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Abstract

There is a very rich literature proposing Bayesian approaches for clustering starting
with a prior probability distribution on partitions. Most approaches assume exchange-
ability, leading to simple representations of such prior in terms of an Exchangeable
Partition Probability Function (EPPF). Gibbs-type priors encompass a broad class of
such cases, including Dirichlet and Pitman-Yor processes. Even though there have been
some proposals to relax the exchangeability assumption, allowing covariate-dependence
and partial exchangeability, limited consideration has been given on how to include
concrete prior knowledge on the partition. Our motivation is drawn from an epidemi-
ological application, in which we wish to cluster birth defects into groups and we have
a prior knowledge of an initial clustering provided by experts. The underlying assump-
tion is that birth defects in the same group may have similar coefficients in logistic
regression analysis relating different exposures to risk of developing the defect. As a
general approach for including such prior knowledge, we propose a Centered Partition
(CP) process that modifies a base EPPF to favor partitions in a convenient distance
neighborhood of the initial clustering. This thesis focus on providing characterization of
such new class, along with properties and general algorithms for posterior computation.
We illustrate the methodology through simulation examples and an application to the
motivating epidemiology study of birth defects.





Sommario

Esiste una letteratura molto vasta che propone approcci di tipo bayesiano per l’analisi
di raggruppamento (clustering), a partire da una distribuzione di probabilià a priori
definita sullo spazio delle possibili partizioni. La maggior parte degli approcci si basa
sull’assunzione di scambiabilità, tale da permettere una semplice rappresentazione della
distribuzione a priori in termini di una funzione nota come Exchangeable Partition Prob-
ability Function (EPPF). Le distribuzioni a priori di tipo Gibbs rappresentano un’ampia
classe di priori aventi tale caratterizzazione e include i processi di Dirichlet e Pitman-
Yor. Sono state fatte in letteratura alcune proposte volte a rilassare l’assunzione di
scambiabilità, inserendo delle dipendenze dalle covariate o proponendo distribuzioni
basate sul concetto di scambiabilità parziale. Tuttavia è stata data limitata consider-
azione alla definizione di metodologie in grado di includere una concreta informazione
a priori sulla partizione dei dati. La nostra motivazione deriva da un’applicazione in
ambito epidemiologico, nella quale è di interesse ottenere un raggruppamento di dati
riguardati malformazioni congenite in nuovi nati, e per la quale è disponibile un rag-
gruppamento iniziale fornito dagli esperti del settore. L’assunzione di base è data dal
fatto che malformazioni nello stesso gruppo sono probabilmente associate a simili co-
efficienti di regressione, quando derivanti da un’analisi di tipo logistico che mette in
relazione le diverse esposizioni con il rischio di sviluppare un difetto. In questo lavoro,
proponiamo un metodo generale per includere una tale informazione a priori, definito
come processo Centered Partition, volto a modificare una distribuzione di base di tipo
EPPF in modo da favorire le partizioni in un desiderato intervallo di distanza rispet-
to alla partizione iniziale. Questa tesi si concentra sul fornire una caratterizzazione di
questa nuova classe di distribuzioni a priori, descrivendone le proprietà e gli algoritmi
di calcolo. La metodologia è illustrata per mezzo di simulazione e applicazione ai dati
sulle malformazioni nei neonati.
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Introduction

Overview

Clustering is one of the canonical data analysis goals in statistics. There are two main
strategies that have been used for clustering, namely, distance and model-based cluster-
ing. Distance-based methods leverage upon a distance metric between data points and
do not in general require a generative probability model of the data, while model-based
methods rely on discrete mixture models, which model the data in different clusters as
arising from kernels having different parameter values. The majority of the model-based
literature reckon on maximum likelihood estimation, commonly relying on the EM algo-
rithm. Bayesian approaches instead aim to approximate a full posterior distribution on
the clusters, with advantages in terms of uncertainty quantification, while also having
the ability to incorporate prior information.

Most of the Bayesian methods assume exchangeability, which means that the prior
probability of a partition c of indices {1, . . . , N} into clusters depends only on the
number of clusters and the cluster sizes; the indices on the clusters play no role. Under
the exchangeability assumption, one can define what is referred to in the literature as
an Exchangeable Partition Probability Function (EPPF) (Pitman, 1995). This EPPF
provides a prior distribution on the random partition c. One direction to obtain a specific
form for the EPPF is to start with a nonparametric Bayesian discrete mixture model
with a prior for the mixing measure P , and then marginalize over this prior to obtain
an induced prior on partitions. Standard choices for P , such as the Dirichlet (Ferguson,
1973) and Pitman-Yor process (Pitman and Yor, 1997), lead to relatively simple analytic
forms for the EPPF. There has been some recent literature studying extensions to broad
classes of Gibbs-type processes (Gnedin and Pitman, 2006; De Blasi et al., 2015), but
mostly related on improving flexibility and the ability to predict the number of new
clusters in a future sample of data (Cesari et al., 2014; Arbel and Favaro, 2017).
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2 Main contributions of the thesis

There is also a rich literature on relaxing exchangeability in various ways. Most of
the emphasis has been on the case in which a vector of features xi is available for index
i, which stimulated the construction of priors to generate feature-dependent random
partitions. Building on the stick-breaking representation of the DP (Sethuraman, 1994)
MacEachern (1999, 2000) proposed a class of dependent DP (DDP) priors introducing
dependence in the base measure, while maintaining fixed the mixing weights. Many ex-
tensions of the DPP priors were employed in ANOVA modeling (De Iorio et al., 2004),
spatial data analysis (Gelfand et al., 2005), time series (Caron et al., 2006) and func-
tional data analysis (Petrone et al., 2009; Scarpa and Dunson, 2009) applications, with
theoretical properties highlighted in Barrientos et al. (2012). However such priors turned
out lacking of flexibility for feature-dependent clustering, requiring the introduction of
too many mixture components in practice as noted in MacEachern (2000). This has mo-
tivated more general formulations which allow also the mixing weights to change with
the features, with some example including the order-based dependent Dirichlet process
(Griffin and Steel, 2006), kernel- (Dunson and Park, 2008), and probit- (Rodriguez and
Dunson, 2011) stick breaking processes.

Alternative approaches build on random partition models (RPM), working directly
with the probability distribution p(c) on the partition c of indices {1, . . . , N} into clus-
ters. Particular attention has been given to the class of product partitions models
(PPM) (Barry and Hartigan, 1992; Hartigan, 1990) in which p(c) can be factorized
into a product of cluster-dependent functions, known as cohesion functions. A common
strategy modifies such function in order to let features influence a priori the probability
for random partitions such as in Park and Dunson (2010), Müller et al. (2011) and Dahl
et al. (2017).

Main contributions of the thesis

Although a plethora of methods has been presented in literature to allow covariate-
dependent clustering, there has been limited consideration of the problem of how to
effectively include concrete prior knowledge on the partition. In many application set-
tings such as epidemiology, genomics but also business intelligence and sociology, there
is often some prior information about the clustering, pertaining the number of clusters,
the sizes, or even an actual partition of the data. This thesis focuses on providing a
broad new class of methods for improving clustering performance in practice.

Available methods mostly rely on additional covariates, but our setting is totally
different. In particular, we do not have features xi on indices i but have access to an
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informed prior guess c0 for the partition c; apart from this information it is plausible
to rely on exchangeable priors. To address this problem, we propose a novel strategy to
modify a baseline EPPF to include centering on c0. In particular, our proposed Centered
Partition (CP) process defines the partition prior as proportional to an EPPF multiplied
by an exponential factor which depends on a distance function d(c, c0) measuring how
far c is from c0. The proposed framework should be broadly useful in including extra
information into EPPFs, which tend to face issues in lacking incorporation of real prior
information from applications.

Our motivation arises from a particular application involving birth defects epidemi-
ology. Specifically we have data coming from The National Birth Defects Prevention
Study (NBDPS), which is the largest multi-state population-based, case-control study
of birth defects ever conducted in the United States (Yoon et al., 2001). Participants
in the study included mothers with expected dates of delivery from 1997-2011, with
cases identified using birth defects surveillance systems in recruitment areas within ten
US states. Because birth defects are highly heterogeneous, a relatively large number of
defects of unknown etiology are included in the NBDPS, with the aim to provide new
insights on the leading causes of such defects.

We are particularly interested in the class of Congenital Heart Defects (CHD), being
the most common type of birth defect and the leading cause of infant death due to birth
defects. Because some of these defects are relatively rare, in many cases we may lack
precision for investigating associations between potential risk factors and birth defect
outcomes. For this reason, researchers typically lump heterogeneous defects in order to
increase power (e.g., grouping all heart defects together), even knowing the underlying
mechanisms may differ substantially. In fact, how best to group defects is subject to
uncertainty, despite a variety of proposed groupings available in the literature.

In this context, there are N different birth defects, which we can index using i ∈
{1, . . . , N}, and we are interested in clustering these birth defects into mechanistic
groups. The underlying assumption is that birth defects in the same group may have
similar coefficients in logistic regression analysis relating different exposures to risk of
developing the defect. Investigators have provided us with an initial partition c0 of
the defects {1, . . . , N} into groups. It is appealing to combine this prior knowledge
with information in the data from a grouped logistic regression to produce a posterior
distribution on clusters, which characterize uncertainty. The motivating question of
this thesis is how to do this, with the resulting method ideally having broader impact
to other types of centering of priors for clustering; for example, we may want to center
the prior based on information on the number of clusters or cluster sizes.



4 Main contributions of the thesis

To achieve such goal, we built on Bayesian priors for model-based clustering, while
exploiting notions belonging to combinatorics. A first part of the thesis is dedicated to
the review of such notions that, despite being known in combinatorial and information
theory, have been received little attention from the statistics community. Chapter 3
will provide the general formulation of the Centered Partition process, illustrating its
properties and behavior under different settings. A general strategy for prior tuning
and posterior sampling is presented. Finally in Chapter 4 results on the motivating
data from the NBDPS are presented and discussed, along with conclusions on future
directions of research.



Chapter 1

Motivation

1.1 Modeling with prior information

The construction of informative priors based on domain knowledge or expert opinions
is a delicate problem, complicated by the fact that the human mind finds it difficult to
quantify qualitative knowledge. Most of the literature has been focused on combining
opinions from experts, with the final objective being a consensus opinion (O’Hagan
et al., 2006; Albert et al., 2012). Elicitation of the prior based on such opinions has
been found to be broadly useful in many applied contexts, with examples in decision
theory (Spetzler and Stael von Holstein, 1975), political sciences (Gill and Walker, 2005)
and rare event modeling (Choi, 2016) among others.

Little attention has been given to the role of prior information in data clustering.
Some proposals have been made in machine learning, mostly dealing with the case of
information on the pairwise allocations. Inclusion of such information, is often handled
with the introduction of hard/soft constraints on a base clustering method, such as
the k-means algorithm (Wagstaff et al., 2001; Klein et al., 2002), spectral clustering
(Kamvar et al., 2003) or model based clustering using graphical models Shental et al.
(2004); Law et al. (2004).

However there are many areas of application in which substantial information about
data grouping can be derived from the domain knowledge, from customers segmentation
in targeted marketing (Mazanec, 1997), typically searching for few clusters profiling
buyers behavior, to investigation of phenotypic associations with partially known groups
of regulator genes (Sarup et al., 2016). Our motivating context deals with the presence
of a prior guess on the data partitions, with data coming from an epidemiological study,

5



6 Section 1.2 - The National Birth Defects Prevention Study

the National Birth Defects Prevention Study, aimed to individuate the potential risk
factors associated with birth defects of unknown etiology.

The diversity and number of birth defects is a major challenge in this field of research,
and authors have for many years noted the tradeoffs between lumping birth defects to-
gether into larger groups to facilitate analysis and splitting defects into finer, more
homogeneous subcategories (Khoury et al., 1992). While most individual defects are
too rare for individual study, there is considerable difficulty in determining how best to
group defects and even in what to call a defect. We aim to provide a new methodology
to facilitate data-adaptive probabilistic clustering of defects, both based on informa-
tion in the data and also based on incorporating established biological knowledge on
embryologic development. Such knowledge will constitute a baseline backbone to aid
shrinkage in a manner that allows defects to be analyzed individually when needed,
while also grouping effects to facilitate analysis.

1.2 The National Birth Defects Prevention Study

The National Birth Defects Prevention Study (NBDPS) is the largest population-
based study ever conducted on the causes of birth defects in the United States (Yoon
et al., 2001). It was designed to identify infants with major birth defects and evaluate
genetic and environmental factors associated with their occurrence. Because of the study
focus on finding the causes of birth defects, cases with known etiology (eg. chromosomal
or genetic conditions) are excluded. Diagnostic case information was obtained from
medical records and verified by a standardized clinician review specific to the study
(Rasmussen et al., 2003). The study has been enrolling families of infants with one or
more of 37 selected major birth defects, together with control families, for over 14 years
starting in 1998, recruiting over 40, 000 families. Data collection is based on a computer-
assisted telephone interview with case and control mothers, focusing on a wide range
of demographic, lifestyle, medical, nutrition, occupational and environmental exposure
history information. (Reefhuis et al., 2015b).

Cases were identified using birth defects surveillance systems, while controls were
randomly selected from birth certificates or hospital records in recruitment areas within
ten US states: Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, New
York, North Carolina, Texas, and Utah. The annual birth population covered in these
states is roughly 10% of all births in the United States, with the demographic distri-
bution of subjects recruited to NBDPS being comparable to that of the general U.S.
population with respect to maternal age, race, ethnicity, and education level (Cogswell
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et al., 2009). Each state site attempted to recruit 300 cases and 100 (unmatched) con-
trols annually, with the number of controls chosen to be proportional to the number of
births registered in the same month during the previous year.

The prevalence of congenital malformations is currently believed to be around 1 in 33
(Murphy et al., 2017), though this quantity is difficult to estimate due to spontaneous
abortion and miscarriage of malformed fetuses, induced abortion and subclinical abnor-
malities that are rarely diagnosed. However birth defects or congenital malformation
are the leading causes of infant mortality (Murphy et al., 2017), and research focused on
providing new insights on potential risk factors is one major concern in public health.
On this side, the NBPDS has provided an unprecedented source of information on birth
defects of unknown etiology.

In this thesis, particular attention is given on the class of Congenital Heart Defects
(CHD), that accounts for over the 50% of all birth defects. In the NBDPS, heart
defects are provided at different levels of detail, according to a hierarchical grouping
(Botto et al., 2007). We will consider 26 different heart defects and a prior guess on the
grouping comprising 6 clusters. For each defect we observe a different number of cases,
and we wish to obtain a mechanistic grouping of the defects in order to better assess
the important risk factors in comparison with the controls.





Chapter 2

Preliminaries

2.1 Clustering and Bayesian mixture models

Mixture models have become increasingly popular tools to model data characterized
by the presence of subpopulations, in which each observation belongs to one of a certain
number of groups, while providing a flexible class for density estimation. In particular,
observations y1, . . . , yN can be divided into K < N groups, according to a partition
c = {B1, . . . , BK} with Bk comprising all the indices of data points in cluster k, for
k = 1, . . . , K. The main underlying assumption of a mixture model is that observations
are independent conditional on the partition c and on vector of unknown parameters
θ = (θ1, . . . , θK) indexing the distribution of observations within each cluster. Hence
the joint probability density of observations y1, . . . , yN can be expressed as

p(y|c,θ) =
K∏
k=1

∏
i∈Bk

p(yi|θk) =
K∏
k=1

p(yk|θk) (2.1)

with yk = {yi}i∈Bk
indicating all the observations in cluster k for k = 1, . . . , K. In the

full Bayesian formulation, a prior distribution is assigned to each possible partition c,
leading to a posterior of the form

p(c|y,θ) ∝ p(c)
K∏
k=1

p(yk|θk). (2.2)

Hence the data partitioning c is conceived as a random object and elicitation of its prior
distribution is a critical issue in Bayesian modeling. The main issue is that the space of
all possible clustering grows exponentially fast given its combinatorial nature. Current
Bayesian methodology typically relies on discrete nonparametric priors, which provides

9



10 Section 2.1 - Clustering and Bayesian mixture models

Figure 2.1: Genji-mon symbols for all the possible grouping of 5 elements.

tractable tools to deal with mixture models, by avoiding dealing with the clustering
space directly, but inducing a latent partitioning of the data. However such priors
may be too flexible especially when relevant prior information is available about the
clustering, since they lack of a simple way to include this type of information.

With the aim of providing a novel class of priors which allow inclusion of external
information on the data, we found a useful theoretical framework in lattice theory and
combinatorics. This section introduces the definition of clustering from a combinato-
rial perspective, providing theoretical background on structural characterization of the
corresponding space, while providing a review of the commonly employed priors on the
clustering space.

2.1.1 Set partitions

Let c be a generic clustering of indices {1, . . . , N} = [N ]. It can be either represented
as a vector of indices {c1, . . . , cN} with ci ∈ {1, . . . , K} for i = 1, . . . , N and ci = cj

when i and j belong to the same cluster, or as a collection of disjoint subsets (blocks)
{B1, B2, . . . , BK} where Bk contains all the indices of data points in the k-th cluster and
K is the number of clusters in the sample of size N . From a mathematical perspective
c = {B1, . . . , BK} is a combinatorial object known as set partition of [N ]. In denoting a
set partition, we either write {{1, 2, 4}, {3, 5}} or 124|35 using a vertical bar to indicate
a break in blocks. By convention, elements are ordered from least to greatest and
from left to right within a block; we then order the blocks by their least element from
left to right. The collection of all possible set partitions of [N ], denoted with ΠN , is
known as partition lattice. We refer to (Stanley, 1997; Davey and Priestley, 2002) for
an introduction to lattice theory, reporting here some of the base concepts.

According to Knuth (2006), set partitions seem to have been systematically studied
for the first time in Japan (1500 A.D.), due to a parlor game popular in the upper class
society known as genji-ko; 5 unknown incense were burned and players were asked to
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identify which of the scents were the same, and which were different. Ceremony masters
soon developed symbols to represent all the possible 52 outcomes, so called genji-mon
represented in Figure 2.1. Each symbol consists of five vertical bars, with some of them
connected by horizontal bars, in correspondence of grouped elements. As an aid to
memory, each of the patterns was made after a famous 11th-century novel, Tales of
Genji by Lady Murasaki, whose original manuscript is now lost, but has made genji-
mon an integral part of the Japanese culture. In fact, such symbols continued to be
employed as family crests or in Japanese kimono patterns until the early 20th century,
and can be found printed in many dresses sold today.

First results in combinatorics focused on enumerating the elements of the space,
making their appearance during the 17th century, still in Japan. For example, the
number of ways to assign N elements to a fixed number of K groups is described by the
Stirling number of the second kind

SN,K = 1
K!

K∑
j=0

(−1)j
(
K

j

)
(K − j)N ,

while the Bell number BN = ∑N
K=1 SN,K describes the number of all possible set par-

titions of N elements. Refer to Knuth (2006) for more information on history and
algorithms related to set partitions and other combinatorial objects.

2.1.2 Poset representation and partition lattice

The interest progressively shift from counting elements of the space to characterizing
the structure of space partitions using the notion of partial order. Consider ΠN en-
dowed with the set containment relation ≤, meaning that for c = {B1, . . . , BK}, c′ =
{B′1, . . . , B′K′} belonging to ΠN , c ≤ c′ if for all i = 1, . . . , K,Bi ⊆ B′j for some
j ∈ {1, . . . , K ′}. Then the space (ΠN ,≤) is a partially ordered set (poset), which
satisfies the following properties:

1. Reflexivity: for every c, c′ ∈ ΠN , c ≤ c,

2. Antisymmetry: if c ≤ c′ and c′ ≤ c then c = c′,

3. Transitivity: if c ≤ c′ and c′ ≤ c′′, then c ≤ c′′.

Moreover, for any c, c′ ∈ ΠN , it is said that c is covered (or refined) by c′ if c ≤ c′ and
there is no c′′ such that c < c′′ < c′ and indicate with c ≺ c′ such relation. This covering
relation allows one to represent the space of partitions by means of the Hasse diagram,
in which the elements of ΠN correspond to nodes in a graph and a line is drawn from c
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to c′ when c ≺ c′; in other words, there is a connection from a partition c to another
one when the second can be obtained from the first by splitting or merging one of the
blocks in c. See Figure 2.2 for an example of Hasse diagram of Π4. If two elements are
not connected, as for example partitions {1, 2}{3, 4} and {1, 3}{2, 4}, they are said to
be incomparable. Conventionally the partition with just one cluster is represented at
the top of the diagram and denoted as 1, while the partition having every observation
in its own cluster at the bottom and indicated with 0.

{1, 2, 3, 4}

{4}{1, 2, 3}{3}{1, 2, 4}{2}{1, 3, 4}{1}{2, 3, 4} {1, 2}{3, 4} {1, 3}{2, 4} {1, 4}{2, 3}

{1}{2}{3, 4} {1}{3}{2, 4} {1}{4}{2, 3} {2}{3}{1, 4} {2}{4}{1, 3} {3}{4}{1, 2}

{1}{2}{3}{4}

Figure 2.2: Hasse diagram for the lattice of set partitions of 4 elements. A line
is drawn when two partitions have a covering relation. For example {1}{2, 3, 4} is
connected with 3 partitions obtained by splitting the block {2, 3, 4} in every possible
way, and partition 1 obtained by merging the two clusters.

This representation of the set partitions space ΠN as a partially ordered set provides
a useful framework to characterize its elements. As already mentioned, two partitions
connected in the Hasse diagram can be obtained from one another by means of a single
operation of split or merge; a sequence of connections is path, linking the two extreme
partitions 0 and 1. A path starting from 0 connects partitions with an increasing
rank, which is related to the number of blocks through r(c) = N − |c|. Set partitions
with the same rank, may differ in terms of their configuration Λ(c), the sequence of
block cardinalities {|B1|, . . . , |BK |}, which corresponds to another combinatorial object
known as integer partition of N . In combinatorics, an integer partition is defined as
multiset of positive integers {λ1 . . . λK}, listed in decreasing order by convention, such
that ∑K

i=1 λi = N . The space IN of all possible integer partitions, is also a partially
ordered set, making the definition of configuration a poset mapping Λ(·) : c ∈ ΠN →
λ ∈ IN .

Finally, the space ΠN is a lattice, for the fact that every pair of elements has a greatest
lower bound (g.l.b.) and a least upper bound (l.u.b.) indicated with the “meet” ∧ and
the “join” ∨ operators, i.e. c∧c′ = g.l.b.(c, c′) and c∨c′ = l.u.b.(c, c′) and equality holds
under a permutation of the cluster labels. An element c ∈ ΠN is an upper bound for a
subset S ⊆ ΠN if s ≤ c for all s ∈ S, and it is the least upper bound for a subset S ⊆ ΠN
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if c is an upper bound for S and c ≤ c′ for all upper bounds c′ of S. The lower bound
and the greatest lower bound are defined similarly, and the definition applies also to the
elements of the space IN . Consider as an example c = {1}{2, 3, 4}, c′ = {3}{1, 2, 4};
their greatest lower bound (g.l.b.) is c∧ c′ = {1}{3}{2, 4} while the least upper bound
(l.u.b.) is c ∨ c′ = {1, 2, 3, 4}. Looking at the Hasse diagram in Fig 2.2 the g.l.b. and
l.u.b. are in general the two partitions which reach both c and c′ through the shortest
path, respectively from below and from above.

2.1.3 Distances on the partition lattice

The representation of the space of set partitions ΠN from lattice theory, provides a
useful framework to define metrics between partitions. In fact, the distance between
any two partitions can be defined by means of the Hasse diagram as the length of any
shortest path between them, which necessarily passes through the meet or join of two
partitions.

More general distances arise when the graph is weighted, meaning that every edge is
associated with a strictly positive weight; then the distance between any two elements
is the weight of the lightest path between them, where the weight of a path is the sum
over its edges of their weight. Weights over the edges of the Hasse diagram are usually
defined starting from a function ν on the lattice ΠN having the following properties.

Definition 1. A lattice function ν : ΠN → R+, is said to be

• strictly order-preserving if ν(c) > ν(c′) , for c, c′ ∈ ΠN such that c > c′.

• strictly order-reversing if ν(c) > ν(c′) , for c, c′ ∈ ΠN such that c < c′.

• supermodular if ν(c ∨ c′) + ν(c ∧ c′)− ν(c)− ν(c′) ≥ 0 , for any c, c′ ∈ ΠN .

• submodular if ν(c ∨ c′) + ν(c ∧ c′)− ν(c)− ν(c′) ≤ 0 , for any c, c′ ∈ ΠN .

We report here a useful result from lattice theory referring to Grätzer (2002) and
Deza and Deza (2009). Given a lattice function ν weights wν on edges between {c, c′}
are defined as

wν({c, c′}) = |ν(c)− ν(c′)|,

with distance between two partitions being the minimum-ν-weighted path. Properties
outlined in Definition 1 guarantee that such path visits either the meet or the join of any
two incomparable partitions; which one of the two depends on whether is supermodular
or submodular.
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Proposition 1. For any strictly order-preserving (order-reversing) function ν, if ν
is supermodular, the minimum-ν-weight partition distance is

dν(c, c′) = ν(c) + ν(c′)− 2ν(c ∧ c′) (dν(c, c′) = ν(c) + ν(c′)− 2ν(c ∨ c′)),

while if ν is submodular

dν(c, c′) = 2ν(c ∨ c′)− ν(c)− ν(c′) (dν(c, c′) = 2ν(c ∧ c′)− ν(c)− ν(c′)).

Moreover the defined distance is a metric on the space of partitions ΠN . Some widely
used distances can be recast in this framework, such for example, the Hamming distance
(see Rossi, 2015, for proof), however different functions can be employed to obtain a
suitable distance.

A trivial example of lattice function can be draw from the definition of the rank,
i.e. r : ΠN → Z+ such that r(c) = N − |c|, which is strictly order-preserving. For
example, considering partitions in the Hasse diagram in Figure 2.2, the rank of the
bottom partition 0 is equal to 0 and increases by 1 for each level of the graph up to
3 for top partition 1. Then the minimum-rank-weighted distance can be computed as
dr(c, c′) = 2r(c ∨ c′)− r(c)− r(c′), since the function is also submodular. Notice that
the rank assigns to every edge between partitions a unit weight, and then dr is indeed
the shortest path distance.

2.2 Distributions on the set partition lattice

2.2.1 Uniform distribution

The first distribution one may use in absence of prior information, is the uniform prior,
which gives the same probability to every partitions with p(c) = 1/BN ; however, even for
small values of N the Bell number BN is very large, making computation of the posterior
intractable even for simple choices of the likelihood. This motivated the definition of
alternative prior distributions based on different concepts of uniformity, with Jensen and
Liu (2008) prior favoring uniform placement of new observation in one of the existing
clusters, and Casella et al. (2014) proposing a hierarchical uniform prior, which gives
equal probability to set partitions having the same configuration.
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2.2.2 Discrete nonparametric priors

In Bayesian nonnparametric settings, a probability distribution on the space of partitions
is typically obtained by means of discrete nonparametric prior, i.e. priors that have
discrete realization almost surely. Due to the discreteness of the process, any random
probability measure associated with the discrete prior induces an exchangeable random
partition on the data indices, which is described in terms of Exchangeable Probability
Partition Function. Popular choices of such priors comprises the Dirichlet (Ferguson,
1973) and Pitman-Yor (Pitman and Yor, 1997) processes, which are instances of the
more general class of the Gibbs-type priors. We refer to Gnedin and Pitman (2006)
and De Blasi et al. (2015) for characterization of the Gibbs-type priors, limiting here on
aforementioned processes that lead to tractable EPPFs on the space of set partitions.

Starting from a Dirichlet process prior with concentration parameter α and base
measure G0, the corresponding EPPF is obtained by marginalizing out the process,
(Lo, 1984; Kuo, 1986)

p(c) = αK

(α)N
K∏
j=1

(λj − 1)!, (2.3)

where λj = |Bj| is the cardinality of the j-th clusters composing the partition, and
(x)r = x(x + 1) · · · (x + r − 1) denoting the rising factorial. Similar is the case of the
Pitman-Yor process, which involves an extra discount parameter σ modifying the EPPF
into

p(c) =
∏K−1
j=1 (α + jσ)

(α + 1)(N−1)

K∏
j=1

(1− σ)(λj−1). (2.4)

Additionally, an explicit formulation of the EPPF is obtained in the finite-dimensional
case by starting from symmetric Dirichlet distribution over κ components and param-
eters α/κ. In this case the EPPF is restricted to the space of partitions of κ elements
and corresponds to

p(c) = κ!
(κ−K)!

K∏
j=1

Γ(α/κ+ λj)
Γ(α/κ) , (2.5)

which for κ→∞ becomes 2.3.

2.2.3 Product partition models

There is a strong connection with the exchangeable random partitions induced by Gibbs-
type priors and product partition models (Barry and Hartigan, 1992; Hartigan, 1990).
A product partition model assumes that the prior probability for the partition c has the
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Random probability measure Parameters p(c) ∝
Dirichlet process (α) αK

∏K
j=1(λj − 1)!

Pitman-Yor process (α, σ) ∏K−1
j=1 (α + jσ)(1− σ)(λj−1)

Symmetric Dirichlet (κ, γ) κ!
(κ−K)!

∏K
j=1

Γ(γ/κ+λj)
Γ(γ/κ)

Table 2.1: Cohesion functions for Dirichlet, Pitman-Yor processes and Symmetric
Dirichlet distribution. λj = |Bj | is the cardinality of the clusters composing the
partition, while (x)r = x(x+ 1) · · · (x+ r − 1) denotes the rising factorial.

following form

p(c = {B1, . . . , BK}) ∝
K∏
j=1

ρ(Bj), (2.6)

with ρ(·) known as cohesion function. The underlying assumption is that the prior
distribution for the set partition c can be factorized in the product of functions that de-
pends only on the blocks composing it. Such definition, in conjunction with formulation
(2.1) for the data likelihood, guarantees the property that the posterior distribution for
c is still in the class of product partition models.

Distributions in Table 2.1 are all characterized by a cohesion function that depends
on the clusters through their cardinality. Such characterization results too strict in
many applied context in which there are reasonable assumptions about the grouping,
since the same prior probability is given to partitions having the same configuration,
i.e. the same sequence of cluster sizes, independently on the observations assigned to
the clusters.



Chapter 3

Centered Partition Processes

Although prior distributions presented in the previous chapter have been proved to
provide a suitable framework for Bayesian mixture modeling, they still lack of flexibility
in including external information. Our focus is on incorporating structured knowledge
about data partitioning in the prior distribution. As a first approach, we consider as
source of information a given potential clustering, but our proposal should be useful
also to accommodate other types of prior information such as the number of clusters
and cluster sizes.

3.1 General formulation

Assume that a base partition c0 is given and we wish to include this information
in the prior distribution. To address this problem, we propose a general strategy to
modify a baseline EPPF to shrink towards c0. In particular, our proposed CP process
defines the prior on set partitions as proportional to a baseline EPPF multiplied by a
penalization term of the type

p(c|c0, ψ) ∝ p0(c)e−ψd(c,c0), (3.1)

with ψ > 0 a penalization parameter, d(c, c0) a suitable distance measuring how far c is
from c0 and p0(c) indicates a baseline EPPF, that may depend on some parameters that
are not of interest at the moment. For ψ → 0, p(c|c0, ψ) corresponds to the baseline
EPPF p(c0), while for ψ →∞, p(c = c0)→ 1.

Note that d(c, c0) takes a finite number of discrete values ∆ = {δ0, . . . , δL}, with L

depending on c0 and on the distance d(·, ·). We can define sets of partitions having the

17
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same fixed distance from c0 as

sl(c0) = {c ∈ ΠN : d(c, c0) = δl}, l = 0, 1, . . . , L. (3.2)

Hence, for δ0 = 0, s0(c0) denotes the set of partitions equal to the base one, meaning that
they differ from c0 only by a permutation of the cluster labels. Then s1(c0) denotes
the set of partitions with minimum distance δ1 from c0, s2(c0) the set of partitions
with the second minimum distance δ2 from c0 and so on. The introduced exponential
term penalizes equally partitions in the same set sl(c0) for a given δl, but the resulting
probabilities may differ depending on the chosen baseline EPPF.

3.1.1 Choiche of the distance and related properties

The proposed CP process modifies a baseline EPPF to include a distance-based
penalization term, which aims to shrink the prior distribution towards a prior parti-
tion guess. The choice of distance plays a key role in determining the behavior of the
prior distribution. A variety of different distances and indices have been employed in
clustering procedures and comparisons. We consider in this paper the Variation of In-
formation (VI), obtained axiomatically in Meilă (2007) using information theory, and
shown to nicely characterize neighborhoods of a given partition by Wade and Ghahra-
mani (2018). The variation of information is based on the Shannon entropy H(·), and
can be computed as

VI(c, c′) = −H(c)−H(c0) + 2H(c, c0)

=
K∑
j=1

λj
N

log
(
λj
N

)
+

K′∑
l=1

λ′l
N

log
(
λ′l
N

)
− 2

K∑
j=1

K′∑
l=1

λ∧jl
N

log
(
λ∧jl
N

)
,

where log denotes log base 2, and λ∧jl the size of blocks of the intersection c ∧ c′ and
hence the number of indices in block j under partition c and block k under c′. Notice
that VI ranges from 0 to log2(N).

Although normalized versions have been proposed (Vinh et al., 2010), some desir-
able properties are lost under normalization. We refer to Meilă (2007) and Wade and
Ghahramani (2018) for additional properties and empirical evaluations.

The Variation of Information belongs to class of metrics described in Section 2.1.3 in
which the weighting edged function is the Shannon entropy H(·). In general, a distance
between any two different partitions c, c′ ∈ ΠN can be defined by means of the Hasse
diagram via their minimum weighted path, which corresponds to the shortest path
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length when edges are equally weighted. Instead, when edges depend on the entropy
function through w({c, c′}) = |H(c)−H(c′)|, the minimum weighted path between two
partitions is the Variation of Information. In fact, notice that two connected partitions
are in a covering relation then c∧c′ is either equal to c or c′ and then V I(c, c′) = w(c, c′).
This means that splitting or merging smaller clusters has less impact on the VI then
splitting or merging larger ones. In fact the minimum weight corresponds to 2/N which
is attained when two singleton clusters are merged, or conversely, a cluster consisting of
two points is split.

3.1.2 Effect of the prior penalization

We first consider the important special case in which the baseline EPPF is p0(c) =
1/BN and the CP process reduces to p(c|c0, ψ) ∝ exp{−ψd(c, c0)} with equation (3.1)
simplifying to

p(c|c0, ψ) = e−ψδl∑L
u=0 nue

−ψδu
, for c ∈ sl(c0), l = 0, 1, . . . , L, (3.3)

where nu = |su(c0)|, the number of partitions in the set su(c0) as defined in (3.2).
Considering N = 5, there are 52 possible set partitions; Figure 3.1 shows the prior

cumulative probabilities for the CP process for different values of ψ ∈ (0, 3) with ψ = 0
corresponding to the uniform prior. In order to compute the cumulative probabilities, we
ordered partitions arbitrarily grouping them according to the number of blocks and block
sizes. Notice that since the order of the partitions is arbitrary, the same applies to values
of the cumulative probabilities, that are hence omitted; the interesting information is
in how the probability associated to each partition, given from the area between curves,
varies according to different values of ψ. Notice also that base partitions with the same
configuration (e.g. for c0 = {1, 2}{3, 4, 5} all the partitions with blocks sizes {3, 2}),
will behave in the same way, with the same probabilities assigned to partitions different
in composition.

Non-zero values of ψ increase the prior probability of partitions c that are relatively
close to the chosen c0. However, the effect is not uniform but depends on the structure
of both c and c0. For example, consider the inflation that occurs in the blue region as
ψ increases from 0 to 3. When c0 has 1 block (Figure 3.1a) versus 4 (Figure 3.1d) there
is a bigger increase. This is because the space of set partitions ΠN is not “uniform”
with respect configurations; an integer partition λ = (λ1, . . . , λK) can be rewritten as
λ = (1f1 , 2f2 , . . . , KfK ), with the notation indicating that there are fj elements of λ
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(a) c0 = {1, 2, 3, 4, 5}
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(b) c0 = {1, 2}{3, 4, 5}
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ψ

(c) c0 = {1, 2}{3, 4}{5}
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4 blocks

5 blocks

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ψ

(d) c0 = {1}{2}{3}{4, 5}

Figure 3.1: The cumulative probabilities of the 52 set partitions of N = 5 elements
for the CP process with uniform base EPPF. In each graph the CP process is centered
on a different partition c0 highlighted in blue. For each partition, the cumulative
probabilities across different values of the penalization parameter ψ are joined to
form the curves. The probability of a given partition corresponds to the difference
between the curves.

equal to j; then the number of set partitions having configuration λ is

N !∏K
j=1 λj!

∏N
i=1 fi!

.

For example, for {32} = 1021314050, the number of corresponding set partitions is 10,
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(b) c0 = {1, 2}{3, 4, 5}
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(c) c0 = {1, 2}{3, 4}{5}
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(d) c0 = {1}{2}{3}{4, 5}

Figure 3.2: The cumulative probabilities of the 52 set partitions of N = 5 elements
for the CP process with Dirichlet Process of α = 1 base EPPF. In each graph the CP
process is centered on a different partition c0 highlighted in blue. For each partition,
the cumulative probabilities across different values of the penalization parameter ψ
are joined to form the curves. The probability of a given partition corresponds to the
difference between the curves.

while there are 5 set partitions of type {41}. When c0 = 1 the closest partitions are ones
having this last configuration, and as it can be seen Figure 3.1a, for increasing values
of ψ their probability is inflated more and more. Instead, if the closest set partitions
would correspond to ones with configuration {32}, there would need an higher value of
ψ to similarly increase the probability of those partitions, simply because they are more
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in numerosity.
While the uniform distribution gives the same probability to each partition in the

space, the EPPF induced by Gibbs-type priors distinguishes between different configura-
tions, but not among partitions with the same configuration. We focus on the Dirichlet
process case, being the most popular process employed in applications. Under the DP
the induced EPPF p0(c) ∝ αK

∏K
j=1 Γ(λj) is a function of the configuration Λ(c), which

is one of {λ1, . . . ,λM} since the possible configurations are finite and correspond to the
number of integer partitions. Letting g(Λ(c)) = αK

∏K
j=1 Γ(λj), the formulation in (3.1)

can be written as

p(c|c0, ψ) = g(λm)e−ψδl∑L
u=0

∑M
v=1 nuvg(λv)e−ψδu

, for c ∈ slm(c0), (3.4)

where slm(c0) = {c ∈ ΠN : d(c, c0) = δl,Λ(c) = λm}, the set of partitions with
distance δl from c0 and configuration λm for l = 0, 1, . . . , L and m = 1, . . . ,M , with nlm
indicating the cardinality of such set. The factorization (3.4) applies for the family of
Gibbs-type priors in general, with different expressions of g(Λ(c)).

In Figure 3.2 we consider the prior distribution induced by the CP process when
the baseline EPPF p0(c) comes from a Dirichlet process with concentration parameter
α = 1, considering the same base partitions and values for ψ as in Figure 3.1. For the
same values of the parameter ψ, the behavior of the CP process changes significantly
due to the effect of the base prior. In particular, in the top left panel the CP process is
centered on c0 = {1, 2, 3, 4, 5}, the partition with only one cluster, which is a priori the
most likely one for ψ = 0. In general, for small values of ψ the clustering process will
most closely resemble that for a DP, and as ψ increases the DP prior probabilities are
decreased for partitions relatively far from c0 and increased for c0 relatively close.

3.2 Posterior computation

In classical Bayesian mixture models, inference is conducted by generating sam-
ples from the posterior distribution, obtained by means of Markov Chain Monte Carlo
(MCMC) algorithms. The proposed CP process modifies the prior distribution on the
space of set partitions, favoring partitions in neighborhood of the available prior guess.
Hence, in defining algorithms for posterior computation, we need to account for the
distance-dependent penalization when sampling a new partition c∗. In this section we
illustrate how to adapt some MCMC scheme to sample from the CP processes when the
base EPPF is uniform or a Gibbs-type.
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3.2.1 Posterior computation under uniform distribution

Recall that the Metropolis-Hastings algorithm for sampling from the posterior dis-
tribution p(c|y) ∝ p(y|c)p(c) uses a distribution q(c∗|c) to draw a proposal value c∗

and update it according to the acceptance probability

min
{

1, q(c|c
∗)

q(c∗|c)
p(c∗)
p(c)

p(y|c∗)
p(y|c)

}
. (3.5)

In general the prior ratio under the CP process becomes

p(c∗)
p(c) = exp{−ψ[d(c∗, c0)− d(c, c0)]},

being higher for proposal partitions closer to c0 than the current one, with the difference
between the distances being equal to H(c) − H(c∗) + 2H(c∗ ∧ c0) − 2H(c ∧ c0) using
the Variation of Information.

When Metropolis-Hastings (MH) algorithms are defined on a combinatorial struc-
ture, the candidate Markov chain is often taken to be a random walk on a graph that
defines a neighborhood structure for the combinatorial set in question (Booth et al.,
2008). The relationship associated with the edges in the graph determines the possible
moves. The Hasse diagram provides a natural representation of the set partitions, that
allows to define candidate partitions obtained with split and merge moves, described in
Algorithm 1. We randomly decide between a merge move with probability pm ∈ (0, 1)
and a split move with probability (1 − pm). A split move is automatically proposed
whenever the currents state consists of a single cluster and likewise a merge move when
the current state consists of n clusters. Assume that a proposal partition c∗ is ob-
tained from a partition c with K clusters, by merging two of them; then the transition
probability of a merge operation is

q(c∗|c) = 2pm
K(K − 1) , (3.6)

while the one of a split corresponds to

q(c|c∗) = 1− pm
(2λ∗−1 − 1)∑K∗

j=1 I{λj ≥ 2}
, (3.7)

where λ∗ is the size of the cluster in c∗ to split to obtain c. When the proposal partition
is obtained with a split operation, the ratio between the two probabilities in (3.6)- (3.7)
is inverted. Finally the likelihood ratio p(y|c∗)/p(y|c) depends only on observations
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belonging to the clusters involved in the split and merge operations.

Algorithm 1 : MH proposal based on split and merge moves
0. Let the partition c with K clusters be the current state of the Markov Chain.
1. Sample u ∼ Bern(pm).
if u = 1 then

Select uniformly at random 2 clusters in {1, . . . , K} and define the proposal c∗ by
merging the two clusters.

else if u = 0 then
Select uniformly at random 1 cluster in {1, . . . , K} and define the proposal c∗ by
splitting the chosen cluster into two clusters conditionally on neither being empty.

end if

Following Booth et al. (2008), we paired these moves with a second proposal based
on an alternative graph definition, in which there is a connection between two parti-
tions if one can be obtained from the other by moving exactly one of the N objects to
a different cluster. The resulting proposal is a biased random walk described in Algo-
rithm 2. It can be assessed that q(c|c∗) = q(c∗|c), which simplifies computation of the
acceptance probability in 3.5. Moreover, in this case, the likelihood ratio involves only
the observation moved from one clusters to the other.

Algorithm 2 : MH proposal based on biased random walk
0. Let the partition c with K clusters be the current state of the Markov Chain.
if K = 1 then

1. Choose one observation i in {1, . . . , N} uniformly at random and move it to its
own cluster.

else if K > 1 then
Choose one observation i in {1, . . . , N} uniformly at random.
if i is a singleton then

Move i to one of the other K − 1 clusters with probability 1/(K − 1).
else if i is not a singleton then

Move i to one of the other K − 1 clusters or its own one with probability 1/K.
end if

end if

We suggest to alternate between these two proposals at each iteration, by making a
transition according to the split and merge algorithm or the biased random walk with
probabilities pb and 1 − pb respectively. Indeed the MH algorithm results in mixture
of small scale changes in the partition acting on one element at time, and large scale
moves involving entire clusters.
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3.2.2 Posterior computation under Gibbs-type priors

Certain MCMC algorithms for Bayesian nonparametric mixture models can be easily
modified for posterior computation in CP process models. In particular, we adapt the so-
called “marginal algorithms” developed for Dirichlet and Pitman-Yor processes. These
methods are called marginal since the mixing measure is integrated out of the model
and the predictive distribution is used within a MCMC sampler. In the following, we
recall Algorithm 2 in Neal (2000) and illustrate how it can be adapted to sample from
the CP process posterior. We refer to Neal (2000) and references therein for an overview
and discussion of methods for both conjugate and nonconjugate cases, and to Fall and
Barat (2014) for adaptation to Pitman-Yor processes.

Let c be represented as an N -dimensional vector of indices {c1, . . . , cN} encod-
ing cluster allocation and let θk be the set of parameters currently associated to
cluster k. The prior predictive distribution for a single ci conditionally on c−i =
{c1, . . . , ci−1, ci+1, . . . , cN} is exploited to perform the Gibbs sampling step allocating
observations to either a new cluster or one of the existing ones. Algorithm 2 in Neal
(2000) updates each ci sequentially for i = 1, . . . , N via a reseating procedure, according
to the conditional posterior distribution

p(ci = k|c−i,θ, yi) ∝


p(ci = k|c−i)p(yi|θk) k = 1, . . . , K−

p(ci = k|c−i)
∫
p(yi|θ)dG0(θ) k = K− + 1,

(3.8)

with K− the number of clusters after removing observation i. The conditional distri-
bution p(ci = k|c−i) is reported in Table 3.1 for different choices of the prior EPPF.
Notice that, for the case of finite Dirichlet prior, the update consists only in the first
line of equation (3.8), since the number of classes is fixed. For Dirichlet and Pitman-Yor
processes, when observation i is associated to a new cluster, a new value for θ is sampled
from its posterior distribution based on the base measure G0 and the observation yi.
This approach is straightforward when we can compute the integral

∫
p(yi|θ)dG0(θ), as

will generally be the case when G0 is a conjugate prior.
Considering the proposed CP process, the conditional distribution for ci given c−i

can still be computed, but it depends both on the base prior and the penalization term
accounting for the distance between the base partition c0 and the one obtained by
assigning the observation i to either one of the existing classes k ∈ {1, . . . , K−} or a
new one. Hence, the step in equation (3.8) can be easily adapted by substituting the
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Random probability measure Parameters p(ci = k|c−i) ∝

Dirichlet process (α)


λ−i

k

α+N−1 k = 1, . . . , K−
α

α+N−1 k = K− + 1

Pitman-Yor process (α, σ)


λ−i

k
−σ

α+N−1 k = 1, . . . , K−
α+σK−
α+N−1 k = K− + 1

Symmetric Dirichlet (κ, γ) λ−i
k

+γ/κ
α+N−1 k = 1, . . . , κ

Table 3.1: Conditional prior distribution for ci given c−i under different choices of
the EPPF. With K− we denote the total number of clusters after removing the i-th
observation, while λ−ik is the corresponding number of observations in cluster k.

conditional distribution for p(ci = k|c−i) with

p(ci = k|c−i, c0, ψ) ∝ p0(ci = k|c−i) exp{−ψd(c, c0)} k = 1, . . . , K−, K− + 1

with c = {c−i ∪ {ci = k}} the current state of the clustering and p0(ci = k|c−i) one
of the conditional distributions in Table 3.1. Additional steps on the implementation
using the Variation of Information as a distance are given in Algorithm 3), but the
same procedure applies when using other distances based on blocks sizes, such as the
Hamming distance or the Rand Index.

Extension to the non-conjugate context can be similarly handled exploiting algorithm
8 in Neal (2000) based on auxiliary parameters, which avoids the computation of the
integral

∫
p(yi|θ)dG0(θ). The only difference is in that, when ci is updated, m temporary

auxiliary variables are introduced that represent possible values for the parameters of
components that are not associated with any other observations. Such variables are
simply sampled from the base measure G0, with the probabilities of a new cluster in
Table 3.1 changing into (α/m)/(α + N − 1) for the Dirichlet Process and to [(α +
σK−)/m]/(α +N − 1) for k = K− + 1, . . . , K− + 1.

Algorithm 3 : Computation strategy for the penalization term in marginal sampling
Let K− and K−0 denote respectively the number of clusters in c−i and c−i0 , i.e. parti-
tions c and c0 after removing the i observation.
for i = 1, . . . , N do

1. Compute cardinalities {λ−i1 , . . . , λ
−i
K−} representing the number of observations

in each cluster for c−i.
2. Compute λ−ilm, the number of observations in cluster l under c−i and cluster m
under c−i0 for l = 1, . . . , K− and m = 1, . . . , K−0 .
for k = 1, . . . , K−, K− + 1 do
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Let ci,0 be the cluster of index i under partition c0.
Compute d(c, c0) ∝ −H(c) + 2H(c ∧ c0) for c = {c−i ∪ k} using

−H(c) =
K∑
l 6=k

{
λ−il
N

log λ
−i
l

N

}
+
(
λ−ik + 1
N

)
log

(
λ−ik + 1
N

)

H(c ∧ c0) =−


K∑
l=1

K−0∑
m=1

λ−ilm
N

log
(
λ−ilm
N

)
−
λ−ikci,0

N
log

λ−ikci,0

N


+
λ−ikci,0

+ 1
N

log
λ−ikci,0

+ 1
N


end for

end for

3.3 Prior calibration

As the number of observations N increases, the number of partitions explodes, and
higher values of ψ are needed to place non-negligible prior probability in small to mod-
erate neighborhoods around c0. The prior concentration around c0 depends on three
main factors: i) N through BN , i.e. the cardinality of the space of set partitions, ii)
the baseline EPPF p0(c0) and iii) where c0 is located in the space. We hence propose a
general method to evaluate the prior behavior under different settings, while suggesting
how to choose the parameter ψ.

One may evaluate the prior distribution for different values of ψ and check its behavior
using graphs such as those in Section 3.1.2, however they become difficult to interpret
as the space of partitions grows. We propose to evaluate the probability distribution
of the distances δ = d(c, c0) from the known partition c0. The probability assigned to
different distances by the prior is

p(δ = δl) =
∑
c∈ΠN

p(c)I {d(c, c0) = δl)} =
∑

c∈sl(c0)
p(c) l = 0, . . . , L,

with I(·) the indicator function and sl(c0) denoting the set of partitions distance δl

from c0, as defined in (3.2). Consider the uniform distribution on set partitions, p(δ =
δl) = |sl(c0)|/BN , the proportion of partitions distance δl from c0. Under the general
definition of the CP process, the resulting distribution becomes

p(δ = δl) =
∑

c∈sl(c0)

p0(c)e−ψδl∑L
u=0

∑
c∗∈su(c0) p0(c∗)e−ψδu

l = 0, . . . , L, (3.9)
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with the case of Gibbs-type EPPF corresponding to

p(δ = δl) =
∑M
m=1 nlmg(λm)e−ψδl∑L

u=0
∑M
v=1 nuvg(λv)e−ψδu

, l = 0, . . . , L. (3.10)

Notice that the uniform EPPF case is recovered when g(λm) = 1 for m = 0, . . . ,M , so
that ∑M

m=1 nlm = nl. Hence the probability in (3.9) simplifies to

p(δ = δl) = nle
−ψδl∑L

u=0 nue
−ψδu

l = 0, . . . , L. (3.11)

In general, since distances are naturally ordered, the corresponding cumulative distri-
bution function can be simply defined as F (δ) = ∑

δl≤δ p(δl) for δ ∈ {δ0, . . . , δL} and
used to assess how much mass is placed in different size neighborhoods around c0 under
different values of ψ. Hence we can choose ψ to place a specified probability q (e.g.
q = 0.9) on partitions within a specified distance δ∗ from c0. This would correspond to
calibrating ψ so that F (δ∗) ≈ q, with F (δ∗) ≥ q. In other words, partitions generated
from the prior would have at least probability q of being within distance δ∗ from c0.

The main problem is in computing the probabilities in equations (3.10)-(3.11), which
depend on all the set partitions in the space. In fact, one needs to count all the partitions
having distance δl for l = 0, . . . , L when the base EPPF is uniform, while taking account
also of configurations in the case of the Gibbs-type priors. Even if there are quite efficient
algorithms to list all the possible set partitions of N (see Knuth, 2005; Nijenhuis and
Wilf, 2014), it becomes computationally infeasible due to the extremely rapid growth
of the space; for example from N = 12 to 13, the number of set partitions grows
from B12 = 4, 213, 597 to B13 = 27, 644, 437. Another option is to approximate counts
by means of a Monte Carlo procedure based on uniform sampling, but with the main
drawback is that small values of counts are highly underestimated, or even missed, given
the very low probability to sample the corresponding partitions. In particular, we will
miss information about partitions close to c0 , which are the ones we wish to favor.

We propose a general strategy to approximate prior probabilities assigned to different
distances from c0 focused on obtaining estimates of distance values and related counts,
which represent the sufficient quantities to compute (3.10)-(3.11) under different values
of ψ. We consider a targeted Monte Carlo procedure which augments uniform sampling
on the space of set partitions with a deterministic local search using the Hasse diagram
to provide exact counts for small values of the distance.
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{1,2,3,4}

{4}{1,2,3}{3}{1,2,4}{2}{1,3,4}{1}{2,3,4} {1,2}{3,4} {1,3}{2,4} {1,4}{2,3}

{1}{2}{3,4} {1}{3}{2,4} {1}{4}{2,3} {2}{3}{1,4} {2}{4}{1,3} {3}{4}{1,2}

{1}{2}{3}{4}

Figure 3.3: Illustration of results from the local search algorithm based on the Hasse
diagram of Π4 starting from c0 = {1}{2,3,4}. Partitions are colored according the
exploration order according to dark-light gradient. Notice that after 3 iterations the
space is entirely explored.

3.3.1 Deterministic local search

Poset theory provides a nice representation of the space of set partitions by means of
the Hasse diagram illustrated in Section 2.1.2, along with suitable definition of metrics.
A known partition c0 can be characterized in terms of number of blocks K0 and config-
uration Λ(c0). These elements allows one to locate c0 in the Hasse diagram and then
explore connected partitions by means of split and merge operations on the clusters in
c0.

As an illustrative example, consider the Hasse diagram of Π4 in Figure 3.3 and
c0 = {1}{2, 3, 4}, having 2 clusters and configuration Λ(c0) = {31}. Let N1(c0) denote
the sets of partitions directly connected with c0, i.e. partitions covering c0 and those
covered by c0. In general, a partition c0 with K0 clusters is covered by

(
K0
2

)
partitions

and covers ∑K0
j=1 2λj−1− 1. In the example, N1(c0) contains {1, 2, 3, 4} obtained from c0

with a merge operation on the two clusters, and all the partitions obtained by splitting
the cluster {2, 3, 4} in any possible way. The base idea underlying the proposed local
search, consists in exploiting the Hasse diagram representation to find all the partitions
in increasing distance neighborhoods of c0. One can list partitions at T connections
from c0 starting from N1(c0) by recursively applying split and merge operations on the
set of partitions explored at each step. Potentially, with enough operations one can
reach all the set partitions, since the space is finite with lower and upper bounds.

In practice, the space is too huge to be explored entirely, and a truncation is needed.
From the example in Figure 3.3, N1(c0) contains 3 partitions with distance 0.69 from c0

and one with distance 1.19. Although N2(c0) may contain partitions closer to c0 than
this last, the definition of distance in Section 2.1.3 guarantees that there are no other
partitions with distance from c0 less than 0.69. Since the VI is the minimum weighted
path between two partitions, all the partitions reached at the second exploration step add
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a nonzero weight to distance computation. This consideration extends to an arbitrary
number of explorations T , with δL∗ = min{d(c∗, c0)}c∗∈NT (c0) being the upper bound on
the distance value. By discarding all partitions with distance greater that δL∗ , one can
compute exactly the counts in equations (3.10)-(3.11) related to distances δ0, . . . , δL∗ .
Notice that 2/N is the minimum distance between two different partitions, and 2T/N
is a general lower bound on the distances from c0 that can be reached in T iterations.

3.3.2 Monte Carlo approximation

We pair the local exploration with a Monte Carlo procedure to estimate the counts and
distances greater that δL∗ , in order to obtain a more refined representation of the prior
distance probabilities. Sampling uniformly from the space of partitions is not in general
a trivial problem, but a nice strategy has been proposed in Stam (1983), in which the
probability of a partition with K clusters is used to sample partitions via an urn model.
Derivation of the algorithm starts from the Dobiński formula (Dobiński, 1877) for the
Bell numbers

BN = e−1
∞∑
k=1

kN

k! , (3.12)

which from a probabilistic perspective corresponds to the k-th moment of the Poisson
distribution with expected value equal to 1. Then a probability distribution for the
number of clusters K ∈ {1, . . . , N} of a set partition can be defined as

P (K = k) = e−1 kN

BNk! , (3.13)

which is a well defined law thanks to (3.12). To simulate a uniform law over ΠN , Stam
(1983)’s algorithm first generates the number of clusters K according to (3.13) and,
conditionally on the sampled value, it allocates observations to the clusters according
a discrete uniform distribution over {1, . . . , K}. We refer to Stam (1983) and Pitman
(1997) for derivations and proof of the validity of the algorithm.

We adapt the uniform sampling to account for the values already computed
by rejecting all the partitions with distance less that δL∗ , restricting the space to{

ΠN \ {Nt(c0)}Tt=0

}
. In practice, few samples are discarded since the probability to

sample one such partition corresponds to |{Nt(c0)}Tt=0|/BN , which is negligible for small
values of exploration steps T that are generally used in the local search. A sample
of partitions c(1), . . . , c(R), can be used to provide an estimate of the counts. Let R∗

denote the number of accepted partitions and B∗ = BN − |{Nt(c0)}Tt=0| be the number
of partitions in the restricted space. Conditionally on the observed values of distances
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in the sample, δ̂(L∗+1), . . . , δ̂L, an estimate of the number of partitions with distance δ̂l
to use in the uniform EPPF case is

n̂l = B∗ 1
R∗

R∗∑
r=1
I
{
d(c(r), c0) = δ̂l

}
, (3.14)

obtained by multiplying the proportions of partitions in the sample by the total known
number of partitions. For the Gibbs-type EPPF case one needs also to account for the
configurations λ1, . . . ,λM in a given orbital of the distance; hence, the estimates are

n̂lm = B∗ 1
R∗

R∗∑
r=1
I
{
d(c(r), c0) = δ̂l

}
I
{
Λ(c(r)) = λm

}
. (3.15)

Pairing these estimates with the counts obtained via the local search, one can evaluate
the distributions in equations (3.10)-(3.11) for different values of ψ. The entire procedure
is summarized in Algorithm 4. Although it requires a considerable number of steps, the
procedure can be performed one single time providing information for different choices
of ψ and EPPFs. Moreover the local search can be implemented in parallel to reduce
computational costs.

We consider an example for N = 12 and c0 with configuration {3, 3, 3, 3}. Figure 3.4
shows the resulting cumulative probability estimates of the CP process under uniform
and DP(α = 1) base distributions, estimated with T = 4 iterations of the local search
and 20, 000 samples. Dots represent values of the cumulative probabilities, with different
colors in correspondence to different values of the parameter ψ. Using these estimates
one can assess how much probability is placed in different distance neighborhoods of
c0; tables in Figure 3.4 show the distance values in terms of VI defining neighborhoods
around c0 with 90% prior probability. If one wishes to place such probability mass
on partitions within distance 1 from c0, a value of ψ around 10 and 15 is needed,
respectively, under uniform and DP base prior.

Figures 3.5a-3.5b provide some insights about the motivation underlying the proposed
procedure. In particular Figure 3.5a shows the differences in percentage between the
true distance probabilities and the corresponding Monte Carlo estimates for increasing
number of samples, considering the same setting as above. Obviously, best performances
are obtained for the biggest sample, however it is worth noticing that a sample of 100, 000
partitions corresponds to the 0.02% of the total, but even the 0.01% providing very good
estimates.
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Figure 3.4: Estimate of the cumulative prior probabilities assigned to different dis-
tances from c0 for N = 12 and c0 with configuration {3, 3, 3, 3}, under the CP process
with uniform prior on the left and Dirichlet process on the right. Black dots correspond
to the base prior with no penalization, while dots from bottom-to-top correspond to
increasing values of ψ ∈ {5, 10, 15, 20}. Tables report the minimum distance values in
terms of VI such that F (δ) ≥ 0.9.
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Figure 3.5: Differences, in percentage, between the estimated cumulative distance
probabilities and the true ones for N = 12 (B12 = 4, 213, 597), c0 with configuration
{3, 3, 3, 3}. Figure 3.5a shows differences between true values and Monte Carlo esti-
mates, for different values of the sample sizes (10, 000, 50, 000, 100, 000). Figure 3.5b
compares estimates of small distance values probabilities obtained via Monte Carlo
(blue dots) and our procedure including a deterministic local search (red dots).
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Nevertheless the main drawback of using solely Monte Carlo estimates, is shown
in Figure 3.5b. Red dots represent differences between the true values and the ones
computed by our proposed procedure, while blue dots corresponds to the Monte Carlo
ones. As it can be noticed, by sampling partitions uniformly, probabilities related to
small values of distances are highly underestimated, or even missed; moreover such
probabilities are the ones we wish to inflate.

Algorithm 4 : Estimation of counts statistics related to distances neighborhoods of c0

Local search
0. Start from the base partition c0 with |K0| clusters and configuration λm0 and set
δ0 = 0 and N0(c0) = c0.
for t = 1, . . . , T do

Obtain Nt(c0) from partitions in Nt−1(c0) by exploring all directed connections,
i.e. partitions obtained with one operation of split/merge on elements Nt−1(c0).

end for
2. Compute the distance from c0 and all partitions in NT (c0) and take the minimum
distance, δL∗ ; discard all partitions having distances greater than δL∗ .
3. Obtain counts nl and nlm relative to distances δ1, . . . , δL∗ for m = 1, . . . ,M .
Monte Carlo approximation
for r = 1, . . . , R do

4. Sample the number of clusters K from the discrete probability distribution

p(K = k) = e−1kN/(k!BN), k ∈ {1, . . . , N}.

5. Conditional on K generate a partition c(r) = {c(r)
1 , . . . , c

(r)
N } by sampling each

c
(r)
i from a discrete uniform distribution on {1, . . . , K}.

6. If d(c(r), c0) > δL∗ reject the partition.
end for
7. Let R∗ be the number of accepted partitions, and estimate counts n̂l and n̂lm for
m = 1, . . . ,M and according to (3.14)-(3.15) conditional on the observed distance
values δ̂(L∗+1), . . . , δ̂L.
8. Using R∗ be the number of accepted partitions, and estimate counts n̂l and n̂lm

relative to distances δ̂L∗+1, . . . , δ̂L for m = 1, . . . ,M .





Chapter 4

Application to birth defects
epidemiology

4.1 Congenital heart defects

Birth defects or congenital malformations are the leading causes of infant mortality
(Murphy et al., 2017), with the class of Congenital Heart Defects (CHD) accounting
for over the 50% of all birth defects. Because some of these defects are relatively
rare, in many cases we lack precision for investigating associations between potential
risk factors and individual birth defects. For this reason, researchers typically lump
together heterogeneous defects in order to increase power (e.g., grouping all heart defects
together), even knowing the underlying mechanisms may differ substantially. In fact,
how best to group defects is still subject to uncertainty, despite a variety of proposed
groupings available in the literature (Lin et al., 1999).

While it may seem natural at first to group defects by anatomic features, this type of
grouping may obscure important developmental relationships, and mechanistic classifi-
cation of the defects has become increasingly popular (Clark, 2001). Such classification
is based on the knowledge gained on the embryonic development, that has roots in a
cluster of cells that are intended to contribute to each organ or structure. Small errors
in the coordination of cells differentiation and migration can produce defects that are
linked to specific developmental mechanism. The concept can be summarized in the
following way: one molecular abnormality, one mechanism, one group of heart diseases
potentially different from an anatomic perspective but homogeneous in their embryonic
development.

35
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Congenital Heart Defect Abbreviation Frequencies Percentage of cases
Septal

Atrial septal defect ASD 765 0.15
Perimembranous ventricular septal defect VSDPM 552 0.11
Atrial septal defect, type not specified ASDNOS 225 0.04
Muscular ventricular septal defect VSDMUSC 68 0.02
Ventricular septal defect, otherwise specified VSDOS 12 0.00
Ventricular septal defect, type not specified VSDNOS 8 0.00
Atrial septal defect, otherwise specified ASDOS 4 0.00
Conotruncal

Tetralogy of Fallot FALLOT 639 0.12
D-transposition of the great arteries DTGA 406 0.08
Truncus arteriosus COMMONTRUNCUS 61 0.01
Double outlet right ventricle DORVTGA 35 0.01
Ventricular septal defect reported as conoventricular VSDCONOV 32 0.01
D-transposition of the great arteries, other type DORVOTHER 22 0.00
Interrupted aortic arch type B IAATYPEB 13 0.00
Interrupted aortic arch, not otherwise specified IAANOS 5 0.00
Left ventricular outflow

Hypoplastic left heart syndrome HLHS 389 0.08
Coarctation of the aorta COARCT 358 0.07
Aortic stenosis AORTICSTENOSIS 224 0.04
Interrupted aortic arch type A IAATYPEA 12 0.00
Right ventricular outflow

Pulmonary valve stenosis PVS 678 0.13
Pulmonary atresia PULMATRESIA 100 0.02
Ebstein anomaly EBSTEIN 66 0.01
Tricuspid atresia TRIATRESIA 46 0.01
Anomalous pulmonary venous return

Total anomalous pulmonary venous return TAPVR 163 0.03
Partial anomalous pulmonary venous return PAPVR 21 0.01
Atrioventricular septal defect

Atrioventricular septal defect AVSD 112 0.02

Table 4.1: Summary statistics of the distribution of congenital heart defects among
cases. Defects are divided according the grouping provided from investigators.

In this particular application, we consider 26 individual heart defects, which have
been previously grouped into 6 categories by investigators on the basis of the classifi-
cation provided in Clark (2001) and reviewed in Botto et al. (2007) specifically for the
NBPDS. The prior grouping is shown in Table 4.1, along with basic summary statistics
of the distribution of defects in the analyzed data. Interest is in evaluating the impact of
about 90 potential risk factors related to maternal health status, pregnancy experience,
lifestyle and family history. We extracted a subset of data from NBDPS, excluding
observations with missing covariates, obtaining a dataset with 8, 125 controls, while all
heart defects together comprise 4, 947 cases.
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4.1.1 A base modeling approach

Standard approaches assessing the impact of exposure factors on the risk to develop
a birth defect often rely on logistic regression analysis. Let i = 1, . . . , N index birth
defects, while j = 1, . . . , ni indicates observations related to birth defect i, with yij = 1
if observation j has birth defect i and yij = 0 if observation j is a control, i.e. does not
have any birth defect. Let Xi denote the data matrix associated to defect i, with each
row xTij = (xij1, . . . , xijp) being the vector of the observed values of p categorical variables
for the j-th observation. At first one may consider N separate logistic regressions of the
type

log
(

Pr(yij = 1|xij)
Pr(yij = 0|xij)

)
= logit(πij) = αi + xTijβi, (4.1)

with αi denoting the defect-specific intercept, and βi = (βi1, . . . , βip) the p× 1 vector of
regression coefficients. However, Table 4.1 highlights the heterogeneity of heart defects
prevalences, with some of them being so few as to preclude separate analyses.

A Bayesian version of model in 4.1 is obtained by considering a Pólya-gamma data
augmentation scheme for Bayesian logistic regression (Polson et al., 2013). A latent
variable ωij ∼ PG(1, αi + xTijβi) is introduced for each observation j in defect-specific
dataset i for i = 1, . . . , N and j = 1, . . . , nj. Following Polson et al. (2013) the likelihood
contribution for the j-th observation in dataset i conditionally on the ωij is

∝ exp
[
−ωij2 {(yij − 0.5)/ωij − αi − xTijβi}

]
. (4.2)

Equation 4.2 is the kernel of a Gaussian distribution for data (yij − 0.5)/ωij with mean
αi − xTijβi and variance 1/ωij. Letting βi ∼ Np(b,Q) be the prior for the coefficient
vector, the logistic regression can be recasted in terms of a Bayesian linear regression
with Gaussian response (yij − 0.5)/ωij.

A weakly informative prior may be placed on the coefficient vector (Gelman et al.,
2013), e.g. β ∼ Np(0, diag(2)), since it is reasonable to not expect extreme values of
the odds ratio resulting from coefficient estimates. Although the introduction of a prior
distribution may help in regularizing the estimates, still we need to group the defects
somehow, in order to deal with low numerosity cases.

4.1.2 Sharing information across defects

A first step in introducing uncertainty about clustering of the defects may rely on
a standard Bayesian nonparametric approach, placing a Dirichlet process prior on the
distribution of regression coefficient vector βi in order to borrow information across
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multiple defects while letting the data inform on the number and composition of the
clusters. A similar approach has been previously proposed in MacLehose and Dunson
(2010), with the aim being to shrink the coefficient estimates towards multiple unknown
means. In our setting, an informed guess on the group mean values is available through
c0, available in Table 4.1.

We consider a simple approach building on the Bayesian version of the model in
(4.1), and allowing the exposure coefficients βi for i = 1, . . . , N to be shared across
regressions while accounting for the partition c0 by means of our proposed Centered
Partition process. The model, written in a hierarchical specification

yij ∼ Ber(πij) logit(πij) = αi + xTijβci
, j = 1, . . . , ni,

αi ∼ N (a0, τ
−1
0 ) βci

|c ∼ Np(b,Q) i = 1, . . . , N,

p(c) ∼ CP (c0, ψ, p0(c)) p0(c) ∝ αK
K∏
k=1

(λk − 1)! (4.3)

where CP (c0, ψ, p0(c0)) indicates our proposed Centered Partition process, with base
partition c0, tuning parameter ψ and baseline EPPF p0(c0). We specify the baseline
EPPF so that when ψ = 0 the prior distribution reduces to a Dirichlet Process with
concentration parameter α. Instead, for ψ → ∞ the model would corresponds to K

separate logistic regressions, one for each group composing c0. Estimation is carried
by following Algorithm 5, with the step for clustering update following indications in
Section 3.2.2 including Algorithm 8 variation in Neal (2000) to with m = 1 auxiliary
variables.

Algorithm 5 : Gibbs sampling for posterior computation
Conditionally on the cluster allocation vector c = (c1, . . . , cn) and data {yi,Xi} for
i = 1, . . . , N , update mixture related parameters and Pólya-gamma latent variables
as follow
——————————————————————————————————–
[1] Sample Pólya-gamma latent variables for each observation in each dataset
for i = 1, . . . , N and j = 1, . . . , ni do

(ωij|−) ∼ PG(1, αi + xTijβci
)

end for
——————————————————————————————————–
[2] Update defect-specific intercept, exploiting Pólya-gamma conjugancy
for i = 1, . . . , N do
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(αi|−) ∼ N (a∗, τ ∗)

with τ ∗ = τ0 +∑ni
j=1 ωij and a∗ = [a0τ0 +∑ni

j=1(yij − 1/2− ωijxTijβci
)]/τ ∗

end for
——————————————————————————————————–
[3] Defining κij := yij − 1/2 − wijαi, then the vector (κij/ωij|ci = h, ωij) ∼
N (xTi β(k), 1/ωij), and each cluster-specific coefficient vector βh can be updated by
aggregating all observations and augmented data relative to birth defects that are in
the same cluster.
for k = 1, . . . , K do

Let X(k), y(k), κ(k) be the obtained quantities relative to cluster h, and Ω(k) a
diagonal matrix with the corresponding Pólya-gamma augmented variables. Then
update cluster-specific coefficients vector from

(β(k)|−) ∼ Np(b(k),Q(k))

with Q(k) = (X(h)TΩ(k)X(k) + Q−1)−1 and b(k) = Q(k)(X(k)Tκ(k) + Q−1b).
end for
—————————————————————————————————–
[4] Allocate each birth defect i to one of the clusters
for i = 1, . . . , N do

Sample the class indicator ci conditionally on c−i = (c1, . . . , ci−1, ci+1, . . . , cn) from
the discrete distribution with probabilities

Pr(ci = k|c−i,−) ∝ Pr(ci = k|c−i)Pr(yi|Xi, αi, ci = k,β(k))

with

Pr(yi|Xi, αi, cj = k,β(k)) =
ni∏
j=1

[
exp(αi + xTijβ

(k))yij

] [
1 + exp(αi + xTijβ

(k))
](−1)

being the model likelihood evaluated for cluster h and Pr(ci = h|c−(i)) computed
as described in Section 3.2 depending on the base EPPF.

end for
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4.2 Simulation studies

We conduct a simulation study to evaluate the performance of our approach in
accurately estimating the impact of the covariates across regressions. In simulat-
ing data, we choose a scenario mimicking the structure of our application, pro-
ducing datasets with highly variable dimensions, favoring a low number of observa-
tions. We consider 4 underlying groups and generate 12 equally divided datasets,
with {n1, n2, n3} = {100, 600, 200}, {n4, n5, n6} = {300, 100, 100}, {n7, n8, n9} =
{500, 100, 200}, {n10, n11, n12} = {200, 200, 200} and p = 10 dichotomous explanatory
variables. Each data matrix Xi for i = 1, . . . , 12 is generated by sampling each of the
variables from a Bernoulli distribution with probability of success equal to 0.5, and fix-
ing most of coefficients βi, for i = 1, . . . , 10, to 0, while defining a challenging scenario
with small to moderate changes across different groups.

In particular we fix {β1, β2, β3, β4} = {log(1.3), log(1.2), log(1.2), log(1.3)} for group
1, {β4, β5, β6} = {log(1.5), log(0.7), log(1.5)} for group 2, {β9, β10} = {log(1.5), log(0.5)}
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Figure 4.1: Estimates of the coefficients obtained using separate logistic regressions.
For each group, the red line correspond to maximum likelihood estimates obtained
from logistic regression using all the observation generated for the groups. Instead
grey dots corresponds to maximum likelihood estimates obtained from separate re-
gressions, with bars indicating confidence intervals at 95%. Wider confidence intervals
corresponds to dataset with fewer observations.
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Figure 4.2: Estimates of the coefficients obtained using a grouped logistic regression
with Dirichlet process prior and CP process prior centered on the true partition (ψ =
20). Red lines correspond to maximum likelihood estimates obtained from logistic
regression using the true grouping. Bars indicates credibility intervals at 95%.

for group 3 and {β1, β2, β9, β10} = {log(0.8), log(1.2), log(1.5), log(1.2)} for group 4. We
consider the following models: i) separate logistic regressions, ii) a grouped logistic
regression with a DP prior with α = 1 and iii) a grouped logistic regression using a CP
prior with a DP base EPPF with concentration parameter α = 1. We fixed ψ = 20
according to the considerations made in Section 3.3, and evaluate the CP prior behavior
both centering it on the true known grouping and on a wrong guess of the partition.
Posterior estimates are obtained using the Gibbs sampler described in the Appendix.
We run the algorithm for 5, 000 iterations and used a burn-in of 1, 000, with inspection
of trace-plots suggesting convergence of the parameters, and estimate the partition as as
maximum a posteriori. We consider a multivariate normal distribution with zero mean
vector and covariance matrix Q = diagp(2) as base measure for the Dirichlet process,
while we assume the defect-specific intercepts αi ∼ N(0, 2) for i = 1, . . . , N .

We first centered the CP prior on the true known grouping and resulting estimates
are shown in Figures 4.1-4.2 for each of the true groups, with corresponding 95% confi-
dence and credibility intervals for maximum likelihood and Bayesian estimates, respec-
tively. Maximum likelihood estimates have quite large confidence intervals, especially
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for datasets with a small number of observations. The grouped logistic regression using
the Dirichlet Process prior, although borrowing information across the datasets, does
not distinguish between the groups, while the CP process recovers the true grouping
with good performances in estimating the coefficients.

We also evaluated the CP prior performances when centered on a wrong guess c′0
of the base partition. In particular, we set c′0 = {1, 5, 9}{2, 6, 10}{3, 7, 11}{4, 8, 12}.
Despite having the same configuration of c0, it has distance from c0 in terms of VI of
approximately 3.16, where the maximum possible distance is log2(12) = 4.70. In this
case, we estimate 2 clusters, with the first one comprising a dataset for each of the
groups 2, 3, 4, and the second putting together all the remaining datasets. Although
the estimated clustering is quite different from c0, having distance 2.58, the estimated
partition is closer to the one induced by the DP (0.81) than c′0 (1.18). In this case,
partitions distances may provide an indication about the goodness of our prior guess.

4.3 Application to NBDPS data

We estimated the model in (4.3) on the NBDPS data, considering the controls as
shared with the aim of grouping cases into informed groups on the basis of the available
c0. In order to choose a value for the penalization parameter, we consider the prior
calibration illustrated in Section 3.3, finding a value of ψ = 40 assigning a 90% proba-
bility to partitions within a distance around 0.8, where the maximum possible distance
is equal to 4.70. In terms of moves on the Hasse diagram we are assigning 90% prior
probability to partitions at most at 11 split/merge operations, given that the minimum
distance from c0 is 2/N ≈ 0.07. To assess sensitivity of the results, we performed the
analysis under different values of ψ ∈ {0, 40, 80, 120,∞}. In particular, for ψ = 0 the
clustering behavior is governed by a Dirichlet process prior, while ψ → ∞ corresponds
to fixing the groups to c0.

In analyzing the data we run the Gibbs sampler for 10, 000 iterations and use a burn-
in of 4, 000, under the same prior settings as in Section 4.2. Figure 4.3 summarizes the
posterior estimates of the pairwise allocation matrices under different values of ψ with
partition estimated as maximum at posteriori. Colored dots emphasize differences with
the base partition c0. Under the DP process (ψ = 0) the estimated partition differs
substantially from the given prior clustering.
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Due to the immense space of the possible clusterings, this is likely reflective of limited
information in the data, combined with the tendency of the DP to strongly favor certain
types of partitions, typically characterized from few large clusters along many small ones
(Miller and Harrison, 2018). When increasing the value of the tuning parameter ψ the
estimated clustering is closer to c0. In particular, for ψ = 120 one of the clusters in c0

is recovered, while the others are merged in two different groups.
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(a) ψ = 0, VI(ĉ, c0) = 2.51

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

COARCT
DTGA
HLHS

TAPVR
AORTICSTENOSIS

COMMONTRUNCUS
DORVOTHER

DORVTGA
EBSTEIN

FALLOT
IAANOS

IAATYPEA
IAATYPEB

PAPVR
PULMATRESIA

TRIATRESIA
VSDCONOV

VSDMUSC
ASD

ASDNOS
ASDOS

AVSD
PVS

VSDNOS
VSDOS
VSDPM

COARCT

DTGA
HLH

S

TA
PVR

AORTIC
STENOSIS

COM
M

ONTRUNCUS

DORVOTHER

DORVTGA

EBSTEIN

FA
LL

OT

IA
ANOS

IA
AT

YPEA

IA
AT

YPEB

PA
PVR

PULM
AT

RESIA

TRIA
TRESIA

VSDCONOV

VSDM
USC

ASD

ASDNOS

ASDOS
AVSD

PVS

VSDNOS

VSDOS

VSDPM

Expected pairwise allocation matrix

(b) ψ = 40, VI(ĉ, c0) = 2.27
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(c) ψ = 80, VI(ĉ, c0) = 2.14
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Figure 4.3: Posterior allocation matrices obtained using the CP prior with DP(α =
1) for different values of ψ ∈ {0, 40, 80, 120}. On the y-axis labels are colored accord-
ing base grouping information c0, with dots on the diagonal highlighting differences
between c0 and the estimated partition ĉ.
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Details on the results for each of the estimated models are given in at the end of
the chapter (Figures 4.5-4.9) and summarized here. Figure 4.4 shows a heatmap of the
mean posterior log odds-ratios for increasing values of the penalization parameter ψ,
with dots indicating if they are significant according to a 95% credibility interval. In
general, the sign of the effects does not change for most of the exposure factors across
the different clusterings. Figure 4.4 focuses on pharmaceutical use in the period from 1
month before the pregnancy and 3 months during, along with some exposures related
to maternal behavior and health status.

We found consistent results for known risk factors for CHD in general, including for
diabetes (Correa et al., 2008) and obesity (Waller et al., 2007). The finding that nausea
is associated with positive outcomes is consistent with prior literature (Koren et al.,
2014). The association between use of SSRIs and pulmonary atresia was also noted in
Reefhuis et al. (2015a). It is worth noticing that estimates obtained under the DP prior
are less consistent with prior work. Also, there apparent artifacts such as the protective
effect of alcohol consumption, which is mitigated from an informed borrowing across the
defects. On the other side, estimates for the AVSD or PAPVR, which corresponds to
0.02% and 0.01% of cases respectively, show how a separate analysis of cases with low
prevalence misses even widely assessed risk factors, as for example diabetes.

It is also worth noticing that, since we are analyzing data pertaining the same class of
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defects, many of the estimated effects are pretty similar across different data partitions.
An immediate extension of the model in 4.3 would consists in modifying the prior
distribution for the coefficient vector to allow a selection procedure for the covariates,
by distinguishing between common effects and group-specific ones. This may lead to
a better comprehension of which might be interesting factor to better monitor during
pregnancy, and contribute to the development of tools for early diagnosis.

Additionally we stress that in this application we employed a model belonging to
the class of infinite mixture models, given that we have specified a Dirichlet process
baseline EPPF. A finite Dirichlet for the baseline EPPF could be a suitable alternative,
given that in the NBDPS the number of defects to monitor is fixed a by the study
requirements. However the chosen framework results to be more general, allowing for
inclusion of new defects with motivation drawn from new versions of study currently
running.
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Additional results for NBDPS data application
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Figure 4.6: CP process with ψ = 40. Posterior mean estimates of log odds-ratios,
with values shown if significant at 95% using credibility intervals. Labels on the x-axis
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effect.
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Figure 4.7: CP process with ψ = 80. Posterior mean estimates of log odds-ratios,
with values shown if significant at 95% using credibility intervals. Labels on the x-axis
list the defects in each cluster. Red color indicates a risk factor with green a protective
effect.
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Figure 4.8: CP process with ψ = 120. Posterior mean estimates of log odds-
ratios, with values shown if significant at 95% using credibility intervals. Labels on
the x-axis list the defects in each cluster. Red color indicates a risk factor with green
a protective effect.
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Figure 4.9: CP process with ψ =∞. Posterior mean estimates of log odds-ratios,
with values shown if significant at 95% using credibility intervals. Labels on the x-axis
list the defects in each cluster. Red color indicates a risk factor with green a protective
effect.





Conclusions

Discussion

There is a very rich literature on priors for clustering, with almost all of the emphasis
on exchangeable approaches and a smaller literature focused on including dependence
on known features (e.g. temporal or spatial structure or covariates). The main contri-
bution of this thesis is to propose what is seemingly a first attempt at including prior
information on an informed guess at the clustering structure. We were particularly mo-
tivated by a concrete application on birth defects study in proposing our method, which
is based on shrinking an initial clustering prior towards the prior guess.

There are many immediate interesting directions for future research. One thread
pertains to developing better theoretical insight and analytical tractability into the new
class of priors. For existing approaches, such as product partition models and Gibbs-
type partitions, there is a substantial literature providing simple forms of prediction rules
and other properties. It is an open question whether such properties can be modified
to our new class. This may yield additional insight into the relative roles of the base
prior, centering value and hyperparameters in controlling the behavior of the prior and
its impact on the posterior.

Another important thread relates to applications of the proposed framework beyond
the setting in which we have an exact guess at the complete clustering structure. In
many cases, we may have an informed guess or initial clustering in a subset of the objects
under study, with the remaining objects (including future ones) completely unknown.
Conceptually the proposed approach can be used directly in such cases, and also when
one has different types of prior information on the clustering structure than simply
which objects are clustered together.
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