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ABSTRACT

The design of channel access policies has been an object of study since the deployment
of the first wireless networks, as the Medium Access Control (MAC) layer is responsible
for coordinating transmissions to a shared channel and plays a key role in the network
performance. While the original target was the system throughput, over the years
the focus switched to communication latency, Quality of Service (QoS) guarantees,
energy consumption, spectrum efficiency, and any combination of such goals. The basic
mechanisms to use a shared channel, such as ALOHA, Time Division Multiple Access
(TDMA)- and Frequency Division Multiple Access (FDMA)-based policies, have been
introduced decades ago. Nonetheless, the continuous evolution of wireless networks
and the emergence of new communication paradigms demand the development of new
strategies to adapt and optimize the standard approaches so as to satisfy the requirements
of applications and devices.

This thesis proposes several channel access schemes for novel wireless technologies,
in particular Internet of Things (IoT) networks, the Long-Term Evolution (LTE) cellular
standard, and mmWave communication with the IEEE802.11ad standard.

The first part of the thesis concerns energy-aware channel access policies for IoT
networks, which typically include several battery-powered sensors. In scenarios with
energy restrictions, traditional protocols that do not consider the energy consumption
may lead to the premature death of the network and unreliable performance expectations.
The proposed schemes show the importance of accurately characterizing all the sources
of energy consumption (and inflow, in the case of energy harvesting), which need to be
included in the protocol design. In particular, the schemes presented in this thesis exploit
data processing and compression techniques to trade off QoS for lifetime. We investigate
contention-free and contention-based chanel access policies for different scenarios and
application requirements.

While the energy-aware schemes proposed for IoT networks are based on a clean-slate
approach that is agnostic of the communication technology used, the second part of
the thesis is focused on the LTE and IEEE802.11ad standards. As regards LTE, the
study proposed in this thesis shows how to use machine-learning techniques to infer

the collision multiplicity in the channel access phase, information that can be used
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to understand when the network is congested and improve the contention resolution
mechanism. This is especially useful for massive access scenarios; in the last years, in
fact, the research community has been investigating on the use of LTE for Machine-Type
Communication (MTC). As regards the standard IEEE802.11ad, instead, it provides a
hybrid MAC layer with contention-based and contention-free scheduled allocations, and
a dynamic channel time allocation mechanism built on top of such schedule. Although
this hybrid scheme is expected to meet heterogeneous requirements, it is still not clear
how to develop a schedule based on the various traffic flows and their demands. A
mathematical model is necessary to understand the performance and limits of the
possible types of allocations and guide the scheduling process. In this thesis, we propose
a model for the contention-based access periods which is aware of the interleaving of the

available channel time with contention-free allocations.



SOMMARIO

Fin dalla comparsa delle prime reti wireless, la progettazione di strategie di accesso
al canale é stata oggetto di intenso studio, in quanto il livello MAC e responsabile di
coordinare le trasmissioni su un canale condiviso e quindi svolge un ruolo fondamentale
nelle prestazioni della rete intera. Originariamente la progettazione del livello MAC
nelle reti wireless si proponeva di garantire un certo throughput, ma nel corso degli
anni l'interesse si & spostato sulla latenza delle comunicazioni, assicurare un certo livello
di QoS, ottimizzare il consumo energetico, garantire efficienza spettrale, e qualsiasi
combinazione di questi obiettivi. I meccanismi classici di accesso al canale, come
ALOHA, TDMA e FDMA, sono stati introdotte da decenni; ciononostante, la continua
evoluzione delle reti wireless e la comparsa di nuovi paradigmi di comunicazione ha
richiesto lo sviluppo di nuove strategie per adattare e ottimizzare gli approcci standard
cosi da soddisfare i requisiti di dispositivi e applicazioni.

Questa tesi propone diversi schemi di accesso al canale per nuove tecnologie wireless,
e in particolare per reti IoT, per lo standard cellulare LTE, e lo standard IEEE802.11ad
per comunicazione con mmWaves.

La prima parte della tesi riguarda schemi di accesso al canale efficienti dal punto
di vista energetico per reti IoT, che, di solito, comprendono molti sensori alimentati a
batteria. In scenari con restrizioni energetiche i protocolli classici che non prendono in
considerazione il consumo di potenza potrebbero portare alla morte prematura della
rete e ad aspettative di prestazioni ottimistiche. Gli schemi proposti in questa tesi
dimostrano l'importanza di caratterizzare tutte le fonti di consumo energetico (e di
apporto energetico, nel caso di energy harvesting), che devono essere incluse nella
progettazione del protocollo di comunicazione. In particolare, gli schemi proposti in
questa tesi sfruttano tecniche di compressione ed elaborazione dati, le quali consentono
di prolungare la vita della rete a discapito di una ridotta QoS. Abbiamo analizzato
algoritmi di accesso sia basati sulla contesa del canale che non per diversi scenari e
requisiti di applicazione.

Mentre gli schemi proposti per le reti IoT non sono basati su tecnologie specifiche,
la seconda parte della tesi riguarda gli standard LTE e IEEE802.11ad. Per quanto

concerne LTE, lo studio proposto in questa tesi mostra come utilizzare tecniche di
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machine-learning per stimare il numero di utenti che collidono durante 1’accesso al
canale; quest’informazione ¢ utilizzata per capire quando la rete ¢ congestionata e
migliorare il meccanismo di risoluzione delle collisioni. Questo & particolarmente utile
per scenari di accesso massivo: negli utlimi anni, infatti, si e sviluppato un forte interesse
verso 'utilizzo di LTE per MTC. Per quanto riguarda IEEE802.11ad, invece, lo standard
prevede un MAC ibrido con allocazioni da predefinire con e senza contesa per 'accesso
al canale, e un meccanismo di allocazione dinamica che viene fatta al di sopra dello
schema gia stabilito. Nonostante ci si aspetti che questo schema ibrido possa soddisfare
requisiti eterogenei, non € ancora chiaro come scegliere le allocazioni da usare in base
ai vari flussi di traffico e i loro requisiti. Percio, € necessario un modello matematico
per capire le prestazioni e i limiti che possono essere ottenuti con le varie tipologie di
accesso al mezzo previste dallo standard e guidare la fase di allocazione delle risorse. In
questa tesi, proponiamo un modello per le allocazioni basate sulla contesa del canale di

comunicazione che tiene conto della presenza di altre allocazioni di tipo diverso.
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INTRODUCTION

Circuitry and RF design are constantly improving to yield enhanced device capabilities,
and an optimized design of all the layers of the protocol stack is necessary to fully exploit
the potential of the underlying hardware. Channel access plays an important role in
telecommunication networks: the MAC layer is in charge of coordinating transmissions
to a shared channel, having a strong impact on throughput, energy consumption, and
latency. It is responsible for defining how and when a node can attempt to transmit
in such a way to limit all issues that can arise when multiple devices share the same
medium.

At a macroscopic level, MAC schemes for wireless networks are typically classified as
either contention-based or contention-free, according to the policy adopted to handle
multiple accesses of the channel [1]. In contention-free channel access, a node transmits
in dedicated resources (e.g., time, frequency, or using a specific code); this avoids
interference from the other devices (from the same or other networks), but requires
coordination among the devices for the generation and maintenance of the schedule. On
the other hand, in contention-based channel access schemes (such as ALOHA and its
numerous variants or Carrier Sense Multiple Access (CSMA)-based approaches), the
devices can access the medium randomly; the channel access itself is simpler than in
contention-free approaches as it requires little to no coordination, but demands a stable
and fast algorithm for collision resolution. Both contention-based and contention-free
approaches have advantages and disadvantages, and typically the choice of one over the
other is driven by the use case, network topology, and application requirements. Hybrid
schemes try to leverage on the advantages of both approaches; the access procedure,
e.g., is then split into two phases characterized by different mechanisms, or dynamically
adapts to the current network conditions.

The design of an efficient channel access mechanism should take into account the
application goals and the target scenario, possibly including adaptive mechanisms to
deal with changing network conditions and traffic patterns. Moreover, the devices may

differ in computational, storage and energy capabilities, and the channel access scheme
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should adapt to such heterogeneity. Clearly, to achieve a certain performance goal,
it is necessary to accept a tradeoff on other aspects of network performance, such as
bandwidth efficiency, latency, QoS, energy consumption, etc. The design of the MAC
layer is also interrelated to that of other layers and communication aspects, such as

routing and data processing.

The studies presented in this thesis are based on mathematical modeling. Although
this entails the introduction of simplifications with respect to real-world deployments, it
gives insight on the achievable system performance and on the role played by the various
parameters. Modeling and analysis of communication networks allows one to study the
system even before its actual implementation, and thereby optimize its design. This is
helpful to assess bounds that can be used to gauge the performance of real deployments

and to understand the tradeoffs involved in the design choices.

This thesis is made of two parts. The first part concerns energy-aware schemes
for IoT networks. While several applications (environmental monitoring, tracking of
goods, on-body measurement of physiological parameters, etc. [2]) benefit from the large
availability of cheap and easy-to-install sensors, the limited resources of the devices
pose a number of unique design challenges, in particular for dense networks. Even if
connecting sensors to the electricity grid is feasible, it can be beneficial not to do so to
simplify the installation process, facilitate changing the position of sensors or ensure
devices are independent of the power grid. Many sensors are in fact designed to require
very little maintenance and to be off-the-grid, in what has been called a place-&-play
paradigm [3]. This requires the devices to be battery-powered, and possibly equipped
with Energy Harvesting (EH) mechanisms to draw energy from the environment, in
order to become energetically self-sufficient. In any case, the communication protocols
should be designed to operate under strict constraints on the energy availability [4].
Ch. 2 introduces the energy efficiency issue and discusses how the MAC layer design is
affected by energy constraints. It also introduces a parameterised model for the major
sources of energy consumption, which is helpful in the design of energy-aware schemes.
Chs. 3-5 present some channel access schemes for IoT networks. While they differ
for channel access mechanism, devices capabilities and requirements, they share some
similarities. All the proposed schemes target monitoring applications for single-hop
networks, so that the purpose is to track some phenomena of interest and report data
to a common receiver. The ultimate goal is to extend the devices lifetime as much as
possible, i.e., to use the available energy optimally. To do so, all schemes leverage on
data processing, which allows one to trade off some accuracy in the data representation

for a reduced energy consumption and thus requires strategies to ensure a desired QoS.
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Ch. 6, instead, addresses the energy issue at the MAC layer from a security perspective,
and analyses energy-depleting jamming attacks using a game theoretical approach.

The second part of the thesis is related to the channel access mechanism of existing stan-
dards, in particular the 3GPP cellular standard LTE and the Wifi standard for mmWave
communication, IEEE802.11ad. Ch. 7 concerns the Random Access Channel (RACH)
procedure in LTE, which serves as synchronization mechanism between the base station
and the other devices in the network. In particular, the study presents a machine-learning
based technique to detect the collision multiplicity during the RACH. This information
can be helpful for advanced collision resolution algorithms and thereby improve the
channel access performance, since the current collision resolution mechanism can be a
serious bottleneck in dense scenarios, in particular in the case of MTC. Ch. 8 is about the
standard IEEE802.11ad, which targets short range mmWave communication at 60 GHz in
local area networks. MmWave communication has been gaining increasing attention from
both academia and industries, because of the new possibilities disclosed by the huge
bandwidth and the mmWave frequencies. Unlike the previous WiFi standards, 802.11ad
adopts a hybrid MAC layer, with contention-based and contention-free allocations. It is
however not clear how to schedule such allocations to match the requirements of the
various traffic flows, and the literature on this topic is still very sparse. Ch. 8 introduces a
mathematical model for the contention-based access periods that allows one to evaluate
the network performance based on the configuration chosen for the scheduling.

The studies presented in this thesis highlight that the MAC layer design is a challenging
task that needs to take into account several conflicting factors and requirements. A well
designed channel access scheme can significantly improve the network performance.
It is key to adapt the channel access scheme to the scenario and network conditions
and mathematical analysis can play a major role in determining the tradeoffs involved
between the various system parameters.

We would like to highlight that some of the studies presented in this have been done in
collaboration with other Ph.D. students. The model proposed in Ch. 8 has been realized
during a six-month internship ad the National Institute of Standards and Technology
(NIST) (Gaithersburg, MD, US).

Additional research. While the focus of this thesis is on the MAC layer for different
scenarios and protocols, during my Ph. D. I also developed schemes for the rebalancing
problem of bike-sharing systems, which represent one of the major services in Smart
Cities and can be modeled as networks. The dissemination of sensors yields the collection
of historical data whose analysis makes it possible to gain insight on the service usage
and understand how it is affected by different conditions and external factors [C6]. This

information can then be used to improve the existing service; one of the main problems
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that affect bike-sharing systems is the unbalanced usage, which leads to have empty
and full stations, where it is impossible to pick up and drop a bike, respectively. We
developed a dynamic rebalancing scheme [J4] that adapts to the varying demand, and
also proposed an analytical model that takes into account incentives given to users so

that they are encouraged to self-rebalance the bike-sharing network [J7].



Part 1

ENERGY-AWARE COMMUNICATION FOR
THE IOT






—_

THE ENERGY EFFICIENCY ISSUE

The IoT has been one of the major drivers of innovation in the past few years, with new
applications and technologies being invented on a daily basis [5]. Intelligent sensors and
microcontrollers are extended into the world of everyday objects creating a ubiquitous
interconnected world [6]. Unquestionably, the IoT is expected to grow significantly in
the next future and drastically change many aspects of everyday life. Gartner predicts 20
billion internet-connected things by 2020' and McKinsey Global Institute estimates that
the IoT could have an annual economic impact of $4 to $11 trillions by 20252.

However, many challenging issues still need to be addressed and both technological
as well as social knots need to be untied before the vision of IoT becomes a reality [7].
From a technological perspective, these challenges include the heterogeneity of both
devices and applications, the high volume of data collected, self-adaptability to dynamic
scenarios and requirements, scalability and connectivity, energy management, privacy
and security [8]. As traditional technologies are not able to solve these issues, there is
an increasing need for novel solutions, and changes at both the architectural and silicon
levels are required. An intelligent sensor and circuit design is in fact not sufficient: slim
and lightweight implementations at all layers are also necessary. Ill-designed network,
processing and resource management solutions may indeed hamper the effectiveness of
an efficient PHY layer.

This part of the thesis focuses on the energy efficiency problem, which is considered
to be one of the main challenges of IoT networks, as many devices are expected not to be
connected to any infrastructure, including the energy grid [9]. Most research so far has
focused on low power circuit design and energy efficient PHY, with the goal of reducing
the average energy per information bit required for communication. While any advances
at the RF/PHY layer are expected to translate into a more energy-efficient device, it is not
at all obvious that this is by itself sufficient for the whole system to make the best use of

the available energy, and a more complete view of the system, including the application

https://www.gartner.com/imagesrv/books/iot/iotEbook _digital.pdf
https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-
of-things
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(signal type and processing tasks), the lower networking layers (MAC scheduling and
routing) and some basic network management functionalities (node discovery and sleep
modes) can play a crucial role in identifying the main sources of energy consumption,

revealing inefficiencies and providing opportunities for large gains [10].

Replacing sensors or recharging their batteries every few weeks may annihilate all the
benefits of collecting data, and nodes failure due to power depletion may even lead to
the breakdown of the whole architecture [11]. It is fundamental to have sensors that are
completely stand-alone and can run for years between battery replacements. A typical
periodically-reporting device is expected to operate for long periods without human
intervention: in particular, the industry aims to achieve a minimum of 10 years of battery
lifetime [12, 13, 14]. In such a scenario, keeping a node’s transmitter turned on and
transmitting continuously at maximum power is not realistic: duty-cycling and power
control are fundamental techniques [15] to increase the lifespan of these devices, and

several protocols have been studied and implemented [16].

EH is a promising technique through which sensors can scavenge energy from the
environment and replenish their batteries, thereby fostering self-sustainability of the
devices and, thus, of the IoT application. Ideally, EH could guarantee infinite lifetime;
however, its intermittent nature requires the use of flexible protocols able to adapt
to a stochastic energy availability. A general overview of recent advances in wireless
communications with EH is presented in [17], while [18] discusses the challenges of
designing an intelligent EH communication system and presents a general model that
can be adapted to some specific contexts. Notice that EH requires a different approach
to the energy management: when the battery represents the only source available
to the device, the effort is put in the minimization of the energy consumption [19,
20]; instead, when devices have EH capabilities, energy-neutral operation modes are
sought [21, 22]. Optimizing the energy consumption is a challenging task, sharpened
by the numerous tradeoffs that need to be tackled when trying to provide reliability,
security, and timeliness at the same time. The need for energy efficiency in the IoT has
been gaining increasing attention in the last decade, and many efforts have been put in

the design of energy-aware protocols at all layers of the protocol stack.

Notice that the energy constraints of many IoT devices, along with their reduced
computational power, also pose a security challenge: devices are vulnerable to energy-
depleting attacks and traditional security protocols may be too burdensome or complex.
Gartner predicts that worldwide spending on IoT security will reach $1.5 billion in 2018,

a 28 percent increase from 2017 spending of $1.2 billion.?

3 https://www.gartner.com/newsroom/id/3869181
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2.1 SOURCES OF ENERGY CONSUMPTION AT THE MAC LAYER

In this thesis, the energy efficiency issue is investigated from a MAC layer perspective.
The MAC layer is in charge of coordinating transmissions to a shared channel, and thus
plays a key role in the IoT, where massive access and dynamicity are the rule rather than
the exception. The MAC layer design attempts to improve energy efficiency by accepting
a tradeoff on other aspects of network performance, such as bandwidth efficiency, latency,
and reliability [23], and is crucial in the IoT because of its influence on the energy-hungry

radio transceiver.

2.1 Sources of energy consumption at the MAC layer

It is possible to identify four major sources of energy waste that the design of the MAC
layer must deal with [24] [25].

Collisions. When multiple radio signals overlap in time or frequency, they are said
to collide. This situation can be observed especially in random access schemes where
different sources transmit without any coordination, and in dense networks, where
the same time slots have to be shared by multiple nodes. It is extremely important to
avoid (or at least reduce) collisions, as they impinge on the energy efficiency (and the
network performance in general), both because of the energy wasted to transmit and
receive corrupted packets, and the following retransmissions that they may imply. In fact,
even in case of advanced receivers with multi-packet reception capabilities, collisions
may prevent the correct decoding of the signals involved, and this affects the energy

consumption, the latency, the quality of the received data, and the throughput.

Overhead. Coordinating access schemes requires the exchange of signaling and control
packets to maintain the synchronization among devices. These control packets do
not carry information useful to the final application, but are only used by nodes to
communicate and coordinate themselves, and clearly influence the energy consumption.
Moreover, the payload size is often small in many IoT scenarios (less than 1 kByte), and
thus the MAC overhead is significant and needs to be designed optimally. Notice that
also the acknowledgment mechanism is included in the overhead, and in fact many IoT

protocols try to limit the feedback from the receiver (e.g., in LoRa [26]).

Overhearing. In wireless networks, it may happen that a node receives a packet intended
for a different destination, thereby wasting energy since the sensor uselessly listens to
the channel and also spends some energy to decode. Usually, overhearing is reduced by

filtering packets based on their destination address or exploiting their preamble.

Idle listening. When a node does not know when it will receive messages from other
devices, it keeps listening to the channel waiting for potential data. It means that a node

is ready to receive messages but in vain, and thus wastes its energy. This problem is
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very important especially in networks with low traffic loads. The simplest way to reduce
idle listening is to put nodes to sleep as long as possible, e.g., by adopting appropriate
duty cycles. However, it is fundamental to ensure that a device is awake when it has to
receive some message. Wake-Up Radios (WURs) are a novel hardware approach that
eliminates these shortcomings: devices are provided with an ultra low power receiver
that continuously listens to the channel and wakes up the main radio on demand [27].
WURs improve the overall network energy efficiency, but their design has to deal with
several tradeoffs concerning sensitivity, resilience to interference, coverage area, wake-up

speed, and power consumption [28].

2.2 Channel access schemes

At a macroscopic level, channel access schemes can be divided into contention-free
and contention-based, depending on whether the devices try to use the same resources

simultaneously or not, respectively.

Contention-free access. When the network topology and the traffic pattern can be known
or predicted in advance, contention-free access mechanisms guarantee optimal perfor-
mance because they allocate the available resources to nodes so as to avoid wastages and
satisfy all users’ requirements. Interference and collisions are avoided, and idle listening
is reduced. Users can be allocated different time slots (TDMA-based approaches), fre-
quency bands (FDMA-based approaches), or orthogonal codes (Code Division Multiple
Access (CDMA) approaches). Coordinated access schemes are well suited for appli-
cations where the traffic pattern is known in advance, e.g., industrial Wireless Sensor
Networks (WSNs) [29]. In 2012, for example, the Internet Engineering Task Force (IETF)
introduced the Time-Slotted Channel Hopping (TSCH) [30] mode as an amendment to
the MAC portion of the IEEE802.15.4e standard, which combines time synchronization
and channel hopping and is intended for industrial automation. TDMA-based schemes
can be effectively coupled with duty cycling, where nodes alternate active and sleeping
phases to preserve energy [31]. However, pure coordinated access schemes may result in
poor performance when dealing with event-based signals such as alarms, which have
strict latency and QoS constraints. Traditional protocols should therefore be revisited in
order to account for the different traffic types, like in [32], where the proposed access
mechanism proactively tunes the number of used resources to meet the application
requirements.

Contention-based access. In some IoT applications, using a coordinated scheme may be
impractical or suboptimal, because i) synchronization and control messages burden too
much the constrained nodes, ii) data transmission is event-triggered and thus difficult

to predict, or iii) the device mobility and the likelihood of faults due to fluctuations of
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the wireless channel make the topology highly dynamic. When at least one of these
conditions occurs, random access schemes are generally preferable over coordinated
ones. They are distributed and easier to implement and make channel resources available
to more stations. The price to pay is interference among devices, which may cause
packet losses or corruption, affecting the QoS, increasing latency, and wasting energy.
Typically, transmission technologies in the IoT use some variant of ALOHA-based
schemes, where devices access the channel whenever they have data to transmit, or
CSMA schemes, where devices listen to the channel before transmitting to sense whether
there are ongoing transmissions and reduce its probability of colliding with other packets.
An interesting approach is represented by coded random access schemes, which map
the structure of the access protocol to that of an erasure-correcting code defined on a
graph, making it possible to achieve much better performance than simple ALOHA [33].
Another way to improve the performance of random access is to consider a receiver
with interference cancellation or multiple packet reception capabilities [34]. Also duty
cycling may lead to significantly reduced energy consumption, but has an impact on

data latency and still wastes energy for idle listening [35].

Both contention-free and contention-based approaches have advantages and disadvan-
tages, and typically the choice of one over the other is driven by the use case, network
topology, and application requirements. Given the dynamic nature of many IoT scenarios,
it may also be useful to leverage on the advantages of both schemes to achieve high
performance under variable traffic patterns and network conditions [36, 37]. This leads
to hybrid access, where the access procedure either is split into two phases character-
ized by different mechanisms, or dynamically adapts to the current network load and

requirements.

221 Data processing

A well-designed channel access scheme may not itself be sufficient to ensure power
savings. The resource limitations of the devices typically involved in an IoT scenario also
pose a challenge, because they affect the complexity of the algorithms that can be run.
In monitoring applications, the devices constantly sense the surrounding environment
and exchange a large amount of raw data, whose transmission would rapidly deplete
the batteries of the nodes. A way to save some transmission energy consists in reducing
the volume of data to send by applying source processing techniques. In-node signal
processing /compression mechanisms can indeed reduce the amount of data to be trans-
mitted, thus relieving channel contention, transport and interference issues. However,
this comes at the cost of spending some energy for the compression operations and

introducing a distortion with respect to the original signal.

11
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A recent trend in IoT deployments is to move some of the processing from the network
center to its edge, according to the fog computing paradigm [38]. In-node and in-network
data processing are of paramount importance, as they can effectively reduce the amount

of information that is to be sent to (and processed by) the higher levels of IoT systems [39].

In many IoT applications, like industrial and environmental monitoring, nodes period-
ically report measurements to a central entity (the sink) and their data volume can be
highly reduced through predictive algorithms [40, 41], i.e., by sending data points only
when they deviate from some expected pattern. The effectiveness of this approach has
also been proved on real datasets [42]. When dealing with time series, lossy compression
can be exploited to trade some accuracy in the signal’s representation for improved
energy efficiency. In this domain, a number of approaches like probabilistic, linear or
autoregressive models, Fourier transforms and Kalman filters have been considered,
although they are generally too computationally expensive and, in turn, power-hungry
for constrained IoT devices [43]. The research community has thus started exploring

lighter algorithms, e.g., the Lightweight Temporal Compression (LTC) algorithm [44].

Moreover, the heterogeneous and dynamic nature of IoT systems requires adaptability,
and employing a traditional compression scheme may lead to suboptimal performance.
The research focus is thus moving towards data-driven approaches, where the com-
pression technique is automatically adjusted according to the type of signal and to the
application requirements. For example, in [45] Compressive Sensing (CS) is combined
with principal component analysis to capture the spatial and temporal characteristics
of real signals, and a feedback control loop estimates the signal reconstruction errors
on the fly and allows the system to self-adapt to changes in the signal statistics. [46]
proposes another adaptive scheme that switches between lossless and lossy compression
in an on-demand fashion according to a compression error bound derived from the

application requirements.

Another promising approach consists in applying data mining techniques to extract
features from time series, seeking feature-based classifiers [47]. Signal classification into
groups with similar characteristics allows the sensors to choose the data processing
technique that is most appropriate for their respective class (i.e., leading to the best

performance for some metric, like the distortion of the compressed signal) [48, 49].

Moreover, the cost (energy and distortion) of the in-node processing algorithms shall
be included in the optimization of the network protocols so as to allow the entire system
to adapt, seeking a good tradeoff in terms of overall energy consumption (processing
and communication) vs. quality of the information that is sent to the application (e.g.,

quality of an answer or representation accuracy of a measurement).
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2.3 A model for the energy consumption

It is extremely important to accurately estimate the lifetime of a sensor to gauge the
performance of IoT energy-constrained systems. In fact, although a wide variety of
network lifetime definitions are adopted in the literature, they all ultimately depend on
the lifetime of individual sensors. To design energy efficient algorithms and protocols
it is necessary to identify and characterize all the sources of energy consumption and
supply. It is hard to define an exhaustive and general model for the energy dynamics
of an IoT device, since its energy consumption highly depends on the technology it
employs, its operating conditions, and the algorithms it uses. Next, we describe a
parameterized model that tries to capture all the major sources of energy expenditure,

namely, communication, data acquisition, processing, and circuitry [10].

Sensing. Let N; be the number of sensing events performed in a given time window Ts.

The sensing energy is defined as:

Es = NsEsens (21)

where Egens is the energy spent by the device to collect one sample. For periodic sensing,
N; ~ round(Ts/T,), where T), is the nominal sensing period, while for aperiodic sensing,
where the acquisition of samples is triggered by some event, N, is a random variable
whose distribution depends on the specific sensing process and on the observation
window T;. Often, Egens is very small compared to the energy drained by the RF
architecture, and Es becomes negligible. However, there exist devices such as cameras
that may spend non negligible amounts of energy to collect a new image every few tens

of milliseconds.

Data processing. Nodes may collect endogenous or exogenous data, which can both be
processed either at an intra-node level or at an inter-node level with data aggregation
and data fusion techniques. The latter approach highly depends on the network topology,
the amount of information exchanged among nodes and the way data is processed. It is
thus difficult to derive a general model; moreover, it is not used in any of the studies of
this thesis, which only consider in-node compression operations. For data compression

the energy cost can be quantified using the results in [43]:
E, = EoLoNp(77p) - (2.2)

Ej is the energy consumption per CPU cycle (that depends on the micro-controller unit),

Lo is the number of bits used to represent the original signal, and N, (77,) represents the

13
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number of clock cycles per bit needed to compress the input signal and is a function of
the compression ratio 77,. Note that N (77,) depends on the compression algorithm.

In both the studies of Chs. 3 and 4, it is assumed that the IoT nodes use the LTC
algorithm or the Fourier-based Low Pass Filter (DCT-LPF) algorithm, which are very
lightweight and suitable for constrained devices. In this case, the function N, (1) is

increasing and concave in 77p:

Np (17p) = aptp + By (2.3)

with &, B, > 0. Notice that the more compressed the packet, the less the energy spent.
This seemingly counterintuitive fact is due to implementation details; interested readers
can refer to [43] for an explanation.

For what concerns channel coding, typically the energy it requires is assumed to be
negligible with respect to the overall energy consumption and only the energy needed
by the receiver for decoding is taken into account [50], hence this contribution may be
considered only in terms of variation of the number of bits to be transmitted over the air
(i.e., redundancy bits added for FEC/CRC).

Transmission. The energy cost of any wireless transmission period can be modeled as:

Etx = s (24)

where T is the transmission duration, P, is the average radiated power, and 75 € (0,1]
is a constant that models the efficiency of the antenna’s power amplifier. This source of
energy consumption should be considered for all transmissions performed by the IoT
device, and thus also includes retransmission attempts and control messages, e.g., related

to the maintenance/generation of the access schedule in coordinated access schemes.

Reception. When receiving a packet, the device spends energy to receive the radio signal,
which can be modeled analogously to Eq. (2.4), and to reconstruct the original data from
its compressed/encoded version. This latter contribution is highly algorithm-dependent
and, to the best of our knowledge, there exists no general expression to characterize it.
Also the energy required by advanced decoding algorithms (e.g., interference cancella-
tion) should be taken into account. However, in the studies proposed here the focus is
on the energy consumed for transmission, because the considered applications assume
single-hop networks where the data sink is an energy-rich device.

Circuitry. Circuits spend some “basal” energy spent by the circuit in each of the node’s
possible operating states, x € {sleep,idle,active}. A simple way to model it is the

following:
E.= szc,x/ (2.5)
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where ¢, is the rate of circuitry energy consumption when the node is in mode x, and
T, is the time spent by the device in that mode. Also going from mode x; to mode x;
consumes energy, which is modeled as a constant contribution only depending on the

two modes:
Eswitch = kxl,xzz (26)

The switching time is assumed to be negligible, and for this reason Egy;tn, does not

depend upon it.

Energy harvesting. Devices that are not connected to the energy grid may harvest energy
from the surrounding environment. Typically, the energy arrivals are assumed to follow
a certain probability distribution, e.g., deterministic or Poisson. In case of energy supply
that exhibits time correlation, some studies validated against real data have proved
Markov Chains (MCs) to well model the energy inflow [51, 52]. Each possible state
entails a different distribution of the energy income. Note that, when dealing with
EH, the model is generally discrete, i.e., the energy inflow is quantized. Thus, the
dynamics of the source can be tracked through an X-state MC: the source is in state
x € X = {0,...,X — 1} and scavenges ex quanta of energy from the environment,

according to some probability mass function (p.m.f.).

Battery dynamics. Let B be the battery size of a device, which may be finite or infinite.

A widely-adopted model for the battery charge b, in slot n
b, = min{max{0,b,_1 +e—u}, B} (2.7)

where e and u are the harvested and used energy in the last slot, respectively. When
the device has no EH capabilities, ¢ = 0. In case of EH, it is important to prevent
battery outage (empty battery) and overflow (waste of excess energy because of full
battery) situations; it is thus necessary to design schemes that dynamically adapts to the
randomness of the energy inflow, so as to ensure acceptable performance on a long-term

horizon.

Typically, the battery consumption is assumed to be linear as in (2.7), but actually it
depends on the current battery charge and external factors like the temperature. This
idealistic assumption leads to naive lifetime estimations which often cause premature
depletion in real deployments [53]. Nonetheless, it is extremely challenging to use more

realistic models in the protocol design.
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2.4 Proposed channel access schemes

We designed several channel access schemes for energy-constrained nodes in different
scenarios. All schemes are based on a mathematical optimization and are described in
the following chapters. Modeling and analyzing the performance of communication
networks plays in fact an important role in the design of communication networks. The
purpose of a mathematical model is to serve as guideline for the development of an
efficient protocol and the performance analysis is beneficial to gain insight on the role
played by the various system parameters and infer the tradeoffs among them. This
allows one to optimize the network parameters and assess bound on the performance
that can be obtained in practice.

This part of the thesis is structured as follows.

Ch. 3 discusses an adaptive TDMA scheme where the network resources are dynami-
cally assigned to battery-powered devices according to their requirements (in terms of
targeted QoS) and capabilities (channel conditions and energy availability) so that the
network lifetime is maximized. The considered scenario includes data compression at
the source as well as power control to counteract the channel fading; the two cases of
complete and incomplete Channel State Information (CSI) at the transmitter are analyzed.

Ch. 4 also presents a TDMA approach, but in this cases the time resources assigned
to each user are fixed. Devices are battery powered and can harvest energy from
the environment; the goal is to optimally use the available energy to guarantee the
desired QoS in terms of quality of the received data. Data compression and channel
coding are optimized jointly as they induce a tradeoff between the accuracy in the
data representation and the communication robustness, i.e., success probability of the
transmission.

Ch. 5 analyzes the QoS/energy tradeoff for three different random access schemes
targeting different monitoring applications with battery-powered sensors. In this case,
collisions with other transmissions impinge on the energy efficiency, thus the channel ac-
cess needs to be carefully designed taking into account possible interference. All schemes
make use of some compression algorithms (sampling compression, data compression
and communication compression) to adapt the sampling and transmission rates.

Finally, Ch. 6 studies a jamming attack, where an energy constrained jammer tries
to disrupt the communication and deplete the battery of a legitimate transmitter. The
attack is modeled with a game-theoretic approach and both the cases of complete and

incomplete information available to the victim are analyzed.
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This chapter discusses a scheduling strategy for IoT sensors that adapts the data process-
ing and the transmission parameters (transmission duration and power) to the energy
and QoS requirements. Devices with heterogeneous capabilities and requirements access
the channel in a TDMA fashion and the ultimate goal is to extend the network lifetime
while guaranteeing a low overall distortion of the transmitted data with respect to their
uncompressed version.

Other studies in the literature consider joint source coding and transmission policies
and investigate the tradeoff between energy efficiency and data quality [54, 55]. In [56],
an online joint compression and transmission optimization strategy is investigated for
sensors with EH capabilities that generate correlated information, but how to schedule
transmissions in a time slot is not treated. In [57], the authors derive optimal compression
policies for a single sensor in order to minimize the long-term average distortion subject
to the energy sustainability of the sensor, where power control is used to adapt the
transmission to the status of the fading channel. In [58], energy allocation strategies are
proposed with the goal of minimizing the signal distortion when several sensors measure
the same process of interest and exploit data fusion techniques, but analytical results are
derived only for a two-node system. Finally, [59] proposes a TDMA scheduling where
time slots are allocated in a dynamic fashion based on the spatial correlation of the
transmitted signals.

This study aims at determining the optimal operating point in the tradeoff between
network lifetime and signal quality in order to derive a TDMA-based scheduling strategy
for resource-constrained nodes. The devices have heterogeneous characteristics and
requirements, and data compression and transmission are optimized jointly. Users
are dismissed from transmission when it is impossible to have all devices meet their
requirements in a frame. A set of theoretical results are derived to define processing and
transmission policies when CSI is known perfectly (full knowledge) or statistically at the
transmitters.

This work has been presented in [60] and [61].

17
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Notation: In this study, matrices and vectors are represented with boldface letters,
and the subscript and superscript refer to the row and column index, respectively;
accordingly, E; refers to the i-th row of matrix E, E® to its k-th column, and E l.(k) is the

(i, k) element.

3.1 System Model

N heterogeneous sources send data to a central Base Station (BS), accessing the uplink
channel in a TDMA fashion. Time is partitioned into frames, where frame k corresponds
to the time interval interval [#, tx,1). Each node periodically generates data, decides

whether and how much to compress it, and finally transmits it to the common receiver.

3.1.1 Data Generation and Compression

Nodes generate data by collecting measurements from the surrounding environment
or by serving as relays for farther nodes. Let L(()]fl.) be the size of the data generated
in frame k by node i. Each user i € N is capable of compressing its data using a
lossy compression scheme, which may be source-specific. The compression operation
affects the quality of the transmitted information and introduces a distortion Di(k), which
is a function of the compression ratio Ll(k) / L(()I;), where Ll(k) < L(()]fi) is the size of the
compressed packet in frame k. It is thus possible to define a function that maps the
distortion to the transmission rate or, equivalently, to the compression ratio. Typically,
closed-form expressions for the rate-distortion curves are only available for idealized
compression techniques operating on Gaussian information sources [62], whereas for
practical algorithms such curves are generally obtained experimentally. An example of

rate-distortion curve, which will be used as a baseline in the numerical evaluation, is

a; +

(
L
o o)~ [u () )] o

where a;,b; > 0 and [-]* £ max{-,0}. It represents the maximum absolute error between
the original and the compressed signal normalized to the amplitude range of the signal
in the considered time window [10]. Notice that the distortion is zero when the packet is

gk) = L(()],(i)‘ This model is derived from the results obtained in [63],

not compressed, i.e., L
where a general parameterized expression for the rate-distortion curve was derived by
compressing realistic time series with practical algorithms. The framework proposed in
this study and its analysis do not rely on the particular shape of Eq. (3.1), but any other

convex and decreasing function of the compression ratio Ll(k) / L(()IZ.) could also be used.
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The data collected in a frame is lost if not transmitted in the next frame, which is
equivalent to imposing a strict limit on latency, or to considering finite data buffers at

the devices. Hence, no retransmission mechanism is implemented.

Finally, there is a QoS requirement on the data quality: Di(k) < D*f:,)z" where Dt(:)l < o0
is a threshold distortion level. If the reconstruction error exceeds this threshold, the
signal generated by the source node is no longer useful for the final destination. The
thresholds may depend on the size of the network, the transmission parameters (e.g.,

modulation), the data itself and other factors.

3.1.2 Channel Model

The average physical rate of user i € A in frame k is approximated by Shannon’s bound

(k)

P
) = Wiog, (14+9) = Wiog, | 1+h9 3 |, (3.2)

where W is the bandwidth, 'y(k) the Signal-to-Noise Ratio (SNR), P(k). the transmission

i tx,i
l(k) the channel gain, and Ny the noise power. The N channel gains hgk), ceey hg\ll{)

power, h
are affected by fast fading, which evolves independently over time and is independent
among users. The transmission rate is approximated with Shannon’s capacity and CSI is
assumed at the transmitter. Therefore, in the absence of interference among devices, it
is possible to ignore packet losses, that would have a negative impact on the QoS and

require a retransmission or error-recovery mechanism [64].

3.1.3 Energy Consumption Model
(k)

All devices are battery-powered, and B;”’ denotes the battery level of node i in frame
k. The initial battery level Bi(o) represents the only energy available to node i, which
therefore has a strong impact on the system performance. In every frame, a non-negative
amount of energy Ei(k) € [o, Bfk)] is used for processing and transmission tasks. The
diverse sources of energy consumption can be characterized as described in 2.3. The

ones used in this study are reported here for the sake of clarity.

Data Processing. The expression for the processing energy is given in (2.2); in this study
each term has to be refereed to the corresponding device i and time frame k, and the

compression ratio is given by Lfk) /Ly ;. Considering the expression given in (2.3), it is:

k k k
Ef,} = Eo; L ay + o, L) By (3.3)

Notice that the second term is independent of the compression ratio.
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Data Transmission. The expression given in (2.4) needs to be considered for every node

i in each frame k. Thus, the amount of energy consumed by the radio module is:

(k)
Py
W) — 0 tui (3.4)

tx, i~ i NA
Note that no energy is wasted because of collisions and overhearing, since a TDMA-
based access mechanism is adopted and devices are granted exclusive use of the commu-
nication channel in their slot (a single frame is composed by N slots).
Data Sensing and Circuitry Costs. As discussed in 2.3, the circuitry energy consumption

can be modeled as

k k k
EW =g e 1, (3.5)
where ¢ ; is the circuitry power consumption during data transmission (see (2.5)). The
constant term [ng) takes into account the energy spent to generate the sensor data
(Eq. (2.1) with a constant number of samples per sensing period), the synchronization

costs, and the energy spent to switch between sleep and active modes (see Sec. 2.3).

Total Energy Consumption. The total energy consumption of node 7 in frame k is ob-

tained by summing Egs. (3.3), (3.4) and (3.5): EW =W + W, + E(ki).

used,i p/i t,i C,

3.2 Optimization Problem

The goal of this study is to find a joint compression-transmission policy (7,L, P) that
decides how much to compress the data and how much time and power to assign to each
node in each frame. The objective is to minimize the distortion given a time horizon of n
frames and some initial per-node energy allocation. Solving this problem as a function of
the value of n allows one to determine the tradeoff between the system lifetime and the
corresponding achievable distortion performance. More specifically, given the lifetime 7,

the problem to solve is the following:

D}ean = min — — .
hean = 1O ) max (3.62)
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subject to:
DY <D, Vi, VK (3.6b)
LH < 0,0 Vi, vk, (3.60)
Panini < PY) < Praxis Vi, VK, (3.6d)
yroh<r, vk, (3.6¢)
Y Bl <BY, i (3.6f)

The distortion was defined in (3.1), and Constraint (3.6b) guarantees that it does not ex-
ceed the given threshold for any user. Inequality (3.6c) ensures that the channel capacity
given in (3.2) is not exceeded. Quantities Ppin; and Ppax; in Constraint (3.6d) specify
the minimum and maximum allowed transmission power, respectively. Constraint (3.6e)
limits the total time allocated to the users to the frame duration. Notice that this is
the only constraint that considers the users jointly: without it, Problem (3.6) could be
readily decomposed into N separate problems. Finally, Constraint (3.6f) specifies that
the total energy assigned to node i during the network lifetime cannot exceed the initial
(0)

content of its battery, B.

;. This is the only constraint that considers multiple frames

simultaneously.

The objective function (3.6a) is the distortion averaged over the lifetime n. Note
that the function max;c Dl.(k) / Dt(;:)l considers the “worst” user in frame k in order to
guarantee fairness. To achieve that, it is necessary to decide how much each node should
compress its packet, and with what power and for how long it should transmit. It is
important to remark that Problem (3.6) does not need to be computed by the IoT nodes.
Indeed, the policy can be evaluated offline by the BS, disseminated using the downlink
channel, and then used online by the users through a look-up table, whose size depends
on the value of n and the granularity used in the discretization of the channel gain. The
only computationally intensive action performed locally by the IoT nodes is compression.
However, this can be realized using lightweight algorithms (e.g., LTC or DCT-LPF, see

Sec. 3.1.3), which have very low complexity.

3.2.1 Optimal Problem Decomposition

For the sake of a simpler mathematical analysis, the problem is decomposed into two
interdependent optimization processes. To do so, it is first necessary to formulate the
original problem in an equivalent form. Consider the following problem:

1y Dp®

Df... 2 min - ) max—— (3.7a)

E,7,L Pn/ ieN Dif:’)i'
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subject to: Constraints (3.6b)-(3.6e) , (3.7b)
N <EN, i, vk, (3.7¢)
LB < B, Vi, (3.7d)

which introduces the new auxiliary optimization variables E = {E(), ..., E("}. For any
feasible solution of (3.6), there exists a matrix E such that (3.7) also has a feasible solution.
On the other hand, since Constraints (3.7c) and (3.7d) imply Inequality (3.6f) and all the
other constraints have not changed, any feasible solution of (3.7c) is also feasible for (3.6).

Therefore, the optimal solutions of the two problems coincide.
The term El.(k) can be interpreted as the energy allocated to user i in frame k. According

to this interpretation, Constraint (3.7c) guarantees that the energy used in a certain frame
cannot exceed the amount of energy assigned to that frame, while Constraint (3.7d)
states the exclusivity of the energy allocation, i.e., the fact that the amount of energy
allocated to a particular frame cannot be used in any other frame. Thanks to the new
variables E, there is no constraint in (3.7) that considers the variables 7, L, and P over
multiple frames, therefore we can decompose Problem (3.7) in two intertwined blocks,

namely FOP and EAP, as follows.
Frame-Oriented Problem (FOP). It focuses on a single frame k, assuming that the energy

vector EW) is given. FOP is completely unaware of the energy allocation in the other

frames. It can be formally stated as follows

(k)
For fron(E) £ T(k),an&r;, p(k) 1EN gi@i’ (3.82)
subject to:
D < DY, Vi, VK, (3.8b)
LH <0, ® Vi, Vk, (3.8¢)
Panini < PY) < Prasss Vi, VK, (3.8d)
le Ti(k) <T, vk, (3.8¢)
EN . <EY, Vi, Vk. (3.8f)

Its goal is to determine the transmission durations and powers, and the compression
ratios that minimize Eq. (3.8a), for a selected frame and with a given energy allocation.
There exist two versions of FOP, which differ in the level of CSI available at the nodes

and will be discussed later.
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Figure 3.1: Structure of the problem for a fixed value of n: modules.

Energy Allocation Problem (EAP). EAP assumes the functions fé’gp(E(k)) to be known,

and focuses on the optimization of the energy allocation over multiple frames. Formally,

n
EAP: Dfun 2 min% Y A (EW), (3.9a)
E "5
subject to: LB < B, Vi, (3.9b)
A (EW) is feasible, V. (3.9¢)

Basically, EAP exploits FOP to obtain the distortion performance corresponding to a
certain energy allocation E and determine the optimal energy allocation.

Fig. 3.1 shows the relation between the two problems, which are tightly coupled:
EAP defines the energy allocation to use in every frame, which is used by FOP to
determine (3.8a) and, on the other hand, the output of FOP influences EAP through (3.6a).
FOP and EAP will be discussed in the following sections.

3.3 Frame-Oriented Problem (FOP)

The Frame-Oriented Problem does not consider the time evolution of the network and
operates at the frame level, so that the amount of energy allocated to each node is
fixed. The goal of FOP is to determine the optimal compression-transmission policy
that minimizes the maximum normalized distortion experienced by the users in a single
frame k. This section introduces FOP and proposes an equivalent formulation which is
easier to be solved optimally. Secs. 3.4 and 3.5 discuss how to solve it under different
assumptions on the knowledge available at the nodes.
For each user i € N, FOP determines:

(k)

1. The size of the data to transmit, L;"’, which is strictly related to the distortion and

to the energy consumed for processing as well as for transmitting.
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pb)

2. The transmission power P},

which influences the transmission rate and energy

consumption.

(k)

3. The transmission duration T (k)

i

(k)

, which relates ;" to the channel rate ;" and affects

the consumed energy.

Problem (3.8) delineates the formal structure of FOP. Since FOP concerns single frames,
for ease of notation the dependence on the frame index k throughout this section will be
omitted. In this case, boldface letters refer to column vectors that span over the N users
for the considered frame.

The objective function (3.8a) can be equivalently formulated by introducing an auxiliary

optimization variable I':!

FOPr: min T, (3.10a)
I,r,L P
. D; .
subject to: <TI, Vi, (3.10b)
Dy,
Constraints (3.8b) — (3.8f). (3.10c)

Let I'* be the solution of FOPr; since it depends on the energy allocated to each user, it
can be explicitly written as I'* = frop(E). Note that only distortions below threshold
are acceptable (see (3.8b)), which means that I'* < 1, otherwise FOPr (and thus FOP)
is infeasible. The optimal normalized distortion I'* can be determined exploiting the

following result [61].
Lemma 1. If FOPr is feasible for I < 1, then FOPr is feasible for all T" such that T’ < T” < 1.

It follows that I'* can be found with a bisection search over the values of I in the
interval [0, 1]. Thus, for every fixed T, it should be checked whether there exists a feasible
solution (i.e., a solution that satisfies (3.10b) and (3.10¢)) or not.

The optimization problem (3.10) and the concepts introduced hitherto have general
validity and hold regardless of the knowledge of the channel status. Sec. 3.4 introduces
the solution of (3.10b) without fading, which is simpler to determine and can be used as
a building block for the other case (Sec. 3.5).

34 FOP with Full CSI

In this scenario, all nodes are assumed to have full CS], i.e., the gain #; in all frames is

known exactly for all nodes a priori. For a fixed I, it is possible to determine the optimal

This is a standard approach to handle minimax problems. The new variable I represents an upper bound
to D;/Dy, ;, Vi, which is equivalent to an upper bound to max;{D;/Dy, ;}. Therefore, minimizing I' or
max;{D;/Dy,;} leads to the same solution.
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(a) (b) (c)

Pi= Praxi < Tmin,i Pi= Praxi > Tmin,i No solution

(d)

No solution

x x x x x
Figure 3.2: Function g;(x) in five different cases when solving (3.11b). The dash-line represents different
values of W/L;(E; — E, i(L;) + B;). The circle, triangle, and square markers represent Xp;n i,

*
Prax,is and P,

te,i P;, respectively.

compression level, transmission power and duration for each user. Iterating over the
values of I' through a bisection search then yields the optimal I'*.

This is possible thanks to the following key result.

Lemma 2. There exists an optimal solution of FOPr for which all users have equal relative
distortion, i.e., (3.10b) holds with equality Vi. [61].

This implies that, given I, the compression ratio is fixed for each user and, hence, L is
also known deterministically and can be removed from the optimization variable.
The following result further simplifies the original Problem (3.10) and allows one to

extract one optimal solution.

Lemma 3. There exists at least one optimal solution where all nodes use the maximum available

rate, i.e., Constraint (3.8¢) is taken with equality Vi [61].

Constraint (3.8¢) is henced taken with equality, which is equivalent to choosing the
smallest time possible 7; when L; and P, ; are given. Lemmas 2 and 3 guarantee that,
when I’ is fixed, the original Problem (3.10) can be reduced to a problem with a single
optimization variable without loss of optimality. In particular, 7; can be expressed as
a function of Py ;, namely 7; = L; /(W log,(1 + h; Pii/Np)). The optimal solution uses
the highest possible transmission power, since 7; and P, ; are inversely proportional to
each other, and shorter transmission times are more likely to satisfy the frame duration
constraint (3.8e). Accordingly, P, ; is chosen as the highest P,; that satisfies both the
power (3.8d) and the energy (3.8f) constraints. Combining (3.8f) and Lemma 3 yields:

pr. A max P i, (3.11a)

tx,i
pt)(,ie [Pmin,irpmax,i

W(Ez‘ — Epi(Li) + Bi), (3.11b)

subject to: 8i(Pexi) < T
i

with ¢i(x) £ (x/n4, +€ci)/ logy(1+ h; x/ Np).
Note that all the terms on the right-hand side (RHS) of (3.11b) are fixed: E; is given, L;

is derived from I through Lemma 2, and the remaining are system parameters. It can
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Algorithm 1 Procedure to find P;
1: if g(Xmini) > W/Li(E; — Epi(Li) + B;) then

2: no solution exists and P; is undefined (case (a))
3: else
4 if ¢(Pmaxi) < W/Li(E; — Ep;(L;) + B;) then
5; set P; = Ppax,; (cases (b) and (c))
6: else
7: if Xmin,i > Pmax,i then
8: no solution exists and P; is undefined (case (d))
9: else
10: find P; with a bisection search in [Xmin i, Pmax,i] (case (e))

be shown that g;(x) is a decreasing-increasing function of x, and therefore admits only
one minimum, as shown in Fig. 3.2 (and proved in [60]). Problem (3.11) can be solved by
firstly using the golden-section search algorithm [65] to find the point of minimum Xp;n ;
of ¢;(x), which is then used to determine the amount of power P; that solves (3.11) when
the constraint on Py, ; is neglected. The procedure is formally described in Algorithm 1
(see Fig. 3.2 for a graphical interpretation).

If ¢(Xmin,i) > W/Li(E; — Epi(L;) + Bi), there is no feasible point (Line 2). Otherwise,
the algorithm checks whether the maximum solution, namely Ppnay i, is feasible or not
(Line 4). If this is not the case and Xmin; < Pmax,i, @ bisection search in [Xmin i, Pmax.i] 1S
used to find P; as the solution of ¢(P,;) = W/L;(E; — Epi(Li) + Bi), ie., the value of
Py, ; that satisfies (3.11b) with equality (Line 10). If, using the previous procedure, P;
does not exist or P; < Pmin i, then P7 . is not defined and the problem is infeasible for

tx,i

the given I'; otherwise, Py . = P;. The packet size is straightforwardly determined from

tx,i

the selected I', and then the transmission duration is 7; = L;/(Wlog, (1 + h; P}, ;/No)).

tx,i

Then, it is possible to iterate over the values of I to find the optimal I'*.

3.5 FOP with Statistical CSI

This scenario considers instantaneous CSI at the transmitter, i.e., exact knowledge of
the channel gain only for the current slot, but only statistical knowledge of the future
channel realizations, as typical in the presence of fading. Again, the dependence on the

frame index will be omitted throughout this section, if not ambiguous.

The notion of “expected distortion” is introduced to account for the unknown channel
status. A device transmits only if the channel gain is sufficiently high, since a deep
fade would lead to unacceptable data quality. In particular, there is a fixed probability
of performing a transmission, which yields the threshold above which the channel is
“good enough”. Then, the optimal I'* is determined using a bisection search as described

in Sec. 3.3. For every fixed I', a dynamic policy adapts the compression ratio and the



3.5 FOP WITH STATISTICAL CSI

transmission power to the channel status, and the transmission duration is determined
as the smallest value that makes the problem feasible.

The channel coefficient can be decomposed as h; = hg; 0;, where h(; represents the
average channel gain given by path loss and shadowing, and 0; is the realization of a
random variable ©; that models the fast-fading effects. Function fg.(6;) represents the
probability density function of ©; (e.g., ©; ~ Exp(1) for Rayleigh fading). The terms h;
are assumed to be known only for future frames, whereas only a statistical knowledge of
0; is available. In this case, FOP defines different values of L; and P, as a function of
6;, so that when a node executes the policy, it can dynamically adapt L;(6;) and Py, ;(6;)
to the instantaneous channel conditions. The transmission duration T;, instead, is not
dynamically adapted to 6; but optimized regardless of the channel conditions to avoid

coordination issues among the nodes.

3.5.1 Distortion Definition with Fading

In order to account for the statistical knowledge of the fading realization,the distortion
function (3.1) needs to be redefined in terms of 6;: D;(6;) = D;(L;(6;)).
Then, given that the fading coefficient is above a certain threshold 6, ;, it is possible to

consider the conditional expectation of D;(6;):

D, 2 /9 Di(6:) fo, (6;) d6; / /9 fo.(6:) de;. (3.12)

The parameter 6, is a fading gain threshold defined in order to avoid transmissions
when the channel conditions are too bad (and would require excessive data compression
and, consequently, distortion). In practice, nodes refrain from data transmission in a
frame if the current fading gain is lower than 6, ;. To guarantee a certain level of QoS,
the transmission probability ﬁtx,i is fixed a priori, and 6y, ; is derived consequently. For
example, with Rayleigh fading it is 6, ; = — log(Pryy ;).

Throughout this subsection, and when we deal with the statistical CSI case in general,
D; in (3.8a) is replaced by D;, and the optimization variables L(8) = {L1(61),...,Ln(6n)}
and P(0) = {P;(61),...,Pn(6N)} depend on the channel status 6. The equivalent struc-
ture of FOP (see (3.8)) is:

: D;
min max

, 3.13
7,L(0),P(0) ieN Dth,i ( a)
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subject to:
D;(0;) < Dy, Vi, V0; > Oy, (3.13b)
Li(6;) < T ri(6)), Vi, V8 > 0 (3.13¢)
Prini < Peyi(0;) < Praxis Vi, V0; > O, (3.13d)
Yo T<T, (3.13¢)
Eysed,i(8i) < Ej, Vi, VO; > O (3.13f)

The equivalent of FOPr can be derived analogously.
To solve FOPr, it is necessary to specify how to find the optimal packet size and

transmission power as a function of 6;, which together allow one to optimally find 7.

Similar to Sec. 3.4, FOPr is then solved by applying a bisection search.

3.5.2  Packet Length and Transmission Power

For the moment, consider the transmission duration vector 7 to be given (it will be
optimized in Sec. 3.5.3). Thus, the Constraint (3.13e) can be disregarded, and the objective

function (3.13a) can be rewritten as

D; D;
min max —— = max min —t
L(6),P(6),Y0=6y icN Dy, ; i1EN Li(6;), Py i (6:), 96> Din i
Jo. fo,(6:) ming o) p, (6, Di(6;) d6;
= max - %) s
ieN Duni Jy,., fo,(6:) db;

D; depends only on L;(-) and Py ;(-), thus, it is possible to focus on every min term in

the numerator and study it independently for every fixed 0;:

(L¥(6;), P ;(6;))= argmin D;(6;)= argmax L;(6;), (3.14a)
Li(6;), Py (6;) Li(6;), P, (6;)
subject to:
Pyi(6;)
Ly, < Li(6;) < tWlog, | 1+ hob; N (3.14Db)
0
Prnin,i S Ptx,i(gi) S Pmax,i (314C)

P, tx,i (9>
NA,i

Epi(Li(0)) + Bi + < + 8c,i> 7 < E (3.14d)

where Ly, ; is the value such that (3.13b) is satisfied with equality, Constraint (3.14b)
coincides with (3.13b) and (3.13c), (3.14c) is equivalent to (3.13d), and (3.14d) is the
energy constraint (3.13f). Moreover, since, by definition, the distortion decreases with

the packet length, minimizing D;(;) is equivalent to maximizing L;(6;) in (3.14a).
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Notice that the left-hand side (LHS) of (3.14d) increases with L;(6;). Thus, L;(6;) is
upper bounded by

(3.15)

TWlog, (1+h GiM ,
Li(9i)<min{ gz( O No ) ,

EoH(Ei = Bi— (Puei(6:) /14 + £0,)T)

where E i () is the inverse function of E,;(-). Since the goal is to maximize L;(6;), the
optimal solution must satisfy Eq. (3.15) with equality. Accordingly, three different cases
can be considered.

Full Channel Capacity. In this case L;(0;) = TWlog, (1 + hob; P,i(6;)/Np), so that the
full channel capacity is used. L;(0) is a function of Py, ;(0), thus it is possible to focus on

the optimization of the transmission power only:

P (0;
argmaxtW log, (1 + ho0; t“(l)) = argmaxPy, ;(6;), (3.16a)
Pori(6)) No Pori(6))
subject to:
Pmin,i S Ptx,i<9i) S Pmax,i (316b)

Ep ;i (tiW log, (1+ho0;Pe.i(0;) / No) )+ Bi

+ (Ptx’i(e) +€c,i)Ti < Ei.
NA,i

The LHS of (3.16c) increases with P, ; and the RHS is a constant. Three subcases

(3.16¢)

should be analyzed: i) Constraint (3.16c) cannot be satisfied even using Py, ii) Con-
straint (3.16¢) can be satisfied using P,y ;, and iii) neither of the previous two. In case i),
no solution exists and the procedure falls back on the Partial Channel Capacity case, as
using the whole channel capacity is infeasible, because the allocated energy E; would
not be sufficient. In case ii), the optimal solution is Ppay i, as it maximizes the objective
function (3.16a) while satisfying (3.16b) and (3.16c). In case iii), the optimal solution
satisfies Constraint (3.16c) with equality and P

tx,i

The optimal packet length is then given by L7 (6;) = t;Wlog, (1 + ho 6; P;;. ;(6;)/No).

i Ty i
Partial Channel Capacity. If the whole channel capacity cannot be used, then L;(6;) =
E;}(Ei — Bi — (Pei(6i) /14, + €ci)Ti) (see (3.15)), and Problem (3.14) can be expressed

as

(6;) can be found with a bisection search.

argmaxE};}(Ei — Bi — (Pw,i(0:) /14, + £c,i)Ti) = argminPyy ;(0;), (3.17a)
Ptx,i (91) Ptx,i (91)
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subject to:
Pmin,i S Ptx,i(ei) S Pmax,ir (317b)
which yields
Ly (0;) = E;,}(Ei — Bi — (Pmini/Nai +€ci)T), (3.18)
&,i(gi) = Prin,i- (3.19)

No Solution. If with the previous two approaches L} (6;) < Ly, ;, the problem is infeasible.

3.5.3 Optimal Transmission Duration

The previous sections explained how to optimally set the transmission parameters for a
given transmission duration; this section discusses how to optimize . Consider FOPr,
assume that I is given; then, the objective is to find 7 such that the constraints on the
tolerable distortion, channel capacity, transmission power, frame duration and energy
consumption (i.e., (3.8b)-(3.8f)) hold, together with Constraint (3.10b) on T'. Since D;
depends on T;, there may be many values of T; that satisfy D; < I'Dy, ; (Constraint (3.10b)).
Among all these values, we choose the lowest; by doing so for every i, the constraint on
the frame duration (3.8e) is satisfied whenever possible. Therefore, it is possible to focus

on each device i independently.
*(6;), and P

i tx,i(f)i) as described in Secs. 3.5.1
and 3.5.2. Since the optimal packet size increases with the channel gain, Problem (3.14)

is feasible V8; > 6, ; if

Given T;, D; can be evaluated using 6y, ;, L

L} (0ex,i) > Ly, (3.20)

The following important property of the distortion function allows one to determine

the transmission duration T; that satifies this condition.

Lemma 4. For a given 0;, the optimal distortion D7 (6;) decreases with t; until a minimum

distortion point at T™"(6;), and increases for T, > T™"(6;) [61].

If T}“i“(Gtx,i) computed at 6;,; does not satisfy (3.20), FOP is infeasible. Otherwise,
there exists an interval [T}OW, Tl-high], with Tilow < Tlmin(f)txli) < Tl.high, for which (3.20) holds.

To solve FOP, consider the smallest value of T; € [Tilow, Tihigh] that satisfies D; < T'Dy,
in order to make all users fit in the frame duration and satisfy (3.8¢). If D; > I'Dy,;,
VT, € [Til"w, Tl.high], then the constraints of (3.10) cannot be satisfied and FOPr is infeasible.

This procedure holds for a fixed I'; the optimal I'* is found by iterating over the values

of I with a bisection search.
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3.6 Dismission Policy

It may happen that the optimization over all N users fails and FOP turns out to be
infeasible in a specific frame. This happens if at least one constraint of FOP is not
satisfied, i.e., there exists no allocation of 7, L, and P that allows all users to transmit
their packets in the considered frame with the allocated energy. Notice that FOP is
infeasible even if the time, capacity, power, and energy constraints can be met but at least

one user exceeds its threshold distortion, thereby violating the QoS constraint (3.8b).

Since any constraint can be relaxed, the only strategies available when FOP is infeasible
are to allocate a larger amount of energy or to dismiss some users. The former possibility

is discussed here, whereas the energy allocation problem will be analyzed in Sec. 3.7.

Let 7; be the minimum transmission time user i needs to transmit its data in the
considered frame. This value is obtained when Pi,; = Ppnax; and D; = Dy, ;, which
means that the size of the packet to send, L;, is the smallest possible. If the inequality
Zf\il 7; < T is not verified, it is impossible to allow all users to transmit in the same
frame and satisfy their requirements at the same time, whatever the available energy. In
this case, users are assigned different importance levels to the users so that it is possible
to develop a priority-based dismission policy.When a user with low priority is dismissed,
the condition Y'Y ; 7; < T is rechecked, and the same dismission procedure is applied, if
necessary. Note that this dismission policy is independent of the energy allocation and is

performed before EAP.

3.7 Energy-Allocation Problem (EAP)

Secs. 3.3-3.6 discussed how to maximize the quality of the transmitted information
assuming that a known amount of energy is assigned to each user. To solve Problem (3.6),
it is necessary to distribute over time the total energy available to each user, B(?). In
general, there is a balance between lifetime and distortion that depends on the value of
n. This section describes how to solve the Energy-Allocation Problem (3.9), where fl%)P

is derived as described in the previous sections.

EAP is defined in (3.9) as the problem of optimally allocating energy to each frame,
given the lifetime n. The objective function (3.9a) represents the average over the lifetime
of the distortion metric flglgp() in every frame. Therefore FOP needs to be feasible
for all frames, as required by (3.9c), otherwise EAP would be infeasible (see Sec. 3.6).
Unfortunately, the solution of FOP cannot be expressed in closed form, making it very

challenging to directly relate FOP and the energy allocation. In th