
University of Padova

Department of Information Engineering

Ph.D. School in Information Engineering
Curriculum: Information Science and Technology

XXXI Class

Channel Access in Wireless Networks:
Protocol Design of Energy-Aware Schemes for the IoT

and Analysis of Existing Technologies

Author:
Chiara Pielli

Supervisor:

Prof. Michele Zorzi

School Coordinator:
Prof. Andrea Neviani

Academic Year 2017/2018





To you, who have been keeping me on the track.

What’s to gain by silence?

Ursula K. Le Guin





Abstract

The design of channel access policies has been an object of study since the deployment

of the first wireless networks, as the Medium Access Control (MAC) layer is responsible

for coordinating transmissions to a shared channel and plays a key role in the network

performance. While the original target was the system throughput, over the years

the focus switched to communication latency, Quality of Service (QoS) guarantees,

energy consumption, spectrum efficiency, and any combination of such goals. The basic

mechanisms to use a shared channel, such as ALOHA, Time Division Multiple Access

(TDMA)- and Frequency Division Multiple Access (FDMA)-based policies, have been

introduced decades ago. Nonetheless, the continuous evolution of wireless networks

and the emergence of new communication paradigms demand the development of new

strategies to adapt and optimize the standard approaches so as to satisfy the requirements

of applications and devices.

This thesis proposes several channel access schemes for novel wireless technologies,

in particular Internet of Things (IoT) networks, the Long-Term Evolution (LTE) cellular

standard, and mmWave communication with the IEEE802.11ad standard.

The first part of the thesis concerns energy-aware channel access policies for IoT

networks, which typically include several battery-powered sensors. In scenarios with

energy restrictions, traditional protocols that do not consider the energy consumption

may lead to the premature death of the network and unreliable performance expectations.

The proposed schemes show the importance of accurately characterizing all the sources

of energy consumption (and inflow, in the case of energy harvesting), which need to be

included in the protocol design. In particular, the schemes presented in this thesis exploit

data processing and compression techniques to trade off QoS for lifetime. We investigate

contention-free and contention-based chanel access policies for different scenarios and

application requirements.

While the energy-aware schemes proposed for IoT networks are based on a clean-slate

approach that is agnostic of the communication technology used, the second part of

the thesis is focused on the LTE and IEEE802.11ad standards. As regards LTE, the

study proposed in this thesis shows how to use machine-learning techniques to infer

the collision multiplicity in the channel access phase, information that can be used
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to understand when the network is congested and improve the contention resolution

mechanism. This is especially useful for massive access scenarios; in the last years, in

fact, the research community has been investigating on the use of LTE for Machine-Type

Communication (MTC). As regards the standard IEEE802.11ad, instead, it provides a

hybrid MAC layer with contention-based and contention-free scheduled allocations, and

a dynamic channel time allocation mechanism built on top of such schedule. Although

this hybrid scheme is expected to meet heterogeneous requirements, it is still not clear

how to develop a schedule based on the various traffic flows and their demands. A

mathematical model is necessary to understand the performance and limits of the

possible types of allocations and guide the scheduling process. In this thesis, we propose

a model for the contention-based access periods which is aware of the interleaving of the

available channel time with contention-free allocations.
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Sommario

Fin dalla comparsa delle prime reti wireless, la progettazione di strategie di accesso

al canale è stata oggetto di intenso studio, in quanto il livello MAC è responsabile di

coordinare le trasmissioni su un canale condiviso e quindi svolge un ruolo fondamentale

nelle prestazioni della rete intera. Originariamente la progettazione del livello MAC

nelle reti wireless si proponeva di garantire un certo throughput, ma nel corso degli

anni l’interesse si è spostato sulla latenza delle comunicazioni, assicurare un certo livello

di QoS, ottimizzare il consumo energetico, garantire efficienza spettrale, e qualsiasi

combinazione di questi obiettivi. I meccanismi classici di accesso al canale, come

ALOHA, TDMA e FDMA, sono stati introdotte da decenni; ciononostante, la continua

evoluzione delle reti wireless e la comparsa di nuovi paradigmi di comunicazione ha

richiesto lo sviluppo di nuove strategie per adattare e ottimizzare gli approcci standard

così da soddisfare i requisiti di dispositivi e applicazioni.

Questa tesi propone diversi schemi di accesso al canale per nuove tecnologie wireless,

e in particolare per reti IoT, per lo standard cellulare LTE, e lo standard IEEE802.11ad

per comunicazione con mmWaves.

La prima parte della tesi riguarda schemi di accesso al canale efficienti dal punto

di vista energetico per reti IoT, che, di solito, comprendono molti sensori alimentati a

batteria. In scenari con restrizioni energetiche i protocolli classici che non prendono in

considerazione il consumo di potenza potrebbero portare alla morte prematura della

rete e ad aspettative di prestazioni ottimistiche. Gli schemi proposti in questa tesi

dimostrano l’importanza di caratterizzare tutte le fonti di consumo energetico (e di

apporto energetico, nel caso di energy harvesting), che devono essere incluse nella

progettazione del protocollo di comunicazione. In particolare, gli schemi proposti in

questa tesi sfruttano tecniche di compressione ed elaborazione dati, le quali consentono

di prolungare la vita della rete a discapito di una ridotta QoS. Abbiamo analizzato

algoritmi di accesso sia basati sulla contesa del canale che non per diversi scenari e

requisiti di applicazione.

Mentre gli schemi proposti per le reti IoT non sono basati su tecnologie specifiche,

la seconda parte della tesi riguarda gli standard LTE e IEEE802.11ad. Per quanto

concerne LTE, lo studio proposto in questa tesi mostra come utilizzare tecniche di
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machine-learning per stimare il numero di utenti che collidono durante l’accesso al

canale; quest’informazione è utilizzata per capire quando la rete è congestionata e

migliorare il meccanismo di risoluzione delle collisioni. Questo è particolarmente utile

per scenari di accesso massivo: negli utlimi anni, infatti, si è sviluppato un forte interesse

verso l’utilizzo di LTE per MTC. Per quanto riguarda IEEE802.11ad, invece, lo standard

prevede un MAC ibrido con allocazioni da predefinire con e senza contesa per l’accesso

al canale, e un meccanismo di allocazione dinamica che viene fatta al di sopra dello

schema già stabilito. Nonostante ci si aspetti che questo schema ibrido possa soddisfare

requisiti eterogenei, non è ancora chiaro come scegliere le allocazioni da usare in base

ai vari flussi di traffico e i loro requisiti. Perciò, è necessario un modello matematico

per capire le prestazioni e i limiti che possono essere ottenuti con le varie tipologie di

accesso al mezzo previste dallo standard e guidare la fase di allocazione delle risorse. In

questa tesi, proponiamo un modello per le allocazioni basate sulla contesa del canale di

comunicazione che tiene conto della presenza di altre allocazioni di tipo diverso.
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1
Introduction

Circuitry and RF design are constantly improving to yield enhanced device capabilities,

and an optimized design of all the layers of the protocol stack is necessary to fully exploit

the potential of the underlying hardware. Channel access plays an important role in

telecommunication networks: the MAC layer is in charge of coordinating transmissions

to a shared channel, having a strong impact on throughput, energy consumption, and

latency. It is responsible for defining how and when a node can attempt to transmit

in such a way to limit all issues that can arise when multiple devices share the same

medium.

At a macroscopic level, MAC schemes for wireless networks are typically classified as

either contention-based or contention-free, according to the policy adopted to handle

multiple accesses of the channel [1]. In contention-free channel access, a node transmits

in dedicated resources (e.g., time, frequency, or using a specific code); this avoids

interference from the other devices (from the same or other networks), but requires

coordination among the devices for the generation and maintenance of the schedule. On

the other hand, in contention-based channel access schemes (such as ALOHA and its

numerous variants or Carrier Sense Multiple Access (CSMA)-based approaches), the

devices can access the medium randomly; the channel access itself is simpler than in

contention-free approaches as it requires little to no coordination, but demands a stable

and fast algorithm for collision resolution. Both contention-based and contention-free

approaches have advantages and disadvantages, and typically the choice of one over the

other is driven by the use case, network topology, and application requirements. Hybrid

schemes try to leverage on the advantages of both approaches; the access procedure,

e.g., is then split into two phases characterized by different mechanisms, or dynamically

adapts to the current network conditions.

The design of an efficient channel access mechanism should take into account the

application goals and the target scenario, possibly including adaptive mechanisms to

deal with changing network conditions and traffic patterns. Moreover, the devices may

differ in computational, storage and energy capabilities, and the channel access scheme
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introduction

should adapt to such heterogeneity. Clearly, to achieve a certain performance goal,

it is necessary to accept a tradeoff on other aspects of network performance, such as

bandwidth efficiency, latency, QoS, energy consumption, etc. The design of the MAC

layer is also interrelated to that of other layers and communication aspects, such as

routing and data processing.

The studies presented in this thesis are based on mathematical modeling. Although

this entails the introduction of simplifications with respect to real-world deployments, it

gives insight on the achievable system performance and on the role played by the various

parameters. Modeling and analysis of communication networks allows one to study the

system even before its actual implementation, and thereby optimize its design. This is

helpful to assess bounds that can be used to gauge the performance of real deployments

and to understand the tradeoffs involved in the design choices.

This thesis is made of two parts. The first part concerns energy-aware schemes

for IoT networks. While several applications (environmental monitoring, tracking of

goods, on-body measurement of physiological parameters, etc. [2]) benefit from the large

availability of cheap and easy-to-install sensors, the limited resources of the devices

pose a number of unique design challenges, in particular for dense networks. Even if

connecting sensors to the electricity grid is feasible, it can be beneficial not to do so to

simplify the installation process, facilitate changing the position of sensors or ensure

devices are independent of the power grid. Many sensors are in fact designed to require

very little maintenance and to be off-the-grid, in what has been called a place-&-play

paradigm [3]. This requires the devices to be battery-powered, and possibly equipped

with Energy Harvesting (EH) mechanisms to draw energy from the environment, in

order to become energetically self-sufficient. In any case, the communication protocols

should be designed to operate under strict constraints on the energy availability [4].

Ch. 2 introduces the energy efficiency issue and discusses how the MAC layer design is

affected by energy constraints. It also introduces a parameterised model for the major

sources of energy consumption, which is helpful in the design of energy-aware schemes.

Chs. 3–5 present some channel access schemes for IoT networks. While they differ

for channel access mechanism, devices capabilities and requirements, they share some

similarities. All the proposed schemes target monitoring applications for single-hop

networks, so that the purpose is to track some phenomena of interest and report data

to a common receiver. The ultimate goal is to extend the devices lifetime as much as

possible, i.e., to use the available energy optimally. To do so, all schemes leverage on

data processing, which allows one to trade off some accuracy in the data representation

for a reduced energy consumption and thus requires strategies to ensure a desired QoS.

2
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Ch. 6, instead, addresses the energy issue at the MAC layer from a security perspective,

and analyses energy-depleting jamming attacks using a game theoretical approach.

The second part of the thesis is related to the channel access mechanism of existing stan-

dards, in particular the 3GPP cellular standard LTE and the Wifi standard for mmWave

communication, IEEE802.11ad. Ch. 7 concerns the Random Access Channel (RACH)

procedure in LTE, which serves as synchronization mechanism between the base station

and the other devices in the network. In particular, the study presents a machine-learning

based technique to detect the collision multiplicity during the RACH. This information

can be helpful for advanced collision resolution algorithms and thereby improve the

channel access performance, since the current collision resolution mechanism can be a

serious bottleneck in dense scenarios, in particular in the case of MTC. Ch. 8 is about the

standard IEEE802.11ad, which targets short range mmWave communication at 60 GHz in

local area networks. MmWave communication has been gaining increasing attention from

both academia and industries, because of the new possibilities disclosed by the huge

bandwidth and the mmWave frequencies. Unlike the previous WiFi standards, 802.11ad

adopts a hybrid MAC layer, with contention-based and contention-free allocations. It is

however not clear how to schedule such allocations to match the requirements of the

various traffic flows, and the literature on this topic is still very sparse. Ch. 8 introduces a

mathematical model for the contention-based access periods that allows one to evaluate

the network performance based on the configuration chosen for the scheduling.

The studies presented in this thesis highlight that the MAC layer design is a challenging

task that needs to take into account several conflicting factors and requirements. A well

designed channel access scheme can significantly improve the network performance.

It is key to adapt the channel access scheme to the scenario and network conditions

and mathematical analysis can play a major role in determining the tradeoffs involved

between the various system parameters.

We would like to highlight that some of the studies presented in this have been done in

collaboration with other Ph.D. students. The model proposed in Ch. 8 has been realized

during a six-month internship ad the National Institute of Standards and Technology

(NIST) (Gaithersburg, MD, US).

Additional research. While the focus of this thesis is on the MAC layer for different

scenarios and protocols, during my Ph. D. I also developed schemes for the rebalancing

problem of bike-sharing systems, which represent one of the major services in Smart

Cities and can be modeled as networks. The dissemination of sensors yields the collection

of historical data whose analysis makes it possible to gain insight on the service usage

and understand how it is affected by different conditions and external factors [C6]. This

information can then be used to improve the existing service; one of the main problems

3



introduction

that affect bike-sharing systems is the unbalanced usage, which leads to have empty

and full stations, where it is impossible to pick up and drop a bike, respectively. We

developed a dynamic rebalancing scheme [J4] that adapts to the varying demand, and

also proposed an analytical model that takes into account incentives given to users so

that they are encouraged to self-rebalance the bike-sharing network [J7].

4



Part I

ENERGY-AWARE COMMUNICATION FOR

THE IOT





2
The energy efficiency issue

The IoT has been one of the major drivers of innovation in the past few years, with new

applications and technologies being invented on a daily basis [5]. Intelligent sensors and

microcontrollers are extended into the world of everyday objects creating a ubiquitous

interconnected world [6]. Unquestionably, the IoT is expected to grow significantly in

the next future and drastically change many aspects of everyday life. Gartner predicts 20

billion internet-connected things by 20201 and McKinsey Global Institute estimates that

the IoT could have an annual economic impact of $4 to $11 trillions by 20252.

However, many challenging issues still need to be addressed and both technological

as well as social knots need to be untied before the vision of IoT becomes a reality [7].

From a technological perspective, these challenges include the heterogeneity of both

devices and applications, the high volume of data collected, self-adaptability to dynamic

scenarios and requirements, scalability and connectivity, energy management, privacy

and security [8]. As traditional technologies are not able to solve these issues, there is

an increasing need for novel solutions, and changes at both the architectural and silicon

levels are required. An intelligent sensor and circuit design is in fact not sufficient: slim

and lightweight implementations at all layers are also necessary. Ill-designed network,

processing and resource management solutions may indeed hamper the effectiveness of

an efficient PHY layer.

This part of the thesis focuses on the energy efficiency problem, which is considered

to be one of the main challenges of IoT networks, as many devices are expected not to be

connected to any infrastructure, including the energy grid [9]. Most research so far has

focused on low power circuit design and energy efficient PHY, with the goal of reducing

the average energy per information bit required for communication. While any advances

at the RF/PHY layer are expected to translate into a more energy-efficient device, it is not

at all obvious that this is by itself sufficient for the whole system to make the best use of

the available energy, and a more complete view of the system, including the application

1 https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
2 https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-
of-things
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(signal type and processing tasks), the lower networking layers (MAC scheduling and

routing) and some basic network management functionalities (node discovery and sleep

modes) can play a crucial role in identifying the main sources of energy consumption,

revealing inefficiencies and providing opportunities for large gains [10].

Replacing sensors or recharging their batteries every few weeks may annihilate all the

benefits of collecting data, and nodes failure due to power depletion may even lead to

the breakdown of the whole architecture [11]. It is fundamental to have sensors that are

completely stand-alone and can run for years between battery replacements. A typical

periodically-reporting device is expected to operate for long periods without human

intervention: in particular, the industry aims to achieve a minimum of 10 years of battery

lifetime [12, 13, 14]. In such a scenario, keeping a node’s transmitter turned on and

transmitting continuously at maximum power is not realistic: duty-cycling and power

control are fundamental techniques [15] to increase the lifespan of these devices, and

several protocols have been studied and implemented [16].

EH is a promising technique through which sensors can scavenge energy from the

environment and replenish their batteries, thereby fostering self-sustainability of the

devices and, thus, of the IoT application. Ideally, EH could guarantee infinite lifetime;

however, its intermittent nature requires the use of flexible protocols able to adapt

to a stochastic energy availability. A general overview of recent advances in wireless

communications with EH is presented in [17], while [18] discusses the challenges of

designing an intelligent EH communication system and presents a general model that

can be adapted to some specific contexts. Notice that EH requires a different approach

to the energy management: when the battery represents the only source available

to the device, the effort is put in the minimization of the energy consumption [19,

20]; instead, when devices have EH capabilities, energy-neutral operation modes are

sought [21, 22]. Optimizing the energy consumption is a challenging task, sharpened

by the numerous tradeoffs that need to be tackled when trying to provide reliability,

security, and timeliness at the same time. The need for energy efficiency in the IoT has

been gaining increasing attention in the last decade, and many efforts have been put in

the design of energy-aware protocols at all layers of the protocol stack.

Notice that the energy constraints of many IoT devices, along with their reduced

computational power, also pose a security challenge: devices are vulnerable to energy-

depleting attacks and traditional security protocols may be too burdensome or complex.

Gartner predicts that worldwide spending on IoT security will reach $1.5 billion in 2018,

a 28 percent increase from 2017 spending of $1.2 billion.3

3 https://www.gartner.com/newsroom/id/3869181
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2.1 sources of energy consumption at the mac layer

In this thesis, the energy efficiency issue is investigated from a MAC layer perspective.

The MAC layer is in charge of coordinating transmissions to a shared channel, and thus

plays a key role in the IoT, where massive access and dynamicity are the rule rather than

the exception. The MAC layer design attempts to improve energy efficiency by accepting

a tradeoff on other aspects of network performance, such as bandwidth efficiency, latency,

and reliability [23], and is crucial in the IoT because of its influence on the energy-hungry

radio transceiver.

2.1 Sources of energy consumption at the MAC layer

It is possible to identify four major sources of energy waste that the design of the MAC

layer must deal with [24] [25].

Collisions. When multiple radio signals overlap in time or frequency, they are said

to collide. This situation can be observed especially in random access schemes where

different sources transmit without any coordination, and in dense networks, where

the same time slots have to be shared by multiple nodes. It is extremely important to

avoid (or at least reduce) collisions, as they impinge on the energy efficiency (and the

network performance in general), both because of the energy wasted to transmit and

receive corrupted packets, and the following retransmissions that they may imply. In fact,

even in case of advanced receivers with multi-packet reception capabilities, collisions

may prevent the correct decoding of the signals involved, and this affects the energy

consumption, the latency, the quality of the received data, and the throughput.

Overhead. Coordinating access schemes requires the exchange of signaling and control

packets to maintain the synchronization among devices. These control packets do

not carry information useful to the final application, but are only used by nodes to

communicate and coordinate themselves, and clearly influence the energy consumption.

Moreover, the payload size is often small in many IoT scenarios (less than 1 kByte), and

thus the MAC overhead is significant and needs to be designed optimally. Notice that

also the acknowledgment mechanism is included in the overhead, and in fact many IoT

protocols try to limit the feedback from the receiver (e.g., in LoRa [26]).

Overhearing. In wireless networks, it may happen that a node receives a packet intended

for a different destination, thereby wasting energy since the sensor uselessly listens to

the channel and also spends some energy to decode. Usually, overhearing is reduced by

filtering packets based on their destination address or exploiting their preamble.

Idle listening. When a node does not know when it will receive messages from other

devices, it keeps listening to the channel waiting for potential data. It means that a node

is ready to receive messages but in vain, and thus wastes its energy. This problem is
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very important especially in networks with low traffic loads. The simplest way to reduce

idle listening is to put nodes to sleep as long as possible, e.g., by adopting appropriate

duty cycles. However, it is fundamental to ensure that a device is awake when it has to

receive some message. Wake-Up Radios (WURs) are a novel hardware approach that

eliminates these shortcomings: devices are provided with an ultra low power receiver

that continuously listens to the channel and wakes up the main radio on demand [27].

WURs improve the overall network energy efficiency, but their design has to deal with

several tradeoffs concerning sensitivity, resilience to interference, coverage area, wake-up

speed, and power consumption [28].

2.2 Channel access schemes

At a macroscopic level, channel access schemes can be divided into contention-free

and contention-based, depending on whether the devices try to use the same resources

simultaneously or not, respectively.

Contention-free access. When the network topology and the traffic pattern can be known

or predicted in advance, contention-free access mechanisms guarantee optimal perfor-

mance because they allocate the available resources to nodes so as to avoid wastages and

satisfy all users’ requirements. Interference and collisions are avoided, and idle listening

is reduced. Users can be allocated different time slots (TDMA-based approaches), fre-

quency bands (FDMA-based approaches), or orthogonal codes (Code Division Multiple

Access (CDMA) approaches). Coordinated access schemes are well suited for appli-

cations where the traffic pattern is known in advance, e.g., industrial Wireless Sensor

Networks (WSNs) [29]. In 2012, for example, the Internet Engineering Task Force (IETF)

introduced the Time-Slotted Channel Hopping (TSCH) [30] mode as an amendment to

the MAC portion of the IEEE802.15.4e standard, which combines time synchronization

and channel hopping and is intended for industrial automation. TDMA-based schemes

can be effectively coupled with duty cycling, where nodes alternate active and sleeping

phases to preserve energy [31]. However, pure coordinated access schemes may result in

poor performance when dealing with event-based signals such as alarms, which have

strict latency and QoS constraints. Traditional protocols should therefore be revisited in

order to account for the different traffic types, like in [32], where the proposed access

mechanism proactively tunes the number of used resources to meet the application

requirements.

Contention-based access. In some IoT applications, using a coordinated scheme may be

impractical or suboptimal, because i) synchronization and control messages burden too

much the constrained nodes, ii) data transmission is event-triggered and thus difficult

to predict, or iii) the device mobility and the likelihood of faults due to fluctuations of
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the wireless channel make the topology highly dynamic. When at least one of these

conditions occurs, random access schemes are generally preferable over coordinated

ones. They are distributed and easier to implement and make channel resources available

to more stations. The price to pay is interference among devices, which may cause

packet losses or corruption, affecting the QoS, increasing latency, and wasting energy.

Typically, transmission technologies in the IoT use some variant of ALOHA-based

schemes, where devices access the channel whenever they have data to transmit, or

CSMA schemes, where devices listen to the channel before transmitting to sense whether

there are ongoing transmissions and reduce its probability of colliding with other packets.

An interesting approach is represented by coded random access schemes, which map

the structure of the access protocol to that of an erasure-correcting code defined on a

graph, making it possible to achieve much better performance than simple ALOHA [33].

Another way to improve the performance of random access is to consider a receiver

with interference cancellation or multiple packet reception capabilities [34]. Also duty

cycling may lead to significantly reduced energy consumption, but has an impact on

data latency and still wastes energy for idle listening [35].

Both contention-free and contention-based approaches have advantages and disadvan-

tages, and typically the choice of one over the other is driven by the use case, network

topology, and application requirements. Given the dynamic nature of many IoT scenarios,

it may also be useful to leverage on the advantages of both schemes to achieve high

performance under variable traffic patterns and network conditions [36, 37]. This leads

to hybrid access, where the access procedure either is split into two phases character-

ized by different mechanisms, or dynamically adapts to the current network load and

requirements.

2.2.1 Data processing

A well-designed channel access scheme may not itself be sufficient to ensure power

savings. The resource limitations of the devices typically involved in an IoT scenario also

pose a challenge, because they affect the complexity of the algorithms that can be run.

In monitoring applications, the devices constantly sense the surrounding environment

and exchange a large amount of raw data, whose transmission would rapidly deplete

the batteries of the nodes. A way to save some transmission energy consists in reducing

the volume of data to send by applying source processing techniques. In-node signal

processing/compression mechanisms can indeed reduce the amount of data to be trans-

mitted, thus relieving channel contention, transport and interference issues. However,

this comes at the cost of spending some energy for the compression operations and

introducing a distortion with respect to the original signal.

11
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A recent trend in IoT deployments is to move some of the processing from the network

center to its edge, according to the fog computing paradigm [38]. In-node and in-network

data processing are of paramount importance, as they can effectively reduce the amount

of information that is to be sent to (and processed by) the higher levels of IoT systems [39].

In many IoT applications, like industrial and environmental monitoring, nodes period-

ically report measurements to a central entity (the sink) and their data volume can be

highly reduced through predictive algorithms [40, 41], i.e., by sending data points only

when they deviate from some expected pattern. The effectiveness of this approach has

also been proved on real datasets [42]. When dealing with time series, lossy compression

can be exploited to trade some accuracy in the signal’s representation for improved

energy efficiency. In this domain, a number of approaches like probabilistic, linear or

autoregressive models, Fourier transforms and Kalman filters have been considered,

although they are generally too computationally expensive and, in turn, power-hungry

for constrained IoT devices [43]. The research community has thus started exploring

lighter algorithms, e.g., the Lightweight Temporal Compression (LTC) algorithm [44].

Moreover, the heterogeneous and dynamic nature of IoT systems requires adaptability,

and employing a traditional compression scheme may lead to suboptimal performance.

The research focus is thus moving towards data-driven approaches, where the com-

pression technique is automatically adjusted according to the type of signal and to the

application requirements. For example, in [45] Compressive Sensing (CS) is combined

with principal component analysis to capture the spatial and temporal characteristics

of real signals, and a feedback control loop estimates the signal reconstruction errors

on the fly and allows the system to self-adapt to changes in the signal statistics. [46]

proposes another adaptive scheme that switches between lossless and lossy compression

in an on-demand fashion according to a compression error bound derived from the

application requirements.

Another promising approach consists in applying data mining techniques to extract

features from time series, seeking feature-based classifiers [47]. Signal classification into

groups with similar characteristics allows the sensors to choose the data processing

technique that is most appropriate for their respective class (i.e., leading to the best

performance for some metric, like the distortion of the compressed signal) [48, 49].

Moreover, the cost (energy and distortion) of the in-node processing algorithms shall

be included in the optimization of the network protocols so as to allow the entire system

to adapt, seeking a good tradeoff in terms of overall energy consumption (processing

and communication) vs. quality of the information that is sent to the application (e.g.,

quality of an answer or representation accuracy of a measurement).

12



2.3 a model for the energy consumption

2.3 A model for the energy consumption

It is extremely important to accurately estimate the lifetime of a sensor to gauge the

performance of IoT energy-constrained systems. In fact, although a wide variety of

network lifetime definitions are adopted in the literature, they all ultimately depend on

the lifetime of individual sensors. To design energy efficient algorithms and protocols

it is necessary to identify and characterize all the sources of energy consumption and

supply. It is hard to define an exhaustive and general model for the energy dynamics

of an IoT device, since its energy consumption highly depends on the technology it

employs, its operating conditions, and the algorithms it uses. Next, we describe a

parameterized model that tries to capture all the major sources of energy expenditure,

namely, communication, data acquisition, processing, and circuitry [10].

Sensing. Let Ns be the number of sensing events performed in a given time window Ts.

The sensing energy is defined as:

Es = NsEsens (2.1)

where Esens is the energy spent by the device to collect one sample. For periodic sensing,

Ns ≃ round(Ts/Tp), where Tp is the nominal sensing period, while for aperiodic sensing,

where the acquisition of samples is triggered by some event, Ns is a random variable

whose distribution depends on the specific sensing process and on the observation

window Ts. Often, Esens is very small compared to the energy drained by the RF

architecture, and Es becomes negligible. However, there exist devices such as cameras

that may spend non negligible amounts of energy to collect a new image every few tens

of milliseconds.

Data processing. Nodes may collect endogenous or exogenous data, which can both be

processed either at an intra-node level or at an inter-node level with data aggregation

and data fusion techniques. The latter approach highly depends on the network topology,

the amount of information exchanged among nodes and the way data is processed. It is

thus difficult to derive a general model; moreover, it is not used in any of the studies of

this thesis, which only consider in-node compression operations. For data compression

the energy cost can be quantified using the results in [43]:

Ep = E0L0Np(ηp) . (2.2)

E0 is the energy consumption per CPU cycle (that depends on the micro-controller unit),

L0 is the number of bits used to represent the original signal, and Np(ηp) represents the
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number of clock cycles per bit needed to compress the input signal and is a function of

the compression ratio ηp. Note that Np(ηp) depends on the compression algorithm.

In both the studies of Chs. 3 and 4, it is assumed that the IoT nodes use the LTC

algorithm or the Fourier-based Low Pass Filter (DCT-LPF) algorithm, which are very

lightweight and suitable for constrained devices. In this case, the function Np(ηp) is

increasing and concave in ηp:

Np(ηp) = αpηp + βp (2.3)

with αp, βp > 0. Notice that the more compressed the packet, the less the energy spent.

This seemingly counterintuitive fact is due to implementation details; interested readers

can refer to [43] for an explanation.

For what concerns channel coding, typically the energy it requires is assumed to be

negligible with respect to the overall energy consumption and only the energy needed

by the receiver for decoding is taken into account [50], hence this contribution may be

considered only in terms of variation of the number of bits to be transmitted over the air

(i.e., redundancy bits added for FEC/CRC).

Transmission. The energy cost of any wireless transmission period can be modeled as:

Etx =
τPtx

ηA
, (2.4)

where τ is the transmission duration, Ptx is the average radiated power, and ηA ∈ (0, 1]

is a constant that models the efficiency of the antenna’s power amplifier. This source of

energy consumption should be considered for all transmissions performed by the IoT

device, and thus also includes retransmission attempts and control messages, e.g., related

to the maintenance/generation of the access schedule in coordinated access schemes.

Reception. When receiving a packet, the device spends energy to receive the radio signal,

which can be modeled analogously to Eq. (2.4), and to reconstruct the original data from

its compressed/encoded version. This latter contribution is highly algorithm-dependent

and, to the best of our knowledge, there exists no general expression to characterize it.

Also the energy required by advanced decoding algorithms (e.g., interference cancella-

tion) should be taken into account. However, in the studies proposed here the focus is

on the energy consumed for transmission, because the considered applications assume

single-hop networks where the data sink is an energy-rich device.

Circuitry. Circuits spend some “basal” energy spent by the circuit in each of the node’s

possible operating states, x ∈ {sleep, idle, active}. A simple way to model it is the

following:

Ec = Txεc,x, (2.5)
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where εc,x is the rate of circuitry energy consumption when the node is in mode x, and

Tx is the time spent by the device in that mode. Also going from mode x1 to mode x2

consumes energy, which is modeled as a constant contribution only depending on the

two modes:

Eswitch = kx1,x2 , (2.6)

The switching time is assumed to be negligible, and for this reason Eswitch does not

depend upon it.

Energy harvesting. Devices that are not connected to the energy grid may harvest energy

from the surrounding environment. Typically, the energy arrivals are assumed to follow

a certain probability distribution, e.g., deterministic or Poisson. In case of energy supply

that exhibits time correlation, some studies validated against real data have proved

Markov Chains (MCs) to well model the energy inflow [51, 52]. Each possible state

entails a different distribution of the energy income. Note that, when dealing with

EH, the model is generally discrete, i.e., the energy inflow is quantized. Thus, the

dynamics of the source can be tracked through an X-state MC: the source is in state

x ∈ X = {0, . . . , X − 1} and scavenges ex quanta of energy from the environment,

according to some probability mass function (p.m.f.).

Battery dynamics. Let B be the battery size of a device, which may be finite or infinite.

A widely-adopted model for the battery charge bn in slot n

bn = min{max{0, bn−1 + e− u}, B} (2.7)

where e and u are the harvested and used energy in the last slot, respectively. When

the device has no EH capabilities, e ≡ 0. In case of EH, it is important to prevent

battery outage (empty battery) and overflow (waste of excess energy because of full

battery) situations; it is thus necessary to design schemes that dynamically adapts to the

randomness of the energy inflow, so as to ensure acceptable performance on a long-term

horizon.

Typically, the battery consumption is assumed to be linear as in (2.7), but actually it

depends on the current battery charge and external factors like the temperature. This

idealistic assumption leads to naïve lifetime estimations which often cause premature

depletion in real deployments [53]. Nonetheless, it is extremely challenging to use more

realistic models in the protocol design.
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2.4 Proposed channel access schemes

We designed several channel access schemes for energy-constrained nodes in different

scenarios. All schemes are based on a mathematical optimization and are described in

the following chapters. Modeling and analyzing the performance of communication

networks plays in fact an important role in the design of communication networks. The

purpose of a mathematical model is to serve as guideline for the development of an

efficient protocol and the performance analysis is beneficial to gain insight on the role

played by the various system parameters and infer the tradeoffs among them. This

allows one to optimize the network parameters and assess bound on the performance

that can be obtained in practice.

This part of the thesis is structured as follows.

Ch. 3 discusses an adaptive TDMA scheme where the network resources are dynami-

cally assigned to battery-powered devices according to their requirements (in terms of

targeted QoS) and capabilities (channel conditions and energy availability) so that the

network lifetime is maximized. The considered scenario includes data compression at

the source as well as power control to counteract the channel fading; the two cases of

complete and incomplete Channel State Information (CSI) at the transmitter are analyzed.

Ch. 4 also presents a TDMA approach, but in this cases the time resources assigned

to each user are fixed. Devices are battery powered and can harvest energy from

the environment; the goal is to optimally use the available energy to guarantee the

desired QoS in terms of quality of the received data. Data compression and channel

coding are optimized jointly as they induce a tradeoff between the accuracy in the

data representation and the communication robustness, i.e., success probability of the

transmission.

Ch. 5 analyzes the QoS/energy tradeoff for three different random access schemes

targeting different monitoring applications with battery-powered sensors. In this case,

collisions with other transmissions impinge on the energy efficiency, thus the channel ac-

cess needs to be carefully designed taking into account possible interference. All schemes

make use of some compression algorithms (sampling compression, data compression

and communication compression) to adapt the sampling and transmission rates.

Finally, Ch. 6 studies a jamming attack, where an energy constrained jammer tries

to disrupt the communication and deplete the battery of a legitimate transmitter. The

attack is modeled with a game-theoretic approach and both the cases of complete and

incomplete information available to the victim are analyzed.
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This chapter discusses a scheduling strategy for IoT sensors that adapts the data process-

ing and the transmission parameters (transmission duration and power) to the energy

and QoS requirements. Devices with heterogeneous capabilities and requirements access

the channel in a TDMA fashion and the ultimate goal is to extend the network lifetime

while guaranteeing a low overall distortion of the transmitted data with respect to their

uncompressed version.

Other studies in the literature consider joint source coding and transmission policies

and investigate the tradeoff between energy efficiency and data quality [54, 55]. In [56],

an online joint compression and transmission optimization strategy is investigated for

sensors with EH capabilities that generate correlated information, but how to schedule

transmissions in a time slot is not treated. In [57], the authors derive optimal compression

policies for a single sensor in order to minimize the long-term average distortion subject

to the energy sustainability of the sensor, where power control is used to adapt the

transmission to the status of the fading channel. In [58], energy allocation strategies are

proposed with the goal of minimizing the signal distortion when several sensors measure

the same process of interest and exploit data fusion techniques, but analytical results are

derived only for a two-node system. Finally, [59] proposes a TDMA scheduling where

time slots are allocated in a dynamic fashion based on the spatial correlation of the

transmitted signals.

This study aims at determining the optimal operating point in the tradeoff between

network lifetime and signal quality in order to derive a TDMA-based scheduling strategy

for resource-constrained nodes. The devices have heterogeneous characteristics and

requirements, and data compression and transmission are optimized jointly. Users

are dismissed from transmission when it is impossible to have all devices meet their

requirements in a frame. A set of theoretical results are derived to define processing and

transmission policies when CSI is known perfectly (full knowledge) or statistically at the

transmitters.

This work has been presented in [60] and [61].
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Notation: In this study, matrices and vectors are represented with boldface letters,

and the subscript and superscript refer to the row and column index, respectively;

accordingly, Ei refers to the i-th row of matrix E, E(k) to its k-th column, and E(k)
i is the

(i, k) element.

3.1 System Model

N heterogeneous sources send data to a central Base Station (BS), accessing the uplink

channel in a TDMA fashion. Time is partitioned into frames, where frame k corresponds

to the time interval interval [tk, tk+1). Each node periodically generates data, decides

whether and how much to compress it, and finally transmits it to the common receiver.

3.1.1 Data Generation and Compression

Nodes generate data by collecting measurements from the surrounding environment

or by serving as relays for farther nodes. Let L(k)
0,i be the size of the data generated

in frame k by node i. Each user i ∈ N is capable of compressing its data using a

lossy compression scheme, which may be source-specific. The compression operation

affects the quality of the transmitted information and introduces a distortion D(k)
i , which

is a function of the compression ratio L(k)
i /L(k)

0,i , where L(k)
i ≤ L(k)

0,i is the size of the

compressed packet in frame k. It is thus possible to define a function that maps the

distortion to the transmission rate or, equivalently, to the compression ratio. Typically,

closed-form expressions for the rate-distortion curves are only available for idealized

compression techniques operating on Gaussian information sources [62], whereas for

practical algorithms such curves are generally obtained experimentally. An example of

rate-distortion curve, which will be used as a baseline in the numerical evaluation, is

D(k)
i ≜ Di

(
L(k)

i

)
=

⎡⎣bi

⎛⎝⎛⎝L(k)
0,i

L(k)
i

⎞⎠ai

− 1

⎞⎠⎤⎦+

, (3.1)

where ai, bi > 0 and [·]+ ≜ max{·, 0}. It represents the maximum absolute error between

the original and the compressed signal normalized to the amplitude range of the signal

in the considered time window [10]. Notice that the distortion is zero when the packet is

not compressed, i.e., L(k)
i = L(k)

0,i . This model is derived from the results obtained in [63],

where a general parameterized expression for the rate-distortion curve was derived by

compressing realistic time series with practical algorithms. The framework proposed in

this study and its analysis do not rely on the particular shape of Eq. (3.1), but any other

convex and decreasing function of the compression ratio L(k)
i /L(k)

0,i could also be used.
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3.1 system model

The data collected in a frame is lost if not transmitted in the next frame, which is

equivalent to imposing a strict limit on latency, or to considering finite data buffers at

the devices. Hence, no retransmission mechanism is implemented.

Finally, there is a QoS requirement on the data quality: D(k)
i ≤ D(k)

th,i, where D(k)
th,i < ∞

is a threshold distortion level. If the reconstruction error exceeds this threshold, the

signal generated by the source node is no longer useful for the final destination. The

thresholds may depend on the size of the network, the transmission parameters (e.g.,

modulation), the data itself and other factors.

3.1.2 Channel Model

The average physical rate of user i ∈ N in frame k is approximated by Shannon’s bound

r(k)i = W log2

(
1 + γ

(k)
i

)
= W log2

⎛⎝1 + h(k)i

P(k)
tx,i

N0

⎞⎠ , (3.2)

where W is the bandwidth, γ
(k)
i the Signal-to-Noise Ratio (SNR), P(k)

tx,i the transmission

power, h(k)i the channel gain, and N0 the noise power. The N channel gains h(k)1 , . . . , h(k)N

are affected by fast fading, which evolves independently over time and is independent

among users. The transmission rate is approximated with Shannon’s capacity and CSI is

assumed at the transmitter. Therefore, in the absence of interference among devices, it

is possible to ignore packet losses, that would have a negative impact on the QoS and

require a retransmission or error-recovery mechanism [64].

3.1.3 Energy Consumption Model

All devices are battery-powered, and B(k)
i denotes the battery level of node i in frame

k. The initial battery level B(0)
i represents the only energy available to node i, which

therefore has a strong impact on the system performance. In every frame, a non-negative

amount of energy E(k)
i ∈ [0, B(k)

i ] is used for processing and transmission tasks. The

diverse sources of energy consumption can be characterized as described in 2.3. The

ones used in this study are reported here for the sake of clarity.

Data Processing. The expression for the processing energy is given in (2.2); in this study

each term has to be refereed to the corresponding device i and time frame k, and the

compression ratio is given by L(k)
i /L0,i. Considering the expression given in (2.3), it is:

E(k)
p,i = E0,i L(k)

i αp,i + E0,i L(k)
0,i βp,i. (3.3)

Notice that the second term is independent of the compression ratio.
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Data Transmission. The expression given in (2.4) needs to be considered for every node

i in each frame k. Thus, the amount of energy consumed by the radio module is:

E(k)
tx,i = τ

(k)
i

P(k)
tx,i

ηA,i
. (3.4)

Note that no energy is wasted because of collisions and overhearing, since a TDMA-

based access mechanism is adopted and devices are granted exclusive use of the commu-

nication channel in their slot (a single frame is composed by N slots).

Data Sensing and Circuitry Costs. As discussed in 2.3, the circuitry energy consumption

can be modeled as

E(k)
c,i = β

(k)
i + εc,iτ

(k)
i , (3.5)

where εc,i is the circuitry power consumption during data transmission (see (2.5)). The

constant term β
(k)
i takes into account the energy spent to generate the sensor data

(Eq. (2.1) with a constant number of samples per sensing period), the synchronization

costs, and the energy spent to switch between sleep and active modes (see Sec. 2.3).

Total Energy Consumption. The total energy consumption of node i in frame k is ob-

tained by summing Eqs. (3.3), (3.4) and (3.5): E(k)
used,i = E(k)

p,i + E(k)
tx,i + E(k)

c,i .

3.2 Optimization Problem

The goal of this study is to find a joint compression-transmission policy (τ , L, P) that

decides how much to compress the data and how much time and power to assign to each

node in each frame. The objective is to minimize the distortion given a time horizon of n

frames and some initial per-node energy allocation. Solving this problem as a function of

the value of n allows one to determine the tradeoff between the system lifetime and the

corresponding achievable distortion performance. More specifically, given the lifetime n,

the problem to solve is the following:

D⋆
mean ≜ min

τ , L, P
1
n

n

∑
k=1

max
i∈N

D(k)
i

D(k)
th,i

, (3.6a)
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3.2 optimization problem

subject to:

D(k)
i ≤ D(k)

th,i, ∀i, ∀k, (3.6b)

L(k)
i ≤ τ

(k)
i r(k)i , ∀i, ∀k, (3.6c)

Pmin,i ≤ P(k)
tx,i ≤ Pmax,i, ∀i, ∀k, (3.6d)

∑N
i=1 τ

(k)
i ≤ T, ∀k, (3.6e)

∑n
j=1 E(j)

used,i ≤ B(0)
i , ∀i. (3.6f)

The distortion was defined in (3.1), and Constraint (3.6b) guarantees that it does not ex-

ceed the given threshold for any user. Inequality (3.6c) ensures that the channel capacity

given in (3.2) is not exceeded. Quantities Pmin,i and Pmax,i in Constraint (3.6d) specify

the minimum and maximum allowed transmission power, respectively. Constraint (3.6e)

limits the total time allocated to the users to the frame duration. Notice that this is

the only constraint that considers the users jointly: without it, Problem (3.6) could be

readily decomposed into N separate problems. Finally, Constraint (3.6f) specifies that

the total energy assigned to node i during the network lifetime cannot exceed the initial

content of its battery, B(0)
i . This is the only constraint that considers multiple frames

simultaneously.

The objective function (3.6a) is the distortion averaged over the lifetime n. Note

that the function maxi∈N D(k)
i /D(k)

th,i considers the “worst” user in frame k in order to

guarantee fairness. To achieve that, it is necessary to decide how much each node should

compress its packet, and with what power and for how long it should transmit. It is

important to remark that Problem (3.6) does not need to be computed by the IoT nodes.

Indeed, the policy can be evaluated offline by the BS, disseminated using the downlink

channel, and then used online by the users through a look-up table, whose size depends

on the value of n and the granularity used in the discretization of the channel gain. The

only computationally intensive action performed locally by the IoT nodes is compression.

However, this can be realized using lightweight algorithms (e.g., LTC or DCT-LPF, see

Sec. 3.1.3), which have very low complexity.

3.2.1 Optimal Problem Decomposition

For the sake of a simpler mathematical analysis, the problem is decomposed into two

interdependent optimization processes. To do so, it is first necessary to formulate the

original problem in an equivalent form. Consider the following problem:

D⋆
mean ≜ min

E, τ , L, P
1
n

n

∑
k=1

max
i∈N

D(k)
i

D(k)
th,i

, (3.7a)
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subject to: Constraints (3.6b)-(3.6e) , (3.7b)

E(k)
used,i ≤ E(k)

i , ∀i, ∀k, (3.7c)

∑n
j=1 E(j)

i ≤ B(0)
i , ∀i, (3.7d)

which introduces the new auxiliary optimization variables E = {E(1), . . . , E(n)}. For any

feasible solution of (3.6), there exists a matrix E such that (3.7) also has a feasible solution.

On the other hand, since Constraints (3.7c) and (3.7d) imply Inequality (3.6f) and all the

other constraints have not changed, any feasible solution of (3.7c) is also feasible for (3.6).

Therefore, the optimal solutions of the two problems coincide.
The term E(k)

i can be interpreted as the energy allocated to user i in frame k. According

to this interpretation, Constraint (3.7c) guarantees that the energy used in a certain frame

cannot exceed the amount of energy assigned to that frame, while Constraint (3.7d)

states the exclusivity of the energy allocation, i.e., the fact that the amount of energy

allocated to a particular frame cannot be used in any other frame. Thanks to the new

variables E, there is no constraint in (3.7) that considers the variables τ , L, and P over

multiple frames, therefore we can decompose Problem (3.7) in two intertwined blocks,

namely FOP and EAP, as follows.
Frame-Oriented Problem (FOP). It focuses on a single frame k, assuming that the energy

vector E(k) is given. FOP is completely unaware of the energy allocation in the other

frames. It can be formally stated as follows

FOP: f (k)FOP(E
(k)) ≜ min

τ (k), L(k), P(k)
max
i∈N

D(k)
i

D(k)
th,i

, (3.8a)

subject to:

D(k)
i ≤ D(k)

th,i, ∀i, ∀k, (3.8b)

L(k)
i ≤ τ

(k)
i r(k)i , ∀i, ∀k, (3.8c)

Pmin,i ≤ P(k)
tx,i ≤ Pmax,i, ∀i, ∀k, (3.8d)

∑N
i=1 τ

(k)
i ≤ T, ∀k, (3.8e)

E(k)
used,i ≤ E(k)

i , ∀i, ∀k. (3.8f)

Its goal is to determine the transmission durations and powers, and the compression

ratios that minimize Eq. (3.8a), for a selected frame and with a given energy allocation.

There exist two versions of FOP, which differ in the level of CSI available at the nodes

and will be discussed later.
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3.3 frame-oriented problem (fop)

FOP FOP FOP

EAP

...

Figure 3.1: Structure of the problem for a fixed value of n: modules.

Energy Allocation Problem (EAP). EAP assumes the functions f (k)FOP(E
(k)) to be known,

and focuses on the optimization of the energy allocation over multiple frames. Formally,

EAP: D⋆
mean ≜ min

E
1
n

n

∑
k=1

f (k)FOP(E
(k)), (3.9a)

subject to: ∑n
j=1 E(j)

i ≤ B(0)
i , ∀i, (3.9b)

f (k)FOP(E
(k)) is feasible, ∀k. (3.9c)

Basically, EAP exploits FOP to obtain the distortion performance corresponding to a

certain energy allocation E and determine the optimal energy allocation.

Fig. 3.1 shows the relation between the two problems, which are tightly coupled:

EAP defines the energy allocation to use in every frame, which is used by FOP to

determine (3.8a) and, on the other hand, the output of FOP influences EAP through (3.6a).

FOP and EAP will be discussed in the following sections.

3.3 Frame-Oriented Problem (FOP)

The Frame-Oriented Problem does not consider the time evolution of the network and

operates at the frame level, so that the amount of energy allocated to each node is

fixed. The goal of FOP is to determine the optimal compression-transmission policy

that minimizes the maximum normalized distortion experienced by the users in a single

frame k. This section introduces FOP and proposes an equivalent formulation which is

easier to be solved optimally. Secs. 3.4 and 3.5 discuss how to solve it under different

assumptions on the knowledge available at the nodes.

For each user i ∈ N , FOP determines:

1. The size of the data to transmit, L(k)
i , which is strictly related to the distortion and

to the energy consumed for processing as well as for transmitting.
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2. The transmission power P(k)
tx,i , which influences the transmission rate and energy

consumption.

3. The transmission duration τ
(k)
i , which relates L(k)

i to the channel rate r(k)i and affects

the consumed energy.

Problem (3.8) delineates the formal structure of FOP. Since FOP concerns single frames,

for ease of notation the dependence on the frame index k throughout this section will be

omitted. In this case, boldface letters refer to column vectors that span over the N users

for the considered frame.

The objective function (3.8a) can be equivalently formulated by introducing an auxiliary

optimization variable Γ:1

FOPΓ: min
Γ, τ , L, P

Γ, (3.10a)

subject to:
Di

Dth,i
≤ Γ, ∀i, (3.10b)

Constraints (3.8b)− (3.8f). (3.10c)

Let Γ⋆ be the solution of FOPΓ; since it depends on the energy allocated to each user, it

can be explicitly written as Γ⋆ = fFOP(E). Note that only distortions below threshold

are acceptable (see (3.8b)), which means that Γ⋆ ≤ 1, otherwise FOPΓ (and thus FOP)

is infeasible. The optimal normalized distortion Γ⋆ can be determined exploiting the

following result [61].

Lemma 1. If FOPΓ is feasible for Γ′ ≤ 1, then FOPΓ is feasible for all Γ′′ such that Γ′ ≤ Γ′′ ≤ 1.

It follows that Γ⋆ can be found with a bisection search over the values of Γ in the

interval [0, 1]. Thus, for every fixed Γ, it should be checked whether there exists a feasible

solution (i.e., a solution that satisfies (3.10b) and (3.10c)) or not.

The optimization problem (3.10) and the concepts introduced hitherto have general

validity and hold regardless of the knowledge of the channel status. Sec. 3.4 introduces

the solution of (3.10b) without fading, which is simpler to determine and can be used as

a building block for the other case (Sec. 3.5).

3.4 FOP with Full CSI

In this scenario, all nodes are assumed to have full CSI, i.e., the gain hi in all frames is

known exactly for all nodes a priori. For a fixed Γ, it is possible to determine the optimal

1 This is a standard approach to handle minimax problems. The new variable Γ represents an upper bound
to Di/Dth,i, ∀i, which is equivalent to an upper bound to maxi{Di/Dth,i}. Therefore, minimizing Γ or
maxi{Di/Dth,i} leads to the same solution.
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3.4 fop with full csi

x

(a)
No solution

x

(b)
P i≡Pmax,i<xmin,i

x

(c)
P i≡Pmax,i>xmin,i

x

(d)
No solution

x

(e)
gi(x)

Figure 3.2: Function gi(x) in five different cases when solving (3.11b). The dash-line represents different
values of W/Li(Ei − Ep,i(Li) + βi). The circle, triangle, and square markers represent xmin,i,
Pmax,i, and P⋆

tx,i = Pi, respectively.

compression level, transmission power and duration for each user. Iterating over the

values of Γ through a bisection search then yields the optimal Γ⋆.

This is possible thanks to the following key result.

Lemma 2. There exists an optimal solution of FOPΓ for which all users have equal relative

distortion, i.e., (3.10b) holds with equality ∀i. [61].

This implies that, given Γ, the compression ratio is fixed for each user and, hence, L is

also known deterministically and can be removed from the optimization variable.

The following result further simplifies the original Problem (3.10) and allows one to

extract one optimal solution.

Lemma 3. There exists at least one optimal solution where all nodes use the maximum available

rate, i.e., Constraint (3.8c) is taken with equality ∀i [61].

Constraint (3.8c) is henced taken with equality, which is equivalent to choosing the

smallest time possible τi when Li and Ptx,i are given. Lemmas 2 and 3 guarantee that,

when Γ is fixed, the original Problem (3.10) can be reduced to a problem with a single

optimization variable without loss of optimality. In particular, τi can be expressed as

a function of Ptx,i, namely τi = Li/(W log2(1 + hi Ptx,i/N0)). The optimal solution uses

the highest possible transmission power, since τi and Ptx,i are inversely proportional to

each other, and shorter transmission times are more likely to satisfy the frame duration

constraint (3.8e). Accordingly, P⋆
tx,i is chosen as the highest Ptx,i that satisfies both the

power (3.8d) and the energy (3.8f) constraints. Combining (3.8f) and Lemma 3 yields:

P⋆
tx,i ≜ max

Ptx,i∈[Pmin,i ,Pmax,i ]
Ptx,i, (3.11a)

subject to: gi(Ptx,i) ≤
W
Li
(Ei − Ep,i(Li) + βi), (3.11b)

with gi(x) ≜ (x/ηA,i + εc,i)/ log2(1 + hi x/N0).

Note that all the terms on the right-hand side (RHS) of (3.11b) are fixed: Ei is given, Li

is derived from Γ through Lemma 2, and the remaining are system parameters. It can
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Algorithm 1 Procedure to find Pi

1: if g(xmin,i) > W/Li(Ei − Ep,i(Li) + βi) then
2: no solution exists and Pi is undefined (case (a))
3: else
4: if g(Pmax,i) ≤W/Li(Ei − Ep,i(Li) + βi) then
5: set Pi = Pmax,i (cases (b) and (c))
6: else
7: if xmin,i ≥ Pmax,i then
8: no solution exists and Pi is undefined (case (d))
9: else

10: find Pi with a bisection search in [xmin,i, Pmax,i] (case (e))

be shown that gi(x) is a decreasing-increasing function of x, and therefore admits only

one minimum, as shown in Fig. 3.2 (and proved in [60]). Problem (3.11) can be solved by

firstly using the golden-section search algorithm [65] to find the point of minimum xmin,i

of gi(x), which is then used to determine the amount of power Pi that solves (3.11) when

the constraint on Pmin,i is neglected. The procedure is formally described in Algorithm 1

(see Fig. 3.2 for a graphical interpretation).

If g(xmin,i) > W/Li(Ei − Ep,i(Li) + βi), there is no feasible point (Line 2). Otherwise,

the algorithm checks whether the maximum solution, namely Pmax,i, is feasible or not

(Line 4). If this is not the case and xmin,i < Pmax,i, a bisection search in [xmin,i, Pmax,i] is

used to find Pi as the solution of g(Ptx,i) = W/Li(Ei − Ep,i(Li) + βi), i.e., the value of

Ptx,i that satisfies (3.11b) with equality (Line 10). If, using the previous procedure, Pi

does not exist or Pi < Pmin,i, then P⋆
tx,i is not defined and the problem is infeasible for

the given Γ; otherwise, P⋆
tx,i = Pi. The packet size is straightforwardly determined from

the selected Γ, and then the transmission duration is τi = Li/(W log2(1 + hi P⋆
tx,i/N0)).

Then, it is possible to iterate over the values of Γ to find the optimal Γ⋆.

3.5 FOP with Statistical CSI

This scenario considers instantaneous CSI at the transmitter, i.e., exact knowledge of

the channel gain only for the current slot, but only statistical knowledge of the future

channel realizations, as typical in the presence of fading. Again, the dependence on the

frame index will be omitted throughout this section, if not ambiguous.

The notion of “expected distortion” is introduced to account for the unknown channel

status. A device transmits only if the channel gain is sufficiently high, since a deep

fade would lead to unacceptable data quality. In particular, there is a fixed probability

of performing a transmission, which yields the threshold above which the channel is

“good enough”. Then, the optimal Γ⋆ is determined using a bisection search as described

in Sec. 3.3. For every fixed Γ, a dynamic policy adapts the compression ratio and the
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transmission power to the channel status, and the transmission duration is determined

as the smallest value that makes the problem feasible.

The channel coefficient can be decomposed as hi = h0,i θi, where h0,i represents the

average channel gain given by path loss and shadowing, and θi is the realization of a

random variable Θi that models the fast-fading effects. Function fΘi(θi) represents the

probability density function of Θi (e.g., Θi ∼ Exp(1) for Rayleigh fading). The terms h0,i

are assumed to be known only for future frames, whereas only a statistical knowledge of

θi is available. In this case, FOP defines different values of Li and Ptx,i as a function of

θi, so that when a node executes the policy, it can dynamically adapt Li(θi) and Ptx,i(θi)

to the instantaneous channel conditions. The transmission duration τi, instead, is not

dynamically adapted to θi but optimized regardless of the channel conditions to avoid

coordination issues among the nodes.

3.5.1 Distortion Definition with Fading

In order to account for the statistical knowledge of the fading realization,the distortion

function (3.1) needs to be redefined in terms of θi: Di(θi) ≜ Di(Li(θi)).

Then, given that the fading coefficient is above a certain threshold θtx,i, it is possible to

consider the conditional expectation of Di(θi):

Di ≜
∫ ∞

θtx,i

Di(θi) fΘi(θi) dθi

/∫ ∞

θtx,i

fΘi(θi) dθi. (3.12)

The parameter θtx,i is a fading gain threshold defined in order to avoid transmissions

when the channel conditions are too bad (and would require excessive data compression

and, consequently, distortion). In practice, nodes refrain from data transmission in a

frame if the current fading gain is lower than θtx,i. To guarantee a certain level of QoS,

the transmission probability Prtx,i is fixed a priori, and θtx,i is derived consequently. For

example, with Rayleigh fading it is θtx,i = − log(Prtx,i).

Throughout this subsection, and when we deal with the statistical CSI case in general,

Di in (3.8a) is replaced by Di, and the optimization variables L(θ) = {L1(θ1), . . . , LN(θN)}
and P(θ) = {P1(θ1), . . . , PN(θN)} depend on the channel status θ. The equivalent struc-

ture of FOP (see (3.8)) is:

min
τ ,L(θ),P(θ)

max
i∈N

Di

Dth,i
, (3.13a)
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subject to:

Di(θi) ≤ Dth,i, ∀i, ∀θi ≥ θtx,i, (3.13b)

Li(θi) ≤ τi ri(θi), ∀i, ∀θi ≥ θtx,i, (3.13c)

Pmin,i ≤ Ptx,i(θi) ≤ Pmax,i, ∀i, ∀θi ≥ θtx,i, (3.13d)

∑N
i=1 τi ≤ T, (3.13e)

Eused,i(θi) ≤ Ei, ∀i, ∀θi ≥ θtx,i. (3.13f)

The equivalent of FOPΓ can be derived analogously.
To solve FOPΓ, it is necessary to specify how to find the optimal packet size and

transmission power as a function of θi, which together allow one to optimally find τi.

Similar to Sec. 3.4, FOPΓ is then solved by applying a bisection search.

3.5.2 Packet Length and Transmission Power

For the moment, consider the transmission duration vector τ to be given (it will be

optimized in Sec. 3.5.3). Thus, the Constraint (3.13e) can be disregarded, and the objective

function (3.13a) can be rewritten as

min
L(θ),P(θ), ∀θ⪰θtx

max
i∈N

Di

Dth,i
= max

i∈N
min

Li(θi),Ptx,i(θi), ∀θi≥θtx,i

Di

Dth,i

= max
i∈N

∫ ∞
θtx,i

fΘi(θi)minLi(θi),Ptx,i(θi) Di(θi) dθi

Dth,i
∫ ∞

θtx,i
fΘi(θi) dθi

,

Di depends only on Li(·) and Ptx,i(·), thus, it is possible to focus on every min term in

the numerator and study it independently for every fixed θi:

(L⋆
i (θi), P⋆

tx,i(θi))≜ argmin
Li(θi),Ptx,i(θi)

Di(θi)= argmax
Li(θi),Ptx,i(θi)

Li(θi), (3.14a)

subject to:

Lth,i ≤ Li(θi) ≤ τiW log2

(
1 + h0θi

Ptx,i(θi)

N0

)
(3.14b)

Pmin,i ≤ Ptx,i(θi) ≤ Pmax,i (3.14c)

Ep,i(Li(θ)) + βi +

(
Ptx,i(θ)

ηA,i
+ εc,i

)
τi ≤ Ei (3.14d)

where Lth,i is the value such that (3.13b) is satisfied with equality, Constraint (3.14b)

coincides with (3.13b) and (3.13c), (3.14c) is equivalent to (3.13d), and (3.14d) is the

energy constraint (3.13f). Moreover, since, by definition, the distortion decreases with

the packet length, minimizing Di(θi) is equivalent to maximizing Li(θi) in (3.14a).
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Notice that the left-hand side (LHS) of (3.14d) increases with Li(θi). Thus, Li(θi) is

upper bounded by

Li(θi) ≤ min

⎧⎨⎩τiW log2

(
1 + h0θi

Ptx,i(θi)
N0

)
,

E−1
p,i (Ei − βi − (Ptx,i(θi)/ηA,i + εc,i)τi)

⎫⎬⎭ , (3.15)

where E−1
p,i (·) is the inverse function of Ep,i(·). Since the goal is to maximize Li(θi), the

optimal solution must satisfy Eq. (3.15) with equality. Accordingly, three different cases

can be considered.
Full Channel Capacity. In this case Li(θi) = τW log2(1 + h0θi Ptx,i(θi)/N0), so that the

full channel capacity is used. Li(θ) is a function of Ptx,i(θ), thus it is possible to focus on

the optimization of the transmission power only:

argmax
Ptx,i(θi)

τW log2

(
1 + h0θi

Ptx,i(θi)

N0

)
= argmax

Ptx,i(θi)

Ptx,i(θi), (3.16a)

subject to:

Pmin,i ≤ Ptx,i(θi) ≤ Pmax,i (3.16b)

Ep,i (τiW log2(1+h0θiPtx,i(θi)/N0))+βi

+
(Ptx,i(θ)

ηA,i
+εc,i

)
τi ≤ Ei.

(3.16c)

The LHS of (3.16c) increases with Ptx,i and the RHS is a constant. Three subcases

should be analyzed: i) Constraint (3.16c) cannot be satisfied even using Pmin,i, ii) Con-

straint (3.16c) can be satisfied using Pmax,i, and iii) neither of the previous two. In case i),

no solution exists and the procedure falls back on the Partial Channel Capacity case, as

using the whole channel capacity is infeasible, because the allocated energy Ei would

not be sufficient. In case ii), the optimal solution is Pmax,i, as it maximizes the objective

function (3.16a) while satisfying (3.16b) and (3.16c). In case iii), the optimal solution

satisfies Constraint (3.16c) with equality and P⋆
tx,i(θi) can be found with a bisection search.

The optimal packet length is then given by L⋆
i (θi) = τiW log2(1 + h0,iθi P⋆

tx,i(θi)/N0).
Partial Channel Capacity. If the whole channel capacity cannot be used, then Li(θi) =

E−1
p,i (Ei − βi − (Ptx,i(θi)/ηA,i + εc,i)τi) (see (3.15)), and Problem (3.14) can be expressed

as

argmax
Ptx,i(θi)

E−1
p,i (Ei − βi − (Ptx,i(θi)/ηA,i + εc,i)τi) = argmin

Ptx,i(θi)

Ptx,i(θi), (3.17a)
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subject to:

Pmin,i ≤ Ptx,i(θi) ≤ Pmax,i, (3.17b)

which yields

L⋆
i (θi) = E−1

p,i (Ei − βi − (Pmin,i/ηA,i + εc,i)τi), (3.18)

P⋆
tx,i(θi) = Pmin,i. (3.19)

No Solution. If with the previous two approaches L⋆
i (θi)<Lth,i, the problem is infeasible.

3.5.3 Optimal Transmission Duration

The previous sections explained how to optimally set the transmission parameters for a

given transmission duration; this section discusses how to optimize ø. Consider FOPΓ,

assume that Γ is given; then, the objective is to find τ such that the constraints on the

tolerable distortion, channel capacity, transmission power, frame duration and energy

consumption (i.e., (3.8b)-(3.8f)) hold, together with Constraint (3.10b) on Γ. Since Di

depends on τi, there may be many values of τi that satisfy Di ≤ ΓDth,i (Constraint (3.10b)).

Among all these values, we choose the lowest; by doing so for every i, the constraint on

the frame duration (3.8e) is satisfied whenever possible. Therefore, it is possible to focus

on each device i independently.

Given τi, Di can be evaluated using θtx,i, L⋆
i (θi), and P⋆

tx,i(θi) as described in Secs. 3.5.1

and 3.5.2. Since the optimal packet size increases with the channel gain, Problem (3.14)

is feasible ∀θi ≥ θtx,i if

L⋆
i (θtx,i) ≥ Lth,i. (3.20)

The following important property of the distortion function allows one to determine

the transmission duration τi that satifies this condition.

Lemma 4. For a given θi, the optimal distortion D⋆
i (θi) decreases with τi until a minimum

distortion point at τmin
i (θi), and increases for τi > τmin

i (θi) [61].

If τmin
i (θtx,i) computed at θtx,i does not satisfy (3.20), FOP is infeasible. Otherwise,

there exists an interval [τlow
i , τ

high
i ], with τlow

i ≤ τmin
i (θtx,i) ≤ τ

high
i , for which (3.20) holds.

To solve FOP, consider the smallest value of τi ∈ [τlow
i , τ

high
i ] that satisfies Di ≤ ΓDth,i

in order to make all users fit in the frame duration and satisfy (3.8e). If Di > ΓDth,i,

∀τi ∈ [τlow
i , τ

high
i ], then the constraints of (3.10) cannot be satisfied and FOPΓ is infeasible.

This procedure holds for a fixed Γ; the optimal Γ⋆ is found by iterating over the values

of Γ with a bisection search.
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3.6 Dismission Policy

It may happen that the optimization over all N users fails and FOP turns out to be

infeasible in a specific frame. This happens if at least one constraint of FOP is not

satisfied, i.e., there exists no allocation of τ , L, and P that allows all users to transmit

their packets in the considered frame with the allocated energy. Notice that FOP is

infeasible even if the time, capacity, power, and energy constraints can be met but at least

one user exceeds its threshold distortion, thereby violating the QoS constraint (3.8b).

Since any constraint can be relaxed, the only strategies available when FOP is infeasible

are to allocate a larger amount of energy or to dismiss some users. The former possibility

is discussed here, whereas the energy allocation problem will be analyzed in Sec. 3.7.

Let τi be the minimum transmission time user i needs to transmit its data in the

considered frame. This value is obtained when Ptx,i = Pmax,i and Di = Dth,i, which

means that the size of the packet to send, Li, is the smallest possible. If the inequality

∑N
i=1 τi ≤ T is not verified, it is impossible to allow all users to transmit in the same

frame and satisfy their requirements at the same time, whatever the available energy. In

this case, users are assigned different importance levels to the users so that it is possible

to develop a priority-based dismission policy.When a user with low priority is dismissed,

the condition ∑N
i=1 τi ≤ T is rechecked, and the same dismission procedure is applied, if

necessary. Note that this dismission policy is independent of the energy allocation and is

performed before EAP.

3.7 Energy-Allocation Problem (EAP)

Secs. 3.3–3.6 discussed how to maximize the quality of the transmitted information

assuming that a known amount of energy is assigned to each user. To solve Problem (3.6),

it is necessary to distribute over time the total energy available to each user, B(0). In

general, there is a balance between lifetime and distortion that depends on the value of

n. This section describes how to solve the Energy-Allocation Problem (3.9), where f (k)FOP

is derived as described in the previous sections.

EAP is defined in (3.9) as the problem of optimally allocating energy to each frame,

given the lifetime n. The objective function (3.9a) represents the average over the lifetime

of the distortion metric f (k)FOP(·) in every frame. Therefore FOP needs to be feasible

for all frames, as required by (3.9c), otherwise EAP would be infeasible (see Sec. 3.6).

Unfortunately, the solution of FOP cannot be expressed in closed form, making it very

challenging to directly relate FOP and the energy allocation. In the following, f (k)FOP(E
(k))
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is assumed to be convex.2 Then, note that the constraints induce a convex feasibility set

and thus EAP becomes a convex optimization problem.

3.7.1 Solution of EAP

Let EAPℓ be a “reduced” version of EAP, where the optimization is done only over

the energy vector Eℓ = [E(1)
ℓ , . . . , E(n)

ℓ ], ℓ ∈ N , and all the other variables in E are kept

fixed:

EAPℓ: min
Eℓ

∑n
k=1 f (k)FOP(E

(k)), (3.21a)

subject to:

∑n
k=1 E(k)

ℓ ≤ B(0)
ℓ , (3.21b)

E(k)
ℓ ≤ E(k)

ℓ ≤ E(k)
ℓ , ∀k. (3.21c)

The objective (3.21a) and the energy constraint (3.21b) are derived straightforwardly

from (3.9a) and (3.9b), respectively. Constraint (3.21c) ensures that the solution is feasible

and that (3.9c) in the original formulation is satisfied. The lower bound E(k)
ℓ represents

the minimum amount of energy that node ℓ needs to make FOP feasible in frame k,

when the energy allocated to the other devices is E(k)
i , i ∈ N \ {ℓ} [61]. Similarly, E(k)

ℓ

is the energy threshold such that any E(k)
ℓ ≥ E(k)

ℓ does not make the objective function

decrease further (even if more energy were allocated, FOP would yield the same solution

because of, e.g., the constraint on the maximum transmission power or on the frame

duration). Clearly, both E(k)
ℓ and E(k)

ℓ depend on the energy levels of the other nodes,

{E(k)
1 , . . . , E(k)

ℓ−1, E(k)
ℓ+1, . . . , E(k)

N }. The solution of FOP for frame k is decreasing in E(k)
ℓ

and, in particular, it turns out to be strictly decreasing in (E(k)
ℓ , E(k)

ℓ ). Consequently,

EAPℓ can be solved using the Lagrangian dual problem, where the objective becomes

L(λ, Eℓ) ≜ maxλ, Eℓ
∑n

k=1 f (k)FOP(E
(k))− λ

(
∑n

k=1 E(k)
ℓ −B(0)

ℓ

)
. All solutions must satisfy the

Karush-Kuhn-Tucker conditions

E(k)
ℓ = max{E(k)

ℓ , min{E(k)
ℓ , ψ−1(λ)}}, (3.22)

ψ(E(k)
ℓ ) ≜

∂ f (k)FOP(E
(k))

∂E(k)
ℓ

, (3.23)

2 Here we assume that the solution of FOP is either convex, or approximated as such. The solution of EAP
is optimal under such assumption, whereas it is to be considered a heuristic approximation otherwise.
See [60] and [61] for a deeper discussion on such approximation.
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3.7 energy-allocation problem (eap)

Algorithm 2 Random Alternate Convergence Algorithm

1: Initialize a feasible E
2: Dmean ← ∞
3: while D(k)

i , ∀i, ∀k have not converged do
4: for ℓ = 1, . . . , N do
5: Eℓ ← solve EAPℓ(E)

6: v← prob. vector of size ∑k χ{E(k)
ℓ = E(k)

ℓ }
7: S← ∑n

k=1 E(k)
ℓ ▷ consumed energy

8: vind ← 1 ▷ index of frames with E(k)
ℓ = E(k)

ℓ
9: for k = 1, . . . , n do

10: if E(k)
ℓ = E(k)

ℓ then

11: E(k)
ℓ ← E(k)

ℓ + v(vind) · (B(0)
ℓ − S)

12: vind ← vind + 1
13: Dmean ← 1/n ∑n

k=1 f (k)FOP(E
(k))

14: D⋆
mean ← Dmean

where the weight λ is such that ∑n
k=1 E(k)

ℓ = B(0)
ℓ , which is obtained by imposing

∂L(λ, Eℓ)/∂λ = 0. Eq. (3.22) can be interpreted as a water-filling solution with minimum

and maximum levels and in which the water level (i.e., the allocated energy) ψ−1(λ) is

put in every frame k, if possible.

Random Alternate Convergence Algorithm. EAP can be solved by using an alternate

approach based on EAPℓ, that focuses on one user at a time. The procedure is described in

Algorithm 2. The key idea is to perform the optimization of a single user at every iteration,

until the distortion for every user in every frame, i.e., D(k)
i (or D(k)

i with imperfect CSI),

does not change further (convergence condition). The alternate optimization is done

in Lines 4-12: matrix E is used in Line 5 to solve EAPℓ (that, under the considered

assumptions, is a convex optimization problem) for a specific user ℓ and to update the

ℓ-th row of the energy matrix. It may happen that part of the initial energy is not used,

i.e., ∑n
k=1 E(k)

ℓ < B(0)
ℓ . Accordingly, Lines 6-12 randomly distribute the residual energy

B(0)
ℓ −∑n

k=1 E(k)
ℓ among all the frames for which E(k)

ℓ is equal to E(k)
ℓ (χ{·} is the indicator

function). Note that, because of how E(k)
ℓ is defined, this operation does not change the

distortion level obtained by solving EAPℓ, but simply provides a new Eℓ that allows

the alternate optimization to converge. In particular, the probability vector v (Line 6)

assigns a random positive weight to all of these elements, which are then normalized

such that ∑vind
v(vind) = 1. The residual energy is then distributed according to such

weights (Line 11).

Note that, if f (k)FOP(E
(k)) is convex, the alternate approach of Algorithm 2, in which

all users are sequentially considered and optimized one by one, leads to the optimal

solution. See [61].

33



adaptive tdma for iot sensor networks

Summary. Since Algorithm 2 solves EAP, it also solves the original problem (3.6). In

particular, EAP allocates energy over time using an alternate procedure: at every iteration

of Algorithm 2, EAPℓ is solved for the current node ℓ, and FOP is invoked multiple

times to evaluate the derivative in (3.23), which relates the allocated energy to the

corresponding distortion. Such distortion is used by EAP to evaluate Eq. (3.6a)≡(3.9a)

and decide how to update the energy allocation matrix, till convergence. Every time

that FOP is invoked, the optimization procedures of Secs. 3.4 or 3.5 are used. By solving

Problem (3.6) as n varies, we can find the optimal distortion as a function of the lifetime,

thereby characterizing the energy/distortion tradeoff for our system.

3.8 Numerical Evaluation

Problem (3.6) was solved using the decomposition in EAP and FOP and Algorithm 2

as described in the previous sections for different scenarios to numerically assess the

influence of the system parameters on the distortion and lifetime of the network. All cases

envisage three groups of nodes placed at different locations. The two policies (FOP with

full CSI and statistical CSI) have been compared in a realistic setting, where the channel

evolution is not known in advance. A possible way to use the full-CSI policy in this

context is to impose θi = θtx,i and derive the policy accordingly. Indeed, if the solution is

feasible at θtx,i, it is guaranteed to be feasible even for better channel conditions, but it is

expected to provide worse performance than the optimal statistical-CSI policy.

The transmission parameters are taken from the datasheets of two real devices, namely

the RN-131C 802.11 b/g Wireless LAN Module (a module with extremely low power

consumption for Wi-Fi connections) and the RC2400HP RF Transceiver Module (an RF

module based on ZigBee and IEEE 802.15.4). The former uses a central transmission

frequency and bandwidth of 2.441 GHz and W = 5 MHz, respectively. The maximum

power used for transmission is 237.7 mW, and, when a transmission is performed, the

minimum and maximum consumed powers are 462 mW and 699.6 mW, respectively.

When only the RF chain is considered, assuming a minimum transmission power

Pmin,i = 100 mW and according to Sec. 3.1.3, it is ηA,i = 0.58 and εc,i = 167.75 mW (note

that this is an approximation, and the values may slightly change depending on Pmin,i).

The RC2400HP module uses the same central frequency and bandwidth of the other

module, but has different energy related parameters; in particular, Pmin,i = 11.22 mW,

Pmax,i = 107.15 mW, εc,i = 60.15 mW and ηA,i = 0.23.

If not otherwise stated, the other parameters are common to all devices, and in

particular: the constant energy term βi (see (3.5)) is equal to 1 mJ in every frame; the

energy consumption function due to the processing evolves linearly with L(k)
i as in

Eq. (3.3), with a slope of E0,i αp,i = 50 nJ/bit and a coefficient βp,i = 0 bit−1; the channel
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Figure 3.3: Average normalized distortion as a function of the lifetime n with fading. We do not explicitly
represent the scenario N = 15 and Prtx = 0.2 because it is analogous to the case N = 3 and
Prtx = 0.2. Moreover, the case N = 30 and Prtx = 0.6 has no solutions since too many users are
considered and Prtx is too high. The “Fixed-TDMA” policy coincides with the optimal one when
N = 3 and cannot be derived when N = 15 and Prtx = 0.6.

gains are computed using the standard path loss model with a path-loss exponent

equal to 3.5 (e.g., as in an urban scenario) and are affected by Rayleigh fading; the

overall noise power spectral density is −167 dBm/Hz; the frame duration T is 1 s. The

parameters of the distortion model (3.1) are ai = 0.35 and bi = 19.9, which have been

derived empirically fitting the realistic rate-distortion curves of [43]. Moreover, nodes

are divided in three groups, G1, G2 and G3. Nodes in G1 and G2 use the parameters of

the RN-131C module, whereas devices in G3 use the RC2400HP module. The groups

are heterogeneous in terms of distance from the base station, amount of data to send,

and QoS requirements. These parameters are constant during the whole lifetime. The

first group includes nodes that are located at a distance dG1 = 4 m from the BS (very

close to the base station), transmit packets with L(k)
0,i = 2 Mbit and demand a distortion

below D(k)
th,i = 8%. Nodes in G2 have dG2 = 20 m, L(k)

0,i = 1 Mbit and looser distortion

requirements D(k)
th,i = 15%. Finally, the third group consists of nodes far away from the

BS (dG3 = 100 m), which transmit fewer bits (L(k)
0,i = 10 kbit), but require better QoS

(D(k)
th,i = 4%). Although for simplicity the numerical evaluation only considers two cases

of distortion thresholds, in a real scenario these values may be different at every node

according to the network condition and to the application requirements. Note however

that our model is able to handle the heterogeneity of the analysed scenario, which is a

key feature for the IoT.

Distortion vs. lifetime. Fig. 3.3 shows the distortion vs. the lifetime obtained by solving

the optimization problem (3.6a) for different values of n. We considered different values

of the number of nodes (N ∈ {3, 15, 30}), uniformly distributed among the three groups,

and a transmission probability Prtx ∈ {0.2, 0.6}. The continuous lines represent the
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optimal solution described in Sec. 3.5, which explicitly accounts for the fading effects.

The dashed lines are obtained using the full-CSI policy of Sec. 3.4 with θi = θtx,i; since

it assumes the channel gains to be constant during the whole frame, this policy is

suboptimal when the channels are actually affected by fading. Finally, the dash-dot

lines represent a fixed-TDMA policy in which the time available to every user is at

most T(k)/N; this approach is suboptimal because it does not consider the network

heterogeneity and gives the same amount of resources to every node.

The curves have been obtained by changing the value of the lifetime n, and the

dismission procedure of Sec. 3.6 is not performed here. The lifetime is very short because

very high traffic conditions were considered, with each node having data to transmit in

every time frame. Although this scenario mat not always be realistic, it is significant for

two reasons: 1) it gives information about the maximum performance achievable by the

network, since with lower traffic the distortion cannot get worse, and 2) it can be easily

remapped to a more general model with many more nodes and lower traffic patterns.

The distortion tends to increase with the lifetime, as expected, since smaller amounts

of energy can be allocated in each frame and thus nodes must compress more to transmit

their data. For small values of n, the curves are constant because the target lifetime

objective is reached even without depleting the batteries. Clearly, in this case it is possible

to set the working point to the right extreme of the constant regions, as it yields the

same QoS with longer lifetime. Also, it can be noticed that the higher Prtx, the higher

the distortion (i.e., the worse the performance); this happens because larger transmission

probabilities impose to transmit more often even when the channel is in bad conditions

(which, in turn, does not allow the transmission of many bits).

As shown in Fig. 3.4, when Prtx is low and N is small, the optimal and suboptimal

approaches almost coincide, since a transmission is performed only when the channel

gain is very high. In this case, ∑i τ
(k)
i ≪ T(k) and it is possible to serve all users even with

a suboptimal approach. However, when Prtx increases, transmissions are more frequent,

whereas when N is larger the sum ∑i τ
(k)
i may saturate to T(k). In these cases the benefits

of adopting the optimal scheme rather than the suboptimal policies are significant. The

fixed-TDMA scheme may even be infeasible (e.g., when N = 15 and Prtx = 0.6) because,

by maintaining the slots fixed, some users may not be able to transmit in any frame as

they would need more time to meet the QoS and power constraints.

The maximum lifetime is reached when the problem is close to becoming infeasible, i.e.,

any further increase of the lifetime would yield a violation of some of the constraints of

FOP, irrespective of the available energy. Even in this limiting conditions, the normalized

distortion does not always reach 1 (i.e., the distortion may be strictly lower than its

maximum acceptable threshold). This happens because, when solving the optimization
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Figure 3.4: Transmission durations vs. lifetime n
with fading when B0,i = 240 J.

Figure 3.5: Optimal distortion functions δi(·) vs. θi for
i = 1, 2, 3 in a single frame (Prtx,i = 0.6).

problem, the normalized distortion is required not to exceed 1 even when the channel

conditions are unfavorable (but still acceptable), i.e., when the fading gain θ
(k)
i gets close

to the minimum threshold θ
(k)
tx,i. Since with better channel conditions the distortion is

lower, on average we get D(k)
i < 1.

Transmission duration. The overall transmission durations are represented in Fig. 3.4.

As previously explained, when N is large (e.g., when N = 30 and Prtx = 0.2), or if larger

transmission probabilities are required (e.g., when N = 15 and Prtx = 0.6), then ∑i τ
(k)
i

reaches T(k) = 1 s. In all the other cases, every node can be considered independently of

the others, since they always satisfy the time constraint. Note that ∑i τ
(k)
i decreases with

the lifetime, since less energy is available for transmission in every frame.

Distortion function. For every channel realization, D(θi) is evaluated using the packet

length and the transmission power computed as described in Sec. 3.5.2. Its trend can be

seen in Fig. 3.5 for the case N = 3. As expected, the distortion decreases as θi increases,

since this corresponds to better channel conditions. However, the distortion does not

reach 0 in all cases, and may instead saturate to a constant value. This happens because

the energy constraints (given by the initial battery levels) are tight and packets need to be

heavily compress to save energy. In this case, it is not possible to exploit the full channel

capacity and the amount of data sent in the constant regions is given by Eq. (3.18).

Different packet sizes. In Fig. 3.6, the original packet size L(k)
0,i is modified according to

a fixed pattern. Let L0,Gj be the original packet length previously introduced for group

j = 1, 2, 3. Then, in this example L(k)
0,i = ζ(k)L0,Gj , with i ∈ Gj and a coefficient ζ(k) that

periodically increases and then decreases with k; in particular, ζ(k) evolves as 1
2 , 1, 2, 1, 1

2 ,

1, 2, etc. (e.g., this models sensors that track a periodic phenomenon).

In Fig. 3.6a, the initial energy levels of all nodes in G2 and G3 are infinite are assumed

to be infinite, whereas the nodes in G1 have a limited reserve of energy (similarly, in Fig.

s 3.6b and 3.6c, group G2 or G3 is energy constrained, respectively). It is interesting to

37



adaptive tdma for iot sensor networks

0

0.2

0.4

0.6

0.8

1

A
v
g
.
n
o
rm

.
d
is
t.

B0,i = 30.0 J, i ∈ G1

B0,i = 240.0 J, i ∈ G1

Initial energy level:

B0,i = ∞ for G2 and G3

0

0.2

0.4

0.6

0.8

1

A
v
g
.
n
o
rm

.
d
is
t.

B0,i = 30.0 J, i ∈ G2

B0,i = 240.0 J, i ∈ G2

Initial energy level:
B0,i = ∞ for G1 and G3

0 50 100 150 200 250

Network lifetime [min]

0

0.2

0.4

0.6

0.8

1

A
v
g
.
n
o
rm

.
d
is
t.

B0,i = 30.0 J, i ∈ G3

B0,i = 240.0 J, i ∈ G3

Initial energy level:
B0,i = ∞ for G1 and G2

0

3

6

9

12

15

D
is
c
a
r
d
e
d
u
s
e
r
s

Discarded in G1

Discarded in G2

Discarded in G3

N = 15

Prtx,i = 0.2

0

3

6

9

12

15

D
is
c
a
r
d
e
d
u
s
e
r
s

N = 15

Prtx,i = 0.6

0 0.2 0.4 0.6 0.8 1

Frame length T (k) [s]

0

6

12

18

24

30

D
is
ca
rd
ed

u
se
rs

N = 30
Prtx,i = 0.2

0 0.2 0.4 0.6 0.8 1

Frame length T (k) [s]

0

6

12

18

24

30

D
is
ca
rd
ed

u
se
rs

N = 30
Prtx,i = 0.6

Figure 3.6: Average normalized distortion vs. life-

time with fading for N = 3 when L(k)
0,i

evolves over time.

Figure 3.7: Number of discarded users as a func-
tion of the frame length.

note that, in order to guarantee fairness, even if most of the nodes have infinite resources,

the network distortion may be greater than zero. Also, the lifetime strongly depends on

which group has limited resources: G1 transmits lots of data, hence the system quickly

becomes infeasible when its initial energy level is low; instead, nodes in G3 do not

transmit large packets, and thus they consume less energy over time and the lifetime

is much longer. Note that EAP plays a fundamental role here, since it assigns different

amounts of energy according to the packet lengths L(k)
0,i .

Dismission policy. So far, the dismission policy described in Sec. 3.6 has been ne-

glected. However, when the problem is infeasible, it is possible to discard some users

and allow the others to transmit. In Fig. 3.7, the priority of the users is given by the

group they belong to (G1 ≻ G2 ≻ G3). As can be seen, when T(k) is larger, fewer users

are dismissed, because it is easier to make all users fit the frame duration (see (3.8e)).

Note that in the case N = 30 and Prtx = 0.6, discarding some users is necessary even if

T(k) = 1 s. This explains why Fig. 3.3 this setup was not shown, since the dismission

policy was not applied.

3.9 Lesson learned

IoT networks may include devices with different capabilities and requirements. Simple

channel access schemes that do not take heterogeneity into account may lead to significant

inefficiencies: the standard TDMA approach, e.g, can be impractical in some cases. The

policies proposed in this study, instead, allocate channel resources differently to the

various devices and perform power control. The thorough numerical evaluation based on

the characteristics of realistic devices validates the analytical results and shows that the
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3.9 lesson learned

proposed policies outperform simpler schemes. This study also shows the improvements

that can be obtained when data compression is dynamically adapted to the transmission

operations, so as to guarantee the desired level of QoS.

The proposed policies may serve as guidelines to develop and gauge more lightweight

heuristics, which may, e.g., take into account also the latency in the coordination and

control messages with the BS. Moreover, it would be interesting to analyze the effect of

packet losses on the network performance, since they may have a strong impact on both

the energy and the distortion metrics, and likely require a retransmission mechanism.
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4
An energy-aware data processing and
transmission strategy

This study considers a monitoring application where sensors periodically report their

readings to a common receiver in a single-hop access network, similarly to the scenario

of Ch. 3. Given the predictability of the reporting patterns, the devices access the channel

according to a TDMA scheme, which, unlike the scheme of Ch. 3, assigns constant

time resources to the various users. The ultimate goal is to combine an efficient energy

utilization with QoS requirements, in terms of quality of the reported data, which is

impacted by lossy compression and channel impairments.

Sensors are battery-powered and can harvest energy from the environment. To maxi-

mize the quality of the reported data, the packets transmitted contain newly generated

data blocks together with up to r− 1 previously unsuccessfully delivered ones, where

r is a design parameter. These data blocks are compressed, concatenated and encoded

with a channel code. The scheme applies lossy compression, such that the fidelity of

the individual blocks is traded off with the reliability provided by the channel code. In

fact, source compression affects data quality, but on the other hand reduces the volume

of information bits to send over the channel, allowing the use of more redundancy to

combat the channel impairments.

The selection of the optimal operating strategy in terms of the tradeoff between

selection of compression rate and channel coding rate is constrained by the energy

availability and statistics of the EH process, and, at the same time, driven by the target

minimization of the distortion of the reported data.

The problem is formulated by means of an MDP, and the optimal policy is derived

with a variant of the Value Iteration algorithm.

MDPs are often employed to derive energy management policies, as they represent

an appealing solution to optimize some long-term utilities in the presence of stochastic

EH [66]. Investigating the effects of packet losses on data distortion is not a new topic.

However, many works limit their studies to Gaussian data sources or neglect the energy
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limitations, see [67, 68]. A common approach is to use the distortion exponent as the

performance metric [69, 70], but this is meaningful only for the high SNR regime, which

is not the case for IoT networks. Another beaten path is that of layered transmission

schemes, where the source is coded in superimposed layers, like in [71]. Each layer

successively refines the data description and is transmitted with a larger coding rate,

thus the transmission is less robust to failures. This practice is often used in multimedia

applications [72], but is not very meaningful in other contexts.

Several works focus on the minimization of data distortion in the presence of energy

limitations and/or EH, but they often neglect the effect of packet losses [73], or consider

Gaussian and binary sources [74]. Two works that bear similarities with this study

are [57] and [75]. In [57], the goal is to maximize the long-term average quality of the

transmitted packets by adapting the degree of lossy compression and the transmission

power. Power control is used to maintain the packet error probability below a chosen

threshold, depending on the state of the channel. Like in this study, the optimal

transmission strategy is determined through an MDP. In [75], the reconstruction of

time-correlated sources in a point-to-point communication is formulated as a convex

optimization problem and solved with an iterative algorithm. The node has to decide on

the transmission power and rate and is subject to EH constraints.

It is instead difficult to find works that deal with retransmissions in conjunction

with data processing outside of the literature on multimedia networks. Several studies

investigate the performance of cooperative retransmissions, where devices collaborate

with each other [76, 77], but the focus of the study proposed in this thesis is in scenarios

where the devices are unaware of the presence of the others and of the resources they have

available, and communicate solely with the gateway. Retransmissions in IoT constrained

networks are considered, e.g., in [78], which addresses the problem of transmit power

control in the presence of EH when a sensor node makes use of an Automatic Repeat

Request (ARQ) protocol and retransmits the lost packets. Differently from this study, it

is assumed that some CSI is available at the nodes, and no data processing is considered.

In [79], sensor nodes implement an energy-aware hop-by-hop retransmission mechanism

where only packets carrying critical information are ensured to be retransmitted. This

differs from the scheme proposed here, where packets are not differentiated according

to priorities, but can be compressed at the source.

This study has been presented in [80] and [64].

4.1 System model

The scenario considers a single-hop, star topology network, comprising a multitude of

IoT devices that periodically monitor some phenomena of interest and report data to
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Figure 4.1: Block diagram of a device. The blue labels indicate the energy flows, while the orange labels are
related to the data reporting.

a common receiver. This data collector is assumed to be connected to the energy grid,

whereas the sensor nodes are battery-powered, but also endowed with EH capabilities.

The predictability of the traffic pattern makes TDMA a good choice for transmission

scheduling among the devices. Since in this case the devices do not interfere with each

other, it is possible to focus just on a single device, with the aim to find its optimal

transmission strategy. The corresponding model is represented in Fig. 4.1. A device is

endowed with a circuitry to scavenge energy from the environment; this energy is stored

in a buffer of finite size and used by the node to generate, process, and send data to the

common receiver through a Rayleigh-fading channel.

4.1.1 Compression at the source

A device is capable of compressing in a lossy fashion the time series generated through

sensing the environment, as described next. Between two consecutive reporting events, a

sensor node collects a block of readings1, where each block has a constant size of L0 bits

and is independent of the previous ones. The device compresses the generated block

by selecting a compression level k, where k ∈ {0, . . . , m}, and produces a compressed

block of size L bits. When k = 0, the size of the compressed block is L = 0, i.e., no

packet is transmitted, and when k = m, the size of the compressed block is L = L0, i.e.,

no compression takes place. The compression ratio is defined as the ratio between the

size of the compressed block and that of the original one: L/L0 = k/m ∈ [0, 1]. Lossy

compression makes it possible to trade some accuracy in the data representation using a

lower compression ratio for additional error-correction redundancy, and consequently

have an increased robustness to channel impairments, as will be explained in Sec. 4.1.2.

The compression ratio-distortion curve is signal- and algorithm-dependent. The dis-

tortion function used in this study is the same as that of Ch. 3 [10]:

D(k) =

⎧⎪⎨⎪⎩
b
((

k
m

)−a
− 1
)

if k ≥ 1

Dfull if k = 0
(4.1)

1 The blocks of readings will be referred to as data blocks, to distinguish them from the packets sent after
processing.
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where b> 0, 0< a< 1. The choice k = 0 entails that the packet is discarded (e.g., due

to energy restrictions) and the corresponding distortion is equal to the maximum value

Dfull ≜ 1. Eq. (4.1) shows that the distortion is a convex and non-increasing function of

the compression ratio k/m. 2

4.1.2 Data transmission

Each IoT node transmits during its dedicated time slot, whose duration T defines the

maximum number of bits that can be sent S = T/Tb, with Tb being the (fixed) bit

duration. It is reasonable to assume that L0 ≤ S, i.e., a device may avoid compressing

a packet. After compression, there are L ≤ L0 information bits and the corresponding

coding rate is R=L/S. Depending on R and the actual channel conditions, the packet

may not be correctly received with an outage probability Pout(R).

An acknowledgment mechanism ensures that the receiver sends feedback to the

transmitter; however, no channel state estimation is performed, so the transmission

power Ptx is kept constant. The communication channel is affected by block Rayleigh

fading; when the channel is in a deep fade the packet is lost and an outage occurs.

The packets sent by IoT devices are likely to be short, and thus it is necessary to use

the recent results of finite-length information theory that adapt the classical concepts of

channel capacity to the case of short data packets [82]. In particular, the results of [83]

justify the use of the quantity log2(1 + γ) to well approximate the maximum rate even

in the finite-length regime, where γ is the SNR at the receiver, given by:

γ =
|H|2Ptx

N
≜ |H̃|2 γ̄. (4.2)

H is the channel gain coefficient that represents fading (assumed to be constant over

the packet duration in the quasi-static scenario) and path loss, which depends on the

distance d from the receiver, Ptx is the transmission power, and N the noise power. The

SNR can be decomposed into the expected SNR at the receiver γ̄ (which includes the path

loss, the transmission power and the noise power), and the random fading coefficient H̃.

Thus, the outage probability is here modeled as:

Pout(R) = Pr ( log2 (1 + γ) < R) . (4.3)

2 The monotonicity property does not hold in general, because it may be D(1) > D(0). However, by using
the parameters a and b estimated from the results of [81], the function is monotonic even for very fine
granularity (values of m larger than 100); this property is always ensured in the numerical evaluation.
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Since Rayleigh fading is considered, H̃ follows a complex Gaussian distribution with

zero mean and unit variance. In this case, the outage probability becomes:

Pout(R) = 1− e−(2
R−1)/γ̄, (4.4)

which is non-decreasing in R (and thus in k, since L = k/m L0), and initially convex and

then concave. Clearly, the farther the device from the receiver, the larger the outage

probability, since γ̄ decreases with distance. If a packet gets lost, the block of readings

contained in it can be compressed and transmitted again along with the subsequently

generated blocks, as described in Sec. 4.2. After r failed transmission attempts, the block

is considered outdated and discarded.

4.1.3 Energy dynamics

In the considered scenario, the data collector does not have energy constraints, while the

reporting devices are powered by finite batteries and have EH capabilities. The energy

model has been discussed in Ch. 2. The expressions used in this study are reported here

for clarity.

Data processing. The energy consumed by processing algorithms is modeled as in (2.2)

for the case of the LTC algorithm (see (2.3)). The compression ratio ηp is given by k/m.

Thus, the energy consumption can be expressed as

Ep(k) =

⎧⎨⎩E0L0(αp
k
m + βp) if 1 ≤ k ≤ m− 1

0 if k = 0, m .
(4.5)

Notice that, if the packet is not compressed (k = m) or is discarded (k = 0), no energy is

consumed.

The contribution of channel encoding is not considered, because it is typically negligi-

ble [50].

Transmission. As given in (2.4), the energy cost of a wireless transmission with power

Ptx for a period of length T is modeled:

Etx =
T Ptx

ηA
, (4.6)

with ηA ∈ (0, 1] representing the efficiency of the antenna’s power amplifier.

Sensing and circuitry. The energy consumption due to sensing operations and circuitry

is modeled as:

Ec(k) = βs + βc + Ec T · χ{k>0}, (4.7)
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Figure 4.2: The retransmission mechanism: encoding procedure.

where χ{k>0} is the indicator function equal to 1 if k> 0 and to zero otherwise (recall

that the packet is dropped if k = 0). βs is the energy drained by sensing in the window

between two transmission slots (see (2.1), here the number of sensing operations is

constant), while βc includes the energy required for switching between idle and active

mode and maintaining synchronization with the receiver.

Energy harvesting and battery dynamics. The sensor nodes are not connected to the

energy grid, but are provided with a battery and some energy-scavenging circuitry

and can collect energy from the environment. The energy supply is supposed to be

time-correlated (e.g., solar power). In this case, as discussed in Ch. 2, the dynamics

of the energy source can be tracked through an X-state MC [52, 51]: the source is in

state x ∈ X = {0, . . . , X − 1} and scavenges e ∈ {0, . . . , E} quanta of energy from the

environment, according to some p.m.f..

Let B be the finite size of a node’s battery, and u the energy used in the current slot,

which depends on processing, transmission and circuitry, as given in Eqs. (4.5), (4.6) and

(4.7). If b and b′ respectively represent the current and next battery level, the temporal

evolution of the battery can be modeled as:

b′ = min {b + e− u, B} ≜ (b + e− u)† , (4.8)

with u ≤ b, as imposed by the energy causality principle. Notice that this model assumes

a harvest-store-use protocol, according to which the energy e scavenged in slot n is not

immediately available, but can only be used from slot n + 1 onwards. Since we consider

a finite size battery, an overly aggressive or conservative energy management could

either deplete the battery (b = 0) or fail to use the excess energy and waste it (b = B).

These situations need to be prevented by designing a scheme that dynamically adapts

to the randomness of the energy inflow, so as to ensure acceptable performance on a

long-term horizon.

4.2 Energy-aware (re)transmission scheme

Here, the joint source-channel coding scheme described in Sec. 4.1 is extended to account

for packet retransmissions.
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4.2 energy-aware (re)transmission scheme

The acknowledgment feedback allows the transmitter (i.e., the reporting device) to

know whether or not a packet has been correctly received at its intended destination.

When an outage occurs, the packet is lost and needs to be retransmitted. However,

if a simple ARQ protocol is employed, the delay for sending newly generated data

blocks will increase, depending on the number of the devices participating in the TDMA

scheduling as well as on the number of allowed retransmissions, and can potentially

become unbounded. Consequently, it may happen that the newly generated data blocks

will become outdated, without having a chance to be transmitted. To prevent this, nodes

employ a retransmission scheme in which they send their new data blocks together with

the previously lost data blocks (if any) in the same time slot, as explained further.

Suppose that the transmission of a data block fails; in the next time slot, the device

will try to send the new block together with the previously lost one. Thus, the device

has to compress and transmit two blocks of original size L0 each within the S channel

uses available. If this transmission also fails, in the next slot the sensor node will process

and transmit the new block and the two that were previously lost. In general, if the last

q transmissions failed, the sensor node has to process q + 1 blocks of L0 bits each and

send them together. A maximum number r of transmission attempts can be made for

each piece of data, where the value of r is dictated by the application, e.g., because of

latency or QoS considerations.

If multiple data blocks are sent in the same time slot, the information they contain

is not fused or processed jointly, but the compression is done separately for each of

them3. For the sake of fairness, all data blocks are treated in the same way, i.e., the

same compression ratios are applied. This yields q compressed blocks of size L, where

q = r + 1, which are then joined in a single block of size q L, which is then encoded,

producing a packet of size S, and transmitted. Thus, the same distortion is introduced at

the source for all data blocks placed in the same packet, but then they are treated as a

single entity which is sent over the channel and subject to a certain outage probability

that depends on the coding rate R = qL/S. Fig. 4.2 shows the encoding mechanism

when a single block (left) or two blocks (right) are transmitted in the same slot.

Fig. 4.3 shows the evolution of the data queue, which behaves like a success-runs MC.

If the data queue in a certain slot has size q and the transmitted packet is lost, the queue

state becomes q′ = min{q + 1, r}, otherwise the new queue state is q′=1. We denote as

∆q(k) the distortion at the receiver when the queue state is q and the chosen compression

ratio is k. Such distortion depends on the reception outcome: in case of failure (NACK),

3 Even in the case of statistically independent data assumed in this paper, the longer the compressed block, the
better the compression ratio for the same average data fidelity. Thus, the separate compression approach is
possibly suboptimal. However, processing the data blocks together requires to build an aggregate distortion
function, which is beyond the scope of this work.
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Figure 4.3: Structure of the MC that models the dynamics of the backlog state q for r = 3.

the distortion at the receiver is set to ∆q(k) = Dfull , even though the data blocks could

be retransmitted; instead in case of successful transmission (ACK), it is necessary to sum

all the distortions of the q blocks that have been compressed with the same ratio k/m,

but also to subtract all the penalties that were obtained for the previous packet losses

that were accounted for, since the blocks were eventually successful. Thus, in this latter

case, it is ∆q(k) = Dack(q, k) with:

Dack(q, k) = q D(k)− (q− 1)Dfull . (4.9)

Let k⋆q be the optimal value of k (i.e., the one that determines the optimal source-channel

coding scheme to use) when q packets share the same time slot; Sec. 4.4.1 explains how

to determine it. smit all q data blocks. However, the energy required by transmission

and circuitry does not depend on q, because the duration of the transmission is always

T, i.e., S bits, see Eqs. (4.6) and (4.7). Hence, the energy consumed by the node when

there are q data blocks in the queue and it uses a compression ratio equal to k/m is:

q Ep(k) + Etx · χ{k>0} + Ec(k). (4.10)

The optimization described in Sec. 4.4.1 determines the optimal source coding scheme,

i.e., the value k⋆q , and the corresponding energy consumption is obtained by substituting

k = k⋆q in Eq. (4.10).

4.3 Problem formulation

This sections mathematically defines the objective of the optimization problem and

describes the structure of the MDP, while the solution technique is explained in Sec. 4.4.

4.3.1 The optimization objective

The objective of this study is to maintain for each node an energy-neutral operation

mode while minimizing the long-term average distortion at the receiver, which depends

on the outcomes of the transmissions, as explained in the previous section. Considering
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4.3 problem formulation

q data blocks of size L0 that are compressed with the same compression ratio k/m and

encoded jointly at rate R = qL(k)/S, the expected distortion at the receiver is:

E[∆q(k)] = qD(k)
(

1− Pout

(
q

L(k)
S

))
+ qDfull Pout

(
q

L(k)
S

)
, (4.11)

where Pout(·) is the outage probability as given in Eq. (4.3), and qD(k) and qDfull are the

distortions obtained when the packet is acknowledged or lost, respectively.

In other words, if the packet is successfully received, its distortion corresponds to

that introduced at the source for all initial q blocks of measurements, otherwise the

maximum distortion level is considered for all packets, as if they had not even been sent.

We are interested in the expected distortion at the receiver, thus the two cases need to be

weighed with their probabilities. Notice that the distortion at the source D(k) decreases

as k increases, whereas the outage probability decreases for smaller coding ratios, i.e.,

as k decreases. This implies a tradeoff between the distortion introduced by the lossy

compression and the probability that the transmitted packet will be successfully received,

through the choice of the value of k.

To minimize E[∆q(k)] and guarantee self-sufficiency of the network, it is necessary

to (i) decide on k, and (ii) in each slot, allocate the energy consumption based on the

current battery level, the dynamics of the energy source, and the energy consumption

profile, in such a way to prevent energy outages (that disrupt the communication) and

battery overflows (that waste energy). The problem can be formulated by means of an

MDP, where the actions correspond to the energy to use, while the costs are represented

by the expected distortion at the receiver. By doing so, the energy self-sufficiency of the

node is ensured and the QoS is optimized.

4.3.2 The Markov Decision Process

The MDP is defined by the tuple
(
S , U , P, c(·)

)
, where S denotes the system state space,

U is the action set space, P is the set of transition probabilities of the system state space,

and c(·) is the associated cost function for taking an action.

System state space S ≜ X × B × Q, where X = {0, 1} represents the set of energy

source states, B = {0, . . . , B} the set of energy buffer states, and Q = {1, . . . , r} the set

of backlog states, i.e., the number of waiting packets. Notice that it is necessary to keep

track of the data queue size.

Action set space U ≜ {0, . . . , B}. In each slot, the device observes the current system

state s ∈ S and decides how much energy u ∈ Us ⊆ U to use to process and transmit the

data it collected. In accordance with the energy causality principle, this quantity cannot

exceed the battery level, i.e., Us = {0, . . . , b}.
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Transition probabilities P govern the system dynamics. The probability of going from

state s = (x, b, q) to state s′ = (x′, b′, q′) with action u is:

Pr(s′|s, u) = px(x′|x) · pe(e|x) · pq(q′|q, u · δ
(

b′ − (b + e− u)†
)

(4.12)

where px(x′|x) is obtained from the transition probability matrix of the MC that models

the source state, pe(e|x) is the mass distribution function of the energy inflow in state x

(see Sec. 4.1.3), and pq(q′|q, u) represents the probability that the backlog size goes from

q to q′ when action u is taken. The last term δ(·) is equal to 1 if its argument is zero, and

zero otherwise, and ensures that the transitions between states are consistent with the

dynamics of the battery level, see Eq. (4.8).

Cost function c(·). When the sensor node is in state s = (x, b, q) and selects action u, it

implicitly decides upon the source-channel coding scheme that minimizes E[∆q(k)], i.e.,

it decides the optimal number k⋆q of information bits to send over the channel per data

block, given the available energy u. The transition from state s to state s′ when action u

is taken entails a cost:

c(s, u, s′) =

⎧⎨⎩Dack(q, k⋆q) if q′ = 1

Dfull otherwise
(4.13)

and therefore the cost of choosing action u in state s is:

c̃(s, u) = ∑
s′∈S

Pr(s′|s, u) c(s, u, s′). (4.14)

Notice that the cost only depends on the data queue component q of the state, while the

battery level b affects the set of admissible actions.

When retransmissions are not allowed (r = 1), the backlog state is always q= q′=1,

whatever the outcome of the transmission. In this case, the MC of Fig. 4.3 reduces

to a single state, and Eq. (4.13) is no longer meaningful, thus when r = 1 we set

c(s, u, s′) ≡ c̃(s, u) ≡ E[∆1(k⋆1)].

4.4 Optimal policy

The optimal policy is the one that, based on the statistics of the EH process and the

current battery level, decides how much energy to use in order to guarantee the lowest

average distortion at the receiver. This section first discusses how to determine the

optimal source-channel coding scheme, hence k⋆q for each possible backlog state q ≤ r,

and then describes how to solve the MDP optimally.
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Figure 4.4: Example of location of k⋆R, which is the point of minimum of Eq. (4.11), for q = 1.

4.4.1 Rate-distortion tradeoff

For the case q = 1, the expected distortion at the receiver given in Eq. (4.11) exhibits a

unique point of minimum k⋆1,R when D(k) and Pout(k) are characterized as in Eqs. (4.1)

and (4.4), respectively (see [80] for the proof). An example of this is shown in Fig. 4.4.

This is still valid when retransmissions are introduced, as can be inferred by looking

at Eq. (4.11). The q packets are compressed separately but with the same compression

ratio, which cannot exceed m/q, hence D(k) is truncated for q > 1. Instead, the outage

probability maintains the same shape since the packets are encoded together. Hence,

there exists an optimal point k⋆q,R, whose value depends on the number of packets q

that are sent in the same time slot and that minimizes the expected distortion at the

receiver. If the device uses k < k⋆q,R, the packet will go through the channel with a higher

probability but its distortion will be larger; on the other hand, if k > k⋆q,R, the distortion

will be smaller, but it is more likely that the packet will be lost.

If the amount of energy allocated u allows it, the device will choose the optimal

coding scheme corresponding to k⋆q,R, otherwise it simply selects the maximum possible

k dictated by the energy constraint, because E[∆q(k)] is decreasing if k ≤ k⋆q,R, which is

due to how k⋆q,R is defined. The energy consumption (see Eq. (4.10)) is non-increasing in

k. Let k⋆q,E(u) be the largest value of k that solves q Ep(k) + Etx · χ{k>0} + Ec(k) ≤ u for

a given q; then, when the backlog state is q, the device will choose the source-channel

coding scheme corresponding to:

k⋆q = min{k⋆q,R, k⋆q,E(u)}. (4.15)

Such value clearly depends on the energy u that the node decides to employ, but this is

omitted in favor of a lighter notation. As proved in [64], the expected distortion at the

receiver is convex for k ≤ k⋆q,R and, thus, is a convex non-increasing function of u.
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The choice of how much energy to use when in state s = (x, b, q) uniquely determines

the joint source-channel coding scheme (i.e., the number of transmitted information bits

per data block) that leads to the smallest expected distortion at the receiver [64].

4.4.2 Solving the MDP

When the sensor device is in a certain state, it selects the action to take according to a

policy π : S → U . The corresponding long-term average cost is:

Jπ(s) = lim
M→+∞

1
M

Es

[
M−1

∑
m=0

c̃(sm, um)

⏐⏐⏐⏐⏐s0 = s

]
, (4.16)

where the initial state s0 is given. Notice that each decision affects all subsequent

decisions.

The goal is determining the optimal policy π⋆, i.e., the set of rules that map each

system state into the optimal action with respect to the average cost criterion. The MDP

defined in Sec. 4.3.2 has unichain structure and bounded costs, implying that Eq. (4.16)

does not depend on the initial state:

Jπ(s) ≡ Jπ, ∀s ∈ S . (4.17)

Hence, the search can be restricted to Markov policies only [84].

π⋆ can be determined using the Relative Value Iteration Algorithm (RVIA), which is

a variant of the well-known Value Iteration algorithm for average long-term problems

and provably converges [85]. To understand why it works, we first define the n-step

value-function by induction as:

vn(s) = min
u∈Us

{
c̃(s, u) + ∑

s′∈S
Pr(s′|s, u)vn−1(s′)

}
, (4.18)

where v0(s) is arbitrarily defined, e.g., v0(·) = 0. Function vn(s) represents the minimum

expected n-step cost that can be achieved from an initial state s, because it sums the

immediate cost c̃(s, u) obtained in the initial state with the expected optimal cost obtained

in the n− 1 subsequent slots (through vn−1(·) and then recursively). Based on this, the

optimal policy π⋆ is such that Jπ⋆
(s) = limn→∞ vn(s)/n, and as n grows the dependence

on s fades (Jπ⋆
(s) ≡ Jπ⋆

).
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RVIA leverages on this and defines two functions J and Q that are alternatively

updated starting from an initial estimate J0(·) until convergence:

Qj(s, u) = c̃(s, u) + ∑
s′∈S

Pr(s′|s, u) Jj−1(s′) (4.19)

Jj(s) = min
u∈Us

Qj(s, u), (4.20)

with j being the iteration index. The convergence criterion is chosen as the span seminorm

operator sp(w) ≜ max(w)−min(w), because it guarantees that (4.20) is a contraction

mapping [85]. RVIA is stopped at iteration l, when sp(Jl+1(s)− Jl(s)) ≤ t for a chosen

threshold t. The optimal policy dictates the action u⋆(s) to take in each state s:

u⋆(s) = argmin
u∈Us

Ql(s, u), (4.21)

and entails the following average long-term cost:

C⋆ = ∑
s∈S

ρs c̃(s, u⋆(s)) (4.22)

where ρs is the steady state probability of state s induced by the optimal policy (the MDP

reduces to a MC when the actions to take in each state are deterministic).

4.5 The effects of retransmissions

This section investigates the benefits of introducing retransmissions in the communication

framework and how they are related to the value of r. We first analyze the behavior of

the retransmission scheme when the energy constraints are neglected, then discuss what

happens when these constraints are introduced, and, finally, explain how to choose r.

4.5.1 Benefits of retransmissions (without energy constraints)

When a transmission slot is used for multiple packets combined together, these packets

will be more compressed and have a larger distortion than when a slot is reserved to a

single packet. However, the convexity of D(·) suggests that combining packets improves

the average long-term distortion. This is formalized in the following result, whose proof

is reported in [64].

Theorem 1. For any value r of the maximum number of transmission attempts that can be

dedicated to a packet such that k⋆r,R >0, when the energy constraints are neglected, i.e., k⋆r = k⋆r,R

and k⋆1 = k⋆1,R, the retransmission mechanism described in Sec. 4.2 achieves an average long-term

distortion that is no higher than that of the base case where packets can be sent only once.
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Figure 4.5: Determination of kV , see Eq. (4.25). The red part of the curve represents distortion levels that are
larger than DB, whereas the orange part is related to distortion levels that are smaller. If k⋆r falls
to the left of kV , then choosing r− 1 instead of r improves the performance.

Notice that, if k⋆r = 0, there would clearly be no gain in using the retransmission

scheme, as packets are simply discarded; this is unlikely to happen, especially if r < m.

The enhancements that can be obtained with the retransmission scheme are not

proportional to the value of r, but depend on the particular shapes of the distortion

and outage probability functions, and on how large r is. It is very hard to quantify

and compare the performance corresponding to different values of r, because there is

no closed-form expression for k⋆r,R. Nevertheless, some insights can be given. Assume

r > 2 and compare the performance obtained by the retransmission schemes with r

(case A) and with r− 1 (case B) transmissions allowed when k⋆r = k⋆r,R and k⋆r−1 = k⋆r−1,R.

Considering r consecutive transmissions, the only difference between the two cases is

obtained when a successful transmission follows r− 1 failed attempts. The corresponding

distortions normalized to r are, respectively:

DA = D(k⋆r ) (4.23)

DB =
r− 1

r
D(k⋆r−1) +

1
r

Dfull . (4.24)

Assuming k⋆r > 0 and considering that k⋆r ≤ k⋆r−1, there are two possible cases to

analyze. If k⋆r = k⋆r−1, then DA < DB, and choosing r instead of r− 1 leads to improved

performance. This is more likely to happen when r gets closer to m, which represents the

maximum value that k can take. If r > m, it surely is k⋆q = k⋆q−1 for some q ≤ r. The other

case to consider is k⋆r < k⋆r−1. Let kV be the point such that D(kV) = DB, as represented

in Fig. 4.5. By applying the definition of distortion given in Eq. (4.1), it is:

kV =

(
φ(k⋆r−1)

−a + (1− φ)
b + Dfull

b ma

)−1/a

, (4.25)
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where φ ≜ (r− 1)/r. The distortion is a decreasing function, hence D(k) > D(kV) = DB

for all k < kV . This implies that DA > DB if k⋆r < kV , DA = DB if k⋆r = kV , and DA < DB

if k⋆r > kV . Basically, if k⋆r < kV , it is better to choose r − 1 rather than r. However,

determining when this happens is challenging and hampered by the fact that there is

no closed-form expression for the relationship between r and k⋆r (see Sec. 4.4.1 and [64]).

Surely, as r increases, there is a higher probability that DA is larger than DB. In particular,

let K−≜{k∈N : 0< k< kV} and K≜{k∈N : 0< k< k⋆r−1}. As r increases, φ→1, and

kV gets closer to k⋆r−1 (from the left). Hence, the ratio |K−|/|K|→1 and the probability

that k⋆r falls in K− rather than in K \ K− increases. In practice, for small values of r,

in general it holds that kV < k⋆r < k⋆r−1, and increasing r leads to lower distortion at the

receiver. But, as r increases, kV gets very close to k⋆r−1 and it is more unlikely that k⋆r falls

in between these two values, thus increasing r brings no benefit.

4.5.2 When energy comes into play

Theorem 1 proves that the combined retransmission scheme leads to enhanced perfor-

mance in terms of QoS in the absence of energy constraints. However, this may no

longer hold when these constraints come into play. The maximum compression ratio

allowed by the allocated energy is k⋆E(u)/m, which depends on the energy allocation u

and on the backlog state q through Eq. (4.10). Unless k⋆q = 0, the only contribution to

the energy consumption that depends on q is the energy due to processing. Since qEP(k)

increases with q, see Eq. (4.5), it is k⋆q,E(u) ≤ k⋆1,E(u), i.e., given the amount of energy

available, fitting more packets into a single slot is more expensive than processing a single

packet. The actual relation between k⋆q and k⋆1 is not clear, because it highly depends

on the energy the node allocates and therefore also on the energy arrivals statistics. If

k⋆q,E(u) ≥ k⋆q,R, then k⋆q = k⋆q,R and the improvement stated by Theorem 1 holds for any

k⋆1. If instead k⋆q,E(u) < k⋆q,R, i.e., k⋆q = k⋆q,E, there is a simple relation between the average

distortion obtained with and without the retransmission scheme and, according to the

actual values of k⋆q and k⋆1, it may be better to use the retransmission scheme or the

single-transmission one.4 Anyway, k⋆q,E(u) depends on the energy that the node decides

to use in the considered time slot, and it is up to the MDP to manage it in such a way to

obtain the lowest average distortion which, as shown in Theorem 1, is smaller when the

retransmission scheme is adopted. In practice, the proposed retransmission mechanism

coupled with an intelligent energy management scheme achieves a better QoS, i.e., a

lower distortion.

4 If k⋆q ≥ k⋆1/q, then the retransmission scheme leads to some improvement, otherwise nothing can be inferred,
in general, because the performance depends on the particular shape of E[∆] in the two cases. See [64] for
details.
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It is worth noticing that, since the energy consumption increases with q and the battery

has finite size, there exists a maximum value rmax of data blocks that can fit the same time

slot. This means that, if q > rmax, there is not enough energy to process and send all q

data blocks, i.e., kr,E(B) = 0, ∀q > rmax. So, after q− 1 consecutive transmission failures,

the MDP will get stuck in a state (·, ·, q), where the only possible action is to choose

k⋆q ≡ k⋆q,E(·) = 0, which means that packets are always discarded. As a consequence,

since there is a non zero probability of going to an absorbing state (·, ·, q), the average

expected distortion will be 1. The value rmax can be easily determined as the largest

value of q for which the energy consumption of Eq. (4.10) with k = 1 (the smallest

possible compression ratio) is not larger than B, which is the maximum amount of

energy available to the device.

4.5.3 How to choose r

Although in general the retransmission mechanism is more efficient than the single

transmission strategy, selecting the appropriate value of r is not trivial, because the

attainable gain is not proportional to r, but also depends on some system parameters

such as the discretization of the compression ratio (hence, m) and the energy availability.

However, there exists a simple procedure to determine r, the largest value of r for which

choosing any q< r would lead to poorer performance. It consists in the three steps.

1. Determine the maximum number rmax of data blocks that can fit a packet of size S

when using the maximum available energy u = B.

2. Compute k⋆q,R for every q ≤ rmax.

3. r is the largest q ∈ {2, . . . , rmax} for which D(k⋆q,R) ≤ (q− 1)/q D(k⋆q−1,R).

This procedure requires little computation and allows one to determine the maximum

value r of transmission attempts that can be dedicated to each data block so as to ensure

the best performance. Finally, there are two additional factors that need to be taken into

account in the design of the retransmission scheme.

• Latency: the information contained in a packet may lose significance as latency

increases. In this case, sending a data block long after it has been originated may

even be disadvantageous: receiving it brings no benefit to the final application, and,

at the same time, reduces the quality of the other data blocks that are transmitted

along with it, as it occupies part of the bits available for the transmission.

• QoS: the final application may dictate a minimum QoS threshold, i.e., a maximum

distortion that can be tolerated on the received information. When data blocks

are transmitted together, they are compressed more and have a larger distortion,

which may violate the QoS constraints.
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Thus, the choice of r should be guided by the specific application constraints and by the

values of k⋆r and D(k⋆r ).

Observation. As discussed previously, unless r > rmax, the simple retransmission

scheme proposed in this study lowers the distortion at the receiver, and this gain

depends on the value of r and on the energy availability. Further improvements may

be obtained by adopting a more flexible retransmission strategy. For example, if q ≤ r

consecutive failures occurred, the device may dynamically decide the number of data

blocks to transmit, i.e., retransmit q′ ≤ q packets rather than exactly q, and retransmit

the remaining q− q′ data blocks in successive slots. However, the related investigations

are beyond the scope of this work.

4.6 Numerical evaluation

This sections shows how the average long-term cost C⋆ is affected by the system parame-

ters and compare the performance obtained with the single-transmission scheme (i.e.,

r = 1), and the retransmission scheme with r ≥ 2. The average distortion is evaluated

also for the case of an energy-unaware greedy scheme is adopted. This greedy policy is

myopic and does not optimize the energy consumption according to the expected future

availability; i.e., when in state (x, b, q), the node uses all the energy it has in the battery,

unless it is more than u⋆
q , i.e., the energy needed to achieve k⋆q,R. Hence, u = min(b, u⋆

q).

4.6.1 System parameters

The role of the various system parameters has been investigated by running RVIA for

the chosen system configurations. In all cases, the original packet size is L0 = 500 bits

and the nodes can decide among m = 30 different compression ratios. The parameters

of the distortion curve of Eq. (4.1) have been derived from [81]; in particular, we set

a = 0.35 and b = 19.9. Notice that with these choices of a, b and m, the granularity of

the compression ratio (i.e., 1/m) is such that D(1) < Dfull , which guarantees that the

distortion function is decreasing.

The considered transmission power is Ptx = 25 mW, the used bandwidth is W =

125 kHz, and the overall noise power spectral density N0 = −167 dBm/Hz. The path

loss exponent is 3.5 and Rayleigh fading is modeled as an exponential random variable

with unit mean. The battery dynamics of Eq. (4.8) assumes that the energy is quantized.

Consistently, all the terms of energy consumption, i.e., Eqs. (4.5), (4.6), (4.7), have been

mapped into quanta (we ensured an appropriate granularity for this purpose). Also,

the contribution of the processing operations to the overall energy consumption is

significant (cf. [43]); in particular, EP(·) represents from 2% up to 45% of the total energy
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Figure 4.6: Average long-term distortion vs. SNR for B̄ = 0.6 (left) and B̄ = 0.8 (right) when µ̄ = 1.

consumption for a single data block, according to the compression ratio. The circuitry

contribution is smaller and represents about 5% of the overall energy consumption. It

is to be remarked that, according to Eq. (4.10), a packet cannot be sent if the available

energy is below a certain threshold.

In the EH process, the probability that the source goes from the bad to the good

state is 3 times greater than that of the opposite transition. The proposed framework

is general and can accommodate any assumptions about the number of states of the

harvesting process and the harvesting statistics in each state. However, to obtain some

representative results, we consider a 2-state MC (X = 2). In particular, x = 0 represents

a low energy state (e.g., night) during which no energy can be harvested (e = 0 with

probability 1); when x = 1, the source is in a high energy state (e.g., day) and the energy

income follows a truncated discrete normal distribution, e ∼ N (µ, σ2) in the discrete

interval {1, . . . E} (analogous to [57] and [52]). In the simulations, the variance is fixed

as σ2 = 10, whereas the average energy income µ varies.

Finally, let emax be the maximum energy consumption demanded by the processing

and transmission of a single data block; then, it is possible to introduce the normalized

quantities µ = µ/emax, and B = B/emax. The focus of the simulations was on situations

of energy scarcity, i.e., with small B̄ or µ̄.

4.6.2 Results

Fig. 4.6 shows the average long-term cost as a function of the average SNR from the

receiver when µ̄ = 1 and for two different values of the battery size, namely B̄ = 0.6 and

B̄ = 0.8. Clearly, when the node is farther from its receiver, the path loss component

increases (low SNR), thereby leading to a larger outage probability. To guarantee that its

measurements do not get lost in the transmission, the node will use a stronger coding
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Figure 4.7: Average long-term distortion vs. normalized average energy income during the “good” state for
B̄=0.6 (top), B̄=0.8, and B̄=2 (bottom) and for γ̄ dB =8.5 dB (left) and γ̄ dB =−1.5 dB (right).

rate, thus the compression ratio needs to be smaller and a larger distortion is introduced

at the source. In both cases, the battery size is very small and such that the node’s

readings have to be compressed because the energy stored is not enough to send them as

they are (B̄ < 1). This clearly impinges on the distortion that can be achieved on average.

It is interesting to note the behavior of the retransmission policy when B̄ = 0.6 (Fig. 4.6,

top). As discussed in Sec. 4.5.2, the energy required to send two or more packets together

is larger than that needed for a single one, since it requires to spend more energy for

processing. In this case, the battery size is very small, and the node cannot store enough

energy to transmit two packets together (rmax = 1). So, after a failure, the device will

keep trying to transmit two data blocks together but the only action it can choose is

to discard them, obtaining full distortion. Also, because of the small battery size, the

optimal single-transmission policy performs similarly to the greedy one. When instead

B is large enough, the retransmission mechanism leads to improvements with respect to

the single-transmission one, as depicted in Fig. 4.6, bottom.

Fig. 4.7 shows the performance as a function of the normalized average energy income

during the good source state, µ. The average SNR is fixed to 8.5 dB for the figures on the
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Figure 4.9: Packet loss probability vs. µ̄ for different values of r when B̄ = 1 and γ̄ dB = −1.5 dB.

left, and −1.5 dB for those on the right. The normalized battery size is B̄ = 0.6, 0.8, and

2 for the figures on the top, middle, and bottom, respectively. Intuitively, the more the

energy that can be harvested (large µ), the lower the average distortion, because the node

can choose the optimal point in the rate distortion tradeoff (see Sec. 4.4.1) more often.

However, after a certain value of µ, the distortion curve tends to remain constant because

(i) the battery size is too small and part of the incoming energy needs to be discarded,

and (ii) the optimal k⋆ is already achievable and the excess energy is not useful. As

already seen in Fig. 4.6, if the battery size is too small compared to the minimum energy

required to send q = 1, . . . , r packets, the node will never transmit them, and this effect

sharpens as the SNR decreases. Fig. 4.7 also shows that, when the SNR is large and there

is enough energy available (second and third plots on the left), the single-transmission

optimal policy behaves similarly to the retransmission one, as the outage probability

is low; otherwise, its performance becomes closer to that of the greedy policy and the

improvement obtained with the retransmission scheme becomes more significant (see

plots on the right).
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The effect of the maximum number of retransmissions on the distortion as a function

of the average SNR is shown in Fig. 4.8 for B̄ = 1 and µ̄ = 1. As r increases, the

gain obtained becomes smaller: if many packets are sent together in a single slot, the

distortion introduced by the lossy compression is large, and this reduces the benefit of

retransmitting. If r becomes too large (r > rmax), there never is enough energy to process

and transmit r data blocks and the distortion becomes maximal, as explained in Sec. 4.5.

Fig. 4.9 shows the packet loss probability as a function of µ̄ for different values of r and

B̄ = 1, where this probability accounts for both the packets lost in the communication

and those discarded at the source. Again, it can be observed how the benefits of the

retransmission scheme fade as r increases. The gain obtained over the greedy policy by

the Value Iteration algorithm is more significant when energy is scarce (small µ), for

both the single-transmission scheme (r = 1) and the retransmission mechanism (r > 1).

Finally, we gauged the impact of the energy consumption due to processing. In all

previous results, this contribution was proportional to the compression ratio, as per

Eqs. (4.5), so that the energy availability strongly influenced the processing operations, see

Eq. (4.15). Fig. 4.10 shows the impact that the processing energy has on the performance

and compares the average distortion obtained when the compression energy is considered

and neglected as r increases, for two values of B̄. The average energy income is µ̄ = 1,

and the average SNR is γ̄ dB = −1.5 dB. Clearly, when compression has no energy

cost, the average distortion is lower. However, when there is enough energy available

(B̄ = 1.2, dashed lines), the performance obtained in the two cases is similar because the

energy abundance allows one to have k⋆q ≡ k⋆q,R very often, even when the compression

operations consume energy. On the other hand, if the available energy is scarce (B̄ = 0.8,

solid lines), there is an evident mismatch between the two approaches, as processing

consumes part of the scarce energy available and k⋆q ≡ k⋆q,E in many states. This behavior

is exacerbated as r grows, since the processing energy is proportional to the number
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of data blocks that share the time slot. In fact, the average distortion saturates to 1

as r > rmax (which is equal to 4 for the configuration of Fig. 4.10, solid cyan line). If

EP(k) = 0 ∀k, then there exists no rmax (see Sec. 4.5.2). The results of Fig. 4.10 highlight

the importance of using an accurate model for the energy consumption, which is central

to obtain a reliable and meaningful numerical evaluation.

4.7 Lesson learned

The goal of this study is similar to that of Ch. 3 and in both cases the devices access the

channel in a TDMA fashion. However, the two scenarios are different, as the study in

this chapter includes energy harvesting and channel coding, which are not considered in

Ch. 3. Moreover, the two strategies tackle the problem differently. In Ch. 3, the network

resources are assigned to the devices based on their requirements, thus the optimization

considers all users jointly; data compression allows one to trade the accuracy of the

transmitted information with the energy consumption. The scheme proposed in this

chapter, instead, optimizes the processing and transmission operations for each device

separately, given the resources it is provided. This latter approach is easier to deploy in

a distributed fashion and requires less information to be exchanged with the receiver.

The channel encoding introduces an additional dimension in the tradeoff between data

compression and energy utilization.

Both the analytical investigation and the numeral evaluation showed that the retrans-

mission scheme ensures an improved average quality of the received information with

respect to the simpler single-transmission scheme, unless the energy available to the

node is very scarce (because either the battery size is too small or the energy inflow is

insufficient). In this case, the retransmission scheme demands too much energy and the

node cannot afford it. When the energy is scarce, a more flexible scheme that decides

whether or not to retransmit a packet may improve the performance. For instance, if a

packet is lost and the battery charge is low, then the node should opt for transmitting

only the new readings and give up on those that were lost, so as to preserve some

energy. Similarly, a device could also choose how many packets to retransmit rather

than considering all those that were lost. The gain introduced by the retransmission

scheme becomes more significant as the probability of outage increases. As the maxi-

mum number of transmission attempts that can be dedicated to a packet increases, the

performance improvement tends to fade, while also affecting latency.

Another interesting extension consists in allowing for some shared time slots, where

the devices can send their lost data in a random fashion, i.e., contending for the channel.

This may bring improvements with respect to the proposed simpler schemes where

resources are not shared.
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Chs. 3 and 4 propose TDMA-based access schemes for IoT networks, where each device

has its own dedicated time resources that thus can be optimally exploited to guarantee

the desired QoS. However, a dedicated channel use may be inefficient in dense scenarios

and when communication with the BS is not periodic or is infrequent. In these cases,

contention-based schemes may yield improved performance since they are more flexible

than coordinated ones and have no synchronization overhead.

This chapter investigates the QoS/energy tradeoff when devices access the channel

randomly. Similarly to the scenarios in Chs. 3 and 4, multiple sensor nodes track some

phenomena of interest and report data to a common Fusion Center (FC). Unlike the

TDMA approaches discussed in the previous chapters, the study proposed here leverages

the time correlation characteristics of the monitored signals to adapt the sampling and

transmission rates based on the target estimation accuracy and on the probability of

packet losses caused by the interference from other sensors.

In principle, the phenomena of interest should be constantly monitored, so as not

to miss any critical event. However, there are some issues that need to be taken into

account and that affect both the sensing and the reporting regimes. First, wireless sensors

need to operate with little to no maintenance and without wired connections to any

infrastructure, in particular to the electricity grid. To prolong their operating life, energy

must be carefully rationed between the sensing and the communication apparatuses.

Second, in the presence of a massive number of sensing devices, channel access needs to

be carefully managed in order to limit the mutual interference among the transmitters

and, consequently, the fraction of transmission losses due to packet collisions, which may

decrease the QoS at the FC. Most of the work that deals with signal compression and data

monitoring do not consider the effect of channel errors and interference, which instead

may have a significant impact on the accuracy of the monitoring operation. Notice that

packet losses also waste energy. A third issue that should be considered is related to

the large dynamics of the sensed signals, which causes issues in their estimation. While

many signals may appear stationary, or even almost constant, on a small time scale, their
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behavior often changes if observed for a sufficiently long time. Also, intervals when data

has a large variance, and therefore are difficult to predict, is often of greater interest than

intervals where data is almost static. This is because the former is typical of anomalous

conditions in the monitored system and, therefore, must trigger the warnings leading to

an appropriate intervention.

The use of compression has the potential to reduce communication and sampling

energy cost, thus increasing network lifetime. Unfortunately, conventional compression

algorithms are not directly applicable to WSNs [86] because they minimize space occu-

pation instead of energy expenditure for data transmission. Also, exceedingly complex

algorithms are not implementable in constrained sensing devices. Instead, compres-

sion techniques specifically designed for sensor networks have proved to substantially

increase network lifetime. These techniques can operate on three different levels [86].

Sampling compression leverages data correlation in space and/or time to reduce the sam-

pling activity of devices; the FC is then in charge of reconstructing the complete process

by exploiting the correlation properties [87, 88, 89]. Similarly, compressive sensing

techniques exploit suitable projections into a sparse space, which makes it possible to

recover the original signal with excellent accuracy from just a few samples [90, 91]. Data

compression processes the sampled measures in order to limit the length of messages

directed to the FC [92], e.g., by quantizing the difference between consecutive samples

with an appropriate modulation scheme [93]. Finally, communication compression aims at

reducing the number of data transmissions and their time-on-air, in order to reduce the

energy consumed by the transceiver module. For example, the sensors and the FC may

agree on an appropriate model for the tracked parameter, so that only the measurements

that deviate significantly from the model need to be sent [94, 95]. The model parameters

may be updated in real-time when the prediction error starts diverging. Note that the

sensor readings need to be acquired with the desired temporal accuracy even if most

of them will not be transmitted. Hence this approach may consume much more energy

than sampling compression techniques, especially if the energy required by sensing is

large, as for some types of sensors [96, 86].

Clearly, the use of any compression technique reduces the accuracy of the signal

reconstructed by the FC, trading it with increased network lifetime. Therefore, it is of

interest to apply a combination of these techniques and optimize their parameters in

order to provide the optimal balance between energy consumption, wireless channel

occupation, and sensing accuracy.

This chapter introduces three different random channel access schemes with the

common goal of minimizing the devices’ energy consumption, while guaranteeing that
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the error in the signal estimate at the FC does not exceed a chosen threshold. However,

the three approaches differ in target application and channel access mechanism.

The first one [97] considers an event-triggering system, where the interest is on the

identification of some events that may trigger actions, e.g., excessively high pressure

in a pipe that requires the release of a valve. Responsiveness is crucial to guarantee a

smooth operation of the controlled system; the sensor nodes report their readings to the

FC, that is able to notify changes of conditions to human operators and, possibly, to act

on their behalf. The error metric is calculated independently for every sample, since

past values are not of interest when new data is available. The proposed strategy jointly

determines the quantization granularity at the source and the optimal reporting window

based on the expected collision probability and the estimation error at the FC; sampling

and transmission operations are further decoupled for a reduced energy consumption.

The second scheme [J8] targets the same scenario of the first one but considers a

probabilistic channel access scheme, where the transmission probability depends on the

lag since the last successful transmission and is computed based on the correlation profile

of the monitored signal and the expected interference. Differently from the previous

scheme, here no data compression is performed.

Finally, the third scheme [98] considers a different application, where the process of

interest is the time integral of measurements provided by some sensors, e.g., the volume

of fluid crossing a pipe, the total amount of fertilizer/insecticide dispersed onto a certain

cultivation area, and so on. The aim is to collect data to enable its statistical analysis

and thereby perform trend analysis or predict future values. While the two former

cases analyze the time series as a whole, including its past history, this application

only considers its current realization. This translates into a different target performance

metric, which considers the cumulative signal estimate error up to the current time,

possibly using a weight function to smooth out the impact of the past errors.

All the three schemes use a stochastic geometry approach to characterize the inter-

ference caused by the other devices. This allows for a realistic wireless channel model,

where successful reception is determined based on a Signal-to-Interference-and-Noise

Ratio (SINR) threshold model, which has been proven to accurately represent real chan-

nels [99]. Notice that most of the studies in the literature do not consider the impact of

packet losses or use a simplified wireless channel where a message is lost if it collides

with any other message [91, 100, 101, 102].

Finally, we would like to mention that these schemes have been realized in collaboration

with Daniel Zucchetto.

65



energy-efficient random access schemes

5.1 System model

Devices are organized in a static wireless network with a star topology; the sensor nodes

track some phenomena of interest and report their measurements to a central FC via

single-hop wireless communication. The objective is to guarantee a limited reconstruction

error at the receiver for each signal, while maximizing the network lifetime. The network

is asymmetric: the FC has no energy, computational, and storage restrictions, whereas

the nodes are battery-powered and have lower computational capabilities, so that simple

energy-efficient transmission policies are sought.

5.1.1 Monitored process model

Time is slotted and slots have fixed duration. Each sensor node tracks a temporal signal

of interest {xk}, where k ∈N is the slot index; the signal exhibits temporal correlation.

Different devices may measure different signals, but the node index is omitted in favor of

a lighter notation. The sensory data is measured only in correspondence of a transmission

attempt to the FC, otherwise the node is in an energy-preserving sleep mode.

To keep the analysis simple, we consider a straightforward but popular and significant

signal model, consisting in an autoregressive (AR) model with degree 1. Therefore, the

time series evolves as

xk = αxk−1 + uk k > 0 , (5.1)

with α a non zero constant and uk ∼ N (0, σ2) a zero mean Gaussian innovation term,

with variance σ2 and assumed to be independent and identically distributed (i.i.d.) over

time. It is assumed that |α| < 1, so that {xk} is a stable process.

Although the AR model is very simple, it can provide a good representation of real-

world time-correlated time series. However, the procedures proposed in the following

sections can be readily adapted to different signal models. The core step consists in

characterizing their correlation profile, so as to have a mathematical expression for the

expected estimation error at lag k.

5.1.2 Data transmission.

If in slot k a device chooses to transmit xk, it can also decide how much information to

send, so that it may transmit a distorted version x̃k of xk to the receiver. The resulting

packet size L can take values in a finite set L, and the smaller the packet, the larger

the distortion of the compressed measurement. Therefore, the current data sent by a

node can be modeled as x̃n = xk + v(L), where v(L) represents the error due to the lossy

compression of the original signal xk, whose statistical distribution depends on the type

of data processing performed by the node. For the sake of simplicity, in this study v(L)
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is assumed to have zero-mean normal distribution, v(L) ∼ N (0, ω2(L)), with variance

ω2(L) that increases for higher compression ratios, i.e., for smaller values of L. The

distortion function used here is the same of Chs. 3 and 4 [10]

ω2(L) = a
(

L− L0

Lmax − L0

)−b

− 1 (5.2)

where L0 is the size of the fixed part of the packet (header and non-compressed data),

Lmax > L0 is the maximum packet length, and a and b are parameters that depend on

the compression algorithm.

The devices access the channel randomly, as this avoids the burden of generating and

maintaining a synchronized schedule with the FC. The sensor nodes perform power

control to counteract the path loss. Depending on the channel conditions and the

interference caused by the other nodes, the packet may be lost. A successful transmission

is immediately acknowledged by a downlink packet, which is considered to be always

successful. If the transmission is successful, the receiver is able to perfectly reconstruct

x̃k. Otherwise, the FC maintains an estimate x̂k of xk based on the last received data

and the time-correlation characteristics of the signal model. When a device is neither

transmitting nor sensing, it switches to a sleep mode in order to save energy. Meanwhile,

the FC keeps estimating the process.

5.1.3 Channel model

The sensor nodes are at known distances from the FC and transmit wirelessly over

Rayleigh fading channels. They access the channel according to a Slotted ALOHA

(S-ALOHA) scheme, which avoids the need of central coordination and is more flexible

to changes in the network topology and node density than scheduled access schemes.

The price to pay for such a simplicity is the risk of destructive interference caused by

simultaneous transmissions from different devices. A transmission is successful if the

average SINR at the receiver is larger than a predefined threshold; this model has been

shown to be more realistic than the simple collision model [99].

Nodes adapt their transmission power in order to counteract the path loss, so that the

average received power Prx is the same for all devices. The power control assumption

makes the statistics of the SINR the same for all the transmitting devices, and, in

particular, independent of their location. The target average received power Prx is chosen

such that Prx ≤ Ptx,max/ℓ(R), where Ptx,max is the maximum transmission power, ℓ(·) is

the path loss function, and R is the desired coverage radius.

It is possible to adopt a stochastic geometry reasoning and model the sensing devices

that transmit in a given slot as a Poisson Point Process (PPP) Ψ(x, t), defined in the
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space-time domain R2×N, with spatial density λs(x, P), where x ∈ R2 is the position of

an active node and P is the persistency constant, i.e., the per-slot transmission probability

of a node. Thanks to Slivnyak’s theorem, the conditional distribution of the interferers

given the position of the tagged node is still modeled by Ψ [103].

Each Poisson point is associated with a fading coefficient F, which is potentially

different for each device. The interference at the FC is the sum of signal powers received

from all active nodes, except the target transmitter j:1

I = ∑
i∈Ψ,i ̸=j

PrxFi . (5.3)

Denoting by F̃ the fading coefficient of the target receiver and Ns the noise power, the

corresponding SINR is then γ(I) = Prx F̃/(Ns + ∑i∈Ψ PrxFi).

Using Shannon’s bound as an approximation, the SINR threshold for a packet of size

L can be expressed as

Γ◦(L) = β
(

2L/(TBW) − 1
)

, (5.4)

where BW is the transmission bandwidth, T is the time slot duration, and β > 1 is

a coefficient that accounts for the gap between the spectrum efficiency of practical

modulation schemes and Shannon’s capacity bound.

The transmission success probability can be expressed as

ps(L) = Pr (γ(I)>Γ◦(L))

= Pr

(
F0>

(
Ns

Prx
+ ∑

i∈Ψ
Fi

)
Γ◦(L)

)
= e−NsΓ◦(L)/Prx E

[
e−Γ◦(L)∑i∈Ψ Fi

]
, (5.5)

where the expectation is computed with respect to the interference distribution, condi-

tional to the presence of the target transmitter.

The fading coefficients {Fi} can be seen as marks of this PPP, making it possible to

apply Campbell’s theorem for marked processes [103]. Then, it is

EΨ

[
e−Γ◦(L)∑i∈Ψ Fi

]
= exp

(
−
∫

R2

∫ ∞

0

(
1− e−Γ◦(L)φ

)
λs(x, P)e−φ dφ, dx

)
, (5.6)

where the expectation is taken with respect to the marked PPP, i.e., considering both

the spatial position of the nodes and the fading coefficients. Now, assuming uniform

distribution of the nodes within the cell radius and neglecting the “arrivals” of the PPP

1 The interference expressed in this term is conditioned on the presence of the target transmitter, however the
Slivnyak’s theorem allows one to remove the conditioning [103].
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outside the cell, i.e., assuming λs(x, P) ≡ λs(P) for all |x| ≤ R and λs(x, P) ≡ 0 otherwise,

it is

EΨ

[
e−Γ◦(L)∑i∈Ψ Fi

]
= exp

(
−λs(P)πR2

∫ ∞

0

(
1− e−Γ◦(L)φ

)
e−φ dφ

)
= exp

(
−λs(P)πR2 Γ◦(L)

Γ◦(L) + 1

)
.

(5.7)

Replacing this result into (5.5) yields

ps(L) = exp
(
−Γ◦(L)

(
Ns

Prx
+

λs(P)πR2

Γ◦(L) + 1

))
. (5.8)

Notice that the success probability depends on the adaptive transmission strategy through

two parameters, namely the packet size L, and the persistency constant P.

5.1.4 Energy consumption

Each sensor is powered by a battery with finite initial charge. The energy consumption of

a device is mainly due to data sampling, data transmission, and circuitry.2 According to

the model of Ch. 2, each sensing operation requires a fixed amount of energy. The energy

for transmission depends on the transmission time, equal to the fixed slot duration,

and the transmission power, which is assumed to be constant across the transmission

attempts. Each transmission, therefore, consumes the same amount of energy, including

that required by circuitry for switching among the node’s operating mode.

5.2 Event-triggering system: deterministic channel access

The first proposed scheme targets an event-triggering system where the goal is to identify

when the monitored phenomena exceeds some predefined threshold. The reconstruction

accuracy at the FC is therefore measured by means of the squared error |xk − x̂k|2 for

each slot k. Note that this error is zero only if the device transmitted in slot k (no

estimation error at the FC, x̂k = x̃k), and L = Lmax (no distortion introduced at the source,

x̃k = xk).

5.2.1 Optimization problem

The network is assumed to be homogeneous, so that nodes operate based on the same

strategy. Moreover, the network dynamics is assumed to be slowly varying, implying

that the transmission scheme needs to be updated only seldom. Note that, even though

the channel status may vary because of the fading component, the transmission strategy

2 Receiving an acknowledgment from the FC also requires to spend some energy, which however is typically
smaller than the transmission energy and, hence, is neglected in this study.
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is based on the expected channel conditions, which are static. Therefore, the proposed

policy will not depend on the slot index k. The objective is to determine the optimal

duration S⋆ of the sleeping phase of a device and the optimal packet size L⋆ such that (i)

the probability that the squared error at the receiver exceeds a predefined threshold b is

bounded, and (ii) the sensor’s lifetime is maximized.

As explained in Sec. 5.1.4, both sensing and transmission operations have a constant

cost. Consequently, maximizing the lifetime of a device is equivalent to minimizing the

number of transmission attempts and sensing operations, and thus, to maximizing the

duration S of the sleeping phase (while not violating the QoS constraint). Basically, the

objective is determining

S⋆ ≜ max
L, S

S(L) , (5.9)

where 0 ≤ L ≤ Lmax, subject to the QoS constraint

P
(
|xk − x̂k|2 > b

)
< pth k = 0, 1, . . . , (5.10)

i.e., the probability that the squared reconstruction error exceeds b is required not to

exceed a predefined threshold pth at any time. The optimal packet size L⋆ is the one that

maximizes (5.9) under the constraint (5.10).

Before delving into the analysis of the transmission strategy, it is worth to highlight

some tradeoffs in the choice of S and L that are induced by the lifetime and QoS

requirements. Intuitively, a device should choose a large sleeping window to save energy

and limit the interference, since the larger S, the less frequent the transmissions. However,

S cannot be too large, in order to respect the QoS constraint (5.10). Similarly, decreasing

L increases the signal reconstruction error, but also the success probability, because

transmissions will use more robust modulations (see (5.4)).

Therefore, determining the optimal transmission strategy is not trivial. We propose an

iterative approach, where, for a given value of L, the sleeping phase duration and the

corresponding probability of successful transmission are alternatively optimized, until

convergence; this allows one to derive SL(L), i.e., the optimal value of S for the chosen L.

Then, an outer optimization process determines the value L⋆ = argmaxSL(L) that yields

S⋆ = SL(L⋆).

This procedure is summarized in Algorithm 3. For a fixed L (Line 2), the duration

S0(L) of the sleeping phase is firstly computed as if there were no interference, i.e., S0(L)

only depends on the QoS requirement (5.10) (Line 3). The interference caused by the

other nodes makes transmissions prone to losses. Let S(L) be the number of time slots a

node waits from the last successful transmission. Then, assuming that in case of packet
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Algorithm 3 Alternate optimization

1: SL ← vector of size Lmax ▷ Contains SL(L) ∀ L
2: for L = 1, . . . , Lmax do
3: Determine S0(L) ▷ Sleeping duration if ps = 1
4: Initialize ps = 1, S(L) = 1
5: while S(L) has not converged do
6: S(L)← ⌊S0(L) + 1− 1/ps⌋
7: ps ← Eq. (5.8) with λs(P) = λ/S(L)
8: SL(L)← S(L)
9: S⋆ = max SL, L⋆ = argmaxSL

loss a device transmits again in the next slot, the expected time elapsed between two

consecutive successful transmissions is

+∞

∑
k=0

(S(L) + k)(1− ps(L))k ps(L) = S(L) +
1

ps(L)
− 1, (5.11)

which should not be larger than S0(L) to satisfy the QoS constraint (5.10). Therefore

S(L) = ⌊S0(L) + 1− 1/ps(L)⌋ . (5.12)

At the first iteration, no packet losses are assumed (ps = 1), and thus S(L) ≡ S0(L).

Then (Line 7), the success probability ps is updated using Eq. (5.8), where the number of

interferers depends on the frequency of transmissions which is influenced by S(L); in

particular, it is λs(P) ≡ λ/S(L), where λ is the density of all devices (regardless they are

active or not) . This alternate optimization is repeated until S(L) converges. Then, L⋆

and S⋆ are those that maximize the value of S(L) as in Line 9.

5.2.2 Sleeping phase duration

Here, the optimal duration of the sleeping phase S0(L) for a given L is derived in the

case there is no interference. Exploiting Eq. (5.1), the signal in slot k + n can be related

to that in slot k as follows

xk+n = αnxk +
n

∑
ℓ=1

αn−ℓuk+ℓ = αnxk + wn = αn x̃k − αnv(L) + wn = αn x̃k + en(L) ; (5.13)

where en(L) ≜ −αnv(L) + wn is the error due to the distortion introduced at the source

and the estimation process.
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The estimation error wn is the linear combination of n i.i.d. zero-mean Gaussian

random variables (r.v.s) and, therefore, is itself a zero-mean normal r.v., wn ∼ N (0, σ2
n),

with variance

σ2
n =

n

∑
ℓ=1

α2(n−ℓ)σ2 =
n−1

∑
ℓ=0

α2ℓσ2 =
1− α2n

1− α2 σ2 . (5.14)

Notice that σ2
n is a concave and non-decreasing function of the lag n (number of slots

elapsed since the last successful transmission) with a horizontal asymptote at 1/(1− α2)

as n→ +∞. This implies that the variance of the estimation error is larger for |α| closer

to 1. The reason behind this behavior is that |α| closer to 0 corresponds to a weakly

correlated process, which makes the estimation error almost independent of the value of

n and practically bounded in the range [−3σ, 3σ].

Since the compression should not introduce a bias in the measurement, the error

v(L) can be assumed to have zero mean, hence the best estimate that the FC can make

is x̃k+n = αn x̃k, so that the squared reconstruction error after k slots from the last

received data is |en(L)|2. Based on its definition (see Eq. (5.13)), en(L) is non-decreasing

in n, therefore, to guarantee the QoS constraint (5.10), it is sufficient to evaluate the

Cumulative Distribution Function (CDF) of the squared error at b only for n ≡ S. For

analytical tractability, in the following it is assumed that v(L) ∼ N (0, ω2(L)), although

the proposed framework is general and can accommodate any distribution of v(L). Also,

ω2(L) is decreasing in L, since the smaller the amount of information bits, the larger the

distortion. In this case, eS(L) can be modeled as the weighed sum of two independent

normal r.v.s and, thus, is also normally distributed:

eS(L) ∼ N
(

0, α2Sω2(L) + σ2
S

)
. (5.15)

The squared error follows a Gamma distribution, |eS(L)|2 ∼ Gamma(kS, θS(L)), where

the shape and scale parameters are kS = 1/2 and θS(L) = 2
(
α2Sω2(L) + σ2

S
)
, respectively.

Accordingly, the largest value S0 that satisfies the QoS constraint for the given L is

S0(L) = max
{

S :
γ (kS, b/θS(L))

Γ(kS)
≥ pth

}
, (5.16)

where γ(·) is the lower incomplete gamma function, and Γ(·) represents the gamma

function. Eq (5.16) gives the maximum duration of the sleeping phase of a sensor when

transmission is always successful (ps = 1) such that (5.10) holds true. If the chosen pth

is too large, since S is discrete, the set in (5.16) could be empty, which means that the

required QoS constraint can not be satisfied even when no interferers are present. In this

case, we set S0 = 1.
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5.2.3 Transmission strategy

With the procedure explained in Algorithm 3, after a successful transmission a device

remains silent for S⋆ slots before attempting to transmit again, where S⋆ yields an

expected time between two consecutive successful transmissions such that the QoS

requirement (5.10) is satisfied. However, based on how signal {xk} actually evolves, the

squared error after S⋆ slots may be larger or smaller than threshold b. In the latter case,

the device could extend the sleeping phase by S′(xk+S⋆) additional slots to further save

energy. How to determine S′(xk+S⋆) is explained in the following.

Let x̃k = xk + v(L⋆) be the last data received by the FC from a certain user. After

slot k, the device sleeps for S⋆ time slots and then wakes up to sense the environment.

Based on the new measurement xk+S⋆ and its knowledge of the estimate x̂k+S⋆ = αS⋆
x̃n

performed by the FC, the device chooses whether to immediately transmit the new data

(if |xk+S⋆ − αS⋆
x̃n|2 > b) or keep sleeping for S′(xk+S⋆) additional time slots. In the latter

case, the prediction error ϵk(L⋆) in slot k ≥ k + S⋆ depends on the estimate of the FC,

which is based on the last received data x̃k, and on the expected evolution of the time

series, which is based on the last sensed data xk+S⋆ :

ϵk(L⋆) = |xk+S⋆+k − x̂k+S⋆+k| =
⏐⏐⏐αkxk+S⋆ + wk − αS⋆+k x̃k

⏐⏐⏐
=
⏐⏐⏐αkxk+S⋆ + wk − αS⋆+k(xk + v(L⋆))

⏐⏐⏐ (5.17)

where wk ∼ N (0, σ2
k ) was defined in (5.13). The other terms are known by the trans-

mitter, because xk+S⋆ and xk are the new and old sensed data, and the processing error

v(L⋆) depends on L⋆, already obtained with Algorithm 3. Then, the error is normally

distributed: ϵk(L⋆) ∼ N
(
µk(L⋆), σ2

k

)
, with mean

µk(L⋆) = αk
(

xk+S⋆ − αS⋆
xn − αSv(L⋆)

)
. (5.18)

Since ϵk(L) has non-zero mean, its square is proportional to a non-central χ2 random

variable with one degree of freedom and non-centrality parameter equal to the ratio

between the squared mean and the variance of ϵk(L), i.e.,

1
σ2

k
ϵ2

k(L⋆) ∼ χ2
1

(
(µk(L⋆))2

σ2
k

)
. (5.19)

It is then straightforward to compute the CDF of ϵ2
k(L⋆) for a given value of b and

derive S′ as the largest k for which such value is not lower than pth, as done in Sec. 5.2.2

to find S0(L).
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Table 5.1: Simulation parameters.

Interference and communication parameters
Time slot duration T 100 ms
Density of sensor devices λ 0.001 nodes/m2

Cell radius R 500 m
Received power3 Prx 4 nW
Transmission bandwidth BW 125 kHz
Noise power Ns 2.5 · 10−15 W

Signal model and QoS parameters

Autoregressive model parameters
α 0.99
σ2 0.001

Initial value x0 0.8
Maximum message length Lmax 24 bit
Threshold on P[|xn − x̂n|2 ≤ b] pth 0.8

Kulau et al. strategy [87]
Maximum sleep time tmax 50 slots
Weighting exponent ϕbb 2
Sliding window size ns 30

Besides allowing the sensing devices to save energy, this dynamic adaptation of the

sleeping phase also reduces the interference on the channel. However, for mathematical

tractability, in the optimization routine the interference is calculated in the pessimistic

case, i.e., considering sender devices to sense and transmit messages exactly every S

slots, ignoring the dynamic sampling rate adaptation carried out by each device.

5.2.4 Numerical evaluation

The performance gain of the proposed system was analyzed by means of simulations,

with the parameters set as in Tab. 5.1.

Fig.5.1 shows an example of the original time series and the corresponding estimate

with the technique described previously. The match is very good, and the squared

error is almost always below the given threshold b. Supported by this first result,

we compare our strategy (named dynamic) against other two techniques. The static

technique is the same as the strategy proposed in this study, but without the dynamic

extension of the sleeping phase described in Sec. 5.2.3. The other one is the sample

rate adaptation technique described by Kulau et al. [87], which uses Bollinger bands to

dynamically estimate the next sleeping time based on the variability of the previously

seen data. In particular, the time between two sample acquisitions is calculated as

twait(n) = tmax/(1 + (bbb σbb(n))ϕbb) where σBB(n) is the standard deviation of the last

ns acquired samples, and tmax is the maximum sleeping duration.

Fig. 5.2 shows the probability that the squared error at the FC stays within threshold

b, as b increases. To guarantee a fair comparison, bbb was set so that the probability

3 Note that this value allows devices at the cell edge to use the ETSI imposed limit of 25 mW on the
transmission power for the 868 MHz band.
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Figure 5.1: Example of a time series and its estimate with our dynamic technique (with b = 0.0158).
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Figure 5.2: Probability that the squared error stays within threshold b, with 95% confidence intervals.

that the squared error is lower than b is the same as for our strategy.4 It can be seen

that the proposed technique respects the QoS constraint with a large margin. Fig.

5.2 actually shows that the proposed dynamic policy is overly conservative, since the

interference level considered is obtained by the static optimization of S, but the dynamic

adjustment of the sleeping interval lowers the actual interference on the channel. Also

the static policy is conservative, because, for analytical tractability, the optimization

routine of Algorithm 3 considers every message to be repeated the expected number

of transmissions needed to get a successful reception (see Eq. (5.12)). Instead, a more

4 Namely, bbb = [55.0, 48.1, 32.9, 22.8, 16.4, 12.0, 9.5].
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Figure 5.3: Mean energy consumed per slot, with 95% confidence intervals.

precise optimization could be performed by considering the CDF of the number of time

slots a node waits from the last successful transmission.

To evaluate the energy consumption, the sum of the circuit and transmission power

was set to 40.5 mW, and the sensing energy to be 495 µJ.5 As Fig. 5.3 shows, the proposed

strategy is between 15% and 50% more efficient than the technique described in [87],

especially when a lower error is required. Also, note that the dynamic policy, compared

to the static one, saves energy by postponing transmissions when the estimation values

are still sufficiently accurate. However, if the value of b is too large, the transmission can

be often postponed, but the device may have to perform frequent sensing operations. In

this situation, as shown in Fig. 5.3, the energy efficiency loss can be quite significant and

the static strategy may outperform the dynamic one.

5.3 Event-triggering system: probabilistic channel access

This scenario is similar to that considered in 5.2, but does not include data compression

and assumes a probabilistic S-ALOHA channel access. Each device has a probability

ptx(n; φφφ) of waking up to transmit a packet, which depends on the number of slots n

since the last successful transmission and a number of parameters φφφ = {φ1, φ2, . . .},
which are the optimization variables. Notice that frequent transmissions can potentially

improve the reconstruction accuracy because they reduce the estimation error, but deplete

the battery faster and also generate more interference, which may cause packet losses.

The objective is to determine the transmission probabilities {ptx(·; φφφ)} that guarantee

a desired level of accuracy in the tracking process and, at the same time, optimize the

energy usage.

It is assumed that each sensing and transmission operation requires the same amount

of energy (see Sec. 5.1). Consequently, maximizing the lifetime of a device is equivalent

5 These values have been determined by considering the use of the Atmel AT86RF212B radio transceiver and
the Infineon KP275 digital pressure sensor.
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to minimizing the number of transmission attempts and sensing operations, and, thus, to

maximizing the mean time interval τtx between two consecutive transmission attempts.

Such a maximization must be performed while guaranteeing a certain QoS, which is

here defined in terms of a threshold pth on the average outage probability. The outage

probability after n slots since the last received data is defined as the probability that the

squared signal prediction error exceeds a threshold b, i.e.,

pout(n) = Pr
[
|xk+n − x̂k+n|2 > b

]
, (5.20)

where k is the last slot where a sample was correctly received by the FC, while xk+n

and x̂k+n are the actual and the estimated signal in slot k + n, respectively. Note that

the outage probability depends only on the lag n and not on the absolute time k of

the last correct reception because the prediction error is reset to zero any time a new

measurement is correctly delivered to the FC. This yields pout(0) = 0. So, formally, the

optimization problem is

φφφ⋆ = argmax
φφφ

E [τtx|ptx( · ; φφφ)] (5.21a)

s.t. En [pout(n)] < pth (5.21b)

where E [·] denotes the expectation operator, that, with the subscript n, is intended

to be applied to the distribution of the random variable n. The optimal transmission

probability function is then given by ptx( · , φφφ∗). Although the numerical evaluation is

performed with the AR model of Sec. 5.1.1, the framework proposed here has general

validity and could be used with different time evolution of the signal {xk}. The QoS

constraint (5.21b) can be expressed as

pout = En [pout(n)] = ∑
n

pout(n)πn < pth (5.22)

where πn is the probability that, at any given time, the last successful transmission

happened n slots before, and will be computed in Sec. 5.3.1.
Solving Problem (5.21) is not trivial. First, we determine the expression of the QoS

constraint as a function of the transmission probability function ptx( · ; φφφ). To this end, in

Sec. 5.3.1, the expression of the number of slots τ needed to successfully deliver a message

(hence, τ ≥ τtx) is derived in terms of the transmission probabilities and the probability

ps of successful transmission. Then, in Sec. 5.3.2, ps is expressed as a function of the

mean transmission probability, which, in turn, depends on τ. An alternate optimization
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Figure 5.4: Markov chain for the node state.

allows one to derive both ps and τ, which are interrelated. Finally, in Sec. 5.3.3, the

knowledge about the success probability is leveraged to obtain the objective function, i.e.,

the mean time between two successful transmissions, given the transmission probability

function ptx( · ; φφφ). Sec. 5.3.4 provides a guideline that summarizes the whole procedure

and highlights its main results.

5.3.1 Distribution of the lag τ

The number of slots since the last successful message delivery (i.e., the lag τ) can be

modeled as the state of the MC in Fig. 5.4. Starting from state i, the next state of the MC

is 1 if the device successfully transmits a message, and i + 1 otherwise. These transitions

happen with probability ptx(i; φφφ)ps and 1− ptx(i; φφφ)ps, respectively (where ptx(i; φφφ) is

the probability that a device transmits after a lag of i slots). The success probability ps

depends on the channel gain and the interference produced by the other nodes, which

are assumed to be independent and stationary in time. The expression of ps will be

derived in Sec. 5.3.2 resorting to a stochastic geometry argument.

Assuming ptx(n; φφφ) and ps are given, the probability mass distribution of τ equals the

steady-state probability vector of the MC in Fig. 5.4. The equilibrium equations yield

π1 = π0(1− ptx(0; φφφ)ps)

π2 = π1(1− ptx(1; φφφ)ps) = π0

1

∏
k=0

(1− ptx(k; φφφ)ps)

...

pii = πi−1(1− ptx(i− 1; φφφ)ps) = π0

i−1

∏
k=0

(1− ptx(k; φφφ)ps) (5.23)

with the additional normalization constraint

∞

∑
i=0

πi = 1. (5.24)
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Combining equations (5.23) and (5.24) gives

π0 =

{
1 +

∞

∑
i=2

i−1

∏
k=1

(1− ptx(k; φφφ)ps)

}−1

. (5.25)

while πi for any i > 0 is given by (5.23).

Observation. The sum in (5.25) has an infinite number of terms, which in practice is dif-

ficult to evaluate for an arbitrary choice of the transmission probability function ptx( · ; φφφ).

However, when the system is stable, the sum converges and can be approximated with

the desired level of accuracy by considering a finite number of terms.

5.3.2 Success probability ps

The success probability is given in Eq. (5.8). In this scenario, the persistency constant P is

given by the transmission probability: λ(P) ≡ λEn [ptx(n; φφφ)], where λ is the density of

all devices in the network, independently of whether they are active or not.

Therefore, ps depends on the mean transmission probability

En [ptx(n; φφφ)] =
∞

∑
i=0

ptx(i; φφφ)πi . (5.26)

The steady-state probabilities πππ = [π0, π1, . . .] are computed as described in Sec. 5.3.1.

Notice, however, that πππ and ps are strictly intertwined, as one is needed in order to

derive the other and vice versa. To deal with this issue, it is possible to use a fixed-point

approach: the success probability is initially set to 1, then the corresponding steady-state

probabilities are computed as in (5.23), and used to update the probability of successful

transmission as in (5.8), and so forth until convergence. The proof of convergence for

such iterative method can be found in [J8]. This allows us to calculate πππ and ps given

φφφ. However, the complete solution to the optimization problem, which means finding

the optimal value of φφφ, requires an external optimization routine. To this end, we now

analyze the objective function.

5.3.3 Mean time between transmissions

The objective function (5.21a) is the expected time between two consecutive transmission

attempts (regardless of their outcome). In order to derive its expression in terms of

the transmission probabilities {ptx(n; φφφ)}, an MC equivalent to that of Sec. 5.3.1 is

introduced, where each original state i > 0 (which represents a lag of i slots since the

last successful transmission) is split into two distinct states: ifail and isleep, corresponding

to an unsuccessful transmission and a sleep phase in the last slot, respectively. State 0
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Figure 5.5: Markov chain for the node state with explicit indication of failure or sleep status.

remains unchanged. As shown in Fig. 5.5, starting from state ifail or isleep it is possible to

transition to three different states:

• State 0 in case of successful transmission in the current slot, which resets the lag.

This happens with probability ptx(i; φφφ)ps.

• State (i + 1)fail if the device transmits in the current slot, so that the lag i increases

by 1, but the packet is lost. This happens with probability ptx(i; φφφ)(1− ps).

• State (i + 1)sleep if the device sleeps in the current slot. This happens with proba-

bility 1− ptx(i; φφφ).

The same transitions happen from state 0. The steady-state probabilities π̃̃π̃π of the

expanded MC can be directly computed from those of the original MC (πππ) as follows

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π̃0 = π0

π̃ifail = ptx(i− 1; φφφ)(1− ps)πi−1 i > 0

π̃isleep = (1− ptx(i− 1; φφφ))πi−1 i > 0 .

(5.27)

Note that π̃ifail + π̃isleep = (1− ptx(i− 1; φφφ)ps)πi−1 = πi for i > 0.

The expected time E [τtx] between two transmission attempts is computed by intro-

ducing Ttx(i), which defines the number of slots until the next transmission, given that

the MC is in state ifail, with i > 0, or in i = 0. Since state ifail corresponds to a failed

transmission attempt, the time till the next transmission is at least h slots if the device

sleeps in slots i, i+1, . . . , i+h− 1, i.e.,

Pr [Ttx(i) ≥ h] =
h−1

∏
j=0

(1− ptx(i + j)), (5.28)
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This yields

E [Ttx(i)] =
+∞

∑
h=1

Pr [Ttx(i) ≥ h] =
+∞

∑
h=1

h−1

∏
j=0

(1− ptx(i + j)). (5.29)

Averaging over the starting state ifail, it is possible to calculate the expected time between

two transmission attempts as follows

E [τtx] = A

(
+∞

∑
i=1

E [Ttx(i)] π̃ifail + E [Ttx(0)] π̃0

)
(5.30)

where A is a normalization factor required by the definition of Ttx, which considers only

paths starting from states ifail or i = 0. It follows that

A =
1

∑+∞
i=1 π̃ifail + π0

(5.31)

In this way, the objective function (5.21a) is completely defined.

5.3.4 Summary of relations

The entire procedure described so far is needed to explicitly write the optimization

problem described in (5.21) and obtain a numerical evaluation of the optimal policy.

First, an MC is introduced to model the number of slots since the last successful

transmission. Its steady-state probabilities πππ are reported in (5.23) and (5.25), and

depend on the expected outcome of a transmission. The success probability ps can

be derived with a stochastic geometry reasoning; it is reported in (5.8) and depends

on the mean transmission probability En [ptx(n; φφφ)]. In turn, this quantity depends on

the steady-state probabilities of the lag from the last successful transmission. Since a

mutual relation between πππ and ps is induced, a fixed-point iteration approach can be

used to derive them jointly. The expected QoS outage probability is calculated from the

steady-state probabilities of the lag from the last successful transmission, as for (5.22).

The objective function is obtained by introducing a second MC, equivalent to the first

one, but where the two conditions of failed transmission and sleep mode are separated

into two distinct states for each possible lag. This makes it possible to compute the

expected time between two consecutive transmission attempts, as for (5.30) and (5.31).

5.3.5 Proposed scenario

The proposed framework is rather general and can accommodate different scenarios. In

particular, it is possible to employ arbitrary signal models and transmission probability

functions.
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Figure 5.6: Transmission probability function resulting from the optimization procedure (λ =
0.1 devices/m2).

Signal model. The numerical evaluation is done using the same signal model of the

previous scheme (Sec. 5.2), i.e., the AR signal described in Sec. 5.1.1. It is necessary

to derive the corresponding outage probability, which is needed to define the QoS

constraint (5.21b).

The signal in slot k + n can be expressed in terms of the signal in slot k as per Eq. (5.13).

In this scenario, however, the data is not compressed before transmission, so that

xk+n = αnxk + wn, with the estimation error wn ∼ N (0, σ2
n), where σ2

n is given in Eq. 5.14.

The squared error after n steps from the last known value, |xk+n − x̂k+n|2, follows a

Gamma distribution, w2
n ∼ Gamma(Kn, θn), where the shape and scale parameters are

Kn = 1/2 and θn = 2σ2
n , respectively. The outage probability (5.20) becomes

pout(n) = 1− Fw2
n
(b), (5.32)

where Fw2
n
(·) is the CDF of the squared estimation error w2

n at lag n.

Transmission probability function. The proposed model assumes that the transmission

probability function can be defined by a set of parameters φφφ. Intuitively, the transmission

probability should not decrease with the lag n in order to limit the estimation error that

tends to grow with n. Furthermore, a non-decreasing probability function guarantees

the convergence of the iterative process to determine the success probability ps and the

steady-state probability distribution of the MC of Fig. 5.4.

In this study, the transmission probability function is defined as a generalized sigmoid

ptx(n; φφφ) =
1

1 + e−φ1(n−φ2)
, n ≥ 0 ; (5.33)

where φ1 defines the steepness of the curve, while φ2 represents the horizontal shift.

Notice that φ2 ≤ 0 yields a concave function. By tuning the parameters φ1 and φ2, the

generalized sigmoid function can well approximate a number of cumulative probability
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Table 5.2: Simulation parameters.

Interference and communication parameters
Time slot duration T 100 ms
Cell radius R 100 m
Received power6 Prx 1 nW
Transmission bandwidth BW 125 kHz
Noise power Ns 1.25 · 10−15 W

Signal model and QoS parameters

Autoregressive model parameters
α 0.99
σ2 0.001

Initial value x0 0.8
Threshold on Eτ [pout(τ)] pth 0.1
Error threshold b 0.08

Kulau et al. strategy [87]
Maximum sleep time tmax 50 slots
Weighting exponent ϕbb 2
Sliding window size ns 30

EDSAS [104]
EWMA coefficient – long ρlong 0.2
EWMA coefficient – short ρshort 0.8
EWMA reset threshold η 1

distributions, thus being particularly suitable for the considered purpose. However, we

remark that the proposed framework can be applied to any other parametric probability

distribution function. Fig. 5.6 shows some examples of the curve ptx(n; φφφ) for different

QoS constraints when the node density is λ = 0.1 devices/m2.

Solution. From (5.14) and (5.32), it is apparent that, after each successful transmission,

the outage probability steadily grows in time, till the next successful transmission, which

occurs after τ steps. However, the relation between τ and the optimization variable φφφ is

quite complex. Also, the optimization problem (5.21) is in general not convex, so that

analytical solutions cannot be found. Consequently, the solution to the problem can

be found with numerical methods. In this study, we used the routines available in the

MATLAB Optimization Toolbox.

5.3.6 Numerical evaluation

The proposed strategy was evaluated strategy by means of simulations to prove its

scalability and to show the improvements compared to the state of the art. In particular,

we studied the performance in terms of QoS, i.e., outage probability, and energy efficiency.

The values of the parameters used in the simulations are reported in Tab. 5.2. Also,

energy calculations are normalized to the cost of each joint sensing and transmission

operation, implying that the normalized energy can be seen as the fraction of slots where

a device is awake.

6 Note that this value allows devices at the cell edge to respect the limit of 25 mW imposed by ETSI on the
transmission power for the 868 MHz band.
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Figure 5.7: Energy consumed for increasing device density, with 95% confidence intervals.
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Figure 5.8: Outage probability of the considered schemes for λ = 10−3 devices/m2, with 95% confidence
intervals.

Scalability on device density. To test the strategy in a massive access scenario, the

outage probability was evaluated for increasing values of the devices density λ. The

parameters of the AR signal used for the simulation are given in Tab. 5.2. The outage

probability obtained with the simulation matches exactly the imposed threshold vth, even

for strict constraints. This proves that that the proposed strategy, when used with AR

signals, is able to cope with the increasing device density while maintaining a QoS close

to the desired value.

Fig. 5.7 shows the consumption for different values of the the threshold vth. Interest-

ingly, the amount of energy used is almost constant for the different device densities.

This proves that the proposed strategy is able to scale well, since it proactively tunes the

transmission probabilities in response to network congestion, thus avoiding the negative

effects of collisions on the channel.

Comparison with previous strategies. The proposed strategy is compared with two

other techniques in the literature that address directly our use case, and that represent
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Figure 5.9: Energy consumed by the considered schemes for λ = 10−3 devices/m2, with 95% confidence
intervals.

the typical approaches to this problem. The first technique is proposed by Kulau et

al. [87] and has been used also to gauge the performance of the first scheme, in Sec. 5.2.4.

The second strategy from the literature, named Exponential Double Smoothing-based

Adaptive Sampling (EDSAS) [104], uses irregular data prediction to dynamically change

the sampling rate (up to a maximum sampling interval Smax), while maintaining the

error below a threshold ε. EDSAS starts with a 1-step prediction and, as long as the

prediction error stays below ε, the sampling interval k is increased by 1 (until Smax); when

the error exceeds ε, k is decremented by 1. In more detail, the strategy uses Wright’s

extension to the Exponential Double Sampling technique, where a kn-step prediction at

time n is calculated as x̂n+kn = Ln + kn Mn. The coefficients Ln and Mn are, respectively,

the estimate and the trend of the signal at time n, and they are given by

Ln = (1−Vn)(Ln′ + kn′Mn′) + Vnxn ; (5.34)

Mn = (1−Un)Mn′ + Un(Ln − Ln′)/kn′ , (5.35)

where n′ is the instant when the previous sample was taken (i.e., n = n′ + kn′ ). Also, the

normalizing factors Vn and Un are given by

Vn = Vn′/(bn + Vn′) ; bn = (1− αE)
kn′ ; (5.36)

Un = Un′/(dn + Un′) ; dn = (1− βE)
kn′ , (5.37)

and depend on the hyperparameters αE and bE .

The algorithm inputs an adjustment feedback based on exponentially weighted moving

averages (EWMA) to minimize errors due to unpredictable events that suddenly change

the estimated measurements. A long term moving average (Slong) and a short term

moving average (Sshort) are calculated using a standard moving average technique
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Figure 5.10: Outage probability of the considered schemes for λ = 10−2 devices/m2, with 95% confidence
intervals.
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Figure 5.11: Energy consumed by the considered schemes for λ = 10−2 devices/m2, with 95% confidence
intervals.

(Sn = ρxn′ + (1− ρ)Sn′) with the coefficient ρ being equal to ρlong or ρshort, respectively.

The ratio η = Slong/Sshort exceeding a predefined threshold indicates a sudden change in

the data, requiring the sampling interval to be reset to 1.

Fig. 5.8 shows the outage probability as b increases for λ = 10−3 devices/m2. The

signal used in the numerical evaluation varies between −20 and 50, therefore the

considered values of ε correspond to a relative error in the 0.4% − 1.4% range. To

guarantee a fair comparison, we set bbb (for the Kulau et al. strategy), αE, βE, and

Smax (for EDSAS) so that the outage probability is almost the same as for our strategy.

The detailed values of these parameters are reported in Tab. 5.3. Moreover, since the

two above mentioned techniques are not tailored to AR signals, these simulations were

performed with real world time series.7 Note that, to use our proposed strategy with

7 Taken from the public dataset available online at https://www.ncdc.noaa.gov/crn/qcdatasets.html. See
H. J. Diamond et al., U.S. Climate Reference Network after one decade of operations: status and assessment, Bull.
Amer. Meteor. Soc., 94, 489-498, 2013
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Table 5.3: Parameters for Kulau et al. and EDSAS strategies to yield the same error as the proposed strategy
for λ = 10−3 devices/m2.

b 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Kulau et al. bbb 9.1 8.1 7.217 6.5 4.1 4 3.94 2.78

EDSAS
αE 0.006 0.5 0.54 0.5 0.5 0.52 0.55 0.4
βE 0.006 0.5 0.54 0.5 0.5 0.52 0.55 0.4

Smax 3 3 4 3 3 4 4 4

Table 5.4: Parameters for Kulau et al. and EDSAS strategies to yield the same error as the proposed strategy
for λ = 10−2 devices/m2.

b 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Kulau et al. bbb 9 8 7.215 6.5 4.1 4 3.94 2.78

EDSAS
αE 0.999 0.98 0.45 0.5 0.5 0.2 0.15 0.996
βE 0.999 0.98 0.45 0.5 0.5 0.2 0.15 0.996

Smax 1 2 2 3 3 3 3 4

the real signal, it is sufficient to fit the data series to an AR model, i.e., determine the

parameters α and σ2, and then use such approximation to feed the algorithm.

Fig. 5.9 shows that the proposed strategy is able to provide the desired QoS with an

energy expenditure that is significantly lower than those of the other approaches. This

is because of two reasons. First, the proposed approach is proactive, instead of reactive,

which means that, unlike EDSAS, we try to derive the error that the estimate will have

the next time the device wakes up instead of simply increasing or decreasing the sleeping

time based on the past. Secondly, we explicitly take into account the effect of interferers

on the ability of the FC to estimate the time series. While the other approaches neglect

the effect of collisions, so that a higher transmission rate will always result in a reduction

of the estimation error (at the cost of higher energy consumption), our strategy keeps

into account that a lower transmission rate yields a longer time-on-air and therefore may

increase the number of collisions and, hence, eventually increase the estimation error,

in particular in massive access scenarios. The oscillating behavior of EDSAS is due to

the fact that [104] does not specify how to set the parameters, and thus it is necessary to

manually tune the algorithm so that the outage probability (Fig. 5.8) matches that of the

proposed algorithm.

5.4 Channel access scheme for integral measurements

Unlike the two previous scenarios, in this case the FC is interested in tracing the time

integral of each single process xk. For example, the integral measure may refer to the

volume of fluid processed by an industrial pump, the distance covered by a fork lift
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in an automated warehouse, the amount of water used to irrigate a cultivation, and so

on. The proposed scheme assumes a duty-cycled operation mode, where transmissions

are performed after each sampling. As in the first considered scenario, data can be

compressed at the sensor nodes.

5.4.1 Process measurement model

In this case, besides the monitored signal xk, it is necessary to define the integral process

yk = ∑k
ℓ=1 xℓ. Notice that, since |α| < 1 (see Sec. 5.1.1), yk is asymptotically stationary.

As explained in Sec. 5.1.1, the sensor nodes can sample the monitored process xk with a

certain, maximum accuracy, and then perform a lossy compression of their measurements

to reduce the size of the transmitted messages. Moreover, a device can also transmits the

measurement of the integral process yk with maximum accuracy. The correct reception

of a data packet, therefore, makes it possible to completely nullify the estimate error of

the integral measure yk at the receiver, while the current value of the process will be

known with an error that depends on the compression level adopted by the transmitter.

The objective is to guarantee that the cumulative error at the FC, which is affected

by both the compression of the transmitted data and the estimation of the missing

samples, does not exceed a given threshold. In the considered application, it makes

sense to evaluate the absolute value of the cumulative error En after n slots since the last

successful transmission, i.e.,

En = yn − ŷn =
n

∑
k=1

(xk − x̂k) , (5.38)

with En = 0 for n = 0 (i.e., in case of consecutive successful transmissions).

Note that, under the considered assumptions, the error (5.38) has zero mean, but its

variance grows with n, because of both the lack of new measurements from the sensor

and the distortion that affects the last received measurement. Therefore, the probability

that the error exceeds a given threshold becomes progressively higher in time, until

a new packet will be correctly received, renewing the estimate process. Even if the

focus is on yn, the current measure xk is nonetheless needed for the estimation, which is

fundamental to reduce the sampling and transmission rates and, by that, save energy.

Since the error En is reset at every successful transmission, without loss of generality

index 0 can be used to indicate the slot when the last message from a given sensor was

received and n can be considered as the number of slots elapsed since the last successful

reception. Then, by leveraging on the temporal correlation profile, it is:

xn = αnx0 +
n

∑
k=1

αn−kuk = αn x̃0 − αnv(L) +
n

∑
k=1

αn−kuk, (5.39)
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where x̃0 is the latest compressed data sample available at the FC. Considering that

uk has zero mean, the estimate with minimum Mean Squared Error (MSE) in slot n is

x̂n = αn x̃0. This makes the reconstruction error of that measurement equal to the sum of

the distortion αnv(L) and the estimation error ∑n
k=1 αn−kuk. It follows that

En =
n

∑
k=1

(xk − x̂k) =
n

∑
k=1

[
−αkv(L) +

k

∑
ℓ=1

αk−ℓuk

]
==

n

∑
k=1
−αkv(L) +

n

∑
k=1

k

∑
ℓ=1

αk−ℓuℓ .

(5.40)

The first error term in (5.40) is associated to the distortion due to data compression and

can be expressed as

E ′n =
n

∑
k=1
−αkv(L) =

αn+1 − α

α− 1
v(L), (5.41)

which means that E ′n ∼ N
(

0,
(

αn+1−α
α−1

)2
ω2(L)

)
. Similarly, the second sum in (5.40)

becomes

E ′′n =
n

∑
k=1

k

∑
ℓ=1

αk−ℓuk =
n

∑
ℓ=1

uℓ

n

∑
k=ℓ

αk−ℓ =
n

∑
ℓ=1

uℓ
1− αn−ℓ+1

1− α
. (5.42)

The terms {uℓ} are zero-mean i.i.d. Gaussian r.v.s, so that E ′′n is a zero-mean gaussian r.v.

with variance

σ2
e (n) =

n

∑
ℓ=1

σ2
(

1− αn−ℓ+1

1− α

)2

=
σ2

(1− α)2

(
n− 2

α(αn − 1)
α− 1

+
α2(α2n − 1)

α2 − 1

)
. (5.43)

In conclusion, the cumulative error over a window of size k is En =
n
∑

n=1
(xn − x̂n) = E ′n + E ′′n ,

and follows a normal distribution N (0, σ2
t (n)), where

σ2
t (n) = σ2

e (n) +
(

αn+1 − α

α− 1

)2

ω2(L), (5.44)

for n = 1, 2, . . ., and σ2
t (0) = 0. Note that, as expected, σ2

t (n) is increasing with the

window size n.

5.4.2 Transmission strategy

As done for the other schemes, the transmission strategy is derived by considering

the perspective of a single node and assuming that the other devices follow the same

strategy.

Sensors are off the grid and are powered by batteries with a finite initial charge. In

order to limit the energy consumption, both the sampling and transmission rates should

be reduced. To this purpose, it is necessary to quantify their energy demand. We assume

that each sampling operation requires a constant amount of energy Es. Moreover, since
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devices are static and perform power control, the transmission power is the same for

all the transmissions of a device. Since the time-on-air of each transmission is also

constant, the energy consumed by a device for packet transmissions is the same for each

attempt. As a consequence, minimizing the energy consumption of a node is equivalent

to maximizing the duration S of the sleeping phase (under the QoS constraint).

In particular, capitalizing on both the sampling and data compression approaches

described in the introduction, the goal is to determine i) the mean duration S⋆ of the

sleeping window,8 and ii) the size L⋆ of the compressed packet that maximizes the

lifetime while satisfying the QoS constraint. Clearly, both decisions i) and ii) induce some

tradeoffs between energy efficiency and accuracy of the monitoring service at the FC. A

larger sleeping window corresponds to fewer transmissions and therefore less energy

consumption and interference but, on the other hand, leads to higher reconstruction

errors of the monitored phenomena as most of the data need to be estimated by the

FC. Vice versa, a larger packet size L reduces the reconstruction error because data is

less compressed, but reduces the success probability since it requires a larger SINR

threshold. The two tradeoffs are intertwined: since a larger L results in a reduced success

probability, more transmissions are needed for a given QoS, and the sleeping window

needs to be smaller.

As mentioned, the reconstruction error En is a normal r.v., therefore its magnitude, |En|,
is half-normally distributed with scale parameter σt(n). As discussed in Sec. 5.1.1, the

reconstruction error is reset at every successful transmission, since the device also sends

the integral measurement. As a consequence, the parameter σt(n) follows a sawtooth

pattern that renews itself at each successful transmission, i.e., every W slots (the time

between two consecutive successful transmissions, which is stochastic).

This means that the QoS constraint can be defined by focusing on the error in a

window of length W. More specifically, let consider the error at the end of a window,

EW ; the QoS can be defined as an upper threshold pth on the mean probability that |EW |
exceeds a given value b.

The optimization problem can then be formulated as follows

S⋆ ≜ max
L∈L

S(L) , (5.45a)

subject to: E [Pr (|EW−1| > b)] < pth , (5.45b)

where the expectation is taken over the statistical distribution of W, while S(L) is the

mean sleeping period when the selected packet size is L. The sleeping periods are

8 If a device has an additional sensor that provides the integrated measure, it can avoid sensing the environ-
ment during the sleeping phase, otherwise it needs to keep sensing even during this phase. This does not
impact the optimization procedure, since the sensing energy is a constant.
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Algorithm 4 Transmission strategy

1: Initialize S← vector of size |L| ▷ Contains S(L) ∀ L
2: for L ∈ L do
3: Set ps(L) = 1
4: while S has not converged do
5: S← max{S(L) : cond. (5.10) holds true}
6: ps(L)← eq. (5.8) with P = 1/S
7: S(L)← S
8: S⋆ = max S(L), L⋆ = argmaxS(L)

assumed to be i.i.d. geometric r.v.s with parameter 1/S(L). Moreover, considering that

the number of trials before success is also geometrically distributed with parameter

ps(L), the distribution of W turns out to be geometric, with parameter ptx = ps(L)/S(L).

Therefore, the condition (5.45b) can be expressed as

∞

∑
w=1

ptx (1− ptx)
w−1 Qhf (b; σt(w− 1)) < pth ; (5.46)

where Qhf(·) is the complementary cumulative function of the half-normal distribution

and σt(·) is the square root of the variance given by (5.44), with σt(0) = 0.

S⋆ (and the associated L⋆) can then be determined using an iterative approach, which

is described in Algorithm 4. For each possible L ∈ L, the corresponding optimal mean

sleeping duration S(L) is computed through an alternated optimization of the duty

cycle and its corresponding success transmission probability, until convergence. Then,

L⋆ = argmax
S

(L), which yields S⋆ = S(L⋆) (Line 8). The iterative procedure to derive

S(L) for a given L corresponds to the instructions in the while cycle in Algorithm 4.

The success probability is initially set equal to 1, as if there were no interference;

then the corresponding mean sleeping duration S, i.e., the one that satisfies the QoS

requirement (5.10) when ps(L) = 1 (Line 3), is determined. By adopting a mean sleeping

period S, however, the success probability will actually be lower than 1 because of the

interference caused by the different nodes, so that the QoS constraint will not be satisfied.

The value of ps(L) for the current value of the mean sleeping period S is then updated

by evaluating (5.8) with P = 1/S (Line 6), so that λs = λ/S, where λ is the density

of all nodes (active and not) . The procedure is repeated iteratively until convergence

(Lines 4-6).

5.4.3 Numerical evaluation

Fig. 5.12 shows the optimal value of the mean sleeping period, S⋆, when varying the

value of b, and for two values of the node density λs. It can be observed that the
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Figure 5.12: Optimal mean sleeping period S⋆ vs. b,
for different node densities λs.
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Figure 5.13: Average energy used per slot vs. b for
different node densities λs.

Table 5.5: Simulation parameters

Interference and communication parameters
Slot duration T 0.1 s
Density of sensor devices λ {500, 1000} devices/km2

Cell radius R 500 m
Received power9 Prx 4 nW
Transmission bandwidth BW 125 kHz
Noise power Ns 2.5 · 10−15 W
Sensing energy Es 495 µJ

Signal model and QoS parameters

Autoregressive model parameters
α 0.99
σ2 0.001

Initial value x0 0.8
Minimum packet size L0 24 bits
Maximum packet size Lmax 48 bit
Compression error power ω(L) a = b = 0.05
Shannon gap coefficient β 1
Threshold on E

[
Pr
(
En > b

⏐⏐ S(L)
)]

pth 0.3

sleep period grows with b, as expected since the QoS constraint becomes progressively

less strict, thus allowing for less frequent transmissions. Furthermore, the mean sleep

duration decreases for higher node densities, in order to counteract the larger packet

collision probability. We observe that, by further increasing the node density, the QoS

constraint can no longer be guaranteed for smaller values of b.

To better assess the performance of the proposed strategy, we compare it to a naive

approach where the device senses the data at each time slot (consuming a certain amount

of energy Es) and transmits it if the absolute error |En| is larger than a given threshold

ρ(b). In order to get similar results between the proposed and the naive strategies in

9 Note that this value allows devices at the cell edge to use the ETSI imposed limit of 25 mW on the
transmission power for the 868 MHz band.
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terms of QoS (i.e., equal Pr (|En| > b)), ρ(b) grows from 1.7 to 1.95 as b is varied from

0.3 to 2.2. The simulation parameters are reported in Tab. 5.5.

Given that both strategies satisfy the QoS constraint, both of them can be used in

the described scenario. However, because of the energy constraints, the performance

must also be assessed in terms of energy efficiency. We define the energy efficiency

b as the overall average energy consumption rate, i.e., the mean energy spent by the

nodes in one slot. The energy efficiency of the proposed method can be easily computed

as ϵ = PtxT+Es
S⋆ The energy efficiency of the naive protocol, instead, cannot be easily

determined in mathematical form, and is evaluated only through simulations. The

comparison is shown in Fig. 5.13, where it can be seen that the naive strategy requires a

much larger amount of energy, mainly due to the continuous sensing. This is avoided by

the proposed strategy, which samples the signal more sporadically, thus saving energy,

while guaranteeing the same QoS level of the naive protocol.

5.5 Lesson learned

Random access schemes can yield a better resource utilization than scheduled ones in

massive access scenarios, but require to address novel challenges. Transmissions are

prone to interference from other users and collisions waste energy, thus designing an

efficient access strategy is of utmost importance. In this study, we proposed three different

random access schemes aimed at providing an accurate estimate of the monitored signal

at the FC while maximizing the energy efficiency, under three different scenarios. The

proposed strategies make use of a combination of the three types of compression typically

adopted in standard approaches.

Unlike most state-of-the-art techniques, we also consider the role played by interference,

as collisions affect both the QoS and the energy consumption, especially in dense

scenarios. This allows one to obtain better performance than state-of-the-art algorithms,

as shown by the numerical evaluations. It is evident that this issue plays a major role in

the system performance and needs to be included in the protocol design.

The proposed model can serve as starting point for more realistic frameworks that

consider more complex signal models and possibly include spatial correlation among

devices, which may further reduce the number of transmissions needed to provide an

accurate estimate at the FC.
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6
Energy-depleting jamming attacks

IoT devices might not only have to deal with the environment they are placed in, but also

with intelligent attackers who want to disrupt their functionality or disable them outright.

The broadcast nature of wireless transmissions makes them highly vulnerable to jamming

attacks, which may become a serious threat in IoT networks of battery-powered nodes,

as attackers can disrupt packet delivery and significantly reduce the lifetime of the

nodes. This chapter studies an active defense scenario in which an energy-limited node

uses power control to defend itself from a malicious attacker, whose energy constraints

may not be known to the defender. The interaction between the two nodes is modeled

as an asymmetric Bayesian game where the victim has incomplete information about

the attacker. The optimal Bayesian strategies are derived for both the defender and

the attacker; they may serve as guidelines to develop efficient heuristics that are less

computationally expensive than the optimal strategies. For example, this work proposes

a neural network-based learning method that allows the node to effectively defend itself

from the jamming with a significantly reduced computational load. The results of the

model highlight the trade-off between node lifetime and communication reliability and

the importance of an intelligent defense from jamming attacks.

This work has been partly presented in [105] and realized in collaboration with

Federico Chiariotti.

6.1 The jamming problem in IoT networks

An attacker can interfere with a sensor network’s communication by jamming the

wireless channel, creating interference and forcing retransmissions. Jamming includes a

wide range of attacks, which may differ in their spectral pattern (single-tone, multi-tone

or partial jamming), and timing pattern, since jammers may continuously transmit,

randomly alternate sleeping and jamming phases, or send a jam signal only when some

traffic is sensed over the channel [106]. In this study, the focus is on the latter case, which

is commonly denoted as reactive jamming. The energy-limited nature of IoT nodes is also
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an important issue from a security standpoint: for battery-powered IoT devices, jamming

is not just a Denial of Service (DoS) attack, but it also decreases the network lifetime,

as the nodes are forced to deplete their batteries either in unsuccessful transmissions or

trying to actively fight the interference.

Jamming is a simple though powerful attack and has been widely studied in the

literature. The idea of using it to deplete wireless nodes’ batteries is more than a

decade old, as duty-cycle based protocols have been known to be vulnerable to this

kind of attacks since the early 2000s. Researchers have found several highly effective

jamming strategies for well-known WSNs protocols [107, 108, 109]. Jamming attacks

on IEEE 802.15.4-based IoT networks have been thoroughly investigated [110, 111], and

many attacks on that technology aiming at depleting the devices’ batteries have been

proved to be practicable with little effort [112]. A comprehensive survey of jamming and

defensive protocols in WSNs can be found in [113]. However, these attacks are highly

dependent on the specific protocol that the nodes use: a more general mathematical

analysis of jamming attacks can be performed using a game theoretical approach, which

models an adversarial situation in which independent agents with conflicting objectives

try to outsmart each other and maximize their own payoff.

Non-cooperative games have been widely used to model the relation between the

jammer and the victim [114, 115]. Typically, the payoff functions of the two players

concern throughput [116], Signal-to-Noise Ratio (SNR) [117], or packet-drop ratio [118],

and only seldom take into account energy. However, energy constraints are a significant

vulnerability in IoT and WSNs and cannot be neglected. The traditional approach in

the literature is to model a passive victim running a duty cycling algorithm to save

energy [119], but there are also works that study active defense strategies[118, 120].

In [121], the two players have temporal energy limitations that model the maximum

amount of energy that can be used over a period of time without causing overheating;

thus, energy consumption plays a role in the short term, but the total device lifetime

is not considered. In [122], the authors develop optimal steady-state strategies for the

legitimate network to detect the attack, and the detection accuracy is balanced with

the energy costs of monitoring. In [123] the total energy constraint on the jammer

is captured by a limit on the number of transmissions that it can perform. A finite

energy availability for both nodes is considered in [124], where jamming is modeled as

a zero-sum finite-horizon stochastic game with deterministic transitions and is solved

by means of dynamic programming. The energy consumption depends on the choices

made by the players, which can decide whether to transmit or to sleep, the transmission

power, and which channel(s) to use. One of the main differences between [124] and our
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paper is that it considers channel hopping as a defense mechanism, while our model

accounts for packet retransmissions.

Several works in the literature assume that both players have full knowledge about

their opponent, because this allows one to optimally solve the game, e.g., by means of

dynamic programming. Obtaining the optimal solution under incomplete knowledge

assumptions requires much more effort, as the complexity of the problem increases

significantly. However, some works in the literature include uncertainty when modeling

jamming attacks, especially in the context of cognitive radios [125, 126]. In [127], an

OFDM network does not know whether it will be under jamming attack, and the

authors investigate how this uncertainty affects the anti-jamming strategy. In [128], the

optimization function is represented by the SINR, and the authors find the optimal

strategies in closed-form for two different levels of knowledge available to the legitimate

transmitter.

Finally, some works consider distributed systems and network-level attacks: [129]

considers a wireless network where nodes can be of two types, namely selfish and

malicious, and have only incomplete information about the other transmitters’ types.

Further, each type is characterized by a specific utility function that combines throughput

and energy consumption. A similar model is studied in [130], where the users of a

distributed wireless network do not have complete information about the other nodes’

identities and a Bayesian game is studied to quantify the expected performance under

jamming attacks with different network uncertainties.

6.1.1 The proposed model

This study exploits game theory to model a smart IoT node defending itself from a

similarly energy-constrained jammer. Both nodes are assumed to be rational actors

and their interaction can be modeled as a zero-sum game (i.e., a completely adversarial

game in which each gain for one player is balanced by a loss for the other), whose

mathematical properties can be exploited to efficiently find a solution. The utility

functions balance lifetime and throughput in a weighed sum. The problem is solved

firstly under the assumption of full information available to both players and then for two

different incomplete information scenarios. In fact, the development of cognitive radio

techniques enables smart jammers able to adapt their attack strategies to the victims’

communication pattern [131]. It thus makes sense to consider also asymmetric scenarios

where the jammer has full information while the legitimate transmitter has only limited

knowledge about the energy availability and strategies of the attacker. In this case, the

jamming attack is modeled as a Bayesian game where the transmitter has a belief on the

attacker’s state and updates it based on the feedback information.
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The drawback of the Bayesian approach is its computational load, so that it makes the

optimal Bayesian strategies to be more suitable as guidelines to develop and gauge the

performance of more lightweight heuristics and suboptimal approaches, rather than to

be run by the energy constrained devices. In this sense, this study also investigates the

use of a neural network through which the transmitter can approximate the iterated best

response algorithm, choosing the best strategy to play against the jammer when it has

no knowledge about the jammer’s energy availability without having to run through the

whole strategy iteration. The pre-trained network can be implemented on a low-power

node, as computing the output of a neural network without any back-propagation is not

computationally expensive. This development is critical to allow low-power nodes to

behave intelligently without consuming more power computing optimal strategies than

they save by using them.

Although the approaches used to solve the game are well-known and validated, their

use in IoT scenarios is still mostly limited to toy examples because of the complexity of

finding Nash Equilibria. The scenario considered in here includes constraints, retrans-

missions, power control, and uncertainty about the attacker’s capabilities. As low-power

nodes become more pervasive, jamming attacks and sabotages can be expected to become

more common, and implementing an optimal defense strategy against a smart attacker

can significantly increase the resilience of the IoT to this type of threats. To the best of

our knowledge, this model is more realistic than those in the relevant literature, and the

good performance of the learning algorithm makes it possible to actually use the results

in a real network.

6.2 Game-theoretic model

This study considers a monitoring application where a sensor node, namely the communi-

cator (C), periodically reports some data to another user in the network, and a malicious

node, the jammer (J), tries to disrupt this communication. The interaction between the

two nodes is modeled as a non-cooperative game G between rational players. The model

is flexible and can accommodate disparate scenarios by properly setting its parameters

and payoff functions.

Both nodes are battery-powered, and the initial charge of their battery Bi,0 ∈N, i ∈
{C, J} is the only available energy, which is discretized into integer energy quanta. The

battery level of a node thus takes values in the set Bi = {0, 1, . . . , Bi,0}, i ∈ {C, J}. The

game G starts with both players having maximum battery charge and consists of a series

of rounds m = 0, 1, . . . , M: in each subgame Gm, the legitimate transmitter C spends EC,m

energy units to send the packet, while the attacker J consumes EJ,m energy quanta to

disrupt the communication. The whole game ends when C has an empty battery, BC,M =
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Figure 6.1: Representation of the m-th subgame in dynamic form.

0. If the battery of the jammer empties first, C keeps ’playing’ against the communication

channel. The system state at stage m is hence Sm ≜ (BC,m, BJ,m) ∈ BC ×BJ .

Notation. The realization of a generic r.v. x is denotes as x, its estimate as x̂, and the

realization of the estimate as x̂. Furthermore, for writing convenience, the probabilities

Pr(x = x) and Pr(x = x|y = y) for any pair of r.v.s x and y will be compactly written as

p(x) and p(x|y), respectively (whenever the particular r.v.s to which they refer can be

clearly identified from the context).

6.2.1 Structure of a subgame

Each subgame models the attempt made by C to transmit a packet. Its temporal duration

is limited by the length of the reporting window, which defines the maximum number of

attempts A that can be made for each packet. Accordingly, if the packet is not correctly

delivered within A transmission attempts, it is discarded and a new subgame starts.

Fig. 6.1 shows the dynamics of a subgame, which is a Stackelberg entry game [132] with

a random component.

Index a ∈ {1, . . . , A} represents the current transmission attempt for the considered

subgame. At each attempt, node C decides how much energy E(a)
C,m to spend for sending

the packet. This energy might be spent by using power control to increase the transmis-

sion power and, consequently, the SINR, or by using a different modulation and coding

scheme to increase the robustness to noise.

Each attempt can have three possible outcomes, depending on the choices made by C

and J, and the conditions of the channel, which is modeled stochastically.

• Drop (case 1) This happens either because C sets E(a)
C,m = 0, which implies that C

gives up on that packet and chooses to drop it, or the maximum number A of

attempts has been reached. In both cases, the subgame ends.

• ACK (case 2) The energy E(a)
C,m > 0 was enough to contrast the channel impairments

and the jamming attack, and the packet is correctly received. This ends the

subgame.

99



energy-depleting jamming attacks

• NACK (case 3) In this case, the energy chosen by C was not enough and the packet

is lost. The attempt counter a increases by one and C makes its choice again, as

long as the maximum number of retransmission attempts A is not exceeded and

the energy level in the battery is positive, otherwise we fall under case 1.

Let am ≤ A be the final value of a, i.e., the number of transmission attempts that C

made at the end of the m-th subgame. In order to reduce computational complexity and

save power, the strategy for both nodes is determined at the beginning of a subgame

and is not recalculated after each attempt.

The actions available to the players, i.e., the transmission energy levels E(a)
i,m, i ∈

{C, J}, a ∈ {1, . . . , am}, are limited by the current battery level and the maximum

energy that can be used for transmission, Ei,max, which depends on the maximum

available transmission power and overheating considerations. Hence, E(a)
i,m ∈ Ei,m ≜

{0, 1, . . . , min(Bi,m, Ei,max)}. Also, the action strategy of the subgame is feasible solely if

the following condition is satisfied:

Ei,m =
am

∑
a=1

E(a)
i,m ≤ Bi,m, i ∈ {C, J}, (6.1)

which means that the total energy used by node i during the m-th subgame cannot

exceed the available energy.

As outlined in Sec. 6.1.1, the players have a twofold goal and their payoffs are convex

combinations of monotonic functions of the energy consumption of node C and the

Packet Delivery Ratio (PDR), respectively. The main objective of the players can be

shifted between saving energy and delivering more packets by tuning the weights

αi ∈ [0, 1], i ∈ {C, J}. The payoffs of the two players in a single subgame are:

uC,m = (1− αC) fC(am) χC,m + αC

am

∑
a=1

gC

(
E(a)

C,m

)
(6.2a)

uJ,m = (1− αJ) f J(am) + αJ

am

∑
a=1

gJ

(
E(a)

C,m

)
(6.2b)

The first term of both equations concerns the outcome of the communication. In partic-

ular, the indicator term χC,m is equal to one if the subgame m ends with a successful

transmission, so that the function fC only rewards the communicator for successfully

transmitting the packet. Vice versa, the function f J rewards the jammer for disturbing

the transmission. In the general formulation in (6.2b), the term χC,m related to the

transmission outcome is not explicitly present, because the jammer may have a reward

also for simply delaying the packet delivery (i.e., C succeeds in the communication but

not at the first attempt); the particular shape of f J depends on the application scenario.
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However, the shape of f J affects the complexity of the solution: in this work, the solution

is limited to constant-sum games, which have particular properties that simplify the

solution.

The second part of the payoff equations is related to energy. The function gC gives C a

penalty for consuming energy, while gJ rewards J for the energy spent by C to contrast

the attack. Notice that the jammer’s energy is not directly considered in the utility

function in order to keep the game symmetric. However, it still plays a role in the whole

game evolution, as will be clarified in the following section.

It is worth to highlight that the definition of the functions does not affect the validity

of the solution methods proposed in the next sections: while the solution proposed here

requires the game to be equivalent to a zero-sum game, any definition of uC,m and uJ,m

that satisfies this property is solvable without modifications. However, in order for the

solution to be easily computable, the jammer’s objective must be assumed as purely

adversarial against the communicator, i.e., αJ = αC ≜ α. Nonetheless, this is a realistic

assumption, as the objective of the jammer will be to disrupt the network and cause as

much damage as possible to the communicator, so that the choice αJ = αC is reasonable.

Finally, this model does not consider detection to be an issue, as the jammer only

needs to block the communicator’s transmissions. A future version of the work might

include secrecy as one of the jammer’s goals.

6.2.2 The full jamming game

The general solution of the whole game G maximizes a long-term payoff function with a

given time horizon T. The payoffs in the multistage game G at stage m are given by:

Ui(m) =
m+T−1

∑
τ=m

λτ−m ui,τ, i ∈ {C, J}, (6.3)

where λ ∈ [0, 1] is a future exponential discounting factor, as often considered in the

literature on game theory [133], and T is the length of the payoff horizon, i.e., the number

of future subgames to take into account in the reward calculations. If T is finite, λ can be

safely set to 1 with no convergence issues, while the infinite horizon case requires λ < 1.

The payoff functions define the goals of the players, and affect the strategy they use to

achieve them, and, by that, the actual duration of the game. Notice that the optimal

solution of the whole game G does not necessarily coincide with the greedy strategy that

maximizes the payoff for each subgame independently, unless the time horizon window

is T = 1.
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Table 6.1: Parameters of the Neural Network.

Parameter Meaning

J Jammer node
C Communicator node

Ei,max Maximum transmission energy for player i
Bi,max Maximum battery size for player i

am Index of the last attempt in the m-th subgame
χC,m Indicator variable of the success of the transmission in the m-th subgame
E(a)

i,m Move for player i in the a-th attempt of the m-th subgame
Bi,m Battery level of player i at the beginning of the m-th subgame
ui,m Payoff for player i at the end of the m-th subgame
Ui,m Long-term reward for player i in the m-th subgame
s∗i,m Optimal (pure) strategy for player i in the m-th subgame
Φ∗i,m Optimal (mixed) strategy for player i in the m-th subgame
B̂J,m Estimated battery level of the jammer at the beginning of the m-th subgame
dm Feedback to the communicator in the m-th subgame

6.3 Complete information case

First of all, a full information game is considered, where both players are aware of the

type Bi,m and moves E(a)
i,m of the opponent i ∈ {C, J} at all times m. This assumption,

although unrealistic, allows one to obtain closed-form results, which play a fundamental

role in the derivation of the strategies for the incomplete information scenario and in the

assessment of their performance.

6.3.1 System parameters

The game model described in Sec. 6.2 is flexible and can be readily adapted to different

scenarios, by properly choosing the payoff functions (6.2) and (6.3). In the following, a

possible configuration is specified. The cost functions in (6.2) are set as:

fC(a) = γ(a), f J(a) = 1− γ(a) + χ̄C, (6.4)

gC(E(a)
C,m) = −

E(a)
C,m

EC,max + 1
, gJ(E(a)

C,m) =
E(a)

C,m

EC,max + 1
, (6.5)

where γ(am) is an arbitrary monotonically non-increasing function with output in [0, 1],

which accounts for the delay introduced by retransmissions (it is a ∈ {1, . . . , A}). In

particular, if γ(a) is strictly decreasing, C gets a penalty for the latency induced by each

retransmission even if the communication succeeds, and J receives a reward for delaying

the packet delivery. The term χ̄C is equal to 1 if J disrupts C’s communication, and to 0

otherwise. Notice that, according to (6.2), the rewards obtained by the two players are

computed only at the end of each round, i.e., for a = am. Function gC(·) penalizes C for

consuming energy; the amount of energy actually used is normalized to the maximum
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amount of energy that can be used. The additional term 1 in the denominator is arbitrary

and ensures that the absolute values of gC(·) and gJ(·) are always smaller than 1: without

it, any strategy, including a transmission with the maximum energy, would be dominated

by not transmitting, effectively reducing the strategy space. The reward given to node

J as defined in gJ(·) is exactly the opposite. Notice that the energy spent by node J,

although not explicitly present in the payoff definition for the single subgame, plays a

major role in the complete game, because it has a direct impact on C’s strategy and on its

packets’ error probability. Therefore, J’s moves affect the depletion speed of C’s battery

and the game duration.

Another important function that needs to be defined is the packet error probability,

Pe, which gives the probability that a packet sent by C is not correctly received by the

intended destination. The packet error function affects the numerical results, but does

not impact the validity of the model. The function used in the simulated scenario is

Pe(EC, EJ) = e
− EC

EJ+1 for a given moveset (EC, EJ). The uncertainty given by the random

nature of the channel is modeled as a Bernoulli random variable χC,m ∼ B(1− Pe), which

represents the correct reception of the packet. The expression chosen for the error proba-

bility is consistent with real fading models, as shown in [134]. However, the proposed

model is still valid if using any function Pe : {1, . . . , EC,max} × {0, . . . , EJ,max} −→ [0, 1]

such that Pe(Ec, Ej) is monotonically decreasing and convex in Ec and increasing and

concave in Ej, vanishing as Ec → ∞ and approaching 1 as Ej → ∞.

6.3.2 Dynamic programming solution

Under the assumption of full information, the expected payoffs of future subgames

can be calculated exactly with dynamic programming. In particular, the state value

Ui(BC, BJ) depends on the state value of all possible past subgames. Since the battery

charge cannot increase, the possible past subgames are the states (a, b) ∈ BC ×BJ such

that either (a < BC) ∧ (b ≤ BJ) or (a, b) = (BC, BJ) ∧ a ̸= 0; i ∈ {C, J}, as J is a reactive

jammer and does not consume energy if the communicator drops the current packet

(i.e., a = 0). An illustrative example for BC,0 = BJ,0 = 2 is given in Fig. 6.2. Notice that

transitions between states are allowed from bottom to top and from right to left.

In each state, C and J play the subgame described in Sec. 6.2.1, and choose how much

energy to use at each attempt to transmit or jam the legitimate packet, respectively. The

action chosen by player i ∈ {C, J} is called strategy and denoted as si; the strategy space

is {0, Ei,max}A. For each state it is possible determine the Nash Equilibrium (NE), which

is the combination of strategies such that neither of the players has an incentive to deviate

unilaterally from its choice. The NE is given by the pair of strategies (s∗C, s∗J ), which are

mutual best responses [135]. The payoffs of the full game can be computed exploiting

103



energy-depleting jamming attacks

0, 0
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0, 2

1, 0

1, 1

1, 2

2, 0

2, 1

2, 2

Figure 6.2: Example of state transitions for
the multistage game.

iterated best
response

update
belief

subgamestart

Figure 6.3: Block diagram of the Bayesian game.

dynamic programming, as given by. (6.3). The NE can be “pure”, which means that the

strategies (s∗C, s∗J ) are deterministic, or “mixed”, when the optimal strategy of at least

one player is comprised of multiple pure strategies with an associated probability. The

Lemke-Howson algorithm [136] allows one to compute the mixed strategies. The game

dynamics are obtained deriving the optimal strategies for every possible state, which

corresponds to determining the path from the initial state (at the right-hand side of

Fig. 6.2) to an ending state of type (0, ·). A more detailed explanation of the dynamic

programming solution of the game can be found in [105].

6.4 The Bayesian jamming game

Here the full information assumption is relaxed, so that the jamming attack is modeled

as an incomplete information game, in which the battery state of the jammer is unknown

to the communicator. Only the case of time window T = 1 is considered, as it showed

the best results in terms of delivered packets in the complete information case (see [105]).

Fig. 6.3 represents the scheme of the Bayesian game. At each subgame, the optimal

strategies (s⋆C, s⋆J ) of the two rational players are derived by means of iterated best

response. The outcome of the subgame (see Sec. 6.2.1) depends on such strategies

and the stochastic channel conditions. When playing the subgame, C obtains some

information, denoted as d, about the jammer. This feedback is used by C to update

its belief about the current battery level of J. This is repeated until the battery of the

communicator is depleted.

To ensure a fair comparison with the results of the full information scenario, the

parameters are the same as in Sec. 6.3.1.
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6.4.1 Solution of the subgame

In the incomplete information game, player C has a prior belief p(B̂J,m) on J’s battery

state, for each possible battery level between 0 and BJ,max.1 The belief is updated

after every subgame iteration, according to the feedback d that C receives. The two

players need to choose an energy level for any possible attempt in the subgame, hence

their strategy spaces are {0, EC,max}A and {0, EJ,max}A, respectively. The Bayesian Nash

Equilibrium (BNE) [137], i.e., the pair of optimal strategies for the considered subgame,

is reached when both players maximize their expected payoff and thus have no incentive

to choose another possible action. The best response strategy for both players in the m-th

subgame are defined as:

s∗C,m(sJ,m, BC,m, p(B̂J,m)) =argmax
sC,m

BJ,max

∑
B̂J=0

p(sJ,m|B̂J)p(B̂J)E
[
UC(m)|sC,m, sJ,m, BC,m, B̂J

]
(6.6)

s∗J,m(sC,m, BC,m, BJ,m) = argmax
sJ,m

E
[
UJ(m)

⏐⏐sC,m, sJ,m, BC,m, BJ,m
]

(6.7)

The jammer obviously has an advantage: its complete knowledge of the state allows it

to be aware of C’s optimal strategy and play accordingly, while C has to act on incomplete

information. In fact, the communicator chooses the strategy that maximizes its expected

payoff E [UC(m)|sC,m, sJ,m] weighed by the probability that J chooses action sJ,m when its

battery level is BJ,m = B̂J,m, and the probability distribution of J’s battery level is given

by C’s current belief. As the game goes on, C’s belief on J’s battery state will become

more accurate, reducing J’s advantage.

The structure of the payoff functions is such that each subgame can be represented

as the sum of a dummy game (i.e., a game whose result is not affected by the players’

strategies) and a zero-sum game. Thanks to the Minimax theorem [138], all zero-sum

games can be solved by using the iterated best response algorithm, which is far less

computationally demanding than other strategies to compute Nash equilibria. The

algorithm itself is very intuitive: starting from any strategy sC,m, the best response

s∗J,m(sC,m) is computed. Then, it is J’s strategy that is fixed, and C computes its best

response. If a pure BNE exists, the iterated best response algorithm will converge to it

with probability 1. However, the game might not have a pure BNE; mixed strategies are

1 The value BJ,max is chosen by C, and may be infinite if it believes the jammer not to be energy constrained.
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not a single set of moves, but a distribution over the strategy space {0, EC,max}A. In this

case, the algorithm can be generalized using

Φ∗C,m(ΦJ,m, BC,m, p(B̂J,m)) =

argmax
ΦC,m

BJ,max

∑
B̂J=0

p(sJ,m|B̂J) ∑
sC,m

∑
sJ,m

ΦC,m(sJ,m)ΦC,m(sJ,m)p(B̂J)E
[
UC(m)|sC,m, sJ,m, BC,m, B̂J

]
(6.8)

Φ∗J,m(ΦC,m, BC,m, BJ,m) = argmax
ΦJ,m

∑
sC,m

∑
sJ,m

ΦC,m(sC,m)ΦJ,m(sJ,m)E
[
UJ(m)

⏐⏐sC,m, sJ,m, BC,m, BJ,m
]

(6.9)

The strategies the general version of the iterated best response algorithm converges to

are always a BNE by definition, since the convergence criterion is for ΦC,m and ΦJ,m to

be mutual best responses. In zero-sum games, the algorithm always converges in a finite

time [136].

6.4.2 Updating beliefs

Two different scenarios are considered, making two kinds of information available to C.

• Full-feedback scenario (FF): in this scenario, the communicator observes both the

success or failure of the transmission and the moves played by the jammer.

• Low-information scenario (LI): in this case, C only observes the feedback from its

intended destination, i.e., it only knows whether the packet was correctly received,

but does not know the move played by J.

It should be noted that the full-feedback scenario is still an incomplete information

game: the full knowledge of the jammer’s moves does not give the communicator full

knowledge of J’s battery state; however, as the game evolves, C updates its beliefs in a

Bayesian fashion, getting closer to the real value of J’s battery state.

In the following, the posterior probability for J’s battery level is derived by conditioning

on the feedback available to C in each of the two scenarios and then repeatedly applying

Bayes’ theorem.

In a given subgame m, the jammer J starts the round with battery level BJ,m and

chooses a strategy ΦJ,m. The communicator C receives a feedback dm, which is a vector

containing a feedback for each transmission attempt made in round m. In the full-

feedback scenario, dm contains all the observed moves of J, while in the low-information

one it only contains the sequence of transmission outcomes (which always ends with
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either an ACK or a packet drop). According to Bayes’ theorem, the posterior probability

of the estimate that J plays a certain strategy Φ̂J,m given the feedback dm, is:

p(Φ̂J,m|dm) =

p(dm|Φ̂J,m) ∑
B̂J

p(B̂J)p(Φ̂J,m|B̂J)

∑
Φ

p(dm|Φ) ∑
B̂J

p(B̂J)p(Φ|B̂J)
, (6.10)

where p(B̂J,m) is the communicator’s prior belief distribution on the jammer’s battery

level in round m. The posterior probability of B̂J,m in the m-th stage is given by:

p(B̂J,m|dm) = ∑̂
ΦJ

p(B̂J,m|Φ̂J)p(Φ̂J |dm) = ∑̂
ΦJ

p(dm|Φ̂J)p(Φ̂J |B̂J,m)p(B̂J,m)

∑
Φ

p(dm|Φ)∑
B̂J

p(B̂J)p(Φ|B̂J)
(6.11)

where the second equality is derived by applying Bayes’ rule again and substituting the

result of (6.10). C receives feedback dm when J plays strategy ΦJ,m with probability:

p(dm|ΦJ,m) = ∑̂
EJ

p(d|ÊJ)p(ÊJ |ΦJ,m), (6.12)

where ÊJ is a vector of moves of length am.

Full-feedback scenario. In this case, J’s move is part of the feedback dm(a) for the a-th

transmission attempt, which is given by dm(a) =
(

E(a)
J,m, a, am, χC,m

)
, where E(a)

J,m is the

action that J chooses in the a-th transmission attempt of the m-th round. Accordingly,

the complete feedback vector for the m-th round is dm = (dm(1), . . . , dm(am)). Since the

feedback is obtained at the end of each round, hence C knows the value of am. As in (6.2),

χC,m accounts for the success of the transmission.

Then, the first factor in the right-hand side of (6.12) is equal to p
(

dm(a)|E(a)
J,m

)
if

ÊJ = E(a)
J,m, and to zero otherwise: since C knows J’s move as part of the feedback, that

feedback cannot be the outcome of a different move. Naturally, since E(a)
J,m is contained in

the feedback, any feedback element dm(a) which does not contain the correct EJ becomes

impossible, and the sum in (6.12) reduces to a single term. If the attempt is not the last,

the packet was not received correctly, and the feedback should reflect that.

The probability of feedback dm(a) when the energy used by J in the a-th attempt is

E(a)
J,m is computed as:

p(dm(a)|E(a)
J,m) = Pe(E(a)

C,m, E(a)
J,m) (6.13)

p(dm(am)|E(am)
J,m ) = χC,m + (2χC,m − 1)Pe(E(am)

C,m , E(am)
J,m ). (6.14)
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This allows us to solve (6.12), since the second factor p(ÊJ |Φ̂J , a) can be directly computed

from the strategy itself and E(a)
C,m is known to C. Eq. (6.12) can then be simplified to:

p(dm|ΦJ,m) =
am

∏
a=1

EJ,max

∑
ÊJ=0

p(dm(a)|ÊJ)p(ÊJ |ΦJ,m), (6.15)

since each attempt is independent from each other.

Low-information scenario. In this case, the feedback available to C is limited to dm(a) =

(a, am, χC,m). The probability p(dm(a)|Ê(a)
J,m) can be found by using (6.13) and (6.14) as

in the previous case. In this case, the solution to (6.12) needs to take into account all

possible move vectors, since C does not know the moves that were actually played by J.

Note that the sum in (6.12) is over all possible ÊJ , unlike in the full-feedback case.

Battery depletion. In both scenarios, since J’s battery is depleted by the moves it

plays in round m, this new information is included in the belief on the future bat-

tery state. The communicator believes that the total energy consumed by J in round

m is ÊJ,m = ∑am
a=1 Ê(a)

J,m. In the full-feedback scenario, the estimate ÊJ,m is always correct

and deterministic, since E(a)
J,m is part of the feedback. In the low-information case, the

probability distribution of ÊJ,m is:

p(ÊJ,m|dm) = ∑
ÊJ,m∈EJ,m

am

∏
a=1

p(Ê(a)
J,m|dm), (6.16)

where EJ,m represents the set of acceptable move vectors
{

ÊJ,m : ∑am
a=1 Ê(a)

J,m = ÊJ,m

}
. We

assume that the transmission attempts are spaced apart in time enough that the attempts

can be considered independent. The probability p(ÊJ,m(a)|dm) can be computed by

applying Bayes’ rule:

p(Ê(a)
J,m|dm) = ∑̂

ΦJ

p(Φ̂J |dm)
p(dm(a)|Ê(a)

J,m) p(Ê(a)
J,m|Φ̂J)

∑
EJ,max

ÊJ=1
p(ÊJ |Φ̂J) p(dm(a)|ÊJ)

. (6.17)

The factors p(Φ̂J |d) and p(dm(a)|ÊJ) can be calculated using (6.10) and (6.12), respec-

tively. In both scenarios, the updated posterior probability of J’s battery level after round

m becomes:

p(B̂J,m+1|B̂J,m,dm) =
B̂J,m

∑
ÊJ,m=0

p(ÊJ,m|dm)δ(B̂J,m+1, B̂J,m − ÊJ,m), (6.18)
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where δ(·, ·) is the Kronecker delta. The probability distribution of B̂J,m+1 given the

feedback can be calculated as:

p(B̂J,m+1|dm) =
BJ,max

∑
B̂J,m=0

p(B̂J,m|dm)p(B̂J,m+1|B̂J,m,dm). (6.19)

The belief update lets the communicator use the new information from the subgame

rationally, continuing the overall game until its battery is depleted. All the equations

above are equally valid for pure and mixed BNEs.

6.5 Simulation results

The performance of the optimal strategies are evaluated by studying the energy con-

sumption and the Packet Delivery Ratio (PDR) of the communicator. Such performance

are compared under different levels of information available at C, namely the complete

information (CI) scenario of Sec. 6.3, the full-feedback (FF) and low-information (LI)

scenarios of Sec. 6.4. The results have been obtained through Montecarlo simulation by

running 106 independent games.

As discussed in Sec. 6.4, only a payoff horizon T = 1 is considered and a corresponding

discount factor λ = 1. The weight α in the multiobjective optimization (see (6.2)) is

varied between 0 and 0.8. Higher values of α were not considered, as the optimal action

for the communicator would be to always drop packets, making the game trivial. The

maximum number of quanta that can be used for a transmission are EC,max = EJ,max = 8,

and the communicator can retransmit the same packet at most once, i.e., A = 2. Larger

values of A are computationally heavy due to the exponential growth of the action space

and require suboptimal but lighter approaches. In the simulation we arbitrarily assumed

that no penalty/reward is obtained if the first A− 1 transmission attempts of C fail,

which corresponds to γ(a) = 1 , ∀a ≤ A in (6.4); this may represent a scenario with non

critical latency requirements where the role of A may only be to limit the amount of

resources dedicated to each packet. The initial battery level of C is always BC,0 = 50,

while that of J’s battery varies: BJ,0 = {0, 20, 50}. Notice that BJ,0 = 0 means that there is

no jammer and the communicator is playing only against the channel. At the beginning

of the game, C has no information at all about the energy available to its attacker and

thus its prior belief follows a uniform distribution: p(BJ,0 = B) = 1/(BJ,max + 1) for all

possible battery values B = {0, . . . , BJ,max}, with BJ,max = 50.

Fig. 6.4 shows the number of packets sent by C as a function of the objective weight

α for different values of BJ,0. Notice that this value is independent of the transmission

outcomes and corresponds to the number of subgames played, which is 0 if C always
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Figure 6.4: Total number of transmission attempts as a function of the weight α for different values of the
initial battery charge of J and different levels of information available to C.

chooses to discard the packets to avoid wasting energy. As expected, the higher the

energy available to the jammer, the fewer the packets sent by the communicator, because

either it depletes its energy faster to fight the attack, or it decides to avoid sending packets

as a passive response to the jamming, never sending any packets until the threat is over.

When α is low, the main goal for C and J is to successfully transmit the packet and

disrupt the communication, respectively, and there is no significant difference among the

three scenarios. This happens because, by playing, C can infer the jammer’s strategy and,

consequently, its battery level. This represents a key result: when the communicator has

limited information about the jammer (FF and LI scenarios), after only a few subgames

of uncertainty, it gains knowledge about J’s energy status and thus acts similarly to the

CI case. The similarity between the two scenarios is an important result: the C node

does not need to measure the jamming power to react optimally to the jammer’s actions,

as the feedback given by the packet acknowledgments is sufficient.

However, the node behaves differently in the full information case: when BJ,0 = 0, the

communicator knows that it can transmit without fear in the CI case, while it needs to

learn it from the feedback in the two incomplete information scenarios, wasting some

energy protecting itself against a jammer that is not there. The opposite happens when

BJ,0 = 50: in the full information case, C knows that the jammer is strong and behaves
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Figure 6.5: PDR vs. number of transmission attempts made by C for different values of the initial battery
charge of J and levels of information available to C.

far more conservatively, often going to sleep mode to avoid wasting energy, while in the

incomplete information scenarios C is more inclined to devote resources for transmission.

As α increases, the main goal shifts towards prolonging (or shortening, for J) the

lifetime of the communicator. Therefore, C will dedicate less energy to each transmission

attempt, thus the number of subgames increases. However, after a certain threshold that

depends on the information gained by C and the energy availability of J, the optimal

strategy for C is to always sleep and not even try to send its packets, because this would

result in a waste of energy. When C is playing only against the channel (BJ,0 = 0, top

plot of Fig. 6.4), the more complete the information available to C, the longer its lifetime

(which coincides with the number of subgames). This is not true when BJ,0 = 20 and

especially when BJ,0 = 50 (middle and lower plots, respectively). When the jammer has

a lot of energy available to attack and C knows it (CI scenario), C behaves very cautiosly:

in the first rounds, it is extremely conservative and only transmits rarely (or even sleeps

if α ≥ 0.5). In this case, since the payoff horizon is set to 1, the reward on a single

subgame is not a good metric to maximize the lifetime or PDR of C, which would be

less conservative with a longer time horizon.

Fig. 6.5 shows the PDR against the total number of played subgames (i.e., the lifetime

of node C). The first noticeable thing is that the curves obtained for the three scenarios

are almost identical, confirming the fact that C quickly achieves enough knowledge

about J’s battery level even with a limited feedback. Further, as expected, as the initial

battery charge of the jammer increases, the fraction of successful transmissions decreases

because of the prolonged attack. It is interesting to note that the PDR curve is rather

smooth. Finally, the performance obtained in the CI case when BJ,0 = 50 are much worse

than those of the FF and LI scenarios in the same energy case. As explained previously,
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Figure 6.6: Average amount of energy spent by C per successful transmission vs. the objective weight α for
different values of the initial battery charge of J and levels of information available to C.

this is due to an excessively conservative behavior of the communicator in the presence

of a powerful jammer, that could be mitigated by widening the payoff horizon.

Finally, Fig. 6.6 shows the average amount of energy spent by C for a successful

transmission and confirms and completes the previous results. As energy efficiency

becomes more important (α closer to 1), C assigns less and less energy to each packet,

until the extreme case of continuous sleep. Again, the three scenarios provide similar

performance, with the exception of the case BJ,0 = 50 (lower plot), whose different

behavior, as already discussed, reflects the strategy adopted by C, which devotes a

significant amount of energy to the packets it decides to transmit in order to be sure to

succeed in the communication.

In conclusion, these results show that a partial knowledge of the jammer’s state does

not affect the ability of the transmitting node to defend itself against the attack; an

analysis of the results of its moves reveals the jammer’s strategy very quickly, and the

communication performance and lifetime of the communicator are not significantly

affected by the initial lack of information.
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6.6 Learning to play

Sec. 6.3 analyses the jamming game in the case of complete information available at both

players, when the optimal strategies are derived via dynamic programming. In Sec. 6.4

the assumption on the knowledge available to the communicator is relaxed and the

dynamic programming solution is exploited to determine the optimal strategies through

the iterated best response algorithm. The drawback of this approach is the computational

load required to run the best response algorithm iteratively till convergence to the BNE.

This section describes how to use a Neural Network (NN) to make the nodes learn

the strategy to play, rather than deriving the BNE every time, and exploit the solution

derived in the previous sections to evaluate the performance of the machine learning

approach.

As mentioned, in the proposed scenario the jammer has complete knowledge of the

communicator’s moves and battery charge, so that the learning process concerns C only.

C aims at choosing the optimal strategy to play in each round, given its current belief on

J’s battery level, and its own (known) battery level. Notice that C is unaware of both the

initial and actual charge of J’s battery. This problem lies in the area of supervised learning,

because the goal is to infer the mapping between the input and a known output (derived

as explained in Sec. 6.4). In particular, we decided to implement a NN using the open

source Keras library in Python.2

NNs [139] model the relation between some input data and the corresponding output

through interconnections among neurons (non-linear multi-input single-output functions)

that are organized in multiple layers. NNs are an extremely powerful tool because they

have the possibility of learning: the structure of the network is defined by the weights of

the interconnections among neurons, which can be tuned during a training phase so that

a loss function is minimized. Once the network is trained, the output of a given input is

readily derived by simply doing some multiplications.

This approach has some limitations, as it will always yield a pure strategy, which will

be an approximation of the optimal strategy and therefore might not be a BNE strategy.

However, if performance is satisfactory, the reduction of computational complexity

makes the optimality gap of the learned strategy acceptable. While back-propagation

is computationally complex and might be too energy-intensive for a battery-limited

node, simply calculating the output of a pre-trained neural network is simple, and our

proposal is to train the NN offline and pre-load the weights into the node, so that it can

calculate strategies efficiently.

2 https://keras.io/
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input layer hidden layers output layer

Figure 6.7: Structure of the NN. The network is fed with the current battery level of C, the mean µ and
standard deviation σ of its belief on J’s battery charge; the output is one among 81 strategies.

6.6.1 Structure of the neural network

The design of the NN has been influenced by the two following choices.

1. The optimal solution of the Bayesian jamming game also includes mixed NEs,

where the optimal strategy of a player is a probability distribution over multiple

pure strategies. Due to simplicity considerations, C only learns pure strategies; in

the case of mixed NEs, C has to learn only the strategy with the largest probability

to be played.

2. The goal of the two players does not change during the game; so, a different NN is

implemented for each value of α, rather than giving it as input to the NN.

Thanks to choice 1), the learning reduces to a multiclass classification problem, where

each strategy represents a separate class (and classes are mutually exclusive).

For both levels of information available to C (FF and LI scenarios), the training data

were obtained by simulating more than 106 possible inputs (battery charge of C and

statistics of its belief of the opponent’s energy level), with the weight α ∈ {0, 0.1, . . . , 0.8}
and J’s initial charge BJ,0 ∈ {0, 20, 50} (the parameters are the same as in Sec. 6.4). Instead

of feeding the network with the probability distribution of C’s belief of J’s battery level,

the inputs are its statistical mean and variance. Hence the input layer of the NN has 3

neurons: two for the mean and variance of the belief probability and one for C’s own

current battery charge, while the output layer has a neuron for each possible strategy.

The number of possible strategy is (EC,max + 1)A, as it depends on how many energy

quanta the node can use in each transmission attempt and on the maximum number of

transmission attempts for each subgame. With the parameters of Sec. 6.4, C can choose

one between (8 + 1)2 = 81 strategies. Fig. 6.7 shows the structure of the NN, which was

trained with a value BJ,max = 50.
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Table 6.2: Parameters of the Neural Network.

Parameter Value

# of layers 4
# of neurons [3, 40, 60, 81]
Activation function [relu1, relu, relu, softmax]
Loss function cross-entropy
Optimizer Adam
Metrics accuracy

1 Relu stands for REctified Linear Unit.

Each NNs has the same structure, regardless of the value of α. In particular, the two

hidden layers have 40 and 60 nodes, respectively, so that the NN has 4 layers in total. For

the first 3 layers, the activation function, i.e., the function that dictates how a neuron’s

weighted input is mapped into its output, is the rectifier function, whereas for the output

layer it is a softmax function, as usually done in classification problems. Thus, the

network will output a separate probability for each one of the possible classes (with such

probabilities all summing to 1) and chooses the most probable class. The learning process

for updating the weights of the interconnections between the neurons is defined by a loss

and an optimization function. The former represents the objective function that is used to

evaluate a set of weights and that the training phase aims at minimizing; in this case, the

multinomial cross-entropy between the predicted and the labeled real output has been

used. The latter is the function that determines how weights are updated; the proposed

NNs are trained with the Adam optimizer [140] with a Nesterov momentum [141], which

in our case proved to guarantee faster convergence than the commonly used stochastic

gradient descent algorithm. These choices are summarized in Table 6.2.

As commonly done in classification problems, the efficiency of the NN is evaluated by

means of accuracy, i.e., the percentage of correct predictions. The computational cost of

running the trained neural network is 7380 sum operations and 181 Relu functions, which

amounts to less than 10 thousand total floating point operations. This is extremely light

when compared to the iterated best response algorithm, which requires the calculation

of the payoffs for every possible response strategy and every possible battery level.

In the Bayesian case, just one round of IBR requires more than 8000 floating point

operations, as payoffs for the communicator must be calculated for every possible pure

response strategy and for every possible battery level of the jammer, then weighted by

the probability of the given battery level and summed.

6.6.2 Results

The networks have been trained with more than 105 data samples uniformly distributed

among the possible values of α only for very few iterations (about 15 training epochs
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Figure 6.8: PDR vs. number of transmission attempts made by C for different values of BJ,0 in the Low
Information scenario. Comparison between Bayesian (BP) and learning (LP) policies.
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Figure 6.9: Average amount of energy spent by C per successful transmission vs. α for different values of
BJ,0 in the Low Information case. Comparison between Bayesian (BP) and learning (LP) policies.

for network). 15% of the data was used for testing, i.e., to infer the performance of the

network with unseen data, and obtained an accuracy larger than 95% for all values of α;

even, values of α > 0.5, when the strategy of C is trivial and consists in sleeping most of

the time, yielded an accuracy larger than 99%.

The results obtained for the accuracy are extremely good, and indicate that it is

possible to train a device to fight against a jammer with unknown energy availability.

However, to determine how well the NN performs, we also repeated the Montecarlo

simulations of Sec. 6.5 using the trained communicator against the omniscient jammer.

We also compared the performance of the Bayesian policy (BP) with that obtained with

the learning algorithm (LP).

Fig. 6.8 shows the PDR as a function of the lifetime (or, equivalently, the number of

transmission attempts) obtained with the iterated best response algorithm as explained

in Sec. 6.4 and with the trained communicator in the LI scenario. It is evident that C has
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efficiently learned how to play against J, even without knowing the value of BJ,0. Fig. 6.9

also confirms that the communicator is perfectly able to learn the optimal strategy. The

plot shows the average amount of energy spent by C per successful transmission and,

again, the curves obtained with the two approaches basically coincide. The plots of the

Full Feedback scenario are omitted, but the performance obtained with the learning

system is almost identical to the optimal one also in this case.

6.7 Lesson learned

Jamming attacks can be a serious problem in IoT networks, where the constrained devices

may not be able to support heavy defense mechanisms. In such a scenario, it is important

to take into account the energy restrictions of both the jammer and the attacked node, as

they can have a strong impact on the strategies played by the two devices.

Interestingly, the knowledge that the victim has on the jammer has a marginal impact,

because as the game goes on, it gains an increasing knowledge about the jammer’s energy

condition, so that the performance obtained under incomplete information approaches

that of the complete information scenarios. The analytical investigation proposed here

sheds light on how the game evolves differently according to the level of awareness that

the legitimate transmitter has about its attacker, making realistic assumptions on the

nodes’ capabilities.

Finally, this work proves that using a simple machine learning algorithm it is possible

to obtain performance that is very close to those of the optimal Bayesian strategies, with

a much lower computational load.

The model and the results discussed here may serve a starting point to develop and

gauge lightweight attack and defense strategies, possibly extended to a whole network

of jammed devices and with the inclusion of energy harvesting capabilities.
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7
Improved channel access in LTE

The RACH procedure in LTE serves as a synchronization mechanism between the

Base Station (eNB) and the User Equipments (UEs): the UEs compete for resources by

randomly choosing a preamble and getting assigned data resources by the eNB, provided

that they do not collide with each other in the preamble-based contention phase. The

collision resolution mechanism, however, is known to represent a bottleneck in case

of MTC. Its main drawbacks are seen in the facts that eNBs typically cannot infer the

number of collided UEs and that collided UEs learn about the collision only implicitly,

through the lack of the feedback in the later stage of the RACH procedure. The collided

UEs then restart the procedure, thereby increasing the RACH load and making the

system more prone to collisions.

The current system was designed to handle about 128 attempts/s [142], however

forecasts show that traffic could reach up to 370 attempts/s in the near future [143],

mainly due to the expected increase of machine-type traffic in cellular access. In

case of synchronized alarms, simultaneous accesses to the channel may yield up to

a tenfold increase with respect to normal traffic, almost guaranteeing that all UEs will

collide [144, 145]. RACH overload represents a serious issue that can significantly

degrade the network performance, and in the last years a variety of approaches to

mitigate collisions were proposed. Studies generally focus either on improving the

preamble detection or on efficient usage of the random access-related resources.

This study ([C9] and avaialble in [146]) proposes a new machine learning based

detection scheme that requires no modification of the current protocol stack, and that

can be fully implemented at the eNB. It leverages machine learning techniques to design

a system that outperforms the state-of-the-art schemes in preamble detection for the

LTE RACH procedure. Most importantly, the proposed scheme can also estimate the

collision multiplicity, and thus gather information about how many devices chose the

same preamble. This data can be used by the eNB to resolve collisions, increase the

supported system load and reduce transmission latency. The presented approach is

applicable to novel 3GPP standards that target massive IoT, e.g., LTE-M and NB-IoT.
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7.1 LTE RACH

The random access procedure in LTE is performed in the Physical Random Access

Channel (PRACH), a dedicated physical channel with an overall bandwidth of 1.08

MHz and duration between 1 and 4 LTE subframes. This section describes how PRACH

preambles are generated and how they are used in the multiple channel access scheme,

and finally gives an overview of the state-of-the-art algorithms for preamble detection.

7.1.1 Preamble generation

LTE uses Zadoff-Chu (ZC) sequences, complex-valued sequences that satisfy the Constant

Amplitude Zero Autocorrelation (CAZAC) property, as a basis to create RACH preambles.

A ZC sequence of odd length NZC is defined as:

zr(n) = exp
{
−j2πr

n(n + 1)
NZC

}
, n = 0, 1, . . . , NZC−1 (7.1)

where r ∈ {1, . . . , NZC−1} is the sequence root index; the LTE standard uses NZC = 839.1

Given a root r, it is possible to generate multiple versions of the base sequence zr through

a circular shift, thereby obtaining orthogonal sequences that exhibit a zero correlation

with one another at the receiver. The cyclic correlation of a ZC sequence with its root

is a delta function with a peak corresponding to the circular shift that was applied to

the root sequence. It follows that circular correlation of a root against a superposition of

different sequences obtained from that root results in multiple peaks that correspond to

the individual shifts.

According to the cell size, the PRACH preamble can have four different formats, with

duration from 1 to 4 subframes. This study focuses only on preamble format 0, which is

typically used in cells with a radius up to 14 km, and consists in a normal 1 ms random

access burst with preamble sequences of duration 800µs (an exhaustive description

of the different preamble formats and their structure can be found in [142]) The full

PRACH preamble is obtained by prepending the so called Cyclic Prefix (CP) to the ZC

sequence chosen by the UE. The CP is a replica of the last few symbols of the sequence,

that helps counteracting the multi-path reflection delay spread, and whose length is

specified according to the chosen preamble format. Additionally, the cyclic prefix makes

it so that if the preamble signal is delayed in time (like in the case of a UE at the cell

edge), there is an additional shift in the correlation peak. While this feature enables the

eNB to estimate the channel delay experienced by a device, it also means that different

preambles arriving with different delays can yield a peak in the same location of the

1 Except for preamble format 4, which is not treated in this study.
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correlation signal. In order to maintain the separation of different preamble correlation

peaks in the presence of delays, LTE UEs are allowed to only pick sequences whose shift

is a multiple of a base quantity NCS, which depends on the cell radius (and hence on the

maximum delay) and on the propagation profile. NCS is in fact chosen in such a way

that each cyclic shift, when viewed within the time domain of the signal, is greater than

the combined maximum round trip propagation time and multi-path delay-spread. This

guarantees that the eNB can identify different preambles by applying a correlator and a

peak detector to the received signal.

The cyclic cross-correlation between any two ZC sequences generated from different

roots is instead a constant value. Hence, in order to reduce noise at the correlation, it

is preferable to generate all preambles using as few root indices as possible. Each root

allows one to obtain ⌊NZC/NCS⌋ different preambles, and the LTE standard contemplates

the use of Nprb = 64 preambles in each cell. By assigning orthogonal ZC sequences to

adjacent eNBs, the inter-cell interference is highly reduced. This study only considers

the case NCS = 13, which is the smallest possible cyclic shift dimension that allows

one to obtain exactly Nprb preambles, so that a single root is used to generate all the

LTE preambles of the cell. This configuration can be used in all cells covering a radius

smaller than 0.79 km [142], and is thus well suited to represent densely deployed urban

scenarios.

7.1.2 Procedure

The RACH procedure consists of four phases (see Fig. 7.1):

1. Random Access Preamble. The UEs that intend to transmit data randomly choose

one among Nprb available preambles and send it to the eNB.

2. Random Access Response (RAR). The eNB processes the received signal, consisting in

the superposition of all the transmitted preambles, and detects which preambles

were chosen. For each detected preamble, it then sends a RAR message to assign

the uplink resources to the corresponding UE.

3. L2/L3 message. The UEs use the newly assigned data channel resources to commu-

nicate their connection request, and a unique identifier.

4. Contention Resolution Message. The eNB responds to the UEs using the identifiers

they communicated in their L2/L3 message, granting the requested resources.

UEs can access the channel either in a contention-free mode, where the eNB forces the

UEs to use a particular signature for the preamble generation, thus avoiding collisions,

or in a contention-based mode. While contention-free access is reserved for handover

and other special delay-sensitive cases, contention-based access represents the default

method for UEs to access the channel, and is thus taken as the focus of this paper. In
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Figure 7.1: The LTE RACH procedure [142].

this procedure, which is illustrated in Fig. 7.1, if multiple UEs pick the same preamble,

a collision happens, and may be resolved at different stages of the procedure. If the

colliding preambles are received with high enough SNR, and are sufficiently spaced

apart in time,2 the eNB can detect both of them and recognize the collision, avoiding

to send the RAR message to the involved UEs. Otherwise, the eNB will not detect the

collision but a single preamble, and all colliding UEs will receive a RAR message and

try to access the same resource simultaneously, colliding in the L2/L3 message phase.

The eNB will therefore be unable to decode the received message, and will send no

contention resolution message; the collided UEs can then try again in a new PRACH

phase. Collisions go undetected especially in urban environments, where smaller cells are

employed and the distance between different UEs is too small to allow a differentiation

of multiple copies of the same preamble through their delay [145].

7.1.3 State of the art in preamble detection

The conventional approach to preamble detection in LTE RACH is provided in [142]. This

category of detectors (which will be referred to as threshold-based) work by comparing

the circular correlation of the received signal with its base sequence against a previously

set threshold. A preamble is detected when the corresponding bin in the correlation

signal contains values above the threshold. Such threshold is typically a function of the

2 More specifically, the energy peaks corresponding to the preambles should be separated, in time, by at least
the maximum delay spread of the cell.

124



7.1 lte rach

estimated noise level: this provides direct control over the false alarm probability, which

can be made arbitrarily low (at a price in missed detection performance).

The threshold mechanism described previously is extended in [147] to take into account

quantization and discretization steps that can improve computational performance, at

the expense of missed detection probability. Another approach to increase the detection

performance for LTE frequency division duplex systems is presented in [148], where

noise is smoothed through an additional preprocessing phase prior to computing the

correlation signal. This improves the performance in an ideal Additive White Gaussian

Noise (AWGN) channel and with low SNR, but may be impractical for fading channels.

Multiple root sequences are considered in [149], which proposes a preamble detector

able to identify non-orthogonal preambles and suppress the noise rise. The key idea

is that the eNB can detect preambles in an almost interference-free environment by

eliminating the interfering signals from the original received signal. The Power Delay

Profile (PDP) allows one to obtain the channel profile, used by the eNB to reconstruct

the preamble signal.

The problem of performance degradation due to time dispersion of the channel is

investigated in [150]. Under the assumption of known PDP of Rayleigh fading that is

independent across antennas and multiple paths, the paper derives an optimal statistic

for preamble detection for frequency selective channel, as an alternative to increasing

the eNB target PRACH received power to counter the time dispersion.

7.1.4 Interest in multiplicity detection

The benefits of the multiplicity detection are briefly commented in the following para-

graphs. A straightforward application is to avoid sending a RAR message when multiple

UEs activated the same preamble, so that the involved UEs will be implicitly informed

about the collision. This enables to avoid subsequent collisions of L2/L3 messages and

to shorten the RACH procedure. Further, multiplicity detection may allow one to infer

the current load of the LTE RACH, as well as trends regarding its changes. This could

help, e.g., a proper dimensioning of the resources dedicated to the PRACH, or adjust the

operation of the RACH procedure. Examples are the dynamic allocation algorithm [151],

and the dynamic access class barring [152], respectively.

Another line of works where the multiplicity knowledge could be beneficial are the

ones which assume reengineering of LTE RACH procedure, e.g., grouping LTE preambles

in codewords that could convey information to the eNB [153, 154] or use of advanced

collision resolution algorithms RACH [155, 156], which are shown to lower the latency

and increase the reliability and throughput of LTE RACH.
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As a final remark, note that the focus of the paper is on the multiplicity detection,

while its coupling with advanced LTE RACH algorithms is left for further work.

7.2 Machine learning approaches

The main contribution of this work is the application of Machine Learning (ML) to

preamble detection (i.e., determining whether a certain preamble was sent or not)

and preamble multiplicity detection (i.e., determining how many devices sent the same

preamble) in LTE. The necessary premise for every ML algorithm is to have data available,

which can be used to train these systems and make them “learn”. Thus, this section

firstly gives some details on the dataset used, and then discusses the employed ML

techniques, namely Logistic Regression (LR) and NN.

7.2.1 Dataset generation

Research about multiplicity collision in the RACH procedure is quite modest, and, to

the best of our knowledge, there is no publicly available dataset that relates the signal

received at the eNB with the information of the preambles chosen by each station. Hence,

we generated our own dataset, using the MATLAB LTE module.3 The LTE System

Toolbox™ in fact provides standard-compliant functions for the design, simulation, and

verification of both the LTE and LTE-Advanced communications systems, with models

up to Release 12 of the standard (at the time this study was performed.).

7.2.1.1 Data labeling

To run the ML algorithms, it is necessary to have a map between (i) the signal received

at the eNB at the end of Phase 1) of the RACH procedure, and (ii) the number of

UEs that selected each preamble. These will represent the input and output data of

the algorithms, respectively. Accordingly, each simulation consists of simultaneous

random access attempts from a certain number of UEs, each choosing one of the Nprb

available preambles. Using the MATLAB LTE module, it is possible to extrapolate the

corresponding correlation signal at the eNB, i.e., the output of the cyclic correlation of the

signal received at the eNB with respect to the root index, as described in Sec. 7.1.1.

As explained in Sec. 7.1.1, each preamble is uniquely mapped to a correlation window

of predefined size, according to the value of NCS. Such window will be denoted as bin

from now on. Since the goal is determining how many devices chose each preamble, we

decided to consider each bin separately, rather than the correlation signal as a whole.

Fig. 7.2 shows an example output of the MATLAB LTE module. Here, the correlation

3 https://www.mathworks.com/products/lte-system.html
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Figure 7.2: Example of correlation signal with 16 bins.

signal was divided in 16 bins for clarity; however the actual schemes work by dividing

the correlation signal into Nprb = 64 bins, each one corresponding to a preamble.

7.2.1.2 Applications

Two distinct applications have been investigated:

• Preamble detection, to compare the performance of the proposed ML systems with

respect to the state-of-the-art. For this application, the goal is to identify whether a

preamble was sent, and which one. Three distinct datasets were generated to train

and evaluate detection performance:

– A noise-only set of correlations, used to evaluate false alarm probabilities

according to the eNB testing specification [157];

– A set of correlation signals obtained when only a single UE is transmitting,

used to test missed detection;

– A dataset containing both noise-only and single UE correlations, used to perform

training of the ML systems.

• Multiplicity detection, to derive the accuracy obtained when estimating the number

of UEs that chose the same preamble. For this purpose, dataset with bins containing

from 0 to 5 preambles was generated. This dataset was then split in two, for training

and testing.

For both applications, all datasets have been generated considering multiple scenarios,

which differ for:

• Noise level. The signal received at the eNB is the superposition of all the transmitted

preambles, corrupted by noise, expressed in terms of SNR. Based on performance

from the tested ML systems, we decided to focus on an SNR range between −18

dB and −12 dB.

• Channel model. We considered an AWGN channel and an ETU70, i.e., an Extended

Typical Urban channel with 70 Hz Doppler affected by Rayleigh fading.
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Over 105 independent simulations were run for each scenario, deriving the correlation

signal in each bin and the number of UEs that selected the corresponding preamble.

7.2.1.3 Traffic intensity

While the preamble detection problem requires the transmission of at most one pream-

ble per RACH attempt, the number of competing devices is a critical parameter that

influences the performance of the multiplicity detection procedure. In this study, the

performance evaluation focused on high traffic scenarios corresponding, e.g., to alarm

events that trigger transmission from a large number of UEs.

In [158], 3GPP proposes a model for highly correlated traffic arrivals, where the

number of UEs in each random access opportunity inside the considered time frame

follows a Beta distribution. The standard [158] defines a possible massive access scenario

with a maximum of 30000 devices accessing the channel “synchronously”, i.e., over a

time interval of about 10 s. Considering RACH opportunities to happen every 20 ms,

this corresponds to a maximum expected number of devices that participate in the same

RACH opportunity of about 120. The dataset was therefore generated with 120 UEs that

randomly choose among the Nprb available preambles. Due to the binomial distribution

nature of the preamble selection mechanism, 99% of the bins generated in this way have

at most 5 devices choosing that preamble.

7.2.2 Logistic regression

LR is a statistical method predicting the probability that a given input data belongs or

not to a certain class. The rationale behind LR is that the input space can be separated

into two complementary regions, one for each class, by a linear boundary. It differs

from linear regression because the dependent, output variable is binary rather than

continuous, and this method is in fact intended to model classification problems. The

probability that the output belongs to one or the other class is expressed by means of a

sigmoid σ(·), also called logistic function, from which LR takes its name.

In order to make a prediction, it is first necessary to train LR, i.e., use known labeled

data to determine the weights in σ(·) that minimize a predefined cost function; such cost

function measures the distance between the desired output and the predicted one.

Given an SNR value, a different LR model was trained for each type of channel

considered (AWGN and Rayleigh), and for both the investigated problems (preamble

detection and collision multiplicity); the implementation was done using the open source

scikit-learn library in Python4. The dataset used is the one described in Sec. 7.2.1, so that

the logistic regressor is fed with the correlation signal obtained at the receiver in a bin,

4 https://scikit-learn.org
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while the output data is the number of UEs that picked the preamble corresponding to

the considered bin. For preamble detection, there are two possible classes, i.e., 0 or at

least one UE, while the number of possible classes in the collision multiplicity problem is

Nmax + 1, where Nmax was set to 5 and represents the maximum number of colliding UEs

we are interested to estimate (see Sec. 7.2.1.3). Choosing among Nmax + 1 alternatives can

be modeled as a set of Nmax independent binary choices (a pivot alternative is compared

to the remaining Nmax ones). This makes the training complexity linear in Nmax.

As common in classification problems, the performance of the LR predictors were

gauged through the accuracy metric, which represents the fraction of correct predictions.

7.2.3 Neural network

Artificial NNs [139] are a class of mathematical models that are considered universal

approximators [159], as they are able to represent, up to any accuracy, any non linear

function. The basic units of NNs are called neurons and are organized in multiple layers.

Any NN has an input layer fed with the data to process, an output layer that represents

the corresponding output determined by the network, and possibly one or more hidden

layers. Neurons represent non-linear multi-input single-output functions; such functions

are characterized by some weights and biases, which represent the interconnections

among the neurons. Similarly to LR, a NN learns the relation between an input data

and its corresponding output through a training phase, during which all the weights

and biases are progressively tuned to produce the desired output. NNs are an extremely

powerful tool because they can infer even very complex functions, that analytical models

or simpler approaches such as LR fail to describe.

This study uses a simple feedforward NN, i.e., a fully-connected network where

any neuron in layer i is connected to any neuron in the next layer i + 1. For each

considered SNR value, channel type and problem to solve (preamble detection or

collision multiplicity), a different NN was trained using the Keras5 library. Since the

ultimate goal consists in determining the number of users that picked a certain preamble,

the input data is the correlation signal obtained at the eNB for the corresponding bin.

The output layer has Nmax + 1 nodes, where Nmax is the maximum number of colliding

UEs we are interested in estimating (Nmax = 1 for the preamble detection, Nmax = 5 for

the collision multiplicity).

In both scenarios, for all layers but the last one, the activation function (i.e., the function

that dictates how a neuron’s weighted input is mapped into its output) is the rectifier

function, whereas for the output layer we decided to use a softmax function, as usually

done in classification problems. This implies that the NN outputs a separate probability

5 https://keras.io
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Figure 7.3: Detection performance comparison in an AWGN channel.

for each of the possible classes and chooses the most probable class. The efficiency of the

neural network was evaluated by means of accuracy, as for LR.

7.3 Results

The performance of the LR and NN methods were evaluated for preamble detection

and collision multiplicity estimation. This section describes the obtained results and

discusses the new opportunities opened up by the ML tools, as well as their limitations.

7.3.1 Preamble detection performance

To guarantee a fair comparison with the state-of-the-art threshold based detection, the

simulations were conducted according to the LTE specifications on eNB conformance

testing [157], measuring the missed detection probability, i.e., the probability that a transmit-

ted preamble remains undetected at the eNB. In this case, the test dataset (see Sec. 7.2.1)

contains bins belonging to correlation signals in which exactly one device was transmit-

ting. The dataset used for training of the ML systems, instead, consists of bins coming

from 105 correlation signals containing either 0 or 1 preambles.

The results for both the LR and the NN schemes in the case of an AWGN channel are

shown in Fig. 7.3, together with the performance of the algorithms proposed in [147]

(see Sec. 7.1.3). The scheme based on LR yields worse performance than those leveraging

thresholds, because of its extreme simplicity; the mediocre performance obtained with LR

suggests that the correlation signal at the eNB and the transmission of defined preambles

are data that are not completely separable, but are rather related in a more complex

way. This is supported by the outstanding performance of the NN, which provides a

gain in the range of 2 to 3 dB with respect to the best threshold-based detector for all
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Figure 7.4: NN and best threshold system detection performance comparison in an ETU70 channel.

values of SNR, yielding a performance which conforms to the standard requirements.

Rigorously, missed detection probability should also include the cases of a wrong UE

delay estimation. However, in the case of ML based systems, which are not capable of

estimating this parameter, delay detection cannot be taken into account.

Fig. 7.4 shows a comparison between the detection performance of the NN in the case

of an ETU70 channel, and compares it with the performance of the best threshold-based

detection scheme. Also in this case, the NN achieves a significant improvement in

detection performance, upwards of 4 dB with respect to the threshold based schemes

described in [147]. LR performance is only shown at SNR values in which the false alarm

probability requirement is satisfied.

A metric which is complementary to the missed detection probability is the false alarm

probability, i.e., the probability that the eNB wrongly detects a transmission in an unused

bin. The minimum requirement for this metric is set by the standard at 0.1% [157].

ML approaches do not provide the same direct control over the false alarm probability

that threshold-based schemes offer. With the LR scheme, the false alarm probability

requirement is respected for SNR larger than −16 dB. On the other hand, the false alarm

probability obtained with the NN was consistently under the required 0.1% threshold

for all the analyzed SNR values, for both AWGN and ETU70 channels.

7.3.2 Multiplicity detection

The reliability of the proposed schemes in the case of multiplicity detection was assessed

by measuring the frequency of errors in the estimation. Fig. 7.5 shows the probabilities

for both LR and NN approaches to give a guess that is wrong by some amount, denoted

as offset, for an AWGN channel. Offset 0 represents the probability of guessing exactly
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Figure 7.5: Probability of getting the multiplicity wrong by different offsets in an AWGN channel.
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Figure 7.6: Probability of getting the multiplicity wrong by different offsets in an ETU70 channel.

the number of preambles in the bin, offset 1 represents the probability that the difference

between the estimated and real number of transmitted preambles is ±1, and so on.

As expected, lower SNR values give higher error probabilities. The NN clearly

outperforms the LR approach, thanks to its higher complexity, which allows one to infer

even very complicated relations between its input and output data. Although LR could

not compete with the NN in the preamble detection (see Fig. 7.3), a linear approach

is still able to extract the information needed to identify the number of transmitters

in each bin from the signal received at the eNB with a probability of around 0.8, and

gets the multiplicity wrong by at most 1 with a probability of 0.99. The NN scheme,

instead, guarantees with a probability of about 0.999 to have an estimate that is either

correct or only off by one, even for very low SNR values, and yields exact guesses with a

probability of 0.9.

Similar considerations can be made for a ETU70 channel, as shown in Fig. 7.6. In

this case, however, the improvement obtained with the NN scheme over the LR one is

smaller.
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Table 7.1 contains the normalized confusion matrices for the NN and LR systems,

when SNR =−16 dB: the rows represent the actual multiplicity value, while the columns

represent the value estimated by the ML scheme. Hence, the confusion matrix for an

ideal system would have ones along the diagonal, signifying that for each input the

labeling is correct with probability 1. It can be seen that the NN consistently outperforms

the LR, except for the case of no preambles being sent, where LR achieves a perfect score.

Despite this perfect performance in the correct detection of no preambles in the bin, the

LR scheme is also heavily affected by a wrong detection rate in case of 1 preamble being

sent, thus motivating the bad overall detection performance seen in Fig. 7.3. Furthermore,

the confusion matrices also show that the LR scheme tends to overestimate the number

of preambles in a bin, while the NN yields a more symmetrical error.

Table 7.1: Confusion matrices; SNR = −16 dB, AWGN channel.
Neural Network

0 1 2 3 4 5

0 0.996 0.003 0 0 0 0
1 0 0.972 0.027 0 0 0
2 0 0.005 0.987 0.007 0 0
3 0 0 0.013 0.978 0.007 0
4 0 0 0 0.018 0.971 0.009
5 0 0 0 0 0.033 0.966

Logistic regression

0 1 2 3 4 5

0 1 0 0 0 0 0
1 0.018 0.735 0.239 0.007 0 0
2 0 0.048 0.604 0.334 0.011 0
3 0 0 0.062 0.659 0.278 0
4 0 0 0 0.086 0.813 0.099
5 0 0 0 0 0.088 0.912

7.3.3 Machine learning limitations

Although they have been shown to provide good results in preamble detection and

collision multiplicity estimation, ML approaches entail some disadvantages, which are

described next.

Complexity. Even though the training phase of ML based detection is performed offline,

such approaches are more complex than threshold based detection, and inevitably

require a larger computational power. In fact, while state-of-the-art schemes only need

to compare each correlation sample with a predefined threshold, a detector based on

LR needs to perform a multiplication for each sample, and then sum all the obtained

results to get to a decision. To perform multiplicity detection, such operations need to be

performed for each classifier as described in Sec. 7.2.2. Neural networks also need to

perform a number of operations that is proportional to the network complexity, and could

be larger than the operations required by a LR scheme in the case of detection. When

compared to a LR scheme in the case of multiplicity estimation, however, a NN needs

to perform roughly the same number of operations as in the detection scheme, since it

already outputs a classification. In fairness to ML, it is to note that the complexity burden

of the proposed algorithms is on the eNB, whose hardware and software capabilities are
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constantly improving and typically have very little computational and energy restrictions,

such that the higher complexity demanded by ML schemes may not be a limiting factor.

Dataset collection. Both in the case of LR and NNs, a dataset of sufficient size must

be available to perform effective training. In this work, the ML based approaches were

trained on computer generated signals using a state-of-the-art simulator in order to

have a representation as close as possible to what the eNB will actually see in a real

deployment. This allowed us to exactly know the number of UEs choosing each preamble.

For real deployments, this dataset could be integrated with some samples taken by the

eNB. In particular, a bin associated to a certain preamble can be labeled according to the

outcome of the RACH procedure: label as 0 if no device sends a msg3, as 1 if exactly 1

device answers with a msg3, and as 2 if a collision happens during msg3. Unfortunately,

this does not allow for a precise estimation of the number of devices sending a specific

preamble. Such an estimation may instead be possible if, once the eNB detects a collision

(i.e., if it labels the considered bin as 2), another ad-hoc contention resolution phase were

to take place iteratively among the colliding nodes, until resolution of all collisions.

7.4 Lesson learned

With RACH overload becoming an increasingly serious issue in massive access LTE sce-

narios, it is necessary to develop techniques to better manage the contention of resources

by multiple users. This study investigates the use of machine learning techniques for

preamble detection, and shows that they can improve the performance of state-of-the-art

threshold-based schemes. Moreover, such techniques, and in particular neural networks,

have proven to be capable of inferring the number of users that pick a selected preamble,

so as to estimate the collision multiplicity.

The results described in this study may serve as a first step to improve the current

RACH procedure, and are applicable to novel massive IoT 3GPP standards, e.g., LTE-M

and NB-IoT. In particular, the possibility to immediately identify the number of devices

that chose the same preamble allows more efficient collision management than the

current approach, which envisages a repetition of the RACH procedure until all UEs

uniquely pick a preamble. This would have a positive impact on the latency, the device

power consumption, and the supported system load. Moreover, collision multiplicity

detection may also allow one to promptly identify a switch in the data reporting regime,

e.g., in case of an alarm that triggers synchronous transmissions from multiple devices.
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mmWave communication: contention-based
channel access in IEEE802.11ad

Millimiter waves commonly denote the Extremely High Frequency (EHF) band, i.e.,

the portion of spectrum between 30 and 300 GHz. They have been gaining a lot of

momentum in telecommunications thanks to the large band of spectrum available, which

has the potential to eliminate many of the issues of the overcrowded sub-6-GHz bands

and allows for channels with larger bandwidth and, thus, higher capacity.

The propagation environment in the mmWave spectrum is significantly different from

that at sub-6-GHz frequencies, and is characterized by a high propagation loss and a

significant sensitivity to blockage. The coverage range can however be increased through

beamforming, by focusing the power (both in transmission and in reception) towards the

chosen direction, yielding a so-called directional link. This can be obtained by properly

steering the elements of the antenna arrays, which, thanks to the short wavelengths, can

be extremely compact and easily embedded into sensors and handsets [160].

Directional transmission opens up new possibilities: with all the power focused

in a specific direction, the gain in the other directions is low, significantly reducing

interference among concurrent transmissions. MmWave networks may even operate in

a noise-limited rather than interference-limited regime [161], and the consequent high

potential for spatial reuse can boost the network performance. Notice, however, that

beamforming is a delicate process. First, beamforming training is necessary to establish

a directional link (avoiding the use of inefficient quasi-omnidirectional communication),

then beam tracking is needed to maintain the communication link. Beam misalignment

may prevent communication, resulting in the so-called deafness issue, and poorly trained

beams lead to extreme throughput drops (of up to 6.5 Gbps in 802.11ad [162]).

Because of the peculiar characteristics of the signal propagation at EHF, protocols

designed for lower frequencies cannot simply be transposed to the mmWave band,

but major design changes are required for both PHY and MAC layers. This pushed a

standardization effort from several international organizations, including ECMA, the
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IEEE 802.15.3 Task Group 3c (TG3c), the Wireless Gigabit Alliance (WiGig), the 802.11ad

and 802.11ay standardization task groups, and the WirelessHD consortium. This study

focuses on the IEEE 802.11ad standard, which operates in the 60 GHz unlicensed

band [163].

While extensive research is ongoing to develop mechanisms for efficient beamforming

training and beam tracking [164, 165], it is also necessary to understand how to access

the wireless medium and use the beamformed links efficiently. The MAC layer of

802.11ad presents several features which yield an outstanding scheduling flexibility: it

is possible to have contention-based and contention-free allocations, and an additional

mechanism built on top of the schedule allows to dynamically allocate channel time in

quasi real-time. However, the standard only provides very general guidelines on how to

exploit this hybrid MAC layer and, to the best of our knowledge, efficient scheduling

schemes that match each traffic pattern to the most appropriate allocation still need to

be developed. To realize an adaptive scheduler able to optimally allocate the channel

time resources and accommodate disparate traffic requirements, it is first necessary to

assess the performance that can be obtained with the mechanisms available in 802.11ad.

The goal of this study is to serve as a first step in the modeling of contention-based

allocations, assess the achievable throughput and delay and understand the role played

by various scheduling parameters in the system performance. In particular, we propose

a variation of Bianchi’s seminal model for the Distributed Coordination Function (DCF)

mechanism in legacy WiFi networks [166]. Such variation addresses all the novel features

of the 802.11ad standard and, unlike most of the works proposed in the literature,

takes into account the deafness and hidden node problems, which are exacerbated

by directional transmissions. The proposed model is based on a division of the area

around a considered station (STA) into regions, similarly to what done in [167]: STAs are

clustered based on whether they can overhear the messages sent by the STA to and/or

received from the Access Point (AP). However, [167] does not specify how to determine

such regions; we instead explain how to compute the area of the regions mathematically,

providing also the formulation for its expectation over the location of the considered

station.

This study has been realized in collaboration with the National Institute of Standards

and Technology (NIST) (Gaithersburg, MD, US) during a six-month-internship.

8.1 802.11ad

Ratified in December 2012, the 802.11ad amendment to the IEEE 802.11 standard targets

short range mmWave communication in local area networks [163]. Since it can also be

used in PBSS (i.e., network architectures for ad hoc modes), the central coordinator of
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Figure 8.1: Structure of a BI. Green boxes correspond to beamforming training operations. The BHI is
used for SLS with the PCP/AP: during the BTI, the PCP/AP trains its transmitting antenna
pattern; during the A-BFT the other stations train their transmitting or receiving antenna patterns
in dedicated slots. During the DTI, stations can perform both SLS and BRP phases with the
PCP/AP and with other stations.

802.11ad networks can be either a PBSS Control Point (PCP) or an AP; accordingly, it is

generally denoted as PCP/AP to include both infrastructures.

The nominal channel bandwidth in 802.11ad is 2.16 GHz, and there are up to 4

channels in the ISM band around 60 GHz, although channel availability varies from

region to region. Only one channel at a time can be used for communication. There

are 32 different Modulation and Coding Schemes (MCSs) available, grouped into three

different PHY layers, which differ for robustness, complexity, and achievable data rates

(up to 6.75 Gbps).

8.1.1 Beamforming training

802.11ad introduces the concept of antenna sectors, which correspond to a discretiza-

tion of the antenna space and reduces the number of possible beam directions to try.

Beamforming training is realized in two subsequent stages: the Sector-Level Sweep

(SLS) phase and the Beam Refinement Protocol (BRP) phase. The SLS is necessary to set

up a link between the involved stations, with one station sequentially trying different

antenna sector configurations while the other station has its antennas configured in

a quasi-omnidirectional pattern. Notice that both the transmitting and the receiving

antenna patterns can be trained. This determines the best coarse-grained antenna sector

configuration. The BRP is then used to fine-tune this configuration using narrower beams

and, possibly, to optimize the antenna weight vectors in case of phased antenna arrays.

Since a directional link has already been established previously during the SLS phase, in

BRP stations can avoid using quasi-omnidirectional patterns and use a more efficient

modulation and coding scheme, achieving higher throughput and better communication

range.
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8.1.2 Beacon Intervals

Medium access time is divided into Beacon Intervals (BIs), which are used to establish di-

rectional communication links through beamforming training, and for data transmission.

The maximum duration of a BI is 1 s, but it is typically chosen around 100 ms. Each

BI consists of two parts: the Beacon Header Interval (BHI) and the Data Transmission

Interval (DTI), as shown in Fig. 8.1. The BHI replaces the single beacon frame of legacy

WiFi networks and includes up to three access periods, all of them optional:

• The Beacon Transmission Interval (BTI) is used for beamforming training of the

PCP/AP’s antennas and network announcement. The PCP/AP broadcasts beacon

frames through different sectors, performing the first part of the SLS phase with

the other stations. The other devices have their receiving antennas configured in a

quasi-omnidirectional pattern.

• The Association-Beamforming Training (A-BFT) is divided into slots during which

stations separately train their antenna sectors for communication with the PCP/AP,

and provide feedback to the PCP/AP about the sector to use for transmitting to

them. This completes the SLS phase started in the BTI to establish a link with the

PCP/AP.

• The Announcement Transmission Interval (ATI), used to exchange management

information between the PCP/AP and associated and beamtrained stations, such

as resource requests and allocation information for the DTI.

The DTI is used for data transmission. Prior to any additional frame exchange between

stations, it is necessary to establish a link for directional communication; the DTI can

also be used for beamforming training between stations (both SLS and BRP phases) and

to perform the BRP phase with the PCP/AP. Since the BRP phase follows the SLS one, a

reliable frame exchange is ensured and a station may transmit BRP packets along with

other packets.

8.1.3 Data transmission

The DTI is made up of contention-free Service Periods (SPs) for exclusive communication

between a dedicated pair of nodes and Contention Based Access Periods (CBAPs) where

stations compete for access. SPs and CBAPs can be in any number and combination,

and their scheduling is advertised by the PCP/AP through beacons in either or both

the BTI and the ATI. An allocation is defined by several fields, including the type of

allocation (SP or CBAP), the addresses of the source and destination STAs involved

in the allocation (which can be unicast, multicast or broadcast), its total duration and

starting time and the number of blocks it is made of, beamforming training information if

138



8.1 802.11ad

needed, and whether the allocation is pseudostatic, meaning that it recurs in subsequent

BIs [163]. Note that this schedule is set up prior to the beginning of the DTI. Besides it,

a dynamic channel time allocation mechanism allows STAs to reserve channel time in

almost real-time over both SPs and CBAPs.

Contention-based access. CBAPs follow the Enhanced Distributed Channel Access

(EDCA) mechanism, which is an enhanced DCF that includes mechanisms to handle

traffic categories with different priorities, frame aggregation and block acknowledg-

ments. Stations compete for access and can obtain Transmission Opportunities (TXOPs)

(contention-free periods) by winning an instance of EDCA contention or by receiving a

Grant frame.

The DCF is based on CSMA with Collision Avoidance (CSMA/CA): before transmitting

the channel needs to be sensed idle for a minimum amount of time, namely a Distributed

Interframe Space (DIFS). When the channel is sensed busy, the transmission is postponed:

the STA picks a backoff counter uniformly distributed in {0, . . . , Wi − 1}, where Wi is the

size of the contention window at the i-th retransmission attempt. The contention window

has a minimum value and doubles at each collision, until it saturates to a maximum value.

The backoff time counter is decremented as long as the channel is sensed idle, frozen

when a transmission is detected on the channel or the CBAP operation is suspended, and

reactivated when the channel is sensed idle again for at least a DIFS. When the backoff

counter expires, the STA accesses the channel.

In 802.11ad, the channel status is determined through combined physical and virtual

carrier sensing; the latter is realized through Network Allocation Vectors (NAVs), which

are counters based on the transmission duration information announced in Request-To-

Send (RTS) and Clear-To-Send (CTS) frames prior to the actual exchange of data and

maintain a prediction of future traffic on the medium.

The directional nature of communication at mmWaves makes the carrier sensing

operation problematic [162] because there may be possible interference even though the

medium was considered to be idle.

Contention-free access. SPs are contention-free periods assigned by the PCP/AP for

exclusive communication between a pair of STAs. The directional communication enables

the possibility of spatial sharing, i.e., simultaneous SPs involving different STAs can be

scheduled, provided that they do not interfere with each other; this requires a preliminary

interference assessment phase, which is coordinated by the PCP/AP. Note that building

and updating the interference map may result in huge overhead in case of mobility.

SPs may be truncated and extended through the dynamic allocation mechanism.

Dynamic allocation mechanism. This mechanism is built on scheduled SPs and CBAPs

with specific configuration and enables near-real-time reservation of channel time; the
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dynamic allocations do not persist beyond a BI. Stations can be polled by the PCP/AP

and ask for channel time, which will be granted back to back.

The dynamic mechanism also includes the possibility of truncating and extending

SPs, to exploit unused channel time and finalize the ongoing communication without

additional delay and scheduling, respectively. When an SP is truncated, either the

relinquished channel time is used as a CBAP or the PCP/AP polls STAs so that they can

ask for channel time.

8.2 The need for a mathematical model for data scheduling

The 802.11ad standard [163] provides rules for the channel access during the DTI, as

described in Sec. 8.1. Performance analysis is however needed to understand how to

schedule the DTI based on the traffic specifications, so as to use the type of allocation that

best matches the QoS requirements. In particular, there are three main knobs available to

the protocol designer:

• Contention-based or contention free allocation. This is the most meaningful choice

since it impacts the way the medium is accessed and thus plays a direct role on

the performance. SP allocations grant dedicated resources to few stations and

the obtained performance only depends on the channel status, being therefore

more predictable than when interference comes into play. Clearly, setting up the

scheduled sessions introduces overhead and some latency, but the beam steering

process is simplified since it is given by the schedule, and the STAs not involved in

the SP can go to sleep and save power. On the other hand, CBAPs are distributed

and robust and good for unpredictable bursty traffic. Nonetheless, carrier sensing

may be problematic due to the use of directional antennas. Also, there is no power

saving. SP allocations grant the use of dedicated resources and are particularly

suitable for periodic reporting with QoS demands, but CBAPs may be preferable

in case of less stringent QoS requirements because channel resources are available

to more stations.

• Pseudo static allocation. In this way it is possible to decide whether the allocation

will recur in successive BIs. This is very useful for predictable traffic patterns as

it avoids the need to schedule the allocation every time and limits the signaling

overhead.

• Dynamic allocation. It may prompt fast reaction to unexpected latency critical

messages and accommodate bursty downstream traffic, since it allows quasi-real-

time channel use. However, it has a polling overhead and the scheduled allocation

over which it is applied needs to satisfy certain conditions. This feature can be
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useful for unpredictable transmissions that need to be delivered with specific QoS

requirements. The dynamic truncation of SP allows the exploitation of unused

channel time.

Evidently, there are many elements that need to be taken into account; a mathematical

model allows to understand the tradeoffs between the various system parameters and

how they affect the network performance. Building a complete model is extremely

challenging because there are several components to consider. In addition to modeling

data transmission in both CBAP and SP allocations, it is necessary to understand in which

cases the dynamic allocation mechanism yields better performance than the predefined

schedule. Another aspect that should be taken into consideration is power consumption:

the presence of energy constrained devices may require changes in the scheduling, e.g.,

in the allocation order or by assigning more SP allocations. A critical issue is represented

by the beamforming training (see Sec. 8.5.1) which introduces overhead and may degrade

the network performance.

This study only focuses on the performance that can be obtained in CBAP allocations,

taking into account the presence of SPs allocations too. This is intended to represent

a first step in the process of understanding and characterizing the various types of

allocations that can be used in 802.11ad with the ultimate goal of designing an efficient

allocation scheduler able to cope with heterogeneous traffic patterns and requirements.

The remainder of this section briefly describes the state of the art.

8.2.1 Related work

The seminal work of [166] introduces a useful MC model of the IEEE 802.11 DCF.

Although several variations on such model have been proposed to account for, e.g.,

finite number of retransmissions [168], heterogeneous QoS [169] and hidden node

problem [170], none of them can be readily applied to the hybrid MAC layer of IEEE

802.11ad, as different changes are needed to account for its peculiar features.

Some works in the literature propose adaptations of Bianchi’s model for 802.11ad. Most

of them, however, do not model the effect of directional communication properly, as they

neglect the deafness and hidden node problems. For example, [171] uses a 3-dimensional

MC model to analyze the channel utilization and the average MAC layer delay that can

be obtained in CBAPs. This model accounts for the presence of allocations other than

CBAP and for the fact that backoff counters are frozen when CSMA/CA operation is

suspended. However, it does not introduce the maximum contention window size, so

that the contention window keeps doubling at each retransmission stage. Moreover,

the model assumes that CBAPs are allocated to sectors, so that two STAs belonging to

different sectors cannot compete for the channel time in the same allocation. According to
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the standard [163], this is not necessarily true, since any subset of stations can participate

in a CBAP, with potential deafness and hidden node issues. The model also erroneously

assumes that all STAs in the same sector can overhear the messages that other nodes

exchange with the AP. Thus, the assumption made in [171] strongly affects the analysis

of the delay and the impact of the number of sectors used by the PCP/AP on the system

performance, as the role of directional transmissions and deafness is neglected.

Similar assumptions concerning the deafness and hidden node problem have been

made in [172], which models CBAPs with a 2-dimensional MC for unsaturated sources

considering also the contention-free allocations of 802.11ad. However, besides neglecting

the deafness problem, the model assumes that the DTI is made of SP allocations followed

by a single CBAP allocation at the end of the DTI, while the standard [163] envisages SP

and CBAP allocations in any number and order. This assumption may strongly affect the

delay, as different configurations of the DTI may yield different performance. Also [173]

uses a 2-dimensional MC to analyze the saturation throughput in CBAP but neglects the

deafness issues and assumes the same specific configuration of the DTI as in [172].

A correct approach to directional communication in WiFi networks is presented

in [174], which however is not designed for 802.11ad so that it does not consider backoff

counter freezing and the presence of SP allocations. The model considers an accurate

model for directional transmission, with the presence of side lobes with small antenna

gain and corresponding regions with different levels of interference. Also [167] takes

into account deafness and hidden node problems, and subdivides the area around a STA

based on the interference level; CBAPs are then modeled using a 3-dimensional MC.

Other works in the literature consider different aspects of the DTI. For example, [175]

derives the theoretical maximum throughput for CBAPs when two-level MAC frame

aggregation is used. [176] proposed a directional MAC protocol to be used on top of

802.11ad: it allows the use of sequential directional RTS messages that a STA sends in all

directions and that can therefore be overheard by all other STAs. The beamforming issue

is considered in [177], which proposes a joint optimization of beamwidth selection and

scheduling to maximize the effective network throughput.

For what concerns SPs, an accurate mathematical model for their preliminary allocation

is presented in [178]. It considers the presence of quasi-periodic structures with multiple

blocks within the same allocation, the erroneous nature of the wireless medium, and

the possibility of multiple consecutive transmissions within the same allocation. A

3-dimensional MC is used to model a Variable Bit Rate (VBR) flow with packets arriving

in batches of random size at regular intervals and can be used to derive the optimal SP

allocation that satisfies the QoS requirement.
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8.3 System model

We denote as TBI the duration of a BI and as TBHI, TCBAP and TSP the time dedicated

to BHI, CBAPs and SPs during a BI, respectively. The total time TCBAP dedicated

for contention-based access in a BI is distributed among NCBAP allocations with same

duration, while TSP is distributed among NSP allocations with same duration.

The model is based on two assumptions: i) all STAs in the network implement a single

access category, hence service differentiation is not considered, and ii) the beamforming

training has already been performed, so that the STAs already know how to steer

their antennas to communicate with the AP. Also, it only focuses on the classic WiFi

network where a certain number of STAs communicate solely with the AP; the RTS/CTS

mechanism is used.

To gauge the performance that can be obtained in a CBAP, we leverage on Bianchi’s

seminal work [166] and adapt it to model the features of 802.11ad’s CBAPs. First of

all we explain how directionality affects the communication during the contention-

based channel access, we then describe the proposed model, and finally we discuss the

performance metrics used in the numerical evaluation.

8.3.1 Directional communication in CBAPs

Besides the need of beamforming training and beam tracking mechanisms, the directional

nature of communication in 802.11ad implies substantial changes also from a data

transmission perspective. As explained in Sec 8.1.3, CBAPs are based on the EDCA;

however, the traditional approaches used in the literature need to be adapted to take

directionality into account, since the consequent deafness and hidden node problems

may significantly affect the system performance.

The most widely used approach in the literature to model the DCF and EDCA

mechanisms is Bianchi’s model [166]. It takes the perspective of a target node and

models the backoff process as a two dimensional MC, where state (i, k) refers to the ith

backoff stage with the backoff counter k ∈ {0, . . . , Wi− 1}, where Wi is the duration of the

contention window at the ith retransmission attempt. The counter is decremented with

probability 1 whenever the channel is sensed idle; when it reaches 0, the STA attempts

to transmit. The time spent in each state depends on what happens in the channel

meanwhile, as it may be idle, used for a successful transmission, or used simultaneously

by colliding STAs. The original model was proposed for omnidirectional communication,

so that each STA is aware of ongoing transmissions and can defer its own when it senses

the channel to be idle. Collisions only happen when multiple STAs access the channel
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Figure 8.2: Communication phases between the AP and a target STA and two other STAs that listen in
direction of the AP. Darker beams indicate a transmission, while lighter ones indicate that the
device is listening. The target STA directionally transmits the RTS while the AP is listening in
QO mode; then the AP steers its transmitting antennas towards the target STA and sends the
CTS, which then replies transmitting a data message.

simultaneously because their backoff counters expired (at least two STAs are in a state

(·, 0)).

In the case of directional communication, however, STAs may not hear ongoing

transmissions, resulting in a much higher collision probability. In this work, we assume

that the RTS/CTS mechanism is used. Since a STA communicates only with the AP, it

always has both its transmitting and receiving antenna patterns configured towards it.

The AP instead listens to the channel in a quasi-omnidirectional (QO) mode, and, upon

the reception of the RTS, it switches its antenna configuration to point towards the STA

that sent it. Fig. 8.2 illustrates the direction of the various phases of the communication

between a STA and the AP. Note that the messages can be heard only by a limited

number of other STAs. The received power Prx at a STA is in fact

Prx = Ptx
gtx(θtx, φrx)grx(θtx, φrx)

Adη
(8.1)

where Ptx is the power used to transmit, d is the distance from the transmitter, η is the

path-loss coefficient, A is a normalizing path-loss term, and gtx and grx are the antenna

gains of the transmitter and receiver, respectively. They both depend on the direction of

the antennas with respect to the line of sight between the two STAs, thus on the angles

θtx and φrx. If the gains are very small, Prx may be too low and nothing is heard at the

receiver.

Consider a network consisting of n STAs and a target STA that communicates with the

AP, so that the STA and the AP point to each other, and the antenna gains in the other

directions are minimal. It is possible to cluster the other n− 1 STAs into four groups:

• nI,1: STAs that can overhear the messages sent from the target STA to the AP but

not those sent from the AP to the STA.

• nI,2: STAs that can overhear the messages from the AP to the target STA but not

those from the STA to the AP.
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Figure 8.3: Macro Markov chain (adaptation of Bianchi’s model [166]).

• nI,3: STAs that can overhear the whole communication between the AP and the

target STA.

• nI,4: STAs that cannot overhear any messages exchanged between the AP and the

target STA.

Analogously, from the perspective of a STA that listens to the channel, the other STAs

can be divided into four groups nO,1 (STAs of which it can hear the messages to the AP

but not the messages that the AP sends to them), nO,2 (STAs of which it cannot hear the

messages to the AP but can hear those that the AP sends to them), nO,3 (STAs of which

it can hear all the messages exchanged with the AP), and nO,4 (STAs whose messages

exchanged with the AP cannot be heard).

Consequently, collisions can happen at three different stages of the uplink communica-

tion from a target STA to the AP.

1. The target STA accesses the channel to transmit its RTS, but collides for sure. This

can happen for three different reasons: i) if any other STA accesses the channel at

the same time, as in the legacy WiFi, ii) if a STA belonging to groups nO,2 or nO,4

is transmitting the RTS to the AP, or iii) if a STA in group nO,4 has already sent

the RTS and is going on with the communication with the AP. Notice that, in the

latter case, the transmission of the target STA fails, because the AP is listening in

the direction of that STA1, but the ongoing transmission may still be successful, as

1 Different considerations can be made when considering Multiple-Input Multiple-Output (MIMO) systems,
but this out of the scope of this work.
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the directionality highly attenuates the interference. In this work we assume that,

except for errors in the channel, the ongoing data transmission is successful.

2. If none of the previous conditions happened, the transmission of the RTS may

still be vulnerable to interference. This happens when a STA in groups nI,2 or nI,4

accesses the channel meanwhile. The two packets will then collide.

3. If the transmission of the RTS was successful, the AP sends the CTS and the target

STA can proceed with the data transmission. However, a STA in group nI,4 is

unaware of the ongoing communication and may try to access the channel. As

assumed in case 1iii), the outcome of the ongoing transmission only depends on

channel errors, while the STA that accesses the channel will register a destructive

collision.

In the remainder of this section, we propose an adaptation of Bianchi’s model that

accounts for the directionality of transmission, assuming that the regions corresponding

to the four groups of nodes are known; Sec. 8.5 introduces an analytical model to

compute such regions when the antenna gain outside the main lobe is zero.

8.3.2 Rethinking Bianchi’s model

Bianchi’s model [166] needs three major adaptations in order to be suitable for 802.11ad,

which are caused by the following features.

1. CBAPs can be interrupted because there is a scheduled SP or the BHI of the next BI.

In this case, all backoff counters have to freeze [163]; they will be restored in the next

CBAP. This affects the time that a STA spends in a state (i, k), k ∈ {1, . . . , Wi − 1}
before decrementing its backoff counter and transitioning to (i, k− 1); the transition

probability from (i, k) to (i, k− 1) is 1 as in Bianchi’s original model. We denote

the freezing probability as p f .

2. The finite duration of CBAPs may also cause transmissions deferral. In fact, if

the backoff counter of a STA reaches 0 but there is not enough time to complete

a transmission, that STA should refrain from transmission. The standard [163]

however does not specify how to handle the backoff counter in this case. A possibile

strategy consists in freezing it and then restoring it in the next CBAP, as in case

1. However, such approach may yield a high number of collisions if this situation

happened for multiple STAs (all STAs whose backoff counter expires during the

time needed for a complete transmission at the end of the current CBAP cumulate),

which therefore would all access the channel simultaneously in the next CBAP. To

avoid this, we propose to use the same approach used in [172], so that a new backoff

counter is randomly chosen from the current window (no collision happened). This

causes the addition of new transitions from state (i, 0) to (i, k), k ∈ {0, . . . , Wi − 1}.
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We denote the probability of insufficient time in the current CBAP as timeout

probability pt.

3. As discussed in Sec. 8.3.1, the directional nature of mmWave communication has

a huge impact on the operation of the DCF mode because of deafness and the

increased hidden node problem. This modifies the collision probability and the time

spent in each state, which depend on the behavior of STAs whose transmissions

can be detected by the target STA.

Fig. 8.3 represents the MC we propose to model the behavior of a STA during a CBAP.

As in Bianchi’s model, a state (i, k), i ∈ {0, . . . m}, k ∈ {0, . . . , Wi − 1} refers to the ith

backoff stage with the backoff counter being equal to k. Here, m is the maximum number

of retransmissions. The contention window in stage i is Wi = min{2iW0, 2m′W0}, where

the initial window W0 and the maximum window 2m′W0 are defined in the standard.

From a state (i, k), k>0, the backoff counter is decremented with probability 1 (solid

black transitions in Fig. 8.3), but the time needed to transition to the next state (i, k−1)

is variable, depending on how the channel is being used. When it reaches a state (i, 0),

the STA might be constrained to defer its transmission (case 2). The residual time in the

current CBAP is uniformly distributed in [0, TCBAP/NCBAP], where TCBAP/NCBAP is the

average duration of a CBAP allocation in the BI. Then, the probability that there is no

sufficient time to complete a transmission of duration TL can be approximated as

pt =
TL

TCBAP/NCBAP
. (8.2)

Thus, from each state (i, 0), i ∈ {0, . . . m}, the MC transitions to a state (i, k), k ∈
{0, . . . , Wi − 1} with probability pt/Wi (dotted orange transitions in Fig. 8.3), while with

probability 1− pt the STA accesses the channel. We identify such latter condition as

being in a transmission state (the MC is in a state (i, 0) and attempts to transmit); when

the other condition applies (transmission deferral) or the MC is in a state (i, k), k > 0,

we say that the STA is in a non-transmission state. As in [176], each transmission state is

itself a MC, which will be described in Sec. 8.3.3; thus, in order not to generate confusion,

we will refer to the MC of Fig. 8.3 as macro MC.

Let p be the failure probability, which includes the collision probability (see the

discussion in Sec. 8.3.1) and the error probability due to the wireless channel, as explained

later. Then, from state (k, 0) the MC goes to a state (0, i), i ∈ {0, . . . , W0 − 1} (successful

transmission of a new packet; solid green transitions in Fig. 8.3) with probability (1−
pt)(1 − p)/W0, or to any state (k + 1, i), i ∈ {0, . . . , Wk+1 − 1} with probability (1 −
pt)p/Wk+1 (dashed red transitions in Fig. 8.3). If it reaches the maximum number of
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retransmission attempts (k = m), the MC goes from state (m, 0) to a state (0, i), i ∈
{0, . . . , W0} with probability (1− pt)/W0.

It is then possible to compute the steady-state probabilities {bi,k : i∈ {0, . . . , m}, k∈
{0, . . . Wi − 1}} of the macro MC, using the same approach as used in [166]. Assuming

pt < 1, it is

bi,k =
Wi − k

Wi
p b0,0 , (8.3)

where b0,0 is

b0,0=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2(1− 2p)(1− p)
W0(1− (2p)m+1(1− p) + (1− pm+1)(1− 2p)

if m≤m′

2(1− 2p)(1− p)
W0(1− (2p)m′+1)(1− p) + (2m′W0(pm′ − pm)p + (1− pm+1))(1− 2p)

if m>m′

(8.4)

Notice that b0,0 does not depend on pt, which, nonetheless, has an impact on the delay.

The probability of being in a transmission state is then

τ =
m

∑
i=0

bi,0(1− pt) =
1− pm+1

1− p
(1− pt)b0,0 . (8.5)

The time spent, on average, in a transmission or non transmission state is denoted as

E [Ttx] and E [Tntx], respectively, which depend on the probabilities {bi,k} as explained

next. It is then possible to define the probability πtx that, in an arbitrary time instant, the

macro MC is in a transmission state:

πtx =
τE [Ttx]

τE [Ttx] + (1− τ)E [Tntx]
. (8.6)

With probability 1−πtx, in an arbitrary time instant, the MC will be in a non transmission

state.

To derive E [Ttx] and E [Tntx] it is first necessary to understand what happens in a

transmission state.

8.3.3 A transmission state

Whenever a STA is in a transmission state (i, 0), i ∈ {0, . . . m}, it attempts to transmit

with probability 1− pt, otherwise it picks a new backoff counter from the same window

Wi (see (8.2)) and enters a so-defined transmission state.

To model such behavior, each transmission state forms its own MC, similarly to the

model proposed in [176]. The MC is made of 6 states: the access state A, the collision RTS

state Rc, the vulnerable RTS state Rv, the ongoing transmission state O, the failure state F,
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Figure 8.4: MC that models a transmission state. It is entered from i) state (i, 1) with probability 1− pt, ii)
state (i− 1, 0) with probability p(1− pt)/W0 or iii) state (i, 0) itself with probability pt/W0.

and the failure state S. A STA goes into state A when it accesses the channel and goes

from the macro MC into the transmission state MC. It transmits the RTS to the AP, and,

based on the discussion in Sec. 8.3.1, two cases can occur.

• As soon as the STA accesses the channel, it may immediately collide (case 1 in

Sec. 8.3.1). This happens with probability pc,1; in this case the STA transitions to

state Rc where it transmits the RTS and then, with probability 1, goes to the failure

state F.

• Otherwise, the transmission of the RTS is still vulnerable to interference. If it

collides (case 2 of Sec. 8.3.1), the MC transitions to the failure state F; this happens

with probability pc,2. Otherwise, the STA goes to state O, where it receives the

CTS from the AP and then sends its data. In turn, the data transmission may fail

because of channel errors (but not because of interference, as assumed in Sec. 8.3.1)

and therefore, with probability pe, the next state in the MC is F. Otherwise, the

transmission is successful and the next state in the MC is S. Then, from either F or

S, the STA exits the transmission state.

The resulting MC is represented in Fig. 8.4. Let bj be the steady-state probability

that the MC is in state j ∈ Jtx ≜ {A, Rc, Rv, O, F, S}. Since the transmission state itself

forms a repetitive MC, it yields: bA = 1/btx, bRc = (1− pc,1)/btx, bRv = pc,1/btx, bO =

(1 − pc,1)(1 − pc,2)/btx, bF = (1 − (1 − pc,1)(1 − pc,2)(1 − pe))/btx, bS = (1 − pe)(1 −
pc,1)(1− pc,2)/btx, where btx = 3 + pe(1− pc,1)(1− pc,2).

Similarly to what done for the macro MC it is possible to define the probabilities πj

that, in an arbitrary time instant, given that the MC is in a transmission state, the MC is

in a state j ∈ Jtx:

πj =
Tjbj

∑ℓ∈Jtx
Tℓbℓ

j ∈ Jtx , (8.7)
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where Tj is the time spent in state j. Through bj, the probabilities πj, j ∈ Jtx depend on

the collision and error probabilities pc,1, pc2, and pe. The collision probabilities in turn

depend on how many and which other STAs access the channel while the target STA is

in the transmission state, and thus on πj.

Considering the model in Sec. 8.3.1 where STAs can be grouped based on what they

can hear of a communication between the AP and another STA, pc,1 is given by the

probability that none of these three cases verifies: i) any of the other STAs accesses the

channel simultaneously, ii) at least a STA in group nO,2 is transmitting an RTS to the AP,

or iii) at least a STA in group nO,4 is using the channel. We analyze the probabilities of

these events to happen.

The first case verifies if at least another STA is accessing the channel, given that the

target STA is accessing the channel. The probability of this to happen can be expressed

as:

q1 =
1− (1− pacc)n − npacc(1− pacc)n−1

pacc
, (8.8)

where n is the total number of STAs in the network and pacc = πAπtx is the probability

that a STA is accessing the channel.

Case ii) happens if at least a STA in group nO,2 is either in state Rv or in Rc, given

that the target STA is accessing the channel. Thanks to Bayes’rule, the probability of

this to verify can be equivalently expressed as a function of the probability that the

target STA accesses the channel given that at least a STA in group nO,2 is either in state

Rv or in Rc. This is certainly larger than the probability of the target STA to access

the channel without the condition on the other STAs, but is not trivial to compute,

because it requires an analytical expression for the relations between the coverage areas

of multiple STAs. In fact, if a STA in group nO,2 entered a transmission state, all STAs

that can hear it refrain from transmitting, so that the number of STA that compete for

the channel is reduced and it is more likely that the target STA senses the channel as

idle and attempts transmitting. However, we do not consider such relations, which are

extremely challenging to model, but only account for the fact that, if some STAs are in a

transmission state, the ECDA operation is not frozen, so that the access probability is

increased by a factor 1/(CBAP/BI). We thus express the probability of case ii) as

q2 =
1− (1− πtx(πRv + πRc))

nO,2

CBAP/BI
. (8.9)

As the numerical evaluation of Sec. 8.6 shows, this approximation affects the validity of

the model only for highly dense scenarios, with more than 100 STAs.
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Finally, case iii) can be treated analogously to case ii) and thus happens with probability

q3 =
1− (1− πtx(πRv + πRc + πO))

nO,4

CBAP/BI
. (8.10)

Then, it is

pc,1 = 1− (1− q1)(1− q2)(1− q3) . (8.11)

since there is a collision if at least any among cases i), ii), iii) verifies.

When the target STA did not collide while attempting to transmit and is thus in state

Rv, it collides if at least a STA that cannot hear the uplink messages sent by the target

STA accesses the channel during the whole duration of Rv. Following the same reasoning

as per (8.9) and (8.10), this happens with probability

pc,2 =
1− ((1− pacc)nI,2+nI,4)TRv /TA

CBAP/BI
. (8.12)

Eqs. (8.7), (8.11), (8.12) form a nonlinear system in the unknowns πj, pc,1 and pc,2,

which can be solved using numerical techniques, as in the Bianchi’s original model. The

error probability pe instead depends on the SNR and the MCS used.

8.4 Performance metrics

We evaluate the performance achievable in a CBAP in terms of throughput and delay.

Before delving into their description, it is useful to derive the time spent in a transmission

and non transmission state.

8.4.1 Average time spent in a transmission state

A STA that accesses a transmission state can follow 4 different paths, depending on

collision and errors. The average time spent in a transmission state is thus the sum of the

time associated to each of this paths, weighed for the probability of that path to happen:

E [Ttx] = (TA + TRc + TF)pc,1

+ (TA + TRv + TF)(1− pc,1)pc,2

+ (TA + TRv + TO + TF)(1− pc,1)(1− pc,2)pe

+ (TA + TRv + TO + TS)(1− pc,1)(1− pc,2)(1− pe).

(8.13)

This can be easily seen in Fig. 8.4.

The probabilities πj are defined in (8.7) and the times Tj are as follows: TA = δ, TRc =

RTS, TRv = RTS, TO = CTS + E [TL] + ACK + 3SIFS + 3δ, TF = DIFS, TS = DIFS,

where δ is the propagation delay, RTS and CTS represent the time needed to send an
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RTS and CTS message, respectively, E [TL] is the average time needed to transmit a

data packet, ACK is the time to send an ACK, and SIFS and DIFS represent the Short

Interframe Space (SIFS) and DIFS durations, respectively [163].

8.4.2 Average time spent in a non-transmission state

The time spent in a non-transmission state depends on what happens meanwhile: the

CBAP may freeze, the target STA may hear a transmission or sense the channel as idle.

The EDCA mechanism assumes that the backoff counter is decremented only after the

channel is sensed idle for a time slot of duration σ (which is defined in the standard

and depends on the PHY layer). Before that, the CBAP may freeze or be busy. We can

interpret the freezing condition as a self-loop on a state (i, k), k > 0 with probability

p f = 1− TCBAP

TBI
, (8.14)

so that 1/(1− p f ) iterations over (i, k) are expected before a transition to (i, k− 1).

The target STA senses the channel as idle when none of the STAs in groups nI,1 and

nI,3 is using the channel (i.e., is in any of the states A, Rc, Rv, O) and none of the STAs is

using the channel and has already received a feedback from the AP (i.e., it is in state O):

pi = (1− πtx(πA + πRc + πRv + πO))
nI,1+nI,3(1− πtxπO)

nI,2 , (8.15)

The channel is sensed as busy with probability 1− pi for an average duration of Etx.

Thus, the average time spent in a non-transmission state can be expressed as

E [Tntx] = σ +
(1− pi)Etx

1− p f
. (8.16)

8.4.3 Throughput

The normalized system throughput S is defined as the fraction of time that the channel

is used to successfully transmit information. The average payload size is E [L] and a

transmission is successful with probability πtx(1− p). Thus the aggregate throughput is

S = n
πtx(1− p)E [L]

πtxE [Ttx] + (1− πtx)E [Tntx]
(8.17)

where the denominator represents the average duration of a time slot and n is the number

of STAs in the network.
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8.4.4 Delay

The delay experienced by a (successfully transmitted) packet is the time elapsed from

when it arrived at the MAC layer until it is received. Let E [Di] denote the expected delay

that a packet experiences when it is successfully transmitted at stage i, TX(i) the event

of transmission at stage i, and success the event of a successful transmission. Then

E [D] =
m

∑
i=0

Pr(TX(i)|success)E [Di] (8.18)

where Pr(TX(i)|success) represents the probability that, given that a successful trans-

mission happened, it was at stage i. The event success happens when the packet is not

discarded after m backoff stages, i.e., with probability pm+1. Thus Pr(TX(i)|success) =

(1− p)pi/(1− pm+1) since the packet was discarded at stages 0, 1, . . . , i − 1 and then

successfully transmitted at stage i. The term E [Di] is the sum of the average backoff

process delay in stages 0, 1, . . . , i, the collision delay experienced in stages 0, 1, . . . , i− 1

and the time needed for the successful transmission at stage i. The first state k in the jth

backoff stage is uniformly distributed between 0 and Wj − 1; the counter is decremented

until state (j, 0) (k+ 1 states are crossed) and then, with probability pt there is a transition

back to a random state at stage j. Therefore, it is:

E [Di] = iTc + Ts + E [Tntx]
i

∑
j=0

+∞

∑
ℓ=0

pℓt
Wj−1

∑
k=0

k + 1
Wj

= iTc + Ts +
E [Tntx]

1− pt

i

∑
j=0

Wj + 1
2

= iTc + Ts +
E [Tntx]

2(1− pt)
(2min(i,m′)+1−1+max(i−m′, 0)2m′)W0

(8.19)

where E [Tntx] is the time spent in a backoff state and Tc and Ts are the durations of a

successful transmission and a collision, respectively:

Ts = RTS + CTS + E [TL] + ACK + 3SIFS + 4δ , (8.20)

Tc = RTS + DIFS + δ . (8.21)

8.5 A model for directional communication

The model of Sec. 8.3.1 assumes to know the number of STAs that can overhear the

uplink and downlink messages exchanged between the AP and a target STA, which is

equivalent to characterize the regions around the target STA corresponding to groups

nI,1, nI,2, nI,3 and nI,4. This is not trivial to compute as the power received at a STA
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Figure 8.5: Pizza-slice beam of width θ. The antenna gain is 2π/θ within the beam, 0 outside.

depends on the gains of the transmitting and receiving antennas, as per (8.1), which

vary according to the considered direction (angles θtx and φrx in (8.1)). In the following,

we describe the model we use for the beam shapes and then provide a mathematical

approach to compute the areas corresponding to each group of STAs.

8.5.1 Beam shapes

The directivity of an antenna depends on the shape of a beam. There exists a multitude

of mathematical models for antenna beams, such as the Gaussian beam shape, the sinc

beam shape and the sampled beam shape, which, however, are very challenging to be

used in mathematical models. A simpler approach is given by the constant gain beam

shape (sometimes called pizza-slice beam shape), which is quite popular in complex

analytical papers due to its simplicity. The space around the device is divided into Nb

beams with constant beamwidth Wb = 2π/Nb; a beam has constant gain in the main lobe

and there are no side lobes. From the expression of the directivity of an antenna [179],

the antenna gain for a beam centered at φ is g(θ) = Nb if θ ∈
[

φ− Wb
2 , φ + Wb

2

]
, and 0

otherwise.

We assume homogeneous STAs with the same antenna gains; however it makes sense

to consider the AP to be more powerful than the STAs and with narrower beams. Thus,

we denote as NAP and NS the number of sectors for the AP and a STA, respectively. We

assume that NAP ≥ 2 and NS ≥ 2.

As explained in Sec. 8.3.1, since the STAs only communicate with the AP, they

always have their transmitting and receiving antennas directed towards it.2 The AP

instead listens in a QO mode and switches to directional mode when engaged in a

communication with a STA. In this work, we assume that the QO mode coincides with

omnidirectionality, and leave to future work the investigation of smaller widths.

We also assume full transmitter/receiver reciprocity, meaning that the a STA uses the

same sector to transmit to and receive from the AP, and vice versa. The antenna gains of

the AP and STA in directional mode computed with the model in 8.5.1 are NAP and NS

in the main lobes, respectively, and zero outside (see Fig. 8.5).

2 Except of course during the beamforming training, which is however out of the scope of this paper.
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As a final remark, we highlight that, as in most of the literature, we consider only 2D

directivity, which highly simplifies the problem, although antennas clearly have a 3D

radiation pattern.

8.5.2 Coverage area and power regulations

Since there are no side lobes, two STAs can hear each other only if they are in each other’s

main lobe, respectively. Given this and considering the average, it is possible to derive a

maximum transmission range by means of a threshold γth on the SNR γ = Prx/N, where

N is the noise power. Then, using (8.1), the distance d between two devices should be

d ≤
(

Ptxgtx(θtx, φrx)grx(θtx, φrx)

γth AN

)1/η

. (8.22)

The threshold γth can be computed by imposing a maximum tolerable Bit Error Rate

(BER) and deriving the corresponding SNR (note that this depends on the MCS used).

The antenna gains of the AP and STA are computed as described in 8.5.1.

Interestingly, if the AP and the STA have different transmission powers, there is an

SNR asymmetry between downlink and uplink when considering the same noise level

at receiver and transmitter (see (8.1) and (8.22)). We assume the coverage radius R to

be bounded by the most stringent limit (8.22) between uplink (Ptx and gtx are those of

the STA, grx is that of the AP which can be listening either in QO or directional mode)

and downlink communication (Ptx and gtx are those of the AP, grx is that of the STA).

Then, we consider an area R = πR2 around the AP and the STAs uniformly distributed

according to a PPP of intensity λ.

8.5.3 Stations that overhear uplink messages

We consider a Cartesian plane whose origin coincides with the center of area R, so

that the AP is in (0, 0).Without loss of generality, we assume that the target STA is in

(dt, 0), dt ∈ [0, R]. Considering the beam model of Sec. 8.5.1, the interferer can overhear

uplink communication from the target STA to the AP if it is in the main lobe of the target

STA and vice versa, otherwise the received power is 0 as per (8.1). Consider an interferer

STA at distance di ∈ [0, R] from the AP. It can overhear the uplink communication if and

only if the phase of its polar coordinates is in the range [φlim(di), 2π − φlim(di)], where

φlim(di) =

⎧⎪⎪⎨⎪⎪⎩
π − θS

2
− arcsin

(
di

dt
sin
(

θS

2

))
if di ≤ dt

π − θS

2
− arcsin

(
dt

di
sin
(

θS

2

))
if di > dt

(8.23)

The proof of this result is provided in Appendix 8.7.
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Figure 8.6: Location of the AP and the target STA in the Cartesian plane.

Considering all possible distances di, we obtain the expected area of STAs that can

overhear uplink messages given the position of the target node (dt, 0) as

RR(dt) =
∫ R

0

∫ 2π−φlim(di)

φlim(di)
r∂θr ∂r = πR2 − 2

∫ R

0
φlim(r)r ∂r

= πR2 − 2
∫ dt

0

(
π − θS

2
− arcsin

(
r
dt

sin
θS

2

))
r ∂r

− 2
∫ R

dt

(
π − θS

2
− arcsin

(
dt

r
sin

θS

2

))
r ∂r

(8.24)

which can be solved in closed form.

The expected area of STAs that can overhear uplink messages is obtained by averag-

ing (8.24) over dt:

E [RR] =
∫ R

0
RR(dt)

2dt

R2 ∂dt (8.25)

which also can be solved in closed form and only depends on the beam width θS.

8.5.4 Stations that overhear downlink messages

Without loss of generality we keep assuming that the target STA is in (dt, 0), and consider

it to be in a random angular position within the AP sector that covers it, which has width

θAP. We thus denote as φAP ∈ [0, θAP] the angular phase of such sector, so that it spans

the angles in the Cartesian plane in the range [φAP − θAP, φAP], as shown in Fig. 8.6. The

covered area is

RC =
∫ R

0

∫ φAP

φAP−θAP

r∂θr ∂r = πR2 =
θAP

2
R2 . (8.26)

All STAs in that sector can overhear downlink communication from the AP to the target

STA, and, in particularly, the CTS. Note that E [RC] ≡ RC.
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8.5.5 Stations that overhear both uplink and downlink messages

In this case, we have to consider the area that satisfies the requirements of both Secs. 8.5.3

and 8.5.4. Thus

RR,C(dt, φAP) =
∫ R

0

(∫ φAP

φlim(r)
∂θ +

∫ 2π−φlim(r)

φAP−θAP

∂θ

)
r ∂r (8.27)

which is not trivial to compute since φlim(·) depends on the distance of the interferer

from the AP. However, it is possible to obtain a closed form expression for (8.27), as

explained in Appendix 8.7.

The corresponding expected area of STAs that can overhear both uplink and downlink

messages is obtained by averaging (8.27) over dt ∈ [0, R] and φAP ∈ [0, θAP]:

E [RR,C] =
∫ R

0

2dt

R2

( ∫ θAP

0

1
θAP
RR,C(dt, φAP)∂ϕAP

+
∫ θAP

0

1
θAP
RR,C(dt, φAP)∂(θAP − ϕAP)

)
∂dt (8.28)

Again, the calculation is not trivial as the integrals in (8.27) yield zero for some positions

of the target STA and the interferers. Appendix 8.7 explains how to compute (8.28).

8.5.6 Classification of the stations

Given Eqs. (8.24)–(8.28), it is possible to quantify the regions Rℓ, ℓ = {1, 2, 3, 4} corre-

sponding to the groups of nodes nI,ℓ introduced in Sec. 8.3.1:

R1 = E [RR]− E [RR,C] (8.29)

R2 = E [RC]− E [RR,C] (8.30)

R3 = E [RR,C] (8.31)

R4 = R−R1 −R2 −R3 . (8.32)

In this work, we assume that the STAs are distributed according to a PPP. Notice that,

given the symmetry of the coverage areas, it is nO,ℓ ≡ nI,ℓ ∀ℓ.

8.6 Numerical evaluation

We validated the proposed model by comparing its performance in terms of throughput

and delay with that of realistic Monte Carlo simulations for different system configura-

tions.

157



mmwave communication : contention-based channel access in ieee802.11ad

Table 8.1: Simulation parameters.

BI structure
BI duration BI 100 ms
BHI duration BHI 2 ms

EDCA parameters
Minimum contention window size W0 16
Maximum contention window size 2m′W0 1024
Maximum # retransmission attempts m 6
Slot duration σ 5 µs
SIFS SIFS 3 µs
DIFS DIFS 13 µs
Propagation delay δ 100 ns

Packets size
MAC header HMAC 320 b
PHY header HPHY 64 b
RTS size LRTS 20 ∗ 8 b
CTS size LCTS 20 ∗ 8 b
ACK size LACK 14 ∗ 8 b
Data size E [L] 7995∗8 b −HMAC

Noise
Noise figure FdB 10 dB
Bandwidth W 2.16 GHz
Path loss exponent η 3

The system parameters, most of which have been taken from the standard [163], are

summarized in Table 8.1. The time required to send a message is computed as its size in

bits (see Table 8.1) divided by the rate of the MCS used; RTS, CTS and ACK messages

are sent using the control modulation, which corresponds to a rate of 27.5 Mb/s [163],

while we assume to use the Single Carrier PHY layer with mcs = 5 for data transmission,

which yields a data rate of 1251.25 Mb/s [163].

We also set a maximum BER of 10−6 and mapped such requirement onto a threshold

γth on the SNR3. This allows one to estimate the area covered by the AP as per Sec. 8.5.1,

where the antenna gains are derived from the number of antenna sectors, and the noise

power is N = kT0FW, where k is the Boltzmann constant, T0 = 290K, and the noise

figure F, the path loss exponent η and the bandwidth W are given in Table 8.1.

Figs. 8.7 and 8.8 show the throughput and delay, respectively, as functions of the STAs

density λ for different values of ν ≜ CBAP/(BI − BHI), which represents the fraction

of DTI devoted to CBAP. Clearly, the throughput increases with ν, since there is more

time for EDCA operation. Interestingly, the STA density does not have an impact on

3 We built an SNR-BER map using the WLAN Toolbox™of MATLAB software, which provides functions for
modeling 802.11ad PHY.
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Figure 8.7: Throughput vs STAs density for different values of ν. Analytical model (solid lines) vs. simula-
tion (dashed lines) for nCBAP = nSP = 3.
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Figure 8.8: Delay vs STAs density for different values of ν. Analytical model (solid lines) vs. simulation
(dashed lines) for nCBAP = nSP = 3.
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Figure 8.9: Throughput vs ν for two values of nCBAP. Analytical model (solid lines) vs. simulation (dashed
lines) for λ = 0.04 m−2 and nSP = 10.

the aggregate throughput: although the success rate of each STA considered separately

decreases for larger values of λ, the number of STA increases, yielding an almost constant

value of S. The analytical model works better for smaller values of ν, while it tends

to deviate from the simulated throughput as ν increases. Figs. 8.7 and 8.8 show the

performance for up to about 100 STAs in the network. As λ increases, the model tends to

underestimate the aggregate throughput. This happens because the collision probability

is modeled by assuming that the STAs access the channel independently, while, as

discussed in Sec. 8.3.3, this is not true. When the STAs density increases, the dependence

among STAs become stronger but the model does not capture it and evaluates a poorer

performance than that obtained in practice. The same considerations can be made for

the delay (see Fig. 8.8). The delay increases with the STAs density because the higher

collision rate leads to a larger number of retransmissions and decreases with ν since the

EDCA operation is less likely to be frozen.

In Figs. 8.9 and 8.10 we evaluated the impact of ν and of the number of CBAP

allocations. We fixed nSP = 10 and varied ν for different values of nCBAP with λ = 0.04

m−2. Interestingly, both the throughput and the delay do not depend on nCBAP (the plots

show only two values of nCBAP, but we obtained almost the same performance for each

value of nCBAP between 1 and nSP + 1). The configuration of the CBAP allocation within

a BI, thus, clearly plays a role on the transmission of a single packet, but does not have

an impact on the aggregate performance. As already discussed, increasing ν improves

the performance obtained during CBAP allocations.
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Figure 8.10: Delay vs ν for two values of nCBAP. Analytical model (solid lines) vs. simulation (dashed lines)
for λ = 0.04 m−2 and nSP = 10.

8.7 Lesson learned

WiFi protocols have been object of studies for decades, and there exist many efficient

models to evaluate and improve their performance. Nonetheless, the recent IEEE

802.11ad standard introduces novel features that are not readily addressed by the current

models. A main characteristic of the WiFi protocol for mmWave networks is the use of

contention-free scheduled SP in addition to the legacy EDCA operation and the use of a

polling mechanism to allocate channel time almost in real time. It is however still unclear

how to exploit such different allocation mechanisms in order to efficiently schedule the

DTI and accommodate heterogeneous requirements. To this aim, it is first necessary to

study the performance that can be obtained with SP and CBAP allocations depending

on the DTI configuration and the network condition.

In this study, we focused on CBAP allocations and proposed an adaptation of Bianchi’s

original model that takes into account all the features introduced by the IEEE 802.11ad

standard. Although the model is based on some assumptions, it is able to capure the

system behavior during the ECDA operation and provides good estimates of throughput

and delay. Moreover, the model is highly parameterized, making it possible to easily

study the effect of various configurations, which is helpful for the design of an adaptive

scheduling algorithm.
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Figure 8.11: Target STA and potential interferer in the Cartesian plane. The blue area represents the right
half of the beam of the potential interference directed towards the AP in (0, 0); it has width θS/2
in correspondence of the potential interferer. Analogously, the yellow area is the upper half of
the beam of the target STA. Notice that in this example the two STAs cannot hear each other,
since the antenna gain of the target STA in (di cos φ, di sin φ) is zero; it means that φ < φlim(di).

Appendix A

Here we prove (8.23) and that STAs in group nI,1 have the phase of their polar coordinates

in the range [φlim(di), 2π − φlim(di)].

Consider a possible interferer at distance di ∈ [0, R] from the AP and with angular

phase φ ∈ [0, π]; this means that we are only focusing on the upper half of the circular

area around the AP, being the scenario symmetric. Consider the triangle whose vertices

are the AP (0, 0), the target STA (dt, 0) and the interferer (di cos φ, di sin φ), as in Fig. 8.11.

The two edges that form the vertex coinciding with the AP have length di and dt, and the

angle they form has width φ. Denote the other two angles as xi and xt, as in Fig. 8.11.

We are interested in the angles φ such that the target STA is in the beam of the

interferer, i.e., xi ≤ θS/2, and the interferer is in the beam of the target STA, i.e., xt ≤ θS/2

(the beams are symmetric with respect to the AP and have width θS). Moreover, the

angles must satisfy the two following equations

xi + xt + φ = π, (8.33)

di

sin xi
=

dt

sin xt
, (8.34)

where (8.23) comes from the law of sines. If di ≤ dt, then xi ≥ xt, and thus the limit

condition is obtained for xi = θS/2. Considering (8.33) and (8.34), we then obtain that

we are interested in all angles φ ≥ φlim = π − θS/2− arcsin(di/dt sin θS/2). Similarly,

when di > dt, the limit condition is obtained for xt = θS/2, yielding φlim = π − θS/2−
arcsin(dt/di sin θS/2). This proves Eq. (8.23). Taking into account also STAs in the lower

half of the area aroud the AP, we finally obtain that the other STAs can overhear the

messages sent from the target STA if and only if their phase is in [ϕlim(di), 2π− ϕlim(di)],

with di being their distance from the AP.
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Appendix B

Here we explain how to express (8.27) and (8.28) so as to compute them in closed form.

We focus only on the first integral in (8.27), since analogous considerations can be made

for the second one, and refer to it as I1. I1 is zero if φlim(r) > φAP for the considered

r ∈ [0, R] and position dt of the target node (see (8.23)). In particular I1 = 0 if

arcsin
(

c1 sin
θS

2

)
< π − θS

2
− φAP (8.35)

with c1 = r/dt if r ≤ dt and c1 = dt/r otherwise (as per (8.23)). We recall that

0 ≤ θS ≤ π and 0 ≤ φAP ≤ θAP ≤ π by assumption. Therefore, denoting the sum

π − θS/2− φAP as c2, it is −π/2 ≤ c2 ≤ π. Note also that the 0 ≤ c1 sin θS/2 ≤ 1,

yielding 0 ≤ arcsin(c1 sin θS/2) ≤ π/2.

• If c2 ∈ [π/2, π], then the conditions in (8.35) are certainly true, yielding I1 = 0.

This happens if φAP < π/2− θS/2, whatever the value of dt.

• Otherwise c2 ∈ [−π/2, π/2]. In this range the sine function is monotonically

increasing, so that it is possible to apply it to both terms in (8.35) without additional

adjustment. This gives the condition c1 sin θS/2 < sin (π − θS/2− φAP), which

can be expressed as c1 < sin
(

π − θS
2 − φAP

)
/ sin θS

2 ≜ c3. It follows that I1 = 0 if

r < dtc3 in the case r ≤ dt and if r > dt/c3 in the case r > dt. This happens only if

c3 ≤ 1, i.e., ϕAP < π − θS.

Summing up, it is

I1 =

( dt∫
max(dtc3,0)

(
−c2 + arcsin

(
r
dt

sin
θS

2

))
r ∂r

+
∫ min( dt

c3
,R)

dt

(
−c2 + arcsin

(
dt

r
sin

θS

2

))
r ∂r

)
1φAP≥π−θS

(8.36)

with 1X being the indicator function, equal to 1 if the condition X is true, and to 0

otherwise. The min and max operators in the integral limits ensure that the range [0, R]

is not exceeded. Eq. (8.36) can be solved in closed form. The same procedure can be

used to compute the second integral I2 in (8.27) using θAP − φAP rather than φAP.

This expression of RR,C(dt, φAP) can be used to compute its expectation as in (8.28).

We can focus only on the first double integral, since analogous considerations can be

made on the second one. Such first integral is made over I1 and I2. We consider only

the integral over I1 and denote it as J1; the rest of the terms in (8.28) can then be derived

following the same approach. It is necessary to characterize dt/c3 and dtc3 based on dt
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J1 =
2

R2θAP

∫ θAP

π−θS

∫ R

0
dt I1 ∂dt∂ϕAP

=
2

R2θAP

∫ θAP

π−θS

∫ R

0
dt

( ∫ dt

max(dtc3,0)

(
−c2 + arcsin

(
r
dt

sin
θS

2

))
r ∂r

+
∫ min( dt

c3
,R)

dt

(
−c2 + arcsin

(
dt

r
sin

θS

2

))
r ∂r

)
∂dt∂ϕAP

=
2

R2θAP

∫ R

0
dt

( ∫ π−θS/2

π−θS

∫ dt

dtc3

(
−c2 + arcsin

(
r
dt

sin
θS

2

))
r ∂r∂ϕAP

+
∫ θAP

π−θS/2

∫ dt

0

(
−c2 + arcsin

(
r
dt

sin
θS

2

))
r ∂r∂ϕAP

)
∂dt

+
2

R2θAP

∫ θAP

π−θS

( ∫ Rc3

0
dt

∫ dt/c3

dt

(
−c2 + arcsin

(
dt

r
sin

θS

2

))
r ∂r∂dt

+
∫ R

Rc3

∫ R

dt

(
−c2 + arcsin

(
dt

r
sin

θS

2

))
r ∂r∂dt

)
∂ϕAP .

(8.37)

and φAP, so as to remove the min and max operators in the terms in (8.36). It is dtc3 > 0

if φAP ≤ π − c, and dt/c3 < R if dt ≤ Rc3.

This result and the considerations made previously yield Eq. (8.37).

Rigorously from (8.36), it is J1 = 0 if ϕAP < π− θS. This can be checked beforehand as

it only depends on system parameters. It is now easy to compute the integral in closed

form and, repeating the same procedure for the other terms in (8.28), calculate E [RR,C].
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Conclusions

This thesis concerns the channel access issue in novel technologies, namely IoT, LTE

and IEEE802.11ad, and proposes several MAC layer schemes and models based on a

mathematical analysis.

The first part of the thesis studies the challenge of designing energy-aware channel

access policies for IoT networks. Ch. 2 discusses the energy efficiency goal in battery-

powered sensor networks: it explains the main sources of energy consumption at the

MAC layer and how they influence contention-based and contention-free access mecha-

nisms. We also proposed a mathematical model to characterize the energy consumed by

a device for the main operations, which is extremely helpful to design an energy-aware

MAC layer: an incorrect characterization of the energy consumption in the planning

phase may lead to the premature death of the network in real deployments and to

unreliable performance analysis. We also discuss the use of data processing techniques

to trade off some accuracy in the data representation for a reduced energy consumption.

Ch. 3 proposes an adaptive TDMA-based channel access policy for a network made

up of devices with heterogeneous capabilities and requirements in the two cases of

complete and incomplete CSI at the transmitter. The goal is to maximize the network

lifetime while guaranteeing the desired level of QoS. The network resources are assigned

to the devices based on their requirements, thus the optimization considers all users

jointly. The proposed policy allocates channel resources differently to the various devices,

dynamically adapts the data compression to the transmission operations, and performs

power control to counteract the channel fading; these behaviors allow to outperform

simpler schemes, as shown by both the numerical evaluations and the analytical results.

Similarly, also Ch. 4 presents a TDMA access policy with the goal of optimally using

the available energy so as to achieve the target QoS. Here, however, the devices are

endowed with energy harvesting capabilities, so that the goal is not to minimize the

energy consumption but rather to adapt the consumption to the availability. Source

and channel coding are optimized jointly, and they have a role on the communication

robustness and the quality of the transmitted data. A retransmission mechanism allows
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to further improve the QoS, at the cost of a higher energy consumption. Unlike in Ch. 3,

the processing and transmission operations are optimized separately for each device,

given the resources it is provided. This approach is easier to deploy in a distributed

fashion and requires less information to be exchanged with the receiver.

Unlike Chs. 3 and 4, Ch. 5 studies random access schemes, which, compared to

contention-free approaches, require no coordination among the devices but are prone to

interference and collisions. The scenario is similar to the previous ones, with battery-

powered sensors that track some time-series, which needs to be known at the receiver

with a predefined accuracy. We considered three different schemes, which combine

different compression techniques commonly used in signal estimation applications.

Differently from several state-of-the art works about time-series monitoring, we explicitly

consider the impact of interference on the QoS and energy consumption, and this allows

us to obtain better performance.

Ch. 6 considers the energy efficiency issue from a different perspective, namely that

of security, since energy restrictions may be a significant limit on a device’s capabilities,

making it more vulnerable to security attacks. An energy-depleting jamming attack is

modeled as a zero-sum game and analyzed for different levels of information available

to the legitimate transmitter. The proposed model sheds light on the attack and defense

mechanisms that can be played by energy-constrained devices and may be used as a

guideline for the development of lightweight defense and attack strategies.

The studies presented in this thesis validate the importance of including the energy

consumption in the MAC design when there is an interest in optimizing the devices

lifetime. To achieve such goal, it is necessary to have an accurate characterization of the

power consumption; a mathematical analysis gives insight on the impact that the various

operations related to the channel access have on the energy efficiency and how they are

interrelated. The obtained results can be helpful to evaluate the performance obtained

in real deployments and to realize flexible channel access schemes able to adapt to the

changing network conditions and application requirements.

The second part of the thesis concerns the channel access and data transmission

mechanisms of existing standards. Ch. 7 shows how to improve the LTE standard

by providing additional knowledge on the current network load so as to adapt the

collision resolution procedure of the RACH phase based on the estimated load. A

mechanism based on standard machine-learning techniques in fact allows one to infer

the collision multiplicity during the RACH phase. This information can be used to

improve the current medium access mechanism, which is sensitive to massive access

overload, and thereby yield reduced transmission latency, lower power consumption and
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increased supported system load. Moreover, the proposed techniques outperform the

state-of-the-art threshold-based schemes for preamble detection during the RACH.

Finally, Ch. 8 describes a mathematical model for the CBAP allocations in IEEE802.11ad,

which can be used to gain insight on the system performance that can be obtained with

a chosen transmission schedule; this may be very helpful to understand how to match

diverse traffic flows with specific requirements to the most appropriate scheduling. The

proposed model is an adaptation of Bianchi’s seminal model for legacy WiFi networks,

which takes into account the hidden node and deafness issues related to directional

communication and the intrinsic features of the standard 802.11ad.
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