
alongXPLANE « >3 CYLINDER
alongYCYLINDER. >>1SPHERE
alongYSPHERE « >1CYLINDER
frontSPHERE . { >3 CYLINDER, >2 SPHERE,
>1CONE, >1PLANE}

perpCONE (€

perp:

alongX:
alongYCYLINDER (e, 713),

033333333

alongYSPHERE(€, 712),

(712, {76 79, 111}), frontSPHERE(€, {76,77,78,79, | £rontCONE » { >3 CYLINDER,

alongY: (712,713), (113, 712), 710,111, 712}, >2 SPHERE, >1PLANE}

& front: (’713, {6, Y7, 78,79, Y10 ’711/?12}) frontCONE(E’ (16,77, 78, M frontCYLINDER . {21 SPHERE}
(710, {7677, 78,79, 111, 112}), 19917207 |5t ontPLANE - {>1SPHERE)
frontCYLINDER (e, 77),
(vs, {6,779, 111, 712}), M aboveSPHERE « {>1CYLINDER,
(%6, 77), (29, 77), (Y11, 7). (712,77), frontPLANE(c, 77), >1CONE, >1PLANE}
aboveSPHERE (€, {79, Y10, 111}),

above: (v7, {79,110, 7111}), M aboveCYLINDER . {>>1CYLINDER,
(Y6, {79,710, 111}), aboveCYLINDER (e, {75, 10, 711}), >1CONE, >1PLANE}
(vs, {79,110, 111}), rightCYLINDER (&, {77, 75, M rightCYLINDER . {>2 CYLINDER, >3 SPHERE,
(12, {79, 110, 111}), 79’710’;’)“’ >1CONE, >1PLANE }
(113, {79,710, 111}), M2 M31), M rightSPHERE . {>>2 CYLINDER, >2 SPHERE,

. rightSPHERE (¢, {7s, 79,

right: (v, { 77,78 79, 110, 711, 112, 713}), N >1CONE, >1PLANE }

(v7, {8,719, 110, 111, 1120 113}, i n rightCONE « {>1CYLINDER,
Y12, 713}),
, L Y10, Y11, Y120 >1SPHERE, >1PLANE
Ezz }1?07;01 7;127;23?)13}) TightCONE(e, {7y 12 msd),| 0 {;1 CYLINDRE. ;
! o 112, TS 1)y rightPLANE (€, {712, 713})- & ~ ¢
(710, {711,712, M13}), >1SPHERE}.
(711,{712/713})-
SPHERE: 714, 715, V16, SCENE4 = 4 (®y) = @ N
front: ({%4 o }7)16 £rontSPHERE(€, {714, 715}), frontSPHERE « >2 éP:lE)ZRE
ront: , , , ron . >
ts Y6 1714715 aboveSPHERE (€, 714),

m aboveSPHERE . >1SPHERE
M rightSPHERE . >2 SPHERE.

above: (’hs/ ’716),

rightSPHERE (€, , .
right: (114, {7115, 716})- £ (e 715, 716})

Table 7.1: The facts, beliefs and learned categories involved in the algorithm when each scene in Figure 7.5 is
experienced over consequent instants of time. Beliefs are computed with the perceiving function
‘P (Equation 7.7), while categories are defined through the learning function £ (Equation 7.8).

7.7 EXAMPLES AND EXPERIMENTAL ASSESSMENT

always applied among objects pairs (yx, ;). In Table 7.1 we simplify
the DL notation using squared brackets for grouping combination of
objects pairs. For instance, the fist cell expresses that front(ys, 1)
and front(7y,y3) was feasible facts for the scene at time t;. Therefore,
we obtained n=13 input facts, whose describe -y, as a characteristic of
Yx, e.g. the last fact of the first cell in Table 7.1 represents that “~y, has
73 on the right-hand side”.

The perceiving phase of Algorithm 7.1 started when the ontology
contained facts that respected the semantic interface (Equation 7.6).
This occurs at time t;, after that (i) the geometric parameters of ob-
jects have been perceived by the robot and checked by the user, (ii)
the related instances were introduced in the ontology, and (iii) the
preliminary reasoning task (presented in Section 7.6.5) was performed
to generate spatial relationships.

In this phase, we used the perceiving function P to create beliefs
demonstrated at time 1, which are shown in the second cell of the first
row of the table, which contains e!. Similarly as before, in the table
we simplify the formalism, e.g. the two beliefs frontCONE(e, 1) and
frontCONE(€, 73) are expressed in a single line, which is a fragment of
the representation of the current scene that can be read as “in € a CONE
has 71 and <3 in front of it”. For the scene in Figure 7.5a, we appled
Equation 7.7 to generate 0=13 beliefs from all the perceived facts by
the mean of the perceiving function P. For this scene, the number
of facts and beliefs was equal, i.e. n=b, which represents that the
inputs do not contain any redundant facts. Remarkably, the number of
facts generated with the semantic interfaces introduced in Section 7.6
was considerably lower than the worst case, where n would be 45
(Equation 7.20).

Algorithm 7.1 continued with the classification phase at time t;,
which did not generate any outputs since the experience graph con-
tained only the root, i.e. s=1. Therefore, the learning phase occured,
and £ (Equation 7.8) was used to generate a new scene category
®. € X. Then, the OWL reasoner performed the structuring function
S, which arranged the learned category ®. as a new node of the
experience graph, i.e. ® J SCENE1=.4"(P;), which is defined in the
first row and third column of Table 7.1. For instance, in that cell of the
table, the category is defined also with the >1rightCYLINDER.CONE,
>1rightCYLINDER.PLANE restrictions, which represents two features
that can be read as “a scene is of the ®; category if [...], and at least 1
CYLINDER has a CONE on the right-hand side, and at least 1 CYLINDER
has a PLANE on the right-hand side, and [...]".

After the learning phase, the algorithm performed the classification
phase again for instant t;. The experience graph contained only the
root and the ®; category (i.e. s=2,), which was retrieved through
the query in Equation 7.9 since all the features of the category were
matched in the beliefs about the scene. Therefore we obtained an

97

98

STRUCTURED LEARNING OF SCENE CATEGORIES

output graph containing the root and the learned category, which
had a cardinality 1=13, i.e. the sum of the restrictions kzxy for all the
features of ®; in accordance with Equation 7.11. We observed that
the similarity value was equal to 'd.=13/0=1 (Equation 7.12), since
all the beliefs of € matched all the features of ®; because the latter
had been generated from the former through L. Then, the algorithm
returned the output graph for the instant t;, which was assessed by
the user.

At time t;, the user interacted with the buttons for acquiring consis-
tent facts for the scene in Figure 7.5b. Table 7.1 shown the n=5 input
facts of F2, which involved a CYLINDER and a PLANE. Those facts were
used to compute the 0=5 beliefs of e? through the perceiving function
P. Then, the classification phase of the algorithm started, and the rea-
soner of the ontology was queried in accordance with Equation 7.13.
The response of the query did not contain any categories apart from
the root of the experience graph, i.e. ®* = ®, and s=1. This occurs
because all the features of the only category in the experience graph
(®1) were not matched with the beliefs about the scene € at time ¢5.
Since s=1, we considered the scene not classified, and the learning
phase occurred again.

During the learning phase at time f,, the category SCENE2=.4"(D;)
was generated and structured in the ontology through £ and S. In
accordance with the cell in the last column and second row of Ta-
ble 7.1, @, is defined with m=>5 features, each having one cardinality
restriction. Based on those, the OWL reasoner structured the new
category to be a parent of @, since all the features of the new category
were also respected from the one learned at ¢, i.e. &1 C & C ®

The classification phase was performed again at time ¢,, and we
query the reasoner (Equation 7.9). The query is solved with a hierarchy
containing the root ®, and the category learned at the current instant
of time ®,; thus s=2. Similarly to the previous instant of time, we
observe that ®, is recognised with a similarity value 2d.=1, ie. it
perfectly categorised the scene. This is always the case when the
algorithm terminates after the learning phase since we match the
feature generated form L against the same beliefs that have been used
from the learning function, i.e. introduced in the ontology from P at
the same instant of time.

At the time instance t3, the robot processed the scene in Fig-
ure 7.5¢, and the algorithm generated the knowledge in the third
row of Table 7.1. This scene involves u=8 objects that characterise
the scene through n=98 facts contained in F°. For the current in-
stant of time, the perceiving function P is used to compute 0=60
beliefs in B%; therefore, P generates 38 redundant beliefs based on
the semantic interface we adopted. For instance, redundant knowl-
edge were generated when the combinations paral (76, {79, 710, 712})
and paral (’)’9, {710, 712}) are considered based on CYLINDER: v, 9.

7.7 EXAMPLES AND EXPERIMENTAL ASSESSMENT

From those facts, P computes the paralCYLINDER (€, {79, Y10, Y12})
and paralCYLINDER (e, {6, 710, 712}) beliefs respectively. In this case,
the combinations (€, y19) and (€, 1) associated to the reified char-
acteristics paralCYLINDER are duplicated and considered only once,
since duplicate them in the ontology would not further affect OWL
reasoning.

During the classification phase at time ¢3, the query to the reasoner
(Equation 7.9) was solved with the hierarchy containing the root as
well as the ®; and P, categories. Nevertheless, those categories were
too simplistic models of the scene, and we expected the similarity
value to be low. Indeed, 'd.=13/0=.21 and %d.=5/0=.08, which was
lower than the threshold ¢/=.4. in accordance with C (Equation 7.13),
the two classes were not included in the output graph ®*. Therefore,
the scene was considered not recognised at time f3, and the learning
phase occurred. Table 7.1 shows the results of the learning function
that generated a new category SCENE3=.4"(®3), which was structured
through S in a new experience graph where ® 7 ®, 3 &; 1 ®3. Then,
the classification phase occurred again, and the algorithm proposed to
the user an output graph containing only ®3, which was classified with
a similarity value %=1, i.e. the sum of the cardinality restrictions of
each m=40 features was %1=60. As above, the other two categories @,
and ®; were not nodes of the output graph since their similarity values
were lower than the threshold, and the related edges are removed
accordantly from the experience graph. Therefore the output graph
contains only two nodes, i.e. ® J ®3.

The scene in Figure 7.5d was evaluated at time t4. Similarly to the
previous instants, Table 7.1 shows by column the n=5 facts in F*, the
0=5 beliefs ¢*, and the category SCENE4=_4"(®*) with cardinally 4/=5.
As occurred at time t,, the reasoner could not classify € in any cate-
gories of the experience graph. Therefore, the learning phase occurred
and the algorithm returned only one category, which perfectly de-
scribed the scene, i.e. “d.=1. At the current instant of time, we observe
that during the structuring function the reasoner inferred that the
scene had some similarities to the scene experienced at time #3. Indeed,
as occurred at time t, the new category ®4 was a parent of @3 since
all the restrictions of the latter were also respected from the former.
This happened because in both scenes (figures 7.5¢ and 7.5d) there
were three spheres placed on the table from left to right, and from
front to behind.

At time t5 the user arranged the scene in Figure 7.5e. Since we
adopted a semantic interface concerning crisp spatial relations, the
algorithm could not reason on how far on the right-hand side an
object is with respect to another instance. Thus, it was not possible
to discriminate the differences with respect to the scene experienced
at the previous instant of time (Figures 7.5d). Indeed, the scenes at
time t4 and t5 were represented with the same input facts, which

99

100

STRUCTURED LEARNING OF SCENE CATEGORIES

consequently generate equivalent beliefs and classification with the
highest similarity value, in accordance with Table 7.1. Therefore, the
output graph at time t5 contained the @4 category, classified with a
similarity value 44.=1 without performing the learning phase.

At time t¢ the algorithm was triggered with an experience graph
X!~1 as shown in Figure 7.4-(b). In accordance with Section 7.5.3, we
observe that a deeper node in the experience graph is related to the
category of a more complex scene, i.e. the number of restrictions /d
increases. Also, we observed that categories were structured indepen-
dently from the learning time and that a category could be represented
as containing the union of others, e.g. ®3 C ®4 and &3 C P;.

The scene arrange by the user at the time ts was Figure 7.5a again.
After the perceiving phase, the ontology contained the same beliefs
represented at time #;, but now the classification function C returns
an output graph ®* without triggering the learning phase since the
robot did already experience such scene. The output contained &4,
which was classified with the highest similarity value since the beliefs
F! and F® were equivalent. Nevertheless, the output graph did not
contain ®,, even if it is a category that consistently solves the query
made during the classification phase because .=.38 < ¢, since only
5 features over 13 beliefs matched.

In contrary, if a time t; a scene equivalent to Figure 7.5¢c without
the cone 719, was evaluated. Then, a new category ®; 3 ®3 will be
generated in the ontology with 0=40 beliefs from the learning phase.
If at a time fg a scene equivalent to Figure 7.5c is presented again,
the algorithm will return an output graph containing ®; with the
highest similarity value by definition, and ®; with a similarity value
d7=40/60=.66 > /.

7.8 DISCUSSIONS

In the previous section, we show the computation that the algorithm
performed for learning a structure scene categories, each with a single
demonstration. In particular, Table 7.1 shows the models of scene
categories that the robot built at runtime, which were evaluated by an
OWL reasoner. Through our examples, we observed that the structure
that it was possible to learn is limited to inclusions among scenes
(C). In particular, the presented algorithm cannot represent scene
overlapping, since all the features of a category must also be satisfied
by another category for being related in the experience graph. In other
words, represent a relation among two categories that share only a
part of their features in the ontology is still an open issue for our
algorithm. Nevertheless, if the scene that contains only the features
in common with those two categories is shown to the robot, it would
create a node in the experience graph that relates such two categories,

7.8 Di1sCcUssSIONS

e.g. as occurred for @3 in our examples, which could be seen as the
overlapping of the ®; and P4 categories.

In the proposed implementation, the algorithm generates a not
leaner number of facts with respect to the number of objects. Indeed,
the number of facts n depends on the number of objects u quadratically,
as shown in Section 7.6.6. Since we classified categories based on a
threshold of the similarity value based on 7, a pair of scenes differing
from one single object will be more similar between each other if they
contain many other objects than the case in which few objects are on
the table.

For this reason, in Section 7.7 the scenes in figures 7.5a and 7.5b
(that differ only for the cone) were considered to be substantially
different at time t;. For the same reason, at time tg we observed that
Figure 7.5a would be similar to the same scene but without the cone.
This is consistent in our scenario since we wanted a semantic interface
that allows the robot to reason only on spatial relationships among
objects. For different scenarios and consequently different semantic
interfaces, it is possible to linearise the computation of the similarity
values in specific ranges of 1. On the other hand, it is also possible to
change the thresholding operation with more sophisticated functions
that, for instance, depends on the number of objects on the table at
learning time.

Remarkably, the definition of the semantic interface for a real sce-
nario could be not trivial since it should assure the correct behaviour
of the algorithm. For instance, having characteristics that are exclusive
(e.g. paral and perp) reduce the overall number of facts required for
representing a scene and the ambiguities as well as the computation
complexity. Also, having characteristics that are asymmetric reduces
the number of facts, and consequently the complexity. Furthermore,
semantic interfaces that rely on types that uniquely define an object
(e.g. the CONE or the PLANE in Figure 7.5) prevents redundant beliefs
and improves the output of the algorithm. This occurs because the
algorithm does not track the relationships between objects in the same
scene. Indeed, while facts pairs instances 7;, categories are based on
their type I';, and if more instances are of the same type, we lose the
direct representation of their relationships. In other words, a learned
category might express that a generic cylinder should have on the
right-hand side a generic sphere. Not that a particular cylinder should
have a particular sphere on the right-hand side. Therefore, the category
cannot take into account further characteristics that such particular
objects had at learning time.

We based our algorithm on a purely symbolic representation since
we wanted to parameterise it for a reach set of scene types, which are
represented through symbolic facts spanning in a space fixed by the
semantic interface. Such a representation of facts is automatically eval-
uated by an OWL reasoner, which also supports logic representation

101

102

STRUCTURED LEARNING OF SCENE CATEGORIES

for considering more complex definitions of the types and characteris-
tics used for representing each fact. For instance, it could be possible
to encode also the colour or dimensions in the definition of the types
in I, e.g. YELLOWSPHERE or BIGSPHERE. On the other hand, it is possible
to rely on perception modules that can assign an exhaustive tag to
objects, e.g. TENNISBALL.

On the one hand, symbols in the ontology help for the interface
with many components in a robotic architecture and are communi-
cable to a human. On the other, they make the algorithm not robust
to perturbation, e.g. perception noise. This because in the ontology
symbols do not smoothly change from a state to another; therefore
even if only one fact is not consistent with the environment, the scene
that the algorithm evaluates will be drastically different from the one
in the environment. For instance, if the object 7y1¢ in Figure 7.5c is miss-
perceived as a cylinder, then the algorithm would learn a category
that is unrelated from all the others in the experience graph, i.e. in
Figure 7.4 there would be a new category structured as a direct child
of the root. On the contrary, if 719 is correctly perceived, the algorithm
would classify the scene as ®3, which contains ®; and &;.

For solving the issue due to perception noise, we made the user a
supervisor that filters perceived facts that are not consistent with the
environment. However, this could not be feasible for some applications,
but with the current crisp implementation of the algorithm, handle
uncertainties is an open issue. Furthermore, we presented an algorithm
where the learned scenes are enumerated based on time, but for real
application, they should have a meaningful name that is retrieved
during classification. In this case, we argue for an architecture that
involves the user during the assignment of the scene name .4 (®)
during demonstrations.

We observed that a user could understand our symbolic represen-
tation, but for a complex scene this is not an easy task. To simplify
the interaction, we argue for a semantic interface that spans a limited
number of facts, or for methods that select the most relevant features
to be communicated to the user. Unfortunately, the representation of
spatial relations in a human manner is not trivial, and our simple
implementation presented in Section 7.6.4 is far from being satisfac-
tory during the interaction, e.g. we observed that our implementation
of front is misleading. Nevertheless, our semantic interface allows
for straightforward integration of perception modules for generating
different sets of symbolic input facts, also in a multimodal manner as
presented in Chapter 4.

In our scenario, we used a semantic interface that represents the
qualitative characteristics of scenes, e.g. right. Consequently, the cate-
gories that the algorithm could learn qualitatively classify the scenes,
which is Section 7.7 where the scenes in figures 7.5d and 7.5e are
considered to be qualitatively equivalent. Nevertheless, it is possible

7.9 CONCLUSIONS

to use also semantic interfaces spanning facts with more quantitative
characteristics, e.g. hasColour(7y, yy), where CONE: 7y, and RGB: . This
is coherent with our semantic interface since we do not limit the types
and characteristics to be of the same domain, but they could span facts
between instances with different semantics (e.g. 0BJECT and COLOR).
Therefore, it is possible to defines also facts between objects and num-
bers, e.g. a characteristics hasVolume(7y, 7y), where 7, is a real number.
Nevertheless, through characteristics that relatively describes facts (e.g.
hasVolume(7y, Yy), where BIG: ;) it is possible to exploit symbolic
reasoning more efficiently. However, such type of reasoning implies
qualitative knowledge, depending on the level of details used in the
symbolic representation, e.g. the range of number represented as a BIG
volume.

As far as computational aspects are concerned, the whole algorithm
requires an average time of 3.272 seconds on an Intel iy@3.4 GHz
with 8 Gb RAM. Although with the presented examples we could
not characterise the computational performances of our prototyping
implementation exhaustively. We observed that the algorithm could
be used within soft real time constraints suitable a for human-robot
interaction scenario. Indeed, we argue room for computational im-
provements of our prototyping implementation, especially in if an
ad hoc reasoner is used for maintaining knowledge in the described
structures based only on a particular semantic interface. Nevertheless,
the design of the interface for a real application is far from trivial, and
we need to test different semantics to be compared via experiments.
With investigating purposes, we designed the algorithm to support an
expressive and flexible semantic interface.

7.9 CONCLUSIONS

The paper details an algorithm that performs structured learning of
categories of scenes based on human demonstration; we called it the
Scene Identification and Tagging algorithm (SIT)73. The algorithm is
based on an OWL ontology where we represent knowledge in three
different spaces based on a semantic interface. The semantic interface is
composed of two sets of symbols that represent the possible facts that
can define a scene at runtime. Based on the facts, the algorithm learns
and structures scene categories, i.e. an experience graph, which is used
for computing an output during the classification phase. The output
is a graph contains only categories that describe the environment, and
they are ranked with a similarity value.

We present a general-purpose algorithm that we deploy in a ROS-
based architecture, implemented for a simplified scenario aimed to
highlight the behaviour of the algorithm. In the referenced scenario
the architecture segments a point cloud and compute crisp spatial
relations among objects with a geometrical shape. Also, the architec-

103

7.3 https:

// githudb. com/
EmaroLab/ scene_
tdentification_
tagging.

https://github.com/EmaroLab/scene_identification_tagging
https://github.com/EmaroLab/scene_identification_tagging
https://github.com/EmaroLab/scene_identification_tagging
https://github.com/EmaroLab/scene_identification_tagging
https://github.com/EmaroLab/scene_identification_tagging

104

STRUCTURED LEARNING OF SCENE CATEGORIES

Figure 7.6: Showing configurations of an articulated object.

ture relies on a user that arranges the scene, supervises the perception
modules, and triggers the algorithm. Nevertheless, we discussed our
design based on the semantic interface that makes the algorithm very
flexible by the mean of symbolic representations. This type of inter-
face assumes on the one hand that the ontology contains facts as
symbols having a semantic representation, which is given as prior
knowledge. On the other, that the algorithm has to be aware of some
of those symbols. In Chapter 10 we exploited different semantic in-
terfaces based on the referenced spatial scenario to implement an
architecture that maintains an autobiographical memory for a robot,
provided with consolidating and forgetting abilities. That paper is
based on the fact that our algorithm do not fixes the representation
to be used. It only requires semantic instances of a non-ambiguous
type, paired through relations, e.g. bigger (T1, C1) with TRACK: T1
and CAR: C1, or before(Breakfast,Toothbrushing) with ACTIVITY:
Breakfast, Toothbrushing.

Given symbols the semantic interface, the algorithm performs one-
shot learning of scenes category, which is based on cardinally restric-
tions and reification of axioms in the ontology. We exploit this feature
for learning the category classifying the current scene if the latter
has not been experienced previously. Therefore, our algorithm always
provides a classification of a presented scene. The learned categories
are structured over time, and the classification might contain more
categories, which are returned as an output graph. In particular, the
output graph contains all the categories of included scenes (i.e. sub-

7.9 CONCLUSIONS

scenes) previously experienced that match the current scene. This
makes the learned representation suitable for representing repetitive
patterns, e.g. to represent a topological map where many equal offices
are connected to the same corridors in each floor of a building.

At the same time, the representation that our algorithm can learn is
not suitable for overlapping scenes. Nevertheless, we discussed how
the interaction with a user might guide a robot to learn a suitable set
of categories for an application, which is automatically aggregated by
the algorithm. For doing this, we exploit the symbols of our represen-
tation again since they are understandable by humans. In particular,
we use a simplified human-robot interface to explain the user the
experience graph, which was maintained by the algorithm for some
demonstrations.

The drawback of having a purely symbolic and crisp representation
of knowledge is that it is not robust to uncertainties. Therefore, small
perturbation, e.g. perception noise, substantially affect the soundness
of the learning structure. This occurs because symbols do not smoothly
change from one state to another, and a small perturbation on row
data might result on considerably changes in the related symbols, i.e.
a CONE is miss-classified as a CYLINDER. For solving this issue in our
use case, we rely again on the user that can understand if a symbol is
not consistent with the environment. This allows as to assure correct
inputs to the algorithm, but we argue its limitation in a real scenario.

As further work we want to focus on three aspects. We want to
investigate suitable methods for an effective human-robot interaction
considering, for instance, the learning of structured planning tasks; an
example is shown in Figure 7.6. Also, we want to evaluate different
semantic interfaces in human activity recognition scenarios based
on [83], as well as for a more sophisticated spatial representation.
Finally, based on fuzzy ontology [24], we present in Chapter 8 an
extension of the algorithm able to deal with uncertainties

105

ONE-SHOT STRUCTURED LEARNING
OF RoBOoT’s EXPERIENCE IN
UNCERTAIN ENVIRONMENTS

ABSTRACT

This paper presents an extension of the Scene Identification and Tag-
ging algorithm (SIT) for representing uncertain knowledge. SIT per-
forms one-shot learning of categories that are structured in an expe-
rience graph for reasoning and classifying purposes. The algorithm
is based on an ontology and exploits logic reasoning for structuring
experiences based on symbolic inputs. It has been designed for a
Human-Robot Interaction scenario and allows the robot to directly
share its beliefs with users based on qualitative relations. We prelim-
inary tested our algorithm in a tabletop scenario concerning objects
spatially arranged, and we evaluate the resulting structured knowl-
edge compared with our previous implementation. This paper dis-
cusses and motivates the use of the algorithm also for more complex
applications.

structured learning - robot memory -
uncertain environment - fuzzy ontology

AUTHORS

Luca Buoncompagni,‘ Fulvio Mastrogiovanni‘ and Alessandro Saffiotti*

AFFILIATION
“ . . & . .
University of Genoa, = Orebro University.

Paper to be
peer-reviewed.

107

108

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

8.1 INTRODUCTION

Nowadays robot can rely on sophisticated models for recognising
salient features of the environment, as well as for reasoning in complex
structures. Those functionalities are crucial to act in an unsupervised
environment, and usually requires difficult development steps con-
cerning both supervised training and knowledge engineering. Some
systems exploit reinforcement learning for making the knowledge of
the robot evolving but, due to a large number of required trial, as well
as the incommunicability of the models they generate, this approach
could be not suitable for a high-level Human-Robot Interaction (HRI)
scenarios. In particular, if a robot and a user wants to exchange ab-
stract and qualitative beliefs about the observation of the environment,
they would require to develop a deep understanding between each
other.

For the case of natural language processing, [169] presents a knowl-
edge bootstrapping for representing, in the robot’s knowledge, the
semantics and the similarities to be inferred for planning and act-
ing purposes based on affordance. In this paper, we foresee robots
involved in knowledge bootstrapping phase, in which a user demon-
strates to the robot the environment in some particular states. The
robot should (i) learn a representation of such a state, (ii) be able to
classify it in the future taking uncertainties into account, (ii7) reason
about the implications of observation concerning previous experience,
and (iv) be able to communicate its beliefs to a user.

In a real scenario, the salient features of the environment are charac-
teristic or events occurring in the robot surrounding. Those typically
involve a small part of the environment, e.g. few object or actions, that
the robot is supposed to detect because they provide useful informa-
tion to be processed. For instance, if a human and a robot interact
during an assembly task, the presence of the user in a dangerous
position might trigger some robot behaviour for safety reasons. On the
other hand, there would be safe situations in which the robot should
take other decisions; for instance, approaching the user. In such an
application, the robot should either be able to contextualise the infor-
mation it has been processed, or it should be able to perceive not only
objects but also to their relations and all the other useful information
for representing the context, at each time instant. In the former case,
the robot would need structures to reason on knowledge it collected.
On the latter instead, it should be provided with a perception module
able to assess an expressive representation, i.e. yet another type of
structure instead of simple labels.

We foresee robots that, after some bootstrapping demonstrations,
maintain a structure of their experiences with the purpose to recognise
salient patterns in an uncertain environment, i.e. qualitative sub-scenes.
In HRI application, we argue for robots that can explain their beliefs

8.1 INTRODUCTION

to a user with the purpose of reducing the interaction gap [81]. Also,
we aim to design a system that automatically stores and reasons on
different situations and their implication through demonstrations.
Although this paper presents an algorithm tested in a preliminary
scenario, our future objective is to deploy it in more complex applica-
tions, which involve large or distributed knowledge representations
and the computational complexity they demand, as well noises and
uncertainties.

In this paper, we extend the the Scene Identification and Tagging
(SIT) algorithm presented in Chapter 7, which maintains symbolic
and structured knowledge over time. The latter processes scenes and
implements a one-shot learning strategy based on a logic formalism
to encode experience in an ontology. In this formalism, the algorithm
exploits standard reasoning techniques to classify scenes in previous
experiences, as well as for reasoning on their implication. At runtime,
the algorithm generates and maintains a graph of models describing
experienced scenes, through which the current state of the environ-
ment can be assessed. In particular, the graph maintained by the
algorithm allows to classify a small part of the experienced scene, i.e.
it generalises models stored through observations. In other words, the
algorithm represents sub-scenes based on a representation of their
complexity.

The algorithm also provides with a general interface for maintaining
experiences graphs based on the specific peculiarities of the environ-
ment that different application might involve. Since the algorithm
performs purely symbolic reasoning, we could implement such an
interface at the semantic level, and in Chapter 7 we discussed the
benefits and drawbacks of this design. Therefore, the algorithm for the
perception modules, used to generate the inputs, can be implemented
independently from the chosen semantic; however it will require the
knowledge representation as defined in the syntactical interface. On
the other hand, symbolic knowledge is not directly measurable, and
it might require sophisticated perception techniques. Also, the crisp
symbols we used in Chapter 7 were not robust to perturbations since
the symbols were not smoothly changing from one state to another.
Nevertheless, with a certain representation of the inputs to the algo-
rithm, we showed that it could reason on qualitative implications, and
it also supports sub-symbolic formalisms and quantitative reasoning.

In a typical HRI scenario, there is the evidence of at least two sources
of uncertainties. Firstly, perception is subjected to noise, and there-
fore the beliefs that a robot has about the environment are disturbed
but — we suppose — not substantially corrupted. The other source of
uncertainty comes from users since their behaviour is unknown, as
well as their beliefs. In particular, if the user should demonstrate scene
and supervise the robot while it makes experiences, it is essential to
establish a duplex communication between he or she and the robot.

109

110

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

For instance, if the user wants to teach a scene to the robot based
on the information that a “keyboard is connected to a mouse”, it is
crucial that both of them agrees on the semantics of such informa-
tion. Different from perceived information, the uncertainties about
this knowledge could be higher since different users might describe
the same environment in many different ways, as we presented in
Section 1.1.

We argue that a robot with a knowledge structured in a fashion that
is familiar to the user might considerably simplify the communication
issues if the robot should explain its beliefs, or if the user wants to
correct them, i.e. if they want to share knowledge actively. In Chapter o,
we discus an application of the SIT algorithm deployed in a scenario
where a user supervised the robot beliefs through dialogues. In that
work, we exploited the Description Logic (DL) [11] formalism for
sharing experiences with a semantic that was familiar to the user
while respecting the syntactic requirements to interface a dialogue
module with the algorithm in the Robotic Operative System (ROS).
Especially for dialogues, we do not want to assume the user to prove
the robot with quantitative knowledge but, as persons would naturally
do, he or she should use qualitative information. Knowledge extracted
from qualitative information is vague per se, especially if used in
different contexts; therefore, the robot has to be able to reason with
uncertain knowledge.

In this paper, we present an extension of the SIT algorithm such
to represent knowledge in a fuzzy ontology where the robot could
reason with noisy data and uncertain representations. In particular,
the paper details the implementation of the algorithm and draws a
comparison between our previous crisp implantation. To enforce the
comparison we tested the fuzzy implementation of SIT in the same
scenario presented in Chapter 7, where objects were spatially arranged
on a table. In this preliminary scenario, we observed that the fuzzy
implementation fully extends the crisp algorithm, which maintains all
its features and provides more sophisticated experiences graphs and,
consequently, more expressive classification outcomes.

In the next section, we introduce the background, related work, and
contributions. In Section 8.3, we reformulate the problem presented in
Section 7.4 for a fuzzy knowledge representation, and in Section 8.4
we discuss all the operations performed by the algorithm. Section 8.5
provides some details about the implementation that have been used
to collect some preliminary results presented in Section 8.7, which are
discussed in Section 8.6.

8.2 RELATED WORK

Also in the robotic domain, outstanding results have been obtained
through data-driven techniques since they perform well for many tasks

8.2 RELATED WORK

that a robot should accomplish. For instance, convolutional neural
networks have been largely used for objects recognition, e.g. from
points clouds [37], detect on-line gestures [33], as well as posture [100]
and activities [128], just to name a few. Data-driven techniques estimate
the probability distribution for generating models that are robust to
noise and well fuse row data of different nature. This property resulted
in being suitable for motion planning; for instance, in [152] Deep
Reinforcement learning has been used for implementing a map-less
motion planner for mobile robots, while in [95] deep learning is used to
control a robotic arm during grasping tasks. The knowledge that can be
perceived with a trained model is typically instantaneous and simple,
e.g. a label, or a vector of numbers. Nevertheless, other works show
that a combination of those outcomes with semantic representation
can produce more expressive and accurate results. For instance, [96]
shows a combination of spatial relations for structuring labels that
their models generated from images, e.g. classifying statements as
“boy holding stick”.

Apart from behaviour-based robots, it seems evident from the liter-
ature that complex actions require some planning or reasoning, which
should be supported by expressive symbolical, or sub-symbolical,
structures. STRIPS-like planner [60] are based on symbols with spe-
cific semantics, which are used to reason on the sequence of actions
for obtaining a final state of the environment from an initial configura-
tion. Other sub-symbolic planners, as the Hierarchical Task Network,
compute the actions to be performed to accomplish a task based on
its decomposition in sub-tasks [9o]. Also, probabilistic representation
has been used with planning purposes, based for instance on decision
Markov processes [106], which can be robust to uncertainties, and
are suitable for parameter learning. Nevertheless, also works aimed
at learning symbolic plans have been proposed. For instance, [118]
uses an experience graph, which contains plans performed through
demonstration and auxiliary information, to improve the performances
during planning. While, in [110], inferences about the goal are used
for learning and generalising plans. Remarkably, an open issue that
the authors highlighted concerns the possibility to reason about task
similarities.

A typical approach in robotics is to use data-driven techniques as an
interface between raw data and higher sub-symbolic layers supporting
the reasoning. For instance, Knowrob [156] has a hybrid reasoning
core which uses heterogeneous data types and algorithms, which
are interfaced to an external layer through logic languages. Knowrob
can be used in a ROS architecture through perception-action loops,
and it supports learning as well as internal simulations. Similarly,
ROBOBRAIN [134] is a framework based on conditional random
fields used to learn nodes in a graph that represents the environment
semantically, e.g. objects, colour, affordance and activities. Thanks to

111

112

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

a sub-symbolic representation, it effectively deals with continuous
data such as trajectories [79]; this knowledge representation can also
evolve based on new demonstrations through non parametric learning.
Observations are used to reason among different domains, which
provide general knowledge through queries in a simplified natural
language.

During the interactions, the robot should rely on raw sensor data
to assess the environment as well as the user. At the same time, the
user should be able to understand the decision and intentions of the
robot. If the the robot and the user do not understand each other, the
deployment of end-to-end learning techniques for building models
becomes limited. The problem of making the robot able to explain its
knowledge for full interacting with the users is still a state of the art
challenge [140].

Also, learned models are typically neither modular nor portable
since any changes of the robot behaviours and capabilities would
require a complete retraining and validation process. In contrast,
symbolic formalism can be used to generate modular structures that
are familiar to the user; but these structures are affected by a trade-off
between performance, especially as far as scalability is concerned, and
expressibility [29]. However, since data-driven approaches are based
on probabilistic estimation, the model they generate will deal with
uncertainties, while symbolic formalism based on deterministic logics
are typically not robust to noise.

We aim at building a system that can structure its knowledge based
on demonstrations, which implies perception and elaboration of raw
data for the purpose of learning instead of behaving. After an initial
training phase where the robot should have gained experience, its
knowledge should be recalled for acting based on further inputs. We
propose a system that learns and represents data symbolically in order
to simplify the interaction of the user when supervising — not physi-
cally — the robot while learning. The outcome of the system should
be a set of structured symbols with an associated semantic describing
also uncertainties. Since we want to build representations that can
interface with the highest number of different software components
as possible, we decided to represent the robot’s knowledge using the
Ontology Web Language (OWL) standard [108].

OWL represents knowledge through DL formalisms in an ontology
where reasoners can perform instance and consistency checking with
inferring purposes, e.g. Pellet [144]. Such a representation is deeply
structured, and expressive queering languages can be used to retrieve
the knowledge. For this reason, ontology has mainly been used in
robotic with the purposes to store sensory data based on some prior
knowledge consistently. For instance, OWL is used in [105] for multi-
modal interaction in HRI industrial scenarios, while in [32] consistency
checking has been used for planning adaptation, and in [166] OWL

8.2 RELATED WORK

is used for sharing semantics of objects in a map with humans. Also,
ontology has been used for a simple and direct verbal communication
with users but, as highlighted in [31], it could be not suitable for a
straightforward interpretation of temporal depended knowledge, as
well as knowledge with a subjective degree. Typically, those applica-
tions use statically defined ontology, and the reasoning abilities of
the robot are limited to such prior knowledge. Moreover, the design
of such an ontology usually involves a complex development and
evaluation. In particular, it is crucial to identify the semantic symbols
that can well describe the environment through qualitative properties,
i.e. design the knowledge with an accurate level of detail. If it is too
specific, the complexity will increase considerably without adding
any substantial value to the knowledge that the robot needs. On the
contrary, if it is too abstract, ambiguous representation would occur.

Algorithms able to identify symbolic definitions of structured knowl-
edge through observations have been proposed. Usually those algo-
rithms address the problem of mining a large amount of data and do
not consider issues related to robotic applications, such as time con-
straints, autonomy, interaction, and possible lack of resources or prior
knowledge. FOIL is one of the most popular and simple algorithm
that generate logic definitions of classes given positive and negative
examples, and a formalisation based on a DL formalism is presented
in [126]. Also, other algorithms have been used to learn the definition
of semantic classes, such as the one presented in [77] as well as the
work proposed in [57], where terminological decision trees have been
used. Moreover, the DL-learner framework has been proposed in [29],
which relies on supervised learning algorithms to build classifiers that
are structured in an ontology. The framework uses inductive program-
ming paradigms to implement a service that interfaces, through an
OWL representation, the core which relies on data-driven techniques
and external clients. Given some prior knowledge, the framework
addresses the problem to derive logic conclusions, i.e. deductive rea-
soning, and to find general statements, i.e. inductive reasoning. While
it seems that the system could solve the first problem more easily than
the second one, the number of observations required to learn how
to solve both problems might not be suitable for HRI applications.
Besides, the models they generate might be not intuitive, and they
require a refinement process made by expert persons.

Among all the above type of knowledge representations, we are
not aware of robots that can learn on-line abstract and contextualised
uncertain knowledge sharable with users. Nevertheless, similar issues
have been investigating for other domains, e.g. in the semantic web,
with the purpose of learning and expressibility. For instance, in [172]
a probabilistic OWL reasoner is presented, which is suitable for learn-
ing structured knowledge in the semantic web domain. Some robotic
architectures rely on deterministic ontology to represent certain knowl-

113

114

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

edge, and such a crisp representation limits the possibility of learning
new data from sensory data. In other systems, fuzzy representations
have been used as well, for instance in order to deal with uncertainty
perception and natural language [149]. Also, fuzzy ontology has been
used to represent quantitative human activities [50]. FuzzyDL, a fuzzy
reasoner for OWL ontology that supports concepts as satisfiability and
subsumption, along with other features, has been presented in [22],
for reasoning on OWL axioms annotated with a fuzzy degree of truth.
FuzzyDL has been used in different domains, including planning [52]
in a multi-robot scenario, and it has been exploited within the DL-
learner framework [78] and coupled with a deep neural network [38].
Also, through fuzzyDL two extensions of the FOIL algorithms have
been proposed in [1] and [98].

8.2.1 BACKGROUND

SIT is an algorithm coupled with an ontology that we designed to
perform one-shot structured learning of categories through demonstra-
tions. In particular, it uses a DL formalism to reason on the similarity
among categories of scenes that the robot experienced. Given a new
scene, SIT exploits the Pellet OWL reasoner to classify it and returns a
structure with the categories of similar scenes that the robot had seen.
In particular, SIT returns a directed acyclic graph of categories, where
each parent of a node classifies only a part of the perceived scene, i.e.
a sub-scene, that have been experienced in the past.

In Chapter 7, we presented the algorithm having three phases, the
perceiving, classifying, and learning phases. For demonstration pur-
poses, those phases are called in a way that the algorithm provides
an output graph for any possible scenes. In other words, SIT tries to
classify an input scene and, if not suitable categories are available in
the ontology, it uses the learning phase for generating a new cate-
gory, from the current scene and re-performs the classification phase.
Remarkably, after a category is learned from a demonstration, the
algorithm looks also for a connection between the new category and
the previous experiences. Although in this paper we consider the
same evaluation of the phases of the algorithm as in Chapter 7, other
applications might rely on a different execution of the SIT phases.
In particular, in Chapter 10 we present an architecture that uses SIT
for implementing memory with some cognitive aspects, such as the
representation of a scene in episodic and semantic memory, as well as
the evaluation of consolidating and forgetting operations.

8.2.2 CONTRIBUTION

The SIT algorithm was formalised through a crisp DL and this leads
to some limitations. In particular, in Chapter 7 we assumed that the in-

8.3 PROBLEM STATEMENT

puts to the algorithm are perfectly representing the environment. Since
in a crisp ontology symbols can have discontinuous states, a small
changes in the input will generate considerably different symbols that
would make the algorithm reasoning on scenes that are not consistent
with the environment. In other words, the crisp implementation of SIT
is not robust.

In this paper, we want to use fuzzy ontologies in order to increase
the robustness of the algorithm. In particular, we want an algorithm
that reason on experiences represented through uncertain knowledge,
and we considered to have two different sources of uncertainties. On
the one hand, the perception might be affected by noise, while on the
other, the qualitative features of a scene could have some degree of
truth. For instance, if the salient element of a scene is the shape of the
objects on a table, they might be perceived as having a different type
based on a confidence value, e.g. a bottle could be for some extends a
cylinder, but it could be also perceived as a cone.

The algorithm generates a structure of categories that is computed
as an implication graph among classes in an ontology. In a crips
ontology, SIT builds an experience graph where edge relates only
scene and sub-scenes, but not their possible overlapping. Our objective
is to investigate the outcomes of a fuzzy formalisation of SIT in order
to reason on experience overlapping. In particular, in the paper, we
evaluate experience graphs where each edge has a fuzzy degree of
truth, in contrast with the crisp implementation where the scene
categories have been limited to exist or not exist in the representation.

Remarkably, in this paper, we present a fuzzy extension of the
algorithm that behaves as the crisp SIT, if all the degrees of truth
are either o or 1. Moreover, a fuzzy ontology allows maintaining a
representation having a degree of the classification of a scene which,
together with the similarity value and the degree assigned to edges of
the experience graph, improves the expressibility of scene categories
represented in the ontology over demonstrations.

SIT ALGORITHM PRIMER
[“_]8.1

8.3 PROBLEM STATEMENT

In order to formalise a fuzzy version of the SIT algorithm, we consider
a fuzzy membership value p, € [0, 1] representing the degree of truth a
particular characteristic of the environment, i.e. a tuple ((r, gx,gy), Pz)-
The crisp implementation of SIT requires each instance involved in
the characteristic of a fact to have a non-ambiguous type, e.g. gx € Ty,
but this cannot be considered anymore in a fuzzy domain. Indeed,
with fuzzy values we want to represent that an element has some

115

8.1 the section
summarises the
contents of
Chapter 7 as shown
in Figure 7.2.

116

fuzzification of
Equation 7.5.

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

degree of membership in different sets, for instance, the shape of a
bottle g, could be described as a cylinder with fuzzy degree p,1=.7,
and a cone with membership p,,=.5. Since in such a representation
the concept of having a non-ambiguous type for each instance cannot
be considered anymore, we need to extend the semantic interface of
SIT considering all the possible types. Given a new definition of the
semantic interface, in the later section of the paper, we want to adapt
the perceiving, classifying, learning and structuring functions to be
used with the fuzzyDL reasoner.

In particular, we assume each instance g; involved in a characteristic
r, to have some membership value with each possible type in T, which
are given as prior knowledge. Formally, we can rewrite the semantic
interface of SIT for a fuzzy domain as

fi={(r28x8y), piz) EF: F «— (8.1)
((8x€Ts), pxs) Vs € [1,w],
((&yE€Th), pyn) Yh € [1,w],
r, € R/ TS/ Th € T/ Pizs Pxss Pyh € [0/ 1]/

where, for each characteristic r, involving the xy-th pair of in-
stances with the p;; degree, we assume to have also two sets of
w membership values representing the types of the instances, i.e.
Py = {px1,Px2/-- -/ Pxss+- -, Pxw} and Py = {py1, py2, ... s Pyhs - - - Pyw}-
To simplify the notation, we define a fuzzy fact as a tuple f; = (D, P),
where D contains only the representation of the symbols involved,
while P contains their fuzzy degree. Formally, for the i-th fact, D
contains a characteristic (r, gx, gy>, and the types for its instances, i.e.
{T;, s€[1,w]} and {T}, he[l,w]}. Instead, P contains only the fuzzy
degrees associated to the elements of D maintaining the correlation
between the z, x, s, y, and & indexes, i.e. P = {p;;, Py, P, }.

8.3.1 Fuzzy CARDINALITY RESTRICTIONS

In this paper, we want to use the fuzzyDL OWL reasoner for repre-
senting the knowledge to be elaborated with the SIT algorithm. As
we mentioned, the algorithm exploits the reasoner to structure expe-
riences based on minimal cardinality restrictions, but unfortunately,
fuzzyDL does support cardinality-based reasoning. This because defin-
ing the concept of cardinality is not trivial as in crisp representations,
where it is enough to count the number of axioms [23]. In a crisp
domain each relation represents the unit to count, but if fuzzy degrees
are given, the counting operation becomes ill-posed. For instance, it is
not clear if an element having a very low membership value in a set
should be considered as one during the computation of the cardinality
of such a set.

8.4 THE Fuzzy SCENE IDENTIFICATION AND TAGGING ALGORITHM

Several definitions have been proposed for identifying expressive
counting functions, but in the literature there is not an explicit agree-
ment on a definition [35]. Among all, the o-count approach is mostly
used, and it defines the cardinality of a set as the sum of the member-
ship values of all its elements. This measure is simple and identifies a
cardinality as a real positive number instead of a not natural numbers,
i.e. is not a crisp value. However, it has some drawbacks. Indeed it
computes the energy of a set [45] that is considered to be a measure of
the cardinality since we assume that more the energy of a set, more the
elements it should have. Nevertheless, this might be not always true,
and the o-count would not discriminate any differences in cardinality
between a set having 10 elements with degree .1, or only one element
with degree 1. Although we should evaluate the behaviour of different
fuzzy cardinality definition for a specific application before to deploy
our algorithm, we consider the problem of defining an expressive
function for computing the cardinality of a fuzzy set out of the scope
of this paper. In the following sections, we rely on o-count to compute
the cardinality, but other approaches that compute a positive number
could be adopted in our algorithm.

As far as fuzzyDL is concerned, there is no definition of a minimal
cardinality restriction operator, but with the o-count we can obtain a
number representing the cardinality of a class. This implies that we
cannot relay on OWL reasoning directly for implementing a fuzzy
version of the SIT algorithm, but we need to represent the axioms for
reasoning on cardinality restrictions explicitly. Therefore, we cannot
rely on a representation of categories features as R;,.I';, because we
need to represent such a description with respect to a real number,
and not a class I'y. For doing so, we need to reconsider the SIT beliefs
as a data property, i.e. a property between an instance € and a real
number, and not as a property between two instances, i.e. € and 7.

8.4 THE Fuzzy SIT ALGORITHM

In this section, we detail the definition of all the functions involved in
the SIT algorithm applied to fuzzy knowledge representation. For clar-
ity, we present the computation performed by the algorithm through
a guideline example in a simple spatial scenario, but as mentioned the
algorithm could be applied with different semantic interfaces as long
as they assure input facts represented as in Equation 8.1.

The interface we consider for the example used in this section
defines a single spatial catachrestic between objects, i.e. A4 (r;) =
front, where .4 is a function that maps a symbol in the ontology in
its IRI identifier, i.e. a name. In our examples, instances of facts are
objects, and their type could be .#'(I'1) = GLASS and .4 (T') = CUP.

117

118

fuzzification of
Equation 7.6.

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

8.4.1 INruT FACTS

In the fuzzy representation of SIT, we define inputs facts based on
the extension of the crisp semantic interface presented in Section 8.2.2.
Similar to for the crisp implementation, the representation of the
facts f; are straightforward in a fuzzy DL formalism if we represent
instances as individuals, characteristic as properties, and types as
classes. Therefore, we can write Equation 8.1 as

fi = {(RZ(,YXI ,Yy>l Piz>/ (82)
<Fxs3')’s/ szWs € [1,w],
(Tyn:Ys, pyn)Vh € [1,w]}

which represents an input facts encoded in a fuzzy ontology.
For example, Figure 8.1a can be represented in the ontology with
three facts defined as

fi: (front(71,73), 5), (8.3)
fo+ {front(y1,72), 6),
f3 1 (front(72,73), .9),

and we assume to know in the ontology the types of all the instances,
e.g.

(GLASS: 1, .8), (8.4)
(GLASS: 2, .1), (CUP:7,, .7),
(CUP: 73, .9).

Equation 8.3 contains fuzzy degrees that represents the quantitative-
ness of the characteristic, e.g. p31=.9 represents that the 3 is mostly in
front of ;. Similarly, Equation 8.4 contains the fuzzy degree assigned
to types representing an object, i.e. y2 could be a glass for some ex-
tent and a cup for others. Also, and more commonly in practice, the
perceiving modules that identify facts of the environment could be
affected by noise. In order to take into account both type of vagueness
distinctly, in the guiding example of this section we consider the char-
acteristics of a fact as quantitative fuzzy relations, while the objects
types are disjointed but noisy, e.g. 7> have also been misclassified as
GLASS, but with low confidence, i.e. pp1=.1. In Section 8.5.1 we will dis-
cuss more the perception of fuzzy facts particularly for our scenario,
but first, we introduce all the functions involved in the algorithm.
Remarkably, in the ontology we do not represent characteristics or
types with a o fuzzy degree, e.g. in Equation 8.4 we would not state
that (CUP: 4, 0).

8.4 THE Fuzzy SCENE IDENTIFICATION AND TAGGING ALGORITHM 119

Y '7

-

(a) The category ;. (b) The category ®,.

Figure 8.1: Scenes used as guiding examples for presenting the learning and structuring bheaviour
described in in sections 8.4.3 and 8.4.4.

8.4.2 PERCEIVING

As defined for the crisp formalisation of the algorithm, the perceiving
function is in charge to compute the beliefs of a scene based on some
input facts. In particular, we define a belief in a fuzzy ontology as
a reified data property between the scene € and a fuzzy cardinality

value c,y, € (O, inf) fuzzification of
Equation 7.7.

P(F)=P(fi) Vie[l...n], (8.5)
P(f) = 2R, 7 (1), 7 (1)) (& czn) 23y f,
=% (R, Ts,Ty) (e, chh> Vs, h € [0, w],

= Rz (ez Czsh) = by.

Considering the guiding example of Figure 8.1a, the reification % of
equations 8.3 and 8.4 would generate also a belief like frontGLASS
CUP(€, czs,). Remarkably, b, is represented through a crisp data prop-
erty since the number c,y, is always considered to be fully related
with €, i.e. Ry (€, c,) is always applied with degree 1 in the ontology.
Although, c., represents the fuzzy cardinality of the beliefs b,, the
fuzzyDL reasoner would consider it only as a numerical property
of €. Therefore, the scene € can be represented at most through m
beliefs, where m < v-w?, i.e. all the zsh-th combinations spanning in
the semantic interface.

To compute the fuzzy cardinality of a belief, we define first the
fuzzy degree of a fact f; through logical operations on the symbols
involved in D as

R:(7x71y) @ Tsiyx @ Ty, (8.6)

which defines a fuzzy membership value p,, through the t-norm
between the characteristic r, and the types I's, I';,. For instance, using
the Zadeh logic we can compute the fuzzy degree of a belief as

120

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

Pzsh = min{pi;, pxs, pyn}- In a general scene given through n facts,
the algorithm computes o < n-w? fuzzy degrees p.g,, where some of
those might express knowledge about the same reified combinations.
Indeed, there might be facts involving symbols zxy and z%j that
produce through # the same reified characteristic zsh. For example,
in equations 8.3 and 8.4 both f; and f; has some degree p112 > 0, i.e.
in the 0=5 reified facts two fuzzy degrees represent knowledge about
the front, GLASS, CUP combination.

Let the o fuzzy degrees be divided into subsets collecting them if
they represent the scene through the same zsh combination. For each
elements of those subset 0,5, we compute the o-count as

Ozsiy

Cash = 2 Pzhs, (8.7)
Rz, T Ty

which represents the fuzzy cardinality of a belief b,. The scene € is
represented through all the cardinalities that are possible to compute
from the o fuzzy degrees, which are at most m. Therefore, differently
from the crisp implementation of SIT, given n facts we do not produce
in the ontology o beliefs to be matched into the m cardinality restric-
tions of a category during the classification phase. Instead, in the fuzzy
implementation, we generate m beliefs, which already represent the
facts cardinalities to be matched.

As an example consider the scene in Figure 8.1a, where input facts
are deduced in equations 8.3 and 8.4. In that case P would generate
in the ontology the beliefs

frontGLASSCUP(e, min{.6,.8,.7} + min{.9,.1, .9} + min{.5,.8,.9}),
frontGLASSGLASS (€, min{.6,.8,.1}),
frontCUPCUP(e, min{.9,.7,.9}), (8.8)

that defines the scene as an individual € through three crisp relations
that specifies the relative fuzzy cardinality. Remarkably, not all the
scenes are defined through m beliefs since we do not represent the
ones with cardinality c,5, = 0.

8.4.3 LEARNING

The learning function £ generates a fuzzy category, i.e. a class in the
fuzzy ontology, given the beliefs of a scene € computed from facts.
In particular, £ is supposed to evaluate the beliefs cardinality for
each zsh-th reified combination, and generates a category ®, through
the definition of the conjunction of minimal cardinality restrictions
represented in the ontology as fuzzy classes X, .

8.4 THE Fuzzy SCENE IDENTIFICATION AND TAGGING ALGORITHM 121

Juny

> Czsh

o

»
N
0
=

»

N
2
=

Figure 8.2: A general representation of a minimal fuzzy cardinality restriction based on a right-shoulder
membership function Xy, = € (kjs, a).

Formally we change the definition of the crisp learning function
into

re(l...m]

L(e)=D K Rog.Ti, =P, (8.9)

zsh:by fuzzification of

i . . Equati 8.
where @ is the root class of the experience graph, while ¥ = quation 7

€ (kysn,a) is a right-shoulder function that we use to model a minimal
fuzzy cardinality restriction. Differently, from the crisp implemen-
tation of SIT, a feature of a category is not a symbolic cardinally
restriction, but it is the restriction of € to have a property of the jsh-th
belief with a numerical value, i.e. a cardinally c;s,. Although the restric-
tion is evaluated with a fuzzy degree p.,, it is always certain that the
scene should have some cardinality for such a zsh-th combination for
being of a particular category ®.. Therefore, we encode in the fuzzy
ontology the feature of a category as a crisp relation (R,g;.Xg,, 1).
Regarding the fuzzy evaluation of cardinality restrictions, we define
¢ as an operator that generates a family of functions taking two
parameters, k.o, € [0,inf), which identifies the first point having a
fuzzy degree equal to 1, and a € [0, 1] that is used for computing the
last point having fuzzy degree equal to o as shown in Figure 8.2. More
formally, we pose
ki = kesn(1—a), (8.10)

where, a is a percentage of kg, that relatively defines the begging of the
ramp that goes from o to 1 in the right-shoulder function. Remarkably,
k.sn would always be greater than 0, and for a = 0, ¢ degenerates
to a crisp set, while for a4 = 1 the ramp of the right shoulder would
always start from the origin, i.e. we accept all the possible cardinalities
Czsn > 0 as respecting any restrictions, but with a low degree.

122

In the paper, we
write numbers
bounded in [0,1]
without explicitly
consider the digit
before the dot, e.g. .6.
While we explicitly
write 0.6 if such a
quantity is not
bounded.

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

During the learning phase at the instant of time t;, we generate
specific restrictions through €. Each restriction is stored in the ontol-
ogy as a classe X , with a value k.5, = C?sh‘ During the classification
phase of a later instant of time f;, P might generate beliefs with a
new cardinality value for the zsh-th combination, i.e. cizsh, which will
be evaluated against previously stored restrictions as we will discuss
in Section 8.4.5. Instead, during the computation of the structuring
function, the algorithm compares each restriction X, to relate features
of different categories ®; and ®;, as we will present in Section 8.4.4.

In Figure 8.2, we represent ¢’ as a map between cardinalities c,5, and
a fuzzy degree p.g,. If the cardinality of a scene is c.5, > k,g, we assume
the restriction to be fully respected, i.e. p,;,=1, instead if c,q, < k_,
than we consider the cardinality restriction not being satisfied at
all, i.e. p.,=0. Instead, if k__, <c,s,<k.s,, we use a linear function for
considering the fuzzy degree of a cardinality restriction almost satisfied.
Therefore, the parameter a identifies the relative qualitativeness of
the cardinality restrictions since, if it increases, we will accept lower
cardinality respecting the restriction with a degree higher than o.
However, if a decreases we would give a higher fuzzy degree to
cardinality value similar to kg, i.e. the referencing value that the
algorithm experienced through a demonstration.

For instance, consider the belief related to the scene in Figure 8.1a
and deducted in Equation 8.8. The result of £ on such knowledge
would be made of three features, which define a new category as

®. = P M £rontGLASSCUP. 4 (1.2,a) (8.11)
M frontGLASSGLASS.%(0.1,a)
M £rontCUPCUP.% (0.7, a)

Similarly for the crisp implementation, we could read such a represen-
tation as the statement: in the scene € a GLASS has something more than
a GLASS in front, a GLASS has almost no other GLASS in front, and CUP
has almost another CUP in front. Remarkably, it could be that in a scene
a CUP has almost 3 other CUPs in front, since the cardinality is a generic
positive number, e.g. ¢4, =2.9.

8.4.4 STRUCTURING

We want to delegate to the OWL reasoner the hard task to structure
categories in an experience graph. This requires to compute the edges
among all the learned categories over time and, since we define cate-
gories to be classes in an ontology, we can identify such edges as logic
implications.

8.4 THE Fuzzy SCENE IDENTIFICATION AND TAGGING ALGORITHM 123

Pzsh

1 2 1 2

1»2_1 Z‘ka %Zkal Ekﬂ ; z a
pm == e -}
' ! | VI
: : /: o
1 I 1 & 1
: : L. !
1 ‘ / R ‘
: ‘ R4 :
' ' K4 :
' ! & '
:/ L :
! R :

e - } ' = Czsh

0 0.4 0.6 0.8 1.2

Figure 8.3: Examples of experience structuring based on fuzzy cardinality restriction computed as
implication (minimum subsumption) value between a common jsh-th feature of two cate-
gories @1 and Dy, i.e. (P T Dy, p1*2>, for a=.5. The figure are consistent with the example
in Figure 8.1 where £} =%¢(0.8,4) and £7 =%¢'(1.2,a).

For showing how we compute implication between scene categories
let consider two generic nodes of the experience graph ®; and ®.
In accordance with Equation 8.9, each node is represented through
features defined by ¢ for some zsh-th combinations computed at
some previous instant of time. If we consider the features of each
category related to the same indexes zsh-th, and we focus on a sin-
gle pair sth.Z,%ﬂ, R sn .Zia, we can compute the fuzzy subsumption
between the relative Z,la and Zia restrictions, as shown in Figure 8.3.
In fuzzyDL, the degree of the subsumption between two classes, i.e.
®; C ®y, is defined through the best entailment degree [151], which
is computed as the minim value among the implication of two classes,
e.g. the minimum of ®; = ®,, as shown for graphically in the figure.
We identify with p!;? such a value for the relevant features of the
two categories. Since we consider in Equation 8.9 a category to be
composed by a conjunction of features, fuzzyDL computes the degree
of the subsumption p!*? as the t-norm between the subsumption of all
the features of @, computed against the related zsh-th combinations
of @y, i.e. using the Zadeh logic p'*2 = min{p.;?, Vzsh : ®?}. In our
representation, if p!*?2=1, it identifies that any scenes of the ®; cate-
gory would necessary also be of the ®; category since the first always
respects all the restriction of the second.

As an example, let the first category be the one derived in Equa-
tion 8.11 for the scene Figure 8.1a, i.e. &; = P, and the second
category be the one shown in Figure 8.1b. The second is as the first
where we remove 7;, and the fuzzy degree of the only remaining fact
becomes p.; = .9, i.e.

®, = ® M frontGLASSCUP. % (0.8, 4). (8.12)

124

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

2 Cg/y

0.6 0.8 09 1.2

(@) ©, = O fora=.5 (b) &, = P fora = .25

inverse implication shown in Figure 8.3.

Figure 8.3 shows the Z}Ca (in green) and Z%ﬂ (in red) restrictions for
the only zsh feature that ®; has. Also, it shows the Lukasiewicz
implication ®; = ®; (in blue), which is computed for all cardinality
values c,q,, i.e.

p;;}% = min { min{1, 1— pish + pﬁsh} chsh}. (8.13)

From the figure we observe p;sf:l and, since this is the only feature
that ®, has we deduce P1»2:1’ and we write (&1 C Py, p1*2>. This,
represent that ®; always fully implies @, i.e. if the restriction Z,l(a is
satisfied than also Zia would be necessary satisfied. Informally, full
subsumption occurs all the times the restriction of Z}(a is always greater
or equal than Zia.

Contrary to a crisp ontology where two classes are equivalent iff.
®; = O, and P, = P; are consistent axioms at the same time, in a
fuzzy ontology, this is not always the case. For instance, if we compute
from the example above the implication ®, = ®; and we compute the
minimum subsumption as before we would obtain (¥, T &4, .33), in
accordance with Figure 8.4a. This is due to the open-world assumption
respected in OWL reasoning, which assume the subsumption between
the second and the first category based only on the common feature.
In the figure, we observe that the fuzzy degree of cardinality increases
for both categories for the same values of c,y,, and this generates a
subsumption degree greater than 0, but smaller than 1. Remarkably,
this depends for the parameter g, that in this example has been set
to .5. If we consider a more conservative cardinality restriction as
shown in Figure 8.4b, where the sumsumption between ®; and ¥,
is computed for the same example but with a=.25, it is possible to
observe that (&, T @1, 0). The latter would represent that a category

Figure 8.4: Examples of experience structuring based on fuzzy cardinality restriction computed for the

8.4 THE Fuzzy SCENE IDENTIFICATION AND TAGGING ALGORITHM 125

Y
é

-33 45
1 1
1

Figure 8.5: The experience graph deduced from the examples shown in Figure 8.1. ®3 is equivalent to
@ where v, is perceived as a slightly different type of object.

®; never implies @ because, if the restriction Zfﬂ is satisfied with a
degree higher than o, Zia might not be satisfied.

As a further example let consider a third scene and the relative
learned category

@3 = $ M frontGLASSCUP. % (1.1,a) M £frontCUPCUP.%4(0.7,a) (8.14)

which have been obtained from the example in equations 8.3 and 8.4
where we remove the axiom (GLASS:7,, .1); note that this scene
is similar to the one derived in Equation 8.11. If we compute the
minimum subsumption among all the possible ordered pairs of
® C {Py, Dy, P53} we can construct an experience graph as shown in
Figure 8.5, where all the categories are assumed to subsume the root
® always with a fuzzy degree equal to 1.

In accordance with the crisp implementation of SIT we observe that
®, is the simplest scene, since it does not have the object 7,, and
its features are fully matched by ®; and &3 which are sub-scenes,
i.e. the implication edges in the graph with degree equal to 1. The
same occurs when we evaluate &3 = ®; since we consider the scene
generating @3 as the one generating ®; without some axioms, i.e. all
the axioms of the latter are satisfied also in the former. Nevertheless,
we observe that ®; = ®3 with a high degree, since between the two
categories differ only from an axiom. Similarly to an implication graph
in a crisp ontology, the fact that both classes imply each other with
a high degree represent that they are almost equivalent. The graph
represents in Figure 8.5 also shows some similarities between ®; and
®3 with ®,, due to a as discussed above, and identify some common
features between those scenes categories as well.

126

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

8.4.5 CLASSIFYING

The classification function is in charge to compute the membership
degree of a scene € in a category ®;. This task is performed by the
fuzzy reasoner that finds a match between the beliefs of a scene,
represented as in Equation 8.5, and the features of a category, defined
in Equation 8.9. For a zsh combination of the semantic interface, the
former defines the cardinality about the current facts R, (€, C.sp)-
While, the latter a restriction C(k.g,, a) previously stored in a feature
R.q .2k, of the j-th category. In this case, the reasoner would compute
the fuzzy degree of ¢,y against the zsh-th left-shoulder function of ®;,

and obtain a fuzzy degree pZ{l This is computed for all the features of
the j-th category and, the final membership value of the scene € in ®;
is evaluated thought the t-norm in accordance with Equation 8.9, i.e.
using the Zadeh logic p¢*/ = minth{ psJ}.If p& > 0, we consider in
the ontology that the scene € is classified in the j-th category with such
a degree of truth, i.e. the ontology contains the axiom (®;:¢, pei).
For instance, let categories structured in the experience graph de-

rived from the previous example shown in Figure 8.5, and new facts

fi: (front(71,73), 6), (8.15)
f2 : {(front(y1,72), -6),
f3 1 (front(72,73), -3),

where for satisfying the semantic interface we assume the type of 1,
72, and 73 to be as in Equation 8.4. This scene, shown in Figure 8.6a,
is equivalent to the one in Figure 8.1a where 73 have been moved to
the left-hand side of y1, and the degree of the spatial relation changes
accordantly. In this case, by applying P (Equation 8.5), we obtain

frontGLASSCUP(¢, 1.3), (8.16)
frontGLASSGLASS(€,0.1),
frontCUPCUP (€, 0.3),

which defines the scene that we want to classify in the categories @,
®,, and P3 derived in the previous section.

Let consider @, first, the most simple category in the graph. In
this case, the fuzzy classification membership of the scene € in the
@, category depends only on one zsh-th combination, i.e. frontGLASS
CUP; thus p©*2 = p$;2. The later can be graphically computed from
Figure 8.3, where to c112=1.3 corresponds pﬁ%zl. This identifies that
the scene fully respects the restriction of the second category, i.e.
(Py : €,1), and we interpret this as the fact that ®; models a sub-
section of €. In the crisp formalisation of SIT, such a case would
match the feature of the scene to have at least a cone in front of a
glass. In the fuzzy formalisation we allow for a continuous cardinality

8.4 THE Fuzzy SCENE IDENTIFICATION AND TAGGING ALGORITHM 127

"Yl
1

! 72
wr

(a) (b)

Figure 8.6: Scenes used as guiding examples for presenting the classifying behaviour of the algorithm
in Section 8.4.5.

representation and, informally, we could say that at least something
less than a cone (i.e. 0.8) has to be in front of a glass to classify the
scene as ®,.

Applying the same method to ®3 we observe that the cardinality
frontGLASSCUP, which is restricted with kj1p=1.1, is fully satisfied by
the related belief of €, i.e. p$;3=1. This occurs similar to the previous
case, because c11=1.3, i.e. in both figures 8.1a and 8.1b a glass has
some cups in front. However, when we consider the other feature of
®3, i.e. frontCUPCUP, which restricts the cardinally to ki2=0.7, we
obtain a fuzzy degree of ng:O, due to the belief ¢15,=0.3 and a=.5.
Therefore, in this case, the classification of the scene is (®3: €, 0), since
we take the minimum between the two zsh combinations. The same
also occurs for the classification in the first category, i.e. (®1:€, 0).
Therefore, in this case, the output graph of the algorithm would be a
subgraph of the experience space containing the nodes ® and ®,.

More generally, the result of the classification is a sub-graph ®*
which always contains a root, i.e. ®, and eventually some other nodes
that we obtain through a query to the OWL reasoner. If the solution
to the query is a structure ®* containing only the root, then the scene
is considered not to be classified. Otherwise, we obtain a structure
of categories containing €, i.e. all the j-th children or successors of ®
such that (®:€, p°*3) and p**>0. In accordance with the crisp for-
malisation of SIT, a general sub-graph ®* contains classified category
with features restricting a high cardinality, i.e. the most complex scene
classified, as leaves. The parent and ancestor of the leaf categorise
simpler scenes, but in contrary with the crisp implementation, in this
paper, we used fuzzy cardinality restrictions that allows a not crisp
definition of the complexity of a scene.

128

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

For instance, let the algorithm process a new scene shown in Fig-
ure 8.6b

f1 : <fr0nt(’)/1,’)/3), .9>, (8.17)
fa i (front(vy1,72), 9),
f3: (front(72,73), .9),

which, if we assume (GLASS: 71, .8), (CUP: 7y, .6), (CUP: 3, .9), is rep-
resented through beliefs as

frontGLASSCUP(€,1.4), frontCUPCUP(€,0.6), (8.18)

Similarly to the example above we notice that (®;: €, 1), but in this
case the scene is also classified in @3, i.e. pe’?’ = min{1,.8}. How-
ever, (O1: ¢, 0) because the scene does not contain any beliefs in the
frontGLASSGLASS combination. This occurs even if ®; restricts the
scene to have a cardinally of only kj1; = 0.1. A high classification of
the € in @3, but a null implication of &4 is a not intuitive classification
since we discuss in Section 8.4.4 that in the experience graph those two
categories are considered to be similar. Noteworthy, this occurs only
for cardinality close to o because we would represent in the ontology
any facts with a higher degree.

Although this issue also depends on the uncertainties of the incom-
ing fact and their semantic, to solve it, we could use a method that
introduces noise in the beliefs representing the scene. In particular,
we rewrite Equation 8.5 such to add a belief with an artificial, small,
cardinally ¢ (e.g. 0.05) to all the jsh-th combination that are not gen-
erated from facts, i.e. in this way the number of beliefs of any scene
would always be equal to m. In the example above, we would include
in Equation 8.17 artificial beliefs as

frontGLASSGLASS(€, ¢), frontCUPGLASS (€, €), (8.19)

and the scene would be classify in ®; with a degree of p®! =

min{1,.8,.5}, with a=.5. In this way, we classify the scene in both
the similar categories and the classification degree depends on ¢ and
a. Remarkably, to do not affect the learning and structuring functions,
we do not process the artificial beliefs during the computation of Equa-
tion 8.9. Also, this would not increase the number of category features
to reason with and improve the performances of the algorithm.

Therefore, in this example, the classification graph returned by the
algorithm ®* contains all the nodes in Figure 8.5. For each category,
the algorithm returns (i) its features (i.e. R,g,.%,), (i) incoming (or
departing) edges with a fuzzy implication (or subsumption) value
(ie. p!), and. (iii) a fuzzy degree representing the membership of the
scene in such a category (i.e. p¢*).

8.4 THE Fuzzy SCENE IDENTIFICATION AND TAGGING ALGORITHM

In the crisp implementation of SIT, each category also has a measure
of the similarity between the feature of a category and the beliefs of a
scene. This was introduced since the algorithm structures experience
based on sub-scenes, which might be classified concurrently and the
crisp implementation of SIT was not able to discriminate if a classified
category was modelling the majority of the scene or only a small part
of it. Unfortunately, such a measure for the fuzzy implementation is
still an open issue due to the ambiguities that c-count might have,
as presented in Section 8.3.1. In particular, due to a, such a measure
would not be bounded in [0,1], and its value might be inaccurate.
Nevertheless, we argue for an algorithm that evaluates the output
graph for solving such an issue when on particular semantic interfaces
has been designed for a specific application.

8.4.6 COMPLEXITY

Similarly to the crisp implementation, the complexity of our algorithm
depends on the size of the semantic interface, and we could order
the operations from the high to the less computationally complex
as the structuring, classifying, perceiving and learning. The latter
becomes complex since it relies on the structuring function, but the
computation of Equation 8.9 it immediate when beliefs are given.
During perception, the algorithm needs to query all the instance in
order to compute the cardinality of each belief, but this step could
be avoided if the algorithm takes as inputs the values computed
through o-count instead of facts. However, we consider facts as input
for Human-Robot interaction purposes, since we believe that for a user
would be more difficult to interpret beliefs rather than facts. Moreover,
during the classifying phase, the reasoner should evaluate all beliefs
(at most m) against each set of restrictions of all the categories, which
in the worst case are m-q, where g is the number of nodes in the
experience graph, i.e. the number of possible categories. Finally, the
structuring function requires the reasoner to compare the implication
of each restriction among all the possible pairs of different nodes in
the graph, which in the worst case are m(g> — q) combinations.

Among all the symbols in our representations, the number of char-
acteristics w and types v of the semantic interface is the elements that
affect most the complexity of the algorithm since in the worst case
m = v-w?, due to the reification operator in Equation 8.5. This is a
drawback of the algorithm since it limits the span of different facts
that can be processed in the same application. Nevertheless, as we dis-
cussed in Chapter 7, the typical number of believes are considerately
smaller than m in practice, and an accurate design of the characteristics
of a scene might farther reduce their number at run-time, especially
when the semantic interface concerns exclusive relations, e.g. front
and behind, as well as depended relations, e.g. front and right.

129

130

8.2 https:

// github. com/
EmaroLab/ fuzzy_
sit.

8.3 Figure 8.7 shows
the same scenes of
Figure 7.5.

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

SIT is based on cardinality restrictions that we implemented with
the o-count, which has some drawbacks as discussed in Section 8.3.1.
Consequently, this might generate singularities in the representation,
i.e. when two different scenes that are represented with the same
beliefs. While for the crisp implementation of SIT this situation is
infrequent and it can be avoided if the characteristics always occur
with instances not of the same type, in the fuzzy implementation this
phenomena might occur more frequently. We argue that this would
happen more frequently especially if the semantic interface is simple,
i.e. if more symbols might be equivalent across different facts.

It is possible to reduce m maintaining the same semantic interface,
but singular representation might occur more frequently. If the ap-
plication allows this drawback, we can simplify the semantics of the
representation maintained by the algorithm and consider the type
of only one instance of a fact. In this way, we would represent for
instance that a cup has two objects in front, without specifying their
type. Differently from the crisp implementation of SIT, in this case, we
consider also inverse relation to not lose too much information during
the computation of P, e.g. in the guiding example of this section we
should also consider behind relationships among objects. With this
approach, the worst number of features would be m=2v-w and not
quadratic anymore, i.e. the algorithm scales linearly with respect to
the number of types that can be used for representing a scene. In
particular, to simplify the algorithm we change the reified property #
in Equation 8.5 to Z(R,,I's) = Ry, and we change Equation 8.6 as

EB {RZ('YZz'Yy) Q I'siyx ® rh:')/y}, (8.20)
he(1,w)

which identify a fuzzy degree computed as p, =
max { min{pi,, pxs, pyn},Vh € [1,w] } Remarkably, with similar
modifications, also the crisp implementation of the algorithm could
be simplified in the same way.

85 IMPLEMENTATION

As mentioned we based our algorithm on the fuzzyDL reasoner and
the Robotic Operative System (ROS). In particular, we implemented®2
the algorithm in its simplified version presented in Section 8.4.6, and
we tested the scenes in Figure 8.7, which have also been used to
evaluate the crisp implementation of SIT®3. In this paper, we present a
use case we design to highlights the behaviour of the algorithm, which
is discussed in the following sections. While in this section discuss
some aspects related to the perception of the environment for our
particular use case that influenced the algorithm.

In our use case, we consider the same scenario presented in chap-
ters 7, 9, 10, which involves a user arranging objects on a table. For

https://github.com/EmaroLab/fuzzy_sit
https://github.com/EmaroLab/fuzzy_sit
https://github.com/EmaroLab/fuzzy_sit
https://github.com/EmaroLab/fuzzy_sit

8.5 IMPLEMENTATION 131

o A P - A

Y ‘ 4 P < o713
/ b 72 E’ ® iy T SV |

g ; A) Y6 . r9 712

3 / 75 Y7 Pilil
(a) Scenel. (b) Scene2. (c) Scene3.
.’Yle
715. \ Y19
’ @
Y14) 17
(d) Scene4. (e) Scenes5.

Figure 8.7: Scenes used for validate the behaviour of the algorithm and compare the crisp with the
fuzzy implementation.

this scenario we consider the algorithm configured with a semantic in-
terface characterising scenes through spatial relations, i.e. R = {right,
bheind}, which are identified in a 2D space, i.e. the table. In this se-
mantic interface, characteristic involves objects with with geometric
types as instances, i.e. I' = {SPHERE, PLANE, CONE, CYLINDER}.

8.5.1 PERCEPTION AND INPUT FACTS

SIT elaborates scenes at discrete instants of time, and for each of
them, it assumes the ontology to contain facts in accordance with
Equation 8.2. As presented in Chapter 7, we consider inputs given
from the stack of ROS nodes presented in Chapter 2, which uses
RANSAC simulations to segment a point cloud and estimate the
shape of objects on table through the Point Cloud Library (PCL) [132].
In in Chapter 2 we propose a system that identifies a shape for each
object based on the most confident RANSAC simulation. However, in
this paper, we consider each object has some possible shapes with a
degree of truth, in accordance with the fuzzy semantic interface of
the algorithm. The latter is computed considering the rate between
the points of a cluster identifying an object, and the points of such
a cluster that RANSAC estimates to belong to a specific model, i.e. a
sphere, a plane, a cone, or a cylinder. This value is one if a cluster of
the point cloud has all points coherent to a geometric model, while
it would be o if no points are belonging to such a model. We use
such a measure to identify at runtime the fuzzy degree of the types of
each instance 7, and 1, involved in a fact, i.e. P, and P, defined in
Section 8.3.

RANSAC allows to estimate also geometrical characteristics of ob-
jects, which we can use to represent them with complex shapes but,
in this section, we only consider their centre of mass. Differently to

132 STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

0.8

0.6

€]
zsh

P

0.4

0.2

0.6

0-4 /Y/

~ 0.4
0.2 T

right [m] 0 0 behind [m]

Figure 8.8: The fuzzy degree of the points on the right-hand side of an object, which is marked with a

black dot in (0,0).

the crisp spatial relation used in Chapter 7, in this paper, we based
the representation of fuzzy spatial relation on the work presented
in [19]. In the latter, fuzzy morphology has been used to represent the
fuzzy degree of truth of the points that are related to a referencing
object of any shape. For instance, in a 2D map, this method would
assign a fuzzy value greater than 0 to all the points that are on the
north of a door, for instance. In Appendix A, we used a simplified
version of that method based on a conjunction of fuzzy kernels to
compute the combination of spatial relations applied between a robot
and an object. In this paper, we use the same computation to evaluate
the fuzzy degree of the characteristic of a fact, i.e. p;;, and Figure 8.8
shows the measurement of the degree of truth of some points to be on
the right-hand side of an object placed in to origin and marked with
a black dot. For representing behind relation for the referred scenario,
we merely rotate the kernel according to a reference frame shared
between the robot and the user.

Furthermore, in Chapter 9 we focused our attention on the location
of the reference frame that such a spatial representation requires,
and we test a scenario where it was always oriented as the face and
shoulders of the user that is supposed to supervise the robot. In
that work, we observed that a moving point of view of the scene
was confusing the user, mainly because they were trying to project
themselves in a previous orientation they assumed while interacting

0.8

0.6

0.4

0.2

8.6 ALGORITHM EVALUATION 133

14
/. 85 1 T
.\. .\./.

(a) Computed with a=.5 (b) Computed with a=.9

Figure 8.9: The experience graph learned from the observation of the scenes in Figure 8.7.

with the robot. The placement of a reference frame that simplified the
communication is a challenging open issue for our approach, but in
this paper we assumed the user to stand and face the table as long as
the interaction continues, i.e. his or her shoulders are assumed to be
aligned with an edge of the table.

Remarkably, in this scenario, the two characteristics of the semantic
interface, i.e. right and behind, do not only depend on a reference
frame, but they also dependent between each other, and this is a typical
case in practice. In particular, due to the fuzzy kernels we adopted,
when the degree of a point with respect to the former increases, the
latter decreases, except for the points on the diagonal, where the fuzzy
degree remains constant for both dimensions. Informally, in this fuzzy
spatial representation, if an object has another almost behind, it cannot
be possible that it is also almost in front. In accordance with the crisp
implementation of SIT, and this representation affects the beliefs of a
scene, and consequently the categories and the experience graph that
the algorithm would generate. From a general perspective, having such
a dependence between the characteristics of a scene reduce the number
of combinations that beliefs of € would have. This reduces consistently
the possibility of the occurrence of singular representations, which
have been discussed in Section 8.4.6.

8.6 ALGORITHM EVALUATION

Figure 8.9 represent two graphs we obtained after the algorithm pro-
cessed all the scenes in Figure 8.7, which are demonstrated one after
the other in two different tests. Similarly to the crisp implementation,
the algorithm always learned a new category, i.e. it never recognises a
previous scene, and the result of the structuring function at the end
of the demonstrations are the experience graphs shown in the figure.
We observe that the fuzzy SIT consistently extends the crisp imple-

134

8.4 the graphs above

are the fuzzy
representation of the
graph in Figure 7.4b.

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

mentation since we would obtain the same experience graph shown
in Chapter 7 if only o and 1 were used to represent input facts®+.
However, in this paper, we do not assume to perceive the environment
perfectly.

In particular, in all the scenes, the cone had also been represented
as a cylinder with a degree between .2 and .4. Nevertheless, for all
the perceived object we had a minimum fuzzy degree of the object
type consistent with the environment of .7. From the structure of
the experience graph in the figures, it is possible to observe two
interweaving behaviours of the algorithm. One involves the scenes in
figures 8.7a, 8.7b and 8.7¢c, where objects are introduced or removed
from the table, while the other involves figures 8.7d and 8.7e, where
objects have been moved on the table. We used the former example to
discuss how the algorithm structures category and sub-categories of a
scene, while with the second we will focus on scene classification and
similarity.

Particularly for the graph in Figure 8.9a, the reasoner infers that
Scene? is one of the most simple scenes it has never seen, therefore
it is a direct child of the root. Also, it infers that all the times a scene
€ is of the Scenel category with some degree greater than zero, it
must necessarily have some degree also in the Scene2 category, i.e.
the former is a sub category of the latter with the highest degree
(Scene2 [Scenel, 1). The same also occurs for Scene3, since the
other two categories model some of its parts. Similarly, also Scene4
and Scene5 are contained in Scene3, since in the latter three spheres
are arranged as in the former from left to right, and from front to
behind. Differently from the crisp implementation, in this case the
Scene4 and Sceneb are not equivalent since the spatial relations at
learning time had different fuzzy degrees.

Nevertheless, from the graph it is possible to notice that the two
categories are similar since they imply each other with a high fuzzy
degree. However, from the graph in Figure 8.9a it is not possible
to appreciate in any differences between the relative position of the
three spheres in Scene3 and Scene4 or Scene5, because in the former
scene is described by much more facts than in the other two. In other
words, the cardinality of the Scene3 increased due to uncertainties of
objects perceived as spheres with a low degree. This compensated the
cardinality differences between the positions of the three shapes in the
two scenes such to consider them to be equivalent, i.e. 3 subsumes
both ®4 and ®5 with the same degree. Informally, this shows that
the algorithm tends to give more importance to similarities when the
differences between the facts among the two scenes are small.

We compute the graph in Figure 8.9a through fuzzy cardinality
restrictions a=.5, which represent the qualitativeness of the restriction
as presented in Section 8.4.3. For this scenario, this value is suitable
because it allows maintaining a consistent representation even with

8.6 ALGORITHM EVALUATION 135

Figure 8.10: An example of learned scene used for testing the classifying behaviour if the cone is moved
in the highlighted workspace (shown in Figure 8.11). In the test shown in Figure 8.11d the
scene was learned with the cone in (0.3,0.4).

some noising inputs and not crisp spatial relations. However, the pro-
cess of the same experiences with relaxed cardinality restrictions, i.e.
a=.9, resulted in a more ambiguous graph, which is shown in Fig-
ure 8.9b. In this case, restrictions assigned a fuzzy degree greater than
zero for lower cardinally values, and we obtained a more uncertain
categorisation of the scenes. In particular, Scene4 seems to subsume
Scene2, even if with a low degree, because the algorithm gained more
the uncertainties about the facts given at learning time. Similar, this
also occurs for Scenel and Scene3, which resulted to be only partially
implied.

While the experience graph contains a fuzzy degree representing
implications, the output graph contains some of its nodes, which
classify the scene with a fuzzy degree greater than zero. To show the
classification performed by the algorithm provided with the semantic
interface presented for this use case, we placed two spheres at the
opposite corners of an imaginary square and a cone in the middle, as
Figure 8.10 shows. Then, we used the algorithm to create a category
of this scene, and we measured the classification degree of new scenes
where the cone was moved on the area of the table delimited from the
square. For each scene in which the cone has a different position, we
compute the classification degree in the class previously learned, and
Figure 8.11 shows such a value, i.e. p¢*/, plotted with respect to the
centre of the cone, where the two spheres are statically placed at the
opposite corners of the horizontal plane, i.e. the table.

During this measurements, we observed noise in the degree of the
identification of the object types between .1 and .23 with an average
of .07 and variance of the 20.4%. While the position of objects was
affected in average by +0.028m for both dimensions of the table,
with a maximum value of 0.091m and a standard deviation of 14.6%.

136

1 Ny 1 1
0.8 i 0.8 0.95
_ 06 _ 06 0.9
o o
= 04 = 04 0.85
0.2 | 0.2 | 0.8
1 0.75
0 0 Ay
N
0.6\\ o 06 "\ o 0.7
04 N\ x 06 04 N ox 06
0 2*\ 3 04 0 2’"\\ % 7 04 0.65
T @& 02 < e 02
) 0 0) 00 0.6
right [m] behind [m] right [m] behind [m]
(a) Computed with a=.3. (b) Computed with a=.5. 0.55
0.5
0.45
1 "y 1
0.4
0.8 0.8
1035
- 0.6 - 0.6
@Q 6& - 103
04 04
- 1025
0.2 02
- 10.2
0 0 .
N ¥ - 10.15
0.6 N\ A 0.6 ™~
N - 0.6 N
04 N\ i) 04 - - |01
N ~ 04
\\ // . 02 \\ K
02 g~ 02 2 g 02 - 15.102
. 00 . 00
right [m] behind [m] right [m] behind [m] Lo
(c) Computed with a=.7. (d) Computed with a=.5.
Figure 8.11: The degree of a scene classified in the category learned from the configuration shown in

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

Figure 8.10. The figures shows each sphere as a black dot at the corner of the workspace
and, for each location of the cone on the horizontal plane of the graph, i.e. the table, the
fuzzy classification degree of the relative scene is plotted as a point. Figures 8.11a, 8.11b
and 8.11c shows the results for different values of the fuzzy cardinality restrictions
parameter. Figure 8.11d, shows the results we obtained when the classified category was
learned from the configuration shown in Figure 8.10, but with the cone translated on the
right-hand side of o0.1om.

8.6 ALGORITHM EVALUATION

Figures 8.11a, 8.11b and 8.11c show the same experiment computed
for a=.3, a=.5, and a=.7. When a is high, the degree of a scene very
similar to the classifying category would be higher, as well as the value
of slightly different scenes would be lower than in the case where a
is low. In the latter case, we relax the cardinality restrictions, and the
classification results to be less selective and certain.

Moreover, we can observe from Figure 8.11 that the algorithm iden-
tifies a high degree when the cone is in the centre, as it was in the
scene at learning time. Also, it gives high value also for the scene in
which the cone is in the diagonal that connects the two spheres. This
because during learning the cone is supposed to be on the right (or
left) and in front (or behind) the spheres with a theoretical degree of .5,
in accordance with Figure 8.8, where an object is at the origin and the
other in the centre of the workspace, which is always the case for the
scene in Figure 8.10. In other words, the algorithm recognises all the
scene where the cone is in the diagonal because the semantic interface
we used does not consider distances between objects. Therefore all
the configurations where the cone is in the diagonal are symbolically
equivalent for the category learned from the scene in Figure 8.10.
This is an interesting behaviour for generalising qualitative scene cate-
gories, and Figure 8.11d shows a more complex case. In particular, the
latter has been obtained using the same approach as before, where
the learned scene was as shown in Figure 8.10 but with the cone
translated to the right-hand side of o.1om. In this case, we can observe
that the algorithm generates a smooth combination of diagonals with
different inclinations between the objects since different kernels are
used because the scene is not symmetric anymore.

Each graph in Figure 8.11 contains about 3700 points. During those
measurements, we collected the classification time required to evaluate
the scene in an experience graph having only one node. It was of 382ms
with a standard deviation of 25.6%, which was measured with an Intel
i5@2.5 GHz with 4 Gb RAM. Unfortunately, a systematic evaluation
of the performances of the algorithm for a general case is not trivial
since many factors considerably impact the computation time, such as
different numbers of beliefs and combinations of shared features that
the reasoner evaluates. Nonetheless, Table 8.1 shows the computation
time and standard deviation we observed during the tests with scenes
similar to the one shown in Figure 8.7. In particular, it shows the
time spent to learn and structure a new category in an experience
graph with g nodes, and even if it does not statistically characterise the
algorithm for a general case, we can confirm an exponential increase
of the learning time over demonstrations. In this case, the computation
time is mainly demanded by the structuring function, which compared
all the pairs of nodes in the graph and tends to increase exponentially
with the complexity of the ontology, which is consistent with the
behaviour of typical OWL reasoning tasks also for fuzzyDL [24].

137

138 STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

q \ o 1 2 3 4 5 6
time [m] | 0.19 032 084 109 454 961 1735
std [m] | 0.10 052 026 1.05 1.27 561 9.43

Table 8.1: Preliminary measurements of the computation time for learning and structuring a new scene
category in the experience graph. The time and standard deviation are expressed in seconds,
while g is the number of nodes in the experience graph before the computations.

Although, we should analyse the temporal behaviour of the al-
gorithm more systematically and in a more complex scenario, we
observer overall improvements of the performances with respect to
the crisp implementation. Probably this because the fuzzy implemen-
tation involves less symbolic and more numerical computation than
in the crisp case. We believe there is a large room of improvement for
performances optimisation, and we argue that this algorithm could
respect soft real time requirements suitable for HRI if it relies on a
well-designed semantic interface, and if the experience graph does not
continuously grow over time.

8.7 DiscussioNs

From the preliminary tests presented in the previous section, we ob-
serve that the algorithm with the simplified representation presented
in Section 8.4.6 behaved consistently with the full representation that
we obtained through the fuzzification of the SIT algorithm, presented
in Section 8.4. In particular, the evaluated spatial semantic did not
lead to singular representations, but this might occurs with other
semantic interfaces. Moreover, the simplified representation might be
less intuitive for a user, since the definition of the features does not
explicitly contains two objects types but only one. Nevertheless, fuzzy
representation improves the expressibility of the representation that
the user can access through linguistic quantifiers.

In this paper, we evaluated the algorithm in a simple scenario, where
we used fuzzy spatial kernels and geometric objects shape to generate
the space in which the algorithm represent and reason on experiences.
Nevertheless, we presented the operation performed by the algorithm
for a generic semantics. In particular, the algorithm only limits the
syntax in which facts should be encoded, but it does not limit their
meaning, which can be subjected to further reasoning procedures.
Indeed, the semantic in which the algorithm should operate is defined
by the application in which the robot should be deployed and depends
on its perception abilities. For instance, multimodal techniques can be
used for generating facts, e.g. using late fusion as we presented Chap-
ter 4. However, the algorithm is based on a symbolic formalism, and
even if it can encode quantitative representation, it has been mainly
designed to reason on qualitative representations of the environment.

8.7 DiscussIONS

Through the evaluation presented in the previous section, we can
observe that the fuzzy implementation of SIT is robust to perception
noise, as well as to uncertain relations that would characterise scenes.
In particular, it consistently learns, structures, and recognises cate-
gories even if the type of the instances of the represented facts is
ambiguously represented through a degrees of truth. The algorithm
uses an extension on the crisp semantic interface that assumes each
instance in a scene to be represented with a non-ambiguous type.
Therefore, for a consistent structuring of the experience, the algorithm
should reason on scenes where objects have a type but, in the fuzzy im-
plementation, this assumption is relaxed. In other words, we assumed
that instances of the environment have a prevalent type.

As far as the categorisation of sub-scenes is concerned, the fuzzy
implementation of SIT fully extends the crisp formalisation. Besides,
it identifies a subsumption degree, which allows to reason on the
similarity between scenes differently from the crisp implementation.
In particular, in this paper we presented examples of similar scenes
and the importance of the learning parameter a, which is not available
in the crisp implementation of SIT. Also, we proposed an algorithm to
generate more expressive representations than in the crisp case. As a
motivation for that, consider that all the scenes in figures 8.1a and 8.6b
would be considered equivalent if a crisp front relation is considered.
Instead, in this paper, we showed how the algorithm could reason on
the fuzzy representation of the scene to classify them differently, and
to reason on their similarities.

Differently from the crisp implementation, the fuzzy SIT could
represent some interpretations of scene overlapping. However, this
requires to design reasoning procedures based on complex graphs
generated through SIT, which is challenging problem out of the scope
of this paper. Another challenging issue to evaluate more in detail is
the scalability of the algorithm. In particular, we discuss the worst
case complexity and we preliminary report some computation times,
but a more deep analysis should be performed through the compari-
son of different semantic interfaces. For a long time application, we
argue for an experience graph that does not continuously increases
over time as we presented in this paper with showing purposes. In
particular, the learning phase of the algorithm should be used when
required only, and the experiences should be removed if they are not
needed anymore. This not only would improve the performances of
the algorithm, but also its output graph would be simpler to be used
from an external component, and it might contain less ambiguity as
well, e.g., a similar scene. In the preliminary tests presented in the
previous section, we observe that the algorithm with the simplified
representation presented in Section 8.4.6 behaved consistently with
the full representation that we obtained through the fuzzification of
the SIT algorithm, presented in Section 8.4. In particular, with the

139

140

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

evaluated spatial semantic we did not experience singular representa-
tions, but this might occurs with other semantic interfaces. Moreover,
the simplified representation might be less intuitive for a user, since
the definition of the features does not explicitly contains two objects
types but only one. Nevertheless, fuzzy representation improves the
expressibility of the representation that the user can access through
linguistic quantifiers.

In this paper, we evaluated the algorithm in a simple scenario, where
we used fuzzy spatial kernels and geometric objects shape to generate
the space in which the algorithm represent and reason on experiences.
Nevertheless, we presented the operation performed by the algorithm
for a generic semantics. In particular, the algorithm only limits the
syntax in which facts should be encoded, but it does not limit their
meaning, which can be subjected to further reasoning procedures.
Indeed, the semantic in which the algorithm should operate is defined
by the application in which the robot should be deployed and depends
on its perception abilities. However, the algorithm is based on a sym-
bolic formalism, and even if it can encode quantitative representation,
it has been mainly designed to reason on qualitative representations
of the environment.

Through the evaluation presented in the previous section, we can
observe that the fuzzy implementation of SIT is robust to perception
noise, as well as to uncertain relations that would characterise scenes.
In particular, it consistently learns, structures, and recognises cate-
gories even if the type of the instances of the represented facts is
ambiguous, and their relations has degrees of truth. The algorithm
uses an extension on the crisp semantic interface which assumes that
each instance in a scene must be represented with a non-ambiguous
type. Therefore, for a consistent structuring of the experience, the
algorithm should reason on scenes where objects have a type but, in
the fuzzy implementation, this assumption is relaxed. In other words,
we assumed that instances of the environment have a prevalent type.

As far as the categorisation of sub-scenes is concerned, the fuzzy
implementation of SIT fully extends the crisp formalisation. Besides,
it identifies a subsumption degree, which allows to reason on the
similarity between scenes differently from the crisp implementation.
In particular, in this paper we presented examples of similar scenes
and the importance of the learning parameter a, which is not available
in the crisp implementation of SIT. Also, we proposed an algorithm to
generate more expressive representations than in the crisp case. As a
motivation for that, consider that all the scenes in figures 8.1a and 8.6b
would be considered equivalent if a crisp front relation is considered.
Instead, in this paper, we showed how the algorithm could reason on
the fuzzy representation of the scene to classify them differently, and
to reason on their similarities.

8.8 CONCLUSIONS

Differently from the crisp implementation, the fuzzy SIT could
represent some interpretations of scene overlapping. However, this
requires to design reasoning procedures based on complex graphs
generated through SIT, which is a challenging problem out of the
scope of this paper. Another challenging issue is a detailed evaluation
of the algorithm scalability. In particular, we discuss the worst case
complexity and we preliminary report some computation times, but a
more deep analysis should be performed through the comparison of
different semantic interfaces. For a long time application, we argue for
an experience graph that does not continuously increases over time
as we presented in this paper with showing purposes. In particular,
the learning phase of the algorithm should be used when required
only, and the experiences should be removed if they are not needed
anymore. This not only would improve the performances of the algo-
rithm, but also its output graph would be simpler to be used from an
external component, and it might contain less ambiguity as well, e.g. a
similar scene. In Chapter 10, we use the crisp implementation of the
algorithm to tackle this issue with an architecture that encodes, stores,
retrieves, consolidates and forgets experiences, and we observe that
the fuzzy implementation could be used with minor changes to such
an architecture.

8.8 CONCLUSIONS

The paper presented the extensions of the SIT algorithm described
in Chapter 7 with a fuzzy ontology. The algorithm uses symbolic
inputs retrieved from the environment at discrete time instants to
learn a graph of experience in a one-shot manner. Each node of the
graph is a categorisation of the observations, and they can be used
for classifying future scenes. Also, the graph structure sub-scenes and
allows to reason on the similarity between experiences at different
instant of time.

The algorithm has been designed for HRI scenario and maintains
robot’s experiences through logical formalism that are understandable
by a user. For interacting purposes, we design an algorithm that rea-
sons for uncertain and qualitative representations of the environment.
We deployed our algorithm in a simplified spatial scenario to present
its behaviour when a fuzzy ontology is used. Contrary to the crisp
implementation of the algorithm, in this paper we showed that with
fuzzy reasoning we could perform structured learning in uncertain
environments, i.e. the fuzzy implementation of SIT is robust to noise
and vague descriptions of the environment.

We discussed about the limitation of this implementation of the
algorithm, that are mainly due to the issue of reasoning on fuzzy car-
dinality restrictions, which might generate inaccurate representation.
However, we argued that those case are sporadic in practice and can

141

142

STRUCTURED LEARNING IN UNCERTAIN ENVIRONMENTS

be avoided by interfacing adequately the algorithm with perceiving
components. Also, we presented the complexity of the algorithm, and
we proposed a simpler representation of the knowledge for improving
the performances.

As further work, we want to deploy the algorithm in more realistic
scenarios and evaluate its scalability for long-term applications. This
would generate large experience graphs, through which we can evalu-
ate the algorithm more systematically. Also, given complex experience
graphs, it could be possible to design further reasoning procedure, as
well as procedures to communicate the experience of a robot to a user,
which might want to correct them through dialogues.

ACKNOWLEDGEMENTS

This work has been partly supported by a grant of the Fondazione/S-
tiftelsen C.M. Lerici awarded to the first author in 2017.

PartV

SUPERVISE TO CONSOLIDATE AND FORGET

This part shows architectures which have been developed
based on our design pattern.

DIALOGUE-BASED SUPERVISION
AND EXPLANATION OF ROBOT
SPATIAL BELIEFS: A SOFTWARE
ARCHITECTURE PERSPECTIVE

ABSTRACT

The paper presents a software architecture allowing a robot to learn
new compositions of objects in table-top scenarios by human demon-
strations. The robot qualitatively represents those scenes, reason upon
their similarity, and interact with humans through dialogues to talk
about represented scenes. We formalise the robot behaviour based on
a Description Logic representation of scenes through spatial beliefs, i.e.
learned logic predicates, on which the robot applies symbolic reason-
ing to recognise and explain the scene. We exploit the logical structure
of predicates in a software architecture that enables a robot exposing
its beliefs, and if required, it allows a human supervisor to apply
corrections in a form akin to robot active perception.

The paper critically discusses the design of the software components
and their interfaces, discriminating between knowledge representa-
tion and dialogue management. Those components are developed
for human-robot knowledge sharing applications involving visual,
verbal, and auditory modalities of interaction. Software components
are treated as grey boxes managing an ontology-based formalisation
of robot beliefs through four contextualised dialogues, for which we
present a unique design pattern.

robot supervision - learning by showing - dialogue management
AUTHORS
Luca Buoncompagni and Fulvio Mastrogiovanni

AFFILIATION

University of Genoa.

145

Published in the
Proceedings of the
27th IEEE
International
Symposium on
Robot and Human
Interactive
Communication
(RO-MAN 20138,
Nanjing, CN).

146

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

Figure 9.1: The experimental scenario.

9.1 INTRODUCTION

The Defence Advanced Research Projects Agency (DARPA) recently
advocated the need for intelligent systems trading-off explainability
and inference accuracy when Artificial Intelligence (AI) techniques are
used [69]. It is argued that an increase in performance for such systems
can be achieved when Al agents interact in synergy with humans.

Al systems should be able to anchor numerical (sensor-based) mea-
surements of the environment to a symbolic representation under-
standable by humans [42]. In the context of Human-Robot Interaction
(HRI) and Human-Robot Cooperation (HRC) scenarios, we foresee in-
teraction processes where a person can access anchored symbols in the
robot knowledge representation system with the purpose of teaching a
robot how to interpret sensory data, to supervise it during interaction
tasks, and to obtain information about performed inferences and rea-
soning processes. Due to the nature of symbolic knowledge, we argue
that communication at the verbal level is of the utmost importance in
real-world settings, although different modalities (to be integrated in
a well-defined framework) should play a decisive role to achieve such
an interaction flexibility, e.g. deictic gestures [25].

This paper addresses the design of software architectures for robots
able to:

e maintain a representation of salient features of the environment
acquired through multiple interaction modalities, and

e enable humans to instruct, supervise, and obtain understandable
information from a robot at a symbolic level, via speech-based
dialogues anchored to the robot belief and reasoning spaces.

9.1 INTRODUCTION

In particular, the paper discusses three use cases in a tabletop sce-
nario where a human and a robot face each other for interaction or
cooperation purposes (Figure 9.1). The robot is a passive observer
that learns, recognises, and explains scenes perceived via a RGB-D
sensor, which representation is assessed and if necessary amended by
the human through dialogue. Three phases are envisaged in the in-
teraction process: first, the environment is set up according to the
task at hand; second, the robot interactively performs reasoning upon
scenes and learning, while being supervised by a human; third, it
describes the outcome of such a process to the human. In this context,
our main contribution is the definition and implementation of relevant
design/interaction patterns for reusable software components, to be
adopted when two specific HRI- and HRC-oriented robot functionali-
ties are required, namely (i) the use of a knowledge base grounding
reasoning techniques, specifically in the case of Description Logic
(DL) based reasoning about perceived scenes, and (i) the adoption
of contextualised dialogue management, for which we present an
architectural template discussed for four different types of verbal
interaction.

The need for Al systems to be able to explain or at least expose
with sufficient clarity their representations and inferences is consid-
ered of the utmost importance in recent scientific and technological
trends. However, such a capability has non obvious implications on
the interaction process, as well as on the employed representation and
reasoning approaches.

Data-driven frameworks for classification and inference (e.g. based
on hidden Markov models or Random Fields) do not employ symbolic
knowledge, and their behaviour can be hardly understood by non-
technically skilled people. A few systems developed for explanation
purposes have been proposed, a prototypical example being the work
described in [26], where a graphical approach based on Principal
Component Analysis is adopted. Still, a huge amount of training is
needed for a human to understand the meaning associated with data
representation. In [43], visual and audio information is used for robot
teaching through reinforcement learning, but no clue is given about
how to access learned policies. Ideally, symbolic approaches are more
prone to ground human-robot communication processes. For instance,
the work in [61] shows how a symbolic representation allows humans
to interact with a mobile robot that asks for clarifications about its
workspace, whereas in [139] humans can instruct a robot on how to
formalise STRIPS-based planning domains. A framework for accessing
robot beliefs through dialogues has been described in [163]. However,
no proposal for how to assess learned robot beliefs is discussed.

In software architectures for robots, a symbolic representation is
usually maintained in a knowledge base encoding prior knowledge,
the relevant state of the environment, as well as the robot abilities.

147

148

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

Interaction processes require such knowledge base to be continuously
updated. Depending on their semantics, encoded symbols are pro-
cessed by reasoning algorithms grounding robot behaviours. In order
to sustain dialogues with humans, such reasoning algorithms can
be bi-directionally mapped to appropriate dialogue structures. This
mapping has been investigated to ground explainable Al systems,
e.g. enabling robots to explain why they did not perform a certain
action [62]. The Description Logic formalism is a de facto standard to
represent knowledge, and it performs semantic consistency checks
about predicative knowledge in ontologies. In [92] such a feature has
been exploited to manage dialogues aimed at anchoring linguistic
object features to RGB-D images.

The paper is organised as follows. Section 9.2 describes the modules
used to represent information. Section 9.3 focuses on human-robot
dialogue management. A discussion about three use cases is provided
in Section 9.4. Conclusions follow.

9.2 KNOWLEDGE REPRESENTATION AND ROBOT BELIEFS
9.2.1 OVERVIEW

Figure 9.2 shows the proposed interaction patterns from a Component-
Based Software Engineering (CBSE) perspective, graphically shown
through structural and behavioural Unified Modelling Language
(UML) diagrams. In the Figure, boxes represent software components,
which provide and require interfaces to operate. The latter are graphi-
cally identified with the ball-socket notation. All interfaces are charac-
terised by a specific message defining the data type exchanged among
components through ports (i.e. data communication channels). Ports
are indicated with small component rectangles, and enumerated with
P symbols.

We specify the proposed components for the widely adopted Robot
Operating System (ROS) framework. Therefore, we assume a compo-
nent to be a node or a service, the former characterised by a spinning
rate, while the latter providing services on demand. In the first case,
all messages are exchanged using the Publish-Subscribe policy, e.g.
through P,, Pa, or Pg, whereas in the second case a service is pro-
vided with at least a port with a required and a provided interface,
e.g. P13, Pas, or Py, respectively, whose messages follow the Request-
Process-Reply pattern (in our case, assuming blocking calls). Therefore,
nodes are assumed to communicate asynchronously, whereas services
operate synchronously. It is noteworthy that we adopt the meta node
(or service) UML formalism to indicate components that are internally
constituted by other nodes and services.

9.2 KNOWLEDGE REPRESENTATION AND ROBOT BELIEFS

149

—C% tracked objects @ object features «Java service» =
r») s £] point Scene Identification
> «metanode». —Pi| cloud and Tagging (SIT)
Primitive Identification (}—(<
and Tagging (PIT) Pos $
end revise knowledge)

L

© e) P19 vV
«ROS node» & J (represent €)

Scene Knowledge

yes
Generator (SKG) @

no

Ps L
Cscene arrangement)@ J Py ask Categ\fry name)
Py

-

\=

-

. P A H*
tﬁ(create scene beliefs)é{ (learn $€_q>)
> A)2(explain ®* ><,
. Pn Pxn

C

v
(scene reasoning)su: Pos

P—

_Al) manipulations

— /lk,_ 5 begin

(P) Q_JL finish
consistency

Pis
P «meta service» P query Pz «meta service»
24 . 25 O= Dialogue
) a Multi Ontology (Managerg (DM)
Reference (aMOR) =? Pis P, P,

files access response)—l audio ‘6 audio

Figure 9.2: Components and interfaces.

9.2.2 PRIMITIVE IDENTIFICATION AND TAGGING

Figure 9.2 on the top-left shows the Primitive Identification and Tag-
ging (PIT) meta-component, which has been thoroughly described in
Chapter 2. PIT implements a stack of ROS-based nodes making use of
the Point Cloud Library (PCL) [132] to acquire RGB-D data and the
Random Sample Consensus (RANSAC) estimation algorithm to clas-
sify object shapes in the robot workspace. PIT segments objects located
on a table, identifies their salient geometrical features, and assesses
their mutual qualitative spatial relations (first column of Table 9.19%).
PIT orchestrates two computational strands: on the one hand, object
position tracking, which defines unique object identifiers in the form
ID; for estimating qualitative spatial relations based on their centre of
mass; on the other hand, the estimation of object features, such as their
colour, shape, and geometrical coefficients. It is noteworthy that the
two processes have different computational requirements, in terms of

9.1 computed as
shown in
Section 7.6.4.

150 DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

71 A Y2 73 Y2 ’74A Y3 T2
>Y >Y =Y
(a) Scene 1. (b) Scene 2. (c) Scene 3.

Figure 9.3: Three examples of scenes experienced by the robot for the presented use cases; y represents
the right direction.

node spin rates. As a consequence, PIT provides two asynchronous
interfaces connected from P, and P3, respectively, to port Py of the
Scene Knowledge Generator (SKG) meta-component.

From a computational perspective, we anchor symbols «; to real
objects through their unique identifiers. However, such a choice is not
appropriate to ground dialogues, specifically when different instances
of the same object category must be disambiguated in the same scene
as perceived by the robot, which can be done using their most relevant
features. As shown in Table 9.1, we order each object features from
the most (e.g. the shape) to the less important (i.e. the ID), and we
choose the first m features allowing for an unambiguous anchoring
between real-world objects and their symbolic representation. For
instance, Figure 9.3c shows an example where objects are anchored as
red sphere (y2), green sphere (7y3), and cone (y4). While the shape feature
can discriminate between sphere and cone, the two spheres can be
disambiguated only by their colour feature. In order to design scene
recognition and learning approaches, such anchoring policy results
to be too restrictive, since it implicitly suffers from a combinatorial
explosion on the number of object instances, and therefore to those
aims we consider only geometrical shapes, i.e. shape is the only object’s
feature used for describing spatial relations among objects, as shown
in the second and third columns of Table g.1. It results that as far as
spatial relations are concerned, all sphere objects are equivalent, but
this is not valid when a symbol v; is used to ground dialogues, where
all other object features are used.

The associated reasoner recognises, learns and explains tabletop
scenes based on logical predicates, as shown for illustration in the first
column of Table 9.1. Those predicates are represented in an ontology
describing spatial relations between objects, and initialised using the
information provided by PIT. We consider an a priori defined set of
possible features and spatial relations, respectively sphere, cone, and
cylinder, as well as on the right of, behind, and the inverse relations. For
instance, in Figure 9.3a robot spatial beliefs are represented in the
form right (vy1:CONE, 7, : SPHERE), which can be expressed using such
verbal-level sentences as “-y; is a cone”, “, is a sphere”, and “The
cone has the sphere on the right hand side”, with respect to the global
reference frame as seen by the supervisor (Figure 9.1).

9.2 KNOWLEDGE REPRESENTATION AND ROBOT BELIEFS 151

Object features and spatial relations | Scene representation Scene categories

: CONE, blue, yq, IDy;

n A S: O =oN
72: SPHERE, red, 15, ID;

. rightCONE(€e,72). >1 rightCONE.SPHERE
right (71,72 .

: SPHERE, red, 15, IDy;

72 Y2, 222 5 = O

73: SPHERE, green, i3, ID3;

right(y3,72) .
7Y2: SPHERE, red, v, IDy;

rightSPHERE(€,y2). | =1 rightSPHERE. SPHERE

73: SPHERE, green, y3, ID3; S:
CONE, bl ID i ghtCONE (€, 73) ®s = @M
: 7 ue, 7 ; ri 6’ 4
e e e ‘1; ao .ghtCONE(73) >2 rightCONE. SPHERE I
ri s , ri €, ’
LAY T 18 72 >1 rightSPHERE . SPHERE
right (y4,72), rightSPHERE(€,72).

right (73,72).

Table g.1: Predicates generated in the ontology for the three scenes in Figure 9.3 learned in sequence.

9.2.3 SCENE KNOWLEDGE GENERATOR

SKG is involved in the first phase of the interaction outlined in the
Introduction, and it is designed as a node calling three services in
sequence (therefore exploiting the Computational design pattern) while
evolving from an initial to a final state as shown in Figure 9.2. SKG
serves the purpose of allowing a human to arrange the tabletop en-
vironment, while enabling the robot to observe the table using RGB-
D data as managed by PIT. Remarkably, we assume that the scene
the robot perceives is not modified during the other two interaction
phases.
SKG requires the Dialogue Manager (DM) service (with a signal
from Ps to P13) to notify the human supervisor that the robot is ob-
serving the scene. Human supervisors can move the objects, and then
trigger the scene reasoning process using specific sentences, which
generates a message from Pj3 to Ps. From Ps, which is connected
to a Multi Ontology Reference (AMOR)?%* service, the most up-to- 9.2 presented in
date robot spatial beliefs from RGB-D data (provided using Py) are ~ Section 6.2.1
mapped into predicates in the ontology, and then the SIT service is
called through P;. Finally, SKG terminates, and the sequence can be
performed again, thereby reasoning on a new scene.

9.2.4 SCENE IDENTIFICATION AND TAGGING

The Scene Identification and Tagging (SIT) service is involved dur-
ing the second and the third phases identified above. Through P,
SIT is the fundamental module enabling scene representation and
explanation. In the second interaction phase, after a scene has been
acquired and modelled at the symbolic level, a human supervisor can

152 DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

O

O, —®

Figure 9.4: The scene implication graph learned based on the knowledge in Table 9.1.

assess robot beliefs before scene reasoning occurs, while in the third

phase a consistency check about robot explanations related to the

reasoning process is performed. Scene reasoning employs a simplified

version of the method proposed in Chapter 8, which exploits Fuzzy

9.3 presented in DL reasoning. In this case, we consider a Boolean implementation®3

Chapter 7. based on the Pellet OWL reasoner [144]. Such a DL reasoner structures

the symbolic knowledge as shown in Table 9.1, where object features

and the related spatial relations in the first column are mapped to

the representation shown in the other two columns. In particular, in

the second column of the Table, each row shows a scene description

€ characterised by predicates in the form rightCONE(e,y,: SPHERE),

which semantics can be expressed as “In the scene € a cone has a

sphere on the right hand side”. Using the symbolic representation,

DL-based instance checking is enough to classify the symbol € within

a set of scene categories ®;, where each category may be learned via
demonstrations.

As it can be seen in Figure 9.2, SIT requires the human assessment
of the representation provided by SKG, which is used to generate
scene instances € in the ontology. SIT performs instance checking to

9.4 the set of scene classify a scene € as part of one or more scene categories ®;74. If
categories is referred this does not occur, i.e. V®; C ® it happens that ®;(€) is inconsistent,
as P = {g; i} * a new scene category ®. C P is learned using € as a template, as

e shown in the third column of the Table. Therefore, while € is a unique
instance that may change every SKG iteration, ® is a structure in the
ontology that is populated via a set of demonstrations (Figure 9.4).
It is noteworthy that by definition ®. is always the best category for
the scene € from which it has been learned, i.e. for the same row of
Table 9.1, the scene in the second column always fits perfectly with
the scene category restrictions in the third column. As a consequence,
the robot can describe the scene based on the classification of € in
the scene categories in ®, for both branches of the if block in the SIT
meta-component of Figure 9.2.

SIT learns a scene category from demonstration by counting the
number of spatial relations of € and limiting their cardinality in the
definition of ®.. Such definitions are made up of predicates humans
can understand, e.g. the logic formula ®; = >1rightCONE. SPHERE in

9.2 KNOWLEDGE REPRESENTATION AND ROBOT BELIEFS

Figure 9.3a can be easily interpreted as “In ®; at least one cone has a
sphere on the right hand side”.

We exploit DL-based classification to ascertain scene similarities
expressed as implications between scene categories. For instance, after
the robot learns all the scene categories related to actual scenes shown
by humans, an implication graph is induced in the ontology represen-
tation. The implication graph related to the scenes we consider here is
shown in Figure 9.4. In this graph-like representation, nodes are scene
categories, and oriented edges are logical implications between them,
e.g. for the scenes in Figure 9.3b and Figure 9.3¢, the DL reasoner infers
that “®3 includes ®,”. Such a logical implication is consistent because
all the cardinality restrictions of ®, are also respected in ®s. In fact,
®,(e) is consistent if P3(e) holds, but not vice versa, i.e. &3 = P, in
a DL-induced semantics. It is interesting to note that ® implicitly
represents a scene that includes all the demonstrations given to the
robot so far. It is possible to refer with ®, as the best classification
category for a scene instance €, as the node of the graph classifying e
that is farthest (i.e. the most specific one) with respect to ®.

In order to achieve such a behaviour, SIT calls DM services to start
three different types of dialogue with the human supervisor. In the
tirst dialogue type, the predicates generated from RGB-D data and
represented in the knowledge base are inspected (P19), while the
second dialogue type occurs if the scene € is not recognised (P;;) for
giving a meaningful identifier to the new scene category @, i.e. an
anchoring name. In the third dialogue type, the robot describes the
scene in so far as scene category definitions and the implication graph
are concerned (Pp3).

SIT also exploits the services provided by AMOR (P2, P2) to
update and reason upon scene-related predicates. It is important
to remark that since we adopt Boolean predicates, uncertainty and
vagueness possibly associated with spatial relations are not considered.
Indeed, since RGB-D data are affected by noise, the corresponding
spatial relations in Table 9.1 could slightly differ over time, and in gen-
eral the sensitivity of the overall system behaviour on sensor noise can
be not negligible. While the interaction process unfolds, if the human
supervisor assessment does not correct wrong predicates, scene expla-
nation can possibly be inconsistent with the real situation, i.e. symbol
anchoring is wrong. However, this is not generically true for a Fuzzy
DL implementation, which may exploit the representation of vague
concepts to cope with and limit anchoring errors. We presented such
a simplified spatial representation, that requires knowledge revision,
while focusing on the software designing of an architecture allowing
for such a revision process.

153

154

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

9.2.5 A MULTI ONTOLOGY REFERENCES

A general description of the a Multi Ontology References (AMOR),
and its connection with ROS-based nodes or services (ARMOR), can
be found in Chapter 6, in particular as a service to use the Ontology
Web Language (OWL) [73] with robot-based architectures.

The management of a symbolic representation in robot architectures
leads to a number of computational issues, because many relevant
traits of the robot workspace are out of the robot control and should
be dynamically updated at the representation level. In principle, many
components of reactive/deliberative architectures can generate robot
beliefs to be stored in the symbolic representation. All such robot be-
liefs may be used by reasoners or even by other components to ground
actual robot behaviours. However, only robot beliefs actually used to
that aim should be explicitly represented, because reasoning processes
are time-consuming tasks which complexity also depends on the num-
ber of such beliefs. As a consequence, software components generating
data to be represented in the knowledge base are subject to synchro-
nisation, because employing a DL reasoner to update the knowledge
base when a single belief is modified is not computationally feasible in
practice. In order to address these issues, AMOR exposes two services
to maintain and access robot beliefs in a thread-safe manner, as well
as whole shared semantics for all software components.

As it can be seen in Figure 9.2, AMOR provides a manipulation (Paa4)
and a query (Pa5) service, as well as an interface to trigger knowledge
base loading and storage (P>7). These two services use a ROS-Java
hierarchy of OWL-based operations specified through directives (e.g.
add, remove, classify, imply, etc.) involving properties and data, or
sets and symbols (i.e. predicates in our case). In particular, the first
service replies with a consistency signal (i.e. successful manipulation),
while the second service provides the caller with the list of queried
predicates. It is noteworthy that such services might introduce delays,
but in our work those respect soft real time constraints as far as
dialogues are concerned. A user experience and system reactivity
assessment is out of the scope of this paper.

9.3 HuMAN-ROBOT DIALOGUE MANAGEMENT
9.3.1 DIALOGUE MANAGER

In our scenario, four different dialogue types are used (Figure 9.5),
which are based on two components, namely a Speech Interaction
Manager (SIM) and a SIM-driver, i.e. one of the components on the
right-hand side of the Figure. Each SIM-driver implements a service
that bootstraps a dialogue and is notified when the dialogue termi-
nates, using Boolean signals streamed on P;3. The component controls

9.3 HuMAN-ROBOT DIALOGUE MANAGEMENT

155

«ROS node» 2J Dl «ROS service» 2] pl
Speech Interaction i Ar?acge;%nt 1
anager (SIM) o= { Py, Dialogite (SAD) Py
text —J Pl 1
3 15 18
Ps Pu ’ «ROS service» 21,
text-to-speech)< Pis Demonstrative 713
P2 .. Scene P2,
9(speech-to-text) —{) p2 Dialogue (DSD) 2
%9 C v Pro = =
CAGG evaluation J<—} c «ROS service»]
v C pf’4 Scene 73%
no grammar p3 Explanation P3
A ° Dialogue (SED) Y
yes Pis 18
\{ unclear sentence —
() i «ROS service» 2] i
- 14 Knowledge 13
(format semantics)—9[P4 Revision P
v P12 7;16 Dialogue (KRD) 147
® semantics L 18

Figure 9.5: The internal components of Dialogue Manager (DM).

audio hardware through appropriate interfaces (P14, P15 and Pi¢). The
DM meta-service in Figure 9.2 is based on pairs of such components.
The complete architecture can be visualised using both Figure 9.2 and
Figure 9.5, where we connect 73113 to Ps, 73123 to P, Pf’3 to P71 and 73{13
to Pa3. Since the purpose of dialogues is to acquire further knowledge
to update robot beliefs, we provide each SIM-driver with a connection
to AMOR through P;7 and Pis.

We exploit this design to define four contextualised dialogues im-
plemented as finite state machines, which are discussed below, but
the interface can also accommodate more sophisticated dialogue tech-
niques.

9.3.2 SPEECH INTERACTION MANAGER

The Speech Interaction Manager (SIM) is the meta-component man-
aging all low-level aspects of speech-based interaction. In our imple-
mentation, SIM is a ROS-based node running with a given frequency,
and it is paired with a parallel thread that continuously listens at
the microphone (Ps). During each loop, SIM checks Pj;, and if a
text is waiting to be processed, it is rendered as an audio signal
through the Google Speech API [141], and then played via Ps. If any
speech-to-text result is pending, its semantics is evaluated as a sen-
tence via the Concept Action Grammar Generator (CAGG) API 95,
which exploits Backus-Naur Form (BNF) grammars, i.e. collections
of rules to assign semantic tags to specific words in a text. As an ex-
ample, a trivial statement can be composed from [[attributes,...],

9.5 presented in
Chapter 3.

156

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

subject], e.g. “The green, big, sphere”, whereas another rule could
be [attribute,subject,be,object], e.g. “the blue object is a cone”.
Therefore, the outcome of the SIM component, through P;,, consists
of a list of tags representing the semantics of rules that match in a
sentence, e.g. “blue” is an attribute, and “cone” is an object. We
delegate to SIM-drivers the task of specifying the set of rules to be
matched through Py, i.e. SIM-drivers are contextualised.

Figure 9.5 shows the SIM node with all ports using asynchronous
communication, with the purpose of efficiently using audio channels.
Nevertheless, we restrict possible dialogue types assuming that both
humans and robots agree on the don't speak if the other speaks policy,
and that the dialogue does not involve more arguments, i.e. there
cannot be more than one SIM-drivers activated from P;3 at the same
time.

9.3.3 DiALOGUE TyYPEs

9.3.3.1 SCENE ARRANGEMENT DI1ALOGUE (SAD)

SKG requests through Ps the SAD service to wait for the human
supervisor to arrange the scene (Algorithm 9.1). Thus, when SKG
streams a positive Boolean signal to P}, (line 9.1.1), the interaction
starts. It should be noted that the dialogue driven by SAD does not
modify the ontology. It only waits for the human supervisor’s trigger,
ie. P}, and Pjg are not used. When the scene is ready to be acquired
and processed, the human supervisor is supposed to utter a sentence
mapped to the look semantic tag, and associated with predefined
sentences through the rules in grammar G; (sent to SIM through P
at line 9.1.2). Furthermore, at line 9.1.3, SAD requires the robot to
notify to the human supervisor that it can process a new scene. Then,

Algorithm 9.1: The Scene Arrangement Dialogue (SAD).

911 when P, : begin — b = true

9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9

Pro(grammar < G;)
Pri(text < “I am looking”)
when Py, : semantic — tag

switch tag do
case Gj.look
L Pli(end +true)
otherwise do
| goto line 9.1.4

9.3 HuMAN-ROBOT DIALOGUE MANAGEMENT

the system waits for semantic tags provided by SIM through sentence
evaluation (line 9.1.4): if the G;.1o00k tag is provided, SAD returns an
end signal via 73113, therefore terminating the service; otherwise, the
robot keeps listening to the human supervisor.

9.3.3.2 DEMONSTRATIVE SCENE D1ALOGUE (DSD)

When SIT is not able to classify a scene using the already available
scene categories in @, the robot builds a new scene category @ starting
from the definition of the current scene instance €. SIT delegates to
the human supervisor the task of defining the scene category anchor
by requiring the DSD service with a signal from P, to PZ;. Then, DM
uses the state machine in Algorithm 9.2 for driving robot behaviour. In
particular, DSD requires the robot to ask for a scene name (line 9.2.3),
and to evaluate what the human supervisor replies (line 9.2.4). Then,
the Algorithm sets the possible SIM semantic evaluation to grammar
G, defining all the possible switch...case options based on rules
identifying a name in a sentence (line 9.2.2). If this occurs, at line 9.2.7
the AMOR service is used to anchor such a word in the ontology
to ®.. Finally, the Algorithm waits for a consistency check provided
by AMOR (line 9.2.8): if it is positive, the dialogue is terminated
(line 9.2.9); otherwise, the name is notified to be invalid and DSD is
repeated.

9.3.3.3 SCENE EXPLANATION D1ALOGUE (SED)

Either SIT has recognised or learned a scene, the robot can describe
it and explain how it has been classified. This is accomplished using
SED, which requires a human supervisor’s feedback about the expla-

157

Algorithm 9.2: The Demonstrative Scene Dialogue (DSD).

921 when P, : begin — b = true

9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9

9.2.10

9.2.11

9.2.12

9.2.13

Pro(grammar <—G»)
P11 (text <“What is this scene?”)
when Py, : semantics — tag

switch tag do
case Gr.name
Plzg(manipulations + [add, D, tag])
when P : consistency — ¢ = true
L PZ(end < true)

else goto line 9.2.12

otherwise do
P11(text < “name not valid”)
| goto line 9.2.3

158

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

nation. As we described in Section 9.2.4, the ontology represents (i) the
symbolic definition of the most appropriate scene category modelling
a scene P, as well as (i7) its implications in terms of other scene cate-
gories in the ® graph. Using two different AMOR queries, SED guides
the robot in externalising both sets of beliefs with a similar procedure,
shown in Algorithm 9.3 at lines 9.3.2-9.3.6, and at lines 9.3.7-9.3.11,
respectively. In the first case, given an actual scene €, the Algorithm
iterates over the predicates defining ®. (i.e. the third column of Ta-
ble 9.1) formulating a text to be uttered later. In the second case, the
Algorithm queries the scene categories in ® implied by ®,, i.e. the
nodes connected to ®, in the scene implication graph, except for the
node representing @ itself (Figure 9.4).

SED is based on a simple grammar G3, which defines rules for
understanding a positive or a negative human supervisor’s feedback,
as well as specific sentences for requiring the robot to repeat the
explanation. First, SED determines the semantic tags provided by
SIM evaluations (line 9.3.14). If the human supervisor triggers a yes

Algorithm 9.3: The Scene Explanation Dialogue (SED).

931 when P}, : begin — b = true

9.3.2
9-3-3
934
9-3-5

9.3.6

9-3.7
9.3.8
9-39
9.3.10

9.3.11

9.3.12
9-3-13
9-3-14
9.3.15
9.3.16
9-3-17
9.3.18
9-3-19
9.3.20
9.3.21
9.3.22
9-3-23

P (query + [classify, D, €])
when P}, : response — P,
foreach Predicate pred : ®, do
L definition <— definition-+toSentence(pred)

Pri(text < definition)

P2 (query + [imply, D,, @])
when P}, : response — ancestors
foreach Predicate pred : ancestors do
L implication < implication+toSentence(pred)

Pri(text <— implication)

Pro(grammar <—Gs)
Pi1(text < “am I correct?”)
when Py, : semantics — tag
switch tag do
case Gs.yes or Gs.no
L P2 (manipulations « [add, correctness, tag])
Pis(end < true)

case Gz.recup
L goto line 9.3.4
otherwise do

P11 (text < “I did not understand”)
goto line 9.3.13

9.3 HuMAN-ROBOT DIALOGUE MANAGEMENT

(or no) evaluation, SED requests the AMOR manipulation service to
store such information in the ontology (e.g. for logging purposes), and
terminates the dialogue (line 9.3.18). Otherwise, if the recap semantic
tag is detected, the robot describes the scene again, while in the other
cases humans are asked to repeat their judgement.

9.3.3.4 KNOWLEDGE REvIsiON DiaLoGue (KRD)

As we mentioned in Section 9.2.4, the symbolic representation of scenes
created by SKG using RGB-D data must be assessed and if necessary
revised by the human supervisor. KRD performs such a revision
requiring the human supervisor to listen to robot beliefs and to give
feedback for all of them. Referring to the first column of Table 9.1,
the robot describes (i) object features and (i) spatial relations, which
are considered as two consequential phases of the dialogue. Both

159

Algorithm 9.4: The Knowledge Revision Dialogue (KRD).

9.4.1 when 73{13 :begin — b = true

9.4.2
9-4-3
9-4-4
9-4-5
9.4.6
9-4.7
9.4.8

9-4-9
9.4.10
9.4.11
9.4.12
9.4.13
9-4-14
9.4.15
9.4.16
9.4.17
9.4.18
9.4.19
9.4.20

9.4.21
9.4.22
9.4.23
9.4.24

9.4.25

d; <—new X extends Revisioner

P1o (grammar < d;.grammar ()) /7 Ga
dy.inspect ()

d> <new) extends Revisioner

P1o (grammar < dp.grammar ()) // Gs
dp.inspect ()

P{%(end + true)

method Revisioner.inspect ()

predicates < self.queryPredicates()
foreach Predicates pred : predicates do
P11 (text <— self.explain(pred))
when Py, : semantics — tag
switch tag do
case self.grammar().yes

L goto line 9.4.11

case self. grammar().no

P (manipulations < [remove, pred])
when Py : consistency — ¢ = true
L P11 (text <— self.help(pred))

case self.correctingTags ()
P (manipulations < [add, self.newPredicate (tag)])
when Py : consistency — ¢ = true

L P11 (text <— “I corrected myself”)

| else goto line 9.4.12

160

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

phases exploit polymorphism concepts related to the Object Oriented
Programming (OOP) methodology. Algorithm 9.4 shows how KRD
instantiates two objects X and) extending the same common class,
i.e. Revisioner (at line 9.4.2 and line 9.4.5, respectively). Therefore,
X and Y inherit capabilities from such a class, but they are also
required to implement specific abstract methods, i.e. queryPredicate,
explain, help, correctingTags and newPredicate. Remarkably, since
all SIM-drivers use the same software interfaces (Figure 9.5), such
OOQP inheritance can be shared among all of them. In the first phase,
dq (an instance of X’) uses the inspect method to retrieve relevant
object features (line 9.4.4). In the second phase, the same method is
called on d; (an instance of V) to assess spatial relations (line 9.4.7).

More in detail, for d; queryPredicate is in charge of fetching the
features of all symbols 7; using AMOR services, as well as the associ-
ated anchors to be used in the sentences (line 9.4.10). Then, inspect
iterates over all query’s solutions provided through P, and it de-
scribes the representation reported in the first column of Table 9.1
using a procedure very similar to Algorithm 9.4 (line 9.4.12). On the
basis of the semantic tags defined in G4 (line 9.4.3), KRD waits for the
human supervisor’s feedback (line 9.4.13). If the yes tag is detected,
the dialogue proceeds with the next belief, since the association be-
tween the anchored y; and its feature is correct; otherwise, in case
the no tag is detected, such robot belief is removed from the ontol-
ogy. Since robot beliefs are associated with specific object features,
it is possible to remove them from the knowledge base. This means
that if a robot belief about an object’s shape were removed, other
beliefs would be maintained, e.g. in Figure 9.3a, the “cone” would
become a “blue object”). When this happens, the help method is used
to prompt the human supervisor to provide the missing information
(line 9.4.20), and therefore SIM generates a signal for Pj, (line 9.4.13).
If the provided information respects the correctingTags case, then
newPredicate is used to add a corrected belief in the ontology (sim-
ilar to Algorithm 9.2). If AMOR infers that the human supervisor
introduced an inconsistent belief, KRD performs again the revision of
the particular predicate. Otherwise, the Algorithm moves to the next
predicate to assess.

In the second phase of the knowledge revision process,
queryPredicate returns the set of spatial relations between pairs (7;,
k) of anchored symbols (first column of Table 9.1). The procedure
explain externalises predicates depending on the peculiar relation,
for instance behind (vy1,2), and then an associated sentence like “The
cone has the sphere behind”. If the human supervisor considers that
such a description is inconsistent (e.g. such a relation does not hold in
Figure 9.3a), then the procedure help instructs the robot to ask for spa-
tial relations among all 74 and a fixed ;. In this case, correctingTags
are designed according to Gs, which represents [object,relation]

9.4 Usg CASES

types of sentences, e.g. “The sphere on the right hand side”. When the
human supervisor uses such sentences, newPredicate identifies v (e.g.
72 anchored as “the sphere”) and the right symbols for generating a
correct predicate based on 1;, e.g. right (y1,72).

9.4 Use CASES

This Section describes the overall architecture behaviour in three use
cases. In our set-up, a Baxter robot is provided with an RGB-D device
(connected to P;), a microphone/speaker (to Pg), and a headset (to
Po) for the human supervisor. We assume that human supervisors are
instructed about (i) the different dialogue purposes and states, (i) the
set of available object shapes and spatial relations, (iii) the relevance
of object features, and (iv) the global reference frame.

9.4.1 Usg CASE 1

At the beginning, the table and the scene implication graph are empty.
Through P5, SKG activates SAD, so the robot utters “I am looking”
(line 9.1.3), and it waits for a reply. In the meantime, PIT is running to
track object poses, and estimate their shapes as well as other features,
which is used to anchor y; symbols. The human supervisor sets the ta-
ble as in Figure 9.3a and asks something like “What about this scene?”
Such audio stream comes from Pg. It is transcribed and evaluated by
SIM, which is driven by SAD. SIM identifies the G;.1ook tag from Py,
witch triggers the SAD terminating signal from PJ; to Ps (line 9.1.7).
At this point, the scene is ready to be acquired, so SKG (through Pg)
adds in the ontology the predicates in the first column of Table 9.1,
and requests SIT-based reasoning.

As a first step, SIT requires KRD, and Algorithm 9.4 drives the
dialogue. The first revision phase starts, and the robot utters “I see a
sphere” (line 9.4.12). The human supervisor can confirm this belief say-
ing something like “Yes, that is correct”. The dialogue continues with
the next belief. The robot says “I see a cylinder”, but the supervisor
can reply “No, that is wrong”, since it is inconsistent (Figure 9.3a). As
a consequence, the Gz.no case occurs, and the specific predicates are
removed by AMOR (line 9.4.18). Then, the robot asks “What is the blue
object then?” (line 9.4.20). The supervisor can reply with “A cone”,
and this generates a suitable semantics for the correttingTags of d;.
A corrected predicate for < is created in the ontology (line 9.4.22).
The first KRD phase terminates, since all ; symbols are gone through
the object shape revision process. The second phase begins with the
robot explaining that “The cone has the red sphere on the right hand
side” (line 9.4.12). The human supervisor confirms such a belief, using
any sentence associated with the Gs.yes tag. The dialogue terminates

161

162

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

with KRD returning a signal to SIT (through Py9), since there are no
more spatial relations in the scene.

SIT represents scene € (Figure 9.3a) according to the description in
second column of Table 9.1. It performs DL-based instance checking,
but no scene category is available in the ontology, and the implication
graph is empty. Therefore, the learning phase starts. DSD takes control
of SIM and the robot asks “What is this scene?” (line 9.2.3), and the
human supervisor replies with an explicative name, such as “This is
Figure 9.3a”. Through P,; DSD gives back control to SIT, which learns
the ®; scene category according with the third column of Table 9.1, and
updates the DL-based reasoner for generating a node in the implication
graph. SED is then invoked to describe the scene. The robot utters
“Figure 9.3a is a scene where at least one cone has a sphere on the
right hand side” (line 9.3.6). In this case, no explanation is produced
at line 9.3.11, since the implication graph contains one scene category
only. Finally, SED requires the human supervisor assessment, which
is positive, and SIT ends giving control back to SKG (through P7).

9.4.2 UsE CASE 2

The robot waits for the human supervisor to arrange a new scene. The
table is set as in Figure 9.3b, then the supervisor can say “Baxter, look!”
Similarly to the previous use case, SKG requests SIT, which activates
the revision dialogue KDR. The robot states “I see a red sphere” and
“I see a green sphere”, and then the supervisor confirms twice with
sentences associated with the Gs.yes tag.

The revision of spatial relations starts with the robot uttering “The
green sphere has the red sphere behind it”, to which the supervisor
can reply “No, this is wrong!”, since it is inconsistent with the real
situation. Such an incorrect predicate is removed from the ontology,
and the help method generates the sentence “How are the other objects
related to the green sphere then?” (line 9.4.18). The supervisor replies
“It has a red sphere on the right hand side”. This sentence is evaluated
based on correctingTags, and newPredicate creates the associated
belief in the ontology. As a consequence, SIT learns a new scene
category ®,, which is anchored to the name “Figure 9.3b” through
DSD, and it is placed as a node in the scene implication graph. When
SIT terminates, the robot can explain that “Figure 9.3b is a scene where
at least a sphere has another one on the right hand side”. In this case,
no scene similarities are discussed by the robot (line 9.3.11), since ®,
does not have any connections in the tree except with the initial ®
node.

9.5 CONCLUSIONS

9.4.3 USE CASE 3

In the next scene, the human supervisor introduces a cone as the
leftmost object on the table (Figure 9.3c). Using the steps outlined
above, the first phase of the revision process makes the robot say “I
see a cone”, “I see a red sphere”, and “I see a green sphere”. All these
statements are confirmed by the supervisor. In the second phase the
robot claims that “The green sphere has a red sphere on the right hand
side”, and the supervisor agrees (case G3.yes). The robot keeps saying
“The cone has the green sphere on the right hand side, and the red
sphere on the left hand side”, and the human supervisor replies that
“This is inconsistent” (case G4.no). The robot asks for help saying “How
are the other objects related to the cone then?”, and the supervisor
says something like “It has a green sphere on the right hand side” and
“It has the red sphere on the right hand side”.

Since the relations between € and ®;, or € and ®, are too quali-
tatively different, the robot does not classify € as an instance of any
scene category. Therefore, a new SIT-related learning phase leads to a
new scene category ®3, and associated with the name “Figure 9.3¢” by
DSD in the ontology. Afterwards, the robot says “Figure 9.3c is a scene
where at least two spheres are on the right hand side of a cone, and
at least one sphere is on the right hand side of another sphere”. It is
noteworthy that the DL-based reasoner infers a scene implication, and
the robot states that “Figure 9.3c includes Figure 9.3b and Figure 9.3a”
(line 9.3.11).

For the sake of completeness, let us also consider a further arrange-
ment where the human supervisor removes the red sphere from the
scene called Figure 9.3c. In this case, given correct knowledge in the
ontology, SIT can recognise the scene as an instance of the ®; category.
Therefore, the learning phase does not occur, and the description is
the same as in Section 9.4.1.

9.5 CONCLUSIONS

In human-robot interaction and human-robot cooperation, it is impor-
tant for humans to have access to the robot knowledge representation
system. The paper discusses three use cases in a tabletop scenario
where a human and a robot are facing each other. The robot learns,
recognises, and describes scenes perceived via RGB-D data, which
representation is assessed and if necessary amended by the human
through dialogue. We propose and define relevant design/interaction
patterns oriented to the use of a knowledge base grounding reasoning
techniques, and the adoption of contextualised dialogue management.
The discussed architecture allows robots to: (i) maintain a representa-
tion of salient features of the environment acquired through multiple
interaction modalities, and (i7) enable humans to instruct, supervise,

163

164

DIALOGUE-BASED SUPERVISION OF ROBOT BELIEFS

and obtain understandable information from a robot at a symbolic
level, via speech-based dialogues anchored to the robot belief and
reasoning spaces.

10

A GENERALISED ARCHITECTURE
TO ENCODE, STORE, CONSOLIDATE,
RETRIEVE, AND FORGET
STRUCTURED EXPERIENCE FOR
RoBOT’s MEMORIES

ABSTRACT

The paper presents a design pattern to build architectures concerning
representation of memory items and their long-term management. We
present flexible software components for encoding, storing, consoli-
dating, retrieving and forgetting experiences in memory. This paper
extends the Scene Identification and Tagging algorithm (SIT) that we
designed to perform one-shot structured learning of experiences sym-
bolically represented in an ontology. We design our architecture to
support a generic number of instances of the SIT algorithm, which are
used for representing the same situation from different perspectives,
i.e. with different semantics, and we use it to implement a semantic
and episodic memory. The architecture was deployed in a tabletop
scenario, where an implementation of the consolidating and forget-
ting functions is presented for episodic and semantic memory. The
objective of the paper is to show the support that our architecture can
give during the design and deployment of memories for robots.

cognitive memory - robot knowledge -

consolidate retrieving - forgetting behaviour

AUTHORS

Luca Buoncompagni*, Carlotta Sartore*, and Fulvio Mastrogiovanni

AFFILIATION

University of Genoa.

*These authors contributed equally to this work.

165

Paper to be
peer-reviewed.

166

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

10.1 INTRODUCTION

In [168] the memory of an agent is defined as a system able to store
information through the interaction with the environment, and it is
used to recall experiences in the service of behaviour. In the case of
Human-Robot Interaction (HRI), the behaviour of the robot needs to
be tuned depending on the application and the design of a suitable
memory to support it is critical during development. Typically, there
is a trade-off between the complexity of the memory and the richness
of its information. On the one hand, using rich memories allows for
complex long-term behaviours, but their demand high computation
resources and are challenging to design. On the other, simple data
structures are more efficient, but they usually support a limited set of
behaviours.

In practical scenarios, e.g. two persons that cooperatively perform
an assembly task, it has been observed that their interaction improves
once they become more familiar with each other. In other words, a per-
son also communicates for correcting the projection of the workmate
that he or she has in mind. In [81], this phenomenon has been identi-
fied as an interaction gap that peoples tend to overcome through verbal
and not-verbal communication. This process is known to affect their
perception of the environment and, their representation of experiences
in the memory, which consequently affects their decision processes, i.e.
the more their beliefs are aligned the better the interaction becomes.

We argue for robots that have memories that can be directly shared
with persons, but with a complexity that can be tuned for specific
interaction patterns as well. Therefore, a robot should have a memory
that allows to process data and represents the environment in a way
that is familiar to the users. In this paper we want to develop a robot
that communicates with the user in order to align its representation
of the environment, and that can maintain such representation for
being recalled in a long-term manner. After some experience, the robot
might remember several similar situations from memory, in this case,
it should be able to rank them in order to identify a relevant set of
information that is required for a particular context. This is not only a
type of representation that is familiar to a user, but it also reduces the
complexity of the system, and ambiguous behaviours, because not rel-
evant information can be disregarded based on contextualisation [30].

In human-computer interaction, the problem of tuning the infor-
mation needed for maintaining the symbols through which the user
interacts is typically addressed with the iterative development pro-
cess [82]. In particular, such a process is made of three phases that
are iteratively performed until the end of the development. The fist
consist in developing a part of the system, in the second experiments
are performed, and in the third feedbacks are evaluated form plan-
ning the first phase of the next iteration. Remarkably, during the latter

10.2 COGNITIVE MEMORIES

phase, small system’s changes should be scheduled in order to make
the user’s feedbacks guiding the development as much as possible,
i.e. the more iterations are done during the development process, the
better the interaction is likely to be.

We aim to use the iterative development process for guiding the
design of the representation that a robot should have for performing
specific tasks jointly with a person. For achieving such a development,
we require to perform as many changes to the system as possible,
with the purposes of taking comparable measurements throughout
iterations. Such a complex development process should be supported
from a modular system, that allows for extensions and rearrangement.
In this paper, we present a modular set of components that can be used
for supporting the implementation of different memory management
policies. We present the implementation of the first developing itera-
tion deployed in a tabletop scenario, where we focus on the design of
an architecture that would support all the further iterations for such a
scenario.

In the next section, we give a more detailed background for our
work, from both technical and cognitive perspective, as well as our
contribution. In Section 10.4 we formalise the requirements and the
operations that the robot should perform with a contextualised mem-
ory, and in Section 10.5, we give an overview of the tools we used
and of the architecture. In Section 10.6 we present a general-purpose
knowledge representation, which is used for implementing the func-
tionalities of a generic memory type in Section 10.7. We specialise
the latter formalisation to implement a semantic and episodic mem-
ory through two ontologies in sections 10.8 and 10.9. Section 10.10,
presents our architecture, its modules and general purposes interfaces
that we obtained with our design pattern, which is discussed in details
through examples for a tabletop scenario.

10.2 COGNITIVE MEMORIES AND RELATED WORK

In cognitive science, the memory is a structure made by contextualized
sub-systems containing past experiences and subjected to discrete
functions such as, encoding, storing, and retrieving [168]. In particular,
each agent perceives the environment with different prospects [161],
which are encoded in items (or chunks) of knowledge, and stored
in a dedicated part of the memory. The retrieving function accesses
the memory to recall, also through internal simulation [161], the
items stored with different contextualization that are relevant for the
current situation. The perceived information and the retrieved items
are combined in another dedicated part of the memory, which is used
for taking decisions efficiently, and it is maintained through item
refreshing (i.e. rehearsal) for the time in which a particular situation
deserves the agent’s attention.

167

168

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

Figure 10.1: The tabletop scenario in which we tested our architecture.

In particular, in [153] the maintenance rehearsal is identified as fre-
quent items processing demanding low attention, and this process
is useful for immediate retrieving, but it lacks for long-term repre-
sentations [68]. On the other hand, the elaborative rehearsal processes
the knowledge deeper than the maintenance rehearsal since it implies
association among items and reasoning about their meaning [67]; this
process helps in mapping long-term knowledge. In [66], knowing is
associated with the maintenance rehearsal, while remembering to the
elaborative rehearsal. Those concepts are related to learning and classi-
fying abilities, which are performed both in a one-shot manner (i.e. only
one experience is enough to classify similar situations in the future),
and through consolidation (i.e. repetition of items regarding some expe-
rience). In [51] consolidation is described as a process that stabilises an
item after a preliminary acquisition; for instance in [54] it has been ob-
served that while sleeping memory consolidation is undertaken. Also,
during the consolidation of items in memory, emotions affect the way
in which they are stored [107], and a reconsolidation [104] processes
updates items in memory, which occur also during a retrieving task.

Nowadays, robots can learn from repetitions in a data-driven man-
ner for recognising peculiar characteristics of the environment, and
for performing actions, e.g. for detecting objects and identify a grasp-
ing pose from images through deep learning [94], or for encoding,
storing, retrieving and predicting episodes [131]. Also, there is evi-
dence [86] where reinforcement learning has been used for represent-
ing knowledge in complex spaces through the rewards toward desired
behaviours, which is based on internal and external stimuli, e.g. in
order to make a robot riding a bike [127]. Those learning approaches
are computationally long but effective with row data, and they well
generalise the functions for managing the memory in the service of

10.2 COGNITIVE MEMORIES

specific behaviours. However, if a robot uses the models generated
with data-driven approaches, it is typically not able to explain to the
user its beliefs and decisions. Therefore, those approaches well per-
form for low-level behaviours, that are so complex and embodied to
not being communicable, e.g. nobody can learn how to ride a bike
from a book.

For high-level behaviours (e.g. planning, or instructing), robots can
also rely on data structures used by modules that reasons on events
and take decisions in a probabilistic manner. The model they produce
is expressed in a form that a user might understand, and their design
can be driven by data as well. In particular, the Hidden Markov Model
has been used for design memory in order to perform prediction
based on experiences to support planning [99, 142].

On the other hand, purely symbolic representations can be designed
in order to exploit logic reasoning. The Description Logic (DL) [11] for-
malism is becoming a standard for reasoning, but also other memory
structures have been deployed in databases, e.g. [115, 124, 150], exploit-
ing also sub-symbolic formalisms [14]. The Ontology Web Language
(OWL) [138] gives a standard logic representation for developing gen-
eral purposes DL reasoning algorithms. DL has been designed for
contextualising knowledge based on its semantic, and the reasoners
exploit this formalism to retrieve information through logic queries,
which can be expressed in sentences, e.g. as shown in [91]. Under some
expressibility constraints, it could be possible to ensure scalability of
the retrieving query for long-term applications, but generally, symbolic
reasoning is a complex task [49]. Therefore, for efficiency purposes,
we would argue for reasoning processes that do not evaluate a unique
and cumulative memory.

It has been observed that humans contextualise their knowledge and
focus their attention in order to retrieve information that is relevant
to a situation. This behaviour decreases their cognitive load since not
relevant information is disregarded, as observed in [16], where the load
is defined in terms of time and retrieving demands. In particular, state
of the art architectures divides the knowledge in the Short Term and
Long Term Memories (STM and LTM respectively) [112]. The former
is limited but faster, while the later is bigger but slower, not only in the
retrieving process, but also the encoding and storing functionalities are
more complex, and they might also involve experience consolidation.
The retrieving and storing functionalities in the STM is faster than in
the LTM, but the items contained in the STM decay over time quickly if
a rehearsal process is not undertaken. As the taxonomy in Figure 10.2
shows, the STM has been further divided in the Working Memory
(WM) in [109], and Sensory Memory in [8]. The Sensory Memory are
buffers that contain perceived data streams encompassing the iconic,
echoic, and haptic information; i.e. it receives row external stimuli.
In [71] also a part of the STM that is uniquely related to motion have

169

170

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

Memory

knowledge
and functionalities

Short Termg — Long Term

fast but limited rich but slow
/\ /\ on
Sensory Working Declarative Declarative
perception and focus and explicit implicit
feedbacks processing knowledge knowledge
Mon /\
Semantic Episodic associative Procedural
abstract context (what, priming and abilities
non contextualized where, when) not conscious and plans

Figure 10.2: A simplified taxionomy of memory types [97, 148].

been identified as the motor memory, while in [13] the episodic-buffer
has been identified for containing the integration of different sources in
a limited time window. Also, WM contains some knowledge encoded
in the Sensory Memory through attentive filtering [72], as well as
items retrieved from the LTM, and both are used for reacting to the
current situation. In the WM, knowledge is used to perform internal
simulations for predicting the overcome of actions, and activate goals.
The retrieved items from the LTM that are evolved in the WM at a
particular time get consolidated, since emotions and perception of the
current situation affect the representation of items in the LTM.

Moreover, in [39] another important distinction was made among
the declarative (i.e. explicit) and not declarative memories (i.e. pro-
cedural or implicit). The first encompasses explainable experiences,
which are usually learned in a one-shot manner, while the last cover
procedural abilities (e.g. bike riding), as well as not associative learn-
ing (e.g. priming behaviour and not conscious memory). In particular,
declarative type of memory encompasses the Episodic Memory (EM)
and the Semantic Memory (SM) [159]. In EM episodes are represented
through a time (when), a representation of the environment (where),
and information about its content (what), that characterise a situation
with respect to the context in which it has been experienced. On the
other hand, the semantic memory contextualises the knowledge from
a different perspective, which is more abstract and does not depend
on the current situation.

In architecture for robots, implementations that emulate the STM
and LTM have been largely used for in order to process data stream-
ing, usually in fixed time window or memory size. In particular for
STM, due to time decay of items, the efficiency of encoding storing

10.2 COGNITIVE MEMORIES

and retrieving functionalities is crucial, and many systems optimise
the design of such a memory structure based on their application
and setup. Declarative memories have been deployed in robotic ap-
plications as well. For instance, [115] proposes a system based on a
database to generate knowledge in the SM through a perception mem-
ory and learning behaviours. On the other hand, [114] identifies the
requirements of an episodic-like memory for cognitive agents. Such
a representation should be structured in a unique space that allows
reasoning on nested and overlapping episodes, that are learned in a
one-shot manner, and maintained for long-term. Some robots exploit
both semantic and episodic memory since using both the representa-
tion improves the experience retrieving [75]. For instance, in [119] an
episodic item in EM is extended with a generalisation of spatial and
temporal relations in order to represent the same experience also form
a semantic perspective in SM.

Among the operation of encoding, storing, retrieving and consoli-
dating operations that the memory performs on its knowledge, also
forgetting is an important behaviour, which is considered to be a
necessary cognitive process for accomplishing complex and long-
term behaviours, as also noted in [15]. In particular, temporarily or
permanently forgetting, allows the robot to disregard not relevant
experiences, which might help it as far as computation complexity
for taking decisions are concerned since ambiguous information from
memory would not be retrieved. Furthermore, if the robot retrieves
only some experiences from a particular context and, if the retrieved
items are aligned with the beliefs of the user, this might also improve
the interaction. However, select the experiences to recall is not a trivial
task, and we believe that it is an issue worthy of attention from the
robotics community. This issue could be addressed through contextu-
alisation techniques, e.g. probabilistic or logic approaches to recognise
activities given distributed knowledge, as presented in [83] for in-
stance. However, in the literature, those approaches usually do not
involve experiences and are based on a static set of situations that are
modelled since relevant to an application. On the other hand, cognitive
theory addressing the problem of forgetting has been proposed, and
they could be inspiring for building suitable forgetting behaviour for
robots. However, in the literature there is not a comparison among
different approaches for HRI scenario; thus, there is no clear evidence
of the benefits or limitations they might have.

Humans forget or modify memory items spontaneously which is
affected by encoding, storing, and retrieving tasks occurring in the
memory [102]. In the STM items are supposed to last for a small time
window if a rehearsal operation is not performed; otherwise, they
are forgotten. Through attention, the rehearsal process can be such to
move items from the STM bulffer into the LTM, where the knowledge
it represents is consolidated. However, persons experience to forget

171

172

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

also items that are considered to be stored in LTM, but in this case,
the process seems to be more complex than a simple buffer of items as
in the STM. Also, persons experience to retrieve an item if they spent
effort in remembering a situation that initially seems to be forgotten,
which highlights the dependence among the different memory func-
tionalities, as well as their complexity. Interesting enough, there are
techniques to measure human forgetting behaviours. For instance, [36]
proposes the prompted recall based on free remembering tasks con-
cerning items of a list shown through stimulus. It also presents the
relearning method, which measures the amount of training to recall
the items of a list, as well as a measure based on the number of items
that could be recognised through their re-observation.

Apart from organic causes, such as dementia, three main theories
tackle the issues of defining a forgetting operator that models humans
behaviours. The context-dependent memory approaches have been
proposed based on the idea that encoded knowledge about an item to
be retrieved can be corrupted, and consequently, such an item cannot
be retrieved, i.e. it seems to be forgotten. This theory involves the
STM and LTM [145] and suggests that forgetting increase with age
since our ability to encode information decreases. Also, it involves the
context as a component that affects our encoding ability, including
emotional states, which might make the knowledge in memory not
well represented for retrieving an item.

Moreover, the interference theory suggests that item from the LTM
cannot be recalled in the STM to be retrieved since there could be in-
consistencies among the different representations. The theory dived in
retroactive and proactive [160], as well as output interference. Retroac-
tive interference occurs between newest and old items, and an example
could be the interference between the names of a new partner against
the name of an ex-partner. While with proactive the interference be-
tween old and new items is considered, for instance, when an ability
as not performed for a long time it is difficult to recall it. Instead,
output interface considers the interface that the action to retrieve an
item has to the representation of such an item [158], an example could
be when the action to remember a list of items allows to recall some
of them but inhibits the retrieving of the others.

Last but not least, in the trace decay theory [80] items are supposed
to have a trace that degenerates over time and, due to some activation
levels, the trace could be forgotten. This theory applies to STM and
LTM, but concerns have been raised about the long-term representa-
tions since the knowledge to perform some abilities (e.g. ride a bike)
do no seems to decay over time. This suggests that for LTM memory
other factors should be considered in order to model a decaying trace.
Remarkably, some of those theories have been used for implementing
robot with forgetting behaviours. For example, the ACT-R cognitive ar-
chitecture implements a trace-based decay approach [6], while in [27]

10.3 RATIONALE

the interference among items is computed based on their similarity
evaluated as the distance among point in a particular space. The union
of those two approaches is presented in [63].

In the literature, there is a broad agreement on the different pur-
poses of memory: it is a representation composed by different con-
textualization of knowledge, that are interwoven among each other,
and supports functionalities. In particular, memory items encoded
from different perspectives are stored affecting each other, and the
different retrieved experiences are merged in the service of behaviours.
This implies that each memory type represents structured knowledge
subjected to specialised functions which are used in synergy by all the
components implementing some behaviours of the robot. In this way
the same experience is represented differently and, in order to main-
tain them over new stimuli, the memory should be able to associate
the current situation with a previous experience available in different
parts of the memory.

For managing a memory, i.e. orchestrating the computation of all its
functionalities, it is important to take into account that knowledge is
subjected to different contextualisation. This implies the robot to be
able to associate items with multiple representations for generating
a specific behaviour, which might involve further memory manip-
ulations. Several cognitive architectures have been presented and
improved for generating and using knowledge structured through
the implementation of some cognitive concepts introduced above.
Unfortunately, in [170], where an extensive comparison of cognitive
architecture is presented, there is an evident lack of integration and
techniques validation. Nevertheless, for efficient integration, we ar-
gue for a systematic comparison of the techniques first, and later we
would synergistically integrate them in order to exploit their pros
and compensate their drawbacks. With this idea, we want to address
the issues of comparing memory representations and different oper-
ations for managing their items, and we preliminary aim to design
an architecture to support such comparisons. This paper presents the
architecture we design with that purpose, and we discuss its flexibility
as far as memory item management is concerned.

10.3 RATIONALE

Our architecture is based on the Scene Identification and Tagging
(SIT) algorithm, that we present in detail in Chapter 7. The algorithm
has been designed to perform one-shot structured learning of scenes
shown to the robot over time. In particular, the algorithm uses symbolic
formalism to return a graph of experiences given some input facts.
On the one hand, the inputs are given in accordance with a semantic
interface. On the other, the output graph contains nodes that are
models of past experiences matching the given facts, while their edges

173

174

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

represent the relations between different experiences. In Chapter 7, we
based our algorithm on an OWL ontology, and we obtained output
graphs where edges were representing experiences similarities. Thank
OWL reasoning, we obtained an acyclic oriented graph of experience,
that has a root and some leaves, where deeper the node more complex
the experience it models would be.

In Chapter 7, we showed the behaviour of the algorithm based
on a simple tabletop scenario where objects were spatially arranged,
and we discussed the generality, limitations and complexity of our
implementation also considering other scenarios. In this paper, with
showing purposes, we use a simplified scenario based on the one
presented during the formalisation of the SIT algorithm. Nevertheless,
we aim to discuss and motivate the deployment of our architecture for
more general scenarios. A limitation we highlight in Chapter 7 is that
the algorithm is not robust to perceiving errors, and we assumed the
input facts to be always consistent with the environment. To address
this issue in 8 we presented an extension of the algorithm based on
a fuzzy ontology, which support reasoning under uncertainties. We
shown that SIT is equivalent to its fuzzy formalisation when all the
membership values are either o or 1. For the sake of clarity, in this
paper, we consider the crisp implementation of the algorithm, but our
approach can be applied to the fuzzy implementation of the algorithm
as well.

Furthermore, the algorithm is provided with a novel and expressive
semantic interface. Differently, from the standard interfaces between
components of software architectures, which are in charge to specify
the semantic and the data that two components can exchange con-
sistently. The semantic interface assumes a centralised knowledge
representation, i.e. the robot’s memory, that is shared among many
components of the architecture, which exchange mainly triggering
signals. When a component is triggered, it searches in the memory
for knowledge to process without knowing the provenience of such
information.

For doing so, the architecture should assure that the component can
find processable information in the knowledge representation. Thus,
we consider that each component accessing the knowledge requires a
semantic interface, which describes the semantics of the information
that has to be in the memory to process such a component consis-
tently. Therefore, two components exchange information through the
knowledge representation. This implies that similarly to the inputs
also the outputs of a component are typically knowledge structures in
the memory, which are supposed to respect the semantic interface of
other triggered components, which requires such a structures.

10.3 RATIONALE

10.3.1 CONTRIBUTION

The paper presents a design pattern to build software architectures
for maintaining a structured and contextualised memory. We based
our method on an extension of the SIT algorithm through which we
perform the encoding, storing, retrieving, consolidating, and forgetting
operation on parts of the memory.

In particular, we consider the memory as divided into types, e.g. as
shown in Figure 10.2. We want assign an instance of the SIT algorithm
for implementing each memory type. Each SIT instance is provided
with a specific semantic interface, which is used to structure experi-
ence based on some aspects of the environment. Since SIT structures
experience based on OWL reasoning, we consider the memory as a
collection of ontologies, one for each SIT instance, that represent the
same experiences but with different purposes.

Through SIT instances we generalise the implementation of a mem-
ory type, and we give guidelines for defining the common operations
that should be used for managing its knowledge over time. In partic-
ular, we consider memory types to distinct structures of experience,
which are associated among each other. The knowledge in each memory
type is maintained through the encoding, storing, and retrieving func-
tions, which are based on extensions of the perceiving, classifying, and
learning functions defined in the SIT algorithm. Also, we define the
consolidating and forgetting functions, which have not been considered
in the original formalisation of SIT. For demonstration purposes, we
specify our general pattern for maintaining a semantic and an episodic
memory through some software components. The paper highlights
the extensions on the general pattern we made for maintaining, in
different memory types, the knowledge about some situations, e.g.
scenes in a tabletop scenario.

Remarkably, this paper does not focus on the design of effective
memory functionalities, e.g. for consolidating and forgetting experi-
ences. Instead, it focuses on an architecture that supports their im-
plementation. Indeed, since the design of those functions is far from
trivial, we aim to build an architecture where different approaches can
be implemented with evaluating purposes. Nevertheless, we discuss
an implementation of the architecture for our preliminary scenario
evaluated in a real setup.

Therefore our objective is two-fold, we want to (i) design software
components of an architecture that maintain structured experiences,
and (ii) support the investigation of consolidating and forgetting tech-
niques through a significant set of information for implementing them.
In particular, our architecture contains placeholders, i.e. interfaces,
designed to be flexible enough for testing different approaches for
representing and managing experiences in a robot’s memory. Since we
want to implement robot’s that interacts with users, the possibility to

175

176 AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

Semantic Interface
R= {rz, ze[1...v]} (R); T = {Tx,Ty, x,ye[l...w]} (I)

span) ’..'_'::::.u span of
R T, T) s spanof e RXTxT
------------- . (RxT,T) i
Perception Space Environmental Space Experience Space
F E X

S
Sao

I
. . PR e T .
contains! contains! contains ! ~~~.__contains
1
1
1

S~

| %
\ maps \ toring L4 Retrieving *
Facts Set Situation Function Memory Function Output
e (e) T X (D) Graph
Encoding S~} maps R X* (C%*)
Function . maps
£ Forgetting
Function
F
made of n made of o<n made of g made of s made of s
Consolidate
Fact Belief Function
fi by Item Similarity

X; (D)) Value

mademdc of 2 (Rax, Tyiyy) .

Characteristic Typed Instance made of
r; €ER G e CT Score m<o-w-w \ Feature
(R: CR) T3 Tiy) u; (¢)) X

Figure 10.3: A glossary of the symbols (in black), and their relations (in grey), defined in this paper
for representing a type of memory based on the SIT algorithm. For a quick reference, we
show in red some elements of the ontology that are relevant for implementing the related
black symbols, which are motivated during the description of the architecture.

test different techniques in a real scenario allows also evaluating his
or her behaviour, which is desirable for developing robot’s knowledge
toward a real application.

10.4 PROBLEM STATEMENT

Based on the SIT algorithm, we want to define the knowedlge and the
computation required to implement the encoding &, storing T, retrieving
R, consolidating N and forgetting F operations. Those functions are
supposed to maintain a graph of memory items, that we call memory , X.
The graph contains nodes that are items , X;, whose model experiences
with a semantic that is specified for one part of the memory, i.e. the
p-th memory type, e.g. the short-term, semantic or episodic memory.

More formally, we consider the whole memory as a set of graphs
M = {,X, p e [l...h]}, where ﬂ;; pX = @. Nevertheless, we consider
that some nodes in the different graphs might be related among each
other through an associativity operator, which relates items modelling
the same experience among the graphs, i.e. maintained with different
semantics. To simplify the notation we do not indicate the p-th index
when we consider symbols related to the same, but generic, memory

10.4 PROBLEM STATEMENT

type. Otherwise, when we compare symbols from different parts of
the memory, we explicitly indicate it with the left subscript.

The structure of the symbols that we want to represent in M over
long-term applications is shown in Figure 10.3. In particular, given
input facts we represent h situations e encoded with different semantic.
Then, the storing function of each p-th memory should be used for
structuring models of the situation based on previous experiences.
This function requires learning, that we identify as the operation of
generating a model from the beliefs of a situation, i.e. a memory item
X;. Given a structure of items X, the retrieving function is used for
recalling some models of a given situation e, e.g. encoded through
dialogues.

While those functions are related to external stimuli, i.e. data ac-
quired from sensors, the consolidating and forgetting functions are
computed internally, i.e. based on an internal representation of an
item’s score. We consider the score to represent the importance of an
item with respect to the other in the memory, and we design the con-
solidating function to compute the score of each item Xj. While, the
forgetting function uses it to classify the items, which are eventually
removed from the memory. We preliminary consider three possible
levels of score that classifies the item either in the high, low or weak
level. An item with a high score is supposed to be directly retrievable
given e, while an item with a low score can be retrieved only when
future experiences are such to classify it as having a high level, e.g.
after repeated retrieving operations. Only items with weak scores are
removed from the experience graph of the robot.

On the other hand, the consolidating function is in charge to com-
pute scores that rank items X;, and this effects the retrieving and
forgetting operations. We suppose the score to be dependent on an
expressive set of parameters that can be used for implementing dif-
ferent memory management policies. Preliminary, we consider the
score (i) to increase in case of recurrent stored, or frequently retrieved,
situations, and (ii) based on the internal state of the memory, i.e. on
the relations among items and their definition.

It is important to notice that the concepts presented in this paper,
and summarised in Figure 10.3, are similar to the one used to formalise
the SIT algorithm in Chapter 7, but they refer to a different semantic.
For clarity purposes, we maintain the same symbols involved in the
SIT formalisation in this paper, but we remap their names since they
have different semantics, even if they share the same representation in
the knowledge base. The next section introduces the functionalities of
SIT adapted for this paper, while Section 10.4.2 defines the functions
that this paper presents based on the former.

177

178

10.1 in the original
version of the paper
we recall the
classifying C,
learning L and
structuring S
functions of the SIT
algorithm. In this
paper we define the
encoding function
& as the perceiving
function P defined
in Equation 7.7. We
also recall the
concept of the scene
€ and its beliefs, as
well as a category P;
and its features.
Finally, it introduces
the concept of
experience graph ®
and output graph
@*. All the details
are presented in
Chapter 7.

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

10.4.1 SIT FUNCTIONALITIES

Through the comparison Figure of 7.2 with Figure 10.3, it is possible
to observe that the perception space [F considered in this paper is
equivalent to the one designed during the formalisation of SIT. [...]**".
In this paper, we implement the retrieving and storing functions on a
combination of C, £ and S. This because, based on classification, we
want to assess the state of the memory while with the learning and
the structuring function we want to consider new items. Moreover, we
want to add in the SIT representation of each j-th item a score value
u;, which should be computed from the consolidating function A/ and
used during the retrieving R and forgetting F operations.

10.4.2 SIT EXTENSIONS

We define the consolidating function N to compute the score of each
j-th items u;, i.e. a real number in [0,1], based on the memory X and
such an item X;

N X, X = [0,1]
X, X]' — uj.

(10.1)

Remarkably, with this definition we supposed in the memory X all
the knowledge needed to implement the consolidating function.

The consolidating function uses a specific semantic interface to
represent the scores and triggers the forgetting function F

F:X,[0,1] - X
X,d] — X,

(10.2)

which updates the graph X given the score of the j-th items, i.e. it
might remove X; from the memory X.

Furthermore, we consider the storing function 7 as a map between
beliefs about a situation e and the features of an item X;. If encoded
facts can be classified through C, i.e. the output graph X # @, than
the situation matches the features of some memory items. Otherwise,
the memory does not contain any experiences about such a situation,
that should be learned. In the latter case, we apply the learning £
and structuring S functions to generate a new node in the memory X,
which is the item modelling the situation e.

When an item is learned from the beliefs about a situation, we con-
sider the storing function to initialise its score. While, if storing func-
tion classifies e in some items previously stored X, than we suppose
T to represent this event since we consider the scores to be affected
from frequently experienced situation. The consolidating function uses
this knowledge represented in the memory, and it is triggered by T

10.5 SYSTEM OVERVIEW

and R. The retrieving function R has a behaviour similar to 7 since
we assume the score being affected by situations that are frequently
demanded.

In particular, R is a function that returns a structure of items X*
given the memory X, and a situation e

R:X,E—X (10.3)
X, e— X*.

Its definition is equivalent to C in Equation 10.3, but the behaviour is
different. Differently from C, where we assume that the facts exhaus-
tively represent the environment, R might be computed for a subset
of facts. For instance, consider the case where a situation should
be retrieved given only a partial description of the facts that were
involved.

We supposed each memory type in M to be supported with a
dedicated instance of the SIT algorithm; therefore, we can identify
h graphs , X, which are managed through specific implementations
of all the introduced functions. Given some facts, we represent h
situations ,e, and if those are used with retrieving purposes, we obtain
h graphs X*. Each node in the following graphs have a score and a
similarity value, and some nodes can be associated among graphs.
Within the same graph, scores rank the item among each other, while
the similarity value indicates how well each item describes the given
situation.

10.5 SYSTEM OVERVIEW

This paper presents an architecture’? where all the functions intro-
duced in Section 10.4 can be computed, based on some knowledge.
In particular, functions are implemented from different components
of the architecture that we generalise for a p-th memory type. To
motivate our design pattern, this paper presents a simplified scenario
where semantic and episodic structures of experience are maintained
over time based on the same implementation. For each of those two
memory types, we show how to exploit our design pattern to imple-
ment a large set of different implementation of the storing, retrieving,
consolidating and forgetting functions.

In particular, we deploy our architecture in a tabletop scenario
involving a robot and a user. The robot is a passive observer that struc-
tures its memory based on situations that are generated by the user,
which arranges objects on the table. Therefore, the robot experiences
spatial scenes as shown in Figure 10.1 for instance, which are retrieved
by the user through dialogue in a simplified English.

In our scenario, the robot should rely on three modalities. One is
based on an RGB-D camera that is used to acquire objects on the

179

10.2 a preliminary
implementation is
available at https:
// github. com/
EmaroLab/ ETNRF-
SIT-memory

https://github.com/EmaroLab/ETNRF-SIT-memory
https://github.com/EmaroLab/ETNRF-SIT-memory
https://github.com/EmaroLab/ETNRF-SIT-memory
https://github.com/EmaroLab/ETNRF-SIT-memory

180 AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

T A 72 73 .74 'rs‘ 7.6 Y7

right right' right'
(a) Situationl (b) Situation2 (c) Situation3
8 Y9 ’Ylo. 71 Y12 713 714 715 716‘ 77 718
' @ ®_ o o _
right right right
(d) Situation4 (e) Situationb (f) Situation6

Figure 10.4: Examples of situations that the robot experienced.

table. While the other is based on a microphone, which is used for
acquiring some statements about the scene to be retrieved. The third
modality is based on speakers and a monitor, which the robot uses to
communicate with the user.

Figure 10.6 shows the software architecture that implements the
system we obtained through the proposed design pattern deployed in
our scenario. The architecture encompass:

e a knowledge representation containing the one ontology for each
memory type,

e a perceiving module providing encoded situations,

o external reasoners implementing the functions based on external
stimuli (i.e. storing and retrieving),

e internal reasoners, implementing the function based on internal
stimuli (i.e. consolidating and reinforcing), and

e a hybrid perceiving-acting module, which manages the dialogues
with retrieving purposes.

As mentioned our architecture is based on multiple instances of
the SIT algorithm, which provides a semantic interface that defines
the structure managed for each memory types, i.e. the semantic of
each graph ,X, which is maintained in a dedicated ontology. This
paper shows how different SIT interfaces can be used for maintaining
specific graphs based on the same situations, i.e. sX and gX: the
semantic and episodic memory respectively. Although the design of
expressive semantic interfaces for a particular scenario is out of the
scope of this paper, we discuss a possible representation for semantic
and episodic items as far as simple spatial relations are concerned.
However, the paper mainly focuses on the components to be used in
order to implement the functions introduced in Section 10.4.

10.6 MEMORY REPRESENTATION

10.6 MEMORY REPRESENTATION

Our architecture is based on h instances of SIT, whose have func-
tions specialised to maintain specific memory types pX, whose are
represented in dedicated ontologies. In each ontology, we expect SIT
to maintain knowledge about the experience with different repre-
sentation. Therefore we configure each SIT instance with a specific
semantic interface, which defines prior knowledge that is used to rep-
resent facts. This section recalls the properties of a semantic interface
which specifies the knowledge that SIT requires in the ontology, and
presents the structures that are in common with all the ontologies of
our architecture.

Initially, we introduce the DL formalism that we require to detail
the implementation of the architecture. Then, we introduce the knowl-
edge representation involved in the SIT algorithm in Section 10.6, and
two upper-ontologies defining knowledge included in each ontology
representing a memory type ,X. The first, in Section 10.6.2, represents
the score level of each item in the memory, which is computed by
the forgetting function. The second upper-ontology, in Section 10.6.1,
defines the representation of the item’s state, which are provided from
the storing and retrieving functions, and are requested for consolidat-
ing the items. Those representations are used to assure in the ontology
that the knowledge required by our architecture is available after the
process performed by some other components.

DEescrirTION LOGIC PRIMER
[“‘]10.3

SIT ONTOLOGY INTERFACE

An instance of the SIT algorithm requires to know the symbols that
could be available at runtime in the ontology, i.e. a IRI identifier
or name 4. Those symbols should have a specific format in order
for SIT to perform consistently among its phases, which involve the
perceiving, learning, structuring and classifying functions. [...]'*4
During learning, the number k.., is obtained by counting the beliefs
of the situation € from which we want to generate an item ®.. After
this process SIT requires the structuring function, which relies on
OWL reasoning to check the consistency among the item’s restriction
previously stored. The result of the reasoning task is an acyclic oriented
graph that we identify as a memory X, where each node is a class in
the ontology, i.e. a memory item. The graph always involves a node ®,
which is the root and represents an empty situation, as well as some
leaves. The nodes in the ontology are structured based on the logic
inclusion operation (C) and are such that, given a generic node, its

181

10.3 an introduction
to DL can be found
in Chapter 5.

10.4 here we describe
the semantic
interface defined in
Chapter 7. We
introduce that SIT
learns scene
categories (i.e. items)
through reification
based on the names
(A) of facts
contained in an
ontology. The latter
are defined as
relations R,
characterising two
instances 7y and ‘yy
of a non-ambiguous
type Iy and T,

182

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

parents model simpler situations, while the children represent more
complex models.

As a measure of complexity among items, in Chapter 7 we defined
the item cardinality as

m
ld = Z kzxy/ (10-4)
zx,y:(bj

which is the sum of all the restrictions for all the features. Also, given
some facts we define the situation cardinality as the number of beliefs
that the encode function generates n. In Section 7.5.5 we discuss the
similarity value, which is define as the ratio of the item cardinality
and the situation cardinality of €, i.e. d/n = id..

10.6.1 UPPER ONTOLOGY FOR ITEM’S STATES

In each memory type, we use SIT to maintains a graph of memory
item , X in a dedicated ontology. In our representation, each node of
a graph is an item and has a score, which is computed through the
consolidating function. Since we want to design an architecture that
supports evaluating different implementations of this function, we
introduce in each ontology of the architecture an upper-representation
parametrising some shared semantic.

We design this representation since we do not want to force the per-
ceiving and acting components of the architecture to synchronise with
other components that would generate forgetting and consolidating
stimuli. Therefore, we based the consolidating and forgetting functions
based only on the data in the memory and internal stimuli that are
automatically generated from components processing external stimu-
lus, i.e. the storing and retrieving reasoners, which are synchronised
with perceiving and acting modules.

Therefore, when the internal stimuli are triggered, the only source
of knowledge for the internal reasoner is the memory M. Namely, the
external reasoners are in charge to assure in the memory all the data
required from the internal reasoners, before that the former triggers
the later via an internal stimulus. Since we consider recurrent or de-
manded situations to affect the scores in memory, we suppose that the
storing function 7 generates information to know when a situation as
been re-experienced. While the retrieving function R should produce
data in the ontology to know when a situation is recalled frequently.
Remarkably, the consolidating function N computes the score also
based on this data, so the upper-ontology presented below represents
part of the semantic interface between the component computing N/
when it is triggered from 7 or R.

In particular, the upper-ontology to represent frequently experi-
enced or demanded situations include in the ontology two properties
for each j-th items in memory. Those properties are meant for counting

10.6 MEMORY REPRESENTATION

(i) the number of times that an item has been experienced, i.e. the
storing counter s;, and (if) the number of time that an item has been
recalled, i.e. the retrieving counter r;. The consolidating function is
supposed to update the score of each item given those value and the
structure itself of the memory, i.e. the graph of ontological classes ®.
After the computation performed by the consolidating functions, we
assume the counters to be reset.

For using this representation in X, we extended the semantic inter-
face of SIT by adding in the ontology an individual ¢; described with
the data properties isRetrieved({j, r;) and isStored(j, s;). For each
item in memory ®;, we consider the availability of an individual ¢, i.e.
®; CCOUNTER: §;, which is shared between the retrieving, storing, and
consolidating functions.

10.6.2 UPPER ONTOLOGY FOR ITEM’S SCORE

For each score u; in a memory type, we introduced the forgetting
function as a function that classifies items to have either a high or
low or weak score, introduced in Section 10.4. The upper-ontology
presented in this section is related to such a representation that we
design for not limiting the other modules of the architecture similar
to the previous section.

In particular, in this case, the retrieving function should assess the
score level of each classified item and not return the ones with a low
score. Indeed, the architecture is supposed to be able to retrieve them
only when the consolidating function is such to increase their score
to the high level. In contrary, scores that are considered to be weak
are directly removed from the forgetting function, i.e. they cannot be
retrieved anymore.

Therefore we extend the semantic interface of SIT for making the
forgetting function able to add knowledge to the ontology that will be
used by the retrieving function. With this purpose, we define an upper-
ontology defining the concepts of items with a HIGH, LOW, or WEAK score.
We define those symbols as three disjointed classes implying memory
items, i.e. we identify an item with a low score when ®; C LOW, and
analogously for high and weak levels. Remarkably, we do not limit
the architecture to use logical reasoning for classifying the three score
levels. Therefore, in the ontology, we consider axioms expressing the
level of an item (i.e.) could also be asserted based on computations
that are not performed through logic formalism.

To represent the numerical value of the score of each j-th item, we
exploited the representation introduced in the previous section. In
particular, we add a property hasScore to each individual ¢; in order
to relate a real number u; with the item ®;, i.e. hasScore(¢;, u;) and

183

184 AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

OO O
N © G O=T®

(a) Items structure learned in the semantic memory. (b) Items structure in the episodic memory.

Figure 10.5: The memory structure obtained from two instances of the SIT algorithm applied to the
scenarios in Figure 10.4, and coupled with semantic interfaces specialised for the semantic
and episodic memory. SIT computes the graphs based on the knowledge in the third
column of tables 10.1 and 10.2 respectively.

10.7 MEMORY FUNTIONALITIES

In this section, we specify the implementation of all the functions
introduced in Section 10.4 for a generic p-th memory type. While in
sections 10.8 and 10.9 we will specify their behaviour for the semantic
and episodic memory. In this section, we assume to have an ontology
containing prior knowledge of some characteristics R and types I,
which are used for specifying facts f; € F in accordance with the
semantic interface in Section 10.6.

10.7.1 ENCODING

As mentioned we identify the encoding function £ to be equivalent to
the perceiving function defined in SIT. Namely,

E(f) = 2(Rey) (& 1) 2%,y f
= sz (6, ’)’y) = br/ (1O~5)

which computes the beliefs of a situation based on facts. The beliefs
are based on the reification Z of the type of the instance involved in
the domain of a characteristic I'y and the characteristic r,.

10.7.2 STORING

The storing function is implemented through a combination of the
classifying C, learning £ and structuring S functions provided by
SIT. Also, in accordance with Section 10.6.1, the storing function is in
charge to update the state of each item in memory by increasing each
related counter ;.

Given the beliefs about an encoded situation € = £(F), we perform
the classification function to identify if its beliefs can be represented

10.7 MEMORY FUNTIONALITIES

as items modelling a past situations. Practically, we perform a query
in the ontology to find the classifications of € in the memory @

C(®,el): LD < (D, CD) A(DPr:€) A(%de =), (10.6)

The query, solved with respect to ®; returns a graph of items X
represented in the ontology as a hierarchy of classes @, whose features
match the beliefs of € with a similarity value bigger than a threshold
¢, as presented in Chapter 7.

If the queried structure of items @ contains at least a node apart
from the root class ®, we consider the situation classified. In this
case, for each j-th item that model the situation e (i.e. nodes of D),
the storing function 7 increases the property isStored of the relative
counter ¢; in the ontology.

On the other hand, if no past items classify the situation (i.e. ®
contains only the root ®), we perform the learning function £ to
generate a new item ®, form a situation e

i€[l...m|
L(e)=® [] Zkuy Rex.Ty = Do (10.7)

ZXY:X;

Since we adopted the open-word assumption, ®, is a class with at
most m = v-w-w features, which are represented through a cardinality
restrictions.

®. is added to the TBox of the ontology as a new class and, in
accordance with the SIT algorithm, we require to update the OWL
reasoner. The latter performs the structuring function to arrange the
new item &, in the memory graph ®. In this case, the score of the
item is initialised to a neutral value, i.e. 0.5.

10.7.3 RETRIEVING

The retrieving function R is used to recall an item given the beliefs
that — eventually partially — define a situation to be remembered. In
this paper, we retrieve items through a simulated situation, which is
not perceived directly from the environment but generated with the
explicit purpose of remembering. In particular, we used dialogues
aimed at specifying to the robot the knowledge to be encoded through
& for retrieving an item. Therefore, through dialogue, the robot is
supposed to understand a set of objects, with some characteristics,
represented in accordance with the semantic interface used for the
SIT instances. In other words, through dialogues, the user should
provide the same type of information that the perception modules
could generate. In this way, the facts perceived from the RGB-D camera
or through dialogues would be consistent.

185

186

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

Given a situation € encoded from a dialogue between the robot
and the user. The classification function C can be used to retrieve a
hierarchy of classes containing the items with features that matches
the beliefs about the situation. Therefore if the user provides the robot
with the beliefs that were stored in an item, the algorithm would
return the items that match such a situation and all its parent and
ancestors in the memory ®. However, this is not the case if the user
tells the robot only a subset of beliefs of the item to be retrieved.

For instance, if the user requests to retrieve a situation where “two
spheres has two spheres on the right-hand side” from the memory
structured in Figure 10.5a. Then, SIT will return a graph containing
classified items structured as @5 C ®, C P, where the similarity value
with @5 is equal to 1, i.e. it models perfectly the beliefs generated from
the user sentence. While ®; is a model describing only a part of the
user’s requests, i.e. it refers to a simpler item.

Nevertheless, if the user gives only a part of the facts that charac-
terise the situation, i.e. “a sphere has a cone on the right-hand side”.
The classification function of SIT would not be able to classify any
items. This occurs since the robot experiences depend on the situations
in Figure 10.4, where each situation having a cone on the right-hand
side of a sphere also involves other objects, i.e. a situation defined only
with the beliefs rightSPHERE(€, CONE : 7,) do not respect any set of
restrictions in the fourth column of Table 10.1.

In order to retrieve items less explicitly, we used the learning and
structuring function of SIT instead of C. In particular, given some
beliefs encoded from a dialogue, it is possible to perform the learning
function £ to generate a dummy item, which is structured in the on-
tology through S. Then, the memory ® would contain a dummy node
®r, which represent a model of the situation that the robot should
retrieve. With this process, we want to reason on the implications
among situation, expressed as edges in @, in order to retrieve items
®; related to . Then, we will remove from the ontology the dummy
item ®p for not affecting the robot’s memory.

The SIT algorithm maintains a structure having a root ®, repre-
senting an empty situation, and some leaves, which are the items
modelling the most complex situations that the robot experienced,
i.e. the item with the highest number of features. In the hierarchy,
the children and successors of the dummy item, i.e. nodes d; C Dg,
identify models of situations where at least the features requested
through dialogue are satisfied. Instead, the parents and ancestors of
®g, ie. nodes ®; 1 Og, are items modelling a part of the situation
request by the user.

For instance, if the user request to remember a situation where
“a SPHERE has a CONE and a SPHERE on the right-hand side”, and “a
CONE has a SPHERE on the right-hand side”, i.e. a situation where a
cone has a sphere on the right-hand side and another sphere on the

10.7 MEMORY FUNTIONALITIES

left-hand side; which have never been explicitly experienced by the
robot from the situations in Figure 10.4. Then, the learning function
would generate a dummy item ®r = ® M >1 rightSPHERE.CONE
M>1rightSPHERE.CONE M>1 rightCONE.SPHERE.

The structuring function would arrange the new item in such a
way that the situations ®4 is a child of ®g, i.e. a more complex
situation than the one requested from the user. While the parents of
the dummy item would be ®3; and ®s since both of their models could
be consistently extended from ®. Remarkably there could be the case
in which the only parent of the dummy item is the root. This implies
that the robot did not experience any simpler situation that can be
described with the dummy item. Similarly, there could be the case
where the dummy item does not have any children, which identifies
that the robot never experienced such a complex situation.

Therefore it is possible to reduce the retrieving function to the
storing function when the stored item is removed after having queried
all the paths that connects the root and the leaves, passing through the
dummy stored item ®x. The union of all those paths is a sub-graph
®*, which is the result of the retrieving function. In accordance with
Section 10.6.1, for all the items in ®*, and the retrieving function is
in charge to increase the isRetrieved value assigned to the relative
counter §;. Moreover, we introduce in Section 10.6.2 that items are
classified in three levels of scores. The retrieving function should
exclude from ®* the classes that do not have a high value, but it
should increase the ¢; counters also for the removed items. This is
required to make the consolidating function increasing the score of a
low item because it represent the model of a requested situation.

Remarkably, the storing function is suppose to make a preliminary
classification attempt, this step could be used to assess if the user
provides the robot with an exhaustive set of beliefs. Indeed, since
the structuring function is the most complex computation of SIT, the
classification might reduce the computation time if the user gives a
precise set of facts to the robot.

10.7.4 CONSOLIDATING

As mentioned, we want to give an expressive interface for implement-
ing the consolidating function, and with this purpose, we provide it
with full access to the memory. In particular, this function is supposed
to be performed for each j-th item in memory and should be such
to update their scores ¢;. Therefore, it needs to replace the value of
the score in the ontology, and it can base this operation on some
parameters.

Those parameters can be based on the counters s; and r;, which rep-
resent the number of times that each item has been stored or retrieved.
Also, it can rely on the items cardinally id, which measures the differ-

187

188 AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

Situation Facts Beliefs Item
CONE: 71, SPHERE: 7, O =D M
1 - 7 rightCONE (e, 12). s
right (771, 72)- >1rightCONE.SPHERE.
SPHERE: 73, 74, O, =P M
2 13,74 rightSPHERE (€, 74). o2
right (73, 74). >1rightSPHERE. SPHERE.
CONE: 75, SPHERE: 774, 77, rightCONE (€, 7¢), D3 = O M
3 right (7ys,v6), right (776, 77), rightCONE (€, v7), >1rightSPHERE.CONE M
right (s, 7). rightSPHERE(€,97). | >2rightCONE.SPHERE.
rightCONE (€, Y10), .
CONE: vy9, SPHERE: 7g, Y10, Y11 & Ti0 O, =9 1
.) rightCONE(€, ¥11), .
right (s, 79), right (v, 10), >1rightSPHERE.CONE T[]
4 , _ rightSPHERE (€, 79), ,
right (g, Y11), right (Y9, 710),) >2rightCONE.SPHERE [
ight (), right() | TBRESPHERECE, 710), |, | htSPHERE.SPHERE
ri ,Y11), T ,M11)- ri . .
ght (Y9, Y11 ght (Y10, 711 rightSPHERE (€, 711). Z4T1g
SPHERE: Y12, Y13, Y14/ ,
5 Lt ;12 .Wft (714) rightSPHERE (€, 713), s = P M
ri ’ , Il P ’
EUEAY12 113) XABRE A2 V14N | o SPHERE (€, 14). | 2 rightSPHERE. SPHERE.
right (713, 714)-
rightCONE (€, y17),
CONE: Y16, SPHERE: Y15, Y17, Y18 .
right (715, 716), Tight (y15, 717) rightCONE(€, y18),
6 HERE A5 e) 1 1707 | i ehtSPHERE (€, 716), Dy €
right (715, 718), Tight (716, 117), | _.
right (716, 718), Tight (Y17, 718) FLBRTSPHERE(E, 717),
S e 11871 1 i ghtSPHERE (€, 718) .

Table 10.1: The knowledge in the semantic memory for each situation in Figure 10.4, which are
experienced by the robot with the presented order.

ence between items complexity, as detailed in Section 7.5.5. Moreover,
it could use the scores of the items that are parents or children of the
considered item ®; to consolidated, i.e. it can explore the memory
and access the representation it contains through logic queries. Indeed
there are many heuristics to be validated and developed, and our
architecture is mainly design for investigating them. Therefore, we
do not provide in this paper a general definition of the consolidat-
ing function, and for implementing the architecture we assume only
that the this function changes the hasScore value assigned to the ¢;
individual of each ®; item. However, for our preliminary scenario,
we present a possible approach for the semantic and for the episodic
memory in sections 10.8 and 10.9 respectively.

10.7.5 FORGETTING

We define in Section 10.4 the forgetting function as the operator that
classifies items based on their score u;. We suppose the score to be
classified in three levels, i.e. high, low and weak. In accordance with the
representation presented in Section 10.6.2, the forgetting function is in
charge to access the score of each item ¢; and, based on it, it classifies

10.8 SEMANTIC MEMORY

each item to be in a score level. If there are any, the forgetting function
removes the weak items from memory, while the differences between
high and low levels would be used during the retrieving process
as discussed in Section 10.7.3. Remarkably, after having removed an
item from the graph, its edges should be recomputed through the S
function, which is based on OWL reasoning.

In our simplified scenario, we implemented this classification based
on two thresholds in [o,1], which identify three disjoint ranges. Never-
theless, we design the architecture to support also different implemen-
tations of this function, and we aim to exploit it in order to evaluate
more sophisticated solutions. However, we argue that a well posed
consolidating function would generate more effective forgetting policy
than a complex method to classify items based on their score, if the
latter are not represented appropriately.

10.8 SEMANTIC MEMORY

In the referencing scenario, we set the SIT instance delegated to the
maintain the semantic memory with an interface similar to the one
used in Chapter 7. In particular, we consider a SIT instance based on
prior knowledge in the ontology specialised for the purposes of (i) clas-
sifying instance as object with a geometrical shape, i.e. ' = {SPHERE,
CONE}, and (ii) representing characteristic of facts as qualitative spatial
relations, i.e. R = {right}. Remarkably, in this paper, we reduce the
set of possible shapes and spatial relation only for demonstration
purposes, but our method does not limit the number of characteristics
v and types w. Nevertheless, those values affect the complexity of the
algorithm as detailed in Section 7.6.6.

Given this semantic, interface SIT structures items regarding objects
with an abstract type and spatial relations that do not depend on the
context, but only relates pairs of objects independently. We adopted
this formalism with the purpose to highlight the features and limita-
tions of the architecture, but a more sophisticated representation of
semantic items are undoubtedly desirable. As discussed in Chapter 7,
since the algorithm is based on a purely symbolical representation
it is possible to change the semantic of beliefs and features through
different interfaces without affecting the architecture (we provide an
example of this behaviour of SIT in Section 10.9).

As an example, consider the situations shown in Figure 10.4, the
Table 10.1, and Figure 10.5a. The former figure shows situations that
are demonstrated to the robot in sequence over time. For each of those,
it is assumed that architecture generates input facts as shown in the
second column of the table. The third column of the table shows beliefs
of each situation that we encode based on Equation 10.5, while the
fourth column shows the relative learned item that we stored based
on Equation 10.7. In this example, we assume that each situation is

189

190 AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET
Situation Facts Beliefs Item
TABLE1: 7;, TIME: 7;, EPISODIC: g,)
D = NN

CONERED BIG: 71, hasEPISODIC(e, 7;),
>1hasEPISODIC.LOCATION [l

SPHERE GREEN BIG: 77, hasEPISODIC(e, ¢),
1 >1hasEPISODIC.TIME [l

hasLOCATION (g, 1), hasEPISODIC(e, 1),
>1hasEPISODIC.CONEREDBIG [l

hasTIME(YE, 7t) hasEPISODIC(e, 72).

has (‘yg,71), has (‘vg, 712).

>1hasEPISODIC.SPHERE GREENBIG.

TABLE1: «y;, TIME: ¢, EPISODIC: v,
SPHERE RED SMALL: 73,
SPHERE BLUE BIG: 74,
hasLOCATION (vg,),
hasTIME(YE, 7t)

has(Yg,73), has (Yg, 74).

hasEPISODIC(e,),
hasEPISODIC(e, V+),
hasEPISODIC(e, 73),
hasEPISODIC(e, 4).

Dy = e
>1hasEPISODIC.LOCATION [l
>1hasEPISODIC.TIME M

>1hasEPISODIC.SPHERERED SMALL
>1hasEPISODIC.SPHERE BLUEBIG.

TABLE1: y;, TIME: y;, EPISODIC: 7,

b3 = Ol
CONE RED BIG: 73, hasEPISODIC(e, 7;),
>1hasEPISODIC.LOCATION M
SPHERE BLUE SMALL: ¢, hasEPISODIC(e, 7t),
>1hasEPISODIC.TIME n
3 SPHERE GREEN BIG: 7, hasEPISODIC(e, 7s5),
>1hasEPISODIC.CONERED BIG M
hasLOCATION (v, 1), hasEPISODIC(e, ¢),
>1hasEPISODIC . SPHERE BLUE SMALL 1
hasTIME (g, 7t) hasEPISODIC(e, 7).
>1hasEPISODIC . SPHERE GREEN BIG.
has (7, 75), has (v, 76), has (YE, 7).
TABLE1: y;, TIME: v;, EPISODIC: 7,
SPHERE GREEN SMALL: g, Oy = DpM
hasEPISODIC(e, 7;),
CONE RED BIG: 79, >1hasEPISODIC.LOCATION n
hasEPISODIC(e, v¢),
SPHERE BLUE BIG: 1, >1hasEPISODIC.TIME n
hasEPISODIC(e, 73),
4 SPHERE GREEN BIG: 11, >1hasEPISODIC . SPHERE GREEN SMALL 1
hasEPISODIC(e, 7v9),
hasLOCATION(yg, 71), >1hasEPISODIC.CONE RED BIG n
hasEPISODIC(e, 1),
hasTIME (g, 7t) >1hasEPISODIC.SPHEREBLUEBIG [
hasEPISODIC(€, ¥11)-
has(yg,7vs), has(Yg,79), >1hasEPISODIC.SPHERE GREEN BIG.
has (g, 710), has (Y, 111)-
TABLE1: ;, TIME: v;, EPISODIC: g,
SPHERE BLUE SMALL: 71y, hasEPISODIC(e, 7)), ®5 = DM
SPHERE GREEN BIG: 13, hasEPISODIC(e,v;), | >1hasEPISODIC.LOCATION n
5 SPHERE BLUE SMALL: 14 hasEPISODIC(€, ¥12), | >1hasEPISODIC.TIME M
hasLOCATION (g, 1), hasEPISODIC(€, v13), | >1hasEPISODIC.SPHERE GREENBIG I
hasTIME (g, vt) hasEPISODIC(€,v14). | >2hasEPISODIC. SPHEREBLUE SMALL.
has (Yg, 712), has (Yg, 713), has (YE, 714)-
TABLE1: y;, TIME: v, EPISODIC: ¥,
SPHERE BLUE SMALL: 15, hasEPISODIC(e, 7v;), Pg = OpM
CONERED BIG: 716, hasEPISODIC(e,v;), | >1hasEPISODIC.LOCATION n
p SPHERE BLUE SMALL: 17, hasEPISODIC(e, ¥15), | >1hasEPISODIC.TIME n
SPHERE GREEN BIG: Y1g, hasEPISODIC(€, ¥1g), | >2hasEPISODIC.SPHEREBLUE SMALL MM
hasLOCATION (v, 1), hasEPISODIC(e, ¥17), | >1hasEPISODIC.CONEREDBIG M
hasTIME (g, vt) hasEPISODIC(e, ¥1g). | >1hasEPISODIC.SPHERE GREEN BIG.

has (vg, 115), has (‘Yg, 716), has (YE, 717).

Table 10.2: The knowledge in the episodic memory for each situation in Figure 10.4, which are experienced

by the robot with the presented order.

10.8 SEMANTIC MEMORY

never classified in another during the storing operation. Therefore
all the items would have an initialised score value and, at the end of
all the demonstrations, they are structured in an graph as shown in
the figure. Remarkably, in the following sections we discuss how a
different semantic interface can be used to process the same situations
to obtain knowledge shown in Table 10.2, which is structured in a
different graph that is shown in Figure 10.5b.

10.8.1 SEMANTIC SCORE

In our scenario, we implement the consolidating function such to
compute the score of each j-th items in the semantic memory as a
weighted sum among (i) its complexity /d, defined as the sum of all
the features of an item (Equation 10.4), (i7) the number of children in
the implication graph (n.) and, if it n, > 0, their score (g;, i € [1,n.]),
as well as (iv) the number of times that ®; has been stored s; and (v)
retrieved r;, which are related in the individual ¢; in accordance with
Section 10.6.1.
Formally, we define the reinforcing function as

2iGi

ne

& = agd+a, + agsj + a,r;, (10.8)
where all the weights a4, a., as,a, € R™. From the equation we observe
that ¢; depends from /d which does not change over time. Its contri-
butions penalises complex items which might be related to specific
experiences, against simpler items. On the other hand, the other con-
tributions of the weighted sum are dynamic, and we observe that the
score of the j-th item increases iff. (i) the average score of more com-
plex items (the i-th children) increases, as well as if (ii) the j-th item
has been stored or (iii) retrieved again. In particular, the i condition
implies that, given ®; C ®;, the score of ®; increases if the score of ®;
increases; thus Equation 10.8 tends to give importance to the simpler
items related to important items.

Generally, the computation of the score above might generate any
positive numbers. For this reason, it is not possible to compare ¢;
among the items arranged in a general implication graph, or among
graphs representing different memory types. Therefore, after the com-
putation of Equation 10.8 for all items in the ontology, we normalise
the score in [0,1]. Namely, we formalise the reinforcing function for
the instance of SIT delegated to represent the semantic memory in our
scenario as _

i

Yoo &’

where such a new score §; overwrites the old score of the j-th item
only in the ontology specialised for the semantic memory.

N éj = (10-9)

191

192

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

10.9 Erisobpic MEMORY

Smartly to the semantic memory, for the episodic structure, we use a
specific semantic interface for configuring SIT. In this case, we consider
more complex prior knowledge for spanning R and I', which requires
some preliminary computation for generating processable facts. The
latter, for episodic items, are supposed to be represented through a
temporal reference, a location, and a encoding of the situation itself.
For reasoning on this knowledge we need to adapt the semantic
interface of SIT.

For doing so, we assume that any situation € in the episodic mem-
ory contains a dummy instance, i.e. EPISODIC: yg. The later is sup-
posed to be involved always in only two facts through the charac-
teristics hasLocation and hasTime, e.g. hasTime(yg, 12:45). Specifi-
cally for the locations, we use symbols to discriminate tables, e.g.
hasLocation(yg,y), where TABLE1: ;. In this way we encode all
the episodic situation through the belief hasLocationEPISODIC(€, ;).
Therefore, each episodic item in the memory graph will be a
child of a class defining time and location, e.g. ®r = P11 >1
hasLocationEPISODIC.TABLE1 M>1 hasTimeEPISODIC.Time. Remark-
ably, with this representation, if the same situation is shown on two
different tables, they would be modelled as two independent items,
i.e. nodes that are not connected between each other in the memory ®.
This does not occur for the representation of time since we consider a
unique type TIME for all the possible instances .

We represent episodic types I' not only with their abstract shape
but also with characteristic proper of each object, such as the colour
and dimension. In particular, the colours are represent in classes, i.e.
RED, GREEN, and BLUE, as well as the dimensions, i.e. BIG and SMALL.
To keep into account three different semantic as shape, colour and
dimension and represent the type of an instance unambiguously, we
reify them for all their combinations in order to obtain the set of types
to be given as prior knowledge, i.e. T = {SPHERE RED BIG, SPHERE RED
SMALL, SPHERE GREEN BIG, ..., CONE BLUE SMALL}.

For applying this semantic interface consistently, we require again
the dummy instance g, which is considered to be related to the objects
on the table through the characteristic has. Thus, we generate facts of
the type has(yg, 7y), where CONERED BIG: -y, for instance. Given this
fact f;, Equation 10.5 would compute a belief hasEPISODIC(7YE, Yy),
which might generate a restriction like >>1 hasEPISODIC.CONERED BIG.
Therefore the set of characteristics we used for the semantic interface
is R = {has, hasLocation, hasTime}.

Table 10.2 shows the computation performed by SIT with this se-
mantic interface for the same situation considered in the previous
section, i.e. Figure 10.4. In this case, after the architecture stores all
the situations, the structure shown in Figure 10.5b is available in the

10.9 EP1sobp1ic MEMORY

episodic memory of the robot. From the comparison with the semantic
memory, we can observe that the two structures are different even if
generated from the same situation. Indeed, differently from the pre-
vious instance of SIT, in this case, spatial relation does not affect the
representation of items since the latter are represented only through
features based on the characteristics of each object. Although our
representation might not be accurate for representing semantic items
in a real scenario, with this example, we have shown that SIT can be
used to evaluate complex semantic without affecting the other parts
of the architecture.

10.9.1 EPISODIC SCORE

Since we design the episodic and semantic ontologies based on a com-
mon structure, we can define the reinforcing function for computing
the episodic score of an item similar to Section 10.8.1 but, since the two
ontologies have represented memory graphs differently, the ranking
behaviour would be different. In this section we extend the weighted
sum in Equation 10.8 for the episodic memory, which would be used
for the relative consolidating function to compute the score of each
j-th items.

In particular, for computing the episodic scores we introduce the
instant of time ¢; in which the j-th item has been stored the last time.
This implies that the storing function of the SIT instance dedicated
to the episodic memory should update the time instance of an item
when it is classified, and not only update its storing counter as the
semantic storing function does. Noteworthy, similar behaviour could
also be considered for the retrieving time.

In the weighted sum introduced for computing semantic scores,
we also considered the item’s complexity jd. For the episodic score,
the latter will not count the spatial relations in a situation as in the
semantic memory anymore. Instead, it will count the total numbers of
objects having the same shape, colour and dimension. However, the
complexity measure of episodic items can still be computed through
Equation 10.4 applied to the ontology managed from the SIT instance
devoted to maintaining the episodic memory.

Moreover, also the component of the score depending on the related
items changes since we used a different semantic interface. In particu-
lar, in this case, each i-th children of an item ®; represents situations
involving at least objects with the same characteristics, independently
from their spatial arrangements. Therefore, by applying the same
ranking policy of the semantic memory, i.e. Equation 10.8, we would
weight the score of an item based on the importance that is given to
other items involving the same objects.

Also, in the computation of the scores, we consider the storing
and retrieving counters values as in the case of the semantic memory.

193

194

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

However, the episodic counters would have a different evolution with
respect to the counters stored in the semantic memory, since the
two graphs (figures 10.5a and 10.5b) are based on beliefs differently
encoded from the same facts.

In summary, we define the computation of the episodic score as

Zri Si | 0s8j + 0,7j + 0t log (to — t;) , (10.10)
c

where 04,0c,05,0,,0; € R", and the score §j is computed through
normalisation in [o,1] as in Equation 10.9. Noteworthy, in this imple-
mentation we consider score that temporally decay based on the last
storing time ¢; referred to an initial instant ¢y and, since the difference
in timestamps would be much higher than all the other contributions
of (fj, we decided to use a logarithmic function.

Remarkably, from a long-term perspective, this definition of the
scores rewards the differences among scores over time, because we
normalise all the scores at each instant. Moreover, it is important
to notice that since the semantic and episodic reinforcing functions
(equations 10.8 and 10.10) do not generate a normalised value, a
change of the score of a single item implies to update the scores of
all the items in the graph. This might be an issue toward some real
applications, but we argue for a large room of improvement in the
definition of the function to compute the scores, and we believe our
architecture gives suitable tools for systematically evaluate different
methodologies.

10.10 MEMORY MANAGMENT

The previous section showed the structure of items that is possible to
obtain for representing different memory types through the SIT algo-
rithm. We observed that, based on the same experiences, SIT instances
with different semantic interface create different memory graphs in
the two ontologies, i.e. the items are represented with different per-
spectives. Nevertheless, those share also a common structure, since the
computation involved in the same function of different memory types
is analogous, i.e. they share most of the implementation. This section
describes an architecture which uses the same design pattern for im-
plementing the semantic and episodic memory based on the functions
introduced in Section 10.7. In particular, we present an overview of all
the proposed architecture, and we discuss the behaviour of the &, T,
R, N, F, for some situation processed in the semantic and episodic
memory introduced in sections 10.8 and 10.9.

Figure 10.6 shows the architecture through interfaces between mod-
ules, in accordance with the component diagram style of the Uni-
fied Modeling Language (UML). We deploy our architecture in the
Robot Operative System (ROS) which involves nodes and services

10.10 MEMORY MANAGMENT

communicating messages through interfaces. A node is a component
that communicates with the publish-subscribe messaging pattern (an
asynchronous communication), and we identify its interfaces in the
diagram with a single ball-socket symbol, which indicates the pro-
vided (the ball) or requested (the socket) message. On the other hand,
a services is used from a client that establishes a request-response
messaging pattern (synchronous communication), that we denote in
the diagram with a double ball-socket symbol, indicating the type of
the request message to provide to the server (light ball), and response
it provides (dark ball).

The core of the architecture is the Knowledge Representation (KR),
which contains the ontologies that contain most of the information
processed from the architecture; therefore it is interfaced with most
of the other components. To assure knowledge consistency in the
architecture, we need to orchestrate the components that use the on-
tologies, while being responsive to external stimulus. We used the
synchronous and asynchronous interfaces provided by ROS for man-
aging the synchronisation among the components of the architecture,
and Figure 10.7 shows the temporal behaviour of our design.

More in details, the figure shows the UML temporal diagram associ-
ated with the activation of the components and some highlights of the
message exchanged through the interfaces of the architecture. In this
diagram each column represents a component with respect to time, a
bold vertical line represents the activation of each component, while
a horizontal arrow identifies the sending of a message. As presented
in Section 10.3, in our architecture messages are mainly triggering
signals among components that consume and produce knowledge in
the ontology with a specific format. Therefore, in the arrows of Fig-
ure 10.7 are mainly annotated not the data that is directly exchanged
among components, but the knowledge that a component generates or
queries from the ontology before to trigger other components, which
are supposed to relay in the ontology for their inputs.

10.10.1 ARCHITECTURE

We design the architecture through a pattern that allows for imple-
menting the management of a generic memory type. Indeed, it is
important to notice in Figure 10.6 that all the components that im-
plement the functions introduced in Section 10.4 are duplicated for
the semantic and episodic memory, but they mutually have the same
interfaces and share most of the implementation, but with different
semantics.

Moreover, it is possible to notice another design pattern we used,
which assumes that the components requiring the knowledge repre-
sentations (identified in red in the diagram) are reasoners (in green
and yellow), which are interfaced among each other, as well as with

195

196

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE

A

ND FORGET

RGB-D camera | J_
o I ;Trtr(iflrflalls «service» «service»]
= (s,7,0) Semantic Episodic
3 «nodes stack» 4] ok Encoding T & Encoding N
= Primitive)_(Q)= Reasoner (sER) strs Reasoner (£ER) Et/E
%O Identification (]
R & Tagging (PIT) return ternal T —
g (VOid) stimulus o/e return stimulus oje e
=%
1 sC,sL,58,5G; |
«service» E| «service»]
Semantic synch Episodic
Storing Storing e
3) Reasoner (sSR) Reasoner (:SR) E s
3 microphone speakers synch EL/EO,
E | E ‘::j ’
o4 time
-8 internal internal
-E «nodes stack» I stimulus OJ®' return stimulus Of@' return
g Dialogue
R Manager (DM) «service»] S(b,sgj ¢service»] EQEC;‘
%f’ Semantic Episodic
kS Consolidating S Consolidating
< Reasoner (sCR) Reasoner (CR)
TE external
2 1 | stimulus return T
= {s70) (@) internal @ return internal return
stimulus'© stimulus Y ®
D,
(Sservice> 2] Sq),sgj <;ervidce> | E(:/‘
- emantic pisodic
(Ee:,wl;,e > 2 1 g'E i’ Forgetting Forgetting
Relt)rliseovilrfg i S’i <I>,* Reasoner (sFR) Reasoner (£FR)
Reasoner (rRR)
g
§ ‘ ,, : e injected SIT
§ Score State ** query o/e S(_)lution**
~ : \ Ontology /. \ Ontology / :* manipulate consistency *
§ «service» £] 1 y \ I((f;Sr\;\]/hlcel) a
=2 . . ulti
& I{S;lrr;::it;cg Semantic e Episodic Ontology References
Reasoner (sRR) Ontology Ontology (ARMOR)
s IC: S cz / : =
sC,sL, g -
sSsP* *¢APT> “*¢APT> " depends *W
OWL API DL Reasoner |: QLIS

SAOUOSVIY [VULIIXT

SAQUOSVIY [VULIJUT

u01vJUasaiday] aSpajmondy

Figure 10.6: The software architecture where we deploy our design patter for managing the semantic and
the episodic memory.

perceiving and acting modules (in blue). We design each reasoner
to be a service that manipulates the knowledge representation, and
we further identify them in two different types. An external reasoner
(shown in green) is triggered from external stimuli (i.e. RGBD images
or signals from the microphone). They are the only component of
the architecture that receives data directly from another component,
and have the purposes of introducing knowledge in the ontology as
well as generate internal stimuli that trigger internal reasoners (shown
in yellow). Each internal reasoner uses only the knowledge already

10.10 MEMORY MANAGMENT

available in the ontologies and might generate further internal stim-
uli to other internal reasoners (e.g. the storing reasoner triggers the
consolidating reasoner).

In our scenario, the architecture requires an RGB-D camera, whose
data is processed by the Primitive Identification and Tagging (PIT)
component Chapter 2, through which we detect objects on tables, and
we extract some of their characteristics, i.e. position, shape, colour,
and dimension. On the other hand, we interact with the user through
the Dialogue Manager (DM) as presented in Chapter 9, where we
use the same implementation of the semantic memory, presented in
Section 10.8 to explain experiences to a supervisor, which could correct
the beliefs of the robot.

Remarkably, in our scenario, the robot does not perform any physi-
cal actions, but our architecture can accommodate acting components
as well. The limitation that the architecture might pose for planning
and acting components is mainly due only to computational com-
plexity, especially if raw measurements are used as feedback. As far
as dialogues are concerned, we design the architecture with a hybrid
perceiving-acting module (shown in purple in Figures 10.6). Thorough
components, the robot understands user’s sentences with retrieving
purposes (i.e. perception), and it generates the explanation of retrieved
memory items (i.e. action).

For making the ontologies available to distributed components in a
ROS architecture we used a ROS Multi Ontology References (ARMOR)
service Chapter 6. The latter uses OWL API [73] and a DL reasoner (we
used Pellet [144]) to expose three types of services: (i) the manipulation
of the knowledge that returns a consistency signal, (ii) the query to
the ontology, which returns knowledge that solves it, and (iii) the
functions provided by SIT, i.e. P, C, £, and S, which are implemented
in ARMOR as injected services.

Since ARMOR contains the memory and the functions that are
semantically interfaced, the perceiving and acting modules should
be designed in order to provide or obtain data with a well defined
semantic, e.g. the semantics introduced in sections 10.8 and 10.9 for
our scenario. In other words, each Encoding Reasoner (ER) requires
data to generate feasible facts and beliefs about a situation in the
relative ontology. Then, ER generates an internal stimulus that triggers
the relative Storing Reasoner (SR). The latter might add a new item
ontology or change the score of an item already in the memory. Since
those changes affect the items scores, ER triggers the Consolidating
Reasoner (CR), which uses this information to update the values of
the scores. Consequently, CR triggers the Forgetting Reasoner (FR),
which classifies the items based on the new score level, and deletes
memories that have a weak score.

We assume that the above process driven from visual perception
is triggered by the user, who might want the robot to observe a new

197

198

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

situation or to be involved in a retrieving task. The latter case implies
a dialogue, and the understood information should be evaluated in
the memory. The Retrieving Reasoner (RR) performs this operation
through the services injected in ARMOR that implement SIT func-
tionalities (Section 10.4.1). After, RR returns two graphs containing
semantic and episodic items that have been retrieved and explained to
the user.

10.10.2 ENCODING REASONERS

The encoding function £ (Equation 10.5) has the purpose of generating
in the ontology facts and beliefs according the semantic interfaces,
which are defined for the two memory types through sets of symbols
(sR,sT') and (gR,eT) discussed in sections 10.8 and 10.9. For doing
so, the perceiving modules, i.e. PIT, calls the episodic and semantic
encoding reasoners (cER and sER), with the purposes to compute the
encoding function &£, which is implemented by a specific SIT instance
injected in ARMOR. Since the two encoding reasoners exploit different
semantic interface, the related ontologies would contain knowledge as
shown in the third column of tables 10.1 and 10.2 respectively.

In accordance with our formalisation of SIT, the facts to encode can
also be based on logic reasoning, e.g. to evaluate spatial relationships
based on objects” position. For a general semantic interface, inputs
that PIT provides to ER are a set of tuples of the type (s, v, v);, where
s is a symbol semantically represented in the ontology, e.g. hasColour.
While v is an instance and v is a value, which can be a number or
a symbol used for further reasoning, as well as another instance, i.e.
PIT might already provide a fact f;. Remarkably, in Chapter 4 we
present a multimodal perceiving module that extends the perceiving
components considered in this paper with more expressive and reliable
information. Moreover, in the case in which the fuzzy implementation
of SIT is considered then the facts and beliefs would also have another
field, i.e. a fuzzy membership.

ER is an external reasoner, i.e. a ROS service, which receives input
tuples and uses ARMOR for generating facts in an ontology. When the
ontology contains all the knowledge for the current situation based
on a semantic interface, ER uses SIT to compute the related beliefs,
which are stored in the ontology. In Figure 10.7, those two operations
are simplified as only one message sent at lines 2 and 3 (for sER and
£ER respectively). Those messages are sent as a reaction to knowledge
provided by PIT aperiodically since we consider the user to arrange
the situation and give an explicit command to the robot in order to
observe it through the perceiving module. When the requests of ER to
AMOR are performed (lines 4 and 5), ER continues its computations
and triggers SR in order to evaluate the storing function for the new
beliefs, i.e. it generates an internal stimulus shown at lines 6 and 7.

10.10 MEMORY MANAGMENT 199

Perceiving External Knowledge Internal External Acting-
Module Reasoners Representation Reasoners Reasoners Perceiving Module

PIT Encoding Storing ARMOR Reinforcing Forgetting Retrieving DM
Sem. Epis. Sem. Epis. Sem. Epis. Sem. Epis. Sem. Epis.

{847, V)n

EF, £
sF, s

void
void

internal stimulus
internal stimulus
sC
C

O 00| \J| O V1| & W N| »

11 P =P
12 ’ syncsh < i
13 1 synch
14 sL,sT,sG;
15 EGj
16 void
17 internal stimulus
18 void >
19 internal stimulus
20 D, C P
21 D, C 5P
22 Sq>j
23 £D;

26 void
27 [void
28 internal stimulus
29 internal stimulus
30 D, C P
31 o, C 5'31)
32 s®;
33 ED;
34 SCORE [g®;
35 SCORE [Sq)f
36 void
37 void
38 return >
39 return
40 return
41 return
42 return
43 return
44 remove F and|ge
45 remove sF and|se
46 void
47 void
48 return
49 return

- S,’)’,U>n 50
sF, &, sC €« 51

eF, g€, eC _ 52
qd) =g i) 53

i ;D 54
si, 58, PRCsP >r 55
£Ci, remove g F and e |

s&;, remove gF and se 59
void 60

v time ‘ '

Figure 10.7: The activation of the components of the architecture in Figure 10.6, and the highlights of the
exchanged messages as well as knowledge manipulations or queries.

200

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

Since also SR is ROS services, the first waits until the second terminates.
After (at lines 44 and 45), ER continues its computations and removes
all the facts and beliefs from the ontology (lines 46 and 47). Such a
cleaning operation is required from SIT since it supposes the ontology
to contain only facts about a single instant of time. This drawback
also limits the computation of the retrieving function, which cannot
be performed in parallel to ER and SR. Than, ER terminates (at lines
48 and 49) and the architecture might be used to process the point
cloud of another situation.

10.10.3 STORING REASONERS

In Section 10.7.2, we discussed the implementation of the storing
function, which is based on a combination of C, £, and S functions
provided by SIT. Between lines 8 and 19 of Figure 10.7, the semantic
and episodic SR use ARMOR for performing those function assuming
that the ER generated in the ontology beliefs about the situation to
process. The storing function is such to increase the counters of an
item through classification, or it would generate a new item in the
memory, and in the figure, we show an example where 7 generates
a new memory item, while g7 classifies a previous experience.

In the architecture, we store items for the semantic and episodic
memory with independent instances of SIT. Nonetheless, it is possible
to observe that the nodes in the figures 10.5a and 10.5b can have a
name related to the situation, which can be used to associate items
from independent graphs. In this way, it is possible to associate a
semantic and an episodic item to the same situation, i.e. ¢®; and 5P
describe the same situation that we named Iteml. In our scenario, we
generate sequential names, e.g. Iteml, Item2, ..., but we discussed in
Chapter 7 that meaningful names should be used for a real application,
and in Chapter 9 we have shown a technique to involve a person for
assigning names to items ®;.

However, due to the forgetting functions, which might remove an
item only form some memory types, the associativity match could
be not always possible. To overcome this problem, we introduce a
synchronisation signal between sSR and SR, as shown in Figure 10.6.
In particular, the synchronisation signal is sent from a component
to the others after the computation of C. The synchronisation allows
assuring that an eventually learning phase of SIT is performed by
any SR after that all of them have terminated the first classification
attempt. In this way, if one SR should learn a new item via £ and S,
it could name the new item with the same name obtained in other
memories through classification. The latter name can be accessed from
the ontologies through ARMOR, but we accept it as a feasible name
only if the classification has a similarity value Jd. =1, i.e. the features
of an item perfectly model the belief of a situation. Only with this

10.10 MEMORY MANAGMENT

condition, it is possible to maintain a consistent association between
items, as well as their children and parents, among different graphs.

As an example, at lines 8 and 9 of Figure 10.7 the classification
is performed through ARMOR, which returns a graph of items that
classify the beliefs in the ontology. For the episodic memory, line 10,
some items are given, while for the semantic memory, line 11, ARMOR
returns only the root of the semantic graph, i.e. the situation could
not be classified. Then the two reasoner exchange a synchronisation
signal and, when each of those is aware that the other finished the
classification phase continues their computation. In this case, sSR
learns and structures a new item in the memory with an initial score
and counters (at Line 14), while (at Line 15) the SR only update the
counters of all the j-th items given at Line 10. Remarkably, as discussed
in Section 10.9, SR should also update the time instant associated
with the classified items since this is required for computing the scores
consistently. When ARMOR have processed the all requests (lines 16
and 18), each storing reasoner generate an internal stimulus to trigger
the consolidation of the items (at lines 17 and 19).

10.10.4 CONSOLIDATING REASONER

Each time the storing and the retrieving functions are computed from
the relative reasoner, they trigger CR since their operation requires
to recompute all the item’s score. This is due to our definition of the
functions to compute the scores (in equations 10.8 and 10.10), but other
approaches should be developed keeping into account performances
issues that recompute all the scores each time might arise for a real
application.

In our scenario, we preliminary implemented a consolidating func-
tion based on a weighted sum of some components. Since our im-
plementation requires to update all the scores at each new stored or
retrieved operation, we always use the score computed during the
previous situation and, we update the score for the current situation
after any storing or retrieving operations. In accordance with equa-
tions 10.8 and 10.10, those components are such to increase the score
of an item if (i) it is an item not stored for the first time or retrieved
at the current instant of time, (ii) it models a complex situation, i.e.
we award simpler items, (iii) it is a more general item (i.e. a parent
node) of items with a high score, and (iv) only for gCR, it is related to
a recent instant of time.

In particular, when CR is triggered it query the memory graph
through ARMOR (at lines 20 and 21 of Figure 10.7), which returns (at
lines 22 and 23) all the items in the memory, included their relations,
e.g. edges in the graph. In this way, CR receives the definitions of all
the items, as well as their counters and scores, but it could also query
further knowledge through ARMOR. Given this information, CR is

201

202

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

supposed to compute a new score for each item and saves all the new
values in the ontology through ARMOR (at lines 24 and 25). At lines
26 and 27 ARMOR returns a consistency signals that in this paper is
ignored and at lines 28 and 30 the forgetting reasoners are triggered.

10.10.5 FORGETTING REASONER

FR is triggered all the times the score is updated to ensure that the clas-
sification of items in their score level is up to date, but this assumption
could be relaxed if we allow some latency in the memory management.
As mentioned we consider three score levels, the forgetting reasoner
deletes items with a weak score, and it identifies items with high or
low scores. The latter are considered during retrieving since it would
not return items with a low score, as discussed in Section 10.6.1. In
this way, items that are not retrievable are still represented in the
memory and, if the consolidating function is such to increase their
scores enough, they might become items with a high score. In our
scenario, we implement this classification based on thresholds, but
other techniques could be more effective. Therefore, we consider this
classification as a process not performed from the OWL reasoner that
might limit the design of classifying techniques. Nevertheless, FR can
exploit ARMOR also for this purpose.

In particular, between lines 30 and 33 of Figure 10.7, the forgetting
reasoner query the memory to ARMOR that returns two graphs.
At lines 34 and 35, FR uses ARMOR to create knowledge in the
ontology such to classify each item in a score level and terminates its
computations (at lines 38 and 39). Since FR do not trigger any further
internal reasoners, CR receives a returning signal (at line 40 and 41).
Then, the SR terminates its computation and returns a signal to ER (at
line 42 and 43).

Remarkably, during this process, FR might access the same knowl-
edge of CR through ARMOR, i.e. the entire memory. We explicitly di-
vide those two components for modularity purposes and also because
they might be used with different frequencies. Indeed the retrieving
function returns only items with a high score. Therefore, weak items
that would not be removed from the memory yet would not affect the
responses of the robot. Nevertheless, in this case, a low item might
become weak and then low again without being removed if FR is not
triggered.

10.10.6 RETRIEVING REASONER

RR is a service that is triggered when a dialogue ends (at line 50
of Figure 10.7), i.e. when some facts are sent from DM, which is
implemented as a finite state machine. RR encodes facts similarly to
EM, and then it performs a preliminary classification attempt through

10.10 MEMORY MANAGMENT

ARMOR (at lines 51 and 52), similarly to SR and in accordance with
Section 10.7.3. If among the items classified by SIT there is a ®; such
that the similarity value /d. = 1, we assume that the user provides the
robot with an exhaustive description of the situation to be retrieved.
Otherwise, RR uses the learning and structuring operation of SIT to
reason on a dummy item that after the computation, i.e. before to
return a signal to DM, is removed.

In Figure 10.7 we show an example of the first case occurs in the
episodic memory (at Line 54), while the second case for the semantic
memory (at Line 53). Therefore, at Line 55 sRR uses ARMOR for
learning and structuring a the dummy item ®x, as well as querying
its arrangement in the memory graph. While, at Line 56, FRR increase
the counter assigned to all each item given by AMOR at line 54 and
removes all the facts and beliefs since its ontological operation is termi-
nated. On the other hand, ARMOR responses to the query provided by
sRR at Line 58 and, at Line 59, RR updates the counters and removes
the knowledge of the current instant of time as above. Finally, at lines
61 and 62, the semantic and episodic graphs of retrieved items are
sent to DM, which generates feedback to the user.

Similarly to PIT, the dialogue manager is in charge to divide episodic
to semantic facts based on the interfaces used for each SIT instances.
This because the knowledge should be sent to the respective compo-
nents, which returns two different ordered set of items to be explained
to the user. The components are such to return always paths in the
memory graph that contains the root, a leaf, and the classified or
dummy item. In our scenario, the robot prints on screen the retrieved
graphs as well as the restrictions of its items, and explains the item
with the highest score among the two graphs explicitly. Remarkably,
the problem of choosing a single item among all the retrieved paths
is a not trivial, and it is out of the scope of this paper. Nevertheless,
we believe that our architecture is a suitable tool for also investigating
this open issue as well.

In our implementation, the user is supposed to tell the robot a
set of facts concerning symbols of the semantic interface associated
with each instance of SIT. For instance, the user might ask the robot
which was that situation where “a big cone was on the right-hand side
of a red sphere”. In this case, we generate facts within independent
instances, e.g. CONE: 1, BIG: v, SPHERE: 73, RED: 77, and right(7y1, 72).
The user might add more characteristics of the situation to retrieve,
e.g. he or she might also say that the item to retrieve should also
have “a cone on the right-hand side of a green sphere”. In our simple
implementation, this would generate other two instances 3 and 74,
that would be processed by the robot that would reply based on the
discussion of Section 10.7.3. Again we do not consider in this paper the
problem of implementing an efficient dialogue, but our architecture
can be easily used for evaluating different heuristics.

203

204

AN ARCHITECTURE TO CONSOLIDATE, RETRIEVE AND FORGET

10.11 CONLCUSIONS

The paper presented an architecture for encoding, storing, retrieving
consolidating and forgetting structured memory items. In particular,
we represented each memory item as a node of an oriented graph that
was generated from demonstrations based on the SIT algorithm, which
implements one-shot structured learning based on logic reasoning. On
the one hand, we extended SIT for computing the above functionalities.
On the other, we deployed in our architecture more instances of SIT.
This because we wanted to represent different types of memories,
and we show the architecture for a scenario where a semantic and an
episodic memory have been implemented.

We exploited the semantic interface provided by SIT to generalise
our implementation. In particular, we presented a design pattern that
does not limit the number of SIT instances provided with a different
interface, and consequently the number of structures representing
experiences with different semantics. Thanks to the purely symbolical
method formalised in the SIT algorithm, we showed that an expressive
set of memory models could be implemented in the architecture.
This is aligned with our objective, which was to present a system
that supports the evaluation of different implementations of memory
functionalities.

Our architecture can represent knowledge in a contextualised and
structured manner, where the semantics of the different structures can
be customised through some parameters. For each of those structures,
we proposed a set of extensible tools to perform all the memory
functionalities named above. With investigating purposes, we gave
particular support to the parameters that can be used for implementing
consolidating and forgetting behaviours.

We presented a possible implementation of our architecture in ROS,
where we used the same design pattern to model each functionality
of the memory. Also, we took into account the issues to interfacing
different perceiving and acting components. Through a centralised
knowledge interfaced and services, we presented an architecture that
requires as input triples involving symbols of instances of the environ-
ment. We focus on an architecture that is robust from the point of view
of synchronisation among components, which allowed us to achieve a
system flexible enough for evaluating several memory management
implementations.

We presented a simplified tabletop scenario for which we proposed
a complete implementation of the architecture with the purposes to
highlight its features and limitations. For the referenced scenario, we
showed how the robot could use an RGB-D camera for storing situa-
tions into memory items, with different semantics. Also, we showed
how items could be associated with new situations and retrieved based
on dialogues, also when concerning situation not directly experienced.

10.11 CONLCUSIONS

In particular, in our scenario, a user might ask to retrieve an item
given a partial set of a characteristic describing a possible situation.
The robot uses them to retrieve models of previous experiences that
might be more or less complex than the one requested by the user. The
items retrieved by the robot are ranked with a score, which is used
with consolidating and forgetting purposes based on the structure of
the memory itself. We consider in the semantic memory situation be
described through abstract concepts as object shapes and qualitative
spatial relationships. While, in the episodic memory we consider more
concrete properties of objects, such as the colour and the dimension, as
well as temporal and contextual information, e.g. the instant of acqui-
sition and the particular table in which the objects were located. Those
two different descriptions of the environment are represented with
dedicated semantic interfaces used from two independent instances
of SIT, which represent experiences in two graphs having different
semantics. In our scenario, the user might interact with the robot
using those symbols, which are directly mappable from sentences into
the robot’s memory, e.g. “a big, red, sphere that had a cone on the
right-hand side”.

From our preliminary test, we observed that the main limitation of
the architecture is the computation complexity, especially for applica-
tions that require large knowledge representations. Nevertheless, in
our design, we prefer to have a flexible than an optimised architecture.
This because we would like to have an architecture for prototyping
behaviours for managing memories. Unfortunately, as a drawback,
we obtained a system that demands high computational resources.
Once the behaviour has been tuned for an application through our
architecture, we argue for more optimised implementations of such
behaviour for a real deployment.

As a further work, we want to include the fuzzy implementation of
the SIT algorithm and systematically test different consolidating and
forgetting heuristics also based on more realistic scenarios. Also, we
want to include mechanisms for automatically retrieve items based on
visual perception, e.g. to recall an item which is similar to the current
situation, with planning purposes for instance.

205

Part VI

SUMMARY

This part concludes the thesis and discusses our approach.

11

CONCLUSIONS

In this thesis, we presented developing guidelines and tools for imple-
menting architectures centred in a structured memory, which contains
experiences that the robot can recall and share with persons. Through
use cases concerning a tabletop scenario where objects are spatially
arranged, we discussed its software components and their interfaces.
Our architecture is designed to be used as a base for the iterative
development process since it supports integrations and extensions for
a broad range of scenarios. In particular, we consider scenarios where
a user and a robot need to interact during a knowledge bootstrapping
phase for sharing qualitative information that will be later used for
achieving a common goal.

Our design pattern is based on the novel concept of semantic inter-
face, which is used to interconnect the components of a ROS architec-
ture with knowledge representations. We considered OWL ontologies
provided with the Pellet and the fuzzyDL reasoners for representing
knowledge in the robot memory, and we presented tools to design
semantic interfaces, i.e. OWLOOP, in Chapter 5, and ARMOR, in
Chapter 6. Such an interface allows components to rely on knowledge
independently from other components that reason on the memory
with aggregating purposes. In other words, through a semantic in-
terface, we specify the syntax in which a component will store and
retrieve knowledge in/from an ontology without defining its seman-
tics, which would depend on the other modules of the architecture
and prior knowledge.

Based on such a semantic interface, we presented in Section 1.4
an overview of the architecture which involves external components
and reasoners relying on a knowledge representation. We test this design
pattern in chapters 9 and 10. The former focussed on external compo-
nents for engaging dialogues with a user that supervises robot beliefs,
while the latter extended the system with the definition of different
reasoners, which maintain a semantic and episodic memory through
consolidating and forgetting mechanisms.

In the thesis, we based the reasoners of the architecture on the
Scene Identification and Tagging algorithm (SIT), which is detailed in
Chapter 7. We formalised the SIT algorithm to generate experience
graphs based on demonstrations, and Chapter 8 proposes an extension

209

210

CONCLUSIONS

designed for uncertain environments. In particular, SIT takes symbolic
facts describing a scene in an ontology as input, and it generates
a definition of a category that will classify similar scenes when the
robot will re-experience them. SIT exploits OWL reasoning to struc-
ture learned categories in an implication graph, which is given as
output to represent a scene through classified sub-scenes previously
experienced. Remarkably, SIT uses a purely logical representation, and
it can evaluate the symbolic definition of qualitative scenes features
for measuring their similarities.

The algorithm is designed with a particular semantic interface that
describes the scenes through facts representing relations between
salient elements of the environment. We coupled the algorithm with
external components that require and provide knowledge from/to
the ontology representing spatially arranged objects. In particular, we
identified a semantic interface based on qualitative spatial relation,
such “on the right-hand side of” or “behind”, which are applied
between objects with some characteristics, e.g. shape and colour. Based
on this scenario, the thesis evaluates the maintenance of the knowledge
in memory for some use cases, as well as the semantics of the memory
graph that the robot structured over demonstrations.

For testing our design pattern, we presented in Chapter 2 the Prim-
itive Identification and Tagging (PIT) architecture, which evaluates
RGB-D data for creating instances in the ontology that describe objects
with a position, a colour, a shape and some geometrical parameters,
e.g. a radius if a sphere is segmented from the point cloud. Also, we
presented in Chapter 4 an architecture that performs multimodal per-
ception fusion for generating further descriptions of the scene in the
ontology; for instance, we used it for fusing the description provided
by PIT with the recognition obtained through convolutional neural
networks.

Moreover, in Chapter 3 we present the Concept Action Grammar
Generator (CAGG) for parsing sentences in a simplified English and
obtained semantic tags related to words. The latter is used for engaging
dialogues through the ROS architecture proposed in Chapter 9, where
we focused on the interface between an ontology and an external
component that both generates and consumes knowledge in memory.
Remarkably, thanks to OWLOOP and ARMOR, we could define the
semantic interface of a general component that has been used for
access the ontology and implements four different types of dialogues.

In the architectures presented in Part v we consider the robot as a
passive observer that can speak with the user and maintain its memory.
Nevertheless, as presented in Chapter 6, ARMOR has been used to
support symbolic adaptative task planners used for manipulation
tasks. Also, Appendix A presents an architecture based on a fuzzy
memory representation similar to the one used for formalising the
fuzzy extension of SIT presented in Chapter 8). That paper shows how
Monte Carlo simulation can be used for mapping symbolic spatial
representation to a quantitative location that a robot should reach.

11.1 DISCUSSIONS

Also, it presents an anytime implementation of an architecture where
multimodal interactions, including speech and pointing gestures, are
based on a symbolic memory that drives the motion controller of a
mobile robot.

11.1 DISCUSSIONS

In Section 1.2, we introduce the requirements of the architecture con-
cerning feasibility, shareability, expressivity, explicability, robustness
and supports long-term applications. In the thesis, we discussed the
feasibility of the architecture through some preliminary measurements
showing that it can respect soft real time requirements for HRI. Also,
we showed that the architecture is sharable among developers since it
is based on mainstream and standard tools. Thanks to the definition
of the semantic interface, the architecture can be used to represent
expressive and structured memories, which contains knowledge that
the robot can explain. Moreover, using a fuzzy ontology, the architec-
ture can rely on a representation of uncertain environments, and this
makes it robust to both perception noise and vague knowledge. Finally,
we show an example of long-term memory management exploiting
forgetting behaviour based on consolidating scores.

In Section 1.2 we also listed the features of the architecture we
wanted to achieve and evaluate. In particular, we aimed to design a
general architecture and, through semantic interfaces, we achieved
such a feature for a large set of applications related to the requirements
above. Similarly, we discussed and proposed examples for showing
that the architecture is modular, and can be used for testing and
evaluating different approaches for structuring experiences over time.
Nevertheless, the scalability features of the architecture is a critical
issue. Indeed, even if we tried to optimise the knowledge to be repre-
sented, the amount of resources needed for maintaining the memory
scales exponentially. This is a current challenging issue, mainly due to
OWL reasoning complexity.

We showed that the architecture well performs for scenarios where
qualitative knowledge is required. Through different configurations of
the semantic interface required by SIT, compared in Chapter 10, we
presented how the memory can be structured based on different sym-
bolic semantics, which highlights the flexibility of our design pattern.
Since we used logic representation, we could build a general architec-
ture because we consider abstract symbolic knowledge. Nevertheless,
symbolic representation suffers the anchoring problem [42], and map
sensory data into a symbolic description is not always trivial. Indeed,
our memory is limited when the application requires quantitative
reasoning, e.g. for physical interaction for instance. In this case, we
argue for an architecture with symbolic, sub-symbolic, and numerical
layers, similarly to other OWL-based architecture for robotic, e.g. [18,

29, 134].

212

CONCLUSIONS

In the thesis, we presented some implementation for acquiring
sensory data and generate logic representations of the environment.
Although this is a challenging open issue that must be tackled for real
application, the thesis mainly focuses on representations of symbolic
knowledge in memory, and not in the perception and actions based on
such descriptions. Nevertheless, we wanted to deploy our architecture
in a real environment to support the iterative development process,
which relies on user’s feedback from the early stage of the develop-
ment, as presented in Chapter 1. Therefore, we implemented simple
components that provide and requires knowledge in the memory with
the purpose to bootstrap the development for the referenced spatial
scenario and improve the architecture in the further iterations of the
development process. Those components, presented in Part ii, might
exploit more sophisticated state of the art approaches, which would
certainly improve the overall performances of the architecture.

In our experiments, we involved few users, since our objective was to
test the flexibility of the architecture before to evaluate the interaction.
Already with these preliminary tests, we identify several heuristics
for representing spatial relations, anchoring symbols to objects, as
well as for consolidating and forget behaviours. Unfortunately, we did
not found any evidence of the performances we would obtain with
such heuristics, and we were unable to test them with a sufficiently
high number of user for deducing their properties. Nonetheless, we
experienced that our architecture can easily accommodate different
approaches to be validated. Also, since we used mainstream packages,
and thanks to a representation of knowledge that can be easily under-
stood from a person, our architecture might also help in comparing
results among different domain and developing groups.

11.2 FURTHER WORKS

As a further work, we want to proceed with the next iterations of
the development process and exploit the architecture for evaluating
and comparing different heuristics for improving the interaction for
knowledge bootstrapping in the referenced spatial scenario. Also, we
want to use the same design guidelines for building an architecture
that maintains a memory where experiences are structured based on
the affordance of objects in the environment, as well as user’s activities,
their intentions and temporal reasoning.

Furthermore, the proposed architecture still needs a systematic
evaluation of long-term applications, which will allow to better asses
also scalability features. Moreover, planners and motion controllers
should be further tested for making the robot acting and evaluate the
behaviour of the architecture. This would enable to test more complex
scenario where the interaction can be evaluated based not only on the
knowledge bootstrapping phase.

Part VII

APPENDIX

This part introduces a preliminary implementation for
acting based on a simple memory.

A SCALABLE ARCHITECTURE TO
DEsIGN MULTI-MODAL
INTERACTIONS FOR QUALITATIVE
RoBOT NAVIGATION

ABSTRACT

The paper discusses an approach for teleoperating a mobile robot
based on qualitative spatial relations, which are instructed through
speech-based and deictic commands. Given a workspace containing a
robot, a user and some objects, we exploit fuzzy reasoning criteria to
describe the pertinence map between the locations in the workspace
and qualitative commands incrementally acquired. We discuss the
modularity features of the used reasoning technique through some
use cases addressing a conjunction of spatial kernels. In particular,
we address the problem of finding a suitable target location from a
set of qualitative spatial relations based on symbolic reasoning and
Monte Carlo simulations. Our architecture is analyzed in a scenario
considering simple kernels and an almost-perfect perception of the
environment. Nevertheless, the presented approach is modular and
scalable, and it could be also exploited to design application where
multi-modal qualitative interactions are considered.

robot teleoperation - fuzzy spatial relations - multi-modal robot interaction

AUTHORS
Luca Buoncompagni*, Suman Ghosh*,
Mateus Moura* and Fulvio Mastrogiovanni
AFFILIATION

University of Genoa.

*These authors contributed equally to this work.

215

Published in the
Proceedings of the
17th International
Conference of the
Italian Association
for Artificial
Intelligence (AI"IA
2018, Trento, IT).

216

AN ARCHITECTURE FOR QUALITATIVE ROBOT NAVIGATION

a.1 INTRODUCTION

Nowadays, robots are being deployed in daily-life environments with
health-care and assistive purposes. Those applications usually exploit
distributed environmental sensors, which provide information about
a user’s state and activities for experts that evaluate the well-being of
a person. In some scenarios, caregivers might use telepresence robots
to communicate with the person and ask for assessments that sensors
do not provide. Those robots are required to interface smoothly with
persons, especially elderly adults, taking into account social and spatial
cognition. In other similar scenarios, pet-like robots, such as Miro [125]
have been developed as companions for a long-term motivation of
users with interaction and mobility difficulties. For both scenarios, the
navigation of the robot should allow different degrees of autonomy to
meet different users’ needs [121]. In this paper, we address the issue
of locating a mobile robot with a high degree of autonomy, controlled
through qualitative incremental commands.

In these scenarios, robots should be able to navigate in an envi-
ronment shared with humans, who might like to naturally issue
commands that drive the robot to specific areas of the room, with
no high precision requirements. For instance, if a child stays in the
bedroom for a long time during a sunny day playing with his or her
pet-like robot, the mother could ask the robot to go close to the exit door,
trying to motivate the child to play in the garden. On the other hand,
if an older adult is on the sofa and receives a call from the doctor; he
or she might ask a telepresence robot to locate itself in a comfortable
position, for instance, in front of the television and on the right-hand side of
the table. Generally, we consider the teleoperation based on qualitative
commands all the times that a user cannot give either geometrical or
velocity references.

Robot teleoperation is a largely investigated problem in the liter-
ature, especially for exploration and manipulation tasks, where a
certain precision is required. Several types of systems exploit differ-
ent interfacing devices such as joysticks, smartphones, Leap Motions,
smartwatches, eye-tracking technology, etc. Different applications lead
to different approaches; for instance, a reacting control is suitable
for low-level interacting behaviors. Instead, a high-level interaction
usually requires that the user provides additionally informations; typ-
ically, velocity or geometrical references, e.g. go slower, go forward, etc.
Remarkably, while the user is issuing those commands, he or she is
required to continuously operate the robot, since its behavior also
depends on the states it had at previous instances of time. In other
words, the robot has a memory, and the users operate it by giving
differential references, which could be based on previous positions or
speeds.

A.1 INTRODUCTION

Figure A.1: The referencing scenario.

We designed an interaction pattern that relies on a robot having
in memory a set of commands that restrict the possible target posi-
tion in space. These restrictions are described qualitatively concerning
the robot and generic objects, seen from the user’s viewpoint. The
perception of such knowledge from visual and auditory channels
is an extremely challenging problem, especially for general-purpose
systems. Due to a large number of uncontrolled variables influencing
the experiments, human-robot interaction applications are typically
designed through the iterative developing process based on the (i) de-
veloping, (i7) testing, and (ii7) evaluating phases, which are performed
in an iterative manner. During ii and iii, some measurement of the
interaction, as used in [116], can guide further developments to be
undertaken during the i phase of the next iteration. Remarkably, to do
not bias experiments outcomes with developers beliefs, it is suggested
that the i phase tries to improve the system with minor changes, i.e.
the evaluation frequency should be high.

If verbal commands are used to guide the robot to a target posi-
tion, symbolic representations are required to understand the user’s
sentences and find a target pose suitable for the given commands.
Typically, in such cases, systems exploit a map between geometri-
cal positions (or velocities) and symbols, for each known location,
based on the user’s inputs [120, 130]. During verbal interaction, users
also communicate through other modalities, such as deictic gestures.
In many works multi-modal robot interaction is investigated — for
instance, [43] proposes to use Reinforcement Learning and applied
associative memories — for fusing audio and gestures, and instruct the
robot on qualitative commands for picking and place tasks. For merg-
ing such interaction modalities, a Markov Decision Process in [101],

217

218

AN ARCHITECTURE FOR QUALITATIVE ROBOT NAVIGATION

Recurrent Neural Networks in [7], and a Dynamic Bayesian Network
in [76], have been used. Remarkably, not only do such methods al-
low dealing with uncertainties, but they can also be used for learning
behaviors in a data-driven manner. However, the models generated
by these techniques are typically not modular, since the introduction
of a new behavior might affect the probability distribution of all the
other states). Thus, the system can not always scale among iterative
development steps.

Fuzzy logic formalism, mainly developed to be used with natural
language, can be used for representing the robot position with respect
to shape, position and orientation of general objects. In particular, [154]
proposes a mapping function between sentences (containing spatial
relations) and a fuzzy membership value associated with a physical
location, while [149] uses fuzzy membership functions for fusing ges-
tures and natural language. Moreover, [20] proposes mathematical
morphology for describing north, south, east and west points of objects
or rooms. Fuzzy morphology has also been developed for image pro-
cessing. [48] presents a kernel-based approach for classifying spatial
relationships between hand-drawn symbols, where such kernels are
generated through a data-driven approach based on Support Vector
Machines.

In this work, we developed a system that allows symbolic teleopera-
tion of a mobile robot based on fuzzy spatial relations between objects
issued through multi-modal commands. Our main contribution is a
software architecture defining the required components and interfaces
to be used during the steps undertaken in an iterative development
process. Our objective is to start designing and testing a modular
and scalable reasoning technique that can be used in dynamic en-
vironments and with a broad set of qualitative commands, possibly
customized for each user and scenario. We present our architecture
through a preliminary implementation suitable for the i phase of the
first iteration (i.e. concerning a simplified, but real use case shown
in Figure A.1), and we discuss its scalability and modality features
achieved through fuzzy reasoning and Monte Carlo simulations.

In particular, we address the problem of representing qualitative
spatial references and finding a suitable target position that the robot
should reach. In this scenario, we assumed a robot that perfectly knows
its location, the locations of referenced objects and their identifiers.
Also, it can perfectly translate the user’s voice in text, and detect his
or her pointing gestures. Moreover, in the presented use case, the user
interacts only though combinations of five spatial relations (i.e. in front
of, behind of, on the right of, on the left of, and near to). Nevertheless,
the paper shows how the architecture can accommodate and merge
different spatial relation models, based also on some different input
modalities, in a modular manner.

A.2 SOFTWARE ARCHITECTURE

Section A.2 gives an overview of our system, while in Section A.3 we
introduce the user interfacing pattern for the referenced use case. In
Section A.4 we present a fuzzy spatial reasoner based on fuzzy kernels,
which are further detailed in Section A.5. Section A.6 presents our
experimental evaluation and discusses preliminary results. Conclusion
follows in Section A.7.

a.2 SOFTWARE ARCHITECTURE

Figure A.2 presents the proposed interaction patterns from a
Component-Based Software Engineering (CBSE) perspective, graphi-
cally shown through a structural Unified Modeling Language (UML)
diagram. In the Figure, boxes represent software components, which
provide and require interfaces to operate. The latter are graphically
identified with the ball-socket notation. All interfaces are described
by a specific message defining the data type exchanged among com-
ponents through ports (i.e. data communication channels). We specify
the proposed components for the widely adopted Robot Operating
System (ROS) framework. Therefore, we assume a component to be a
node or a service, the former characterized by a spinning rate, while the
latter provides services on demand.

Within an area monitored by a motion capture system, the Rigid
Body Detector component provides to the robot the position of all
the elements of our referencing scenario. The robot process inputs
coming from the Speech Processor component, that parses sentences
to providing semantic tags for specific words, which are used for
identifying qualitative regions in space that contain the target position.

When the user says a sentence containing a valid command (i.e.
meaningful semantic tags are found in the text translation of the
person’s voice), and eventually performs a deictic gesture, the relative
inputs are provided to the Command Logic component, implemented
as a finite state machine. In particular, the robot is initially in a (i) ready
state and when a command is issued, to the Command Logic goes to
a (i1) listening state. It can lead to an (iii) invalid state if the command
is not understood, or to a (iv) computing state, which holds until a
suitable target position is found. When this occurs, the robot starts
moving and returns to the ready state; otherwise an (v) inconsistent
state emerges, and the spatial beliefs of the robot are erased.

The Command Logic maintains in the memory the user’s instruc-
tions that the robot should take into account for finding a suitable
target point. Such a memory is implemented as a buffer that contains
all the vocal and gesture commands of the user until either the target
position is found, or an inconsistent state is reached, or the user ex-
plicitly asks for a new interaction pattern. In all those cases the buffer
is cleaned and the interaction restarts.

219

220 AN ARCHITECTURE FOR QUALITATIVE ROBOT NAVIGATION

«node» g] «service» gl memory «service» gl
Speech words Kernel buffer Spatial
Processor) semantic Generator { Reasoner
LI Lo
uzz i
' command y pertinence
grammar audio i T kernel map
pointed 2D
«node» g] «node» g] «node» g]
Gesture Command Monte Carlo
Processor S Logic) Simulator
_ objects pose perrtrllgénce _
. T
Is)t(l)élé o S g target
%L robot pose L wavpoint u %
«node» g] cameras «node» gl P «node» gl
Rigid Body o—{ Robot) E Path
Detector —C velocity Controller Planner
reached

Figure A.2: The ROS-based software architecture.

Each element of the memory buffer is a representation of the suitable
positions that respect a single command, i.e. a fuzzy kernel, provided
by the Kernel Generator component. The Spatial Reasoner component
merges all representations in the buffer to find an overall fuzzy land-
scape, which describes the degree of pertinence of each location in the
workspace with respect to the given commands. Since we design the
system for accommodating commands based on generic spatial rela-
tions, we consider the fuzzy pertinence map to be a general function
spanning in values between [0, 1], where the higher the pertinence
value represents the most suitable target candidate point.

The Monte Carlo Simulator component solves the problem of find-
ings a suitable target in such a generic landscape. It evaluates the
pertinence of randomized locations until certain conditions are met.
As heuristic conditions, we posed (i) a very high threshold after which
the simulations are terminated, (i7) upper and lower pertinence bounds
for which the target position is generated, although the simulations
continue looking for improvements, and (iii) a limit on the maximum
number of simulations. When the Monte Carlo Simulator produces a
target point with fuzzy pertinence value higher than in the previous
simulation, the new target is provided to the Path Planner component,
implemented using the Rapidly-Exploring Random Tree (RTT*) algo-
rithm, which consequentially provides waypoints, used as references
for the low-level Robot Controller.

This architecture allows a continuous interaction, since new com-
mands are stored in a buffer and are evaluated as soon as previous
computations ends, i.e. as soon as Monte Carlo simulation provides a
suitable point. Therefore, while the robot is moving towards a target,
the user can guide it reactively. In this paper, we evaluate such prop-
erty through the estimation of the time spent in the computing state,

A.3 MULTI-MODAL INTERFACE

especially as far as the complexity of the Kernel Generator and the
Spatial Reasoner are concerned. However, it is important to highlight
that for a real application the complexity of finding a path and per-
ceiving the environment might introduce not negligible delays before
the robot starts moving, and consequently affect user’s reaction time.

a.3 MULTI-MODAL INTERFACE

In this section we show how a user can interface with the robot in
our simplified scenario. In particular, he or she can instruct the robot
using five types of spatial relations, each associated with a specific
fuzzy kernel. We design an interaction pattern where the user mainly
uses sentences to guide the robot. However, he can further enforce
and enhance his command by pointing to a specific location.

We suppose that the commands are always between the robot and a
well-defined object, e.g. go in front of box number 1. For understanding
these types of sentences, we used the Concept-Action Grammar Gen-
erator (CAGG) presented in Chapter 3 which, given a text resulting
from the speech-to-text process, returns the semantics of the sentence
through tags associated to specific keywords. Such association is based
on rules encoded on a Backus-Naur Form (BNF) grammar of the form:

<go> : <relation> <object>, (A1)

where each identifier between angled brackets is associated to a spe-
cific set of keywords to be matched in a sentence for obtaining the
related semantic tag (e.g. [front, 11).

Moreover, through simple sentences is also possible to give other
directives to the robot, such as to mark the task done (when the inter-
action is complete), and to reset the buffer (to clean the commands
memory). These types of commands are recognized through a dif-
ferent grammar that allows changes of the Command Logic state, as
detailed:

<directive> : <go> | <reset> | <done>. (A.2)

Therefore, for recognizing a user sentence we use a hierarchy of
grammars, where Rule A.2 is on the top layer and Rule A.1 is evaluated
only if the go directive is found.

Last but not the least, the motion caption system tracks the orien-
tation of a stick that the user holds in his hand (Figure A.1) while
performing deictic gestures. When the user performs a pointing ges-
ture, we compute the intersection point of the line generated by the
stick orientation and the ground plane containing the robot and objects.
The robot is instructed to be near a point computed as above. It is to
be noted that pointing is typically a not precise source of information,
especially when the user is standing at a distance from the scene. We

221

222 AN ARCHITECTURE FOR QUALITATIVE ROBOT NAVIGATION

(b) K1 : behind Oy,. (c) Ky : 1left Oy, (d) K3 : near Oy,. () M=K10K0Ks;.

Figure A.3: Three fuzzy spatial kernels applied to the same object Oy (A.3c, A.3b, and A.3d) and their
conjunction, i.e. the pertinence map (A.3e).

thus consider the identified point in the ground to be qualitative as an
explicit spatial relation given through a spoken sentence (e.g. go near
box 2). In other words, the near spatial relation generated by a pointing
gesture accounts for non-negligible pointing errors by the user.

a.4 SPATIAL REASONER

Within a workspace W C IR?, we assign the robot goal position by max-
imizing the qualitative fuzzy values represented in the landscape of
possible target positions. For our use case, we divided the workspace
into discretized rectangles of equal size. For each unit rectangular ele-
ment, we select the center point P as its location. Thus, we have a set
of possible locations {P;, Vi € [1,n]} C W. In this scenario, the fuzzy
landscape M C IR is a pertinence map that assigns to each point
in the workspace a fuzzy membership M(P;) = pu; € [0,1], which
represents how pertinent a location is with respect to all the spatial
restrictions contained in the robot’s memory. As we mentioned before,
for each command issued by the user, the system computes a fuzzy
spatial kernel K C IR® which represents the fuzzy membership of each
point of the workspace for just for a single command. Therefore, a
generic kernel K; embeds for each point of the workspace, a fuzzy
membership value K;(P;) = pj; € [0,1], that describes its pertinence
for a single spatial relation, as shown in Figure A.3.

Given m commands in the robot memory, a set of B = {K;, Vj €
[1,m]} kernels are generated. The system then computes an overall
pertinence map through fuzzy conjunctions considering the minimum
value of the fuzzy membership among all kernels in B. This is done
for each point P; of the workspace. Formally,

m

M(P) = Q) K;j(P;) = min (u;i), (A.3)
=1 jeB

represents the fuzzy pertinence of the i-th point to satisfy all the m
commands.

A.4 SPATIAL REASONER

For example, Figure A.3e shows the intersection between relations
(K1) left, (K2) behind, and (K3) near, applied to the same object
Oy, located in the center of the workspace. Brighter regions of the
workspace indicate consistent locations of a target point that respects
all three given commands. Remarkably, with this formalization, it is
possible to see kernels as generic modules that represent the intersec-
tion of different spatial relations, applied in different contexts. From
a general perspective, all kernels can (i) represent fuzzy membership
values between o and 1, (ii) for each point of the workspace.

If we consider a robot that evaluates the pertinence map M'(P))
(containing fuzzy membership values p!) for each time instance f
when a new command is issued, the computation of Equation A.3 can
be simplified and evaluated as:

Mt+l (Pi) = Mt(Pi) ® ’Cm+1 (Pi) = min (Vf/ Vm-i—l,i) ’ (A.4)

which denotes a computation complexity of O(n) since it requires
an element-to-element comparison between two sets of size n. This
assures reasoning scalability because Equation A.4 computes the per-
tinence map in an incremental manner and its computation cost does
not increase with the size of commands in the robot memory, but
always remains constant if the workspace is fixed. Nevertheless, with
this approach, we lose information concerning previous instances in
time. Hence, backtracking to previous valid pertinence landscape (i.e.
removing the effects of K; from M) remains an open issue.

In the pertinence landscape M, we can define a target position T
as a location with high fuzzy value, formally:

T* = argmax M(P;)) = {P; : M(P) =pu; —» 1} CW. (A.5)
P:

1

Unfortunately, for generic kernels, this problem is not well-posed since
there might exist many points with the same high pertinence value.
Indeed, even if in the referenced scenario we used simple kernels based
on heuristics (discussed in the next section), Figure A.3e shows more
than one suitable target point with sufficiently high fuzzy pertinence.
To address this issue and choose a quantitative target position T
with a fuzzy pertinence similar to T*, we used the randomized Monte
Carlo simulation approach introduced in Section A.2. At the end
of each g-th simulation, new randomized locations P; are evaluated.
Among them, the point with the best pertinence is elected the new
target T, iff it represents a more pertinent solution than the one
selected during the previous simulation, i.e. M(gf) > M(T771).

223

224

AN ARCHITECTURE FOR QUALITATIVE ROBOT NAVIGATION

a.5 SPATIAL KERNEL

Figures A.3c and A.3b show the kernels used for commands left and
behind respectively. We adopt a simplification of the formalization
proposed in [19], which defines fuzzy pertinence of spatial relations
between objects with a general shape. In this work, we reason on the
spatial relations in a scene having w point-like objects Oy, i.e. a set
of occupied locations {0y, Vh € [1,w]} C W. Through a command
that satisfies Rule A.1, the user specifies an object Oy, and, if specific
relation are used (i.e. left, behind, right, and front), he or she specifies
also an orientation 7. Thus, we posed

K;(P;) = max (0, 1-— Zﬁ) where B = arccos O}’L;,u, (A.6)

n ||OnPi]|

where i represents a unit vector along direction of kernel orientation
with respect to a global frame ¥y fixed as in Figure A.1. Throughout
the paper, our global §J axis is always directed from south to north in
the images of fuzzy landscapes.

The user orientation is fixed along the §j axis. The 7 direction is ini-
tially fixed along the £ axis. Figure A.3b shows the kernel representing
the behind relation, which is computed for i rotated anticlockwise
by 7 with respect to the £ axis. Figure A.3c shows the left relation,
computed for i rotated by 7r. Consequently, inverse relations such as
front and right are computed for 1 rotated by 37t and 0 respectively.
Remarkably, while we consider spatial relations between point-like
objects, we also describe their encompassing bounding box, and force
all the kernels to have p;; = 0 for all P; points within the w boxes.

The above kernel formulation cannot be used for representing a
relation such as near, since Equation A.6 does not take into account
the distances between P; and Oy, but only the orientation of the
connecting vector 5;,73: . For representing a spatial pertinence related
to the distance between the object O;, and a possible target point P;,
we used a Gaussian kernel (Figure A.3d) defined as

2

Ki(P;) = e 27 where A= [|OnP;|, (A7)

where ¢ has been set as the width of the workspace divided by four;

if W is considered to represent a square space, o = 4.

Notably, the near restriction is the only relation of the referenced
use case associated with the pointing gesture. In particular, if the user
pointed to a specific location G C W in the ground, we merely apply
the kernel in Equation A.7, centered in G instead of the center of an
object, i.e. O, = G.

A.6 Use CASE 225

(a) Kq : right Os. (b) K7 : left Os. (c) K1 : near Oq. (d) K : right Os.

P

(e) ICp : 1left Os. (f) Ky : near G. (g) Ky : right Os. (h) ICy : front Os.

G

(1) M=K1QK5. (G) M=K1®K,;. (k) M=K1K5.) M=K1K5.

Figure A.4: Four different instructions based on two kernels (shown by columns), centered in an object
(enumerated boxes) or in a pointed location (purple cells). The third row shows the initial
and target position (yellow and red cells respectively), and the followed path (green cells).

a.6 UsEe CASsE

Figure A.1 shows the scenario in which we test the system using a
Miro robot [125] that navigates in an squared workspace of 5.76m> dis-
cretized into n = 576 unit blocks of size 0.o1m>. Within the workspace,
four objects (identified through an enumeration) are statically lo-
cated in such a way to have the center in a discretized position (i.e.
Oy = P; Vh € [1,w]), and to occupy a given number of cells (fig-
ures A.4 and A.5). A user looks at the scene and instructs the robot
using a microphone and a pointer. The global reference Xy is fixed
from the user’s orientation, as shown in the figure.

We design an experimental script divided into three parts. Initially,
we explain to the user the types of sentences understood by the
robot, and how to perform valid pointing gestures. During the second
phase, the user decides a target point T* (that we record) and begins
instructing the robot to try to reach that position. The test is performed
again with a different target point before moving on to the third phase,

226 AN ARCHITECTURE FOR QUALITATIVE ROBOT NAVIGATION

119 €

(a) Ky : left Oy. (b) Ky : right Oy. (c) K3 : near O,. (d) M=K10K,®K3.

n G

(e) K1 : near Os. (f) Ky : front O,. (g) K3 : near G. (h) M=K1K,®K;.

Figure A.5: Two instructions given through three commands (shown by rows), where the last column
shows the robot navigation as in Figure A 4.

which is a repetition of the second phase, with the difference being
that T* is imposed on the user by us. The navigation ends when the
user believes that the robot’s target position T is qualitatively close
enough to the intended location T*; in this case, he is supposed to
issue a done command (Rule A.2). The whole experiment took about
half an hour. Here, we present some preliminary results collected with
five volunteers.

Figures A.4 and A.5 show some interesting behaviors of the robot
when the memory buffer contained two and three commands respec-
tively. Both figures show the kernel independently, as well as their
conjunction (i.e. the pertinence map), in which we superimpose the
path traversed by the robot. Particularly, Figure A.4i shows the robot
behavior in a case where the user said “Miro, go on the right of box 3”
(Figure A.4a) “and on the left of box 2 please” (Figure A.4e). In the
second column, Figure A .4j shows the robot’s final location when the
user said “go on the left of box 2” and pointed to G, while Figure A .4k
shows a solution found if the robot is constrained to be on the right
of O3 and close to Oy. Figure A 4l illustrates a case where the con-
junction of the user’s instructions was almost inconsistent. Similarly,
Figure A.5d demonstrates a case where the user later decided to pro-
vide a relation concerning object O, to move the robot more towards
it, while remaining on the left of O;, and on the right-hand side of
Oq. Finally, Figure A.5h presents a scene where a pointing gesture is
used to correct an erroneous previous instruction (near O3) given by
the user which caused the robot to move to the north of O3, while she

A.7 CONCLUSIONS

actually intended to move the robot to the south of O3 (i.e. closer from
her viewpoint).

During all the experiments (performed with a processor Intel®
Core™ i5-460M 2.53GHz and 4GB of memory), we compute Equa-
tion A.4 137 times with a buffer size spanning in m € [1,9]. For each
times we compute the pertinence map the Spatial Reasoner spent
6 £ 2 ms, while the Monte Carlo simulator (which had an upper
pertinence threshold of 0.95) spent 4 + 2 ms for identifying a suffi-
ciently high value. The generation of the navigation path is one of the
most expensive tasks, which lasts for 4789 + 1958 ms. In accordance
with Equation A.4, the computation where no affected by the number
of commands and scales linearly with the number of point in the
workspace.

During the third phase of our experiments, we propose to the
user some target T* complex enough to be described given the five
supported relations and the objects” locations (such as the one perfectly
reached in Figure A.5h). We observed that the user spent time thinking
about the correct command to issue (in average 40 4 36 seconds).
During all the experiments the robot memory was reset 34 times, in
average every 4 commands, and we computed M with m=1 for 54
times, with m equal to 2, 3, 4 for 39, 24, 12 times respectively, and with
m € [5,9] less than 3 times. For all those maps, before to meet one of its
terminating condition, the Monte Carlo simulations retrieved a fuzzy
pertinence value of 0.82 £ 0.17. Particularly for the target points that
the users tagged with a done command (T), we compute a distance
of 0.080 £ 0.034 meters between that point and the initially intended
target position T*; reached with a fuzzy pertinence found by Monte
Carlo of 0.78 £ 0.20.

a7 CONCLUSIONS

We presented a preliminary evaluation of a mobile robot that can locate
itself based on qualitative conjunctions of spatial relations concerning
specific objects, issued through speech-based and deictic commands.
Our architecture relies on fuzzy kernels that are used to represent a
landscape indicating the pertinence of each point of the workspace
to satisfy a set of the qualitative commands expressed by a user.
We computed the robot position based on combinations of kernels
and Monte Carlo simulations, and we observed a real robot navigate
toward qualitative targets within a simplified scenario.

We described the scalability feature of our ROS-based architecture™?,
as well as the modularity of its reasoning approach. We discussed the
types of kernels that can be adopted and evaluated for more complex
interaction semantics and modalities. In particular, we described its
components and interfaces with the aim of reusing them during fur-

227

1.1 https:
// github. com/
EmaroLab/
mmodal_ teleop

https://github.com/EmaroLab/mmodal_teleop
https://github.com/EmaroLab/mmodal_teleop
https://github.com/EmaroLab/mmodal_teleop
https://github.com/EmaroLab/mmodal_teleop

228

AN ARCHITECTURE FOR QUALITATIVE ROBOT NAVIGATION

ther iterative development steps, toward a natural interaction in real
applications.

The current implementation is limited due to the fact that the rep-
resentation of the pointing gestures, the verbal commands and the
objects orientation might depend on the user interpretation. More-
over, similarly to navigation algorithms based on potential fields, our
approach relies on a one-to-one spatial mapping between a fuzzy
representation and the workspace. Therefore, the inclusion of infor-
mation which is not directly mappable to spatial semantics (e.g. voice
volume) is an open issue in the reasoning process. Nevertheless, other
interaction modalities (e.g. based on gaze) can be supported by the
adopted fuzzy reasoning technique.

Since the number of users is not adequate for evaluating the nat-
uralness of the interactions, we are currently collecting further data
through more structured experiments. From a preliminary interaction
assessment, we noted that the presented kernels are not always ex-
haustive, especially if no other spatial relations are included in the
reasoning process, e.g. between, far, etc. Our future objective is to design
additional kernels and perception modules to be evaluated through
experiments involving the presented architecture.

[10]

REFERENCES

Lisi Francesca A and Straccia Umberto. “A Logic-Based Computational Method for the Automated
Induction of Fuzzy Ontology Axioms.” en. In: Fundamenta Informaticae 4 (2013), pp. 503—-519. ISSN:
0169-2968. DOIL: 10.3233/FI-2013-846 (cit. on p. 114).

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. “Tensorflow: a system for large-scale machine
learning.” In: OSDI. Vol. 16. 2016, pp. 265-283 (cit. on p. 35).

Marina Alberti, John Folkesson, and Patric Jensfelt. “Relational Approaches for Joint Object Classifica-
tion and Scene Similarity Measurement in Indoor Environments.” en. In: 2014 AAAI Spring Symposium
Series. Mar. 2014 (cit. on p. 68).

Aitor Aldoma, Federico Tombari, Johann Prankl, Andreas Richtsfeld, Luigi Di Stefano, and Markus
Vincze. “Multimodal cue integration through hypotheses verification for rgb-d object recognition and
6dof pose estimation.” In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). IEEE. Karlsruhe, Germany, 2013, pp. 2104—2111 (cit. on p. 32).

JAMES F. Allen. “Maintaining Knowledge about Temporal Intervals.” In: Readings in Qualitative
Reasoning About Physical Systems. Ed. by Daniel S. Weld and Johan de Kleer. Morgan Kaufmann, Jan.
1990, pp. 361-372. ISBN: 978-1-4832-1447-4. DOIL: 10.1016/B978-1-4832-1447-4.50033-X (cit. on pp. 58,
68).

John R. Anderson and Christian J. Lebiere. The Atomic Components of Thought. en. Psychology Press, Jan.
2014. ISBN: 978-1-317-77830-1 (cit. on p. 172).

Alexandre Antunes, Gabriella Pizzuto, and Angelo Cangelosi. “Communication with Speech and
Gestures: Applications of Recurrent Neural Networks to Robot Language Learning.” In: Proc. GLU
International Workshop on Grounding Language Understanding. 2017, pp. 4—7 (cit. on p. 218).

R. C. Atkinson and R. M. Shiffrin. “Human Memory: A Proposed System and Its Control Processes.”
In: Psychology of Learning and Motivation. Ed. by Kenneth W. Spence and Janet Taylor Spence. Vol. 2.
Academic Press, Jan. 1968, pp. 89-195. po™: 10.1016/S0079-7421(08) 60422-3 (cit. on p. 169).

Pradeep K Atrey, M. Anwar Hossain, Abdulmotaleb El Saddik, and Mohan S. Kankanhalli. “Multimodal
fusion for multimedia analysis: A survey.” In: Multimedia Systems 16.6 (2010). DOI: 10.1007/s00530-
010-0182-0 (cit. on p. 32).

F. Baader, D. Galvanise, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The Description Logic
handbook: theory, implementation, and applications. Cambridge, MA: Cambridge University Press, 2007
(cit. on p. 18).

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. Introduction to Description Logic. en. Cam-
bridge University Press, Apr. 2017. ISBN: 978-0-521-87361-1 (cit. on pp. 4, 40, 58, 67, 110, 169).

Marian Babik and Ladislav Hluchy. “Deep Integration of Python with Web Ontology Language.” In:
Proc. of 2nd Workshop on Scripting for the Semantic Web. 2006/June 12, 2006/ / (cit. on p. 41).

Alan Baddeley. “The Episodic Buffer: A New Component of Working Memory?” English. In: Trends
in Cognitive Sciences 4.11 (Nov. 2000), pp. 417-423. ISSN: 1364-6613, 1879-307X. DOL: 10.1016/51364-
6613(00)01538-2 (cit. on p. 170).

F. Balint-Benczédi, Z. Mérton, M. Durner, and M. Beetz. “Storing and Retrieving Perceptual Episodic
Memories for Long-Term Manipulation Tasks.” In: 2017 18th International Conference on Advanced Robotics
(ICAR). July 2017, pp. 25-31. DOL: 10.1109/ICAR.2017.8023492 (cit. on p. 169).

229

http://dx.doi.org/10.3233/FI-2013-846
http://dx.doi.org/10.1016/B978-1-4832-1447-4.50033-X
http://dx.doi.org/10.1016/S0079-7421(08)60422-3
http://dx.doi.org/10.1007/s00530-010-0182-0
http://dx.doi.org/10.1007/s00530-010-0182-0
http://dx.doi.org/10.1016/S1364-6613(00)01538-2
http://dx.doi.org/10.1016/S1364-6613(00)01538-2
http://dx.doi.org/10.1109/ICAR.2017.8023492

230

REFERENCES

[15]

[16]

[17]

[18]

[19]

[26]

[27]

[28]

[29]

[30]

[31]

Liam]. Bannon. “Forgetting as a Feature, Not a Bug: The Dualityof Memory and Implications for
Ubiquitous Computing.” In: CoDesign 2.1 (Mar. 2006), pp. 3—15. ISSN: 1571-0882. DOI: 10 . 1080/
15710880600608230 (cit. on p. 171).

Pierre Barrouillet, Sophie Bernardin, Sophie Portrat, Evie Vergauwe, and Valérie Camos. “Time and
Cognitive Load in Working Memory.” In: Journal of Experimental Psychology: Learning, Memory, and
Cognition 33.3 (2007), pp. 570-585. 1sSN: 1939-1285(Electronic),0278-7393(Print). por: 10.1037/0278-
7393.33.3.570 (cit. on p. 169).

Selena Sohaila Baset and Kilian Stoffel. “Object-Oriented Software Modeling with Ontologies Around -
A Survey of Existing Approaches.” en. In: The 30th International Conference on Software Engineering and
Knowledge Engineering. July 2018, pp. 29—45. DOI: 10.18293/SEKE2018-198 (cit. on pp. 7, 40, 41).

M. Beetz, D. Befller, A. Haidu, M. Pomarlan, A. K. Bozcuoglu, and G. Bartels. “Know Rob 2.0 —
A 2nd Generation Knowledge Processing Framework for Cognition-Enabled Robotic Agents.” In:
2018 IEEE International Conference on Robotics and Automation (ICRA). May 2018, pp. 512-519. DOL:
10.1109/ICRA.2018.8460964 (cit. on pp. 4, 40, 211).

L. Bloch. “Fuzzy Relative Position between Objects in Image Processing: A Morphological Approach.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 21.7 (July 1999), pp. 657-664. ISSN:
0162-8828. por: 10.1109/34.777378 (cit. on pp. 132, 224).

Isabelle Bloch and Alessandro Saffiotti. “Why robots should use fuzzy mathematical morphology.”
In: Proc. of the 1st Int. ICSC-NAISO Congress on Neuro-Fuzzy Technologies, La Havana, Cuba. 2002 (cit. on
p- 218).

Paul Bloom. Language and Space. en. MIT Press, 1999. 1SBN: 978-0-262-52266-3 (cit. on p. 68).

F. Bobillo and U. Straccia. “fuzzyDL: An Expressive Fuzzy Description Logic Reasoner.” In: 2008 IEEE
International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence). June 2008,
PP- 923—930. DOI: 10.1109/FUZZY.2008.4630480 (cit. on p. 114).

Fernando Bobillo and Umberto Straccia. “On Qualified Cardinality Restrictions in Fuzzy Description
Logics under Lukasiewicz Semantics.” en. In: Proceedings of the 12th International Conference of Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008). Vol. 8. June 2008,
pp- 1008-1015 (cit. on p. 116).

Fernando Bobillo and Umberto Straccia. “The Fuzzy Ontology Reasoner fuzzyDL.” In: Knowledge-Based
Systems 95 (Mar. 2016), pp. 12—34. ISSN: 0950-7051. DOIL: 10.1016/j.knosys.2015.11.017 (cit. on pp. 40,
69, 105, 137).

Razvan Gabriel Boboc, Adrian Iulian Dumitru, and Csaba Antonya. “Point-and-command paradigm
for interaction with assistive robots.” In: International Journal of Advanced Robotic Systems 12.6 (2015),
p- 75 (cit. on p. 146).

Christopher Brinton. “A Framework for Explanation of Machine Learning Decisions.” In: [JCAI-17
Workshop on Explainable Al (XAI). 2017, pp. 14-18 (cit. on p. 147).

Gordon D. A. Brown, Ian Neath, and Nick Chater. “A Temporal Ratio Model of Memory.” en. In:
Psychological Review 114.3 (July 2007), pp. 539-576. ISSN: 0033-295X (cit. on p. 172).

D. Brugali. Software Engineering for Experimental Robotics. Heidelberg, Germany: Springer, 2007 (cit. on
p- 19).

Lorenz Bithmann, Jens Lehmann, Patrick Westphal, and Simon Bin. “DL-Learner Structured Machine
Learning on Semantic Web Data.” en. In: Companion of the The Web Conference 2018 on The Web
Conference 2018 - WWW "18. Lyon, France: ACM Press, 2018, pp. 467—471. ISBN: 978-1-4503-5640-4. DOI:
10.1145/3184558.3186235 (cit. on pp. 4, 40, 112, 113, 211).

Luca Buoncompagni, Barbara Bruno, Antonella Giuni, Fulvio Mastrogiovanni, and Renato Zaccaria.
“Towards a New Paradigm for Assistive Technology at Home: Research Challenges, Design Issues and
Performance Assessment.” In: arXiv:1710.10164 [cs] (Oct. 2017). arXiv: 1710.10164 [cs] (cit. on p. 166).

E. Cambria and B. White. “Jumping NLP Curves: A Review of Natural Language Processing Research
[Review Article].” In: IEEE Computational Intelligence Magazine 9.2 (May 2014), pp. 48-57. ISSN: 1556-603X.
DpOL: 10.1109/MCI.2014.2307227 (cit. on p- 113).

http://dx.doi.org/10.1080/15710880600608230
http://dx.doi.org/10.1080/15710880600608230
http://dx.doi.org/10.1037/0278-7393.33.3.570
http://dx.doi.org/10.1037/0278-7393.33.3.570
http://dx.doi.org/10.18293/SEKE2018-198
http://dx.doi.org/10.1109/ICRA.2018.8460964
http://dx.doi.org/10.1109/34.777378
http://dx.doi.org/10.1109/FUZZY.2008.4630480
http://dx.doi.org/10.1016/j.knosys.2015.11.017
http://dx.doi.org/10.1145/3184558.3186235
http://arxiv.org/abs/1710.10164
http://dx.doi.org/10.1109/MCI.2014.2307227

[33]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

REFERENCES

Alessio Capitanelli and Fulvio Mastrogiovanni. “An Ontology-Based Hybrid Architecture for Planning
and Robust Execution in Tabletop Scenarios.” en. In: Proceedings of the 3rd Italian Workshop on Artificial
Intelligence and Robotics A Workshop of the XV International Conference of the Italian Association for Artificial
Intelligence (AI*IA 2016) November 28, 2016. Vol. 1834. Genova, Italy: CEUR-WS, Nov. 2016, p. 5 (cit. on
PP 5, 41, 61, 112).

A. Carfi, C. Motolese, B. Bruno, and F. Mastrogiovanni. “Online Human Gesture Recognition Using
Recurrent Neural Networks and Wearable Sensors.” In: 2018 27th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN). Aug. 2018, pp. 188-195. DOI: 10.1109/ROMAN.2018.
8525769 (cit. on p. 111).

Gunnar Carlsson. “Topology and Data.” en. In: Bulletin of the American Mathematical Society 46.2 (2009),
Pp- 255-308. ISSN: 0273-0979, 1088-9485. DOL: 10.1090/50273-0979-09-01249-X (cit. on p. 68).

J. Chamorro-Martinez, D. Sanchez, J. M. Soto-Hidalgo, and P. M. Martinez-Jiménez. “A Discussion
on Fuzzy Cardinality and Quantification. Some Applications in Image Processing.” In: Fuzzy Sets and
Systems. Special Issue on Fuzzy Numbers and Their Applications 257 (Dec. 2014), pp. 85-101. ISSN:
0165-0114. DOL: 10.1016/j.fss.2013.05.009 (cit. on p. 117).

Paul Chance. Learning and Behavior. en. Cengage Learning, Mar. 2013. ISBN: 978-1-285-54596-7 (cit. on
p- 172).

R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas. “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation.” en. In: 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). Honolulu, HI: IEEE, July 2017, pp. 77-85. 1SBN: 978-1-5386-0457-1. DOL:
10.1109/CVPR.2017.16 (cit. on p. 111).

Weihong Chen, Jiyao An, Renfa Li, Li Fu, Guoqi Xie, Md Zakirul Alam Bhuiyan, and Keqin Li. “A
Novel Fuzzy Deep-Learning Approach to Traffic Flow Prediction with Uncertain Spatial-Temporal
Data Features.” In: Future Generation Computer Systems 89 (Dec. 2018), pp. 78-88. 1ssN: 0167-739X. DOI:
10.1016/j.future.2018.06.021 (cit. on p. 114).

N. J. Cohen and L. R. Squire. “Preserved Learning and Retention of Pattern-Analyzing Skill in Amnesia:
Dissociation of Knowing How and Knowing That.” en. In: Science 210.4466 (Oct. 1980), pp. 207—210.
ISSN: 0036-8075, 1095-9203. DOIL: 10.1126/science.7414331 (cit. on p. 170).

Anthony G. Cohn and Jochen Renz. “Qualitative Spatial Representation and Reasoning.” In: Foundations
of Artificial Intelligence. Ed. by Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter. Vol. 3.
Handbook of Knowledge Representation. Elsevier, Jan. 2008, pp. 551-596. DOI: 10 . 1016 /51574 -
6526 (07)03013-1 (cit. on p. 68).

Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts. “Qualitative Spatial
Representation and Reasoning with the Region Connection Calculus.” en. In: Geolnformatica 1.3 (Oct.
1997), Pp. 275-316. ISSN: 1573-7624. DOL: 10.1023/A:1009712514511 (cit. on p. 68).

Silvia Coradeschi and Alessandro Saffiotti. “An Introduction to the Anchoring Problem.” In: Robotics and
Autonomous Systems. Perceptual Anchoring: Anchoring Symbols to Sensor Data in Single and Multiple
Robot Systems 43.2 (May 2003), pp. 85—96. 1SSN: 0921-8890. DOI: 10.1016/50921-8890(03) 00021-6
(cit. on pp. 69, 146, 211).

Francisco Cruz, German I Parisi, Johannes Twiefel, and Stefan Wermter. “Multi-modal integration of
dynamic audiovisual patterns for an interactive reinforcement learning scenario.” In: 2016 IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 759—766 (cit. on pp. 147,
217).

Kerstin Dautenhahn. “Socially intelligent robots: dimensions of human-robot interaction.” In: Philosoph-
ical Transactions of the Royal Society of London B: Biological Sciences 362.1480 (2007), pp- 679-704 (cit. on

p-3).
A. De Luca and S. Termini. “A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets

Theory.” In: Information and Control 20.4 (May 1972), pp. 301-312. ISSN: 0019-9958. DOI: 10.1016/S0019-
9958(72)90199-4 (cit. on p. 117).

231

http://dx.doi.org/10.1109/ROMAN.2018.8525769
http://dx.doi.org/10.1109/ROMAN.2018.8525769
http://dx.doi.org/10.1090/S0273-0979-09-01249-X
http://dx.doi.org/10.1016/j.fss.2013.05.009
http://dx.doi.org/10.1109/CVPR.2017.16
http://dx.doi.org/10.1016/j.future.2018.06.021
http://dx.doi.org/10.1126/science.7414331
http://dx.doi.org/10.1016/S1574-6526(07)03013-1
http://dx.doi.org/10.1016/S1574-6526(07)03013-1
http://dx.doi.org/10.1023/A:1009712514511
http://dx.doi.org/10.1016/S0921-8890(03)00021-6
http://dx.doi.org/10.1016/S0019-9958(72)90199-4
http://dx.doi.org/10.1016/S0019-9958(72)90199-4

232

REFERENCES

[46]

[47]

[53]

[57]

[58]

[59]

[60]

Richard Dearden and Chris Burbridge. “Manipulation Planning Using Learned Symbolic State Abstrac-
tions.” In: Robotics and Autonomous Systems. Advances in Autonomous Robotics — Selected extended
papers of the joint 2012 TAROS Conference and the FIRA RoboWorld Congress, Bristol, UK 62.3 (Mar.
2014), pPpP- 355—365. ISSN: 0921-8890. DOI: 10.1016/j.robot.2013.09.015 (cit. on p. 68).

Hannah M. Dee, David C. Hogg, and Anthony G. Cohn. “Scene Modelling and Classification Us-
ing Learned Spatial Relations.” en. In: Spatial Information Theory. Ed. by Kathleen Stewart Hornsby,
Christophe Claramunt, Michel Denis, and Gérard Ligozat. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009, pp. 295-311. ISBN: 978-3-642-03832-7 (cit. on p. 68).

Adrien Delaye and Eric Anquetil. “Learning of fuzzy spatial relations between handwritten patterns.”
In: International Journal of Data Mining, Modelling and Management 2 6.2 (2014), pp. 127-147 (cit. on
p- 218).

Kathrin Dentler, Ronald Cornet, Annette ten Teije, and Nicolette de Keizer. “Comparison of Reasoners
for Large Ontologies in the OWL 2 EL Profile.” en. In: Semantic Web 2.2 (Jan. 2011), pp. 71-87. ISSN:
1570-0844. DOL: 10.3233/8W-2011-0034 (cit. on p. 169).

Natalia Diaz Rodriguez, Manuel P. Cuéllar, Johan Lilius, and Miguel Delgado Calvo-Flores. “A Fuzzy
Ontology for Semantic Modelling and Recognition of Human Behaviour.” en. In: Knowledge-Based
Systems 66 (Aug. 2014), pp. 46—60. ISSN: 09507051. DOIL: 10.1016/j.knosys.2014.04.016 (cit. on p. 114).

Yadin Dudai. “The Neurobiology of Consolidations, Or, How Stable Is the Engram?” en. In: Annual
Review of Psychology 55.1 (Feb. 2004), pp. 51-86. IsSN: 0066-4308, 1545-2085. DOI: 10.1146/annurev.
psych.55.090902. 142050 (cit. on p. 168).

Markus Eich, Ronny Hartanto, Sebastian Kasperski, Sankaranarayanan Natarajan, and Johannes
Wollenberg. “Towards Coordinated Multirobot Missions for Lunar Sample Collection in an Unknown
Environment.” en. In: Journal of Field Robotics 31.1 (2014), pp. 35—74. ISSN: 1556-4967. DOI: 10.1002/rob.
21491 (cit. on p. 114).

Andreas Eitel, Jost Tobias Springenberg, Luciano Spinello, Martin Riedmiller, and Wolfram Burgard.
“Multimodal deep learning for robust rgb-d object recognition.” In: Proceedings of the IEEE/RS] In-
ternational Conference on Intelligent Robots and Systems (IROS). IEEE. La Jolla, California, USA, 2015,
pp- 681687 (cit. on p. 32).

Jeffrey M Ellenbogen, Jessica D Payne, and Robert Stickgold. “The Role of Sleep in Declarative Memory
Consolidation: Passive, Permissive, Active or None?” en. In: Current Opinion in Neurobiology 16.6 (Dec.
2006), pp. 716-722. I1SSN: 09594388. DOIL: 10.1016/j.conb.2006.10.006 (cit. on p. 168).

F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. “3-D mapping with an RGB-D camera.” In:
IEEE Transactions on Robotics 30.1 (2013), pp. 177-187 (cit. on p. 20).

Arnaud Nguembang Fadja and Fabrizio Riguzzi. “Probabilistic Logic Programming in Action.” en.
In: Towards Integrative Machine Learning and Knowledge Extraction. Ed. by Andreas Holzinger, Randy
Goebel, Massimo Ferri, and Vasile Palade. Lecture Notes in Computer Science. Springer International
Publishing, 2017, pp. 89-116. 1SBN: 978-3-319-69775-8 (cit. on p. 68).

Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. “Induction of Concepts in Web Ontologies
through Terminological Decision Trees.” en. In: Machine Learning and Knowledge Discovery in Databases.
Ed. by José Luis Balcazar, Francesco Bonchi, Aristides Gionis, and Michele Sebag. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 442—457. 1SBN: 978-3-642-15880-3 (cit. on

p- 113).
Adrian Farrel. “Routing Backus-Naur Form (RBNF): A Syntax Used to Form Encoding Rules in Various
Routing Protocol Specifications.” In: RFC 5511 (2009). DoI: DOI10.17487/RFC5511 (cit. on p. 26).

S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Krtiger, and F. Guerin. “Learning Spatial Relationships
from 3D Vision Using Histograms.” In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). May 2014, pp. 501-508. DOIL: 10.1109/ICRA.2014.6906902 (cit. on p. 68).

Richard E. Fikes and Nils J. Nilsson. “Strips: A New Approach to the Application of Theorem Proving
to Problem Solving.” en. In: Artificial Intelligence 2.3-4 (Dec. 1971), pp. 189—208. ISSN: 00043702. DOT:
10.1016/0004-3702(71)90010-5 (cit. on p. 111).

http://dx.doi.org/10.1016/j.robot.2013.09.015
http://dx.doi.org/10.3233/SW-2011-0034
http://dx.doi.org/10.1016/j.knosys.2014.04.016
http://dx.doi.org/10.1146/annurev.psych.55.090902.142050
http://dx.doi.org/10.1146/annurev.psych.55.090902.142050
http://dx.doi.org/10.1002/rob.21491
http://dx.doi.org/10.1002/rob.21491
http://dx.doi.org/10.1016/j.conb.2006.10.006
http://dx.doi.org/DOI 10.17487/RFC5511
http://dx.doi.org/10.1109/ICRA.2014.6906902
http://dx.doi.org/10.1016/0004-3702(71)90010-5

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[73]

[74]

[75]

[76]

REFERENCES

Terrence Fong, Charles Thorpe, and Charles Baur. “Collaboration, dialogue, human-robot interaction.”
In: Robotics Research. Springer, 2003, pp. 255-266 (cit. on p. 147).

Maria Fox, Derek Long, and Daniele Magazzeni. “Explainable Planning.” In: I[JCAI-17 Workshop on
Explainable Al (XAI). 2017, pp. 24-30 (cit. on p. 148).

S. T. Freedman and J. A. Adams. “Filtering Data Based on Human-Inspired Forgetting.” eng. In: IEEE
transactions on systems, man, and cybernetics. Part B, Cybernetics: a publication of the IEEE Systems, Man, and
Cybernetics Society 41.6 (Dec. 2011), pp. 1544—1555. ISSN: 1083-4419. DOI: 10.1109/TSMCB.2011.2157142
(cit. on p. 173).

C. Galleguillos, A. Rabinovich, and S. Belongie. “Object Categorization Using Co-Occurrence, Location

and Appearance.” In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. June 2008, pp. 1-8.

por: 10.1109/CVPR.2008.4587799 (cit. on p. 68).

Carolina Galleguillos and Serge Belongie. “Context Based Object Categorization: A Critical Survey.”
In: Computer Vision and Image Understanding. Special Issue on Multi-Camera and Multi-Modal Sensor
Fusion 114.6 (June 2010), pp. 712-722. ISSN: 1077-3142. DOL: 10.1016/j.cviu.2010.02.004 (cit. on
p. 68).

John M. Gardiner, Berthold Gawlik, and Alan Richardson-Klavehn. “Maintenance Rehearsal Affects
Knowing, Not Remembering; Elaborative Rehearsal Affects Remembering, Not Knowing.” en. In:
Psychonomic Bulletin & Review 1.1 (Mar. 1994), pp. 107-110. ISSN: 1069-9384, 1531-5320. DOI: 10.3758/
BF03200764 (cit. on p. 168).

E. Bruce Goldstein, Daniel Vanhorn, Greg Francis, and Ian Neath. Cognitive Psychology : Connecting
Mind, Research, and Everyday Experience. English. Third edition. Belmont, CA : Wadsworth/Cengage
Learning, 2011. I1SBN: 978-0-8400-3349-9 (cit. on p. 168).

Robert L. Greene. “Effects of Maintenance Rehearsal on Human Memory.” In: Psychological Bulletin 102
(Nov. 1987), pp. 403—413. DOL: 10.1037/0033-2909.102.3.403 (cit. on p. 168).

David Gunning. “Explainable artificial intelligence (xai).” In: Defense Advanced Research Projects Agency
(DARPA) (2017) (cit. on p. 146).

S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmuller, A. Albu-Schiffer, and G. Hirzinger. “Towards the

robotic co-worker.” In: Proceedings of the 2009 International Symposium on Robotics Research (ISRR 2009).

Lucerne, Switzerland, 2009 (cit. on p. 18).

Thomas C. Henderson, Anshul Joshi, and Wenyi Wang. The Cognitive Symmetry Engine. 2013 (cit. on
p. 169).

W. C. Ho, K. Dautenhahn, M. Y. Lim, P. A. Vargas, R. Aylett, and S. Enz. “An Initial Memory Model
for Virtual and Robot Companions Supporting Migration and Long-Term Interaction.” In: RO-MAN
2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication. Sept. 2009,
PP. 277—284. DOI: 10.1109/ROMAN.2009.5326204 (cit. on p. 170).

Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for OWL Ontologies.” en. In:
Semantic Web 2.1 (Jan. 2011), pp. 11—21. ISSN: 1570-0844. DOIL: 10.3233/SW-2011-0025 (cit. on pp. 40, 59,
154, 197)-

Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and Mike Dean.
“SWRL: A Semantic Web Rule Language Combining OWL and RuleML.” In: (May 2004) (cit. on pp. 45,
70)-

A. Horzyk, J. A. Starzyk, and J. Graham. “Integration of Semantic and Episodic Memories.” In: IEEE
Transactions on Neural Networks and Learning Systems 28.12 (Dec. 2017), pp. 3084-3095. I1SSN: 2162-237X.
por: 10.1109/TNNLS.2017.2728203 (cit. on p. 171).

Chien-Ming Huang and Bilge Mutlu. “Learning-based modeling of multimodal behaviors for humanlike
robots.” In: Proceedings of the ACM/IEEE international conference on Human-robot interaction. ACM. 2014,
PP. 57-64 (cit. on p. 218).

Luigi Jannone, Ignazio Palmisano, and Nicola Fanizzi. “An Algorithm Based on Counterfactuals for

Concept Learning in the Semantic Web.” en. In: Applied Intelligence 26.2 (Apr. 2007), pp. 139-159. ISSN:
1573-7497. DOL: 10.1007/s10489-006-0011-5 (cit. on p. 113).

233

http://dx.doi.org/10.1109/TSMCB.2011.2157142
http://dx.doi.org/10.1109/CVPR.2008.4587799
http://dx.doi.org/10.1016/j.cviu.2010.02.004
http://dx.doi.org/10.3758/BF03200764
http://dx.doi.org/10.3758/BF03200764
http://dx.doi.org/10.1037/0033-2909.102.3.403
http://dx.doi.org/10.1109/ROMAN.2009.5326204
http://dx.doi.org/10.3233/SW-2011-0025
http://dx.doi.org/10.1109/TNNLS.2017.2728203
http://dx.doi.org/10.1007/s10489-006-0011-5

234

REFERENCES

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

[92]

Josue Iglesias and Jens Lehmann. “Towards Integrating Fuzzy Logic Capabilities into an Ontology-
Based Inductive Logic Programming Framework.” en. In: 11th International Conference on Intelligent
Systems Design and Applications. Cordoba, Spain: IEEE, Nov. 2011, pp. 1323-1328. ISBN: 978-1-4577-1676-8
978-1-4577-16775-1. DOI: 10.1109/ISDA.2011.6121843 (cit. on p. 114).

A. Jain, D. Das, J. K. Gupta, and A. Saxena. “Planlt: A crowdsourcing approach for learning to plan
paths from large scale preference feedback.” In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). 2015, pp. 877-884. por: 10.1109/ICRA.2015.7139281 (cit. on p. 112).

John Jonides, Richard L. Lewis, Derek Evan Nee, Cindy A. Lustig, Marc G. Berman, and Katherine
Sledge Moore. “The Mind and Brain of Short-Term Memory.” In: Annual review of psychology 59 (2008),
PP- 193—224. ISSN: 0066-4308. DOIL: 10.1146/annurev.psych.59.103006.093615 (cit. on p. 172).

Raymond W. Gibbs Jr. Embodiment and Cognitive Science. en. Cambridge University Press, Dec. 2005.
ISBN: 978-1-139-44738-6 (cit. on pp. 3, 66, 109, 166).

Peter H. Kahn, Nathan G. Freier, Takayuki Kanda, Hiroshi Ishiguro, Jolina H. Ruckert, Rachel L. Sever-
son, and Shaun K. Kane. “Design Patterns for Sociality in Human-Robot Interaction.” In: Proceedings of
the 3vd ACM/IEEE International Conference on Human Robot Interaction. HRI "08. New York, NY, USA:
ACM, 2008, pp. 97-104. ISBN: 978-1-60558-017-3. DOIL: 10.1145/1349822.1349836 (cit. on pp. 6, 166).

Syed Yusha Kareem, Luca Buoncompagni, and Fulvio Mastrogiovanni. “Arianna+: Scalable Human
Activity Recognition by Reasoning with a Network of Ontologies.” en. In: AI*[A 2018 — Advances in
Artificial Intelligence. Ed. by Chiara Ghidini, Bernardo Magnini, Andrea Passerini, and Paolo Traverso.
Lecture Notes in Computer Science. Springer International Publishing, 2018, pp. 83-95. 1sBN: 978-3-030-
03840-3 (cit. on pp. 4, 43, 69, 105, 171).

A. Kasper, R. Jdkel, and R. Dillmann. “Using Spatial Relations of Objects in Real World Scenes for
Scene Structuring and Scene Understanding.” In: 2011 15th International Conference on Advanced Robotics
(ICAR). June 2011, pp. 421-426. DOL: 10.1109/ICAR.2011.6088634 (cit. on p. 68).

Holger Knublauch, Daniel Oberle, Phil Tetlow, and Evan Wallace. A Semantic Web Primer for Object-
Oriented Software Developers. W3C Working Group Note 9 March 2006. W3C, 2006 (cit. on p. 40).

Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement Learning in Robotics: A Survey.” en. In:
The International Journal of Robotics Research 32.11 (Sept. 2013). cites: lenzDeepLearningDetecting2015,
Pp- 1238-1274. ISSN: 0278-3649, 1741-3176. DOL: 10.1177/0278364913495721 (cit. on p. 168).

Seiji Koide and Hideaki Takeda. “OWL-Full Reasoning from an Object Oriented Perspective.” en. In: The
Semantic Web — ASWC 2006. Ed. by Riichiro Mizoguchi, Zhongzhi Shi, and Fausto Giunchiglia. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 263—277. ISBN: 978-3-540-38331-4
(cit. on p. 41).

Paul Lamere, Philip Kwok, Evandro Gouvea, Bhiksha Raj, Rita Singh, William Walker, Manfred
Warmuth, and Peter Wolf. “The CMU SPHINX-4 speech recognition system.” In: IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP 2003), Hong Kong. Vol. 1. Citeseer. 2003, pp. 2—5 (cit. on
p- 26).

Jean-Baptiste Lamy. “Owlready: Ontology-Oriented Programming in Python with Automatic Classifi-
cation and High Level Constructs for Biomedical Ontologies.” en. In: Artificial Intelligence in Medicine 8o
(July 2017), pp. 11—28. ISSN: 09333657. DOIL: 10.1016/j.artmed.2017.07.002 (cit. on p. 41).

Maridn Lekavy and Pavol Navrat. “Expressivity of STRIPS-Like and HTN-Like Planning.” en. In: Agent
and Multi-Agent Systems: Technologies and Applications. Ed. by Ngoc Thanh Nguyen, Adam Grzech,
Robert J. Howlett, and Lakhmi C. Jain. Vol. 4496. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
Pp- 121-130. ISBN: 978-3-540-72829-0 978-3-540-72830-6. DOIL: 10.1007/978-3-540-72830-6_13 (cit. on
p- 111).

S. Lemaignan, R. Ros, R. Alami, and M. Beetz. “What Are You Talking about? Grounding Dialogue in a
Perspective-Aware Robotic Architecture.” In: RO-MAN. Atlanta, GA, USA: IEEE, July 2011, pp. 107-112.
DOIL: 10.1109/ROMAN.2011.6005249 (cit. on p. 169).

Séverin Lemaignan, Raquel Ros, E Akin Sisbot, Rachid Alami, and Michael Beetz. “Grounding the
interaction: Anchoring situated discourse in everyday human-robot interaction.” In: International Journal
of Social Robotics 4.2 (2012), pp. 181-199 (cit. on p. 148).

http://dx.doi.org/10.1109/ISDA.2011.6121843
http://dx.doi.org/10.1109/ICRA.2015.7139281
http://dx.doi.org/10.1146/annurev.psych.59.103006.093615
http://dx.doi.org/10.1145/1349822.1349836
http://dx.doi.org/10.1109/ICAR.2011.6088634
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1016/j.artmed.2017.07.002
http://dx.doi.org/10.1007/978-3-540-72830-6_13
http://dx.doi.org/10.1109/ROMAN.2011.6005249

[93]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

REFERENCES

Séverin Lemaignan, Mathieu Warnier, E. Akin Sisbot, Aurélie Clodic, and Rachid Alami. “Artificial
Cognition for Social Human-Robot Interaction: An Implementation.” In: Artificial Intelligence. Special
Issue on AI and Robotics 247 (June 2017), pp. 45-69. ISSN: 0004-3702. DOL: 10.1016/j.artint.2016.07.
002 (cit. on pp. 5, 40, 68).

Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep Learning for Detecting Robotic Grasps.” en.
In: The International Journal of Robotics Research 34.4-5 (Apr. 2015), pp. 705—724. ISSN: 0278-3649. DOI:
10.1177/0278364914549607 (cit. on p. 168).

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. “Learning Hand-
Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection.” en.
In: The International Journal of Robotics Research 37.4-5 (Apr. 2018), pp. 421—436. ISSN: 0278-3649. DOI:
10.1177/0278364917710318 (cit. on p. 111).

X. Liang, L. Lee, and E. P. Xing. “Deep Variation-Structured Reinforcement Learning for Visual Rela-
tionship and Attribute Detection.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017, pp. 4408—4417. DOI: 10.1109/CVPR.2017.469 (cit. on pp. 69, 111).

S. Matthew Liao and Anders Sandberg. “The Normativity of Memory Modification.” en. In: Neuroethics
1.2 (July 2008), pp. 85—99. ISSN: 1874-5504. DOI: 10.1007/s12152-008-9009-5 (cit. on p. 170).

Francesca A. Lisi and Umberto Straccia. “A FOIL-Like Method for Learning under Incompleteness
and Vagueness.” en. In: Inductive Logic Programming. Ed. by Gerson Zaverucha, Vitor Santos Costa, and
Aline Paes. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp. 123-139. ISBN:
978-3-662-44923-3 (cit. on p. 114).

D. Liu, M. Cong, and Y. Du. “Episodic Memory-Based Robotic Planning Under Uncertainty.” In: [EEE
Transactions on Industrial Electronics 64.2 (Feb. 2017), pp. 1762-1772. 1SSN: 0278-0046. DOI: 10.1109/TIE.
2016.2613507 (cit. on p. 169).

Hongyi Liu, Tongtong Fang, Tianyu Zhou, Yuquan Wang, and Lihui Wang. “Deep Learning-Based
Multimodal Control Interface for Human-Robot Collaboration.” en. In: Procedia CIRP 772 (2018), pp. 3-8.
ISSN: 22128271. DOIL: 10.1016/j.procir.2018.03.224 (cit. on p. 111).

Lorenzo Lucignano, Francesco Cutugno, Silvia Rossi, and Alberto Finzi. “A dialogue system for
multimodal human-robot interaction.” In: Proceedings of the 15th ACM on International conference on
multimodal interaction. ACM. 2013, pp. 197—204 (cit. on p. 217).

Geoffrey B. Maddox, David A. Balota, Jennifer H. Coane, and Janet M. Duchek. “The Role of Forgetting
Rate in Producing a Benefit of Expanded over Equal Spaced Retrieval in Young and Older Adults.”
In: Psychology and aging 26.3 (Sept. 2011), pp. 661-670. IsSN: 0882-7974. DOI: 10.1037/20022942 (cit. on
p- 171).

J. Maitin-Shepard, M. Cusumano-Towner,]. Lei, and P. Abbeel. “Cloth Grasp Point Detection Based on
Multiple-View Geometric Cues with Application to Robotic Towel Folding.” In: 2010 IEEE International
Conference on Robotics and Automation. May 2010, pp. 2308—2315. DOL: 10.1109/R0BOT.2010.5509439
(cit. on p. 68).

Stephen Maren. “Long-Term Potentiation in the Amygdala: A Mechanism for Emotional Learning
and Memory.” en. In: Trends in Neurosciences 22.12 (Dec. 1999), pp. 561-567. ISSN: 01662236. DOIL:
10.1016/50166-2236(99)01465-4 (cit. on p. 168).

I. Maurtua, I. Fernandez, J. Kildal, L. Susperregi, A. Tellaeche, and A. Ibarguren. “Enhancing Safe
Human-Robot Collaboration through Natural Multimodal Communication.” In: 2016 IEEE 215t Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA). Sept. 2016, pp. 1-8. DOL:
10.1109/ETFA.2016.7733573 (cit. on p. 112).

Mausam and Andrey Kolobov. “Planning with Markov Decision Processes: An Al Perspective.” In:
Synthesis Lectures on Artificial Intelligence and Machine Learning 6.1 (June 2012), pp. 1-210. ISSN: 1939-4608.
porL: 10.2200/500426ED1V01Y201206AIMO17 (cit. on p. 111).

James L McGaugh and Benno Roozendaal. “Role of Adrenal Stress Hormones in Forming Lasting
Memories in the Brain.” en. In: Current Opinion in Neurobiology 12.2 (Apr. 2002), pp. 205-210. ISSN:
09594388. DOT: 10.1016/S0959-4388(02)00306-9 (cit. on p. 168).

235

http://dx.doi.org/10.1016/j.artint.2016.07.002
http://dx.doi.org/10.1016/j.artint.2016.07.002
http://dx.doi.org/10.1177/0278364914549607
http://dx.doi.org/10.1177/0278364917710318
http://dx.doi.org/10.1109/CVPR.2017.469
http://dx.doi.org/10.1007/s12152-008-9009-5
http://dx.doi.org/10.1109/TIE.2016.2613507
http://dx.doi.org/10.1109/TIE.2016.2613507
http://dx.doi.org/10.1016/j.procir.2018.03.224
http://dx.doi.org/10.1037/a0022942
http://dx.doi.org/10.1109/ROBOT.2010.5509439
http://dx.doi.org/10.1016/S0166-2236(99)01465-4
http://dx.doi.org/10.1109/ETFA.2016.7733573
http://dx.doi.org/10.2200/S00426ED1V01Y201206AIM017
http://dx.doi.org/10.1016/S0959-4388(02)00306-9

236

REFERENCES

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]
[118]

[119]

[120]

[121]

[122]

[123]

[124]

Deborah L. McGuinness and Frank Van Harmelen. “OWL Web Ontology Language Overview.” en. In:
W3C Recommendation 10.10 (2004), p. 22 (cit. on pp. 4, 21, 40, 67, 112).

Douglas L. Medin, ed. The Psychology of Learning and Motivation: Advances in Research and Theory Volume
31. English. Academic Press, July 2011. ISBN: 978-0-12-399405-9 (cit. on p. 169).

Vahid Mokhtari, Luis Seabra Lopes, and Armando J. Pinho. “Experience-Based Robot Task Learning
and Planning with Goal Inference.” en. In: Twenty-Sixth International Conference on Automated Planning
and Scheduling. Mar. 2016 (cit. on p. 111).

Reinhard Moratz, Thora Tenbrink, John Bateman, and Kerstin Fischer. “Spatial Knowledge Represen-
tation for Human-Robot Interaction.” en. In: Spatial Cognition III. Ed. by Christian Freksa, Wilfried
Brauer, Christopher Habel, and Karl F. Wender. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003, pp. 263-286. ISBN: 978-3-540-45004-7 (cit. on p. 68).

R. G. Morris. “D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949.” eng. In: Brain Research
Bulletin 50.5-6 (1999 Nov-Dec), p. 437. 1SSN: 0361-9230 (cit. on p. 169).

Boris Motik, Peter F Patel-Schneider, Bijan Parsia, Conrad Bock, Achille Fokoue, Peter Haase, Rinke
Hoekstra, Ian Horrocks, Alan Ruttenberg, and Uli Sattler. OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax. en. Tech. rep. 65-27. W3C recommendation, 2009, p. 134 (cit. on

p- 45)-
Andrew Nuxoll and John E. Laird. “A Cognitive Model of Episodic Memory Integrated with a General
Cognitive Architecture.” In: ICCM. 2004 (cit. on p. 171).

M. Oliveira, G. H. Lim, L. S. Lopes, S. H. Kasaei, A. M. Tomé, and A. Chauhan. “A Perceptual
Memory System for Grounding Semantic Representations in Intelligent Service Robots.” In: 2014
IEEE/RS] International Conference on Intelligent Robots and Systems. Sept. 2014, pp. 2216-2223. DOIL:
10.1109/IR0S.2014.6942861 (cit. on pp. 169, 171).

Dan R Olsen and Michael A Goodrich. “Metrics for evaluating human-robot interactions.” In: Proceed-
ings of PERMIS. Vol. 2003. 2003, p. 4 (cit. on p. 217).

Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013 (cit. on p. 27).

Mike Phillips, Victor Hwang, Sachin Chitta, and Maxim Likhachev. “Learning to Plan for Constrained
Manipulation from Demonstrations.” en. In: Autonomous Robots 40.1 (Jan. 2016), pp. 109—124. ISSN:
1573-7527. DOL: 10.1007/s10514-015-9440-5 (cit. on p. 111).

G. Pointeau, M. Petit, and P. F. Dominey. “Successive Developmental Levels of Autobiographical Mem-
ory for Learning Through Social Interaction.” In: IEEE Transactions on Autonomous Mental Development
6.3 (Sept. 2014), pp. 200—212. ISSN: 1943-0604. DOIL: 10.1109/TAMD.2014.2307342 (cit. on p. 171).

Alberto Poncela and Leticia Gallardo-Estrella. “Command-based voice teleoperation of a mobile robot
via a human-robot interface.” In: Robotica 33.1 (2015), pp. 1—18 (cit. on p. 217).

André Potenza, Andrey Kiselev, Amy Loutfi, and Alessandro Saffiotti. “Towards Sliding Autonomy
in Mobile Robotic Telepresence: A Position Paper.” In: ECCE 201 7-European Conference on Cognitive
Ergonomics, 20-22 September 2017, Umed University, Sweden. 2017 (cit. on p. 216).

F. Pratama, F. Mastrogiovanni, and N. Y. Chong. “An Integrated Epigenetic Robot Architecture via
Context-Influenced Long-Term Memory.” In: 4th International Conference on Development and Learning
and on Epigenetic Robotics. Oct. 2014, pp. 68—74. DOI: 10.1109/DEVLRN. 2014 .6982956 (cit. on p. 66).

F. Pratama, F. Mastrogiovanni, S. Jeong, and N. Y. Chong. “Long-Term Knowledge Acquisition in a
Memory-Based Epigenetic Robot Architecture for Verbal Interaction.” In: 2015 24th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN). Aug. 2015, pp. 25-30. DOIL:
10.1109/R0OMAN. 2015.7333563 (cit. on p- 66).

Ferdian Pratama, Fulvio Mastrogiovanni, Soon Geul Lee, and Nak Young Chong. “Long-Term Knowl-
edge Acquisition Using Contextual Information in a Memory-Inspired Robot Architecture.” In: Journal
of Experimental & Theoretical Artificial Intelligence 29.2 (Mar. 2017), pp. 313—-334. IS5N: 0952-813X. DOI:
10.1080/0952813X.2015.1134679 (cit. on p. 169).

http://dx.doi.org/10.1109/IROS.2014.6942861
http://dx.doi.org/10.1007/s10514-015-9440-5
http://dx.doi.org/10.1109/TAMD.2014.2307342
http://dx.doi.org/10.1109/DEVLRN.2014.6982956
http://dx.doi.org/10.1109/ROMAN.2015.7333563
http://dx.doi.org/10.1080/0952813X.2015.1134679

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

REFERENCES

Tony] Prescott, Ben Mitchinson, and Sebastian Conran. “MiRo: An Animal-like Companion Robot
with a Biomimetic Brain-based Control System.” In: Proceedings of the Companion of the ACM/IEEE
International Conference on Human-Robot Interaction. ACM. 2017, pp. 50-51 (cit. on pp. 216, 225).

J. R. Quinlan. “Learning Logical Definitions from Relations.” en. In: Machine Learning 5.3 (Aug. 1990),
Pp- 239—266. 1sSN: 0885-6125, 1573-0565. DOL: 10.1007/BF00117105 (cit. on p. 113).

Jette Randlev and Preben Alstrom. “Learning to Drive a Bicycle Using Reinforcement Learning and
Shaping.” en. In: Proceedings of the Fifteenth International Conference on Machine Learning. ICML '98. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., July 1998, pp. 463—471. ISBN: 1-55860-556-8
(cit. on p. 168).

Daniele Ravi, Charence Wong, Benny Lo, and Guang-Zhong Yang. “A Deep Learning Approach to On-
Node Sensor Data Analytics for Mobile or Wearable Devices.” en. In: IEEE Journal of Biomedical and Health
Informatics 21.1 (Jan. 2017), pp. 56—-64. 1SSN: 2168-2194, 2168-2208. DOI: 10.1109/JBHI.2016.2633287
(cit. on p. 111).

Benjamin Rosman and Subramanian Ramamoorthy. “Learning Spatial Relationships between Objects.”
en. In: The International Journal of Robotics Research 30.11 (Sept. 2011), pp. 1328-1342. ISSN: 0278-3649.
DOT: 10.1177/0278364911408155 (cit. on p- 68).

Robert] Ross, Hui Shi, Tillman Vierhuff, Bernd Krieg-Briickner, and John Bateman. “Towards dialogue
based shared control of navigating robots.” In: International Conference on Spatial Cognition. Springer.

2004, pp- 478—499 (cit. on p. 217).

Jonas Rothfuss, Fabio Ferreira, Eren Erdal Aksoy, You Zhou, and Tamim Asfour. “Deep Episodic
Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution.” en.
In: arXiv:1801.04134 [cs] (Jan. 2018). arXiv: 1801.04134 [cs] (cit. on p. 168).

R. B. Rusu and S. Cousins. “3D Is Here: Point Cloud Library (PCL).” In: 2011 IEEE International
Conference on Robotics and Automation. May 2011, pp. 1-4. DOL: 10.1109/ICRA.2011.5980567 (cit. on
Pp- 19, 22, 131, 149).

R. Rusu. Semantic 3D object maps for everyday robot manipulation. Heidelberg, Germany: Springer, 2013
(cit. on p. 19).

Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K. Misra, and Hema S. Koppula.

“RoboBrain: Large-Scale Knowledge Engine for Robots.” en. In: arXiv:1412.0691 [cs] (Dec. 2014). arXiv:
1412.0691 [cs] (cit. on pp. 4, 111, 211).

Brian Scassellati. “Theory of mind for a humanoid robot.” In: Autonomous Robots 12.1 (2002), pp. 13-24
(cit. on p. 3).

Craig Schlenoff, Edson Prestes, Raj Madhavan, Paulo Goncalves, Howard Li, Stephen Balakirsky,
Thomas Kramer, and Emilio Miguelanez. “An IEEE Standard Ontology for Robotics and Automation.”
en. In: 2012 IEEE/RS] International Conference on Intelligent Robots and Systems. Vilamoura-Algarve,
Portugal: IEEE, Oct. 2012, pp. 1337-1342. ISBN: 978-1-4673-1736-8 978-1-4673-1737-5 978-1-4673-1735-1.
por: 10.1109/IR0S.2012.6385518 (cit. on p. 40).

R. Schnabel, R. Wahl, and R. Klein. “Efficient RANSAC for point-cloud shape detection.” In: Computer
Graphics Forum 26.2 (2007), pp. 214—226 (cit. on p. 18).

Bechhofer Sean, Van Harmelen Frank, Hendler Jim, Horrocks Ian, McGuinness Deborah L, Patel-
Schneider Peter F, and Stein Lynn Andrea. “"OWL Web Ontology Language Reference.” en. In: W3C
recommendation 10.2 (2014), p. 8o (cit. on p. 169).

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia, Joyce Chai, and Ning Xi. “Back to the blocks world:
Learning new actions through situated human-robot dialogue.” In: Proceedings of the 15th Annual
Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL). Springer, 2014, pp. 89—97
(cit. on p. 147).

Raymond Sheh and Isaac Monteath. “Defining Explainable AI for Requirements Analysis.” en. In: KI -
Kiinstliche Intelligenz 32.4 (Nov. 2018), pp. 261-266. ISSN: 1610-1987. DOI: 10.1007/s13218-018-0559-3
(cit. on p. 112).

237

http://dx.doi.org/10.1007/BF00117105
http://dx.doi.org/10.1109/JBHI.2016.2633287
http://dx.doi.org/10.1177/0278364911408155
http://arxiv.org/abs/1801.04134
http://dx.doi.org/10.1109/ICRA.2011.5980567
http://arxiv.org/abs/1412.0691
http://dx.doi.org/10.1109/IROS.2012.6385518
http://dx.doi.org/10.1007/s13218-018-0559-3

238

REFERENCES

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Glen Shires and Hans Wennborg. “Web speech api specification.” In: Final Report, W3C (2012) (cit. on
PP 27, 155).

M. Sigalas, M. Maniadakis, and P. Trahanias. “Episodic Memory Formulation and Its Application in
Long-Term HRI.” In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communica-
tion (RO-MAN). Aug. 2017, pp. 599-606. DOIL: 10.1109/ROMAN.2017.8172364 (cit. on p. 169).

Evren Sirin and Bijan Parsia. “SPARQL-DL: SPARQL Query for OWL-DL.” In: OWLED. 2007 (cit. on
Pp- 45, 70)-

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. “Pellet: A
Practical OWL-DL Reasoner.” In: Journal of Web Semantics. Software Engineering and the Semantic Web
5.2 (June 2007), pp. 51-53. ISSN: 1570-8268. DOI: 10.1016/j.websem.2007.03.004 (cit. on pp. 40, 58, 69,
112, 152, 197).

Steven M. Smith. “Environmental Context—Dependent Memory.” In: Memory in Context: Context in
Memory. Oxford, England: John Wiley & Sons, 1988, pp. 13-34. ISBN: 978-0-471-91901-8 (cit. on p. 172).

Cees G.M. Snoek, Marcel Worring, and Arnold W.M. Smeulders. “Early versus late fusion in semantic
video analysis.” In: Proceedings of the 13th annual ACM international conference on Multimedia. ACM.
Singapore, 2005, pp. 399—402 (cit. on p. 32).

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng, and Christopher D. Manning. “Parsing Natural
Scenes and Natural Language with Recursive Neural Networks.” In: (Nov. 2018) (cit. on p. 69).

Larry R. Squire. “Memory Systems of the Brain: A Brief History and Current Perspective.” eng. In:
Neurobiology of Learning and Memory 82.3 (Nov. 2004), pp- 171-177. ISSN: 1074-7427. DOI: 10.1016/j.
nlm.2004.06.005 (cit. on p. 170).

P. H. D. Arjuna S. Srimal, M. A. Viraj]. Muthugala, and A. G. Buddhika P. Jayasekara. “Deictic Gesture
Enhanced Fuzzy Spatial Relation Grounding in Natural Language.” en. In: 2017 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). Naples, Italy: IEEE, July 2017, pp. 1-8. ISBN: 978-1-5090-6034-4.
por: 10.1109/FUZZ-IEEE.2017.8015637 (cit. on pp. 114, 218).

D. Stachowicz and G. M. Kruijff. “Episodic-Like Memory for Cognitive Robots.” In: IEEE Transactions
on Autonomous Mental Development 4.1 (Mar. 2012), pp. 1-16. ISSN: 1943-0604. DOIL: 10.1109/TAMD.2011.
2159004 (cit. on p. 169).

Umberto Straccia. “Fuzzy Logic, Annotation Domains and Semantic Web Languages.” en. In: Scalable
Uncertainty Management. Ed. by Salem Benferhat and John Grant. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011, pp. 2—21. ISBN: 978-3-642-23963-2 (cit. on p. 123).

L. Tai, G. Paolo, and M. Liu. “Virtual-to-real deep reinforcement learning: Continuous control of
mobile robots for mapless navigation.” In: 2017 IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS). 2017, pp. 31—36. DOI: 10.1109/IR0S.2017.8202134 (cit. on p. 111).

Helen Tam, Christopher Jarrold, Alan D. Baddeley, and Maura Sabatos-DeVito. “The Development
of Memory Maintenance: Children’s Use of Phonological Rehearsal and Attentional Refreshment in
Working Memory Tasks.” en. In: Journal of Experimental Child Psychology 107.3 (Nov. 2010), pp. 306-324.
ISSN: 00220965. DOIL: 10.1016/j.jecp.2010.05.006 (cit. on p. 168).

Jiacheng Tan, Zhaojie Ju, and Honghai Liu. “Grounding spatial relations in natural language by
fuzzy representation for human-robot interaction.” In: Fuzzy Systems (FUZZ-IEEE), IEEE International
Conference on. IEEE. 2014, pp. 1743-1750 (cit. on p. 218).

Moritz Tenorth and Michael Beetz. “KNOWROB - knowledge processing for autonomous personal
robots.” In: 2009 IEEE/RS] International Conference on Intelligent Robots and Systems. IEEE. 2009, pp. 4261—
4266. DOT: 10.1109/TR0OS.2009 . 5354602 (cit. on p. 58).

Moritz Tenorth and Michael Beetz. “KnowRob: A Knowledge Processing Infrastructure for Cognition-
Enabled Robots.” en. In: The International Journal of Robotics Research 32.5 (Apr. 2013), pp. 566-590. ISSN:
0278-3649, 1741-3176. DOL: 10.1177/0278364913481635 (cit. on p. 111).

http://dx.doi.org/10.1109/ROMAN.2017.8172364
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.nlm.2004.06.005
http://dx.doi.org/10.1016/j.nlm.2004.06.005
http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015637
http://dx.doi.org/10.1109/TAMD.2011.2159004
http://dx.doi.org/10.1109/TAMD.2011.2159004
http://dx.doi.org/10.1109/IROS.2017.8202134
http://dx.doi.org/10.1016/j.jecp.2010.05.006
http://dx.doi.org/10.1109/IROS.2009.5354602
http://dx.doi.org/10.1177/0278364913481635

[157]

[158]

[159]
[160]
[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

REFERENCES

Akshaya Thippur, C. Burbridge, L. Kunze, Marina Alberti, John Folkesson, Patric Jensfelt, and N.
Hawes. “A Comparison of Qualitative and Metric Spatial Relation Models for Scene Understanding.”
eng. In: 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications
of Artificial Intelligence Conference, IAAI 2015; Austin; United States. Vol. 2. Al Access Foundation, 2015,
pp- 1632—-1640 (cit. on p. 68).

Endel Tulving and Tannis Y. Arbuckle. “Input and Output Interference in Short-Term Associative
Memory.” ENGLISH. In: Journal of Experimental Psychology 72.1 (July 1966), pp. 145-150. ISSN: 0022-1015
(cit. on p. 172).

Endel Tulving, Wayne Donaldson, Gordon H. Bower, and United States Office of Naval Research.
Organization of Memory. en. Academic Press, 1972 (cit. on p. 170).

Benton J. Underwood. “Interference and Forgetting.” In: Psychological Review 64.1 (Jan. 1957), pp. 49—60.
ISSN: 0033-295X (cit. on p. 172).

David Vernon. Artificial Cognitive Systems: A Primer. en. MIT Press, Oct. 2014. ISBN: 978-0-262-02838-7
(cit. on pp. 3, 167).

H Wache, T Vogele, U Visser, H Stuckenschmidt, G Schuster, H Neumann, and S Hiibner. “Ontology-
Based Integration of Information — a Survey of Existing Approaches.” In: IJCAI-o1 Workshop: Ontologies
and Information Sharing. Ed. by H Stuckenschmidt. 2001, pp. 108-117 (cit. on p. 40).

Mirko Waéchter, Ekaterina Ovchinnikova, Valerij Wittenbeck, Peter Kaiser, Sandor Szedmak, Wail
Mustafa, Dirk Kraft, Norbert Kriiger, Justus Piater, and Tamim Asfour. “Integrating multi-purpose nat-
ural language understanding, robot’s memory, and symbolic planning for task execution in humanoid
robots.” In: Robotics and Autonomous Systems 99 (2018), pp. 148-165 (cit. on p. 147).

R. Walecki, O. Rudovic, V. Pavlovic, B. Schuller, and M. Pantic. “Deep Structured Learning for Facial
Action Unit Intensity Estimation.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017, pp. 5709-5718. DOI: 10.1109/CVPR.2017.605 (cit. on p. 69).

M. L. Walters, D. S. Syrdal, K. Dautenhahn, and K. L. Koay I. Boekhorst. “Avoiding the uncanny valley:
robot appearance, personality and consistency of behaviours in an attention-seeking home scenario for
a robot companion.” In: Autonomous Robots 24.2 (2008), pp. 159-178 (cit. on p. 18).

T. Wang and Q. Chen. “Object Semantic Map Representation for Indoor Mobile Robots.” In: Proceedings
2011 International Conference on System Science and Engineering. June 2011, pp. 309—313. DOIL: 10.1109/
ICSSE.2011.5961919 (cit. on p. 112).

T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald. “Kintinuous: spatially
extended KinectFusion.” In: Proceedings of the 2012 RSS Workshop on RGB-D: Advanced Reasoning with
Depth Cameras. Sydney, Australia, 2012 (cit. on p. 19).

Rachel Wood, Paul Baxter, and Tony Belpaeme. “A Review of Long-Term Memory in Natural and
Synthetic Systems.” en. In: Adaptive Behavior 20.2 (Apr. 2012), pp. 81-103. ISSN: 1059-7123, 1741-2633.
DOI: 10.1177/1059712311421219 (cit. on pp. 166, 167).

F. Worgotter et al. “Structural Bootstrapping—A Novel, Generative Mechanism for Faster and More
Efficient Acquisition of Action-Knowledge.” In: IEEE Transactions on Autonomous Mental Development
7.2 (June 2015), pp. 140-154. ISSN: 1943-0604. DOIL: 10.1109/TAMD.2015.2427233 (cit. on p. 108).

P. Ye, T. Wang, and F. Wang. “A Survey of Cognitive Architectures in the Past 20 Years.” In: IEEE

Transactions on Cybernetics 48.12 (Dec. 2018), pp. 3280-3290. ISSN: 2168-2267. DOL: 10.1109/TCYB.2018.

2857704 (cit. on p. 173).

Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw, Xunying Liu, Gareth Moore,
Julian Odell, Dave Ollason, Dan Povey, et al. “The HTK book.” In: Cambridge university engineering
department 3 (2002), p. 175 (cit. on p. 26).

R. Zese. Probabilistic Semantic Web: Reasoning and Learning. en. Vol. 28. Studies on the semantic web. IOS
Press, Dec. 2016. 1SBN: 978-1-61499-734-4 (cit. on pp. 40, 69, 113).

J. A. Zlotowski, H. Sumioka, S. Nishio, D. F. Glas, C. Bartneck, and H. Ishiguro. “Persistence of the
uncanny valley: the influence of repeated interactions and a robot’s attitude on its perception.” In:
Frontiers in Psychology 6 (2015), p. 883 (cit. on p. 18).

239

http://dx.doi.org/10.1109/CVPR.2017.605
http://dx.doi.org/10.1109/ICSSE.2011.5961919
http://dx.doi.org/10.1109/ICSSE.2011.5961919
http://dx.doi.org/10.1177/1059712311421219
http://dx.doi.org/10.1109/TAMD.2015.2427233
http://dx.doi.org/10.1109/TCYB.2018.2857704
http://dx.doi.org/10.1109/TCYB.2018.2857704

	Maintaining Structured Experiences for Robots via Human Demonstrations: an Architecture to Convey Long-Term Robot's Beliefs
	Dedication
	Abstract
	Preface
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms and Listings
	I Memory for Human-Robot Interaction
	1 Introduction
	1.1 Background
	1.2 Objective
	1.3 Contribution
	1.4 Architecture and Thesis Structure

	II Perceive for Acting
	2 An Architecture for Semantic Object Perception
	2.1 Introduction
	2.2 The Primitive Identification and Tagging (PIT) Architecture
	2.3 Experimental Results
	2.4 Conclusions

	3 An Open Framework for Speech Analysis
	3.1 Introduction
	3.2 The Concept Action Grammar Generator (CAGG)
	3.3 Examples
	3.4 Conclusions

	4 Multimodal Semantic Perception Fusion
	4.1 Introduction and Background
	4.2 A Modular Software Architecture Overview
	4.3 Software Interfaces for Multimodal Perception Fusion
	4.4 Implementation
	4.5 Discussions and Conclusions

	III Represent for Reifying
	5 The OWLOOP API
	5.1 Introduction
	5.2 Related Work
	5.3 Motivation
	5.4 Contribution
	5.5 Description Logic Primer
	5.5.1 Axioms Representation in Ontology
	5.5.2 OWL Reasoning

	5.6 OWLOOP Overview
	5.7 OWLOOP Descriptors
	5.7.1 Descriptors Grounding
	5.7.2 The Abstract Descriptor
	5.7.3 Concrete Descriptors
	5.7.4 Descriptors Building

	5.8 OWLOOP API Examples
	5.9 Conclusions

	6 A ROS Multi Ontology References Service (ARMOR)
	6.1 Introduction
	6.2 System's Architecture
	6.2.1 The ARMOR Core: AMOR
	6.2.2 The ARMOR Interface

	6.3 Applications and Conclusions

	IV Demonstrate for Remembering
	7 Structured Learning of Scene Categories
	7.1 Introduction
	7.2 Related Work
	7.2.1 Contribution

	7.3 Overview
	7.4 Problem Statement
	7.4.1 Dynamic Spaces Representation
	7.4.2 Algorithm-Knowledge Interface

	7.5 The Scene Identification and Tagging Algorithm (SIT)
	7.5.1 Perceiving
	7.5.2 Learning
	7.5.3 Structuring
	7.5.4 Classifying
	7.5.5 Scene Similarity Measure
	7.5.6 Algorithm Phases

	7.6 Implementation
	7.6.1 Software Architecture and Knowledge Representation
	7.6.2 Experimental Setup
	7.6.3 Object Perception
	7.6.4 Spatial Relations
	7.6.5 Semantic Interface and Input Facts
	7.6.6 Representation Complexity

	7.7 Examples and Experimental Assessment
	7.8 Discussions
	7.9 Conclusions

	8 Structured Learning in Uncertain Environments
	8.1 Introduction
	8.2 Related Work
	8.2.1 Background
	8.2.2 Contribution

	8.3 Problem Statement
	8.3.1 Fuzzy Cardinality Restrictions

	8.4 The Fuzzy Scene Identification and Tagging Algorithm
	8.4.1 Input Facts
	8.4.2 Perceiving
	8.4.3 Learning
	8.4.4 Structuring
	8.4.5 Classifying
	8.4.6 Complexity

	8.5 Implementation
	8.5.1 Perception and Input Facts

	8.6 Algorithm Evaluation
	8.7 Discussions
	8.8 Conclusions

	V Supervise to Consolidate and Forget
	9 Dialogue-based Supervision of Robot Beliefs
	9.1 Introduction
	9.2 Knowledge Representation and Robot Beliefs
	9.2.1 Overview
	9.2.2 Primitive Identification and Tagging
	9.2.3 Scene Knowledge Generator
	9.2.4 Scene Identification and Tagging
	9.2.5 A Multi Ontology References

	9.3 Human-Robot Dialogue Management
	9.3.1 Dialogue Manager
	9.3.2 Speech Interaction Manager
	9.3.3 Dialogue Types

	9.4 Use Cases
	9.4.1 Use Case 1
	9.4.2 Use Case 2
	9.4.3 Use Case 3

	9.5 Conclusions

	10 An Architecture to Consolidate, Retrieve and Forget
	10.1 Introduction
	10.2 Cognitive Memories
	10.3 Rationale
	10.3.1 Contribution

	10.4 Problem Statement
	10.4.1 SIT Functionalities
	10.4.2 SIT extensions

	10.5 System Overview
	10.6 Memory Representation
	10.6.1 Upper Ontology for Item's States
	10.6.2 Upper Ontology for Item's Score

	10.7 Memory Funtionalities
	10.7.1 Encoding
	10.7.2 Storing
	10.7.3 Retrieving
	10.7.4 Consolidating
	10.7.5 Forgetting

	10.8 Semantic Memory
	10.8.1 Semantic Score

	10.9 Episodic Memory
	10.9.1 Episodic Score

	10.10 Memory Managment
	10.10.1 Architecture
	10.10.2 Encoding Reasoners
	10.10.3 Storing Reasoners
	10.10.4 Consolidating Reasoner
	10.10.5 Forgetting Reasoner
	10.10.6 Retrieving Reasoner

	10.11 Conlcusions

	VI Summary
	11 Conclusions
	11.1 Discussions
	11.2 Further Works

	VII Appendix
	A An Architecture for Qualitative Robot Navigation
	A.1 Introduction
	A.2 Software Architecture
	A.3 Multi-Modal Interface
	A.4 Spatial Reasoner
	A.5 Spatial Kernel
	A.6 Use Case
	A.7 Conclusions

	 References

