
UNIVERSITY OF VERONA

DOCTORAL THESIS

A complete assertion-based verification
framework from the edge to the cloud

Author:
Samuele Germiniani

PhD Advisor:
Prof. Graziano PRAVADELLI

Department of Computer Science

May 26, 2023

http://www.univr.it

ii

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License,
Italy. To read a copy of the licence, visit the web page:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you
or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified
material.

A complete assertion-based verification framework from the edge to the cloud — SAMUELE GERMINIANI
PhD Thesis

Verona, May 26, 2023
ISBN <ISBN>

http://creativecommons.org/licenses/by-nc-nd/3.0/

iii

Abstract

Samuele Germiniani

A complete assertion-based verification framework from the edge
to the cloud

Assertion-based verification (ABV) is a well-known approach for checking the func-
tional correctness of a system. Since modern cyber-physical systems are increasingly
complex and distributed, it is no longer appropriate applying ABV only to the single
components; instead, it is necessary to embrace holistic approaches that look at the
entire system.

Furthermore, due to the dynamic nature of the system under verification (SUV),
ABV cannot be applied only in an offline fashion. Alternatively, it is necessary to
extend the verification process to the post-deployment phase; however, this collides
with the issues of dealing with a distributed system affected by unpredictable la-
tency and providing limited computational resources. Therefore, it becomes essen-
tial to develop a dynamic orchestration approach where checkers perform runtime
verification without negatively influencing the computation of the functional parts
of the SUV.

To fill in the gap, I propose a complete framework to verify complex distributed
systems, from the formalisation of specifications to runtime execution. The proposed
framework aims at covering several holes in the verification process of systems exe-
cuting in an edge-to-cloud computing environment.

v

Contents

Abstract iii

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

2 Background 3
2.1 Introduction to assertion-based verification 3
2.2 Assertion-based verification techniques 3
2.3 Specification languages . 4
2.4 Distributed systems and the Edge-to-Cloud computing paradigm . . . 5

3 Objectives 7
3.1 Verification tools . 8

4 Formalisation of specifications and offline verification: MIST 9
4.1 Introduction . 9
4.2 Related work . 10
4.3 Methodology . 12
4.4 Formalisation of specifications . 12

4.4.1 High-level Formalisation . 13
4.4.2 Low-level Formalisation . 14
4.4.3 Type system . 16
4.4.4 Testbench generation . 17

4.5 Checker synthesis . 19
4.6 Test plan generation . 21

4.6.1 Unguided test plan generation 21
4.6.2 Guided test plan generation . 22

4.7 Simulation setup . 25
4.7.1 Setup . 25
4.7.2 Report . 26

4.8 Experimental results . 27
4.8.1 Case study . 27
4.8.2 Results . 27

5 Assertion mining: HARM 29
5.1 Introduction . 29
5.2 Related work . 31
5.3 Preliminaries . 33
5.4 HARM architecture . 35

vi

5.5 Instantiation of placeholders . 36
5.6 Evaluation function . 39
5.7 Assertion mining . 41

5.7.1 The DT algorithm . 44
5.7.2 3-level parallelisation . 47

5.8 Qualification . 47
5.9 Mining assertions containing non-boolean expressions 49

5.9.1 Extraction of interesting values 51
5.9.2 Clustering of interesting values 52

5.10 Experimental results . 53
5.10.1 Fault coverage . 54
5.10.2 Scalability . 55
5.10.3 Multi-threading evaluation . 56
5.10.4 Applying the context-based approach 57
5.10.5 Evaluation of assertions with non-boolean variables 58

5.10.5.1 Assertion effectiveness 58
5.10.5.2 Comparison of the clustering algorithms 59

6 Bug explanation: COME & BECAUSE 61
6.1 Introduction . 61
6.2 Related work . 61
6.3 COME . 63

6.3.1 Threat model . 64
6.3.2 Preliminaries . 64
6.3.3 Methodology . 65

6.3.3.1 Symbolic simulation and labelling 67
6.3.3.2 Symbolic tree abstraction 67
6.3.3.3 Generation of the augmented symbolic tree 68
6.3.3.4 Generation of the abstract symbolic tree 68
6.3.3.5 Sequences building . 70
6.3.3.6 Generation of “good" and “bad" sequences 70
6.3.3.7 Assertions generation 70
6.3.3.8 Generation of disabled behaviors 71
6.3.3.9 Sequences filtering . 72

6.3.4 Simulation results . 73
6.3.4.1 Memory protection mechanism 73
6.3.4.2 Safety control mechanism 75

6.4 BECAUSE . 78
6.4.1 Preliminaries . 79
6.4.2 Methodology . 79

6.4.2.1 Trace Extraction . 81
6.4.2.2 Cone of influence generation 82
6.4.2.3 Instruction clustering 83

6.4.3 Bug explanation with temporal assertions 86
6.4.3.1 Time flow . 86
6.4.3.2 Trace extraction . 86
6.4.3.3 Trace decoration . 88

6.4.4 Experimental results . 90

vii

7 Runtime verification: CARMINE 93
7.1 Introduction . 93
7.2 Related works . 94
7.3 Problem statement . 94
7.4 Verification architecture . 95
7.5 Checker synthesis . 97

7.5.1 Assertion grammar . 97
7.5.2 Checker evaluation function . 97

7.5.2.1 Synthesis of the evaluation function 98
7.5.3 Checker handler . 101

7.6 Checker containerisation . 103
7.7 Checker run-time management . 103

7.7.1 Architecture and workflow of the orchestrator 103
7.7.2 Computation of the optimal allocation 105
7.7.3 Checker migration . 106
7.7.4 Mending the worst-case scenario 107

7.8 Experimental Results . 108
7.8.1 Case Study 1: synthetic benchmark on a three-level cluster . . . 108
7.8.2 Case Study 2: autonomous mobile robot for a smart manufac-

turing line . 110

8 Design Exploration for Approximate Computing: DEA 115
8.1 Introduction . 115
8.2 Related work . 116
8.3 Methodology . 116

8.3.1 Trace generation . 118
8.3.2 Assertion mining . 119
8.3.3 Assertion evaluation and AT ranking 119

8.4 Case Study . 121
8.4.1 Functional accuracy . 121
8.4.2 Area and power saving . 123

9 Conclusions 125
9.1 MIST . 125
9.2 HARM . 126
9.3 COME and BECAUSE . 126
9.4 CARMINE . 127
9.5 DEA . 127

Bibliography 129

ix

List of Figures

2.1 Example of edge-to-cloud paradigm . 6

3.1 Overview of the verification flow . 7

4.1 Execution flow of MIST. 11
4.2 Testbenches timeline . 19
4.3 Example of checker synthesis. 20
4.4 Example of test plan generation . 23
4.5 Example of report . 26
4.6 Case study . 27

5.1 Template grammar adopted in HARM. 34
5.2 Methodology overview . 36
5.3 Running example . 37
5.4 Permutations in the running example. 38
5.5 DT narrowing. 43
5.6 DT of the running example . 46
5.7 3-level parallelization of the running example 48
5.8 Score functions . 49
5.9 Running example final ranking . 49
5.10 Overview of the methodology: Original HARM implementation (on

the left) and the proposed extension (on the right). 50
5.11 Running example: P, N and T, together with the simulation trace of

the DUV, are the input of the tool and represent, respectively, the set of
propositions, the set of numeric expressions, and the set of templates
to be used for mining temporal assertions on non-Boolean expressions. 51

5.12 Example of the clustering procedure. 54
5.13 Comparison between Goldmine, A-TEAM and HARM: Scalability . . . 56
5.14 Speedup of the 3-level parallelisation . 57

6.1 Execution flow of COME. 63
6.2 Example of abstract symbolic tree. Nodes 5 and 7 are marked with the

label “Vulnerability is fired” since when they are reached, the input
assertion is satisfied. 65

6.3 Good and bad sequences. 71
6.4 Disabled behaviors. 72
6.5 Memory usage for (memory protection mechanism). 76
6.6 Memory usage (safety control mechanism). 78
6.7 Methodology execution flow . 80
6.8 DPDG of the running example . 83
6.9 Trace extraction with temporal assertion 87
6.10 Trace decoration of the running example 88

7.1 Verification architecture. 96

x

7.2 checker synthesis (left part) and event subscription (right part). 97
7.3 Evaluation of instances for consequent of the assertion reported in the

left part of Fig. 7.2. 100
7.4 Orchestrator’s architecture. 104
7.5 Example of buffer migration. 106
7.6 False negative/positive example. 108
7.7 Verification statistics of the first case study. 108
7.8 Overview of the programmable cluster nodes in the second case study. 110
7.9 CPU overhead for all the nodes correlated to the number of checkers

during the execution of the robot’s mission. 113

8.1 Overview of the methodology. 117
8.2 Assertions mined for the running example. 120
8.3 (A and B) Impact of AT approximation alternatives on the functional-

ity of the Sobel. Bit tokens (A) and statement tokens (B) are ordered
on the x axis according to the ranking metrics defined in Section 8.3.3.
(C and D) Impact on the functionality of the Sobel by simultaneously
applying the approximations belonging to each AT cluster returned
by the methodology proposed in Section 8.3.3. Clusters are ordered
on the x axis from the top-ranked (Cluster 0) to the worst-ranked. . . . 122

8.4 Saving in terms of area and power by considering the statement token
clusters. Precise refers to the original design, clus0, clus1, clus2 and
clus3 are related to the designs approximated according to the four
clusters returned by our methodology in decreasing order of func-
tional accuracy, clus_rnd indicates the average result for the design
approximated by using a set of randomly chosen ATs. 123

xi

List of Tables

4.1 Completeness analysis for example in Fig. 4.4 25
4.2 Completeness analysis for the considered case study. 28
4.3 Completeness analysis of the case study after the improvements. . . . 28

5.1 Contingency table . 35
5.2 Complexity of the designs . 55
5.3 Comparison between Goldmine, A-TEAM and HARM: fault coverage 55
5.4 Results of applying the context-based approach 58
5.5 Assertion effectiveness by comparing the fault coverage achieved by

the assertions mined with the original version of HARM, predicating
over Boolean variable (h), and with the proposed extension, which
extracts also non-Boolean expressions (ext-h). 59

5.6 Comparison among different clustering algorithms. The value NA
refers to cases where the tool exceeded the time limit (12 hours). The
best results have been achieved with k-means. 59

6.1 Execution time (memory protection mechanism). 76
6.2 Simulation and filtering details (memory protection mechanism). . . . 76
6.3 Execution time (safety control mechanism). 77
6.4 Simulation and filtering details (safety control mechanism). 78
6.5 LLVM execution trace of the running example 91
6.6 Analysis of the reduction quality . 91
6.7 Analysis of the approach’s scalability . 92

7.1 Resource usage overhead with and without checkers. 112

8.1 Final ranking of ATs for the running example. 121

xiii

List of Abbreviations

ABV Assertion-Based Verification
AT Approximation Tokens
COM COMmutative operators
CPS Cyber-Physical System
CTL Computation Tree Logic
DLL Double Linked List
DPDG Dynamic Program Dependency Graph
DT Decision Tree
DTA Decision Tree Algorithm
DUE Design Under Exploration
DUV Design Under Verification
HK Hierarchical Clustering
HT Hardware Trojan
IG Information Gain
KDE Kernel Density Estimation
LLVM Low-Level Virtual Machine
LTL Linear Temporal Logic
MCB Main Control Board
MILP Mixed-Interger Linear Programming
NAT Network Address Translation
NR Non-Reflexive operator
PDG Program Dependency Graph
PIT Potentially Instantiated Template
PSL Property specification Language
PTP Precision Time Protocol
ROS Robot Operating System
RV Runtime Verification
RVE Runtime Verification Environment
SERE Sequential Extended Regular Expression
SSIM Structural SIMilarity index
STL Signal Temporal Logic
SUV System Under Verification

1

Chapter 1

Introduction

Verification is the process of checking if an electronic system satisfies the designer’s
intent, namely if it complies with a set of predetermined requirements. The system
under verification (SUV) is usually analysed through manual inspection or by using
more sophisticated approaches involving automatic tools; each time an unwanted
behaviour is found, the corresponding bug is fixed. In the last few decades, ver-
ification has become one of the most crucial aspects of developing cyber-physical
systems (CPS) where physical and software components are deeply intertwined.
Thoroughly verifying the correctness of a CPS often leads to identifying bugs and
specification holes far earlier in the deployment process, exempting the develop-
ing company from wasting resources on costly maintenance. Unexpected bugs can
become exceptionally expensive when they are intentionally used to exploit vulner-
abilities or when they cause accidental failures.

Ideally, the verification process should be carried out purely by employing au-
tomatic tools. However, state-of-the-art techniques still require plenty of manual
efforts to I) translate informal requirements written using natural language (such as
English) to unambiguous formal specifications (such as logic formulas); II) detect
bugs (when the system does not meet the requirements); III) understand and fix the
detected bugs.

Since modern CPSs are increasingly complex and distributed, it is no longer ap-
propriate to focus the verification process only on the single components; instead,
It is necessary to embrace holistic approaches that look at the entire system. To this
end, it is crucial to consider an ecosystem of integrated tools interconnected in a com-
plete supply chain: from the formalisation of specifications to runtime verification.
Even though several tools have been proposed, there is no single framework that
can be considered an integrated ecosystem. This leads to a number of inefficiencies
and holes in the verification process.

In this context, assertion-based verification (ABV) is a well-known approach for
checking the functional correctness of a system. In ABV, the specifications of the
system are formalised through assertions, which are logic properties that should
hold during the system’s execution. Due to the complexity and dynamic nature of
the SUV, ABV cannot be applied only in an offline fashion before the deployment
of the system: the typical SUV in an industry 5.0 scenario adds the complexity of
non-deterministic interaction between people and machines at runtime. Therefore,
it is necessary to extend the verification process to the post-deployment phase, that
is, by running checkers (pieces of code verifying the functional behaviours of the
system) during the execution of the system. However, this collides with the issues of
dealing with a distributed system affected by unpredictable latency where the SUV
is made of several components with limited available resources; to make things even
more challenging, these resources are usually already completely saturated from
executing the functional tasks. As a consequence, it becomes essential to develop

2 Chapter 1. Introduction

a dynamic orchestration approach where checkers are allowed to perform runtime
detection of critical (in terms of safety and functionality) and suspicious (in terms of
security) situations without negatively influencing the computation of the functional
parts of the SUV.

To fill in the gap, I propose a complete framework to verify complex distributed
systems, from the formalisation of specifications to runtime execution. The proposed
framework aims at covering several holes in the verification process of systems ex-
ecuting in an edge-to-cloud computing environment. Furthermore, I show how to
repurpose the verification effort to perform design exploration with the goal of ap-
proximating the SUV without negatively affecting its functional correctness. The rest
of this thesis is organised as follows. In chapter 2, I report useful background infor-
mation. In chapter 3, I show an overview of the proposed framework and the objec-
tive of this thesis. In chapters 4, 5, 6, 7 and 8, I describe in detail the methodologies
and tools implemented to achieve the objectives; furthermore, to improve readabil-
ity, each of these chapters will contain an introduction, related work, methodology
and result section related only to the contributions described in the chapter. Finally,
in chapter 9, I draw my conclusions.

3

Chapter 2

Background

In this chapter, I provide the required background information to understand this
dissertation. Furthermore, I report useful definitions used in the rest of the paper.
Each chapter may add further definitions (in the “preliminaries" section) relevant
only to the specific subtopic.

2.1 Introduction to assertion-based verification

Definition 1. An assertion is a logic property that must hold (safety property) or must
become true (liveliness property) during the execution or simulation of the design.

ABV is a methodology that utilizes assertions as a central target for a variety
of verification techniques; in particular, it is used for the efficient verification of a
collection of specifications by the synergistic application of simulation, formal veri-
fication, and semi-formal verification. ABV helps overcome three major challenges
of the verification process: bug detection, observability and controllability.

1. Bug detection: when an assertion fails, it will provide enough information to
the designer to start fixing the problem. In contrast, in the absence of asser-
tions, it may take hours or days to even find out the reason for a failure. As
a result, effective use of assertions can drastically reduce the verification and
debug time.

2. Observability: when the DUV is available, assertions may have access to the
internal states of the design, allowing the verification engineer to immediately
observe bugs without needing to propagate them to the outputs.

3. Controllability: low controllability issues occur when the number of required
test benches becomes prohibitive. In this context, formal techniques may em-
ploy assertions to mathematically prove the correctness of the design without
stimulating it with all possible inputs.

Another benefit of ABV is reusability, as the same set of assertions may be used
at different abstraction levels of the designing process and with different verifica-
tion techniques. Furthermore, assertions are a useful tool to formalise the initial
requirements for early identification of inconsistency or incompleteness of the de-
sign’s specifications. Finally, assertions can be used for documentation purposes.

2.2 Assertion-based verification techniques

Assertions can be used to effectively verify specifications using simulation, formal/semi-
formal verification as well as hybrid methods. Verification techniques present dif-
ferent characteristics and challenges depending on whether they are applied offline

4 Chapter 2. Background

(before deployment) or online, during the execution of the system. The two most
popular families of offline verification approaches are dynamic verification and for-
mal verification.

• Dynamic verification is applied to both HW and SW designs. In Dynamic
verification, the design is simulated using a limited set of test patterns; in this
context, assertions are checked dynamically according to the evolution of the
design during simulation. Dynamic approaches are scalable for large designs;
however, they do not provide any mathematical guarantees about the correct-
ness of the design.

• Formal verification is the process of mathematically checking that the behaviour
of a system (described using a formal model) satisfies a given property (also
described using a formal model). Formal verification is widely used to prove
the functional correctness of HW designs. There are a wide variety of formal
verification methods, including theorem proving, model checking, satisfiabil-
ity solving, and equivalence checking. Model checking is most suitable in the
context of assertion-based verification since assertions can be viewed as prop-
erties.

Even though offline verification approaches can provide high confidence in the
correctness of a design, they can not guarantee the absence of unexpected behaviours
in most large industrial designs. This becomes a major pitfall in safety-critical con-
texts where a failure can harm people or things. To overcome this limitation, research
pushed toward a new kind of technique where verification is applied “online" dur-
ing the execution of the system. This family of approaches is known in the literature
as runtime verification (RV).

Runtime verification is based on extracting information from a running system
and using it to detect (and possibly react to) observed behaviours satisfying or vio-
lating certain assertions. The typical aspects of an RV application are the generation
of a checker from a specification and then the use of the checker to analyze the dy-
namics of the SUV. If a failure is detected, the system can either halt to avoid damage
or initiate a recovery procedure.

2.3 Specification languages

Several languages have been proposed to formalise specifications for different ap-
plication domains. Assertions can be usually classified into two different categories.

• Non-temporal assertion: usually implemented as an assert(p) function defined
inside the source code of the design; it checks if the propositional formula p is
satisfied when assert is called during execution.

Definition 2. A proposition is a Boolean expression that can be constructed by us-
ing Boolean operators (&&, ∥, !) between Boolean expressions, or relational operators
(<,>,>=,<=,==, ! =) between numeric expressions. Numeric expressions are
constructed by using arithmetic operators (+,−, ∗, /) or bitwise operators (&, |,∼
,>>,<<). Boolean constants and SUV variables are propositions. Numeric con-
stants and SUV variables are numeric expressions.

• Temporal assertions: the formula is formalised using temporal logic. The truth
value of the formula is usually checked independently from the execution of
the design.

2.4. Distributed systems and the Edge-to-Cloud computing paradigm 5

Temporal logic is expressive enough to represent most properties that a finite-
state system needs to satisfy. Therefore, it is usually the first choice for defining
assertions. The most popular languages to formalise temporal assertions are linear
temporal logic (LTL) and computation tree logic (CTL). LTL can describe properties
of individual executions starting from a set of initial states, and the semantics is de-
fined as a set of paths; on the other hand, CTL describes properties of a computation
tree: formulas can reason about many executions at once, and the semantics is de-
fined in terms of states and paths. CTL logic cannot be used to check assertions with
semi-formal techniques involving simulation, instead, this logic is mostly used with
formal techniques such as model checking. In this thesis, I will mainly use LTL and
some of its extensions.

Definition 3. Linear temporal logic is a modal temporal logic used to formalise behaviours
spanning multiple instants of time. In LTL, one can encode formulae about the future of
paths, e.g., a condition will eventually be true, a condition will be true until another fact
becomes true, and so on. Given a finite set of propositions P, the set of LTL formulas over P
can be defined, in negation normal form, as follows:

• a ∈ P and ¬a are LTL formulas;

• if ϕ1 and ϕ2 are LTL formulas then ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, X ϕ1, ϕ1Uϕ2, ϕ1Rϕ2, G ϕ1 and
F ϕ1 are LTL formulas.

Intuitively, the semantics of temporal operators X (next), U (until), R (release), G (al-
ways) and F (eventually) is:

• X ϕ1 holds at time t if ϕ1 holds at time t + 1;

• ϕ1Uϕ2 holds at time t if ϕ1 holds for all instants t′ ≥ t until ϕ2 holds;

• ϕ1Rϕ2 holds at time t if ϕ2 holds for all instants t′ ≥ t until and including the instant
where ϕ1 first becomes true; if ϕ1 never becomes true, ϕ2 holds forever.

• G ϕ1 holds at time t if ϕ1 holds at all instants t′ ≥ t. In other words, ϕ1 is true globally in
the future.

• F ϕ1 holds at time t if ϕ1 holds at some instant t′ ≥ t. In other words, ϕ1 eventually
becomes true in the future.

Besides the classical operators, LTL usually allows the use of more advanced
SERE (Sequential Extended Regular Expressions) operators. I recommend [1] for a
full reference of the semantics of LTL+SERE.

2.4 Distributed systems and the Edge-to-Cloud computing
paradigm

Distributed systems are generally defined as computational artefacts or components
that run into execution units placed at different physical locations, and that exchange
information to achieve a common goal. A localized unit of computation in such a
setup is generally assigned its own process of control (possibly composed of mul-
tiple threads) but does not execute in isolation. Instead, the process interacts and
exchanges information with other such remote units using the communication in-
frastructure imposed by the distributed architecture, such as a computer network.
Distributed systems are notoriously difficult to design and verify.

6 Chapter 2. Background

FIGURE 2.1: Example of edge-to-cloud paradigm

The edge-to-cloud computing paradigm is a way of classifying the nodes of a dis-
tributed system depending on how close each machine is to the source of the data,
each node is logically placed at a certain computational layer. The bottom layer is
called “the edge”. Here we can find computing platforms such as microcontrollers
and off-the-shelf devices. These devices guarantee low latency for verification be-
cause data is elaborated on the spot. However, they provide low computational
resources. The upper layer is called “the Cloud”. Here we have high-performance
computing platforms, such as computer clusters and servers. The verification la-
tency could become unpredictable and sometimes exceptionally high. This issue is
due to the delay induced by moving data through the network from lower layers
(where data is generated) to the Cloud (where verification occurs), and vice versa.
Fig. 2.1 depicts an example of the edge-to-cloud computing paradigm, where ma-
chines are classified into either the edge or the cloud computing layer.

7

Chapter 3

Objectives

System Under
Verification

Assertion-based
verification

Offline verification

Generation of
Assertions

Checker Synthesis

Assertion mining

Formalization of
specifications

Bug explanation

MIST

HARM
COME/BECAUSE

Runtime verification

Checker
orchestration

CARMINEDesign

Informal
specifications

Execution
traces

Cause of
failure

Assertions

Simulation

Runtime
notification

&
recovery

Cloud

Edge

Design
exploration

DEA

Approximated
design Checkers

FIGURE 3.1: Overview of the verification flow

In fig.3.1, I report an overview of the proposed verification flow. The SUV archi-
tecture is organised following the edge-to-cloud paradigm.

The verification flow starts from the formalisation of specifications. In this pro-
cess, the design intent is formalised into assertions. Assertions can be generated
through manual effort or by using automatic tools called assertion miners. After
that, the generated assertions are used to verify the SUV. This process is carried
out by using semi-formal approaches involving assertions. Assertions are usually
synthesised into checkers capable of verifying if the corresponding assertions hold
during execution or simulation. Finally, the synthesised checkers can be either used
following an offline approach to identify and correct bugs before deployment or to
perform runtime verification after deployment.

Once the verification process is completed, the generated assertions can be used
to guide the exploration of the SUV. In particular, I show a meaningful use case
where assertions are employed to guide the approximation process by exhibiting the
portion of the design that can be approximated without introducing major functional
bugs or system vulnerabilities.

8 Chapter 3. Objectives

3.1 Verification tools

In the aforementioned verification flow, I propose several novel methodologies im-
plemented into five tools called MIST [2], HARM [3], [4], CARMINE [5], COME [6],
BECAUSE [7] and DEA [8].

In the context of the formalisation of specifications, I propose two tools, MIST
and HARM. MIST is an all-in-one tool capable of generating a complete environ-
ment to verify C/C++ firmware starting from informal specifications. The tool pro-
vides a user-friendly interface to allow designers and their customers (who are not
familiar with temporal logic) to formalise the initial specifications into a set of non-
ambiguous temporal behaviours. From those, MIST generates a verification environ-
ment composed of checkers and testbenches to verify the correctness of the firmware
implementation automatically. MIST is described in chapter 4.

HARM is a tool to generate LTL assertions starting from a set of user-defined
hints and the simulation traces of the SUV. The tool is agnostic with respect to the
design from which the trace was generated, thus the SUV source code is not neces-
sary. The user-defined hints involve LTL templates, propositions and ranking met-
rics that are exploited by the assertion miner to reduce the search space and improve
the quality of the generated assertions. This way, the tool supports the work of the
verification engineer by including his/her insights in the process of automatically
generating assertions. HARM is described in chapter 5.

The assertions generated with HARM are used in chapter 8 in the context of
approximate computing. That chapter proposes an automatic methodology and a
corresponding tool called DEA to guide the approximate-computing design explo-
ration at the RT (register transfer) level.

In the context of bug explanation, I propose COME and BECAUSE. Given a set of
execution traces corresponding to sequences of instructions highlighting unexpected
behaviours (where an assertion failed), COME and BECAUSE aim at reducing the
traces, keeping only the relevant instructions to understand and correct the bugs.

BECAUSE works by combining dynamic program slicing with a clustering pro-
cedure. First, program slicing is applied to remove instructions not belonging to the
cone of influence of the unexpected behaviour. Then, clusters of instructions based
on “store operations" of the SUV are created to guide the heuristic in removing fur-
ther irrelevant instructions.

COME exploits symbolic simulation to generate a set of execution traces. The
tool employs alignment algorithms to compare the generated traces to extract the
essential instructions actually characterising the unexpected behaviours. COME and
BECAUSE are described in chapter 6.

Finally, in the context of runtime verification, I propose CARMINE, a tool to au-
tomatically generate a runtime verification environment (RVE) for distributed sys-
tems. The RVE is automatically synthesised starting from a set of LTL assertions.
The RVE is capable of automatically balancing the verification load by orchestrating
the checkers on the different machines of the distributed system, preventing the RVE
from saturating the computational resources of the SUV. CARMINE is described in
chapter 7.

9

Chapter 4

Formalisation of specifications and
offline verification: MIST

4.1 Introduction

Our experience suggests that many companies have to cut down the verification
process due to the lack of time, tools and specialized engineers. To make things
worse, developing time is often hard to assess correctly[9], while managers usually
tend to underestimate it. As a result, engineers and programmers are subject to
very firm deadlines; hence they are mostly concerned about conjuring functionalities
instead of carefully verifying the design [10].

That is even more critical in the case of firmware verification, which requires
exceptional consideration to deal also with the underlying hardware. Complex in-
dustrial designs usually include various firmware instances executed on different
target architectures, which need to be co-simulated. Furthermore, virtual platforms
and simulators are not available for each target architecture or they are not equipped
with the proper verification tools. Therefore, several companies postpone firmware
verification at the end of the design process, when the real hardware is available,
finally asking the verification engineers to manually check if the firmware meets the
specifications.

Indeed, one of the main problems that prevent an effective and efficient firmware
verification process is the incapability of formalizing the initial design specifications,
which are generally written in extremely long and ambiguous natural-language de-
scriptions. Such descriptions risk being differently interpreted by designers and ver-
ification engineers, as well as by the project’s customers themselves, thus leading
to the misalignment between the initial specifications and the final implementation
[11]. Besides, the lack of formalisation prevents the engineer from exploiting auto-
matic tools for verification, with the consequent adoption of ineffective and ineffi-
cient (semi-)manual approaches. In particular, without a well-defined set of specifi-
cations, it becomes impractical to define any formal or semi-formal verification strat-
egy. Generally, those strategies require describing the expected behaviours in terms
of assertions unambiguously. In the case of semi-formal approaches, the verification
engineer has to define a set of testbenches to stimulate the DUV. To accomplish that,
the verification engineer must identify and learn additional tools, further increasing
the verification overhead.

To fill in the gap, we present MIST: an all-in-one tool capable of generating a com-
plete environment to verify C/C++ firmware starting from informal specifications.
The tool provides a user-friendly interface to allow designers and their customers,
which are not familiar with temporal logic, to formalise the initial specifications into
a set of non-ambiguous temporal behaviours. From those, MIST generates a verifi-
cation environment composed of checkers and testbenches to verify the correctness

10 Chapter 4. Formalisation of specifications and offline verification: MIST

of the firmware implementation automatically. Then, in order to guide the verifica-
tion process, MIST employs a clustering procedure that classifies the internal states
of the firmware. Such classification aims at finding an effective ordering to check the
expected behaviours and to advise for possible specification holes. The verification
environment has been fully integrated with the popular IAR Embedded Workbench
toolchain [12]. We evaluated the tool by verifying the correctness of an already re-
leased industrial firmware, allowing the discovery of bugs that were never detected
previously.

The rest of the chapter is organized as follows. Section 4.2 summarizes the state
of the art. Section 4.3 overviews the methodology. Sections 4.4, 4.5, 4.6 and 4.7
explain in detail the methodology implemented in MIST. Section 4.8 reports the ex-
perimental results.

4.2 Related work

The formalisation of specifications is the process of translating the requirements of a
design into logic properties that can be used to verify its correctness automatically.
Usually, the procedure consists of two main steps. Firstly, the verification engineer
has to disambiguate the informal specifications written in natural language. Sec-
ondly, a formal specification language must be adopted to formalise the specifica-
tions into logical formulas that will be used to verify the design.

During the past decades, numerous approaches have been developed to perform
verification with the above paradigm.

Moketar et al.[13] introduce an automated collaborative requirements engineer-
ing tool, called TestMEReq, to promote effective communication and collaboration
between client stakeholders and engineers for better requirements validation. The
proposed tool is augmented with real-time communication and collaboration sup-
port to allow multiple stakeholders to collaboratively validate the same set of re-
quirements.

In [14] the authors describe a method to formalise specifications in a domain-
specific language based on regular expressions. The approach mainly consists in
using a set of parallel non-deterministic Finite state machines to map formal specifi-
cations into behavioural models.

Subramanyan et al. [15] propose an approach to verify firmware security prop-
erties using symbolic execution. The paper introduces a property specification lan-
guage for information flow properties, which intuitively captures the requirements
of confidentiality and integrity.

In [16], Buzhinsky presents a survey of the most popular existing approaches for
formalising discrete-time temporal behaviours.

All the above works either use a standardised (such as property specification
language PSL [17], (SystemVerilog Assertion SVA [18]) or a domain-specific formal-
isation language relying on temporal logic formalisms such as LTL and CTL.

Once the informal specifications are thoroughly translated into logic formulas,
automatic verification can be applied to the target design.

To address the scalability problem, simulation-based approaches have been in-
troduced to perform ABV. These techniques consist of simulating a design with a
limited set of stimuli and memory configurations; therefore, they do not prove that
properties hold for every possible computational path. To apply this verification
model to a design, the verification engineer needs two additional elements aside

4.3. Methodology 11

from the assertions: a set of meaningful testbenches to stimulate and a virtual plat-
form to simulate.

A set of significant testbenches is essential to thoroughly verify all functionalities
of a design, to maximize its statement/branch coverage, and if possible, to discover
hidden bugs.

Frattini et al.[19] address the topic of test-case generation by deepening into
the possibility of generating a much more complete minimum set of stimuli for
simulation-based verification.

In [20], the authors propose a self-tuning approach to guide the generation of
constrained random testbenches using a sat solver. They employ a greedy search
strategy to obtain a high-uniform distribution of stimuli.

Cadar et al.[21] present KLEE, a symbolic simulation tool capable of automati-
cally generating tests that achieve high coverage for C/C++ programs.

In [22], the authors introduce a purely SAT-based semi-formal approach for gen-
erating multiple heterogeneous testcases for a propositional formula.

A Virtual Platform is a software-based system that can fully mirror the function-
ality of a target System-on-Chip or board. Virtual platforms combine high-speed
processor simulators and high-level functional models of the hardware building
blocks, to provide an abstract and executable representation of the hardware to soft-
ware developers and to system architects"[23]. With a virtual platform, the DUV can
be verified by injecting testbenches and by checking if the assertions hold during
simulation. In this work, we generated a verification environment for the virtual
platforms provided by IARSystem.

FIGURE 4.1: Execution flow of MIST.

12 Chapter 4. Formalisation of specifications and offline verification: MIST

4.3 Methodology

As shown in Fig. 4.1, the proposed methodology is composed of four main steps
executed sequentially. The input of MIST is a set of temporal behaviours. These
behaviours are generated in the first step of the methodology, starting from a set of
informal specifications written in natural language. The output is a collection of files
that need to be added to a target simulator to perform the verification of the design.

(1) Formalisation of specifications: The first step consists of translating the in-
formal requirements into logic formulas. Initially, the user has to reinterpret the
specifications into a set of cause/effect propositions, which naturally translate to
logic implications a → c. The user must fill in an XML scheme containing the im-
plications, where each antecedent/consequent pair (a, c) is still written in natural
language. After that, (a, c) pairs are formalised into formulas predicating on input-
s/outputs and internal variables of the design under verification (DUV). To do so,
the user uses an intuitive language of our craft to easily model complex temporal
behaviours.

(2) Checker synthesis: In the second step, the tool parses the formalised specifi-
cations from the XML schema and generates a checker for each formula. Firstly, each
formula is translated into a Büchi automaton. Secondly, a C/C++ representation of
a corresponding checker is obtained from the automaton.

(3) Generation of test plan: The third step of the methodology aims at finding
an effective verification order for the given specifications. Each behaviour must be
verified when the firmware reaches a specific memory state that we call “precondi-
tion state", otherwise the verification would be vacuous. In this state, the behaviour
can be verified by providing the proper stimuli. During the verification of a be-
haviour, the firmware changes to a new memory state that we call “postcondition
state". Considering these assumptions, we identify a sorted list of behaviours that
would connect each “postcondition state" to the “precondition state" of the following
behaviour in the list, promoting an effective verification process.

(4) Simulation set-up: In the last step, the tool generates all the files necessary to
set up the verification environment. This phase handles the architecture-dependent
features of the employed simulator, such as time flow, interrupts and breakpoints.
The output files can be described as follows:

• A set C/C++ source files implementing the checkers;

• A set of testbenches to stimulate the design;

• An orchestration file to verify each behaviour in the optimal “pre/postcondi-
tion” order;

• A set-up file to initialize the verification environment;

• A set of utility functions to handle the time flow and to manage the interrupts
(if present).

Details related to the four steps implemented by MIST are reported hereafter.

4.4 Formalisation of specifications

In this section, we describe in detail how to employ our approach to formalise the
specifications and to generate the testbenches. The process of formalisation consists
of two subsequent steps. Firstly, the specifications are partially disambiguated using

4.4. Formalisation of specifications 13

a high-level formalism. After that, they are completely formalised using our newly
created language. If necessary, testbenches can be defined during formalisation.

4.4.1 High-level Formalisation

To clarify the whole procedure, we refer to the formalisation of the following exam-
ple of specification:

“Firmware is in standard mode, boiler temperature is equal to 18°. Switches A and B are
pressed or auto mode is active for at least 2000 ms, after that the boiler’s temperature starts

rising, then the firmware enters the comfort mode and sends an acknowledgement as
output"

The user has to interpret the specification and translate it into a cause/effect be-
havior, which is represented by a high-level XML file as follows.

<assertion id=66>
<precondition >
The firmware is in standard mode , boiler temperature is
equal to 18

</precondition >
<postcondition >
The firmware is in comfort mode
</postcondition >
<antecedent >
Switches A and B are pressed or auto mode is active for at
least 2000 ms, after that the boiler ’s temperature starts
rising

</antecedent >
<consequent >
The firmware enters the comfort mode and sends an
acknowledgement as output

</consequent >
</assertion >

LISTING 4.1: High-level specification

As depicted in the example, the high-level XML file consists of 5 tags:

• <assertion> contains the id attribute to uniquely identify the behavior;

• <antecedent> contains the antecedent part of the informal specification;

• <consequent> contains the consequent part of the informal specification;

• <precondition> contains the memory state the firmware must reach before
checking the antecedent;

• <postcondition> contains the memory state reached by the firmware after the
consequent has been successfully verified.

By performing this preliminary step, the user prepares the ground for the complete
formalisation. Furthermore, the semi-formal specifications allow a better under-
standing of the quality of the informal specifications. Indeed, a specification that
can not be formalised with the above pattern is either a non-functional specification
or a poorly defined functional specification that must be clarified with the customer.
This formalisation model could be even used directly during the initial interaction
with the customer to guide the creation of a set of well-formed specifications.

14 Chapter 4. Formalisation of specifications and offline verification: MIST

4.4.2 Low-level Formalisation

When the high-level XML file is completed, the user fills in the low-level XML file
by adding unambiguous details to formalise the behaviors. To help non-expert in
formal logic and temporal methods during the formalisation process, we defined a
new language whose grammar is shown below.

4.4. Formalisation of specifications 15

assertion : antecedent -> consequent | precondition |
postcondition

precondition : proposition
postcondition : proposition
antecedent : next_fragment
consequent : next_fragment
next_fragment : fragment | fragment; next_fragment
fragment : proposition [min, max, times, delay, forced ,

man_forced , until]
proposition : c_boolean_expression

Through this language, the user can formalise the specifications in the form of
implications, where each antecedent/consequent is an ordered list of fragments. Each
fragment contains a proposition p and a set of attributes specifying the temporal be-
havior of p. A proposition is a C/C++ boolean expression. From a temporal per-
spective, the verification of the consequent starts in the same instant in which the
antecedent becomes true, and each fragment is evaluated one instant after the eval-
uation of the previous fragment completes. For example, in the implication a → c,
where a contains the sequence of fragments [f1; f2; f3] and c contains [f4; f5]: if f1
holds in the interval [t0, tn], f2 evaluation starts at time tn+1; on the contrary, if f3
holds in the interval [tk, tl], f4 evaluation starts at tl , since t3 belongs to the antecedent
while t4 to the consequent. A fragment represents then a sequence of boolean events,
similar to a PSL SERE [17]. Given a fragment f with a set of attributes
[min, max, times, delay, until] containing a proposition p, the semantics of the eval-
uation of f at time t0 can be described as follows:

• min = n with n > 0: f is true if p holds from t0 to tn−1. In other words,
min attribute means that the proposition must remain true for a minimum of n
instants.

• max = n with n > 0: f is true if p becomes false before tn. In other words,
max attribute means that the proposition must remain true for a maximum of
n instants.

• times = m with m > 0 and max = n with n > 0: f is true at time tk <= tn if p
holds for m (not necessarily consecutive) instants. If attribute times is set, then
max must be set, while min and until are ignored.

• delay = n with n > 0: f is true at time tn−1.

• until = q where q is a proposition, and max = n with n > 0: f is true if q holds
at time t f with t0 ≤ t f ≤ tn−1 and p holds from time t0 to t f−1. If attribute until
is set then max must be set, while min and times are ignored.

To exemplify the use of the proposed language, we report hereafter the low-level
XML resulting from the formalisation of the behavior previously used as a running
example.

16 Chapter 4. Formalisation of specifications and offline verification: MIST

<assertion id=66>
<precondition >

mode == 0 && bTemp == 18.0
</precondition >
<postcondition >

mode == 1
</postcondition >
<antecedent >

<fragment min=2000 >
(P0 == 0 && P4 == 16 && P12 == 4) || autoMode

</fragment >
<fragment until=bTmpRising max=9000>

true
</fragment >

</antecedent >
<consequent >

<fragment min=1>
mode == 1 && P16 == 1

</fragment >
<fragment min=1>

(P16 >> 1) == 1
</fragment >

</consequent >
</assertion >

LISTING 4.2: Low-level specification

The precondition (postcondition) is represented as a proposition identifying a
concrete memory state that must be reached before (after) the verification of the be-
havior. In this example, the memory configuration identified by
mode == 0 && bTemp == 18.0 is forced before checking the rest of the behaviour.
The antecedent contains two fragments that, according to the described semantics,
identify the following behavior: the first fragment is true if
P0 == 0 && P4 == 16 && P12 == 4 || autoMode holds true for 2000 consecutive
instants; after that, the second fragment is true if bTmpRising becomes true within
9000 instants. The consequent also contains two fragments. In the first fragment the
proposition mode == 1 && P16 == 1 must be true for one instant. In the following
instant, the second fragment is evaluated, and the proposition (P16 >> 1) == 1
must be true. From a temporal perspective, the antecedent is evaluated from time t0
to tk with 2000 < k < 11000 while the consequent is evaluated from tk to tk+1.

4.4.3 Type system

In addition to the features described above, the propositions used in each fragment
completely support a C-compliant type system. In particular, variables can be de-
fined using the usual C-styled syntax to declare their type. Moreover, the proposi-
tions support the explicit and implicit C-type casting. Since the DUV already con-
tains the required declarations in the source code, the user needs only to spend a few
seconds to copy and paste them to the low-level XML file.

Furthermore, the user can declare debug variables to simplify the formalisation
of complex behaviours. Debug variables are used during simulation but are held in
memory outside the firmware under verification. This feature can be exceptionally
useful to store intermediate values during the simulation of a behaviour. Listing 4.3
shows a possible declaration for the variables used in listing 4.2.

<declaration >
unsigned char P0;

4.4. Formalisation of specifications 17

unsigned char P4;
unsigned char P12;
unsigned char P16;

</declaration >
<assertion id=66>

<declaration >
int mode;
float bTemp;
bool bTmpRising;
bool autoMode;

</declaration >
...

</assertion >

LISTING 4.3: Variables declaration

Note that we provide support for both global and local declarations. Local declara-
tions are valid only inside the assertion in which they are defined; global declara-
tions extend to all defined assertions.

4.4.4 Testbench generation

The formalisation language used in MIST provides three additional attributes: “nTB",
“forced" and “manual_forced" to allow the generation of testbenches. The attribute
forced can be specified for a fragment f to guide the testbench generator during the
DUV simulation. If f orced = n with n > 0, MIST calls an SAT solver to generate a
model for the proposition p that returns an assignment vari = vali for each variable
vari included in p. If f is evaluated at time t0, then each vari is forced to value vali
in the interval [t0, tn−1]. The attribute nTB specifies how many testbenches must be
generated for the current behaviour. If nTB is equal to p with p > 1, MIST generates
p distinct test-vectors for the current fragment. If the number of available distinct
test-vectors is less than p, MIST replicates the last generated test-vector to fill the
empty spots.

<fragment forced ="200" delay ="200" >
x || y

</fragment >

Consider the example above, if nTB = 4 and x||y is the proposition defined in the
fragment, then there can exist only 3 distinct test-vector : (x = true,y = false), (x
= false, y = true), (x = true, y = true). In this scenario, MIST replicates (x = true,
y = true) to fill the fourth test-vector. Note that the attributes forced is completely
independent of the evaluation of the fragment. If forced is the only attribute defined
in the fragment, then the fragment is considered “empty"; nonetheless, a test-vector
is generated anyway, but the evaluation of the empty fragment is skipped and the
evaluation of the next fragment begins in the same instant (and not one instant later).

The attribute manual_forced follows the same semantic described for forced,
except that the generated test-vector is manually provided by the user instead of be-
ing generated automatically. This is exceptionally useful in cases where the stimuli
must vary in time or must follow a certain pattern. Moreover, the user could ex-
ploit this feature to integrate testbenches generated with specialised external tools,
remarkably increasing the flexibility of MIST.

The syntax of manual_forced is slightly different: manual_ f orced = n, where
n is the id of a test-vector declared in the current assertion. Note that forced and
manual_forced are mutually exclusive, only one of them can be used in a fragment
at any time. A test-vector is defined with the following syntax:

18 Chapter 4. Formalisation of specifications and offline verification: MIST

<test_vector id="uInt">
[var1, var2, ... , varn] = {

tv_tb1;
tv_tb2;

...
tv_tbm;

}
</test_vector >

[var1, var2, ... , varn] is the list of variables on which to apply the stimulus. tv_tbi is
the ith test-vector to be injected in the fragment when the simulator is stimulating
the design with the ith testbench. Each tv_tbi follows the syntax shown below.

tv_tbi : =
(var1_val1, var2_val1, ..., varn_val1, duration1),
(var1_val2, var2_val2, ..., varn_val2, duration2),

...
(var1_valk, var2_valk, ..., varn_valk, durationn)

Each tuple (var1_valj, var2_valj, ... , varn_valj, durationj) identifies a piece of test-
vector where the variables var1, var2, ... , varn are forced with the values
var1_valj, var2_valj, ... , varn_valj for durationj instants. Once the values are injected
for durationj instants, the following tuple (j + 1) is used to inject the values.

In the example depicted in listing 4.2, we assumed that pressing the bottom and
rising the temperature were internal events of the firmware that did not require any
external stimulus. However, in many cases this is not true; usually, the user has to
provide as input a sequence of stimuli to test the correct behaviour. In the example
below, we propose again the same formalised behaviour where the fragments of the
antecedent are used to inject testbenches. Note that the consequent is the same of
listing 4.2.

<assertion id=66 nTB=2>
<precondition >

mode == 0 && bTemp == 18.0
</precondition >
<postcondition >

mode == 1
</postcondition >
<antecedent >

<fragment forced=2000 delay=2000>
(P0 == 0 && P4 == 16 && P12 == 4) || autoMode

</fragment >
<fragment man_forced=7 delay=1200/>

</antecedent >
<test_vector id=7>

[bTemp] ={
(18.0 ,200) ,(18.2 ,200) ,(18.4 ,200) ,(18.6 ,200) ,(18.8 ,200)
,(19.0 ,200); }

</test_vector >
</assertion >

LISTING 4.4: Low-level specification with testbenches

In this example, there are both automatic and manual test-vectors.
Since nTB=2, MIST generates two testbenches.
In the first fragment of the antecedent, the generated test-vector is

(P0 = 0, P4 = 16 , P12 = 4, autoMode = false) for the first testbench and
(P0 = 0, P4 = 0 , P12 = 0, autoMode = true) for the second testbench. The second
fragment contains a manual test-vector with ID equal to 7. We also use the attribute

4.5. Checker synthesis 19

“delay" to postpone the evaluation of the second fragment after injecting the test-
vector of the first fragment. Likewise, we put off the evaluation of the consequent
by delaying the second fragment. If we combine the automatic test-vector of the
first fragment with the manual test-vector of the second fragment, MIST generates
the following testbenches:

1. (P0 = 0, P4 = 16 , P12 = 4, autoMode = false) for 2000 instants, (bTemp = 18.0)
for 200 instants, (bTemp = 18.0) for 200 instants, (bTemp = 18.2) for 200 instants,
(bTemp = 18.4) for 200 instants, (bTemp = 18.6) for 200 instants, (bTemp = 18.8)
for 200 instants, (bTemp = 19.0) for 200 instants

2. (P0 = 0, P4 = 0 , P12 = 0, autoMode = true) for 2000 instants, ... the rest is the
same of the previous testbench.

Note that in the second testbench, the test-vector for the second fragment is the same
one used for the first. This happens because only one test-vector was defined for the
second fragment while 2 were needed to generate the required testbenches.

From a temporal point of view, the two tesbenches can be represented as in figure
4.2. Both testbenches are injected from time t0 to time t3199.

FIGURE 4.2: Testbenches timeline

4.5 Checker synthesis

In the second step of the methodology, MIST parses the formalised specifications in
the low-level XML files and generates a C/C++ checker for each implication. The
process works in three main sub-steps. Firstly, the tool translates each XML assertion
to a PSL formula. Secondly, each PSL formula is used to generate its equivalent
Büchi automaton. Finally, the Büchi automaton is translated to C/C++.

We treat each implication as two independent formulas, one for the antecedent
and one for the consequent. This separation is necessary to pinpoint scenarios where
the implication is vacuously true. If we considered the implication as a whole, a true

20 Chapter 4. Formalisation of specifications and offline verification: MIST

FIGURE 4.3: Example of checker synthesis.

evaluation could either mean that the consequent was true or the antecedent was
false, we want to distinguish both cases to better warn the user. To convert an XML
assertion to PSL, each sequence of f ragments is treated as a PSL SERE. For example,
the consequent of the specification used in Section 4.4 translates to the following PSL
formula {mode == 1 && P16 == 1; (P16 >> 1) == 1}.
Since the PSL syntax does not allow the use of many C operators such as the bit shift
operator (<<), we execute an intermediate step to provide support to all C operators
that can be used to form a boolean expression. In this step, the tool substitutes each
fragment’s proposition with a placeholder boolean variable representing the propo-
sition. For example, the above formula would be translated to {ph1; ph2} where
ph1 is the placeholder for mode == 1 && P16 == 1 and ph2 is the placeholder
for (P16 >> 1) == 1; Once the translations above are completed, we generate
a Büchi automaton for each formula. To do so, we use spotLTL[24], an external
library capable of generating automata from LTL/PSL formulas. Finally, the result-
ing automaton is visited to generate a C/C++ implementation of the corresponding
checker.

Fig. 4.3 shows an example to clarify the process. In steps (1) and (1.5), the frag-
ment is converted to PSL, and its proposition is substituted with placeholders ac-
cording to the aforementioned procedure. In step (2), the LTL formula is given as
input to spotLTL to generate the depicted Büchi automaton. Before synthesizing the
C/C++ checker, each placeholder is substituted back to its original proposition. In
Fig. 4.3, placeholder ph1 and ph2 are substituted back to mode == 1 && P16 == 1

4.6. Test plan generation 21

and (P16 >> 1) == 1. In step (3), the automaton is visited starting from the first
state. For each state, the tool generates a case of a C switch, for each edge the tool gen-
erates the next-state function in each case. Note that the accepting (rejecting) state is
optimized away. For example, the generated checker contains a case in which state
is equal to 0. In this case, if the condition mode == 1 && P16 == 1 is satisfied then
state is changed to 1, otherwise it is changed to 3. In this scenario, states 2 and 3 are
respectively the accepting and rejecting states where the checker returns 1 (true) and
0 (false). In all other states, the checker returns -1 (unknown).

4.6 Test plan generation

In the third step of the methodology, the low-level XML file is used to generate an ef-
fective testing order. Such an order is intended for generating testbenches that make
the firmware evolve in the right memory state before the verification of a behaviour
is performed. Otherwise, the checker may pass vacuously or fail due to a wrong
precondition state reached by the firmware when the checker is executed.

MIST can generate a test plan following two different strategies: a guided and
an unguided strategy. The unguided strategy does not leverage the information pro-
vided by the postconditions to generate an effective testing order; therefore it is more
prone to errors. On the other hand, since it does not require the definition of post-
conditions, it is easier to use. Inexperienced users should become confident with this
first strategy before exploring the more sophisticated second one. The guided strat-
egy makes full use of the postconditions to reduce unexpected failures of checkers
due to formalisation mistakes. Furthermore, it provides feedback on the quality of
the formalised specifications.

4.6.1 Unguided test plan generation

This procedure can be used to quickly generate a test plan without exploiting the
relation between preconditions and postconditions. Although it is less secure, it
might be preferable for developers who do not want to put in the extra effort of
applying the guided approach.

First, the user has to define a safe condition and a set of behaviours. After that,
MIST automatically generates a test plan operating as follows. During the simu-
lation, the verification process waits until the safe condition is satisfied. Then, the
verification process stores the current firmware memory; this memory state is called
“safe state". From there on, the following algorithm is executed:

1. Pick an untested behaviour (bi); if all behaviours are tested, this process ends.

2. Load the safe state in the firmware’s memory.

3. Force the precondition pri of bi to be true in the current simulation, if pri does
not hold after being forced, prompt an error and return to 1.

4. Test bi using testbench tbi
j and dump the result of the test in the verification

report.

5. If j is the index of the last testbench of bi, then go to 1, else, increment j and
return to 2.

The safe condition is a non-temporal boolean expression following the same se-
mantics of a fragment proposition. If it becomes true during simulation, it prompts

22 Chapter 4. Formalisation of specifications and offline verification: MIST

the beginning of the verification process. Delaying the verification process until the
safe condition is satisfied allows the simulation to perform a proper initialisation of
the firmware; this step is mandatory for most implementations before testing any
functional behaviour. A precondition is forced following a similar procedure to the
one used to force a proposition inside a fragment. Once again, we use a sat solver to
identify an assignment of variables that satisfies the proposition, this assignment is
then forced during the simulation.

Dumping and loading safe states are inexpensive procedures both computa-
tionally and memory-wise. This is true because only a small writable part of the
firmware’s memory is dumped, as it is the only portion of memory that could change
during execution, the rest remains unchanged for all simulations. Furthermore, only
one safe state needs to be stored to make this approach work.

4.6.2 Guided test plan generation

The unguided test plan generation already provides a quick and simple approach to
enable verification using MIST. However, to apply that procedure correctly without
mistakes, the user would have to annotate each formalised behavior with the exact
memory state to be forced before starting the test. This process can be extremely
time-consuming and error-prone; as a matter of fact, to be sure of reaching the cor-
rect memory configuration, the user might have to address in the precondition the
value of all variables used in the firmware, which could be thousands of variables
in most industrial firmware. In many cases, errors in this procedure lead to a vac-
uous verification; the test is unable to fire the antecedent of the target assertion, as
the testbench is injected in the wrong memory configuration. In this situation, the
verification engineer would have to go through an excruciating process of trial and
error to find the correct precondition.

To address this issue, we developed a guided test plan generation, to produce an
effective testing order. This procedure relies on the assumption that the DUV was
developed by following a coherent logic flow. The generated testing order tries to
mimic the behavior of a human that manually tests the DUV. To check the correct-
ness of a design, the human starts from the initial state and provides a sequence of
stimuli to the DUV. Each sequence of stimuli moves the DUV from one configuration
to the next in a coherent flow, such that the ending configuration represents the start-
ing precondition for effectively checking the next behavior in a cause-effect cascade
fashion. Through this approach, the specifications are verified in the order intended
by the designer, thus reducing the necessity of forcing the memory state that repre-
sents the precondition of the target behavior, since the DUV gets naturally brought
to the proper state. In other words, the verification engineer no longer has to regard
the whole memory of the firmware in the precondition; the correct memory config-
uration is partially reached as a “side-effect" of the previously tested behaviours.

The guided test plan generation consists of two main procedures. Firstly, all as-
sertions formalised in the low-level XML file are divided into subsets through a clus-
tering procedure. Secondly, each subset is treated as a node of a multilevel graph,
and a verification order is defined by generating a path that connects all nodes. Such
a path is then traversed to generate an effective testing order.

In this procedure, we consider the precondition and postcondition tags of each
assertion. Each precondition/postcondition consists of a propositional formula fol-
lowing the template variable1 == constant1 & variable2 == constant2 & ... &
variablen == constantn that represents a concrete memory configuration. To simplify

4.6. Test plan generation 23

FIGURE 4.4: Example of test plan generation

the exposition, we will use the term “memory state" while referring to a precondi-
tion/postcondition.

In the clustering phase, the goal is to divide the set of all memory states into
subsets. We will refer to the example depicted in Fig. 4.4 to clarify the procedure.
At the bottom of Fig. 4.4 we report the list of assertions used in the example. For
instance, the assertion described in Section 4.4 is represented in the example as “a66
is [pre66 : mode = 0] − > [pos66 : mode = 1]", where pre (pos) is the precondition
(postcondition) of the assertion with id equal to 66. The clustering process starts by
considering the whole set of memory states, and then it is recursively repeated for
each generated sub-set until no set can be further divided. The process counts the
occurrences of each variable in all memory states in the current set; the variable with
the highest count is used to perform the split. In the example, the most frequent vari-
able in the whole set is a. The current set is split into as many sub-sets as the number
of different assignments of the most frequent variable. Also, we add an optional
sub-set containing all memory states that do not include the most frequent variable
(do not care sub-set). In the example, the whole set is divided into three clusters, two
clusters for a = 0 and a = 1 and one don’t care cluster a = −. The same process is
repeated until all sub-sets contain only memory states with equivalent assignments.
In the example, the cluster identified by a = 0 and b = 0 contains three equivalent
memory states [pre5], [pos5], [pre6] that have the same assignments [a = 0 & b = 0].

24 Chapter 4. Formalisation of specifications and offline verification: MIST

This heuristic approach is intuitively justified by the assumption that the most fre-
quent variables represent better the whole state; therefore, it is reasonable to make
them represent wider clusters than those represented by less frequent variables. The
clustering procedure aims at making all similar memory states “close" to each other.

In the second part of the approach, each sub-state is used to infer an effective
testing order. Starting from the precondition of an assertion chosen randomly (or by
the user), the tool finds a path that covers all the memory states. To move from one
memory state to the next, the procedure applies the following rules:

R1: Checking an assertion i in memory state [prei] moves the process to [posi] (solid
red arrow);

R2: If the process can not find any other unused precondition in the current state
cluster, it must jump to its upper cluster and continue the search (dotted black
arrow);

R3: After a jump, the process searches for the first unused precondition [prej] in the
current cluster. If it finds one, it continues the process from that state (rounded
white arrow).

To clarify the procedure, we explain the process by considering the example of
Fig. 4.4. In this example, the user chooses to start with assertion a0; therefore, the
starting state is [pre0]. By applying rule R1, assertion a0 is added to the test plan, and
the execution moves to state [pos0]. In the destination cluster, we find an unused
precondition [pre1]. We apply again rule R1, assertion a1 is added to the test plan,
and the execution is moved to pos1. We repeat the process for assertion a4, and we
reach the state pos4. In this case, no more preconditions are available in the current
cluster; therefore, the execution must apply rule R2 and jump to the upper cluster
identified by a = −. By applying rule R3, the process finds an unused precondition
pre3 and continues from there. Again, we add assertion a3 to the test plan, and
we move the execution to pos3. We apply rule R2 as no other preconditions can be
found in the current cluster, and we reach cluster a = 1. We must apply rule R2
again for the same reason and jump to the upper cluster. The procedure continues
as described above until all assertions are added to the test plan. The resulting test
plan is [a0, a1, a4, a3, a5, a6, a7, a2].

Note that the ideal case, where all behaviors described by the initial specification
perfectly connect to form a coherent path, requires the user to completely formalise
the specifications such that all assertions belong to a unique cluster. This require-
ment could be extremely tedious to achieve manually and could be unfeasible for
most large-scale designs. For this reason, each time we identify a hole in the specifi-
cation, such that the postcondition of an assertion does not connect with the precon-
dition of any other assertion, our heuristic approach jumps to a similar close state
and warns the verification engineer. To be clear, in the case of fully connected spec-
ifications, our approach uses only rule R1. Each time rules R2 and R3 are used, we
are approximating.

After generating the test plan, MIST informs the user of the level of completeness
of the given set of behaviors by comparing the total number of assertions with the
number of times rule R2 was applied to continue the clustering process. The com-
pleteness index is calculated with the following formula:
(1 − exceeded_maxR2_applications / tot_assertions).
Where exceeded_maxR2_applications represents the number of times the process
must violate the maximum number of consecutive applications of rule R2 tolerated

4.7. Simulation setup 25

TABLE 4.1: Completeness analysis for example in Fig. 4.4

max applications of rule R2 completeness
0 times 62.5%
1 times 87.5%
2 times 100 %

by the user. Intuitively, the resulting completeness is an index describing how likely
it is for the set of behaviours to allow the generation of a sequential test capable of
verifying all the specified behaviours without holes; a “hole" is a system state s⊥
reached after testing a behaviour such that no other behaviour can be tested starting
from s⊥, hence, requiring the user to specify how to reach (force) the initial state of
the following testable behaviour in the test suit. Each time a missing link is found,
the completeness is reduced.

Table 4.1 shows the completeness of the running example. The first row of the
table shows the completeness when no approximation is allowed, or in other words,
when the process should not use rule R2 to continue. In the example, rule R2 is
used 3 times non-consecutively; therefore, the resulting completeness is (1− 3/8) =
0.625. In the example, the second (third) row shows the completeness reachable by
allowing the consecutive application of rule R2 at most once (twice).

The user can exploit this information to improve the set of formalised behaviors
such that rule R2 is applied as less as possible while achieving high completeness.

4.7 Simulation setup

4.7.1 Setup

In the last step of the methodology, the verification environment is set up. This phase
handles the architecture-dependent features of the target simulator. For now, MIST
is capable of generating a verification environment for the IARsystem workbench,
which is an industrial compiler and debugger toolchain for ARM-based platforms.
In particular, we exploit the provided breakpoint system to evaluate the checkers
and handle the time flow.

Since our checkers provide support for temporal behaviors, we need a way to
sample the time flow. To accomplish that, we provide a debugging variable sim_time
that can be used by the user to simulate the advancement of time in the DUV. To cap-
ture this event in the debugger, we place a breakpoint on that variable to recognize
write operations. Each time sim_time is incremented, the simulated time advances
by one instant producing a re-evaluation of the active checker. Usually, the best way
to use sim_time is to place it in a timed interrupt that keeps increasing it at a constant
rate. Furthermore, we use breakpoints to inject stimuli in the ports and variables of
the fragments using the f orced and manual_ f orced attributes. Following the above
mechanisms, MIST generates the files to perform the verification of the DUV using
IARsystem. The generated files consist of an entry point to set up the verification
environment, utility functions to handle the time events, the orchestration file that
executes each checker using either a guided or unguided strategy and a set of files
containing the checkers. To integrate the generated verification environment with
IARSystem, the user only has to provide the MIST’s entry point file to the simulator;
after that, the verification process proceeds automatically until its completion.

26 Chapter 4. Formalisation of specifications and offline verification: MIST

4.7.2 Report

FIGURE 4.5: Example of report

Once all behaviours are tested, the verification process provides a verification report
containing the results of the simulation. The report includes information related to
the coverage and failure of checkers, together with the applied testbenches. Check-
ers whose antecedent was false are reported as vacuously satisfied; otherwise, they
are either reported as “verified" if the consequent was true, or as “failed" if the con-
sequent was false.

Since our formalisation language has a well-structured and simplified syntax,
failed checkers are also capable of reporting additional information about the failure.
Not only they can report exactly the location of the failure in the behaviour, but they
can also infer its cause. We show an example of a verification report in fig. 4.5.

In this example, we show the result of two possible failures for the running ex-
amples depicted in listing 4.2 (66_a) and 4.4 (66_b). In particular, 66_a is vacuously
verified, as the failure makes the antecedent false; 66_b fails on testbench 2, as the
failure occurred in the consequent. All other behaviours are correctly verified for
all testbenches. The verification report is composed of two main parts, the first part
contains the details of the failures, while the second part contains the summary of
the whole simulation. For each failed test, the verification environment is capable of
reporting the exact location of the failure. For behaviour 66_b, it is reported that the
failure occurred in the first fragment of the consequent while injecting the second
testbench. Thanks to the limited number of temporal operators and a well-defined
structure of the propositions, we can provide a custom message for each failure,
greatly simplifying the understanding of its cause. These messages usually contain
the assignment of variables that made the proposition fail together with additional
remarks on the applied temporal operator. By reading the message for behaviour
66_b, we can quickly understand the cause of the failure: the assignment of vari-
ables mode = 1, P16 = 4 clearly does not satisfy proposition mode == 1 && P16 == 1.

4.8. Experimental results 27

In particular, variable P16 is the cause of the failure. Furthermore, the message “af-
ter 0 instants of ⟨min, 1⟩" warns the user when the proposition became false, that is,
in the first instant of evaluating a fragment annotated with the min attribute.

4.8 Experimental results

The experimental results have been carried out on a 2.9 GHz Intel Core i7 processor
equipped with 16 GB of RAM and running Windows 10.

4.8.1 Case study

We evaluated the effectiveness of our tool to verify an industrial firmware com-
posed of over 10000 lines of C code. The analyzed case study is represented by
firmware implementing the controller of a boiler implant. The user can interact with
the firmware through an HMI (Human machine interface) composed of an LCD dis-
play, 4 alphanumeric digits, 7 keys, an RS485 connection and 1 TTL connection (pos-
sibility of a second modbus with the addition of the ITRF14 interface). Moreover, the
firmware is connected to several external devices providing inputs/outputs such as
thermostats, boilers, clocks and an internet gateway. The firmware runs on an RL78
microcontroller, allowing communications with external devices through Modbus
and I2C protocols. Finally, the internal time flow is handled using timed interrupts.
The case study configuration is depicted in Fig. 4.6.

FIGURE 4.6: Case study

4.8.2 Results

We put emphasis on the timing results of the complete verification process, from the
formalisation of specifications to the simulation of the behaviours. Starting from the
informal specification of the firmware, we formalised 100 behaviours. On average,
each behaviour takes 30 seconds to be formalised into the high-level XML format.
The formalisation of the low-level XML format depends significantly on the skill of
the verification engineer and his/her knowledge of the underlying implementation
details. After some practice, we were capable of formalizing a behaviour in less than
three minutes. Overall, we formalised all 100 behaviours in less than 6 hours. After
that, MIST generated the testing files and produced an effective test plan in less than

28 Chapter 4. Formalisation of specifications and offline verification: MIST

TABLE 4.2: Completeness analysis for the considered case study.

max applications of rule R2 completeness
0 45.5%
1 72.73%
2 79.22%
3 81.82 %
4 97.73%
5 100%

TABLE 4.3: Completeness analysis of the case study after the im-
provements.

max applications of rule 2 completeness
0 48.5%
1 75.73%
2 88.2%
3 100 %

10 seconds. We don’t report numerical results proving the scalability of the tool in
terms of time/memory as the complexity of the approach is linear with respect to the
number of formalised behaviours; therefore, the tool might take minutes at most to
formalise thousands of behaviours. Finally, we set up the verification environment
in the simulator (IAR System Workbench). The simulation took less than 40 minutes
to verify non-vacuously each behaviour and to produce a report of the verification.

The employment of our methodology to an industrial legacy firmware discov-
ered numerous bugs related to an inaccurate sampling of time. One notable example
concerns the usage of switches in the HMI. Many specifications implied that some
switches needed to be pressed for a certain amount of time to activate a functional-
ity. However, during the simulation, the correct behaviour did not occur even when
providing the correct stimuli. Using MIST for the verification of such firmware was
considerably helpful in identifying a temporal inconsistency of Modbus and I2C
protocols that caused a delay in its execution.

Furthermore, the generation of the test plan for 100 behaviours suggested a re-
markable incompleteness in the firmware specifications. In table 4.2 we can observe
the completeness estimations produced for the case study by considering the ap-
proach proposed in Section 4.6. We used those statistics to improve the complete-
ness of the specifications by adjusting the behaviours underlining the highest in-
completeness and by adding 10 behaviours to cover some specifications holes. After
completing this procedure, we achieved new completeness estimations reported in
Table 4.3. To achieve 100% completeness with the new specifications, we needed to
apply rule R2 only 3 times, while with the initial specifications, it was used 5 times.

To test the effectiveness of the new language developed for MIST, we arranged
a 2-day workshop with the company that provided the industrial case study. In this
short time, the developers have been capable of quickly grasping the fundamentals
of the language, and before long, they have begun formalising specifications and
using the tool on their own.

29

Chapter 5

Assertion mining: HARM

5.1 Introduction

Unfortunately, assertion definition is a time-consuming and error-prone task, which
requires high expertise to reason in terms of logic formulas [25].

To overcome the severe limitations of manually defining assertions, starting with
the pioneering work on specification mining proposed in [26], verification engi-
neers have developed several assertion mining approaches to automatically extract
assertions from the actual implementation of the DUV (see Section 5.2) Then, the
mined assertions can be compared against the initial specifications to verify if all ex-
pected behaviours have been implemented in the DUV. Furthermore, by analysing
the mined assertions, the verification engineer can discover the presence of unex-
pected behaviours caused by design errors or malicious code deliberately inserted
in the DUV [27]. Finally, mined assertions can be used also for documentation pur-
poses.

There exist mainly two ways for automatically extracting assertions from the
DUV implementation. A first possibility is to statically analyse the DUV source code
searching for (and exploiting) cones of influence and control-flow graphs among
variables. The alternative method consists of dynamically applying data mining
techniques searching for association rules on a set of traces obtained by simulating
the DUV. Static and dynamic analyses present complementary advantages and dis-
advantages in terms of accuracy and scalability [28], [29]. While static mining pur-
sues generalisations and abstractions, dynamic approaches can only extract likely
assertions, i.e. formulas that represent solely the behaviours that are exposed in the
considered traces. On the other hand, static methods have scalability issues while
dynamic assertion mining is much more computationally efficient.

Even if the quality of likely assertions extracted by dynamic approaches strictly
depends on the level of exhaustiveness exhibited by the considered traces (indeed,
a common characteristic of any simulation-based method), dynamic mining has
gained more and more consensus in the last decade, thanks to its higher scalabil-
ity. In addition, it has been shown that dynamic approaches can be applied also
when the source code of the DUV is not available and only a black-box implemen-
tation is available (e.g., for checking the presence of malicious code on a third-party
IP).

A popular way of extracting assertions from traces consists in using greedy-
based heuristics with decision trees and association rules to generate invariants that
follow the template always(antecedent→ consequent), where antecedent and consequent
represent arbitrarily temporal behaviours. The heuristic way is fundamental to guar-
antee the scalability of the approach as checking long traces for every possible tem-
poral behaviour is not feasible for large designs. However, heuristic approaches can
be unable of mining a satisfying set of assertions, as some interesting behaviours

30 Chapter 5. Assertion mining: HARM

are not generated, while irrelevant assertions are extracted. As a result, the set of
mined assertions can superficially reflect the real behaviours exhibited by the sim-
ulation traces; therefore, the verification engineer needs to manually write further
assertions anyway. Thus, the majority of existing dynamic assertion miners exploit
heuristic approaches to guarantee scalability at the cost of a poor set of generated
assertions, while other tools sacrifice scalability to provide a more complete set of
assertions.

An additional drawback of existing approaches, both static and dynamic, is re-
lated to the fact that they blindly extract hundreds of assertions without considering
the designer’s intent and the application domain. This negatively affects the post-
mining analysis from the verification engineers, which lacks an automatic way of
ranking the mined assertions in terms of interestingness. Consequently, they need
to manually analyse the mined assertions searching for those that better meet their
verification purposes. Indeed, the interestingness of an assertion is an abstract con-
cept strictly correlated with the user’s perspectives and necessities. Overall, existing
miners miss a method that allows the user to decide the desired trade-off between
scalability, completeness and manual effort to be applied for each context of interest.

To handle the aforementioned trade-off, in this chapter, we propose a new asser-
tion miner, called HARM (Hint-Based AsseRtion Miner). Given a set of traces and
a set of hints, HARM generates LTL assertions in the form always (antecedent →
consequent). The hints are represented by (i) template formulas characterising tem-
poral behaviours of interest for the verification engineer, (ii) propositions defining re-
lations between variables that he/she wants to investigate, and (iii) metrics to assess
the interestingness of the generated assertions. In particular, templates are employed
to model the temporal relations between the operands involved in the implication
inside the “always" statement. They can be defined by using all LTL and SERE oper-
ators. A proposition can be any kind of Boolean expression that can be constructed
in C/C++ by connecting variables through Boolean, relational and arithmetic op-
erators. Metrics are indexes used to measure the quality of an assertion. The tool
allows the definition of contexts to cluster and rank the generated assertions accord-
ing to the given hints. In general, the quality and the completeness of the mined
assertions, with respect to the considered traces, vary with the number of hints and
computational resources provided by the user. If the user is unsatisfied with the
mined assertions, he/she can provide more resources and/or change the hints to
improve their completeness and quality.

With respect to the existing approaches, the main contributions of this work are
listed below:

• A very fast miner engine (with respect to the state of the art). HARM features
a parallelised linear-time algorithm to evaluate an assertion and generate its
contingency table, efficiently managing input traces that are millions of time
units long.

• An agnostic and general-purpose miner. HARM does not require the sources
of the DUV as input. As a matter of fact, the tool does not even require the
existence of the design implementation, but only its traces.

• A customizable template-based miner. Most tools provide only one mining
template, and a few others allow the user to choose between a limited subset
of templates. HARM provides always(antecedent → consequent) as a base
template, the user is then allowed to customise the antecedent and consequent
by using the full set of LTL temporal operators included in the PSL. While

5.2. Related work 31

writing the right set of templates to mine high-quality assertions is not a trivial
task, the users can start from a set of well-known generic templates, like those
proposed in [30], and gradually refine their hints according to the effectiveness
of mined assertions.

• Support to non-Boolean types. HARM allows the mining of assertions predi-
cating on both Boolean and non-Boolean variables, it supports all Verilog/Sys-
tem Verilog and C/C++ primitive data types.

• A generalised procedure to generate assertions through a template-based and
entropy-based decision tree algorithm.

• A context-based approach to single out interesting assertions according to the
user requirements.

HARM is an open-source tool freely available at [31].
The rest of this chapter is organised as follows. Section 5.2 reports the related

work; section 5.3 provides a set of preliminary definitions useful to understand the
technical parts of the chapter; section 5.4 describes the architecture of HARM; sec-
tions 5.5, 5.6, 5.7 and 5.8 report a detailed description of each step of the methodol-
ogy implemented in the tool; section 5.10 reports the experimental results.

5.2 Related work

Static and dynamic approaches have been proposed for assertion mining. The first
focus on analysing the source code of the DUV, while the second considers only the
traces obtained by simulating the DUV by means of input stimuli. As static and dy-
namic analyses present complementary advantages and disadvantages concerning
accuracy and scalability, some works employ mixed static and dynamic techniques.

Among the first works in the software domain, [32], [33] propose scenario-based
specification mining approaches where the source code is instrumented to mine lin-
ear sequence charts. However, these approaches are not aimed at discovering the
complete behaviour of the DUV, but only the collaboration among its components.
Other works mine the specifications of the DUV in the form of algebraic equation
[34] or Hoare-style equations of pre and post-conditions [35], [36], but the tempo-
ral behaviours are not considered. The work in [37] is one of the first attempts at
statically generating assertions by using a template-based technique. The employ-
ment of user-defined templates greatly increases the applicability of the approach as
templates can be chosen according to the design’s characteristics.

In the hardware domain, the authors of [38] describe IODINE, a tool to automat-
ically extract likely design properties of hardware descriptions. It generates invari-
ants by making hypotheses on one or more variables in the design and by analysing
its behaviour over a set of inputs. In [39], the authors developed a new procedure
called “Semantic Inference" with the specific goal of automatically translating the
behaviour of a cyber-physical system into a formal specification. Seshia et al. pro-
posed a gate-level approach that extracts assertions compliant with a predefined set
of temporal templates [40]. In [29], [41]–[43], Vasudevan et al. proposed Goldmine,
a tool for extracting LTL assertions following the template
G (boolVar1 & next[1](boolVar2) &...& next[N](boolVarm) → boolVark). It generates assertions
by using static analysis and data mining. In particular, GoldMine is composed of five
main parts: first, a data generator stimulates the DUV with random input patterns to
generate behavioural traces; second, a static analyser extracts design constraints like

32 Chapter 5. Assertion mining: HARM

cones of influence; then an assertion miner engine generates the assertions through a
decision tree-based supervised learning procedure; then an assertion qualifier eval-
uates and ranks the assertions by using support and confidence metrics; and finally,
the mined assertions are formally verified by using SMV [44] to check if they ac-
tually hold in the DUV. The authors have recently improved their ranking method
by introducing complexity and importance metrics in [45]. In [46], Ghasempouri et
al. proposed a paper on the same topic where the interestingness of assertions is
determined by using data mining metrics.

More recently, system-level approaches that work also on non-Boolean data types
have been presented by Danese et al. in [47], [48]. In [47], a time-window-based
approach, focused only on DUV control signals, is proposed to extract assertions
related to the I/O protocol. A more generic tool is instead described in [48], but
mined assertions are restricted to a subset of pre-defined temporal patterns. The
only two approaches that generate temporal assertions considering arithmetic/logic
expressions among the variables of the DUV are ODEN [49] and the work described
in [50]. In [51] a tool called A-TEAM is introduced for template-based assertion
mining. The tool allows the definition of templates by using propositional logic in
addition to the next, until and release LTL operators, in order to generate temporal
assertions. A-TEAM employs the Apriori algorithm [52] to extract high-frequency
atomic propositions. Then, the propositions are used to instantiate the templates
through a set of justification rules. Finally, the generated assertions are qualified in
terms of fault coverage.

Commercial tools are also available for automatic assertion generation at RTL,
e.g., Atrenta BugScope [53] and Jasper ActiveProp [54]. The first generates SVA or
PSL assertions where only the next temporal operator is considered. The second
generates both structural and behavioural SVA next-based assertions.

The above tools are effective in automatically generating LTL assertions; how-
ever, they present several limitations which are solved by HARM:

• All approaches employing static analysis techniques require the source code of
the DUV, making them unsuitable in all verification flows in which the DUV
is not available. Furthermore, they are dependent from the implementation
language of the DUV, greatly reducing their applicability.

• The basic template for HARM is G(antecedent→ consequent), however, the an-
tecedent and the consequent can be customised by the user through the gram-
mar shown in Fig. 5.1, thus allowing the specification of a wide set of different
LTL formulas. On the contrary, existing tools work on a narrower set of pre-
defined templates. For example, IODINE [38] and DAIKON [36] can extract
only invariant formulas, then no temporal operators are allowed. Goldmine
[29], [41]–[43] extracts assertions of the form G(antecedent → consequent but
it supports only the use of the temporal operator next (i.e., X). ODEN [49] im-
plements only G(a → next(b)), G(a alternating b) and G(a → a U b), where a
and b are simple propositions. A-TEAM [51] is the only other tool supporting
a set of templates similar to HARM, but it only partially supports the decision
tree operator defined in Def. 6 of Section 5.3, as it does not allow conjunction
of next operators with holes in the temporal extension.

• Goldmine performs assertion ranking by analysing the source code of the DUV;
[46] proposes ranking metrics employing the contingency table of the miner;
A-TEAM proposes a minimal fault-coverage ranking technique. Instead, HARM
is more general and does not require the source code of the DUV. Furthermore,

5.3. Preliminaries 33

these tools do not provide a completely configurable context-based approach
to allow the generation of an interesting set of assertions for every domain of
application.

• None of the above tools provides a configurable and generalised entropy-
based decision tree procedure allowing the use of a variety of decision tree
operators (def. 6) that can be instantiated in a templated formula according to
the user’s requirements.

5.3 Preliminaries

In this chapter, we make use of well-known LTL operators, such as Next (X), Un-
til (U), Release (R) and Always (G). We kindly refer the reader to [1] for a complete
description of the corresponding semantics.

Definition 4. Given a finite sequence of time units ⟨t1, ..., tn⟩ and a set of variables {v1, ..., vm},
a data trace is a sequence of tuples (ti, v1

i , ..., vm
i) such that vj

i is the value assumed by vari-
able vj at time ti. We consider time as a discrete sequence of samples t0, t1, ...tN where ti+1
occurs after ti.

For the sake of compactness, the term trace will be used instead of “data trace”
in the rest of the chapter.

Furthermore, in this chapter, we will make extensive use of propositions (def 2).
Here a proposition is labelled with one of the following tokens “a”, “c”, “ac” to spec-
ify that it appears in the assertion, respectively, into the antecedent, the consequent
or both. For example, in Fig. 5.3, P contains four “a” propositions (v1, v2, v3, v4) and
two “c” propositions (v5, v6).

Definition 5. A placeholder is a Boolean variable that can be substituted by a proposition.

Similarly to propositions, we will refer to three kinds of placeholders: those who
appear only in the antecedent (aP), only in the consequent (cP), or in both the an-
tecedent and consequent (acP). Placeholders of kind aP, cP and acP can only be sub-
stituted by propositions labelled with “a”, “c”, and “ac”, respectively. In the rest of
the paper, placeholders are always indicated in the form PN, where N is a positive
integer number. For example, template t1 of Fig. 5.3 contains two placeholder of
kind cP (P1, P2) and one of kind aP (P0).

Definition 6. A decision tree (DT) operator is a special type of temporal (or propositional)
operator that can be instantiated by using a decision tree algorithm.

Currently, HARM implements three DT operators as shown in Fig. 5.1:

• ..&&.. to generate an “and expression", e.g. v1 && v2 && . . . ;

• ..##N.. to generate a “chain of nexts", e.g. v1 ##1 v2 ##1 . . . ;

• ..#N&.. to generate a “chain of nexts of and expressions",
e.g. v1 && v2 ##1 v3 && . . . ##1

A DT operator can only appear once in the antecedent of each template. This is
necessary to preserve the scalability of the approach. An uninstantiated DT operator
is equal to the true Boolean constant.

34 Chapter 5. Assertion mining: HARM

FIGURE 5.1: Template grammar adopted in HARM.

Definition 7. A template is a temporal expression constructed by connecting propositions,
placeholders and DT operators through PSL temporal operators in the form G (antecedent →
consequent). A template is potentially instantiated (PIT) if all placeholders are substi-
tuted with propositions or if it does not contain any placeholders. A PIT may contain unin-
stantiated DT operators. In this chapter, a PIT where all DT operators are instantiated with
propositions (or where there is no DT operator) is considered an assertion.

Templates define the initial temporal behaviour (the temporal behaviour can
change while instantiating a DT operator) of the mined assertions. The grammar
for the templates supported in HARM is reported in Fig.5.1. It is a subset of the
grammar of the popular framework spotLTL [55]. The grammar also supports se-
quential extended regular expressions (SERE).

Definition 8. Given a trace tr of length n and an assertion as, an evaluation of as with
respect to tr is the sequence of evaluation units ⟨e1, ..., en⟩, where the evaluation unit ei is
the truth value of the assertion at instant ti.

The concept of evaluation for propositions and potentially instantiated templates
is defined similarly, by substituting “assertion” with either “proposition” or “poten-
tially instantiated template” in Def. 8. The evaluation unit ei may be true, false or
unknown. It assumes the unknown value if it depends on at least one instant tj where
j is greater than the length of the trace.

Definition 9. An assertion, a proposition or a potentially instantiated template holds in a
trace if and only if its evaluation does not contain any evaluation unit whose value is false.

5.4. HARM architecture 35

Definition 10. Given a trace tr, and an assertion as, a contingency table is a 3× 3 matrix
displaying the frequency distribution of true, f alse and unknown evaluations units of the
antecedent with respect to the consequent of as in tr.

For example, in Table 5.1, ATCT represents the number of time instants in a trace
where both the antecedent and the consequent evaluate to true.

Cons. Cons. Cons.
true false unknown

Ant. true ATCT ATCF ATCU
Ant. false AFCT AFCF AFCU
Ant. unknown AUCT AUCF AUCU

TABLE 5.1: Contingency table

Definition 11. A metric is a numeric formula measuring the impact of an assertion’s fea-
ture in the assertion ranking (i.e. the process of sorting the assertions in increasing order of
interestingness).

The more prominent the feature, the higher its impact on the final ranking of
the assertion. The elements of the contingency table are examples of features of an
assertion. For example, in Fig. 5.3, M contains three metrics. Metric m2 (frequency)
results in a value closer to 1 as the assertion gets a higher value of ATCT (as the
feature gets more prominent).

Definition 12. A context is a set of propositions, templates and metrics.

The user can provide HARM with his/her own context to guide the mining.

5.4 HARM architecture

HARM takes as inputs a trace (def.4), obtained by concatenating the set of traces of
the DUV1, and a set of contexts C = {c1, ..., cn} (def.12). Each context ci is a tuple
(P, T, M), where P is a set of propositions predicating over the variables belonging
to the trace, T is a set of templates, and M is a set of metrics. The output of the tool
is a set of ranked assertions according to M. The architecture of HARM is shown
in Fig. 5.2 and it is composed of the following 3 main steps, which are executed
sequentially:

1. Instantiation of placeholders: in the first step of the methodology the place-
holders in the templates T are substituted by using propositions belonging to
P to generate PITs (def. 7).

2. Assertion mining: in the second step, all PITs are used to generate assertions
holding on the input trace. There are two scenarios. (1) If a PIT does not
contain a DT operator (def. 6), then the tool directly generates an evaluation
(def. 8) for the PIT, and if the PIT holds (def. 9) then it corresponds to a mined
assertion. (2) If a PIT contains a DT operator, then the tool invokes an entropy-
based DT algorithm. The algorithm generates an assertion for each instantia-
tion of the DT operator that makes the PIT hold on the trace.

1The generation of the traces is outside the scope of the paper. They can be generated by means
of a user-defined testbench or an automatic test pattern generator. Its quality definitely affects the
quality of the mined assertions, as it happens in any other simulation-based verification approach. It
is reasonable to assume that in a simulation-based verification flow, a high-quality test set is available
at the time the assertion mining is executed.

36 Chapter 5. Assertion mining: HARM

FIGURE 5.2: Methodology overview

3. Qualification: in the last step of the methodology, a context-based approach is
applied to filter and rank the generated assertions according to their character-
istics. This technique allows the user to single out the assertions that best fit all
the features measured by the metrics of the considered context.

A detailed description of the methodology implemented in HARM is reported in
the following sections. In addition, we give a practical demonstration of the various
features of the tool by applying the methodology to a running example throughout
the manuscript, whose inputs are shown in Fig. 5.3. In particular, the left side of
Fig. 5.3 reports how the trace of the running example appears, while the right part
describes the target context. According to Def. 4 the input trace is a sequence of
values for the variables of the DUV at the varying of time. The time granularity
depends on the DUV abstraction level. For example, at RTL the time granularity is
based on the clock cycle, while at TLM it refers to the events associated with DUV
transactions. Independently from this, the input trace can be informally seen as
a matrix, as shown in Fig. 5.3, where each row corresponds to a different time
instant, and each column refers to a single variable of the DUV. From the operational
point of view, HARM accepts the standard .vcd and .csv file formats to read the
input trace. In addition, please note that, for the sake of simplicity, without lacking
generality, in the running example, we consider only the propositions vi = true (with
i ∈ [1, 6]), and to simplify the writing we will refer to vi = true with vi. Finally, v1, v2,
v3, and v4 will be considered antecedent propositions, while v5 and v6 consequent
propositions).

5.5 Instantiation of placeholders

In the first step of the methodology, we generate a set of PITs by instantiating the
templates in T with the propositions in P. For each template, HARM generates a set

5.5. Instantiation of placeholders 37

FIGURE 5.3: Running example

of proposition permutations with respect to the placeholders belonging to the tem-
plate. Then, it substitutes each placeholder in the template with a proposition. Each
permutation corresponds to a PIT. According to def. 5, a consequent (antecedent)
placeholder can be substituted only with a consequent (antecedent) proposition. For
example, in Fig. 5.3, template t1 has 2 placeholders in the consequent (P1, P2) that
can be instantiated only with the consequent propositions v5 and v6.

To generate all the PITs of a template using the given set of propositions P and
the set of placeholders PH, we would have to generate |P||PH| template instanti-
ations, one for each permutation of propositions inside the placeholders. How-
ever, such a naive approach would not consider how templates are structured, forc-
ing the miner to analyse several redundant permutations. For example, permuta-
tions generating the assertions G((v1 && v3) || (v2 && v4) → X(v7 > 5)) and
G((v2 && v4) || (v1 && v3) → X(v7 > 5)) are equivalent because the || operator
is commutative.

To solve the above issue, we have developed an algorithm that generates a re-
duced set of non-redundant permutations.

The algorithm exploits the structural characteristics of the templates to avoid
redundancy. In particular, we remove redundancy in two classes of operators: com-
mutative operators (COM), such as && and ||, and non-reflexive operators (NR),
which are binary operators of the form le f t ℜ right, where if le f t == right then
le f t ℜ right is equivalent to le f t (or right). Examples of NR operators are the U
(until) and R (release). Then, for COM operators the number of permutations gen-
erated by HARM is (#Propositions

#Operands), while for NR operators they are #Propositions ∗
(#Propositions− 1). For example, by considering the set of propositions {v0, v1, v2}
and the template P0 && P1, the resulting permutations are (3

2)= 3, i.e., v0 && v1,
v0 && v2, v1 && v2, as && is a COM operator, while for the template P0 U P1 they
would be 3 ∗ (3− 1) = 6, as U is an NR operator.

Algorithm 1 describes the GEN_PERMS function implemented in HARM to gen-
erate the reduced set of permutations according to the requirements mentioned above.
The input of the function is the parameter s of type FormulaStruct. This is a tree-like

38 Chapter 5. Assertion mining: HARM

Algorithm 1 Generate the reduced set of permutations

Input: the structure of the formula
Output: matrix of permutations

1: function GEN_PERMS(FormulaStruct s)
2: switch s.type do
3: case PH
4: return makeDomainMatrix(s.dim.nRows)
5: case NR
6: return makeNRMatrix(GEN_PERMS(s.ch[0]), GEN_PERMS(s.ch[1]))
7: case COM
8: return makeComMatrix(GEN_PERMS(s.ch[0]))
9: case ∗

10: ret← GEN_PERMS(s.ch[0])
11: for i← 1 to s.ch.size do
12: ret *= GEN_PERMS(s.ch[i])
13: return ret

FIGURE 5.4: Permutations in the running example.

data structure generated from the abstract syntax tree of a template. Each node of
s is either an operator or a placeholder. The function considers three kinds of op-
erators: COM for commutative operators, NR for non-reflexive operators, and ∗ for
all the other types of PSL operators. Each node in s is labelled with the dimension
(row × col) of the corresponding permutation matrix, where row is the number of
available permutations and col is the number of placeholders to be instantiated. For
example, in the left side of Fig. 5.4, the FormulaStruct of template t1 contains 5
nodes, i.e., 7→, P0, P1 R P2, P1, and P2. The node corresponding to the operator 7→
is labelled with (8× 3) to indicate that the 3 placeholders P0, P1 and P2, included
in the template, can be replaced by 8 permutations, obtained by combining the 4
permutations related to node P0 (which can be replaced by any of the 4 antecedent
propositions v1, v2, v3, v4) and the 2 permutations related to node P1 R P2 (which
can be replaced by either v5 R v6 or v6 R v5). The output of the function is a matrix
representing the set of candidate permutations.

GEN_PERMS is a recursive function generating the permutations of a node by
compounding the permutations of its children. There are four cases depending on

5.6. Evaluation function 39

the type of operator:

• PH: this is the base case of the function where placeholders (i.e., the leaves of
FormulaStruct) are handled. It returns a N× 1 matrix using function makeDo-
mainMatrix (line 4). The matrix enumerates from 0 to N-1 the propositions of
the corresponding domain (a, c, ac).

• NR: it returns the candidate permutations for the children (ch[0] and ch[1]) of
a non-reflexive operator by using the function makeNRMatrix (line 6).

• COM: it returns the candidate permutations of a commutative operator by us-
ing function makeComMatrix (line 10). Note that makeComMatrix requires as
input only the permutations of the first child ch[0] of the operator, as all the
other children must yield the same permutations by construction.

• *: it returns the combination of the children’s permutations (lines 12-16).

The right side of Fig. 5.4 shows the full list of PITs for template t1, obtained by in-
stantiating the permutations extracted by GEN_PERMS. Through this algorithm, we
avoid generating, for example, the useless permutations v5 R v5 and v6 R v6 for the
consequent of t1. The effectiveness of the approach is more evident if we consider
the template t2 of Fig. 5.3: in this case, HARM generates only 15 non-redundant can-
didates instead of the full set of 256 permutations. The time complexity of this algo-
rithm depends on the type of operators and the number of placeholders and propo-
sitions involved; in the worst case, where all permutations are generated through a
’*’ operator, the worst time complexity is O(|PH|P), given set of propositions P and
the set of placeholders PH.

5.6 Evaluation function

In this section, we describe how HARM generates an evaluation for propositions,
PITS and assertions (def. 8). This is a necessary step to implement the assertion
mining procedure described in Section 5.7.

To generate an evaluation we apply an evaluation function to the input trace.
The evaluation function for a proposition is trivial as its truth values depend only
on a single time unit. For example, the evaluation function for proposition v1 && v2
is a function returning true if both v1 and v2 hold on a certain time unit, false oth-
erwise. However, a template includes also temporal operators. As a consequence,
the corresponding evaluation function must usually consider several time units be-
fore returning a truth value. The evaluation function we implemented in HARM for
templates is based on an automaton-based representation of the corresponding tem-
poral formulas. Therefore, we employ the framework spotLTL to translate LTL tem-
plates to deterministic complete Büchi automata. The advantage of this approach is
that automata can be optimised by using state-of-the-art minimisation techniques,
improving the performance of the whole evaluation process.

For each template, we generate two automata, one for the antecedent and one for
the consequent. This is necessary for two reasons; first, the generation of the contin-
gency table (def. 10) requires knowing the truth values of both the antecedent and
the consequent; second, this schema speeds up the evaluation process in scenarios
in which only the antecedent (or the consequent) needs to be re-evaluated, such as
in our decision tree procedure.

An automaton is composed of states and edges; it always contains a root state, an
accepting state and a rejecting state; each edge is associated with a proposition, if a

40 Chapter 5. Assertion mining: HARM

proposition p associated with an edge ek(ssrc, sdst) connecting state ssrc with state sdst
is true, and ssrc is the current state, then sdst is the next state. Given an LTL formula
f , the corresponding Büchi automaton aut, and a trace tr, a trivial way to determine
the truth value of f at time i consists of the following steps:

1. Current state is equal to the root state of aut;

2. Find edge ek(scur, snext) whose proposition is true at time i, if snext is an accept-
ing (rejecting) state, then f is true (false) at time i and the procedure ends, else
go to the next step;

3. Current state is now equal to snext, if i + 1 is greater than the length of tr then
f is unknown at time i, else repeat step 2 at time i + 1, .

By repeating the previous procedure for all the time units of the trace, we obtain
the evaluation of f with respect to tr. However, in the worst-case scenario, each
execution of the above procedure starting at time i might have to consider all the
subsequent time units i + 1, i + 2, ..., till the end of the trace to return a truth value;
therefore, this algorithm is quadratic with respect to the length of the trace, which
may result definitely inefficient for very long traces.

In Algorithm 2, we propose a more efficient linear-time function to generate an
evaluation that we implemented in HARM. The idea of the algorithm is to group up
evaluation units requiring the same operations and to execute such operations only
once for the entire group. The inputs of function EVALUATE are a Büchi automaton
aut where all the placeholders have been substituted with propositions and a trace tr.
curr and next are two vectors of type [(0, ddl0), (1, ddl1), ..., (n, ddln)], where (i, ddli)
is a couple whose first element i ∈ 0, 1, ..., n identifies one state of the automaton,
while the second element ddli is a double linked list (DLL) of unsigned integers.
DLLs are fundamental for keeping the algorithm linear, as they allow us to append
a DLL to another DLL in constant time. Each element (i, DLL) contains the list of
time units assigned to state i; curr contains the time units evaluated in the current
time frame (time), while next contains the ones that will be evaluated in the following
time frame (time+1). Both vectors are initialised with a list (containing aut.nStates
elements, that is, one element for each state of the automaton) of empty DLLs (lines
3-4). The algorithm is then, composed of three main parts repeated for each time
unit of the trace (line 6):

• In the first part (line 8), the current time unit (time) is appended to the DLL
containing the time units of the root state (aut.root is the index of the root state).
This is the engine of the algorithm, that is, where new time units are added to
the data flow.

• In the second part (lines 10-26), the algorithm repeats the following procedure
for each element of curr (for each state of the automaton) with at least one time
unit in the DLL. The algorithm finds an outer edge in which the corresponding
proposition is true on the trace for the current instant of time (lines 13-14). The
expression aut[si. f irst].outEdges returns the outer edges of the state with ID
equal to si. f irst, which is the first element of the couple (i, ddli). If the selected
edge reaches an accepting (rejecting) state, then the time units in si.second are
used to generate true (false) evaluation units (lines 16-18 and 19-21), otherwise,
they are appended to the DDL of the element of next (lines 22-24) correspond-
ing to the destination state of the selected edge. The expression ret[tu] ← true
stores in evaluation ret that the corresponding formula is true on trace tr at

5.7. Assertion mining 41

time tu. After that, the DDL of si is cleared, as all the time units were either
moved to next or used to generate evaluation units.

• In the third part (lines 28-30), all DLLs of next are moved to curr, precisely, the
i − th DLL of next is appended to the i − th DLL of curr. This step is meant
to load in curr the time units accumulated in next. This way, the algorithm is
ready for the next time frame. The DDL of each si of next is cleared as all the
time units were moved to curr (line 30).

Finally, the remaining time units, for which a truth value can not be inferred (the
evaluation goes beyond the length of the trace), are used to generate unknown eval-
uation units (lines 32-34).

The worst-case time complexity of the algorithm is (V + E) ∗ traceLength, where
V and E are the numbers of states and edges of the automaton. However, since
in all meaningful practical scenarios ((V + E)/traceLength) ≈ 0 (which means that
traceLength is orders of magnitude larger than V + E), we can conclude that the time
complexity of the algorithm is linear with respect to the length of the trace.

5.7 Assertion mining

In the second step of the methodology, we use PITs to generate assertions. The pro-
cedure differs depending on the content of the template.

If a PIT pit does not contain any DT operator (def.6) and the evaluation of pit, ac-
cording to the EVALUATE function proposed in the previous section, does not contain
any false values, then pit is an assertion that holds on the input trace.

If a PIT contains a DT operator, assertions are then mined through a DT algorithm
as follows. As indicated after def. 6, an uninstantiated DT operator is equivalent to
true. Since DT operators appear only in the antecedent, an evaluation of a PIT in-
cluding an uninstantiated DT operator usually contains several evaluation units in
which the antecedent is true and the consequent is false. Then, instantiating a DT
operator consists of narrowing the antecedent pool of true values to make the impli-
cation hold on the input trace. This is achieved by substituting the true constant with
a more constrained expression by using the DT algorithm. For example, in Fig.5.5
we show a PIT containing an uninstantiated DT operator (..##1..) in the antecedent.
The evaluation of the PIT (by considering the trace in Fig. 5.3) shows that there are
four evaluation instants in which the antecedent is true and the consequent is false.
By applying the DT algorithm, the true constant represented by the DT operator is
replaced by !v4 ##1 v3 (!v4 and v3 are the operands of this expression) making the
assertion hold on the trace. This concept can be applied to any LTL operator, as
long as each time a new operand is added to the expression by the DT algorithm,
the number of true values of the antecedent is reduced. For instance, the operator
|| would not be a suitable DT operator, because, being an “or” operator, each new
operand would widen the number of true values of the antecedent. On the con-
trary, && (being an “and” operator) would work perfectly for the opposite reason.
In HARM, we have generalised and formalised this idea by classifying the LTL op-
erators complying with the above constraint into “Prop", “Temp" and “Mixed" DT
operators.

• Prop DT operators have only a propositional dimension; in our grammar we have
..&&.. = {o1 && o2 && ... && on} as a Prop DT operator. Each oi is a proposition.

42 Chapter 5. Assertion mining: HARM

Algorithm 2 Linear-time evaluation function

1: function EVALUATE(aut, tr)
2: Evaluation ret
3: curr← init(aut.nStates)
4: next← init(aut.nStates)
5:
6: for time← 0 to tr.length do
7:
8: append(curr[aut.root].second, time)
9:

10: for all si ∈ curr do
11: if isEmpty(si.second) then
12: continue
13: for all edge ∈ aut[si. f irst].outEdges do
14: if edge.evaluate(time, tr) then
15: switch aut[edge.dst].type do
16: case Accept
17: for all tu ∈ si.second do
18: ret[tu]← true
19: case Reject
20: for all tu ∈ si.second do
21: ret[tu]← false
22: case default
23: append(next[edge.dst].second, si.second)
24: break
25: clear(si.second)
26:
27: for all si ∈ next do
28: append(curr[si. f irst].second,si.second)
29: clear(si.second)
30:
31: for all si ∈ next do
32: for all tu ∈ si.second do
33: ret[tu]← unknown
34: return ret

5.7. Assertion mining 43

FIGURE 5.5: DT narrowing.

• Temp DT operators have only a temporal dimension; we have implemented
..##N.. = ⟨o1 ##N o2 ##N ... ##N on⟩ as a Temp DT operator. The user can define
N to configure the temporal delay between oi and oi+1.

• Mixed DT operators have both the temporal and propositional dimension; we im-
plemented ..#N&.. = ⟨(..&&..)1 ##N (..&&..)2 ##N ... ##N (..&&..)n⟩ as a Mixed
operator. This operator behaves like the sum of the propositional and the tempo-
ral dimension of the previous two DT operators.

Each DT operator is associated with a configuration (Size, CType, Range, O f f set)
involving several adjustable parameters:

• Size is a tuple (TempSize, PropSize, AllSize) containing the maximum overall
size AllSize (in terms of the number of operands) of the generated expression,
and the maximum number of Temp operands TempSize and Prop operands
PropSize.

• CType is a binary parameter stating if a DT operator with a temporal dimen-
sion must construct expressions following a sequential or not ordered approach.
To understand this, consider the DT operator ..##2.. with TempSize equal to 3;
the resulting expression must follow the implicit template o1 ##2 o2 ##2 o3;
however, the order in which o1, o2, o3 are substituted changes the outcome of
the DT algorithm. A sequential DT operator substitutes the operands in order
from o1 to o3 while a not ordered DT operator can substitute operands in any
order. The first can only generate the expressions o1, o1 ##2 o2, o1 ##2 o2 ##2 o3,
while the latter can generate expressions such as o1 ##4 o3 or ##4 o3.

• Range is a numeric parameter to adjust the number of candidates selected by
the DT algorithm to split the search space.

• O f f set is a binary parameter stating if the algorithm must return the asser-
tions belonging to the offset; such assertions are obtained by negating the
consequent of an implication that is false each time the antecedent is true
(G(ant→!con)), making the implication always true on the trace.

44 Chapter 5. Assertion mining: HARM

The main advantages of our approach with respect to earlier works are that:

• we offer a variety of DT operators;

• our DT algorithm is more configurable;

• our DT operators are more flexible as they appear in a template-based context.
For instance, the user can apply the DT algorithm by using a complex and
partially instantiated template such as G({prop1[= 1] ##7 prop2 ##1 ..&&..)[∗3]} →
con).

5.7.1 The DT algorithm

In this section, we show how the DT algorithm generates assertions by replacing the
DTO with a concrete expression. As implied by the name, the algorithm employs a
DT procedure where each decision consists of adding a new operand (proposition)
to the DT expression. Operands are chosen according to their information gain (IG),
that is, the expected reduction in information entropy caused by adding them to the
DT expression. Information entropy can be thought of as the amount of variance in
a dataset; in our scenario of application, the entropy is maximum (1) when each time
the antecedent is true, we have a 0.5 probability of having the consequent being also
true; conversely, the entropy is minimum (0) when each time the antecedent is true
than the consequent is always true (onset) or always false (offset). The algorithm
always chooses the operand(s) that produces the highest reduction in entropy (the
highest IG) in order to mine assertions using as few operands as possible, avoiding
over-constrained expressions. Since an operand opi can only be either true or false
(boolean expressions), each decision involves both the operand “as it is" (opi) and
its negated version (!opi). In algorithm 3 we report the functions implementing the
above idea.

Function DT_ALGO takes as input a PIT pit containing a DT operator (dtOp) and
a set of decisional propositions (dp) stored as couples (p, !p) that will be used in the
DT. This function involves three main steps. First, it checks if the current instanti-
ation of dtOp is a solution already found on another path of the tree (lines 6-7), if
that is the case, the current node is ignored and the function returns. Second, it finds
the candidates used to perform a new decision in the tree (lines 9-15); the function
FIND returns the information gain of choosing proposition dp[j] to perform the next
decision. Note that there are two scenarios depending on whether the dtOp must
be constructed unordered or sequentially; in the first case, candidates are searched
among all the temporal propositions (depth) in the range [0, dtOp.maxDepth] (lines
11-13), in the latter case candidates are searched only for the last position (either
temporal or propositional) denoted by -1 (line 15). After that, the found candidates
are sorted in increasing order of IG and filtered of all elements not belonging to the
range [maxIG − Range, maxIG] (line 17); if Range is < 0 then only the candidate
with maximum IG maxIG is kept. In the third step, a new branch of the tree is cre-
ated for each remaining candidate (lines 19-27), and both versions of the decisional
proposition (cand[i] at line 25, where i is 0 or 1) are used. The leaves variable is
used to keep track of the propositions that were used in the previous nodes of the
current path to generate assertions, these propositions can not be used to generate
a new branch. To understand this, consider a path in which proposition v1 was
used to generate an assertion G(v1 → consequent) and the current DT expression
is v2 && v3, if we added v1 to such expression, we would generate a correct asser-
tion G(v1 && v2 && v3 → consequent) but we would also render decisions v2 and

5.7. Assertion mining 45

Algorithm 3 DT algorithm

1: function DT_ALGO(dp, pit)
2: dtOp← pit.getDT()
3: leaves← ∅
4: igs← ∅
5:
6: if isKnownSolution(dtOp) then
7: return
8:
9: if (dtOp.nOperands < dtOp.allSize then

10: for j← 0 to dp.size do
11: if isConstructedUnordered(dtOp) then
12: for depth← 0 to dtOp.maxDepth do
13: igs.add(FIND(dp[j], pit,leaves,depth))
14: else
15: igs.add(FIND(dp[j], pit, leaves, −1))
16:
17: sortAndFilter(igs);
18:
19: for all ig ∈ igs do
20: cand← dp[ig.id]
21: for i← 0 to 1 do
22: if !dtOp.isTaken(ig.id, i, ig.depth) then
23: dtOp.addLeaf(cand[i], depth)
24: leaves.add(cand[i], depth)
25: dtOp.addItem(cand[i], ig.depth)
26: DT_ALGO(dp, t)
27: dtOp.popItem(ig.depth)
28:
29: removeLeaves(leaves,dtOp)
30:
31: function FIND(cand, pit, leaves, depth)
32: dtOp← pit.getDT()
33:
34: for i← 0 to 1 do
35: if dtOp.isTaken(cand, i, depth) then
36: continue
37:
38: dtOp.addItem(cand[i], depth)
39: eval← pit.evaluate()
40: evalAnt← pit.evaluateAnt()
41:
42: if getATCT(eval) == 0 || getATCT(eval) == getAT(evalAnt) then
43: dtOp.addLeaf(cand[i], depth)
44: leaves.add(cand[i], depth)
45: store(pit, dtOp)
46: dtOp.popItem(depth)
47:
48: if ((!dtOp.isTaken(cand, 0, depth) ||
49: !dtOp.isTaken(cand, 1, depth)) && ig < 1) then
50: ig← computeIG(pit)
51: return {cand, ig, depth}
52: return ∅

v3 pointless as v1 was already enough to make the antecedent always implying the
consequent. The leaves variable is used in conjunction with function isTaken (line 22)
to determine if a proposition should be used or not. Function FIND is responsible

46 Chapter 5. Assertion mining: HARM

for finding the candidates and storing the found assertions. The function consists of
two main parts. First, each time the DT expression makes the implication hold on the
whole trace (getATCT(eval)==getAT(evalAnt)) or it makes the implication always
false (getATCT(eval)== 0), a new onset or offset assertion is respectively generated
using the store function (lines 38-47). The store function is also responsible for min-
imising the DT expression by keeping only the minimum subset of operands making
the assertion hold on the trace. Second, if the current candidate contains at least one
of the two propositions of cand that is not already used to generate an assertion in
the current path (lines 49-50), the candidate’s information gain ig is computed (line
51) and returned together with cand and depth (line 52).

FIGURE 5.6: DT of the running example

Fig. 5.6 shows the resulting DT and mined assertions obtained by applying
the DT algorithm to pit2; the configuration of the DTO is ((2, 2, 3), 0, Unordered, 1).
The branches that do not yield any assertions were removed from the tree to make
the picture fit in the paper, these branches are represented by edges connecting to
“empty" nodes. The black boxes contain the assertions generated at the correspond-
ing node. Node 0 generates assertions with only one proposition replacing the DT
expression as no decisions were already made on the corresponding path. Likewise,
node 2 generates assertions containing v1 and v2 as these are the decisions made on
the corresponding path. Each edge is labelled with the used proposition, the tem-
poral position in which the operand was added and its information gain. The given
DTO configuration influences the resulting DT in the following ways: the tree has
only 3 levels because allSize was set to 3; all decisions made on the same node have
the same IG value because Range was set to 0; the algorithm is allowed to generate
assertions with empty spots represented by true constants because the construction
policy is set to Unordered; the algorithm generates offset assertions (see the box con-
nected to node 0 in Fig. 5.6) because the corresponding flag was set to 1. Note that
proposition !v1 [1, 0.75] is not used in the first decision at node 0 because it was al-
ready used to generate assertion G(!v1 ##1 true ; v4 | →!X(v6 R v5)); the same idea is
true for v3 [1, 0.82], v4 [1, 0.75] on the same node and for several other propositions
in the tree.

5.8. Qualification 47

The computational cost of the DT algorithm is dependent on the number of
propositions, the employed DT operators, the length of the trace and the aforemen-
tioned parameters. The temporal complexity is summarised as follows: ..&&.. opera-
tor: 2AllSize ∗ traceLength; ..##.. operator: |P|AllSize ∗ traceLength, where P is the num-
ber of “a" propositions in the context; ..#&.. operator: 2TempSize+PropSize ∗ traceLength.
Note that in any meaningful practical scenario, the worst-case scenario never occurs
as the entropy-based heuristic only selects a small subset of the possible decisions
for every level of the tree.

5.7.2 3-level parallelisation

The formalisation of the mining problem adopted in HARM allowed us to heavily
parallelise the generation of assertions. Particularly, we have implemented a 3-level
parallelisation algorithm capable of exploiting the additional cores of a CPU to speed
up the computation. The idea behind this procedure is that the following are inde-
pendent processes that can be parallelised:

Level 1: Generation of an evaluation by dividing the evaluation units among dif-
ferent threads. E.g., in the running example one thread can handle evaluation
units from t0 to t7 while another thread can operate from t8 to t15.

Level 2: Generation of assertions from different permutations of the same template.

Level 3: Generation of assertions from different templates.

The algorithm starts with an initial number of available threads. First, it divides
them among the templates defined in the user context (Level 3); the templates that
received at least one thread are elaborated in parallel. After that, the distribution
of threads continues for each template (level 2); a template with n threads will gen-
erate assertions for n permutations in parallel. If a template has more threads than
permutations, the additional threads are distributed among the evaluation functions
in each permutation (level 1). Each time the generation of assertions for a permu-
tation or a template is concluded, the assigned threads are returned to the upper
levels. Fig.5.7 shows an example of this process where 32 threads are used to gen-
erate assertions for the running example. There are only two templates; therefore,
each template initially receives 16 threads at level 3. At level 2, the template on the
left side produces 8 permutations and each one receives 2 threads. At level 1, each
permutation can produce evaluations using 2 threads as mentioned before.

5.8 Qualification

The last step of the methodology consists of filtering and measuring the quality of
the generated assertions. Mined assertions are labelled with a ranking score by us-
ing the metrics provided by the user in his/her input context. After that, they are
filtered and sorted in increasing order according to their scores. The employed met-
rics are user-defined numeric expressions; the user can define each metric by using
various built-in assertion features. For example, in Fig. 5.3, the metric m3 combines
arithmetic operators with pRepetitions, which is a built-in assertion feature measur-
ing the number of repeated propositions. Through this mechanism, the user is free
of defining the metrics by measuring the characteristics of an assertion he/she is in-
terested in. In this process, metrics can be used either to filter or sort the assertions.
The running example contains two sorting metrics (m2, m3) and one filtering metric

48 Chapter 5. Assertion mining: HARM

FIGURE 5.7: 3-level parallelization of the running example

(m1). Filtering metrics are associated with a threshold; assertions with a score below
the threshold of any filtering metric are directly discarded. In the running example,
all assertions with a score of m1 less than 0.45 are ignored.

Sorting metrics are used to perform the ranking. The ranking is computed ac-
cording to an overall score. This is calculated, for each mined assertion a, through
the following formula ∏n

i=1 calibrate(smi(a)/smi(amax_i)), where smi(a) is the score
of a by using the i − th sorting metric, amax_i is the assertion that yields the max-
imum score by using metric smi, and calibrate is a procedure that “calibrates" the
input score by using function R = 1/(1 + e(z−kx))2. In the chart on the left side
of Fig. 5.8, we show the graphical representation of function R with z equal to 3.3
and k equal to 10.62. This function is a modified version of the Richards’ curve that
ranges from 0 to 1. The intuition behind this ranking formula is that we want to
allow the simultaneous employment of multiple sorting metrics in a single ranking
procedure. Furthermore, we want to give more importance to assertions present-
ing a higher score for all sorting metrics, while penalising assertions that score well
only in a subset or in none of the given metrics. The calibrate function is capable of
making lower scores greatly undermine the final ranking (1) while preventing high
scores from compensating for lower scores (2).

The aforementioned values of k and z yield the standard calibrate function used
in the miner; however, we allow the user to choose between 55 different configura-
tions of k and z, to adjust the effect of (1) and (2) on the final ranking. In the chart on
the right side of Fig. 5.8, we show 10 configurations of the calibrate function, where
the first function from the left returns values greater than 0 from 0 to 1, the second
does the same thing from 0.1 to 1, the third from 0.2 to 1, ..., the tenth from 0.9 to 1.
Other configurations may include functions ranging from 0.3 to 0.8, from 0.5 to 0.6,
et cetera. The computational complexity of performing the ranking is linear with
respect to the number of ranked assertions.

Fig. 5.9 shows the final ranking of the assertions generated for the running exam-
ple. Note that all assertions belonging to the offset of template t1 were discarded by
the filtering metric. As expected, assertions not presenting a good score for all sort-
ing metrics have received a low ranking (assertions 1-12). Assertions 1-4 received
the maximum ranking in one metric (pRepetitions), however, it was not enough to

5.9. Mining assertions containing non-boolean expressions 49

FIGURE 5.8: Score functions

FIGURE 5.9: Running example final ranking

compensate for the low score in the other (frequency); furthermore, they received a
final score very close to assertions 5-9 (0.20 vs 0.19) even though having a far higher
score with the frequency metric (1 vs 0.67).

With respect to earlier techniques, our ranking approach has the following ad-
vantages:

• It is independent from the source code of the DUV;

• It is flexible and configurable;

• It allows the identification of interesting assertions by using multiple metrics
at the same time.

On the other hand, our approach presents the drawback of being less user-friendly,
since choosing the correct set of metrics for a certain use case might not always be
trivial.

5.9 Mining assertions containing non-boolean expressions

In this section, we show how to automatically mine assertions containing non-Boolean
expressions. In the last few decades, several tools have been proposed to mine asser-
tions with various heuristics; however, these approaches generally have to deal with

50 Chapter 5. Assertion mining: HARM

FIGURE 5.10: Overview of the methodology: Original HARM imple-
mentation (on the left) and the proposed extension (on the right).

the following dilemma: generating assertions that describe the temporal relation be-
tween Boolean expressions (e.g., always(x → next(y)), where x, y are Boolean vari-
ables) or generating assertions outlining non-temporal relations between more com-
plex propositions involving arithmetic and/or relational operators (e.g., (a + b > c),
where a, b, c are numeric variables whose arithmetic/logic relation is evaluated as
invariant). In general, it is considered difficult to mine assertions presenting both
characteristics (e.g., always(x → next(a + b > c))). Intuitively, an algorithm that
commits to such a goal would have to solve two orthogonal problems at the same
time, that is, computing both the temporal and the propositional layers of an asser-
tion. State-of-the-art approaches try to outflank the problem by prompting the user
to define one of the two layers (temporal or propositional); then, they exploit an
automatic tool to generate assertions by completing the missing layer.

In this section, we propose a method to generate LTL assertions by automatically
extracting both the temporal and the propositional layers containing non-Boolean
expressions.

In particular, starting from a set of simulation traces of the DUV, our method is
capable of generating LTL assertions in the form always(antecedent → consequent),
where antecedent and consequent are composed by combining temporal operators
with propositions predicating over arithmetic expressions, like c = ne, c ≤ ne,
c ≥ ne, cl ≤ ne ≤ cr, with c, cl , cr representing constants of numeric type, and ne
indicating numerical expressions involving DUV variables. The mining technique
exploits a clustering algorithm to determine a meaningful set of propositions fol-
lowing the aforementioned structure. After that, the propositions are used to mine
temporal assertions by exploiting a decision tree algorithm. It is then possible to
automatically mine assertions like always(x → next(a + b > c))2.

In addition to the execution trace of the DUV, the set of templates, and the set
of propositions, which represent the original input of HARM, our methodology re-
quires the user specifies also a set of tuples N = {(nei, loci, thi)|i = 1, . . . , k}, where
nei is a numeric expression, loci is a location label (among “a”, “c”, “ac”, and “dt”)
as described below Def. 2, and thi is a numeric threshold (from 0 to 1) that is used
to specify how much effort the tool must put in to generate propositions includ-
ing the numeric expression nei. For instance, in the running example reported in

2This is just an example of assertions that we can extract. The tool does not have any limitation in
the number and kind of LTL temporal operators that can be instantiated in the mined assertions.

5.9. Mining assertions containing non-boolean expressions 51

FIGURE 5.11: Running example: P, N and T, together with the sim-
ulation trace of the DUV, are the input of the tool and represent, re-
spectively, the set of propositions, the set of numeric expressions, and
the set of templates to be used for mining temporal assertions on non-

Boolean expressions.

Fig. 5.11, we include (v4 + v5, c, 0.1) in the set N to specify that we want to sub-
stitute placeholders in the consequent with a proposition constructed by using the
numeric expression v4 + v5, like, for example, v4 + v5 ≥ 90, or v4 + v5 ≤ −2.

The architecture of our approach is shown on the right side of Fig. 5.10 and it is
composed of the following 3 steps, which extend phase I (instantiation of placehold-
ers) and phase II (assertion mining) of the original HARM implementation:

1. First, given a target template, we extract a set of interesting numeric values
(IVs) to be used in accordance with each numeric expression nei provided as
input.

2. After that, we apply a clustering algorithm to generate a set of numerical
ranges for each set of IVs.

3. Finally, we translate the ranges into a set of propositions of the form c = nei,
c ≤ nei, c ≥ nei, cl ≤ nei ≤ cr, with c, cl , cr representing constants of numeric
type.

5.9.1 Extraction of interesting values

In the first step, the tool gathers a set of IVs for each target numeric expression ne.
To obtain an IV at time ti, we evaluate ne on the input trace at time ti. If we are gen-
erating propositions for phase I (instantiation of placeholders) of HARM, we extract
IVs by exploiting the whole trace, that is, by using the values of ne for every time
ti. However, if we are generating propositions for phase II (assertion mining), then
we proceed differently: given a location inside a DT operator, that is, a place where
a new proposition pnew must be inserted by means of the decision tree algorithm,
we consider only the time units ti in which a true evaluation of pnew at ti would be
“necessary" to make the antecedent of the target template hold at ti. To determine if
an instant ti is necessary to extract an IV, we perform the following steps. First, we
substitute the next location in the DT operator with a true constant and we evaluate
the antecedent at time ti. If the antecedent evaluates to true, we substitute the true
constant with the f alse constant and evaluate again the antecedent. If the antecedent

52 Chapter 5. Assertion mining: HARM

is no longer true at time ti, then we can conclude that the value of the numeric ex-
pression ne at ti is an IV, since it is necessary to satisfy the antecedent. With the
above procedure, in phase II, we are able of generating IVs by considering a reduced
number of time units. This is possible because, in phase II, all the placeholders are
instantiated and the decision tree operator (Def. 6) is the last remaining location to
be substituted, which represents a single variable problem independent from other
factors. On the contrary, in phase I, we may have multiple dependent placeholders:
one can not be substituted without affecting the substitution of the others.

To make things clearer, consider the template G(..##1.. ; P0 | → X(P1)) of the
running example of Fig. 5.11. In phase I of HARM, P0 and P1 must be substi-
tuted with propositions. P0 is an antecedent placeholder, and then it can be sub-
stituted only with v3. On the contrary, P1 is a consequent placeholder, thus it can
be substituted only with a proposition originating from v4 + v5, like, for example,
v4 + v5 ≥ 90. To achieve that, we extract IVs by using all the time units of the trace
involving variables v4 and v5, thus providing candidate values -2 from -1 + -1, 90
from 40 + 50, 99 from 90 + 9 and 228 from 100 + 128, (repetitions are considered) to
be combined with v4 + v5 by using relational operators ==,≤,≥,

In phase II of HARM, instead, the DT operator ..##1.. is instantiated by using
a decision tree algorithm (DTA). Let us assume that the DTA produced the partial
instantiation G(nl ##1 v2 == 50 ; v3 | → X(v4 + v5 >= 90)), where nl is the next
location that the DTA will try to substitute with a new proposition. To do that,
our approach generates IVs considering all the instants of the trace in which nl must
evaluate to true to make the antecedent hold on the trace; these values are 1, 4 and 10
for variable v1 at time t0, t5 and t9 respectively (we report only the values observable
in the partial trace of Fig. 5.11). Note how values 22 and 37 for v1 at time t7 and t8
are not considered, as the antecedent would be false at time t7 and t8 regardless of
the value of v1.

5.9.2 Clustering of interesting values

In the second step of the methodology, we generate a set of ranges [le f t, right] (with
le f t ≤ right) by applying a clustering algorithm to the IVs retrieved in the previous
step. We apply Lloyd’s version of the k-means algorithm [56], whose worst-case time
complexity is O(nkid), which becomes O(n) if we fix the number of clusters k and
the maximum number of iterations i, and we apply the algorithm to uni-dimensional
data (d = 1). Therefore, it can be easily applied to sets of data with millions of val-
ues. The k-means algorithm requires the number of clusters as input; however, for a
generic set of IVs, this information is usually not available beforehand. To solve this
issue, we apply the elbow method, a well-known cluster analysis heuristic used to
determine the number of clusters in a data set. When using the elbow method, the
k-means algorithm is executed multiple times: the idea consists of measuring how
the variance v inside the generated clusters diminishes for an increasing k. In most
cases, if we plotted v for every value of k in a line plot, we would observe an “elbow-
like” line as in Fig. 5.12. The value k, at which the reduction of variance plateaus, is
considered a good candidate. In our approach, to algorithmically identify the elbow
of the variance, we use the threshold th associated with the target numeric expres-
sion; it specifies the minimum percentage reduction of variance below which we
consider the procedure to have reached the elbow. We execute the k-means algo-
rithm until the variance plateaus according to th; for each execution, we keep track
of generated clusters (we do not keep multiple copies of the same cluster). When

5.10. Experimental results 53

the above procedure has finished, we transform each cluster to a range [le f t, right],
where le f t and right are respectively the smallest and largest value in the cluster.

For example, Fig. 5.12 refers to the clustering procedure applied to element
(v1, dt, 0.1) ∈ N of Fig. 5.11. As the target threshold for v1 is 0.1, the elbow is reached
if the reduction of variance goes below 10% (note that in our implementation, we
decided to use the standard deviation instead as it is easy to handle numerically
and provides a better intuition of the approach), which happens after running the
k-means algorithm with k = 4, as the reduction of standard deviation from k = 3 to
k = 4 is only 6.6%, i.e., (1.5-1.4)/1.5 (see Fig. 5.12 on the right). The upper-left part of
Fig. 5.12 shows, in particular, the ranges obtained through the clustering procedure
at varying of k (numbers over black background are the minimum and the maximum
per each range).

In the final step of the methodology, the ranges found in the previous step are
used to generate propositions (see bottom-left part of Fig. 5.12). For each range
[le f t, right], we generate propositions ne ≤ right, ne ≥ le f t, ne ≤ right && ne ≥
le f t; if le f t == right then we generate proposition ne == le f t. Even though this
final step looks simple, it requires some clarifications.

Why do we generate propositions of the form ne <= right, ne >= le f t? Since
the clustering procedure generates a set of finite ranges, it would be reasonable to
generate only propositions of the form ne <= right && ne >= le f t. However,
there are scenarios in which that approach would not work. Consider an input trace
that contains the following functional behaviours formalised through two asser-
tions: G(v1 >= 1 && v1 <= 100 | → X(out1)) and G(v1 >= 50 && v1 <= 150 | →
X(!out2)). Let us assume that the expression out1 && !out2 is true for a large num-
ber of units of time and that we want to mine the aforementioned assertions start-
ing from templates G(..&&.. | → X(out1)) and G(..&&.. | → X(!out2)). If we
apply the clustering algorithm to instantiate ..&&.. for one of the two templates,
the data used to perform the clustering contains two overlapping ranges [1, 100],
[50, 150] of IVs; as a result, the data has a high density of values in the range
[50, 100] (the overlapping part). Therefore, if we allow only propositions of the
form ne <= right && ne >= le f t, the clustering algorithm does not generate the
expected propositions as it is not able to untangle the overlapping data; it would
probably generate the proposition p = v1 >= 50 && v1 <= 100. However, p
contains exactly the expressions we are looking for. If we break down p into two
propositions v1 >= 50, v1 <= 100, then we are capable of completing the ranges in
the next clustering cycle. For instance, if the tool generates the partial instantiation
G(v1 <= 100 && nl | → X(out1)), the next time the DTA tries to substitute nl with
a proposition, it will only consider the values of v1 that are less than 100, allowing
the clustering algorithm to generate the range [1, 100] and translate it to v1 >= 1,
thus mining the expected assertion with v1 >= 1 && v1 <= 100 as antecedent.

5.10 Experimental results

Evaluating the effectiveness and efficiency of assertion miners is not a trivial task as
the quality of the generated assertions is often a subjective matter; additionally, these
tools are heavily influenced by their initial configuration, further complicating their
overall evaluation. Nonetheless, there are objective measures we can exploit such as
fault coverage and execution performances. Our experiments are divided into five
parts; in the first and second parts we compare HARM against the well-known Gold-
mine [29] and A-TEAM [51] miners, with respect to fault coverage and scalability; in

54 Chapter 5. Assertion mining: HARM

FIGURE 5.12: Example of the clustering procedure.

the third part, we evaluate the behaviour of HARM operating in a multi-threading
scenario; in the fourth part, we show the effectiveness of our context-based approach
through a concrete use case; in the last part, we evaluate the extension for mining
assertions with non-boolean variables.

The experiments have been carried out on a 3.5 GHz 16-core AMD Ryzen 3950x
processor equipped with 32 GB of RAM (3600 MHz) and running Ubuntu 20.04 LTS.

5.10.1 Fault coverage

The first set of experiments compares the fault coverage achieved by assertions
mined using HARM, Goldmine and A-TEAM on five RTL designs. These designs
are used by the developers of Goldmine to showcase the tool. They are available
at [57]. For each design, we have inserted a set of mutants and re-simulated the
mutated design by activating only one mutant for each simulation. This way, each
generated faulty trace is affected at most by a single fault. Note that we have kept
only the faulty traces in which the fault was observable, that is, in which the values
on the outputs were different compared to the original unaltered trace. The consid-
ered mutants are: 1) “bit flip" for bit-vector variables, where a bit of a variable is
negated; 2) “operator swap" for relational, arithmetic, boolean and bit-wise opera-
tors, where the original operator is changed with a compatible one. For example, the
original expression v1 && v2 is changed to v1 || v2 to generate a mutant.

We measure the fault coverage by counting how many faults are covered by the
mined assertions (an assertion covers a fault if it fails on the corresponding faulty
trace). To enable a fair evaluation of the two tools, we have run the experiments
under the following constraints, which are due to the characteristics of Goldmine:

• Goldmine can extract only assertions compliant with the template
G({..#1&..}| → P0). Thus, the same template has been provided to HARM
and A-TEAM;

• Goldmine does not support non-Boolean data types, thus only Boolean vari-
ables have been considered;

5.10. Experimental results 55

Design Complexity
Lines I/O Faults

(1) arb2 28 6 7
(2) id_stage 484 82 546
(3) decoder 97 4 368
(4) controller 459 57 602
(5) multdiv 230 15 1780

TABLE 5.2: Complexity of the designs

Design Assertions Coverage Min subset AVG Coverage Time to mine
H G A H G A H G A H G A H G A

(1) 12 6 6 100% 100% 100% 2 2 2 3.5 3.5 3.5 0.3s 2.4s 2s
(2) 3160 2803 2405 82% 41% 68% 182 102 201 2.5 2.2 1.8 8.3m 23.5m 13.4m
(3) 701 431 501 52% 39% 40% 54 39 58 3.5 3.7 2.5 3s 19s 5s
(4) 4909 1010 2079 84% 48% 56% 132 79 93 3.8 3.7 3.6 5.8s 12m 17s
(5) 1722 682 1255 92% 51% 79% 387 222 344 4.2 4.1 4.1 22s 1.3m 49s

TABLE 5.3: Comparison between Goldmine, A-TEAM and HARM:
fault coverage

• the maximum depth of the assertion has been set to 3 cycles, and the maximum
number of propositions in the antecedent has been set to 5 for all tools;

• the tools are all single-threaded.

Table 5.2 reports the complexity of the five benchmarks in terms of the number of
code lines (Lines) and the total number of primary inputs/outputs (I/O) of the de-
sign, and the number of injected observable faults (Faults) Table 5.3 reports the re-
sults for the five benchmarks using HARM (H), Goldmine (G) and A-TEAM (A),
in terms of the number of generated assertions (Assertions); the percentage of faults
covered by the mined assertions (Coverage); the minimum number of assertions cov-
ering the maximum number of faults (Min subset); the value ((N_faults * Coverage)/
Min_subset), higher is better, to describe how effective the mined assertions are at
covering the faults (AVG coverage); the time spent by the tools for mining the as-
sertions (Time to mine). For all benchmarks, traces composed of 1000 clock cycles
have been provided to the tools. Overall, HARM consistently managed to reach a
higher fault coverage for all benchmarks except for (1), where all tools achieved the
same coverage. In terms of AVG coverage, HARM generally produced an equal or
better covering set. This suggests that HARM is generally able of generating a less
constrained set of assertions with higher coverage. One noticeable difference is that
HARM is faster than the other tools at mining assertions.

5.10.2 Scalability

In this section, we compare the scalability of the three tools with respect to the length
of the input trace. The tests are executed under the same constraints defined in
the previous section but with a progressively increased length of the input trace;
in particular, we executed all five designs by using four traces that are 1000, 10000,
100000, 1000000 clock cycles long. We have set 12 hours (43200s) as the time limit.
The chart in Fig. 5.13 reports the results of this evaluation. The x-axis reports the
four lengths of the trace while the y-axis reports the time in seconds (logarithmic
scale).

56 Chapter 5. Assertion mining: HARM

0

1

10

100

1,000

10,000

100,000

1 10 100 1,000

Se
co

nd
s

Thousands of time units

1

1

1

5

3
4
2

4

2

5

3

2

4

5

3

goldmine
a-team
harm

FIGURE 5.13: Comparison between Goldmine, A-TEAM and HARM:
Scalability

It is clear by analysing the data that HARM is remarkably faster than the other
tools. arb2 was the only design on which Goldmine terminated before the time limit
by considering a 1 million clock cycle-long trace, taking over 5 hours to complete,
whereas HARM took only 34 seconds. A-TEAM appears to behave as a middle
ground between the faster HARM and the slower Goldmine. Overall, HARM proves
to be extremely scalable with respect to the length of the trace while Goldmine and
A-TEAM look reasonably fast only for short traces.

We do not report results in terms of memory usage because they are dominated
by the amount of memory required to hold the input trace; besides, the amount of
memory required by HARM can not cause scalability issues as it is always a linear
function of the input.

5.10.3 Multi-threading evaluation

In this section, we analyse the speed-up guaranteed by applying the 3-level paral-
lelisation described in Section 5.7.2. Since this procedure has three dimensions, we
have analysed the speed-up provided by each level separately.

In Fig. 5.14 we report the average results of parallelising all the designs. The
x-axis reports the number of threads available in each test while the y-axis reports
the speed up of the test. The green, blue and red lines correspond to the results
of applying levels one, two and three respectively. Since the achieved speedup is
also dependent on the length of the trace, we have included the results of using a
1k, 10k and 100k long traces, these correspond to the dotted, dashed and solid lines
respectively. It is important to note that all speedups start deteriorating after 16
threads as all the tests have been executed on a 16-core machine.

For the first level (green lines), we have executed HARM with a single template
producing a single permutation, making the evaluation function the only element
benefiting from multi-threading. The results at this level are heavily affected by the
length of the trace: at 1k (dotted line), we obtain a negative speed up (< 1) as the

5.10. Experimental results 57

overhead of multithreading is not compensated by dividing the work among sev-
eral threads; at 10k (dashed line) the overhead starts to stabilise and we obtain a 1.5x
speedup; at 100k (solid line) the overhead completely stabilises and we obtain a 3x
speed-up with 16 threads. The results of applying the second and third levels are
quite similar (blue and red lines) as their parallelization follows the same principle.
In this case, we have executed the tests with a single template generating 16 permu-
tations for level 2, and with 16 templates generating a single permutation for level
3. As shown in the chart, the best results are obtained at 100k (blue and red solid
lines) where we achieve a 9x speed-up with 16 threads. We also include the results
of using the “fault-coverage configuration" (black lines) as a more practical scenario
where we use all three levels together.

FIGURE 5.14: Speedup of the 3-level parallelisation

5.10.4 Applying the context-based approach

In this section, we show the effectiveness of applying our context-based ranking ap-
proach to a concrete use case. The use case consists of mining assertions for an RTL
design containing a hardware trojan (HT). Our objective is to show that the asser-
tions identifying the behaviour of the HT are ranked higher than the other assertions
if the user provided the correct metrics. To perform this test, we have selected the
designs listed in table 5.4 implementing the RSA encryption algorithm. These de-
signs are available at [58]. According to the HT taxonomy, rsa100 and rsa300 contain
a “leak-information" HT while rsa200 contains a “denial of service" HT; all three Tro-
jans are activated through the user input. The trace used to mine the assertions is

58 Chapter 5. Assertion mining: HARM

Design
Trace
length

N
assertions

Position of
interesting assertion

Time to
mine

rsa100 834k 689 1st 19m
rsa200 1074k 1440 1st 116m
rsa300 840k 227 1st 30m

TABLE 5.4: Results of applying the context-based approach

generated by simulating the design with a test bench performing thousands of en-
cryptions; additionally, the generated trace contains at least one activation of the HT.
To rank the generated assertions, we have provided the following sorting metrics:

• Causality: (1− AFCT/traceLength),

• Frequency: (1− ATCT/traceLength),

• Complexity: (complexity).

The first metric is to reward assertions representing a real correlation between an-
tecedent and consequent, as assertions with a high AFTC in the contingency matrix,
correspond to random correlations or partial behaviours. The second and third met-
rics reward assertions with low frequency and high complexity respectively, where
complexity is the number of variables in the assertion.

In this context, we assume that an assertion identifying an HT would have low
frequency and high complexity as it shows a rare and hidden behaviour with several
constraints. We used template G(..&&..→ P0) for the first and second designs; tem-
plate G(..##100..| → P0) was employed for the third design. In the first and second
designs, we mine the assertions by using 931 propositions, while in the third we have
selected 212 propositions. In this scenario, we have a huge amount of propositions;
this happens because all variables of bit-vector type are split into many single-bit
variables, allowing the miner to generate complex expressions corresponding to bit
configurations. HARM was capable of generating assertions catching the behaviour
of the injected HT in all three designs. Furthermore, as shown in table 5.4, such as-
sertions are ranked in the first position by using our context-based approach, greatly
simplifying the work of the verification engineer, who no longer has to read thou-
sands of assertions to identify a single interesting assertion.

5.10.5 Evaluation of assertions with non-boolean variables

5.10.5.1 Assertion effectiveness

To evaluate the effectiveness of the assertions mined by our approach, we compared
the fault coverage achieved by the assertions generated with the original implemen-
tation of HARM and with our extension by using five RTL designs available at [59],
[60]. The experiments were set up as follows:

• Templates: for both the original HARM and our extended version we use the
template G({..#1&..}| → X(P0)).

• Propositions: for the extended HARM, we created a numeric expression with
a threshold equal to 0.1 for each non-Boolean variable of the DUV, the rest
of the variables were used as atomic propositions; for the original HARM, all
variables of the DUV were used as atomic propositions and bit-vectors were
split into single bit variables.

5.10. Experimental results 59

Design Trace length Time to mine (s.) N assertions N faults Coverage% Cov. Subset
ext-h h ext-h h ext-h h ext-h h

wishbone 1000 <1 < 1 1711 2122 151 71.0 47.6 18 24
camellia 1000 3 11 207923 8357 718 99.8 36.0 67 24
vgafb 10000 75 11 75167 4177 359 83.2 66.2 33 40
sdram16bit 50000 459 329 53539 47379 1047 88.7 84.3 121 146
pid_controller 16035 84 320 28682 118840 1880 67.8 48.4 102 151

TABLE 5.5: Assertion effectiveness by comparing the fault coverage
achieved by the assertions mined with the original version of HARM,
predicating over Boolean variable (h), and with the proposed exten-

sion, which extracts also non-Boolean expressions (ext-h).

Design Time to mine (s.) N assertions Coverage % Cov. Subset
k-means KDE HC k-means KDE HC k-means KDE HC k-means KDE HC

wishbone < 1 1 1 1711 2105 5113 71.0 71.0 71.0 18 10 16
camellia 3 10 2 8357 12232 14567 99.8 100.0 100.0 67 56 55
vgafb 75 196 9 75167 38836 8073 83.2 83.2 65.4 33 30 40
sdram16bit 459 >12h >12h 47370 NA NA 88.7 NA NA 121 NA NA
pid_controller 84 >12h >12h 28682 NA NA 67.8 NA NA 102 NA NA

TABLE 5.6: Comparison among different clustering algorithms. The
value NA refers to cases where the tool exceeded the time limit (12

hours). The best results have been achieved with k-means.

• The rest of the configurations were the same for both scenarios.

Table 5.5 reports the results for the five designs. Columns h (harm) and ext-h (ex-
tended harm) refer, respectively, to the original HARM implementation and the ex-
tended version proposed in section 5.9.

The table shows the trace length in terms of the number of clock cycles (Trace
length), the mining time in seconds (Time to mine), the number of mined assertions
(N assertions), the number of injected faults N faults, the percentage of covered faults
by the generated assertions (Coverage), and the minimum number of assertions cov-
ering the maximum number of faults (Cov. subset). The reported results highlight
a clear trend: our approach achieves the highest fault coverage for all benchmarks.
Furthermore, the smaller covering subsets in the ext-h column suggest that our ap-
proach is able of generating a more meaningful and readable set of assertions, as a
lower number of assertions covers a higher number of faults. The time required to
mine the assertions is similar for both ext-h and h, thus suggesting that our approach
did not worsen the performance of the tool.

5.10.5.2 Comparison of the clustering algorithms

In the second part of the experiments, we compare the performances of applying
our approach with three different clustering algorithms: k-means, kernel density
estimation (KDE) and hierarchical clustering (HK).

The experimental setup is the same as reported in Section 5.10.5.1, the only vari-
able is the clustering algorithm. Table 5.6 reports the results for the five designs.
Overall, the three clustering algorithms provide similar fault coverages and covering
subsets. However, k-means seems more reliable in terms of temporal performances;
in fact, both KDE and HK execution time substantially increased for sdram16bit and
pid_controller preventing the termination of the mining. This is not surprising con-
sidering the higher worst-case temporal complexity of KDE and HK.

61

Chapter 6

Bug explanation: COME &
BECAUSE

6.1 Introduction

Early identification and correction of bugs is a key point in order to save money and
speed up the time-to-market of modern embedded systems. In this context, while
designers focus on generating a bug-free implementation that meets the specifica-
tions, verification engineers check that such an implementation satisfies the initial
specifications without including unexpected behaviours.

Thus, many approaches have been developed both from the point of view of the
designers and the verification engineers to detect bugs and, more generally, unex-
pected behaviours in system-level descriptions before they are propagated through-
out the lower design levels.

However, when such behaviours are found, the verification engineer still has to
understand their cause through a tedious manual inspection of the execution traces
of the DUV. In most cases, this process is unnecessarily long since only a few instruc-
tions of the execution traces are relevant for understanding and fixing unwanted
behaviours.

To fill in the gap, we present two new methodologies and related tools called
COME and BECAUSE to automatically remove irrelevant instructions from the ex-
ecution traces of unexpected behaviours, such that verification engineers can focus
on the real cause of the problem when debugging their DUV.

6.2 Related work

In the last decades, several methodologies, mainly in the software field, have been
proposed to tackle the aforementioned problem.

A well-known technique to perform fault localisation and bug explanation is, in
particular, program slicing.

The original notion of a program slice was proposed by Weiser [61]. Weiser de-
fined a program slice as a reduced program obtained from a program p by removing
statements, such that the slice replicates part of the behavior of p. Program slicing
techniques fall into two main categories: static and dynamic program slicing. A
static slice is computed without making assumptions regarding the input of the pro-
gram while a dynamic slice relies on some specific test case. Several techniques have
been proposed to produce a static slice using reachability algorithms on program de-
pendency graphs (PDG) [62]–[66]. A PDG is an intermediate program representation
to make explicit both data and control dependencies in a program.

62 Chapter 6. Bug explanation: COME & BECAUSE

Dynamic program slicing was first introduced by Korel and Laski in [67], which
allows extracting a (small) executable section of the original program that preserves
part of the program’s behaviour for a specific input with respect to a subset of se-
lected variables, rather than for all possible computations. One of the most popular
applications of dynamic program slicing consists of comparing two or more slices
to identify differences or similarities. In [68], the authors present a technique to
isolate the region of the bug by computing the difference between a correct slice
and the faulty one; likewise, [69] propose an approach to find a correct slice that is
the nearest to a related faulty slice. Similar techniques based on intersections and
unions between dynamic slices are reported in [70]. In[71] and[72], the authors pro-
posed a solution to error explanation by identifying the differences between an error
trace, representing an undesired behavior, and an error-free trace. They employed
distance metrics to single out error-free traces that are as similar as possible to the
error trace. Then, they use bounded model checking and SAT solving to extract a
counter-example trace violating the given specification.

A dynamic program dependency graph is usually employed in conjunction with
program slicing as a dynamic variant of a PDG. In a DPDG, dependencies consider
a specific occurrence of a certain instruction as there may be several repetitions in
a single execution trace. The paper in [73] describes several techniques to exploit a
DPDG while performing dynamic program slicing.

Several approaches have been proposed to generate slices by exploiting both
static and dynamic information [74]–[79].

Other approaches rely on statistical methods to perform fault localisation [80],[81].
These techniques aim at gathering coverage details of correct and faulty executions
over a bugged program, then they rate each programming element in terms of their
suspiciousness. In [82] the authors combine dynamic program slicing with statistical
methods to build program slicing spectra to rank suspicious elements.

Other approaches involve the use of symbolic simulation.
Symbolic and concolic simulation are techniques exploiting symbolic values to

maximize the execution path coverage of a program under validation. KLEE[21]
is an approach to symbolically executing Low-Level Virtual Machine (LLVM) code
[83]. It can generate high-coverage test cases and it has been successfully applied to
find out software errors such as memory overflow in GNU COREUTILS[84]. Differ-
ent approaches extending or specializing KLEE are then proposed in the literature.
FIE[85] is a platform built on top of KLEE for detecting bugs in programs for the
MSP4030 family of microcontrollers. FIE can identify two types of errors: memory
safety violations, such as buffer overruns, and out-of-bounds accesses to memory
objects like arrays, as well as peripheral-misuse errors in which the software under
validation writes to a read-only memory location. KleeNet[86] and T-Check[87] are
KLEE customization to generate test cases for sensor networks and find safety and
liveness errors in sensor network applications running on TinyOS. S2E[88] is a plat-
form built on top of QEMU[89] and KLEE. It can scale to large complex programs,
such as a real application on Linux, by exploiting a selective symbolic execution.
Moreover, it allows the analysis of properties and behaviors in each simulated exe-
cution path (e.g. the number of cache misses) through an external user-defined plug-
in. BitBlaze[90] is an early representative work on binary analysis for computer se-
curity focused on optimizing the close coupling of concrete and symbolic execution
to detect exploitable software bugs. ANGR[91] is a binary analysis framework that
implements concrete execution techniques based on fuzz testing[92] and symbolic
execution techniques to perform test-case generation and software bug detection.
CRETE[93] is another versatile binary-level concolic testing framework. Decoupling

6.3. COME 63

FIGURE 6.1: Execution flow of COME.

between tracing and symbolic simulation, CRETE can dramatically reduce memory
usage for test-case generation. Experimental results performed with GNU CORE-
UTILS show that CRETE achieves a comparable code coverage compared to KLEE,
and it generally outperforms ANGR. DOVE [94] aims at providing behaviors that
may represent firmware vulnerabilities. It exploits KLEE to symbolically execute
the binary code of the firmware in an instruction set simulator. Through a model
counting-based approach, the execution paths leading to rare events are identified
and provided to the user in terms of temporal constraints on firmware input values.

6.3 COME

In this section, we present the first tool called COME. COME focuses on explaining
vulnerabilities affecting firmware implementations.

Fig. 6.1 shows an overview of the tool. Given a vulnerability in the form of a
propositional logic assertion, which represents the effect of an unwanted behavior of
the IP, the framework first relies on the symbolic simulation of the firmware to search
for computational paths that satisfy the assertion, thus triggering the vulnerability.
Then, it analyzes these computational paths using alignment algorithms to extract
the essential instructions actually characterizing the vulnerability, removing unnec-
essary elements. For each vulnerability, the output is a set of assertions representing
the minimum sequence of firmware instructions that trigger the vulnerability, thus
allowing the designer to effectively identify its cause.

The rest of the section is organized as follows. In Section 6.3.1 we describe
the threat model of the considered vulnerabilities. In Section 6.3.2 we illustrate
some helpful preliminary definitions. Section 6.3.3 explains the methodology imple-
mented in COME. Section 6.3.4 reports experimental results.

64 Chapter 6. Bug explanation: COME & BECAUSE

6.3.1 Threat model

We assume firmware inputs and outputs are any memory location or memory-mapped
register addressable by the CPU. We consider two different threat scenarios. In the
first scenario, we assume that the attacker is the designer of the application-level
software. He/she has full control of the firmware’s inputs, therefore an IP vulner-
ability could be exposed by an inaccurate sanity check of firmware input values
by the firmware itself. In the second scenario, the attacker is the designer of the
firmware. In this case, we assume he/she intentionally embeds malicious code into
the firmware that is eventually triggered through specific sequences of inputs. In
both cases, the attacker aims to undermine the integrity of the system. We make no
assumptions about the hardware platform executing the firmware. On the basis of
this threat model, our approach simulates the binary code of the firmware by using
an instruction set simulator of the target hardware. We finally assume that the ver-
ification engineer succeeds in detecting the vulnerability, but he/she is not able to
easily identify its cause. This is the point where COME begins to operate.

6.3.2 Preliminaries

Our tool exploits a symbolic tree model, whose definition is reported hereafter to
simplify the understanding of the following sections.

Definition 13. A tree entry is a triplet e = ⟨O, adr, val⟩, where O ∈ {Load, Store}, adr
and val represent respectively a memory address and a data value. Elements of O define the
following operations:

• Load represents the load of the value val from the memory location adr into CPU;

• Store represents the store of the value val from CPU to the memory location adr.

Definition 14. A tree node n = ⟨e1, e2, . . . , en⟩, is a finite sequence of tree entries.

Definition 15. A tree arc is a triplet a = ⟨ns, nd, c⟩, where ns, nd are, respectively, the
source and the destination nodes, and c is a constraint satisfied by the firmware moving from
ns to nd.

Definition 16. A symbolic tree is defined as ST = ⟨N, A, n0⟩, where N is a set of tree
nodes, A is a set of arcs defining the transition functions among nodes, and n0 is the root
node of the tree.

Fig. 6.2 shows an example of symbolic tree. Starting from node 0, we can observe
the first entry ⟨Load, 0x4000, 0x1⟩ which describes a load operation where the value
0x1 is read from address 0x4000. After that instruction, the execution proceeds lin-
early until a branch is formed in which different constraints are given to the same
symbolic variables generating different possible execution paths. In this example,
the first branch generates only two possible paths, in the first path the symbolic
variable X_5 can assume only the value 1 while in the second path it can assume all
values other than 1. Symbolic variables are shown in the form X_i with i ∈N∗.
We introduce hereafter the function getSource for a symbolic tree and a tree node that
will be used in Algorithm 4 of section 6.3.3.

Definition 17. Given a symbolic tree ST, and a node nd, the function getSource(ST, nd)
returns the arc ⟨ns, nd, c⟩ of ST. For the root node n0, the value nil is returned as a result.

6.3. COME 65

We introduce hereafter the concept of equivalence between arithmetic and logic
expressions, which will be then recalled in definition 19 concerning the equivalence
between tree entries. Intuitively, two expressions r1 and r2 (e.g. r1 = x1, r2 = x2 + x3)
with constraints c1 and c2 (e.g. c1 : 0 ≤ x1 ≤ 2, c2 : (0 ≤ x2 ≤ 1) ∧ (0 ≤ x3 ≤ 1)),
are equivalent when the set of feasible values for r1 and r2 is the same (e.g. r1, r2 ∈
{0, 1, 2}). Formally:

Definition 18. Let r1 and r2 be two arithmetic and logic expressions, X = (x1, x2, . . . xk)
the set of variables involved in r1, Y = (y1, y2, . . . yl) the set of variables involved in r2, c1
and c2 constraints, respectively, over X and Y, r1 and r2 are equivalent if and only if:

∀X(c1(X)→ ∃Y(c2(Y) ∧ r1(X) = r2(Y))) ∧ (6.1)
∀Y(c2(Y)→ ∃X(c1(X) ∧ r1(X) = r2(Y))) (6.2)

Formula 6.1 (6.2) affirms that for each assignment of the symbolic variables X (Y)
satisfying the constraints c1 (c2) there exists an assignment of the symbolic variables
Y (X) satisfying the constraints c2 (c1) such that r1 and r2 have the same evaluation.
When both Formula 1 and Formula 2 are satisfied, then r1 and r2 are said equivalent
in the proposed approach.

Definition 19. Given a tree entry e1 and a constraint c1, a tree entry e2 and a constraint
c2, we assert that e1 and e2 are equivalent when e1.O = e2.O, and the arithmetic and logic
expressions e1.adr and e1.val are respectively equivalent to e2.adr and e2.val.

FIGURE 6.2: Example of abstract symbolic tree. Nodes 5 and 7 are
marked with the label “Vulnerability is fired” since when they are

reached, the input assertion is satisfied.

6.3.3 Methodology

As shown in Fig. 6.1, the proposed framework is composed of four main functions
that are executed in a cascade fashion. The inputs of COME are a firmware in bi-
nary code, an abstract model of the hardware where the firmware is executed, and

66 Chapter 6. Bug explanation: COME & BECAUSE

a propositional logic assertion, which represents the effect of an unwanted behav-
ior of the IP. COME is independent from the origin of such an assertion. It can be
extracted automatically by assertion mining (e.g., by using DOVE) or manually de-
fined by the verification engineer starting from counterexamples generated during
a previous verification process. The goal of COME is to understand why such an
unexpected behavior occurs during some execution flows to guide the designer in
fixing the related vulnerability. The output is then the set of temporal assertions that
represent the minimum sequence of firmware instructions triggering such behavior.

(1) Symbolic simulation & labelling: The first phase consists of identifying the
different firmware execution flows in which the vulnerability assertion provided as
input is satisfied. This goal is achieved by using a symbolic simulation engine to
concurrently execute different firmware execution paths in the hardware abstract
model. If an execution path fires the vulnerability assertion then the symbolic simu-
lation ends for that path by marking its last node in the symbolic tree with the label
“vulnerability is fired". The result of this step is then a labelled symbolic tree as
shown, for example, in Figure 6.2, where nodes 5 and 7 are labelled, since the paths
ending with them satisfy the vulnerability assertion.

(2) Symbolic tree abstraction: As a second step, the previously generated sym-
bolic tree is analysed to identify the equivalent tree entries according to Defini-
tion 19. In particular, COME applies a semantic equivalent checking strategy to
compare data and address values involved in load/store operations. Operations
managing the same set of values are marked by the same identifier. The result of
this step is an abstracted symbolic tree, in which each operation is mapped with a
unique identifier.

(3) Sequence building: In this phase, each path of the abstract symbolic tree is
visited, from the leaf to the root, to describe each simulated firmware execution path
as a sequence of identifiers. A “good-sequences" set is generated by including paths
in which the vulnerability assertion is never satisfied. Instead, a “bad-sequences" set
is generated by including the paths in which the vulnerability assertion is satisfied.

(4) Assertion generation: The last phase is intended to generate assertions iden-
tifying the shortest sequences of operations, which lead the firmware to satisfy the
provided vulnerability assertion. This goal is achieved by a pairwise alignment algo-
rithm identifying the shortest subsequence of identifiers included in “bad-sequences"
but not in “good-sequences".

To intuitively clarify the idea underpinning our methodology, before entering
the technical details reported in the next subsections, let us consider the labelled
symbolic tree shown in Fig. 6.2. It corresponds to the output of phase (1) applied
to a simple example. In this example, the vulnerability is triggered by satisfying the
condition “Register with address 0x3000 equals 1 and register with address 0x4000 is
different from 1”. The symbolic simulation represented in the tree of Fig. 6.2, reaches
two states (nodes 5 and 7) where such a vulnerability is fired. Thus, the two paths
from node 0 till, respectively, node 5 and node 7 represent two “bad sequences”.
The purpose of the following phases of the methodology is then to reduce the num-
ber of instructions contained in such bad sequences to understand the actual cause
that fires the vulnerability. By executing phase (2) of our approach, all entries of the
symbolic tree are marked with an identifier. Then, in phase (3), a sequence of such
identifiers is generated for each path from the root to the target node. For example,
the bad sequence from node 0 to node 7 corresponds to the sequence of identifiers
{A,B,C,D,E,C,F,G,D,K}. In the last phase, each bad sequence is filtered to extract the
shortest sequence of instructions able to satisfy the target vulnerability. In Fig. 6.2,
the output of step 4 for both the bad sequences is then {F,K}. Indeed, those identifiers

6.3. COME 67

coincide with the instructions {⟨Store, 0x4000, X_7 ̸= 1⟩, ⟨Store, 0x3000, X_10 = 1⟩}
which correspond to the shortest sequence of instructions satisfying the target vul-
nerability.

Details related to the four steps implemented by COME are reported hereafter.

6.3.3.1 Symbolic simulation and labelling

In the first step of the proposed methodology, COME detects in which firmware ex-
ecution paths, a vulnerability, represented by a propositional logic assertion, can be
exploited. A vulnerability assertion is an arithmetic/logic proposition describing an
undesired value for a memory location or a CPU register. The goal is achieved by a
symbolic simulation engine, which explores all the execution paths of the firmware
to label as “vulnerable" the nodes of the symbolic tree where the assertion holds. We
integrated COME within an in-house modified version of Klee to symbolically sim-
ulate the firmware and to label the nodes. As symbolic simulation is a well-known
concept, we do not report further details for this step of our approach. Unfamiliar
readers can refer to [95] for a survey on symbolic simulators. The vulnerability rep-
resented by the assertion can be manually defined by the user, or automatically ex-
tracted by a verification tool, like, for example, the one proposed in [94]. The result of
this step is a symbolic tree called labelled symbolic tree in which nodes exposing the
firmware to a given vulnerability are labelled as “vulnerable nodes". Intuitively, a la-
belled symbolic tree is a symbolic tree where leaves marked as “vulnerable" describe
execution paths that satisfy the vulnerability assertion as more formally specified in
the next definition.

Definition 20. Given a vulnerability assertion va, a labelled symbolic tree is defined as
LST = ⟨N, Nva, A, n0⟩, where N is a set of tree nodes, Nva ⊆ N is a set of tree nodes where
the assertion va is satisfied, A is a set of arcs defining the transition function among nodes,
and n0 is the root node of the tree.

The symbolic simulation engine explores all feasible execution paths for the given
firmware inputs. Each firmware’s input is seen as a symbolic variable that represents
a range of possible values that could be received from the firmware primary inputs,
leading the execution to different paths. We won’t describe in detail how the sym-
bolic simulation is performed which is considered a well-known approach in the
verification community. In addition to the papers already mentioned in Section 6.2,
the reader is free to go deeper into the topic by reading [95] which provides a clear
summary of symbolic and concolic simulation and their applications.

6.3.3.2 Symbolic tree abstraction

In the second step of the proposed methodology, COME aims at characterizing the
equivalent operations performed by the firmware through a unique identifier. The
proposed approach works in two steps: first an augmented symbolic tree is defined
to augment each tree entry e with the conjunction of the constraints satisfied along
the arcs belonging to the execution path traversed to reach e. Then, an abstract sym-
bolic tree is defined by marking each tree entry with an identifier. Tree entries satisfy-
ing the same constraints are equivalent (see Definition 19), and are therefore marked
with the same identifier.

68 Chapter 6. Bug explanation: COME & BECAUSE

6.3.3.3 Generation of the augmented symbolic tree

Informally, an augmented symbolic tree aims at mapping a tree entry e of a node
n with a constraint c∧ which is the logical conjunction of constraints ci belonging
to tree arcs connecting, from the root, each node of the path where e occurs. For
example, by collecting the constraints for the first entry of node 8 in Fig. 6.2, we
obtain c∧ = {X_5 = 1 ∧ X_7 ̸= 1 ∧ X_10 ̸= 1. COME repeats this operation for
each entry of the symbolic tree to obtain the augmented one. We report hereafter the
formal definition of augmented symbolic tree.

Definition 21. An augmented symbolic tree is defined as AG_ST = ⟨ST, C⟩, where ST
is a symbolic tree, and C : N× E× N → C∧ is a function that maps a tree entry e of a node
n and a leaf m with a constraint c∧ = c1 ∧ c2 ∧ ...∧ ck.

Note that c∧ could be equal to the constant true if the address (e.adr) and the
value (e.val) in entry e contains only constant values or if no relevant constraints are
found for the symbolic variables inside those registers. Algorithm 4 shows how an
augmented symbolic tree is generated from a symbolic tree. At the beginning, set
Cset representing the input-output relation corresponding to function C of Def. 21 is
empty. Then, for each leaf node m of ST, the algorithm calls the recursive function
propagateConstraints. This function takes as input a symbolic tree ST, a leaf node m,
a node n which is initially equals to m, and a set of constraints T, which is initially
set to ∅ (empty). propagateConstraints collects T, the set of all constraints satisfied
by the firmware from leaf-node m to root-node n0. In lines 12-16, it first gets the
source node ns of n by using the function getSource (line 13), then it enlarges T with
the satisfied constraint c. Afterwards, it recursively calls itself (line 15) to climb back
the tree from node ns. When n is eventually equal to the root-node n0 (line 12), all
constraints are gathered for this path. In lines 17-20, propagateConstraints iterates
over each entry e of current tree node n. In this phase the function aims to add the el-
ement {⟨n, e, m⟩, c∧} (line 19), which maps n, m and e with a constraint c∧, to the set
C′set. The generation of the constraint c∧ relies on the procedure simpli f y(e, T), which
takes as input a tree entry e and a set of constraints T = {c1, c2...cn}. simpli f y(e, T)
aims to return a constraint c∧ in propositional logic of the form c1 ∧ c2 ∧ ... ∧ ck
where Tmin,e = {c1, c2, ... , ck} ⊆ T is the minimum set of relevant constraints for
entry e. Intuitively we keep only the constraints that can have an effect on the sym-
bolic variables contained in e. Relevant constraints are then reduced in order to de-
crease their quantity while keeping the same logical meaning. If Tmin,e = {∅} then
simpli f y(e, T) returns the constant true. To clarify this procedure, we will complete
the example where we collected the constraints for the first entry of node 8 which re-
sulted in the set {X_5 = 1, X_7 ̸= 1, X_10 ̸= 1}. In this scenario, the reduction step
would result in c∧ = {X_10 ̸= 1} as all the other constraints do not affect symbolic
variables contained in this specific entry.

6.3.3.4 Generation of the abstract symbolic tree

Informally, an abstract symbolic tree (AB_ST) aims at mapping a tree entry e with an
identifier k. The same k is applied for equivalent tree entries. We report hereafter the
formal definition of AB_ST.

Definition 22. An abstract symbolic tree is defined as AB_ST = ⟨AG_ST, M⟩, where
AG_ST is an augmented symbolic tree, and M : N × E× N → K is a function that maps
a tree entry e of a node n and a leaf node m with an identifier k.

6.3. COME 69

Algorithm 4

1: function augmentedSymbolicTree(ST)
2: Cset = ∅
3: for all leaf nodes m in ST do
4: Cset = Cset ∪ propagateConstraints(ST, m, m, ∅)
5: AG_ST = ⟨ST, Cset⟩
6: return AG_ST
7:
8: function propagateConstraints(ST, n, m, T)
9: T = ∅

10: if n ̸= ST.n0 then
11: ⟨ns, n, c⟩ = getSource(ST, n)
12: T = T ∪ {c}
13: C′set = propagateConstraints(ST, ns, m, T)
14: for all e ∈ n do
15: c∧ = simpli f y(e, T)
16: C′set = C′set ∪ {⟨n, e, m⟩, c∧}
17: return C′set

Algorithm 5

1: function abstractSymbolicTree(AG_ST)
2: Mset = ∅
3: for all {⟨ni, ei, mi⟩, c∧i } ∈ AG_ST.Cset do
4: k = newIden f ier()
5: for all {⟨nj, ej, mj⟩, k j} ∈ Mset do
6: c∧j = AG_ST.Cset(⟨nj, ej, mj⟩)
7: if equal(ei, c∧i , ej, c∧j) then
8: k = k j
9: break

10: Mset = Mset ∪ {⟨ni, ei, mi⟩, k}
11: AB_ST = ⟨AG_ST.ST, Mset⟩
12: return AB_ST

Algorithm 5 shows how an abstract symbolic tree is generated from an aug-
mented symbolic tree. At the beginning the set Mset representing the input-output
relation corresponding to function M of Def. 22 is set to ∅ (line 2). Then, for each el-
ement {⟨ni, ei, mi⟩, c∧i } of the set Cset in the augmented symbolic tree AG_ST (lines 3-
13), the algorithm generates a new identifier k (line 4). Afterwards, it checks whether
an element {⟨nj, ej, mj⟩, k j} exists in Mset such that ei and ej are equivalent (lines 5-11).
In detail, at line 6 the algorithm extracts from Cset the constraint c∧j of ⟨nj, ej, mj⟩.
Through the procedure equal(ei, c∧i , ej, c∧j) (line 7), it checks if ei and ej are equiva-
lent. If the equivalence test succeeds then the identifier k j is assigned to k (line 8).
At line 10 the element {⟨ni, ei, mi⟩, k} is added to the set Mset. Eventually, an abstract
symbolic tree is generated as ⟨AG_ST.ST, Mset⟩ at line 11, and returned as a result at
line 12.

The procedure equal implements the formula at Definition 18 using a SAT solver
that checks the satisfiability of the given instance. It gets as input an entry ei with a
constraint c∧i and an entry ej with a constraint c∧j , it returns a boolean value. equal
compares the entries ei and ej and returns true if they are considered equivalent
according to Definition 19, otherwise it returns f alse.

70 Chapter 6. Bug explanation: COME & BECAUSE

Fig. 6.2 shows an example of abstract symbolic tree where each entry has an iden-
tifier abstracting the relative operation. Equivalent entries received the same identi-
fier; e.g., the first entry of node 1 ⟨Store, 0x4000, X_5⟩ and node 9 ⟨Store, 0x4000, X_10⟩
were both assigned with the identifier E as they are equivalent according to Def. 19.
In fact, they represent the same type of operation Store on the same address 0x4000
and of the same value 1 forced by the constraints X_5 = 1 and X_10 = 1 on symbolic
variables X_5 and X_10.

6.3.3.5 Sequences building

In the third step of the proposed methodology, COME aims at partitioning the sim-
ulated firmware execution paths into two sets. “good-sequence" set collects the
firmware execution paths where the initially provided assertion was never satisfied.
On the contrary, the “bad-sequence" set collects the firmware execution paths even-
tually ending with the provided assertion satisfied. The proposed approach works
in one phase in which each path of the abstracted symbolic tree is visited to describe
each simulated firmware execution path as either a “good" or a “bad" sequence of
identifiers.

6.3.3.6 Generation of “good" and “bad" sequences

We report hereafter the formal definition of sequence.

Definition 23. A sequence is defined as σ = ⟨k1, k2, . . . , kn⟩, where ki is the identifier of a
tree entry.

Algorithm 6 shows how a sequence is generated. The algorithm takes as input
an abstract symbolic tree AB_ST, and a leaf node m. As initialization steps, it sets
the sequence s to empty, and node n equal to m. Afterwards, the algorithm iter-
ates for all the tree entries of n. For each node entry e, it first get the identifier k
of e through the set Mset (line 6). Then, it extends s by adding k as a prefix (line
7). When s is extended with the identifiers of all tree entries of the current tree
node n, then getSource(AB_ST.AG_ST.ST, n) is applied to replace n with its source
node (line 8). In detail, getSource returns the tree node ns of AB_ST.AG_ST.ST
such that an arc from ns to n exists in AB_ST.AG_ST.ST.A. If n is the root node
of AB_ST.AG_ST.ST, then a source code cannot be found, and the value nil is re-
turned as a result. At line 10 the generated sequence s is returned as a result of
Algorithm 6. COME applies Algorithm 6 to generate “good-sequence" set and “bad-
sequence" set. In particular, the “good-sequence" set is defined by collecting the
sequences generated by the algorithm for each leaf node m of AB_ST.AG_ST.ST
not belonging to AB_ST.AG_ST.ST.Nva while the “bad-sequence" set is defined by
collecting sequences generated by the algorithm for each leaf node m belonging to
AB_ST.AG_ST.ST.Nva. Informally, sequences of entries in the original symbolic tree
that satisfy the given vulnerability assertion become “bad sequences" while all the
other sequences are mapped to “good sequences". Observing Figure 6.3 we can see
the sequences of identifiers generated from the abstract tree of Figure 6.2. Column
“leaf" uniquely identifies the sequence ending on that node.

6.3.3.7 Assertions generation

In the last step of the proposed methodology, given the good and bad sequences
generated in the third step, COME is able to obtain as output a set of assertions iden-
tifying the cause of activation of the given vulnerability. By exploiting the alignment

6.3. COME 71

FIGURE 6.3: Good and bad sequences.

of sequences, we will initially get the set of essential subsequences by filtering bad
sequences. Each one of these subsequences underlines a different way of trigger-
ing the vulnerability and it is composed of the essential elements needed to trigger
such a vulnerability. Once we generated these subsequences, we can easily map
back the identifiers to their original meanings (read/write instructions) and obtain
a set of temporal assertions. This section is organized as follows: first, we will de-
fine additional constraints called “disabled behaviors" necessary to obtain consistent
alignments of sequences. Then, we will describe the algorithm responsible for gen-
erating the set of shortest bad subsequences capable of triggering the vulnerability.
Finally, the generated subsequences are mapped back to read/write operations and
a set of temporal assertions is returned as result.

6.3.3.8 Generation of disabled behaviors

In this phase, we employ techniques based on alignments of sequences. We refer to
the classical pairwise alignment approach that takes as input a couple of sequences
of symbols and gives as output a subsequence of symbols contained in both the input
sequences. In particular, we are not concerned with the resulting subsequence but
with testing if the shortest input sequence is contained in the other one, or in other
words, if it is alignable. We report hereafter the formal definition of “alignable" used
in this methodology.

Definition 24. Given two sequences of identifiers σ1 = ⟨k1, k2...kn⟩, σ2 = ⟨l1, l2...lm⟩ with
n ≤ m, σ1 is alignable to σ2 if ∃ a set of identifiers {li1 , li2 ...lin} ⊆ σ2 with li1 = k1, li2 = l2,
... , lin = kn and i1 < i2 < ... < in.

When dealing with alignments of sequences, we are basically selecting a sub-
sequence of the original sequences. We have to remember that each element of a

Algorithm 6

1: function getSequence(AB_ST, m)
2: s = ∅
3: n = m
4: do
5: for all e ∈ n do
6: k = AB_ST.Mset(m, e, n)
7: s = append(k, s)
8: n = getSource(AB_ST.AG_ST.ST, n)
9: while n ̸= nil

10: return s

72 Chapter 6. Bug explanation: COME & BECAUSE

sequence is an identifier that describes an instruction of the firmware. Each not se-
lected instruction in the alignment is essential in guiding the execution toward the
path described by the original sequence. In fact, choices made during the symbolic
simulation were embedded inside the instructions during the propagation of con-
straints, therefore not selecting an element in the alignment is equivalent to ignoring
a choice. On this basis, we conclude that a subsequence formed by the selected in-
structions in the alignment could not describe a feasible succession of instructions.
To ensure consistent alignments, sequences have to be equipped with additional
constraints that forbid certain types of alignments. We call this type of constraints
“disabled behaviors". We report hereafter the formal definition of “disabled behav-
ior"

Definition 25. Given a good sequence gs = ⟨k1, k2, ...kn⟩ a couple of symbols ⟨ki, k j⟩ ∈ gs,
such that i < j and both ki and k j represent a read(write) operation, ki ← k j is a dis-
abled behavior if k j represents a read(write) operation on the same address as the operation
described by ki.

Intuitively, a disabled behavior ki ← k j of a good sequence gs imposes that if
ki ∈ gs is aligned then also k j ∈ gs must be aligned, otherwise the alignment is
considered inconsistent.

Fig. 6.4 shows the disabled behaviors extracted from good sequences of Fig. 6.3.

6.3.3.9 Sequences filtering

The idea behind the filtering process consists of finding the shortest bad subsequence
not contained in every good sequence. A bad subsequence contained in a good se-
quence cannot be a minimum sequence that triggers the vulnerability and hence a
solution, otherwise also the good sequence that contains it would be a bad sequence.
Algorithm 7 shows how the minimum bad subsequences are generated. The algo-
rithm takes as input parameters the set of good sequences GS and the set of bad se-
quences BS. As initialization step, it assigns the set of filtered sequences FS to empty.
After that, the algorithm enters a loop and keeps cycling for all “bad sequences".
Then, the execution proceeds in a second loop that keeps cycling until the sequence
bsmin is completely filtered. Inside this second cycle, we select a subsequence bssub
from the sequence bsmin using the function selectNextSubsequence(bsmin) (line 5). It
returns a new subsequence of bsmin each time it is called. Starting from sequences of
size 1, it keeps returning sequences of longer sizes until a solution is found. Then,
we initialize solutionFound to true. This variable will serve as a flag to exit the cy-
cle when a solution is found for the current bsmin. Afterwards, the algorithm it-
erates for all good sequences of GS. For each good sequence gs, it checks if bssub
is alignable (Definition 24) to gs by using the function isAlignable(bssub, gs) which
returns a boolean value. If isAlignable returns true for at least a gs then we can
conclude that bssumb is not a solution and therefore we can directly discard it by ex-
iting the for cycle with the command break (line 10). If isAlignable returns f alse for

FIGURE 6.4: Disabled behaviors.

6.3. COME 73

all gs then bssub is a solution, and hence, a filtered bad sequence. In this case, the
flag solutionFound is kept to true, and therefore the algorithm exits from the second
while cycle (line 11). Then, the found solution bssub is added to the set FS of filtered
sequences (line 12). Finally, the algorithm returns as output the set of minimum
filtered sequences FS (line 13).

Algorithm 7

1: function f ilterSequences(GS,BS)
2: FS = ∅
3: for all bs ∈ BS do
4: do
5: bssub = selectNextSubsequence(bs)
6: solutionFound = true
7: for all gs ∈ GS do
8: if isAlignable(bssub, gs) then
9: solutionFound = f alse

10: break
11: while !solutionFound
12: FS = FS ∪ bssub
13: return FS

For example, we can execute Algorithm 7 with the sequences shown in Fig. 6.3.
We start by selecting the shortest bad sequence, which is the sequence identified by
leaf 5. We proceed by selecting subsequences from that sequence and aligning them
to all the good sequences in Fig. 6.3 identified by the leaves 8, 4, 9. Starting from
all bad subsequences of size 1, we observe that such sequences are all contained in
at least one good sequence and therefore they can be discarded. If we try to align
subsequences of size 2 we observe that the only subsequence not alignable with any
good sequence is the sequence ⟨F, K⟩, which is the result for this example. Note
that the subsequence ⟨F, K⟩ is contained in good sequence 9 and therefore should be
alignable performing the classical pairwise alignment. Since we are also consider-
ing disabled behaviors as additional constraints, this alignment is forbidden by the
disabled behavior F ← E (Fig. 6.4, leaf 9) which does not allow skipping the identi-
fier E in the alignment, making the subsequence ⟨F, K⟩ not alignable with any good
sequences. We complete the process by mapping back the sequence of identifiers
⟨F, K⟩ to the sequence of instructions ⟨Store, 0x4000, X_i⟩ ⟨Store, 0x3000, X_j⟩ with
X_i ̸= 1 and X_j = 1.

6.3.4 Simulation results

According to the threat model described in Section 6.3.1, we evaluated the effective-
ness and efficiency of the methodology in two case studies concerning the validation
of a memory protection mechanism and the detection of a logic bomb in a control
firmware of a mobile robot. The experimental results have been carried out on a 2.9
GHz Intel Core i7 processor equipped with 16 GB of RAM and running Mac OS.

6.3.4.1 Memory protection mechanism

The analyzed firmware acts as an interface between a memory-mapped IP and an
upper-level software. The firmware reads values from the IP interface, then it elab-
orates a memory address on which it stores the read values. In this scenario, the
memory location storing the firmware code is not writable unless the flag BIOSwe

74 Chapter 6. Bug explanation: COME & BECAUSE

Code 1
1: command = 0
2: curr_address = 0
3: curr_data = 0
4: while true do
5: command = externalInput()
6: if command == 1 then
7: curr_address = externalInput()
8: else if command == 2 then
9: curr_data = externalInput()

10: writeToAddress(curr_data, curr_address)
11: else if command == 12345678 then
12: InterruptEnabled = 0
13: BIOSwe = 1
14: else
15: No op
16: function a f terAnyInstruction()
17: if InterruptEnable == 1 then
18: BIOSwe == 0

is set. Moreover, each attempt to change this flag causes an interrupt that resets the
BIOSwe at its default value, i.e. zero. In a correct execution flow, each value coming
from the IP is then properly stored in a memory location, and, more importantly,
any attempt to manipulate the firmware code itself has no effect. However, a se-
curity vulnerability can be located in the interrupt controller register. In fact, if the
interrupts can be disabled, then BIOSwe is exposed to be set, and the firmware code
in memory can be successfully overwritten afterwards. This is a concrete vulnera-
bility, exploited in [96]. We run COME to analyse the binary-code firmware in the
above vulnerable context.

In this case, study the defined vulnerability assertion is BIOSwe = 1. Code 1
shows a high-level representation of the firmware under analysis. It takes as input
a command, a data value and an address. Depending on the given command, the
input data value is provided as either a new address or a new word to be written at
the current address. If the input command is equal to 1 then an address is received
as input and stored in the variable curr_address (lines 6-7). If the input command
is equal to 2 then a new data value is received as input and stored in the variable
curr_data (lines 8-9). After that, the received data is written to the previously stored
address using the function writeToAddress(curr_data, curr_address) (line 10). If the
input received is not a feasible command, the firmware ignores it entering in the “no
op" branch (line 15). The function a f terAnyInstruction implements the memory pro-
tection mechanism described above: it is executed after every firmware instruction
to keep the BIOSwe register set to 0 (lines 17-18).

This case study covers both the scenarios presented in section 6.3.1.
In the first scenario, the vulnerability is triggered by exploiting the addresses and

data received as input. A filtered sequence triggering the vulnerability this way is
drafted as follows:
(a)⟨Load, command, Xa⟩ with Xa = 1
(b)⟨Store, curr_address, Xb⟩ with Xb = InterruptEnable
(c)⟨Load, command, Xc⟩ with Xc = 2
(d)⟨Store, curr_data, Xd⟩ with Xd = 0
(e)⟨Load, command, Xe⟩ with Xe = 1
(f)⟨Store, curr_address, X f ⟩ with X f = BIOSwe

6.3. COME 75

(g)⟨Load, command, Xg⟩ with Xg = 2
(h)⟨Store, curr_data, Xh⟩ with Xh = 1
This filtered sequence summarizes the minimum operations able to trigger the vul-
nerability without using the shortcut described by the first filtered sequence. The
sequence simply generates addresses for both the InterruptEnable (b) and BIOSwe
(f) registers and then writes the values 0 and 1 to those addresses, respectively (d
and h). Each operation is preceded by a command load that decides which branch
will be taken in the if-then-else (a, c, e, and g).

In the second scenario, we considered the case where a developer included a
malicious branch able to immediately activate the vulnerability by giving as input
a certain command value. If the command is equal to 12345678 (line 11) then the
firmware directly actives the vulnerability by setting the InterruptEnable register
to 0 followed by setting the BIOSwe register to 1 (lines 12-13). Once the sequence
triggering the vulnerability this way is filtered, we should end up with a sequence
of size 1 containing only the “read" operation on the command variable inside the
if statement which characterizes the instruction that made the execution fall in the
malicious branch. Note that InterruptEnable = 0 and BIOSwe = 1 are not part of the
filtered sequence. Once command equals to 12345678, these instructions are forced to
be executed (concrete operations) and therefore the instruction ⟨Load, command, X_i⟩
with X_i = 12345678 is enough to characterize the vulnerability.

Table 6.1 reports the execution time of COME by increasing number of simulated
firmware instructions. We can notice that the time required by step 1 of the proposed
approach, which contains the bottleneck of the whole methodology (symbolic simu-
lation), is of the same order of magnitude as the sum of the times of the succeeding
steps.

Table 6.2 reports in this order: the number of simulated instructions, the num-
ber of generated symbolic nodes in the labelled symbolic tree, the number of simu-
lated firmware execution paths, the number of simulated firmware execution paths
where the vulnerability assertion holds, their average length in terms of number of
simulated instructions, the number of generated output assertions and their average
length in terms of the number of involved firmware instructions.

Observing Table 6.2 we can see that starting from hundreds of bad sequences
(column 4) with dozens of instructions (column 5) we ended up with only the two
sequences described above of sizes 1 and 8. The tool is able to find only the first “bad
sequence" for tests below 7 millions of simulated instructions (rows 1-3). For tests
simulating over 28 million instructions, the tool correctly identifies the two expected
sequences (rows 4-5). All other bad sequences describe the same identical ways of
activating the vulnerability, they differ only in the number of unnecessary elements
they contain.

Finally, Fig. 6.5 shows the memory usage of COME throughout each step of the
methodology for each simulation run reported in Table 6.1. Thanks to the efficient
C++ implementation of COME and Klee, the whole approach is remarkably con-
tained in its memory consumption; in fact, even when simulating millions of in-
structions, the memory usage does not exceed 350 MB.

6.3.4.2 Safety control mechanism

The second use case is related to the firmware for a safety control mechanism of a
mobile robot. The considered robot is equipped with sensors used to keep track of

76 Chapter 6. Bug explanation: COME & BECAUSE

TABLE 6.1: Execution time (memory protection mechanism).

Simulated
instructions

Step 1
time

Step 2
time

Step 3
time

Step 4
time

Total
time

411’940 2618 ms 5902 ms 78 ms 88 ms 8686 ms
1’632’838 9511 ms 23654 ms 900 ms 90 ms 34155 ms
7’241’517 46501 ms 2.7 min 2091 ms 91 ms 3.46 min

28’313’022 3.11 min 7.28 min 3091 ms 97 ms 10.5 min
104’998’737 16.5 min 52.1 min 8012 ms 99 ms 69 min

TABLE 6.2: Simulation and filtering details (memory protection
mechanism).

Simulated
instructions

Symb.
states

Tot
seq.

Bad
seq.

AVG
bad seq.
length

Generated
assertions

AVG
assertion

length
411’940 84 67 4 34 1 1

1’632’838 548 293 8 40.5 1 1
7’241’517 2578 1345 12 47 1 1

28’313’022 9378 4853 72 59.7 2 4.5
104’998’737 38311 20331 628 74.8 2 4.5

FIGURE 6.5: Memory usage for (memory protection mechanism).

nearby objects. Given a target position on the plane, the robot is capable of reach-
ing such a location automatically. To implement this functionality, the underlying
software exploits two main routines: a “local planner” and a “path planner”. The
path planner is used to generate a feasible path plan that the robot should follow to
reach the target position. The local planner takes care of local trajectory adjustments
required to avoid unexpected obstacles that might occur on the path. Moreover,
the control firmware includes a safety control mechanism that halts the robot if it
gets too close to an obstacle. We considered the scenario where a malicious devel-
oper included a logic bomb capable of disabling the safety control mechanism. A
logic bomb is a piece of code intentionally inserted into a software that activates
malicious functionalities when a certain condition is satisfied. In this case study,
the vulnerability consists of the sequence of instructions capable of firing the logic

6.3. COME 77

bomb.

Code 2
1: o f f = 4
2: while true do
3: while !newTargetAvailable do
4: NoOp
5: o f f >> (target_x == target_y)
6: while cur_x ̸= target_x || cur_y ̸= target_y do
7: if dis(cur_x, obs_x, cur_y, obs_y) < 10 && o f f then
8: haltRobot()

Code 2 shows a high-level representation of the firmware under analysis. The
firmware receives its input from a set of memory-mapped ports. We assume that
the values provided by these ports can potentially change after every instruction
of the firmware. To simulate such a behavior, we instruct the symbolic simulation
engine to inject a new symbolic value in all input ports after executing an instruc-
tion. This approach effectively reproduces the environment of the real firmware
executed on the robot. The port newTargetAvailable becomes true when the robot
receives a new target position. The firmware keeps waiting until a new target is
provided (lines 3-4). The ports target_x and target_y provide the coordinates of
the target position after newTargetAvailable becomes true. After that, the firmware
enters a loop that keeps cycling until the robot reaches the target position, or in
other words, until the condition cur_x ̸= target_x || cur_y ̸= target_y becomes false
(line 6). The ports cur_x and cur_y provide the current position of the robot. The
safety mechanism is implemented by checking that the distance from the current
position remains higher than an arbitrary threshold 10 (line 7). The distance is cal-
culated with the function dis(), while the ports obsx and obsy provide the position
of the detected obstacle. If the robot gets too close to the obstacle, the firmware
calls the function haltRobot() (line 8) which stops the motors of the robot as fast as
possible. However, the malicious developer added a variable o f f to implement a
vulnerability in the firmware. Each time the firmware receives a new target posi-
tion (newTargetAvailable is true), if the given coordinates are equal (target_x ==
target_y), the variable o f f is shifted to the right by 1 (line 5). Since the variable o f f
was initialized to 4, after three shifts the variable becomes equal to 0. Therefore,
the condition dis(cur_x, obs_x, cur_y, obs_y) < 10 && o f f becomes stuck to f alse,
effectively disabling the safety mechanism. To trigger this vulnerability, the attacker
needs to provide as input the correct coordinates (target_x == target_y) three times.
Table 6.3, Table 6.4 and Fig. 6.6 show the simulation results for the described case
study. The analysis of those results follows the same line of reason applied to the
previous case study.

TABLE 6.3: Execution time (safety control mechanism).

Simulated
instructions

Step 1
time

Step 2
time

Step 3
time

Step 4
time

Total
time

9’018’410 2.3 min 7 min 5091 ms 81 ms 9.4 min
12’930’221 2.9 min 10.2 min 5201 ms 88 ms 13.3 min
32’229’539 8.3 min 17.7 min 8981 ms 3803 ms 26.1 min
81’718’093 19.1 min 39.1 min 7202 ms 9101 ms 58.2 min

In this case study, COME was able to identify several bad sequences of instruc-
tions capable of triggering the vulnerability. However, after the filtering step, only

78 Chapter 6. Bug explanation: COME & BECAUSE

TABLE 6.4: Simulation and filtering details (safety control mecha-
nism).

Simulated
instructions

Symb.
states

Tot
seq.

Bad
seq.

AVG
bad seq.
length

Generated
assertions

AVG
assertion

length
9’018’410 1’623 1420 1 127.3 1 6

12’930’221 1’841 1589 8 129.2 1 6
32’229’539 3’409 1709 28 132.8 1 6
81’718’093 14’799 3812 251 141.9 2 8.5

FIGURE 6.6: Memory usage (safety control mechanism).

two scenarios were identified. In the first scenario, the attacker simply gave as input
three times in a row the coordinates (x, y) with x == y, correctly identifying the
vulnerability. In the second scenario, the coordinates (x, y) also satisfied the condi-
tion cur_x == target_x && cur_y == target_y, making the execution triggers the
vulnerability with fewer instructions as the variable o f f was shifted without making
the firmware entering in the third while loop (line 7).

We can conclude that COME is really effective in generating a low number of
temporal assertions that define the causes of a vulnerability. This provides a great
advantage for verification engineers that can definitely focus on a few assertions
to decide the way of patching the firmware, thus solving the vulnerability. On the
contrary, without COME, the verification engineer should analyze a huge number
of bad execution sequences, which would be unfeasible even for a simple firmware.

6.4 BECAUSE

In this section, we present the second tool called BECAUSE. The tool works on any
system-level implementation that can be compiled into LLVM bitcode. Given an
unexpected behaviour formalised by means of a propositional assertion, the tool
provides the user with a reduced execution trace that still triggers such behaviour,
thus highlighting the essential instructions related to it.

6.4. BECAUSE 79

The underpinning methodology applies a sequence of reductions to the execu-
tion trace through a program-slicing-based technique. After each reduction, we ver-
ify by simulation if the remaining trace is still an executable program capable of trig-
gering the unexpected behaviour. This procedure works in two phases. Firstly, we
remove all the instructions not belonging to the cone of influence of the unexpected
behaviour by exploring the dynamic program dependency graph (DPDG). Secondly,
we apply a heuristic based on an instruction-clustering procedure to further reduce
the remaining trace. Furthermore, we extend the reported methodology to perform
bug explanation of unexpected behaviours modelled as temporal assertions.

The rest of the section is organised as follows. In section 6.4.1, we provide a
few preliminary definitions necessary to clearly understand the proposed approach.
In section 6.4.2, we overview the methodology, and then we describe in detail each
step. In section 6.4.3, we describe how to extend the methodology to perform bug
explanation with temporal assertions. In section 6.4.4, we report the experimental
results.

6.4.1 Preliminaries

Definition 26. An instruction is a programming statement following the LLVM bitcode
syntax [97].

Definition 27. An execution trace is a sequence of instructions representing an executable
instance of a program.

Definition 28. Let i1 and i2 be two instructions, i2 is data dependent on i1 if i2 accesses a
portion of memory allocated or modified by i1.

Definition 29. Let i1 and i2 two instructions, where i1 is a branch with multiple branch
targets, if changing the branch target of i1 may cause i2 to not be executed, then i2 is control
dependent on i1.

Definition 30. A dynamic program dependence graph is a structure composed of nodes
and edges where each node represents an instruction of an execution trace and each edge
represents a data or control dependency between instructions. Let n1,n2 be two nodes of a
DPDG, if n2 has an incoming edge e1 connecting n2 with n1, then the instruction represented
by n2 is either data-dependent or control dependent on the instruction represented by n1.

Fig. 6.8 shows an example of a DPDG where red edges are data dependencies
and blue edges are control dependencies.

Definition 31. Let as be an assertion and A = {a0, a1, ..., an} the set of memory addresses of
variables v0, v1, ..., vn on which as predicates, then the memory address a f is a fundamental
address of as if a f ∈ A.

6.4.2 Methodology

As shown in Figure 6.7, the proposed tool is composed of 3 main steps executed
sequentially. The inputs of the tool are the LLVM code of the DUV and a set of
propositional assertions capturing unexpected behaviours. Additionally, the user
can provide the sequences of inputs that eventually falsify the assertions, thus high-
lighting the presence of a bug. For each failed assertion, the tool produces a sequence
of minimal instructions explaining the cause of the failure, i.e., the reason for the bug.
Hereafter, we provide an overview of the 3 main steps.

80 Chapter 6. Bug explanation: COME & BECAUSE

FIGURE 6.7: Methodology execution flow

1. Trace extraction: given the failure of an assertion, in the first step of the method-
ology, we extract the sequences of LLVM instructions that cause the execution
to activate the unexpected behaviours. This procedure may occur in two ways,
depending on whether the user provided the sequences of inputs or only the
assertion. In the first case, the sequence of instructions firing the unexpected
behaviour is extracted by executing the implementation with the given inputs
until the related assertion fails. In the latter case, we use symbolic simulation
to find a sequence of instructions capable of falsifying the assertion.

2. Cone of influence generation: each trace extracted in the previous step is re-
duced by applying a dynamic program slicing algorithm to eliminate all in-
structions not belonging to the cone of influence (CoI) of the assertion. For
each trace, we generate a DPDG characterising control and data dependencies
between instructions. After that, we apply a reachability algorithm to deter-
mine what instructions influence the value of the variables contained in the
assertions. The instructions not selected by the above procedure are removed
from the trace.

3. Instruction clustering: in the last step of the methodology, we apply a clus-
tering procedure to further reduce the remaining instructions. Our approach
consists of dividing the instructions into independent clusters such that ap-
plying any reduction procedures to one cluster would not prevent a satisfy-
ing minimisation in another. Once such clusters are identified, we apply a
combinatorial-based reduction to obtain the minimal sequence in each cluster.

To simplify the exposition, we apply the proposed methodology to the example
shown in listing 6.1. It consists of a design written in C implementing a simple arith-
metic transformation. The code is decorated with an immediate assertion specifying

6.4. BECAUSE 81

1 i n t in ;
2 i n t main () {
3 i n t a =0;
4 i n t b =5;
5 while (1) {
6 in= getNextInput () ;
7 i f (in == 0) {
8 a =4;
9 a ++;

10 } e lse i f (in < 5) {
11 a +=10;
12 a − −;
13 } e lse i f (in > 90) {
14 a −=2;
15 b+=3;
16 a s s e r t (a != 12) ;
17 }
18 }
19 }

LISTING 6.1: Running example

a property that must hold during execution (line 16).

6.4.2.1 Trace Extraction

In the first step of the methodology, we extract the sequences of LLVM instructions
that expose the unexpected behaviour, namely, sequences starting with the first in-
struction of the program and ending with the assertion failure.

In Table 6.5 we report an execution trace falsifying the assertion contained in
the running example. The instructions are labelled with two identifiers: the first
uniquely identifies each LLVM instruction, and the second links each instruction to
its corresponding high-level statement in listing 6.1. To extract such an execution
trace, we symbolically simulate the DUV, until we find an execution path that fal-
sifies the target assertion. To accomplish that, we exploit the symbolic simulation
engine provided by KLEE [98]. To simulate the DUV with KLEE, the DUV inputs
are marked as “symbolic” to declare where symbolic values should be injected. For
example, to symbolically simulate the running example, line 6 must be replaced by
klee_make_symbolic(in), since variable in is the only input. Then the symbolic sim-
ulation explores the various paths of the running example until it finds a path that
makes the assertion at line 16 fail. Such a path has the following symbolic con-
straints: (in1 == 0, in2 < 5, in3 > 90), where the subscript i of ini refers to the
value of the variable in at the symbolic iteration i.

Symbolic simulation is quite expensive in terms of computational resources. As
a matter of fact, it is an exponential-time algorithm; however, if the user already has
the required sequence of inputs to activate the bug, it can be run in a linear-time con-
strained mode, since only one path needs to be explored. In the running example, we
assumed the following sequence of inputs: {⟨in1, 0⟩, ⟨in2, 4⟩, ⟨in3, 125⟩}. Therefore,
the symbolic simulation must explore only one path with the following constraints:
in1 == 0, in2 == 4, in3 == 125 producing the sequence of instructions reported in
Table 6.5.

82 Chapter 6. Bug explanation: COME & BECAUSE

6.4.2.2 Cone of influence generation

In the second step of the methodology, the execution trace extracted in the previous
phase is reduced by applying a dynamic program slicing algorithm. The remain-
ing elements of the execution trace correspond to instructions involved directly (or
indirectly through association) in data or control dependencies with the variables
contained in the failed assertion, that is, the cone of influence of the assertion. The
procedure works in three main sub-steps.

In the first step, we generate the DPDG of the execution trace extracted in the first
step of the methodology. In the last decades, many algorithms have been proposed
to generate DPDGs efficiently, one of which can be found in [99]; therefore, we do
not describe such an algorithm in this paper. Figure 6.8 shows the DPDG for the
execution trace listed in Table 6.5.

In the second step, we identify all store instructions in the execution trace access-
ing fundamental addresses for the target assertion. These are the only instructions
that can modify the variables on which the assertion predicates, and therefore, that
can change its truth value. We call f undInst the set of instructions collected with
the above procedure. Since the algorithm to identify f undInst is trivial, we do not
give any further details on it. In the running example, there is only one fundamental
address, namely, the memory address of variable a in assertion a! = 12. Such an
address is allocated by instruction 3 of Table 6.5 and saved in the LLVM label %2.
In this example, f undInst is composed of the store instructions {5, 13, 16, 28, 31, 46},
which are accessing the address in label %2.

In the last step, we traverse the generated DPDG starting from each store in-
struction in f undInst and going backward through the incoming edges until a node
with no incoming edges is found. By construction, the generated DPDG is an acyclic
direct graph, therefore the whole procedure has a worst-case time-complexity of
O(V), where V is the number of nodes in the DPDG. Each instruction represented
by a node in the DPDG that is not visited in the aforementioned procedure will be
removed from the execution trace. The whole procedure is formalised in function
extractCoI of algorithm 10.

Algorithm 10 Cone of influence extraction

1: function extractCoI(f undInst, trace, dpdg)
2: visited = ∅
3: coi_Trace = ∅
4: for all f iid in f undInst do
5: node = dpdg.getNodeFromId(f iid)
6: backwardDFS(node, visited)
7: for id = 0, id < trace.size(), id++ do
8: if !visited.contains(id) then
9: reducedTrace.pushBack(trace[id])

10: return reducedTrace
11:
12: function backwardDFS(node, &visited)
13: visited.insert(node)
14: for all edge in node.getInEdges() do
15: sourceNode = edge.getSource()
16: if !visited.contains(sourceNode.getId()) then
17: backwardDFS(sourceNode, visited)

The inputs of this function are the identifiers corresponding to fundamental in-
structions f undInst, the execution trace trace and the DPDG dpdg. First, visited and

6.4. BECAUSE 83

FIGURE 6.8: DPDG of the running example

reducedTrace are declared and initialised (lines 2,3); the first variable contains the
visited nodes, while the latter contains the reduced execution trace. After that, we
apply the function backwardDFS to all the nodes representing the fundamental in-
structions in f undInst (lines 4-6). Each node is retrieved from the DPDG through
the method getNodeFromeId (line 5) which returns a node data structure for a given
instruction identifier. The function backwardDFS performs a depth-first search al-
gorithm going backward from the incoming edges of each node. First, the function
marks the current node as visited (line 13). After that, it iterates through all the
incoming edges of the current node (line 14). Then, it retrieves the source node
sourceNode connected to node through edge using the method getSource (line 15). If
sourceNode is not already marked (line 16), then we apply backwardDFS recursively
using sourceNode as input (line 17). When all the visits are concluded, we iterate
on all the instructions in trace (line 7) and we add to coi_Trace the instructions that
do not have a corresponding marked node (lines 8-9), that is, that do not have a
corresponding node stored in visited. Finally, the reduced trace is returned (line 10).

If we apply the above procedure to the running example, the instructions corre-
sponding to nodes 2, 7, 47, 48, and 49 are removed from the trace. These nodes are
highlighted in red in Figure 6.8. Intuitively, these instructions refer to the declaration
and utilisation of variable b, which does not have any control or data dependency
with variable a in the assertion. From now on, we will use the term CoI-Trace to refer
to the execution trace reduced with the above procedure.

6.4.2.3 Instruction clustering

In the last step of the methodology, we apply a heuristic procedure to further re-
duce the remaining instructions in the CoI-Trace. Further reductions are necessary
because in most cases, step two of our methodology can not produce a minimal se-
quence of instructions falsifying an assertion. Consider, for example, the high-level
instructions a++ and a−− contained, respectively, at lines 9 and 12 of the running
example. Since the assertion predicates on variable a, which is data-dependent on
these instructions, the previous step is not capable of removing them. In theory, any
subsequence of instructions of the execution trace could be a minimum sequence of
instructions explaining the unexpected behaviour. Therefore, any algorithm seek-
ing to find the minimal sequence would suffer from exponential complexity, and
hence, scalability issues. To tackle this problem, our approach splits the instruc-
tions of the CoI-Trace into independent clusters such that applying any reduction
to one cluster would not prevent a satisfying reduction to another cluster. Since ev-
ery cluster contains a small number of instructions, it is feasible to quickly find the

84 Chapter 6. Bug explanation: COME & BECAUSE

optimal reduction for each cluster. We generate such clusters by grouping store in-
structions accessing the same memory address. Note that this is just one method of
clustering the instructions, the whole methodology can be still applied with different
heuristics. Our clustering heuristic does not produce clusters completely data/con-
trol independent from one another; nonetheless, they provide a satisfying amount of
independence to apply effective individual reductions. Since each store instruction
can only access one memory address, the required clustering procedure is straight-
forward. In the running example, the clustering procedure produces two clusters
for the execution trace of Table 6.5: c1 = {13, 16, 28, 31, 46} for the store instructions
accessing the address of variable a, and c2 = {9, 19, 34} for the address of variable
in.

Algorithm 11 Reduction through clustering and slicing

1: function reduce(trace,dpdg)
2: f inalTrace = trace
3: C = generateClusters(trace)
4: for all ci in C do
5: for s = ci.size(), s > 0, s−− do
6: combs = getCombs(ci.size(), s)
7: for all combi in combs do
8: csel = select(ci, combi)
9: traces = strip(csel , f inalTrace)

10: if test(traces) then
11: removeLooseInst(csel , dpdg, traces)
12: f inalTrace = traces

13: goto newCluster
14: label newCluster
15: return f inalTrace
16:
17: function removeLooseInst(csel ,dpdg,&traces)
18: for all cj in csel do
19: visited = ∅
20: node = dpdg.getNodeFromId(cj)
21: removeLooseNodes(node, visited)
22: traces.erase(visited)
23:
24: function f indLooseNodes(node,&visited)
25: if node.getInEdges().size() > 1 then
26: return
27: visited.insert(node)
28: for all edge in node.getInEdges() do
29: sourceNode = edge.getSource()
30: f indLooseNodes(sourceNode, visited)

Let ai, a2, ..., ak be the addresses accessed in the store instructions of the CoI-Trace,
C = {c1, c2, ..., ck} is the set of clusters generated with the above procedure, where
ci contains the store instructions for address ai. We define the optimal reduction
as the biggest set of instructions optRedi = {i1, i2..., im} in a cluster ci such that if
the execution trace is stripped of the instructions contained in optRedi, the trace
is still an executable program capable of falsifying the assertion. For each cluster,
we find its optimal reduction and we remove the respective instructions from the
execution trace. In the running example, instructions 16 and 31 correspond to the
optimal reduction of cluster c1. We identify a candidate optimal reduction optRedi
of a cluster ci by applying a “select and test” procedure. Firstly, we select a subset

6.4. BECAUSE 85

si ⊆ ci, then we remove the selected instructions from the trace. Secondly, we test if
the execution trace is still an executable program capable of falsifying the assertion.
To perform such a test, we exploit the KLEE LLVM interpreter to re-execute the
reduced trace.This procedure can produce only three outcomes: (1) the assertion
fails during execution; (2) the assertion does not fail; (3) a branch instruction jumps
to a different target than the one in the original trace.

In the first scenario, removing the instructions does not affect the truth value of
the assertion, hence, the removed instructions are considered a candidate optimal
reduction. On the contrary, in the second and third scenarios, the removed instruc-
tions were necessary to, respectively, falsify or reach the assertion, therefore, they can
not be removed from the trace. The biggest candidate optimal reduction identified
with the above procedure is the optimal reduction for the given cluster. Step three
of our methodology is completely formalised in the function reduce of Algorithm
11. First, the function generates the clusters of stores instructions (line 3) through
the method generateClusters. Then, the selection and test procedure is performed
for all clusters. The selection phase works by selecting progressively smaller com-
binations of cluster instructions (lines 4-8). For example, let cp = {23, 45, 98} be a
cluster of instructions, the selection phase starts by selecting combinations of size
3, which is only ⟨23, 45, 98⟩. After that, it continues with combinations of size two,
which are ⟨23, 45⟩, ⟨23, 98⟩, ⟨45, 98⟩ and finishes with combinations of size 1, which
are ⟨23⟩, ⟨45⟩, ⟨98⟩. For each combination, a new reduced trace traces is generated
by removing the corresponding instructions using function strip (line 9). traces is
re-executed through function test (line 10). If test returns true, then we are in sce-
nario 1 of the aforementioned procedure and csel is an optimal reduction of ci. In
this case, the newly reduced trace is saved in f inalTrace (line 12) and the execution
moves to the next cluster (line 13). Finally, when the trace is reduced using all clus-
ters, we return the final trace (line 15). If we apply this procedure to cluster c1 and
c2 of the running example, we discover that there is no candidate reduction for c2 as
all its store instructions are necessary to explain the unexpected behaviour; on the
contrary, cluster c1 admits an optimal reduction consisting of instructions 16 and 31.

In most cases, removing a store instruction is generates a chain of “loose instruc-
tions" i1,i2,...,ip−1,ip where is is data dependent only to i1, i1 is data dependent only
to i2 ..., ip is data dependent only on ip−1. Since i1 is the only data dependence
of is, removing is causes i1 to become independent from all the other instructions
in the trace. Therefore, since i1 is no longer part of the cone-of-the influence, we
can safely remove it from the trace. In the same way, i2...ip−1,ip are removed in a
chain-reaction fashion once their only dependence is removed. The above proce-
dure is implemented by the function removeLooseInst of Algorithm 11. The inputs
of removeLooseInst are the store instructions csel removed in the previous iteration
of reduce, the DPDG dpdg and the stripped trace traces. The procedure works in two
phases executed for every instruction in csel (line 18). First, it finds the nodes visited
corresponding to loose instructions in dpdg using function f indLooseNodes (lines
19-21). Second, the found instructions are removed from traces (line 22). Function
f indLooseNodes performs the same task as backwardDFS, except that it returns when
a node with more than one dependence is found. By removing instructions 16 and 31
in the running example, we generate the loose instructions 14, 15 and 29, 30, respec-
tively. These instructions are removed automatically through the removeLooseInst
function.

86 Chapter 6. Bug explanation: COME & BECAUSE

6.4.3 Bug explanation with temporal assertions

In the context of temporised DUVs, functional requirements involve the concept
of time, where behaviours are allowed to span across multiple time units. These
behaviours are usually verified using assertions formalised through temporal logic
such as LTL. Due to its complex nature, understanding and fixing a bug involving
temporal logic is way more demanding than finding the cause of an error observable
through the failure of a simple propositional assertion.

In this section, we describe how to extend the methodology in section 6.4.2 to
perform bug explanation where the unexpected behaviour is identified through a
failing temporal assertion. First, we describe how to handle the advancement of
time (sec. 6.4.3.1). After that, we report how to extract an execution trace that makes
a temporal assertion fail (sec. 6.4.3.2). Finally, we show how to modify the extracted
trace in order to apply the techniques explained in the second and third steps of the
methodology (sec. 6.4.3.3).

6.4.3.1 Time flow

Temporal assertions are an invaluable tool to verify synchronous RTL designs where
the advancement of time is usually defined through a clock signal. Each time a clock
signal reaches a positive (or negative) edge, time advances by 1 unit inside the asser-
tion. However, in the specific domain of application of this work, there is no signal
that is responsible for articulating the advancement of time. To solve this issue, in
this work time advances by one time unit each whenever a new input is provided to
the design. The values of the variables inside an assertion at time ti (corresponding
to the i-th input) are equal to the values of the corresponding variables inside the
design before executing the instructions necessary to read inputi+1. In the running
example, the value of variable a is equal to 0 at time t0, before reading the first input.
a becomes equal to 5 after receiving the first input ⟨input1, 0⟩ at time t1. Note that
inside the assertion, the first evaluation unit is t1 (first sample of the variables) and
not t0.

If the execution reads multiple consecutive inputs, they are all considered part
of the same time unit. For example, if the execution is currently at time tj and the
simulation must execute the following instructions

in1 = getNextInput1 () ;
in2 = getNextInput2 () ;
in3 = getNextInput3 () ;

then, time is equal to tj+1 after executing the third statement. This is necessary to
allow the evaluation of multiple inputs on a single time unit.

In this work, we consider only safety assertions following the template
always(antecedent → consequence) where both the antecedent and the consequent
can be any LTL temporal formula.

6.4.3.2 Trace extraction

Evaluating temporal assertions while performing symbolic simulation presents sev-
eral additional issues, we describe the main challenges below.

• The assertion is no longer part of the source code of the design; therefore, it
must be handled by the simulator outside the simulation.

6.4. BECAUSE 87

• The variables used inside an assertion might not be always available during
simulation; this happens because the existence in memory of a variable de-
pends on the scope in which it is declared.

• The symbolic simulation explores several computational paths; therefore, the
simulator must keep track of the state of the temporal assertion for every path.

To solve the above issues, we have developed the procedure described in Fig. 6.9.
Before starting the simulation, the LTL assertion is translated to a checker in the

form of a deterministic finite-state automaton. The automaton always contains a
root node as the initial state of the checker and a rejecting node where the assertion
fails. The state of a checker is completely identified with an unsigned integer. Each
edge is labelled with a propositional formula. Given a checker ch in state si and a
proposition pk on the outer edge connecting si with sj; if pk is true for the current
sample, then sj is the next state of the checker. A sample is a set of couples Si =
{(var1, val1)i, ..., (varn, valn)i} where each element (varj, valj)i corresponds to value
valj at time i of variable varj; var1, ..., varn are the variables contained in the LTL
assertion. To determine value valj, the simulator must know the scope in which to
find the corresponding variable varj; therefore, the user has to add such information
in the assertion by appending the scope to the variable. In the assertion of Fig. 6.9,
variable a is used as main :: a since it is declared in the main function; likewise,
variable in is used without any additional information to specify that it is declared
in the global scope. If the simulator tries to make a sample of variable vark that does
not exist in memory at time i, then the sample will contain a valk equal to 0.

FIGURE 6.9: Trace extraction with temporal assertion

Function evalAutomaton of Algorithm 12 formalises how to perform an evalua-
tion for an automaton aut and a sample samp. The function searches for an outer
edge outEdge labelled with a proposition that is true for sample samp (lines 2-3). Af-
ter that, the state of the automaton is updated (line 4). If the next state is rejecting
(line 5), then the function returns false to notify that the assertion failed (line 6). If
the next state is not rejecting, then the function returns true as the assertion did not
fail on the current time unit (line 8).

88 Chapter 6. Bug explanation: COME & BECAUSE

Algorithm 12 Automaton’s evaluation

1: function evalAutomaton(aut, samp)
2: for all outEdge in aut.currState.outEdges do
3: if outEdge.prop.evaluate(samp) then
4: aut.state = edge.toState
5: if outEdge.toState.type == Rejecting then
6: return false
7: break
8: return true

Once the checker and all the utilities to evaluate it on a trace are prepared, we
perform symbolic simulation to identify a computational path on which the asser-
tion fails. To do that, we have extended the KLEE framework [98]. In particular, each
time a new input must be read in the execution (new symbolic value), the simula-
tor creates a sample of the variables and evaluates the checker on the current time
unit. Note that each computational path (called ExecutionState in KLEE) contains a
unique instance of the checker stored as an unsigned integer (we only need to keep
track of its current state). If the evaluation of checkeri on pathi returns false, then the
assertion failed and a faulty execution trace exec_tracei is found; otherwise, the sim-
ulation continues. As in section 6.4.2.1, if the user provided the inputs necessary to
make the assertion fail, then only one path is explored by the symbolic simulation.

6.4.3.3 Trace decoration

FIGURE 6.10: Trace decoration of the running example

In this section, we describe how to modify an extracted execution trace to include
information on the failure of a temporal assertion. The result of this procedure is a
set of decorated execution traces on which to apply steps 2 and 3 of the methodology
described in section 6.4.2. To simplify the exposition, we will refer to the example in

6.4. BECAUSE 89

fig. 6.10. The example involves the same implementation reported in listing 6.1 that
generates the same execution trace reported in table 6.5 on which assertion a1 fails.

The methodology is based on the assumption that the failure of a temporal as-
sertion can be described as a sequence of propositions ⟨p1, ..., pn⟩ that are true on a
sequence of time units ⟨1, ..., n⟩, where pi is true at time i. For example, assertion a1
of Fig. 6.10 fails if the sequence of propositions ⟨in! = 0 & a < 5, a == 12 & in > 90⟩
is true on two consecutive time units. This sequence of propositions corresponds to
an accepting path of the automaton generated from the expression ant & !con, where
ant and con are the antecedent and the consequent of the original assertion. The sim-
ulator deduces that the assertion fails on the execution trace by checking that all the
propositions in the sequence are true on the corresponding time units.

The whole procedure consists of three main steps. First, the original assertion
G(antecedent→ consequent) is converted to the expression antecedent & !consequent and
translated to an automaton. Note that this automaton contains both accepting and
rejecting states. Fig. 6.10 contains the conversion of assertion a1 to expression e1 and
its translation to automaton aut1.

In the second step, the procedure retrieves the paths of the automaton justifying
the failure of the assertion on the execution trace. This process is formalised in func-
tion retrievePaths of algorithm 13. The idea of the algorithm is to evaluate the edges
of the automaton using the samples of the execution trace to build the sequences of
propositions that make the assertion fail. The inputs of function retrievePaths are
the automaton aut and the list of samples samps. Variables paths contains the list
of retrieved paths and currPath is a utility variable used to build the paths (lines
2-3). The algorithm starts by evaluating the edges of the accepting state of the au-

Algorithm 13 Function to retrieve the paths triggering the failure

1: function retrievePaths(aut, samps)
2: paths = ∅
3: currPath = ∅
4: for all inEdge in aut.accState.inEdges do
5: visitAut(inEdge, aut, samps, paths, currPath, samps.size()− 1)
6: return paths
7:
8: function visitAut(currEdge, aut, samps, paths, currPath, si)
9: if currEdge.prop.evaluate(samps[si]) then

10: currPath.push_ f ront(currEdge.prop)
11: si−−
12: if currEdge. f romState == aut.rootNode then
13: paths.push_back(currPath)
14: else if si >= 0 then
15: for all inEdge in currEdge. f romNode.inEdges do
16: visitAut(inEdge, aut, samps, paths, currPath, si)
17: si++
18: currPath.pop_ f ront()

tomaton (where the assertion fails) with the last sample of the execution trace (lines
4-6). In the running example, the algorithm starts from state 4 of aut1 with the sam-
ple obtained after the third input ⟨in3, 125⟩}. For each edge aut.accState.inEdge, the
algorithm calls function visitAut. Among the inputs of visitAut we have the edge
currEdge with which the function is trying to build a path and the index si to keep
track of which sample must be used to evaluate the proposition on currEdge. At line
5, visitAut he is called with si equal to sample.size()− 1 to specify that the path is
built from the last sample (last time unit). Function visitAut recursively visits the

90 Chapter 6. Bug explanation: COME & BECAUSE

inner edges of each state of aut in a DFS fashion (lines 8-18). Each time the function
manages to build a path that connects the root state with the accepting state of aut
(line 12), a new path is found and stored in paths (line 13). Fig. 6.10 reports the two
failing paths retrieved from assertion a1 in the running example.

In the final step of the procedure, each sequence of propositions is used to gen-
erate a decorated execution trace. Formally, a sequence of propositions ⟨p1, ..., pn⟩ is
used to decorate an execution trace with a sequence of checkpoints ⟨c1, ..., cn⟩ where
ci is a function that returns true if pi is true at time i, false otherwise. If all checkpoints
return true, then the assertion must fail on the execution trace. Fig. 6.10 reports the
execution trace decorated with one of the failing paths.

Once a decorated execution trace is generated, we can easily apply the techniques
described in the second and third steps of the methodology by considering the dif-
ferences highlighted below.

• The DPDG must consider the fundamental addresses of all the propositions in
the checkpoints

• To determine if an assertion fails on a decorated execution trace, the simulator
must verify that all the checkpoints return true.

6.4.4 Experimental results

The proposed methodology has been implemented in an automatic tool extending
the KLEE symbolic engine. Its effectiveness and efficiency have been evaluated on
four well-known C benchmarks compiled to LLVM:

• xtea implements the Extended Tiny Encryption Algorithm;

• matrix mult is a matrix multiplication algorithm;

• graph DFS is a depth-first search algorithm;

• Newton-Raphson is the famous root-finding algorithm.

The experimental results have been carried out on a 2.9 GHz Intel Core i7 processor
equipped with 16 GB of RAM and running Ubuntu 20.04 LTS.

Table 6.6 reports the results in terms of execution time and reduction quality re-
ferred to an execution trace exposing a bug for each design. In particular, Table 6.6
compares the results of our tool with a baseline obtained by applying the best achiev-
able reduction, that is, by manually inspecting the trace and removing the unneces-
sary instructions; indeed, this procedure can be performed only on short traces. The
second column (Original length) reports the length of the original execution trace that
makes the assertion fail, before applying any reduction. The third column (Our ap-
proach) reports the final length of the trace after applying our approach. The fourth
column (Manual Inspection) reports the baseline. The fifth column reports the reduc-
tion quality as a ratio between “Manual inspection” and “Our approach”. Here we
can observe that our tool produces results very close to the baseline (reduction qual-
ity close to 1) for all the reported tests. The last column reports the execution time of
our tool.

Table 6.7, instead, shows the scalability of our approach. It reports, for the
Netwon-Raphson benchmark, the reduction percentage and the execution time at the
increasing of the length of the target execution trace. These results show that our
tool is capable, in a few seconds, of providing a reduction of over 60% of the original
trace, even for traces hundreds of instructions long.

6.4. BECAUSE 91

<label>:0: <label>:14:
[0, 1] %1 = alloca i32 [26, 11] %15 = load i32, i32* %2
[1, 3] %2 = alloca i32 [27, 11] %16 = add add nsw i32 %15,10
[2, 5] %3 = alloca i32 [28, 11] store i32 %16, i32* %2
[3, 1] store i32 0, i32* %1 [29, 12] %17 = load i32, i32* %2
[5, 3] store i32 0, i32* %2 [30, 12] %18 = add nsw i32 %17, -1
[7, 4] store i32 5, i32* %3 [31, 12] store i32 %18, i32* %2
[8, 5] br label %4 [32, 18] br label %31
<label>:4: //in=0 <label>:31:
[9, 6] store i32 getNextInput(), i32* %1 [33, 5] br label %4
[10, 7] %6 = load i32, i32* %1 <label>:4: //in=125
[11, 7] %7 = icmp eq i32 %6, 0 [34, 6] store i32 getNextInput(), i32* %1
[12, 7] br i1 %7, label %8, label %11 [35, 7] %6 = load i32, i32* %1
<label>:8: [36, 7] %7 = icmp eq i32 %6, 0
[13, 8] store i32 4, i32* %2 [37, 7] br i1 %7, label %8, label %11
[14, 9] %9 = load i32, i32* %2 <label>:11:
[15, 9] %10 = add nsw i32 %9, 1 [38, 10] %12 = load i32, i32* %1
[16, 9] store i32 %10, i32* %2 [39, 10] %13 = icmp slt i32 %12, 5
[17, 18] br label %31 [40, 10] br i1 %13, label %14, label %19
<label>:31: <label>:19:
[18, 5] br label %4 [41, 13] %20 = load i32, i32* %1
<label>:4: //in=4 [42, 13] %21 = icmp sgt i32 %20, 90
[19, 6] store i32 getNextInput(), i32* %1 [43, 13] br i1 %21, label %22, label %31
[20, 7] %6 = load i32, i32* %1 <label>:22:
[21, 7] %7 = icmp eq i32 %6, 0 [44, 14] = load i32, i32* %2
[22, 7] br i1 %7, label %8, label %11 [45, 14] %24 = sub nsw i32 %23, 2
<label>:11: [46, 14] store i32 %24, i32* %2
[23, 10] %12 = load i32, i32* %1 [47, 15] %25 = load i32, i32* %3
[24, 10] %13 = icmp slt i32 %12, 5 [48, 15] %26 = add nsw i32 %25, 3
[25, 10] br i1 %13, label %14, label %19 [49, 15] store i32 %26, i32* %3

[50, 16] %27 = load i32, i32* %2
[51, 16] %28 = icmp ne i32 %27, 12
[52, 16] %29 = zext i1 %28 to i32
[53, 16] %30 = call @assert

TABLE 6.5: LLVM execution trace of the running example

TABLE 6.6: Analysis of the reduction quality

Name
Original
length

Reduced length Reduction
quality

Reduction
timeOur

approach
Manual
inspection

xtea 190 155 155 1 1830 ms
matrix mult 150 127 122 0.96 2631 ms
Newton-Raphson 213 76 76 1 2056 ms
graph DFS 236 207 205 0.99 4623 ms

92 Chapter 6. Bug explanation: COME & BECAUSE

TABLE 6.7: Analysis of the approach’s scalability

Original length Reduced length Reduction Time Reduction
482 154 3s 68.05%

1379 389 36s 71.79%
10283 2888 437s 71.91%

93

Chapter 7

Runtime verification: CARMINE

7.1 Introduction

Thank to the recent advances in robotics and artificial intelligence, autonomous mo-
bile robots are today adopted in a large spectrum of applications. These include
smart manufacturing [100], surveillance [101], precision agriculture [102], warehouse
[103], and delivery systems [104]. Nevertheless, their safety and reliability require-
ments as well as their robustness guarantees remain major barriers to their large-
scale adoption in real-world systems. While different formal verification methods
have been proposed to validate end-to-end their software correctness [105], [106],
solutions to support runtime system verification are still understudied. Runtime verifi-
cation is a mandatory component for the validation process of the robotic infrastruc-
ture. It is required to verify that the software implementing the robot’s mission and
behaviour is correct and also satisfies extra-functional constraints (e.g., real-time, en-
ergy efficiency, reliability) when run on a real robotic platform in the physical world.

Good design practice for runtime validation requires the use of ABV [107]. As-
sertions are first synthesised into checkers and then checked at runtime to report any
violation and possibly enforce fail-safe behaviours. At the state of the art, checkers
for robotic applications are generally applied to watch system resources and to de-
tect local faults [108]. Nevertheless, with the increased complexity in perception and
control, modern robots and autonomous systems need more advanced and complex
monitoring tasks during their daily missions. Such monitoring tasks range from en-
forcing security and safety properties to pattern matching over sensor readings to
help perception [109].

Runtime verification based on such a kind of checker introduces computational
overhead, whose amount depends on the number of active assertions, the com-
plexity of the assertions, and the observed signals. When adopted in resource-
constrained architectures, such workload variability can lead to system overloads
and failures even with very few checker instances. In similar contexts, migrating
functional tasks from IoT edge devices to edge servers or to the cloud has shown
to be a valid solution for freeing resources and avoiding system bottlenecks [110].
On the one hand, applying the same technique for migrating checkers may free re-
sources for functional tasks at the edge. On the other hand, moving checkers far
from the sensors or from the functional tasks that generate the observed events (i.e.,
signal values) may require continuous updating of these events through the com-
munication network. As a consequence, the migration of checkers is a challenging
task, as it could move the bottleneck problems from the edge to the network, with
consequent inefficiency from the point of view of the overall system performance.

We address this challenge by proposing an ABV platform for the automatic gen-
eration, orchestration, and deployment of checkers across edge-cloud computing

94 Chapter 7. Runtime verification: CARMINE

architectures for robotic systems. Starting from LTL assertions expressing the sys-
tem behaviours as required by its specification, the platform synthesises checkers
compliant with the Robot Operating System (ROS) [111] standard. It then enables
dynamic balancing of the SUV workload by considering a trade-off among verifica-
tion accuracy, runtime constraints and resource requirements. This is achieved by a
novel approach that allows migrating the runtime evaluation of the checkers across
the different layers of the edge-cloud computing platform. Finally, the verification
environment is containerised using Docker to enable portability.

The rest of this chapter is organised as follows. Section 7.2 summarises the re-
lated work. Section 7.3 defines the problem statement. Section 7.4 describes the
overall verification architecture. Section 7.5 deals with checker synthesis. Section 7.6
is devoted to containerisation and deployment. Section 7.7 presents the dynamic
migration of checkers. Section 7.8 discusses experimental results.

7.2 Related works

Several solutions have been proposed in the past to automatically synthesize check-
ers from their high-level specifications and integrate them into ROS-based designs,
for both single robots [112], [113] and robot swarms [114]. In these solutions, tempo-
ral logic and regular expressions are the main adopted languages to describe system
properties and temporal patterns. Such formal languages provide powerful environ-
ments to define temporal order and concurrency among states and events. Variants
and extensions have been also proposed to deal with the complexity of such moni-
toring tasks [113], [115].

A common strategy is to design checkers to reproduce the original system speci-
fication according to a set of rules and the current inputs. Then, each checker alerts
if, after such a transformation, a certain form has been obtained [116], [117]. As an
alternative, the checkers are designed as automata, which are implemented through
a big look-up table that maps all possible transformations for all possible inputs
[118]. The static definition of the table provides better performance at runtime than
rewriting-based checkers. Nevertheless, these approaches do not scale well in size
as the automata could potentially become very large, non-compositional, and non-
extensible.

A compositional and extensible approach relies on the design of checkers as a
network of small computation nodes generated from temporal logic specifications
[119]. The approach has been then extended for timed specifications [120], quan-
titative [121], and parametric [122]. Similar solutions have been applied for fault
detection and condition verification of production facilities [123], [124].

The aforementioned solutions assume no limit from the point of view of the
availability of computational resources for the execution of checkers. As a conse-
quence, they are not effective in scenarios where strict limits must be respected con-
cerning the overhead caused by the runtime verification of the SUV. Differently from
all the other techniques presented in the literature, this work addresses the above
limitations by taking advantage of the edge-to-cloud computing continuum, which
is a key component of modern and complex robotic platforms.

7.3 Problem statement

As a starting point, we consider the SUV being implemented as a set of distributed
software tasks, which are modelled through ROS nodes. The ROS nodes execute

7.4. Verification architecture 95

on computing devices, which are distributed across an edge-cloud platform. This
assumption is justified by the fact that ROS is the standard developing environ-
ment in the robotic community. It is based on a publish-subscribe communication
paradigm, where a sender node publishes data on a topic, on which one or many
nodes subscribe to receive the data. The adoption of ROS provides different ad-
vantages. First, it allows the modelling and simulation of complex systems through
nodes running on different target devices. Second, it implements inter-node commu-
nication in a modular way to guarantee code portability. Finally, it adopts standards
and widespread protocols requiring minimum intervention or modifications to the
original code.

Given this premise, this work aims to automatically generate and deploy a mon-
itoring platform for runtime verification of ROS-compliant robotic systems. The
challenge consists in implementing a strategy for integrating checkers into the SUV
implementation such that they ensure an accurate runtime verification of the SUV
without negatively affecting its functionality (e.g., degrading the quality of the ser-
vice or violating real-time constraints), which may happen if part of the computing
resources has to be preempted to be periodically dedicated to the verification tasks.

Each ROS node is located at a computational layer between the edge and the
cloud. Its position is initially chosen with the ideal goal of keeping the source of
data as near as possible to the computing unit that will elaborate it. At the edge,
since data is elaborated immediately, also monitoring and verification involve low
response latency. On the other hand, edge devices are generally characterised by
limited computational resources. As a consequence, the execution of the SUV func-
tionality may be hampered by the addition of run-time verification as monitoring
steals computational resources from other software tasks, possibly delaying their
completion.

On the cloud, we assume no limitations in terms of computational capabilities.
On the other hand, the end-to-end verification latency can sometimes be extremely
high and unpredictable due to the variability of bandwidth and traffic on the shared
communication network. As a consequence, failure notifications could be delayed.
We propose a verification architecture that generates ROS-compliant checkers that
can automatically migrate between computing layers in accordance with the avail-
able resources and requirements of the functional tasks to best take advantage of the
strengths of each platform.

7.4 Verification architecture

Fig. 7.1 shows an overview of the proposed verification platform. It is intended to
support assertion-based verification of robotic systems at runtime, by dynamically
migrating the execution of checkers among the computational layers of the SUV im-
plementation from edge to cloud. The platform automatically synthesises checkers
from LTL assertions in the form always(antecedent→ consequent). Checkers exploit
the ROS publisher-subscriber paradigm to collect, at the passing of time, the values
of the SUV variables involved in the target assertions, thus enabling their evaluation.
In the following, we call event the value assumed by an SUV variable at a time in-
stant t. Whenever an event occurs, the system publishes such information on a topic.
Then, each checker subscribes to the topics associated with the variables included in
the corresponding assertion, to receive all the events required for its evaluation. In
this way, the platform permits the integration of checkers without modifying the
source code of the SUV.

96 Chapter 7. Runtime verification: CARMINE

FIGURE 7.1: Verification architecture.

The execution of checkers is finally managed by a set of checker handlers. There
is one checker handler per computing device in the system. The handler is a ROS-
compliant node containing an orchestrator and an instance of every checker. At each
execution instant, one (and only one) handler activates one instance per checker, ac-
cording to the decision taken by the orchestrators. Such a decision relies on the anal-
ysis of the trade-off between verification accuracy, runtime constraints, and resource
requirements.

In this way, we can set up an ABV environment that dynamically migrates the
execution of checkers across the computing devices, taking into consideration both
resource constraints and communication latency.

Through containerisation of the verification environment, the platform allows for
the deployment of checkers across different hardware architectures and operating
systems, as well as for handling the resources allocated for verification. The software
application implementing the robot tasks is also containerised through Docker and
orchestrated through Kubernetes/KubEdge.

7.5. Checker synthesis 97

FIGURE 7.2: checker synthesis (left part) and event subscription (right
part).

7.5 Checker synthesis

The input of our verification architecture is a set of assertions expressed by using
an extended version of LTL, as detailed in Section 7.5.1. Assertions are then synthe-
sised into checkers. They are composed of a C++ evaluation function to check the
assertions dynamically, generated as described in Section 7.5.2, and a ROS-compliant
handler to capture the events necessary for performing their evaluation, created as
reported in Section 7.5.3.

7.5.1 Assertion grammar

Overall, our verification architecture allows the formalisation of assertions following
the LTL logic. The employed grammar is similar to the one reported in 5.1.

The operators allowed in that grammar can be used to express the timing evo-
lution of the system under verification; however, they are less suited to represent,
in a compact way, deadlines, which are a fundamental ingredient to guarantee the
predictability of tasks, at run-time, in robotic systems. Therefore, in this work, we
introduce also a new operator to compactly handle deadlines, which we named
timeout. The expression $timeout(proposition, N) evaluates to true if proposition be-
comes true within N milliseconds from the current instant of time; else, it evaluates
to false.

7.5.2 Checker evaluation function

The process of translating an assertion to a C/C++ evaluation function consists of
four main phases, as shown in the left part of Fig. 7.2:

1. substitution of each proposition in the assertion with a placeholder;

2. translation of the timeout operator to a standard LTL expression;

3. generation of equivalent Büchi automata for both the antecedent and conse-
quent of the assertion;

4. translation of the Büchi automata to a C++ evaluation function.

98 Chapter 7. Runtime verification: CARMINE

Each proposition included in the target assertion is first substituted with a place-
holder (i.e., a Boolean variable). This is motivated by the fact that Boolean informa-
tion can be compressed through a single bit per value, which in turn allows a more
efficient checker migration (see Sec. 7.7.

If the assertion contains the $timeout operator, in the second phase, it is translated
into an LTL-compliant expression implementing the equivalent behaviour. This is
necessary as the subsequent steps of the synthesis require an LTL expression as in-
put, while the $timeout operator is not recognised by any standard. In general, the
expression $timeout(pi, N) is then translated to bj & ((!ej &!pi) until pi)), where bj
is a mock variable always equal to true while ej evaluates to false if more than N mil-
liseconds have passed since the “timer was fired”, true otherwise. Note that bj and
ej are internal variables of the checker, tailor-made to handle the $timeout operator;
therefore, their values do not depend on the events received from the ROS topics.

To exemplify these two phases, let us refer to the running example shown on the
left part of Fig. 7.2. The assertion:

always({speed > 0} → $timeout(arrived, 5000)

is first substituted by:

always({p0} → $timeout(p1, 5000)

where p0 and p1 are the placeholders for speed > 0 and arrived, respectively, and
then, by replacing the timeout operator, it finally becomes:

always({p0} → (b0 && (!e0 && !p1) U p1)

where e0 becomes true after 5000 milliseconds since p0 has fired.
Once the substitution of propositions and the translation of the timeout operators

are completed, phases 3 and 4 take place for generating the evaluation function.
In phase 3, we exploit the spotLTL library [24] to automatically generate two

Büchi automata, one for the antecedent and one for the consequent of the target
assertion. After that, in phase 4, we exploit the automata to synthesise two corre-
sponding evaluation functions, named EVAL_ANT and EVAL_CON, which are fi-
nally combined to build the overall evaluation function EVALUATE, as exemplified
in Algorithm 14 (described later in this section) for the assertion shown in the left
part of Fig. 7.2. EVALUATE exploits EVAL_ANT to determine the truth values of the
antecedent each time a new event is received as input. Then, for each true instance
of the antecedent, it calls EVAL_CON to evaluate the consequent, deriving the truth
values for the whole assertion instance antecedent → consequent. When EVALUATE
detects a false instance for the assertion, a notification of failure is issued. We report
below the details on the generation of the Buchi automata and the implementation
of the corresponding EVALUATE function together with the related example.

7.5.2.1 Synthesis of the evaluation function

In our previous work [125], to implement the evaluation function, we generated a
single deterministic Büchi automaton for the whole target assertion, without dis-
tinction between antecedent and consequent. In this case, the synthesis of the cor-
responding evaluation function consists of a procedure that, by visiting the Büchi
automaton, generates a case of a switch statement for each state, and a next-state
function inside each case for every edge of the state. By adopting this representation,

7.5. Checker synthesis 99

the global status of the checker is stored in memory by means of an unsigned integer
indicating the “current state” of the automaton. This representation is quite conve-
nient and straightforward to be implemented. On the other hand, it does not allow
us to (i) keep track of how many times the antecedent and the consequence became
true or false during the system execution, or (ii) to take note of pending instances
(i.e., instances whose antecedent has been fired, but the evaluation of the consequent
has not yet finished). Solving (i) and (ii) is paramount to ensure a fine-grained and
high-quality verification. In particular, it allows us to distinguish between actual
true assertion instances (i.e., when a fired antecedent implies the consequent holds)
and vacuous passes (i.e. when the assertion is trivially true as the antecedent is not
fired). In addition, we can also assess the severity of an assertion failure, by counting
the number of instances where the antecedent is true and the consequent is false). At
run-time, depending on the importance of the assertion, we might, indeed, decide
to ignore an assertion failure if it is related to only a tolerable number of instances.

In the following, we then present a novel approach to generate an evaluation
function that solves the two issues mentioned above. The main idea is to use a
pair of counters (curri and nexti) for each state si of each automaton. It applies to
both the implementation of the antecedent (i.e., EVAL_ANT) and the consequent (i.e.,
EVAL_CON) functions. The counter curri of the antecedent (consequent) automaton
contains the number of antecedent (consequent) instances currently pending in a
certain state, while nexti retains the number of instances that will become active in
the next time frame. Each time a new event must be evaluated (i.e., we have a new
value for a variable in the assertion), the evaluation procedures for the antecedent
and the consequent follow three steps:

1. Increment currroot by 1 for the root state of the automaton as a new pending
instance enters the root state;

2. For each non-terminal state si with curri > 0, find an edge e connecting si with
sj that is true in the current evaluation (in a deterministic automaton, there
must always be one edge satisfying this requirement), then increment nextj
(i.e., the next counter for sj) by the value of curri. After that, set curri to 0.

3. For each pair of counters related to a non-terminal state si with nexti > 0, swap
the value of nexti with curri. This is done to clear nexti of the instances handled
in the current time frame and to load curri with the pending instances of the
following time frame.

Instances of the antecedent (consequent), which increment the counter next_i related
to any rejecting/accepting state si of the automaton, keep track of the number of
times in which the antecedent (consequent) has failed/succeeded.

To exemplify the above procedure, let us consider the assertion reported in the
left part of Fig. 7.2 and the corresponding automaton for the consequent. Fig. 7.3
shows how our procedure works for evaluating the assertion consequent in three
consecutive instants. At time t0, following step 1, the counter curr1, corresponding to
state 1 (i.e., the root) is set to 1. Then, at step 2, the edge connecting state 1 with state
2 contains the only true expression b0 & !e0 & !p1; therefore, next2 is incremented by
1 and curr1 is set to 0. Finally, according to step 3, next2 is swapped with curr2. The
same procedure is repeated at time t1 and t2. After the third evaluation instant (t2),
three instances fail as they reach the rejecting state 3.

To clarify the implementation details, Algorithm 14 reports the pseudo-code of
the evaluation function automatically synthesised for the assertion of Fig. 7.2 ac-
cording to the above idea. EVALUATE is responsible for separately evaluating the

100 Chapter 7. Runtime verification: CARMINE

FIGURE 7.3: Evaluation of instances for consequent of the assertion
reported in the left part of Fig. 7.2.

antecedent and the consequent of the assertion by calling functions EVAL_ANT and
EVAL_CON, respectively. The inputs of these three functions are the values of place-
holders p0 and p1. First, the function retrieves a new evaluation of the antecedent
and stores it in antResult (line 2). antResult contains a pair of values, the first (sec-
ond) value contains the number of instances that made the antecedent true (false) in
the previous evaluation. If there are new true instances, the function evaluates the
consequent as many times as the number of such instances (lines 3-5). If the evalu-
ation of the consequent detects a false instance, then the function notifies the failure
by calling noti f yFailure() (lines 6-7). Variables _currAnt, _nextAnt, _currCon and
_nextCon correspond to the state of the automaton and are used to keep track of the
active instances.

Function EVAL_ANT operates as follows. First, it initialises the result of the cur-
rent evaluation (line 10), and then it increments by one the number of active in-
stances in the root state (line 11). After that, if p0 is true, then the function incre-
ments the number of successful instances (antecedent true, lines 12-13); otherwise, if
p0 is false, it increments the number of failed instances (antecedent false, lines 14-15).
Note that the statements on lines 16-17 could be optimised away as the expression
under evaluation is not complex enough to require the full use of curr and next.

Function EVAL_CON implements a variation of the above implementation, where
the checker must also infer a proper value for the internal variables b0 and e0, which
are used to handle the semantics of the corresponding timeout operator (see phase
2 at the beginning of Section 7.5.2). The idea is that the checker starts a new timer
each time an active instance (or a set of active instances) traverses an edge contain-
ing bi & !pj; that would be b0 & !p0 in the running example. Conversely, the checker
removes a timer (or a set of timers) each time an instance traverses an edge con-
taining pj and not containing bi, or an edge containing ei; those would be edges
2 → 0 and 1 → 3 in the running example. Note that bi is used only to determine
where to add new timers in the automaton, the variable itself is optimised away
when generating the actual evaluation function. To add and remove timers, we use
functions addTimer(timerID, nInstances) and removeTimer(timerID, nInstances) re-
spectively, where nInstances is the number of instances connected to a certain timer
identified with timerID. We use function evalTimer(timerID, instanceID) to deter-
mine the value of ei; the function returns true if a certain timer timerID has expired

7.5. Checker synthesis 101

for a certain instance instanceID, otherwise, it returns false. In the running exam-
ple, we have only one timer with ID equal to 0. In function EVAL_CON, Lines 23-34
cover state 1 of the automaton while Lines 35-46 cover state 2. The only difference
from EVAL_ANT is that we use functions removeTimer, addTimer and evalTimer to
determine the value of e0 for each active instance (lines 27-34 and 39-46). Note that
since the algorithm keeps track of timers as a sorted list of timestamps, where the
most recent timestamps are stored at the end of the list, each time evalTimers returns
false for a certain instance (timer has not expired), we do not need to evaluate e0 for
the rest of the instances, as we already know that evalTimer would return false (lines
32-34 and 45-46).

7.5.3 Checker handler

The checker evaluation function described in the previous section needs to receive
as input the sequence of values assumed by the variables involved in the corre-
sponding assertion, at the passing of time, during the SUV execution. This section
describes how we generate a checker handler, compliant with ROS, to provide the
evaluation function with such values.

The checker handler subscribes to all topics used to exchange information (i.e.,
values of variables) included in the corresponding assertion. For each variable, a
callback is used to retrieve the interesting events (i.e., variable changes) from the
corresponding ROS topic. The system attaches a callback procedure to an indepen-
dent thread, which executes each time a message is processed from the subscriber
queue. More formally, an event is a triple ⟨v, new_value, timestamp⟩ to specify that the
value new_value is assumed by the variable v at time timestamp, during the execu-
tion of the SUV. A captured event is added to an event buffer in the checker handler
each time a callback is executed, delaying its processing. As stated in Section 7.7, the
buffer enables the orchestrator to move the checker evaluation across the edge-to-
cloud layers, without considering the location where the events were observed. Fur-
thermore, the buffer can be sorted by making use of the timestamps, thus ensuring
that the events are processed in chronological order. This minimizes the evaluation
errors caused by synchronization problems and/or communication lags.

When the buffer’s size reaches a certain threshold, it is sorted. A higher thresh-
old improves verification accuracy since this increases the probability of evaluating
the events in the correct order; however, this can severely reduce verification re-
sponsiveness. For this reason, every computing node in our architecture is synchro-
nised with the precision time protocol (PTP) guaranteeing synchronisation errors of
the order of nanoseconds while requiring minimal bandwidth and little processing
overhead. Consequently, the sorting threshold can be set to a low value, allowing
high verification responsiveness, while suffering from negligible accuracy errors.

After the buffer has been ordered, the Boolean placeholders of the target asser-
tions are replaced by using the values corresponding to its events. These values are
stored, in the same order, as Boolean constants, in a new compressed buffer, where
the timestamps associated with the events are removed (as the events are already
ordered). Each time the evaluation function is called, an event is consumed from the
compressed buffer and used to advance the verification.

In the example reported in the right part of Fig. 7.2, the ROS handler subscribes to
two topics: speed and arrived. They correspond to the variables involved in the asser-
tion shown in the left part of Fig. 7.2. In this example, three events are captured and
added to the event buffer by the callback functions: ⟨speed, 8.1, 10022⟩, ⟨arrived, f alse, 10021⟩,
and ⟨speed, 17.3, 10023⟩. If the sorting threshold, for example, was set to 3, after the

102 Chapter 7. Runtime verification: CARMINE

Algorithm 14 Evaluation function

1: function EVALUATE(p0, p1)
2: antResult← EVAL_ANT(p0, p1)
3: if antResult. f irst > 0) then
4: for i← 0 to antResult. f irst do
5: conResult← EVAL_CON(p0, p1)
6: if conResult.second > 0 then
7: noti f yFailure()
8:
9: function EVAL_ANT(p0, p1)

10: ret← {0, 0}
11: _currAnt[1] ++
12: if p0 then
13: ret. f irst += _currAnt[1]
14: else
15: ret.second += _currAnt[1]
16: _currAnt[1]← _nextAnt[0]
17: _nextAnt[0]← 0
18: return ret
19:
20: function EVAL_CON(p0, p1)
21: ret← {0, 0}
22: _currCon[1] ++
23: if p1 then
24: ret. f irst += _currCon[1]
25: else
26: for i← 0 to _currCon[1] do
27: e0 ← evalTimer(0, i)
28: if e0 then
29: ret.second ++
30: removeTimer(0, 1);
31: else
32: addTimer(0, _currCon[1]− i)
33: _nextCon[2] += _currCon[1]− i;
34: break
35: if p1 then
36: ret. f irst += _currCon[2]
37: removeTimer(0, _currCon[2]);
38: else
39: for i← 0 to _currCon[2] do
40: e0 ← evalTimer(0, i)
41: if e0 then
42: ret.second ++
43: removeTimer(0, 1);
44: else
45: _nextCon[2] += _currCon[2]− i;
46: break
47: return ret

7.6. Checker containerisation 103

arrival of the third event, the elements of the event buffer are ordered according to
their timestamps and moved to the sorted buffer. Then, each event is compressed and
added to the compressed buffer. Events ⟨speed, 17.3, 10023⟩ and ⟨speed, 8.1, 10022⟩ are
compressed to 1 and 0, respectively, as the corresponding proposition p1 : speed > 10
is true for speed equal to 17.3 and false for speed equal to 8.1; moreover, ⟨arrived, f alse, 10021⟩
is directly translated to 0.

7.6 Checker containerisation

The checkers are containerized after the synthesis process to make the verification
environment portable across various HW/SW architectures. Different containerisa-
tion techniques are at the state of the art for cloud-native applications. Nevertheless,
they provide each container with its own private (isolated) subnet IP addresses. As
a result, they only allow ROS nodes to communicate if they are mapped to the same
subnet IP. To solve the communication issues between distributed ROS nodes, we
expanded the containerization process based on Docker for edge computing.

The proposed platform automatically maps each container IP address to the IP
address of the host device (i.e., where the ROS node executes) while randomly allo-
cating port numbers. This decreases communication latency by eliminating any net-
work overhead caused by containers [126]. The network address translation (NAT)
layer is also eliminated.

By using multi-architecture containers (e.g., Docker buildx), the platform supports
the simple generation and integration of containers for different HW/SW target ar-
chitectures, from cloud to off-the-shelf edge devices (e.g., NVIDIA Jetson). These
multi-architecture containers are concealed behind a single container that has mul-
tiple integrated versions.

7.7 Checker run-time management

The orchestration aims at making a trade-off between verification responsiveness
and resource consumption during the SUV execution. Low verification responsive-
ness may cause delays in the identification of assertion failures. Conversely, inten-
sive use of computational resources for verification may cause the violation of run-
time constraints related to functional tasks running on the same device, thus causing
assertion failures.

In the optimal situation, a checker executes on the same edge node generating the
values required by its evaluation. When computing resources are no longer enough
to support both the verification effort and the execution of the functional tasks, our
orchestration system migrates the execution of the checkers towards another com-
puting unit, possibly belonging to a higher computational layer in the Edge-Cloud
architecture. This way, additional resources should be available at the destination
device to handle the checker, although at the cost of lower responsiveness. In fact,
in this new configuration, the checker is evaluated farther from the source of the
observed events.

7.7.1 Architecture and workflow of the orchestrator

The orchestrator consists of two main elements, a set of handlers, one per each com-
puting unit in the SUV, and a global coordinator (see Fig. 7.4), which compose a
fully connected verification network.

104 Chapter 7. Runtime verification: CARMINE

FIGURE 7.4: Orchestrator’s architecture.

The coordinator orchestrates the allocation of checkers to the computing units in
the SUV by continuously searching for the optimal allocation of resources. It then
issues requests to the handlers to force such allocation. The coordinator requests are
of the following types:

• EXEC request: the coordinator commands a handler to execute a certain set of
checkers;

• MIGRATE request: the coordinator commands a handler to migrate a certain
set of checkers to another handler;

• SHUTDOWN request: the coordinator commands a handler to stop executing.

Each handler is responsible for (i) gathering statistics about the state of the execu-
tion in the corresponding computing unit (through the stat handler module) and (ii)
satisfying the requests from the coordinator (through the request handler module). It
also controls the execution of checkers assigned by the coordinator through its sched-
uler module. Statistics are periodically sent by the handlers to the coordinator. They
mainly include i) the current CPU usage dedicated to the verification process, and
ii) the time elapsed from the publishing of a ROS topic (corresponding to the change
of a variable) to the evaluation of the checkers that have subscribed for the topic.

The scheduler of each handler manages the dynamic allocation of computational
resources to evaluate the elements stored in the event buffers (see Section 7.5.3) of
allocated checkers. Each checker evaluation is seen as a request to be fulfilled by
the scheduler. The scheduler satisfies these requests by spawning as many worker
threads as the available cores of the device. A thread that receives a request keeps
executing the evaluation function of the corresponding checker until a fixed time
slice runs out or until the event buffer is empty. After that, the request is pushed back
to the scheduler’s queue. The scheduler handles the requests by using a priority
delay queue. To avoid starvation, requests with low priority are promoted to higher
priorities as their waiting time increases.

The orchestrator life cycle is then divided into three main parts: init, allocation,
and termination.

At the init time, the verification network is initialised. Each handler discovers the
existence of all the other computing units by sending a broadcasting message. Then
the handlers run an election algorithm to determine which unit will execute the co-
ordinator. The algorithm selects the handler executed on the unit with the highest
available computational resources; such handler spawns an additional thread exe-
cuting the coordinator. After that, each handler starts sending statistics to the coor-
dinator and listening for requests. Note that the verification network is designed to

7.7. Checker run-time management 105

automatically include new nodes (handlers arrived late) and to elect a new coordi-
nator if it becomes unresponsive for an extended period of time.

After that, the allocation phase takes place. The coordinator periodically analyses
the statistics from the handlers of the SUV computing units and calculates the op-
timal allocation of checkers that maximises the verification responsiveness without
saturating the CPU of any machine. Then, the coordinator sends EXEC or MIGRATE
requests to handlers for enforcing the optimal allocation in the network. This is re-
peated throughout the SUV execution.

At termination, when the SUV execution stops, the coordinator issues a SHUT-
DOWN request to all handlers, and all nodes of the verification network terminate.

7.7.2 Computation of the optimal allocation

During the allocation phase, the coordinator periodically solves a mixed-integer
linear programming (MILP) problem to determine where to allocate the checkers
among the various computing units composing the SUV. The solution to the MILP
problem corresponds to the allocation of checkers that maximises the responsive-
ness of the verification without saturating any CPUs. The coordinator constructs the
MILP problem by using the statistics received from the handlers. The statistics are
formalised as follows:

• checkerCPUmi
cj percentage of CPU usage spent to execute checker mi on com-

puting unit cj;

• topicCPUtk
cj percentage of CPU usage spent to receive data from ROS topic tk

on computing unit cj;

• availableCPUcj percentage of unused CPU plus the CPU consumption of the
verification process on computing unit cj;

• delaytk
cj time (in milliseconds) to receive data from ROS topic tk on computing

unit cj.

Formally, for M checkers, C computing units and T topics, we search for the alloca-
tion of any checker mi to a computing unit cj that minimises the objective function:

T

∑
k=1

(
C

∑
j=1

getDelay_tk_cj(
M∨

i=1
mi == cj)). (7.1)

The objective function is subjected to the following constraints:
C∧

j=1
(availableCPUcj >=

(
M

∑
i=1

getCheckerCPU_mi_cj(mi == cj)+

T

∑
k=1

getTopicCPU_tk_cj(
M∨

i=1
mi == cj)))

(7.2)

where, m1, m2, ..., mM are enumerated integer variables, associated with the check-
ers, that can assume one value among c1, c2, ...cC, associated with the computing
units. Intuitively, the above constraint ensures that the CPU usage of the resulting
allocation of checkers does not exceed the available CPU on any computing unit.

The result of the MILP is an assignment of variables that minimises the objective
function. The functions getDelay_tk_cj, getCheckerCPU_mi_cj and getTopicCPU_tk_cj

106 Chapter 7. Runtime verification: CARMINE

FIGURE 7.5: Example of buffer migration.

take as input a Boolean value, and they return zero if such a value is false; otherwise,
they return, respectively, delaytk

cj , checkerCPUmi
cj , and topicCPUtk

cj .

7.7.3 Checker migration

The migration of a checker takes place when the coordinator sends a MIGRATE re-
quest. Since each machine has a copy of all checkers, to move a checker mi from
the computing unit c1 to the computing unit c2 the migration procedure operates
as follows: it first turns off mi on c1, then it sends the state and event buffer of mi
to c2, and, finally, it activates mi on c2. This procedure requires data to be moved
through the network. However, the proposed migration strategy is incredibly ef-
fective because it is exceedingly lightweight, even in slower networks. This is due
to the compression of the transferred data. Additionally, since no event is lost dur-
ing migration, the suggested approach does not experience any false negatives (the
checker fails when it should not) or false positives (the checker does not fail when it
should).

To explain the migration protocol between the two machines, let us consider the
example shown in Fig. 7.5. It shows checker1 that executing at level li of the edge-
to-cloud hierarchy, moves from handler1 to handler2 executing at level li+1. Before
migration, handler1 executes checkers 1 and 4, while handler2 executes checkers 2
and 5. Considering that, at a given point, checker1 receives a MIGRATE request from
the coordinator (step 1), handler1 removes checker1 from the scheduler (step 2a). The
process of adding events to its buffer is not interrupted. Sequentially, handler1 no-
tifies the migration has started to handler2 (step 2b). As a consequence, handler2
starts adding events to the buffer of checker2 by attaching the callbacks (step 3). At
this time, checker2 is not yet on the scheduler. Once checker2 receives enough events
to make the first ordering, handler2 returns to handler1 the timestamp of the oldest
event in checker1 (step 4). This way, as soon as checker1 gets the timestamp, it recog-
nises which buffer events must be sent (i.e., the events evaluated with a timestamp
lower than the received timestamp). When this happens, handler1 detaches the call-
backs from checker1 to stop adding events to its buffer (step 5a) and sends the correct
events to handler2 together with the state of checker1 (step 5b). At that point, checker1
is inactive on handler1 and handler2 finishes the migration by filling the buffer of
checker1 with the received events and by putting the checker on the scheduler to
start its evaluation (step 6).

7.7. Checker run-time management 107

7.7.4 Mending the worst-case scenario

The buffer migration procedure is intended to free computational resources on heav-
ily loaded machines to balance the verification effort among the cloud-to-edge com-
putation layers. This is of utter importance in systems where the lack of computa-
tional resources could severely affect the reactivity of the SUV, making its functional
tasks miss deadlines or, in the worst scenario, causing the whole system to crash.
However, it might happen that no allocation of checkers exists that does not saturate
any CPU in the SUV. To handle this worst-case scenario, we implemented two ad-
ditional strategies to reduce the computational load of verification: (i) by assigning
the scheduling priorities according to the run-time criticality of the checkers, and (ii)
by reducing the observation frequency of the events evaluated in the checkers. The
first strategy impacts the verification responsiveness, while the second may affect
the verification accuracy.

The first strategy consists of assigning a higher scheduling priority to checkers
containing active instances (i.e., whose antecedent has been fired and the conse-
quent is still pending), purposely increasing their responsiveness. In section 7.5.1,
we showed that our evaluation function is capable of counting the number of active
(antecedent/consequent) instances in a checker. After each evaluation, the priority
of a checker is increased proportionally with the number of its active instances. The
priority is the lowest when no instance is active.

The second strategy consists in discarding not-yet evaluated events from the
event buffer and resetting the checker to its initial state. Thus, it performs an ap-
proximation of the event trace. When a checker is left behind in the evaluation, its
event buffer keeps filling with past events. This can happen mainly for two rea-
sons: either those events cannot be evaluated because the executing machine does
not provide enough resources to the verification environment, or because of the low
priority of the checker, which is considered non-critical by the scheduler, and thus,
its evaluation function is executed with a lower frequency.

Approximating the event trace by removing “old” events from the buffer de-
creases the required resources, as the discarded events no longer have to be evalu-
ated, and increases the responsiveness of the checker, as more up-to-date events are
used in the evaluation. However, discarding events may affect verification accuracy.
In fact, this approach can either cause a checker failure, when it should instead suc-
ceed (false negative), or can make the checker miss to detect a failure (false positive).

Fig. 7.6 shows an example to clarify this concept. Let us consider the simple as-
sertion always(a→ next(b)). The variables a and b represent the input of the checker
(reported in row I) in three different instants. The values in row O are the outputs
of the checker. Evaluated events are shown in row E. In the upper part of Fig. 7.6,
we show an example of a false negative. In this case, the values originally assumed
by a and b, i.e., (1, 0), (0, 1), (0, 0), at event e0, e1, e2 (table on the left) do not make the
checker fail; therefore, the checker output is always 1. When event approximation
is applied (table on the right), event e1 is discarded. This causes the checker failure
after receiving event e2. Thus, the approximation produced a false negative. In the
lower part of Fig. 7.6, we show an example of a false positive. In this scenario, the
original event trace causes the checker failure after e1. In the approximated trace,
e1 is instead discarded, thus making the checker misses the failure due to e1. The
approximation then produced a false positive.

Nevertheless, it is worth noting that, in our verification architecture, checkers
synthesised from assertions following the template always(antecedent→ consequent)

108 Chapter 7. Runtime verification: CARMINE

FIGURE 7.6: False negative/positive example.

are guaranteed to not produce false negatives because the checker is reset after dis-
carding the events. Thus, only false positives are possible. Consequently, in scenar-
ios where false positives are not the main concern, this approach is extremely useful
to reduce resource consumption while maintaining good responsiveness.

7.8 Experimental Results

FIGURE 7.7: Verification statistics of the first case study.

We evaluated the effectiveness of the proposed approach in two case studies. In
the first one, we set up a cluster of three nodes and implemented a synthetic bench-
mark to quantitatively evaluate the behaviour of the checker orchestration. In the
second, we applied the platform in a real industrial case study, which implements
the mission of a Robotnik RB-Kairos mobile robot in a smart manufacturing line.

7.8.1 Case Study 1: synthetic benchmark on a three-level cluster

We first tested the orchestration functionality described in Section 7.7 on a distributed
Edge-Cloud system composed of three computing nodes. At the edge level, the clus-
ter includes a 4-core Intel i7 (2.8 GHz) node with 4GB of RAM (i.e., edge node). At the
cloud level, it includes a computing node equipped with a 16-core AMD Ryzen (3.9
GHz) CPU with 16GB of RAM (i.e., server node). It then includes a desktop machine

7.8. Experimental Results 109

equipped with an 8-core Intel CPU (3.2 GHz, 8 GB of RAM), which is connected
between the edge and the cloud nodes (i.e., desktop node). The server node lies at
a 100ms (average) ping distance from the other nodes while the edge and desktop
nodes lie at a 10ms (average) ping distance from each other. The verification en-
vironment consists of 50 checkers requesting input values from 5 different topics.
All topics are published on the edge machine, which represents the most common
configuration in most practical use cases. The orchestrator is set to recompute the
optimal allocation of checkers every second. The SUV does not contain any tasks,
while the CPU consumption of the computing nodes is artificially influenced by a
custom testbench capable of generating a variable amount of computational work-
loads. The purpose of the testbench is to gradually saturate the CPU of the nodes,
allowing us to study the behaviour of the orchestrator under such conditions.

Fig. 7.7 reports the quantitative history of the checker orchestration and the CPU
utilisation of each node while executing both the testbench and the verification en-
vironment. It includes the available CPU of the different nodes (available_edge, avail-
able_desktop, available_server), which represents, in percentage, the total CPU minus
the CPU used by the SUV tasks. The verification environment usage (verUsage_edge,
verUsage_desktop, verUsage_server) corresponds to the percentage of CPU used to exe-
cute the verification environment on the corresponding machine. The values nCheck-
ers_edge, nChecker_desktop and nChecker_server represent the number of checkers cur-
rently executing on the corresponding node. On the x-axis, the figure reports the
time (in seconds) that elapsed from the beginning of the simulation. At time 0, all
nodes had 100 percent of the available CPU and the edge node was executing all 50
checkers using, on average, 38 percent of the available CPU. After 20 seconds, the
testbench started saturating the CPU of the edge node. As a consequence, the node
was no longer able of handling the computational load of the verification environ-
ment. As a consequence, the orchestrator enabled the migration of checkers to the
desktop node, which had available computing resources and guaranteed the least
reduction in the verification responsiveness. The checker migration, as expected,
was performed incrementally at the varying of the testbench workload. Since the
edge CPU was not instantly saturated, the orchestrator started moving 20 checkers
after 22 seconds, and then, at the next allocation period (second 23), as the edge
CPU had been further loaded by the testbench, it migrated the remaining 30 check-
ers. From 23 to 40 seconds the desktop node executed all the checkers. After that,
the testbench saturated the CPU of the desktop node to test the migration from the
desktop to the server. Similarly to the previous iteration, the orchestrator migrated
the checkers on the server node, which was the only remaining device with avail-
able CPU resources. Saturating such a node led the system to fall into the worst-case
scenario. Note that this time, the checkers were transferred all at once towards the
server, since the testbench reduced the available CPU on the desktop machine more
quickly than in the previous transfer (from the edge machine), forcing the orches-
trator to free computational resources on the desktop machine more quickly. To ob-
serve the behaviour of the verification environment in the worst-case scenario, the
testbench started partially saturating the CPU of the server node (65 seconds), leav-
ing only 8 percent of the available CPU. Since the verification environment required
18 percent of the CPU, it started dropping events from the buffers of the checkers,
effectively reducing the computational cost of verification to 7.5 percent (on aver-
age). Then, the testbench removed the computational load on the server machine
(87 seconds), restoring the execution of the checkers to their original accuracy and
CPU consumption. Finally, the testbench removed the computational load on all
nodes. As a consequence, the orchestrator moved back all the checkers to the edge

110 Chapter 7. Runtime verification: CARMINE

FIGURE 7.8: Overview of the programmable cluster nodes in the sec-
ond case study.

node where verification could achieve the best responsiveness (105 seconds). Dur-
ing the entire simulation, the orchestrator spent on average 27ms (every second) to
solve the MILP problem, proving the scalability of this approach.

7.8.2 Case Study 2: autonomous mobile robot for a smart manufacturing
line

We evaluated the proposed methodology to asses the mission of a Robotnik RB-
Kairos mobile robot in an industrial agile production chain. Such a mobile robot
consists of a skid-steering platform equipped with a Universal Robots UR5 manip-
ulator and a Schunk WSG50 end-effector for grasping (see Fig. 7.8). The robot is
also equipped with different sensors including two Sick S300 laser scanners and an
RGB-D Intel RealSense D415 camera for localization. The computing HW architec-
ture consists of four edge devices installed on the board. One main control board
(MCB) is equipped with an Intel i7 9700 3.0 GHz, 8GB of RAM, and Ubuntu 16.04
OS with ROS Kinetic. Two additional devices are installed for the real-time control
SW of the UR5 manipulator and WSG50 gripper, respectively. They run a real-time
Ubuntu OS and real-time kernels that communicate with the driver nodes on the
MCB, they are not available for the MILP solver. The fourth edge device consists of
an Nvidia Jetson Xavier NX with JetPack 4.5. The onboard devices are connected
through a local gigabit Ethernet router (802.3ab). The cluster of nodes also includes
an external server equipped with an Intel i5-7400 3.5 GHz, 8GB of RAM and Ubuntu
18.04. The server is connected to the onboard devices through an 866Mbps wireless
network (802.11ac).

We configured a k3s cluster, version 1.20.4+k3s1, on the main control board, on
the Jetson Xavier and on the external server. The server also runs the k3s master
agent.

7.8. Experimental Results 111

We measured the system performance while executing the ROS-compliant SW
application implementing the robot mission. It consists of several tasks that imple-
ment the interaction of the mobile robot with an industrial agile production chain.
Firstly, the robot is initialised to a starting position and aligned with the production
chain. Then, a series of arm and gripper operations perform the grasping and the
movement of production pieces from the conveyor belt to the cargo bay. The robot
then moves the base towards the storage area, where it unloads the pieces from its
cargo bay. Finally, the robot returns to the production line and re-aligns itself with
the conveyor belt. It then moves the arm to the ready position. The total runtime is
approximately two minutes.

The software for the Kairos is split between all three computing nodes inside the
k3s cluster. The MCB handles most of the robotic functionality such as mission, arm
and gripper planning, etc. The Jetson node is tasked with the navigation stack, while
the server node handles HMI and monitoring. To collect the performance metrics we
used Prometheus connected to Grafana. As the server node is tasked with scraping
the data, its CPU usage fluctuates significantly when there is a data update.

We configured the MILP solver with threshold CPU utilisation for the MCB of
40%, 60% for the Jetson, and 90% for the external server. These thresholds allow the
Kairos HW to continue working properly and not be overwhelmed by the compu-
tational load when the checkers are running together with the robotic software. The
system includes 201 checkers running on the cluster, on all three computing nodes.
We also used a moving window to average the last 10 values obtained from the ROS
topics to create a low-pass filter that removes signal spikes that often happen when
analysing real sensor data.

Functional analysis: With the use of RGB cameras and an inference-based im-
age recognition system [127], the robotic software implements an ORB-SLAM [128]
application for localization and mapping. It is then connected to a move-base system
that relies on a global and local planner for obstacle avoidance.

Considering the temporal constraints of the software system, the aim was to
check the functional correctness of the applications. In particular, we designated
the global planner as a non-critical task on the server. We considered the ORB-
SLAM and local planner running in real time on the Jetson (i.e., 125 ms application
makespan). We enforced a corresponding minimum supported rate of 8 FPS for the
RGB camera input stream.

To evaluate the effect of orchestration, we considered a scenario in which the
robot has to reach a user-defined location ⟨x2, y2⟩ from the starting point ⟨x1, y1⟩.
First, the global planner finds the path to reach the arrival point. Subsequently,
while the robot moves, the local planner reschedules the path trajectory (waypoints)
to take care of changes in the environment that may cause unwanted collisions with
moving obstacles.

After the initial allocation of 201 checkers on the Jetson, we observed that the
checker corresponding to the assertion always((robot_x1 = x1 && robot_y1 = y1 && newGoal)
→ (currentTime < timeOut U robot_x2 = x2 && robot_y2 = y2)) failed. This checker was
set up to check if the robot can reach ⟨x2, y2⟩ before a given timeout. The checker
failed due to the overhead introduced by the verification environment, which causes
an increment in the execution time. Consequently, the robot moved in the wrong di-
rection because the robot’s controller was unable to support the minimum updating
frequency for the motor velocities. For proper operations, the controller for the mo-
tor velocities needs an update at least every 125 ms (8 Hz). The system guarantees a
makespan of 115 ms without the verification environment (8.7Hz). When the verifi-
cation overhead is introduced, this value increases to 140 ms (7.1 Hz). When, thanks

112 Chapter 7. Runtime verification: CARMINE

to the buffer migration approach, 150 checkers are automatically transferred from
the Jetson to the server during execution; therefore, some of the verification load
on the edge device is relieved. The robot’s controller resumed functioning normally
with a makespan of 125 ms (8 Hz), which prevented the aforementioned assertion
from failing.

Component Devices No checkers checkers

CPU
Jetson 38.64% 45.49%
MCB 23.44% 28.50%

Server 30.96% 50.98%

Network
Wi-Fi 0.31 MiB/s 0.39 MiB/s

Ethernet 1.31 MiB/s 1.41 MiB/s

TABLE 7.1: Resource usage overhead with and without checkers.

Orchestration and overhead: Table 7.1 summarises the CPU and network usage
with and without checkers. We can observe higher CPU usage overall, distributed
across the computing cluster, and a slight increase in network usage of ≈ 0.1 MiB/s.
The high bandwidth on the Ethernet interface is caused by the constant communi-
cation to handle the navigation SW components deployed on the Jetson. We also
observed a negligible and static increase of ≈ 40MB of system memory usage on all
nodes of the cluster due to the allocation of the resources needed by the checkers
(not reported in table 7.1).

Figure 7.9 shows the overhead in more detail, as well as the number of running
checkers on each node during the mission of the RBKairos. As reported in the sum-
mary table, CPU usage is higher overall for all devices due to the additional SW for
the checkers running, but the highest average increase is found on the server and Jet-
son. On these two devices, the checkers spend most of their time as reported in the
last graph (yellow and green for server and Jetson respectively). We also observed
notable CPU usage spikes when the checkers are moved onto a particular device.
An example is at the time instant 29, where some checkers are moved to the MCB
and we can see the CPU usage reach the threshold, causing a migration towards the
server. It is also evident at the time instant 85, where all checkers are migrated to-
wards the MCB and its CPU usage exceeds the threshold, also causing a reduction
in CPU usage on the other two devices. When the threshold value is exceeded, the
MILP begins a migration towards the Jetson and also towards the server, causing
spikes in usage on all the involved CPUs, but freeing the crucial resources needed
by the MCB to correctly run the robot SW.

7.8. Experimental Results 113

FIGURE 7.9: CPU overhead for all the nodes correlated to the number
of checkers during the execution of the robot’s mission.

115

Chapter 8

Design Exploration for
Approximate Computing: DEA

8.1 Introduction

The Approximate Computing (AxC) paradigm was introduced to achieve higher
power efficiency, lower area and better performances w.r.t. a “classical” computing
system at the cost of a degraded, but still acceptable, output accuracy [129]. In recent
years, AxC has been widely adopted since many of the most popular applications
we use, such as digital signal processing of images or audio, data analytics, machine
learning, web search and wireless communications have an inherent resiliency to
errors due to imprecise computation [130]–[134].

AxC can be applied at several abstraction levels of a given computing system:
from circuit to algorithm [129] leading to a wide design exploration space that quickly
became the bottleneck to successfully deploy AxC. Indeed, the literature proposes
many works to automatically trade-off between output accuracy and performances [135].
However, most of them lack the capability to identify resilient elements (e.g., HW
component, HDL statements, etc.) of the design to be approximated. Consequently,
exploring the design for AxC generally results in a long and tedious procedure.

Usually, existing approaches generate approximate variants of the Design Under
Exploration (DUE). Every variant is then executed/simulated in order to determine
the accuracy degradation [136]. The problem is that the accuracy depends on the
application, and thus it requires a specific metric to be computed (e.g., similarity
index, hamming distance, etc.).

Recently, the authors of [137] have presented a method to automatically identify
parts of the DUE as candidates for approximation without significantly compromis-
ing the design correctness. Then, to evaluate the effect of approximations they use
assertions, where an assertion is a logic formula that captures a specific functional
behaviour implemented in the design [138]. In this way, there is no need to use a
particular functional metric. In [139] assertions are evaluated on the approximated
design for measuring how much the approximation alters the design functionality.
However, assertions themselves are not exploited to identify the statements of the
DUE more suited for the approximation.

Alternatively, this work proposes an effective way for guiding the approximation
of the DUE, by leveraging the combination of fault injection and assertion-based ver-
ification. In particular, two approximation techniques are considered, bit-width and
statement reduction, and fault injection is used to mimic their effect on the DUE.
Assertions are then automatically mined from the original implementation of the
DUE to capture its functionality. These assertions are then re-evaluated on the faulty
designs to analyse the variations of their truth values with respect to the original
implementation. These variations are then used to rank the different approximation

116 Chapter 8. Design Exploration for Approximate Computing: DEA

alternatives, according to their estimated impact on the functionality of the target
design. The output of our methodology is a list of DUE elements (either bits of sig-
nals/registers or statements) ordered by increasing levels of severity: the higher the
criticality, the more prominent the effect of approximating an element on the func-
tional correctness of the original design. A clustering procedure is then exploited to
suggest approximations to be applied simultaneously.

The rest of this chapter is organised as follows. Section 8.2 summarises the re-
lated work; Section 8.3 reports our methodology; Section 8.4 details the results ob-
tained on the case study.

8.2 Related work

As stated before, one of the most challenging problems in AxC is selecting the “por-
tion” of the application to be approximated. The portion depends on the abstraction
level: it can be an instruction of the source code or a statement in the HDL repre-
sentation. Existing methodologies allow the designer to explicitly select which lines
or code blocks to approximate and how. For example, a programmer can annotate
through pragmas that a given loop has to be approximated by applying the loop per-
foration technique [140]. Without annotations, each code line has to be considered
as a potential approximation target, thus leading to virtually infinite possibilities of
approximations.

At the hardware level, we have to cite ABACUS [141], which directly works
with RTL implementations (i.e., HDL code). The proposed design-space exploration
leverages a greedy algorithm to find a trade-off between accuracy and power con-
sumption. In [136], [142], design space exploration exploits a genetic approach.
Other approaches manually identify approximable sub-parts of circuits, mainly fo-
cusing on arithmetic components [143]–[145].

On the other hand, even if they aim at different goals, different approaches
have been proposed for applying verification techniques to approximate computing.
In [146], the authors present an AxC-based approach to achieve a fast and accurate
enough repeated execution for security verification. In [147], the authors propose
a dynamic verification methodology to assess the quality of the approximated cir-
cuit by exploiting mutations of test patterns and coverage information. However,
none of the previous verification-oriented methodologies uses assertions to guide
the design exploration. In [137], the authors introduce a verification-guided method
to automatically identify program blocks suited for approximation, while avoiding
significant compromises on program correctness. The method is based on identi-
fying regions of code that are less influential for the computation of the program
outputs and therefore, more approximable. In particular, they generate a statement
ranking based on whether an instruction affects a particular primary output of the
designs. Assertions are then used to evaluate the impact of the approximation on
the functional behaviour of the final design. It is important to note that assertions
are not directly used for statement identification (i.e., identify which portion of the
code has to be approximated) as we do in this paper.

8.3 Methodology

Our methodology is intended to provide the designer with an automatic way to
explore AxC alternatives on RTL descriptions. Two approximation strategies have
been considered:

8.3. Methodology 117

• Bit-width reduction: fixing to a constant value one or more bits on a subset of
design signals/registers;

• Statement reduction: removing one or more statements.

The methodology consists of the three sequential steps shown in Fig. 8.1. The
input is the RTL description of the DUE. The output is a ranked list of DUE elements
that can be approximated. In the rest of the paper, we refer to such elements with
the term approximation tokens (AT). In particular, according to the addressed AxC
strategies, we consider the following kinds of ATs:

• Statement token: an instruction appearing in the RTL description of the DUE;

• Bit token: a bit of a signal/register occurrence appearing in a statement token.

Hereafter, we provide an overview of the three main steps of the methodology.
A detailed description for each of them is then reported in the following sections.

1. Trace generation: in the first step of the methodology, we dynamically sim-
ulate the DUE and its approximations to generate a set of execution traces.
First, we generate the golden trace by simulating the original implementation
of the DUE. Then, for each AT, we generate a trace that reflects the effect of
activating a corresponding approximation (i.e., bit-width reduction for bit to-
kens, and statement reduction for statement tokens). These traces are obtained

FIGURE 8.1: Overview of the methodology.

118 Chapter 8. Design Exploration for Approximate Computing: DEA

by simulating a faulty version of the DUE. In particular, stuck-at faults are in-
jected in specific elements of the original implementation to exactly mimic the
effect of approximating each AT.

2. Assertion mining: in the second step of the methodology, we employ an asser-
tion miner to generate assertions holding on the golden trace. The assertions
predicate on the inputs and outputs of the DUE and capture its golden be-
haviour.

3. Assertion evaluation and AT ranking: In the last step of the methodology,
we re-evaluate the assertions mined in step 2 on the faulty traces obtained in
step 1. By comparing the contingency tables of the assertions evaluated on
the golden and faulty traces, we automatically estimate the approximability of
each AT, in terms of how its approximation affects the functionality of the orig-
inal design. Finally, we rank the ATs in order of decreasing approximability.
ATs with similar approximability are clustered. The designer is then suggested
to approximate the design by applying the approximations corresponding to
the cluster that includes the top-ranked ATs.

To simplify the detailed exposition of each step, in the following sections, we
refer to the running example reported in Algorithm 15. It takes as input two 8-bit
unsigned integers (signals a and b) and returns their sum as output (out port). We
assume that the adder module is stimulated by an external test tench, such that the
two least significant bits of signal a and b (i.e., a[7:6] and b[7:6]) remain unused.

Algorithm 15 Running example

1: module adder(a, b, clk, out)
2: input [7:0] a, b
3: input clk
4: output [8:0] out
5: reg [8:0] sum
6: always @(posedge clk)
7: begin
8: sum = a + b
9: end

10: endmodule

8.3.1 Trace generation

In the first step of the methodology, we simulate the DUE to generate a set of ex-
ecution traces. We assume that the test bench thoroughly stimulates the design,
purposely covering all its functional behaviours. This is a desirable condition for
any dynamic approach.

First, we generate the golden trace by simulating the original implementation.
Then, for each target AT, we generate a trace reflecting the effect of its approximation
according to either the bit-width reduction or the statement reduction strategy.

For each class of AT, we identify a fault model to mimic the effect of its approxi-
mation in the functional behaviour of the DUE as follows:

• A bit token is approximated by injecting a stuck-at 0/1 on the target bit. Stuck-
at X has been not considered as the propagation of X values along the execution
traces would prevent the evaluation of mined assertions in step 3.

8.3. Methodology 119

• A statement token is approximated differently depending on the type of state-
ment as follows:

– assignment: the statement is removed; in case its left-hand side remains
undefined, its value is assigned to 0 for bit-vectors and numeric types,
stuck at 0/1 for a single bit/Boolean;

– module instantiation: the statement is removed; in case the signals con-
nected to the outputs of the module remain undefined, they are treated as
in the case of assignments;

– conditional statement: either the true or the false block is removed; in
case any signal/register remains unsigned, it is treated as in the case of
assignments.

8.3.2 Assertion mining

In the second step of the methodology, we automatically mine assertions holding on
the golden trace of the original DUE implementation. To extract them, we exploit
the state-of-the-art assertion miner available at [3].

The miner has been configured to automatically generate assertions on primary
inputs and outputs of the DUE in the form always(antecedent→ next[N](consequent)),
where N is the design depth, that is, the number of clock cycles necessary to prop-
agate the effects of primary inputs toward primary outputs. This is done to ensure
that the mined assertions represent meaningful I/O relations.

Both the antecedent and the consequent of each assertion are instantiated by the
tool following the form prop1 && prop2 && ... && propk. Each proposition propi is
in the form cl <= varj <= cr, or varj == c, or varj <= c, or varj >= c, where
varj is an input or an output of the DUE located in the antecedent or the consequent,
while cl , cr and c are numeric constants.

Finally, we rank the assertion set according to a score S, which is obtained, for
each assertion a, by combining the following metrics:

• Metric 1: Support(a) = ATCT/traceLength;

• Metric 2: Causality(a) = 1− AFCT/traceLength;

where, ATCT and AFCT are derived from the contingency table of a (see Def. 10).
The score S is calculated as already described in section 5.8.

After the ranking procedure is completed, we keep only the assertions whose
score S is greater than 0.

Figure 8.2 shows some of the assertions mined for the running example and the
corresponding values for Support, Causality and S.

8.3.3 Assertion evaluation and AT ranking

In the last step of the methodology, the generated assertions are re-evaluated on
the faulty traces obtained by perturbing the original RTL description of the DUE by
adopting the bit-width and the statement reduction strategies, as reported in Sec-
tion 8.3.1. In particular, for each AT, the corresponding fault is injected and the
assertions are re-evaluated generating a new contingency table. It is worth noting
that the value ATCF is 0 in the contingency table of any assertion for the original im-
plementation (as all assertions are true on the golden trace), while it is likely greater

120 Chapter 8. Design Exploration for Approximate Computing: DEA

FIGURE 8.2: Assertions mined for the running example.

than 0 for assertions affected by the presence of a fault. Consequently, we can ob-
serve variations in the value of ATCT as well. The purpose of this procedure is then
to analyse the effect of the different approximation alternatives (represented by ATs)
on the functional behaviours (captured by the assertions) of the design.

The whole procedure is implemented in the evaluate function reported in Algo-
rithm 16, whose behaviour is detailed hereafter.

Algorithm 16

1: function EVALUATE(A, gt, FT)
2: GCT← ∅
3: di f f ← ∅
4: for all a ∈ A do
5: GCT[a]← genContingency(gt, a)
6: for all f t ∈ FT do
7: for all a ∈ A do
8: f ct← genContingency(f t, a)
9: di f f [f t] += abs(GCT[a]− f ct)

10: return diff

The function takes as inputs A, gt and FT, where A is the set of assertions mined
in the previous step, gt is the golden trace and FT is the set of all faulty traces gen-
erated in the first step of the methodology. Note that for each f t ∈ FT there exists
a corresponding unique approximation token at and a unique fault f . The func-
tion returns a dictionary di f f , which stores, for each f t, a matrix representing the
sum of the differences between the contingency tables achieved on f t and gt for all
assertions belonging to A.

First, we initialize variables GCT and di f f , where GCT is intended to store the
contingency tables of the golden trace (lines 2-3). Then, we iterate over the assertions
in A such that the function genContingency(gt, a) evaluates the assertion a on the
trace gt to retrieve the corresponding contingency table (line 5). After that, for each
couple ⟨ f t, a⟩ ∈ FT × A, a “faulty" contingency table is generated and stored in f ct
(line 8). f tc is then compared with the golden contingency table GTC[a]; this is done
by returning the absolute difference between the two matrices (line 19). The result
of this operation is stored in di f f [f t], which contains the impact of fault f on all the
considered assertions. Finally, the sum of differences di f f is returned (line 10).

At this point, we employ the dictionary of differences di f f to sort the ATs in or-
der of decreasing approximability. Since each matrix belonging to di f f contains 9
fields (3x3 matrix), there are several ways to estimate the impact of a fault f on the

8.4. Case Study 121

Bit token a[6] a[7] b[6] b[7] b[0] b[1] a[0] a[1] a[2] b[2] a[3] ...
ATCF 0 0 0 0 3 3 4 4 22 23 49 ...
Rank 0 1 2 3 4 5 6 7 8 9 10 ...

Cluster 0 0 0 0 1 1 2 2 3 3 4 ...

TABLE 8.1: Final ranking of ATs for the running example.

functional behaviour of the design. In this work, we decided to rank each approxi-
mation token at by counting the number of times in which the corresponding fault f
made the assertions in A fail. That is, each at is ranked by using the ATCF field (first
row, second column) of the corresponding matrix di f f [f t]. This choice is plausible
because the higher the increment of ATCF, the worse the impact on the functional be-
haviour, and as a consequence, the lower the approximability of the corresponding
AT. In particular, all the ATs are sorted by increasing order of ATCF.

Finally, we apply a clustering algorithm to group ATs exposing a similar approx-
imability; this is done to help the designer in the process of simultaneously approx-
imating multiple ATs. We apply a similar clustering procedure to the one described
in section 5.9 involving the k-kmeans algorithm and the elbow method to determine
a good candidate value of k.

Table 8.1 reports the result obtained by applying the ranking methodology to
some ATs of the running example. In this case, we considered as ATs the bits of sig-
nals a and b of the statement at line 8 of Algorithm 15. As expected, the table shows
that the two least significant bits of both a and b are ranked first. This is not surpris-
ing since these bits remain unused during simulation; therefore, the corresponding
faults do not produce any effect on the functional behaviour of the design (ATCF is
zero). Then, after the clustering, our methodology suggests that the designer should
simultaneously apply the bit-width reduction strategy to a[7:6] and b[7:6].

8.4 Case Study

We evaluated the proposed approach on the RTL description of a common Sobel
edge-detection filter. We applied both the bit-width and the statement reduction
approximation strategies on a set of ATs (i.e., bit tokens and statement tokens) by
injecting faults as reported in Section 8.3.1. We then ranked and clustered the ATs,
as detailed in Section 8.3.3, by exploiting a set of assertions automatically mined as
described in Section 8.3.2. We finally measured the approximation effect on the de-
signs synthesized by approximating the different ATs in terms of functional accuracy
and power/area reduction. The goal is to show the effectiveness of our approach in
prompting the designer to simultaneously approximate a cluster of ATs that has a
low impact on functional accuracy while guaranteeing a relevant saving in terms of
area and power. We considered a total number of 236 bit tokens and 38 statement
tokens.

8.4.1 Functional accuracy

For evaluating the effectiveness of the proposed approach from the point of view
of the functional accuracy of the approximated designs, we adopted the Structural
SIMilarity (SSIM) index [148]. Eight images have been used as the workload for the
Sobel. For the bit-with reduction, we make two different experiments: the first by
fixing the target bit token to 0, and the second to 1. Since the outcome is similar for
both scenarios, we report the results only for the stuck-at 0 case.

122 Chapter 8. Design Exploration for Approximate Computing: DEA

(A) (B)

(C) (D)

FIGURE 8.3: (A and B) Impact of AT approximation alternatives on
the functionality of the Sobel. Bit tokens (A) and statement tokens (B)
are ordered on the x axis according to the ranking metrics defined in

Section 8.3.3.
(C and D) Impact on the functionality of the Sobel by simultaneously
applying the approximations belonging to each AT cluster returned
by the methodology proposed in Section 8.3.3. Clusters are ordered

on the x axis from the top-ranked (Cluster 0) to the worst-ranked.

The diagrams in Figure 8.3(A)(B) show the SSIM (y axis) achieved by the designs
obtained by applying the bit-width reduction (A) and the statement reduction (B)
to each single AT, i.e, each bit token in (A), and each statement token in (B). The
x axis refers to the ATs ranked in decreasing order according to the methodology
proposed in Section 8.3.3. There is a clear trend showing that the ATs that guarantee
the highest SSIM, when approximated, are those ranked first by our approach, for
both bit tokens and statement tokens.

However, since approximating a single AT is not effective from the point of view
of area and power saving, we propose to cluster the ATs for applying multiple ap-
proximations simultaneously. Thus, the diagrams in Figure 8.3(C)(D) present the
effect of simultaneously applying the approximations belonging to the AT clusters
returned by the k-means approach described at the end of Section 8.3.3. The points
in the dark line refer to the size of the clusters, the points in the blue line indicate
the SSIM of the clusters returned by our methodology, and the points in the red
line highlight the SSIM achieved by a set of ATs randomly selected, whose size is the
same of the corresponding cluster in the blue line. A first observation highlights that
the random clusters achieve the worst accuracy. The second observation deals with
the quality of the ranked clusters returned by our methodology. While the cluster
containing the top-ranked ATs for the statement reduction strategy (Figure 8.3 (D))

8.4. Case Study 123

shows that simultaneously applying the approximations of the top-ranked cluster
(ID 0) guarantees almost the best SSIM, this is not the same for the bit-width reduc-
tion strategy (Figure 8.3 (C)), where larger clusters (e.g., ID 0) achieve an unsatis-
factory SSIM, while smaller ones (e.g., IDs 1 and 2) generally perform better. This
demonstrates that the SSIM for the bit-with reduction strategy is influenced by the
size of the cluster, while this is not relevant for the statement reduction strategy. In
addition, by analysing the composition of the clusters containing the statement to-
kens versus those related to the bit tokens, we observed that the former generally
collect ATs belonging to the same cone of logic, while this is not true for the latter.
As a consequence, the impact of the approximation on the functional accuracy is
amplified when a large set of unrelated bit tokens are clustered, while this effect is
mitigated while grouping statement tokens belonging to the same cone of logic.

Therefore, we conclude that the ranking and clustering procedure proposed in
this paper for statement tokens is an effective methodology for guiding the designer
in the exploration of the statement reduction approximation strategy in terms of
functional accuracy. The next section will show that it performs very well also in
terms of area/power savings.

8.4.2 Area and power saving

Prec
ise clu

s0
clu

s1
clu

s2
clu

s3

clu
s_rnd

Design label

0.6

0.8

1.0

A
re

a

Area

Prec
ise clu

s0
clu

s1
clu

s2
clu

s3

clu
s_rnd

Design label

0.4

0.6

0.8

1.0

Po
w

er

Power

Cluster of statement reduction

FIGURE 8.4: Saving in terms of area and power by considering the
statement token clusters. Precise refers to the original design, clus0,
clus1, clus2 and clus3 are related to the designs approximated accord-
ing to the four clusters returned by our methodology in decreasing
order of functional accuracy, clus_rnd indicates the average result for

the design approximated by using a set of randomly chosen ATs.

We performed the synthesis of the designs obtained by approximating the state-
ment tokens as indicated in the clusters obtained with the proposed methodology.
We targeted the FreePDK45 45-nm standard cell technology library. Figure 8.4 re-
ports the results, in terms of relative area and power consumption, calculated as
1− Precise−clusi

Precise (Precise variant has value 1). The chart highlights that the cluster with
ID 0 (the best ranked by our methodology) shows the best area and power reduction
w.r.t. the Precise design, i.e., 54.53% and 50.24% respectively, while still having a high

124 Chapter 8. Design Exploration for Approximate Computing: DEA

SSIM metric value, i.e. 0.62, as reported in Figure 8.3(D). Conversely, approximat-
ing a random set of statements with the same size as cluster 0 (i.e., 14 statements)
provides a design having, on average, 58.69% area reduction and 30.60% power re-
duction, however having also a very lower SSIM value, i.e. 0.061. The results for
the clus_rnd design were computed by synthesizing multiple designs obtained by
approximating randomly the same number of statements as in cluster 0; finally, the
average value was reported.

125

Chapter 9

Conclusions

In this paper, I propose a complete framework to verify complex distributed sys-
tems, from the formalisation of specifications to runtime execution. In particular, I
propose 5 novel methodologies and the corresponding tools to cover several holes
in the verification process of systems executing in an edge-to-cloud computing en-
vironment. Additionally, I propose a new tool called DEA that leverages assertions
to help the exploration of the design.

9.1 MIST

MIST is an all-in-one tool capable of generating a complete environment to verify
C/C++ firmware starting from informal specifications. MIST reduces the verifica-
tion effort by providing a user-friendly interface to formalise specifications into as-
sertions and to generate the verification environment automatically. Furthermore,
MIST employs a clustering procedure to generate an effective test plan that reduces
potential mistakes while formalizing the specifications. Collaborating with the in-
dustry gave us the opportunity to make the tool go through a long tuning process.
Moreover, the feedback received from experienced developers allowed us to thor-
oughly assess the potential and limitations of MIST. The majority of limitations were
overcome during the tuning process; however, there are still a few issues that need
to be addressed in future works. Most drawbacks of the verification environment
generated by MIST are related to unjustified constraints imposed by C-Spy, which
is the debugger used in the IARSystem Workbench. Below, we report some of those
constraints.

• No observability of non-static variables: we can not test the value or put break-
points on automatic variables, therefore, we can not write assertions with those
variables

• Macros declared with the “#define aliasName originalName" C statement are
not visible during simulation: the user is forced to use the right side of the
macro when writing propositions, as the debugger does not keep track of alias-
ing. This limitation deeply affects the readability of the formalised behaviours.

• Lack of strongly typed variables and complex C data structures in the C-Spy
language: this major constraint strongly affected the development of MIST;
furthermore, we believe that it will also heavily affect extensibility and main-
tainability.

To avoid being dependent on the constraints imposed by a specific simulator, we
will modify the back end of MIST to be easily extendable to other target simulators.

Hereafter, we report some limitations of MIST that we would like to overcome in
future releases.

126 Chapter 9. Conclusions

• No support to generate test benches that affect only a portion of bits of a target
variable: consider the variable unsigned char P0, for now, the user can not gen-
erate a testbench that, for instance, would modify the value of the first bit of
P0 while keeping the other bits unchanged. we planned to introduce a custom
operator to overcome the above limitation.

• All behaviours are linked to the same temporal event: we would like to have
the user define what temporal event should produce the advancement of time
inside each behaviour.

9.2 HARM

HARM is an efficient and flexible hint-based assertion miner. Its main characteristics
include a customizable template-based procedure to mine assertions, efficient algo-
rithms for instantiating assertion templates and evaluating if they hold on to the
input trace, a 3-level parallelisation methodology that further speeds up the min-
ing by fully exploiting the computing cores, and a context-based approach to rank
the mined assertions. The experimental results show the efficiency of the tool and
the quality of the generated assertions in comparison with two state-of-the-art min-
ers. The scalability and effectiveness of HARM have been thoroughly analysed too.
Finally, a concrete use case has been presented to highlight HARM’s capability of
ranking interesting assertions. Future works will be devoted to extending the min-
ing capabilities of HARM. In particular, we plan to allow the generation of assertions
compliant with the signal temporal logic (STL), which is a logic formalism for speci-
fying properties of continuous signals and time. This formalism would simplify the
generation of assertions for hybrid and real-time systems.

9.3 COME and BECAUSE

COME and BECAUSE are two tools to automatically remove irrelevant instructions
from execution traces identifying unexpected behaviours. COME exploits seman-
tic equivalence and alignment of sequences in order to extract from computational
paths the essential instructions characterizing a vulnerability. I evaluated the effi-
ciency and effectiveness of COME in two case studies regarding a memory protec-
tion mechanism and a safety control system, where COME was able to correctly filter
out the sequences of instructions giving only the essential elements required to char-
acterize the vulnerability. Future works will be devoted to optimizing the internal
symbolic engine of COME by introducing the possibility of recognizing previously
visited paths, to further increase the scalability of the approach. Moreover, we will
perform the symbolic simulation directly on the firmware’s code by removing the
ISS. The methodology relies only on Read/Write operations, thus we realized that
the ISS provides an excessive level of detail, slowing down the symbolic simulation.

BECAUSE works by performing a preliminary reduction involving a DPDG and
dynamic program slicing. After that, the remaining instructions are further reduced
through an instruction clusterization procedure. Experimental results show the ef-
fectiveness and scalability of the tool.

9.4. CARMINE 127

9.4 CARMINE

CARMINE is a tool to create, orchestrate, and deploy a ROS-compliant verification
environment for robotic systems. The platform relies on different key contributions,
from checker synthesis to containerisation and orchestration. The methodology pre-
sented an analysis of such a checker migration by means of two case studies, which
confirm the platform as a comprehensive solution for applying runtime assertion-
based verification to robotic systems.

9.5 DEA

DEA implements a novel solution leveraging assertion mining and fault injection
to identify the elements (signal/register bits or statements) to be approximated into
RTL descriptions through the bit-width and the statement reduction strategies. Ap-
proximation alternatives are implemented by fault injection. Their impact on the
functional accuracy of the DUE is then estimated accordingly to a metric that evalu-
ates the effect of the approximation on a set of assertions automatically mined from
the original implementation to capture its functionality. A ranking and clustering
procedure is then proposed to guide the designer in the identification of the best
cluster of elements to be approximated. The experimental analysis shows the fol-
lowing major achievements: (1) The procedure, for both bid-with reduction and
statement reduction, is able to rank the approximation alternatives such that they
are decreasingly ordered with respect to their effect on functional accuracy. (2) The
clustering performs very well by considering the statement reduction approxima-
tion, i.e., the functional accuracy is generally higher for the designs obtained by
simultaneously applying the approximations corresponding to the top-ranked AT
clusters than those synthesized by considering the lower-ranked clusters or by ran-
domly selecting a set of statement tokens. (3) The clustering of bits is affected by
the size of the cluster, which is more determinant than the ranking of its elements
for mitigating the amplification of the errors caused by simultaneous bit-width re-
ductions. (4) The saving in terms of area and power achieved by approximating the
clusters of statements identified by the proposed approach is generally proportional
to the functional accuracy: the higher the saving, the higher the accuracy.

129

Bibliography

[1] “Standard for property specification language (PSL),” IEC 62531:2012(E) (IEEE
Std 1850-2010), pp. 1–184, 2012.

[2] S. Germiniani, M. Bragaglio, and G. Pravadelli, “Mist: Monitor generation
from informal specifications for firmware verification,” in 2020 IFIP/IEEE 28th
International Conference on Very Large Scale Integration (VLSI-SOC), 2020, pp. 111–
116. DOI: 10.1109/VLSI-SOC46417.2020.9344072.

[3] S. Germiniani and G. Pravadelli, “Harm: A hint-based assertion miner,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 11, pp. 4277–4288, 2022. DOI: 10.1109/TCAD.2022.3197525.

[4] S. Germiniani and G. Pravadelli, “Exploiting clustering and decision-tree al-
gorithms to mine ltl assertions containing non-boolean expressions,” in 2022
IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-
SoC), 2022, pp. 1–6. DOI: 10.1109/VLSI-SoC54400.2022.9939640.

[5] S. Aldegheri, N. Bombieri, S. Germiniani, F. Moschin, and G. Pravadelli, “A
containerized ros-compliant verification environment for robotic systems,”
in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
2021, pp. 222–225. DOI: 10.23919/DATE51398.2021.9474167.

[6] S. Germiniani, A. Danese, and G. Pravadelli, “Automatic generation of asser-
tions for detection of firmware vulnerabilities through alignment of symbolic
sequences,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 2,
pp. 728–739, 2022. DOI: 10.1109/TETC.2020.3035187.

[7] M. Bragaglio, N. Donatelli, S. Germiniani, and G. Pravadelli, “System-level
bug explanation through program slicing and instruction clusterization,” in
2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-
SoC), 2021, pp. 1–6. DOI: 10.1109/VLSI-SoC53125.2021.9607008.

[8] A. Bosio, S. Germiniani, G. Pravadelli, and M. Traiola, “Exploiting assertions
mining and fault analysis to guide rtl-level approximation,” in 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2023.

[9] M. Jørgensen, K. Teigen, and K. Moløkken-Østvold, “Better sure than safe?
overconfidence in judgment based software development effort prediction
intervals,” Journal of Systems and Software, vol. 70, pp. 79–93, Feb. 2004. DOI:
10.1016/S0164-1212(02)00160-7.

[10] T. D. Oyetoyan, B. Milosheska, M. Grini, and D. Cruzes, “Myths and facts
about static application security testing tools: An action research at telenor
digital,” in May 2018, pp. 86–103, ISBN: 978-3-319-91601-9. DOI: 10.1007/978-
3-319-91602-6_6.

[11] M. H. Osman and M. F. Zaharin, “Ambiguous software requirement speci-
fication detection: An automated approach,” in 2018 IEEE/ACM 5th Interna-
tional Workshop on Requirements Engineering and Testing (RET), 2018, pp. 33–
40.

https://doi.org/10.1109/VLSI-SOC46417.2020.9344072
https://doi.org/10.1109/TCAD.2022.3197525
https://doi.org/10.1109/VLSI-SoC54400.2022.9939640
https://doi.org/10.23919/DATE51398.2021.9474167
https://doi.org/10.1109/TETC.2020.3035187
https://doi.org/10.1109/VLSI-SoC53125.2021.9607008
https://doi.org/10.1016/S0164-1212(02)00160-7
https://doi.org/10.1007/978-3-319-91602-6_6
https://doi.org/10.1007/978-3-319-91602-6_6

130 Bibliography

[12] [Online]. Available: https://www.iar.com/iar-embedded-workbench.

[13] N. A. Moketar, M. Kamalrudin, S. Sidek, M. Robinson, and J. Grundy, “An
automated collaborative requirements engineering tool for better validation
of requirements,” in 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 2016, pp. 864–869.

[14] Y. Kakiuchi, A. Kitajima, K. Hamaguchi, and T. Kashiwabara, “Automatic
monitor generation from regular expression based specifications for module
interface verification,” in 2005 IEEE International Symposium on Circuits and
Systems, 2005, 3555–3558 Vol. 4.

[15] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Architecture of a
tool for automated testing the worst-case execution time of real-time embed-
ded systems firmware,” in 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2016, pp. 337–342.

[16] I. Buzhinsky, “Formalization of natural language requirements into tempo-
ral logics: A survey,” in 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), 2019, pp. 400–406.

[17] “Ieee standard for property specification language (psl),” IEEE Std 1850-2010
(Revision of IEEE Std 1850-2005), pp. 1–182, 2010. DOI: 10.1109/IEEESTD.
2010.5446004.

[18] “Ieee standard for systemverilog–unified hardware design, specification, and
verification language - redline,” IEEE Std 1800-2009 (Revision of IEEE Std1800-
2005) - Redline, pp. 1–1346, 2009.

[19] S. Yang, R. Wille, and R. Drechsler, “Improving coverage of simulation-based
verification by dedicated stimuli generation,” in Formal Methods in Computer
Aided Design, 2014, pp. 599–606.

[20] Y. Zhao, J. Bian, S. Deng, and Z. Kong, “Random stimulus generation with
self-tuning,” in 13th International Conference on Computer Supported Cooperative
Work in Design, 2009, pp. 62–65.

[21] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs.,” in OSDI,
vol. 8, 2008, pp. 209–224.

[22] S. Agbaria, D. Carmi, O. Cohen, D. Korchemny, M. Lifshits, and A. Nadel,
“Sat-based semiformal verification of hardware,” in Formal Methods in Com-
puter Aided Design, 2010, pp. 25–32.

[23] [Online]. Available: https://www.esa.int.

[24] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L.
Xu, “Spot 2.0 — a framework for ltl and ω - automata manipulation,” Oct.
2016, pp. 122–129. DOI: 10.1007/978-3-319-46520-3_8.

[25] C. Wang, F. He, X. Song, Y. Jiang, M. Gu, and J. Sun, “Assertion recommen-
dation for formal program verification,” in Proc. of IEEE COMPSAC, 2017,
pp. 154–159.

[26] G. Ammons, R. Bodik, and J. R. Larus, “Mining specifications,” in Proc. of
ACM POPL, 2002, pp. 4–16.

[27] A. Danese, V. Bertacco, and G. Pravadelli, “Symbolic assertion mining for
security validation,” in Proc. of ACM/IEEE DATE, 2018.

https://www.iar.com/iar-embedded-workbench
https://doi.org/10.1109/IEEESTD.2010.5446004
https://doi.org/10.1109/IEEESTD.2010.5446004
https://www.esa.int
https://doi.org/10.1007/978-3-319-46520-3_8

Bibliography 131

[28] M. D. Ernst., “Static and dynamic analysis: Synergy and duality,” in Proc. of
WODA, 2003, pp. 24–27.

[29] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertion with
guidance from static analysis,” IEEE Trans. on CAD, vol. 32, no. 6, pp. 952–
965, 2013.

[30] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property specifi-
cations for finite-state verification,” in Proc. of ICSE, 1999, pp. 411–420.

[31] “Harm repository.” (Dec. 7, 2022), [Online]. Available: https://github.com/
SamueleGerminiani/harm.

[32] D. Lo and S. Maoz, “Specification mining of symbolic scenario-based mod-
els,” in Proc. of ACM PASTE, 2008, pp. 29–35.

[33] D. Lo, S.-C. Khoo, and C. Liu, “Efficient mining of iterative patterns for soft-
ware specification discovery,” in Proc. of ACM KDD, 2007, pp. 460–469.

[34] J. Henkel and A. Diwan, “Discovering algebraic specifications from java classes,”
in Proc. of ECOOP, 2003, pp. 431–456.

[35] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically discover-
ing likely program invariants to support program evolution,” IEEE Trans. on
Software Engineering, vol. 27, no. 2, pp. 99–123, 2001.

[36] M. D. Ernst, J. H. Perkins, P. J. Guo, et al., “The Daikon system for dynamic
detection of likely invariants,” Science of Computer Programming, vol. 69, no. 1,
pp. 35–45, 2007.

[37] A. Hekmatpour and A. Salehi, “Block-based schema-driven assertion gener-
ation for functional verification,” in Proc. of IEEE ATS, 2005, pp. 34–39.

[38] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty, “IODINE: A tool
to automatically infer dynamic invariants for hardware designs,” in Proc. of
ACM/IEEE DAC, 2005, pp. 775–778.

[39] G. Chen, M. Liu, and Z. Kong, “Semantic inference for cyber-physical systems
with signal temporal logic,” in Proc. of IEEE CDC, 2019, pp. 6269–6274.

[40] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for verifica-
tion and diagnosis,” in Proc. of ACM/IEEE DAC, 2010, pp. 755–760.

[41] L. Liu, C.-H. Lin, and S. Vasudevan, “Word level feature discovery to enhance
quality of assertion mining,” in Proc. of IEEE ICCAD, 2012, pp. 210–217.

[42] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. Johnson,
“Goldmine: Automatic assertion generation using data mining and static anal-
ysis,” in Proc. of ACM/IEEE DATE, 2010, pp. 626–629.

[43] S. Vasudevan, D. Sheridan, and V. Athavale, “Automatic generation of asser-
tions from system level design using data mining,” in Proc. of IEEE MEM-
OCODE, 2011, pp. 191–200.

[44] K. L. McMillan, “The smv system,” in Symbolic Model Checking. Springer,
1993, pp. 61–85.

[45] D. Pal, S. Offenberger, and S. Vasudevan, “Assertion ranking using RTL source
code analysis,” IEEE Trans. on CAD, vol. 39, no. 8, pp. 1711–1724, 2020.

[46] T. Ghasempouri and G. Pravadelli, “On the estimation of assertion interest-
ingness,” in Proc. of IFIP/IEEE VLSI-SoC, 2015, pp. 325–330.

https://github.com/SamueleGerminiani/harm
https://github.com/SamueleGerminiani/harm

132 Bibliography

[47] A. Danese, F. Filini, T. Ghasempouri, and G. Pravadelli, “Automatic genera-
tion and qualification of assertions on control signals: A time window-based
approach,” in VLSI-SoC: Design for Reliability, Security, and Low Power, Y. Shin,
C. Y. Tsui, J.-J. Kim, K. Choi, and R. Reis, Eds., Springer, 2016, pp. 193–221.

[48] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic extraction of as-
sertions from execution traces of behavioural models,” in Proc. of ACM/IEEE
DATE, 2015, pp. 67–72.

[49] M. Bonato, G. Di Guglielmo, M. Fujita, F. Fummi, and G. Pravadelli, “Dy-
namic property mining for embedded software,” in Proc. of ACM/IEEE CODES+ISSS,
2012, pp. 187–196.

[50] M. Bertasi, G. Di Guglielmo, and G. Pravadelli, “Automatic generation of
compact formal properties for effective error detection,” in Proc. of ACM/IEEE
CODES+ISSS, 2013, pp. 1–10.

[51] A. Danese, N. D. Riva, and G. Pravadelli, “A-team: Automatic template-
based assertion miner,” in Proc. of ACM/IEEE DAC, 2017.

[52] R. Srikant and J. F. Naughton, “Fast algorithms for mining association rules
and sequential patterns,” Ph.D. dissertation, 1996, ISBN: 0591211750.

[53] [Online]. Available: http://www.atrenta.com/about-bugscope.htm5.

[54] Jasper Activeprop. [Online]. Available: http://www.jasper-da.com.

[55] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L.
Xu, “Spot 2.0 — a framework for LTL and ω-automata manipulation,” in
Proc. of ATVA, ser. Lecture Notes in Computer Science, vol. 9938, Springer,
2016, pp. 122–129.

[56] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Informa-
tion Theory, vol. 28, no. 2, pp. 129–137, 1982. DOI: 10.1109/TIT.1982.1056489.

[57] “Goldmine designs.” (Dec. 7, 2022), [Online]. Available: https://bitbucket.
org/debjitp/goldminer/src/master/example/.

[58] “Trust hub.” (Dec. 7, 2022), [Online]. Available: https://trust-hub.org/
%5C#/benchmarks/chip-level-trojan.

[59] [Online]. Available: https://opencores.org/.

[60] [Online]. Available: https://github.com/SamueleGerminiani/subplatform.

[61] M. Weiser, “Program slicing,” IEEE Transactions on Software Engineering, vol. SE-
10, no. 4, pp. 352–357, 1984. DOI: 10.1109/TSE.1984.5010248.

[62] K. J. Ottenstein and L. M. Ottenstein, “The program dependence graph in
a software development environment,” in Proceedings of the First ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments, ser. SDE 1, New York, NY, USA: Association for Comput-
ing Machinery, 1984, pp. 177–184, ISBN: 0897911318. DOI: 10.1145/800020.
808263. [Online]. Available: https://doi.org/10.1145/800020.808263.

[63] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9,
no. 3, pp. 319–349, 1987.

[64] J.-F. Bergeretti and B. A. Carré, “Information-flow and data-flow analysis of
while-programs,” ACM Trans. Program. Lang. Syst., vol. 7, no. 1, pp. 37–61,
Jan. 1985, ISSN: 0164-0925. DOI: 10 . 1145 / 2363 . 2366. [Online]. Available:
https://doi.org/10.1145/2363.2366.

http://www.atrenta.com/about-bugscope.htm5
http://www.jasper-da.com
https://doi.org/10.1109/TIT.1982.1056489
https://bitbucket.org/debjitp/goldminer/src/master/example/
https://bitbucket.org/debjitp/goldminer/src/master/example/
https://trust-hub.org/%5C#/benchmarks/chip-level-trojan
https://trust-hub.org/%5C#/benchmarks/chip-level-trojan
https://opencores.org/
https://github.com/SamueleGerminiani/subplatform
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/800020.808263
https://doi.org/10.1145/800020.808263
https://doi.org/10.1145/800020.808263
https://doi.org/10.1145/2363.2366
https://doi.org/10.1145/2363.2366

Bibliography 133

[65] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, “Dependence
graphs and compiler optimizations,” in Proceedings of the 8th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL ’81,
New York, NY, USA: Association for Computing Machinery, 1981, pp. 207–
218, ISBN: 089791029X. DOI: 10.1145/567532.567555. [Online]. Available:
https://doi.org/10.1145/567532.567555.

[66] T. Reps and T. Bricker, “Illustrating interference in interfering versions of pro-
grams,” in Proceedings of the 2nd International Workshop on Software Configura-
tion Management, ser. SCM ’89, New York, NY, USA: Association for Com-
puting Machinery, 1989, pp. 46–55, ISBN: 0897913345. DOI: 10.1145/72910.
73347. [Online]. Available: https://doi.org/10.1145/72910.73347.

[67] B. Korel and J. Laski, “Dynamic slicing of computer programs,” Journal of
Systems and Software, vol. 13, no. 3, pp. 187–195, 1990, ISSN: 0164-1212.

[68] T. Chen and Y. Cheung, “Dynamic program dicing,” in Proc. of IEEE CSM,
1993, pp. 378–385.

[69] M. Renieres and S. Reiss, “Fault localization with nearest neighbor queries,”
in Proc. of IEEE ASE, 2003, pp. 30–39. DOI: 10.1109/ASE.2003.1240292.

[70] W. E. Wong and Y. Qi, “Effective program debugging based on execution
slices and inter-block data dependency,” Journal of Systems and Software, vol. 79,
no. 7, pp. 891–903, 2006.

[71] A. Groce, “Error explanation with distance metrics,” in Tools and Algorithms
for the Construction and Analysis of Systems, K. Jensen and A. Podelski, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 108–122.

[72] A. Groce and W. Visser, “What went wrong: Explaining counterexamples,” in
Model Checking Software, T. Ball and S. K. Rajamani, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 121–136.

[73] C.Duanzhi, “A collection of program slicing,” in Proc. of ICCASM, 2010.

[74] J. Field, G. Ramalingam, and F. Tip, “Parametric program slicing,” in Proceed-
ings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, ser. POPL ’95, New York, NY, USA: Association for Comput-
ing Machinery, 1995, pp. 379–392, ISBN: 0897916921. DOI: 10.1145/199448.
199534. [Online]. Available: https://doi.org/10.1145/199448.199534.

[75] J. Field and F. Tip, “Dynamic dependence in term rewriting systems and its
application to program slicing,” in Programming Language Implementation and
Logic Programming, M. Hermenegildo and J. Penjam, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 415–431, ISBN: 978-3-540-48695-4.

[76] J. Q. Ning, A. Engberts, and W. V. Kozaczynski, “Automated support for
legacy code understanding,” Commun. ACM, vol. 37, no. 5, pp. 50–57, May
1994, ISSN: 0001-0782. DOI: 10 . 1145 / 175290 . 175295. [Online]. Available:
https://doi.org/10.1145/175290.175295.

[77] G. A. Venkatesh, “The semantic approach to program slicing,” in Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, ser. PLDI ’91, New York, NY, USA: Association for Comput-
ing Machinery, 1991, pp. 107–119, ISBN: 0897914287. DOI: 10.1145/113445.
113455. [Online]. Available: https://doi.org/10.1145/113445.113455.

https://doi.org/10.1145/567532.567555
https://doi.org/10.1145/567532.567555
https://doi.org/10.1145/72910.73347
https://doi.org/10.1145/72910.73347
https://doi.org/10.1145/72910.73347
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1145/199448.199534
https://doi.org/10.1145/199448.199534
https://doi.org/10.1145/199448.199534
https://doi.org/10.1145/175290.175295
https://doi.org/10.1145/175290.175295
https://doi.org/10.1145/113445.113455
https://doi.org/10.1145/113445.113455
https://doi.org/10.1145/113445.113455

134 Bibliography

[78] M. Kramkar, P. Fritzson, and N. Shahmehri, “Interprocedural dynamic slic-
ing applied to interprocedural data flow testing,” in 1993 Conference on Soft-
ware Maintenance, 1993, pp. 386–395. DOI: 10.1109/ICSM.1993.366924.

[79] J.-D. Choi, B. P. Miller, and R. H. B. Netzer, “Techniques for debugging paral-
lel programs with flowback analysis,” ACM Trans. Program. Lang. Syst., vol. 13,
no. 4, pp. 491–530, Oct. 1991, ISSN: 0164-0925. DOI: 10.1145/115372.115324.
[Online]. Available: https://doi.org/10.1145/115372.115324.

[80] C. Liu, L. Fei, X. Yan, J. Han, and S. Midkiff, “Statistical debugging: A hy-
pothesis testing-based approach,” IEEE Transactions on Software Engineering,
vol. 32, no. 10, pp. 831–848, 2006. DOI: 10.1109/TSE.2006.105.

[81] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statistical
bug isolation,” in Proc. of ACM SIGPLAN PLDI, 2005, pp. 15–26.

[82] W. Wen, “Software fault localization based on program slicing spectrum,” in
Proc. of IEEE ICSE, 2012, pp. 1511–1514.

[83] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation,” in Proc. of CGO, 2004.

[84] Gnu coreutils. [Online]. Available: https://www.gnu.org.

[85] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “Fie on firmware: Finding
vulnerabilities in embedded systems using symbolic execution.,” in USENIX
Security Symposium, 2013, pp. 463–478.

[86] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski, and K.
Wehrle, “Kleenet: Discovering insidious interaction bugs in wireless sensor
networks before deployment,” in Proc. of ACM/IEEE IPSN, Jan. 2010, pp. 186–
196.

[87] P. Li and J. Regehr, “T-check: Bug finding for sensor networks,” in Proceedings
of the 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks, ACM, 2010, pp. 174–185.

[88] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo
multi-path analysis of software systems,” Acm Sigplan Notices, vol. 46, no. 3,
pp. 265–278, 2011.

[89] F. Bellard, “Qemu, a fast and portable dynamic translator.,” in USENIX An-
nual Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.

[90] D. Song, D. Brumley, H. Yin, et al., “Bitblaze: A new approach to computer
security via binary analysis,” in International Conference on Information Systems
Security, Springer, 2008, pp. 1–25.

[91] Y. Shoshitaishvili, R. Wang, C. Salls, et al., “SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis,” in IEEE Symposium on Security and
Privacy, 2016.

[92] P. Godefroid, “Random testing for security: Blackbox vs. whitebox fuzzing,”
in Proceedings of the 2nd international workshop on Random testing: co-located with
the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2007), ACM, 2007, pp. 1–1.

[93] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie, “Crete: A
versatile binary-level concolic testing framework,” in International Conference
on Fundamental Approaches to Software Engineering, Springer, 2018, pp. 281–
298.

https://doi.org/10.1109/ICSM.1993.366924
https://doi.org/10.1145/115372.115324
https://doi.org/10.1145/115372.115324
https://doi.org/10.1109/TSE.2006.105
https://www.gnu.org

Bibliography 135

[94] A. Danese, V. Bertacco, and G. Pravadelli, “Symbolic assertion mining for
security validation,” in Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), 2018, IEEE, 2018, pp. 1550–1555.

[95] R. Baldoni, E. Coppa, D. C. Elia, C. Demetrescu, and I. Finocchi, “A survey
of symbolic execution techniques,” ACM Comput. Surv., vol. 51, no. 3, 50:1–
50:39, May 2018, ISSN: 0360-0300. DOI: 10.1145/3182657. [Online]. Available:
http://doi.acm.org/10.1145/3182657.

[96] C. Kallenberg, S. Cornwell, X. Kovah, and J. Butterworth, “Setup for fail-
ure: Defeating secure boot,” in The Symposium on Security for Asia Network
(SyScan)(April 2014), 2014.

[97] “Llvm syntax.” (Dec. 7, 2022), [Online]. Available: https://llvm.org/docs/
LangRef.html.

[98] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs,” in Proc. of
USENIX OSDI, 2008.

[99] M. J. Harrold, B. Malloy, and G. Rothermel, “Efficient construction of pro-
gram dependence graphs,” in Proc. of ACM ISSTA, 1993, pp. 160–170.

[100] D. Baumann, F. Mager, U. Wetzker, L. Thiele, M. Zimmerling, and S. Trimpe,
“Wireless control for smart manufacturing: Recent approaches and open chal-
lenges,” Proceedings of the IEEE, vol. 109, no. 4, pp. 441–467, 2021. DOI: 10.
1109/JPROC.2020.3032633.

[101] A. Sathyamoorthy, U. Patel, M. Paul, Y. Savle, and D. Manocha, “Covid surveil-
lance robot: Monitoring social distancing constraints in indoor scenarios,”
PLoS ONE, vol. 16, no. 12 December, 2021. DOI: 10.1371/journal.pone.
0259713.

[102] X. Liu, S. Chen, G. Nardari, et al., “Challenges and opportunities for au-
tonomous micro-uavs in precision agriculture,” IEEE Micro, vol. 42, no. 1,
pp. 61–68, 2022. DOI: 10.1109/MM.2021.3134744.

[103] D. Maria, E. Sibi, S. Jerome, et al., “Environment model generation and local-
isation of mobile indoor autonomous robots,” in ACCESS 2021 - Proceedings
of 2021 2nd International Conference on Advances in Computing, Communication,
Embedded and Secure Systems, 2021, pp. 257–264. DOI: 10.1109/ACCESS51619.
2021.9563306.

[104] Z. Ullah, F. Al-Turjman, U. Moatasim, L. Mostarda, and R. Gagliardi, “Uavs
joint optimization problems and machine learning to improve the 5g and be-
yond communication,” Computer Networks, vol. 182, 2020. DOI: 10.1016/j.
comnet.2020.107478.

[105] A. T. Praveen, A. Gupta, S. Bhattacharyya, and R. Muthalagu, “Assuring be-
havior of multirobot autonomous systems with translation from formal veri-
fication to ros simulation,” IEEE Systems Journal, 2022.

[106] R. Halder, J. Proença, N. Macedo, and A. Santos, “Formal verification of ros-
based robotic applications using timed-automata,” in IEEE/ACM International
FME Workshop on Formal Methods in Software Engineering (FormaliSE), 2017,
pp. 44–50.

[107] H. Foster. Now Foundations and Trends, 2009.

https://doi.org/10.1145/3182657
http://doi.acm.org/10.1145/3182657
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://doi.org/10.1109/JPROC.2020.3032633
https://doi.org/10.1109/JPROC.2020.3032633
https://doi.org/10.1371/journal.pone.0259713
https://doi.org/10.1371/journal.pone.0259713
https://doi.org/10.1109/MM.2021.3134744
https://doi.org/10.1109/ACCESS51619.2021.9563306
https://doi.org/10.1109/ACCESS51619.2021.9563306
https://doi.org/10.1016/j.comnet.2020.107478
https://doi.org/10.1016/j.comnet.2020.107478

136 Bibliography

[108] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez, “Braceassertion: Runtime
verification of cyber-physical systems,” in Proceedings - 2015 IEEE 12th Inter-
national Conference on Mobile Ad Hoc and Sensor Systems, MASS 2015, 2015,
pp. 298–306. DOI: 10.1109/MASS.2015.15.

[109] H. Abbas, I. Saha, Y. Shoukry, et al., “Special session: Embedded software for
robotics: Challenges and future directions,” 2018.

[110] H. Ko, M. Jo, and V. Leung, “Application-aware migration algorithm with
prefetching in heterogeneous cloud environments,” IEEE Transactions on Cloud
Computing, 2021. DOI: 10.1109/TCC.2021.3064292.

[111] Open Source Robotics Foundation, “Robot Operating System,” http://www.ros.org/.

[112] P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview of the
mop runtime verification framework,” International Journal on Software Tools
for Technology Transfer, vol. 14, no. 3, pp. 249–289, 2012.

[113] E. Bartocci, J. Deshmukh, A. Donzé, et al., “Specification-based monitoring of
cyber-physical systems: A survey on theory, tools and applications,” Lecture
Notes in Computer Science, vol. 10457, pp. 135–175, 2018.

[114] C. Hu, W. Dong, Y. Yang, H. Shi, and G. Zhou, “Runtime verification on hier-
archical properties of ros-based robot swarms,” IEEE Transactions on Reliabil-
ity, vol. 69, no. 2, pp. 674–689, 2020.

[115] K. Havelund, G. Reger, and G. Roşu, “Runtime verification past experiences
and future projections,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10000,
pp. 532–562, 2019.

[116] G. Rosu and K. Havelund, “Rewriting-based techniques for runtime verifica-
tion,” Automated Software Engineering, vol. 12, no. 2, pp. 151–197, 2005.

[117] D. Ulus, T. Ferrère, E. Asarin, and O. Maler, “Online timed pattern matching
using derivatives,” Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9636,
pp. 736–751, 2016.

[118] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard, “Quan-
tified event automata: Towards expressive and efficient runtime monitors,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 7436 LNCS, pp. 68–84,
2012.

[119] A. Pnueli and A. Zaks, “On the merits of temporal testers,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 5000 LNCS, pp. 172–195, 2008.

[120] D. Basin, F. Klaedtke, and E. Zălinescu, “Algorithms for monitoring real-time
properties,” Acta Informatica, vol. 55, no. 4, pp. 309–338, 2018.

[121] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for temporal
logic robustness,” Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8734,
pp. 231–246, 2014.

[122] K. Havelund, D. Peled, and D. Ulus, “First-order temporal logic monitoring
with bdds,” Formal Methods in System Design, 2019.

https://doi.org/10.1109/MASS.2015.15
https://doi.org/10.1109/TCC.2021.3064292

Bibliography 137

[123] T. Zabinski, T. Maoczka, J. Kluska, M. Madera, and J. Sep, “Condition moni-
toring in industry 4.0 production systems - the idea of computational intelli-
gence methods application,” vol. 79, 2019, pp. 63–67.

[124] W. Zhang, M.-P. Jia, L. Zhu, and X.-A. Yan, “Comprehensive overview on
computational intelligence techniques for machinery condition monitoring
and fault diagnosis,” Chinese Journal of Mechanical Engineering (English Edi-
tion), vol. 30, no. 4, pp. 782–795, 2017.

[125] S. Aldegheri, N. Bombieri, S. Germiniani, F. Moschin, and G. Pravadelli, “A
containerized ros-compliant verification environment for robotic systems,”
in 2021 Design, Automation Test in Europe Conference Exhibition (DATE), 2021,
pp. 222–225. DOI: 10.23919/DATE51398.2021.9474167.

[126] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance
comparison of virtual machines and linux containers,” in 2015 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS),
2015, pp. 171–172. DOI: 10.1109/ISPASS.2015.7095802.

[127] NVIDIA, “Deep-learning inference networks and deep vision primitives with
TensorRT and NVIDIA Jetson,” https://github.com/dusty-nv/jetson-inference.

[128] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM sys-
tem for monocular, stereo and RGB-D cameras,” IEEE Transactions on Robotics,
vol. 33, no. 5, pp. 1255–1262, 2017. DOI: 10.1109/TRO.2017.2705103.

[129] A. Bosio, D. Menard, and O. Sentieys, Eds., Approximate computing techniques,
1st ed. Cham, Switzerland: Springer Nature, Jun. 2022.

[130] A. Sampson, A. Baixo, B. Ransford, et al., “Accept: A programmer-guided
compiler framework for practical approximate computing,” University of Wash-
ington Technical Report UW-CSE-15-01, vol. 1, no. 2, 2015.

[131] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm
for energy-efficient design,” in Proc. of IEEE ETS, 2013.

[132] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and
characterization of inherent application resilience for approximate comput-
ing,” in Proc. of ACM/IEE DAC, 2013.

[133] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approxi-
mate computing and the quest for computing efficiency,” in Proc. of ACM/IEE
DAC, 2015.

[134] W. Liu, F. Lombardi, and M. Shulte, “A retrospective and prospective view of
approximate computing,” Proceedings of the IEEE, vol. 108, no. 3, pp. 394–399,
2020.

[135] S. Mittal, “A survey of techniques for approximate computing,” ACM Com-
put. Surv., vol. 48, no. 4, 62:1–62:33, Mar. 2016, ISSN: 0360-0300.

[136] S. Barone, M. Traiola, M. Barbareschi, and A. Bosio, “Multi-objective application-
driven approximate design method,” IEEE Access, vol. 9, pp. 86 975–86 993,
2021. DOI: 10.1109/ACCESS.2021.3087858.

[137] S. Mitra, M. Das, A. Banerjee, K. Datta, and T.-Y. Ho, “A verification guided
approach for selective program transformations for approximate comput-
ing,” in Proc. of IEEE ATS, 2016.

[138] H. Foster, D. Lacey, and A. Krolnik, Assertion-Based Design, 2nd ed. USA:
Kluwer Academic Publishers, 2003.

https://doi.org/10.23919/DATE51398.2021.9474167
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/ACCESS.2021.3087858

138 Bibliography

[139] S. Mitra, M. K. Gupta, S. Misailovic, and S. Bagchi, “Phase-aware optimiza-
tion in approximate computing,” Proc. of ACM/IEEE CGO, pp. 185–196, 2017.

[140] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Man-
aging performance vs. accuracy trade-offs with loop perforation,” in Proc. of
ACM ESEC/FSE, 2011.

[141] K. Nepal, Y. Li, R. Bahar, and S. Reda, “Abacus: A technique for automated
behavioral synthesis of approximate computing circuits,” in Proc. of ACM/IEEE
DATE, 2014.

[142] M. Barbareschi, S. Barone, A. Bosio, J. Han, and M. Traiola, “A genetic-algorithm-
based approach to the design of DCT hardware accelerators,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 18, no. 3, pp. 1–25, Jul. 2022.
DOI: 10.1145/3501772. [Online]. Available: https://doi.org/10.1145/
3501772.

[143] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate arithmetic
circuits: A survey, characterization, and recent applications,” Proceedings of
the IEEE, vol. 108, no. 12, pp. 2108–2135, 2020.

[144] W. Liu, T. Cao, P. Yin, et al., “Design and analysis of approximate redundant
binary multipliers,” IEEE Transactions on Computers, vol. 68, no. 6, pp. 804–
819, 2018.

[145] V. Mrazek, L. Sekanina, and Z. Vasicek, “Libraries of approximate circuits:
Automated design and application in cnn accelerators,” IEEE Journal on Emerg-
ing and Selected Topics in Circuits and Systems, vol. 10, no. 4, pp. 406–418, 2020.
DOI: 10.1109/JETCAS.2020.3032495.

[146] X. F. M. Ye and S. Wei, “Runtime hardware security verification using ap-
proximate computing: A case study on video motion detection,” in Proc. of
IEEE AsianHOST, 2019.

[147] Y. M. K. Yoshisue and T. Ishihara, “Dynamic verification of approximate com-
puting circuits using coverage-based grey-box fuzzing,” in Proc. of IEEE IOLTS,
2021.

[148] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

https://doi.org/10.1145/3501772
https://doi.org/10.1145/3501772
https://doi.org/10.1145/3501772
https://doi.org/10.1109/JETCAS.2020.3032495

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Introduction to assertion-based verification
	Assertion-based verification techniques
	Specification languages
	Distributed systems and the Edge-to-Cloud computing paradigm

	Objectives
	Verification tools

	Formalisation of specifications and offline verification: MIST
	Introduction
	Related work
	Methodology
	Formalisation of specifications
	High-level Formalisation
	Low-level Formalisation
	Type system
	Testbench generation

	Checker synthesis
	Test plan generation
	Unguided test plan generation
	Guided test plan generation

	Simulation setup
	Setup
	Report

	Experimental results
	Case study
	Results

	Assertion mining: HARM
	Introduction
	Related work
	Preliminaries
	HARM architecture
	Instantiation of placeholders
	Evaluation function
	Assertion mining
	The DT algorithm
	3-level parallelisation

	Qualification
	Mining assertions containing non-boolean expressions
	Extraction of interesting values
	Clustering of interesting values

	Experimental results
	Fault coverage
	Scalability
	Multi-threading evaluation
	Applying the context-based approach
	Evaluation of assertions with non-boolean variables
	Assertion effectiveness
	Comparison of the clustering algorithms

	Bug explanation: COME & BECAUSE
	Introduction
	Related work
	COME
	Threat model
	Preliminaries
	Methodology
	Symbolic simulation and labelling
	Symbolic tree abstraction
	Generation of the augmented symbolic tree
	Generation of the abstract symbolic tree
	Sequences building
	Generation of ``good" and ``bad" sequences
	Assertions generation
	Generation of disabled behaviors
	Sequences filtering

	Simulation results
	Memory protection mechanism
	Safety control mechanism

	BECAUSE
	Preliminaries
	Methodology
	Trace Extraction
	Cone of influence generation
	Instruction clustering

	Bug explanation with temporal assertions
	Time flow
	Trace extraction
	Trace decoration

	Experimental results

	Runtime verification: CARMINE
	Introduction
	Related works
	Problem statement
	Verification architecture
	Checker synthesis
	Assertion grammar
	Checker evaluation function
	Synthesis of the evaluation function

	Checker handler

	Checker containerisation
	Checker run-time management
	Architecture and workflow of the orchestrator
	Computation of the optimal allocation
	Checker migration
	Mending the worst-case scenario

	Experimental Results
	Case Study 1: synthetic benchmark on a three-level cluster
	Case Study 2: autonomous mobile robot for a smart manufacturing line

	Design Exploration for Approximate Computing: DEA
	Introduction
	Related work
	Methodology
	Trace generation
	Assertion mining
	Assertion evaluation and AT ranking

	Case Study
	Functional accuracy
	Area and power saving

	Conclusions
	MIST
	HARM
	COME and BECAUSE
	CARMINE
	DEA

	Bibliography

