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ABSTRACT 
 

Pancreatic Ductal Adenocarcinoma (PDAC) is the deadliest cancer worldwide. Late 

diagnosis and a complex biology make this a difficult-to-treat disease. PDAC 

displays extensive heterogeneity both in the malignant and non-malignant 

compartments. Of the non-malignant cells, cancer-associated fibroblasts (CAFs) 

are the most abundant cell type which critically influences tumour biology and 

response to treatments. The different PDAC cell states are shaped by the integration 

of cell intrinsic and cell extrinsic inputs. It is now well established that the 

transcriptional cell state (basal-like/squamous) displaying suppression of pancreatic 

endodermal gene programs has the most aggressive biological behaviour. Whether 

and how basal-like/squamous cells instruct the CAFs differently from the less 

aggressive classical phenotype remains to be elucidated. In this thesis work, we 

sought to disclose novel determinants of cell lineage specification as well as to 

identify subtype-specific stromal phenotypes. Receptor-Tyrosine Kinases (RTKs) 

are a large family of metazoan-specific plasma-membrane receptors that control 

several cellular processes including cell fate determination. Therefore, we focused 

on the potential role of RTKs in defining or sustaining aggressive molecular 

phenotypes of neoplastic cells. We found that the expression of FGFR4 was 

significantly elevated in the classical PDAC subtype and associated with better 

outcomes. In highly aggressive basal-like/squamous PDAC, reduced FGFR4 

expression aligned with hypermethylation of the gene and lower levels of histone 

marks associated with active transcription in its regulatory regions. Regardless of 

the genetic background, the increased proliferation of FGFR4-depleted PDAC cells 

correlated with hyperactivation of the mTORC1 pathway both in vitro and in vivo. 

Downregulation of FGFR4 in classical cell lines invariably led to the enrichment 

of basal-like/squamous gene programs and associated with either partial or full 

switch of phenotype. Whole-genome sequencing of advanced PDAC tissues and 

functional interrogation of organoid-based xenotransplantation have suggested 

RAS hyperactivation as a determinant of the basal-like/squamous subtype. Here, 

we used pathway mapping analysis and context-dependent pathway response 

signatures to infer MAPK activity and dependency in heterogeneous expression 
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data from models and patients' samples. In situ expression analyses complemented 

this approach, which undisclosed an important role for the MAPK signalling 

pathway in the definition of PDAC CAFs phenotypes. We found that the epithelial 

activity of MAPK did not discriminate basal-like from classical tumours. 

Conversely, hyperactivation of MAPK signalling occurred in myCAFs populating 

basal-like/squamous tumour niches. Short-term inhibition of MAPK was invariably 

associated with a dramatic change of the myCAFs/iCAFs ratio in mouse PDAC 

tissue due to a unique dependency of myCAF on a proficient MAPK signalling. 

Gene expression signatures of MAPKhigh CAFs (sMEK) from mouse tumours 

suggested metabolic rewiring and immunoregulatory function. Finally, we found 

that the sMEK signature correlated with poor prognosis in several cancer 

conditions, including PDAC, and with reduced response to immunecheckpoint 

inhibition in bladder cancers 
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INTRODUCTION 
 

PANCREAS 

The pancreas is a glandular organ located in the abdominal cavity. Anatomically, it 

is divided into 5 parts: the head, the uncinate process, the neck, the body, and the 

tail. The pancreas is made of two components: the exocrine and the endocrine part. 

The exocrine component is made of ductal cells and acinar cells. Acinar cells 

represent the 85% of the total pancreas and their function is to produce digestive 

enzymes, such as trypsin, amylase, and lipase that are secreted from the ductal tree 

into the duodenum. Ductal cells form the epithelium of branched tubes which have 

the role to deliver the enzymes produced by acinar cells to the digestive tract and to 

produce bicarbonate. The endocrine compartment is formed by the islet of 

Langerhans, which comprises around 1-2% of the pancreas. Those glands are 

composed by different cell types that are involved in the secretion of hormones, 

such as insulin (β‐cells), glucagon (α‐cells), pancreatic polypeptide (γ‐ cells) and 

somatostatin (δ‐cells) (Atkinson et al., 2020). 

 

PANCREATIC NEOPLASM 

The two functional components of the pancreas can give rise to different neoplasms. 

From the exocrine compartment originates the pancreatic ductal adenocarcinoma 

(PDAC), which is the prevalent malignant pancreatic tumour, and a minority of 

other rare tumours, such as solid-pseudopapillary neoplasm, acinar cell carcinoma, 

and pancreatoblastoma (Hackeng et al., 2016). Pancreatic neuroendocrine tumours 

(pNETs) arise from the endocrine component and are considered heterogeneous in 

terms of clinical and pathological features. Generally, pNETs have a relatively slow 

clinical course (Ma et al., 2020).   
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PANCREATIC DUCTAL ADENOCARCINOMA 

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive cancers 

with a 5-year survival rate of 11% (Siegel et al., 2022). This dismal prognosis is 

mainly due to the lack of specific symptoms that leads to a late diagnosis, with only 

15-20 % of the patients presenting with a resectable disease (Gobbi et al., 2013). 

For the patients who are not eligible for surgery, standard chemotherapy provides a 

modest survival benefit (Conroy et al., 2011; Von Hoff et al., 2013). Beside familiar 

history, several factors can increase the risk of PDAC development, such as smoke, 

obesity, diabetes, and pancreatitis (Klein, 2021). Pancreatic cancer can arise from 

three kind of precursor lesions:  Pancreatic intraepithelial neoplasia (PanIN), 

Intraductal papillary mucinous neoplasm (IPMN), and Mucinous cystic neoplasm 

(MCN) (Hezel et al., 2006).  PanINs are microscopic lesions initiating in pancreatic 

ducts. They are classified in four stages: PanIN 1 (1A and 1B), PanIN 2, and PanIN 

3. These lesions have a progression from moderate dysplasia to high-grade 

dysplasia till the invasive carcinoma, and during this progression also the number 

of genetic mutations raises (Hruban et al., 2001; Distler et al., 2014). PanIN1 are 

flat (PanIN 1A) or papillary (PanIN 1B) lesions. Cells are characterized by 

columnar shape and uniform basally oriented nuclei. Genetically, those lesions 

show telomere shortening and mutation in the most frequently altered gene in 

PDAC K-RAS (Distler et al., 2014; Zhang et al., 2016). PanIN 2 are mostly papillary 

lesions and manifest high nuclear atypia, loss of nuclear polarity, nuclear crowding, 

nuclear hyperchromasia and nuclear pseudostratification (Zhang et al., 2016; 

Hruban, Maitra & Goggins, 2008). PanIN 2 usually harbours mutations of 

p16INK4a that is inactivated in more than 50% of pancreatic cancers (Hruban, 

Maitra & Goggins, 2008; Waddell et al., 2015). PanIN 3 is also known as 

“carcinoma in situ”. Those non-invasive lesions are characterized by high mitotic 

figures and severe architectural atypia. Accumulation of genetic alterations in both 

oncogenes and tumour suppressor genes (such as TP53, SMAD4, and BRCA2) can 

drive the progression from PanIN 3 to the invasive malignant cancer (Distler et al., 

2014; Zhang et al., 2016; Hruban, Maitra & Goggins, 2008). Unfortunately, PanIN 

lesions are not detectable on imaging such as computerized tomography (CT), 

magnetic resonance imaging (MRI) or endoscopic ultrasound (EUS) (Muniraj et 
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al., 2013). IPMNs have a bigger size compared to PanIN but are less frequent as 

precursor lesion for pancreatic tumour. Those lesions have a papillary architecture 

and are characterize by mucin production. Imaging technologies are now available 

to detect IPMN Zhang et al., 2016; Hruban, Maitra & Goggins, 2008; Muniraj et 

al., 2013). MCN is more common in females, it’s characterized by mucinous 

cytology and no connection with the pancreatic ducts (Distler et al., 2014). 

 

MOLECULAR ALTERATION OF PDAC 

Genetic analysis of pancreatic cancer has indicated that multiple mutations 

accumulate over time. PDAC shows an average of 63 genetic alterations that are 

involved in 12 functional pathways such as DNA repair, cell cycle regulation, axon 

guidance, chromatin remodelling, and proliferation. Among those, mutations of K-

RAS, TP53, SMAD4, and CDKN2A are the most frequent genetic alterations in 

PDAC (Waddell et al., 2015; Jones et al., 2008; Gil et al., 2021). 

• K-RAS 

K-RAS is mutated in the majority of pancreatic tumours (more than 90%) 

(Waddell et al., 2015). The most frequent activating K-RAS mutations 

are point mutations that occur at codon 12 (in 80-90% of pancreatic 

cancers) and less likely at codons 13 and 61 (Waters & Der, 2018). Point 

mutations in codon 12 are detected in ∼30% of early neoplasms, while 

in advanced PDAC the frequency can reach the 100% (Hezel et al., 

2006). K-RAS is a member of the RAS family of GTP-binding proteins 

that are involved in signal transduction across the membrane in response 

to a signal induced by a growth factor (Maitra & Hruban, 2008). This 

mediates several cellular functions including proliferation, 

differentiation, cell shape, migration, endocytosis, cell survival and cell 

cycle progression or senescence (Rajalingam et al., 2007). In a normal 

cell, wild type K-RAS binds to GTP and activates a variety of effectors 

in response to mitogenic stimuli. Following exhaustion of the stimulus, 

GTP is hydrolysed to GDP and K-RAS is shut off. Although it was 
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thought that mutated K-RAS is constitutively active, recent evidence 

showed that K-RAS mutations significatively reduce the hydrolysis rate 

of GTP, hence sustaining the signalling downstream (Kemp et al., 2023; 

Hallin et al., 2020; Lito et al., 2016). K-RAS activates several 

downstream pathways, the most important ones are: Mitogen-Activated 

Protein Kinase (MAPK), Phosphoinositide 3-Kinase (PI3K), and 

Nuclear factor κB (NFκB) (Eser et al., 2014). 

• TP53 

TP53 is a tumour suppressor gene that encodes for a transcription factor 

involved in the control of cell cycle and apoptosis. It becomes activated 

in response to DNA damage and form a tetramer that binds to DNA and 

induces the expression of several genes. It has a short half-life and is 

present in a low concentration in the cell. TP53 half-life is controlled by 

the oncogene MDM2, which ubiquitinates TP53 and therefore 

determines its proteasomal degradation. MDM2 itself is under tight 

transcriptional control by TP53, which establish a feedback loop 

mechanism to regulate its own expression and activity. TP53 is mutated 

in 50-75% of PDAC cases and generally is inactivated by intra-genic 

mutation combined with loss of the second wild-type allele. TP53 

mutations generally occur in the exon that encodes for the DNA binding 

domain and most of them are point mutations, while a minority consists 

in intragenic deletions or insertions. When TP53 is mutated, it cannot 

bind the DNA to promote expression of target genes. Its inactivity has 

an impact on DNA damage and leads to uncontrolled cell growth and 

increase in cell survival, beside promoting genetic instability. 

Inactivation of TP53 is a late event in PDAC progression, in fact it has 

been detected overall in advanced PanIN3 (Magee et al., 2001; Gil et al., 

2021; Guo, Xie & Zheng, 2016).  

• CDKN2A/p16 

p16 is a tumour suppressor gene that encodes for a cyclin-dependent 

kinase (CDK) inhibitor that slows down the cell cycle by prohibiting 
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progression from G1 phase to S phase. It acts by impairing 

Retinoblastoma Protein (RB) phosphorylation by cyclin D and CDK4/6. 

RB blocks elongation factor 2 (E2F) activity, which is a transcriptional 

factor that regulates expression of genes essential for DNA replication. 

Hyper-phosphorylation of Rb, induced by mitogenic stimuli, prevents 

its interaction with E2F; in this way pRB-E2F complex dissociates and 

E2F mediates transcription of genes responsible for DNA synthesis. p16 

keeps pRB in a hypo-phosphorylation state so it can bind and block E2F 

activity (Maitra & Hruban, 2008; Magee et al., 2001). p16 is inactivated 

in 90% of PDAC patients and this event happens in PanIN2 stage of 

PDAC development. Usually, the inactivation occurs by point 

mutations, allelic losses or by promotor silencing through hyper-

methylation of CpG islands (Maitra & Hruban, 2008; Magee et al., 2001; 

Guo, Xie & Zheng, 2016). 

• SMAD4/DPC4 

DPC4 is a tumour suppressor gene that encodes for SMAD4, a 64 kDa 

protein that has inhibitory effects on cell growth and angiogenesis. 

SMAD4 proteins are involved in transducing signals from the TGFβ-

TGFRβ axis (Maitra & Hruban, 2008; Sarkar, Banerjee & Li 2007). 

Normally, TGFβ has a tumour suppressor activity, leading to growth 

arrest. Nevertheless, in late tumour development, when cancer cells 

become intolerant to TGFβ-mediated growth inhibition, it exerts a pro-

tumorigenic effect by promoting angiogenesis, invasion and 

metastatization (Connolly, Freimuth & Akhurst, 2012). DPC4 is deleted 

in almost 55% of PDAC cases, and the inactivation mainly occurs by 

homozygous deletion or by intragenic mutations and loss of 

heterozygosity. The loss is a late event in tumorigenesis, in fact it occurs 

normally during late PanIN3 lesions. Generally, loss of SMAD4 

expression is higher in poorly differentiated PDAC accompanied by 

poor prognosis and widespread metastasis (Maitra & Hruban, 2008; 

Sarkar, Banerjee & Li 2007). 
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MOLECULAR SUBTYPES OF PDAC 

Beside histological classification, PDAC has been classified based on 

transcriptomic profiles. In the last years, several classifications have emerged. The 

first classification was proposed in 2011 by Collisson, who described three PDAC 

subtypes: classical, quasi-mesenchymal, and exocrine-like (Collisson et al., 2011). 

In 2015, Moffitt classified PDAC as classical or basal-like based on virtual 

microdissected data of pancreatic gene expression microarrays (Moffitt et al., 

2015). Bailey and colleagues in 2016 described four PDAC subtypes: pancreatic 

progenitor, squamous, immunogenic, and aberrantly differentiated endocrine 

exocrine (ADEX) (Bailey et al., 2016). An integrated multi-platform analysis 

performed by The Cancer Genome Atlas Research Network (TCGA) in 2017 

provides a better insight into molecular classification of PDAC (The Cancer 

Genome Atlas Research Network, 2017). They applied clustering techniques to 

reproduce the classification of Collisson (Collisson et al., 2011), Moffitt (Moffitt et 

al., 2015), and Bailey (Bailey et al., 2016) on a cohort of 150 PDAC specimens 

(The Genome Atlas Research Network, 2017). They reported a strong overlap 

between the classical subtypes proposed by Collisson and Moffitt (Collisson et al., 

2011; Moffitt et al., 2015) with the pancreatic progenitor subtype proposed by 

Bailey (Bailey et al., 2016). In addition, the basal-like subtype defined by Moffitt 

(Moffitt et al., 2015) significantly overlaps with the squamous subtype from Bailey 

(Bailey et al., 2016) and partially with the quasi-mesenchymal subtype from 

Collisson (Collisson et al., 2011) (The Cancer Genome Atlas Research Network, 

2017). TCGA also reported that tumour purity can affect the molecular 

classification of PDAC. In particular, samples classified as immunogenic from 

Bailey (Bailey et al., 2016) and a portion of samples classified as quasi-

mesenchymal from Collisson (Collisson et al., 2011) showed low neoplastic purity 

and high leukocyte infiltration (Genome Atlas Research Network, 2017). 

Furthermore, the ADEX subtype from Bailey (Bailey et al., 2016) and the exocrine-

like from Collisson (Collisson et al., 2011) significant overlap and show low tumour 

purity, suggesting a possible contamination from non-neoplastic cells (The Genome 

Atlas Research Network, 2017) (Figure 1.1). Other studies support the evidence 

that ADEX and exocrine-like subtypes from Bailey and Collisson respectively 
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(Collisson et al., 2011; Bailey et al., 2016) are potentially a consequence of 

contamination with acinar cells from normal pancreas (Moffitt et al., 2015; Puleo 

et al., 2018; Lautizi et al., 2022). Therefore, samples with high tumour purity (i.e. 

non contaminated from non-neoplastic cells) can be consistently classified in two 

consensus clusters: basal-like/squamous and classical/progenitor (The Cancer 

Genome Atlas Research Network, 2017). 

 

Figure 1.1 Impact of purity on molecular analysis (From The Cancer Genome 

Atlas Research Network, 2017) 

 

More recently, Chan-Seng-Yue proposed a classification derived from RNA-seq 

data of microdissected epithelium from primary resected and advanced PDAC 

patients that highlights the intra-tumoural heterogeneity of PDAC. They proposed 

five classes: classical A, classical B, hybrid, basal-like A, and basal-like B (Chan-

Seng-Yue et al., 2020). The classical A-B and the basal-like A-B subtypes overlap 

with the previously defined classical/progenitor and basal-like/squamous clusters 

respectively (Chan-Seng-Yue et al., 2020; The Cancer Genome Atlas Research 

Network, 2017) (Figure 1.2). The hybrid subtype is described as an intermediate 

phenotype between the classical/progenitor and basal-like/squamous (Chan-Seng-

Yue et al., 2020; The Cancer Genome Atlas Research Network, 2017) and it 
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represent samples with uncertain and discordant classification by Collisson, Moffitt 

and Bailey (Chan-Seng-Yue et al., 2020; Collisson et al., 2011; Moffitt et al., 2015; 

Bailey et al., 2016). The existence of a gene expression continuum driven by a 

mixture of intra-tumoral subpopulations was further confirmed by single-cell 

analysis (Chan-Seng-Yue et al., 2020). The existence of a hybrid subtype with a 

concomitant expression of classical/progenitor and basal-like/squamous genes has 

also been reported by Thopam in 2021 (Thopam et al., 2021). They collected 

sequencing data from 574 PDAC and, consistently with Chan-Seng-Yue data 

(Chan-Seng-Yue et al., 2020), they observed the hybrid phenotype in those samples 

with subtype-discordant calls across different classificators (Thopam et al., 2021; 

Collisson et al., 2011; Moffitt et al., 2015; Bailey et al., 2016). In 2021, Raghavan 

et al. provided a molecular classification at single cell resolution, maximizing the 

contribution of neoplastic cells to the classification (Raghavan et al., 2021). They 

derived three signatures: single cell classical (scClassical) which represent the 

classical/progenitor subtype, single cell basal (scBasal) representative of the basal-

like/squamous subtype, and intermediate coexpressor (IC) (Raghavan et al., 2021). 

The IC identify cells with expression of both scBasal and scClassical genes, with 

intermediate features of both programs, and poorly described by previously 

reported classifications (Raghavan et al., 2021; Chan-Seng-Yue et al., 2020; 

Collisson et al., 2011; Moffitt et al., 2015; Bailey et al., 2016). This study highlights 

even more the inter- and intra-tumoural heterogeneity of PDAC and support the 

idea that the molecular subtype is a plastic cell state rather than a mutually exclusive 

classification (Raghavan et al., 2021). An alternative to the binary classification 

classical/progenitor - basal-like/squamous was proposed by Nicolle et colleagues 

(Nicolle et al., 2020). Using Patient-derived xenografts (PDX) they derived a 

PDAC molecular gradient (PAMG) which unify all PDAC pre-existing 

classifications. The molecular subtype is defined as a continuum, which includes 

tumours with mixed features, with classical/progenitor and basal-like/squamous 

identities at the opposite ends of the spectra (Nicolle et al., 2020). 
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Figure 1.2 Comparison of different transcriptional classifications of PDAC 

(From Zhou et al., 2021) 

 

Intrinsic determinants of PDAC subtypes 

The molecular phenotype is a cell state driven by both intrinsic and extrinsic factors. 

Transcription factors and epigenetic determine the intrinsic cell identity. The 

classical/progenitor subtype is enriched for gene programs driven by endodermal 

transcription factors (e.g., GATA6, GATA4, HNF1A, HNF4A, and PDX1) (de 

Andrés et al., 2023; Kloesch et al., 2022; Bailey et al., 2016). It shows a more 

favourable prognosis and is enriched for inactivation of SMAD4 (Chan-Seng-Yue 

et al., 2020; Collisson et al., 2011; Moffitt et al., 2015; Bailey et al., 2016). 

Conversely, the more aggressive basal-like/squamous subtype is characterized by 

the loss of endodermal identity and the acquisition of squamous programs, such as 

those driven by ΔNP63 (Somerville et al., 2018; Bailey et al., 2016). Other 

transcription factors that drive this subtype are c-MYC (Bailey et al., 2016) and 

GLI2 (Adams et al., 2019). In addition, the basal-like/squamous subtype is driven 

by the super enhancer MET (Lomberk et al., 2018) and is enriched for mutations in 

chromatin modifying enzymes such as KDM6A, MLL2, and MLL3 (Bailey et al., 

2016). The basal-like/squamous subtype correlates with a worse prognosis, 

chemoresistance, and immune exclusion (Moffitt et al., 2015; Bailey et al., 2016; 

Chan-Seng-Yue et al., 2020).  
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Extrinsic determinants of PDAC subtypes 

Exogen stimuli can be involved in shape PDAC molecular phenotypes as well. In 

the last years, several studies highlight the influence of the tumour 

microenvironment (TME) on the molecular subtype of neoplastic cells. 

Miyabayashi and colleagues set up an in vivo xenograft model that could 

recapitulate the basal-like/squamous and classical/progenitor subtypes of PDAC. 

They injected Patient-derived organoids either directly in the pancreatic interstitium 

(“orthotopically grafted organoid” (OGO)) or into the main pancreatic ducts 

(“intraductally grafted organoid” (IGO)) of immunodeficient mice (Miyabayashi et 

al., 2020). They observed differences in the molecular subtypes between OGO and 

IGO, with OGO being more basal-like/squamous. Only OGO are exposed to the 

cues from TME which drive the aggressive basal-like/squamous subtype of PDAC. 

This effect is explained by the autocrine and paracrine effect of transforming growth 

factor β1 (TGF-β1) on stromal and cancer cells (Miyabayashi et al., 2020). 

Raghavan and colleagues, using Patient-derived organoids and matched biopsies, 

showed that the culture medium can affect the transcriptional state of cancer cells, 

introducing a culture-specific bias driven by altered TME signals (Raghavan et al., 

2021). The in vitro models retain genetic fidelity, but the lack of cancer niche 

induces skewed phenotypes with altered pharmacologic sensitivity. In particular, in 

agreement with Miyabayashi et al. (Miyabayashi et al., 2020), they identified a key 

role of TGF-β1 in inducing the basal-like/squamous subtype (Raghavan et al., 

2021). Shinkawa and colleagues took advantage of the organoid technology as well 

to study the niche dependency of cancer cells (Shinkawa et al., 2022). They 

identified cancer associated fibroblasts (CAFs) as the source of R-spondin 3 which 

is needed for the maintenance of a well differentiated phenotype (defined as 

classical/progenitor) of PDAC. Well differentiated tumours (i.e. 

classical/progenitor) are strongly niche-dependent and the removal of CAFs can 

drive the progression to a poor differentiated (defined as basal-like/squamous) 

disease. Of note, poor differentiated tumours (i.e. basal-like/squamous) are niche 

independent and CAFs are not able to drive a conversion to a well differentiated 

(i.e. classical/progenitor) phenotype (Shinkawa et al., 2022). Beside CAFs, other 

stromal populations can affect the molecular subtype of cancer cells. CSFR1+ 
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macrophages and CXCR2 neutrophils have been shown to promote the basal-

like/squamous subtype of PDAC (Candido et al., 2018; Steele et al., 2016). 

Similarly, Tu and colleagues defined TNF-α+ macrophages as source of TNFα 

which force classical/progenitor PDAC cells to an aggressive basal-like/squamous 

phenotype (Tu et al., 2021). TNF-α+ macrophages are recruited by cancer cells 

through secretion of CCL2. They integrated extrinsic and intrinsic PDAC subtypes 

determinants demonstrating that the basal-like/squamous neoplastic state is 

sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 

expression and, as consequence, the recruitment of TNF-α+ macrophages (Tu et al., 

2021). 

Stromal molecular classification of PDAC 

Given the low neoplastic content of PDAC and the functional role of TME, some 

molecular classifications take into account also the stromal features for subtype 

definition. Moffitt et al., proposed two stromal subtypes named “normal” and 

“activated”, with the latter associated with activate inflammatory stromal response 

and tumour promotion (Moffitt et al., 2015). In 2018, Puleo and colleagues 

classified PDAC in five subtypes. Of those, three subgroups are representative of 

the previously describes classical/progenitor (pure classical/immune classical) and 

basal-like/squamous (pure basal-like) lineages (Figure 1.2). On the other hand, two 

new subtypes named “stroma activated” and “desmoplastic” reflect different 

features of the microenvironment. In particular, the stroma activated subtypes is 

enriched in activated stroma components with high levels of α-SMA, SPARC, and 

FAP, while the desmoplastic subtype is associated with immune and inflammatory 

content with high expression of vascular and structural components (Puleo et al., 

2018). Lastly, in 2019 another classification was proposed by Maurer et al. in which 

they highlighted the existence of two stromal subtypes: ECM-rich and immune-rich 

(Maurer et al., 2019). The ECM-rich subtype is the most aggressive one and is 

enriched for genes involved in extra cellular matrix pathways. The immune-rich 

subtype is enriched in immune related pathways and correlate with a better 

prognosis (Maurer et al., 2019). Those stromal signatures are often combined with 

the conventional PDAC classification to add prognostic information from the 

microenvironment. 
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THE TUMOUR MICROENVIRONMENT 

The tumour microenvironment (TME) is composed by non-neoplastic cells (such 

as fibroblasts, endothelial cells, and immune cells) embedded in an extracellular 

matrix (ECM). The ECM is composed by structural proteins (e.g. collagen, 

fibronectin, proteoglycans, and hyaluronic acid) that retains several enzymes, and 

molecules, like cytokines and growth factors. In pancreatic cancer, stroma can 

comprise up to 80-90% of the tumour bulk, and fibroblasts are the most abundant 

stromal population, often outnumbering neoplastic cells (Kalluri & Zeisberg, 2006; 

Feig et al 2012).  

CAFs: definition and origin 

Fibroblasts are elongated cells with a spindle-like shape usually identified by the 

expression of specific markers such as, fibroblast-specific protein 1 (FSP-1), 

platelet-derived growth factor receptor β (PDGFRβ), and fibroblast activation 

protein (FAP). Fibroblasts that are found in the tumoral bulk are named cancer 

associated fibroblasts (CAFs) (Öhlund, Elyada & Tuveson, 2014). CAFs can 

originate from different cell types upon recruitment and reprogramming by cancer 

stimuli, such as secreted factors, reactive oxygen species (ROS), or hypoxia. 

Although historically it was thought that pancreatic stellate cells (PSCs) are the 

main source of CAFs, recent evidence show that PSCs (Fabp4+) give rise only to a 

small subset of them (Helms et al., 2022) (Figure 1.3). In healthy pancreas, PSCs 

are quiescent, store Vitamin A in lipid droplets, and are involved in maintaining 

tissue homeostasis. Upon exposure to tissue damage or cancer-derived stimuli, they 

acquire myofibroblastic features and become active (Riopel et al., 2013). The 

majority of CAFs arise from resident fibroblasts (Han et al., 2023; Garcia et al., 

2020). They are found in normal pancreas, however, unlike PSCs, they do not store 

lipid droplets (Garcia et al., 2020). It has been reported that resident fibroblasts in 

normal pancreas originate from splanchnic mesenchyme (i.e the layer of mesoderm 

adjacent to the foregut endoderm during fetal development), they expand during 

cancer development and give rise to around half of CAFs (Han et al., 2023). Two 

lineages of resident fibroblasts have been identified: Gli+ and Hoxp6+. Gli+ 

fibroblasts are the origin of the majority of CAFs, they expand during tumorigenesis 



17 
 

and acquire expression of α-SMA. Hoxp6+ CAFs are found in the tumour bulk, 

although in a very low number as Hoxp6+ fibroblasts do not expand during cancer 

development (Garcia et al., 2020) (Figure 1.3). Other minor sources of CAFs are 

bone marrow and mesothelial cells (WT1+) (Han et al., 2023; Huang et al., 2022) 

(Figure 1.3).  

CAFs: functions 

Upon reprogramming and activation, CAFs undergo morphological changes, and 

start to secrete ECM molecules and growth factors. This intense reaction leads to a 

dense matrix deposition called desmoplasia (Öhlund, Elyada & Tuveson, 2014). 

Beside creating an inflammatory environment, the desmoplastic reaction increases 

the interstitial fluid pressure, leading to vessel compression, reduced tissue 

perfusion, and hypoxia. It has been hypothesized that the desmoplastic reaction 

could reduce chemotherapy delivery in the tumour site by creating a physical 

barrier, therefore exerting a protective function for cancer cells. In the last decade, 

several approaches aimed to reduce this fibrotic reaction by targeting ECM 

components or directly CAFs in order to obtain an improved disease outcome. In 

2012, Provenzano and colleagues targeted hyaluronic acid (HA), one of the main 

ECM components, and combined its depletion with gemcitabine administration 

(Provenzano et al., 2012). Using autochthonous PDAC models, they demonstrated 

that enzymatic targeting of stromal HA restores tumour interstitial fluid pressure 

and functional perfusion. Moreover, the combination of HA depletion with 

chemotherapy resulted in increased overall survival of mice (Provenzano et al., 

2012). In line with those findings, Jacobetz et al. showed that HA enzymatic 

depletion leads to the re-expansion of PDAC blood vessels and increased the 

delivery of two chemotherapeutic agents in a genetically engineered mouse model 

of PDAC (Jacobetz et al., 2013). Other approaches aimed to deplete CAFs by 

targeting CAFs-specific pathways like the Sonic Hedgehog pathway (SHH). In 

literature, different outcomes have been reported from this targeting strategy. In 

2009, Olive and colleagues demonstrated that pharmacologic ablation of CAFs 

increase tumour perfusion and reduce stromal content (Olive et al., 2009). This 

effect is driven by the inhibition of Smoothened (Smo), a protein that mediates the 

downstream signalling of SHH. The treatment with Smo inhibitor alone did not 
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improve survival, while its combination with the chemotherapeutic agent 

gemcitabine lead to a better outcome for treated mice (Olive et al., 2009). This 

promising strategy has been translated into clinical trial, although it resulted in a 

failed Phase II as no improvement in response rate or overall survival was detected 

in patients with metastatic PDAC (Catenacci et al., 2015). In 2014, Rhim and 

colleagues sought to interrogate the role of the tumour stroma by using both genetic 

deletion and pharmacologic inhibition of SHH pathway (Rhim et al., 2014).  They 

found that genetic depletion of SHH accelerates PDAC progression leading to the 

development of undifferentiated tumours with low stromal content. This effect 

might be a consequence of increased perfusion, as it provides increased delivery of 

nutrients at tumour site (Rhim et al., 2014). The pharmacologic approach used by 

Rhim et al. is similar to the one proposed by Olive et al., with the only difference 

in duration (Olive et al., 2009; Rhim et al., 2014). Unlike short-term, the long-term 

Smoothened inhibition tested by Rhim and colleagues, yields poorly differentiated 

tumours with increased proliferation and vascularity (Rhim et al., 2014). Those data 

show that, despite short-term Smo inhibition provides a beneficial effect due to 

increased drug delivery, in long-term treatment this advantage is overcome by the 

harmful effects of stroma ablation. This provides evidence that stroma act to restrain 

rather than promote tumour (Rhim et al., 2014). Similar results have been reported 

by Lee and colleagues in the same year (Lee et al., 2014). Genetic depletion of SHH 

accelerates PDAC progression and decreased the overall survival in genetically 

engineered mouse (GEM) model of pancreatic cancer (Lee et al., 2014). 

Pharmacologic inhibition of SHH, through SHH antagonist, affected the balance 

between epithelial and stromal elements leading to depletion of desmoplasia, 

prevalence of the epithelium compartment and a worse disease outcome (Lee et al., 

2014). Conversely, the pharmacological activation of the pathway yields stromal 

hyperplasia and reduced epithelial growth. This study reinforces the observation of 

Rhim and colleagues providing additional evidence that CAFs might have a 

protective role in PDAC (Rhim et al., 2014; Lee et al., 2014). A different approach 

to deplete CAFs was proposed by Ozdemir et al. in 2014 by using transgenic mice 

with ability to delete α-SMA+ fibroblasts in pancreatic cancer (Ozdemir et al., 

2014). The depletion of α-SMA positive cells enhanced the tumour invasion and 
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reduced the survival in animals of the experimental cohort (Ozdemir et al., 2014). 

Of note, this targeting approach did not increase tumour perfusion and the 

additional administration of gemcitabine did not improve the survival of mice 

(Ozdemir et al., 2014). Those different stromal targeting strategies have highlighted 

the presence of both tumour-promoting and tumour-restraining components in the 

PDAC stroma, however, in recent years, the concept of CAFs heterogeneity have 

been introduced which shed light on the functional role of CAFs in PDAC.  

CAFs: heterogeneity 

Two main subtypes of CAFs have been defined: inflammatory CAFs (iCAFs) and 

myofibroblasts (myCAFs) (Ohlund et al., 2017). iCAFs arise from resident 

fibroblasts (Han et al., 2023; Garcia et al., 2020; Dominguez et al., 2020) and are 

found distant from cancer cells (Ohlund et al., 2017) (Figure 1.3). They present low 

α-SMA level and are characterized by the secretion of inflammatory molecules, 

such as IL6, CXCL1, and LIF (Ohlund et al., 2017). The iCAF phenotype is induced 

by cancer through the secretion of IL1 which activate the JAK-STAT signalling 

pathway (Biffi et al., 2019). They are defined as tumour promoting population and 

are potentially involved in chemoresistance and immune suppression (Biffi et al., 

2019). Additional evidence of their pro-tumorigenic role derived from the existence 

of subtypes of inflammatory CAFs with specific functions. Djurec and colleagues 

identified PDGFRα+ CAFs as a subcluster of CAFs with inflammatory phenotype 

that exert a pro-tumorigenic function through secretion of the apolipoprotein Saa3 

(Djurec et al., 2018). Zhang et al. identified a subset of iCAFs that mediate platinum 

resistance in PDAC patients through the secretion of IL8 (Zhang et al., 2022). In 

addition, it has been reported that iCAFs sustain tumour progression through the 

secretion of hepatocyte growth factor (HGF) (Bhattacharjee et al., 2021). On the 

other hand, myCAFs can originate both from resident fibroblasts and PSCs (Han et 

al., 2023; Garcia et al., 2020; Dominguez et al., 2020; Helms et al.,2022). They 

surround the neoplastic cells, present high expression of α-SMA and are mainly 

involved in ECM deposition and remodelling (Ohlund et al., 2017) (Figure 1.3). 

The myCAF phenotype is TGF-β1 driven: cancer cells secrete TGF-β1 which 

antagonize the iCAF phenotype by downregulating the receptor of IL1. The short-

range activity of TGFβ explains the localization of myCAFs in proximity of 
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neoplastic cells (Biffi et al., 2019). myCAFs are defined as a tumour-restraining 

population (Rhim et al., 2014; Ozdemir et al., 2014; Biffi et al., 2019) Accordingly, 

it has been recently reported that myCAFs exert an antitumoral effect by secreting 

Collagen I which limits cancer spreading (Bhattacharjee et al., 2021). Conversely, 

they promote tumour progression through the secretion of hyaluronan 

(Bhattacharjee et al., 2021). Additional evidence of tumour promoting functions of 

myCAFs have provided by the identification of LRRC15+ myofibroblasts 

(Dominguez et al. 2020). LRRC15+ myofibroblasts are defined as an aggressive 

TGF-β1-driven myCAFs subpopulation and are involved in poor response to 

immunotherapy in several cancer types (Dominguez et al., 2020). LRRC15+ 

phenotype is TGFBR2 dependent, and LRRC15+ CAFs exert their immune 

modulatory function by directly suppressing CD8+ T cells (Krishnamurty et al., 

2022). Those data highlight that myCAFs have a greater functional heterogeneity 

compared to iCAFs. Of note, myCAFs and iCAFs are not two different lineages, 

they are shaped by different stimuli from the cancer niche and their phenotypes are 

plastic (Ohlund et al., 2017; Biffi et al., 2019). Those new insight into CAFs 

heterogeneity allow a better explanation to the contradictory results obtained with 

SHH inhibition (Olive et al., 2009; Lee et al., 2014; Rhim et al., 2014). In 2021, 

Steele and colleagues demonstrated that the SHH pathway is more active in 

myCAFs than iCAFs (Steele et al., 2021). Pharmacological SHH inhibition with 

Smoothened antagonist reduced the amount of myCAF while the number of iCAFs 

increased. iCAFs accumulation correlates with the reduction of cytotoxic T cells 

with concomitant expansion of regulatory T cells (Treg) (Steele et al., 2021). 

Therefore, the detrimental effect observed with SHH inhibition might be a 

consequence of the specific depletion of myCAFs, with the persistence of tumour 

promoting iCAFs (Olive et al., 2009; Lee et al., 2014; Rhim et al., 2014; Steele et 

al., 2021). In the last years, two additional subtypes that co-exist with myCAFs and 

iCAFs have been described: antigen presenting CAFs (apCAFs) (Elyada et al., 

2019) and metabolic CAFs (meCAFs) (Wang et al., 2021). apCAFs originate from 

mesothelial cells (Huang et al., 2022; Dominguez et al., 2020) (Figure 1.3). During 

tumour progression, they downregulate mesothelial markers and acquire 

fibroblastic features under paracrine stimulation from cancer cells (Huang et al., 
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2022). In addition, they express class II MHC and CD74 without co-stimulatory 

molecules (Elyada et al., 2019). apCAFs are involved in immune modulation by 

direct ligation and induction of naive CD4+ T cells into Tregs (Huang et al., 2022). 

meCAFs are a subset of CAFs characterized by high metabolic activity, in particular 

glycolysis. They are found in immune hot, low desmoplastic regions and correlates 

with poor prognosis but better immunotherapy response (Wang et al., 2021). 

CAFs: other classifications 

Beside iCAFs-myCAFs dichotomy, other classifications with functional 

significance have been proposed for CAFs. Fibroblasts can be classified in two 

subtypes accordingly to their expression of α-SMA and FAP (Figure 1.3). FAP 

high (FAPhi) CAFs have been reported to be involved in ECM remodelling and 

exert tumour promoting functions (Avery et al., 2017; McAndrews et al, 2022). α-

SMA high (α-SMAhi) CAFs mediate contraction and are defined as a tumour-

restraining population (Avery et al. 2017; McAndrews et al, 2022; Chen et al., 

2021). In particular, it has been reported that α-SMAhi CAFs ablation decrease 

survival in vivo (McAndrews et al, 2022) and that depletion of type I collagen 

(Col1) in α-SMAhi fibroblasts accelerates progression of pancreatic cancer through 

the recruitment of myeloid-derived suppressor cells (Chen et al., 2021). In addition, 

IL6 produced specifically by α-SMAhi fibroblasts mediates chemoresistance in 

murine models of PDAC (McAndrews et al, 2022).  

In 2019, Mizutani and colleagues defined cancer-restraining CAFs (rCAFs) and 

cancer-promoting CAFs (pCAFs) based on their expression of Meflin (Mizutani et 

al., 2019). They reported that infiltration of Meflin+ CAFs (rCAFs) correlated with 

favourable patient outcome, while the presence of pCAFs or genetic ablation of 

rCAFs led to significant tumour progression with poorly differentiated histology in 

a PDAC mouse model (Mizutani et al., 2019). Functionally, Meflin suppress the 

activity of the lysyl oxidase (LOX) thus impairing collagen cross-linking (Mizutani 

et al., 2019; Iida et al., 2021). Together with MRXA8 (a specific marker for rCAFs), 

Meflin is downregulated upon exposure to specific stimuli, such as hypoxia and 

TGF-β1 (Mizutani et al., 2019; Ichihara et al., 2022). In agreement with its tumour 
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restraining function, it has been reported that induction of Meflin expression in 

pCAFs increase chemosensitivity of mouse PDAC (Iida et al., 2021).  

Another classification distinguishes two non-convertible CAFs lineages based on 

CD105 expression: CD105 negative fibroblasts suppress tumour growth by 

supporting anti-tumour immunity, while CD105 positive are tumour permissive 

(Hutton et al., 2021) (Figure 1.3).  

Beside the increasing interest in unveiling CAFs heterogeneity, it has been reported 

differences in the quality of stroma within tumour bulk. The intra-tumour 

heterogeneity highlighted the co-existence within the same tumour of reactive and 

deserted areas (Grünwald et al, 2021). In the reactive sub-TME, CAFs are activated, 

and the microenvironment is inflammatory and pro-tumorigenic. While the deserted 

regions are chemoprotective, ECM-rich, with low cellular content, and fibroblasts 

are thin and dedifferentiated (Grünwald et al, 2021). It has been reported that the 

co-existence of different sub-TMEs is more prognostically relevant that the type of 

sub-TME (Grünwald et al, 2021). 

 

Figure 1.3 Cancer-associated fibroblast origin and heterogeneity (From 

Halbrook et al., 2023) 
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AIM 

 

Two consensus molecular subtypes of PDAC have been identified: the 

classical/progenitor and the basal-like/squamous, the latter being associated with a 

worse prognosis. It is also clear that the integration between intrinsic and extrinsic 

inputs shapes the transcription cell states of cancer cells. Therefore, several attempts 

have been made to identify molecular determinants of cell lineage which could be 

used as potential targets to modulate the aggressiveness of neoplastic cells. 

Historically, the study of intrinsic determinants of subtypes has focused on 

dissecting the role of transcriptional factors (TFs) which regulate epithelial cell 

identity. Receptor-Tyrosine Kinases (RTKs) are a large family of metazoan-

specific plasma-membrane receptors that control several cellular processes 

including cell fate determination. While TFs are notoriously difficult targets for 

small molecules, a growing number of therapeutic compounds is approved to target 

RTK. Therefore, we sought here to investigate the potential role of RTKs in 

defining or sustaining aggressive molecular phenotypes of neoplastic cells.  

However, we did not set to limit our investigation to the malignant compartment 

considering the importance of the tumour microenvironment in this dismal disease. 

 A dense desmoplastic reaction with abundant cancer-associated fibroblasts 

(CAFs) is a hallmark of PDAC tissues and CAFs have been proven to regulate the 

PDAC micro- and macrosystem. Heterogenous phenotypes of CAFs have been 

described and for a subset of them mechanisms of cancer-induced rewiring 

provided. Whether the reported fibroblasts phenotypes are differently affected by 

different neoplastic cell states is largely unknown. Therefore, we sought to 

investigate whether specific differences in CAFs can be found across cancer 

subtypes and if those differences have a functional impact on the epithelial 

phenotype. 
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ABSTRACT 

Transcriptomic analyses of pancreatic ductal adenocarcinoma (PDAC) have 

identified two major epithelial subtypes with distinct biology and clinical 

behaviours. Here, we aimed to clarify the role of FGFR1 and FGFR4 in the 

definition of aggressive PDAC phenotypes. We found that the expression of 

FGFR4 is exclusively detected in epithelial cells, significantly elevated in the 

classical PDAC subtype, and associates with better outcomes. In highly aggressive 

basal-like/squamous PDAC, reduced FGFR4 expression aligns with 

hypermethylation of the gene and lower levels of histone marks associated with 

active transcription in its regulatory regions. Conversely, FGFR1 has more 

promiscuous expression in both normal and malignant pancreatic tissues and is 

strongly associated with the EMT phenotype but not with the basal-like cell lineage. 

Regardless of the genetic background, the increased proliferation of FGFR4-

depleted PDAC cells correlates with hyperactivation of the mTORC1 pathway both 

in vitro and in vivo. Downregulation of FGFR4 in classical cell lines invariably 

leads to the enrichment of basal-like/squamous gene programs and is associated 

with either partial or full switch of phenotype. In sum, we show that endogenous 

levels of FGFR4 limit the malignant phenotype of PDAC cells. Finally, we propose 

FGFR4 as a valuable marker for the stratification of PDAC patients. 
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INTRODUCTION 

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy arising from the 

exocrine pancreatic epithelium and is the deadliest cancer worldwide (Michl et al., 

2021; Rahib et al., 2021). The abysmal prognosis of PDAC is contributed by late 

diagnosis, its complex biology, and lack of effective treatments. The molecular 

taxonomy of PDAC has been redefined by multiple studies that have used 

transcriptomic profiling to analyse bulk tissues, cell lines, and microdissected 

epithelia (Bailey et al., 2016; The Cancer Genome Atlas Research Network, 2017; 

Chan-Seng-Yue et al., 2020; Collisson et al., 2019; Moffitt et al., 2015). All 

classifications have highlighted the existence of two major subtypes based on 

characteristics of the neoplastic epithelium, namely the classical/progenitor and the 

basal-like/squamous subtypes. The classical/progenitor PDAC subtype is often 

regarded as the default pancreatic cancer subtype (Chan-Seng-Yue et al., 2020; 

Hayashi et al., 2020) as it is characterised by the expression of transcription factors 

involved in specification and maintenance of pancreatic cell fate (Bailey et al., 

2016; Kloesch et al., 2021; Martinelli et al., 2017). Conversely, the basal-

like/squamous subtype is associated with loss of pancreatic endodermal identity, 

and expression of the master regulator of basal-like cells program ΔNp63 (Bailey 

et al., 2016; Moffitt et al., 2015; Somerville et al., 2020). This subtype shows a 

significantly worse survival outcome and is enriched for inactivation of TP53 and 

chromatin regulators, including ARID1A and KDM6A (Bailey et al., 2026; 

Andricovich et al., 2018). Preclinical data have showed that the two subtypes differ 

also in the response to chemotherapy (Collisson et al., 2019; Martinelli et al., 2017; 

Porter et al., 2019), to agents targeting the cell cycle (Dreyer et al., 2021), and 

further display unique metabolic vulnerabilities (Brunton et al., 2020). While there 

is some clinical evidence for the predictive value of transcriptomic classifications 

(Martinelli et al., 2017; Aung et al., 2018; Nicolle et al., 2020), clinical 

investigations are ongoing to conclusively demonstrate the relevance of subtype-

specific treatments. Previous works have elegantly demonstrated the causative 

involvement of pancreatic and endodermal transcription factors (e.g. GATA6, 

HNF1A, HNF4A) into the maintenance of subtype-specific gene programs 

(Martinelli et al., 2017; Brunton et al., 2020; Kloesch et al., 2021; Kalisz et al., 
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2020). In particular, the emergence of the basal-like/squamous program is almost 

invariably associated with the loss of expression of transcription factors regulating 

pancreatic cell fates. Cell fate maintenance is also ensured by the signalling of 

growth factors through receptor tyrosine kinases (RTKs) (Lemmon et al., 2010; 

Neben et al., 2019). Following activation, RTKs transmit intracellular signals of 

varying qualities and quantities that alter the transcriptional landscape of a cell 

(Lemmon et al., 2010). The fibroblast growth factors (FGFs) to Fibroblast growth 

factor receptors (FGFRs) axis is reportedly involved in the maturation of pancreatic 

cells from the endoderm (Bhushan et al., 2001; Elghazi et al., 2002; Goncalves et 

al., 2021; Hebrok et al., 1998). Here, we explored the involvement of FGFRs in the 

definition of molecular subtypes of PDAC. We report the downregulation of 

FGFR4 in PDAC showing basal-like/squamous features. Integrating the analysis of 

transcriptomic, methylation, and chromatin accessibility datasets from patient-

derived tissue specimens and cultures, we shed light on the mechanisms leading to 

downregulation of FGFR4 in basal-like/squamous tumours. Conversely, we found 

that elevated expression of FGFR1 is a functional marker of Epithelial to 

Mesenchymal Transition (EMT) rather than of the basal-like/squamous subtype. To 

elucidate whether FGFR4 is cause or consequence of more aggressive PDAC 

subtypes, we targeted the receptor using RNA interference approaches in both 

monolayer cell cultures and patient-derived organoids to show that its loss 

accelerates cell proliferation and in vivo growth regardless of the genetic and 

transcriptomic background of the models. Mechanistically, loss of FGFR4 was 

associated with increased fluxes through the mTORC1 pathway and accordingly 

increased protein synthesis. Downregulation of FGFR4 in classical/progenitor cell 

lines invariably led to the enrichment of basal-like/squamous gene programs which 

was associated with either partial of full switch of phenotype. Overall, our data 

provide direct evidence that the loss of FGFR4 promotes aggressive phenotypes of 

PDAC. 
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RESULTS 

FGFR4 is associated with the classical phenotype of PDAC 

Receptor-Tyrosine Kinases (RTKs) initiated signaling is critical to cell fate 

determination (Lemmon et al., 2010; Neben et al. 2019). To investigate the 

functional relevance of RTKs in determining PDAC cell lineages and promoting its 

malignant phenotype, we started by exploring transcriptomic data of human PDAC 

specimens from the TCGA consortium (Cancer Genome Atlas Research Network, 

2017) and found the selective enrichment of FGFR4 in the classical subtype (Fig. 

1A, B). We reproduced this finding in transcriptomic data from two additional 

cohorts (Bailey et al., 2016; Chan-Seng-Yue et al., 2020) (Fig. 1B). While relatively 

enriched in basal-like PDAC (Fig. 1A), the expression of FGFR1 did not 

significantly discriminate basal-like from classical tumours in the 3 PDAC cohorts 

(Bailey et al., 2016; Cancer Genome Atlas Research Network, 2017; Chan-Seng-

Yue et al., 2020) investigated (Fig. 1B). Next, we explored available single-cell 

RNA-Seq (scRNA-Seq) data of human PDAC tissues to localise the expression of 

both FGFR1 and FGFR4. We integrated four PDAC scRNA-seq data sets (Chan-

Seng-Yue et al., 2020; Lin et al., 2020; Peng et al., 2019; Steele et al., 2020) using 

Harmony (Korsunsky et al., 2019) and performed cell type annotation to find that 

FGFR4 is predominantly expressed by epithelial cells, while FGFR1 could be 

detected in epithelial, stromal (fibroblasts, endothelial cells), and immune cells (i.e. 

macrophages) (Fig. 1C). Next, we explored scRNA-seq data from normal pancreas 

(Muraro et al., 2016; Grün et al., 2016; Segerstolpe et al., 2016) (Supplementary 

Fig. 1A) and found that the expression of FGFR4 is mostly restricted to the 

epithelial cells while FGFR1 is detectable in many cell types. In situ hybridisation 

(ISH) analyses of normal pancreatic tissues confirmed scRNA-seq data 

(Supplementary Fig. 1B). To better understand the association of epithelial FGFRs 

expression with PDAC molecular subtypes, we then focused on transcriptomic 

datasets derived from either tissue with high neoplastic cellularity (i.e. ICGC 

(Bailey et al., 2016), average qPure score > 60%) or microdissected neoplastic 

epithelia (i.e. PanCuRx (Chan-Seng-Yue et al., 2020)). First, we divided samples 

of the two cohorts in four different groups based on FGFR1 and FGFR4 expression 
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statuses (see methods and Supplementary Fig. 1C). To explore the association of 

FGFR1 and FGFR4 with the aggressive basal-like and squamous molecular 

subtypes as defined by Moffitt (Moffitt et al., 2015) and Bailey (Bailey et al., 2016) 

(Fig. 1D, Supplementary Fig. 1D), we calculated the basal-like and squamous 

signature scores for each sample of the ICGC and the PanCuRx cohorts (Bailey et 

al, 2016; Chan-Seng-Yue et al., 2020) (see methods). Tumours with low levels of 

FGFR4 showed the highest basal-like/squamous scores regardless of the FGFR1 

status (either high or low); indeed, the signature scores between the 

FGFR4lowFGFR1high and FGFR4lowFGFR1low were not significantly different (Fig. 

1D and Supplementary Fig. 1D). Accordingly, all the FGFR4high tumours of the 

ICGC cohort classified as classical, while only 9.7% (13/134) of the FGFR4high 

tumours of the PanCuRx were defined as basal-like (Supplementary Fig. 1E). These 

results were substantially similar to those obtained when tumours of the two cohorts 

were separated based on the expression level of the known classical driver GATA6 

(Supplementary Fig. 1F). When using the molecular classification proposed in the 

PanCuRx study (Chan-Seng-Yue et al., 2020), the group of FGFR4low tumours was 

highly enriched for basal subtypes (Supplementary Fig. 1G). Reduced FGFR4 

expression in PDAC tissues from the ICGC (Bailey et al., 2016) was associated 

with inferior overall survival (Fig. 1E). Conversely, the levels of FGFR1 had no 

prognostic significance in different PDAC cohorts (n = 3, data not shown). To 

corroborate these findings, we used ISH to evaluate the expression of FGFR1 and 

FGFR4 in a cohort of 106 human pancreatic tissues from treatment naïve patients 

(Fig. 1F, Supplementary Fig. 2A). A total of 97 tissues were suitable for evaluation 

of both FGFRs. We confirmed that FGFR4 is expressed by epithelial cells while 

FGFR1 is prominent in stromal elements (Fig. 1F and Supplementary Fig. 2A). Low 

expression of FGFR4 was observed in 23% (22/97) of cases (Fig. 1G) and was 

significantly enriched in high grade tumours (Supplementary Fig. 2B). 

Furthermore, FGFR4 was never detected in poorly differentiated areas while 

detectable with variable degree of expression in well-differentiated tumour glands 

(Supplementary Fig. 2C). Finally, low expression of FGFR4 identified patients 

showing inferior overall survival in our cohort (Fig. 1H). To identify suitable 

human models for genetic manipulation of the two FGFRs, we screened an initial 
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array of cell lines (n = 6) and Patient-derived Organoids (n = 5). In accordance with 

our results, ISH analyses of 6 human PDAC cell lines revealed high FGFR4 in cells 

displaying an epithelial phenotype (Supplementary Fig. 2D–F), and higher levels 

of FGFR1 in mesenchymal-like cells showing expression of ZEB1 and/or Vimentin 

(Supplementary Fig. 2D–F). For PDOs, RNA-seq was used to classify cultures as 

either classical or basal-like using single-sample Gene Set Variation Analysis 

(ssgsea method) (Hänzelmann et al., 2013). Of note, the organoid culture with the 

highest basal-like/squamous identity (PDA9-O) showed the lowest expression of 

FGFR4 (Supplementary Fig. 2G), thus representing a model for FGFR4low basal-

like tumours. 
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Fig. 1: FGFR4 is differentially expressed in PDAC molecular subtypes. A Receptor 

Tyrosine Kinases (RTKs) expression in basal-like and classical subtypes. The scatter plot 

shows the expressed RTK ranked by their mean log2 fold change in basal-like versus 

classical for samples of the TCGA cohort (Cancer Genome Atlas Research Network, 

2017). Highlighted: FGFR1, FGFR2, FGFR3, FGFR4. B Boxplot of FGFR1 (left) and 

FGFR4 (middle) Z-scores stratified by the Moffitt subtypes (Moffitt et al., 2015) in the 

TCGA (Cancer Genome Atlas Research Network, 2017), ICGC (Bailey et al., 2016), and 

PanCuRx (Chan-Seng-Yue et al., 2020) datasets. ****p < 0.0001; and ns, not significant as 

determined by Wilcoxon test. C Violin plots of the normalised expression of FGFR1 (left 

panel) and FGFR4 (right panel) in each annotated cell cluster from the integration of four 

different scRNA-seq datasets of PDAC tissues (Chan-Seng-Yue et al., 2020; Lin et al., 

2020; Peng et al., 2019; Steele et al., 2020) (see methods). D GSVA score (using ssgsea 
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method) for the basal-like signature (Moffitt et al., 2015) for each sample of the ICGC 

(Bailey et al., 2016) and PanCuRx (Chan-Seng-Yue et al., 2020) cohort according to the 

expression of FGFR1 and FGFR4. **p < 0.01; ****p < 0.0001; and ns, not significant as 

determined by Wilcoxon test. E Kaplan–Meier plot comparing the overall survival of 

patients from the ICGC cohort (Bailey et al., 2016) (n = 96) according to the expression of 

FGFR4. p, Log-rank (Mantel–Cox) test. F Representative ISH images showing expression 

of FGFR4 and FGFR1 in two different pancreatic cancer tissues. Scale Bar, 50 µm. Insets 

show magnification of selected areas, and red arrowheads indicate either epithelial or 

stromal cells. G Stacked bar plot showing the percentage of PDAC tissues (n = 97) with 

either low (blue) or high (orange) expression of FGFR4. H Kaplan–Meier plot comparing 

the overall survival of patients according to FGFR4 ISH status. p, Log-rank (Mantel–Cox) 

test. 
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FGFR1 is a functional marker of EMT in PDAC 

The interrogation of the genomic data from the ICGC (Bailey et al., 2016) and 

TCGA (Cancer Genome Atlas Research Network, 2017) cohorts in cBioportal 

(https://www.cbioportal.org) revealed no recurrent genetic alteration affecting 

FGFR1 in PDAC (Supplementary Fig. 3A, B). We then looked at the correlation 

between FGFR1 and the established markers/drivers of PDAC cell phenotypes. In 

all the interrogated transcriptomic datasets (n = 5) (Bailey et al., 2016; Cancer 

Genome Atlas Research Network, 2017; Chan-Seng-Yue et al., 2020; Moffitt et al., 

2015; Balli et al., 2017), FGFR1 expression positively correlated with the 

expression of EMT genes, in particular with the master regulator ZEB1, yet not 

with expression of squamous lineage genes (TP63, KRT5, KRT14) (Fig. 2A). To 

corroborate the suggested link with EMT, we found a significant positive 

correlation between the Hallmark EMT signature and FGFR1 in samples from the 

TCGA cohort (Cancer Genome Atlas Research Network, 2017) (Fig. 2B). Next, we 

investigated whether induction of EMT or downregulation of its master regulator 

ZEB1 would affect expression of FGFR1. Following 48 h of TGFβ1 treatment, the 

SMAD4-proficient cell line hM1 displayed significant elevation in the expression 

of several EMT markers/drivers as well as of FGFR1 both at mRNA and protein 

levels (Fig. 2C). The mRNA levels of CDH1 and FGFR4 were only moderately 

affected by the treatment. Furthermore, the transient downregulation of ZEB1 in 

the PDAC cell line showing the more prominent mesenchymal-like phenotype (i.e. 

Hs766t, PANC1) led to a significant reduction in the expression of FGFR1, while 

increasing expression of FGFR4 and the classical gene CDH1 (Fig. 2D). Then, we 

sought to assess the functional consequences of FGFR1 inhibition in PDAC. First, 

we treated 7 human PDAC cell lines with increasing concentrations of the FGFR1 

inhibitor BGJ398 (Guagnano et al., 2011) and measured cell viability using an 

ATP-based assay (Fig. 2E). Four out of the seven cell lines tested were primary cell 

lines (PDA2, PDA9, PDA23, PDA6), which were classified as either basal-like or 

classical based on RNA-Seq data (Supplementary Fig. 3D and data not shown). 

BGJ398 demonstrated poor activity and modestly affected proliferation of PDA2, 

hT1, and of Hs766T only at the highest dose (1 µM) (Fig. 2E). Then, we performed 

genetic depletion of FGFR1 by RNA interference approaches. Stable silencing of 
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FGFR1 in PANC1 was associated with reduced protein expression of the EMT 

driver ZEB1 but not of the marker Vimentin (Fig. 2F). In vitro proliferation of 

Hs766T, but not of PANC1, was significantly reduced following downregulation 

of FGFR1 (Fig. 2G). However, orthotopically transplanted PANC1 cells deficient 

for FGFR1 generated smaller tumours compared to parental cells transduced with 

the empty vector (Fig. 2H), thus suggesting cell extrinsic effects of FGFR1 

downregulation in this cell line. In addition, we performed RNAi-based competition 

assay in the basal-like PDA9-O which displayed the highest protein levels of 

FGFR1 among the organoid cultures investigated. We observed the progressive 

drop-out of the vector targeting FGFR1 (Supplementary Fig. 3E), suggesting that 

FGFR1 is advantageous for the proliferation of this organoid culture. We next 

sought to explore whether loss of FGFR1 in a basal-like background could lead to 

changes in PDAC cell identity. Using RNAi, we targeted FGFR1 in the basal-like 

Hs766T (PDX1−CK5+, Supplementary Fig. 2E) and performed RNA-Seq analysis 

(Supplementary Fig. 3F). GSEA demonstrated that the loss of FGFR1 led to 

alteration of genes programs related to cell proliferation and Interferons’ response 

(Supplementary Fig. 3G). However, the loss of FGFR1 did not lead to significant 

changes in subtype expression signatures and accordingly FGFR1-deficient cells 

were classified as basal-like (Fig. 2I). Conversely, downregulation of FGFR1 led 

to the significant reduction of the EMT transcriptional phenotype (Fig. 2J). In sum, 

our analysis reveals that FGFR1 is a functional driver of EMT in pancreatic cancer. 
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Fig. 2: FGFR1 is a functional marker of EMT in PDAC. A Heatmap showing correlation 

(Spearman’s correlation) between FGFR1 and the squamous lineage markers, and the EMT 

genes in five different transcriptomic datasets (Bailey et al., 2016; Cancer Genome Atlas 

Research Network, 2017; Chan-Seng-Yue et al., 2020; Moffitt et al., 2015; Balli et al., 

2017). All annotated boxes, p < 0.001 B Scatter plot showing the positive correlation 

between FGFR1 mRNA expression and the Epithelial-to-Mesenchymal Transition (EMT) 

signature score from MsigDB for the TCGA cohort (Cancer Genome Atlas Research 

Network, 2017). C Changes in the expression level of the indicated genes in hM1 cell line 

treated with 5 ng/mL of TGFβ1 alone or in combination with 500 nM of TGFβ1 inhibitor 

(A83-01) for 48 h. On the right, immunoblot analysis of ZEB1, FGFR1, and Vimentin in 

whole-cell lysates from hM1 treated with 500 nM TGFβ1 for 48 h. GAPDH was used as 

loading control. D Changes at 48 h in the expression level of the indicated genes in the 

Hs766T cell line transfected with either mock control or two different concentrations of 
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siRNAs targeting ZEB1. On the right, immunoblot analysis of ZEB1 in whole-cell lysates 

of PANC1 transfected with non-targeting control (NTC) or 25 pmol of siRNA against 

ZEB1. GAPDH was used as loading control. In (C and D), results shown as mean ± SD of 

three replicates. **p < 0.01; ***p < 0.001 as determined by Student’s t test. E Cell viability 

of PDAC monolayer cultures treated with BGJ398 (n = 7 cell cultures) as indicated. Data 

are displayed as heatmap of the percentage of inhibition at each dose of the drugs and 

presented as mean of three independent experiments. F Immunoblot analysis of FGFR1, 

ZEB1, and Vimentin in whole-cell lysates of PANC1 cells stably expressing the control 

vector (NTC) or the shRNA targeting FGFR1 (shFGFR1). GAPDH was used as loading 

control. G Relative growth (as percentage of cell proliferation) of PANC1 and Hs766T 

cells stably transduced with either the control vector (NTC) or the vector targeting FGFR1. 

Data presented are means ± SD of three biological replicates. H Scatter dot plot showing 

differences in tumour volumes between tumour-bearing mice transplanted with 

PANC1/NTC (n = 5 mice) or PANC1/shFGFR1 (n = 10 mice). Tumour volumes were 

measured by ultrasound 5 weeks after transplantation. **p < 0.01 as determined by 

Student’s t test. I Boxplots of GSVA score (based on ssgsea method) for the Classical and 

the Basal-like signatures calculated for the Hs766T cell line transfected with non-targeting 

control or siRNA against FGFR1. J GSEA plot evaluating the EMT signature upon FGFR1 

knockdown in Hs766T cell line. 
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FGFR4 is epigenetically downregulated in basal-like/squamous 

PDAC 

The reduced expression of FGFR4 in aggressive subtypes of PDAC might be due 

to either genetic or epigenetic mechanisms. First, we explored the genomic data 

from the ICGC (Bailey et al., 2016) and TCGA (Cancer Genome Atlas Research 

Network, 2017) cohorts and found no recurrent genetic alterations affecting FGFR4 

(Supplementary Fig. 3A, C). Therefore, we interrogated the available methylation 

data from the ICGC cohort (Bailey et al., 2016) and found that the downregulation 

of FGFR4 in the squamous subtype was associated with hypermethylation of the 

gene (Fig. 3A). Next, we reanalysed data from Diaferia et al. (Diaferia et al., 2016) 

that used ChIP-Seq to profile marks indicative of either active (e.g. H3K27ac) or 

inactive (e.g. H3K9me3) chromatin in PDAC cell lines representative of classical 

and basal-like tumours. We found that the genomic region proximal to the FGFR4 

transcription start site showed differential levels of H3K27ac between basal-like 

and classical cell lines, with changes that were concordant with higher level of 

transcripts in the classical cell line (Fig. 3B and Supplementary Fig. 4A). A broader 

peak of the active enhancer chromatin mark H3K4me1 was observed for the 

classical cell line in the intron 1 of FGFR4 gene (Fig. 3B), which has been reported 

to contain an enhancer region (Shah et al., 2013). In keeping with that, FGFR4 

expression positively correlated with the expression of endodermal transcription 

factors and epithelial genes (CDH1 and ERBB3) (Fig. 3C) in 5 different 

transcriptomic datasets of PDAC (Bailey et al., 2016; Cancer Genome Atlas 

Research Network, 2017; Chan-Seng-Yue et al., 2020; Moffitt et al., 2015; Balli et 

al., 2017). In particular, FGFR4 showed significant positive correlation with the 

transcription factor HNF1A in all datasets (Fig. 3C). Accordingly, putative target 

genes of HNF1A were significantly enriched in FGFR4 high tumours of the ICGC 

cohort (Fig. 3D). To prove direct regulation by the transcription factor, we 

reanalysed available data from pancreas-specific knockout of Hnf1a (Kalisz et al., 

2020). In Hnf1a-deficient versus proficient pancreatic cells, expression of Fgfr4 

was significantly reduced and this was concordant with genomic regions proximal 

to the transcription start site of Fgfr4 showing reduced occupancy by HNF1A and 

reduced levels of H3K27ac (Fig. 3E). Overall, our analysis strongly suggests that 
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FGFR4 is a marker of the classical subtype whose expression is epigenetically 

reduced in basal-like PDAC cells. 

 

HNF1A blocks EMT in a classical PDAC cell line 

To confirm the link between HNF1A and FGFR4 in the human PDAC setting, we 

manipulated the expression of HNF1A by RNAi in HPAF-II, which has been 

reportedly used as a model of classical PDAC (Diaferia et al., 2016; Somerville  et 

al., 2018). The successful downregulation of HNF1A was associated with the 

reduced expression of FGFR4 and increased expression of both ZEB1 and FGFR1 

(Fig. 3F). Downregulation of HNF1A was associated with substantial changes in 

the transcriptome of the HPAF-II cell line (Supplementary Fig. 4B) and gene-set 

enrichment analysis (GSEA) (Subramanian et al., 2005) showed the enrichment of 

several pathways and terms related to extracellular matrix organization/deposition 

and the EMT (Fig. 3G). Of the marker/drivers of PDAC epithelial subtypes, only 

HNF4A was significantly downregulated upon HNF1A knockdown (Fig. 3H). In 

keeping with a recent work (Kloesch et al., 2022), HFN1A downregulation was not 

sufficient to drive a full phenotype switch in HPAF-II cell line. Yet, HNF1A 

silencing significantly increased the expression of genes defining the basal-like 

signature (Moffitt et al., 2015) as assessed by GSEA (Fig. 3I). 
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Fig. 3: Expression of FGFRs4 and determinants of molecular subtypes. A 

Hypermethylation of FGFR4 in squamous/basal-like tumours (blue) from the ICGC cohort 

(Bailey et al., 2016) is concordant with the downregulation of the gene. Indicated is the 

CpG probe showing the highest correlation. B Representative snapshot of the genomic 

region of FGFR4 in PANC1 (high-grade, basal-like) and HPAF-II (low-grade, classical) 

from Diaferia et al. (Diaferia et al., 2016) showing histone modifications (H3K27ac, 

H3K4me1, H3K4me3, H3K9me3) and RNA-seq data. C Heatmap showing correlation 

(Spearman’s correlation) between FGFR4 and the expressed endodermal transcription 

factors and epithelial genes in five different transcriptomic datasets (Bailey et al., 2016; 

Cancer Genome Atlas Research Network, 2017; Chan-Seng-Yue et al., 2020; Moffitt et al., 

2015; Balli et al., 2017). All annotated boxes, p < 0.001. D GSEA plot evaluating the 

enrichment of the geneset containing putative HNF1A target genes when comparing 

FGFR4 high versus FGFR4 low tumours of the ICGC cohort (Bailey et al., 2016). E 

Representative snapshot of the genomic region of Fgfr4 in mouse pancreatic cells proficient 

(control) or deficient (Hnf1a_KO) for HNF1A from Klasniz et al. (Kalisz et al., 2020) 

showing histone modifications (H3K27ac, H3K27me3), HNF1A occupancy, and RNA-seq 

data. F Changes in the expression levels of the indicated genes in the HPAF-II cell line 

transfected with either mock control or two different concentrations of siRNA against 

HNF1A. Results are shown as mean ± SD of three replicates. ***p < 0.001 as determined 

by Student’s t test. On the right, immunoblot analysis of HNF1A in whole-cell lysates of 
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HPAF-II transfected with either non-targeting control (NTC) or 25 pmol of siRNA 

targeting HNF1A. β-Actin was used as loading control. G Enrichment of selected pathways 

upon HNF1A knockdown. The GSEA analysis was performed using gene sets from 

REACTOME, GO, Hallmark, and REACTOME databases in MsigDB library. Displayed 

gene sets that passed false-discovery rate < 0.05. H Expression of classical and basal-like 

genes in HNF1A-deficient HPAF-II cells (compared to parental cells) from RNA-Seq data. 

Data are presented as mean ± SD. ****, p < 0.0001 by Student t test. I GSEA plot 

evaluating the basal-like signature upon depletion of HNF1A in HPAF-II cell lines. 
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Loss of FGFR4 enhances the malignant behaviour of PDAC cells 

To evaluate the functional relevance of FGFR4 in dictating PDAC phenotypes, we 

performed genetic and pharmacological perturbation experiments (Fig. 4 and 

Supplementary Fig. 4). Cell viability of established cell lines and primary PDAC 

cells (n = 7) was not significantly inhibited by the continuous treatment with the 

FGFR4 inhibitor BLU9331 (Hagel et al., 2015) (FGFR4i) (Fig. 4A). Of note, low 

doses of FGFR4i slightly increased the proliferation of some PDAC cell lines. Also 

considering the dose-response analysis of PDAC cells with the FGFR1 inhibitor 

BGJ398 (Fig. 2E), our results show that pharmacological inhibition of FGFRs is 

not a viable strategy to reduce PDAC cells proliferation. Next, we targeted FGFR4 

in the classical cell line HPAF-II using three different shRNAs (Fig. 4B). FGFR4 

was successfully downregulated by all shRNAs with the #884 and the #419 

showing the highest and lowest efficiency, respectively (Fig. 4B). The majority of 

results were obtained using the two most efficient shRNA, namely #884 and #885. 

Loss of FGFR4 in HPAF-II cell line was associated with downregulation of the 

epithelial markers E-Cadherin and ERBB3 (Fig. 4B) and increased in vitro 

proliferation (Fig. 4C). Interestingly, downregulation of FGFR4 expression altered 

the proliferative response to three different FGF ligands (Fig. 4D). In particular, 

continuous treatment with FGF2 and FGF19 significantly reduced the proliferation 

of control HPAF-II cell line but did not affect the proliferation of cells displaying 

downregulation of FGFR4 (Fig. 4D). Furthermore, we orthotopically transplanted 

HPAF-II transduced with non-targeting and targeting vectors into 

immunocompromised mice and monitored tumour growth for 4 weeks. At the 

experimental endpoint, loss of FGFR4 in HPAF-II cell line generated larger 

tumours with increased number of mitotic figures (Fig. 4E, and data not shown), 

and significantly increased the metastatic burden at the lungs and the liver (Fig. 

4F). In agreement with that, the group of FGFR4low tumours of the PanCuRx cohort 

(Chan-Seng-Yue et al., 2020) was significantly enriched for metastases 

(Supplementary Fig. 4C). The in vivo pro-tumorigenic effect driven by the loss of 

FGFR4 was further validated in organoid-based xenografts with the classical PDO 

hT3 (Supplementary Fig. 2G). Immunodeficient mice we orthotopically 

transplanted with equal number of cells from either parental PDOs (n = 7) or 
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cultures stably transduced with the shRNA targeting FGFR4 (n = 7) 

(Supplementary Fig. 4D). We monitored tumour growth with high-contrast 

ultrasound imaging starting at day 15 post transplantation. In agreement with the 

results obtained with established cell lines, PDOs expressing high levels of FGFR4 

displayed reduced proliferation in vivo (Fig. 4G) and less efficient engraftment rate 

at earlier time points as only 1 out of 7 transplanted mice showed a detectable mass 

at day 15 as opposed to the FGFR4 deficient PDO (5/7 mice with detectable 

masses). Finally, we downregulated FGFR4 in the organoid model of FGFR4low 

basal-like tumours (PDA9-O) prior to in vivo transplantation in 

immunocompromised hosts. At the endpoint, the tumour masses were significantly 

larger in animals transplanted with FGFR4 deficient cells (Fig. 4H). ISH analyses 

of transplanted tissues confirmed the downregulation of FGFR4 as opposed to 

control mice (Fig. 4I and Supplementary Fig. 4E). To further generalise our results, 

we transiently downregulated FGFR4 in four PDAC cell lines (including HPAF-II) 

and observed increased proliferation regardless of the molecular subtype of the cells 

(Supplementary Fig. 4F). In agreement with that, GSEA comparing the 

transcriptomes of FGFR4low versus FGFR4high tumours in the ICGC cohort revealed 

the significant enrichment of terms related to “cell proliferation” and “cell cycle” 

in FGFR4low PDAC (Supplementary Fig. 4G). Overall, these data suggest that 

endogenous levels of FGFR4 limit the malignant phenotype of PDAC regardless of 

the genetic background of the cells. 
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Fig. 4: Loss of FGFR4 is associated with an aggressive PDAC biological behaviour. A 

Cell viability of PDAC monolayer cultures treated with BLU3391 (n = 7 cell cultures) as 

indicated. Data are displayed as heatmap of the percentage of inhibition at each dose of the 

drugs and presented as mean of three independent experiments. B Immunoblot analysis of 

FGFR4, ErbB3, and E-Cadherin (loading control, β-Actin) in HPAF-II stably expressing 

the control vector (NTC) or the construct targeting FGFR4 (shFGFR4). C Relative growth 

(as percentage of cell proliferation) of HPAF-II cells stably transduced with either the 

control vector (NTC) or the vector targeting FGFR4 (#884). Data presented are means ± SD 

of three biological replicates. D Proliferation (as total luminescence) of HPAF-II cell line 

stably transduced with NTC or two different short hairpin RNA against FGFR4 (#419 and 

#884) following 48 h stimulation with FGF2 (25 ng/mL), FGF10 (100 ng/mL), and FGF19 

(100 ng/mL). Data presented as means ± SD (n = 3 biological replicates). *p < 0.05; and 

**p < 0.01 as determined by Student’s t test. E Scatter dot plot showing differences in 

tumour volumes between tumour-bearing mice transplanted with HPAF-II/NTC (n = 6 

mice) and HPAF-II/shFGFR4 (n = 10 mice). Tumour volumes were measured by 

ultrasound 4 weeks after transplantation. *p < 0.05 as determined by Student’s t test. F 

Stacked bar plot showing the distribution of mice with or without metastatic lesions in the 
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two different cohort of mice from (E) (upper panel). Lower panel, stacked bar plot showing 

the number of mice with individual or multiple metastatic lesions in the two different cohort 

from (E). On the right, representative Hematoxylin and Eosin staining of metastatic lesions 

at the liver (top and middle) and at the lungs (bottom) from a mouse bearing multiple 

metastases. The black arrows indicate the areas shown in the insets. Scale bar, 200 µm. G 

Line graph showing tumour volumes (mm3) of pancreatic masses detected upon the 

orthotopic injection of 1 × 106 cells from hT3 PDO into immunodeficient mice (n = 7). 

Means ± SD are shown. Mice were screened at 15, 21, 27, 32 days following 

transplantation. ****p < 0.001 by two-way ANOVA with Sidak’s test for multiple 

comparison. H Scatter plot showing the difference in tumour volumes between mice 

transplanted with PDA9 organoids either transduced with control vector (n = 10 mice) or 

with shFGFR4 (n = 7 mice). Tumour volumes were measured by ultrasound 4 weeks after 

transplantation. ***p < 0.01 as determined by Student’s t test. I Representative in situ 

hybridisation staining of FGFR4 in PDA9-O in mice from (H) and showing loss of FGFR4 

in vivo. Scale bar, 50 μm. 
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Loss of FGFR4 is associated with increased basal-like/squamous 

features in PDAC 

We next sought to explore whether loss of FGFR4 in a classical background could 

lead to changes in PDAC cell identity. FGFR4 knockdown in HPAF-II cells led to 

substantial changes in the transcriptome of this classical cell line (Fig. 5A). 

Similarly, FGFR4 knockdown led to profound changes in the expression of genes 

that drive the signatures of molecular subtypes of PDAC (Fig. 5B) and deficient 

cells were classified as basal-like (Fig. 5C) suggesting that, in this cell line, FGFR4 

is a superior barrier to the expression of ectopic gene programs (i.e. basal-like) 

compared to HNF1A. We then looked at changes in the expression of 

markers/drivers of subtype following FGFR4 silencing and found reduced 

expression of CDH1 (Fig. 5D), which is consistent with the reduction of E-cadherin 

(protein level) following stable knockdown (Fig. 4B). Of transcription factors 

previously associated with the basal-like/squamous lineage, ZBED2 showed the 

most prominent upregulation upon FGFR4 silencing (Fig. 5D). ZBED2 has been 

recently demonstrated to antagonise the action of interferon regulatory factor 1 

(IRF1), to be selectively enriched in squamous tumours, and to prevent the growth 

arrest induced by Interferon in PDAC cells (Somerville et al., 2020). Accordingly, 

silencing of FGFR4 led to downregulation of gene sets related to interferon pathway 

in HPAF-II (Fig. 5E) while increasing for the expression of gene programs related 

to c-Myc activity and EMT. To corroborate our findings, we interrogated RNA-seq 

from patients’ tissues and found that ZBED2 is the gene whose expression is more 

prominent in FGFR4 low tumours of the ICGC cohort (Supplementary Fig. 5A). 

Furthermore, GSEA comparing the transcriptomes of FGFR4low versus FGFR4high 

tumours in both the ICGC and PanCuRx cohorts revealed the significant 

downregulation of terms related to “Interferon” in FGFR4low PDAC (Fig. 5F and 

Supplementary Fig. 5B). To further generalise our results and understand whether 

the effect of FGFR4 downregulation on PDAC cell lineages is context dependent, 

we targeted the receptor by RNAi in two additional models of classical/progenitor 

(i.e. epithelial) PDAC: AsPC1 and SUIT2. These two cell lines have been 

extensively used to identify the molecular barriers to the expression of basal-

like/squamous programs in PDAC (Kloesch et al., 2022; Somerville et al., 2018) 
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and display high expression of FGFR4 (Supplementary Fig. 5C). Differently from 

HPAF-II, the forced downregulation of FGFR4 in these two models did not lead to 

a full switch of phenotype (Supplementary Fig. 5C). Nevertheless, the loss of 

FGFR4 led to the reduction of classical/progenitor programs and of the epithelial 

marker E-cadherin, the enrichment of transcriptional signatures of basal-

like/squamous PDAC and of genesets related to increased proliferation and c-Myc 

activity (Fig. 5G, Supplementary Fig. 5D–H). While suggesting that the effect on 

“full subtype switch” is cell-context dependent, our results strongly suggest that 

FGFR4 limits the expression of gene programs of aggressive (i.e. basal-

like/squamous) PDAC. To further ascertain whether FGFR4 expression is 

associated with changes in the expression of gene and gene programs of the two 

PDAC subtypes in human tissues, we interrogated the scRNA-Seq data from Peng 

et al. (Peng et al., 2019). First, we confirmed the enrichment for FGFR4high cells in 

the epithelial compartment of patients displaying the classical phenotype 

(Supplementary Fig. 5I). Then, we separated cases with lowest and highest 

expression of FGFR4 (Supplementary Fig. 5J) to find that those with elevated 

epithelial expression of FGFR4 accordingly displayed elevated expression of 

classical markers (Supplementary Fig. 5K). Furthermore, FGFR4low cells were 

characterised by gene expression programs of basal-like/squamous subtypes (Fig. 

5H), which included EMT related gene sets. Finally, we sorted out basal-like and 

classical cells from those cases and compared the transcriptome of cells displaying 

high and low expression of FGFR4. In line with the suggested role for FGFR4 in 

sustaining the classical phenotype, classical cells with the highest expression of 

FGFR4 displayed elevated expression of classical genes (Fig. 5I). Similarly, even 

within basal-like cells those with the highest expression of FGFR4 displayed 

elevated level of classical/epithelial PDAC while the ones with reduced expression 

of the gene showed increased expression of basal-like/squamous markers (Fig. 5I). 
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Fig. 5: FGFR4 loss leads to the expression of basal-like/squamous programs in PDAC. 

A Heatmap showing changes in the expression pattern of the 30 most differentially 

expressed genes in the comparison between: control and FGFR4 knock-down (siFGFR4). 

Z-scores derived from DESeq2-VST transformed counts. B GSEA plot evaluating the 

Basal-like signature upon FGFR4 knockdown in HPAF-II cell line. C Boxplots of GSVA 

score (based on the ssGSEA method) evaluating the Basal-like and Classical signatures 

(Moffitt et al., 2015) upon FGFR4 knockdown. D Expression of classical and basal-like 

genes in FGFR4-deficient HPAF-II cells (compared to parental cells) from RNA-Seq data. 

Data are presented as mean ± SD.*p < 0.05; **p < 0.01; and ****p < 0.0001 by Student t 

test. E Enrichment of selected pathways (GSEA) when comparing HPAF-II proficient 

(NTC) and deficient (siFGFR4) cells. GSEA was performed using gene sets from Hallmark 

database in MsigDB library. Displayed gene sets that passed false-discovery rate < 0.05. F 
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Enrichment of Interferon related pathways when comparing FGFR4 low versus FGFR4 

high tumours of the PanCuRx cohort (Chan-Seng-Yue et al., 2020). GSEA was performed 

using gene sets from databases in MsigDB library. Displayed gene sets that passed false-

discovery rate < 0.05. G GSEA plot evaluating the Bailey_Squamous (left panel) and the 

Bailey_Progenitor (right panel) signatures upon FGFR4 knockdown in AsPC1 and in 

SUIT2 cell lines, respectively. H Enrichment of selected pathways (GSEA) when 

comparing FGFR4 high versus FGFR4 cells from the scRNA-Seq dataset of Peng et al. 

(Peng et al., 2019). See also Supplementary Fig. 5I. GSEA was performed using gene sets 

from Hallmark database in MsigDB library. I Expression of classical and basal-

like/squamous genes in FGFR4 high cells (compared to FGFR4 low cells) displaying either 

a basal-like (left panel) or a classical (right panel) phenotype. 
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Loss of FGFR4 leads to increased fluxes through the mTORC1 

pathway in PDAC cells 

Next, we used Enrichr (Kuleshov et al., 2016) on gene expression data to infer 

signalling pathways’ dysregulation that might explain the increased aggressiveness 

observed in PDAC cells upon depletion of FGFR4. We found the significant 

enrichment of gene sets related to the PI3K/AKT, ERBB, Axon guidance, and RAS 

signalling pathways in PDAC cells depleted for FGFR4 (Fig. 6A) as well as in the 

FGFR4low tumours of both the ICGC (Bailey et al., 2016) and PanCuRx (Chan-

Seng-Yue et al., 2020) cohorts (Fig. 6B). First, we evaluated the effect of FGFR4 

downregulation on the main signaling activated through the stimulation of FGFRs, 

the MAPK pathway. Serum-starved HPAF-II and SUIT2 cell lines were stimulated 

for 20 min with FGF ligands or 2% FBS, which induced the phosphorylation of 

ERK in both parental and FGFR4-depleted cells (Supplementary Fig. 6A, B). This 

suggests that the loss of FGFR4 does not compromise signaling through this 

pathway. Furthermore, the baseline level of phospho-ERK were elevated in both 

HPAF-II and SUIT2 cell lines upon FGFR4 knockdown, which is in line with the 

pathway analysis from RNA-seq data. A common single nucleotide polymorphism 

in the exon 9 of the FGFR4 gene results in a nucleotide change (G388R), which has 

been shown to enhance STAT3 activation without altering MAPK/ERK pathway 

(Ulaganathan et al., 2015). In our cohort, 7 out of 12 PDAC models carry the variant 

(see material and methods section). In line with a previous report (Ulaganathan et 

al., 2015), the polymorphic allele does not explain differences in FGFR4 transcript 

levels between cell lines (data not shown). Then, we tested the effect of FGFR4 

knockdown on the activation of STAT3 in cell lines either wild-type (AsPC1) or 

carrying the polymorphic allele (HPAF-II and SUIT2). In line with the literature 

(Ulaganathan et al., 2015), the depletion of FGFR4 in SUIT2 and HPAF-II cell lines 

reduced the baseline and stimulated activation of STAT3 (Supplementary Fig. 6C). 

Conversely, the downregulation of FGFR4 in AsPC1 cell line did not dramatically 

affected the activation of STAT3, while consistently driving increased fluxes 

through MAPK at baseline (Supplementary Fig. 6C). Next, we sought to validate 

the inferred activation of the PI3K/AKT/mTOR pathway, which resulted the most 

dysregulated pathway in both cell lines and tissues at transcriptomic level (Fig. 6A, 
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B). We assessed the baseline and stimulated activation of the PI3K/AKT/mTOR 

pathway through the evaluation of the phosphorylated levels of AKT and of the 

downstream mTORC1 effectors (the inhibitory eIF4E-binding protein 4E-BP1, and 

the substrate of the S6 Kinase). Cells were serum-starved and then stimulated with 

FGF2, FGF19, and 2% of Fetal-bovine serum (FBS). In parental HPAF-II cell line, 

20 min stimulation with either FGF ligands or FBS led to activation of AKT 

(Ser473), to increased phosphorylation of 4E-BP1, but not to increased 

phosphorylation of the S6K1 substrate S6 (Fig. 6C and Supplementary Fig. 6D). 

Strikingly, loss of FGFR4 in serum-starved condition was associated to increased 

activation of AKT, of S6K and phosphorylation of 4E-BP1 (Fig. 6C). As compared 

to the parental cell line, HPAF-II lacking FGFR4 showed higher induction of 

phosphorylated level of AKT, but no further increase in the phosphorylation of 4E-

BP1, following stimulation with either FGFs or serum (Fig. 6C and Supplementary 

Fig. 6D). Overall, these data suggest that loss of FGFR4 in HPAF-II cell line 

increases the flux through the mTORC1 pathway in particular through the inhibition 

of the translational repressor 4E-BP1, which is known to be required for mTORC1-

dependent regulation of proliferation in mammalian cells (Dowling et al., 2010). 

We replicated these results in five additional cell lines (PDA2-9-23, SUIT2, and 

AsPC1) by showing that the loss of FGFR4 primarily increases the phosphorylation 

of 4E-BP1 at baseline (Fig. 6D and Supplementary Fig. 6E–H). In keeping with 

this, we found increased levels of phosphorylated 4E-BP1 in pancreatic cancer 

tissues from mice transplanted with HPAF-II stably expressing shFGFR4 (Fig. 6E). 

Given that mTORC1 is the master regulator of protein synthesis (Thoreen et al., 

2012), we measured changes in protein synthesis following FGFR4 knockdown in 

four different PDAC cell lines (see methods). Loss of FGFR4 significantly 

increased total protein synthesis (Fig. 6F, G) and coherently gene expression terms 

related to translational initiation were significantly enriched following FGFR4 

knockdown (Supplementary Fig. 6I). Finally, we reasoned that if elevation of 

mTORC1 pathway activity was primarily responsible for the increased proliferation 

of PDAC cells upon FGFR4 depletion, then pharmacological inhibition of the 

pathway could represent a viable strategy to reverse this phenotype. Indeed, we 

found that, compared to the vehicle-treated cells, the treatment with the mTORC1 
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inhibitor (Everolimus) resulted in a larger inhibition of cell proliferation in FGFR4 

depleted cells as opposed to parental cells (Fig. 6H). Overall, our results indicate 

that loss of FGFR4 in PDAC is associated to increased mTORC1-driven cell 

proliferation regardless of the genetic and transcriptomic background of the cells. 
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Fig. 6: Loss of FGFR4 is associated to hyperactivation of mTORC1 in PDAC. A 

Enrichr pathway analysis of significantly over-represented genes in FGFR4 deficient 

HPAF-II cells. B Enrichr pathway analysis of significantly over-represented genes in 

FGFR4low tumours of the ICGC (Bailey et al., 2016) (top) and PanCuRx (Chan-Seng-Yue 

et al., 2020) (bottom) cohorts. C Immunoblot analysis in whole-cell lysates of HPAF-II cell 

line transfected with either control (NTC) or siRNA targeting FGFR4. GAPDH was used 

as loading control. Quantification of changes in the phosphorylated levels of selected 

proteins (p-AKT, p-S6, and p-4E-BP1) between NTC and siFGFR4 at baseline is provided 

in the bar plots on the right (data presented as means ± SD of four biological replicates). 

*p < 0.05; **p < 0.01; ***p < 0.001 by Student’s t test. See also Supplementary Fig. 6D. D 

Scatter plot showing changes in the phosphorylated levels of 4E-BP1 in four different cell 

cultures (HPAF-II, PDA2, PDA9, PDA23) following transient knockdown of FGFR4. 

*p < 0.05 by Student’s t test. The quantification refers to the immunoblots of (C) and 
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Supplementary Fig. 6E–G. E Representative images of the immunohistochemical staining 

for phosho-4E-BP1 in tissues from mice transplanted with either mock (NTC) or shRNA 

targeting FGFR4. Areas with different histologies were included in the analyses. White 

arrowhead refers to islet of Langerhans, which stained negative and used as internal control. 

The quantification is provided in the scatter dot plot (bottom panel) as percentage of brown 

pixel (mean intensity/nuclei). A minimum of five field of visualisation (FOVs, 20X areas) 

per mouse (5 mice/cohort) was analysed. Scale bars, 200 µm. F Immunodetection of DAPI 

(blue), and newly synthesised protein (green) in cycloheximide-treated HPAF-II cells (top), 

and HPAF-II transfected with control (NTC, middle panel) and siRNA targeting FGFR4 

(bottom panel). Scale bar, 20 μm. G Quantitative Click-iT HPG Alexa Fluor 488 

immunofluorescence labeling showed a significant increase in nascent protein synthesis 

following the silencing of FGFR4 in different monolayer cultures. Data presented as 

means ± SD (n = 3 biological replicates per cell culture). **p < 0.01; and ***p < 0.001 as 

determined by Student’s t test. H Cell viability of PDAC monolayer cultures transfected 

with either mock or siRNA targeting FGFR4 for 48 h and then challenged with 1 µM of the 

mTORC1 inhibitor Everolimus for 48 h (see methods). Data are displayed as heatmap of 

the percentage of inhibition relative to the untreated control and presented as mean of three 

independent experiments. 
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DISCUSSION 

 

Here, we show that the loss of FGFR4 expression in PDAC is invariably associated 

with the acquisition of a more aggressive phenotype by cancer cells driven by 

hyperactivation of the mTORC1 pathway. Conversely, we found that FGFR1 is a 

functional marker of the EMT. Receptor-Tyrosine Kinases (RTKs) initiated 

signalling is critical to cell fate determination (Lemmon et al., 2010; Neben et al., 

2019). Therefore, we reasoned to explore the involvement of RTKs into the 

definition of PDAC subtypes which display distinct biological and clinical 

behaviours. The FGF-FGFR axis has been reportedly involved in pancreatic cell 

specification (Bhushan et al., 2001; Elghazi et al., 2002; Gonçalves et al., 2021; 

Hebrok et al., 1998) and, while an aberrant FGFR signalling is reported in several 

malignancies (Frattini et al., 2018; Turner & Grose, 2010), its involvement in 

PDAC has been largely neglected so far. Amplification and overexpression of 

FGFR1 are described in up to 10% of patients with advanced PDAC (Aguirre et al., 

2018) but rarer in resectable cohorts (Bailey et al., 2016; Cancer Genome Atlas 

Research Network, 2017). Expression of FGFR4 is reported in a substantial fraction 

of PDAC but its role in mediating tumorigenesis and therapy resistance has been 

seldomly explored (Sasaki et al., 2020; Motoda et al., 2011). Here, we provide 

multiple lines of evidence that FGFR4 expression is restricted to epithelial cells in 

both normal and diseased pancreata, selectively elevated in classical tumours, and 

correlated with better outcomes. As opposed to FGFR4, FGFR1 showed more 

promiscuous expression in both normal and diseased pancreata, was strongly 

associated with the EMT phenotype but not with epithelial (i.e. classical or basal-

like) PDAC subtypes. Accordingly, genetic manipulation of FGFR1 in cells 

displaying mesenchymal traits and classified as basal-like based on transcriptomic 

profiling resulted in a reduced expression of markers/drivers of EMT and of the 

EMT gene program but did not lead to epithelial phenotype switch. Increased 

FGFR1 expression could be observed in PDAC cells following prolonged exposure 

to TGFβ1 and coherently reduced upon transient knockdown of the master-

regulator ZEB1. Activation of FGFR1 is linked to EMT in prostate cancer (Acevedo 
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et al., 2007), and both EMT and upregulation of FGFR1 has been linked to 

resistance to targeted therapies in lung cancers (Raoof et al., 2019; Kitai et al., 

2016). In our study, selective inhibition of FGFR1 with BGJ398 did not 

dramatically affect proliferation of PDAC cells. Differently from FGFR1, we found 

a defined relationship between FGFR4 expression and the classical subtype of 

PDAC. Loss of FGFR4 in basal-like/squamous tumours was concordant with 

hypermethylation of the gene and reduced levels of active chromatin in its 

regulatory regions. Our results strongly suggest an epigenetic dysregulation of 

FGFR4 expression in basal-like/squamous tumours which is similar to that 

observed for several endodermal transcription factors. We also demonstrated that 

FGFR4 is a direct target of the classical transcription factor HNF1A. In line with 

recent reports, the silencing of HNF1A in the classical PDAC cell line HPAF-II was 

not sufficient to drive a subtype switch. In the same model, however, 

downregulation of FGFR4 was sufficient to drive a full subtype switch thus 

suggesting that FGFR4 has stronger “antibasal” function than HNF1A in this cell 

line. In other two well-established models of classical/progenitor PDAC, the forced 

downregulation of FGFR4 was not sufficient to drive a full switch of phenotype 

towards the basal-like subtype but was invariably associated with the reduced 

expression of classical genes and the enrichment for transcriptional programs of 

basal-like/squamous PDAC. This suggests that FGFR4 acts to maintain the classical 

phenotype and therefore to limit the expression of ectopic gene programs (i.e. basal-

like/squamous) in PDAC. In keeping with that, the analysis of scRNA-Seq data 

demonstrated that, at individual cell level, FGFR4 expression is elevated in cells 

with a more classical/epithelial phenotype. 

We additionally showed that FGFR4 loss is associated with enhanced malignancy 

of PDAC cells by increasing in vitro and in vivo proliferation as well as enhancing 

metastatization of a cell line of the classical background. This finding further 

corroborates the evidence that basal-like cells tend to accumulate in advanced 

stages of the disease. While repression of “basalness/squamousness” seems an 

intrinsic feature of FGFR4, we also showed that its silencing in FGFR4low basal-

like models increases malignant behaviour suggesting a bona fide tumour 

suppressive role for endogenous levels of FGFR4 in PDAC. Others have recently 
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suggested that RTKs in PDAC might exert an oncogenic role only when 

overexpressed (Meyers et al., 2020). In keeping with this, acceleration of cell 

proliferation could be observed in established and primary cell lines regardless of 

their background and upon either transient or stable knockdown of FGFR4. 

Accordingly, gene programs related to cell cycle and proliferation were highly 

enriched in the comparison between low versus high FGFR4 tumours of the ICGC 

and PanCuRx cohorts (Bailey et al., 2016; Chan-Seng-Yue et al., 2020). 

Pharmacological inhibition of FGFR4 had little to no effect on the short-term 

proliferation of several PDAC cell lines. Interestingly, stimulation of FGFR4high 

classical cells with FGF2 and FGF19 led to reduced cell proliferation, which 

partially agrees with results from Motoda et al. (Motoda et al., 2011) that suggested 

a tumour suppressive role of FGF19 stimulation on cells expressing FGFR4 in 

PDAC. Conversely, FGF ligands did not exert inhibitor effects on the proliferation 

of cells deficient for FGFR4. Mechanistically, downregulation of FGFR4 was 

associated with increased basal fluxes through the MAPK and the mTORC1 

signaling pathways regardless of the genomic and transcriptomic background of the 

cells. Accordingly, PI3K/Akt/mTOR transcriptional signatures as well as the 

inhibitory phosphorylation of one of the best characterised mTORC1 substrate, 4E-

BP1, were significantly enriched in both cell lines and tissues displaying reduced 

expression of FGFR4. Phosphorylation of 4E-BP1 by mTORC1 has been 

demonstrated to regulate mTORC1-driven proliferation in mammalian cells 

(Dowling et al., 2010; Thoreen et al., 2012) and accordingly its levels were higher 

in all cell lines tested following silencing of FGFR4 and were concordant with 

increased cell proliferation and protein synthesis. In keeping with this, 

pharmacological inhibition of mTORC1 with Everolimus showed superior effect in 

reducing the proliferation of cells deficient for FGFR4 as opposed to proficient 

cells. In summary, we show that endogenous levels of FGFR4 limit the malignant 

phenotype of PDAC. In particular, the loss of FGFR4 was associated with increased 

activity of the mTORC1 pathway in PDAC cells. Finally, we propose FGFR4 as a 

valuable marker for the prognostic stratification of PDAC patients. 
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MATERIALS AND METHODS 

 

Human samples 

Pancreatic cancer tissues used in this study were obtained from surgical resections 

of patients treated at the University and Hospital Trust of Verona (Azienda 

Ospedaliera Universitaria Integrata, AOUI). Written informed consent from the 

donors for research use of the tissue was obtained prior to acquisition of the 

specimens. In particular, the FFPE tissues of 106 PDAC cases used for in situ 

hybridization and immunohistochemical analyses were retrieved from the ARC-Net 

Biobank and were collected under the protocol number 1885 approved by the local 

Ethics Committee (Comitato Etico Azienda Ospedaliera Universitaria Integrata) 

to A.S. (Prot. 52070, Prog. 1885 on 17/11/2010). Two different pathologists (A.S. 

and C.L.) independently performed histopathological evaluation and scoring of the 

tissues for FGFR1 and FGFR4 expression. Resected tissues used for the generation 

of organoids and monolayer cell cultures were collected under the protocol number 

1911 approved by the local Ethics Committee (Comitato Etico Azienda Ospedaliera 

Universitaria Integrata) to V.C. (Prot. n 61413, Prog 1911 on 19/09/2018). All 

experiments were conducted in accordance with relevant guidelines and 

regulations. 

 

Cell cultures 

A total of 12 monolayer cell cultures and 5 PDAC organoids were used in this study. 

The established human cell lines HPAF-II, PANC1, and AsPC-1 were purchased 

from ATCC (CRL-1997™, CRL-1469™, CRL-1682TM). Human hM1, hF2, and 

hT1 2D cell cultures and hT3 organoids were kindly provided by Dr. David 

Tuveson (Cold Spring Harbor Laboratory, NY, USA), while SUIT-2 and Hs766T 

were kindly provided by Prof. Aldo Scarpa (University of Verona). HPAF-II, 

PANC1, SUIT-2, and AsPC-1 were grown in DMEM (Gibco) supplemented with 

10% FBS and 1% Penicillin-Streptomycin (Pen-Strep, Gibco). hM1, hF2, Hs766T, 

and hT1 were cultured in RPMI (Gibco) supplemented with 10% FBS and 1% Pen-
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Strep. PDAC organoids and primary monolayer cultures were established as 

described previously (Boj et al., 2015; Huch et al., 2013). Briefly, tumour 

specimens were minced and digested with Collagenase II (5 mg/mL, Gibco) and 

Dispase I (1.25 mg/mL, Gibco) in human complete medium (described in Boj et al., 

2015) at 37°C for a maximum of 2 hours. The resulting material was further 

digested with TrypLE (Gibco) for 10 minutes at 37°C, embedded in growth factor 

reduced Matrigel(R) and cultured in human complete medium. Of the models used 

here, 7 out of 12 carry the G388R variant of FGFR4 (HPAF-II, hF2, SUIT2, 

PDA23, PDA9, PANC1, and hT3).  

Four of the five organoid models used were acquired as part of the Human Cancer 

Model Initiative (HCMI)  and, those models are available for access from ATCC. 

The corresponding IDs are as follows: 

 

Sample Code ID 

PDA1-O HCM-CSHL-0080-C25 

PDA2-O HCM-CSHL-0077-C25 

PDA9-O HCM-CSHL-0081-C25 

PDA20-O HCM-CSHL-0092-C25 

 

Tissue digestion from 4 specimens was also directly seeded on tissue-culture 

vessels for initiation of monolayer cell cultures using the following medium: 

Advanced DMEM/F12 medium (Gibco) supplemented with HEPES (1X, Gibco), 

GlutamaxTM (1X, Gibco), PrimocinTM (1 mg/mL, Invivogen), mouse Epidermal 

Growth Factor (50 ng/mL, Gibco), Dexamethasone (3 nM, Sigma), and 5% Fetal 

Bovine Serum (FBS, Gibco). Both monolayer cell cultures and organoids were 

routinely tested for the presence of mycoplasma using MycoAlert Detection Kit 

from Lonza, in accordance with the manufacturer’s instructions.  
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Lentiviral infection of cell lines and organoids  

Stable knockdown of FGFR1 and FGFR4 was achieved using validated short 

hairpin RNAs (shRNA) against human FGFR1 (TRC clone 574) and human 

FGFR4 (TRC clone 884, 885, and 419) in the vector pLKO.1-puro-CMV-tGFP 

(Sigma-Aldrich). The vector TRC2 pLKO.5-puro (Sigma-Aldrich) was used as 

non-targeting control (NTC) of the infection. Lentiviruses were produced in 

HEK293T cells by transfecting plasmids (containing the GFP cassette) and the 

packaging plasmid VSV-G with X-tremeGENE9 (Roche, 063665110101). The 

viral supernatants were harvested at 48 hours and cell debris removed prior to 

infection. To concentrate lentivirus, Lenti-X concentrator (TaKaRa Bio) was used. 

Transduction of monolayer cell cultures was performed by adding the viral 

supernatants supplemented with 1 µg/mL of Polybrene (Santa Cruz Biotechnology) 

to cells having 50-60% of confluency. Two days after infection, 2 µg/mL of 

puromycin (Gibco) was added for antibiotic selection. For transduction of 

organoids, cultures were first released from Matrigel(R) by incubation with a 

solution of Dispase I at 37°C for 20 minutes, and then subjected to enzymatic 

digestion with TripLE (Gibco) supplemented with Dispase I and 0.1 mg/mL DNAse 

I (Sigma-Aldrich) for 20 minutes. 1x105 single cells were resuspended with the 

transduction medium supplemented with 1 µg/mL of polybrene, spinoculated at 600 

x g for 1 hour at room temperature, and incubated for 16 hours at 37°C. The 

following day, cell suspension was recovered and seeded in Matrigel(R). Two days 

after infection, cells were treated with 2 µg/mL puromycin (Gibco) for antibiotic 

selection. Successful transduction was assessed by visualizing GFP positivity of 

cells with the EVOS Cell Imaging System (Thermo Fisher Scientific), and 

antibiotic selection stopped when the treatment caused extinction of the 

untransduced cultures. The sequences of shRNAs against FGFR1 and FGFR4 are 

as follows: 
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Target location Clone ID DNA Sequence 

3UTR TRCN0000199419 CCTGACACAGTGCTCGACCTT 

CDS TRCN0000219885 TGTGGGCAGCATCCGCTATAA 

CDS TRCN0000219884 CCCTCGAATAGGCACAGTTAC 

CDS TRCN0000312574 TGCCACCTGGAGCATCATAAT 

 

For in vitro drop-out experiments with organoids, the viral supernatants were 

adjusted to achieve an 80% of GFP+ ratio. As control, organoids were transduced 

with pre-made GFP expressing lentiviral particles (CMV-neo, Amsbio). 

 

Animal Studies 

Six- to Eight-weeks old NSG (NOD.Cg-Prkdcscid;Il2rgtm1Wjl) mice were purchased 

from Charles River Laboratory (Milan). All animal experiments regarding 

transplanted mice were conducted in accordance with procedures approved by 

CIRSAL at University of Verona (approved project 655/2017-PR). No statistical 

methods were used to predetermine sample size estimate for transplantation 

experiments, which was instead based on preliminary experiments showing an 

engraftment rate above 95% for both cell lines and organoids. Therefore, a 

minimum of 5 successful grafts (per group) was considered suitable to consistently 

identify differences between groups in terms of tumour growth. For orthotopic 

transplantation of either cell lines (1x106 cells) or dissociated organoids (1x106 

cells), mice were anesthetized using isoflurane and an incision was made in the left 

abdominal side at the level of the spleen. Cells were resuspended in 50 µl of a 2:3 

dilution of Matrigel(R) (Corning) and cold PBS (Gibco) and injected into the tail 

region of the pancreas using insulin syringes (BD micro-fine 30 Gauge). The 

injection was considered successful by the development of bubble without signs of 

leakage. Mice with signs of leakage upon injection were excluded from the studies. 

The abdominal wall was sutured with absorbable vicryl sutures (Vetsuture), and the 

skin was closed with wound clips (CellPoint Scientific Inc.). Monitoring of tumour 

growth was performed as previously described (Olive et al., 2009). Briefly, 

following weekly manual palpation starting 10 days following transplantation, 
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tumour-bearing mice were subjected to high-contrast ultrasound screening using 

the Vevo 2100 System with a MS250, 13–24 MHz scanhead (Visual Sonics). Mice 

were sacrificed at the indicated time points (4-5 weeks, once the tumour masses 

have reached the 10 mm in diameter). Pancreas, spleen, lungs and liver were 

collected for downstream analysis. 

 

Transient Knockdown in Cell lines 

For small interfering RNA (siRNA) knockdown experiments, siRNA constructs 

were purchased from Thermofisher Scientific (s5176, s229971, s13869, s5164) and 

primary cell cultures or established cell lines were transfected with either 25 or 50 

pmol of siRNA using LipofectamineTM 2000 (Thermofisher Scientific, #11668027) 

according to manufacturer’s instruction for 6-well plates format. The sense strand 

of the duplex siRNAs was: FGFR4, 5' CAUUGACUACUAUAAGAAAtt 3’; 

ZEB1, 5’GGUAGAUGGUAAUGUAAUATT 3’; HNF1A, 5’ 

AGACUAUGCUCAUCACCGATT 3’; and FGFR1, 5’ 

GAGGCUACAAGGUCCGUUAtt 3’. Non-targeting siRNA (Ambion) was used as 

negative control at a final concentration of 25 pmol.  

 

Cell Proliferation Assay 

For measuring cell proliferation, 2x103 cells were plated on white 96-well plate 

(Thermofisher Scientific) and cultured in 100 μL of culture medium. Cell viability 

was measured 72 hours post-seeding using the CellTiter-Glo assay (Promega, 

G9683).  

 

Fluorescent activated cell sorting 

Fluorescent activated cell sorting (FACS) analysis was performed in order to 

evaluate the percentage of GFP positive cells. Before the analysis, organoids were 

first released from Matrigel(R) by incubation with a solution of Dispase I at 37 °C 

for 20 minutes, and then subjected to enzymatic digestion with TripLE 
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supplemented with Dispase I and 0.1 mg/mL DNAse I (Sigma-Aldrich) for 20 

minutes, until the organoids appeared as single cells under the microscope. Cells 

were filtrated (Cell Strainer 40μm Nylon, BD Falcon), resuspended in cold PBS 

and acquired using FACS Canto II (BD Biosciences). Data were analysed using 

FlowJo software (Flowjo LLc). Untransduced and GFP-stably expressing cells 

were used as negative and positive controls, respectively. 

 

Nascent protein detection 

To visualize nascent proteins, the Click-iT Protein Synthesis Assay Kit reagents 

(Invitrogen) was used. Cells were plated on black 96-well plates (Thermofisher 

Scientific) and cultured for 24 hours in DMEM methionine-free (Gibco) medium 

supplemented with 1X HEPES and 1X Glutamax. Cells were transfected with 

siRNA as previously described. Two days post-transfection, cells were incubated 

with the methionine analog L-homopropargylglycine (HPG) for 30 minutes at final 

concentration of 50 µM in methionine-free medium under conditions optimal for 

the cells (humidified atmosphere at 37°C and 5% CO2). After washing with cold 

PBS, cells were fixed with 3.7% formaldehyde (Sigma-Aldrich) for 15 minutes at 

room temperature, followed by a permeabilization step using 0.5% Triton X-100 

(Sigma-Aldrich). The Click-iT reaction, with Alexa-488 detection reagents, was 

performed according to the manufacturer’s protocol. For the control experiment and 

to confirm the specificity of the signal, 300 µg/mL cycloheximide (Sigma-Aldrich), 

a protein synthesis inhibitor, was added 30 minutes before HPG addition. After the 

Click-iT reaction, cell plates were scan using VICTOR 3 1420 multilabel counter 

plate reader (PerkinElmer) to assess nascent protein synthesis by determining signal 

intensity in the fluorescent channel of FITC. Two dimensional cultures were also 

imaged using Axio Observed Z1/7 inverted Wide field microscope (Zeiss) with 

40x objective magnification and digitalized by the Zeiss Zen software. 
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Therapeutic experiments with cell cultures 

BGJ398 (S2183, Selleckchem), BLU3391 (S7819, Selleckchem), and Everolimus 

(S1120, Selleckchem) were dissolved in DMSO (Sigma-Aldrich). The final 

concentration of DMSO was no higher than 0.2%. Briefly, cells were dissociated to 

single cells by enzymatic dissociation with 1X Trypsin (Gibco) at 37°C for 2 

minutes, counted and seeded in a range concentration of 1x103 – 2.5x103 cells into 

individual wells of a white 96-well plate. After 24 hours, cells were treated with 

appropriate drugs for 48 hours using drug concentrations ranging from 0.1 nM to 

10 µM. Proliferation was measured using CellTiter-Glo assay per the 

manufacturer’s protocol. For treatment with Everolimus, cells were counted and 

diluted to obtain 20 cells/µL in 100 µL of Opti-MEMTM supplemented with 5% 

FBS. 100 µL of cells-containing medium was plated into individual wells of a white 

96-well plate. Twenty-four hours after culture, cells were transfected with siRNA 

against FGFR4 and non-targeting small interfering RNA control, as previously 

described. The concentration of Everolimus necessary to achieve inhibition of 

activity by 50% (IC50) was calculated using concentrations ranging from 0.1 nM to 

10 µM (7-point curve). 1 µM of drug was added in 100 µL of culture medium 48 

hours post-plating, with nine replicate wells for each sample. At day 5, cell viability 

was measured using a luminescence ATP-based assay (CellTiter-Glo). Cells were 

also treated with 5 ng/mL of human TGFβ1 (#100-21, Peprotech), alone or in 

combination with 500 nM of A83-01 (#2939, Tocris Bioscience), 25 ng/mL of 

Recombinant Human FGF-basic (#100-18C, Peprotech), 100 ng/mL of 

Recombinant Human FGF10 (#100-26, Peprotech), 100 ng/mL of Recombinant 

Human FGF19 (#100-32, Peprotech), and 2% of Fetal Bovine Serum (FBS, Gibco). 

 

Histology and Immunohistochemistry 

Tissues were fixed in 10% neutral buffered formalin and embedded in paraffin. 

Sections were subjected to Hematoxylin and Eosin as well as immunohistochemical 

staining. The following primary antibody was used for immunohistochemical 

staining of xenografts: Phospho-4E-BP1 (Thr37/46) (#2855, Cell Signaling), 1:400. 

Slides were scanned at 40x magnification and digitalized using the Aperio Scan-
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Scope XT Slide Scanner (Aperio Technologies). Quantification of p-4E-BP1 

staining was performed in at least five random nonoverlapping fields of 

visualization (magnification, 20x) in each sample using ImageJ. To measure the 

percentage of positive area, captured images were first color deconvoluted and 

DAB+ particles counted automatically. The percentage of strong positive pixels 

was calculated relative to the number of nuclei present in each of the selected areas. 

Positivity for p-4E-BP1 was rarely seen in non-neoplastic cells.  

 

Immunofluorescence 

Cells (5 x 103 cells per chamber) were seeded into chamber culture slides (BD 

Falcon) in culture media. The next day, cells were rinsed with ice-cold PBS and 

fixed with 3.7% formaldehyde for 10 minutes at room temperature followed by 

permeabilization with 0.5% Triton X-100. The cells were subjected to 

immunofluorescence staining with the following primary antibodies: PDX1 

(#EPR3358, ab134150, Abcam), 1:100; and Cytokeratin 5 (CK5) (NCL-L-CK5, 

Leica Biosystems), 1:100. All antibodies were incubated for 2 hours at room 

temperature. The cells were then washed with cold PBS three times for 3 minutes 

and incubated with Alexa 488-labeled anti-rabbit secondary antibody (1:500) 

(Invitrogen), and Alexa 555-labeled anti-mouse secondary antibody (1:500) 

(Invitrogen) at room temperature for 1 hour. A final step of washes in cold PBS was 

completed at room temperature followed by mounting with DAPI (Vector 

Laboratories). The cells were examined by Olympus BX61 Upright fluorescence 

microscope (Leica). 

 

In Situ Hybridization  

The in-situ hybridization (ISH) was performed on 4 μm section of human PDAC 

tissues (n = 106) and on xenografts. Briefly, sections were deparaffinized by 

incubation with xylene for 10 minutes, 100% ethanol for 2 minutes and then let dry 

for 5 minutes at room temperature. Slides were incubated for 10 minutes with 

RNAscope® Hydrogen Peroxide (Advanced Cell Diagnostics), washed with 
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distilled water and incubated for 20 minutes at 99°C with RNAscope® 1X Retrieval 

Reagents (Advanced Cell Diagnostics). Sections were rinsed in distilled water and 

dehydrated in 100% ethanol for 3 minutes and let dry at room temperature. Then, 

the slides were incubated at 40°C for 10 minutes with RNAscope® Protease Plus 

(Advanced Cell Diagnostics), washed with distilled water and incubated with the 

appropriate probe for 2 hours at 40°C, followed by washes with RNAscope® 1X 

Wash Buffer (Advanced Cell Diagnostic). The different RNAscope® 2.5 HD 

AMPs (Hs-FGFR1-C2 and Hs-FGFR4-no-XMm-C1, Advanced Cell Diagnostics) 

were added to the slides following manufacturer’s instructions. Positive control 

probe Hs-UBC and 2-plex negative control probe (Advanced Cell Diagnostics) 

were used as positive and negative control, respectively. Then, slides were 

incubated for 10 minutes at room temperature with either ImmPACT™ DAB 

Substrate Kit (DBA) or RNAscope® 2.5 HD Detection Reagent- RED (Advanced 

Cell Diagnostic). Slides were stained with hematoxylin, dried at 60°C for 15 

minutes and mounted with VectaMount® mounting medium (Vector Laboratories). 

Slides were scanned at 40x magnification and digitalized using the Aperio Scan-

Scope XT Slide Scanner. For each case, two consecutive tissue sections were 

prepared and stained for FGFR1 and FGFR4. Only RNA signals from neoplastic 

cells were evaluated in a minimum of 5 field of investigations (at 20X 

magnification). The following semiquantitative method was used for scoring: score 

0, no or rare signals (dots); score 1, between 3 and 10 dots per cell at 20X 

magnification; score 2, more than 10 dots (or clusters) per cell. For each marker, 

cases were considered high if showing an average score > 1.5, and low if showing 

a score of < 1.5. A total of 97 cases were suitable for evaluation of the mRNA 

expression of both FGFR1 and FGFR4; of those 76 had available overall survival 

data for correlation analyses. 

 

Immunobloting  

Protein lysates were prepared using Cell Signaling Lysis Buffer (Cell Signaling) 

and separated on 4-12% Bis-Tris NuPAGE gels (Life Technologies), transferred 

onto a PVDF membrane (Millipore) and incubated with the following antibodies: 
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FGFR4 (8562, Cell Signalling), FGFR1 (9740, Cell Signalling), Akt (9272, Cell 

Signalling), phospho-Akt (4060, Cell Signalling), phospho-S6 Ribosomal protein 

(4858, Cell Signalling), S6 Ribosomal protein (2217 ,Cell Signalling), phospho-4E-

BP1 (2855, Cell Signalling), 4E-BP1 (9644, Cell Signalling), ERK1/2 (9102, Cell 

Signalling), phospho-ERK1/2 (4376, Cell Signalling), phospho-FRS2 (2864, Cell 

Signalling), STAT3 (12640, Cell Signalling), phospho-STAT3 (Tyr705, 9145 Cell 

Signalling), Vimentin (NCL-L-VIM-V9, Leica Biosystems), HER3/ErbB3 (12708, 

Cell Signalling), ZEB1 (203829, Abcam), HNF1A (sc-393925, Santa Cruz 

Biotechnology), E-Cadherin (M3612, Dako), RAS (F234, Santa Cruz 

Biotechnology). Vinculin (4650, Cell Signalling), GADPH (5174, Cell Signalling) 

(sc-166545, Santa Cruz Biotechnology), β-Actin (4967, Cell Signalling) were used 

as loading control. The immunoblots were visualized with ECL plus 

(Amersham/GE Healthcare Europe GmgH).  

 

qRT-PCR analysis 

RNA was extracted with Trizol® Reagent (Life Technologies) method. 1 µg of 

DNase-treated RNA was reverse transcribed using TaqMan® Reverse 

Transcription reagents (Applied Biosystems) in a volume of 20 µL according to the 

manufacturer’s instructions. Samples were diluted to a final concentration of 10 

ng/µL. TaqMan was performed in triplicate using 20 ng of cDNA and the following 

TaqMan® probe (TaqMan® Gene Expression Assay): FGFR4 (Hs01106908_m1), 

FGFR1 (Hs00915142_m1), ZEB1 (Hs00232783_m1), SNAI1 (Hs00195591_m1), 

CDH1 (Hs01023894_m1), TWIST1 (Hs01675818_s1), KRAS (Hs00364284_g1), 

and HNF1A (Hs00167041_m1). HPRT1 (Hs02800695_m1) was used as reference 

gene. Relative gene expression quantification was performed using the ΔΔCt 

method with the Sequence Detection Systems Software, Version 1.9.1 (Applied 

Biosystems). 
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RNA sequencing  

RNA was extracted from PDAC monolayer cultures and organoids using TRIzol 

(Life Technologies), followed by column-based purification with the PureLink 

RNA Mini Kit (Ambion). The quality of purified RNA samples was determined 

using a Bioanalyzer 2100 (Agilent) with an RNA 6000 Nano Kit. RNAs with RNA 

Integrity Number (RIN) values greater than 8 were used to generate sequencing 

libraries using the TruSeq sample Prep Kit V2 (Illumina) according to the 

manufacturer’s instructions. RNA-Seq libraries prepared from organoids (n = 5) 

and primary cell cultures (n = 3) were multiplexed and sequenced using a NextSeq 

500 platform with paired-end reads of 150 bases with a final coverage of 30 million 

reads per sample. RNA-Seq libraries prepared from established cell cultures (n = 

20) were multiplexed and sequences using a NextSeq 500 platform with paired-end 

reads of 75 bases with a coverage of 3 million reads per sample. After quality 

control and adaptor trimming, RNA-seq reads were aligned to the GRCh38 genome 

build using Salmon v1.4.0 (Patro et al., 2017). Then, transcripts quantification was 

imported in R through tximport package v4.0 (Soneson  et al., 2015). Finally, count 

data was normalized using the R/Biocondutor package DESeq2 v1.30.0 (Love  et 

al., 2014) in order to produce an integrated matrix of expression values. This matrix 

was used for all downstream analyses. Differentially expression analysis has been 

performed using DESeq2 (Love  et al., 2014). Gene set enrichment analysis (GSEA) 

was performed with fgsea R package v1.16.0 (Subramanian et al., 2015) and 

enrichR package v3.0 (Kuleshov et al., 2016) using the list of differentially 

expressed genes sorted by log2 of fold change. Pathways are from the MSigDB 

database and in particular Gene Ontology, KEGG, Biocarta, Reactome and 

Hallmark gene sets. fgsea function was used with default parameters. Results were 

considered significant for FDR < 0.05. GSVA R package v1.38.2 (Hänzelmann et 

al., 2013) was used to calculate the main PDAC transcriptomics subtypes (Bailey 

et al., 2016; Moffitt et al. 2015) gene set scores. Gsva function was used with ssgsea 

and gene set scores were compared among knockdown and control samples with 

Wilcoxon rank-sum test.  
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Single-cell RNA-Sequencing  

For the integration of scRNA-seq datasets from PDAC tissues, we used the 

Harmony algorithm (Korsunsky  et al., 2019) via the R package harmony in order 

to account for the technical differences of the four datasets. The datasets (Peng et 

al. 2019 (primary PDAC = 24, ncells = 41964), Lin et al. 2020 (primary PDAC = 

10, ncells = 7752), Chan-Seng-Yue et al. 2020 (primary PDAC = 13, ncells = 

33970) and Steele et al. 2020 (primary PDAC = 16, ncells = 42844)) were first 

preprocessed individually using Seurat (Hao et al., 2021) for quality control and 

filtering (percent_mt_max = 20, nFeature_min = 500, nCount_min = 500, 

nCount_max = 50000) and then integrated using harmony function with default 

parameters and grouping by dataset variable. Cells were annotated with singleR 

package using the preloaded dataset HPCA from the celldex package (Aran et al., 

2019) to stratify gene expression by cell population. For the normal pancreas 

scRNA-seq datasets, we used the integration pipeline implemented in the Seurat R 

package (Stuart et al., 2019) with default parameters. The three dataset Muraro et 

al., 2016 (ncells=2285), Segerstolpe et al., 2016 (cells = 2394) and Grün et al., 2016  

(ncells = 1004) were downloaded from the Seurat V3 repository together with their 

annotation metadata. The preprocessing of the datasets counts data is described in 

Stuart et al., 2019; the downloaded datasets set were 

imported and managed through the R package Seurat V4.0.1 (Hao et al., 2021). 

 

Statistical Analysis and Data mining 

For data mining and pancreatic cancer subtypes stratifications we used different 

gene expression datasets. The two main datasets were the PACA-AU cohort of the 

ICGC consortium and the TCGA-PAAD cohort of the TCGA consortium. The first 

was downloaded from the supplementary material of the corresponding publication 

(Bailey et al., 2016). This dataset contains normalized expression values (TMM 

normalized using edgeR Bioconductor package, converted to CPM and log2 

transformed) of 96 pancreatic cancer patients. For subtypes stratification, Z-scores 

were calculated for each gene. Associated clinical data were downloaded from 

https://dcc.icgc.org/releases/current/Projects/PACA-AU. The second dataset 
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represents the TCGA-PAAD cohort (Cancer Genome Atlas Research Network, 

2017), downloaded from http://firebrowse.org/?cohort=PAAD, which consists of 

the RNA-Seq gene expression profile of 178 pancreatic cancer patients. According 

to other publications that disputed the histologies of some samples, we restricted 

the samples’ number to 148. Additional datasets included: PanCuRx (Chan-Seng-

Yue et al., 2020) (EGA archive accession ), Moffitt et al. (Moffitt et al., 2015) (GEO 

accession: GSE71729), and Cancer Cell line Encyclopedia (CCLE) (Barretina et 

al., 2012). PanCuRx dataset was preprocessed with STAR v2.7.6a (Dobin  et al., 

2013) and RSEM v1.3.1 (Li et al., 2011) and eventually a vst expression matrix was 

produced. For Moffitt dataset, we downloaded the matrix of log2-transformed 

background-corrected Cy5 microarray signal, whereas for CCLE cohort we 

downloaded the TPM matrix. For harmonization, Z-scores standardization was 

independently performed for each dataset before subsequent analysis. Expression 

of FGFR1 and FGFR4 were stratified according to tumour stage, subtype 

classification and survival status. The correlation of FGFR1 and FGFR4 expression 

with other genes was evaluated using Spearman’s correlation test (significant p-

value < 0.001). To classify tumours from the PanCuRx and the ICGC datasets 

according to the expression of FGFR1, FGFR4, and GATA6, the distribution of 

their transcripts levels in the respective cohorts was assessed. We observed a 

bimodal and a normal distribution in the PanCuRx and in the ICGC, respectively. 

Samples from Bailey et al. were therefore stratified according to the median value 

of FGFR1, FGFR4, and GATA6 expression. In the PanCuRx dataset, the following 

thresholds were used for FGFR1 FGFR4, and GATA6, respectively: < 3.3, < 3.4, 

and 3.5 vst. Survival analysis has been performed through the R packages survival 

v3.2.10 and the graphical representation done with survminer v0.4.9 

(https://CRAN.R-project.org/package=survival). We integrated the levels of 

FGFR4 and FGFR1 expression with follow-up information for patients and drew 

Kaplan-Meyer curves for survival stratifying the results according to mean, median, 

1st and 3rd quartiles. GraphPad Prism was used for graphical representation of data. 

Unless indicated, all the p-values refer to Student t test. 
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ChIP-Seq and DNA Methylation datasets 

We analyzed ChIP-seq data from two different datasets: Kalisz et al. (Kalisz et al., 

2020), which included H3K27ac, H3K27me3, and HNF1A ChIP-seq for mouse 

pancreatic cells proficient and deficient for HNF1A and all integrated with 

expression data; Diaferia et al. (Diaferia et al., 2016) which included H3K27ac, 

H3K4me1, H3K4me3, and H3K9me9 ChIP-Seq data and corresponding RNA-seq 

data for low grade and high grade PDAC cells. In both cases, data were 

preprocessed as described in the referenced papers with the only difference that 

Diaferia et al. dataset was re-aligned to GRCh38 human genome build. DNA 

methylation data were retrieved from Nones et al. (Nones et al., 2014) The 

methylation score for FGFR4 was eventually compared to expression data and 

stratified according to the Bailey et al. (Bailey et al., 2016) subtype classification. 
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SUPPLEMENTARY FIGURES 

 

 
 

 

Supplementary Figure 1: Expression of FGFR4 and FGFR1 in pancreatic samples A 

Violin plots of the normalized expression of FGFR4 (left panel) and FGFR1 (right panel) 

in each annotated cell cluster from the scRNA-seq of normal adult pancreas from 3 different 

datasets (Muraro et al., 2016; Grun et al., 2016; Segerstolpe et al., 2016). B Representative 

ISH images showing expression of FGFR4 and FGFR1 in normal pancreas. Scale Bar, 100 

µm. Insets show magnification of selected areas: 1, islet of Langerhans; 2, acinar cells; and 

3, ductal cells. C Density plot showing the distribution the FGFR4 and FGFR1 mRNA 

expression levels in the PanCuRx cohort (Chan-Seng-Yue et al., 2020). The dashed vertical 
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lines refer to the value of mRNA levels (vst) that has been used as threshold to define low- 

versus high-expressing samples. D GSVA score (using ssgsea method) for the squamous 

signature (Moffitt et al., 2015) for each sample of the PanCuRx cohort (Chan-Seng-Yue et 

al., 2020) according to the expression of FGFR1 and FGFR4. *, p < 0.05; **, p < 0.01; 

****, p < 0.0001; and ns, not significant as determined by Wilcoxon test. E Stacked bar 

plot showing the Moffitt molecular subtypes distribution according to the FGFR4 

expression status in the ICGC (left) and the PanCuRx cohorts (right). F Stacked bar plot 

showing the Moffitt molecular subtypes distribution according to the GATA6 expression 

status in the ICGC (left) (Bailey et al., 2016) and PanCuRx (right) (Chan-Seng-Yue et al., 

2020. cohorts. G Stacked bar plot showing the molecular subtypes distribution according 

to the FGFR4 expression status in the PanCuRx cohorts. 
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Supplementary Figure 2: Expression of FGFR4 and FGFR1 in tissues and in vitro 

models of PDAC. A Representative ISH images of PDAC tissues showing no (0), 

moderate (1) or high (2) expression of FGFR4 or FGFR1. Scale bars, 60 µm. B Stacked 

bar plot showing the distribution of morphological grades according to the FGFR4 

expression status in the PDAC tissue cohort. **, p < 0.01 by two-sided Chi-square test. C 

Representative ISH images of PDAC tissues showing either poor (top) or well (bottom) 

differentiation; scale bar, 60 µm. D Immunoblot analysis for ZEB1, ErbB3, E-Cadherin, 

and Vimentin in whole-cell lysates of 6 PDAC cell cultures. β-Actin was used as loading 

control. E Representative immunofluorescence staining of PDX1 (green) and CK5 (red) in 

four PDAC cell lines. Counterstain, DAPI (blue); magnification 100x. Quantification of 

PDX1+ cells and CK5+ cells in four PDAC cell lines is provided in the right panel as 

number of positive cells in a minimum of 5 field of visualization (FOV) per cell line. F 

Representative fluorescence in situ hybridization of FGFR4 and FGFR1 in 6 PDAC cell 

cultures. DAPI, blue; FGFR1, green; FGFR4, red. G Immunoblot analysis of FGFR1 and 

FGFR4 in whole-cell lysates of 5 PDAC organoid cultures. Vinculin was used as loading 

control. The classical and the basal-like signature scores were calculated for each PDAC 

organoid cultures using GSVA (ssgsea method). 
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Supplementary Figure 3: FGFR1 is associated with the EMT phenotype in PDAC. A 

cBioportal oncoprint visualization of genetic alterations (single-nucleotide variations, 

copy-number variations, and structural variations) in samples from the ICGC (Bailey et al., 

2016) and TCGA (Cancer Genome Atlas Research Network, 2017) cohorts. B-C 

cBioportal Boxplot visualization of the correlation between FGFR1 (B) and FGFR4 (C) 

mRNA and copy-number status for samples of the ICGC (Bailey et al., 2016) and TCGA 

(Cancer Genome Atlas Research Network, 2017) cohorts. D Classification of primary 

PDAC cell cultures based on RNA-Seq. At the bottom, immunoblot of whole-cell lysates 

showing different levels of FGFR4. Vinculin, loading control. E Competition based-assay 
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in PD9-O following infection with the shRNA targeting FGFR1. Representative phase-

contrast images (top), GFP signal (green, middle panel) and merged images (bottom panel) 

demonstrating loss of GFP positivity over time. Scale bar as indicated. At the bottom, 

quantification of the GFP positivity (as percentage of signal compared to P0) over time of 

PDA9-0 transduced with the indicated vector linked to GFP. Data presented as mean + 

SEM (n = 3). (F) Volcano plot of differences in gene expression between control (n = 3) 

and FGFR1 knocked down (KD) cells (n = 3). Indicated are some of the genes with log2FC 

expression  2 and adjusted p < 0.05. (G) Enrichment of pathways in Hs766T following 

FGFR1 knock-down. The GSEA analysis was performed using gene sets from 

HALLMARK database in MsigDB library. Displayed are gene sets that passed FDR < 0.05.  
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Supplementary Figure 4: Loss of FGFR4 enhances the malignancy of PDAC cells. A 

Representative snapshot of the genomic region of FGFR4 in MiaPaCa2 (high-grade, basal-

like) and Capan-1 (low-grade, classical) from Diaferia et al. (Diaferia et al., 2016) showing 

histone modification (H3K27ac) and RNA-seq data. B Volcano plot of differences in gene 

expression between control (n = 2) and HNF1A knocked down (KD) cells (n = 3). Indicated 

are some of the genes with log2FC expression  2 and adjusted p < 0.05. C Stacked bar plot 

showing the distribution of primary and metastatic cases from the PanCuRx cohort 
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according to the FGFR4 expression status. p, Chi-Square test. D Immunoblot for FGFR4 

in hT3 PDO transduced with either mock control of the shRNA targeting FGFR4. Vinculin 

was used as loading control. The transplantations were performed with the hT3 transduced 

with the sh884. E Representative ISH staining of FGFR1 in PDA9-O transduced with NTC 

or shFGFR4. Scale bar, 50 μm. F Relative growth (as percentage of cell proliferation) of 

HPAF-II, PDA23, PDA9, and PDA2 cells transiently transfected with either the control 

vector (NTC) or the siRNA targeting FGFR4. Data presented are means ± SD of 3 

biological replicates. G Enrichment of selected pathways (GSEA) when comparing FGFR4 

low versus FGFR4 high tumours of the ICGC cohort (Bailey et al., 2016). GSEA was 

performed using gene sets from REACTOME, GO, Hallmark, and REACTOME databases 

in MsigDB library. Displayed gene sets that passed false-discovery rate < 0.05.  
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Supplementary Figure 5: Transcriptional changes associated with the 

downregulation of FGFR4 in pancreatic cancer. A Expression of classical and basal-

like genes in FGFR4 low versus FGFR4 high tumours of the ICGC cohort (Bailey et al., 

2016). ****, false discovery rate (fdr) < 0.0001; ***, fdr < 0.001; **, fdr < 0.01; and *, fdr 

< 0.1 by Wald test. B Enrichment of Interferon related pathways when comparing FGFR4 

low versus FGFR4 high tumours of the ICGC cohort (Bailey et al., 2016). C Immunoblot 

analysis of FGFR4 in whole-cell lysates of 3 PDAC cultures transfected with either mock 

control or siRNA targeting FGFR4. Vinculin was used as loading control. The progenitor 

and the squamous signature scores were calculated for each culture using GSVA (ssgsea 

method) and are based on the classification proposed by Somerville et al. (Somerville et 

al., 2018) D GSEA plot evaluating the Gene Program 5 (GP5, c-Myc activity) from the 

Bailey classificatory (Bailey et al., 2016) upon FGFR4 knockdown in AsPC1 cell line. E 
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Enrichment of Myc-related and proliferation-related pathways upon downregulation of 

FGFR4 in AsPC1. F-G Expression of classical (blue) and basal-like (red) markers in cells 

depleted of FGFR4 (as compared to parental cells). H Immunoblot analysis of E-cadherin 

in SUIT2 and AsPC1 cells upon knockdown of FGFR4. GAPDH was used as loading 

control. I Expression of FGFR4 in ductal cells classified as classical or basal-like from 

Peng et al. (Peng et al., 2019) ****, p < 0.01 by Student t test. J Samples from Peng et al. 

ranked by mean FGFR4 expression in the epithelial compartment. The cases in blue and 

red were considered as FGFR4 low (n = 4) and high (n = 4), respectively. K Expression of 

classical/progenitor and basal-like/squamous markers in FGFR4high and FGFR4low 

epithelial cells from J. 
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Supplementary Figure 6: Loss of FGFR4 is associated to hyperactivation of mTORC1 

in PDAC. A Immunoblot analyses of p-FRS2, p-ERK1/2 in whole cell lysates from HPAF-

II transfected with either control (NTC) or siRNA targeting FGFR4. GAPDH was used as 

loading control. Cells were serum-starved for 8 hours and then either left untreated or 

stimulated with FGF2 (25 ng/mL), and 2% CS-FBS for 20 minutes. B Immunoblot analyses 

of p-ERK1/2, total ERK1/2 in whole cell lysates from SUIT2 transfected with either control 

(NTC) or siRNA targeting FGFR4. Vinculin was used as loading control. Cells were 

serum-starved for 8 hours and then either left untreated or stimulated with FGF2 (25 

ng/mL), FGF19 (100 ng/mL), and 2% CS-FBS for 20 minutes. C Immunoblot analyses of 

p-STAT3, and total STAT3 in whole cell lysates from HPAF-II, and SUIT2 cell lines (in 

blue). For SUIT2, the same cell lysates from B were used, therefore the same Vinculin blot 
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is used for normalization. Bottom panel, immunoblot analysis of p-STAT3, total STAT3, 

p-ERK1/2, and total ERK1/2 for AsPC1 (in red). Vinculin was used as loading control. 

Numbers on top of the p-STAT3 and p-ERK1/2 refers to the quantification of the 

phosphorylated levels by normalizing first for the loading control and then for total level 

of the proteins. For all panels, cells were serum starved and treated as indicated. D Bar 

plots showing the quantification of changes in the phosphorylated levels of selected 

proteins (p-AKT, p-S6, and p-4E-BP1) as relative density of the total protein level. From 

Fig 6C. Data presented as means ± SD of four biological replicates. *, p < 0.05; **, p < 

0.01; ***, p < 0.001 by Student’s t-test. E-G Immunoblot analyses of FGFR4, and selected 

components of the mTORC1 pathway in whole cell lysates from 3 different primary PDAC 

cell lines transfected with either control (NTC) or siRNA targeting FGFR4. GAPDH was 

used as loading control. Cells were serum-starved for 8 hours and then either left untreated 

or stimulated with FGF2 (25 ng/mL), FGF19 (100 ng/mL), and 2% CS-FBS for 20 minutes. 

Quantification of changes in the phosphorylated levels of selected proteins (p-S6, and p-

4E-BP1) is provided in the bar plots on the right. H Immunoblot analyses of p-4E-BP1 in 

whole cell lysates from AsPC1 and SUIT2 cell lines treated as in E-G. For both AsPC1 and 

SUIT2, the same cell lysates from B were used, therefore the same Vinculin blot is used 

for normalization using the serum-starved mock-transfected cell lines as reference. I 

EnrichR pathway analysis of significantly over-represented genes in HPAF-II lacking 

FGFR4.  
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CHAPTER 2 
 

Differential Activation of MAPK Defines Fibroblast 

Subtypes in Pancreatic Cancer 

 

ABSTRACT 

Fibroblast heterogeneity is increasingly recognised across cancer conditions. Given 

their important contribution to disease progression and therapy response, mapping 

out fibroblasts’ heterogeneity is of outmost importance to devise effective anti-

cancer therapies. Cancer-associated fibroblasts (CAFs) are the most abundant cell 

population in pancreatic ductal adenocarcinoma (PDAC) tissues. Different PDAC 

neoplastic cell states have been described and many activated CAFs phenotypes. 

However, whether CAFs phenotypes are differently specified by PDAC cell 

lineages remains to be elucidated. Here, we used pathway mapping analysis and 

context-dependent pathway response signatures to infer MAPK activity and 

dependency in heterogeneous expression data from models and patients' samples. 

We complemented this approach by in situ expression analysis and found that the 

stromal, but not epithelial, MAPK activity discriminated basal-like from classical 

tumours. CAFs displaying elevated MAPK activity were specifically anchored to 

the basal-like/squamous cells in both human primary tissues and 

xenotransplantation models. Leveraging scRNA-seq data from mouse tumour 

tissues following short-term perturbation of the pathway, we found that MAPK 

signalling pathway is critical to the definition of PDAC CAFs phenotypes. 

Contrasting the two conditions with known differential pathway activity, we 

demonstrated the general dependency of myCAFs on MAPK activity obtained 

gene-expression signatures of CAFs displaying MAPK hyperactivation. Gene 

expression signatures of MAPKhigh CAFs (sMEK) from mouse tumours suggested 

metabolic rewiring and immunoregulatory function. Ligand-receptor analysis in 

untreated and treated samples identified a MAPKhigh CAF- epithelial cells crosstalk 

based on INHBA (encoding for Activin-A). Disruption of this crosstalk in vivo and 



84 
 

modelling of Activin-A activity in vitro suggested a role for this protein in 

sustaining the basal-like phenotype through suppression of endodermal 

transcription factor expression. Finally, we found that gene expression signatures 

of MAPKhigh CAFs correlated with poor prognosis in several cancer conditions, 

including PDAC, and with reduced response to immunecheckpoint inhibition in 

bladder cancers. 
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INTRODUCTION 

 

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive cancer 

with a 5-year survival rate of 11% (Siegel et al., 2022). This dismal prognosis is 

mainly due to the lack of specific symptoms that leads to a late diagnosis, with only 

15-20 % of the patients presenting with a resectable disease (Gobbi et al., 2013). 

For the patients who are not eligible for surgery, standard chemotherapy provides a 

modest survival benefit. Two consensus molecular subtypes of PDAC have been 

proposed based on the transcriptomic profile of neoplastic cells: the 

classical/progenitor and the basal-like/squamous subtype (Collisson et al., 2011; 

Moffitt et al., 2015; Bailey et al., 2016; Chan-Seng-Yue et al., 2020). The 

classical/progenitor subtype is enriched for gene programs driven by endodermal 

transcription factors (e.g., GATA6, HNF1A and PDX1) and inactivation of 

SMAD4 (Chan-Seng-Yue et al., 2020, Khloesh et al., 2022; Bailey et al., 2016; de 

Andrés et al., 2023). Conversely, the more aggressive basal-like/ squamous is 

characterized by the loss of endodermal identity, the acquisition of squamous 

programs (such as those driven by ΔNp63), chemoresistance, and immune 

exclusion (Bailey et al., 2016; Somerville et al., 2018; Shinkawa et al., 2022). 

Nonetheless, the molecular classification of PDAC have not yet informed clinical 

management (Martinelli et a., 2017; Aung et al., 2018; Nicolle et al., 2020). A dense 

desmoplastic reaction with abundant cancer-associated fibroblasts (CAFs) is a 

hallmark of PDAC tissues and CAFs have been proven to regulate the PDAC micro- 

and macrosystem (Mahadevan et al., 2007; Shinkawa et al., 2022). Heterogenous 

phenotypes of CAFs have been described and for a subset of them mechanisms of 

cancer-induced rewiring provided (Ohlund et al., 2016; Biffi et al., 2019; Elyada et 

al, 2019; Dominguez et al., 2020). Despite how cancer cells genotype affects CAFs 

phenotype have been investigated, the effect of different neoplastic cell states on 

fibroblasts is largely unknown (Tape et al., 2016; Shaashua et al., 2022; Vennin et 

al., 2019). Here, we sought to investigate whether specific differences in CAFs can 

be found across cancer subtypes and if those differences have a functional impact 

on the epithelial phenotype. We undisclosed an important role for the MAPK 

signalling pathway in the definition of PDAC CAFs phenotypes. We show that the 
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myCAF transcriptional phenotype is uniquely dependent on a proficient MAPK 

signalling. Additionally, we demonstrated that hyperactivation of MAPK signalling 

occurs in myCAFs populating basal-like/squamous tumour niches. We took 

advantage of scRNA-seq data derived from tumour-bearing mice treated with MEK 

inhibitor to derive a stromal specific signature (sMEK). Finally, we found that the 

sMEK signature correlates with poor prognosis in several cancer conditions, 

including PDAC, and with reduced response to immunecheckpoint inhibition in 

bladder cancers. 
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RESULTS 

Basal-like PDAC cells bear cancer-associated fibroblasts with 

elevated MAPK activity 

To identify molecular features predictive of resistance to the inhibition of MEK1/2, 

we treated 6 human cell lines and 5 patient-derived organoid (PDOs) cultures with 

increasing doses of trametinib (MEKi). Short-term treatment of both classical and 

basal-like cell lines with subIC50 doses of MEKi effectively inhibited MAPK, 

while inducing the compensatory activation of the PI3K/AKT pathway in a cell-

context dependent manner (Supplementary Figure 1A). In both cell lines and PDOs, 

the classical lineage and high levels of a transcriptional signature of MAPK 

activation positively correlated with detrimental effects of MEKi on cell viability 

(Supplementary Figure S1B, C). A basal-like cell line (Hs766t) displayed 

sensitivity to MAPK inhibition and the largest variation of the transcriptome 

following treatment (Supplementary Figure S1E). Finally, the treatment of cell lines 

with sublethal doses of MEKi for 2 and 7 days did not induce significant changes 

in cell identity (Supplementary Figure S1E). Then, we used the same transcriptional 

signature of MAPK activation to infer differential activity of the pathway in an 

extended set of human cell lines. We explored the transcriptomic data available 

from the CCLE (n = 41) (Barretina et al., 2012) and those generated in our 

laboratory (n = 10) to reliably classify cell lines as either basal-like or classical. In 

this dataset, the MAPK transcriptional signature could not discriminate classical 

from basal-like cell lines (Fig. 1A). When exploring transcriptomic data from tissue 

cohorts, high levels of the MAPK signature were enriched in the basal-like PDAC 

of the TCGA (The Cancer Genome Atlas Research Network, 2017) but not of the 

PanCuRx (Chan-Seng-Yue et al., 2020) or the ICGC (Bailey et al., 2016) cohorts 

(Fig. 1A). To refine our analyses, we used RNA-seq data from 6 MEKi treated cell 

lines to derive a transcriptomic signature of MEKi response (epithelial MEK, 

eMEK) based on downregulated genes only, which we considered as a rough 

MAPK dependency footprint (Supplementary Figure 1F). Consistent with our 

observations, the eMEK signature could not discriminate classical from basal-like 

tumours in the PanCuRx cohort (Chan-Seng-Yue et al., 2020), which contains 
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RNA-seq data from microdissected epithelia (Supplementary Figure 1G), nor 

identified patients with different clinical outcomes in the TCGA (The Cancer 

Genome Atlas Research Network, 2017) and ICGC (Bailey et al., 2016) cohorts 

(Fig. S1G). The tissues included in the TCGA cohort display, on average, a very 

low neoplastic cell content (The Cancer Genome Atlas Research Network, 2017). 

Therefore, we reasoned of a potential contribution of the stromal compartment to 

the elevated MAPK activation inferred in the basal-like tissues of this cohort. 

Accordingly, MAPK transcriptional signatures were positively correlated with the 

levels of stromal genes such as ACTA2 and FAP (Supplementary Figure 1I). Next, 

we applied a multiplex immunofluorescence approach to human PDAC tissues 

classified as either basal-like/squamous or classical with well-established tissue 

markers (Somerville et al., 2018; Kaufmann et al., 2001; de Andrés et al., 2023; 

Bailey et al., 2016; Martens et al., 2021) (Supplementary Figure 1J, K). We found 

a significant enrichment for α-SMA+p-ERK+ fibroblasts in the stroma of basal-

like/squamous cells (Fig. 1B). Intratumor heterogeneity was observed in tissues 

containing both classical and basal-like cells (Fig. 1C). In GATA6high KRT81neg 

(i.e., classical) tumour regions (Muckenhuber et al., 2018), p-ERK+ CAFs were 

rarely detected while the opposite was found in KRT81high-expressing tumour 

regions. Spatial analysis showed that significantly more α-SMA+p-ERK+ CAFs can 

be found in proximity of basal-like cells (Fig. 1C). Finally, we investigated if this 

p-ERK+ CAFs were anchored to the basal-like phenotypes using tissues from 

patient-derived xenografts (PDX) which exhibited class switch following drug 

treatment. We found that the treatment-induced switch of epithelial subtype was 

coherently associated with changes in the stroma compartment (Fig. 1D). 

Conversely, when no switch of molecular class was observed following treatment, 

no changes were evident in the stromal compartment (Supplementary Figure 1L). 

Pancreatic stellate cells (PSCs) are known precursors of cancer-associated 

fibroblasts (Helms et al., 2022; Öhlund, Elyada & Tuveson, 2014; Bachem et al., 

1998). We serum-starved mouse PSCs (mPSCs) and then briefly exposed them to 

the conditioned media from either classical or basal-like human PDAC cells before 

evaluating levels of p-ERK. The conditioned medium from basal-like cells induced 

nuclear enrichment of p-ERK to the same extent of mouse EGF and significantly 



89 
 

more than the conditioned medium from classical cells (Fig 1E). Accordingly, the 

immunoblot analysis of mPSCs exposed to cell lines' conditioned media confirmed 

enhanced p-ERK upon exposure to basal-like cells secretome (Fig. 1F). Finally, to 

test whether the p-ERK activation is driven by EGFR receptor activation we 

performed immunofluorescence for p-EGFR. Our results show that, while mEGF 

induced EGFR activation, the conditioned medium from basal-like cells did not 

activate the receptor (Supplementary Figure 1M). Collectively, these data show that 

basal-like cells harbour CAFs with elevated activity of MAPK.  
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Figure 1. Basal-like PDAC cells bear cancer-associated fibroblasts with elevated 

MAPK activity A Boxplots of GSVA scores obtained with GSVA Bioconductor package 

for MAPK Biocarta gene set (MSigDB) stratified by Moffitt subtypes (Moffitt et al., 2015). 

From left to right: CCLE (Barretina et al., 2012), PanCuRx (Chan-Seng-Yue et al., 2020), 

ICGC (Bailey et al., 2016), and TCGA (The Cancer Genome Atlas Research Network, 

2017). ****p < 0.0001; and ns, not significant as determined by Wilcoxon test. B 

Representative images of multiplex immunofluorescence performed on FFPE of patients 

with classical (CL, left panel) and squamous (SQ, right panel) PDAC. Scalebar, 100 μm. 
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Below 2X magnification of the selected area. On the right, scatterplots representing the 

numbers of α-SMA+p-ERK+ cells per field. ****p < 0.0001 as determined by Student’s t 

test. C Representative images of multiplex immunofluorescence performed on FFPE of 

human PDAC tissue. The three panels represent different areas within the same tumour 

with different classification. CL, classical; BL, basal-like. Scalebar, 200 μm. On the right, 

the spatial plot obtained with Halo® Image Analysis Platform showing the distribution of 

p-ERK+ CAFs around classical (GATA6+) and basal-like (KRT81+) cancer cells. Below, 

the paired dot plot showing the quantification of p-ERK+ CAFs with a distance below 100 

μm to classical (GATA6+) and basal-like (KRT81+) cancer cells. **p < 0.01 D 

Representative images of immunohistochemistry for KRT81, GATA6 (purple) and p-ERK 

(brown) on patient derived xenograft (PDX#1) tissues treated with either vehicle or MEK 

inhibitor. Red arrows indicate p-ERK signal in stroma. Scalebar, 200 μm. Inserts showed 

2X magnification of selected areas. E Representative immunofluorescence staining of p-

ERK (red) on mPSCs FBS-starved for six hours (Cntr) and treated for ten minutes with 

mEGF (50 ng/ml) and basal-like or classical conditioned media. Nuclei were 

counterstained with DAPI (blue). Scalebar, 50 μm. White arrows indicate nuclear 

translocation of p-ERK. On the right, scatter dot plot showing the percentage of cells with 

p-ERK nuclear translocation per FOV. For each condition, 10 fields were analysed. 

****p < 0.0001; and ns, not significant as determined by Student’s t test. F Immunoblot 

analyses of p-ERK and total ERK in whole cell lysates from mPSCs serum starved for six 

hours and treated for ten minutes with either classical or basal-like conditioned media. 

GAPDH was used as loading control.  

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

scRNA-seq of mouse PDAC tumours treated with MEKi reveals 

quantitative and qualitative changes in cell subsets 

To investigate the role of MAPK in the definition of stromal phenotypes, we 

performed a multidimensional analysis of tissues from mouse basal-like PDAC 

(Fig. 2A). First, we generated and characterized a mouse model based on the 

orthotopic transplantation of a quasi-mesenchymal KPC derived cells that in vivo 

produces cancer tissues aligning with the human basal-like PDAC (Lupo et al., 

2023). Tumor-bearing mice treated daily with 1 mg/Kg of MEKi showed reduced 

activation of MAPK and compensatory activation of the PI3K/Akt pathway 

(Supplementary Figure 2A). Multiplex IF of tissues from tumour-bearing mice 

treated over the course of 14 days showed the presence of p-ERK+ CAFs in 

untreated tumours, the reduction of p-ERK signal in both the epithelial and stromal 

compartments at 2 days following treatment, and the rapid pathway rewiring 

particularly in the stromal compartment at 7 days of treatment (Fig. 2B). In keeping 

with that, the reactivation of the MAPK pathway occurred in vitro within hours 

from the treatment of mouse CAFs (Supplementary Figure 2B). Given the kinetics 

of the MAPK pathway rewiring, we then performed scRNA-Seq on fresh tissues 

from tumour-bearing mice treated for 2 and 7 days with MEKi along with their 

untreated controls. We profiled a total of 18495 cells across 12 tumours (6 untreated 

and 6 treated) and recovered an overall cellular composition similar to that expected 

from PDAC tissues (Fig. 2C, D). Unsupervised clustering of single cell data 

identified 11 major cell types (Fig. 2C). Further annotation of the identified cell 

subsets was performed post hoc by using known gene signatures (Fig. 2D). The 

main cluster was composed by malignant epithelial cells which were confirmed by 

inferred copy-number alterations (CNA) (Tirosh et al., 2016) (not shown). Other 

cell types included non-malignant epithelial cells (i.e. acinar cells), immune and 

stromal cell types (Fig. 2C, D). The treatment was associated with significant 

changes in cell composition and cell states. We observed a reduction in the 

proportion of malignant epithelial cells both at 2 and 7 days of treatment (Fig. 2E, 

F), which was consistent with the histology of treated tumours (Supplementary 

Figure 2C). In the non-malignant compartment, we observed a higher fraction of 

CAFs in the treated groups that was also confirmed with immunohistochemistry 
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with the fibroblast marker FAP (Supplementary Figure 2C). Consistent with the 

pharmacological treatment and the proteomic analysis, the eMEK transcriptional 

signature was significantly downregulated in the treated tumours (Fig. 2G). 

Furthermore, cell cycle related signatures (Hwang et al., 2022) were downregulated 

by the treatment (Supplementary Figures 2D, E) which was consistent with reduced 

fraction of Ki67+ cells in the tissues (Supplementary Figure 2F). Conversely, even 

if apoptosis related transcriptional programs were enriched in treated epithelial cells 

the staining of tissues with cleaved-caspase 3 (CC3) did not show prominent 

induction of apoptosis (Supplementary Figures 2D, E, G). We then investigated 

whether the treatment affects the cancer cell subtype at single cell resolution. Our 

bulk RNA-seq data showed that the tumour subtype is not strongly affected by 

MEK inhibition, while scRNA-seq data revealed a little but significant increase in 

the number of classical neoplastic cells after 2 and 7 days of treatment with MEKi 

(not shown; Fig. 2H). Overall, our data are consistent with a cytostatic rather than 

cytotoxic effect of MEKi. 
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Figure 2: scRNA-seq of mouse PDAC tumors treated with MEKi reveals quantitative 

and qualitative changes in cell subsets A Schematic representation of the in vivo 

experimental setting. Mice were treated daily with Trametinib (1mg/Kg) for 2, 7, or 14 

days. At each timepoint, a group of mice have been sacrificed and further analysis 

performed. B Representative images of multiplex immunofluorescence performed on 

tumour tissues from mice treated with (from left to right): vehicle, MEKi for 2 (T2), 7 (T7), 

and 14 (T14) days. White arrowheads indicate α-SMA+/p-ERK+ cells. Bottom panels 

showed a 2X magnification of selected areas. Scalebar, 25 μm. C UMAP plot showing the 

unsupervised clustering of viable cells from 12 digested mouse tumours tissues (6 vehicle 

and 6 treated) annotated in 11 different clusters. Different cell type clusters are color-coded. 

D Bubble plot showing selected cell type-specific markers across clusters. Size of dots 

represents the percentage of cells expressing a specific marker and intensity of color 

indicates level of average expression. E Barplots representing the percentage of cells for 
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each cell type cluster from mice treated with either vehicle (C2) or MEKi (T2) for 2 days. 

On top is reported the total number of cells for each sample. On the right, barplots 

representing the percentage of cells for a specific cluster (epithelial, fibroblasts, and 

macrophages) from mice treated with either vehicle or MEKi for 2 days. ****p < 0.0001; 

and ns, not significant as determined by Wilcoxon test. F Barplots representing the 

percentage of cells for each cell type cluster from mice treated with either vehicle (C7) or 

MEKi (T7) for 7 days. On top is reported the total number of cells for each sample. On the 

right, barplots representing the percentage of cells for a specific cluster (epithelial, 

fibroblasts, and macrophages) from mice treated with either vehicle or MEKi for 7 days. 

****p < 0.0001; and ns, not significant as determined by Wilcoxon test. G Violin plots 

representing the signature score value of the eMEK signature of cells from mice treated 

with either vehicle or MEKi for 2 days (left) and 7 days (right). ****p < 0.0001 as 

determined by Wilcoxon test. H Umap plots showing cells of the epithelial cluster of 

vehicle (C) and MEKi (T) treated mice, classified as classical and basal-like according to 

Moffitt classification (Moffitt et al., 2015). On the right, barplots showing the percentage 

of cells of the epithelial cluster of mice treated either with vehicle (C) and MEKi (T) for 2 

and 7 days, classified as classical and basal-like according to Moffitt classification (Moffitt 

et al., 2015). ****p < 0.0001 as determined by Wilcoxon test. 
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MAPK inhibition induces changes in the proportion of myCAFs 

and iCAFs 

Within the CAFs compartment, the treatment did not partition cells into distinct 

clusters (Supplementary Figure 3A). Established signatures of CAFs commonly 

found in mouse and human PDAC tissues (Elyada et al., 2019) were expressed in 

distinct clusters of cells, which could be detected across conditions 

(treated/untreated) and timepoints (2 and 7 days) (Fig. 3A). The main subset of 

CAFs was composed by myCAFs, while apCAFs was the less represented one in 

all the conditions (Fig. 3A). As observed for the malignant epithelial compartment, 

the treatment induced quantitative and qualitative changes in the fibroblasts 

compartment. We observed a significant reduction in the proportion of myCAFs 

after treatment which was associated with an increase in the number of fibroblasts 

classified as iCAFs (Fig. 3B). These relative changes were more prominent at two 

days following MEKi. Considering all CAFs subsets, the treatment induced the 

significant downregulation of the MAPK transcriptional signature (Supplementary 

Figure 3B). However, the myCAFs compartment showed the largest variation in 

gene expression upon treatment, which suggests a higher dependency of this CAFs 

phenotype on MAPK activity (Fig. 3C). Then, we moved onto exploring the 

possibility that MEKi could affect the differentiation status of CAFs. First, we used 

CytoTRACE (Gulati et al., 2020) to predict the differentiation status of the two 

main CAFs subsets in untreated and treated tumors. Regardless of the treatment, 

iCAFs and myCAFs were at the opposite ends of the differentiation spectrum (Fig. 

3D), with iCAFs showing the lowest transcriptional diversity and therefore 

predicted to be the more differentiated cell subset. Next, we used Velocyto to infer 

pseudotemporal trajectory from scRNA-seq data (La Manno et al., 2018). In 

untreated tumours, no dominant pseudotrajectory could be identified (Fig. 3E). 

Conversely, a dominant pseudotrajectory from myCAFs to iCAFs was inferred in 

treated tumours, supporting MAPK as a relevant pathway for the maintenance of 

the myCAFs phenotype (Fig. 3E). To orthogonally validate these findings, we first 

explored scRNA-Seq from untreated tumours to identify reliable markers of 

myCAFs and iCAFs subsets. We found that Tnc and Mmp3 (Forsthuber et al., 2023; 

Mucciolo et al., 2022) were highly expressed in cell subsets showing strong 
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myCAFs and iCAFs phenotypes, respectively (Supplementary Figure 3D, E). In 

situ hybridization analysis (ISH) of mouse PanIN from autochthonous models 

driven by oncogenic K-RAS (Hingorani et al., 2003) revealed expression of Tnc in 

proximity of epithelial cells while abundant stromal cells expressing Mmp3 were 

found surrounding each lesion (Supplementary Figure 3F). In cancer tissues from 

autochthonous models driven by mutations of K-RAS and TP53 (Hingorani et al., 

2005), both Tnc and Mmp3 expressing cells showed a spatial segregation consistent 

with that observed for myCAFs and iCAFs phenotypes in this model (Öhlund et al., 

2017; Biffi et al., 2019) (Supplementary Figure 3G). Next, we performed in situ 

hybridization in tissues from our mouse cohort. Consistent with the scRNA-seq 

data, the treatment induced significant changes in the proportion of myCAFs and 

iCAFs (Fig. 3F). After two days of MEKi, there was a drastic reduction in the 

number of Tnc expressing cells with a concomitant increase in Mmp3 expressing 

cells (Fig. 3F). To further generalize our findings and understand whether this 

myCAFs into iCAFs transdifferentiation induced by the treatment occurred 

independently by the epithelial cell lineage, we analysed tissues obtained from 

additional mouse models of classical and basal-like PDAC (Godfrey et al., 2022) 

(Supplementary Figure 3G-F). Short-term treatment (two days) of tumour-bearing 

mice was consistently associated with an increase in iCAFs in the stroma also in 

classical tumours (Supplementary Figure 3G). Altogether, our data indicates that 

MAPK activity is a key determinant of the myCAFs phenotype in vivo. 
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Figure 3: MAPK inhibition induces changes in the proportion of myCAFs and iCAFs 

A UMAP plot of cells from the fibroblast cluster representing the CAFs subtype for each 

cell (stratified according to Elyada’s classification (Elyada et al., 2019)) from mice treated 

with either vehicle or MEKi for 2 or 7 days. B Barplots representing the percentage of cells 

of the fibroblast cluster classified according to Elyada’s subtypes (myCAFs, iCAFs, and 

apCAFs (Elyada et al., 2019)) from mice treated either with vehicle or MEKi for 2 days 

(C2, T2) or 7 days (C7, T7). On top is reported the total number of cells for each sample. 

****p < 0.0001, ns as not significant as determined by Wilcoxon test. C Barplots showing 

the number of genes up- and down-regulated in cells of the fibroblast cluster after 2 and 7 

days of treatment with MEKi. Cells are stratified using Elyada’s classification (Elyada et 

al., 2019). D Scatterplot showing the CytoTRACE value (Gulati et al., 2020) for cells of 

the fibroblast cluster treated either with vehicle or MEKi for 2 days (C2, T2) or 7 days (C7, 
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T7), classified according to Elyada’s subtypes (apCAFs not shown (Elyada et al., 2019)). 

E On the left, UMAP plot of the fibroblast cluster obtained by the integration of cells from 

mice treated with either vehicle or MEKi for 2 days (C2, T2). The colour visualization 

represents Elyada’s subtypes (Elyada et al., 2019). On the right, UMAP representing the 

velocity (arrows) and pseudotime (colour) for each cell of the fibroblast cluster (annotated 

on the left panel) from mice treated with either vehicle or MEKi for 2 days. Black arrow 

indicated the global directionality of the velocity. F Representative images of in situ 

hybridization showing expression of TNC (red; myCAFs) and MMP3 (green; iCAFs) genes 

on PDAC tissue from mice treated with either vehicle (V) or MEKi for 2 days (T2). 

Scalebar, 60 μm. Insert showed a 2X magnification of selected areas. Black arrowheads 

indicate myCAFs, while white arrowheads indicate iCAFs.  
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A MAPK CAF signature identify a subcluster of myCAFs and is 

associated to basal-like tumours 

To identify subset of CAFs with elevated activity of MAPK in our scRNA-Seq data, 

we derived a transcriptomic signature based on genes significantly downregulated 

by two days of MEKi in the CAFs compartment (sMEK) (Fig. 4A, Supplementary 

figure 4A, see method section). Next, we classified cells by quartiles of mean z-

score of the sMEK signature (n = 169) and defined as MAPKhigh CAFs the cells in 

the highest quartile. This subset of CAFs formed a somewhat distinct cluster of cells 

in untreated tumours (Fig. 4B) and was almost exclusively composed by myCAFs 

(Fig. 4C). We obtained the same results when the signature was re-sized to contain 

25 genes (Supplementary Figure 4B). Consistent with the dynamic of MAPK 

inhibition in our model, the proportion of CAFs expressing the sMEK signature 

reduced after 2 days of treatment to then increase at 7 days (Fig. 4D). Next, we 

explored the overlap between the sMEK signature and signatures of either MAPK 

activation or CAFs phenotype. In keeping with their myofibroblastic phenotype, 8 

genes of the sMEK signature were also included in the myCAF signature proposed 

by Elyada and colleagues (Elyada et al., 2019) (n = 23) (Supplementary Figure 4C). 

No significant overlap was observed with other signatures. We then used 

PROGENy (Schubert et al., 2018) to infer pathway activity in each CAFs subset 

from the untreated tumours. In line with previous reports (Öhlund et al., 2017; Biffi 

et al., 2019; Elyada et al., 2019; Dominguez et al., 2020; Krishnamurty et al., 2022), 

myCAF were characterized by elevated activation of TGFβ, while iCAFs were 

enriched for inflammation-associated signalling pathways (Fig. 4E). MAPKhigh 

CAFs were characterized by elevated TGFβ and MAPK activity, the enrichment of 

hypoxia-driven responses, and activity of inflammatory pathways (Fig. 4E). Gene-

set enrichment analysis (GSEA) on the list of differentially expressed genes 

between CAFs with high and low MAPK activity confirmed a metabolic 

reprogramming as well as the activation of inflammation-associated transcriptional 

programs in MAPKhigh CAFs (Supplementary Figure 4D). Accordingly, MAPKhigh 

CAFs expressed high levels of Slc2a1, PGK1, Eno1, PKM and some 

cytokine/chemokines such as Il11 and Mif (not shown). In addition, the sMEK 

signature positively correlated with TGFB1 in the TCGA datasets (Fig. 4F). 
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In our in vitro setting, mPSCs exposed to conditioned media from both basal-like 

and classical cell lines showed induction of iCAF genes and activation of the JAK-

STAT pathway, which was reported to be the driver of the iCAF phenotype (Biffi 

et al., 2019) (Fig. 4G, Supplementary Figure 4E). Therefore, mPSCs were pre-

treated for two days with TGF-β1 in order to attenuate the polarization towards 

iCAFs and then exposed for 24 hours to either basal-like or classical CM. We 

observed that, along with stronger ERK phosphorylation, the basal-like CM induces 

the sMEK signature (Fig. 4H, Supplementary Figure 4E). Of note, treatment with 

TGF-β1 upregulated the sMEK signature as well, in accordance with the 

myofibroblastic nature of the sMEKhigh CAFs (Fig. 4H). Moreover, the sMEK 

signature identified basal-like tumours from the TCGA cohort (The Cancer 

Genome Atlas Research Network, 2017) (Fig. 4I) and was enriched in the stroma 

of human tumours displaying a greater proportion of basal-like cells from the 

scRNA-seq dataset of Peng et al. (Peng et al., 2019) (Fig. 4J, Supplementary Figure 

4F). Given the strong association with basal-like tumours, we sought to investigate 

whether sMEKhigh CAFs present specific interactions with the epithelium. The 

ligand-receptor analysis performed with CellPhone DB shows unique interactions 

between sMEKhigh CAFs and epithelial cells (Fig 4K). The analysis revealed that 

only sMEKhigh CAFs are the source of INHBA which is predicted to interact with 

activin receptors on the epithelial compartment (Fig 4H). Accordingly, INHBA is 

in the top 10 genes of the sMEK signature and is the gene with the highest score in 

the DEG between sMEKhigh and sMEKlow CAFs (Fig 4A; not shown). INHBA is the 

subunit of the homodimer Activin A, therefore we tested the effect of Activin A on 

cancer cells in vitro. We treated the classical cell line HPAF-II with 100 ng/ml of 

Activin A for 3 days and evaluate the change in expression of classical markers 

(Fig 4K). The treatment induced a significant downregulation of CDH1, PDX1, and 

GATA6 in HPAF-II (Fig 4K). Accordingly, a similar trend on detected classical 

marker was observed on the basal-like cell line Hs766t after 3 and 6 days of 

treatment with Activin A (Supplementary Figure 4G). Overall, those data suggest 

that MAPKhigh CAFs potentially release Activin A, which reduce the classical 
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identity of cancer cell. This effect is consistent with the increased number of 

classical cancer cells observed after MEK inhibition in vivo (Fig 2H). 
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Figure 4: A MAPK CAF signature identify a subcluster of myCAFs and is associated 

to basal-like tumours A Volcano plot representing the genes down- and up-regulated in 

fibroblasts upon treatment with MEKi for 2 days in vivo. The red dots are the genes that 

are part of the sMEK signature (n=168). Highlighted some of the genes with log2FC 

expression > 2 and adjusted p < 0.05. B UMAP plot of cells from the fibroblast cluster 

stratified according to the signature sMEK (divided as high and low) from mice treated 

with vehicle for 2 and 7 days. C Barplots representing the percentage of cells of the 

fibroblast cluster with high (blue) and low (yellow) values for the sMEK signature 
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classified according to Elyada’s subtypes (myCAFs, iCAFs, and apCAFs (Elyada et al., 

2019) from mice treated with vehicle. D Barplots representing the percentage of cells of 

the fibroblast cluster with high (blue) and low (yellow) values for the sMEK signature in 

vehicles (C2, C7) and in MEKi treated samples (T2, T7). E Heatmap showing the 

expression of pathway-responsive genes in specific CAFs phenotypes as assessed by 

PROGENy analysis (Schubert et al., 2018). F Scatter plot showing the positive correlation 

between TGFB1 mRNA expression and the sMEK gsva score for the TCGA cohort (The 

Cancer Genome Atlas Research Network, 2017) stratified according to Moffitt subtypes 

(Moffitt et al.,2015). G Heatmap showing changes in the expression of the genes in the 

myCAFs and iCAFs signatures from Elyada et al. (Elyada et al., 2019) in mPSCs treated 

with conditioned media from classical and basal-like cell lines for 24 hours. Z-scores 

derived from DESeq2-VST transformed counts. H On the left, heatmap showing changes 

in the expression of the genes in the sMEK signature in mPSCs treated with either TGF-β1 

(5 ng/ml) for 72 hours or pre-treated with TGF-β1 for 48 hours and additionally treated 

with conditioned media from classical and basal-like cell lines for 24 hours. On the right, 

GSEA plot evaluating the sMEK signature in mPSCs pre-treated with TGF-β1 for 48 hours 

and additionally treated with conditioned media from classical and basal-like cell lines for 

24 hours. I Boxplot of GSVA scores for the sMEKhigh signature in the sample of the TCGA 

cohort (The Cancer Genome Atlas Research Network, 2017) classified as Classical or 

Basal-like according to Moffitt’s subtypes (Moffitt et al.,2015). ****p < 0.0001. J Barplots 

showing the percentage of cells of the fibroblast cluster with high values for the sMEK 

signature in samples of the Peng et al. (Peng et al.,2019) cohort ordered accordingly to 

decreasing basal-like cells content. K Ligand receptor analysis using CellPhone DB on 

scRNA-seq data from mice treated with vehicles for 2 and 7 days. L Barplots showing the 

fold change in expression of selected genes in HPAF-II treated with Activin A (100 ng/ml) 

for 3 days. 
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The sMEK signature can be found across several human cancer 

types and predicts poor clinical outcome 

In the majority of the PDAC cohorts investigated (n = 4; Zhang et al., 2012; Yang 

et al., 2016; Chen et al., 2015; Kirby et al., 2016), high levels of the sMEK signature 

outperformed established stromal signatures (Moffitt et al., 2015) in identifying 

patients with inferior overall survival (Fig. 5A, B Supplementary Figure 4H). 

Furthermore, we found that basal-like tumours displaying elevated levels of the 

sMEK signature had the worse prognosis (Supplementary Figure 4I). Next, we 

performed a single-cell pan-cancer analysis across 10 tumour types (Luo et al., 

2022), including PDAC, to evaluate whether the expression of the sMEK signature 

could be observed in the fibroblasts compartment of other tumour types. The 

signature was enriched in the fibroblast vs other cell types in the majority of cancer 

indications (Fig. 5C). In three tumour types (i.e., lung adenocarcinoma, bladder 

cancer, and uveal melanoma), elevated levels of the sMEK signature correlated with 

worse patient prognosis (Fig. 5D). sMEK signature is detected across several cancer 

types and correlates with level of TGF-beta expression, a known predictor of poor 

response to immuno-oncology therapies (Mariathasan et al., 2018; Principe et al., 

2019). Therefore, we next sought to test whether it correlates with response to 

cancer immunotherapy. The sMEK signature is enriched in patients with worse 

response to immunotherapy (stable and progressive disease) in patient with bladder 

cancer (BLCA) in the cohort from Dominguez et al. (Dominguez et al., 2020) (Fig. 

5E). Accordingly, elevated level of the sMEK signature correlated with reduced 

survival in BLCA patients treated with anti–PD-L1 therapy (Dominguez et al., 

2020) (Fig. 5E). Overall, those data suggest that the sMEK signature is not 

pancreas-specific and can predict poor outcome also in other cancer types. 
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Figure 5: The sMEK signature can be found across several human cancer types and 

predicts poor clinical outcome A Kaplan–Meier plot comparing the overall survival of 

patients from the TCGA cohort (n = 148) (The Cancer Genome Atlas Research Network, 

2017) according to the expression of the sMEK signature. p, Log-rank (Mantel–Cox) test. 

B Kaplan–Meier plot comparing the overall survival of patients from the TCGA cohort 

(n = 148) (The Cancer Genome Atlas Research Network, 2017) according to Moffitt’s 

stromal subtypes (Moffitt et al., 2015). p, Log-rank (Mantel–Cox) test. C Violin plots 

representing the score values for the sMEK signature of cells from different cellular type 

clusters from the Luo et al. dataset (Luo et al.,2022). D Forest plots showing the hazard 

ratio for the sMEK signature in 4 of human tumour types from the TCGA cohort (TCGA 

(The Cancer Genome Atlas Research Network, 2017). ** p < 0.01 as determined by 

Wilcoxon test. E On the left, Boxplot showing sMEK GSVA score over IMvigor210 

bladder samples separated by drug response. CR, complete response; PR, partial response; 

SD, stable disease; PD, progressive disease. ** p < 0.01 as determined by Wilcoxon test. 

On the right, Kaplan–Meier plot comparing the survival probability of BLCA patients 
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treated with immunotherapy from the cohort of Dominguez et al (Dominguez et al., 2020) 

according to the expression of the sMEK signature. p, Log-rank (Mantel–Cox) test. 
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DISCUSSION 

 Here, we undisclosed an important role for the MAPK signalling pathway in 

the definition of PDAC CAFs phenotypes. Our data show that the myCAF 

transcriptional phenotype is uniquely dependent on a proficient MAPK signalling. 

Furthermore, hyperactivation of MAPK signalling occurs in myCAFs populating 

basal-like/squamous tumour niches. Gene expression signatures of MAPKhigh CAFs 

(sMEK) from mouse tumours suggested metabolic rewiring and immunoregulatory 

function. Finally, we found that the sMEK signature correlated with poor prognosis 

in several cancer conditions, including PDAC, and with reduced response to 

immunecheckpoint inhibition in bladder cancers. Our findings support previous 

observation about the importance of MAPK signalling in sustaining the myCAFs 

phenotype (Mucciolo et al. 2022) and expand on the heterogeneous phenotypes that 

can be found in the PDAC TME. We provide new insights on a stromal phenotype 

specifically shaped by basal-like/squamous cells. Signalling pathway activities and 

cell dependency on a given pathway are often successfully inferred from gene 

expression data (Szalai & Saez-Rodriguez, 2020; Schubert et al., 2018). Here, we 

used pathway mapping analysis and context-dependent pathway response 

signatures to infer MAPK activity and dependency in heterogeneous expression 

data from models and patients' samples. In both human cancer cell lines and patient-

derived organoids, high level of a MAPK transcriptional signature was the best 

predictor of sensitivity to MEK1/2 inhibition. Basal-like/squamous models were 

predicted to be less dependent on MAPK activity and accordingly displayed 

reduced sensitivity to MEKi. In vitro, a transiently disabled MAPK pathway was 

not associated with significant changes of cancer cell states. Our results are in line 

with previous observation from Miyabayashi and colleagues showing that RAS 

signalling hyperactivation is not fundamental for the definition of the basal-

like/squamous subtype (Miyabayashi et al., 2020). We have previously shown that 

querying bulk transcriptional datasets derived from tissues with different neoplastic 

cell content is a viable strategy to localize the cellular compartment contributing to 

gene expression differences between molecular subtypes (D'Agosto et al., 2022). 

Using the same approach, we show that MAPK transcriptional signatures were 

particularly elevated in basal-like tumours from the TCGA cohort (The Cancer 
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Genome Atlas Research Network, 2017). The inferred hyperactivation of MAPK in 

the stromal compartment of tumours classified as basal-like significantly correlated 

with increased density of fibroblasts displaying nuclear p-ERK, a known surrogate 

marker for MAPK activation (Zhang et al., 2002). Different neoplastic cell states 

often co-exist in human PDAC tissues (Krieger et al., 2021; Juiz et al., 2020; Chan-

Seng-Yue et al., 2020; Hwang et al., 2022). Therefore, molecular subtyping based 

on bulk sequencing data might mask transcriptional heterogeneity (Chan-Seng-Yue 

et al., 2020; Raghavan et al., 2021). Immunophenotyping of heterogeneous human 

tumours clearly showed that p-ERK+ CAFs were enriched in basal-like/squamous 

niches. These pERK+ CAFs can be detected in mouse PDAC tumours as well as in 

heterospecies models, which were instrumental to demonstrate that this CAFs 

subpopulation is specifically anchored to the basal-like subtype. Indeed, treatment 

induced changes in cancer cell lineage was accordingly associated with qualitative 

changes in the stroma, i.e. increased or decreased p-ERK+ CAF density. To gain 

further insights into this CAFs phenotype, we leveraged scRNA-seq data obtained 

from mouse tumour tissues following short-term perturbation of the MAPK 

pathway. Our model aligned with the human basal-like/squamous PDAC (Lupo et 

al. 2023) and showed rapid kinetics of pathway rewiring following treatment. Short-

term perturbations are often used to capture primary transcriptional response to a 

specific stimulus (Somerville et al., 2020; Biffi et al., 2019). Contrasting the two 

conditions with known differential pathway activity, we were able to show the 

general dependency of myCAFs on MAPK activity and to obtain gene-expression 

signatures of CAFs displaying MAPK hyperactivation. Our model poorly 

recapitulates the tissue architecture of human PDAC and that of autochthonous 

models. However, the model preserved the CAFs heterogeneity reported in mouse 

and human tumours (Öhlund et al., 2017; Biffi et al., 2019; Elyada et al., 2019; 

Dominguez et al., 2020), the expected myCAFs/iCAFs ratio in the PDAC TME 

(Buechler et al., 2021; Dominguez et al., 2020), and showed pERK+ CAFs as 

expected for a basal-like model. Inferred dynamics in scRNA-seq data and in situ 

expression analyses showed that MAPK inhibition leads to dramatic changes of the 

myCAFs/iCAF ratio into the mouse PDAC TME. The highest degree of 

dependency of myCAFs on MAPK activity suggests a potential transdifferentiation 
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of myCAFs into iCAFs. However, we cannot exclude that changes of the 

myCAFs/iCAFs ratio observed following MEKi are also contributed by qualitative 

changes into the malignant compartment. Focusing on CAFs showing the highest 

dependency on MAPK activity, we obtained a gene expression signature (sMEK) 

that mapped almost exclusively onto the myCAFs subcluster. This result is coherent 

with the spatial localization of pERK+ CAFs in human tissues, i.e. proximal to 

neoplastic cells. Accordingly, the sMEK signature is enriched for ECM related 

genes and shows a partial overlap with the published myCAFs signature (8 genes 

out of 21) (Elyada et al., 2019). Nonetheless, the sMEK signature suggest a peculiar 

metabolic rewiring of myCAFs driven by a hypoxic-like response and putative 

immunoregulatory functions. Aligning with their myCAFs identity, TGF- 

signalling was a major driver of MAPKhigh CAFs and accordingly treatment of 

mouse PSCs with TGF- greatly induced the sMEK signature in vitro. 

Furthermore, the signature was also strongly induced when mPSCs were exposed 

to the conditioned media from basal-like human cancer cell lines. That further 

suggests that this phenotype is anchored to basal-like cancer cells. In different 

PDAC cohorts, the sMEK signature reliably identified patients with worse 

prognosis. That is in contrast with the epithelial specific MEK signature which 

failed to stratify patients based on risk. Previous studies have shown that similar 

fibroblast lineages and phenotypes can be observed in different cancer conditions 

(Buechler et al. 2021; Kieffer et al., 2020; Galbo et al., 2021). We explored pan-

cancer scRNA-seq data to find that the sMEK signature is enriched in stromal cells 

from many cancer conditions and identifies more aggressive disease in some of 

them. While deeper mechanistically investigations are needed, our data suggest at 

least two potential functions for the MAPKhigh CAFs.  

Ligand-receptor analysis in untreated and treated samples identified a MAPKhigh 

CAF- epithelial cells crosstalk based on INHBA, which codify for a subunit of the 

homodimer Activin A, produced by the CAFs in the untreated status. Activin A is 

a member of the TGF-beta superfamily, whose stromal expression and plasmatic 

levels were already correlated with poor survival in PDAC (Mancinelli et al., 2021; 

Chen et al., 2022; Yu et al., 2023; Yi et al., 2022; Togashi et al., 2015). Activin A 

is significantly downregulated in CAFs following treatment with MEKi. 
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Furthermore, short-term MEKi was also associated with a slight increase in the 

number of classical PDAC cells. Therefore, we tested whether Activin A might 

contribute to antagonize the emergence of the classical phenotype. Differently from 

the treatment with TGF- (D'Agosto et al., 2023), the treatment of the classical 

cell line HPAF-II with Activin A did not induce the expression of EMT-like genes 

but rather significantly reduced the expression of endodermal transcription factors. 

Endodermal TFs are important for the maintenance of the classical phenotype and 

epigenetically silenced in the basal-like/squamous tumours (Khloesh et al., 2022; 

Bailey et al., 2016; de Andrés et al., 2023). Another potential function for this CAFs 

subtype is immunoregulatory. sMEK signature include genes with immune-related 

function and high level of the signature predict poor response to immunotherapy in 

bladder cancers.  In sum, our study shows that MAPK signalling is a key 

determinant of the myCAFs phenotype and that its hyperactivation is a distinctive 

feature of stromal cells in basal-like/squamous tumour niches. Inhibition of MAPK 

signalling using a potent MEK1/2 inhibitor has important consequences on stroma 

remodelling with transient changes in myCAFs to iCAFs ratio. We also provide 

here a gene-expression signature that might be used for patients' stratification based 

on risk in PDAC and other cancer conditions.  
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MATERIALS AND METHODS 

 

Human samples  

Human PDAC tissues used in this study were obtained from surgical resections of 

patients treated at the University and Hospital Trust of Verona (Azienda 

Ospedaliera Universitaria Integrata, AOUI). Written informed consent was 

acquired from patients before specimens' acquisition. The FFPE samples used for 

multiplex immunofluorescence and immunohistochemistry were retrieved from the 

ARC-Net Biobank and were collected under the protocol number 1885 approved 

by the local Ethics Committee (Comitato Etico Azienda Ospedaliera Universitaria 

Integrata) to A.S. (Prot. 52070, Prog. 1885 on 17/11/2010). Tissues from surgical 

resection used for the generation of organoids were collected under the protocol 

number 1911 approved by the local Ethics Committee (Comitato Etico Azienda 

Ospedaliera Universitaria Integrata) to V.C. (Prot. n 61413, Prog 1911 on 

19/09/2018). All experiments were conducted in accordance with relevant 

guidelines and regulations. 

The Essen cohort is a retrospective study carried out according to the 

recommendations of the local ethics committee of the Medical Faculty of the 

University of Duisburg-Essen. Clinical data were obtained from archives and 

electronic health records. Patients who had undergone pancreatic resection with a 

final histopathologic diagnosis of human PDAC between March 2006 and February 

2016 was used (Approval no: 17-7340-BO). 

 

Cell lines and organoids  

The murine PDAC cell line FC1199, the murine stellate cell line mPSCs, the human 

PDAC cell lines (hT1, hM1, and hF2) and organoid hT3 (VR02-O) were kindly 

provided by the Tuveson’s laboratory (Cold Spring Harbor Laboratory, NY, USA). 

Hs766T were kindly provided by Prof. Aldo Scarpa (University of Verona). 

FC1199 were generated from PDA tumours from KPC (KrasG12D/+; p53R172H/+; 
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Pdx1-Cre), while mPSCs have been established from WT C57BL/6J mice 

(Hingorani et al., 2005; Öhlund et al., 2017). FC1199luc/Gfp cells were generated 

using procedures reported elsewhere (Buckley et al., 2015). The human cell lines 

PANC-1 and HPAF-II were purchased from ATCC (CRL-1469™, CRL-1997™). 

FC1199, PANC-1, and HPAF-II were cultured in DMEM (Gibco) supplemented 

with 10% FBS (Gibco) and 1% Penicillin-Streptomycin (Pen-Strep, Gibco). hT1, 

hM1, hF2, and Hs766T were grown in RPMI 1640 (Aurogene) supplemented with 

10% FBS and 1% Pen-Strep. mPSCs were cultivated in DMEM supplemented with 

5% FBS and 1% Pen-Strep. PDAC organoids (VR01-O, VR03-O, VR04-O, and 

VR05-O) were established and cultured as described previously (Boj. et al., 2015; 

Huch et al., 2013). 60400 and 110299 were generated from PDA tumours derived 

from CKP (Ptf1awt/Cre; Kraswt/LSL-G12D; p53fl/fl) mice (Mazur et al., 2015). VR01-O 

(Sample Code ID: HCM-CSHL-0080-C25), VR03-O (Sample Code ID: HCM-

CSHL-0077-C25), VR04-O (Sample Code ID: HCM-CSHL-0081-C25), and 

VR05-O (Sample Code ID: HCM-CSHL-0092-C25) have been acquired as part of 

the Human Cancer Model Initiative (HCMI) 

https://ocg.cancer.gov/programs/HCMI, and are available on ATCC. Cells and 

organoids were routinely screened for Mycoplasma contamination using 

MycoAlert Mycoplasma Detection Kit (Lonza).  

 

Animal studies  

In this study we used both isograft and xenograft models. Six- to eight- weeks old 

C57Bl/6J (B6J) and NSG (NOD.Cg-Prkdcscid;Il2rgtm1Wjl) mice were purchased 

from Charles River Laboratory (Milan). All animal experiments regarding 

transplanted mice were conducted in accordance with procedures approved by 

CIRSAL at University of Verona (approved project 655/2017-PR). KC (KrasG12D/+; 

Pdx1-Cre) and KPC (KrasG12D/+; p53R172H/+; Pdx1-Cre) mice were used as 

spontaneous model for pre-invasive lesions and PDAC, respectively (Hingorani et 

al., 2003; Hingorani et al., 2005). Isograft models were generated with KPC and 

CKP-derived cell lines. For the generation of isograft based on KPC-derived cell 

line (FC1199), 2.5x105 cells were transplanted in B6J mice as previously described 

https://ocg.cancer.gov/programs/HCMI
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(Lupo et al., 2023). For the generation of isograft based on CKP-derived cell lines 

(60400 and 110299), 5.0x105 cells were resuspended in 30 µL of a 1:1 dilution of 

Matrigel® (Corning) and cold plain medium and injected into the pancreas of B6J 

mice using insulin syringes (BD micro-fine 30 Gauge) under the guidance of 

Ultrasonic imaging. The injection was considered successful by the appearance of 

encapsulated cell suspension ball without signs of leakage. Patient-derived 

xenografts (PDX#1, PDX#2) were generated by subcutaneous implantation of a 

patient’s tumour fragment in the left flank of anaesthetized NSG mice. Tumour 

growth was measured twice weekly until they reached the volume of 1 cm³. Then, 

tumours were harvested, cut into small fragments (3 mm3) and transplanted 

subcutaneously into the left flank of anaesthetized NSG to generate the 2nd 

generation of xenograft. The same procedure was followed to generate the 3rd 

generation of xenograft which was used for treatments. Mice were maintained 

under sterile and controlled conditions (22°C, 50% relative humidity, 12 h light–

dark cycle, autoclaved food and bedding, acidified drinking water). 

 

Drug treatments  

For in vitro experiments, cells were counted and seeded in a 6 well plate or a 100cm2 

dish. After reaching 40% of the confluence, cells were treated for the time reported 

in each experiment (for longer treatment, Trametinib was refreshed every 2 days). 

Trametinib (Selleck) was dissolved in DMSO, whose final concentration was less 

than 0.1% (v/v). PDAC cell lines have been treated with subIC50 concentration: 

HPAF-II (IC50 = 4.8 nM), PANC-1 (IC50 = 10000 nM), Hs766t (IC50 = 2.85 nM), 

hF2 (IC50 = 4.54 nM), hM1 (IC50 = 1.35 nM), hT1 (IC50 = 148.8 nM). mPSCs 

have been treated with MEKi with a concentration of 10 nM. For in vivo 

experiments, Trametinib was dissolved in a solution of 0.5% hydroxypropyl-

methylcellulose, 0.2% tween 80 and ddH2O (pH 8) for oral administration. 

The xenograft tissues were derived from 2 PDX treated with or without MEKi (4 

weeks) from the CAM-PaC (Integrative Analysis of Gene Functions in Cellular and 

Animal Models of Pancreatic Cancer) cohort4.  
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For orthotopic models, mice were treated with or without MEKi for 1 or 2 weeks 

for 60400 and 110299 derived tumours, respectively. 

 

Conditioned media treatments 

Conditioned media was collected from cancer cell lines after 48h of conditioning 

(confluence of the cells around 70%) and used to treat mPSCs for 1 hours. When 

shown, mPSCs have been pre-treated with TGFβ1 5 ng/ml (Peprotech) for 48 hours. 

When FBS starvation was required, conditioned media was collected from cancer 

cell lines after 15h of conditioning in serum starvation (confluence of the cells 

around 70%) to avoid aspecific signaling activation caused by FBS and used to treat 

mPSCs (starved for 6 hours) for 10 minutes. Treatment with conditioned media for 

RNA-seq experiment was done for 24 hours on mPSCs either pre-treated or not 

with TGFβ1 (5 ng/ml) for 48 hours. 

 

Activin A treatment and rt-qPCR 

PDAC cell lines were plated in 6 well plates with their usual culture media and 

treated with 100 ng/ml Activin A (R&D System) for 3 and 6 days, as reported. After 

treatment RNA was collected using TRIzol (Life Technologies). RNA extraction 

was performed by column-based purification with the PureLink RNA Mini Kit 

(Ambion). 1 μg of RNA was retrotranscribed in cDNA using the SensiFAST cDNA 

Synthesis Kit (Bioline) following the manufacturer’s protocol. Samples were 

diluted to a final concentration of 10 ng/µL. TaqMan was performed in triplicate 

using 20 ng of cDNA and the following TaqMan® probe (TaqMan® Gene 

Expression Assay): GATA6 (Hs00232018_m1), PDX1 (Hs00236830_m1), and 

CDH1 (Hs01023894_m1). HPRT1 (Hs02800695_m1) was used as reference gene. 

Relative gene expression quantification was performed using the ΔΔCt method with 

the Sequence Detection Systems Software, Version 1.9.1 (Applied Biosystems). 

 

 



116 
 

Histology and Immunohistochemistry  

Tissues were fixed in 10% neutral buffered formalin and embedded in paraffin. 

Sections were subjected to Hematoxylin and Eosin as well as immunohistochemical 

staining. After deparaffinization and heat-induced antigen retrieval (performed with 

citrate buffer pH=6) slides were incubate with blocking solution for 1 hour at room 

temperature. The following primary antibodies were used for 

immunohistochemical staining of mouse tissues: Cleaved Caspase-3 (#9661, Cell 

Signaling Technology), Ki67 (#D2H10, Cell Signaling Technology), p-ERK 

(#9101; #4376, Cell Signaling Technology), GATA6 (#AF1700, Bio-techne; 

#ab175349, Abcam) KRT81 (sc-100929, Santa Cruz Biotechnology Inc.), and FAP 

(#ab53066, Abcam). The following primary antibodies were used for 

immunohistochemical staining of human tissues: PDX1 ([EPR3358(2)] #ab134150, 

Abcam), CK5 (#XM26, Novocastra), ΔNP63 (ACI3066C, Biocare), S100A2 

(#109494, Abcam), GATA6 (#AF1700, Bio-techne), and p-ERK (#9101, Cell 

Signaling Technology). After overnight incubation with the primary antibody, 

slides were incubated with Rabbit-specific secondary antibody (Vector 

Laboratories) for 30 minutes at room temperature. The slides were then subjected 

to Fast Red or DAB chromogen development. Slides were scanned at 20x 

magnification and digitalized using the Aperio Scan-Scope XT Slide Scanner 

(Aperio Technologies). Quantification of FAP was performed in at least ten random 

nonoverlapping fields of visualization (FOV, 20x) in each tissue using ImageJ. To 

measure the percentage of brown pixels, DAB+ particles were counted 

automatically by the software after colour deconvolution of the image. The 

percentage is relative to the number of nuclei present in each of the selected areas. 

Quantification of CC3 and Ki67 was performed in at least ten random 

nonoverlapping FOV (40x) by counting the number of brown nuclei/cells for each 

selected area. Areas of extensive immune cell infiltration (e.g., infiltrating lymph 

nodes or tertiary lymphoid structures) were avoided.  
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Multiplex Immunofluorescence  

Opal Multiplex IHC Kit (Akoya) was used to perform multiplex 

immunofluorescence on human and mouse tissues. The following antibodies have 

been used: pan-Keratin (#4279, Cell Signaling Technology), p-ERK (#9101, Cell 

Signaling Technology), α-SMA (#ab5694, Abcam), CD68 (#76437, Cell Signaling 

Technology), and MAF (# A300-613A, Bethyl). Briefly, FFPE sections were 

deparaffinized and subjected to several sequential microwave treatments and 

stainings. Each cycle includes five steps: (i) antigen retrieval by heat-induced 

epitope retrieval with citrate buffer (pH6), (ii) aspecific sites blocking, (iii) primary 

antibody incubation, (iv) incubation with Secondary-HRP antibody, and (v) 

incubation with Opal Fluorophore for 10 min at room temperature. After all the 

sequential staining reactions, sections were counterstained with DAPI (Vector lab) 

and mounted with FluoromountTM mounting solution (Diagnostic BioSystem). 

Slides were scanned with Leica TCS SP5 laser scanning confocal (Leica) with 80x 

objective magnification and digitalized by the Leica Application Suite X (LAS X) 

software. Quantification was performed in at least three random nonoverlapping 

FOV (80x) by counting the number nuclei/cells with staining positivity for each 

selected area.  

Multiplexed IF on PDAC tissue of figure 1C, was conducted using the Opal 

multiplex system (Perkin Elmer, MA) in accordance with manufacturer's 

instructions. In brief, FFPE sections were deparaffinized, then fixed with 4% 

paraformaldehyde, and the antigens were retrieved using tris/EDTA (pH9) to 

induce epitope retrieval by heat-induced epitope retrieval. Each section was put 

through multiple rounds of staining; each included endogenous peroxidase blocking 

and protein blocking, as well as primary antibody and the corresponding secondary 

horseradish peroxidase-conjugated polymer (Zytomed Systems, Germany or Perkin 

Elmer). Tyramide signal amplification was used to bind each horseradish 

peroxidase conjugated polymer with different fluorophores. To remove antibodies 

before the next round of staining, additional antigen retrieval in heated Tris/EDTA 

(pH9) was performed. Sections were counterstained with DAPI (Vector lab) after 
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all sequential staining reactions. With 10x objective magnification, slides were 

scanned and digitalized by Zeiss Axio Scanner Z.1 (Carl Zeiss AG, Germany). 

 

Spatial imaging analysis 

The binary information of cellular and nuclear signals was co-registered after 

generating intensity thresholds for each fluorescent channel. Java and R algorithms 

were used to automatically analyse cell distances. Using ImageJ, overlapping mask 

regions were employed to identify cells, which were marked with a point at the 

centre of the DAPI+ cell nucleus. This analysis was performed by using the R 

Package Spatstat1 for converting cell coordinates into Euclidian distances between 

cells. Using the algorithm, any two cells are ranked according to their average 

distance and number of unique neighbours. The threshold to pair up two cells was 

set to 100µm. 

 

Immunofluorescence  

5x103 mPSCs were plated in each well of a cell culture chamber slide (4 well, 

Corning). After 48 hours, cells were serum starved for 6 hours and treated for 10 

minutes with conditioned media from cancer cell lines. 50 ng/ml mEGF was used 

as positive control for p-ERK nuclear translocation. After treatment, cells were 

fixed for 10 minutes with 4% PFA and permeabilized with 100% methanol for 10 

minutes at -20°C. Slides were incubated with blocking solution for 1 hours and 

subsequently with the primary antibodies p-ERK (#9101, Cell Signaling 

Technology) and p-EGFR (#3777, Cell Signaling Technology) overnight at 4°C. 

The secondary antibody Alexa 488-labeled anti-rabbit (1:500) (Invitrogen) was 

incubated for 1 hour at room temperature. The slides were then incubated with 

DAPI (Vector Laboratories) for 30 minutes and mounted with FluoroMount® 

mounting medium (Clinisciences). Images were acquired at 20X using EVOS Cell 

Imaging System (Thermo Fisher Scientific). Quantification was performed by 

counting cells with nuclear signal for p-ERK per FOV divided by the total number 

of cells counted in the field (10 field of view per condition). 
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In Situ Hybridization  

The in-situ hybridization (ISH) was performed on 4 μm section of mouse tissues. 

Briefly, slides were deparaffinized in xylene for 10 minutes followed by 100% 

ethanol for 2 minutes. After drying, slides were first incubated for 10 minutes with 

RNAscope® Hydrogen Peroxide (Advanced Cell Diagnostics) and then for 15 

minutes at 99°C with RNAscope® 1X Retrieval Reagents (Advanced Cell 

Diagnostics). After dehydration in 100% ethanol, slides were dried and incubated 

at 40°C for 20 minutes with RNAscope® Protease Plus (Advanced Cell 

Diagnostics). The RNAscope® Probes (Mm-Mmp3 and Mm-Tnc-C2, Advanced 

Cell Diagnostics) were added to the slides following RNAscope® 2.5 Duplex 

Detection Reagents kit’s instructions. Positive control probe 2.5 Duplex Positive 

Control Probe-Mm and 2-plex Negative Control Probe (Advanced Cell 

Diagnostics) were used as positive and negative control, respectively. After 

chromogens signal development, slides were counterstained with 1:5 diluted 

hematoxylin, dried and mounted with VectaMount® mounting medium (Vector 

Laboratories). Slides were scanned at 40x magnification and digitalized using the 

Aperio Scan-Scope XT Slide Scanner.  

 

Immunoblotting  

Protein lysates were obtained from cells using Cell Signaling Lysis Buffer (Cell 

Signaling Technology) supplemented with phosphatases and proteases inhibitors 

(PhosSTOP™ and cOmplete (TM) Mini Protease Inhibitor Co, Roche). Samples, 

prepared with NuPAGE™ LDS Sample Buffer (4X) (Novex) and NuPAGE™ 

Sample Reducing Agent (10X) (Novex), were incubated for 10 minutes at 99°C for 

proteins denaturation. For electrophoresis, sample were loaded in in 4%–12% Bis-

Tris NuPage gels (Life Technologies). After separation, proteins were transferred 

on a PVDF membrane (Life Technologies) and blocked with Non-fat dry milk 

(Santa Cruz Biotechnology). Membranes were incubated overnight in agitation at 

4°C with the following primary antibodies: p-ERK (#9101, Cell Signaling 
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Technology), total ERK (#9102, Cell Signaling Technology), p-AKT (#4060, Cell 

Signaling Technology), total AKT (#9272, Cell Signaling Technology), p-S6 

(#D57.2.2E/4858, Cell Signaling Technology), total S6 (#54D2, Cell Signaling 

Technology),  p-SMAD2 (#3108, Cell Signaling Technology), p-STAT3 (#9145, 

Cell Signaling Technology), total STAT3 (#12640, Cell Signaling Technology), 

and GATA6 (#ab175349, Abcam, 1:1000). Vinculin (#4650, Cell Signaling 

Technology) and GADPH (#5174, Cell Signaling Technology) were used as 

loading controls. Membranes were then incubated for 1 hour at room temperature 

with the following secondary antibodies: Goat anti-Rabbit IgG (HRP) (1:1000, 

Thermo Fisher Scientific) and HRP-Donkey Anti-Mouse IgG (1:5000, Jackson 

ImmunoReseach). The immunoblots were visualized with ECL Star Enhanced 

Chemiluminescent substrate (Sigma Aldrich).  

 

RNA sequencing and data processing 

RNA was extracted from cell lines (PDAC and mPSCs), organoids or freshly 

isolated tissues (isografts) using TRIzol (Life Technologies), followed by column-

based purification with the PureLink RNA Mini Kit (Ambion). The quality of 

purified RNA samples was determined using a Bioanalyzer 2100 (Agilent) with 

RNA 6000 Nano Kit. RNAs with RNA Integrity Number (RIN) values greater than 

7.5 were used to generate sequencing libraries using the TruSeq Stranded Total 

RNA Kit (Illumina) following manufacturer’s instructions. RNA-Seq libraries 

prepared from cell lines treated with vehicle or MEKi for 2 and 7 days (n=6), 

organoids (n=5), mPSCs (n=6), and mice PDAC tissues were run by Eurofins 

genomics using the Illumina HiSeq2000 platform with paired-end reads of 75 bases 

with a final coverage of 3 million reads per sample. After quality control and 

adaptor trimming, reads were aligned to the GRCh38 genome using Salmon v1.4.0 

(Patro et al., 2017). Transcripts quantification was imported in R through tximport 

package v4.0 and raw counts were normalized using the R/Biocondutor package 

DESeq2 v1.30.0 (Love et al., 2014). Differentially expression analysis has been 

performed using DESeq2 (Love et al., 2014). GSVA R package v1.38.2 
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(Hänzelmann et al., 2013) was used to calculate the main PDAC transcriptomics 

subtypes gene set scores (Moffitt et al., 2015). 

 

Statistical Analysis and Data mining 

For data mining and molecular classification of tumours we used different gene 

expression datasets. Four datasets were used: the PACA-AU cohort of the ICGC 

consortium (Bailey at al., 2016), the TCGA-PAAD (n=178), TCGA-LUAD 

(n=539), TCGA-UVM (n=80), and TCGA-BLCA (n=412) cohorts of the TCGA 

consortium (The Cancer Genome Atlas Research Network, 2017), PanCuRx (Chan-

Seng-Yue et al., 2020) (EGA archive accession EGAS00001002543), and Cancer 

Cell line Encyclopedia (CCLE) (Barretina et al., 2012). The ICGC dataset contains 

normalized expression values (TMM normalized using edgeR Bioconductor 

package, converted to CPM and log2 transformed) of 96 pancreatic cancer patients. 

The TCGA-PAAD consists of the RNA-Seq gene expression profile of 178 

pancreatic cancer patients. Samples number was restricted to 148 due to unclear 

histology of some samples. PanCuRx dataset contains data from 143 microdissected 

PDAC patients and it was pre-processed with STAR v2.7.6a (Dobin et al., 2013) 

and RSEM v1.3.1 (Li et al., 2011). CCLE dataset contains data about 25 pancreatic 

cell lines and the TPM matrix was downloaded. Dataset from Zhang et al.  (n = 45) 

and Yang et al. (n = 69) contains human primary pancreatic tumour tissues from 

PDAC (fresh frozen) patients Affimetrix microarray data. Dataset from Chen et al. 

(n = 63) contains human primary pancreatic tumour tissues (macrodissected) from 

PDAC (fresh frozen) patients Affimetrix microarray data. Dtaset from Kirby et al. 

(n = 51) contains human primary pancreatic tumour tissues (microdissected) from 

PDAC (fresh frozen) patients RNA-seq data.  

Survival analysis has been performed through the R packages survival v3.5.0 

(https://CRAN.R-project.org/package=survival) and the graphical representation 

done with survminer v0.4.9 (). GraphPad Prism was used for graphical 

representation of data. Unless indicated, all the p-values refer to Student t test. 
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Mouse single cell RNA sequencing 

Sample preparation and sequencing 

Single cell RNA sequencing was performed on digested PDAC tissues from mice 

treated with either vehicle or MEKi for 2 or 7 days. For the digestion, tumour 

samples were collected in Splitting Medium (AdDMEM/F12 medium 

supplemented with HEPES (10 mM, Gibco), Glutamax (Gibco), and Pen/Strep 

(Gibco)) supplemented with 0.1% BSA and Rho Kinase Inhibitor (10.5uM, RhoKi). 

After washing with PBS (Gibco), specimens were cutted in small pieces (1 mm3) 

and incubated for 20 minutes in a tube rotator at 37°C in warm Digestion Medium 

(PBS 1X, 2mg/mL Dispase I (Gibco), 1.25mg/mL Collagenase Type II (Gibco), 

100ug/mL DNAse I (Sigma), and 0,05% FBS (Gibco)) supplemented with RhoKi. 

The cell suspension was pipetted and incubated on ice to let the larger tissue clumps 

settle to the bottom of the tube. The surnatant was collected, spun down and the 

pellet was resuspended in Splitting Medium supplemented with 0.1% BSA and 

10mg/ml Soybean trypsin inhibitor and stored on ice (Fraction 1). Then, the larger 

undigested clumps were digested again for 10 minutes, and every step previously 

described was repeated twice until the collection of Fraction 2 and 3. After 

digestion, Fractions 1, 2, and 3 were combined, filtered (40um nylon cell strainer) 

and centrifuged. The pellet was then resuspended in ACK lysing buffer 

supplemented with DNAse I to remove red blood cells from the sample and spun 

down. Cells were washed twice with PBS supplemented with 10% FBS and 1x104 

cells (concentration 1.000 cells/ul) were submitted to sequencing. To generate 

single cell GEMs, cellular suspensions were loaded on a GemCode Single Cell 

Instrument (10x Chromium System) and libraries were generated with GemCode 

Single Cell 3’ Gel Bead and Library Kit v3 (10x Genomics). After barcoding, 

GEMs were broken and cDNA was cleaned with with DynaBeads MyOne Silane 

Beads. cDNA was amplified, cleaned with the AMPure beads and the quality was 

checked using Fragment Analyzer HS NGS Assay. Libraries were quantified by 

quantitative PCR (qPCR) (KAPA Biosystems Library Quantification Kit for 

Illumina platforms) and the sequencing was performed on NextSeq500 (Illumina) 

with 75 paired-end kit.  
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Data processing 

Binary base call (BCL) files, output of the NextSeq500 runs, were processed with 

the 10X proprietary software Cell Ranger, with default and recommended 

parameters. FASTQs files were aligned to reference transcriptome GRCm38 by 

count pipeline. Counts matrices for all samples were imported with Seurat (v3.2.3). 

Cells with low quality were filtered from counts matrices (200 <n° of genes x cell< 

9000 & %mitochondrial gene count < 25%).  Vehicle and treatment datasets were 

Integrated using Seurat integration pipeline (Stuart et al., 2019), clustering analysis 

were run on integrated dataset with Seurat FindCluster (Stuart et al., 2019) function 

using a resolution of 1. Annotation of the dataset were performed looking at the 

expression of well-known cell type markers.  Copy number analysis was performed 

on Epithelial compartment with InferCNV R package (Tirosh et al., 2016) using as 

reference the non-epithelial cells of the samples. 

Subtyping and enrichment analysis 

Subtyping of epithelial and fibroblast compartment was performed using as 

reference respectively the signature from Moffitt et al (Moffit et al., 2015) and from 

Elyada et al (Elyada et al., 2019). Genes of the Moffitt signature were traduced in 

their orthologue mouse version using biomaRt R package (Durinck et al., 2009). To 

assess cell subtypes, an enrichment score was assigned for each gene set to each 

cell using UCell R package (Andreatta et al., 2021), the cell subtype was assigned 

based on maximum score achieved by a cell for a specific gene set. Other tested 

signatures were obtained through the msigdb packages (Bhuva et al., 2023) and 

from Hwang et al. (Hwang et al., 2022). The related single cell enrichment score 

was computed with UCell package (Andreatta et al., 2021).  

Analysis of the fibroblast subcluster 

Differential gene expression analysis of fibroblast cluster subtypes treated with 

vehicle and MEKi in the two timepoint was performed with Seurat function 

FindMarkers (Stuart et al., 2019), the results were filtered according to pvalue<0.05 

and 0.25<log2FoldChange<-0.25. Differentiation analysis of fibroblasts subtypes 

were performed with CytoTRACE package (Gulati et al., 2020) using default 
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parameters. Fibroblast compartment was extrapolated from the integrated atlas and 

was subclustered with FindCluster (Stuart et al., 2019) function of Seurat using a 

resolution of 0.4. Resolution value for subclustering was decided after evaluation 

with clustree (Zappia et al., 2018) (spanning in the range of 0:1.8 with pass 0.1) to 

have stable clustering results. Features of the CAFs subclusters were evaluated by 

marker genes expression. Of the 7 subclusters, 4 were annotated as CAFs due to 

expression of both subtype signature genes (Hwang et al., 2022) and other well-

known panCAF genes expression; the three remaining clusters were annotated as 

Cycling, EMT-like and Myeloid-like. To perform velocity analysis, the matrices of 

spliced and unspliced RNA counts were obtained, for the four conditions, from raw 

data using velocyto pipeline (La Manno et al., 2018) under default parameters. The 

resulting matrices were uploaded in Seurat objects selecting cells from CAFs 

subclusters. The objects were integrated with Seurat integration pipeline by 

timepoints, regressing out cell cycle effect. Computation of velocity and velocity 

pseudotime values was performed through velociraptor R package, using default 

parameters and precomputed PCA values. sMEK signature was derived by filtering 

results of differential expression from Seurat function FindMarkers (Stuart et al., 

2019) between vehicle and MEKi treated CAFs subclusters in 2 days timepoint, 

filtering according to pvalue<0.05 and 0.25<log2FoldChange<-0.25. Signature 

enrichment score were computed on fibroblast compartment using UCell R package 

(Andreatta et al., 2021). Vehicle CAFs were classified as sMEKhigh CAF if their 

signature enrichment score were above the third quartile of the score’s distribution 

among vehicle cells. The same value was then used on treated samples cell as 

threshold for classification of cells in sMEK high and low subclasses. Enrichment 

pathway analysis on the sMEKhigh and sMEKlow CAFs subclass was performed both 

with PROGENy (Schubert et al., 2018), following the default steps, and with fgsea 

package using as input the ordered gene list from differential gene expression 

analysis performed with FindMarkers function and pathways from HALLMARK, 

REACTOME, and GO collections from msigDB. 
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Human single cell RNA sequencing datasets 

Single cell RNA-seq dataset from Peng et al. (Peng et al., 2019) (primary PDAC = 

24, ncells = 41964) was downloaded from Genome Sequence Archive (GSA) 

Project PRJCA001063 together with dataset annotation metadata. The data were 

preprocessed using Seurat (Hao et al., 2021) for quality control and filtering 

(percent_mt_max = 20, nFeature_min = 500, nCount_min = 500, nCount_max = 

50000). Subtyping of tumor epithelial cells and fibroblast compartment was 

performed using as reference respectively the signature from Moffitt et al (Moffitt 

et al., 2017) and from Elyada et al (Elyada et al., 2019). Genes of the Elyada 

signature were traduced in their orthologue human version using biomaRt R 

package. To assess cell subtypes, an enrichment score was assigned for each gene 

set to each cell using UCell R package (Andreatta et al., 2021). Cell subtype was 

assigned based on maximum score achieved by a cell for a specific gene set. Pan 

cancer dataset from Han Luo et al. (Han Luo et al. 2022) (primary tumor = 148, 

ncells = 494610) was downloaded from Gene expression Omnibus (accession No. ) 

together with annotation metadata. sMEK signature enrichment score was 

computed on dataset cells with UCell package (Andreatta et al., 2021). 
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SUPPLEMENTARY FIGURES 

 
 

Supplementary Figure 1: Short-term MEK inhibition does not affect epithelial 

subtype A Immunoblot analyses of p-ERK, total ERK, p-AKT and total AKT in whole-

cell lysate from HPAF-II (left) and PANC-1 (right) treated with either vehicle or MEKi 

(Trametinib) for 2 and 7 days. Vinculin was used as loading control. B Barplots showing 

the Log IC50 for Trametinib of 6 human cell lines (from left to right: hM1, Hs766T, hF2, 

HPAF-II, hT1, and PANC-1) and 5 human organoids (from left to right: VR02-O, VR01-
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O, VR03-O, VR05-O, and VR04-O) classified as basal-like or classical according to 

Moffitt classification. C Waterfall plot showing the GSVA score for the MAPK Biocarta 

signature of 6 human cell lines and 5 human organoids classified as basal-like or classical 

according to Moffitt classification (Moffitt et al.,2015) and sorted by value, in ascending 

order. D Barplots showing the percentage of genes up- and down-regulated in 6 cell lines 

upon treatment with MEK inhibitor for 2 and 7 days. The grey bars display the number of 

genes in common between 2 and 7 days of treatment. E Principal component analysis 

(PCA) of RNA-seq data of 6 human cell lines treated with either vehicle (C) or MEK 

inhibitor for 2 (T2) and 7 (T7) days. The colour scale represents the score of Moffitt 

subtypes (Moffitt et al., 2015) (from classical to basal-like). F Volcano plot representing 

the genes down- and up-regulated upon treatment with MEKi for 2 days in vitro. The red 

dots are the genes that are part of the eMEK signature (n=89). Highlighted some of the 

genes with log2FC expression > 2 and adjusted p < 0.05. G Scatter plot showing the 

distribution of genes from the eMEK signature over the total number of genes ordered 

according to Moffit subtypes differential expression in the PanCuRx cohort. H Kaplan–

Meier plot comparing the survival probability of patients from the TCGA (The Cancer 

Genome Atlas Research Network, 2017) (left) and ICGC (Bailey et al., 2016) (right) 

cohorts according to the expression of the eMEK signature. p, Log-rank (Mantel–Cox) test. 

I Heatmap showing correlation (Spearman’s correlation) between gene signatures (MAPK 

Biocarta and eMEK) and selected gene markers for stromal populations: fibroblasts 

(ACTA2, FAP), macrophages (CD68, ARG1), neutrophils (MPO, LY6G6C), T lymphocytes 

(CD8A), B lymphocytes (CD19), and T reg lymphocytes (FOXP3). All boxes, p < 0.001. J 

Representative images of immunohistochemistry staining for PDX1, CK5, and ΔNP63 of 

classical (PDX1+, CK5-, ΔNP63-) and squamous (PDX1-, CK5+, ΔNP63+) tumours 

performed on human PDAC tissue macroarrays (TMA). K Representative images of 

immunohistochemistry staining for GATA6, S100A2, and p-ERK on classical and basal-

like human PDAC tissues. Inserts showed 2X magnification of selected areas. Scalebar, 

200 μm. Red arrows indicate p-ERK signal in stroma. L Representative images of 

immunohistochemistry for KRT81, GATA6 (purple) and p-ERK (brown) on patient 

derived xenograft (PDX#2) tissues treated with either vehicle or MEK inhibitor, Scalebar, 

200 μm. Inserts showed 2X magnification of selected areas. M Representative 

immunofluorescence staining of p-EGFF (green) on mPSCs FBS-starved for six hours 

(Cntr) and treated for ten minutes with mEGF (50 ng/ml) and basal-like or classical 

conditioned media. Nuclei were counterstained with DAPI (blue). Scalebar, 10 μm. White 

arrows indicate nuclear p-EGFR signal. 
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Supplementary Figure 2: MEK inhibition is efficient at 2 days of treatment and 

increases the stroma content in vivo A Immunoblot analyses of p-ERK, total ERK, p-

AKT, total AKT, p-S6, and total S6 in whole-tumour lysate from mice treated for 2 days 

either with vehicle (n=4) or MEK inhibitor 1 mg/kg (n=4). Vinculin was used as loading 

control. Quantification of changes in the phosphorylated levels of proteins (p-ERK, p-

AKT, and p-S6) is provided in the bar plots on the right. B Immunoblot analyses of p-ERK 

in whole-cell lysate from mPSCs treated with either vehicle (red) or MEK inhibitor. The 

duration of the treatment is reported in the labels on top. Vinculin was used as loading 

control. C On the left, representative Hematoxylin and Eosin staining of vehicle treated (V) 

and MEKi treated mice (T7) tumours for 7 days. Scalebar, 100 μm. Representative images 

of immunohistochemical staining for FAP of vehicle treated and MEKi treated mice 

tumours at different timepoints (from left to right: 2, 7, and 14 days). Scalebar, 100 μm. 

Lower panels show 2X magnifications of select areas. On the right, barplots showing the 

quantification provided as % of brown pixel per FOV. A minimum of 10 fields for each 
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condition have been analysed. *p < 0.05, ns as not significant as determined by Wilcoxon 

test. D Violin plots representing the signature score value (from left to right: CellCycle-

G1S, CellCycle-G2M, and Apoptosis (HALLMARK)) of cells from mice treated with 

either vehicle (C2) or MEKi (T2) for 2 days. ****p < 0.0001 as determined by Wilcoxon 

test. E Violin plots representing the signature score value (from left to right: CellCycle-

G1S, CellCycle-G2M, and Apoptosis (HALLMARK)) of cells from mice treated with 

either vehicle (C7) or MEKi (T7) for 7 days. *p < 0.05; ns as not significant as determined 

by Wilcoxon test. F Representative images of immunohistochemical staining for the 

proliferation marker Ki67 of vehicle treated (left panel) and MEKi treated tumours (right 

panel). On the right, quantification performed by counting Ki67 positive neoplastic cells in 

5 field of visualization (FOV) for each mouse (n = 4/arm). ***, p<0.001, Student’s t-test. 

Dashed red line separates normal pancreas (left) from PDA (right). Scalebar, 50 µm; insert 

magnification is 600x. G Representative images of immunohistochemical staining for the 

apoptotic marker cleaved caspase 3 (CC3) of vehicle treated (left panel) and MEKi treated 

tumours (right panel). On the right, quantification performed by counting CC3 positive 

neoplastic cells in 5 FOV for each mouse (n = 5/arm). ns, not significant Student’s t-test. 

Scalebar, 50 µm; insert magnification is 600x. 
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Supplementary Figure 3: Identification of reliable markers for iCAFs and myCAFs 

using scRNA-seq data of mouse PDAC tumours A UMAP plot of cells from the 

fibroblast cluster of integrated samples from mice treated with either vehicle (C) or MEKi 

(T). B Violin plots representing the score value for MAPK Biocarta signature of cells from 

mice treated with either vehicle or MEKi for 2 (left) and 7 (right) days. ****p < 0.0001; 

**p < 0.01 as determined by Wilcoxon test. C UMAP plot of cells from the fibroblast 

cluster representing the CAFs subtype for each cell (classified as strong myCAFs, 

intermediate, or strong iCAFs using Elyada’s classification (Elyada et al.,2019)) from 

vehicle treated mice. D UMAP plot of cells from the fibroblast cluster representing the 

score for selected markers (TNC, MMP3, FAP, ACTA2, and IL6) for each cell from vehicle 

treated mice. E Representative images of in situ hybridization showing expression of TNC 

(red; myCAFs) and MMP3 (green; iCAFs) genes on tissue from KC and KPC mice. 

Scalebar, 300 μm. Lower panels show magnification of 2 fields. Scalebar, 60 μm. F 

Immunoblot analysis of GATA6 on whole cell lysate of 60400, 110299, 60590, and 511892 

murine cell lines. β-ACTIN was used as loading control. G Representative images of in 

situ hybridization showing expression of TNC (red; myCAFs) and MMP3 (green; iCAFs) 
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genes on PDAC tissue from mice treated with either vehicle (V) or MEKi for 2 days (T2). 

The upper panel shows the PDAC tissue derived from orthotopic transplantation of the 

classical murine cell line 60400, the middle panel shows the PDAC tissue derived from 

orthotopic transplantation of the classical murine cell line 110299, while the lower panel 

shows the PDAC tissue derived from orthotopic transplantation of the classical murine cell 

line 511892. Scalebar, 60 μm. Insert showed a 2X magnification of selected areas. Black 

arrowheads indicate myCAFs, while white arrowheads point iCAFs.  
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Supplementary Figure 4: Combination of the Basal-like and the sMEK signatures 

identify patients with poor prognosis A On the left, UMAP plot of fibroblast 

compartment after subclustering. Different cell type clusters are color-coded. On the right, 

UMAP visualization of cells from the fibroblast cluster stratified according to the sMEK 

signature (divided as high and low) from mice treated with vehicle for 2 and 7 days. B 
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UMAP plot of cells from the fibroblast cluster stratified according to the first 25 genes of 

the sMEK signature (divided as high and low) from mice treated with vehicle for 2 and 7 

days. C Venn diagrams showing the number of genes of the sMEK signature that overlap 

with signatures reported in literature. From left to right: MAPK Biocarta, LRCC15 

signature (Dominguez et al.,2020), Moffitt activated (Moffitt et al., 2015), and Elyada’s 

CAFs subpopulations (myCAFs, iCAFs, and apCAFs (Elyada et al.,2019)). D EnrichR 

pathway analysis of significantly up-regulated pathways in sMEKhigh (right) and sMEKlow 

(left) fibroblasts. E Immunoblot analyses of p-ERK, total ERK, p-STAT3, total STAT3 

and p-SMAD2 in whole-cell lysate from mPSCs either untreated or pre-treated with TGFβ1 

(5 ng/ml) for 48 hours and additionally treated with conditioned media from a classical and 

a basal-like cell line for 1 hour. Vinculin was used as loading control. The quantification is 

reported as numeric values on the blot. F Barplots showing the percentage of cells of the 

epithelial cluster classified according to Moffitt molecular classification (Moffitt et 

al.,2015) in samples of the Peng et al. cohort (Peng et al., 2019). Patients are ordered 

accordingly to decreasing basal-like cells content. G Barplots showing the fold change in 

expression of GATA6 in Hs766t treated with Activin A (100 ng/ml) for 3 and 6 days. H 

Forest plots showing the hazard ratio for the sMEK signature (upper panel) and the Stroma 

Activated signature from Moffitt et al. (Moffitt et al.,2015) (lower panel) in 5 cohorts of 

human PDAC (TCGA (The Cancer Genome Atlas Research Network, 2017), Kirby et al. 

(Kirby et al., 2016), Zhang et al (Zhang et al., 2016), Yang et al. (Yang et al., 2016), and 

Chen et al (Chen et al., 2015)). *p<0.05; **p < 0.01; ns as not significant as determined by 

Wilcoxon test. I Combined Kaplan-Meier survival analysis comparing the survival 

probability of patients from 3 cohort (Zhang et al. (Zhang et al., 2016), Yang et al. (Yang 

et al., 2016), and Chen et al. (Chen et al., 2015)) according to the expression of the sMEK 

signature combined with Moffitt’s molecular subtypes (basal-like, classical) (Moffitt et al., 

2015). p, Log-rank (Mantel–Cox) test. 
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