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Abstract

In this thesis we tackle the semantic gap, a long-standing problem in Information Retrieval

(IR). The semantic gap can be described as the mismatch between users’ queries and the

way retrieval models answer to such queries. Two main lines of work have emerged over the

years to bridge the semantic gap: (i) the use of external knowledge resources to enhance the

bag-of-words representations used by lexical models, and (ii) the use of semantic models to

perform matching between the latent representations of queries and documents. To deal with

this issue, we first perform an in-depth evaluation of lexical and semantic models through

different analyses. The objective of this evaluation is to understand what features lexical and

semantic models share, if their signals are complementary, and how they can be combined

to effectively address the semantic gap. In particular, the evaluation focuses on (semantic)

neural models and their critical aspects. Then, we build on the insights of this evaluation to

develop lexical and semantic models addressing the semantic gap. Specifically, we develop

unsupervised models that integrate knowledge from external resources, and we evaluate

them for the medical domain – a domain with a high social value, where the semantic gap is

prominent, and the large presence of authoritative knowledge resources allows us to explore

effective ways to leverage external knowledge to address the semantic gap. For lexical

models, we propose and evaluate several knowledge-based query expansion and reduction

techniques. These query reformulations are used to increase the probability of retrieving

relevant documents by adding to or removing from the original query highly specific terms.

Regarding semantic models, we first analyze the limitations of the knowledge-enhanced

neural models presented in the literature. Then, to overcome these limitations, we propose

SAFIR, an unsupervised knowledge-enhanced neural framework for IR. The representations

learned within this framework are optimized for IR and encode linguistic features that are

relevant to address the semantic gap.
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Chapter 1

Introduction

Information has always played a leading role in human history. For thousand of years, people

have perceived the importance of storing, maintaining, and retrieving information. The need

to store and retrieve written information became increasingly important with the invention

of paper, printing press, and eventually computers. With the advent of computers, people

realized that they could exploit them to store and access large amounts of information [35].

Meanwhile, the explosion of scientific publications that emerged during and after World War

II – and the need to efficiently and effectively search this literature – motivated the devel-

opment of automatic systems capable of searching through a large collection of documents,

known as corpus, to find and retrieve relevant information addressing a particular information

need, typically expressed by a user through a keyword query [19]. Starting from the 1950s,

several works proposed to search text using computers. In particular, Luhn [151] proposed to

use words as indexing units for documents and to estimate word overlap as a criterion for

retrieval. Modern Information Retrieval (IR) was born, and with it, the first automatic IR

systems began to take hold.

An IR system takes as input a query – formulated by a user to express their information

need – and returns a ranking list of documents potentially relevant to that query. Although

these systems were introduced in the 1950s [197], several key developments in the field of

IR happened in the 1960s. Among them, the development of the System for the Mechanical

Analysis and Retrieval of Text (SMART) [195] by Salton and his group, along with the

Cranfield evaluations carried out by Cleverdon and his colleagues [43, 44], allowed the IR

field to advance rapidly. Building on the pioneering works performed in 1960s, several

models for document retrieval were developed in 1970s and 1980s, pushing research forward

in all dimensions of the retrieval process. However, back then, the proposed models and

techniques were experimentally evaluated on small text collections, consisting of several

thousand articles only. Therefore, the ability of retrieval models to scale to large collections
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remained an open question. In 1992, the first Text REtrieval Conference (TREC) changed

this situation [100]. Sponsored by the National Institute of Standards and Technology (NIST),

TREC aimed to build large text collections and foster IR research under a common evaluation

framework. Over the years, TREC has evolved into a series of evaluation campaigns that

provide the infrastructure necessary for large-scale evaluation of IR systems. Thus, since the

first TREC, many different models and techniques have been developed – and are still being

developed – to perform efficient and effective retrieval over large collections.

However, the advent of large collections highlighted the limitations of traditional retrieval

models, which compute the relevance score using heuristics defined over the lexical overlap

between query and document bag-of-words representations. For instance, traditional models

– also known as lexical models – fall short when the user’s query and a relevant document

describe the same concept but with different words (i.e., synonymy mismatch), or when

the query and an irrelevant document describe different concepts using the same words

(i.e., polysemy mismatch). Put simply, they fail to represent the semantics of queries and

documents.

Such limitations are strongly related to a long-standing problem in IR: the semantic gap.

The semantic gap can be defined as the mismatch between users’ queries and the way IR

systems answer to such queries [85, 51]. Depending on the situation, the semantic gap can

hinder the retrieval of relevant documents, affect the quality of the produced ranking list, or

both. Over the years, two main lines of work have emerged to overcome the limitations of

lexical models and address the semantic gap: (i) the use of external knowledge resources to

enhance the representations used by lexical models, and (ii) the adoption of semantic models

to perform semantic matching between query and document latent representations.

Enhancing lexical models through external knowledge resources dates back to the early

years of IR [194]. In literature, the relational information contained within knowledge re-

sources has been used to model linguistic features related to the semantic gap, like synonymy

and polysemy, and enhance the bag-of-words representations used by lexical models. How-

ever, even though several approaches have been proposed, many open questions remain. For

example, what knowledge resources are best suited to enhance bag-of-words representations?

What information stored within knowledge resources help to address the semantic gap?

To what extent external knowledge can be integrated within bag-of-words representations

without incurring into noise injection?

On the other hand, semantic models have been used for decades in IR as a means to bridge

the semantic gap and retrieve relevant documents that lexical models fail to discover [140].

Semantic models perform semantic matching between queries and documents in a latent

semantic space. Compared to lexical matching, semantic matching computes the similarity
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between two elements – be them a pair of words, or a query/document pair – as the distance,

under a given metric, between their low-dimensional latent representations. In this way,

semantic models overcome the limitations related to (lexical) exact matching and capture

the similarity between queries and documents at a higher semantic level. Nevertheless,

traditional semantic models [57, 113, 28] have never been up to par with lexical models due

to their coarseness and lack of specificity [68, 238]. In the last few years, the advances and

the success of neural representation learning in several different tasks have promoted the

diffusion of neural models in IR, reviving the interest in semantic matching. In particular,

neural models based on the distributional hypothesis [102] have shown promising results

when used to address the semantic gap between queries and documents. However, these

models suffer from two main limitations: they fail to discriminate polysemous words, as the

different meanings of a word are conflated into a single representation; and they fail to learn

close representations for synonyms occurring in different contexts, as they lack the relational

knowledge required to identify synonymy relationships between words. To overcome these

limitations, recent works that integrate external knowledge into the learning process of neural

models have been proposed in the Natural Language Processing (NLP) community, but only

a few have been applied in IR to reduce the effect of the semantic gap between queries and

documents [147, 169, 168, 170].

The work of this thesis falls within both the lines of research presented above and aims to

advance research on lexical and semantic models to reduce the semantic gap between queries

and documents. In particular, we are interested in models that can be applied without the need

for labeled data and can be used at the early stages of the IR pipeline. Developing models not

requiring labeled data allows us to address the semantic gap in any domain – and in particular

in those domains with a high social value, where labeled data are scarce and expensive

resources (e.g., medicine). On the other hand, developing models that can be used at the early

stages of the IR pipeline is fundamental to address the semantic gap. Otherwise, relevant

documents most affected by the semantic gap will simply remain undiscovered. Hence,

we focus on the development of unsupervised models that integrate external knowledge to

address the semantic gap at first-stage retrieval.

1.1 Objectives and Contributions

Since we aim to address the semantic gap between queries and documents to improve the

retrieval performances of lexical and semantic models, the main objectives of this thesis are:

• Study lexical and semantic signals to understand if they are complementary and how

they can be combined to effectively address the semantic gap.
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• Investigate the use of external resources for the development of knowledge-enhanced

lexical models.

• Investigate the potential of knowledge-enhanced semantic models for first-stage re-

trieval.

To achieve our first objective, we perform an in-depth evaluation of lexical and semantic

models through different analyses [158]. Each analysis brings a different perspective in the

understanding of semantic models and their relation with lexical models. In particular, the

evaluation focuses on the critical aspects of (semantic) neural models.

Based on the insights of this in-depth evaluation, we investigate the use of external

knowledge resources to enhance lexical and semantic models and address the semantic gap.

We develop unsupervised models that integrate relational knowledge from external resources,

and we evaluate them in the medical domain. The medical domain is a domain with a high

social value, where the semantic gap is prominent [70, 130, 131], and the large presence

of authoritative knowledge resources – manually curated by professionals – enables us to

explore effective ways to integrate external knowledge within retrieval models to address the

semantic gap.

For lexical models, we propose different methods to exploit knowledge from external

resources. In particular, we investigate how, and to what extent, concepts and relations

stored within knowledge resources can be integrated in query representations to improve the

effectiveness of lexical models. In this regard, we present a series of studies and analyses on

the TREC Precision Medicine (PM) Track.1

First, we conduct a preliminary study [4] on the TREC PM 2018 Clinical Trials task,

where the goal is the retrieval of relevant clinical trials for which a target patient is eligible.

In this respect, we propose a method to: 1) expand queries iteratively – relying on medical

knowledge resources – to increase the probability of finding relevant trials, and 2) filter out

trials for which the target patient is not eligible. The objective of the study is to evaluate how

a recall-oriented approach based on increasing – and more aggressive – query expansions

affects precision. In particular, we investigate whether the retrieval performance can be

correlated with the quality of the relational information contained within the knowledge

resource(s) used for the expansion process.

Then, we deepen the analysis and we extend it to both TREC PM tasks – i.e., to scientific

literature and clinical trials retrieval [5]. We propose and evaluate several knowledge-based

query expansion and reduction techniques to investigate whether a particular approach can

be helpful in both scientific literature and clinical trials retrieval. The analysis contributes

1http://www.trec-cds.org/
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to understanding the effectiveness of query reformulation techniques and sheds light on the

different characteristics of the considered tasks.

Given the outcomes of the in-depth analysis, we conduct a validation study on the TREC

PM 2019 Track [61]. We focus on both tasks, with a particular emphasis on clinical trials

retrieval, and we evaluate how the developed query reformulations affect the results and

whether the findings obtained in the previous analysis remain valid. Then, we explore the

effectiveness of combining different query reformulations in such a highly specific scenario.

Finally, we perform an a posteriori analysis on the effectiveness of the proposed query

reformulations for clinical trials retrieval over the three years of TREC PM [6]. This

systematic analysis compares our approach with those proposed by the research groups

that participated in all the three years of TREC PM and aims to identify a subset of query

reformulations effective on the different sets of topics provided across the years.

Regarding semantic models, we first analyze the knowledge-enhanced neural models

employed in the literature to address the semantic gap between queries and documents.

The purpose of this study is to understand their critical aspects and evaluate their retrieval

performances. The study emphasizes the inability of these knowledge-enhanced neural

models to effectively encode relevant features for IR, as well as the need for models capable

of providing effective performances at the early stages of the IR pipeline – where the

integration of external knowledge can express its full potential.

To overcome the above limitations, we propose the Semantic-Aware Neural Framework

for IR (SAFIR) [9], an unsupervised knowledge-enhanced neural framework for IR. SAFIR

learns representations that are optimized for IR and encodes linguistic features relevant to

address the semantic gap between queries and documents. SAFIR can be applied to any

domain where external knowledge resources are available, and it does not require any labeled

data for training. We conduct an experimental evaluation to compare SAFIR with other

knowledge-enhanced neural models on the TREC Clinical Decision Support (CDS) Track2 –

where the objective is to retrieve relevant medical literature given a medical case report. We

consider two retrieval strategies in the experiments: document retrieval and query expansion.

Document retrieval gives us the opportunity to investigate the effectiveness of integrating

external knowledge into neural models for the typical retrieval scenario, where systems

retrieve a set of candidate documents given a query. Query expansion allows us to investigate

the effectiveness of knowledge-enhanced neural models – which are specifically designed to

address the semantic gap – in providing expansion terms effective at reducing the semantic

gap for lexical models. In other words, with query expansion we explore the combination of

lexical and semantic models to address the semantic gap at the early stages of the IR pipeline.

2http://www.trec-cds.org/
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The evaluation contributes to understanding the ability of SAFIR in addressing the semantic

gap, as well as the effectiveness of combining lexical and semantic models at the early stages

of the IR pipeline.

1.2 Outline

The thesis is organized as follows. In Chapter 2, we describe the two types of resources

required to investigate the problem of the semantic gap and achieve the objectives of this

thesis – that is, test collections and knowledge resources. On top of that, we also report on

the test collections and knowledge resources used in our work. In Chapter 3, we provide

the necessary background on the approaches that have been proposed in the literature to

address the different aspects of the semantic gap. In Chapter 4, we perform an in-depth

evaluation of lexical and semantic models through different analyses. Each analysis brings

a different perspective in the understanding of lexical and semantic models. Then, based

on the outcomes of the analyses performed in Chapter 4, we investigate the use of external

knowledge resources to enhance lexical and semantic models and address the semantic gap.

In Chapter 5, we present a series of studies and analyses on knowledge-enhanced query

reformulations for precision medicine. The methods developed can be used at the early

stages of the IR pipeline to enhance retrieval models and reduce the semantic gap between

queries and documents. In Chapter 6, we first analyze the knowledge-enhanced neural

models employed in the literature to address the semantic gap. Then, to overcome their

limitations, we present a novel unsupervised knowledge-enhanced neural framework that

learns representations optimized for IR and encodes linguistic features relevant to address the

semantic gap. Finally, in Chapter 7, we report some general conclusions and future directions.

As a side note, the main chapters of the thesis present a self-contained structure that helps a

reader solely interested in any of them to obtain all the necessary notions required to their

understanding.

1.3 Publications

Part of the results of this thesis has been published in relevant journals and conferences of the

Information Retrieval field. The contents of the thesis, as well as its insights and outcomes,

represent the core of these publications. Below, we present the list of publications ordered by

publication date.
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Chapter 2

Resources

In this thesis, we investigate the problem of the semantic gap in IR and how we can employ

authoritative and formal knowledge to reduce it. To this end, we require two types of

resources: test collections and knowledge resources. Test collections are re-usable and

standardized resources that can be used to evaluate IR systems with respect to the system. On

the other hand, knowledge resources provide access to authoritative relational information

that can be used by IR systems to address the semantic gap. In this chapter, we describe each

resource and we report on the test collections and knowledge resources used in our work. In

particular, we focus on medical test collections (Section 2.1) and structured, expert-made,

medical knowledge resources (Section 2.2).

2.1 Test Collections

A test collection is the most used tool for evaluating the effectiveness of IR systems and

consists of a set of topics describing specific information needs, a set of information objects

to be searched (e.g., biomedical literature), and relevance judgments indicating which objects

are relevant for which topics. Test collections are based on the pioneering work carried out

by Cleverdon [43, 44] at Cranfield College of Aeronautics in the 1960s. The objective of

Cleverdon’s work was to define a formal methodology for evaluating retrieval strategies.

To this end, Cleverdon performed a series of experiments to investigate which of several

indexing languages was the best [43].1 The outcome of Cleverdon’s experiments, known as

the Cranfield paradigm, laid the foundation of IR evaluation and is still considered a standard.

However, the Cranfield paradigm involved manually judging each document in the test

collection to determine its relevance to a given topic. Therefore, due to the high cost of

1Indexing languages are a subset of natural languages used to represent documents and queries with the

goal of improving retrieval.
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performing such an operation – both in terms of time and human involvement – it was not

suited for building large test collections. To overcome this limitation, Spärck Jones and

Van Rijsbergen [124] introduced the concept of the ideal test collection, along with the

requirements it should met and the characteristics it should have. In particular, the authors

proposed to use a technique called pooling to create a subset of the documents, typically

known as the “pool”, to judge for a topic. Documents within the pool for a topic are judged

for relevance, whereas documents outside the pool are assumed to be irrelevant to that topic.

This efficient solution was later implemented by the Text REtrieval Conference (TREC),2

the first evaluation campaign in IR which has run since 1992 [100]. TREC objective was –

and still is – to support research within the IR community by providing the infrastructure

necessary for large-scale evaluation of retrieval methodologies. The TREC campaign works

as follows: each year TREC provides a test set, composed of a set of documents and a set of

topics. Each research group participating in TREC runs their own IR system on the given

corpus and returns to TREC the top retrieved documents for each topic. The returned list

of documents for a set of topics is called run. Then, TREC pools the returned documents,

performs the relevance judgments, and presents a ranking with the systems score.

The huge success gained by the TREC initiative encouraged the creation of other eval-

uation campaigns. The Conference and Labs of the Evaluation Forum (CLEF), which

focuses on European languages,3 the NII Testbeds and Community for Information access

Research (NTCIR), which focuses on Asian languages,4 and the Forum for Information

Retrieval Evaluation (FIRE), which specifically focuses on south Asian ones.5 All these

campaigns carry on the effort of providing test collections for a wide variety of domains

and tasks – generating and making available several test collections that enable numerous

groups from all over the world to participate in the development of next-generation retrieval

systems [233]. Therefore, test collections play a fundamental role in providing the basis to

measure and compare the effectiveness of different IR systems and techniques.

Below, we present the test collections used in our work.

2.1.1 OHSUMED

The OHSUMED collection [107] consists of 348,566 references/documents from MEDLINE,

the on-line life sciences-biomedicine information database composed of titles, abstracts, and

other bibliographic information from most of the published medical journals.6 OHSUMED

2https://trec.nist.gov/
3http://www.clef-initiative.eu/
4http://research.nii.ac.jp/ntcir/
5http://fire.irsi.res.in/fire/
6https://www.nlm.nih.gov/bsd/medline.html
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was built by Hersh et al. [107] in 1994, after a series of preliminary experiments aimed at

evaluating the use of IR systems in medical practice. Inspired by TREC objectives [99],

Hersh et al. developed the OHSUMED collection to bring medical, real world-sized test

collections to the research community. The collection was also used in the TREC-9 Filtering

Track [191]. OHSUMED contains 106 topics, divided into 63 official topics and 43 pre-test

topics – that where rejected from official TREC-9 runs because they had too few relevance

judgments. Topics include two fields: title (patient description) and description (information

need).

2.1.2 TREC Clinical Decision Support

The TREC Clinical Decision Support (CDS) collections [188, 189, 184] consist of articles

from the Open Access Subset of PubMed Central (PMC), an online digital database of freely

available full-text biomedical and life sciences journal literature.7 TREC CDS 2014 (CDS14)

and 2015 (CDS15) contain 733,138 articles, whereas TREC CDS 2016 (CDS16) extends the

document set to 1,255,260 articles. CDS14 and CDS15 contain 30 topics, each, representing

medical case narratives created by expert topic developers. The case narratives describe

information such as a patient’s medical history, current symptoms, tests performed by a

physician to diagnose the patient’s condition, the eventual diagnosis, and any steps taken by

a physician to treat the patient. Topics are provided in two variants: a description, a complete

account of the patients’ visits, including details such as their vital statistics, drug dosages,

etc.; a summary, a simplified version of the narrative that contains less irrelevant information.

CDS16 contains 30 topics, representing Electronic Health Records (EHR) admission notes

curated by physicians from the MIMIC-III data. Specifically, the notes are extracted from

the History of Present Illness (HPI) section of the note. The HPI describes information such

as a patient’s chief complaint, medical history, tests performed by a physician to diagnose

the patient’s condition, possibly the current diagnosis, and any steps taken by a physician

to treat the patient. Topics are provided in three variants: the EHR admission note (only

the HPI section); a more layman-friendly description, which removes much of the jargon

and replaces clinical abbreviations with their full forms for better readability; a summary, a

one-or-two sentences summary of the description.

2.1.3 TREC Precision Medicine

There are two target document sets for TREC Precision Medicine (PM) collections [186,

185, 187]: scientific literature and clinical trials.

7https://www.ncbi.nlm.nih.gov/pmc/
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Scientific Literature

The Scientific Literature document set for TREC PM 2017 (PM17) and 2018 (PM18) consists

of a set of 26,759,399 MEDLINE abstracts, plus two additional sets: (i) 37,007 abstracts

from recent proceedings of the American Society of Clinical Oncology (ASCO),8 and

(ii) 33,018 abstracts from recent proceedings of the American Association for Cancer

Research (AACR).9 These additional sets were added to increase the set of potentially

relevant treatment information. Indeed, relevant literature articles can guide precision

oncologists to the best-known treatment options for the patient’s condition. Similarly to

PM17 and PM18, the document set for TREC PM 2019 (PM19) consists of an updated set of

29,138,916 MEDLINE abstracts. However, unlike PM17 and PM18, the ASCO and AACR

abstracts were not included in the PM19 document set.

Clinical Trials

The Clinical Trials document set for PM17 and PM18 consists of a total of 241,006 clinical

trial descriptions, derived from ClinicalTrials.gov – a repository of clinical trials in the U.S.

and abroad.10. When none of the available treatments is effective on oncology patients, the

common recourse is to determine if any potential treatment is undergoing evaluation in a

clinical trial. Precision oncology trials typically use a certain treatment for a certain disease

with a specific genetic variant (or set of variants). Such trials can have complex inclusion

and/or exclusion criteria that are challenging to match with automated systems. Again, the

document set for PM19 consists of an updated set of 306,238 clinical trial descriptions.

Topics

PM17, PM18, and PM19 contain, respectively, 30, 50, and 40 synthetic cases created by

precision oncologists in 2017, 2018, and 2019. In 2017, synthetic cases contain four key

elements in a semi-structured format: (1) disease (e.g. a type of cancer), (2) genetic variants

(primarily present in tumors), (3) demographic information (e.g. age, gender), and (4) other

factors which could impact certain treatment options. In 2018 and 2019, synthetic cases

contain three of the four key elements used in 2017: (1) disease, (2) genetic variants, and (3)

demographic information. In 2019, 30 of the 40 cases were created by precision oncologists,

while the other 10 cases – unrelated to cancer – were based on the American College of

Medical Genetics and Genomics (ACMG) recommendations.11 These synthetic cases were

8https://www.asco.org/
9https://www.aacr.org/

10https://clinicaltrials.gov/
11https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/acmg.shtml
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added to assess the relative difficulty of cancer search versus other disciplines requiring

precision medicine.

2.1.4 Other Collections

Other than medical test collections, we also consider collections from different domains

and in different languages. The domains considered are newswire and Web, whereas the

languages are Italian, German, and Farsi. We rely on these collections, as well as medical

ones, to investigate the impact that different domains and languages have on the performance

of state-of-the-art IR systems.

Four of the newswire collections considered are subsets of the TIPSTER corpus [99]:

Associated Press 88-89 (AP88-89), Financial Times (FT), LA Times (LA), and Wall Street

Journal (WSJ) [101]. Then, we consider the Robust04 collection [232] – based on TIPSTER

Disk 4/5 without the Congressional Record – and the New York Times (NY) collection [12],

which consists of articles written and published by the New York Times between 1987 and

2007. We consider topics 50-200 from TREC 1-3 for AP88-89 and WSJ, topics 301-450

from TREC 6-8 for FT and LA, topics 301-450 and 601-700 from the TREC Robust Retrieval

Track for Robust04, and the 50 topics from the TREC 2017 Common Core Track for NY.

For Italian, German, and Farsi languages we consider the newswire CLEF Italian (CLEF-

IT), German (CLEF-DE), and Farsi (CLEF-FA) collections [60, 3]. CLEF collections present

documents in different languages, but with common features: the same genre and period.

CLEF-IT and CLEF-DE contain newspaper articles from 1994 to 1995, whereas CLEF-FA

from 1996 to 2002. The Italian and German news agency dispatches are all gathered from the

Swiss news agency and comprise the same corpus translated in different languages. CLEF-IT,

CLEF-DE, and CLEF-FA contain, respectively, 90, 95, and 100 topics.

Finally, for the Web domain we consider the WT2g collection [104], a collection of

documents crawled from the Web and used in the TREC 1999 Web Track. WT2g contains

50 topics.

2.2 Knowledge Resources

Knowledge resources represent a particular formal model (or view) of a mini-world of

interest, be it a specific domain, subject area, or language. In other words, knowledge

resources provide semantic information about the objects they store and the relationships

that occur between them. Under the term “knowledge resource” lies a multitude of different

and heterogeneous resources, which share common characteristics: factual knowledge,
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terminological consistency, and unambiguity [253]. However, the literature lacks a universally

accepted definition of the different types of knowledge resources and their main constituents.

For this reason, below, we provide a possible definition of the different types of knowledge

resources and their main elements, which is functional to their understanding in the context

of this thesis.

Among the different elements that can constitute a knowledge resource, the most impor-

tant three to our work are: terms, concepts, and relations. Terms are words or phrases used

to describe objects or to express concepts in a specific language or subject area. Concepts

are elements of thought which represent abstract ideas or general notions. In a nutshell,

concepts represent the meaning underlying the terms expressed through spoken or written

language. Therefore, concepts are unambiguous and provide standardized definitions for

terms expressing them. Knowledge resources typically contain preferred terms for concepts

– which are used in the knowledge resource as the default terms to convey the meanings

represented by the corresponding concepts. For instance, a knowledge resource could assign

the preferred term “Malignant Neoplastic Disease” to the concept Cancer, rather than terms

like “Cancer” or “Malignant Tumor”. The choice of preferred terms is left to domain spe-

cialists. Finally, relations connect concepts and/or terms and can refer to any relationship

of meaning between them. There are several types of semantic relations. For the purposes

of this thesis, we focus on three categories: equivalence, hierarchical, and associative re-

lations [22]. Equivalence relations connect terms through synonymy, quasi-synonymy, or

lexical variant relationships. For example, the terms “Malignant Neoplastic Disease” and

“Malignant Tumor” are synonyms for the concept Cancer. Hierarchical relations are divided

into generic-specific (hyponymy-hypernymy) relationships and partitive (meronymy) rela-

tionships. Generic-specific relationships are also known as is-a relationships (e.g., “Asthma”

is-a “Bronchial Disease”), whereas partitive relationships as part-of relationships (e.g.,

“Heart” part-of “Circulatory System”). Associative relations include sequential, spatial,

temporal, and causal relationships – that is, those relationships that are not hierarchical nor

equivalence relations. For a comprehensive and detailed description of these elements, we

refer the reader to ISO standard 1087:2019.

Depending on the complexity of the underlying model and the relations considered,

different types of knowledge resources can be defined. In our work, we focus on four

types: nomenclatures, thesauri, ontologies, and knowledge bases. We present each type

below, from the least to the most semantically expressive. A nomenclature (lit. “list of

names”) is a naming system for a given domain, formed according to strict linguistic rules.

Nomenclatures are composed of terms collected by domain specialists and approved by

scientific authorities. The purpose of nomenclatures is to standardize the use of the domain
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language to avoid ambiguity. In other words, the terms provided by nomenclatures act as

preferred terms that univocally identify concepts within a given domain taxonomy – thus

avoiding language inconsistencies and translation issues. Nomenclatures can be part of

thesauri. A thesaurus is a controlled vocabulary and terminology, which denotes concepts

and relations in a specific domain or subject area. It consists of systematized lists of synonyms,

antonyms, and otherwise related terms. Terms are grouped in a taxonomy of concepts through

the use of hierarchical relations. Thesauri use preferred terms to refer unambiguously to

concepts, avoiding the need to impose additional model constraints. Thesauri can form part

of ontologies. An ontology is a semantic data model defining the types of concepts and

objects that exist in a given domain or subject area, as well as the properties that can be used

to describe them. In 1993, Gruber originally defined the notion of ontology as an “explicit

specification of a conceptualization” [91]. In plain words, an ontology is a mean to formally

model the structure of a system – that is, the relevant concepts and relations that emerge

from its observation and are useful to a specific purpose [92]. The backbone of an ontology

consists in hierarchical relations between concepts, and it can be extended with different

relations (e.g., equivalence and associative relations) reflecting the specific mini-world of

interest. Ontologies are used by knowledge bases as the underlying semantic data model to

which data instances must comply with. A knowledge base is a database system that uses

semantic data models to store and retrieve knowledge. Knowledge bases aim to link and

integrate all the available knowledge sources for a specific domain or subject area, including

explicit knowledge – stored within existing information systems – and implicit knowledge –

derived from the practical experience and understanding of domain specialists. Put simply, a

knowledge base can be seen as a collection of explicit and implicit knowledge related to the

concepts – and the relations between concepts – of a specific domain or subject area.

Below, we present the actual knowledge resources used in our work.

2.2.1 Systematized Nomenclature of Medicine - Clinical Terms

The Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) [66] is a

logic-based health care thesaurus, which originated from the Systematized Nomenclature of

Pathology (SNOP).12 It is the most comprehensive, multilingual clinical healthcare terminol-

ogy worldwide. The main objective of SNOMED CT is to enable users to encode different

kinds of health information in a standardized way, thus improving patient care. SNOMED CT

presents a multi-hierarchical and multi-axial structure (i.e., concepts can have more than

one superordinate concept) and includes three components: concepts, terms, and relations.

12http://www.snomed.org/
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Concepts are organized from the most general to the most specific through hierarchical, is-a

relationships. Then, associative relationships connect concepts whose meaning is related

in non-hierarchical ways. These relationships provide formal definitions and properties,

like: causative agent, finding site, pathological process, etc. Each concept has

a unique concept code (or ID) that identifies the clinical terms used to designate that concept.

The terms describing concepts can be divided into fully specified names, preferred terms,

and synonyms.

2.2.2 Medical Subject Headings

The Medical Subject Headings (MeSH) thesaurus [146] is a controlled and hierarchically-

organized thesaurus used for indexing, cataloging, and searching biomedical and health-

related information.13 MeSH includes the subject headings appearing in MEDLINE, the

National Library of Medicine (NLM) Catalog, and other NLM databases. MeSH is available

in several languages and presents a tree structure, from the most general concept to the most

specific. The terms describing concepts can be divided into preferred terms and synonyms.

MeSH is constantly updated by domain specialists in various areas. Each year, hundreds of

new concepts are added, and thousands of modifications are made.

2.2.3 National Cancer Institute Thesaurus

The National Cancer Institute (NCI) thesaurus [205] is the NCI’s reference thesaurus, cov-

ering areas of basic and clinical science and built with the goal of facilitating translational

research in cancer.14 It contains terms, concepts and relations. The concepts are partitioned in

subdomains, which includes, among others, diseases, drugs, genes, anatomy, and biological

processes – all with a cancer-centric focus in content. Each concept presents a preferred

name and a list of synonyms, as well as annotations such as textual definitions and (optional)

references to external sources. Besides, concepts are defined by their relationships to other

concepts.

2.2.4 Unified Medical Language System Metathesaurus

The Unified Medical Language System (UMLS) metathesaurus [29] is a large, multi-purpose,

and multi-lingual knowledge base that contains information about biomedical and health

related concepts, their name variants, and the relationships among them.15 The metathesaurus

13https://www.ncbi.nlm.nih.gov/mesh/
14https://ncithesaurus.nci.nih.gov/ncitbrowser/
15https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/
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is built from different thesauri, classifications, ontologies, code sets, and lists of controlled

terms used in patient care, health services, biomedical literature, etc. All the concepts in the

metathesaurus are assigned a unique and permanent Concept Unique Identifier (CUI), along

with a preferred name and at least one semantic type from the UMLS Semantic Network.16

Semantic types provide a consistent categorization of all the concepts in the metathesaurus at

the relatively general level represented in the Semantic Network. The metathesaurus includes

equivalence, hierarchical, and associative relationships between concepts. Most of these

relationships come from individual source vocabularies, but some are added by NLM during

metathesaurus construction. The UMLS metathesaurus is updated twice per year.

2.2.5 Cancer Biomarkers Database

The Cancer Biomarkers database [219] is a knowledge base containing information on

genomic biomarkers of response (sensitivity, resistance, or toxicity) to different drugs across

different types of cancer, which extends a previous collection of genomic biomarkers of

anti-cancer drug response [64].17 Negative results of clinical trials are also included in the

database. Biomarkers are organized according to the level of clinical evidence supporting

each one, ranging from results of pre-clinical data, case reports, and clinical trials in early

and late phases to standard-of-care guidelines. The Cancer Biomarkers database is updated

by medical oncologists and cancer genomics experts.

16https://semanticnetwork.nlm.nih.gov/
17https://www.cancergenomeinterpreter.org/biomarkers/
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Background

The semantic gap is a long-standing problem in IR. For this reason, a wide variety of different

approaches have been proposed, designed, and developed to address it. Over the years, two

main lines of work have emerged to bridge the semantic gap between queries and documents:

(i) the use of external knowledge resources to enhance bag-of-words query and document

representations, and (ii) the use of semantic models to perform matching between the latent

representations of queries and documents.

The work we present in this thesis mainly belongs to the two lines of research described

above. Hence, in this chapter, we provide the necessary background on the different ap-

proaches that have been proposed in these two lines of work. Other than that, we also present

those models and techniques that have been used by IR systems to address the semantic gap,

but that have been proposed in other fields and/or for other tasks – i.e., that have not been

explicitly designed for IR. In this way, the reader can have a comprehensive view of all the

components that lead to the realization of an IR system designed to address the semantic gap.

The rest of this chapter is organized as follows. In Section 3.1, we review the Information

Extraction (IE) tools we employ in our work to enhance retrieval models with external

knowledge. In Section 3.2, we review the different approaches that have been developed to

integrate external knowledge in lexical models. In Section 3.3, we discuss the advances in

neural representation learning – on which many of the models from Sections 3.4 and 3.5

are based. In Section 3.4 we review both traditional and neural semantic models. Finally, in

Section 3.5, we present the (recent) works on knowledge-enhanced semantic models. When

necessary, we highlight similarities and differences between our work and the literature, also

providing pointers to the following chapters of this thesis.
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3.1 Information Extraction Tools

IE regards the automatic extraction of knowledge from unstructured, semi-structured, or

structured machine-readable text. In other words, IE makes it possible to extract information

from a wide variety of textual sources, such as text documents, Web pages, tables, etc.

Among the different IE tasks, Named Entity Recognition (NER) and Entity Linking (EL)

are of particular interest for IR. NER seeks to identify and classify named entities – i.e.,

real-word objects that can be denoted with a proper name – mentioned in unstructured or

semi-structured text into a set of pre-defined categories, such as persons, organizations,

locations, medical codes, etc. Compared to NER, EL takes a further step by linking named

entities to corresponding unique entities contained in an external knowledge resource. In a

nutshell, while NER identifies the occurrence of a named entity in text, EL identifies which

unique entity that occurrence is.

Thus, IE techniques – and in particular EL tools – can be used on queries and documents

to identify entities that can increase the representative power of retrieval models, helping

them to bridge the semantic gap. Also, the use of EL tools provides access, through the

linked entities, to the underlying knowledge resources and their relational semantics that,

again, can be used to enhance retrieval models.

While a wide variety of off-the-shelf EL tools have been used in IR [15, 75, 198, 160, 207],

in this section, we review only those we employed in our work, namely MetaMap [15] (used

in Chapter 5) and QuickUMLS [207] (used in Chapter 6).

MetaMap [15] is a state-of-the-art tool for recognizing UMLS [29] concepts within

biomedical text. It was developed more than twenty years ago, and has continued to evolve

and improve since then [16]. MetaMap is guided by linguistic, rather than statistics, principles

which provide a flexible architecture to perform concept mapping strategies. Given an

input text, MetaMap performs the following lexical/syntactic analysis. First, it performs

tokenization, sentence boundary detection, and acronym/abbreviation identification. Then,

it applies part-of-speech tagging, a lexical lookup of input words into a domain-specific

lexicon, and a syntactic analysis in which phrases and their lexical heads are identified by a

domain-specific parser. Each phrase found by this analysis undergoes the following process.

First, a variant generation step is performed, where variants of all phrase words are identified

(by table lookup). Then, a candidate identification step runs, where UMLS concept labels are

compared against the input phrase to evaluate how well they match it. Finally, the mapping

construction step evaluates the candidate concepts found in the previous step and produces a

final result that best matches the input phrase. Optionally, MetaMap can also perform Word

Sense Disambiguation (WSD) to prioritize the candidate concept that is most semantically

consistent with the surrounding text of the target phrase.
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Although MetMap is one of the most effective and widely-used concept extraction tools

for medical literature, it is hampered by one main limitation: it does not scale efficiently

to large collections. To overcome this limitation, Soldaini and Goharian [207] developed

QuickUMLS, a fast, unsupervised, approximate dictionary matching tool for medical concept

extraction based on UMLS [29]. Compared to MetaMap, QuickUMLS achieves similar

precision and recall values but requires significantly less time to run. Given an input text,

QuickUMLS efficiently generates, for each word, all the possible sequences that stem from it

up to a fixed maximum length. Then, QuickUMLS adopts a series of heuristics to determine

whether a given sequence can be regarded as valid or not. If the sequence is valid, then

QuickUMLS performs approximate dictionary matching to find concept labels within UMLS

that are similar to the target sequence. Once the set of all possible matching labels is

determined for the entire input text, QuickUMLS selects the most appropriate subset such

that there is no overlap between the extracted concepts.

3.2 Knowledge-Enhanced Lexical Models

Enhancing lexical models through external knowledge to improve retrieval effectiveness dates

back to the early years of IR. In 1965, Rocchio and Salton [194] proposed several search

optimization procedures to help users in formulating effective queries. The proposed methods

can be divided into two groups: Vocabulary Feedback (VF) and Relevance Feedback (RF).

The methods that belong to VF rely on external knowledge resources to display terms to the

user that are related in various ways to those of the original query. Given a user search, the

system displays the statistics related to the query terms in the document collection, along

with the list of underlying concepts associated with those terms in the reference thesaurus.

In this way, the user can decide to reformulate its original query based on the related terms

contained in the external resource – selecting broader terms if the query is over-specific and

narrower terms if it is under-specific instead. Hence, the external knowledge resource helps

users to manually reformulate their queries.

Although effective, the methods belonging to VF require a considerable effort from the

user, who needs to control both what the system displays and returns. As an attempt to shift

(part of) the burden from the user to the system, RF methods have been proposed [193]. The

idea behind RF methods is to involve the user in the retrieval process with the objective

of improving the (final) ranking list. Basically, the user examines some of the retrieved

documents and classifies them as relevant or non-relevant depending on its information

need. These relevance judgments are then returned to the system, which uses them to adjust

the original query in such a way that query terms contained within relevant documents are
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promoted (e.g., by increasing their weight) and query terms contained within non-relevant

are similarly demoted. The relevance feedback process can occur multiple times before the

user satisfies its information need. In other words, it is an iterative query refinement process

that leads users to improve the understanding of their (evolving) information need [23].

Feedback methods have largely impacted IR and have been widely used since then. Attar

and Fraenkel [18], and Croft and Harper [52] first proposed Pseudo Relevance Feedback

(PRF) methods as a way to fully automatize RF to obtain expansion terms [18] or perform

query reweighting [52]. Put simply, PRF assumes the top-ranked documents, previously

retrieved by an IR system, to be relevant and performs query reweighting and/or expansion

based on this information. At the same time, methods relying on external knowledge

resources to enhance bag-of-words representations have evolved from the VF paradigm into

fully automatic approaches. We can divide these methods in three categories: (i) methods that

integrate external knowledge in the indexing stage [2], (ii) methods that integrate external

knowledge in the retrieval stage [230], and (iii) methods that integrate external knowledge in

both indexing and retrieval stages [229, 161].

In this section, we focus on knowledge-enhanced methods as they explicitly address the

semantic gap between queries and documents. Indeed, the relational information contained

within authoritative and structured knowledge resources can be used to model linguistic

features related to the semantic gap (e.g., synonymy and polysemy) and enhance bag-of-words

representations used by lexical models. Besides, knowledge-enhanced lexical models are

often based on pre-retrieval techniques – that is, on techniques that operate during indexing

or before the query is issued. Thus, enhancing lexical models through external knowledge

also impacts post-retrieval techniques like PRF. In Chapter 6, we confirm this cascading

effect using semantic models as well – showing that knowledge-enhanced semantic models

grasp different signals than lexical models and retrieve documents in top positions that are

effective in providing expansion terms for PRF based lexical models (see Section 6.8).

Below, we review knowledge-enhanced methods for each of the three considered cate-

gories.

3.2.1 Knowledge-Enhanced Document Representations

The use of external knowledge resources to enhance bag-of-words document representations

at the indexing stage can be regarded as a type of document expansion [203]. Document

expansion addresses the semantic gap between documents and queries by enriching doc-

uments with related terms. In this context, only few approaches have been proposed that

use external resources to expand documents [2, 1]. Agirre et al. [2] developed a document

expansion method that relies on WordNet [164] – a lexical database of semantic relations
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between words – to identify related concepts and words.1 Given a document, a random walk

algorithm is performed over the WordNet graph to rank concepts that are closely related

to document words. Compared to WSD approaches, that replace words with their senses,

the random walk approach can discover relevant concepts even if they are not explicitly

mentioned within the document. Once identified, expansion words are indexed separately

from those originally contained within documents, and the two indexes are linearly combined

in the retrieval stage. The experimental results showed that combining the indexes proves

effective and provides state-of-the-art performances in different test collections. In particular,

the authors found that document expansion is highly effective for short documents. The

same document expansion strategy was then employed by Agirre et al. [1] in the context

of cross-lingual passage retrieval. However, the authors found that the use of document

expansion was not effective in this cross-lingual task, probably due to limitations in the

translation process.

3.2.2 Knowledge-Enhanced Query Representations

Compared to document expansion, a far more popular approach is to enhance query rep-

resentations. Among the models integrating external knowledge in the retrieval stage,

Voorhees [230] proposed one of the first approaches based on WordNet [164]. The approach

performs query expansion based on the relational information contained within WordNet.

First, query terms are manually annotated with concepts from WordNet – also known as

synonym sets (or synsets) – to avoid introducing noise in the disambiguation process. Then,

expansion terms are automatically identified by following semantic relationships within

WordNet like synonymy or hierarchical relations. Finally, expanded queries are used to

perform retrieval against the document collection. The experimental results showed that the

proposed query expansion has a negligible impact when original queries are long represen-

tative descriptions of the underlying information need. On the other hand, short and less

representative queries significantly benefit from the expansion process proposed. However,

due to the use of manual annotations for query concepts, the results represent an upper bound

for the performances of a fully automated system.

Along the same lines, Navigli and Velardi [167] proposed a query expansion approach,

based on WordNet, for Web retrieval. Compared to Voorhees [230], however, Navigli and

Velardi developed a semiautomatic WSD technique to identify WordNet concepts within

queries. Then, relying on the relational and semantic information contained within WordNet,

the authors performed different query expansions based on synonymy and hierarchical

1https://wordnet.princeton.edu/
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relations, as well as textual information contained within synset descriptions. The results

showed that query expansions based on synonyms or hyperonyms have a limited impact on

retrieval performances for Web collections. On the other hand, words co-occurring in the

same sysnet descriptions or belonging to the same semantic domain are effective expansion

terms. Like Voorhees [230], Navigli and Velardi also concluded that query expansion is best

suited to short queries.

The methods proposed by Voorhees [230] and Navigli and Velardi [167] are pre-retrieval

approaches. On the other hand, Pal et al. [174] proposed a post-retrieval method based on

WordNet. Expansion terms are extracted from pseudo-relevant documents (i.e., feedback

documents) as in standard PRF based expansion [18, 33, 241, 121], but the weight of these

terms also depends on the similarity between their WordNet definitions and those of the

query terms. Experimental results on TREC collections showed that the proposed method

outperforms previous effective WordNet-based expansion methods [73].

The use of external knowledge to enhance query representations have been investigated

also for domain-specific applications. In particular, knowledge-enhanced query reformu-

lation techniques have been successfully employed in medical retrieval. Srinivasan [213]

investigated different knowledge-enhanced query expansions within a PRF framework. The

three alternative expansions are based on: MeSH [146] terms, corpus terms, and both MeSH

and corpus terms. Experiments on a MEDLINE test collection showed that query expan-

sions based on MeSH terms significantly outperform the expansion based on corpus terms

only. Afterwards, Srinivasan [212] performed an evaluation on knowledge-enhanced pre-

and post-retrieval query expansion strategies on the same MEDLINE test collection used

in [213]. The expansion strategies considered are: a (pre-retrieval) MeSH expansion, a

(post-retrieval) PRF expansion, and the combination of both. The results showed that ex-

panding the query with terms from MeSH proves effective, but the combination of both pre-

and post-retrieval techniques is better. Aronson and Rindflesch [17] proposed to expand

queries using MetaMap [15]. Given a query, MetaMap maps the query text to the concepts

within the UMLS metathesaurus [29]. Then, the query is expanded with both the surface

forms and the preferred names of the identified UMLS concepts. The authors compared

the proposed MetaMap-based query expansion with the pre-retrieval methods developed

by Srinivasan [213, 212]. The results highlighted that the MetaMap-based query expan-

sion achieves the largest improvements – close to those obtained using the combination of

pre- and post-retrieval techniques developed by Srinivasan [212]. As opposed to Aronson

and Rindflesch [17], who performed automatic query expansion relying on MetaMap [15],

Hersh et al. [110] expanded queries with terms manually selected from the UMLS metathe-

saurus [29]. Selected terms present synonymy, hierarchical, or other relationships with query
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terms. The experimental results showed that, although being effective on specific queries, all

the expansion techniques based on the selected terms degrade average performances.

In the context of genomics, where the objective is to retrieve biomedical articles describing

how genes contribute to diseases in living organisms, Stokes et al. [214] explored the criteria

required to perform effective query expansions. Based on the results of the TREC Genomics

2006 Track [108],2 the authors developed a query expansion framework they used to evaluate

the effectiveness of the different expansion approaches employed by TREC Genomics 2006

Track participants. The experimental results showed that the choice of the (lexical) ranking

model is the factor that affects retrieval performances the most. Once an effective ranking

model is found, query expansion techniques based on domain-specific knowledge resources

provide the largest performance improvements.

In the context of Clinical Decision Support (CDS), where the objective is to retrieve

biomedical articles relevant for answering clinical questions about medical records, Soldaini

et al. [206] investigated the effectiveness of query expansion and reduction techniques based

on medical knowledge resources, as well as general-purpose IR techniques. Regarding query

reduction techniques, the authors removed those query terms that are not related to any

UMLS concept or Wikipedia health-related entry.3 Moreover, they also relied on query

quality predictors [135] to identify effective sub-queries that can replace the original query.

Regarding query expansion techniques, the authors relied on both pre- and post-retrieval

approaches. For pre-retrieval, they identified UMLS concepts within queries and performed

the expansion by adding the UMLS preferred terms associated to those concepts. Besides,

to prevent topic drift – a phenomenon which often occurs when the query is expanded with

terms that are not pertinent to the information need [228] – Soldaini et al. considered only

those UMLS concepts related to drugs, diseases, and findings. On the other hand, for post-

retrieval, they introduced a new method that combines a domain-specific approach with PRF.

The experimental results showed that query reduction based on Wikipedia health-related

entries proves effective, but the post-retrieval method combining a domain-specific approach

with PRF performs best. The approach was then extended by Soldaini et al. [208], who

improved the method to select expansion terms – leading to significant improvements over

the considered baselines in TREC CDS 2014 [188] and 2015 [189] collections.

In the context of Precision Medicine (PM), where the objective is to provide useful preci-

sion medicine-related information to clinicians treating cancer patients, query expansion and

reduction techniques have been proven highly effective. In the TREC PM 2017 Track [186],

López-García et al. [148] relied on various domain-specific knowledge resources to perform

2https://dmice.ohsu.edu/trec-gen/
3https://en.wikipedia.org/
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disease and gene expansions. Given a query, the disease and gene fields were expanded

using all the synonyms for the identified concepts. Then, different tuning strategies were

applied to the expanded queries with the objective of diversifying the importance of the terms

coming from different sources. Among the various runs submitted to TREC PM 2017, those

generated from the approach proposed by López-García et al. belong to the top 3 performing

runs in the Scientific Literature task. Building on the work by López-García et al. [148],

Oleynik et al. [172] participated in the TREC PM 2018 Track [185] and developed various

hand-crafted rules to mitigate the effect of detrimental information contained within either

documents or queries. First, they defined, for both Scientific Literature and Clinical Trials

tasks, an exact-match query clause that excludes the possibility of matching “non-melanoma”

when the query contains the word “melanoma”. Then, they proposed, for the Clinical Trials

task only, two additional rules. The first rule regards the expansion of those queries that

do not mention any kind of blood cancer (e.g., “lymphoma” or “leukemia”) with the term

“solid”. Indeed, as pointed out also by Goodwin et al. [90], a large part of (relevant) clinical

trials does not mention the exact topic disease, but rather adopts an umbrella term like “solid

tumor”. On the other hand, the second rule regards the reduction of the gene information

from the exact gene to the gene family (e.g., from “PIK3CA” to “PIK”). The reduction

process aims to mitigate the over-specificity of topics, as the information contained within

topics can be too specific compared to that contained within target documents. As a side

note, this second rule does not rely on any external and authoritative knowledge resource but

rather it applies a simple and straightforward regular expression. Among the different runs

submitted to TREC PM 2018, those generated from the approach proposed by Oleynik et

al. [172] belong to the top 10 performing runs in both tasks for all the considered measures.

Following in the footsteps of Oleynik et al. [172], Faessler et al. [71] employed the approach

developed by López-García et al. [148] – and then revised by Oleynik et al. [172] – in the

TREC PM 2019 Track [187], achieving top performances for both Scientific Literature and

Clinical Trials tasks.

The work we present in Chapter 5 follows an iterative process similar to that reviewed

in the context of precision medicine. First, we have conducted a preliminary study on the

TREC PM 2018 Clinical Trials task (see Section 5.1), where we proposed a procedure to

expand queries iteratively – relying on medical knowledge resources – and filter out trials

for which the patient is not eligible. We started with TREC PM 2018 as it provides the most

representative collection for precision medicine – i.e., the one with the largest number of

topics related to cancer cases. Then, driven by the results of this preliminary study, we have

deepened the analysis of knowledge-enhanced query reformulations, and we have extended

it to both scientific literature and clinical trials retrieval (see Section 5.2). The evaluation,



3.2 Knowledge-Enhanced Lexical Models 27

performed on TREC PM 2017 and 2018, showed the effectiveness of the proposed query

reformulations in both test collections. Building on these findings, we have employed our

approach for the TREC PM 2019 Track [187] (see Section 5.3) – where the experimental

results validated the effectiveness of our (tested) query reformulations for retrieving relevant

clinical trials. A final analysis stemmed from these works, where we have focused on the

effectiveness of the proposed query reformulations for clinical trials retrieval (see Section 5.4).

The outcomes of this analysis highlighted a subset of query reformulations effective across

all the three editions.

Beyond medical applications, Fu et al. [83] proposed query expansion techniques based

on both domain and geographical ontologies to better answer queries that involve spatial

terms and relationships. The authors relied on different factors to expand queries, including

spacial terms and relationships – contained within geographical ontologies – and semantic

concepts – contained within domain ontologies. Expanded queries showed to improve

retrieval performances.

3.2.3 Knowledge-Enhanced Query and Document Representations

One of the first approaches integrating external knowledge in both indexing and retrieval

stages has been proposed by Voorhees [229], who developed an automatic indexing procedure

based on WordNet [164]. The proposed indexing relies on the is-a relationships contained

within WordNet and the set of nouns within documents and queries to select a word sense for

each polysemous noun. This means that the resulting index stores word senses rather than

words for polysemous words. Voorhees evaluated the effectiveness of this semantic index by

comparing retrieval performances obtained with it or with a traditional index, which stores

word stems instead of word senses [149]. The experimental results showed that relying on

word stems provides better performances than word senses – although the semantic index

proves effective on some queries. The main cause of this degradation lied in the difficulty

of disambiguating senses in short queries. From this, Voorhees drew two conclusions: 1)

is-a relationships are not sufficient to correctly disambiguate nouns, and 2) missing correct

matches because of incorrect disambiguation has a worse impact on retrieval performance

than making spurious matches.

Along the same lines, Mihalcea and Moldovan [161] developed a semantic indexing

technique that first applies WSD based on WordNet [164] senses (i.e., synsets) on documents,

and then performs indexing separately over words and disambiguated senses. Once the index

is ready, an input query is first disambiguated and then matched against the semantic index.

Compared to Voorhees [229], who relied on is-a relationships to disambiguate word senses,

Mihalcea and Moldovan opted for a semi-complete disambiguation algorithm – capable of
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disambiguating about 55% of the nouns and verbs with an accuracy greater than 92%. The

results showed that indexing by both words and senses improves retrieval performance. In

particular, Mihalcea and Moldovan were the first to apply a WSD algorithm for free-text to

IR document collections and improve retrieval performances.

Also in this case, many approaches have been developed for the medical domain. Dinh

and Tamine [65] developed an approach that combines document expansion and query

expansion to improve retrieval effectiveness in the genomics domain. The authors adopted

different external knowledge resources – such as MeSH [146] and SNOMED CT [66],

among the others – to extract concepts from documents. Then, relying on rank fusion

techniques [200], the concepts extracted with different resources are used to select the

best candidate terms for document expansion. Finally, queries are expanded using PRF

over the knowledge-enhanced document collection. The experiments performed on the

TREC Genomics 2004 [106] and 2005 [109] test collections showed the effectiveness of

the proposed approach. Rather than expanding documents and queries, Limsopatham et

al. [142] focused on shifting bag-of-words representations from words to concepts. Relying

on MetaMap [15] to identify UMLS [29] concepts within documents and queries, they

developed concept-based representations related to the four aspects of the medical decision

criteria: symptoms, diagnostic tests, diagnoses, and treatments. These aspects represent

the necessary information health practicioners need to assist their patients. The authors

extended the proposed approach in [143], where they expanded queries in two ways: by

inferring additional semantic relations from external knowledge resources, and by extracting

informative concepts from top-ranked medical records. Experimental results showed the

effectiveness of the approach in modeling implicit knowledge for medical records retrieval.

Koopman et al. [132] have also exploited concept-based representations to perform medical

records retrieval. The proposed approach builds document and query representations relying

on SNOMED CT [66] concepts and exploits SNOMED CT is-a relationships to weight the

documents that contain concepts subsumed by those in the query. On the other hand, Agosti

et al. [7] investigated the use of semantic relations to improve bag-of-words representations.

In other words, they evaluated how semantic relations – identified between concepts extracted

from medical documents and linked to a reference knowledge resource – can be leveraged

to retrieve medical literature for CDS tasks. The authors proposed two methods to identify

relations within queries and documents: a rule-based method and a learning-based method.

Then, they compared the effectiveness of bag-of-words, bag-of-concepts, and bag-of-relations

representations when used to perform retrieval. From the experiments performed on the

OHSUMED collection [107], they found that relations – when pertinent to the information
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need – outperform the contribution provided by words or concepts. However, the amount of

queries where semantic relations provide effective results is limited.

3.3 Representation Learning

Representation learning aims to learn representations of input data – by transforming such

data or extracting features from it – to perform tasks like classification, prediction, or re-

trieval [24]. Representations can be learned in different ways. For instance, probabilistic

models learn representations that capture the posterior distribution of the underlying ex-

planatory features given the observed input. On the other hand, deep learning models learn

representations by composing multiple non-linear transformations of the input data to obtain

abstract and effective representations. In other words, learned representations depend on the

model adopted and on the input data considered.

In this section, we review neural representation models developed for text data. Within

this context, many applications of representation learning have been proposed. Historically,

distributed word representations were introduced by Hinton [111] to model structural relation-

ships between concepts, and then first developed by Bengio et al. [26] for statistical language

modeling. The models we review stem from these pioneering works and are all based on

learning distributed representations for textual units – be them words, phrases, sentences, or

even documents – called embeddings. Knowing the different approaches developed, together

with their strengths and weaknesses for the tasks they have been originally proposed for,

helps to understand the impact that representation learning can have – and already has – in

Information Retrieval (IR).

We divide neural representation learning into two main categories: corpus-driven, where

the representations are learned relying solely on the text corpus, and knowledge-enhanced,

where the representations are learned relying on the text corpus and external knowledge

resource(s).

3.3.1 Corpus-Driven Representation Learning

Since the conception of neural language models [26], building low-dimensional represen-

tations of words from large corpora has gained increasing attention in the NLP community.

The word2vec models proposed by Mikolov et al. [162] are based on the Distributional

Hypothesis [102]. They use the local co-occurrences of words to learn embedded representa-

tions of words. In particular, the Continuous Bag-Of-Words (CBOW) architecture predicts a

target word by maximizing the log-likelihood of its context words within a fixed-size window,
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whereas the skip-gram architecture predicts the context words within a fixed-size window

given the target word. Conversely, the Global Vector (GloVe) model [179] learns embedded

representations of words based on their global co-occurrence. However, by assigning a dis-

tinct representation to each word, word2vec and GloVe ignore the morphology of words. To

overcome this limitation, Bojanowski et al. proposed fasttext [30], a new approach based on

skip-gram where each word is represented as a bag of character n-grams. fasttext associates

a vector representation to each character n-gram, so that words are represented as the sum of

these representations. In this way, fasttext can handle out-of-vocabulary words by simply

averaging the vector representations of the n-grams composing such words. The results

showed that morphological information significantly improves the effectiveness on syntactic

tasks, but it does not help for semantic tasks – where it even degrades performances.

More recently, contextual neural language models have been proposed to overcome

the lack of contextualization of traditional word embeddings. Contextual neural language

models generate different word representations for the same word given the context in

which the word occurs. Context2vec [159] learns a generic context embedding function

using a bidirectional Long Short-Term Memory (LSTM) architecture. Embeddings from

Language Models (ELMo) [180] introduces deep contextualized word representations that

model both complex characteristics of word use (e.g., syntax and semantics) and how

these uses vary across linguistic contexts (i.e., polysemy). The word vectors derive from

the internal states of a deep bidirectional language model pretrained on a large corpus.

Similarly, Bidirectional Encoder Representations for Transformers (BERT) [59] models

complex characteristics relying on self-attention layers from Transformer networks [227].

Despite being very powerful, contextual neural language models have complex architectures

and high computational costs [125, 32], which make even their fine-tuning complicated on

large-scale collections like those typically used in IR. For this reason, contextual neural

language models have been mainly used in IR as supervised approaches to perform re-

ranking [246, 171, 50].

Other than learning word representations, methods that learn distributed representations

of sentences, paragraphs, or documents have also been proposed. Kenter et al. [126] proposed

the Siamese CBOW model, which takes inspiration from the CBOW model to learn a target

sentence from its surrounding (context) sentences. Similarly, the Skip-thought model [129]

learns sentence representations by predicting context sentences from the target sentence.

As an extension to word2vec, Le and Mikolov [138] proposed the doc2vec models. Both

doc2vec Distributed Bag-Of-Words (DBOW) and Distributed Memory (DM) architectures

jointly learn document and word representations within the same vector space. The DBOW

architecture mimics the behavior of word2vec skip-gram architecture, whereas the DM
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architecture mimics the behavior of word2vec CBOW architecture. Chen [38] presented

the Document Vector through Corruption (Doc2VecC), an efficient document representation

learning framework. Doc2VecC represents each document as a simple average of word

embeddings and it ensures that word representations capture the semantic meanings of

the documents during learning. The corruption component introduces a data-dependent

regularization that favors informative or rare words and forces the embeddings of common and

non-discriminative words to be close to zero. The advances brought by Transformer-based

neural language models have led Cohan et al. [45] to propose Scientific Paper Embeddings

using Citation-informed TransformERs (SPECTER). SPECTER generates document-level

embeddings by pretraining a contextual neural language model on document-level relatedness

signals obtained from the citation graph. The experimental results showed that SPECTER

embeddings outperform competitive baselines on a variety of document-level tasks, ranging

from citation prediction to document classification and recommendation.

3.3.2 Knowledge-Enhanced Representation Learning

Distributed representations of words capture the latent relations existing between words by

relying only on the corpus as a knowledge resource. In the past few years, several approaches

that combine corpus-based information with external knowledge resources to enhance word,

sentence, or document representations have emerged. These approaches have been mainly

developed to address polysemy and synonymy.

Faruqui et al. [74] proposed the retrofitted word2vec (rword2vec). rword2vec retrofits

word embeddings using the relational information contained within semantic lexicons. The

method forces words connected in the lexicon to have similar representations by minimizing

both the distance of each word with its connected words in the lexicon and the distance

with its pre-trained representation – namely, the distributed representation obtained with

word2vec. Similarly, the counter-fitting method [166] refines distributed word representations

relying on both synonymy and antonymy constraints. Johansson and Pina [123] proposed

a retrofitting approach to address polysemy. First, the approach decomposes the vectors

of polysemous words into a convex combination of sense vectors; secondly, it keeps sense

vectors similar to those of the neighboring senses in the knowledge resource. Rather than

integrating relational constraints directly into the learning objective, Glavas and Vulić [87]

transformed external lexical semantic relations into training examples which are used to

learn an explicit retrofitting model. The model learns a global specialization function that

specializes the vectors of words unobserved during training too.

Yu and Dredze [250] proposed a representation model that combines the objective

function of neural language models with prior knowledge from external resources to learn
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improved lexical-semantic word representations. The RC-NET [240] framework exploits

both relational and categorical knowledge to produce knowledge-enhanced word represen-

tations. In particular, relational and categorical knowledge are encoded through different

regularization functions and combined with the original objective of the word2vec skip-gram

architecture. Yamada et al. [242] proposed to learn separate vector spaces for word and

concepts and then align them through an anchor-context model which exploits anchors, con-

tained within a knowledge resource, and their context words. The learned word and concept

representations were used to perform EL. Iacobacci et al. [119] proposed an approach to

improve semantic similarity that shifts from the word-level to the sense-level by leveraging

knowledge from an external resource. Similarly, Mancini et al. [156] proposed a model that

jointly learns word and sense representations. The model exploits corpus-based information

and knowledge from external resources to produce a unified vector space of word and sense

embeddings. Conversely, Cheng et al. [40] proposed a framework to generate context-aware

text representations without diving into the sense space. The proposed framework projects

both words and concepts into the same vector space and produces contextual word represen-

tations preserving the uniqueness among words while reflecting their context-appropriate

meanings. Devine et al. [56] proposed to measure semantic similarity between medical

concepts using a variation of the neural language models that learns on concepts from a

knowledge resource and extracted from a corpus.

Regarding contextual neural language models, ERNIE models [217, 255] – namely,

Enhanced Representation through kNowledge IntEgration [217] and Enhanced language

RepresentatioN with Informative Entities [255] – extend BERT by incorporating knowledge

resources in the learning process. To the best of our knowledge, ERNIE models have not

been used in IR yet.

Beyond word-level representations, Sinoara et al. [204] proposed an approach that

relies on WSD tools and embedded representations of words and word senses to represent

documents. The constructed document representations were then used for text classification.

Choi et al. [41] proposed a model to learn representations for medical concepts and visits.

Given the sequential nature that medical visits possess for each patient, the model treats the

document context – i.e., the medical visit – as a temporal feature.

3.4 Semantic Models

Semantic models were introduced to overcome the limitations of lexical matching related

to the semantic gap [140]. In fact, given query and document bag-of-words representations,

lexical models fail to retrieve relevant documents that express the query concepts with
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different words – as they compute the relevance score using heuristics defined over the lexical

overlap between query and document representations. On the other hand, semantic models

rely on low-dimensional representations to perform semantic matching between queries

and documents in a latent semantic space. Unlike lexical matching, semantic matching

computes the similarity score between two elements – which can be a pair of words, or a

query/document pair – as the distance, under a given metric, between their representations

projected into a common low-dimensional space. In this way, semantic models identify

similarities at the semantic level where lexical models often fail.

Semantic models can exploit different signals other than semantic ones, and the use of

latent representations within them vary from model to model. In this section, we review

traditional semantic models and neural IR models. Traditional semantic models represent

those pioneering works that first relied on low-dimensional latent representations to address

the semantic gap between queries and documents in IR. On the other hand, neural IR models

fall within the current deep learning wave and represent those approaches that rely on (deep)

neural networks to perform retrieval.4

3.4.1 Traditional Semantic Models

Semantic models have been used for decades in IR as a means to mitigate the semantic gap

between queries and documents and retrieve relevant documents that lexical models fail to

discover. Among them, the first model proposed was Latent Semantic Indexing (LSI) [57].

LSI aims to find a data mapping that provides information beyond the lexical level and reveals

semantic relations between documents and queries. In LSI, high-dimensional count vectors,

such as those arising in document vector space representations [196], are mapped to a lower

dimensional representation within a latent semantic space. In other words, LSI replaces

the original vector space representation of documents and queries with a low-dimensional

representation in the latent space. Specifically, LSI leverages Singular Value Decomposition

(SVD) to decompose a large term-by-document matrix into a set of orthogonal factors from

which the original matrix can be approximated by linear combination. Thus, documents are

represented as vectors of factor weights and queries as pseudo-document vectors formed from

weighted combination of terms. When performing retrieval, document and query vectors

are matched using cosine similarity and documents are returned in decreasing order of their

cosine value.

4The beginning of the deep learning era is commonly traced back to the work of Hinton et al. [112] on

deep belief networks, where the authors first introduced the possibility of training a deep neural network by

layer-wise training.
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As an alternative to LSI, Hofmann proposed the probabilistic LSI (pLSI) [113]. Com-

pared to LSI, which stems from linear algebra and performs SVD on co-occurrence matrices,

pLSI models the probability of each co-occurrence as a mixture of conditionally independent

multinomial distributions. In other words, pLSI models each word in a document as a sample

from a mixture model, where the mixture components are multinomial random variables that

can be viewed as representations of topics. Thus, each word is generated from a single topic,

and different words in a document can be generated from different topics. Each document is

represented as a list of mixing proportions for these mixture components and then reduced to

a probability distribution on a fixed set of topics. This distribution represents the document

latent description. Regarding query representations, pLSI keeps query factors fixed and

adapts only mixing proportions.

A significant step forward over pLSI in probabilistic text modeling was Latent Dirichlet

Allocation (LDA) [28], a generative probabilistic model for text corpora. LDA is a three-level

hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture

over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an

underlying set of topic probabilities. The topic probabilities provide an explicit representation

of a document or a query. Given the similarity of LDA with language models [181, 27, 254],

its representations can be used in the IR language modeling framework [238].

Even though traditional semantic models offer an interesting framework to perform

retrieval, they fall short to lexical models due to their coarseness and lack of specificity. In

particular, Dumais [68] showed that LSI retrieves irrelevant documents in high positions

of the ranking list due to its lack of specificity. Blei et al. [28] found that pLSI does not

provide a probabilistic model at the document level. In fact, each document is represented

as a list of mixing proportions for topics, but there is no generative probabilistic model for

these numbers. This leads to two critical factors: 1) there is no inherent way to predict a

previously unseen document, and 2) the number of parameters grows linearly with the number

of training documents – making pLSI susceptible to overfitting. Regarding LDA, Wei and

Croft [238] reported that relying solely on LDA-based representations to perform retrieval

hurts performances. Given that LDA represents documents and queries as random mixtures

over latent topics, its representations might not be as precise as bag-of-words representations

and be too coarse to be used alone for retrieval.

3.4.2 Neural IR Models

In the last few years, the increased availability of data and the success of (deep) neural

networks in the NLP field have promoted the diffusion of neural models in the IR field.

Similarly to Onal et al. [173], we classify existing neural IR approaches into two cate-
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gories: representation-based and interaction-based. Representation-based approaches learn

(or exploit) distributed representations and then use them to perform semantic matching.

Depending on the task and model considered, the learned representations can be used to

perform semantic similarity between a pair of words (e.g., to identify expansion terms for

query expansion) or semantic matching between a query and a document (e.g., to perform

document retrieval). On the other hand, interaction-based approaches first build joint rep-

resentations of query/document pairs and then pass them through a neural network, which

predicts the relevance score of query/document pairs. In plain words, interaction-based

models predict the relevance scores of query/document pairs by computing the interactions

between query and document terms. All the models within this category are end-to-end

supervised approaches that employ (deep) neural networks to perform re-ranking over an

initial set of candidate documents, previously retrieved by a lexical (efficient) model.

In the following, we review both representation- and interaction-based approaches. How-

ever, we are more interested in models that meet two requirements: (i) they can be applied

regardless of the presence of labeled data, and (ii) they can be used at the early stages of the

IR pipeline. Given that the objective of this thesis is to address the semantic gap between

queries and documents, models that do not require labeled data allow us to investigate do-

mains with a high social value, where the semantic gap is prominent, and explicit relevance

labels are scarce and expensive resources. On the other hand, relying on models that can

be used at the early stages of the IR pipeline is fundamental to address the semantic gap –

otherwise, relevant documents most affected by this gap will remain undiscovered. Therefore,

we focus our attention on unsupervised representation-based neural IR models. Unsupervised

representation-based neural IR models can be applied to any domain, as they do not require

any labeled data for training, and are often used to perform retrieval over the entire document

collection or in combination with lexical models for query expansion or rank fusion strategies.

In other words, they are typically used at the early stages of the IR pipeline rather than in

re-ranking scenarios.

Representation-Based Neural IR Models

The advances in representation learning have led the IR community to develop retrieval mod-

els based on distributed representations of words and documents. Regarding unsupervised

retrieval models, we can divide them into two groups: (A) approaches incorporating features

from representation learning models, and (B) approaches learning representations of words

and documents from scratch.

Within (A), Vulić and Moens [235] proposed to compose document representations as the

weighted sum of their word embeddings. The method uses the self-information [46] value
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of each word as its weighting operator. The idea is that corpus-based weights, like Inverse

Document Frequency (IDF) or self-information, assign more importance to words bearing

more information content during the compositional process. Zuccon et al. [257] combined a

traditional retrieval model with a translation model that uses word embeddings to estimate

probabilities. Similarly, Ganguly et al. [86] presented a generalized language model where

the mutual independence between a pair of words no longer holds and word embeddings are

used to derive the transformation probabilities between words. Guo et al. [96] introduced the

Bag-of-Word-Embeddings (BoWE) model. BoWE represents every document as a matrix

of its word embeddings and then models the matching between queries and documents

as a non-linear word transportation problem. Ai et al. [11] evaluated the effectiveness of

doc2vec DBOW for ad hoc retrieval and – inspired by Levy and Goldberg [139] – performed

a deeper analysis later in [10]. The analysis formally addressed three intrinsic problems of

the DBOW architecture that limit its effectiveness in retrieval tasks: the susceptibility to short

documents overfitting, the excessive suppression of frequent words importance, and the lack

of word-context information. Regarding embedding-based query expansion methods, Zamani

and Croft [251, 252] proposed to use pre-trained word embeddings to incorporate and weight

terms that do not occur in the query – but are semantically related to the query terms – or

as an embedding-based relevance model for PRF. Along the same lines, Kuzi et al. [136]

presented a suite of query expansion methods based on word2vec CBOW embeddings. The

expansion terms identified by the embedding-based methods were either used to expand

the original query or integrated in PRF based methods. Diaz et al. [63] investigated the

effectiveness of local embeddings – learned on topically-constrained corpora – compared to

global embeddings – learned on large topically-unconstrained corpora – for query expansion.

The approaches in (A) proved to be effective thanks to their combination with lexical

retrieval models. Besides, the presented approaches are general and can be applied to any

model that provides the required representations (i.e., words, concepts, or documents). There-

fore, most of these approaches can be applied to the novel unsupervised knowledge-enhanced

neural framework we present in Chapter 6 – in particular embedding-based query expansion

methods [136, 251, 252]. However, the focus of Chapter 6 is the integration of external

knowledge in neural retrieval models to address the semantic gap. Thus, we do not apply the

reviewed approaches to our framework, but rather we investigate its effectiveness compared

to other (knowledge-enhanced) neural IR models in terms of relevant documents retrieved at

the early stages of the IR pipeline. Naturally, developing distributed representations of words

and documents that are better suited for IR tasks has a positive effect also on the reviewed

approaches.
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Within (B), Van Gysel et al. [224] introduced an end-to-end representation learning

model for expert search that outperforms statistical vector space models [58] and generative

language models [20, 21]. The proposed model employs only textual evidence to learn word

representations – thus avoiding explicit feature engineering – for retrieving experts in online

document collections. Van Gysel et al. [222] presented the Latent Semantic Entities (LSE)

model, a vector space model that jointly learns the representation of words, e-commerce

products, and the mapping between them without explicit annotations. LSE directly models

the discriminative relation between products and a particular word. The experimental results

showed that LSE constructs better product representations than LSI [57], LDA [28], and

word2vec [162] models. Then, Van Gysel et al. [223] presented the Neural Vector Space

Model (NVSM), which learns word and document representations from scratch without

considering any external source of information. NVSM extends previous models [222, 224] in

three ways: increasing regularization, reducing the internal covariate shift, and incorporating

term specificity within word representations. The results showed that NVSM significantly

outperforms LSE in newswire retrieval. Given the prominence of NVSM within unsupervised

neural IR models, we perform an in-depth analysis of NVSM and the semantic signals

it provides throughout Chapter 4. In particular, we describe NVSM and reproduce the

experiments performed by Van Gysel et al. [223] in Section 4.3.

The contribution of our neural framework over (B) lies in the integration of external

knowledge within neural vector space models to bridge the semantic gap between queries

and documents. Compared to NVSM [223], the proposed framework jointly learns word,

concept, and document representations. The learned representations are optimized for IR

and encode linguistic features that are crucial to address the semantic gap between queries

and documents. Similarly to NVSM, the framework does not require any labeled data for

training and can be applied to any domain where external knowledge resources are available.

Regarding supervised retrieval models, one of the earliest approaches is the Deep Struc-

tured Semantic Model (DSSM) [116]. DSSM is an end-to-end supervised approach that

takes as input a query/document pair and passes it through a deep neural network. The neural

network consists of three non-linear layers stacked on top of a word hashing layer. The query

and the document are first modeled as bag-of-words representations. Then, each word is

mapped to a vector of character tri-grams by the word hashing layer to cope with large-scale

collections and vocabularies. For instance, the word “fruit” is mapped to [#fr, fru, rui, uit,

it#], where the # symbol refers to the start and end of the word. The (low-dimensional)

tri-gram vector serves as input to the non-linear layers of the network. Other than reducing

the vocabulary size significantly, tri-gram hashing also helps to address out-of-vocabulary

words not seen during training. During training, DSSM learns to maximize the conditional
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likelihood of clicked documents given a query using click-through data. In this sense, DSSM

is one of the first models incorporating click-through data in deep neural networks. However,

DSSM requires large-scale training data for its huge parameter size and it is typically used to

perform re-ranking due to efficiency limitations [95].

DSSM inspired other researchers to propose architectural variants or novel ways of

using its distributed representations. Regarding architectural variants, the Convolutional

Latent Semantic Model (CLSM) [201] replaces the Feed Forward Neural Network (FFNN)

of DSSM with Convolutional Neural Networks (CNNs), whereas the LSTM Deep Structured

Semantic Model (LSTM-DSSM) [175, 176] with LSTM networks. On the other hand, Li et

al. [141] exploited the distributed representations learned by DSSM and CLSM to re-rank

documents based on in-session contextual information, whereas Ye et al. [248] generalized

DSSM variants by distinguishing the clicked query/document pairs with different relevance

information – both semantic and lexical.

Interaction-Based Neural IR Models

Unlike representation-based deep matching models such as DSSM [116], interaction-based

models address the problem of predicting the relevance score of a query/document pair by

computing the interactions between the query and document terms. Pang et al. [177] were

the first to apply interaction-based deep matching models to ad hoc retrieval. The authors

evaluated two interaction-based deep matching models: Convolutional Matching Model

Architecture-II (ARC-II) [115] and MatchPyramid [178]. ARC-II builds local interactions

between query/document pairs by summing up word embeddings in a small (sliding) con-

text window and then employs convolutional layers to extract sequential and hierarchical

features from these interactions. Similarly, MatchPyramid first builds a matching matrix that

represents the local interactions computed between query and document embedding-based

representations. Then, it passes the built matching matrix through a CNN to learn hierarchical

matching patterns. The learned high-level matching patterns are finally fed to a Multi Layer

Perceptron (MLP) to produce the matching score of query/document pairs. The results

obtained by Pang et al. [177] showed that MatchPyramid significantly outperforms sev-

eral representation- and interaction-based deep matching models [116, 115], but fails when

compared to lexical models like BM25 [192] and Query Likelihood Model (QLM) [254].

The first model to show improvements over lexical models is the Deep Relevance Match-

ing Model (DRMM) [95]. DRMM relies on semantic and lexical matching signals to compute

the local interactions between pairs of query/document terms. For each query term, DRMM

maps the variable-length local interactions into a fixed-length matching histogram. The

matching histograms are then fed into a FFNN to learn hierarchical matching patterns and
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produce a matching score for each query term. Finally, a term gating network computes the

aggregation weights that are used to combine the scores from each query term and produce

the overall matching score for the query. The network is trained using a margin ranking

loss function. The experimental results performed by Guo et al. [95] showed that DRMM

outperforms other representation- and interaction-based deep matching models, such as

DSSM [116], ARC-II [115], and MatchPyramid [178, 177]. Thus, given the impact that

DRMM had on deep matching models for IR – and in general on neural IR – we perform an

in-depth analysis throughout Chapter 4, where we compare DRMM with other lexical and

semantic models to understand what features lexical and semantic models share and if their

signals are complementary. In particular, we provide a detailed description of DRMM and

its training process in Section 4.2, where we also reproduce the experiments performed by

Guo et al. [95].

Other successful approaches in this category are Match-SRNN [236], Hierarchical Neu-

ral maTching model (HiNT) [72], Kernel-based Neural Ranking Model (K-NRM) [239],

Convolutional Kernel-based Neural Ranking Model (Conv-KNRM) [53], Position-Aware

Convolutional-Recurrent Relevance Matching (PACRR) [117], and Context-aware PACRR

(Co-PACRR) [118]. Match-SRNN [236] models the interaction between two texts as a recur-

sive process. This means that the interaction of two texts at each position can be considered as

a combination of the interactions between their prefixes as well as the word-level interaction

at the current position. Match-SRNN adopts an approach similar to MatchPyramid [178], but

replaces the CNN with a Spatial Recurrent Neural Network (SRNN). HiNT [72] focuses on

the different relevance patterns that are present in a document given a query. The underlying

assumption is that a document can be completely (or partially) relevant to a query as long

as it provides sufficient information to the user need(s). Hence, HiNT allows relevance

signals at different granularities to compete with each other for the final relevance assessment

through a hierarchy of matching layers. K-NRM [239] relies on a translation matrix to

model word-level similarities via word embeddings, a kernel-pooling technique to extract

multi-level soft match features, and a learning-to-rank layer to combine these features into

the final ranking score. Conv-KNRM [53] extends K-NRM by adding soft matching between

word n-grams using CNNs. PACRR [117] computes the relevance score of query/document

pairs from multiple word n-gram similarity matrices processed first with a CNN and then

with a Recurrent Neural Network (RNN). Finally, Co-PACRR [118] extends PACRR in two

ways: by employing a context vector to enrich the matching signals, and by replacing the

RNN with a simpler FFNN.
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3.5 Knowledge-Enhanced Semantic Models

As shown in Sections 3.2 and 3.4, two main lines of work have emerged in the past years to

address the semantic gap between queries and documents: (i) the use of external knowledge

resources to enhance bag-of-words representations in lexical models, and (ii) the use of

semantic models to perform semantic matching between latent representations of queries

and documents. However, even though semantic models based on the distributional hypoth-

esis [102] capture latent relationships between textual units relying only on the document

collection, they are hampered by two main limitations. First, these models fail to discriminate

polysemous words, as they learn unique representations for words regardless of the context

in which these words occur. Secondly, these models fail to learn close representations for

synonyms occurring in different contexts, as they lack the relational knowledge required to

identify synonymy relationships between words.

Hence, the integration of external knowledge in the learning process of semantic models

can further improve their effectiveness towards the semantic gap. In this section, we review

those approaches that integrate external knowledge in the learning process of traditional

semantic models (see Subsection 3.4.1) and neural IR models (see Subsection 3.4.2).

3.5.1 Knowledge-Enhanced Traditional Semantic Models

Regarding the integration of external knowledge in the leaning process of traditional se-

mantic models, Guo et al. [94] proposed the Knowledge-Enhanced LSI (KELSI). KELSI

extends LSI [57] in two ways: (i) by augmenting the original term-by-document matrix with

additional concept-based vectors constructed from external knowledge resources, and (ii) by

applying different query reformulation methods – that exploit external knowledge resources

– during semantic matching. The experimental results, conducted on the OHSUMED col-

lection [107] and relying on MeSH [146] and UMLS [29] thesauri as knowledge resources,

showed that KELSI provides significant performance gains over LSI. To the best of our

knowledge, this is the only approach that has been developed to enhance traditional semantic

models with external knowledge.

3.5.2 Knowledge-Enhanced Neural IR Models

Motivated by the recent advancements of the NLP community in the integration of external

knowledge within representation learning models (see Subsection 3.3.2), IR researchers

have started to develop knowledge-enhanced neural IR models. However, being knowledge-

enhanced representation models quite recent, there are only few approaches proposed for
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IR tasks. Besides, given the objective of this thesis – and the model requirements we are

interested in – we only review unsupervised representation-based neural IR models integrating

external knowledge in the learning process of word and document representations.

Liu et al. [147] exploited word relations from a medical knowledge resource to constrain

the word representations learned by word2vec. The underlying idea is that related words

within the knowledge resource should have similar representations. The constrained word

representations were then used to perform document re-ranking. The results showed that

constrained word representations are more effective than corpus-driven word representations

when used together with bag-of-words models for re-ranking. Nguyen et al. [169] presented

two models: the conceptual doc2vec (cdoc2vec) and the retrofitted doc2vec (rdoc2vec). Sim-

ilar to the model proposed by Devine et al. [56], cdoc2vec learns document representations

built upon concepts that have been previously extracted from text. Then, rdoc2vec retrofits

document representations by minimizing the distance between doc2vec and cdoc2vec rep-

resentations. The learned representations were injected in a text-to-text matching process

according to a PRF based query expansion strategy. Nguyen et al. [170] proposed a tri-partite

neural language model that leverages explicit knowledge to jointly constrain word, concept,

and document representations. The authors applied the model in two IR tasks: document

re-ranking and query expansion. Tamine et al. [220] extended [169, 170] to investigate the

combined use of corpus-based information and external knowledge resources in different

NLP and IR tasks. The authors compared the impact of the different learning approaches on

the quality of the learned representations. They found that rdoc2vec and tri-partite models

show the same level of performance in identifying relevance signals for IR tasks.

To better understand knowledge-enhanced semantic models and their effectiveness for IR

tasks, we perform a reproducibility study of the seminal works by Liu et al. [147] and Nguyen

et al. [169] in Chapter 6. Specifically, we describe the knowledge-enhanced word embeddings

used [250, 74], and proposed [147], by Liu et al. in Section 6.2, and the knowledge-enhanced

document embeddings proposed [169] by Nguyen et al. in Section 6.3. Then, we present

our unsupervised knowledge-enhanced neural framework in Section 6.5. Compared to the

reviewed models, our framework shows similarities with the works of Liu et al. [147] and

Tamine et al. [220]. In particular, the framework constrains synonym representations similarly

to Liu et al. [147] and learns word, concept, and document representations as in Tamine et

al. [220]. Nevertheless, the framework models polysemy by combining word and concept

representations in the learning process. This creates contextual representations that the model

of Liu et al. [147] and those of Tamine et al. [220] do not handle. Furthermore, an important

difference between the works of Liu et al. [147], Tamine et al. [220], and our work is that

we optimize the framework for IR. Conversely, the models proposed by Liu et al. [147] and
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Tamine et al. [220] are extensions of neural language models – which are optimized for NLP

tasks. Therefore, (knowledge-enhanced) neural language models do not encode relevance

signals or discriminative aspects between queries and documents – which are fundamental

to effectively address IR tasks. This difference reflects on the different loss functions used

to train the framework and the knowledge-enhanced neural language models. To the best

of our knowledge, the framework we present is the first unsupervised knowledge-enhanced

framework that learns word, concept, and document representations specifically for IR.
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Lexical and Semantic Signals

Traditionally, IR models rely on lexical matching signals to perform retrieval [211, 192, 254,

13]. Given query and document bag-of-words representations, lexical models compute the

relevance score using heuristics defined over the lexical overlap between query and document

representations. Although successful, these models struggle to address the semantic gap

between queries and documents. For instance, when a query and a document use different

words to express the same concept, lexical models fail to match them. To bridge this gap,

semantic models have been used for decades in IR [57, 113, 28]. Semantic models rely on

semantic matching signals between query and document latent representations to perform

retrieval. However, traditional semantic models such as LSI [57], pLSI [113], and LDA [28]

fall short to lexical models due to their coarseness and lack of specificity [68, 238].

Recently, the advances and the success of deep learning in many different tasks have

promoted the diffusion of (deep) neural networks in IR, reviving the interest in semantic

models in the research community. Since the very first approaches [116, 210], neural

IR has attracted a lot of attention: dedicated workshops were held at the ACM SIGIR

Conference on Research & Development in Information Retrieval (SIGIR) in 2016 [49]

and 2017 [47], while an in-depth monograph [165] and a special issue in the Information

Retrieval Journal (IRJ) [48] were published in 2018. Also, SIGIR papers employing deep

learning are increasing at a fast pace – i.e., from two articles published in 2014 to eleven

articles published in 2017 [8] to more than fifty articles published in 2020.

Nevertheless, the research community has also raised concerns about the actual efficiency

and effectiveness of neural IR models [144]. To this end, Wei et al. [245] critically examined

the advances in neural IR regarding the test collections used, the improvements over robust

and well-tuned baselines, and the reproducibility of the methods. Thus, along with the

growing importance of neural IR models, their reproducibility is becoming a central topic

too. Anyway, the issue of reproducibility of retrieval systems regards the IR field as a whole,
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not the only neural IR. Reproducibility efforts focus on several core topics in IR, ranging

from reproducing baselines [145, 243] and core IR components [202] to evaluation [82, 114]

and advanced applications [103]. Reproducibility is now a core research topic in IR, with

dedicated workshops [76, 14, 42], a specific track at the European Conference on Information

Retrieval (ECIR) since 2015, and dedicated journal special issues [77, 78].

A neural IR model is an ecosystem of components and its reproducibility, even when the

source code is available, is quite challenging. Indeed, neural IR models often include text

processing techniques, bag-of-words representations, word embeddings, optimizers, query

expansion techniques, and other traditional IR and NLP components – which are used to

feed a shallow or deep neural network. Every single component has a sizable impact on

the performance of the model, that is often overlooked. For instance, how documents are

preprocessed has implications on the learning of word embeddings. In turn, word embeddings

affect the optimizer and parameter selection, and so on.

Even though this domino effect holds true for almost all advanced IR systems, it is

particularly accentuated for neural models – where it is hard to understand the rationale

behind a specific output and to detect a component not working correctly. To reproduce the

results achieved by neural models, each component needs to be properly tuned. Besides,

describing a neural network architecture in detail or providing the source code is usually

not sufficient to reproduce the model successfully. Furthermore, generalizing neural IR

models to different collections than the tested ones accentuates the problem even more,

as we need to adapt and optimize many components to different settings – be them a new

domain, language, or task. Therefore, the analysis of neural models, especially through

reproducibility studies [69, 247, 79, 80], becomes crucial for in-depth understanding. The

more we understand the single components and their interactions, the more we can generalize

the approach and successfully transfer it to different domains and tasks.

In this chapter, we investigate lexical and semantic matching signals. We want to under-

stand what features lexical and semantic models share, if their signals are complementary,

and how they can be combined to effectively address the semantic gap. In particular, we

evaluate the critical aspects of neural IR models through different analyses. Each analysis

brings a different perspective in the understanding of semantic models and their relation

with lexical models. To this end, we reproduce, evaluate, and generalize two neural models:

DRMM and NVSM. DRMM [95] is an interaction-based deep matching model that exploits

semantic and lexical matching signals to compute the local interactions between pairs of

query/document terms. DRMM achieves competitive results in re-ranking and it is still one

of the reference neural IR approaches. NVSM [223] is an unsupervised representation-based

neural model that jointly learns word and document representations to perform semantic
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matching between documents and queries. NVSM yields effective results in document

retrieval on TREC newswire collections. Besides, NVSM is one of the very few existing

end-to-end unsupervised neural IR models. Therefore, it has great potential to generalize, as

it does not require any interaction or labeled data – which are scarce and expensive resources

in a typical IR experimental setting.

We reproduce the experiments performed by Guo et al. [95] with DRMM relying on the

source code shared by the authors. On the other hand, we re-implement NVSM from scratch

in Python using TensorFlow – a widely-used and consolidated library for deep learning.1

This choice enables a straightforward comparison of NVSM with many other neural IR

models available in public repositories.2 We reproduce the experiments performed by Van

Gysel et al. [223] not only for NVSM but also for the main baselines they considered.

Then, we consider four different perspectives in the analysis of DRMM and NVSM. First,

we perform an in-depth evaluation of DRMM and NVSM, where we compare them with well-

known lexical models, that is TF-IDF [196], BM25 [192], QLM [254], and Divergence From

Randomness (DFR) [13], and with semantic models, such as word2vec based models [235].

In this way, we investigate the potential and limitations of semantic models compared

to lexical models. Understanding neural IR strengths and weaknesses can enhance the

integration of neural models into multi-stage IR systems – which employ a variety of pre-

and post-retrieval components, such as query expansion and relevance feedback. Secondly,

we generalize DRMM and NVSM to different scenarios for which they were not initially

designed: (i) Web, where we consider the TREC WT2g collection [104]; (ii) medicine,

where we consider the OHSUMED collection [107]; (iii) multilingualism, where we consider

Italian, German, and Farsi [60, 3] newswire collections from CLEF. In other words, we

evaluate how different domains and languages affect their performances. Note that to avoid

incurring in memory (and time) issues, we chose collections of the same order of magnitude

as those adopted by Van Gysel et al. for NVSM [223]. Thirdly, we perform an analysis of

the impact of word representations learned by different models on DRMM. The models

considered are: word2vec [163], fasttext [30], and NVSM [223]. Given that neural language

models, such as word2vec or fasttext, learn different word representations and produce

different matching scores for the same terms [182], we want to understand to what extent

they impact the ability of DRMM to learn query/document interactions. Finally, we perform

a topic-by-topic analysis and comparison between neural models and BM25. We highlight

the differences in performance among models – describing the topics where neural models

perform better than lexical ones, and vice versa. That is, we investigate whether lexical and

1https://www.tensorflow.org/
2https://github.com/NTMC-Community/MatchZoo; https://github.com/Georgetown-IR-Lab/OpenNIR
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semantic matching signals are complementary and to what extent lexical and neural models

retrieve different relevant documents.

The main contributions of this chapter are:

C1 We perform a reproducibility study of DRMM and NVSM on the original test collec-

tions considered by Guo et al. [95] and Van Gysel et al. [223], respectively.

C2 We compare DRMM and NVSM with well-known lexical and semantic models.

C3 We evaluate the impact that different domains and languages have on DRMM and

NVSM. That is, we generalize DRMM and NVSM to different domains and tasks.

C4 We evaluate the impact that different word embeddings have on DRMM performances.

C5 We perform a topic-by-topic evaluation between DRMM, NVSM, and BM25 to iden-

tify similarities and differences between lexical and semantic matching signals.

The rest of this chapter is organized as follows. We describe the setup employed in our

experiments in Section 4.1. We describe and reproduce DRMM and NVSM in Sections 4.2

and 4.3, respectively. We compare DRMM and NVSM with well-known lexical and semantic

models in Section 4.4, whereas we test the robustness of DRMM and NVSM to different

domains and languages in Section 4.5. We assess the impact of different word embeddings

on DRMM in Section 4.6. We perform an in-depth topic-by-topic analysis between lexical

and semantic matching signals in Section 4.7. Finally, Section 4.8 concludes the chapter with

a discussion on the lessons learned.

4.1 Experimental setup

We use eleven test collections in different languages and from various domains to evaluate

DRMM and NVSM. The statistics for the test collections originally used to evaluate DRMM

and NVSM are shown in Table 4.1, whereas the statistics for the test collections used

to evaluate how well DRMM and NVSM generalize to different scenarios are shown in

Table 4.2.

We consider three variants of the query fields: title (t), description (d), and title+description

(t+d). We compare DRMM and NVSM with well-known lexical and semantic models used

in IR. The lexical models are TF-IDF [196], BM25 [192], QLM [254], and the Poisson

estimation for randomness using Laplace succession for normalisation (PL2) model [13],

typically known as DFR. On the other hand, the semantic models include word2vec [163]

and LDA [28]. For QLM, we employ the approaches that rely on Jelinek-Mercer smoothing,
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Table 4.1 Statistics of the AP88-89, FT, LA, WSJ, Robust04 and NY collections. Query

count does not consider topics for which relevance judgments are not available.

AP88-89 FT LA NY Robust04 WSJ

Vocabulary 247,725 437,511 197,024 1,062,137 760,467 184,717

Document Count 164,597 210,158 131,896 1,855,658 528,155 173,252

Query Count 149 144 143 50 249 150

Table 4.2 Statistics of the WT2g, OHSUMED, CLEF-IT, CLEF-DE, and CLEF-FA collec-

tions. Query count does not consider topics for which relevance judgments are not available.

WT2g OHSUMED CLEF-IT CLEF-DE CLEF-FA

Vocabulary 1,049,056 265,923 232,335 739,053 399,185

Document Count 247,491 348,566 157,558 223,132 166,774

Query Count 50 97 90 95 100

referred to as QLM (jm), and Dirichlet smoothing, referred to as QLM (dir) [254]. For

word2vec, we employ the approach originally proposed by Vulić and Moens [235], who

define document representations as the weighted sum of their word embeddings. We consider

the unweighted sum, referred to as word2vec (add), and the sum weighted by terms self-

information values, referred to as word2vec (si) – where self-information is a term specificity

measure similar to IDF [46].

4.1.1 Reproducibility Study

DRMM

For this reproducibility study, we reproduce the experiments performed by Guo et al. with

DRMM on the Robust04 collection [232]. We consider the complete set of 250 topics and we

evaluate DRMM considering the title (t) and the description (d) fields. We consider the same

evaluation measures adopted by Guo et al. [95], which are MAP, nDCG@20, and P@20.

NVSM

For this reproducibility study, we reproduce the experiments performed by Van Gysel et

al. [223] with NVSM on six TREC newswire collections. Four of these six collections

are subsets of the TIPSTER corpus [99], namely AP88-89, FT, LA, and WSJ [101]. The

remaining two collections are Robust04 [232] and NY [12]. In all collections, we consider

the title (t) field of the given topics. We employ the same measures adopted by Van Gysel
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et al. [223] to evaluate NVSM, which are MAP, nDCG@100, and P@10. Following the

authors’ work, we also perform a two-tailed paired Student’s t-test between word2vec (si)

and NVSM to test statistical significance.

The reader can find more details on the test collections used for the reproducibility study

in Subsection 2.1.4.

4.1.2 Comparison between Lexical and Semantic Models

We compare lexical and semantic models on Robust04 and NY collections. For each

collection, we consider the title (t) field of the given topics. The lexical models considered

are TF-IDF, BM25, QLM, and DFR. All the models perform stemming using the Krovetz

stemmer [133]. On the other hand, the semantic models considered are word2vec (add),

word2vec (si), DRMM, and NVSM. The objective is to evaluate the performances of lexical

and semantic models, also compared to state-of-the-art IR approaches. To this end, we report,

when available, the performances of state-of-the-art approaches, such as BM25+RM3 [244],

BERT applications for ad hoc retrieval [246], and best systems from TREC.

We use MAP, nDCG@100, and P@10 to evaluate models. We perform the post-hoc

Tukey’s Honest Significant Differences (HSD) test [221] with one-way ANOVA to test

statistical significance. The Tukey’s HSD test checks all pairwise differences between runs

and, as indicated in [37, 84], it is a viable method for dealing with the multiple comparisons

problem [221]. We apply the Tague-Sutcliffe transformation to Tukey’s HSD tests [218].

This transformation is applied only if either Lilliefors or the Jarque-Bera test rejects the

normality hypothesis for any experiment.

4.1.3 Collection-based Evaluation

We evaluate the impact that different domains and languages have on the performances of

DRMM and NVSM. To this end, we also compare DRMM and NVSM to lexical models.

The lexical models considered are TF-IDF, BM25, QLM, and DFR. The collections used

to perform this evaluation are: WT2g [104], OHSUMED [107], CLEF-IT, CLEF-DE, and

CLEF-FA [60, 3]. For OHSUMED, we consider all the 106 topics. Then, for each collection,

we choose the topic combinations where DRMM and NVSM perform best – which are also

the most common. The considered topic combinations are: WT2g (t+d), OHSUMED (d),

CLEF-IT (t+d), CLEF-DE (t+d), and CLEF-FA (t+d). For CLEF collections, we rely on

publicly available stoplists that are specific to the target language.3 We use MAP, nDCG@100,

and P@10 to evaluate models. Then, we employ the post-hoc Tukey’s HSD test to assess

3http://members.unine.ch/jacques.savoy/clef/
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statistical significance. Whenever possible, we report the performances of the best TREC

and CLEF systems.

The reader can find more details on the test collections used for the collection-based

evaluation in Subsections 2.1.1 and 2.1.4.

4.1.4 Embedding-based Evaluation

We evaluate how word embeddings – learned by different models – affect the performance of

DRMM. Using different word representations can have a sizable impact on the performance

of neural models – as also shown by MacAvaney et al. [153], who investigate how BERT [59]

and ELMo [180] representations can be used by neural IR models.

We consider four different types of word embeddings:

word2vec (corpus): word2vec embeddings learned on the considered test collections. We

rely on Gensim [183] and we follow the instructions provided by Guo et al. [95].

As preprocessing, we remove punctuation and stopwords relying on the INQUERY

stoplist [36], we perform stemming using Krovetz stemmer, and we remove all the

terms that contain digits and are shorter than three characters. For training, we set the

context window size to 10, the embedding size to 300, and the number of negative

samples to 10. Furthermore, we subsample terms whose frequency is greater than 10−4

and we discard terms appearing less than 10 times in the collection. We train word2vec

for 10 epochs – we empirically selected 10 as the number of training epochs after

evaluating DRMM performances using word2vec embeddings from a model trained

for 5, 10, 15, and 20 epochs.

word2vec (Google): word2vec embeddings trained by Google on part of the Google News

dataset (about 100 billion words). word2vec (Google) contains 300-dimensional

vectors for 3 million words and phrases.4

fasttext: fasttext embeddings learned with Gensim on the considered test collections. We

follow the instructions provided by Guo et al. [95] also for fasttext. In particular, we set

the context window size to 10, the embedding size to 300, and the number of negative

samples to 10. Again, we subsample terms whose frequency is greater than 10−4 and

we discard terms appearing less than 10 times in the collection. As with word2vec

(corpus), we train fasttext for 10 epochs on each of the considered test collections.

4The word2vec (Google) model is available at: https://code.google.com/archive/p/word2vec/
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NVSM: word embeddings learned by NVSM. NVSM jointly learns word and document

representations from scratch without the need for annotated data. The learned repre-

sentations are then used to perform retrieval. Details on NVSM training and retrieval

processes are provided in Section 4.3. Since NVSM learns word representations as

word2vec, we can feed its word embeddings to DRMM without any modification. As

done for word2vec (corpus) and fasttext, we train NVSM on each of the considered

test collections.

The test collections considered are Robust04, NY, WT2g, and OHSUMED. The topic

combinations used are: title (t) for Robust04 and NY, title+description (t+d) for WT2g, and

description (d) for OHSUMED. As evaluation measures, we adopt MAP, nDCG@100, and

P@10.

4.1.5 Topic-based Evaluation

We conduct a topic-by-topic analysis and comparison between DRMM, NVSM, and BM25.

We want to understand the differences in performance between these models, in what

topics they succeed/fail, and why. To perform this evaluation, we consider Robust04, NY,

WT2g, OHSUMED, and CLEF collections. The topic combinations used are: title (t) for

Robust04 and NY, title+description (t+d) for WT2g, description (d) for OHSUMED, and

title+description (t+d) for CLEF collections.

Additionally, we employ Kernel Density Estimation (KDE) [237] to estimate the Pro-

bability Density Function (PDF) of the AP@1000 of BM25, DRMM, and NVSM for all

the topics. Then, we compute the Kullback-Leibler Divergence (KLD) [134] between these

PDFs to get an estimate of the difference in AP@1000 distributions for each model.

4.2 Reproducibility Study: DRMM

We describe and reproduce the Deep Relevance Matching Model (DRMM), an interaction-

based deep matching model for ad hoc retrieval proposed by Guo et al. [95]. As shown in

Subsection 3.4.2, interaction-based models are supervised end-to-end deep neural networks

that build joint representations of query/document pairs to predict the relevance score between

queries and documents. DRMM is a prominent example of this category of models, and it is

still one of the reference neural IR approaches.
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instance, if we take 0.5 as the bin size, each bin will contain the cosine similarity scores from

the intervals: [−1,−0.5), [−0.5,0), [0,0.5), [0.5,1). Then, exact matching is treated as a

separate k+1 bin. In this way, the matching histogram is able to distinguish the semantic

signals from the lexical ones.

Guo et al. proposed three different ways to map the values in the matching histograms:

Count-based Histogram (CH): it considers the count of local interactions in each bin as

the histogram value.

Normalized Histogram (NH): it normalizes the count value in each bin by the total count.

LogCount-based Histogram (LCH): it applies logarithm over the count value in each bin.

The number of bins considered by Guo et al. was 30, and the matching histograms configura-

tion that performed best was LCH. Therefore, in our experiments we set the number of bins

to 30 and we rely on the LCH configuration.

The FFNN consists of two layers, the first layer presents five nodes, whereas the second

layer only one. Both layers adopt tanh(·) as their activation function. The matching scores

returned by the FFNN are then weighted with coefficients computed by a term gating network.

The term gating network produces an aggregation weight for each query term controlling

how much the relevance score on that query term contributes to the final relevance score:

gi =
exp(wwwgxxx

(q)
i )

∑
M
j=1 exp(wwwgxxx

(q)
j )

, i = 1, ...,M (4.1)

where wwwg is the weight vector of the term network and xxx
(q)
i , i = 1, ...,M denotes the i-th

query term. Guo et al. developed different types of weighting functions, which require

different input values:

Term Vector (TV): In this method, xxx
(q)
i denotes the i-th query term vector, and wwwg is a

weight vector of the same size of the term vectors.

Inverse Document Frequency (IDF): In this method, xxx
(q)
i denotes the IDF of the i-th query

term, and wwwg is a coefficient with a single parameter.

Guo et al. found out that the best performing approach to compute these weights is the

IDF weighting scheme. Therefore, we consider only the IDF weighting scheme in our

experiments.

Finally, DRMM is trained using the hinge loss:

L(Θ|q,d+,d−) = max(0,1− s(q,d+)+ s(q,d−)) (4.2)
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where Θ includes the feed-forward and term gating network parameters, d+ is a document

ranked higher than d− for a given query q, and s(·) is the function that computes the matching

scores.

4.2.2 Implementation Details

The input data and the implementation details of DRMM are publicly available at: https:

//github.com/faneshion/DRMM/. Nevertheless, to reproduce the original results and to

generalize DRMM to different domains and languages, we had to define a new preprocessing

pipeline and to develop a new training script for the word embeddings required by the model.

We adopt the DRMM configuration that performs best in the experiments performed by Guo

et al. [95], that is we consider LCH matching histograms with 30 bins, IDF scores in the term

gating network, and we set the feed-forward first layer size to 5.

DRMM adopts a re-ranking strategy for efficient computation. Therefore, the model re-

ranks an initial set of candidate documents, previously retrieved by a lexical (efficient) model.

Guo et al. [95] relied on QLM with Dirichlet smoothing [254] to retrieve an initial set of

2000 candidate documents. Besides, during indexing and retrieval, they removed stopwords

using the INQUERY stoplist [36] and stemmed words using the Krovetz stemmer [133]. We

apply the same preprocessing but we implement QLM using a modified version of Terrier

4.1 [154],5 rather than Galago.6 We decided to rely on a different library to implement QLM

to evaluate whether different implementations of the same model, under the same conditions,

provide comparable results. We keep this setup for all the experiments we perform with

DRMM.

The most critical point to reproduce DRMM regards the set of word embeddings used as

input to the model. Guo et al. share a word2vec model that has been trained on the collections

used to evaluate DRMM [95]. However, to reproduce the experiments on Robust04 – and

to generalize DRMM to other collections – we decided to train a new word2vec model

following authors’ steps and relying on Gensim. We train the model as described in Subsec-

tion 4.1.4. The word2vec hyperparameters are the same as those considered in the original

experiments [95] but, since Guo et al. do not report the number of epochs used to train

word2vec, we test different iterations and employ gradient decay from Gensim.

5The modified version of Terrier is available at the url: https://github.com/gridofpoints/
6http://www.lemurproject.org/galago.php
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4.2.3 Experimental Results

In Table 4.3, we report the experimental results we obtained with the open-source DRMM

code, provided by the authors, and our preprocessing pipeline. In particular, we compare the

results obtained using the word embeddings from the word2vec model shared by Guo et al.

(DRMM original) and those obtained using the word embeddings from the word2vec model

we trained using Gensim (DRMM Gensim). We also compare the performances of our QLM

implementation with Terrier 4.1 to those obtained by Guo et al [95].

Table 4.3 Results of the reproducibility study of DRMM. For each version of Robust04,

the first row reports the scores of the original model version on MAP, nDCG@20, and

P@20, the second row reports the scores of the reproduced version and the third row reports

the difference between original and reproduced versions; a negative difference indicates

that the reproduced versions are stronger than those originally used by the authors. Bold

values represent the best model (original and reproduced), whereas italic values represent

differences greater than 0.02 scores among the models. In both DRMM original and DRMM

Gensim, the first row refers to the results presented by Guo et al. [95]

Robust04 (t) Robust04 (d)

MAP nDCG@20 P@20 MAP nDCG@20 P@20

QLM(dir)

orig. 0.253 0.415 0.369 0.246 0.391 0.334

repr. 0.248 0.415 0.355 0.246 0.392 0.326

diff. +0.005 0.000 +0.014 0.000 -0.001 +0.008

DRMM original

orig. 0.279 0.431 0.382 0.275 0.437 0.371

repr. 0.270 0.442 0.377 0.252 0.415 0.347

diff. +0.009 -0.011 +0.005 +0.023 +0.022 +0.024

DRMM Gensim

orig. 0.279 0.431 0.382 0.275 0.437 0.371

repr. 0.268 0.441 0.376 0.249 0.411 0.343

diff. +0.011 -0.010 +0.006 +0.026 +0.026 +0.028

The results in Table 4.3 indicate that our preprocessing pipeline, along with the training

strategy we employed to train word2vec models, lead to performances similar to those

presented by Guo et al. [95]. Overall, we obtain MAP, nDCG@20, and P@20 scores close

to those obtained by Guo et al. – with larger differences when considering the description (d)

field. It is worth mentioning that if we repeat the experiments considering title+description

(t+d), we obtain higher scores than those reported in Table 4.3. In particular, we obtain

MAP, nDCG@20, and P@20 scores of 0.279, 0.451, and 0.386, respectively. In light of

these results, we consider our preprocessing pipeline and training strategy reliable enough to

reproduce DRMM performances.
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4.2.4 Discussion

The experimental results highlighted a sizable impact of the word embeddings on the perfor-

mances of DRMM. We stress that a detailed description of the word2vec training process

lacks in the original DRMM paper [95]. Indeed, we had to perform numerous experiments

and try different parameter combinations to train a word2vec model that would lead DRMM

to performances close to those obtained by Guo et al. First, we trained word2vec using the

official Google package and the hyperparameters configuration described in Subsection 4.1.4

– i.e., word2vec (corpus).7 With this setting, we obtained a MAP value of 0.249 on Robust04

(t). Then, we relied on Gensim to train word2vec and, with the same hyperparameters

configuration, we obtained a MAP value of 0.268. Thus, we adopted Gensim for all the

experiments. However, it becomes clear that sharing the training strategy and the library used

for word embeddings is fundamental to reproduce the results of a neural IR model.

Another issue we encountered regards the preparation of the input data required by

DRMM. The available implementation of DRMM requires seven files: a run in TREC

format (to be re-ranked); a file with trained word embeddings; a file containing the document

and corpus frequency for each term in the collection; a file containing each document of the

corpus with its identifier (the same used in the input run), its length, and the frequency of

each term in it; a file with the ideal discounted cumulative gain value for each considered

topic; a file with the list of terms for each topic, along with the topic identifier (the same used

in the input run); a file with the relevance judgments in TREC format for the given topics

and documents in the collection. However, the authors do not share a tool, or describe with

enough detail the process employed to prepare the input data in such format. Therefore, we

had to make a few assumptions about the preprocessing steps to be applied to Robust04. For

instance, applying whitespace tokenization, stopwords removal, and stemming on the raw

documents – as indicated in the original paper [95] – increased the noise introduced in the

model. Thus, we first removed tags and punctuation, and then we performed tokenization,

stopwords removal, and stemming.

For these reasons, we believe that sharing also the code and the libraries used to preprocess

collections and train word embeddings would be good practice. Preprocessing is often

underspecified – despite its sizable impact on the overall performances of IR models, and in

particular of neural IR models.

7https://code.google.com/archive/p/word2vec/



56 Lexical and Semantic Signals

4.3 Reproducibility Study: NVSM

We describe and reproduce the Neural Vector Space Model (NVSM), an end-to-end un-

supervised representation-based neural model for ad hoc retrieval proposed by Van Gysel

et al. [223]. As shown in Subsection 3.4.2, representation-based models learn (or exploit)

distributed representations which, depending on the task, are used to perform semantic simi-

larity between pairs of words or semantic matching between queries and documents. Within

this framework, NVSM learns word and document representations to perform semantic

matching between queries and documents. NVSM is one of the very few existing end-to-end

unsupervised neural IR models and has great potential to generalize, as it does not require

any interaction or labeled data for training.

4.3.1 The Neural Vector Space Model

NVSM jointly learns distinct word and document representations by optimizing an unsu-

pervised loss function which minimizes the distance between sequences of n words (i.e.

n-grams) and the documents containing them. Such optimization objective imposes that

n-grams extracted from a document should be predictive of that document. Unlike the models

from which it derives [222, 224], NVSM integrates a notion of term specificity [211, 190]

in the learning process of word and document representations. In fact, while optimizing

the n-gram representations to be close to the corresponding documents, words that are dis-

criminative for the target documents learn to contribute more to the n-gram representations.

Therefore, words associated with many documents will be neglected due to low predictive

power. After training, the learned word and document representations are used to perform

retrieval. Queries are seen as n-grams and matched against documents in the feature space.

Documents are then ranked in decreasing order of the cosine similarity computed between

query and document representations. Note that NVSM performs retrieval and then ranking

on the whole document collection. Below, we provide a detailed description of NVSM

components.

Given a document collection D and a word vocabulary V , the model considers the

vector representations {wwwi}
|V |
i=1 ∈ R

|V |×a and {ddd j}
|D|
j=1 ∈ R

|D|×b for vocabulary words V and

documents D, respectively, where a and b denote the dimensionality of word and document

representations. Due to the different dimensionality of word representations wwwi and document

representations ddd j, the model requires a transformation f : Ra→ R
b from the word feature

space to the document feature space. The considered transformation is linear:

f (xxx) =WWWxxx (4.3)
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where xxx is a a-dimensional vector and WWW is a b×a parameter matrix that is learned using

gradient descent. A sequence of n words extracted from d and starting at position h (i.e., an

n-gram) is defined as Sn
h(d) = (wi)

h+n−1
i=h . Then, the representation of such sequence Sn

h(d) is

obtained by averaging its constituent word representations as follows:

g(Sn
h(d)) =

1

n

n

∑
i=1

wwwi (4.4)

Representations of words and documents are learned using mini-batches B of n-gram/-

document pairs such that an n-gram representation is projected close to the document

containing it. During training, an auxiliary function that L2-normalizes a vector of arbitrary

dimensionality is further introduced:

norm(xxx) =
xxx

||xxx||
(4.5)

Therefore, the projection of an n-gram into the b-dimensional document feature space can be

written as the following composite function:

hhhn
h(d) = ( f ◦norm◦g)(Sn

h(d)) (4.6)

By estimating the per-feature sample mean and variance over batch B, the standardized

projection of the n-gram representation is obtained as follows:

hhh
n

h(d) = hard-tanh





hhhn
h(d)− Ê[hhhn

h(d)]
√

V̂[hhhn
h(d)]

+βββ



 (4.7)

The n-gram representation is optimized to be close to the corresponding document. The

composition function g(·), in combination with the L2-normalization norm(·), causes words

to compete for contributing to the resulting n-gram representation. Therefore, words that are

discriminative for the target document learn to contribute more to the n-gram representation,

and consequently, the L2-norm of the representations of discriminative words is larger than

the L2-norm of non-discriminative words. This incorporates a notion of term specificity into

the model. Moreover, standardization forces n-gram representations to distinguish themselves

solely in the dimensions that matter for matching.

The similarity between a document d and a sequence Sn
h(d) in the latent vector space is

defined as:

P(y|d,Sn
h(d)) = σ(ddd ·hhh

n

h(d)) (4.8)
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where hhh
n

h(d) is the standardized n-gram representation, σ(·) denotes the sigmoid function,

and y is a binary indicator that states whether the representation of document d is similar to

the projection of its n-gram Sn
h(d) or not. The probability of a document d, given its n-gram

Sn
h(d), is then approximated by uniformly sampling t contrastive examples [98]:

logP(d|Sn
h(d)) =

t +1

2t

(

t logP(y|d,Sn
h(d)))+

t

∑
k=1,

dk∼U (D)

log(1.0−P(y|dk,S
n
h(d)))

)

(4.9)

where U (D) represents the uniform distribution over documents D used to obtain the t

contrastive examples. Then, the loss function used to optimize the model, averaged over the

instances in the batch B, is:

L(Θ|B) =−
1

|B|

|B|

∑
j=1

logP(d j|S
n
h(d j))+

γ

2|B|

(
|V |

∑
i=1

||wwwi||
2
2 +

|D|

∑
j=1

||ddd j||
2
2 + ||WWW ||

2
F

)

(4.10)

where Θ is the set of parameters {{wwwi}
|V |
i=1,{ddd j}

|D|
j=1,WWW ,βββ} and γ is a weight regularization

hyperparameter.

After training, a query q is projected into the document feature space by the composition

of f and g: qqq =WWW · 1
n ∑

n
i=1 wwwi. The matching score between a document d and a query q is

given by the cosine similarity between their representations in the document feature space.

Thus, documents are ranked in decreasing order according to their matching score with the

query q.

4.3.2 Implementation Details

Retrieval Models

NVSM. We re-implement NVSM in Python, relying on TensorFlow to build its neural

architecture. We use Whoosh to index the considered document collections.8 Whoosh is a

fast search engine library in Python that provides easy access to the underlying tokenized

documents – similarly to pyndri [225], used in the original paper. We decided to rely on

Whoosh instead of pyndri to keep the entire pipeline in Python. Otherwise, to use pyndri,

we should first have had indexed the collections using Indri [215] – which is built in C++.9

As in the original paper, we remove stopwords using the Indri stoplist,10 and we do not

perform stemming.

8https://whoosh.readthedocs.io/en/latest/
9https://www.lemurproject.org/indri/

10http://www.lemurproject.org/stopwords/stoplist.dft
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One of the biggest challenges we found to reproduce the results obtained by Van Gysel et

al. [223] regards the (hyper) parameter tuning. The original paper and the associated GitHub

repository lack a comprehensive description for all the (hyper) parameters of NVSM – which

are fundamental to reproduce its performances.11 Therefore, to select the parameters and

hyperparameters required for this study, we relied on the original paper [223], the authors’

GitHub repository, and a previous seed work that NVSM extends [222]. For each (hyper)

parameter, the reference sources are reported below.

words that have a document frequency greater than 1 and lower than or equal to
|Φ|
2

Word vocabulary:

• Vocabulary size is limited to 216 words (GitHub repository: /scripts/functions.sh,

seed paper [222]), or to 60,000 words (original paper [223], GitHub repository:

/cpp/main.cu ).

• Words containing numbers are not considered (GitHub repository: /cpp/main.cu, seed

paper [222]).

• Words with a document frequency lower than 2 and greater than
|D|
2 are not considered

(GitHub repository: /cpp/main.cu).

Model parameters:

• Pseudo-random number generator seed equal to 0 (GitHub repository: /cpp/main.cu).

• The number of batches for a single epoch is computed as ⌈ 1
|B|∑d∈D(|d| − n+ 1)⌉

(original paper [223]).

• Word representations, document representations and the parameter matrix W are

uniformly sampled in the range [−
√

6.0
m+n

,
√

6.0
m+n

] for an m×n matrix – following the

initialization scheme presented by Glorot and Bengio [88] (GitHub repository, seed

paper [222]).

Model hyperparameters: (all in the original paper [223])

• Word representation size a = 300.

• Document representation size b ∈ {64,128,256}.

• n-gram size n ∈ {4,6,8,10,12,16,24,32}.

• Batch size equal to 51200.

• Number of training epochs equal to 15.

• Number of negative examples t = 10.

• Adam optimizer with parameters α = 0.001,β1 = 0.9,β2 = 0.999 (original paper [223]

reports only α , seed paper [222] reports also β1 and β2).

11https://github.com/cvangysel/cuNVSM/
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• Regularization γ = 0.01.

For each collection, the given set of topics is split into validation and test sets.12 The sizes of

document representations b ∈ {64,128,256} and n-grams n ∈ {4,6,8,10,12,16,24,32} are

optimized on the validation set and then used on the test set. The optimal hyperparameter

combinations are not reported by Van Gysel et al.

In our experiments, we set the vocabulary size to 216 and we select b = 256 – according

to the results reported in Figure 3 of the original paper [223]. Similarly, we choose the

n-gram size that provides the best scores in terms of MAP. We keep the rest of the parameters

and hyperparameters as described above. We train NVSM for 15 epochs and we select the

model iteration that performs best in terms of MAP on the validation set. The best model

iteration is then evaluated on the test set. Table 4.4 shows the comparison between the

results obtained with the original and reproduced versions of NVSM. Furthermore, for each

collection considered, we indicate the optimal n-gram size and epoch at which we obtain the

best NVSM iteration in Table 4.5.

Baselines. We reproduce word2vec (add), word2vec (si), and LDA as semantic baselines.

Following Van Gysel et al. [223], we rely on Gensim to implement word2vec (skip-gram

architecture) and LDA. For word2vec approaches, we adopt the same choices made for

NVSM regarding word vocabulary, seed value, negative examples, one-sided window size

(i.e., n-gram size n/2), and number of epochs. The embedding size is set to 256 to be

consistent with NVSM. Documents are ranked in decreasing order of the cosine similarity

between their representations and the query representation – where the query representation

is the average of its word representations. Once again, we select the model iteration that

performs best in terms of MAP on the validation set and we evaluate it on the test set. For

LDA, we set the number of topics K = 256 and α = β = 0.1. LDA is trained until topic

convergence is achieved. At query time, documents are ranked in decreasing order of the

cosine similarity between query and document topic distributions.

Regarding the lexical baselines, we reproduce QLM (jm) and QLM (dir). We rely on

Indri [215] to index and query the considered collections (as in the original paper). For

consistency with the semantic models, stopwords are removed using the Indri stoplist and no

stemming is performed. The smoothing hyperparameters λ ∈ {x|k ∈ N
+,k ≤ 20,x = k/20}

and µ ∈ {125,250,500,750,1000,2000,3000,4000,5000} of QLM (jm) and QLM (dir),

respectively, are optimized on the validation set. The comparison between the results

obtained with the original and reproduced baselines is also shown in Table 4.4.

12Splits can be found at: https://github.com/cvangysel/cuNVSM/tree/master/resources/adhoc-splits/
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Rank Fusion Models

We reproduce the fusion of three individual rankers: QLM (dir), word2vec (si), and NVSM.

The fusion of these models provides a mixture of lexical and semantic matching signals. Van

Gysel et al. [223] combined the individual rankers linearly and optimized the feature weights

through a grid search using 20-fold cross-validation on the topic test sets. Feature weights are

swept between 0 and 1 with increments of 0.0125 on each training fold. Individual features

are normalized per query so that their values lie between 0 and 1. The configuration of the

coefficients that achieves the highest MAP on the training set is selected and used to score

the test fold. When scoring the test fold, the pool obtained from the top 1000 documents

retrieved by the individual rankers is used as the candidate set.

However, due to the extensive memory/time requirements demanded by such an approach,

the machine we used to run the experiments – a 2018 Alienware Area-51 with 36 cores and

64Gb of RAM – could not even finish the first training fold when we considered the entire

document collection and an incremental step of 0.0125. Thus, we limited the number of

documents in each fold of the training set to the pool of the top 1000 documents retrieved by

the individual rankers. Also, we swept the feature weights between 0 and 1 with increments

of 0.1, which is the minimum step that the available machine can handle.

Along with the supervised approach performed by Van Gysel et al. [223], we also employ

three classic, efficient rank fusion methods [200]: CombSUM, CombMNZ, and CombANZ.

In Table 4.6, we evaluate the results obtained with the supervised approach and the three

classic methods on Robust04. The approach that performs best in MAP is then applied to all

the considered collections and compared to the supervised approach from the original paper,

as shown in Table 4.7.

4.3.3 Experimental Results

We present the results of the comparison between the original and the reproduced versions of

QLM, LDA, word2vec, and NVSM in Table 4.4. For each collection, we report the results

originally obtained by Van Gysel et al. [223], the results we obtain with the reproduced

models, and the difference between original and reproduced versions.

Table 4.4 shows that the results obtained with the reproduced version of NVSM are

close to those reported in the original paper. When we consider the performance difference,

the only measure that presents an absolute difference greater than 0.02 is P@10 in WSJ

(−0.038). In AP88-89 and NY collections, the absolute differences are lower than 0.01 for

all measures. In terms of effectiveness, NVSM outperforms the semantic baselines in all the
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Table 4.4 Retrieval results and comparison between original and reproduced versions of

QLM, LDA, word2vec, and NVSM. For each considered collection, the first row reports

the scores of the original model version on MAP, nDCG@100, and P@10, the second row

reports the scores of the reproduced version, and the third row reports the difference between

original and reproduced versions; a negative difference indicates that the reproduced versions

are stronger than those originally used by the authors. Bold values represent the best model

(original and reproduced), whereas italic values represent differences greater than 0.02. A

two-tailed paired Student’s t-test is computed between word2vec (si) and NVSM. Statistical

significance is marked as * for p < 0.1, ** for p < 0.05 and *** for p < 0.01.

AP88-89 (t) FT (t) LA (t)

MAP nDCG@100 P@10 MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM (jm)

orig. 0.199 0.346 0.365 0.218 0.356 0.283 0.182 0.331 0.221

repr. 0.199 0.346 0.364 0.209 0.337 0.258 0.178 0.319 0.214

diff. 0.000 0.000 +0.001 +0.009 +0.019 +0.025 +0.004 +0.012 +0.007

QLM (dir)

orig. 0.216 0.370 0.392 0.240 0.381 0.296 0.198 0.348 0.239

repr. 0.217 0.368 0.397 0.230 0.362 0.270 0.198 0.341 0.233

diff. -0.001 +0.002 -0.005 +0.01 +0.019 +0.026 0.000 +0.007 +0.006

LDA

orig. 0.039 0.077 0.078 0.009 0.028 0.013 0.004 0.015 0.010

repr. 0.052 0.091 0.077 0.013 0.026 0.015 0.007 0.028 0.015

diff. -0.013 -0.014 +0.001 -0.004 +0.002 -0.002 -0.003 -0.013 -0.005

word2vec (add)

orig. 0.216 0.370 0.393 0.125 0.230 0.195 0.105 0.212 0.159

repr. 0.234 0.395 0.416 0.140 0.252 0.214 0.075 0.165 0.116

diff. -0.018 -0.025 -0.023 -0.015 -0.022 -0.019 +0.030 +0.047 +0.043

word2vec (si)

orig. 0.230 0.383 0.418 0.141 0.250 0.204 0.131 0.242 0.179

repr. 0.240 0.400 0.419 0.148 0.261 0.226 0.109 0.215 0.172

diff. -0.010 -0.017 -0.001 -0.007 -0.011 -0.022 +0.022 +0.027 +0.007

NVSM

orig. 0.257** 0.418** 0.425 0.172** 0.302*** 0.239* 0.166** 0.300*** 0.209*

repr. 0.257 0.414 0.429 0.175** 0.304*** 0.220 0.180*** 0.316*** 0.208**

diff. 0.000 +0.004 -0.004 -0.002 -0.002 +0.019 -0.014 -0.016 +0.001

NY (t) Robust04 (t) WSJ (t)

MAP nDCG@100 P@10 MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM (jm)

orig. 0.158 0.270 0.376 0.201 0.359 0.369 0.175 0.315 0.345

repr. 0.180 0.292 0.382 0.199 0.351 0.358 0.178 0.319 0.347

diff. -0.022 -0.22 -0.006 +0.002 +0.008 +0.011 -0.003 -0.004 -0.002

QLM (dir)

orig. 0.188 0.318 0.486 0.224 0.388 0.415 0.204 0.351 0.398

repr. 0.213 0.343 0.500 0.222 0.376 0.411 0.205 0.355 0.391

diff. -0.025 -0.025 -0.014 +0.002 +0.012 +0.004 -0.001 -0.004 +0.007

LDA

orig. 0.009 0.027 0.022 0.003 0.010 0.009 0.038 0.082 0.076

repr. 0.024 0.053 0.064 0.004 0.015 0.014 0.041 0.074 0.060

diff. -0.015 -0.026 -0.042 -0.001 -0.005 -0.005 -0.003 +0.008 +0.016

word2vec (add)

orig. 0.081 0.160 0.216 0.075 0.177 0.194 0.175 0.322 0.372

repr. 0.100 0.196 0.252 0.065 0.158 0.184 0.181 0.326 0.393

diff. -0.019 -0.036 -0.036 +0.010 +0.019 +0.010 -0.006 -0.004 -0.021

word2vec (si)

orig. 0.092 0.173 0.220 0.093 0.208 0.234 0.185 0.330 0.391

repr. 0.113 0.209 0.284 0.083 0.192 0.214 0.190 0.336 0.393

diff. -0.021 -0.036 -0.064 +0.010 +0.016 +0.020 -0.005 -0.006 -0.002

NVSM

orig. 0.117 0.208 0.296* 0.150*** 0.287*** 0.298*** 0.208** 0.351 0.370

repr. 0.110 0.205 0.290 0.138*** 0.270*** 0.289*** 0.213*** 0.359*** 0.408

diff. +0.007 +0.003 +0.006 +0.012 +0.017 +0.009 -0.005 -0.008 -0.038

considered collections but NY, where word2vec (si) shows better performances for MAP and

nDCG@100. In particular, NVSM achieves the best results in AP88-89 and WSJ collections.
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Regarding semantic baselines, the reproduced LDA performs similarly to the original one

in all the considered collections. The most notable exceptions are nDCG@100 and P@10

in the NY collection, where reproduced LDA outperforms the original one with absolute

differences of 0.026 and 0.042, respectively. For word2vec approaches, the reproduced

word2vec (add) outperforms the original version in AP88-89, FT, WSJ, and NY for all the

evaluation measures considered, whereas original word2vec (add) achieves better results in

LA and Robust04. As for the performance difference, there is a marked gap between the two

versions only in LA and NY collections – with differences of +0.030 for MAP, +0.047 for

nDCG@100, and +0.043 for P@10 in LA, and of −0.036 for nDCG@100 and −0.036 for

P@10 in NY. A similar trend can also be observed for word2vec (si), where the reproduced

version outperforms the original one in AP88-89, FT, WSJ, and NY, whereas the original

version achieves better results in LA and Robust04. The absolute differences between the two

versions are lower than or close to 0.02 in all collections, except for NY and LA. In NY, the

absolute differences are higher than 0.02 for all the considered measures, with a difference

of −0.064 in P@10 – which is the highest (absolute) difference among all measures and

collections. It is also worth mentioning that the reproduced word2vec (si) achieves a score

of 0.284 for P@10 in NY, thus closing the gap with NVSM and resulting in a competitive

semantic baseline.

As for lexical baselines, we observe that original and reproduced versions of QLM

(jm) and QLM (dir) perform similarly in AP88-89, LA, WSJ, and Robust04 – where an

absolute difference greater than 0.01 can be found between QLM (dir) versions only for

nDCG@100 in Robust04, and between QLM (jm) versions only for nDCG@100 and P@10

in LA and Robust04, respectively. Larger differences between QLM (jm) and QLM (dir)

versions can be observed in FT and NY collections. In FT, there is a marked difference

between QLM original and reproduced versions for nDCG100 and P@10. Original QLM

(jm) outperforms the reproduced one by an absolute difference of 0.019 for nDCG@100 and

of 0.025 for P@10. Similarly, original QLM (dir) outperforms the reproduced one by an

absolute difference of 0.019 for nDCG@100 and of 0.026 for P@10. On the other hand, we

observe an opposite behavior in NY, where reproduced versions of QLM outperform original

ones in all measures – with absolute differences greater than 0.02 for MAP and nDCG@100.

In terms of effectiveness, QLM (dir) achieves the best results for all the considered measures

in FT, LA, NY, and Robust04. In WSJ, instead, original QLM (dir) achieves the best results

for nDCG@100 and P@10, but its reproduced version is outperformed by NVSM.

Thus, the results reported in Table 4.4 show that we successfully reproduced NVSM and

that the original and reproduced versions of the baselines are aligned.
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Table 4.5 NVSM optimal n-gram size and best epoch for each collection.

n-gram size Best epoch

AP88-89 16 13

FT 16 11

LA 10 10

WSJ 16 14

Robust04 16 11

NY 16 1

Table 4.6 shows the results of the supervised and classic rank fusion approaches in

Robust04. For each combination of QLM (dir) with word2vec (si) and NVSM, we observe

that the supervised approach performs consistently worse than its original version. Since the

original and reproduced versions of QLM (dir) perform similarly, this indicates that we did

not reproduce the supervised rank fusion method successfully. Overall, the best rank fusion

method is CombSUM, while the worst is CombANZ. Therefore, we use CombSUM in all

the considered collections and we compare it to the original version of the supervised rank

fusion method in Table 4.7.

In Table 4.7, we observe that AP88-89 is the only collection where CombSUM achieves

results close to those of the supervised method – with differences between the two versions of

QLM(dir)+word2vec(si)+NVSM of +0.015 for MAP, +0.005 for nDCG@100, and +0.005

for P@10. Overall, CombSUM shows performance gains in all the combinations of the

individual rankers in AP88-89, FT, and WSJ. The performance gains on LA are positive

for QLM(dir)+NVSM and QLM(dir)+word2vec(si)+NVSM, whereas they are negative for

QLM(dir)+word2vec(si). In particular, the CombSUM of QLM(dir)+NVSM consistently

outperforms the original supervised method in all the measures considered. In Robust04,

the only combination that improves over the baseline is QLM(dir)+NVSM. However, when

compared to the original supervised method, the CombSUM of QLM(dir)+NVSM presents

a performance gap of about 0.020 in all the measures. Regarding NY, each combination

of individual rankers using CombSUM achieves lower performances than the baseline. In

particular, the difference between the original supervised method and the CombSUM of

QLM(dir)+word2vec(si)+NVSM is +0.100 for P@10.

4.3.4 Discussion

The results presented in Table 4.4 show that the original and reproduced versions of NVSM

perform similarly. This indicates that we successfully reproduced the results obtained by
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Table 4.6 Results and comparison between the supervised rank fusion method and CombSUM,

CombMNZ and CombANZ in Robust04. The first two rows report, for reference, the scores

of the original and reproduced versions of QLM (dir) for MAP, nDCG@100, and P@10. For

each combination of QLM (dir) with word2vec (si) and NVSM, the first two rows report the

scores of the original and reproduced versions of the supervised method. Then, subsequent

rows report the scores of CombSUM, CombMNZ, and CombANZ, respectively. Bold values

represent the best method among the supervised and the three classic methods.

Robust04 (t)

MAP nDCG@100 P@10

QLM (dir)
orig. 0.224 0.388 0.415

rep. 0.222 0.376 0.411

QLM+word2vec

orig. 0.232 0.399 0.428

repr. 0.190 0.344 0.346

CSUM 0.199 0.358 0.378

CMNZ 0.191 0.353 0.366

CANZ 0.179 0.325 0328

QLM+NVSM

orig. 0.247 0.411 0.448

repr. 0.204 0.357 0.375

CSUM 0.230 0.391 0.424

CMNZ 0.229 0.392 0.419

CANZ 0.199 0.352 0.373

QLM+word2vec+NVSM

orig. 0.247 0.412 0.446

repr. 0.1836 0.336 0.344

CSUM 0.206 0.368 0.385

CMNZ 0.202 0.363 0.373

CANZ 0.175 0.323 0.338

Van Gysel et al. with NVSM [223]. However, we had to look into different sources to get

the appropriate (hyper) parameters – that is, the original paper [223], the GitHub repository,

and a previous seed paper [222]. Besides, the lack of information regarding the optimal

hyperparameters used to obtain the results presented in Table 2 of the original paper led us to

identify them differently. In fact, we relied on Figure 3 of the original paper to obtain the

optimal hyperparameters.

Another critical aspect we encountered while reproducing NVSM regards the lexicon.

For example, NVSM does not retrieve any document from Robust04 for the following four

topics: topic 312 “Hydroponics”, topic 316 “Polygamy Polyandry Polygyny”, topic 348

“Agoraphobia”, and topic 379 “mainstreaming”. If we analyze the content of such topics, we
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Table 4.7 Rank fusion results and comparison between CombSUM and the supervised rank

fusion method adopted by Van Gysel et al. [223]. For each considered collection, the scores

of the original and reproduced versions of QLM (dir) for MAP, nDCG@100, and P@10 are

reported for reference. For each combination of QLM (dir) with word2vec (si) and NVSM,

the first row reports the scores of the original supervised rank fusion, the second row reports

the scores of the CombSUM rank fusion, and the third row reports the difference between the

original supervised approach and CombSUM; a negative difference indicates that CombSUM

achieves higher scores than those of the original supervised approach. Bold values represent

the best method (original and reproduced), whereas italic values represent differences greater

than 0.02. The percentage gain (or loss) over the baseline method is reported next to each

rank fusion approach.

AP88-89 (t) FT (t)

MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM (dir)
orig. 0.216 0.370 0.392 0.240 0.381 0.296

repr. 0.217 0.368 0.397 0.230 0.362 0.270

QLM+word2vec

orig. 0.279 (+29%) 0.437 (+18%) 0.450 (+14%) 0.251 (+4%) 0.393 (+3%) 0.313 (+6%)

CSUM 0.275 (+27%) 0.441 (+20%) 0.446 (+12%) 0.242 (+5%) 0.381 (+5%) 0.293 (+9%)

diff. + 0.004 - 0.004 + 0.004 + 0.009 + 0.012 + 0.020

QLM+NVSM

orig. 0.289 (+33%) 0.444 (+20%) 0.473 (+20%) 0.251 (+4%) 0.401 (+5%) 0.322 (+9%)

CSUM 0.269 (+24%) 0.428 (+16%) 0.456 (+15%) 0.233 (+1%) 0.378 (+4%) 0.286 (+6%)

diff. + 0.020 + 0.016 + 0.017 + 0.018 + 0.023 + 0.036

QLM+word2vec+NVSM

orig. 0.307 (+42%) 0.466 (+26%) 0.498 (+27%) 0.258 (+7%) 0.406 (+6%) 0.322 (+9%)

CSUM 0.292 (+35%) 0.461 (+25%) 0.493 (+24%) 0.244 (+6%) 0.386 (+7%) 0.297 (+10%)

diff. + 0.015 + 0.005 + 0.005 + 0.014 + 0.020 + 0.025

LA (t) NY (t)

MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM (dir)
orig. 0.198 0.348 0.239 0.188 0.318 0.486

repr. 0.198 0.341 0.233 0.213 0.343 0.500

QLM+word2vec

orig. 0.212 (+7%) 0.360 (+3%) 0.236 (-1%) 0.206 (+9%) 0.333 (+4%) 0.494 (+1%)

CSUM 0.191 (-4%) 0.326 (-4%) 0.229 (-2%) 0.194 (-9%) 0.325 (-5%) 0.436 (-13%)

diff. + 0.021 + 0.034 + 0.007 + 0.012 + 0.008 + 0.058

QLM+NVSM

orig. 0.220 (+11%) 0.376 (+7%) 0.244 (+1%) 0.222 (+18%) 0.355 (+11%) 0.520 (+6%)

CSUM 0.232 (+17%) 0.381 (+12%) 0.255 (+9%) 0.198 (-7%) 0.333 (-3%) 0.476 (-5%)

diff. - 0.012 - 0.005 - 0.011 + 0.024 + 0.022 + 0.044

QLM+word2vec+NVSM

orig. 0.226 (+14%) 0.378 (+8%) 0.250 (+4%) 0.222 (+18%) 0.353 (+10%) 0.526 (+8%)

CSUM 0.214 (+8%) 0.366 (+7%) 0.251 (+7%) 0.182 (-14%) 0.320 (-7%) 0.426 (-15%)

diff. + 0.012 + 0.012 - 0.001 + 0.040 + 0.033 + 0.100

Robust04 (t) WSJ (t)

MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM (dir)
orig. 0.224 0.388 0.415 0.204 0.351 0.398

repr. 0.222 0.376 0.411 0.205 0.355 0.391

QLM+word2vec

orig. 0.232 (+3%) 0.399 (+2%) 0.428 (+2%) 0.254 (+24%) 0.410 (+16%) 0.454 (+13%)

CSUM 0.199 (-10%) 0.358 (-5%) 0.378 (-8%) 0.238 (+16%) 0.399 (+12%) 0.449 (+15%)

diff. + 0.033 + 0.041 + 0.050 + 0.016 + 0.011 + 0.005

QLM+NVSM

orig. 0.247 (+10%) 0.411 (+6%) 0.448 (+7%) 0.248 (+21%) 0.396 (+12%) 0.425 (+6%)

CSUM 0.230 (+4%) 0.391 (+4%) 0.424 (+3%) 0.244 (+19%) 0.403 (+14%) 0.443 (+13%)

diff. + 0.017 + 0.020 + 0.024 + 0.004 - 0.007 - 0.018

QLM+word2vec+NVSM

orig. 0.247 (+10%) 0.412 (+6%) 0.446 (+7%) 0.271 (+32%) 0.426 (+21%) 0.456 (+14%)

CSUM 0.206 (-7%) 0.369 (-2%) 0.385 (-6%) 0.251 (+22%) 0.416 (+17%) 0.455 (+16%)

diff. + 0.041 + 0.043 + 0.061 + 0.020 + 0.010 + 0.001
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see that three out of four are composed of a single word. Besides, the NVSM word vocabulary

does not contain any of these terms. Therefore, NVSM cannot retrieve any document for

them. Knowing the exact lexicon used in the original paper is pivotal to reproduce the results.

Otherwise, we cannot understand whether the differences between original and reproduced

versions are related to implementation nuances or different preprocessing steps.

Regarding semantic baselines, we followed the same setup presented by Van Gysel et

al. for LDA [223]. However, the LDA implementation from Gensim presents many more

parameters than those mentioned in the original paper. Thus, not knowing what values to

assign to such parameters prevents the reproducibility of the results. On the other hand,

we adopted the same hyperparameter choices of NVSM for word2vec approaches. The

resulting versions of word2vec (add) and word2vec (si) present sizable differences with the

original ones. Most likely, the choices we made are different than those made by Van Gysel

et al. [223] – especially when we consider the results obtained with the reproduced word2vec

approaches in NY. In the original paper there is no information about the optimal choices

for word2vec approaches, nor any figure that can help to identify a subset of candidate

choices. Moreover, the same considerations made about the lexicon for NVSM also hold

for word2vec approaches. Nevertheless, the results of the two-tailed paired Student’s t-tests

between reproduced word2vec (si) and NVSM are consistent with those originally obtained

by Van Gysel et al. The only notable exceptions can be found in AP88-89, where there is no

statistical difference between the reproduced versions, and in WSJ, where there is a statistical

difference between reproduced word2vec (si) and NVSM for nDCG@100.

As for lexical baselines, we employed the same search engine, that is Indri, and performed

the same operations reported by Van Gysel et al. [223] for indexing, querying, and parameter

tuning. Therefore, the differences between the original and reproduced versions of QLM

(jm) and QLM (dir) might lie on the different tokenization process applied to topics. In

fact, we relied on Indri for both indexing and querying, whereas Van Gysel et al. employ

pyndri [225] for querying.

Concerning rank fusion, the main issues we found regard the extensive memory/time

requirements demanded by the supervised rank fusion method. The choices we made to try

reproducing this method were insufficient to obtain results comparable to those presented in

the original paper. On the other hand, classic, efficient rank fusion methods like CombSUM

produced mixed results – which even worsened the performances of QLM (dir) in some

collections. Nevertheless, the trade-off between effectiveness and efficiency brought by

CombSUM shows that far less expensive fusion methods can be used to improve perfor-

mances, achieving – on some collections – performance gains similar to those obtained by

Van Gysel et al. [223].
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4.4 Comparison between Lexical and Semantic Models

We compare lexical and semantic models, with a focus on DRMM and NVSM. The objective

of this evaluation is to investigate the potential and limitations of semantic models compared

to lexical ones. By understanding the strengths and weaknesses of semantic models, we can

improve their combination with lexical models and develop multi-stage IR systems that are

more effective in addressing the semantic gap. The test collections and baselines considered

are reported in Subsection 4.1.2. For semantic models, we use the model iterations that

perform best in the experiments presented in Sections 4.2 and 4.3. In addition to comparing

lexical and semantic models, we also investigate the effectiveness of unsupervised semantic

models in re-ranking. To this end, we employ NVSM to re-rank the same QLM (dir) runs

used by DRMM. Table 4.8 presents the results of this evaluation.

4.4.1 Experimental Results

The results in Table 4.8 show that lexical models outperform all semantic models in NY.

Conversely, DRMM outperforms both lexical and semantic models in Robust04. On the

other hand, NVSM performs better than word2vec approaches in both NY and Robust04, but

it is never competitive with the lexical baselines nor DRMM. Regarding re-ranking, NVSM

outperforms DRMM in NY but not in Robust04. Besides, we observe that using NVSM

to re-rank QLM (dir) worsens QLM performances in both collections. This suggests that

NVSM might grasp different signals than QLM, and thus not leveraging effectively the set

of candidate documents retrieved by QLM – which relies on lexical matching signals.

For reference purposes, we report the best values for MAP and P@10 obtained in the

TREC 2004 Robust Retrieval Track [232], and the best values for MAP in the TREC 2017

Common Core Track [12, 226]. In Robust04 (t), the best value for MAP is 0.333 and for

P@10 is 0.513. In NY, the best value for MAP is 0.538.

4.4.2 Statistical Analysis

Figure 4.2 reports the results of the Tukey’s HSD test on the runs produced by the models

reported in Table 4.8. First of all, we observe that all the lexical models belong to the top

group in NY. On the other hand, none of the semantic models – be it a retrieval or a re-ranking

model – belong to the top group. Therefore, lexical models perform statistically better than

semantic ones in NY. We have a different scenario in Robust04. In this case, DRMM belongs

to the top group for all the considered measures and statistically outperforms the other

semantic models – including QLM/NVSM, which performs the same task. However, it is
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Table 4.8 Comparison between lexical and semantic models. The lexical models considered

are: QLM (dir), BM25, TF-IDF, and DFR. The semantic retrieval models considered are:

word2vec (add), word2vec (si), and NVSM. The semantic re-ranking models considered are:

DRMM and QLM/NVSM. For each collection, the scores for MAP, nDCG@100, and P@10

are reported. Bold values represent the best scores among models.

NY (t) Robust04 (t)

MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM (dir) 0.232 0.370 0.522 0.248 0.411 0.424

BM25 0.234 0.347 0.468 0.242 0.404 0.431

TF-IDF 0.228 0.499 0.472 0.242 0.405 0.431

DFR 0.225 0.350 0.478 0.227 0.390 0.425

word2vec (add) 0.100 0.196 0.252 0.062 0.150 0.175

word2vec (si) 0.113 0.209 0.284 0.081 0.185 0.205

NVSM 0.110 0.205 0.290 0.139 0.269 0.279

DRMM 0.141 0.211 0.274 0.268 0.435 0.455

QLM/NVSM 0.152 0.252 0.328 0.157 0.289 0.287

worth mentioning that QLM/NVSM is an unsupervised re-ranking model, as opposed to

DRMM. Therefore, QLM/NVSM does not exploit relevance judgments to learn how to rank

documents given a query. Rather, QLM/NVSM simply leverages the word and document

representations learned by NVSM to re-rank the initial set of candidate documents retrieved

by QLM (dir).

4.4.3 Discussion

From the results reported in Table 4.8, we first observe that DRMM presents a large perfor-

mance difference in the two considered collections. In Robust04, DRMM improves over

QLM (dir) and achieves top results for all the evaluation measures. Conversely, DRMM

worsens the ranking produced by QLM (dir) in NY. This result reflects one of the limitations

of supervised neural IR models: the inability to generalize when trained on a limited number

of topics. Indeed, compared to Robust04, which presents 249 topics, NY has only 50 topics –

i.e., one fifth of the topics in Robust04. Therefore, DRMM suffers from the lack of topics to

learn from in NY. In addition, the large number of documents contained within NY generates

a wide variety of matching signals that DRMM needs to interpret. For this reason, DRMM

struggles to learn how to discriminate between relevant and non-relevant documents when it

observes only a small fraction of the collection – that is, the one related to the set of given

topics. This intuition is also supported by the results obtained in the WT2g collection, as we
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Fig. 4.2 Statistical tests for the results reported in Table 4.8 (top group highlighted). All

pairwise comparisons are calculated with Tukey’s HSD confidence intervals and a significance

level α = 0.05. Each row depicts the comparisons made for MAP, nDCG@100, and P@10

in a specific collection.

will see in Section 4.5. Indeed, WT2g has the same number of topics of NY, but it contains

seven times fewer documents. The reduced corpus size compensates the lack of training

topics for DRMM, which achieves similar results to lexical models in this collection.

Regarding unsupervised semantic models, we see that NVSM outperforms word2vec

approaches in Robust04, whereas it achieves similar results to word2vec (si) in NY. In both

collections, all the unsupervised semantic models do not compete with the lexical baselines

and DRMM – although the difference with DRMM is small in NY. Furthermore, the re-

ranking performed by NVSM worsens the performances of QLM (dir) in both collections.

This suggests that NVSM grasps different signals than QLM. In other words, NVSM does

not effectively leverage the set of documents retrieved by QLM since it performs semantic

matching rather than lexical matching. Thus, rank fusion is better suited than re-ranking

for NVSM, as lexical and semantic matching signals can be combined to retrieve relevant

documents most affected by the semantic gap (as also shown in Table 4.7).

As for state-of-the-art approaches, BM25+RM3 [244] achieves a MAP value of 0.290 in

Robust04,13 while the BERT application developed by Yang et al. [246] for ad hoc retrieval

13https://github.com/castorini/anserini/blob/master/docs/experiments-robust04.md
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achieves MAP of 0.328. Compared to these approaches, neither NVSM nor DRMM are

competitive. Nevertheless, both NVSM and DRMM remain relevant models for a variety

of different reasons. In particular, NVSM is still one of the most effective unsupervised

neural models for ad hoc retrieval, whereas DRMM can integrate different – and more

effective – word representations during training. Besides, the advances brought by DRMM

and NVSM are methodological rather than performance-driven. Therefore, they can serve

as core components for more advanced approaches, like the one presented by MacAvaney

et al. [153] for supervised re-ranking or the one we present in Section 6.5 for unsupervised

retrieval.

4.5 Collection-based Evaluation

We evaluate the impact that different domains and languages have on the performances

of DRMM and NVSM. In other words, we evaluate the ability of DRMM and NVSM to

generalize to other domains and tasks. The test collections and baselines considered are

presented in Subsection 4.1.3.

4.5.1 Parameter Tuning

We optimize the number of bins in matching histograms and the size of the hidden layer of

DRMM in OHSUMED and WT2g collections. OHSUMED is the test collection that differs

the most from those used by Guo et al. [95], whereas WT2g represents a small-size Web

collection similar to ClueWeb-09-Cat-B (which was used in the original DRMM paper).14

For optimization, we consider the number of bins in matching histograms in the range

{5,10,15,20,25,30,35}, the size of the hidden layer in the range {5,10,15,20,25}, and

then we keep the combination that performs best. The results of this optimization process

do not provide any (sizable) performance gain in OHSUMED, where the default values

adopted by Guo et al. remain effective. On the other hand, a number of bins in matching

histograms equal to 20 and a size for the hidden layer equal to 15 prove effective in WT2g –

with performance gains of 0.02 or higher for MAP, nDCG100, and P10. Thus, we keep this

combination for the rest of the experiments in WT2g.

Regarding NVSM, we optimize the following hyperparameters in each collection:

• Vocabulary size |V | ∈ {216,217};

• Document representation dimension b ∈ {128,256};

• n-gram size n ∈ {4,6,8,10,12,16,24,32};

14https://lemurproject.org/clueweb09/
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• Batch size in {12800,25600,51200};

• Regularization γ ∈ {0.01,0.1,1.0}.

We keep the rest of the (hyper) parameters as in Section 4.3. Due to the prohibitive time

required to perform grid search over the considered hyperparameters, we first optimize

the n-gram size by keeping the default values for |V | = 216, kd = 256, |B| = 51200, and

γ = 0.01. Then, in each collection we select the n-gram size that performs best for MAP and

we optimize the rest of the hyperparameters. From this optimization, none of the different

combinations of document representation size, batch size, and regularization value proves

better than the original setup. Conversely, the vocabulary size shows a significant impact

on two collections: WT2g and CLEF-DE. In WT2g, NVSM improves from MAP: 0.206,

nDCG@100: 0.356, and P@10: 0.370, with |V |= 216, to MAP: 0.225, nDCG@100: 0.380,

and P@10: 0.402, with |V |= 217. Similarly, in CLEF-DE NVSM goes from MAP: 0.194,

nDCG@100: 0.322, and P@10: 0.281, with |V |= 216, to MAP: 0.211, nDCG@100: 0.343,

and P@10: 0.301, with |V | = 217. Thus, we adopt |V | = 217 in WT2g and CLEF-DE

collections and we keep the rest of the (hyper) parameters as in Section 4.3. The optimal

n-gram size, vocabulary size, and the epoch at which we obtain the best NVSM iteration are

reported in Table 4.9 for every collection.

Table 4.9 NVSM optimal n-gram size, vocabulary size, and epoch for each collection.

n-gram size Vocabulary Best epoch

WT2g 16 131,072 11

OHSUMED 16 65,536 12

CLEF-IT 20 65,536 14

CLEF-DE 8 131,072 13

CLEF-FA 16 65,536 15

4.5.2 Experimental Results

We present the results of the generalization of DRMM and NVSM to different domains and

languages in Tables 4.10 and 4.11, respectively. In other words, Table 4.10 shows the results

of the considered models for WT2g and OHSUMED collections, whereas Table 4.11 shows

the results for CLEF collections.

Regarding domains, Table 4.10 highlights that DRMM always improves the ranking

produced by QLM (dir) – which is used to retrieve the initial set of 2000 candidate documents

for DRMM. As a side note, we also employed DRMM to re-rank the runs obtained with
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Table 4.10 Results of the generalization experiments on different domains. The test collec-

tions considered are WT2g (Web) and OHSUMED (medicine). Bold values represent the

best model. The evaluation measures considered are MAP, nDCG@100 and P@10.

WT2g (t+d) OHSUMED (d)

MAP nDCG@100 P@10 MAP nDCG@100 P@10

TF-IDF 0.234 0.389 0.419 0.250 0.370 0.364

QLM (dir) 0.264 0.418 0.418 0.212 0.326 0.305

BM25 0.296 0.454 0.484 0.250 0.369 0.364

DFR 0.267 0.426 0.452 0.236 0.354 0.344

DRMM 0.289 0.455 0.434 0.272 0.407 0.375

NVSM 0.225 0.380 0.402 0.214 0.335 0.319

TF-IDF and BM25, but we did not find any sizable improvement over such baselines. On

the other hand, NVSM achieves the lowest scores in WT2g and outperforms only QLM

(dir) in OHSUMED. However, NVSM does not rely on any interaction or labeled data and

extends two models tailored to product and expert search [222, 224]. Therefore, NVSM

has a robust domain-specific nature and, for heterogeneous collections like WT2g – where

documents have different contents and scopes – it generalizes worse than for homogeneous

collections like OHSUMED. Indeed, NVSM outperforms QLM (dir) and achieves closer

results to BM25 and DFR for all the considered measures in OHSUMED.

For reference purposes, the best MAP score obtained in WT2g during the TREC-8 Web

Track [104] is equal to 0.383.

Table 4.11 Results of the generalization experiments on different languages. The test collec-

tions considered are CLEF-IT (Italian), CLEF-DE (German), and CLEF-FA (Farsi). Bold

values represent the best model. The evaluation measures considered are MAP, nDCG@100,

and P@10.

CLEF-IT (t+d) CLEF-DE (t+d) CLEF-FA (t+d)

MAP nDCG@100 P@10 MAP nDCG@100 P@10 MAP nDCG@100 P@10

TF-IDF 0.438 0.628 0.408 0.251 0.392 0.367 0.411 0.553 0.601

QLM (dir) 0.334 0.510 0.319 0.209 0.350 0.324 0.200 0.340 0.405

BM25 0.437 0.627 0.402 0.253 0.395 0.373 0.408 0.550 0.594

DFR 0.415 0.605 0.393 0.241 0.382 0.350 0.421 0.565 0.619

DRMM 0.357 0.557 0.349 0.188 0.329 0.316 0.375 0.551 0.623

NVSM 0.345 0.522 0.317 0.211 0.343 0.301 0.342 0.494 0.567

As for languages, Table 4.11 shows that DRMM achieves different results depending

on the considered collection. Compared to QLM (dir), DRMM improves performances in

CLEF-IT and CLEF-FA, but it worsens performances in CLEF-DE. Besides, the performance
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gains achieved by DRMM in CLEF-IT are small compared to those in CLEF-FA. On the

other hand, NVSM shows competitive results with QLM (dir) in CLEF-DE and CLEF-IT,

while it outperforms QLM (dir) in CLEF-FA. Compared to DRMM, NVSM shows close

results in CLEF-IT, outperforms DRMM in CLEF-DE, but performs worse than DRMM in

CLEF-FA. Overall, lexical baselines achieve the best results in all CLEF collections for all

measures but P@10 in CLEF-FA – where DRMM performs best.

For reference purposes, we report below the best MAP values obtained in CLEF-DE and

CLEF-IT during the CLEF 2006 Ad Hoc Track [60], and the best MAP value obtained in

CLEF-FA during the CLEF 2009 Ad Hoc Track [81]. The best values for MAP in CLEF-DE,

CLEF-IT, and CLEF-FA are, respectively, 0.419, 0.483, and 0.494.

4.5.3 Statistical Analysis

Figure 4.3 reports the results of the Tukey’s HSD test on the runs produced to perform the

generalization experiments presented in Tables 4.10 and 4.11. NVSM belongs to the top

group only for P@10 in CLEF-FA. On the other hand, DRMM belongs to the top group

for most of the considered measures and collections. The only notable exceptions are

CLEF-DE and CLEF-IT, where DRMM does not belong to the top group for any of the

considered measures. Regarding lexical baselines, TF-IDF, BM25, and DFR are generally

the best performing models, whereas QLM (dir) is often the worst performing one. In

particular, QLM (dir) does not belong to the top group for any of the considered measures in

OHSUMED, CLEF-IT, and CLEF-FA.
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Fig. 4.3 Significance tests for the results of the generalization experiments reported in

Tables 4.10 and 4.11 (top group highlighted). All pairwise comparisons are calculated with

Tukey’s HSD confidence intervals and a significance level α = 0.05. Each row depicts the

comparisons made for MAP, nDCG@100, and P@10 in a specific collection.

4.5.4 Discussion

The experimental results highlight the inconstancy of DRMM across the different test collec-

tions. In fact, the only collections where DRMM statistically improves the results obtained

by QLM (dir) are OHSUMED and CLEF-FA. In other words, DRMM often fails to pro-

vide statistical improvements over the runs it re-ranks. Therefore, it is unclear whether the

improvement brought by DRMM in re-ranking can be attributed to DRMM itself or to the

lexical model used to produce the initial run – which might be good at finding relevant

documents but bad at ranking them. In fact, the results indicate that DRMM achieves com-

petitive performances when those of QLM (dir) are low, like in OHSUMED and CLEF-FA.

Conversely, when QLM (dir) performs similarly to the other lexical models, like in WT2g

and CLEF-DE, DRMM is less effective or even detrimental. In particular, DRMM worsens

QLM (dir) results for all the considered measures in CLEF-DE. However, the overall results
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in CLEF-DE – compared to those obtained in the other CLEF collections – suggest that

CLEF-DE is a difficult collection. Thus, we cannot exclude that with more topics for training,

DRMM would improve the ranking produced by QLM (dir) also in this collection.

Regarding NVSM, the results indicate that it is not competitive with lexical models. The

only exception is QLM (dir), that achieves performances comparable to or lower than those

of NVSM in OHSUMED and CLEF collections. Also, the results in WT2g (Table 4.10)

show that NVSM struggles to generalize to heterogeneous data. We believe that NVSM

suffers more in heterogeneous collections like WT2g because of its inherent domain-specific

nature. In fact, NVSM has been proposed for newswire retrieval and it extends two models

tailored to product and expert search [222, 224], respectively.

4.6 Embedding-based Evaluation

We evaluate the effect that word embeddings – learned by different models – have on DRMM.

DRMM can use different word embeddings, regardless of their characteristics. As opposed

to NVSM, that jointly learns word and document representations, DRMM does not learn any

representation. Rather, DRMM learns to interpret the interactions between documents and

query terms, given the provided word embeddings. Therefore, we investigate how sensitive

DRMM can be to different word embeddings.

We consider the word embeddings described in Subsection 4.1.4: (i) word2vec (corpus),

word2vec (Google), fasttext, and NVSM. All the models but word2vec (Google) have been

trained on the test collections where we perform this evaluation.

4.6.1 Experimental Results

The results from Table 4.12 highlight the robustness of DRMM to different word embeddings.

There are no sizable differences between word2vec (corpus) and fasttext in Robust04, NY,

and OHSUMED. However, fasttext embeddings lead to better performances in NY and

WT2g. Overall, none of the considered embeddings outperforms the others for all the consid-

ered measures and collections. However, we observe that word2vec (Google) embeddings

generally lead to the worst performances – despite the larger corpus used to train them. On

the other hand, the word embeddings learned by NVSM lead to top results for MAP and

P@10 in Robust04 and OHSUMED.
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Table 4.12 Evaluation of DRMM using different word embeddings: word2vec (corpus),

word2vec (Google), fasttext, and NVSM.

Robust04 (t) NY (t)

MAP nDCG@100 P@10 MAP nDCG@100 P@10

DRMM (word2vec (corpus)) 0.268 0.435 0.455 0.141 0.211 0.274

DRMM (word2vec (Google)) 0.261 0.428 0.455 0.126 0.215 0.268

DRMM (fasttext) 0.262 0.427 0.456 0.153 0.226 0.276

DRMM (NVSM) 0.270 0.434 0.458 0.130 0.207 0.232

WT2g (t+d) OHSUMED (d)

MAP nDCG@100 P@10 MAP nDCG@100 P@10

DRMM (word2vec (corpus)) 0.289 0.455 0.434 0.272 0.407 0.375

DRMM (word2vec (Google)) 0.309 0.455 0.460 0.238 0.361 0.360

DRMM (fasttext) 0.309 0.471 0.468 0.268 0.402 0.368

DRMM (NVSM) 0.294 0.458 0.442 0.273 0.405 0.397

4.6.2 Discussion

The results in Table 4.12 suggest that DRMM leans more on lexical signals rather than

semantic ones. Indeed, the differences in performance are small in most cases, regardless

of the word embeddings used. However, neural language models like word2vec or fasttext

learn very different word representations and produce different matching scores for the same

terms [182]. Thus, given the similar performances observed using different word embeddings,

this implies that DRMM learns to match documents and queries by relying more on exact

matching than semantic matching.

Another interesting outcome of this evaluation is the effectiveness of the word embeddings

learned by NVSM. NVSM word embeddings provide top performances in Robust04 and

OHSUMED – two domain-specific test collections. We recall that NVSM integrates a notion

of term specificity in the learning process of word and document representations. Therefore,

its word embeddings encode the co-occurrence relations between words in a collection better

than neural language models. This leads to more effective matching signals that DRMM can

exploit to perform retrieval. In other words, NVSM word representations are more suitable

for retrieval tasks than those of neural language models.

4.7 Topic-based Evaluation

We perform a topic-by-topic analysis of the rankings produced by DRMM, NVSM, and

BM25. For each pair, we compare the per-topic AP@1000 obtained by the considered

models. The scatter plots of the per-topic AP@1000 of each pair of models are presented in
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BM25. In document 1036498, terms like “heroism” and “sacrifices” appear, which are highly

related to the query terms. Thus, NVSM retrieves relevant documents that are most affected

by the semantic gap.

As for WT2g, DRMM and BM25 behave similarly in most topics. The only notable

exceptions are topics 423 and 410, where BM25 outperforms DRMM by a large margin.

Compared to NVSM, both BM25 and DRMM achieve better results in most topics. However,

in some topics, both DRMM and NVSM outperform BM25. An example is topic 416: “Three

Gorges Project What is the status of The Three Gorges Project?”. In this case, the documents

containing query terms are very long and BM25 fails to recognize them as relevant [152].

Similar observations can be made for OHSUMED, where DRMM performs similarly to

BM25 and NVSM performs worse than both BM25 and DRMM in most topics. As in NY,

NVSM retrieves relevant documents that do not contain any query term. For example, NVSM

retrieves for topic OHSU7 (“lactase deficiency therapy options”) the relevant document

91359745, which does not contain any of the query terms but only synonyms or related

terms (e.g., “lactose” or “intolerance”).

Regarding CLEF collections, we observe the same trend of previous collections. DRMM

performs as BM25 in most topics. The only notable exceptions are topic 148 in CLEF-IT

and topic 200 in CLEF-DE – where DRMM outperforms BM25 – and topics 161 and 44 in

CLEF-IT, topics 141, 149, and 161 in CLEF-DE, and topic 628 in CLEF-FA – where BM25

outperforms DRMM by a large margin. On the other hand, even though BM25 outperforms

NVSM in all CLEF collections for most of the topics, the difference between the two models

is lower than in previous collections (e.g., Robust04 and NY). Also, the comparison between

NVSM and DRMM highlights a larger difference in CLEF-IT – where the points in the

scatterplot are far from the bisector – than in CLEF-DE and CLEF-FA, where there are only

a few outliers in favor of NVSM in CLEF-DE.

Overall, DRMM and BM25 perform similarly in all collections (with only few outliers),

while NVSM is the model that differs the most. This larger difference between DRMM and

NVSM depends on the fact that DRMM re-ranks the top 2000 documents retrieved by QLM

(dir) – which is a lexical model – and leans more towards lexical matching than semantic

matching (see Section 4.6). On the other hand, NVSM performs retrieval over the entire

document collection relying only on semantic matching. Therefore, the rankings produced by

NVSM contain a more diverse set of documents than those produced by DRMM and BM25.

From the plots in Figure 4.5, we can assess the differences in models behavior that cannot

be identified when analyzing average performances across topics. In this way, we discover

that in Robust04, NY, CLEF-DE, WT2g, and OHSUMED, MAP values are influenced by

the large number of topics where models perform poorly. Indeed, in all the plots associated
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Fig. 4.5 PDFs of AP@1000 associated to DRMM, NVSM, and BM25 for Robust04, NY,

WT2g, OHSUMED, and CLEF collections. Note that the x-axis represents the AP@1000

values distributed into 100 bins (from 0 to 1 with 0.01 step) and the y-axis the density

estimation.

to these collections there is a high peak related to low AP1000 values. Conversely, the plots

for CLEF-IT and CLEF-FA highlight that MAP values are dominated by a large number of

topics where models achieve AP@1000 values around 0.3 – except NVSM, that presents a

high peak also around 0.1.
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Quantitatively, the distances between AP@1000 distributions can be measured with KLD.

Table 4.13 reports the KLD scores between the AP@1000 distributions of DRMM, NVSM,

and BM25.

Table 4.13 KLD scores between the AP@1000 PDFs of DRMM, NVSM, and BM25 in

Robust04, NY, WT2g, OHSUMED, and CLEF collections. KLD ∈ [0,+∞) denotes the

divergence between two distributions [34]. Thus, 0 means that two models behave the

same way across all the topics in a collection, whereas +∞ means that two models behave

differently across all the topics.

Robust04 NY WT2g OHSUMED

BM25 - DRMM 10.86 63.29 27.08 16.91

BM25 - NVSM 20.57 40.69 61.22 49.60

DRMM - NVSM 31.52 23.85 76.29 71.66

CLEF-IT CLEF-DE CLEF-FA

BM25 - DRMM 14.48 21.76 18.58

BM25 - NVSM 26.65 28.15 22.70

DRMM - NVSM 18.69 24.06 16.45

According to the plots in Figure 4.5, the results from Table 4.13 indicate that DRMM and

BM25 have the closest AP@1000 distributions in Robust04, WT2g, OHSUMED, CLEF-IT,

and CLEF-DE. In plain words, DRMM and BM25 present a high number of topics where

they obtain similar AP@1000 scores. However, it is worth mentioning that the topics where

they achieve similar AP@1000 scores might not be the same. In fact, KLD only considers

the distribution of the AP@1000 scores, ignoring the corresponding topic ids.

A different situation occurs in NY and CLEF-FA collections, where DRMM and NVSM

present the closest distributions. This result further supports the high peaks associated to low

AP@1000 scores – around 0.1 and 0.2 – that DRMM and NVSM share in NY and CLEF-FA,

respectively.

The analysis shows that the main advantages of the considered neural IR models are the

ability to retrieve relevant documents that are most affected by the semantic gap (NVSM), and

the ability to effectively rank long, relevant documents that contain short, relevant passages

related to a query (DRMM). On the other hand, models performances are influenced by the

large number of topics where they perform poorly – in particular NVSM, that presents high

peaks for lower values of AP@1000 compared to DRMM and BM25.
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4.8 Chapter Outcomes and Lessons Learned

In this chapter, we investigated lexical and semantic matching signals to understand what

features lexical and semantic models share, if they are complementary, and how they can

be combined to effectively address the semantic gap. To this end, we evaluated the critical

aspects of neural IR models through different analyses. Each analysis brought a different

perspective in the understanding of semantic models and their relation with lexical models.

The semantic models we selected are prominent examples of the current neural IR wave and

achieve competitive performances in their field of application. The Deep Relevance Matching

Model (DRMM) is a supervised approach that re-ranks candidate documents previously

retrieved by a lexical (efficient) model. DRMM exploits word embeddings to extract semantic

matching signals. Then, semantic matching signals are combined with lexical matching

signals between query and document terms to perform re-ranking. On the other hand, the

Neural Vector Space Model (NVSM) is an unsupervised approach that performs retrieval

on the whole document collection. NVSM extends two unsupervised representation-based

neural models for product [222] and expert [224] search to newswire retrieval. Unlike the

models it extends, NVSM integrates a notion of term specificity [211, 190] in the learning

process of word and document representations. For each analysis, both DRMM and NVSM

have been evaluated on shared test collections – which play a fundamental role in enabling

the reproducibility of the experiments.

First, we have analyzed the key factors to reproduce neural IR models. From the re-

producibility study on DRMM, we highlight the importance of sharing the tools used to

preprocess the document collections – that is, the tools used to prepare DRMM input data.

Preprocessing is often an overlooked component of neural IR models, which has a sizable

impact on the overall performances. Another key factor that needs to be shared is the training

process used for word embeddings. Small changes in the training (hyper) parameters can lead

to very different word embeddings, which can have a huge impact on retrieval performances.

We drawn similar observations from the reproducibility study on NVSM. The lack of in-

formation about preprocessing – and especially about the creation of the word vocabulary –

hampers the reproduciblity of the experiments performed by Van Gysel et al. [223].

Secondly, we have compared DRMM and NVSM with several lexical and semantic

models. The lexical models considered were TF-IDF, QLM (dir), BM25, and DFR, whereas

the semantic models were word2vec (add) and word2vec (si) [235]. The results of this

analysis show that DRMM outperforms lexical models in Robust04. Therefore, the adoption

of stronger retrieval baselines, such as BM25+RM3 [244], or the integration of contextual

word embeddings [153] can further improve DRMM re-ranking effectiveness. Conversely,

the poor retrieval performances obtained by DRMM in NY highlight one of the biggest
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bottlenecks of supervised neural IR models: the high demand for labeled data. In fact, the

limited number of topics to learn from, along with the large size of the document collection,

hinders the learning process of DRMM – leading to a detrimental re-ranking that worsens

the initial ranking produced by QLM (dir). On the other hand, the analysis shows the

effectiveness of NVSM compared to word2vec approaches in Robust04. However, the

performance gap between NVSM and lexical models is still significant. A similar scenario

occurs in NY, where NVSM, DRMM, and word2vec (si) achieve similar results – far from

those obtained by lexical models. As for the re-ranking performed using NVSM, we see that

it fails to improve the initial ranking produced by QLM (dir). By relying exclusively on the

learned word and document representations to perform semantic matching, NVSM does not

exploit the lexical signals provided by QLM (dir). Besides, lexical and semantic matching

signals lead models to retrieve different relevant documents, as also shown in the topic-based

evaluation of Section 4.7. Therefore, the unsupervised semantic nature of NVSM suits

better to rank fusion or query expansion techniques – where lexical and semantic matching

signals can be combined effectively (e.g., Table 4.7) – or to provide semantic features for

supervised re-ranking models (e.g., Table 4.12). In other words, we believe that unsupervised

semantic models should be used at the early stages of the IR pipeline rather than in re-ranking

scenarios.

Thirdly, we have evaluated the impact that different domains and languages have on

the performances of DRMM and NVSM. As domains, we considered Web (WT2g) and

medicine (OHSUMED). For multilingualism, we considered Italian (CLEF-IT), German

(CLEF-DE), and Farsi (CLEF-FA). The analysis shows the inconstancy of DRMM across

different languages and its limited impact in most collections, where the only exceptions

are OHSUMED and CLEF-FA. On the other hand, NVSM struggles to generalize to het-

erogeneous collections like WT2g. The reason is that NVSM extends two semantic models

tailored to product [222] and expert [224] search, thus inheriting a domain-specific nature.

For this analysis, we also performed parameter tuning over DRMM and NVSM – obtaining

significant improvements in WT2g, for both DRMM and NVSM, and in CLEF-DE, for

NVSM. In particular, the results of this optimization show that vocabulary size has a large

impact on NVSM performances. Our intuition is that the default vocabulary size of NVSM

(i.e., |V |= 216) is not sufficient to represent WT2g and CLEF-DE collections, which present

larger vocabularies compared to the other collections considered (see Table 4.2). In fact, the

increase of the NVSM vocabulary size led to performance improvements on these collec-

tions. However, improving effectiveness comes at the expense of efficiency, since a larger

vocabulary size means a higher number of word representations – which, in turn, means

a higher memory requirement. Therefore, finding a trade-off between NVSM vocabulary



4.8 Chapter Outcomes and Lessons Learned 85

size and collection size is fundamental. As a side note, the same observations also apply to

Robust04 and NY collections, which present vocabulary sizes similar to those of CLEF-DE

and WT2g, respectively (cf. Tables 4.1 and 4.2).

Fourthly, we have evaluated the impact that different word embeddings have on DRMM.

The word embeddings considered are: word2vec (corpus), word2vec (Google), fasttext, and

NVSM. The results highlight the limited impact of different word embeddings on DRMM

performances. This implies that DRMM learns to match documents and queries by relying

more on lexical matching than semantic matching. Interestingly, NVSM word embeddings

lead to top performances in Robust04 and OHSUMED – two domain-specific collections.

Since NVSM integrates term specificity in the learning process, its word embeddings encode

better co-occurrence relations and provide more effective matching signals to DRMM.

Fifthly, we have conducted an in-depth per topic analysis of the rankings produced by

DRMM, NVSM, and BM25. The objective was to investigate when/where neural models fail

or succeed compared to lexical models. The analysis shows that DRMM presents a behavior

similar to BM25 in most collections, as opposed to NVSM. This difference in performance

between DRMM and NVSM depends on two factors. First, DRMM performs re-ranking

over a set of candidate documents retrieved by QLM – which is a lexical model. Secondly,

DRMM exploits both lexical and semantic matching to re-rank documents and, as seen in

Section 4.6, it leans more towards lexical matching. On the other hand, NVSM performs

retrieval over the entire document collection relying only on semantic matching. Therefore,

the rankings produced by NVSM contain a more diverse set of relevant documents than those

produced by DRMM and BM25. In particular, NVSM retrieves relevant documents that are

most affected by the semantic gap – that is, relevant documents that do not contain any query

term. Nevertheless, this ability is not sufficient to compete with BM25 on average. This

suggests that the number of semantically hard queries is limited in the considered collections.

As a consequence, semantic matching has a minor impact on average performances.

The outcomes of this chapter highlighted the differences between lexical and semantic

matching signals, the need to combine them at the early stages of the IR pipeline to effectively

address the semantic gap, and the semantic models that are best suited for this task. The

following chapters build on the insights of this chapter to develop lexical and semantic

models addressing the semantic gap. In Chapter 5, we investigate how to leverage external

knowledge resources to enhance the bag-of-words representations used by lexical models to

perform retrieval. We focus on an important use-case in medical retrieval: providing useful

precision medicine information to clinicians treating cancer patients. To this end, we develop

and evaluate several knowledge-enhanced query expansion and reduction techniques. We

demonstrate the effectiveness of the proposed query reformulations – especially for precision-
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oriented measures – and we identify a robust subset of these techniques that can be used at

the early stages of the IR pipeline to effectively address the semantic gap between queries and

documents. Then, we present our novel unsupervised knowledge-enhanced neural framework

in Chapter 6. The framework integrates external knowledge in the learning process of neural

models, and it does not require any labeled data for training. The representations learned

within this framework encode linguistic features related to the semantic gap, which help to

address semantically hard queries. We demonstrate the effectiveness of the models developed

within this framework when used to perform retrieval over the entire document collection or

to retrieve feedback documents for PRF methods – that is, when they are used at the early

stages of the IR pipeline.



Chapter 5

Knowledge-Enhanced Lexical Models

The use of external knowledge to enhance query and document bag-of-words representations

has a long-standing tradition in IR [229, 230, 161, 2]. Typically, knowledge-enhanced lexical

models can be divided in three categories: (i) models that integrate external knowledge

in the indexing stage [2], (ii) models that integrate external knowledge in the retrieval

stage [230], and (iii) models that integrate external knowledge in both indexing and retrieval

stages [229, 161]. In this chapter, we focus on the second category and we investigate the

effectiveness of knowledge-enhanced lexical models for medical IR.

Medical IR helps a wide variety of users to access and search medical information

archives and data [89]. A central issue in medical IR is the diversity of users, presenting

different information needs and varying levels of medical knowledge. For example, a patient

with a recently diagnosed condition would generally benefit from introductory information

about the treatment of the disease, while a trained physician would require more detailed

information when deciding the course of treatment.

Therefore, understanding the information needs of various users is one of the cornerstones

of medical IR. In [105, Chapter 2], Hersh proposes to classify textual medical information

in two categories: patient-specific information and knowledge-based information. Patient-

specific information applies to individual patients and can be structured, as in the case of

an EHR, or free narrative text. Knowledge-based information derives from observational or

experimental research and can be organized in a wide variety of forms. In the case of clinical

research, this information is most commonly provided by books and journals but can take

other forms too – including computerized media.

A critical characteristic of the medical domain is the prominence of the semantic gap [70,

130, 131]. Edinger et al. [70] performed a failure analysis on the TREC Medical Track [234]

to identify what impaired the retrieval systems during the track. One of the outcomes of this

failure analysis highlighted that relevant documents were most often infrequently retrieved



88 Knowledge-Enhanced Lexical Models

due to the use of synonyms for topic terms. Koopman and Zuccon [130] investigated if

and why assessing relevance of clinical records for a clinical retrieval task is cognitively

demanding. The analysis showed, among other things, that the interpretation of a considerable

number of queries was subjective and often required careful consideration regarding different

possible interpretations. This high degree of subjectivity to interpret queries can increase the

mismatch between the machine-level description of document and query contents and their

human-level interpretation. Koopman et al. [131] divided the semantic gap into core aspects,

general enough to be found in any domain, and analyzed their impact in the medical one. To

this end, they provided example queries where each of the considered aspects is prominent.

Along the same lines, Sondhi et al. [209] identified several challenges arising from the

semantic gap in the medical domain. However, they found out that combining retrieval models

with selective query term weighting, based on medical thesauri and physician feedback,

proves effective to address these challenges and improves performances significantly. Similar

findings were also obtained by Zhu et al. [256] and Diao et al. [62], that relied on query

expansion and reweighting techniques to improve retrieval performances on medical records.

Therefore, the design of effective tools to access and search textual medical information can

benefit, among other things, from enhancing the query through expansion and/or rewriting

techniques that leverage the information contained within external knowledge resources.

Thus, to investigate the effectiveness of knowledge-enhanced lexical models that rely on

query expansion and/or rewriting techniques, we conduct a series of studies and analyses on

the TREC Precision Medicine (PM) Track. From 2017 to 2019, the TREC PM Track [186,

185, 187] focused on an important use-case in Clinical Decision Support (CDS): providing

useful precision medicine information to clinicians treating cancer patients. This track gives

a unique opportunity to evaluate retrieval systems, as the provided test collections adopt the

same set of topics – i.e., synthetic cases created by precision oncologists – for two different

document sets that target two different tasks: 1) retrieving biomedical articles addressing

relevant treatments for a given patient, and 2) retrieving clinical trials for which a patient is

eligible.

First, we conduct a preliminary study on the TREC PM 2018 Clinical Trials task – where

the objective is to retrieve relevant clinical trials for which the patient is eligible. Relevant

clinical trials represent the potential for connecting patients with experimental treatments if

existing treatments have been ineffective. To this end, we propose a procedure to: 1) expand

queries iteratively, relying on medical knowledge resources [122, 155], to increase the

probability of finding relevant trials by adding neoplastic, genetic, and proteic term variants

to the original query; 2) filter out trials, based on demographic data, for which the patient is

not eligible. The purpose of the study is twofold: (i) we want to evaluate how a recall-oriented
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approach based on an increasing – and more aggressive – query expansion method affects

precision in this context; (ii) we want to investigate whether the effectiveness of the retrieval

model can be correlated with the quality of the relational information contained within the

knowledge resource(s) used in the expansion process. We chose the TREC PM 2018 test

collection to perform this preliminary study as it is the most representative collection for

precision medicine. Compared to TREC PM 2017 and 2019 test collections, TREC PM 2018

presents the largest number of topics related to cancer cases (see Subsection 2.1.3) – thus

providing a more solid starting point to investigate the task.

Then, we deepen the analysis performed in the preliminary study and we extend it to both

scientific literature and clinical trials retrieval. In other words, we take advantage of the dual

nature of TREC PM collections and we evaluate several state-of-the-art query expansion

and reduction techniques to examine whether a particular approach can be helpful in both

scientific literature and clinical trials retrieval. For this analysis, we consider TREC PM 2017

and 2018 test collections and we compare our approach with the best runs submitted to the

TREC PM Tracks in the two years.

Given the outcomes of the in-depth analysis, we conduct a validation study on the TREC

PM 2019 Track. We focus on both tasks, with particular emphasis on the Clinical Trials

task. The objective of this study is twofold: (i) we want to evaluate how the different query

reformulations – tested on previous TREC PM collections – affect the results and whether the

findings obtained in the previous analysis remain valid; (ii) we want to verify if combining

different query reformulations based on expansion and reduction techniques proves effective

in such a highly specific scenario.

Finally, we perform an a posteriori analysis on the effectiveness of the proposed query

reformulations for clinical trials retrieval over the three years of TREC PM. This systematic

analysis compares our approach with those proposed by the research groups that participated

in all the three years of TREC PM. The experimental results show the effectiveness of the

proposed query reformulations in all collections – in particular for retrieving relevant clinical

trials in top positions of the ranking list.

The main contributions of this chapter are:

C1 We conduct a preliminary study on clinical trials retrieval to evaluate how a recall-

oriented approach based on an increasing – and more aggressive – query expansion

method affects precision in this context. The analysis of the experimental results

shows that the proposed query expansion approach introduces noise and significantly

decreases retrieval performances. In particular, we found that the detrimental effect

of the query expansions depends on the lack of an appropriate weighting scheme on

query terms and the uncontrolled use of all the knowledge resources contained within
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UMLS. Thus, the study highlights what features are required to build effective query

expansions, and what instead should be avoided.

C2 Based on the outcomes of the preliminary study, we propose several state-of-the-art

query expansion and reduction techniques and we perform an in-depth analysis to

examine whether a particular approach can be helpful in both scientific literature and

clinical trials retrieval. The experimental results show that no clear pattern emerges for

both tasks. Nevertheless, we found that a particular combination of query reformula-

tions performs well in both tasks – especially for clinical trials retrieval – and achieves

top performances for many evaluation measures in both TREC PM 2017 and 2018.

C3 We conduct a validation study on TREC PM 2019 to evaluate whether the effectiveness

of the proposed query reformulations, demonstrated on previous TREC PM collec-

tions, still holds. The experimental results confirm the effectiveness of the tested

query reformulations for clinical trials retrieval – in particular for precision-oriented

measures.

The rest of this chapter is organized as follows. In Section 5.1, we describe the preliminary

study we conducted on the Clinical Trials task of TREC PM 2018. In Section 5.2, we present

the in-depth analysis we performed on query reformulations for scientific literature and

clinical trials retrieval. In Section 5.3, we report the validation study we conducted on the

tested query reformulations for TREC PM 2019. In Section 5.4, we present the a posteriori

analysis we performed on the proposed query reformulations for clinical trials retrieval.

Finally, in Section 5.5, we conclude the chapter with a discussion on the achieved outcomes

and the lessons learned.

5.1 Preliminary Study: TREC Precision Medicine 2018

We describe the preliminary study we performed on the TREC PM 2018 Clinical Trials task.

The study served to identify what features are required to build effective query expansions,

and what instead should be avoided. The methodology we propose consists of a procedure

to: 1) expand queries iteratively, relying on medical knowledge resources, to increase the

probability of finding relevant trials by adding neoplastic, genetic, and proteic term variants

to the original query; 2) filter out trials, based on demographic data, for which the patient is

not eligible. The objective of the study is twofold: (i) evaluate how a recall-oriented approach

based on an increasing – and more aggressive – query expansion method affects precision in

this context; (ii) investigate whether the effectiveness of the retrieval model can be correlated
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with the quality of the relational information contained within the knowledge resource(s)

used in the expansion process.

5.1.1 Methodology

The proposed methodology is composed of five steps. The steps are: indexing, pre-retrieval

query expansion, retrieval, post-retrieval query expansion, and filtering.

Indexing

Indexing consists of two phases. First, we rely on MetaMap [15], a biomedical concept

mapper from the NLM (see Section 3.1), to extract from each document of the collection

all the concepts associated to the following UMLS semantic types: Neoplastic Process

(neop) and Gene or Genome (gngm).1 Then, we index the collection by the following fields:

<docid>, <text>, <max_age>, <min_age>, <gender>, and <concepts>.

Fields <max_age>, <min_age>, and <gender> are extracted from the eligibility section

of clinical trials and are required for filtering. The <text> field contains the entire content of

each clinical trial, including the information stored within <docid>, <max_age>, <min_age>,

and <gender> fields. The <concepts> field contains the list of UMLS CUIs extracted by

MetaMap.

Pre-Retrieval Query Expansion

We perform a knowledge-based, a priori, query expansion. First, we employ MetaMap to

extract from each query all the UMLS concepts belonging to the following semantic types:

Neoplastic Process (neop), Gene or Genome (gngm), and Amino Acid, Peptide, or

Protein (aapp). Then, for each extracted concept, we consider all its name variants. For

instance, let us consider the UMLS concept “melanoma” with CUI C0025202. The set

of name variants for “melanoma” contains: cutaneous melanoma; malignant melanoma;

melanoma; melanoma malignant; mm - malignant melanoma; malignant melanomas; malig-

nant melanoma (disorder); etc. Thus, expanded queries consist of the union of the original

query terms with the set of name variants for each concept identified. In other words, ex-

tracted concepts are used as a proxy to expand the original query with highly related terms

from an external knowledge resource.

1https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
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Retrieval

We adopt BM25 [192] to perform retrieval. Given a collection D of N documents and a query

q expressed as a bag-of-words q = {qi}
n
i=1 ∈V , where qi is a word, V is the vocabulary, and

n = |q| is the query length, BM25 computes the score between the query q and a document d

as follows:

score(q,d) =
n

∑
i=1

IDF(qi) ·
t f (qi,d) · (k1 +1)

t f (qi,d)+ k1 · (1−b+b · |d|
avgdl

)
(5.1)

where IDF(qi) is the IDF weight of the query term qi, t f (qi,d) is the term frequency of qi

within document d, |d| is the document length, k1 and b are hyperparameters, and avgdl is

the average document length in the test collection from which documents are drawn. IDF(qi)

is computed as:

IDF(qi) = log
(N−N(qi)+0.5

N(qi)+0.5

)

(5.2)

where N is the total number of documents in the collection and N(qi) is the number of

documents that contain the query term qi.

Post-Retrieval Query Expansion

We perform a PRF based query expansion. The set of documents retrieved by BM25 using

the a priori expanded query is used to select additional expansion terms for the second

round of retrieval. Given the top k retrieved documents, we select the document concepts –

identified by MetaMap during the indexing step – that match the concepts associated to the

query terms. Then, for each matched concept, we consider the name variants of its neighbor

concepts – that is, concepts that present a hierarchical or associative relation within UMLS

with the matched concept.2 We limit the neighbor concepts to those concepts belonging to

neop, gngm, and aapp semantic types to avoid introducing information that is not strictly

related to the contents of the query. Thus, the name variants identified with the PRF based

query expansion further extend the query after the a priori query expansion.

Filtering

Within clinical trials, one of the most relevant sections is the eligibility section. The eligibility

section comprises, among other things, three demographic aspects that a patient needs to

satisfy to be considered eligible for the trial, namely: minimum age, maximum age, and

gender. A description of each aspect follows.

2https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html
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• minimum age is the minimum age required for a patient to be considered eligible for

the trial, when not stated we do not set a lower bound on the eligible age of a patient.

• maximum age is the maximum age required for a patient to be considered eligible for

the trial, when not stated we do not set an upper bound on the eligible age of a patient.

• gender is the gender required for a patient to be considered eligible for the trial, when

not specified we consider the trial available regardless of the gender.

In order to filter our clinical trials for which a patient is not eligible, we perform a filtering

step based on demographic data. Given a patient case, whenever its demographic data –

i.e., the query field <demographic>, which contains age and gender – do not satisfy the

eligibility criteria for a clinical trial, we exclude that trial from the list of candidate trials for

which the patient is eligible.

5.1.2 Experimental Setup

Test Collection and Knowledge Resource

We consider the Clinical Trials collection of the TREC PM 2018 (PM18) Track [185]. We

use all the query fields and we perform experiments on the 50 topics provided. As knowledge

resource, we adopt the 2018AA release of the UMLS metathesaurus [29]. More details on

the test collection and knowledge resource used can be found in Subsections 2.1.3 and 2.2.4,

respectively.

Evaluation Measures

We use the official measures adopted in the TREC PM 2018 Track, which are infNDCG,

Rprec, and P@10.

Experimental Procedure

We use Whoosh to perform indexing, retrieval, and filtering as it provides easy access and

control of the functionalities required for such operations. For BM25, we keep the default

values k1 = 1.2 and b = 0.75 provided by Whoosh. We rely on MetaMap to perform concept

extraction on documents and queries. We set the number of feedback documents k = 10 for

the PRF based query expansion.

We summarize the procedure used for the experiments below.

Indexing:
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• Use MetaMap to extract from each clinical trial the UMLS concepts restricted to neop

and gngm semantic types.

• Index clinical trials using the following created fields: <docid>, <text>, <max_age>,

<min_age>, <gender>, and <concepts>.

Pre-Retrieval Query Expansion:

• Use MetaMap to extract from each query field the UMLS concepts restricted to the

following semantic types: neop for <disease>, gngm and comd for <gene>.

• Obtain from extracted concepts all the name variants belonging to the knowledge

sources contained within UMLS.

• Expand queries with the name variants of extracted concepts.

First Round of Retrieval:

• Perform a search using a priori expanded queries with BM25.

Post-Retrieval Query Expansion:

• Take the top k clinical trials retrieved by BM25 using the a priori expanded query.

• Select document concepts that match the concepts associated to query terms.

• Select neighbor concepts – restricted to neop, gngm, and aapp semantic types – that

present a hierarchical or associative relation within UMLS with matched concepts.

• Obtain from neighbor concepts all the name variants belonging to the knowledge

sources contained within UMLS.

• Expand the a priori expanded query with the name variants of neighbor concepts.

Second Round of Retrieval:

• Perform a search using PRF based expanded queries with BM25.

Filtering:

• Filter out candidate clinical trials for which the patient is not eligible.
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We consider three different combinations of the above procedure to address the objectives

of our study. The first combination (base) performs indexing, retrieval, and filtering – that is,

pre- and post-retrieval query expansions are not applied. The second combination (QE) adds

the pre-retrieval query expansion to the pipeline, whereas the third one (QE/PRF) performs

all the steps described above. In this way, we can evaluate how increasing – and more

aggressive – query expansions affect the results and whether retrieval performances can be

correlated with relational information within UMLS.

5.1.3 Experimental Results

The organizers of the TREC PM 2018 Track provided the summary of the results in terms of

best, median, and worst value for each topic for P@10, infNDCG, and Rprec. In Table 5.1,

we report the results of the three considered models – that is, base, QE, and QE/PRF – for

the three evaluation measures averaged across topics, as well as the median values for the

Clinical Trials task.

Table 5.1 Retrieval performances of the considered models on the TREC PM 2018 Clinical

Trials task. Median refers to the average median values of the Clinical Trials task and it is

computed considering all the runs submitted to the task. Bold values represent the highest

scores among models and median.

P@10 infNDCG Rprec

base 0.5680 0.5421 0.4142

QE 0.2920 0.3003 0.1908

QE/PRF 0.1180 0.1468 0.0865

median 0.4680 0.4297 0.3268

The results from Table 5.1 show that BM25 performs best when none of the developed

query expansions are used. On average, the base model outperforms median values by a

large margin – with an average gap grater than or equal to 0.10 for all measures. On the

other hand, the use of both pre- and post-retrieval query expansions significantly worsens

performances. QE and QE/PRF models achieve scores lower than the median values for all

measures. In particular, QE/PRF shows the lowest performances among the three models

considered. This suggests that the proposed knowledge-enhanced models are sensitive to

topic drift – which often occurs when the query is expanded with terms that are not pertinent

to the information need [228].

In order to better understand the performances of the proposed models, we perform a

per-topic analysis that compares, for each measure, the three models with the task median
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values. Figures 5.1–5.3 display, topic by topic, the difference in performance between each

model and the median values. For a positive difference (model better than median), a green

barplot is shown, whereas for a negative difference (model worse than median), a red barplot

is shown.

The analysis of Figures 5.1–5.3 confirms the trend found for average performances.

The base model performs consistently better than task median values for most queries.

Conversely, both pre- and post-retrieval expansions significantly worsen the performances for

most queries. We attribute this performance drop to two main reasons: (i) we do not apply a

weighting scheme on the query terms, (ii) we employ all the knowledge resources contained

within UMLS. Applying a weighting scheme on query terms can reduce the impact of noisy

terms when performing retrieval, while selecting a specific subset of knowledge resources can

improve the quality of the extracted concepts and terms. For this reason, in Section 5.2, we

perform an in-depth analysis of pre-retrieval query reformulation techniques to understand if

the use of weighting schemes and tailored knowledge resources can be beneficial for retrieval

effectiveness. Besides, improving the effectiveness of pre-retrieval techniques has a positive

effect also on post-retrieval ones, like PRF, as the number of relevant documents retrieved in

the first round grows larger.

Comparison with TREC PM 2018 Top Systems

When we look at the detailed analysis in the TREC PM 2018 overview [185], we see that

the base model is one of the top 10 performing systems for all the evaluation measures

in the Clinical Trials task. Specifically, it is the second best system for P@10 and Rprec,

and the third one for infNDCG. Besides, the performance variations of our model across

topics are among the smallest ones of all top-performing systems (see “IMS_TERM” run in

Figure 3 of TREC PM 2018 overview [185]). This is a promising result, as it highlights the

robustness of our baseline model to the set of topics considered. Thus, in the next section, we

keep this model as a core component to investigate the effectiveness of pre-retrieval query

reformulations relying on weighting schemes and specific knowledge resources.
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Fig. 5.1 Per-topic difference between base model and clinical trials median values. For

a positive difference (model better than median), a green barplot is shown, whereas for a

negative difference (model worse than median), a red barplot is shown.
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Fig. 5.2 Per-topic difference between QE model and clinical trials median values. For a

positive difference (model better than median), a green barplot is shown, whereas for a

negative difference (model worse than median), a red barplot is shown.
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Fig. 5.3 Per-topic difference between QE/PRF model and clinical trials median values. For

a positive difference (model better than median), a green barplot is shown, whereas for a

negative difference (model worse than median), a red barplot is shown.
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5.2 In-Depth Analysis of Query Reformulations

Given the outcomes of the preliminary study, we perform an in-depth analysis of pre-retrieval

query reformulations. Compared to the previous study, we perform the analysis on both

tasks of TREC Precision Medicine – that is, Scientific Literature and Clinical Trials – and

we consider the test collections from 2017 and 2018 tracks. In this way, we leverage the dual

nature of TREC PM collections, and we evaluate several pre-retrieval query expansion and

reduction techniques to investigate whether a particular combination can be helpful in both

scientific literature and clinical trials retrieval.

5.2.1 Methodology

The proposed methodology comprises three steps, plus an additional fourth step required

only for the retrieval of clinical trials. The steps are: indexing, query reformulation, retrieval,

and filtering.

Indexing

We use the following fields to index clinical trials collections: <docid>, <text>, <max_age>,

<min_age>, and <gender>. Fields <max_age>, <min_age>, and <gender> contain informa-

tion extracted from the eligibility section of clinical trials and are required for the filtering

step. The <text> field contains the entire content of each clinical trial – and therefore also

the information stored within the fields described above.

On the other hand, we rely on the following fields to index scientific literature collections:

<docid> and <text>. As for clinical trials, the <text> field contains the entire content of

each target document.

Query Reformulation

The proposed approach relies on two types of query reformulation techniques: query expan-

sion and query reduction.

Query expansion: We perform a knowledge-based query expansion. First, we rely on

MetaMap [15] to extract from each query field all the UMLS concepts belonging to the

following semantic types: Neoplastic Process (neop), Gene or Genome (gngm) and

Cell or Molecular Dysfunction (comd). The gngm and comd semantic types are re-

lated to the query <gene> field, while neop is related to the <disease> field. Also, for those

collections where an additional <other> field is included – which considers other potential
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factors that may be relevant – MetaMap is used on <other> with no restriction on the seman-

tic types, as its content does not consistently refer to any particular semantic type. Secondly,

for each extracted concept, we consider all its name variants contained within the following

knowledge resources: NCI thesaurus [205], MeSH thesaurus [146], SNOMED CT [66], and

UMLS metathesaurus [29]. All the knowledge resources are authoritative and manually

curated by professionals. Finally, expanded queries consist in the union of the original terms

with the set of name variants.

Additionally, we expand queries that do not mention any kind of blood cancer (e.g.,

“lymphoma” or “leukemia”) with the term “solid”. This expansion proved to be effective

in [90], where the authors found that a large part of relevant clinical trials do not mention the

exact topic disease. In this case, a general term like “solid tumor” was preferable and more

effective for retrieving relevant clinical trials.

Query reduction: We reduce queries by removing, whenever present, gene mutations

from the <gene> field. We rely on the Cancer Biomarkers database [219] to identify gene

mutations. To clarify, let us consider a topic where the <gene> field mentions “BRAF

(V600E)”. First, we verify that “BRAF (V600E)” exists within the Cancer Biomarkers

database. Then, we remove the mutation “(V600E)” from the query. After the reduction

process, the <gene> field becomes “BRAF”. The reduction process aims to mitigate the

over-specificity of topics, as the information contained within topics can be too specific

compared to that contained within target documents [172].

Additionally, we remove the <other> field from those collections that include it, as it

contains additional factors that are not necessarily relevant – thus representing a potential

source of noise in retrieving precise information for patients.

Retrieval

We adopt BM25 [192] to perform retrieval. Furthermore, we weight the expansion terms less

than 1.0 to limit noise injection in the retrieval process [97].

Filtering

After retrieval, we filter out clinical trials for which a patient is not eligible. We perform

filtering based on demographic data. In those cases where part of the demographic data

is not specified, a clinical trial is kept or discarded based on the remaining demographic

information. For instance, if the clinical trial does not specify a required minimum age, then

it is kept or discarded based on maximum age and gender values.
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5.2.2 Experimental Setup

Test Collections and Knowledge Resources

We consider TREC PM 2017 (PM17) [186] and 2018 (PM18) [185] Tracks. We perform

experiments on both Scientific Literature and Clinical Trials collections using the 30 and 50

topics provided, respectively, in 2017 and 2018. More details on the test collections used

can be found in Subsection 2.1.3. For query expansion, we adopt the following knowledge

resources: NCI thesaurus [205], MeSH thesaurus [146], SNOMED CT [66], and UMLS

metathesaurus [29]. For each resource, we consider the version contained within the 2018AA

release of UMLS. For query reduction, we rely on the Cancer Biomarkers database [219]. In

this case, we adopt the database version of January 17, 2018. A detailed description of the

considered knowledge resources can be found in Section 2.2.

Evaluation Measures

We use the official measures adopted in the TREC PM Tracks, which are infNDCG, Rprec,

and P@10. We do not compute infNDCG for the 2017 Clinical Trials task, since the sampled

relevance judgments are not available. On the other hand, we do not report P@5 and P@15

since they were used only for the 2017 Clinical Trials task and then replaced by infNDCG

and Rprec in 2018 and 2019.

Experimental Procedure

We use Whoosh for indexing, retrieval, and filtering. For BM25, we keep the default values

k1 = 1.2 and b = 0.75 provided by Whoosh. For query expansion, we rely on MetaMap to

extract and disambiguate UMLS concepts.

We summarize the procedure used for each experiment below.

Indexing:

• Index clinical trials using the following created fields: <docid>, <text>, <max_age>,

<min_age>, and <gender>.

• Index scientific literature using the following created fields: <docid> and <text>.

Query Reformulation:

• Use MetaMap to extract from each query field the UMLS concepts restricted to the

following semantic types: neop for <disease>, gngm/comd for <gene>, and all for

<other>.
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• Obtain from extracted concepts all the name variants belonging to NCI, MeSH,

SNOMED CT, and UMLS metathesaurus knowledge resources.

• Expand (or not) topics that do not mention any kind of blood cancer with the term

“solid”.

• Reduce (or not) queries by removing, whenever present, gene mutations from the

<gene> field.

• Remove (or not) the <other> field from those collections that include it.

Retrieval:

• Adopt any combination of the previous reformulation strategies.

• Weight expanded terms with a value m ∈ {0.0,0.1,0.2, ...,1.0}.

• Perform a search using reformulated queries with BM25.

Filtering:

• Filter out candidate clinical trials for which the patient is not eligible.

5.2.3 Experimental Results

In Table 5.2, we report the results of our experiments (upper part) and compare them with

the top-performing systems at TREC PM 2017 and 2018 (lower part). For each year and for

each task, we present our top 5 query reformulations ordered by P@10. Each line shows

a particular combination (yes or no values) of semantic types (neop, comd, gngm), usage

and expansion of <other> field (oth, oth_exp), query reduction (orig), and expansion using

weighted “solid” (tumor) keyword. We report the results for both Scientific Literature (sl)

and Clinical Trials (ct) tasks. We highlight in bold the top 3 scores for each measure, and

we use the symbols † and ‡ to indicate two combinations that perform well in both years.

Regarding TREC PM systems, we select systems from those participants who submitted runs

in both years and reached top 10 performances for at least two measures [186, 185]. The

results reported in the lower part of Table 5.2 indicate the best score obtained by a particular

system for a specific measure; in general, the best results of a participant’s system are often

related to different runs. The symbol ‘−’ means that the measure is not available, while ‘<’

indicates that none of the runs submitted by the participant achieved top 10 performances.

For comparison, we add for each measure the lowest score required to enter the top 10 TREC

results list, and the score obtained by our best combination. The combination is indicated by

the line number, which refers to its position in the upper part of Table 5.2.
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Analysis of Query Reformulations

The results from Table 5.2 (upper part) highlight different trends in 2018 and 2017. In

2018, there is a clear distinction in terms of performances among the combinations that

achieve the best results for Scientific Literature and Clinical Trials tasks. For Scientific

Literature, considering the semantic type neop expansion without using the umbrella term

“solid” provides the best performances for all the measures considered. On the other hand,

two of the best three runs for Clinical Trials (lines 5 and 9) use no semantic type expansion,

but rely on the “solid” (tumor) expansion with weight 0.1.

In 2017, the situation is completely different. Lines 12 and 13 show two combinations

that achieve top 3 performances for both Scientific Literature and Clinical Trials tasks. These

two combinations use query reduction and a weighted 0.1 “solid” (tumor) expansion. The

use of a weighted 0.1 “solid” expansion, as well as a reduced query (orig = n), seems to

improve performances consistently for all measures in 2017. The semantic type gngm seems

more effective than neop, while comd does not seem to have a positive effect at all.

Thus, the analysis of query reformulations shows that no clear pattern emerges for both

tasks. Overall, a query expansion approach using a selected set of semantic types helps

the retrieval of scientific literature. On the other hand, a query reduction approach and a

“solid” (tumor) expansion improve performances on clinical trials retrieval. Nevertheless,

most of the proposed query reformulations perform well for both tasks. Besides, we found

that a particular combination (marked as ‡ in Table 5.2) could have been one of the top 10

performing runs for many evaluation measures in both TREC PM 2017 and 2018.

Comparison with TREC PM Systems

The results from Table 5.2 (lower part) mark a clear distinction between the performances

of participants’ systems for Scientific Literature and Clinical Trials tasks. For Scientific

Literature, many of the participants’ runs do not reach the top 10 threshold for the considered

measures – especially in 2017. The only exceptions are the systems of the research group

from the University of Delaware (see udel_fang in Table 5.2), whose best runs always achieve

top 10 performances for this task. Conversely, most of the participants’ runs achieve top

10 performances for Clinical Trials. In particular, all participants’ runs surpass the top 10

threshold in 2018.

When we consider the top 3 query reformulations from Table 5.2 (upper part), we see

that they achieve performances higher than the top 10 threshold for most measures. The

only exception is P@10 in the 2018 Scientific Literature task, where none of the three best

query reformulations reaches the top 10 threshold. Compared to the participants’ systems,
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most of our query reformulations achieve higher performances for most measures in both the

2017 and 2018 Clinical Trials tasks. The only notable exception is P@10 in 2017, where

the system of the research group from the University of Texas at Dallas (see UTDHLTRI

in Table 5.2) outperforms our top 5 query reformulations. A different situation occurs for

Scientific Literature tasks, where our query reformulations do not achieve best performances

for any measure in both 2017 and 2018. Nevertheless, the top 3 query reformulations achieve

better results than most of the considered participants’ systems.

Thus, the in-depth analysis, which stemmed from our preliminary study on the TREC

PM 2018 Track, shows the effectiveness of applying a weighting scheme on expansion terms

and selecting tailored knowledge resources for query expansion and reduction techniques. In

particular, the results highlight the robustness of our approach across different collections and

tasks. Therefore, in the next section, we conduct a validation study on the TREC PM 2019

Track to investigate whether the findings of this analysis remain valid. In other words, we

evaluate how the proposed query reformulations generalize to TREC PM 2019 collections,

how they affect retrieval performances, and if the trends found are confirmed.
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Table 5.2 Results for the TREC PM 2017 and 2018 Tracks. Upper part reports the results achieved using the five most effective query

reformulations for each year. (†) and (‡) indicate two particular combinations effective in both years. Lower part reports the results

obtained by participants’ systems, the lowest score required to enter the top 10 TREC results list, and the score obtained by our best

combination. Further details are reported in Subsection 5.2.3.

Semantic Type Field Other sl ct sl ct sl ct

line year neop comd gngm oth oth_exp orig solid P_10 P_10 infNDCG infNDCG Rprec Rprec

1 2018 y y n n n y n 0.5660 0.5540 0.4912 0.5266 0.3288 0.4098

2 2018 y n n n n y n 0.5640 0.5600 0.4961 0.5264 0.3288 0.4138

3 2018 y n y n n y n 0.5480 0.5660 0.4941 0.5292 0.3266 0.4116

4 2018 n n n n n y n 0.5460 0.5680 0.4876 0.5411 0.3240 0.4197

5 2018 n n n n n y 0.1 0.5440 0.5740 0.4877 0.5403 0.3247 0.4179

6 2018 n y n n n y n 0.5440 0.5540 0.4853 0.5403 0.3236 0.4130

7 2018 y n n n n n n 0.5420 0.5700 0.4636 0.5345 0.3180 0.4134

8† 2018 n n y n n y n 0.5340 0.5640 0.4877 0.5337 0.3229 0.4106

9‡ 2018 n n n n n n 0.1 0.5300 0.5820 0.4635 0.5446 0.3148 0.4205

10 2018 y n y n n n n 0.5140 0.5680 0.4572 0.5393 0.3144 0.4122

11 2017 y n y n n n 0.1 0.5033 0.3759 0.3984 - 0.2697 0.3206

12 2017 n n y n n n 0.1 0.4900 0.3931 0.3881 - 0.2677 0.3263

13‡ 2017 n n n n n n 0.1 0.4800 0.4034 0.3931 - 0.2728 0.3361

14 2017 y n n n n n 0.1 0.4767 0.3862 0.3974 - 0.2714 0.3202

15 2017 n n n n n n n 0.4733 0.3931 0.3943 - 0.2732 0.3241

16 2017 y n y n n y 0.1 0.4733 0.3828 0.3567 - 0.2329 0.3253

17† 2017 n n y n n y n 0.4633 0.3862 0.3442 - 0.2254 0.3243

TREC PM Participant Identifier

18 2018 UTDHLTRI 0.6160 0.5380 0.4797 0.4794 < 0.3920

19 2018 UCAS 0.5980 0.5460 0.5580 0.5347 0.3654 0.4005

20 2018 udel_fang 0.5800 0.5240 0.5081 0.5057 0.3289 0.3967

21 2018 NOVASearch < 0.5520 < 0.4992 < 0.3931

22 2018 Poznan < 0.5580 < 0.4894 < 0.4101

2018 Top 10 threshold 0.5800 0.5240 0.4710 0.4736 0.2992 0.3658

2018 Best combination of our approach (1) 0.5660 (9‡) 0.5820 (2) 0.4961 (9‡) 0.5446 (1) 0.3288 (9‡) 0.4205

23 2017 UTDHLTRI 0.6300 0.4172 0.4647 - 0.2993 -

24 2017 udel_fang 0.5067 < 0.3897 - 0.2503 -

25 2017 NOVASearch < 0.3966 < - < -

26 2017 Poznan < 0.3690 < - < -

27 2017 UCAS < 0.3724 < - 0.2282 -

2017 Top 10 threshold 0.4667 0.3586 0.3555 - 0.2282 -

2017 Best combination of our approach (11) 0.5033 (13‡) 0.4034 (11) 0.3984 - (15) 0.2732 (13‡) 0.3361
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5.3 Validation Study: TREC Precision Medicine 2019

Given the outcomes of the in-depth analysis of query reformulations, we conduct a validation

study on the TREC PM 2019 Track. We perform experiments on both tasks, with a particular

focus on the Clinical Trials task. The objective of the study is twofold. First, we want to

validate the effectiveness of the top query reformulations found in the previous analysis for

the 2019 track. Secondly, we want to verify if combining the rankings obtained using such

query reformulations proves effective.

5.3.1 Methodology

The proposed methodology comprises four steps, plus an additional step used only for

retrieving clinical trials. The steps are: indexing, query reformulation, retrieval, and filtering

(only for clinical trials). Then, the rankings obtained with different query reformulations are

combined using rank fusion.

Indexing

We rely on the following fields to index clinical trials: <docid>, <text>, <max_age>,

<min_age>, and <gender>. On the other hand, we use the following fields to index scientific

literature: <docid> and <text>.

Query Reformulation

The approach leverages two types of query reformulation techniques: query expansion and

query reduction.

Query expansion: We perform a knowledge-based query expansion. We use MetaMap [15]

to extract and disambiguate from each query field all the UMLS concepts belonging to the

following semantic types: Neoplastic Process (neop), Gene or Genome (gngm) and

Cell or Molecular Dysfunction (comd). The gngm and comd semantic types are re-

lated to the query <gene> field, whereas neop is related to the <disease> field. Then,

for each extracted concept, we consider all its name variants contained into the following

knowledge resources: NCI thesaurus [205], MeSH thesaurus [146], SNOMED CT [66], and

UMLS metathesaurus [29]. Expanded queries consist in the union of the original terms with

the set of name variants.

Additionally, we expand queries that do not mention any kind of blood cancer with the

term “solid”.
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Query reduction: We reduce queries by removing, whenever present, gene mutations

from the <gene> field. We rely on the Cancer Biomarkers database [219] to identify gene

mutations.

Retrieval

We rely on BM25 [192] to retrieve documents. Query terms obtained through query expansion

are weighted less than 1.0 to avoid noise injection in the retrieval process [97].

Filtering

We filter out from the list of candidate trials those for which a patient is not eligible. We

perform filtering based on demographic data. In those cases where part of the demographic

data are not specified, a clinical trial is kept or discarded on the basis of the remaining

demographic information.

Rank Fusion

We perform rank fusion over the rankings obtained with the three most effective query

reformulations for Clinical Trials and Scientific Literature tasks. We select query reformula-

tions based on P@10, and we prioritize reformulations that are effective in the 2018 track

since it shows more commonalities with the 2019 track compared to the 2017 track. We

adopt CombSUM [200] to perform rank fusion and we normalize scores using min-max

normalization.

5.3.2 Experimental Setup

Test Collection and Knowledge Resources

We consider the TREC PM 2019 (PM19) Track [187]. We perform experiments on both

Scientific Literature and Clinical Trials collections using the 40 topics provided. The reader

can find more details on the test collections used in Subsection 2.1.3. For query expansion,

we adopt the following knowledge resources: NCI thesaurus [205], MeSH thesaurus [146],

SNOMED CT [66], and UMLS metathesaurus [29]. For each resource, we consider the

version contained within the 2018AA release of UMLS. For query reduction, we rely on the

Cancer Biomarkers database [219]. We adopt the database version of January 17, 2018.
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Evaluation Measures

We use the official measures adopted in the TREC PM 2019 Track, which are infNDCG,

Rprec, and P@10.

Experimental Procedure

We use two different search engine libraries to index, retrieve, and filter the given collections:

Whoosh for Clinical Trials and ElasticSearch for Scientific Literature.3 We moved from

Whoosh to ElasticSearch for Scientific Literature because Whoosh could not efficiently

handle the increased collection size – which presents over two million documents more

than the 2017 and 2018 collections (cf. Scientific Literature collections in Subsection 2.1.3).

For BM25, we keep default values k1 = 1.2 and b = 0.75 – as we found them to be a good

combination for the considered tasks (cf. Sections 5.1 and 5.2). For query expansion, we rely

on MetaMap to extract and disambiguate UMLS concepts.

We summarize the procedure used for each experiment below.

Indexing:

• Index clinical trials using the following created fields: <docid>, <text>, <max_age>,

<min_age> and <gender>.

• Index scientific literature using the following created fields: <docid> and <text>.

Query Reformulation:

• Use MetaMap to extract from each query field the UMLS concepts restricted to the

following semantic types: neop for <disease>, gngm/comd for <gene>.

• Obtain from extracted concepts all the name variants belonging to NCI, MeSH,

SNOMED CT, and UMLS metathesaurus knowledge resources.

• Expand (or not) topics that do not mention any kind of blood cancer with the term

“solid”.

• Reduce (or not) queries by removing, whenever present, gene mutations from the

<gene> field.

Retrieval:

• Adopt the three most effective query reformulations from Section 5.2.

3https://www.elastic.co/elasticsearch/
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• Weight expanded terms with m = 0.1.

• Perform a search using reformulated queries with BM25.

Filtering:

• Filter out clinical trials for which the patient is not eligible.

Rank Fusion:

• Perform rank fusion using CombSUM and Min Max normalization over the three most

effective query reformulations for Clinical Trials.

• Perform rank fusion using CombSUM and Min Max normalization over the three most

effective query reformulations for Scientific Literature.

To address the objectives of our study, we consider five different combinations of the

above procedure for each task.

Clinical Trials:

• base: refers to the baseline model, that is BM25 plus filtering.

• neop/reduced: refers to neop expansion over reduced queries.

• solid/original: refers to “solid” expansion over original queries.

• solid/reduced: refers to “solid” expansion over reduced queries.

• qrefs/combined: refers to the combination of the above query reformulations using

CombSUM.

Scientific Literature:

• base: refers to the baseline model, that is BM25.

• neop/original: refers to neop expansion over original queries.

• neop+comd/original: refers to neop and comd expansions over original queries.

• neop+gngm/original: refers to the neop and gngm expansions over original queries.

• qrefs/combined: refers to the combination of the above query reformulations using

CombSUM.
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5.3.3 Experimental Results

The organizers of the TREC PM 2019 Track provided the summary of the results in terms of

best, median, and worst value for each topic for P@10, infNDCG, and Rprec. In Tables 5.3

and 5.4, we report the results of the five considered models, as well as the median values, for

the Clinical Trials and Scientific Literature tasks, respectively.

Table 5.3 Retrieval performances of the considered models on the TREC PM 2019 Clinical

Trials task. Median refers to the average median values of the Clinical Trials task and it is

computed considering all the runs submitted to the task. Bold values represent the highest

scores among models and median.

P@10 infNDCG Rprec

base 0.5053 0.6186 0.4337

neop/reduced 0.5237 0.5755 0.4135

solid/original 0.5368 0.6239 0.4386

solid/reduced 0.5316 0.5940 0.4264

qrefs/combined 0.5342 0.5706 0.4381

median 0.4658 0.5137 0.3477

Table 5.4 Retrieval performances of the considered models on the TREC PM 2019 Scientific

Literature task. Median refers to the average median values of the Scientific Literature task

and it is computed considering all the runs submitted to the task. Bold values represent the

highest scores among models and median.

P@10 infNDCG Rprec

base 0.5125 0.4747 0.2977

neop/original 0.5150 0.4645 0.2982

neop+comd/original 0.5125 0.4636 0.2964

neop+gngm/original 0.5050 0.4740 0.2999

qrefs/combined 0.5075 0.4665 0.2986

median 0.5450 0.4559 0.2806

The results from Table 5.3 show that the top query reformulations, identified in the in-

depth analysis from Section 5.2, remain effective for precision-oriented measures in clinical

trials retrieval. Indeed, all the knowledge-enhanced models outperform the baseline by a

margin greater than 2% for P@10. On the other hand, the improvements are less marked for
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infNDCG and Rprec – where only the model employing “solid” expansion (solid/original)

and the combined model (qrefs/combined) outperform the baseline. We attribute the drop in

performance of the other knowledge-enhanced models to the use of reduction techniques. In

fact, reducing queries helps to focus more on relevant terms – thus increasing precision – but

can hamper recall, as fewer terms are used to perform retrieval. Thus, the results suggest that

the developed query reformulations are precision-oriented rather than recall-oriented.

To better understand the performances of the considered query reformulations on the

Clinical Trials task, we perform a per-topic analysis that compares, for each measure, the five

models with the task median values. Figures 5.4–5.8 display, topic by topic, the difference in

performance between each model and the median values. For a positive difference (model

better than median), a green barplot is shown, whereas for a negative difference (model worse

than median), a red barplot is shown.

Fig. 5.4 Per-topic difference between base model and clinical trials median values. For

a positive difference (model better than median), a green barplot is shown, whereas for a

negative difference (model worse than median), a red barplot is shown.

The analysis of Figures 5.4–5.8 highlights an interesting scenario. First, all the consid-

ered models achieve performances higher than or equal to median values for most topics.

Secondly, different knowledge-enhanced models achieve top performances on different

topics. In other words, it does not exist a query reformulation that provides consistently

better results than all the other ones. This is an interesting outcome, as it shows that the use
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Fig. 5.5 Per-topic difference between neop/reduced model and clinical trials median values.

For a positive difference (model better than median), a green barplot is shown, whereas for a

negative difference (model worse than median), a red barplot is shown.

Fig. 5.6 Per-topic difference between solid/original model and clinical trials median values.

For a positive difference (model better than median), a green barplot is shown, whereas for a

negative difference (model worse than median), a red barplot is shown.
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Fig. 5.7 Per-topic difference between solid/reduced model and clinical trials median values.

For a positive difference (model better than median), a green barplot is shown, whereas for a

negative difference (model worse than median), a red barplot is shown.

Fig. 5.8 Per-topic difference between qrefs/combined model and clinical trials median values.

For a positive difference (model better than median), a green barplot is shown, whereas for a

negative difference (model worse than median), a red barplot is shown.
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of different knowledge-based query reformulations improves performances from different

angles. However, the results obtained using CombSUM (i.e., qrefs/combined) suggest that

more advanced techniques are required to effectively combine the different signals provided

by the considered query reformulations. Although effective, CombSUM does not outperform

all the individual models.

Regarding scientific literature retrieval, the results from Table 5.4 highlight a lower

impact of the considered query reformulations on retrieval performances. In particular, none

of the considered knowledge-enhanced models outperform the baseline for infNDCG. A

possible reason for the marginal impact of query reformulations could lie on the shift from

Whoosh to ElasticSearch for the indexing, retrieval, and filtering steps. Indeed, Whoosh and

ElasticSearch handle the various steps required by our procedure differently, in particular

query term weighting operations. However, further analyses are required to confirm this

intuition – which are out of scope given the objectives of this thesis.

Comparison with TREC PM 2019 Top Systems

When looking at the detailed analysis in the TREC PM 2019 overview [187], we observe

that the best performances obtained by our models surpass the top 10 threshold in both tasks

for all the evaluation measures but one. For the Clinical Trials task, the model that relies on

“solid” expansion (i.e., solid/original) achieves the second best performance for infNDCG

and Rprec, and the third best for P@10 (see “BM25solid01o” in Table 6 Clinical Trials of

the TREC PM 2019 overview [187]). As for Scientific Literature, the baseline model and the

model empolying neop and gngm expansions achieve top 10 performances for infNDCG and

Rprec, respectively (see “BM25” and “BM25neopgngm” in Table 6 Literature Articles of

the TREC PM 2019 overview [187]). On the other hand, all the proposed models achieve

performances lower than median values for P@10 – which is consistent with the results

found in Section 5.2 for the 2018 Scientific Literature task.

Thus, the outcomes of this study highlight the effectiveness of the proposed query

reformulations for retrieving relevant clinical trials in top positions of the ranking list. This

is a promising result for at least two reasons. The first reason is that the proposed query

reformulations, along with the weighting scheme applied to expansion terms, prove to be

consistent across the years. The second reason regards the robustness of our approach.

Indeed, the variation of the performance across topics for solid/original is smaller than any

other top 10 system of TREC PM 2019 (see “BM25solid01o” in Figure 3 of the TREC PM

2019 overview [187]). Therefore, the developed query reformulations can be used to build

knowledge-enhanced models that are robust to topic variations.
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In the next section, given the consistent results achieved by the proposed query refor-

mulations for the Clinical Trials task across the three years of TREC PM, we perform an a

posteriori analysis focusing on clinical trials retrieval. The analysis provides an overview of

the effectiveness of such techniques over the three years of TREC PM and aims to identify a

robust subset of query reformulations specifically tailored to clinical trials retrieval.

5.4 A Posteriori Analysis of Query Reformulations

Based on the results achieved for the Clinical Trials task in Sections 5.2 and 5.3, we perform

an a posteriori analysis on the effectiveness of the proposed query reformulations for clinical

trials retrieval over the three years of TREC PM. This systematic analysis compares our

approach and those proposed by the research groups that participated in all the three years of

TREC PM.

5.4.1 Methodology

We adopt the methodology proposed in Section 5.2 for the Clinical Trials task, that is:

indexing, query reformulation, retrieval, and filtering.

5.4.2 Experimental Setup

Test Collections and Knowledge Resources

We consider TREC PM 2017 (PM17) [186], 2018 (PM18) [185], and 2019 (PM19) [187]

Tracks. We perform experiments on Clinical Trials collections using the 30, 50, and 40 topics

provided, respectively, in 2017, 2018, and 2019. For query expansion, we adopt the following

knowledge resources: NCI thesaurus [205], MeSH thesaurus [146], SNOMED CT [66], and

UMLS metathesaurus [29]. For each resource, we consider the version contained within

the 2018AA release of UMLS. For query reduction, we rely on the Cancer Biomarkers

database [219]. We adopt the database version of January 17, 2018.

Evaluation Measures

We use the official measures adopted in the TREC PM Tracks, which are infNDCG, Rprec,

and P@10. We do not report P@5 and P@15 since they were used only for the 2017 task,

and we do not compute infNDCG for the 2017 task because the sampled relevance judgments

are not available.
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Experimental Procedure

For the 2017 and 2018 tasks, we rely on the top 5 query reformulations, ordered by P@10,

found in the in-depth analysis performed in Section 5.2. Then, we apply the top 3 reformu-

lations found in the 2017 and 2018 tasks to the 2019 task. We adopt Whoosh to perform

indexing, retrieval, and filtering, and we set the rest of the parameters as in Sections 5.2

and 5.3.

5.4.3 Experimental Results

In Table 5.5, we report the results of our experiments on query reformulation (Part A) and

compare them with the results obtained by the research groups that participated at TREC

PM 2017, 2018 and 2019 (Part B). For 2017 and 2018 tasks, we present the five query

reformulations with the highest P@10. Then, we report the effectiveness of the considered

reformulations for the 2019 task. Each line shows a particular combination (yes or no values)

of semantic types (neop, comd, gngm), usage and expansion of <other> field (oth, oth_exp),

query reduction (orig), and expansion using the weighted “solid” (tumor) keyword. We use

the symbol ‘·’ to indicate that the features oth, oth_exp are not applicable for the years 2018

and 2019 due to the absence of the <other> field in 2018 and 2019 topics. We highlight in

bold the top 3 scores for each measure, and we use the symbol ‡ to indicate a combination

that performs well in all three years. For the TREC PM systems, we select systems from

those participants who submitted runs in all three years and reached top 10 performances

in at least one edition for each measure [186, 185, 187]. The results reported in part B of

Table 5.5 indicate the best score obtained by a particular system for a specific measure –

again, note that the best results of a participant’s system are often related to different runs.

The symbol ‘−’ means that the measure is not available, while ‘<’ indicates that none of the

runs submitted by the participant achieved top 10 performances. For the sake of comparison,

we add for each measure the lowest score required to enter the top 10 TREC results list, and

the score obtained by our best combination. The combination is indicated by the line number,

which refers to its position in Part A of Table 5.5.

Analysis of Query Reformulations

The results from Table 5.5 (Part A) highlight that the use of “solid” expansions, as well

as query gene reductions (orig = n), seems to consistently improve performances in 2017 –

two of the three best combinations in terms of P@10 (lines 1 and 2) apply both techniques.

Regarding knowledge-based expansions, the semantic type gngm (lines 1 and 5) seems more

effective than neop (line 3), whereas comd does not seem to have any positive effect at all.
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Table 5.5 Results for the TREC PM Clinical Trials tasks. Part A (top) reports the results

achieved using the five most effective query reformulations for each year. (‡) indicates a

particular query reformulation effective in all three years. Part B (bottom) reports the results

obtained by participants’ systems, along with the lowest score required to enter the top 10

TREC results list and the score obtained by the best combination of our approach. Further

details are reported in Subsection 5.4.3.

A: Analysis of Query Reformulations

line year neop comd gngm oth oth_exp orig solid P@10 infNDCG Rprec

1 2017 n n y n n n 0.1 0.3931 - 0.3263

2‡ 2017 n n n n n n 0.1 0.4034 - 0.3361

3 2017 y n n n n n 0.1 0.3862 - 0.3202

4 2017 n n n n n n n 0.3931 - 0.3241

5 2017 n n y n n y n 0.3862 - 0.3243

6 2018 n n n · · y n 0.5680 0.5411 0.4197

7 2018 n n n · · y 0.1 0.5740 0.5403 0.4179

8 2018 y n n · · n n 0.5700 0.5345 0.4134

9‡ 2018 n n n · · n 0.1 0.5820 0.5446 0.4205

10 2018 y n y · · n n 0.5680 0.5393 0.4122

11 2019 n n n · · y 0.1 0.5368 0.6239 0.4386

12 2019 y n n · · n n 0.5237 0.5755 0.4135

13‡ 2019 n n n · · n 0.1 0.5316 0.5940 0.4264

14 2019 n n y · · n 0.1 0.5263 0.6070 0.4302

15 2019 n n n · · n n 0.5105 0.5853 0.4239

B: Comparison with TREC PM other Participants

line year TREC PM Participant Identifier P@10 infNDCG Rprec

1 2017 BiTeM 0.3586 - -

2 2017 cbnu < - -

3 2017 CSIROmed < - -

4 2017 ECNUica < - -

5 2017 Poznan 0.3690 - -

2017 Top 10 threshold 0.3586 - -

2017 Best combination of our approach (A.2‡) 0.4034 - 0.3361

6 2018 BiTeM < < <
7 2018 cbnu < < <
8 2018 CSIROmed < < <
9 2018 ECNUica < < <
10 2018 Poznan 0.5580 0.4894 0.4101

2018 Top 10 threshold 0.5240 0.4736 0.3658

2018 Best combination of our approach (A.9‡) 0.5820 0.5446 0.4205

11 2019 BiTeM 0.4711 0.4963 0.3698

12 2019 cbnu 0.4921 0.5568 0.4121

13 2019 CSIROmed 0.4921 0.4930 0.3586

14 2019 ECNUica 0.5053 0.5355 0.4001

15 2019 Poznan 0.4421 0.4810 0.3503

2019 Top 10 threshold 0.3658 0.4320 0.3230

2019 Best combination of our approach (A.11) 0.5368 0.6239 0.4386
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All five combinations do not consider the <other> field (oth = n) nor its expansion (oth_exp

= n) – confirming our intuition that it might represent a potential source of noise in retrieving

precise information for patients. Similarly to 2017, two of the three best combinations in 2018

do not use knowledge-based expansions and rely on “solid” (tumor) expansion (lines 7 and

9). In particular, the reformulation combining query gene reductions and “solid” expansion

(marked as ‡) provides the best performances for all the measures considered, both in 2017

and 2018. This suggests that removing over-specialized information (i.e., the gene mutations)

or adding general terms (e.g., solid) benefits the retrieval. A possible reason is related to the

nature of the document sets, since clinical trials often contain general requirements to allow

patients to enroll. The results obtained in 2019 with the top 3 query reformulations from

both 2017 and 2018 confirm this trend. The reformulation combining query gene reductions

and “solid” expansion (line 13‡) achieves top 3 performances in 2019, however two query

reformulations from 2017 (line 14) and 2018 (line 11) provide better performances. This

result shows how difficult the task is. Indeed, even though we found a particular query

reformulation approach (marked as ‡) to be highly effective in all three years – especially in

2017 and 2018 – it was not the best approach for 2019.

Therefore, this analysis helps to identify a robust subset of query reformulations for

clinical trials retrieval. The selected query reformulations can be used at the early stages of

the IR pipeline to retrieve relevant clinical trials in top positions of the ranking list. In this

way, the different signals, that (knowledge-based) query reformulations provide, can be used

(and combined) by multi-stage IR systems to obtain a richer pool of relevant documents, thus

reducing the semantic gap between queries and documents.

Comparison with TREC PM Systems

The results from Table 5.5 (Part B) mark a clear division between the 2017 and 2018 tasks

and the 2019 task. In 2017 and 2018, most of the participants’ runs do not reach the top 10

threshold in any of the considered measures – the only exception is the research group from

Poznan University of Technology, whose best runs always belong to the top 10 performing

runs for the task. Conversely, in 2019 all the participants’ best runs achieve results higher than

the top 10 threshold. The reason behind the improvement of participants’ runs in 2019 mostly

relates to the use of supervised re-ranking models, which exploit relevance judgments from

previous years for training. Thus, participants’ approaches consist of expensive supervised

multi-stage systems that, unlike ours, require relevance labels to work.

When we consider the results obtained using the query reformulations from Table 5.5 (Part

A), we see that all query reformulations obtain results higher than the top 10 threshold for all

the considered measures in all three years. Furthermore, query reformulations consistently
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achieve better results than participants’ systems for each measure in all three years. Besides,

unlike participants’s systems, our approach operates only in the early stages of the IR pipeline

and does not require any labeled data to work. This is an indication of the robustness of

our approach across the different collections and also of the effectiveness of the proposed

query reformulations for clinical trials retrieval. In particular, it is worth mentioning that

models using the (‡) query reformulation achieve performances that belong to the top 3 of

the best-performing systems in each year of the TREC PM Track [186, 185, 187].

5.5 Chapter Outcomes and Lessons Learned

In this chapter, we investigated how to use external knowledge resources to enhance bag-

of-words representations and reduce the effect of the semantic gap between queries and

documents, focusing on an important use-case in medical IR: providing useful precision

medicine information to clinicians treating cancer patients. To this end, we developed

knowledge-enhanced lexical models that integrate external knowledge in the retrieval stage

through query reformulation techniques.

As a first step, we have conducted a preliminary study on the TREC Precision Medicine

(PM) 2018 Clinical Trials task – where the objective is to retrieve relevant clinical trials

for which the patient is eligible. We proposed a procedure to: 1) expand queries iteratively,

relying on medical knowledge resources [122, 155], to increase the probability of finding

relevant trials by adding neoplastic, genetic, and proteic term variants to the original query;

and 2) filter out trials, based on demographic data, for which the patient is not eligible. The

experimental results showed that retrieval models perform best when none of the developed

query expansions are used. The reasons behind the detrimental effect of the proposed query

expansions are two: (i) the lack of an appropriate weighting scheme on query terms, (ii) the

use of all the knowledge resources contained within UMLS – regardless of their relevance to

the considered task.

Thus, we have deepened the analysis performed in the preliminary study and we have

extended it to both scientific literature and clinical trials retrieval. In other words, we took

advantage of the dual nature of TREC PM collections and we evaluated several state-of-

the-art query expansion and reduction techniques to examine whether a particular approach

can be helpful for both scientific literature and clinical trials. The analysis showed that no

clear pattern emerges for both tasks. Overall, a query expansion approach using a selected

set of semantic types helps the retrieval of scientific literature. On the other hand, a query

reduction approach and a “solid” (tumor) expansion improve performances on clinical trials

retrieval. Nevertheless, most of the proposed query reformulations perform well for both
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tasks. Besides, we found that a particular combination (marked as ‡ in Table 5.2) could have

been one of the top 10 performing runs for many evaluation measures in both TREC PM 2017

and 2018. Hence, the in-depth analysis, that stemmed from our preliminary study, highlighted

the effectiveness of applying a weighting scheme on expansion terms and selecting tailored

knowledge resources for query expansion and reduction techniques.

Given the outcomes of the in-depth analysis, we have conducted a validation study on

the TREC PM 2019 Track. We performed experiments on both tasks, with a particular focus

on the Clinical Trials task, to evaluate how the different query reformulations – tested on

previous TREC PM collections – affect the results and whether the findings obtained in the

previous analysis remain valid. The experimental results highlighted the effectiveness of the

tested query reformulations for retrieving relevant clinical trials – especially in top positions

of the ranking list. This proves that, across the years, the tested query reformulations remain

effective. Furthermore, the per-topic analysis showed that different knowledge-enhanced

models achieve top performances on different topics. In other words, it does not exist a query

reformulation that consistently provides better results than all the other ones. Therefore, the

combination of several knowledge-based query reformulations – which focus on different

aspects of the queries and promote complementary information – can improve performances

from different angles.

Finally, we have performed an a posteriori analysis on the effectiveness of the proposed

query reformulations for clinical trials retrieval. We compared our approach and those

proposed by the research groups that participated in all the three years of TREC PM. The

experimental results confirmed the effectiveness of the proposed query reformulations in all

collections. Besides, the analysis helped to identify a robust subset of query reformulations

for clinical trials retrieval. The selected query reformulations can be used at the early stages

of the IR pipeline to retrieve relevant clinical trials in top positions of the ranking list. In this

way, the different signals that (knowledge-based) query reformulations provide can be used

(and combined) by multi-stage IR systems to obtain a richer pool of relevant documents, thus

reducing the semantic gap between queries and documents.





Chapter 6

Knowledge-Enhanced Semantic Models

Since the advent of word2vec [163, 162] and doc2vec [138] models, distributed represen-

tations of words and documents have experienced widespread use in NLP and IR tasks.

Nevertheless, even though word2vec and doc2vec models effectively encode semantic and

syntactic relationships relying on the distributional hypothesis [102], they fail to capture

relational information – e.g., synonymic dependencies – for words not occurring in the

same context [119]. In this regard, many efforts have been made by the NLP community to

integrate the relational information – contained within external knowledge resources – in the

learning process of word and document representations, such as [56, 250, 74, 156, 204], to

name a few. On the other hand, as we have shown in Subsection 3.5.2, fewer studies have been

conducted in IR to investigate how relational information can be incorporated within the word

and document representations generated by neural language models [147, 169, 170, 220].

Besides, even though knowledge-enhanced neural language models have been proven ef-

fective in many NLP tasks, their effectiveness is limited in IR – as we will see throughout this

chapter. In particular, we identify two reasons causing this performance gap. First, knowledge-

enhanced neural language models have been used in IR mostly for re-ranking [147, 170]. In

re-ranking, knowledge-enhanced neural language models are limited to candidate documents

retrieved by lexical (bag-of-words) models, which are not suited to address the semantic gap.

Thus, relevant documents most affected by the semantic gap – that knowledge-enhanced

models could help identify – simply remain undiscovered. Secondly, IR tasks are different

from NLP tasks. IR requires to match a given query to a set of relevant documents, whereas

NLP mostly deals with the discovery of semantic and linguistic regularities. Therefore,

(knowledge-enhanced) neural language models do not encode relevance signals or discrimi-

native aspects between queries and documents, which are fundamental to effectively address

IR tasks.
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To investigate and address the above limitations, we focus on medical literature and we

consider two linguistic features related to the semantic gap: synonymy and polysemy. Within

medical literature, the large presence of synonymous and polysemous words – along with the

use of acronyms and morphosyntactic variants – poses a critical challenge to retrieval models.

For example, an IR model might not effectively answer a query related to the concept of

“tumor” if it does not identify the synonymy relationship occurring between “tumor” and,

say, “neoplasm”. On the other hand, an IR model might retrieve erroneous documents for

a query related to the concept of “common cold” if it does not distinguish between the

different contextual meanings of the word “cold”. In fact, “cold” assumes different meanings

depending on the context, including: common cold, cold temperature, and COLD as per

Chronic Obstructive Lung Disease. We refer to these queries as semantically hard queries.

Thus, to fully understand knowledge-enhanced neural language models and their effec-

tiveness for IR tasks, we perform a reproducibility study of the works by Liu et al. [147] and

Nguyen et al. [169]. The knowledge-enhanced word embeddings used, and proposed, by Liu

et al. [147] extend word2vec models [162] by applying a knowledge-based regularization

during/after the training of word representations. The assumption is that related words in

an external knowledge resource – e.g., synonyms – should have similar representations

in the latent space. The learned representations encode synonymy and are then used to

perform re-ranking on medical IR collections. On the other hand, the work by Nguyen

et al. [169] attempts to integrate knowledge-based information in the learning process of

document representations. In particular, the authors investigate how to optimize document

representations learned by doc2vec models [138], relying on concepts – specified within

external knowledge resources – and words – belonging to the target corpus. The learned

representations encode both synonymy and polysemy and are then used to perform query

expansion, with the objective of improving the retrieval performance of lexical models on

medical IR collections.

Then, motivated by the outcomes of the reproducibility study, we pose the following

research questions:

RQ1 Which feature between synonymy and polysemy can be exploited to reduce the seman-

tic gap and improve retrieval?

RQ2 How can external knowledge resources help to bridge the semantic gap between queries

and documents?

For RQ1, we investigate how to leverage synonymy and polysemy in the learning process

of neural models. How can we model both features jointly? Which feature is prominent for
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retrieval effectiveness? To what extent modeling these features is effective for semantically

hard queries?

For RQ2, we explore how integrating external knowledge into neural models impacts retrieval

performances. In particular, we seek to understand whether knowledge-enhanced neural

models retrieve relevant documents that are most affected by the semantic gap. In other words,

to what extent knowledge-enhanced neural models retrieve different relevant documents?

To address the research questions, we propose the Semantic-Aware Neural Framework

for IR (SAFIR), an unsupervised knowledge-enhanced neural framework for IR. SAFIR

jointly learns word, concept, and document representations from scratch. The learned

representations are optimized for IR and encode both polysemy and synonymy to address

the semantic gap between queries and documents. SAFIR can be applied to any domain

where external knowledge resources are available (e.g., medical, legal, news), and it does not

require any labeled data for training – which are scarce and expensive resources.

We conduct an experimental evaluation to compare SAFIR with knowledge-enhanced

neural language models on medical literature retrieval, a specific task of Clinical Decision

Support (CDS). We adopt the UMLS metathesaurus [29] as external knowledge resource and

we evaluate models on the TREC CDS collections [188, 189, 184] and on the OHSUMED

collection [107].

We consider two retrieval strategies to investigate the research questions: document

retrieval and query expansion. Document retrieval gives us the opportunity to investigate the

effectiveness of integrating external knowledge into neural models for the typical retrieval

scenario, where systems retrieve a set of candidate documents given a query. Query expansion

allows us to investigate the effectiveness of knowledge-enhanced neural models – which are

specifically designed to address the semantic gap – in retrieving feedback documents for PRF

based methods. In other words, we evaluate if knowledge-enhanced neural models provide

expansion terms that are more effective at reducing the semantic gap for lexical models.

The main contributions of this chapter are:

C1 We perform a reproduciblity study of two seminal works on knowledge-enhanced

neural models for IR. The outcomes of the reproducibility study highlight the potential

of knowledge-enhanced models – but also the limitations of neural language models

for IR.

C2 We present SAFIR, an unsupervised knowledge-enhanced neural framework for IR.

To the best of our knowledge, SAFIR is the first unsupervised framework that models

synonymy and polysemy to jointly learn word, concept, and document representations

specifically for IR. SAFIR does not require any labeled data for training and can be

used in domains where explicit relevance labels are scarce and expensive resources.
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C3 We show how SAFIR integrates synonymy and polysemy for IR tasks. Furthermore,

we perform extensive quantitative and qualitative analyses which provide insights into

the individual and joint impact of these features in IR. In particular, we investigate

the effectiveness of modeling synonymy and polysemy to answer semantically hard

queries.

C4 We perform quantitative and qualitative analyses that investigate the ability of knowledge-

enhanced neural models to retrieve relevant documents affected by the semantic gap.

Furthermore, we evaluate the degree of similarity between SAFIR and the considered

baselines to understand to what extent they retrieve different relevant documents.

C5 We perform in-depth analyses to evaluate the effectiveness of SAFIR compared to the

considered baselines and show its robustness for most collections. The analysis for

query expansion highlights that knowledge-enhanced neural models grasp different

signals than lexical models and retrieve feedback documents that are more effective in

providing expansion terms for PRF based methods.

The rest of this chapter is as follows. We introduce the required notation in Section 6.1.

We perform the reproducibility study of the works by Liu et al. [147] and Nguyen et al. [169]

in Sections 6.2 and 6.3, respectively. We discuss the outcomes of the reproducibility study

in Section 6.4, where we also analyze the limitations of the considered approaches. Then,

in Section 6.5, we present SAFIR, our novel unsupervised knowledge-enhanced neural

framework. In Section 6.6, we describe the experimental setup. We report the experimental

results and provide in-depth quantitative and qualitative analyses for document retrieval and

query expansion in Sections 6.7 and 6.8, respectively. Finally, in Section 6.9, we conclude the

chapter with a discussion on the lessons learned where we highlight the take-home messages.

6.1 Notation

We call D the set of corpus documents and V the set of unique words in the vocabulary. A

document is a sequence of words d = (w j)
m
j=1, where w j is the word in the jth position of d

and m = |d| is the document length. Similarly, a query is a sequence of words q = (wi)
n
i=1,

where wi is the word in the ith position of q and n = |q| is the query length.

A knowledge resource is a graph Ω = (C ,E ), where C is the set of nodes (i.e., concepts)

and E is the set of edges (i.e., relations between concepts). Given Ω, we derive the meaning

of a word w in d by associating w to a concept c∈C based on the context of w. Therefore, we

do not consider phrase-concept associations and we refer to words or terms interchangeably.
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We define a knowledge-enhanced document φ = (⟨w j,c j⟩)
m
j=1 ∈Φ to be an ordered

sequence of contextualized word-concept pairs where w j ∈ V , c j ∈ C , and Φ is the set of

knowledge-enhanced documents. Symmetrically, a knowledge-enhanced query is defined as

ϕ = (⟨wi,ci⟩)
n
i=1.

Given Ω = (C ,E ), we define C ⊆ C as the set of unique concepts associated with

the words contained in the corpus and we consider as synonyms all the semantic and

terminological variants that express a concept c∈C. This means that also acronyms, graphical

variants, and morphosyntactic variants are considered synonyms.

6.2 Knowledge-Enhanced Word Embeddings for IR

We describe the knowledge-enhanced word embeddings used, and proposed, by Liu et

al. [147]. The considered approaches extend word2vec models [162] by applying a knowledge-

based regularization during/after the training of word representations. The problem can be

defined as a multi-task learning problem, where distributional-based and relational-based

objectives are modeled together using the same set of shared word embeddings. Therefore,

we can divide the approaches considered by Liu et al. [147] into three main categories, based

on the different learning techniques: alternate learning, joint learning, and retrofitting.

Since the considered word2vec architecture is CBOW, we briefly recall its main aspects

and then present the proposed extensions. Given a word vocabulary V = {w1, ...,wn} and

a document collection defined as a sequence of words w1, ...,wT , word2vec CBOW learns

word representations so as to maximize the log-likelihood of each word wt (the tth word

within the sequence) given its context, i.e., the set of words within a window of size k centered

at wt (wt excluded):

1

T

T

∑
t=1

log p(wt |w
t+k
t−k) (6.1)

The probability of a word given its context is defined as:

p(wt |w
t+k
t−k) =

exp(www⊤t wwwt+k
t−k)

∑i∈V exp(www⊤i wwwt+k
t−k)

, wwwt+k
t−k =

t+k

∑
j=t−k, j ̸=t

www j (6.2)

where the context representation wwwt+k
t−k is the sum of the word representations for the words

occurring in the context window.
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6.2.1 Alternate Learning

Proposed by Yu and Dredze [250], the model combines word2vec with a Relation Constrained

Model (RCM) that, given an external knowledge resource Ω encoding semantic relations,

learns word representations by predicting one word from a related word within Ω. Thus, the

joint model maximizes the following linear combination of word2vec and RCM objectives:

1

T

T

∑
t=1

log p(wt |w
t+k
t−k)+

λ

|R| ∑
(wi,w j)∈R

log p(wi|w j) (6.3)

where R = {(wi,w j)∈V×V | wi,w j∈c∨ (wi ∈ci∧w j ∈c j∧ (ci,c j)∈ E )} and λ is a hyper-

parameter controlling the strength of RCM.1 The model is trained in an alternate learning

fashion, where the RCM objective is computed every m words. Word representations are

learned using stochastic gradient ascent with two learning rates, ηCBOW and ηRCM, which are

updated separately in turn. As stated by Liu et al. [147], the risk of this process is that the

RCM update could undo the word2vec update, as the distributional context of a word is no

longer taken into account when regularizing over Ω relations.

6.2.2 Joint Learning

Proposed by Liu et al. [147], the model combines the word2vec objective with the requirement

that if a word can be well generated from a given context, its related words in Ω should also

be well generated from the same context:

1

T

T

∑
t=1

[

log p(wt |w
t+k
t−k)−α ∑

ws:(wt ,ws)∈R

ρ(ws|wt)
[

log p(wt |w
t+k
t−k)− log p(ws|w

t+k
t−k)

]2
]

(6.4)

where α is a weighting hyperparameter and ρ(ws|wt) =
tt f (ws)

∑w j :(wt ,w j)∈R tt f (w j)
is the relative

frequency of ws in the document collection based on the total term frequency tt f (·). The

weighting scheme ρ(·|·) diversifies the importance of relations between words depending on

their frequency within the collection. The model is trained in a joint learning fashion, where

the objectives are computed together and all the gradients and updates are done with respect

to both functions at the same time.

1By a slight abuse of notation, we use w ∈ c to indicate that the word w expresses the concept c.



6.2 Knowledge-Enhanced Word Embeddings for IR 129

6.2.3 Retrofitting

Proposed by Faruqui et al. [74], the model learns word representations that are both close

(under a distance metric) to the data-driven representations obtained by word2vec and to the

representations of adjacent vertices in Ω. Thus, given the matrix ÛUU of vector representations

ûuui ∈ R
a, for each wi ∈ V , learned using a standard data-driven architecture (e.g., CBOW),

where a denotes the size of the word vectors, the model learns the matrix UUU = (uuu1, ...,uuun) by

minimizing the following loss function:

Ψ(UUU) =
n

∑
i=1

[

ωi||uuui− ûuui||
2 + ∑

w j:(wi,w j)∈R

βi j||uuui−uuu j||
2

]

(6.5)

where ωi and βi j values control the relative strengths of associations and the distance metric is

defined to be the Euclidean distance. The model first learns word representations independent

of the information in Ω and then retrofits them. The retrofitting optimization is performed

through an efficient iterative updating method [25, 216, 54, 55], which eventually leads to

the following update:

uuui =
∑w j:(wi,w j)∈R βi juuu j +ωiûuui

∑w j:(wi,w j)∈R βi j +ωi
(6.6)

A modified version of this approach has been proposed by Liu et al. [147], where they

apply the weighting scheme ρ(·|·) to the relational-based component of the loss function

Ψ(UUU):

Ψ(UUU) =
n

∑
i=1

[

||uuui− ûuui||
2 +β ∑

w j:(wi,w j)∈R

ρ(w j|wi)||uuui−uuu j||
2

]

(6.7)

6.2.4 Experimental Setup and Implementation Details

Experimental Setup

We reproduce the experiments performed by Liu et al. [147] on the OHSUMED collec-

tion [107]. We chose to reproduce the experiments on OHSUMED because it is a stan-

dard collection for medical literature retrieval, which has also been used in various related

works [56, 169, 220]. In a personal communication with the authors, they confirmed that

they relied on the 63 official topics and the description field to perform experiments. More

details on the considered test collection can be found in Subsection 2.1.1.

Liu et al. adopt the UMLS metathesaurus [29] as Ω. Each UMLS concept, identified by

a CUI, contains a set of term variants which are used as synonyms by Liu et al.2 Since there

2Only single-word term variants are considered.
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is no information about the UMLS version used by Liu et al., we rely on the UMLS 2018AA

release. However, knowing the exact UMLS release is important to enable reproducibility, as

the number of relations and concepts within UMLS is constantly changing. The reader can

find a detailed description of UMLS in Subsection 2.2.4.

Word embeddings are used for re-ranking. Following the scheme proposed by Vulić

and Moens [235], document and query representations are built by summing up all the

word embeddings for words contained within the document and the query. For document

representations, word embeddings are weighted by IDF. The obtained query and document

representations are used to re-rank an initial pool of 1000 documents retrieved by a standard

IR model as follows:

score(q,d) = γBoW(q,d)+(1− γ)sim(q,d) (6.8)

where γ is a combination hyperparameter, BoW(·, ·) is a lexical (bag-of-words) model,

such as BM25 or QLM, and sim(·, ·) is a similarity function between query and document

embeddings, such as cosine similarity. The scores obtained by BoW(·, ·) and sim(·, ·) are

normalized using Min-Max normalization before being combined.

The evaluation measures used in the experiments are: P@10 and MAP. P@10 is used

as the main performance indicator, whereas MAP is used as the second indicator because it

has been adopted in the reference paper – even though the measure is known to have some

limitations as highlighted by Fuhr [84]. Rather than using a two-tailed Student’s t-test as in

the reference paper, we perform a statistical significance analysis with Tukey’s HSD test to

assess the statistical significance of performance differences for the retrieval models. We

recall that Tukey’s HSD test is a viable method for dealing with the multiple comparisons

problem [84, 37]. We apply the Tague-Sutcliffe transformation to Tukey’s HSD test [218].

Further details on Tukey’s HSD test are reported in Subsection 4.1.2.

Implementation Details

We implement word2vec and its knowledge-enhanced extensions from scratch in Python,

relying on TensorFlow to build the network architectures. In the reference paper, there

is no mention on how to map CUIs from UMLS to words within OHSUMED. Therefore,

we rely on QuickUMLS [207], a fast unsupervised concept extractor built on UMLS (see

Section 3.1), to map each word in V to a list of candidate CUIs. For each word, we keep the

first occurrence within the candidates list as the word CUI and we adopt all its single-word
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term variants as synonyms.3 We consider CUIs from all UMLS semantic types, not only

from QuickUMLS default ones.

To train word2vec and its knowledge-enhanced extensions, we use Noise Constrastive

Estimation (NCE) [98] rather than negative sampling [163]. We tested word2vec with both

strategies, and we got the closest results to those reported by Liu et al. with NCE (see

Table 6.2). As in the reference paper, we set the dimension of the embeddings a = 300, the

context window size k = 5, and the number of negative samples equal to 10. The collection

is not preprocessed before training, i.e. no stemming nor stopwords removal, but words

appearing less than 5 times are removed. There is no mention to the library used to implement

BM25 (with k1 = 1.2 and b = 0.75) and QLM (using Dirichlet smoothing with µ = 2000),

thus we rely on ElasticSearch.

The main challenge we found to reproduce the results obtained by Liu et al. lies in the

choice of the parameters and hyperparameters for the knowledge-enhanced word embeddings.

The reference paper lacks a comprehensive description of all the parameters and hyperpa-

rameters used by the different models – especially by those originally presented in [250, 74].

Therefore, to select the parameters and hyperparameters for this study, we relied both on the

reference paper [147] and on [250, 74]. For each setting, we report the reference source too.

We train word2vec, alternate, and joint learning models for a single epoch [250], while the

retrofitted models are trained for 10 epochs [74]. We optimize all models using AdaGrad [67],

as in [74]. Learning rates for word2vec and the joint learning model are set equal to

0.025 [147, 250], whereas the learning rate for the RCM model is set equal to 0.01 [250]. The

λ hyperparameter controlling the strength of RCM in the alternate learning model is set to 1,

and the RCM objective is computed every mu 1,000 words.4 The ωi and βi j hyperparameters

in the original retrofitting model [74] are set to 1 and to degree(wi)
−1 (with wi being the

node the update is being applied to), respectively. Regarding the α and β hyperparameters

of the joint learning and the modified retrofitting models proposed by Liu et al. [147], they

have been optimized using 2-fold cross-validation and the results of this optimization are

visible in Figures 1− 4 of the reference paper. Since the optimization is performed for

each combination of the proposed models with the lexical models, we identify two sets of

hyperparameters: {αBM25 = 0.6,βBM25 = 0.6}, and {αQLM = 0.3,βQLM = 0.5}. Conversely,

we cannot adopt the same approach to identify the best values for the γ hyperparameter.

However, the reference paper states that the best setting for γ is always around 0.5− 0.6.

Therefore, for each combination of the word embedding models with the lexical models,

we perform the re-ranking approach with γ ∈ {0.5,0.55,0.6} and we select the value of

3Albeit being prone to ambiguous mappings, this efficient approach yielded effective results.
4We also tested the model using m u 10,000, as in [74], obtaining similar results.
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γ that provides the best results in terms of P@10. The results of this optimization are

shown in Table 6.1. Then, the reproduced models are compared with the original versions

in Table 6.2, where for each re-ranking approach the combination hyperparameter γ is

selected from Table 6.1. Finally, we also perform a comparison on the sensitivity of α

and β hyperparameters for the original and reproduced versions of the joint learning and

the modified retrofitting models. The behavior of the different versions can be found in

Figure 6.2.

For consistency with the reference paper, we report the original names in all tables and

figures. That is, QLM is called LM, word2vec is called CBOW, the alternate learning model

is called Yu+BoW, the retrofitting model is called Faruqui+BoW, and the joint learning and

modified retrofitting models are called Online+BoW and Offline+BoW, respectively.

6.2.5 Experimental Results

In Table 6.1, we present the results of the optimization for the re-ranking approach with γ ∈

{0.5,0.55,0.6}. For each model, we select the best γ configuration based on its performance

in P@10. Ties are resolved looking at MAP scores. The best γ configurations are then used

to perform a comparison with the results obtained by Liu et al. [147].

Table 6.1 Result comparison for the re-ranking method using different values of γ ∈ {0.5,

0.55, 0.6}. For each evaluation measure, the first column refers to γ = 0.5, the second column

refers to γ = 0.55, and the third to γ = 0.6. For each re-ranking combination, bold values

represent the best γ configuration based on P@10 and, when necessary, on MAP.

P@10 MAP

γ = 0.5 γ = 0.55 γ = 0.6 γ = 0.5 γ = 0.55 γ = 0.6

CBOW+BM25 0.5143 0.5079 0.5079 0.3082 0.3105 0.3119

CBOW+LM 0.4444 0.4444 0.4460 0.2773 0.2805 0.2828

Yu+BM25 0.5143 0.5143 0.5143 0.3086 0.3109 0.3112

Online+BM25 0.5206 0.5190 0.5111 0.3078 0.3092 0.3091

Yu+LM 0.4524 0.4460 0.4429 0.2772 0.2806 0.2825

Online+LM 0.4524 0.4524 0.4508 0.2774 0.2793 0.2812

Faruqui+BM25 0.5143 0.5143 0.5143 0.3103 0.3117 0.3134

Offline+BM25 0.5127 0.5127 0.5143 0.3104 0.3126 0.3133

Faruqui+LM 0.4540 0.4492 0.4476 0.2797 0.2822 0.2835

Offline+LM 0.4460 0.4476 0.4429 0.2794 0.2823 0.2838

In Table 6.2, we present the results of the comparison between the original and the repro-

duced version of the models. First, we observe that we successfully reproduced word2vec
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(third line of Table 6.2). The absolute differences between the original and the reproduced

versions of word2vec are below 0.02, for both P@10 and MAP. In particular, the difference

in terms of P@10 is 0.0004. Secondly, we observe how the reproduced versions of BM25

and QLM provide higher results in both P@10 and MAP. The only absolute difference

lower than 0.05 is for BM25 in MAP. This leads the subsequent re-ranking approaches to

provide limited improvements over the lexical models compared to the original versions.

Nevertheless, we can confirm the assumption made by Liu et al. [147] about the beneficial

effect of constraining word embeddings by relational knowledge provided by an external

knowledge resource. Indeed, both in the reference paper and here, the approach providing

the best results in terms of P@10 is the combination of BM25 with the joint learning model.

In our case, however, the BM25 combined with the retrofitting method by Faruqui et al. [74]

provides better results in terms of MAP than the BM25 combined with the joint learning

model.

Table 6.2 Result comparison between original version of the models (as in [147]) and their

reproduced versions. For each evaluation measure, the first column reports the scores of

the original model, the second column reports the scores of the reproduced version and the

third column reports the difference between the original and reproduced versions; a negative

difference indicates that the reproduced versions are stronger than those employed in the

reference paper. For each re-ranking combination, the hyperparameter γ is selected from

Table 6.1. Bold values represent the best method (original and reproduced), whereas italic

values represent absolute differences greater than 0.05.

P@10 MAP

original reproduced diff. original reproduced diff.

BM25 0.4390 0.5048 −0.0658 0.2922 0.3052 −0.0130

LM 0.3752 0.4444 −0.0692 0.2325 0.2825 −0.0500

CBOW (γ = 0) 0.1631 0.1635 −0.0004 0.0401 0.0513 −0.0112

CBOW+BM25 0.4610 0.5143 −0.0533 0.2986 0.3082 −0.0096

CBOW+LM 0.4438 0.4460 −0.0022 0.2745 0.2828 −0.0083

Yu+BM25 0.4600 0.5143 −0.0543 0.2990 0.3112 −0.0122

Online+BM25 0.4771 0.5206 −0.0435 0.3005 0.3078 −0.0073

Yu+LM 0.4467 0.4524 −0.0057 0.2778 0.2772 +0.0006

Online+LM 0.4581 0.4524 +0.0057 0.2793 0.2793 0.0000

Faruqui+BM25 0.4695 0.5143 −0.0448 0.3001 0.3134 −0.0133

Offline+BM25 0.4715 0.5143 −0.0428 0.3001 0.3133 −0.0132

Faruqui+LM 0.4470 0.4492 −0.0022 0.2778 0.2822 −0.0044

Offline+LM 0.4486 0.4476 +0.0010 0.2781 0.2823 −0.0042

It is also interesting to note that the performance of our QLM-based re-ranking approaches

provide close results to those obtained by Liu et al. In terms of absolute difference, none of
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Fig. 6.1 Significance test for the results of the reproduced models reported in Table 6.2.

All pairwise comparisons are calculated with Tukey’s HSD confidence intervals and a

significance level of 0.05. The comparisons are made for P@10.

the QLM-based re-ranking combinations presents a difference greater than 0.01. However,

the improvement obtained combining QLM with word embeddings in the reference paper

is greater than that obtained in this study – where all the knowledge-enhanced models

deteriorate MAP, although they improve P@10.

The results of the Tukey’s HSD test in Figure 6.1 confirm the limited improvements of

the knowledge-enhanced re-ranking approaches over the other models. In fact, all the models

belong to the top group – except for QLM and word2vec when used to perform retrieval over

the entire collection (lines two and three of Table 6.2).

The plots in Figure 6.2 show the sensitivity of the α and β hyperparameters for the joint

learning and the modified retrofitting models. For each re-ranking combination, values of

α,β ∈ {0.02,0.04,0.1,0.3,0.4,0.5,0.6,0.7,0.9,1} are tested using the best γ from Table 6.1

and their behavior is compared with the behavior reported in the reference paper. Blue plots

represent the behavior of the reproduced models as α/β varies, whereas red plots represent

the behavior of the original models.

In general, we observe smaller performance variations for the reproduced versions as

α and β change. This is especially true when considering the re-ranking methods that

use the joint learning model, where the original versions present performance variations
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model, and the modified retrofitting model respectively. Then, for each word, we report the

score obtained in the reference paper, the score obtained with the reproduced versions, and

their difference.

Table 6.3 Top 10 most similar words to “Heart” for CBOW, Online, and Offline models

respectively. For each model, the first column refers to the top 10 words obtained with the

original version (as in [147]), whereas second and third columns refer to the scores obtained

by the original and reproduced version, respectively. Symbols ↓, ↑, – mean that the word

rank obtained using the reproduced version is lower, higher, or equal, respectively, to that

obtained with the original version.

CBOW Online Offline

original reproduced diff. original reproduced diff. original reproduced diff.

Cardiac 0.4891 0.5814 ↓ −0.0923 Cardiac 0.5205 0.9957 – −0.4752 Cardiac 0.7960 0.6790 – +0.1170

Synergist 0.4494 0.0281 ↓ +0.4213 Hearts 0.5030 0.9680 ↓ −0.4650 Cor 0.6957 0.3440 ↓ +0.3517

Hearts 0.4276 0.1690 ↓ +0.2586 Cor 0.4939 0.7768 ↓ −0.2829 Synergist 0.5030 0.0898 ↓ +0.4132

Cardiovascular 0.4096 0.3575 ↑ +0.0521 Synergist 0.4690 0.2937 ↓ +0.1753 Hearts 0.4738 0.3773 ↑ +0.0965

Acyanotic 0.3987 −0.0732 ↓ +0.4719 Cardiovascular 0.4156 0.9894 ↑ −0.5738 Biventricular 0.4721 −0.0667 ↓ +0.5388

Ouvrier 0.3934 / / Cerebrovascular 0.4149 0.9875 ↑ −0.5726 Cyanotic 0.4720 0.0889 ↓ +0.3831

Multiorgan 0.3931 0.0242 ↑ +0.3689 Acyanotic 0.3985 0.5884 ↓ −0.1899 Cardiorespiratory 0.4714 0.0261 ↓ +0.4453

Ventricular 0.3837 0.6424 ↑ −0.2587 Ventricular 0.3979 0.9946 ↑ −0.5967 Ventricular 0.4651 0.6359 ↑ −0.1708

Cardiorespiratory 0.3829 0.0261 ↑ +0.3568 Cardiorespiratory 0.3969 0.8446 ↑ −0.4477 Acyanotic 0.4585 −0.0178 – +0.4763

Thrive 0.3766 0.0898 ↑ +0.2868 Biventricular 0.3831 0.7345 ↑ −0.3514 Circulatory 0.4552 0.1917 ↑ +0.2635

We observe that the reproduced version of the joint learning model provides stronger

similarities for heart-related words than the original one. Indeed, words like “Cardiac”, “Car-

diovascular”, and “Ventricular” have similarities close to 1. This means that the reproduced

model effectively encodes relational knowledge in its word representations. On the other

hand, the modified retrofitting model presents results much closer to those obtained with

word2vec – although with better similarities for heart-related words. Probably, a higher num-

ber of epochs might be required for the modified retrofitting model to effectively incorporate

the relational knowledge in the learning process. Thus, compared to the original version, our

modified retrofitting model provides weaker results. As a side note, the word “Ouvrier” was

not part of our models vocabulary.

6.2.6 The Limitations of Re-Ranking

While reproducing the models used and proposed by Liu et al. [147] on the OHSUMED

collection, we encountered many challenges – mainly related to the lack of information

regarding the parameters and hyperparameters of the word2vec models. The results of

this reproduciblity study showed that, although we successfully reproduced word2vec and

confirmed the potential of its knowledge-enhanced extensions, we achieved limited improve-

ments in re-ranking compared to the original results. This might be related to the stronger
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BM25 and QLM baselines we obtained. Besides, from the analysis of the sensitivity of the

models to different α/β values, presented in Figure 6.2, we observed small performance vari-

ations. This suggests that the impact of relational knowledge is limited when the embeddings

are used for re-ranking. Thus, the potential of knowledge-enhanced word embeddings might

be better expressed in query expansion or rank fusion techniques – where their ability to

retrieve candidate documents that are most affected by the semantic gap could be effectively

used.

6.3 Knowledge-Enhanced Document Embeddings for IR

Nguyen et al. [169] present two knowledge-enhanced document embedding models: the

conceptual doc2vec (cdoc2vec) and the retrofitted doc2vec (rdoc2vec). cdoc2vec considers

concepts from an external knowledge resource instead of words when learning document

representations. On the other hand, rdoc2vec retrofits document representations learned

using words with document representations learned using concepts. The two approaches

extend the models of Devine et al. [56] and Faruqui et al. [74], respectively, by introducing

document representations in the learning process.

The knowledge-enhanced document embeddings proposed by Nguyen et al. adopt the

doc2vec DM architecture. Therefore, we first recall its main aspects and then present the

proposed extensions. Given a word vocabulary V = {w1, ...,wn} and a corpus D = {d1, ...dm}

where each document is defined as an ordered sequence of words, doc2vec DM maximizes

the following log-likelihood:

m

∑
i=1

∑
wt∈di

log p(wt |w
t+k
t−k,di) (6.9)

where di is the ith document within D, wt is the tth word within di, and wt+k
t−k is the set of

words within a window of size k centered at wt (wt excluded).

6.3.1 The Conceptual Doc2Vec

The cdoc2vec model adopts the doc2vec DM architecture but considers the concept vocabu-

lary C instead of the word vocabulary V . We recall that C ⊆ C is the set of unique concepts

associated with the words contained in the corpus. Therefore, cdoc2vec maximizes the

following log-likelihood:
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m

∑
i=1

∑
ct∈di

log p(ct |c
t+k
t−k,di) (6.10)

6.3.2 The Retrofitted Doc2Vec

The rdoc2vec model retrofits document representations obtained by doc2vec and cdoc2vec.

The objective is to learn document representations that minimize the distance between

doc2vec and cdoc2vec representations as follows:

Ψ(UUU) =
m

∑
i=1

ψ(uuui) =
m

∑
i=1

[

β ||uuui−uuu′i||
2 +(1−β )||uuui−uuu′′i ||

2
]

(6.11)

where uuui,uuu
′
i,uuu
′′
i ∈ R

b are the rdoc2vec, doc2vec, and cdoc2vec document representations for

all di∈D, b is the document vectors size, ||·|| is the euclidean distance, and β a hyperparameter

that controls the strength of the word-based and concept-based components.

In [169, p. 165], the authors reported the pseudo-code to solve the optimization problem

for learning retrofitted document embeddings. We tested the described optimization process

but, unfortunately, we faced convergence issues. In a subsequent personal communication,

the authors provided us with the source code they employed to optimize the rdoc2vec model.

From that, we derived the revised pseudo-code reported in Algorithm 6.1.

Algorithm 6.1: Retrofitting document vectors

Input :UUU ′ = (uuu′i j), UUU ′′ = (uuu′′i j) ∈ R
m×b

Output :UUU = (uuui j) ∈ R
m×b

1 for i ∈ {1, ...,m} do

2 uuui ∼U (−1,1)
3 foreach epoch do

4 Ψ(UUU) = 0

5 for i ∈ {1, ...,m} do

6 Ψ(UUU) += β ||uuui−uuu′i||
2 +(1−β )||uuui−uuu′′i ||

2

7 ∆ = 2β (uuui−uuu′i)+2(1−β )(uuui−uuu′′i )
8 uuui = uuui−α ∆

9 Ψ(UUU) /= m

10 if Ψ(UUU)< ε then

11 break

12 return UUU

The process takes UUU ′, UUU ′′ document representations as inputs and updates for each

document di its representation uuui, using the first derivative ∆ = δψ(uuui))
δuuui

of ψ(·) with a step
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size of α . The process stops after a given number of iterations or when Ψ(UUU) reaches a

minimum threshold value ε . Note, however, that Ψ(·) is a convex objective function and

its optimal (closed-form) solution can be found by computing the first-order derivative and

setting it to zero.

6.3.3 Experimental Setup and Implementation Details

Experimental Setup

We reproduce the experiments performed by Nguyen et al. [169] on the OHSUMED col-

lection [107]. We conduct the experiments on the 63 official topics using the title field, as

indicated by the authors in a personal communication. We do not reproduce the experiments

on the TREC Medical collection since it is not available anymore.5

Nguyen et al. adopt the MeSH controlled vocabulary as Ω and the Cxtractor tool to

perform Entity Linking (EL).6 Since the authors do not report the MeSH version they

used, we based our experiments on the version contained within the UMLS 2018AA release.

Note that reporting the exact MeSH version is important to enable reproducibility, since

the number of relations and concepts in MeSH changes every year (see Subsection 2.2.2

for more details). Rather than Cxtractor, we use the widely-adopted QuickUMLS [207] to

map MeSH-restricted CUIs from UMLS to words within OHSUMED. For each word in V ,

we rely on QuickUMLS to find, whenever possible, a list of candidate CUIs within UMLS.

Then, we restrict the list of CUIs to those belonging to the MeSH controlled vocabulary and

we keep the top-ranked occurrence.

The authors propose a PRF based method that relies on word, concept, and document

embeddings to perform query expansion. Given a query, a lexical (bag-of-words) model

retrieves an initial set of documents. Then, the method leverages the embeddings learned by

doc2vec models to match top-ranked (feedback) documents with words or concepts, returning

a score for each (word/concept, document) pair. The scores for the pairs that contain the

same words/concepts are combined using CombSUM [200] and the top words/concepts are

selected to expand the original query. Then, the lexical model retrieves the final set of 1000

documents using the expanded query.

The evaluation measures used in the experiments are: MAP, P@20, and Recall@20.

Since doc2vec models are used by the PRF based method to perform query expansion, P@20

is used as the performance indicator for model selection.

5https://trec.nist.gov/data/medical.html
6https://sourceforge.net/projects/cxtractor/
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Implementation Details

Among the challenges we met to reproduce the experiments performed by Nguyen et al. [169],

there is the fact that all the doc2vec models considered have been evaluated only through

query expansion. Therefore, the only way to verify whether the reproduced doc2vec models

are performing as the original ones is by comparing the performances of lexical models

when using the expanded query – thus adding more layers to the process. Furthermore, the

hyperparameters used to train the doc2vec models – along with the number of top documents,

words, and concepts selected for query expansion – are not exhaustively reported. Also, as

previously mentioned, we incurred in convergence problems when running the optimization

process described in the original paper. In our experiments, the loss value never reached the

minimum threshold value ε .

In a personal communication, the authors kindly provided us with the required parameter

settings and the code for rdoc2vec and the query expansion method. Below, we report both

the data we got from the paper [169] and those obtained thanks to the personal communication

(p.c.).

The embeddings size for doc2vec and cdoc2vec models is set to 200 [169]. The other

(hyper) parameters are: window size k = 8, learning rate equal to 0.02, negative samples

set to 5, and minimum word frequency set to 5 (p.c.). Learning rate is decreased linearly

during the stochastic gradient descent training process and the Gensim library [183] is used

to train doc2vec and cdoc2vec models (p.c.). As preprocessing, non-alphanumeric words are

removed (p.c.).7 There is no information regarding the number of epochs considered to train

doc2vec and cdoc2vec. Thus, we train each model for 15 epochs and we select the model

iteration that performs best for P@20. The minimum loss for rdoc2vec is set to ε = 10−7, the

learning rate to α =0.01, and the optimal β =0.6 [169]. The maximum number of training

iterations is set to 500 (p.c.).

The lexical model used before and after query expansion is BM25 with default parameters,

implemented in Lucene (p.c.).8 The number of feedback documents considered by the PRF

based method is 3, while the number of words/concepts used to expand the query is 5 (p.c.).

It is also worth mentioning that the number of words/concepts considered from each feedback

document is 100 (p.c.). This means that we do not combine the scores obtained for each

word/concept within the vocabulary, but only the scores for the top 100 words/concepts

within each feedback document. This leads to very different performances, as can be seen

from Tables 6.4 and 6.5.

7These information are also reported in a subsequent paper [220] by the same authors.
8https://lucene.apache.org/
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When performing query expansion with cdoc2vec, the preferred names of the selected

CUIs (i.e. concepts) are used as expansion terms (p.c.). On the other hand, the rdoc2vec

query expansion relies on words when β ≥ 0.5 and on concepts otherwise (p.c.).

In our experiments, we adopt the (hyper) parameter setting described above but we rely

on the ElasticSearch implementation of BM25.

6.3.4 Experimental Results

We report the results of the comparison between the original and the reproduced versions of

the doc2vec based query expansions. Table 6.4 reports the results when we select expansion

terms by combining the scores of each word/concept within the vocabulary, whereas Table 6.5

reports the results when we combine the scores for the top 100 words/concepts selected from

each feedback document.

Table 6.4 Comparison between the original and the reproduced doc2vec based query expan-

sions when we combine the scores of each word/concept within the vocabulary. A positive

difference means that the original method does better than the reproduced one. Best models

are in bold, differences greater than 0.05 are in italic.

MAP

orig. repr. diff.

doc2vec/PRF 0.1017 0.0419 +0.0598

cdoc2vec/PRF 0.0956 0.0347 +0.0609

rdoc2vec/PRF 0.1020 0.0418 +0.0602

P@20

orig. repr. diff.

doc2vec/PRF 0.2556 0.0508 +0.2048

cdoc2vec/PRF 0.2365 0.0500 +0.1865

rdoc2vec/PRF 0.2556 0.0500 +0.2056

Recall@20

orig. repr. diff.

doc2vec/PRF 0.1086 0.0207 +0.0879

cdoc2vec/PRF 0.0980 0.0185 +0.0795

rdoc2vec/PRF 0.1086 0.0205 +0.0881

First of all, we observe that we did not successfully reproduce any of the doc2vec based

query expansions. In Table 6.4, the absolute differences between the original and reproduced
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Table 6.5 Comparison between the original and the reproduced doc2vec based query ex-

pansions when we combine the scores of the top 100 words/concepts selected from each

feedback document. A positive difference means that the original method does better than

the reproduced one. Best models are in bold, differences greater than 0.05 are in italic.

MAP

orig. repr. diff.

doc2vec/PRF 0.1017 0.0882 +0.0135

cdoc2vec/PRF 0.0956 0.0639 +0.0317

rdoc2vec/PRF 0.1020 0.0883 +0.0137

P@20

orig. repr. diff.

doc2vec/PRF 0.2556 0.1143 +0.1413

cdoc2vec/PRF 0.2365 0.0810 +0.1555

rdoc2vec/PRF 0.2556 0.1151 +0.1405

Recall@20

orig. repr. diff.

doc2vec/PRF 0.1086 0.0480 +0.0606

cdoc2vec/PRF 0.0980 0.0340 +0.0640

rdoc2vec/PRF 0.1086 0.0483 +0.0603

versions are all greater than 0.05 and, for P@20, even greater than 0.15. Furthermore, if we

consider that BM25 achieves values of 0.0975 for MAP, 0.1444 for P@20, and 0.0598 for

Recall@20, we also notice that the reproduced doc2vec based query expansions deteriorate

the initial performances.

We observe a similar trend in Table 6.5, where we select expansion terms by combining

the scores of the top 100 words/concepts from each feedback document. In terms of MAP, the

absolute differences are lower than 0.05 for each doc2vec based query expansion. However,

the differences for P@20 and Recall@20 are still greater than 0.05. Again, the reproduced

query expansions deteriorate the initial performances.

Thus, the results reported in Tables 6.4 and 6.5 indicate that we did not successfully

reproduce the experiments performed by Nguyen et al. [169] – despite relying on the same

parameter setup, the code shared by the authors, and the same library to train doc2vec models.

Nevertheless, the results we obtained are reasonable if we analyze the performances of the

reproduced doc2vec models when they are used to perform retrieval over the entire collection

(see Table 6.6). In fact, doc2vec models achieve scores lower than 0.02 in all the considered
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measures. This means that query and document representations do not effectively match.

Therefore, doc2vec models do not find relevant words/concepts for top-ranked (feedback)

documents – even though such documents are retrieved by a state-of-the-art IR model – thus

introducing detrimental information in the retrieval process.

Table 6.6 Comparison between the doc2vec models when they are used to perform retrieval.

For each measure, the best model is in bold.

MAP P@20 Recall@20

doc2vec 0.0021 0.0119 0.0037

cdoc2vec 0.0051 0.0189 0.0092

rdoc2vec 0.0020 0.0119 0.0037

6.3.5 When Reproducibility Goes Sideways

We attempted to reproduce the experiments performed by Nguyen et al. [169] on the OHSU-

MED collection. We faced several challenges, mainly related to the lack of information

regarding the (hyper) parameters of the doc2vec models, the IR model used to perform

retrieval, and the parameters of the PRF based method. The results of this reproducibility

study show that, although relying on the same parameter setup, the code shared by the

authors, and the same library to train doc2vec models, we did not successfully reproduce the

original experiments. We did not find consistent trends with any of the three doc2vec based

query expansions considered by Nguyen et al. and all our reproduced versions worsen the

performance of BM25.

For a better assessment of the performances, it would have been beneficial knowing

the performance of the doc2vec models without the query expansion component. In fact,

reporting the individual performances of the neural models adopted in multi-stage IR systems

could be a good way to ease reproducibility in challenging situations. Otherwise, it would

be even harder for future researchers to understand the possible issues encountered in the

implementation of multi-stage IR systems.

6.4 Towards Knowledge-Enhanced Neural Models for IR

The reproducibility study we conducted in Sections 6.2 and 6.3 highlighted some limitations

in the way knowledge-enhanced neural language models are applied to IR, as well as in their

effectiveness to address the semantic gap between queries and documents. The analysis of the

work by Liu et al. [147] in Section 6.2 showed the potentiality of enhancing neural language
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models through external knowledge. On the other hand, however, the results also underlined

the marginal impact that the integration of external knowledge has for re-ranking. In this

respect, the sensitivity analysis presented in Figure 6.2 showed that re-ranking performances

vary little regardless of the strength of the relational knowledge applied during the learning

process. The reason behind this low sensitivity to knowledge integration relates to the fact

that, in a re-ranking scenario, knowledge-enhanced neural language models are restricted to

the set of candidate documents retrieved by a lexical model. Therefore, they cannot express

their full potential and leverage the relational knowledge learned during training, as the set of

candidate documents is biased towards lexical signals. As a consequence, relevant documents

affected by the semantic gap remain undiscovered.

We reached similar conclusions for the work by Nguyen et al. [169] in Section 6.3 as well,

despite the fact we did not successfully reproduce the experiments. From the analysis of the

results in Table 6.6, we observed that doc2vec models perform poorly for document retrieval.

This further confirms the difference between IR and NLP tasks and highlights the inability

of doc2vec models to effectively encode relevant features for IR. Consequently, when used

to identify expansion terms from feedback documents for PRF, they fail to provide effective

results. Besides, the PRF method proposed by Nguyen et al. [169] relies on lexical models

to retrieve the set of feedback documents. Therefore, the poor performances of (knowledge-

enhanced) doc2vec models are also exacerbated by the fact that feedback documents are

retrieved through lexical matching and are thus biased towards lexical rather than semantic

signals. For this reason, we advocate that knowledge-enhanced models should be used at

the early stages of the IR pipeline to express their full potential – that is, retrieving feedback

documents most affected by the semantic gap. In this way, lexical models could benefit

from expansion terms that are more suited to address the semantic gap between queries and

documents.

Thus, the outcomes of the reproducibility study highlighted the need for knowledge-

enhanced neural IR models capable of providing effective performances at the early stages

of the IR pipeline, where the integration of external knowledge can express its full potential.

To this end, in the next section, we present our novel unsupervised knowledge-enhanced

neural framework for IR, whose representations are optimized for retrieval and encode both

polysemy and synonymy to address the semantic gap between queries and documents.

6.5 The Semantic-Aware Neural Framework for IR

We present SAFIR, an unsupervised knowledge-enhanced neural framework for IR. SAFIR

jointly learns word, concept, and document representations from scratch and optimizes them
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for document retrieval. At the same time, SAFIR addresses the semantic gap by modeling

polysemy and synonymy. Regarding polysemy, SAFIR contextualizes word meanings by

combining word and concept representations in the learning process. Word and concept

representations are optimized to minimize the distance between the so combined word

meanings and the documents in the vector space. Thus, word meaning representations are

created on-the-fly by combining word and concept representations. This compositional

process avoids to create a representation for each word meaning, which is an approach prone

to data sparsity [40]. On the other hand, SAFIR models synonymy via multi-task learning.

Word representations are shared between two learning tasks that are optimized jointly: text

matching and word similarity. For the word similarity task, SAFIR minimizes the distance

between word representations for words presenting synonymy relations within an external

knowledge resource.

6.5.1 Framework

As shown in Figure 6.3, SAFIR has three main components: semantic indexing, representa-

tion learning, and semantic matching.

Fig. 6.3 SAFIR overall architecture. The semantic indexing component produces the

knowledge-enhanced documents (and queries) along with the required vocabularies. The

representation learning component learns word, concept and document representations. Fi-

nally, the semantic matching component computes the similarity score between query and

document representations and ranks the documents accordingly.

The semantic indexing component takes as input a corpus D and a knowledge resource Ω

and applies Named Entity Recognition (NER) and Entity Linking (EL) techniques to produce

the knowledge-enhanced corpus Φ.

The representation learning component relies on the output provided by the semantic

indexing component to learn word, concept, and document representations. This component

models polysemy and synonymy while optimizing representations for document retrieval.
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The semantic matching component uses the learned representations to perform semantic

matching between a knowledge-enhanced query ϕ and the documents φ . Documents are

ranked in decreasing order of the similarity score computed between query and document

representations.

6.5.2 Semantic Indexing

We adopt the UMLS metathesaurus as the knowledge resource Ω, and we rely on Quick-

UMLS [207] to perform NER. We use QuickUMLS to map each word within the word

vocabulary V with a list of candidate concepts from UMLS. Given a word, we recall that

QuickUMLS relies on approximate matching to compute the similarity between the word and

the concept labels within UMLS. Concept labels are terms used by the knowledge resource

to express a concept. Thus, candidate concepts are ranked according to the similarity score

between a target word and the concept labels. Finally, candidate concepts with a similarity

score below a given threshold are pruned from the resulting ranking list.

Algorithm 6.2: Shallow word-sense disambiguation

Input :document d, candidate concepts from d, and knowledge base Ω(C ,E )
Output :knowledge-enhanced document φ

1 Set of candidate concepts Cd ← /0

2 foreach word w ∈ d do

3 Cd ←Cd ∪Cw (Cw : list of candidate concepts associated to w by QuickUMLS)

4 Output list of word-concept pairs φ ← [ ]
5 foreach word w ∈ d do

6 Relative maximum connections max = 0

7 List of senses associated with w, Sw← [ ]
8 foreach candidate concept ĉ ∈Cw do

9 Number of edges n = |ĉ’ ∈Cd : (ĉ, ĉ’) ∈ E ∧ ∃ w’ ∈ d : w’ ̸= w ∧ ĉ’ ∈Cw’|
10 if n≥ max then

11 if n > max then

12 Sw← [(w, ĉ)]
13 max← n

14 else

15 Sw← Sw∪ [(w, ĉ)]

16 (w,c∗)← Sw[0] (holds ĉ ranked highest by QuickUMLS among candidates left)

17 φ ← φ ∪ [(w,c∗)]

18 return knowledge-enhanced document φ

Then, we perform EL over candidate concepts returned by QuickUMLS using our modified

version of the Shallow Word Sense Disambiguation (S-WSD) algorithm proposed by Mancini
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et al. [156]. The modified S-WSD takes as input a document d, the lists of candidate concepts

associated with the words in d, and Ω, and it outputs the knowledge-enhanced document φ .

S-WSD applies to any Ω and has running time linear in the collection size |D|. Below, we

report the details of our modified version of the S-WSD algorithm. Algorithm 6.2 reports the

pseudo-code.

First, we create the set Cd with all the candidate concepts extracted by QuickUMLS for

each word w ∈ d (lines 1 to 3). Secondly, for each candidate concept ĉ of w, we compute the

number of concepts which are connected with ĉ in the knowledge base Ω and are included in

Cd , excluding connections of concepts which only appear as candidates of the same word

(lines 5 to 9). Finally, each word w is associated with its top candidate concept c∗ according

to its number of connections in the document. If there are ties, the concept with the highest

rank from QuickUMLS is associated with the word. The set of top candidate concepts that

are returned by the algorithm forms the concept vocabulary C (lines 10 to 18).

The approach we propose to obtain Φ has two main advantages: (i) it does not require an

annotated corpus, which is the biggest bottleneck of supervised EL techniques; (ii) it scales

linearly with the corpus size when off-the-shelf disambiguation systems do not [199, 207].

6.5.3 Representation Learning

We develop a shallow neural network learning word, concept, and document representations

from scratch. Representations are network parameters in the form of matrices {wwwi}
|V |
i=1 ∈

R
|V |×a, {ccci}

|C|
i=1 ∈R

|C|×a, and {φφφ i}
|Φ|
i=1 ∈R

|Φ|×b for vocabulary words V , vocabulary concepts

C, and knowledge-enhanced documents Φ, respectively, where a denotes the size of word

and concept representations and b the size of document representations. The network models

polysemy and synonymy while optimizing the representations for retrieval. For polysemy,

word and concept representations are composed to generate contextual word meanings at the

representation level. Then, the network optimizes sequences of word meanings to be similar

to the knowledge-enhanced documents from which they are extracted. This training process

approximates query-documents interactions. At the same time, the network constrains the

representations of synonyms to be similar to each other. Therefore, we can divide the network

into three main parts: polysemy modeling, retrieval modeling, and synonymy modeling.

Figure 6.4 depicts the general architecture of the representation learning component.
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Fig. 6.4 Neural architecture of the representation learning component. Distributional loss

minimizes the distance between document and (contextual) word-concept representations,

whereas relational loss minimizes the distance between word representations for words

presenting synonymy relations within the knowledge resource.

Polysemy Modeling: The network performs a word sense composition process to integrate

polysemy. The network models the representation of each word-concept pair ⟨w,c⟩ as the

element-wise sum of its word and concept representations via a compositional function f

sss = f (www,ccc) = www⊕ ccc (6.12)

whose output sss is the contextual representation of the word-concept pair ⟨w,c⟩. Thus, word

meanings are defined in the vector space through a translation process from the word www

to its contextual meaning sss by the concept ccc, i.e., ccc acts as a translation vector. In other

words, given a word w and, say, two concepts c1 and c2 associated with w in different

contexts, the compositional function f (·,·) outputs different representations depending on the

concept – and thus the context – considered. Therefore, polysemous words obtain distinct

representations according to the context where they appear.

In this way, all the possible combinations of contextual representations are generated

on-the-fly offline (training) or online (retrieval). This avoids the need for a word sense

vocabulary. Learning representations based on a word sense vocabulary is prone to data

sparsity and can lead to underfitting the representations of rare word meanings [40].

Then, the network employs the contextual representations to learn matching relations

for retrieval modeling. Matching relations are learned together with synonymy relations via

multi-task learning. Word representations are shared between two learning tasks that are

optimized jointly: text matching and word similarity.
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Retrieval Modeling: We adopt neural vector space models [223] for text matching. A neu-

ral vector space model takes as input a batch B of document/sequence pairs and minimizes

the distance between their representations. We define a sequence of size k sampled from φ

and starting at position h as Sk
h(φ) = (⟨w j,c j⟩)

h+k−1
j=h . Then, the representation of the input

sequence Sk
h(φ) is defined as the average of its word-concept pair representations:

SSSk
h(φ) =

1

k

h+k−1

∑
i=h

f (wwwi,ccci) =
1

k

h+k−1

∑
i=h

sssi (6.13)

where the word-concept representations sssi are computed as in (6.12). Then, L2-normalization

is applied to the sequence representation SSSk
h(φ), followed by a linear transformation:

hhhk
h(φ) =WWW ·norm(SSSk

h(φ)) (6.14)

where WWW ∈Rb×a is a projection matrix. The L2 norm(·) function makes the feature values

proportionate to each other. Since the objective of the text matching task is to minimize the

distance between a document φ and a sequence Sk
h(φ) sampled from it, this means that during

training the network learns to prioritize some word-concept representations over others when

minimizing the distance between a document and a sequence sampled from it. From an

IR perspective, the network learns to boost the representation of word-concept pairs that

are discriminative for the target document. On the other hand, the linear transformation

forces the sequence representation to encode the aspects relevant for text matching into the

document space. The network optimizes the projection matrix WWW to transfer relevant aspects

of the sequence representation from the word-concept space R
a to the document space R

b.

Basically, norm(·) boosts the representation of discriminative word-concept pairs and WWW

projects relevant aspects of the sequence representation into the document space.

Before computing the similarity between a sequence Sk
h(φ) and a document φ , batch

normalization [120] is applied to the input sequences, followed by the hard-tanh(·) activation

function:

hhh
k

h(φ) = hard-tanh(batch-norm(hhhk
h(φ),B)) (6.15)

Batch normalization reduces the internal covariate shift and hard-tanh(·) introduces linear

behavior around zero to allow gradients to flow easily when the unit is not saturated, while

providing a clear decision in the saturated regime [93].

Thus, the similarity between a document φ and a sequence Sk
h(φ) is defined as:

P(y|φ ,Sk
h(φ)) = σ(φφφ ·hhh

k

h(φ)) (6.16)
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where hhh
k

h(φ) is the standardized representation of the input sequence, σ(·) is the sigmoid

function, and y is a binary random variable equal to one if Sk
h(φ) belongs to φ and zero

otherwise.

An adjusted-for-bias variant of the NCE loss [98] is used to train the network for the text

matching task. NCE maximizes the similarity between the representations of the document

φ and the sequence Sk
h(φ) sampled from it, while it minimizes the similarity between Sk

h(φ)

and t contrastive documents – i.e., documents not containing the sequence. The reweighting

scheme applied to NCE removes the dependence on the number of contrastive documents

t, since large values of t bias the network towards contrastive documents. This training

procedure mimics query-documents interactions. The log-probability of a document φ given

the sequence Sk
h(φ) is defined as:

logP(φ |Sk
h(φ)) =

t +1

2t

(

t logP(y|φ ,Sk
h(φ))+

t

∑
i=1,

φi∼U (Φ)

log(1.0−P(y|φi,S
k
h(φ)))

)

(6.17)

where U (Φ) represents the uniform distribution over documents Φ used to obtain the t

contrastive examples. Therefore, the loss function used to optimize the network for the text

matching task, averaged over the batch size |B|, is:

Ldis(Θ|B) =−
1

|B|

|B|

∑
i=1

logP(φi|S
k
h(φi)) (6.18)

where Θ is the set of parameters
{

{wwwi}
|V |
i=1,{ccci}

|C|
i=1,{φφφ i}

|Φ|
i=1,WWW

}

. We refer to this loss as the

distributional loss, since it relies on the distributional hypothesis [102].

Synonymy Modeling: To integrate synonymy, the network relies on the set of synonym

pairs R= {⟨⟨wi,ck⟩,⟨w j,ck⟩⟩ |wi ̸=w j∧ck∈C} of the corpus Φ and performs word similarity.

The objective of the word similarity task is to minimize the distance between two words that

are synonyms in Ω. Hence, the network optimizes the representations for words expressing

the same concept to be close in the vector space. We define the similarity between two

synonyms as:

P(y|⟨⟨wi,c⟩,⟨w j,c⟩⟩) = σ(wwwi·www j) (6.19)

where y is a binary random variable equal to one if both wi and w j express c and zero

otherwise.
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Then, the loss function used to optimize the network for the word similarity task, averaged

over the batch size |B|, is:

Lrel(Θ|R) =−
1

|B| ∑
⟨⟨wi,c⟩,⟨w j,c⟩⟩∈R

logP(y|⟨⟨wi,c⟩,⟨w j,c⟩⟩) (6.20)

where we recall that R = {⟨⟨wi,c⟩,⟨w j,c⟩⟩ |wi ̸=w j∧c∈C} is the set of synonym pairs of the

corpus Φ. We refer to this loss as the relational loss, as it relies on the relational constraints

provided by Ω.

The relational loss presents similarities with the constrained embeddings proposed by Liu

et al. [147] (see Subsection 6.2.2). Compared to that, the relational loss we employ acts as a

regularizer which keeps minimizing the distance between words that are synonyms as the

training for the text matching task progresses. On the other hand, our approach differs from

retrofitting [74] since it is performed during training and not as a second stage of learning (see

Subsection 6.2.3). By modeling synonymy as a second-stage regularization, we would end

up modifying word representations that have already been optimized towards text matching.

In this way, word-concept and document representations could misalign and the network

might lose effectiveness on text matching, which is the main task.

Finally, we apply L2 regularization over Θ parameters:

Lreg(Θ) =
1

2|B|

(
|V |

∑
i=1

||wwwi||
2
2 +

|C|

∑
j=1

||ccc j||
2
2 +

|Φ|

∑
k=1

||φφφ k||
2
2 + ||WWW ||

2
F

)

(6.21)

L2 regularization enforces the network to use all its parameters without depending too

heavily on any of them. Therefore, the loss function used to train the entire network is the

combination of the L2 regularization and the loss functions for the text matching and word

similarity tasks:

L(Θ|B,R) = Ldis(Θ|B)+λ ·Lrel(Θ|R)+ γ ·Lreg(Θ) (6.22)

where λ controls the extent to which synonyms representations are brought close during train-

ing and γ controls the regularization strength. Parameters Θ are optimized using Adam [128],

an adaptive learning rate optimization function. Adam updates every parameter with every

batch. This means that parameters are updated even when they have a zero gradient. Hence,

Adam dampens the consequences of applying the hard-tanh activation function, which leads

to zero gradients in the saturated regime.
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Thus, the network learns contextual representations for word-concept pairs (polysemy)

that are close to the corresponding document representations (retrieval) and, at the same time,

to synonym representations (synonymy).

6.5.4 Semantic Matching

The learned representations {wwwi}
|V |
i=1∈R

|V |×a, {ccci}
|C|
i=1∈R

|C|×a, and {φφφ i}
|Φ|
i=1∈R

|Φ|×b are

then used to perform semantic matching between query and document representations. We

define the representation of a query ϕ as follows:

ϕϕϕ =WWW ·
1

n

n

∑
i=1

f (wwwi,ccci) (6.23)

We treat the query similarly to a sequence by first averaging its word-concept representations

and then projecting it into the document space through WWW , which is the projection matrix

learned during training. Finally, the matching score between the query ϕ and a document φ

is given by the cosine similarity between their representations (ϕϕϕ,φφφ) in the document space

R
b.

6.6 Experimental Setup

6.6.1 Test Collections and Knowledge Resource

We consider four standard collections for medical literature retrieval: OHSUMED [107],

TREC Clinical Decision Support 2014 (CDS14) [188], 2015 (CDS15) [189], and 2016

(CDS16) [184]. For OHSUMED, we use the description query field and we perform ex-

periments on the 63 official topics. For CDS collections, we use the summary query field.

Statistics for each collection are reported in Table 6.7. Further details on the considered

test collections can be found in Section 2.1. As knowledge resource, we adopt the 2018AA

release of the UMLS metathesaurus [29].
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Table 6.7 Statistics for the OHSUMED, CDS14, CDS15, and CDS16 collections. Arithmetic

mean and standard deviation are reported for document and query lengths.

OHSUMED CDS14 CDS15 CDS16

Collection

Document Count 348,566 733,138 733,138 1,255,259

Vocabulary 294,520 663,528 663,528 852,739

Document Length 95.82±62.85 117.56±107.16 117.56±107.16 121.76±142.87

Queries

Query Count 63 30 30 30

Query Length 7.05±3.00 25.63±9.24 20.87±6.55 32.83±17.29

6.6.2 Evaluation Measures and Statistical Tests

We use nDCG@1000, nDCG@100, nDCG@10, P@10, and Recall@1000 to evaluate mod-

els. We also consider infNDCG for CDS collections, since it is the reference measure adopted

in the TREC CDS tracks. infNDCG cannot be computed for the OHSUMED collection as

inferred measures require sampled relevance judgments not available for OHSUMED.

We perform the post-hoc Tukey’s HSD test [221] with one-way ANOVA to test statistical

significance. Again, we apply the Tague-Sutcliffe transformation to Tukey’s HSD tests [218].

6.6.3 Retrieval Strategies

We consider two retrieval strategies to investigate the research questions: document retrieval

and query expansion.

Document Retrieval is the typical retrieval strategy where systems retrieve a set of

candidate documents given a query. Documents are ranked according to the similarity score

computed between them and the query.

Query Expansion consists in expanding the original query with additional terms that can

help systems to retrieve more relevant documents. Query expansion addresses the semantic

gap by using expansion terms to retrieve relevant documents that do not necessarily match the

original query. We rely on RM3 [137, 121], an effective PRF based method which typically

achieves good retrieval performance at the cost of executing an additional round of retrieval.

The set of ranked documents R1 from the first round of retrieval is used to select expansion

terms to augment the query for the second round of retrieval. Formally, the RM3 query
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language model is defined as:

P(w|RM3) = αP(w|q)+(1−α) ∑
d∈R1

P(w|d)P(d|q)

= α
t f (w,q)

|q|
+(1−α) ∑

d∈R1

t f (w,d)

|d|
sim(q,d)

(6.24)

where w is a potential expansion term, α is an interpolation hyperparameter, t f (·,·) is the

term frequency, and sim(·,·) is the similarity function of the model used in the first round of

retrieval.

6.6.4 Semantic Indexing Setup

We preprocess the document collections using Whoosh. The preprocessing comprises tok-

enization and stopwords removal. We rely on the Indri stoplist [215] for stopwords removal.

The preprocessed collections are then indexed using Gensim [183]. We index title and ab-

stract fields. This limits noise injection in the training of knowledge-enhanced representation

models. Besides, article abstracts from medical literature often present a rich and structured

nature that suits to IR tasks and helps us to validate our research questions [31].

For NER and EL, we consider UMLS concepts from the default semantic types provided

by QuickUMLS, as they are typically associated with the four aspects of the medical de-

cision criteria: symptoms, diagnostic tests, diagnoses, and treatments. As suggested by

Limsopatham et al. [143], these semantic types represent the necessary information health

practicioners need to assist their patients. Regarding QuickUMLS, we set the similarity

threshold to the default value of 0.7.

Semantic index statistics are presented in Table 6.8. Table 6.8(a) shows statistics for

the number of candidate concepts per word identified by QuickUMLS (NER), whereas

Table 6.8(b) shows statistics for the number of synonyms per concept after the use of

S-WSD (EL). Then, knowledge-enhanced collection statistics are presented in Table 6.9.

Table 6.9(a-b) show statistics for the number of concepts per document and query, while

Table 6.9(c-d) show statistics for the number of polysemous words per document and query.

Finally, statistics for the S-WSD algorithm are reported in Table 6.10, where statistics are

counted over all documents (or queries) and consider the subset of words with at least two

candidate concepts associated. In particular, non-disambiguated words refer to those words

for which the S-WSD algorithm does not prune the initial list of candidate concepts provided

by QuickUMLS.
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Table 6.8 Semantic index statistics for: (a) number of candidate concepts per word, (b)

number of synonyms per concept. Statistics are computed for the subset of words/concepts

belonging to the term/concept dictionary of SAFIR – therefore they represent a fraction of the

collection statistics. (a) considers only words with at least one candidate concept associated

(i.e., roughly the 20% of the term dictionary in each collection).

(a) concepts/word (b) synonyms/concept

OHSUMED CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16

Max 67 67 67 67 25 35 35 29

Min 1 1 1 1 1 1 1 1

Median 1 1 1 1 1 1 1 1

Average 1.85 1.77 1.77 1.77 1.84 1.78 1.78 1.78

Std Dev 1.96 1.94 1.94 1.87 1.63 1.64 1.64 1.62

Table 6.9 Knowledge-enhanced collection statistics for: (a) number of concepts per document,

(b) number of concepts per query, (c) number of polysemous words per document, and (d)

number of polysemous words per query.

(a) concepts/document (b) concepts/query

OHSUMED CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16

Max 308 14934 14934 39016 9 25 14 38

Min 0 0 0 0 1 3 3 3

Median 54 62 62 65 4 10 10 11

Average 53.74 61.29 61.29 63.61 4.05 11.10 9.13 13.57

Std Dev 36.01 57.74 57.74 77.01 1.63 4.81 3.19 8.31

(c) polysemy/document (d) polysemy/query

OHSUMED CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16

Max 187 7164 7164 18438 7 16 11 22

Min 0 0 0 0 0 1 1 2

Median 29 31 31 32 3 7 6 8

Average 30.98 31.75 31.75 33.13 2.78 7.20 6.17 9.07

Std Dev 21.69 30.94 30.94 40.48 1.51 3.54 2.62 5.26
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Table 6.10 S-WSD statistics for: % of disambiguated words by S-WSD, % of non-

disambiguated words by S-WSD, and execution time of S-WSD. Statistics are counted

over all documents/queries and consider the subset of words with at least two candidate

concepts associated.

% disambiguated words % non-disambiguated words Exec. time (sec)

Collection

OHSUMED 47.84 52.16 3,872

CDS14 41.49 58.51 8,360

CDS15 41.49 58.51 8,360

CDS16 41.64 58.36 15,938

Queries

OHSUMED 52.00 48.00 –

CDS14 47.22 52.78 –

CDS15 52.43 47.57 –

CDS16 44.49 55.51 –

6.6.5 Retrieval Models Setup

We consider three categories of retrieval models: lexical (bag-of-words) models, corpus-

driven models, and knowledge-enhanced models. As Bag-of-Words (BoW) models we

consider:

(1) BM25 [192] with k1 = 1.2 and b = 0.75.

(2) Query Likelihood Model (QLM) [254] with Dirichlet smoothing µ = 2000.

As Corpus-Driven (CD) models we consider only those used by knowledge-enhanced models

as part of their learning process, that is:

(3) word2vec [162, 235] with skip-gram architecture, where query and document repre-

sentations are constructed by summing up the representation of the words contained in

them. For document representations, we sum word representations weighted by the

term IDF [190] as in [147].

(4) doc2vec [138] with DBOW architecture. The query representation is the sum of its

word representations.

(5) Neural Vector Space Model (NVSM) [223]. In NVSM, the query representation is the

average of its word representations projected to the document space.

As Knowledge-Enhanced (KE) models we consider:
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(6) retrofitted word2vec (rword2vec) [74, 147] with αi = 1 and βi = degree(i)−1, where i is

the node the update is applied to. We use rword2vec to retrofit word2vec embeddings.

(7) conceptual doc2vec (cdoc2vec) [169] with DBOW architecture. cdoc2vec is trained

over the knowledge-enhanced corpus Φ relying only on the concept vocabulary C. The

query representation is the sum of its concept representations.

(8) retrofitted doc2vec (rdoc2vec) [169, 220] retrofits document embeddings from doc2vec

and cdoc2vec models. We derive the loss function to obtain the optimal (closed-form)

solution. The weighting factor β is optimized in the (0,1) range with sweep 0.1. The

query representation is the sum of its word representations when β ≥ 0.5 and of its

concept representations otherwise.

(9) Semantic-Aware Neural Framework for IR (SAFIR) with word/concept representation

size a = 300, document representation size b = 256, number of contrastive documents

t = 10, learning rate η = 0.001, regularization weight γ = 0.001, synonymy strength λ

optimized in the (0,1] range with sweep 0.1, and batch size |B|= 51200. We consider

three variants of SAFIR: SAFIRsp, which integrates both synonymy and polysemy;

SAFIRs which integrates synonymy but not polysemy (i.e., it takes words only as

input); and SAFIRp which integrates polysemy but not synonymy (i.e., it does not

consider the word similarity task).

We rely on Elasticsearch to implement BM25 and QLM. For word2vec, doc2vec, and

cdoc2vec models we use Gensim, where we disable vocabulary filtering and frequent word

sub-sampling to keep the input consistent in all representation models. We set the embedding

size to 256, the number of contrastive examples to 10, and the learning rate η = 0.025

with linear decay ηmin = 0.0001. We set the sequence size of SAFIR and the two-sided

window size of neural language models to 16. For NVSM, we disable both the contextual

representations (polysemy) and the word similarity task (synonymy) and we set the remaining

parameters as for SAFIR. For corpus-driven and knowledge-enhanced models, the word

vocabulary size is limited to the 217 most frequent words that have a document frequency

greater than 1 and lower than or equal to
|Φ|
2 . For knowledge-enhanced models, we rely on

the 2018AA release of the UMLS metathesaurus.

SAFIR, NVSM, word2vec, doc2vec, and cdoc2vec are trained for 15 iterations. For each

model, we select the iteration that performs best in terms of nDCG@1000, for OHSUMED,

and infNDCG for CDS collections. rword2vec and rdoc2vec retrofit optimized word2vec

and doc2vec/cdoc2vec, respectively. rword2vec is trained for 10 iterations as the procedure

converges to changes lower than 10−2 in the Euclidean distance [74]. For SAFIRsp and
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SAFIRs, we obtain optimal values of the synonymy strength hyperparameter λ equal to 0.1

for both variants in all CDS collections, whereas we obtain values of λ equal to 1.0 and 0.8

for SAFIRsp and SAFIRs, respectively, in OHSUMED.

We select the best iteration to evaluate models based on their top performance for the

reference measure. On the other hand, the reader can find details on the performances of

SAFIR averaged over iterations 10-15 in Appendix A, where we compare it with NVSM and

BM25/RM3 for document retrieval. We also report the behavior of SAFIR variants in terms

of optimization as training progresses. Then, we perform Kendall’s τ correlations between

the rankings of the models obtained when we take the best iteration and the average of

iterations 10-15. In this way, we can understand to what extent the ranking of the considered

models changes when we consider the average of iterations 10-15 instead of the best iteration.

The results show that in more than 60% of cases correlation is greater than or equal to 0.80 –

which indicates that the differences between rankings do not reflect noticeable changes [231].

The rest of the correlation values divides among 0.60 (13% of cases), 0.40 (17% of cases),

and 0.20 (9% of cases). Correlation values of 0.60 occur with two swaps between models

in the ranking list, whereas scores of 0.40 and 0.20 with three and four swaps, respectively.

Furthermore, low correlations (i.e., 0.40 and 0.20) cluster on precision-oriented measures,

which are highly sensitive to changes across iterations. For these measures, SAFIRs and

SAFIRsp change rank in most collections and BM25/RM3 gains positions. More details can

be found in Appendix A.

Lexical models are considered to see how they deal with the relevant documents most

affected by the semantic gap (RQ1). Corpus-driven models are considered as a basis for

comparison to evaluate the ability of knowledge-enhanced models to integrate external

knowledge in the learning process (RQ2). Knowledge-enhanced baselines are compared

with SAFIR to investigate both RQ1 and RQ2. Furthermore, the three variants of SAFIR

are compared to each other to understand which linguistic feature impacts retrieval the most

(RQ1) and how knowledge resources are better used to bridge the semantic gap between

query and documents (RQ2).

6.6.6 Expansion Models Setup

We adopt lexical, corpus-driven, and knowledge-enhanced models to perform the first round

of retrieval, whereas we use only lexical models for the second round. We use equation

(6.24) to interpolate query terms with the top m expansion terms from the set of ranked

documents R1. Depending on the model considered, sim(·, ·) is computed between regular q

and d representations or their knowledge-enhanced ϕ and φ versions. We adopt the models
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optimized for document retrieval and we keep Indri default values for RM3, that is R1=10,

m=10, and α =0.5.9

We consider different categories of retrieval models in the first round of retrieval to

evaluate their effectiveness in reducing the semantic gap. Precisely, we investigate whether

models that are specifically designed to address the semantic gap retrieve relevant documents

that lexical models fail to discover. Our intuition is that semantic models – by retrieving

relevant documents different from lexical models – allow RM3 to select expansion terms

that are more effective in reducing the semantic gap, thus improving the effectiveness of

lexical models in the second round of retrieval. Furthermore, we compare corpus-driven

and knowledge-enhanced models to analyze how different linguistic features impact on the

choice of expansion terms (RQ1) and if knowledge-enhanced models are best suited to this

retrieval strategy (RQ2).

6.7 Document Retrieval: Experimental Results

We present the experimental results for document retrieval and we discuss them based on the

research questions. Table 6.11 shows model performances for document retrieval. In addition

to the retrieval models reported above, we also consider BM25/RM3 as a lexical baseline.

Even though RM3 does not explicitly model polysemy nor synonymy, it is an effective PRF

based method that addresses the semantic gap. By considering BM25/RM3 in this evaluation,

we can thus investigate differences and similarities between traditional PRF based methods

and SAFIR.

6.7.1 The Impact of Polysemy and Synonymy on Document Retrieval

RQ1 Which feature between synonymy and polysemy can be exploited to reduce the seman-

tic gap and improve retrieval?

We see that all SAFIR variants belong to the top performing group (†) for all measures in all

the considered collections. This indicates that SAFIR effectively encodes the text matching

signals required to perform retrieval regardless of the linguistic feature(s) modeled. Among

the three variants, SAFIRp provides the best results in CDS collections for most measures.

Regarding OHSUMED, SAFIRsp is the top performing variant – closely followed by SAFIRp

– for all measures but Recall@1000, where SAFIRs achieves the highest score.

In CDS collections, SAFIRs and SAFIRsp exhibit performances close to or slightly

lower than those of NVSM and SAFIRp, respectively. We identify two reasons for this.

9https://sourceforge.net/p/lemur/code/HEAD/tree/indri/tags/release-5.16/src/RMExpander.cpp
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Table 6.11 Retrieval performances of considered models. Models are grouped by type:

Bag-of-Words (BoW), Corpus-Driven (CD), Knowledge-Enhanced (KE), and SAFIR. In

CDS collections, models are optimized by infNDCG, whereas in the OHSUMED collection

models are optimized by nDCG@1000. Bold values represent the highest scores among the

models in each collection. † represents the models belonging to the statistical top group for

the given collection with α ≤ 0.05.

infNDCG nDCG@1000

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W

QLM 0.1015† 0.1277† 0.1204† – 0.1750 0.1577 0.1568† 0.5552†

BM25 0.1064† 0.1276† 0.1399† – 0.1838† 0.1579 0.1643† 0.5875†

BM25/RM3 0.1384† 0.1578† 0.1688† – 0.2316† 0.2183† 0.2068† 0.6253†

C
D

word2vec 0.0954† 0.1159† 0.0928 – 0.1548 0.1634† 0.1054 0.5902†

doc2vec 0.0242 0.0302 0.0292 – 0.0414 0.0453 0.0239 0.3082

NVSM 0.1576† 0.1449† 0.1475† – 0.2649† 0.2213† 0.1818† 0.5977†

K
E

rword2vec 0.0896† 0.1142† 0.0790 – 0.1501 0.1589† 0.0980 0.5852†

cdoc2vec 0.0317 0.0517 0.0324 – 0.0430 0.0721 0.0335 0.2330

rdoc2vec 0.0327 0.0513 0.0292 – 0.0429 0.0718 0.0248 0.2067

S
A

F
IR SAFIRs 0.1602† 0.1498† 0.1546† – 0.2546† 0.2240† 0.1783† 0.6046†

SAFIRp 0.1608† 0.1516† 0.1523† – 0.2723† 0.2247† 0.1858† 0.6106†

SAFIRsp 0.1566† 0.1515† 0.1599† – 0.2651† 0.2266† 0.1849† 0.6144†

nDCG@100 nDCG@10

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W

QLM 0.1035† 0.1207† 0.1013† 0.3974† 0.1384† 0.2013† 0.1150† 0.3736†

BM25 0.1098† 0.1233† 0.1078† 0.4392† 0.1530† 0.2166† 0.1606† 0.4429†

BM25/RM3 0.1338† 0.1522† 0.1298† 0.4746† 0.1645† 0.1986† 0.1518† 0.4618†

C
D

word2vec 0.0821 0.1064† 0.0619 0.4461† 0.1028 0.1435† 0.0977† 0.4754†

doc2vec 0.0209 0.0242 0.0196 0.1915 0.0327 0.0211 0.0368 0.1915

NVSM 0.1362† 0.1385† 0.1077† 0.4181† 0.1694† 0.1664† 0.1324† 0.3873†

K
E

rword2vec 0.0774 0.1032† 0.0590 0.4421† 0.0967† 0.1410† 0.0930† 0.4709†

cdoc2vec 0.0215 0.0454 0.0178 0.1355 0.0317 0.0547 0.0225 0.1165

rdoc2vec 0.0213 0.0452 0.0202 0.1114 0.0293 0.0588 0.0397 0.0916

S
A

F
IR SAFIRs 0.1385† 0.1411† 0.1071† 0.4216† 0.1729† 0.1818† 0.1374† 0.4121†

SAFIRp 0.1435† 0.1395† 0.1113† 0.4361† 0.1931† 0.2053† 0.1519† 0.4267†

SAFIRsp 0.1401† 0.1403† 0.1098† 0.4397† 0.1898† 0.1926† 0.1475† 0.4380†

P@10 Recall@1000

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W

QLM 0.1400† 0.2233† 0.1600† 0.4381† 0.2375 0.1836 0.2289† 0.7964†

BM25 0.1667† 0.2600† 0.2167† 0.5016† 0.2503† 0.1826 0.2286† 0.7973†

BM25/RM3 0.1833† 0.2433† 0.2067† 0.5413† 0.3151† 0.2884† 0.3059† 0.8431†

C
D

word2vec 0.1133 0.1900† 0.1167† 0.5048† 0.2200 0.2194 0.1515 0.7778

doc2vec 0.0367 0.0367 0.0267 0.2190 0.0660 0.0671 0.0305 0.4795

NVSM 0.2033† 0.2333† 0.1600† 0.4333 0.3833† 0.3093† 0.2617† 0.8584†

K
E

rword2vec 0.1267† 0.1967† 0.1133 0.5048† 0.2221 0.2151 0.1414 0.7672

cdoc2vec 0.0433 0.0933 0.0233 0.1476 0.0658 0.1017 0.0555 0.3889

rdoc2vec 0.0367 0.1033 0.0333 0.1175 0.0651 0.1018 0.0313 0.3601

S
A

F
IR SAFIRs 0.1967† 0.2267† 0.1733† 0.4619† 0.3607† 0.3134† 0.2545† 0.8582†

SAFIRp 0.2333† 0.2633† 0.1700† 0.4762† 0.3846† 0.3098† 0.2782† 0.8548†

SAFIRsp 0.2200† 0.2467† 0.1633† 0.4794† 0.3733† 0.3110† 0.2747† 0.8520†
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First, NVSM/SAFIRs and SAFIRp/SAFIRsp pairs share the same input data, that is words

(the former) and word-concept pairs (the latter). Secondly, the optimal values for the

hyperparameter λ that controls the synonymy strength are equal to 0.1 for both variants in

all CDS collections. This suggests that the impact of synonymy in CDS collections might

be limited or even detrimental. In particular, we expect that modeling polysemy helps to

order relevant documents in top positions of the ranking list, while modeling synonymy helps

to retrieve a higher number of relevant documents which contain synonyms of the query

terms. While the results confirm this trend for polysemy, they do not for synonymy. In fact,

both SAFIRs and SAFIRsp achieve higher results than NVSM and SAFIRp, respectively,

for Recall@1000 and nDCG@1000 in CDS15 only. The negative results of rword2vec –

which models synonymy – compared to those of word2vec further support this intuition.

On the other hand, cdoc2vec – which addresses both synonymy and polysemy by learning

representations over documents composed only of concepts – achieves better results than

doc2vec for most measures. Therefore, the results suggest that polysemy impacts more than

synonymy on retrieval performances for CDS collections.

Regarding lexical baselines, all SAFIR variants achieve better performances than QLM

and BM25 for most measures in all CDS collections. In particular, for nDCG@1000 and

Recall@1000, SAFIR variants statistically outperform QLM in CDS14 and both QLM and

BM25 in CDS15. On the contrary, BM25/RM3, by performing an additional round of

retrieval to expand the original query, improves BM25 performances for most measures.

Even though the differences between SAFIR variants and BM25/RM3 are not statistically

significant, BM25/RM3 achieves performances greater than SAFIRs and SAFIRsp for several

cases of the measures considered. Conversely, SAFIRp outperforms BM25/RM3 for the

considered measures more than 60% of the time. Interestingly, BM25/RM3 fails to improve

BM25 for precision-oriented measures in CDS15 and CDS16. In both collections, SAFIRp

outperforms BM25/RM3 for nDCG@10. This suggests that RM3 might fail to answer

semantically hard queries that require to handle polysemy – which reinforces our hypothesis

on the impact of polysemy in CDS collections.

For reference purposes, we report the best values obtained during TREC CDS tracks for

infNDCG – which is the reference measure adopted in these tracks. In CDS14, the best score

for infNDCG is 0.2674 [188]. In CDS15, the best score is 0.2939 [189]. Finally, the best

score in CDS16 is 0.2815 [184]. Compared to the results in Table 6.11, the scores achieved

by the best systems submitted to TREC CDS tracks are higher. Note that these systems

rely on a variety of different IR components, ranging from pre- and post-retrieval query

expansions to re-ranking, and other components, like classifiers. On the other hand, in this
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evaluation, we exclusively focus on retrieval models and their ability to retrieve relevant

documents most affected by the semantic gap.

Compared to CDS collections, the results on OHSUMED show a lower gap among the

models considered. Lexical models, SAFIR variants, NVSM, and word2vec models behave

similarly. The only notable exceptions are for P@10, where NVSM does not belong to the

top group (†), and Recall@1000, where word2vec models are statistically outperformed by

lexical models, NVSM, and SAFIR variants. Our intuition is that the short, keyword-based

nature of OHSUMED queries and the limited corpus vocabulary (see Table 6.7) impact on the

effectiveness of modeling polysemy and synonymy. Besides, short, keyword-based queries

favor models relying on corpus-based features. This explains the competitive performances

of lexical and word2vec models – which exploit explicit feature engineering by relying on

IDF. In particular, word2vec is the top performing system for nDCG@10. Nevertheless, the

results of SAFIRsp show that polysemy and synonymy can be effectively modeled together.

Among the three variants, SAFIRsp achieves the best results for nDCG@10, nDCG@100,

and nDCG@1000, which indicate its ability to retrieve a higher number of relevant documents

(synonymy) and to order them in top positions of the ranking list (polysemy). Furthermore,

the differences between NVSM/SAFIRs and SAFIRp/SAFIRsp pairs favor SAFIR variants

integrating synonymy. Also, the optimal values for the hyperparamter λ that controls the

synonymy strength are equal to 0.8 and 1.0 for SAFIRs and SAFIRsp, respectively. This

indicates the greater impact that modeling synonymy has for OHSUMED rather than CDS.

The performance of BM25/RM3 further confirms the effectiveness of lexical models

in OHSUMED. In particular, BM25/RM3 outperforms all the considered models for most

measures. The only exceptions are nDCG@10 and Recall@1000, where word2vec and

SAFIR/NVSM achieve higher scores, respectively.

To further investigate the impact of polysemy and synonymy in the considered collections,

we perform quantitative and qualitative analyses. Quantitative analyses investigate the

degree of polysemy and synonymy within collections, whereas qualitative analyses focus on

semantically hard queries that require to handle polysemy and/or synonymy.

Polysemy Analysis

We rely on knowledge-enhanced collection statistics (see Table 6.9) to identify the degree of

polysemy within documents and queries. Then, we perform a qualitative analysis between

SAFIR variants to evaluate the impact that the integration of polysemy has in ordering

relevant documents in top positions of the ranking list. For each collection, we compute the

per-topic differences between SAFIR variants in terms of nDCG@10. We rely on Figures 6.5–

6.8 to present and discuss the results. The outcomes of the qualitative analysis are used
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for a second analysis, where we compare SAFIR variants and BM25/RM3 on semantically

hard queries. The objective is to understand whether the effectiveness of SAFIRp and

SAFIRsp on highly polysemous queries holds against BM25/RM3. To this end, we compute

the per-topic differences between SAFIR variants and BM25/RM3 in terms of nDCG@10.

Figures 6.9–6.12 complement the analysis.

The Degree of Polysemy. When we compare the average number of words per document

from Table 6.7 and the average number of concepts per document from Table 6.9(a) we

observe that the average number of concepts is about half the average number of words in all

collections. Furthermore, Table 6.9(c) shows that, on average, more than half of the words

presenting concepts are polysemous. Similar observations can also be made for queries,

where the average number of concepts per query fluctuates between one third and a half of the

average number of words depending on the collection – as indicated in Table 6.9(b). Besides,

Table 6.9(d) shows that in all collections more than 60% (on average) of the query words

presenting concepts are polysemous. These results indicate the large presence of polysemy

within the considered collections.

The Impact of Modeling Polysemy. Figures 6.5–6.8 point out an interesting behavior of

the different SAFIR variants on single queries. Each figure shows the per-topic differences

between SAFIR variants at nDCG@10 for a given collection. The green (light) stems indicate

that the upper-side SAFIR variant achieves a higher nDCG@10 score than the lower-side

variant. Vice versa, red (dark) stems indicate that the lower-side SAFIR variant achieves a

higher nDCG@10 score than the upper-side variant. Overall, the nDCG@10 results are not

consistently in favor of one or the other SAFIR variant. Depending on the query, a particular

SAFIR variant outperforms the other and vice versa. Nevertheless, SAFIRp and SAFIRsp

show results closer to each other than to SAFIRs since they both model polysemy.

In OHSUMED (Figure 6.5), SAFIRp and SAFIRs achieve higher nDCG@10 scores for

thirty-one and twenty-nine queries, respectively, whereas on three queries they perform

equally. Overall, SAFIRp achieves a higher nDCG@10 score than SAFIRs in more queries

(with per-topic difference ≥ 0.10). In particular, SAFIRp outperforms SAFIRs by a large

margin (≥ 0.30) on topic OHSU14. If we analyze the degree of polysemy of topic OHSU14,

we find out that 50% (two out of four) of the query words are polysemous. Thus, polysemy

has a strong impact on this query and SAFIRp (but also SAFIRsp) effectively captures it.

A similar trend is found for topic OHSU7, where 75% (three out of four) of the words are

polysemous. The smaller difference between SAFIRs and SAFIRp, along with the fact that

SAFIRsp achieves the best results among the three variants, suggest that both polysemy
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Fig. 6.5 Per-topic differences between SAFIR variants at nDCG@10 in OHSUMED collec-

tion. The green (light) stems indicate that the upper-side SAFIR variant achieves a higher

nDCG@10 score than the lower-side variant. Vice versa, red (dark) stems indicate that the

lower-side SAFIR variant achieves a higher nDCG@10 score than the upper-side variant.

Fig. 6.6 Per-topic differences between SAFIR variants at nDCG@10 in CDS14 collec-

tion. The green (light) stems indicate that the upper-side SAFIR variant achieves a higher

nDCG@10 score than the lower-side variant. Vice versa, red (dark) stems indicate that the

lower-side SAFIR variant achieves a higher nDCG@10 score than the upper-side variant.
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Fig. 6.7 Per-topic differences between SAFIR variants at nDCG@10 in CDS15 collec-

tion. The green (light) stems indicate that the upper-side SAFIR variant achieves a higher

nDCG@10 score than the lower-side variant. Vice versa, red (dark) stems indicate that the

lower-side SAFIR variant achieves a higher nDCG@10 score than the upper-side variant.

Fig. 6.8 Per-topic differences between SAFIR variants at nDCG@10 in CDS16 collec-

tion. The green (light) stems indicate that the upper-side SAFIR variant achieves a higher

nDCG@10 score than the lower-side variant. Vice versa, red (dark) stems indicate that the

lower-side SAFIR variant achieves a higher nDCG@10 score than the upper-side variant.
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and synonymy impact on this query. Conversely, topic OHSU39 presents three polysemous

words out of nine (30%). In this case, modeling polysemy impacts less on – or even harms –

the query and other factors dominate the performances. We hypothesize that these factors

are related to synonymy given the high performance of SAFIRs and the fact that SAFIRsp

outperforms SAFIRp.

In CDS14 (Figure 6.6), the results show a similar trend to OHSUMED. However, the

differences between variants are smaller (with per-topic differences ≤ 0.15). The only

notable exception is topic 26, where both SAFIRp and SAFIRsp outperform SAFIRs by a

large margin. In this query, 50% of the words are polysemous. Also, the fact that SAFIRp

and SAFIRsp achieve nearly the same nDCG@10 score suggests that polysemy dominates

performances on this query. Conversely, in topic 6, where SAFIRs outperforms both SAFIRp

and SAFIRsp, less than 30% of the words are polysemous. For this query, both SAFIRp

and SAFIRsp achieve an nDCG@10 score of zero – which means that polysemy hurts

performance even when jointly modeled with synonymy, as in SAFIRsp.

The differences between SAFIR variants are smaller in CDS15 (Figure 6.7), where the

largest difference between SAFIRs and the variants integrating polysemy is found for topic

22 with a value close to 0.30. Also this query presents a large number of polysemous words

(50%). Again, SAFIRp and SAFIRsp achieve nearly the same nDCG@10 score. The fact

that the difference is in favor of SAFIRsp indicates that the combination of both synonymy

and polysemy is beneficial for this query.

Regarding CDS16 (Figure 6.8), the results are in line with those from CDS14 and

CDS15. The query presenting the largest difference is topic 20, where SAFIRp and SAFIRsp

outperform SAFIRs by a margin of 0.20. In this case, however, the number of polysemous

words is lower than in the previous examples, with a percentage of polysemous words of

40%. As for topic 22 from CDS15, the difference between SAFIRp and SAFIRsp is in favor

of SAFIRsp. Finally, we highlight topic 26, where both SAFIRp and SAFIRsp achieve a score

of zero for nDCG@10 – as opposed to SAFIRs. Interestingly, topic 26 is an outlier in terms

of query length, with a total of fifty-four words of which twenty-two are polysemous. The

results for this query show that integrating synonymy is effective, whereas polysemy harms

performances.

Thus, the analysis shows that SAFIRp and – to a lesser extent – SAFIRsp present a

larger number of queries than SAFIRs, where they achieve higher scores for nDCG@10.

In particular, when the degree of polysemy within queries is high, SAFIRp and SAFIRsp

effectively capture it and get high results for precision-oriented measures. On the other hand,

SAFIRp and SAFIRsp are outperformed by SAFIRs in some queries where the polysemy
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degree is low. In such cases, modeling synonymy is effective as opposed to polysemy –

which leads to detrimental effects on performances.

The Advantage of Modeling Polysemy. Figures 6.9–6.12 highlight a behavior similar to

the one found in the previous analysis. Each figure shows the per-topic differences between

SAFIR variants and BM25/RM3 at nDCG@10 for a given collection. The green (light) stems

indicate that the SAFIR variant achieves a higher nDCG@10 score than BM25/RM3. Vice

versa, red (dark) stems indicate that BM25/RM3 achieves a higher nDCG@10 score than

the SAFIR variant. Overall, the nDCG@10 results tend to split between SAFIR variants and

BM25/RM3. However, the objective of this analysis is to verify whether the effectiveness of

SAFIRp and SAFIRsp on highly polysemous queries holds against BM25/RM3. Therefore,

we compare SAFIR variants with BM25/RM3 on the same highly polysemous queries

discussed in the previous analysis.

Fig. 6.9 Per-topic differences between SAFIR variants and BM25/RM3 for nDCG@10 in

OHSUMED collection. The green (light) stems indicate that the SAFIR variant achieves

a higher nDCG@10 score than BM25/RM3. Vice versa, red (dark) stems indicate that

BM25/RM3 achieves a higher nDCG@10 score than the SAFIR variant.
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Fig. 6.10 Per-topic differences between SAFIR variants and BM25/RM3 for nDCG@10 in

CDS14 collection. The green (light) stems indicate that the SAFIR variant achieves a higher

nDCG@10 score than BM25/RM3. Vice versa, red (dark) stems indicate that BM25/RM3

achieves a higher nDCG@10 score than the SAFIR variant.

Fig. 6.11 Per-topic differences between SAFIR variants and BM25/RM3 for nDCG@10 in

CDS15 collection. The green (light) stems indicate that the SAFIR variant achieves a higher

nDCG@10 score than BM25/RM3. Vice versa, red (dark) stems indicate that BM25/RM3

achieves a higher nDCG@10 score than the SAFIR variant.
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Fig. 6.12 Per-topic differences between SAFIR variants and BM25/RM3 for nDCG@10 in

CDS16 collection. The green (light) stems indicate that the SAFIR variant achieves a higher

nDCG@10 score than BM25/RM3. Vice versa, red (dark) stems indicate that BM25/RM3

achieves a higher nDCG@10 score than the SAFIR variant.

Regarding OHSUMED (Figure 6.9), in topic OHSU14 – where 50% of the words are

polysemous – neither SAFIRp nor SAFIRsp outperform BM25/RM3. However, both SAFIR

variants present smaller differences (about 0.15) with BM25/RM3 if compared to SAFIRs

(> 0.45). Therefore, although not entirely, modeling polysemy helps SAFIR to bridge the

performance gap with BM25/RM3. On the other hand, the results for topic OHSU7 – where

75% of the words are polysemous – show that SAFIRp and SAFIRsp outperform BM25/RM3.

Besides, the fact that SAFIRs performs worse than BM25/RM3 indicates that this topic

highly benefits from modeling polysemy.

In CDS14 (Figure 6.10), topic 26 (50% of polysemous words) shows a similar trend

to topic OHSU7. Also in this case, SAFIRp and SAFIRsp outperform BM25/RM3 – with

per-topic difference ≥ 0.20 – whereas SAFIRs does not achieve competitive performance –

with a gap of almost 0.40 with BM25/RM3. Compared to OHSU7, however, the impact of

synonymy on this query is limited.

A different situation occurs for CDS15 (Figure 6.11), where all SAFIR variants outper-

form BM25/RM3 in topic 22 (50% of polysemous words). The positive performances of all

SAFIR variants – and in particular of SAFIRsp – indicate that modeling both synonymy and

polysemy is beneficial for this query.
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As for CDS16 (Figure 6.12), topic 20 – where 40% of the words are polysemous –

shows similarities with topics OHSU7 (OHSUMED) and 26 (CDS14). Again, SAFIRp and

SAFIRsp outperform BM25/RM3, while SAFIRs does not. However, the differences between

SAFIRp/SAFIRsp and BM25/RM3 are small if compared to the other topics discussed. A

possible reason could be the lower number of polysemous words within this query – which

leads to a minor impact of polysemy on model performances.

Thus, the analysis confirms the effectiveness of modeling polysemy to answer semanti-

cally hard queries with a high degree of polysemy. SAFIRp and SAFIRsp effectively capture

polysemy and, for highly polysemous queries, outperform BM25/RM3.

Synonymy Analysis

To identify the degree of synonymy in the considered collections, we account for (i) the

proportion of relevant documents that contain at least one query term; (ii) the proportion

of relevant documents that contain at least one synonym related to any query term; (iii)

the proportion of relevant documents that contain only query terms; (iv) the proportion of

relevant documents that contain only synonyms related to query terms.

Figure 6.13 shows the distribution of such proportions within each collection. Then, for

each collection, we present one query where the integration of synonymy in the learning

process produces effective results. Each query is selected to highlight this behavior and

has the proportion of relevant documents containing synonyms close to or greater than the

third quartile of the distribution generated from (ii). We report the results in Table 6.12

as a pairwise comparison between NVSM/SAFIRs and SAFIRp/SAFIRsp. In this way, we

emphasize the effectiveness of integrating synonymy by comparing pairs of models that

rely on the same input data. As done for polysemy, we perform a second analysis where

we compare SAFIR variants, NVSM, and BM25/RM3 on semantically hard queries. The

objective is to understand whether the effectiveness of SAFIRs and SAFIRsp on queries with

a large proportion of relevant documents containing only query synonyms holds against

NVSM and BM25/RM3. For each collection, we consider the five queries that present the

largest proportion of relevant documents containing only query synonyms (iv) and we present

the results in Table 6.13.

The Degree of Synonymy. The distributions in Figure 6.13 provide two main insights.

First, the proportion of relevant documents that contain only query synonyms is low for all

queries in all collections. Therefore, modeling synonymy to retrieve relevant documents has

a marginal impact on retrieval performances. Secondly, the proportion of relevant documents

that contain at least one query synonym is, on average, lower than the proportion of relevant
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Thus, the analysis explains the low – or even detrimental – impact of integrating synonymy

and shows why SAFIRs and SAFIRsp present average performances close to or lower than

those of NVSM and SAFIRp, respectively. Nevertheless, we want to understand if modeling

synonymy proves effective when the proportion of relevant documents that contain query

synonyms is high. Our intuition is that for queries with a large number of relevant documents

containing query synonyms, the effectiveness will be higher for SAFIRs and SAFIRsp than

for NVSM and SAFIRp, respectively.

Table 6.12 Pairwise comparison between SAFIRs/NVSM and SAFIRsp/SAFIRp on specific

topics that present a large number of relevant documents containing query synonyms. For

each measure, ↑/↓ means that the SAFIR variant integrating synonymy achieves higher/lower

scores than its baseline.

OHSUMED - Topic OHSU22

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

NVSM – 0.4267 0.2440 0.0526 0.1000 0.9600

SAFIRs – 0.4795↑ 0.2906↑ 0.1414↑ 0.3000↑ 1.0000↑

SAFIRp – 0.4177 0.2491 0.0435 0.1000 0.9600

SAFIRsp – 0.4457↑ 0.2820↑ 0.0473↑ 0.1000 1.0000↑

CDS14 - Topic 24

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

NVSM 0.3118 0.5225 0.3300 0.2941 0.4000 0.7222

SAFIRs 0.3797↑ 0.5877↑ 0.4018↑ 0.4291↑ 0.4000 0.7333↑

SAFIRp 0.3281 0.5373 0.3472 0.3236 0.4000 0.7111

SAFIRsp 0.3338↑ 0.5631↑ 0.3532↑ 0.4019↑ 0.5000↑ 0.7222↑

CDS15 - Topic 19

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

NVSM 0.0075 0.1222 0.0092 0.0000 0.0000 0.2159

SAFIRs 0.0171↑ 0.1358↑ 0.0209↑ 0.0000 0.0000 0.2500↑

SAFIRp 0.0088 0.0985 0.0108 0.0000 0.0000 0.1705

SAFIRsp 0.0102↑ 0.1243↑ 0.0125↑ 0.0000 0.0000 0.2273↑

CDS16 - Topic 26

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

NVSM 0.0899 0.2370 0.1058 0.0347 0.1000 0.3363

SAFIRs 0.1288↑ 0.2735↑ 0.1359↑ 0.1120↑ 0.2000↑ 0.3717↑

SAFIRp 0.0385 0.1928 0.0453 0.0000 0.0000 0.3009

SAFIRsp 0.0486↑ 0.2084↑ 0.0571↑ 0.0000 0.0000 0.3186↑
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The Impact of Modeling Synonymy. The results from Table 6.12 confirm this intuition

and show the ability of SAFIRs and SAFIRsp to retrieve relevant documents that NVSM and

SAFIRp fail to discover. In particular, SAFIRs and SAFIRsp achieve 100% Recall@1000

for topic OHSU22 (OHSUMED), thus retrieving all the relevant documents that neither

NVSM nor SAFIRp discover. Furthermore, the results for nDCG measures show the ability

of SAFIRs and SAFIRsp to effectively order relevant documents in the ranking list. For

instance, SAFIRs achieves a 0.4291 of nDCG@10 in topic 24 (CDS14), whereas NVSM

achieves 0.2941. Similarly, SAFIRsp achieves a 0.4019 of nDCG@10 that outperforms

SAFIRp. To a lesser extent, the results for topic 19 (CDS15) follow the same trend found in

the topics analyzed for OHSUMED and CDS14. The main difference regards nDCG@10

and P@10 measures, where SAFIRs and SAFIRsp achieve the same performances of NVSM

and SAFIRp. In this case, SAFIR variants and NVSM fail to order relevant documents

in the top positions of the ranking list. Finally, the results for topic 26 (CDS16) confirm

the findings from the polysemy analysis on this query and highlight the effectiveness of

integrating synonymy.

The Advantage of Modeling Synonymy. Given the outcomes of the previous analysis,

we investigate whether the effectiveness of SAFIRs and SAFIRsp on semantically hard

queries – i.e., queries with a large number of relevant documents containing only query

synonyms – holds against NVSM and BM25/RM3. The results from Table 6.13 mark a clear

distinction between OHSUMED, CDS16, and CDS14, CDS15. In OHSUMED and CDS16,

BM25/RM3 achieves top performances for most measures. The only notable exception is

Recall@1000, where SAFIRs and SAFIRsp outperform BM25/RM3 by a large margin. On

the other hand, the results for CDS14 and CDS15 highlight the effectiveness of SAFIRs

(CDS14) and SAFIRsp (CDS15) to answer semantically hard queries. In particular, SAFIRsp

achieves top performances for all measures but infNDCG in CDS15.

If we analyze the proportion of relevant documents containing only query synonyms

in the considered queries, we discover that the differences between OHSUMED, CDS16,

and CDS14, CDS15 are related to such quantities. In both OHSUMED and CDS16, the

number of relevant documents containing only query synonyms is less than 15% of the total

number of relevant documents for three out of five queries. Conversely, CDS14 and CDS15

show proportions higher than 15% for most queries. In particular, all the five CDS15 queries

present proportions greater than 20% – and close to 30% in three out of five cases.

Therefore, when the proportion of relevant documents containing only query synonyms is

considerable, SAFIRs and SAFIRsp effectively capture synonymy and provide better results

to semantically hard queries than NVSM and BM25/RM3 – which do not explicitly model
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Table 6.13 Retrieval performances of SAFIR variants, NVSM, and BM25/RM3 on the five

topics that present the largest number of relevant documents containing only query synonyms.

For each measure, bold represents the model with the highest score.

OHSUMED - Topics OHSU63, OHSU31, OHSU54, OHSU22, OHSU32

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

BM25/RM3 – 0.3926 0.2729 0.2480 0.3600 0.6285

NVSM – 0.3383 0.2248 0.1272 0.1800 0.5875

SAFIRs – 0.3892 0.2127 0.1860 0.2400 0.6843

SAFIRp – 0.3725 0.2438 0.1744 0.2200 0.6304

SAFIRsp – 0.3832 0.2457 0.1762 0.2200 0.6637

CDS14 - Topics 16, 28, 13, 5, 24

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

BM25/RM3 0.1241 0.2127 0.1280 0.1482 0.2000 0.29854

NVSM 0.1031 0.2236 0.1137 0.1175 0.1600 0.3395

SAFIRs 0.1268 0.2388 0.1436 0.1434 0.1400 0.3313

SAFIRp 0.1091 0.2184 0.1205 0.1165 0.1600 0.3124

SAFIRsp 0.1149 0.2253 0.1323 0.1211 0.1600 0.3179

CDS15 - Topics 7, 24, 16, 13, 11

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

BM25/RM3 0.1080 0.1166 0.0976 0.1515 0.2000 0.1363

NVSM 0.1570 0.1785 0.1489 0.2357 0.3200 0.2154

SAFIRs 0.1601 0.1822 0.1570 0.2575 0.3400 0.2202

SAFIRp 0.1794 0.1979 0.1578 0.2612 0.3200 0.2295

SAFIRsp 0.1768 0.1986 0.1633 0.2878 0.3600 0.2348

CDS16 - Topics 22, 1, 5, 12, 13

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

BM25/RM3 0.1192 0.1701 0.1090 0.1443 0.2000 0.2319

NVSM 0.0642 0.1469 0.0626 0.0712 0.1600 0.2492

SAFIRs 0.0917 0.1503 0.0718 0.0861 0.1800 0.2270

SAFIRp 0.0839 0.1628 0.0722 0.1021 0.1400 0.2522

SAFIRsp 0.0900 0.1584 0.0683 0.1020 0.1400 0.2438
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synonymy. However, compared to polysemy, the degree of synonymy is limited. Thus, the

impact of modeling synonymy is marginal on average.

Take-home message. Modeling polysemy is effective and impacts the most when queries

present a high degree of polysemy. On the other hand, the impact of synonymy on average

performances is marginal – or even detrimental – due to the limited presence of relevant

documents containing (only) query synonyms. Nevertheless, when we look at queries with a

large number of relevant documents containing (only) query synonyms, SAFIRs and SAFIRsp

capture synonymy and provide effective results.

6.7.2 The Effectiveness of Knowledge Resources

for Document Retrieval

RQ2 How can external knowledge resources help to bridge the semantic gap between queries

and documents?

When we compare knowledge-enhanced models with the corpus-driven baselines used as

part of their learning process, we observe different trends. Regarding knowledge-enhanced

baselines, we see that retrofitting models fail to enhance the baselines used as part of

their learning process. rword2vec performs worse than word2vec for most measures in

all collections. Similarly, rdoc2vec fails to improve on both its baselines and performs

worse than doc2vec or cdoc2vec for most measures in all collections. The optimization

function used by rdoc2vec retrofits document representations but leaves word and concept

representations unchanged. Therefore, document and word/concept representations – that

were jointly learned by doc2vec/cdoc2vec – misalign. This leads to a mismatch between

retrofitted document representations and word/concept representations, which can explain

the suboptimal performances achieved by rdoc2vec. On the other hand, the results show

that cdoc2vec benefits from learning concepts rather than words for most measures in

CDS collections. Conversely, cdoc2vec achieves significantly worse results than doc2vec

in OHSUMED. The reason of this significant drop in performances can be attributed to

how cdoc2vec builds query representations. In fact, cdoc2vec relies only on the concepts

associated to the query terms to build query representations. Therefore, given the short length

of OHSUMED queries, this building process leads to noneffective representations.

As for SAFIR, we see that all the variants outperform NVSM for most measures in

all collections. Depending on the measure and collection considered, different SAFIR

variants achieve the best results. Interestingly, the results for nDCG@10 show that all

SAFIR variants order relevant documents in top positions better than NVSM. This highlights
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the effectiveness, for precision-oriented measures, of integrating external knowledge while

optimizing word, concept, and document representations for retrieval. Of all the SAFIR

variants, NVSM gets closer to SAFIRs performances. In particular, SAFIRs performs worse

than NVSM for nDCG@1000 and Recall@1000 both in CDS14 and CDS16. As seen in the

synonymy analysis, SAFIRs performance is impacted by the limited presence of relevant

documents containing (only) query synonyms. However, the fact that SAFIRs outperforms

NVSM for infNDCG in all CDS collections suggests that, with a larger number of relevance

judgments, SAFIRs could achieve higher nDCG values than NVSM. Indeed, we recall

that infNDCG provides a better estimate of the real value of nDCG in case of incomplete

relevance judgments [249].

Compared to the other knowledge-enhanced models, we emphasize the effectiveness of

SAFIR for Recall@1000 and nDCG measures. Recall@1000 shows the ability of SAFIR

variants to retrieve relevant documents while nDCG measures show how well these documents

are ranked at different cutoff levels. Therefore, we perform the following analyses to further

evaluate the differences between SAFIR and the considered baselines.

Knowledge-Enhanced Relevance Analysis

We analyze the number of relevant documents retrieved by SAFIR variants and knowledge-

enhanced baselines. For each topic of CDS collections, we compare the number of exclusive

relevant documents that only SAFIR retrieves with respect to the union of the relevant

documents retrieved by all the knowledge-enhanced baselines. This means that we compare

SAFIR against a “fictitious and boosted” model that considers all the relevant documents

retrieved by the knowledge-enhanced baselines. We adopt this solution instead of comparing

SAFIR individually with each knowledge-enhanced baseline to save space and compare

SAFIR with a highly challenging baseline. Figure 6.14 reports the per-topic results of this

analysis.

The analysis shows how exclusive SAFIR is in retrieving relevant documents that none

of the knowledge-enhanced baselines retrieve. SAFIR retrieves more exclusive relevant

documents than all the other knowledge-enhanced models together. In particular, SAFIR

variants retrieve more exclusive relevant documents for almost all the topics of CDS14 and

CDS16 collections. The exclusiveness of SAFIR is less evident in CDS15, as the impact of

rword2vec in the “fictitious” model reduces the gap with SAFIR. If we analyze the per-topic

behavior of each SAFIR variant, we observe that, with the due differences, all variants have

a similar trend in terms of exclusive relevant documents retrieved. This suggests that SAFIR

prioritizes text matching when learning representations and relies on polysemy and synonymy

to refine such representations towards one, or both, features.
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Fig. 6.14 Per-topic analysis of the number of relevant documents retrieved by SAFIR variants

and by the union of the knowledge-enhanced baselines. For each topic, the green (light) bar

represents the number of relevant documents that only SAFIR retrieves and the red (dark)

bar represents the union of the number of relevant documents that the knowledge-enhanced

baselines retrieve.
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We present three examples – one for each SAFIR variant – where we qualitatively analyze

the impact of knowledge resources in modeling synonymy, polysemy, or both. Each example

represents a query where a particular SAFIR variant retrieves the highest number of exclusive

relevant documents compared to the other variants and the fictitious model. We discuss the

aspects of each example related to synonymy and/or polysemy and we provide insights on

why a particular SAFIR variant performs best. Then, we present a fourth example where

SAFIR is outperformed by the fictitious model, which retrieves more exclusive relevant

documents.

Example 6.7.1. CDS14 Topic 4: “2-year-old boy with fever and irritability for 5 days.

Physical exam findings include conjunctivitis, strawberry tongue, and desquamation of the

fingers and toes. Lab results include low albumin, elevated white blood cell count and

C-reactive protein, and urine leukocytes. Echo shows moderate dilation of the coronary

arteries.”

• {SAFIRs}\{knowledge-enhanced baselines (union)}: 25

• {knowledge-enhanced baselines (union)}\{SAFIRs}: 0

For topic 4 of CDS14, SAFIRs retrieves twenty-five documents that the fictitious model does

not retrieve. Conversely, the fictitious model does not retrieve any relevant documents that

SAFIRs does not retrieve. For this query, an interesting example is provided by document

3152734. Document 3152734 describes common associated symptoms (e.g., strawberry

tongue) and their clinical significance in children affected with the Kawaski disease. The

document contains words like “children” and “febrile”, which convey the same meaning

of query words “boy” and “fever”. Therefore, by modeling synonymy, SAFIRs reduces

the semantic gap between the query and this (relevant) document and improves retrieval.

This document is not retrieved by SAFIRp, which does not model synonymy, and neither by

lexical models, since query words are not contained within it.

Example 6.7.2. CDS15 Topic 22: “A 65-year-old male complains of productive cough with

tinges of blood. Chest X-ray reveals a round opaque mass within a cavity in his lung. Culture

of the sputum revealed fungal elements.”

• {SAFIRp}\{knowledge-enhanced baselines (union)}: 111

• {knowledge-enhanced baselines (union)}\{SAFIRp}: 42

For topic 22 of CDS15, SAFIRp retrieves 111 documents that the fictitious model does not

retrieve. On the other hand, the fictitious model retrieves forty-two relevant documents
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that SAFIRp does not. Among the unique relevant documents retrieved by SAFIRp, doc-

ument 3014676 presents interesting aspects. Document 3014676 describes treatments for

the allergic bronchopulmonary aspergillosis. The disease derives from the Aspergillus, a

soil-dwelling fungus known to cause significant pulmonary infection in immunocompro-

mised patients. The document presents various acronyms and morphosyntactic variants. In

particular, the acronym “ABPA” – which stands for “Allergic Bronchopulmonary Aspergillo-

sis” – can be especially ambiguous for an automatic system. Indeed, within UMLS the

acronym “ABPA” can be associated to five different meanings (CUIs) like: “Aspergillosis,

Allergic Bronchopulmonary” (C0004031), “FLNC gene” (C1414637), and “AbpA protein,

Streptococcus gordonii” (C1308582). Therefore, to relate such word to discriminative words

within the query (e.g., the query words “lung” and “fungal”) it is important to disambiguate

its meaning. By modeling polysemy, SAFIRp removes this ambiguity in document and query

words and improves retrieval. It is worth mentioning that this document is not retrieved by

SAFIRs, which does not model polysemy, and neither by lexical models.

Example 6.7.3. CDS16 Topic 14: “A 52 year-old woman with history of COPD and breast

cancer who presents with SOB, hypoxia, cough, fevers and sore throat for several weeks.”

• {SAFIRsp}\{knowledge-enhanced baselines (union)}: 22

• {knowledge-enhanced baselines (union)}\{SAFIRsp}: 8

For topic 14 of CDS16, SAFIRsp retrieves twenty-two documents that the fictitious model

does not retrieve. Instead, the fictitious model retrieves eight relevant documents that

SAFIRsp does not find. The query presents two interesting acronyms: COPD and SOB. The

former stands for chronic obstructive pulmonary disease, whereas the latter for shortness

of breath. COPD is a type of obstructive lung disease characterized by long-term breathing

problems and poor airflow. In COPD, shortness of breath is a common respiratory symptom.

Therefore, both acronyms need to be correctly disambiguated to retrieve relevant documents

associated with them. We focus on document 3266210, which describes a clinical trial for the

treatment of COPD. In particular, document 3266210 contains the word “dyspnoea” – which

is a synonym of SOB. Thus, by modeling both synonymy and polysemy together, SAFIRsp

encodes semantic features required to effectively retrieve this document. Interestingly,

SAFIRsp is the only variant retrieving this document.

Example 6.7.4. CDS14 Topic 23: “63-year-old heavy smoker with productive cough, short-

ness of breath, tachypnea, and oxygen requirement. Chest x-ray shows hyperinflation with

no consolidation.”



180 Knowledge-Enhanced Semantic Models

For topic 23 of CDS14, none of the SAFIR variants retrieve more than four documents

that the fictitious model does not retrieve. In particular, SAFIRs and SAFIRp retrieve four

documents that the fictitious model does not find, whereas SAFIRsp only three. On the other

hand, the fictitious model retrieves twenty-two documents that SAFIRs does not retrieve and

eighteen documents that neither SAFIRp nor SAFIRsp retrieve. It is worth mentioning that the

knowledge-enhanced baseline that impacts the most within the fictitious model is rword2vec.

In fact, rword2vec retrieves nineteen of the twenty-two documents that SAFIRs does not find

and sixteen of the eighteen documents that neither SAFIRp nor SAFIRsp discover.

Relevance Similarity Analysis

We evaluate to what extent SAFIR variants and the considered baselines retrieve different

relevant documents. For each collection and pair of models, we compute the mean Jaccard

index between the sets of relevant documents retrieved at different cutoffs. Given a pair

of models, we compute the per-topic Jaccard index as the cardinality of the intersection

divided by the cardinality of the union of the sets of relevant documents retrieved by the two

considered models at a given cutoff. Then, the mean Jaccard index takes the average of the

per-topic indices computed at the corresponding cutoff. When computing the mean Jaccard

index, we do not count topics where none of the two considered models retrieve relevant

documents (i.e., missing values). We use the same cutoff values used for nDCG measures,

that is 10, 100, and 1000. In particular, we evaluate the degree of similarity between models

that exhibit similar average performances. We want to understand to what extent these models

retrieve different relevant documents. We do not report Jaccard index values for QLM and

doc2vec models to save space and ease visualization. The performances of QLM are always

comparable or lower than those of BM25, whereas doc2vec models never belong to the top

statistical group (†).

Figure 6.15 shows the heatmaps of the mean Jaccard indices between the sets of relevant

documents retrieved by each pair of models across topics at cutoffs 10, 100, and 1000,

respectively, for each collection. The heatmaps highlight three clusters of models with higher

similarity scores. The first cluster is composed of SAFIR variants and NVSM, the second of

word2vec and rword2vec, whereas the third one comprises BM25 and BM25/RM3. Within

the first cluster, the NVSM/SAFIRs and SAFIRp/SAFIRsp pairs show higher scores due to

the inherent similarity between the models. Nevertheless, we observe that NVSM/SAFIRs

and SAFIRp/SAFIRsp pairs never exceed a similarity score of 0.70 at cutoff 10. The only

exception is in CDS16, where the NVSM/SAFIRs pair shows a similarity score of 0.76.

Therefore, all these models retrieve a significant number of different relevant documents in

top positions of the ranking list. This behavior is even more pronounced when we consider
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(a) OHSUMED

(b) CDS14

(c) CDS15

(d) CDS16

Fig. 6.15 Heatmaps of the mean Jaccard indices between the sets of relevant documents

retrieved by each pair of models across topics at cutoffs 10, 100, and 1000, respectively, for

each collection.
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the similarity scores between NVSM and either SAFIRp or SAFIRsp. In fact, the scores for

the NVSM/SAFIRp and NVSM/SAFIRsp pairs keep low for all cutoffs in CDS collections

– never exceeding values of 0.50, 0.55, and 0.70 at cutoffs 10, 100, and 1000, respectively.

Within the second cluster, word2vec and rword2vec consistently present the same level of

similarity for all cutoffs in all collections. The only exception is in CDS16, where they

show a similarity score of 0.48 at rank 10. Within the third cluster, BM25 and BM25/RM3

show similarity scores lower than 0.60 in all CDS collections – regardless of the cutoff.

This reflects the impact of expanding the original query with RM3, which enables BM25 to

discover more relevant documents compared to the first round of retrieval.

Outside the clusters, the low similarity scores in CDS collections indicate that all the

models retrieve different relevant documents regardless of the cutoff. Conversely, all the

considered pairs present high similarity scores at cutoffs 100 and 1000 in OHSUMED. We

attribute this behavior to two main reasons: (i) the high proportion of relevant documents

that contain at least one query term in OHSUMED (see Figure 6.13), which favors models

relying on corpus-based features; (ii) the small size of corpus and vocabulary in OHSUMED

(see Table 6.7), which reduces the amount of polysemous and synonymous words within the

collection.

Thus, the results show how different models are in terms of relevant documents retrieved.

In particular, SAFIR variants and NVSM significantly differ in the relevant documents

retrieved at cutoff 10 in CDS collections. SAFIRp and SAFIRsp keep this behavior also at

cutoffs 100 and 1000, whereas SAFIRs becomes similar to NVSM. This means that, even

though SAFIRp, SAFIRsp, and NVSM present similar average performances at cutoffs 100

and 1000 (see Table 6.11), they achieve such performances by retrieving different relevant

documents. On the other hand, the low similarity between SAFIR variants and BM25/RM3 –

in terms of relevant documents retrieved – highlights the difference between semantic models

and PRF based methods in addressing the semantic gap. This suggests that SAFIR and RM3

can be used as complementary approaches to address the semantic gap. Therefore, in the next

section, we investigate the effectiveness of SAFIR variants in retrieving feedback documents

for PRF based methods.

Take-home message. The integration of knowledge resources into the learning process

of neural IR models is effective and helps to bridge the semantic gap between queries and

documents. The learned representations encode text matching signals, necessary for IR

tasks, and linguistic features to retrieve relevant documents that are most affected by the

semantic gap. In particular, integrating external knowledge helps to boost the results at the

top positions of the ranking list.
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6.8 Query Expansion: Experimental Results

We present the experimental results for query expansion and we discuss them based on the

research questions. Table 6.14 shows the performances for query expansion. We do not

report the results of RM3 with QLM for the sake of simplicity. Indeed, the performances

with QLM were always comparable or lower than those obtained using BM25. Also, we do

not consider doc2vec-based models because of their poor performances.

6.8.1 The Impact of Polysemy and Synonymy on Query Expansion

RQ1 Which feature between synonymy and polysemy can be exploited to reduce the seman-

tic gap and improve retrieval?

We see from Table 6.14 that for most measures there is no statistical difference among

all RM3-enhanced models. In particular, RM3-enhanced models do not present statistical

differences for P@10, nDCG@10, and infNDCG in all collections. Besides, in cases where

there is statistical significance, the only RM3-enhanced models that do not belong to the top

group are those using word2vec and rword2vec for the first round of retrieval. Nevertheless,

RM3-enhanced models based on SAFIR variants achieve the best results for most measures in

CDS collections. The only exceptions are in CDS16, where the RM3-enhanced model using

BM25 for both rounds of retrieval achieve better performances in Recall@1000, nDCG@100,

and P@10.

Among SAFIR variants, SAFIRsp provides expansion terms that allow BM25 to achieve

the best scores for most measures in CDS collections. This is an interesting result as it shows

that modeling both synonymy and polysemy is effective to retrieve feedback documents from

which expansion terms are extracted. In other words, SAFIRsp helps BM25 to bridge the

semantic gap more effectively than the other models for CDS collections. Even when different

RM3-enhanced models achieve better performances, like SAFIRs/RM3 and SAFIRp/RM3 in

CDS14 or BM25/RM3 in CDS16, the improvements over SAFIRsp/RM3 are small in most

cases.

Given that SAFIRp outperforms SAFIRsp for nDCG@10 in all CDS collections (see

Table 6.11), we provide the following explanation to motivate the higher effectiveness of

SAFIRsp/RM3 compared to SAFIRp/RM3. First of all, the differences between SAFIRsp

and SAFIRp for nDCG@10 are small. This means that SAFIRsp and SAFIRp have similar

effectiveness in retrieving and ordering relevant documents in top positions of the ranking

list. On the other hand, SAFIRsp and SAFIRp significantly differ in the relevant documents

retrieved at cutoff 10 (see Figure 6.15). In particular, the similarity score between the two
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Table 6.14 RM3-enhanced models performances. RM3-enhanced models are grouped by the

type of the model used in the first round of retrieval: Bag-of-Words (BoW), Corpus-Driven

(CD), Knowledge-Enhanced (KE), and SAFIR. BM25 is always used for the second round

of retrieval. The scores in parentheses represent the scores achieved by the model used in

the first round of retrieval. Bold values represent the highest scores among RM3-enhanced

models in each collection. † represents the models belonging to the statistical top group for

the given collection with α ≤ 0.05.

infNDCG nDCG@1000

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W BM25/RM3 0.1384 0.1578 0.1688 – 0.2316† 0.2183 0.2068† 0.6253
(0.1064) (0.1276) (0.1399) (–) (0.1838) (0.1579) (0.1643) (0.5875)

C
D

word2vec/RM3 0.1157 0.1403 0.1292 – 0.1895 0.2061 0.1492 0.6507
(0.0954) (0.1159) (0.0928) (–) (0.1548) (0.1634) (0.1054) (0.5902)

NVSM/RM3 0.1673 0.1453 0.1425 – 0.2724† 0.2081 0.1941† 0.6511
(0.1576) (0.1449) (0.1475) (–) (0.2649) (0.2213) (0.1818) (0.5977)

K
E rword2vec/RM3 0.1100 0.1383 0.1314 – 0.1836 0.2063 0.1531 0.6539

(0.0896) (0.1142) (0.0790) (–) (0.1501) (0.1589) (0.0980) (0.5852)

S
A

F
IR

SAFIRs/RM3 0.1680 0.1582 0.1490 – 0.2774† 0.2236 0.1942† 0.6509
(0.1602) (0.1498) (0.1546) (–) (0.2546) (0.2240) (0.1783) (0.6046)

SAFIRp/RM3 0.1899 0.1660 0.1463 – 0.2979† 0.2276 0.1975† 0.6477
(0.1608) (0.1516) (0.1523) (–) (0.2723) (0.2247) (0.1858) (0.6106)

SAFIRsp/RM3 0.1898 0.1756 0.1726 – 0.2948† 0.2410 0.2092† 0.6470
(0.1566) (0.1515) (0.1599) (–) (0.2651) (0.2266) (0.1849) (0.6144)

nDCG@100 nDCG@10

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W BM25/RM3 0.1338 0.1522 0.1298† 0.4746 0.1645 0.1986 0.1518 0.4618
(0.1098) (0.1233) (0.1078) (0.4392) (0.1530) (0.2166) (0.1606) (0.4429)

C
D

word2vec/RM3 0.1025 0.1302 0.0893 0.5010 0.1346 0.1705 0.1121 0.4985
(0.0821) (0.1064) (0.0619) (0.4461) (0.1028) (0.1435) (0.0977) (0.4754)

NVSM/RM3 0.1548 0.1374 0.1076† 0.4956 0.2060 0.1702 0.1296 0.4989
(0.1362) (0.1385) (0.1077) (0.4181) (0.1694) (0.1664) (0.1324) (0.3873)

K
E rword2vec/RM3 0.0970 0.1308 0.0922 0.5069 0.1180 0.1742 0.1175 0.4977

(0.0774) (0.1032) (0.0590) (0.4421) (0.0967) (0.1410) (0.0930) (0.4709)

S
A

F
IR

SAFIRs/RM3 0.1585 0.1521 0.1106† 0.4962 0.2229 0.2033 0.1249 0.4902
(0.1385) (0.1411) (0.1071) (0.4216) (0.1729) (0.1818) (0.1374) (0.4121)

SAFIRp/RM3 0.1724 0.1594 0.1102† 0.4941 0.2185 0.2046 0.1225 0.4911
(0.1435) (0.1395) (0.1113) (0.4361) (0.1931) (0.2053) (0.1519) (0.4267)

SAFIRsp/RM3 0.1762 0.1696 0.1219† 0.4948 0.2253 0.2407 0.1572 0.4856
(0.1401) (0.1403) (0.1098) (0.4397) (0.1898) (0.1926) (0.1475) (0.4380)

P@10 Recall@1000

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W BM25/RM3 0.1833 0.2433 0.2067 0.5413 0.3151† 0.2884 0.3059† 0.8431
(0.1667) (0.2600) (0.2167) (0.5016) (0.2503) (0.1826) (0.2286) (0.7973)

C
D

word2vec/RM3 0.1667 0.2233 0.1300 0.5651 0.2770 0.2795 0.2185 0.8644
(0.1133) (0.1900) (0.1167) (0.5048) (0.2200) (0.2194) (0.1515) (0.7778)

NVSM/RM3 0.2400 0.2333 0.1767 0.5603 0.3760† 0.2882 0.2822† 0.8669
(0.2033) (0.2333) (0.1600) (0.4333) (0.3833) (0.3093) (0.2617) (0.8584)

K
E rword2vec/RM3 0.1500 0.2400 0.1433 0.5714 0.2712 0.2816 0.2239 0.8680
(0.1267) (0.1967) (0.1133) (0.5048) (0.2221) (0.2151) (0.1414) (0.7672)

S
A

F
IR

SAFIRs/RM3 0.2600 0.2667 0.1667 0.5587 0.3853† 0.2970 0.2814† 0.8755
(0.1967) (0.2267) (0.1733) (0.4619) (0.3607) (0.3134) (0.2545) (0.8582)

SAFIRp/RM3 0.2433 0.2600 0.1600 0.5698 0.4100† 0.3006 0.2866† 0.8687
(0.2333) (0.2633) (0.1700) (0.4762) (0.3846) (0.3098) (0.2782) (0.8548)

SAFIRsp/RM3 0.2433 0.3067 0.1933 0.5571 0.3991† 0.3134 0.3047† 0.8708
(0.2200) (0.2467) (0.1633) (0.4794) (0.3733) (0.3110) (0.2747) (0.8520)
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models is lower than 0.50 in both CDS15 and CDS16. Thus, our intuition is that SAFIRsp

– by modeling both polysemy and synonymy – retrieves feedback documents that provide

better expansion terms than those retrieved by SAFIRp. To support this intuition, let us

consider topic 25 from CDS16. For this query, the difference between SAFIRsp and SAFIRp

in terms of nDCG@10 is close to zero (see Figure 6.8), whereas SAFIRsp/RM3 outperforms

SAFIRp/RM3 by a large margin (> 0.60) for infNDCG, nDCG@10, and P@10.

CDS16 Topic 25: “An elderly female with history of atrial fibrillation, Chronic Obstruc-

tive Pulmonary Disease, hypertension, hyperlipidemia and previous repair of atrial

septum defect, presenting with shortness of breath and atrial fibrillation resistant to

medication.”

The query describes a woman presenting shortness of breath and atrial fibrillation, with

history of arrhythmia and other correlated diseases. In this case, SAFIRsp and SAFIRp

provide six exclusive expansion terms:

SAFIRsp: amiodarone, cardiac, dronedarone, metaprolol, procedure, rhythm

SAFIRp: atrium, cha, chads, flutter, hypertensive, permanent

The expansion terms from SAFIRsp show a higher diversity than those from SAFIRp. Three

of these terms, namely “amiodarone”, “dronedarone”, and “metaprolol”, refer to drugs or

medications used to treat (and prevent) a number of types of arrhythmia – including atrial

fibrillation. The other terms are highly correlated (“rhythm”) and help to contextualize

the anatomical region of interest (“cardiac”). On the other hand, three of the six exclusive

terms provided by SAFIRp are terminological variants of the query terms – that is, “atrium”,

“flutter”, and “hypertensive”. As for the other terms, both “cha” and “chads” refer to clinical

prediction rules used to estimate the risk of stroke in patients with atrial fibrillation. Thus,

although both SAFIR variants provide highly related expansion terms, those obtained using

SAFIRsp have more variety and help BM25 to bridge the semantic gap more effectively.

A different situation occurs in OHSUMED, where all the RM3-enhanced models show

similar results. Depending on the measure, different RM3-enhanced models achieve the

best results. In particular, rword2vec/RM3 provides the highest scores for nDCG@1000,

nDCG@100, and P@10. In this case, SAFIRs and SAFIRp provide better expansion

terms than SAFIRsp as both SAFIRs/RM3 and SAFIRp/RM3 achieve higher scores than

SAFIRsp/RM3 for most measures. Nevertheless, the only RM3-enhanced model relying on

SAFIR that achieves top performances is SAFIRs/RM3 for Recall@1000. Thus, the results

strengthen our hypothesis that OHSUMED favors models relying on corpus-based features,

such as rword2vec.
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Take-home message. The effectiveness of SAFIRsp to provide expansion terms that help

BM25 to fill the semantic gap in CDS collections shows the importance of modeling both

synonymy and polysemy.

6.8.2 The Effectiveness of Knowledge Resources

for Query Expansion

RQ2 How can external knowledge resources help to bridge the semantic gap between queries

and documents?

We see that SAFIR provides better expansion terms than BM25. In fact, RM3-enhanced

models relying on SAFIR variants achieve higher results than BM25/RM3 for most measures

in all collections. Furthermore, all the SAFIR-based RM3-enhanced models outperform

NVSM/RM3 for most measures in CDS collections. Thus, the effectiveness of SAFIR

variants for nDCG@10 (see Table 6.11), along with their exclusiveness in terms of relevant

documents retrieved (see Figure 6.15), make them more suitable than BM25 or NVSM to

perform the first round of retrieval in RM3-enhanced models.

Regarding rword2vec, we see that rword2vec/RM3 achieves performances higher than

word2vec/RM3 for many measures in all collections. However, the differences between

rword2vec/RM3 and word2vec/RM3 are less prominent than those between SAFIR-based

RM3-enhanced models and NVSM/RM3. Nevertheless, we advocate that knowledge-

enhanced models provide better expansion terms than corpus-driven ones.

Take-home message. Knowledge-enhanced models grasp different signals than lexical or

corpus-driven models and retrieve documents in top positions that are effective in providing

expansion terms for PRF models.

6.9 Chapter Outcomes and Lessons Learned

In this chapter, we have investigated how to integrate external knowledge into the learning

process of neural models to reduce the effect of the semantic gap between queries and

documents. We have focused on medical literature and we have considered two linguistic

features related to the semantic gap: synonymy and polysemy.

First, we have performed a reproducibility study of the works by Liu et al. [147] and

Nguyen et al. [169]. The knowledge-enhanced word embeddings used, and proposed, by Liu

et al. model synonymy through a knowledge-based regularization during/after the training of
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word representations. On the other hand, the knowledge-enhanced document embeddings

proposed by Nguyen et al. [169] model both synonymy and polysemy through a retrofitting

approach that exploits document representations learned using words and concepts. The

reproducibility study highlighted some limitations in the way knowledge-enhanced neural

language models are applied to IR, as well as in their effectiveness to address the semantic

gap between queries and documents. In particular, the outcomes of this study emphasized

the inability of neural language models to effectively encode relevant features for IR, along

with the need for knowledge-enhanced neural IR models capable of providing effective

performances at the early stages of the IR pipeline – where the integration of external

knowledge can express its full potential.

Then, motivated by the outcomes of the reproducibility study, we have introduced the

Semantic-Aware Neural Framework for IR (SAFIR), an unsupervised knowledge-enhanced

neural framework for IR. SAFIR jointly learns word, concept, and document representations

from scratch. The learned representations are optimized for IR and encode polysemy and/or

synonymy with the aim of addressing the semantic gap between queries and documents.

Regarding polysemy, SAFIR contextualizes word meanings by combining word and concept

representations in the learning process. Thus, word meaning representations are created

on-the-fly by combining word and concept representations. This compositional process

avoids the creation of a representation for each word meaning. Then, word and concept

representations are optimized to minimize the distance between the word meanings and the

documents in the vector space. At the same time, SAFIR models synonymy via multi-task

learning. Word representations are shared between text matching and word similarity tasks.

For the word similarity task, SAFIR minimizes the distance between word representations

for words presenting synonymy relations within an external knowledge resource.

For evaluation, we considered three variants of SAFIR: SAFIRsp, which integrates both

synonymy and polysemy; SAFIRs which integrates synonymy but not polysemy; and SAFIRp

which integrates polysemy but not synonymy. We compared SAFIR variants with knowledge-

enhanced and corpus-driven neural models on medical literature retrieval considering two

strategies: document retrieval and query expansion. The experimental results we obtained

led to the following conclusions:

RQ1 Which feature between synonymy and polysemy can be exploited to reduce the seman-

tic gap and improve retrieval?

Document Retrieval: modeling polysemy is effective and impacts the most

when queries present a high degree of polysemy. On the other hand, the impact

of synonymy on average performances is marginal – or even detrimental – due to
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the limited presence of relevant documents containing (only) query synonyms.

Nevertheless, when we look at queries with a large number of relevant documents

containing (only) query synonyms, SAFIRs and SAFIRsp capture synonymy and

provide effective results.

Query Expansion: the effectiveness of SAFIRsp to provide expansion terms that

help BM25 to fill the semantic gap in CDS collections shows the importance of

modeling both synonymy and polysemy.

RQ2 How can external knowledge resources help to bridge the semantic gap between queries

and documents?

Document Retrieval: the integration of knowledge resources into the learning

process of neural IR models is effective and helps to bridge the semantic gap

between queries and documents. The learned representations encode text match-

ing signals, necessary for IR tasks, and linguistic features to retrieve relevant

documents that are most affected by the semantic gap. In particular, integrating

external knowledge helps to boost the results at the top positions of the ranking

list.

Query Expansion: knowledge-enhanced neural models grasp different signals

than lexical models or corpus-driven neural models and retrieve documents in top

positions that are effective in providing expansion terms for Pseudo Relevance

Feedback (PRF) models.

The evaluation showed that SAFIR retrieves more exclusive relevant documents than

knowledge-enhanced neural language models for most queries in all collections. Furthermore,

the effectiveness of SAFIR for precision-oriented measures, along with its exclusiveness in

terms of relevant documents retrieved, makes it suitable for PRF based methods. Therefore,

our evaluation suggests that unsupervised knowledge-enhanced semantic models should

be used at the early stages of the IR pipeline rather than in re-ranking scenarios – where

interaction-based re-ranking models could easily outperform them (e.g., see DRMM [95]

performance in Chapter 4). In this way, the different signals that knowledge-enhanced

semantic models provide can be used by multi-stage IR systems to obtain a richer pool of

relevant documents, thus leading to better answers for semantically hard queries.



Chapter 7

Conclusion and Future Work

The leitmotiv of this thesis is the investigation of the semantic gap and how it can be addressed

to improve retrieval performance. The semantic gap represents the mismatch between users’

queries and the way IR systems answer to such queries, and, depending on the situation, it

can hinder the retrieval of relevant documents, affect the quality of the produced ranking list,

or both. To investigate how the semantic gap affects retrieval models, we started with an

in-depth evaluation of lexical and semantic signals. This allowed us to consider the problem

from a comprehensive perspective and to understand the inherent complexity of addressing

the semantic gap. The evaluation was performed through different analyses, which focused

– from different angles – on semantic models and their relation with lexical models. The

outcomes of these analyses highlighted the complementary nature of lexical and semantic

signals, the need to combine them at the early stages of the IR pipeline to effectively address

the semantic gap, and the semantic models that are best suited for the task. In particular, one

of the analyses showed that semantic matching, when used to perform first-stage retrieval

rather than re-ranking, allows models to retrieve relevant documents that are most affected

by the semantic gap – thus motivating the development of semantic models effective at the

early stages of the IR pipeline.

Based on the insights and lessons learned from the evaluation of lexical and semantic

signals, we investigated the use of external knowledge resources to enhance lexical and

semantic models and address the semantic gap. Specifically, we developed unsupervised

knowledge-enhanced models, and we evaluated them in the medical domain. The medical

domain presents characteristics that allowed us to explore the integration of external knowl-

edge within unsupervised retrieval models. First, it is a domain where labeled data are scarce

and expensive resources; secondly, it is a domain where the semantic gap is prominent; and

thirdly, it is a domain rich of authoritative, manually curated by professionals, knowledge

resources.
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For lexical models, we conducted a series of studies and analyses exploring the use

of external knowledge resources to enhance query representations in the context of preci-

sion medicine. In this regard, we developed several knowledge-based query reformulation

techniques, and we tested them on the TREC PM Track.

At first, we proposed a procedure to expand queries iteratively and filter out trials for

which a target patient is not eligible. This preliminary study served to understand whether

retrieval performance can be correlated with the relational information used in the query

expansion process. The experimental evaluation, conducted on the TREC PM 2018 Clinical

Trials task, showed that without the use of an appropriate weighting scheme on query terms,

as well as of knowledge resources tailored for the task, query expansion incurs in topic drift

and leads to detrimental results.

Given the outcomes of this study, we deepened the investigation on effective ways

of integrating external knowledge into query representations. To this end, we developed

several knowledge-based query expansion and reduction techniques, and we explored their

effectiveness in both TREC PM tasks: scientific literature and clinical trials retrieval. The

objective of this in-depth analysis was twofold: evaluate the effectiveness of the proposed

query reformulations, and investigate whether the two tasks share common characteristics

that the developed query reformulations can grasp. We performed experiments on TREC PM

2017 and 2018 Tracks, and we found that the proposed query reformulations perform well in

both tasks. However, the results highlighted different trends for the two tasks. In particular,

knowledge-based query expansions proved effective for scientific literature retrieval, whereas

knowledge-based query reductions for clinical trials retrieval.

Successively, we conducted a validation study on TREC PM 2019 to test the effectiveness

of the developed query reformulation techniques. Although we performed experiments on

both tasks, we focused on clinical trials retrieval. The experimental results highlighted the

effectiveness of the tested query reformulations in retrieving relevant trials at top positions

of the ranking list – thus proving the robustness of the developed techniques across the

years. Moreover, the analysis also showed that different query reformulations provide top

performances on different topics. This means that the developed query reformulations – by

focusing on different (semantic) aspects of the queries – promote distinct information that can

be used to improve retrieval performance. As a consequence, when appropriately combined,

the proposed reformulations can be used to enhance lexical models from several angles.

Finally, given the effectiveness of the developed techniques for clinical trials retrieval,

we performed an a posteriori analysis that helped to identify a subset of query reformulations

robust to the different sets of topics provided by TREC PM across the years. The selected

query reformulations can be used (and combined) by multi-stage IR systems to obtain a
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richer pool of relevant documents at the early stages of the IR pipeline – thus reducing the

semantic gap between queries and documents.

Hence, throughout the studies and analyses conducted, we explored the use of external

knowledge resources to enhance lexical models, and we developed effective, state-of-the-art

knowledge-based query reformulations that help to reduce the semantic gap in precision

medicine.

Regarding semantic models, we first performed an analysis of the knowledge-enhanced

neural language models proposed in the literature. The analysis aimed to understand the

critical aspects of such models and evaluate their effectiveness when used to perform retrieval.

The experimental evaluation highlighted two main limitations of knowledge-enhanced neural

language models: one is related to the way they are applied to IR, the other is related to

their effectiveness in modeling IR tasks. In fact, knowledge-enhanced neural language

models have been used in IR mostly to perform re-ranking – where the integration of external

knowledge cannot express its full potential. On the other hand, (knowledge-enhanced) neural

language models do not encode relevance signals or discriminative aspects between queries

and documents, which are fundamental to effectively address IR tasks.

To overcome the above limitations, we developed SAFIR, which learns representations

that are optimized for IR and encodes linguistic features relevant to address the semantic

gap between queries and documents. The experimental evaluation we conducted to inves-

tigate SAFIR effectiveness at the early stages of the IR pipeline compared SAFIR with

knowledge-enhanced neural language models on the TREC CDS Track considering two

retrieval strategies: document retrieval and query expansion.

Document retrieval gave us the opportunity to investigate the effectiveness of integrating

external knowledge into neural models for the typical retrieval scenario. In particular, the

experimental evaluation showed that the integration of external knowledge into the learning

process of neural IR models proves effective and helps to reduce the semantic gap between

queries and documents. In this regard, the analysis of the results highlighted that SAFIR

retrieves relevant documents that none of the knowledge-enhanced neural language models

discover. Besides, the linguistic features encoded by SAFIR help to boost the results at the

top positions of the ranking list.

On the other hand, query expansion allowed us to investigate the effectiveness of

knowledge-enhanced neural models – which are specifically designed to address the se-

mantic gap – when used to provide expansion terms that help lexical models to reduce the

semantic gap. The outcomes of this evaluation showed that knowledge-enhanced neural

models, and in particular SAFIR, grasp different signals than lexical models or corpus-driven
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neural models and retrieve documents in top positions from which better expansion terms

can be extracted.

Thus, the in-depth analyses we performed to evaluate SAFIR highlighted its ability to

address the semantic gap, as well as the effectiveness of combining lexical and semantic

models at the early stages of the IR pipeline – where the complementary signals they provide

can be used to obtain better answers to semantically hard queries.

A large portion of the research conducted in this thesis sets within a long-term research

project [157], which is related to the ExaMode project.1 ExaMode objective is to pro-

vide knowledge discovery tools for exascale multimodal medical data. In this context, we

aim to continue working on the topics investigated in this thesis to develop cutting edge

knowledge-enhanced retrieval systems for real-case CDS applications. For this reason,

further investigation can be devoted to the following topics.

Given the complementary nature of lexical and semantic signals, as well as the effec-

tiveness of integrating external knowledge into retrieval models, we plan to investigate the

combination of the proposed knowledge-enhanced lexical and semantic models to develop

multi-stage IR systems for CDS. Among the possible directions, it would be interesting to

analyze the use of query performance predictors – based on query linguistic features – to

decide, for instance, how to reformulate the given query or which SAFIR variant is more

appropriate to perform retrieval. On the other hand, we could explore the use of early and

late fusion techniques to combine multiple pre-retrieval knowledge-based query reformula-

tions and build systems less sensitive to the problem of topic drift. Finally, the use of the

different representations learned by SAFIR as input features to deep neural re-rankers would

also be worth studying to understand the impact that knowledge-enhanced representations –

optimized for IR – can have on the learning process of these models.

The medical domain presents a high heterogeneity, and both textual and visual data are

often relevant for CDS applications. For this reason, the integration of visual features in the

learning process of neural IR models can further enhance their understanding of the problem

at hand – and also enable the retrieval of relevant information from one modality to the other.

To this end, the recent advances in unsupervised visual representation learning [39], along

with the successful applications of Transformer networks to the multimodal scenario [127,

150], opened up promising directions we could investigate to develop multimodal IR systems

for CDS applications.

1https://www.examode.eu/
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List of released resources

In this thesis, we have shown the importance of reproducibility as a means to understand and

advance research in fields grounded into experimental evaluation, like Information Retrieval.

For this reason, we release to the research community most of the resources developed for

and presented in this thesis. In this way, we hope to ease future researchers further developing

IR systems based on our findings – and also reproducing/exploiting our experiments/results.

Lexical and Semantic Signals

We release the data, source code, and plots for the in-depth evaluation of lexical and semantic

models presented in Chapter 4 at https://github.com/giansilv/NeuralIR/.

Knowledge-Enhanced Lexical Models

We release the data used to perform the experiments for the different studies and analy-

ses on knowledge-enhanced lexical models presented in Chapter 5 at https://github.com/

stefano-marchesin/TREC_PM_qreforms/.

Knowledge-Enhanced Word Embeddings for IR

We release the source code used in the reproducibility study on knowledge-enhanced word

embeddings presented in Section 6.2 at https://github.com/stefano-marchesin/learning_ke_

wembs/.

Knowledge-Enhanced Document Embeddings for IR

We release the source code used in the reproducibility study on knowledge-enhanced docu-

ment embeddings presented in Section 6.3 at https://github.com/stefano-marchesin/learning_

ke_dembs/.



198 List of released resources

The Semantic-Aware Neural Framework for IR

We release the source code developed to perform the experiments with SAFIR in Sections 6.7

and 6.8 at https://github.com/stefano-marchesin/SAFIR/. Also, evaluation results and statisti-

cal analyses are publicly available at https://zenodo.org/record/3908196#.X2kbwWgzZPY.
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222 SAFIR Variants Averaged Performances

The curves show that SAFIR variants improve up to a certain value and then start

to oscillate across iterations – although these oscillations tend to be small in most cases.

Therefore, we investigate how the performances change when we consider the average over

iterations 10-15 instead of the best iteration. To this end, we compare SAFIR variants with

NVSM – averaged over iterations 10-15 – and BM25/RM3. The results are reported in

Table A.1.

Table A.1 Retrieval performances of considered models averaged over epochs 10-15. Models

are grouped by type: Bag-of-Words (BoW), Corpus-Driven (CD), and SAFIR. The values in

parentheses represent the standard deviation values. Bold values represent the highest scores

among the models in each collection.

infNDCG nDCG@1000

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W BM25/RM3 0.1384 0.1578 0.1688 – 0.2316 0.2183 0.2068 0.6253
(0.0000) (0.0000) (0.0000) (–) (0.0000) (0.0000) (0.0000) (0.0000)

C
D NVSM 0.1507 0.1436 0.1367 – 0.2658 0.2168 0.1839 0.5947

(0.0061) (0.0012) (0.0045) (–) (0.0030) (0.0061) (0.0037) (0.0021)

S
A

F
IR

SAFIRs 0.1491 0.1467 0.1369 – 0.2559 0.2222 0.1778 0.6002
(0.0066) (0.0026) (0.0046) (–) (0.0031) (0.0021) (0.0039) (0.0040)

SAFIRp 0.1529 0.1455 0.1421 – 0.2696 0.2242 0.1882 0.6034
(0.0052) (0.0022) (0.0063) (–) (0.0032) (0.0020) (0.0025) (0.0040)

SAFIRsp 0.1506 0.1421 0.1479 – 0.2652 0.2195 0.1832 0.6069
(0.0043) (0.0026) (0.0080) (–) (0.0032) (0.0019) (0.0025) (0.0033)

nDCG@100 nDCG@10

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W BM25/RM3 0.1338 0.1522 0.1298 0.4746 0.1645 0.1986 0.1518 0.4618
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

C
D NVSM 0.1347 0.1348 0.1033 0.4140 0.1611 0.1636 0.1236 0.3793

(0.0042) (0.0024) (0.0040) (0.0028) (0.0147) (0.0030) (0.0094) (0.0062)

S
A

F
IR

SAFIRs 0.1340 0.1386 0.1029 0.4196 0.1639 0.1726 0.1218 0.4040
(0.0040) (0.0026) (0.0028) (0.0055) (0.0108) (0.0098) (0.0112) (0.0068)

SAFIRp 0.1420 0.1378 0.1077 0.4254 0.1769 0.1821 0.1450 0.4038
(0.0040) (0.0017) (0.0042) (0.0049) (0.0121) (0.0024) (0.0146) (0.0042)

SAFIRsp 0.1412 0.1365 0.1083 0.4308 0.1869 0.1694 0.1493 0.4183
(0.0031) (0.0020) (0.0034) (0.0042) (0.0109) (0.0046) (0.0121) (0.0088)

P@10 Recall@1000

CDS14 CDS15 CDS16 OHSUMED CDS14 CDS15 CDS16 OHSUMED

B
o

W BM25/RM3 0.1833 0.2433 0.2067 0.5413 0.3151 0.2884 0.3059 0.8431
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

C
D NVSM 0.1933 0.2274 0.1439 0.4376 0.3903 0.3073 0.2765 0.8582

(0.0176) (0.0063) (0.0068) (0.0079) (0.0036) (0.0120) (0.0032) (0.0016)

S
A

F
IR

SAFIRs 0.1922 0.2272 0.1328 0.4598 0.3703 0.3123 0.2661 0.8564
(0.0101) (0.0073) (0.0139) (0.0066) (0.0052) (0.0024) (0.0060) (0.0018)

SAFIRp 0.2161 0.2350 0.1644 0.4659 0.3839 0.3107 0.2794 0.8564
(0.0124) (0.0069) (0.0133) (0.0067) (0.0032) (0.0047) (0.0051) (0.0030)

SAFIRsp 0.2195 0.2211 0.1656 0.4733 0.3723 0.3053 0.2697 0.8504
(0.0097) (0.0097) (0.0170) (0.0120) (0.0030) (0.0031) (0.0026) (0.0019)

The results from Table A.1 show that the performances obtained by SAFIR variants

averaged over iterations 10-15 are similar – although often lower – to those obtained with the

best iterations (cf. Table 6.11). The most notable exceptions are nDCG@10 and P@10, where



223

the differences between averaged and best performances are larger. However, precision-

oriented measures are highly sensitive to performance variations. Therefore, the different

representations used at each iteration to perform retrieval can have a large impact on the

results for these measures – especially when the considered representations are far from

being optimal.

Overall, the models that perform best are consistent between averaged and best iterations.

In particular, the average of SAFIR over iterations 10-15 achieves top performances in most

of the measures in which also the best iteration of SAFIR achieves them. The only exceptions

are P@10 in CDS15 and Recall@1000 in CDS14, where BM25/RM3 and NVSM achieve

the best results, respectively. However, the SAFIR variants that achieve top results are

different for some measures in CDS collections. SAFIRsp achieves top performances instead

of SAFIRp for nDCG@10 and P@10 in CDS14, whereas SAFIRp replaces SAFIRsp for

nDCG@1000 in CDS15. On the other hand, the ranking of the models for OHSUMED does

not change regardless of the approach selected – be it the average of the iterations 10-15 or

the best iteration. The only exception is for nDCG@10, where SAFIRs outperforms SAFIRp.

To understand to what extent the rankings of considered models change when we take the

average of iterations 10-15 instead of the best iteration, we perform Kendall’s τ correlations

between model rankings obtained in one way or the other. Table A.2 reports correlation

values.

Table A.2 Kendall τ correlations computed between the rankings of the considered models

from Table A.1 (average of iterations 10-15) and Table 6.11 (best iteration) for each measure

in each collection.

infNDCG nDCG@1000 nDCG@100 nDCG@10 P@10 Recall@1000

OHSUMED – 1.00 1.00 0.80 1.00 1.00

CDS14 0.60 0.80 0.80 0.40 0.80 0.80

CDS15 0.40 0.40 0.80 0.60 0.20 0.60

CDS16 0.80 0.80 0.80 0.40 0.20 0.80

Table A.2 shows that in more than 60% of cases correlation values are greater than or

equal to 0.80 – which indicates that the differences between rankings do not reflect noticeable

changes [231]. The rest of the correlation values divides among 0.60 (13% of cases), 0.40

(17% of cases), and 0.20 (9% of cases). Given the short length of the considered ranking

lists (only five elements), a correlation value of 0.80 means that the two rankings differ by a

single swap between positions. As a result, correlation values of 0.60 occur with two swaps

between positions of the ranking list, whereas scores of 0.40 and 0.20 with three and four

swaps, respectively. Below, we focus on low correlation values – i.e., 0.40 and 0.20 – and
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we detail the differences between the ranking lists obtained taking the average of iterations

10-15 and the best iteration.

As expected, low correlations cluster on precision-oriented measures. nDCG@10 presents

correlation values of 0.40 in CDS14 and CDS16. In CDS14, SAFIRsp outperforms SAFIRp

and becomes the top performing model, whereas BM25/RM3 moves from last to the third

position. In CDS16, BM25/RM3 and SAFIRsp outperform SAFIRp achieving the first and

second positions, respectively. On the other hand, SAFIRs moves from the fourth position

to the last. As for P@10, CDS15 and CDS16 show correlation values of 0.20. In CDS15,

BM25/RM3 moves from the third to the top position. Also, SAFIRs outperforms SAFIRsp –

which becomes the worst performing model. In CDS16, SAFIRsp outperforms both SAFIRs

and SAFIRp achieving the second position, whereas SAFIRs moves to the last position.

Other than nDCG@10 and P@10, CDS15 exhibits low correlations (0.40) also for

infNDCG and nDCG@1000. For infNDCG, SAFIRs gains two positions (from fourth to

second) and SAFIRsp becomes the worst performing model. For nDCG@1000, SAFIRp and

SAFIRs outperform SAFIRsp achieving the first and second positions, respectively. Moreover,

BM25/RM3 outperforms NVSM and moves from the last to the fourth position.

Thus, the results of this analysis show that the performances obtained by SAFIR variants

averaged over iterations 10-15 are similar – although often lower – to those obtained with

the best iterations. Furthermore, the average of SAFIR over iterations 10-15 achieves top

performances in most of the measures in which also the best iteration of SAFIR achieves

them. However, the SAFIR variants that achieve top results are different for some measures.

Finally, the rankings obtained when we take the average of iterations 10-15 present high

correlation values with the rankings obtained considering the best iteration in most cases. As

expected, most of the low correlations occur for precision-oriented measures – which are

highly sensitive to variations in models performance.
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