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Sommario

I problemi inversi sono il modello naturale per l’analisi di molte applicazioni del mondo
reale. Esempi tipici sono la risonanza magnetica (MRI), la tomografia computerizzata a
raggi X (CT) e problemi di recupero delle immagini. Un problema inverso consiste nel
ricostruire una sorgente sconosciuta da osservazioni limitate e potenzialmente distorte.
Le cosiddette tecniche “data-driven” per risolvere i problemi inversi sono diventate popo-
lari negli ultimi anni grazie alla loro efficacia in molti scenari pratici. Tuttavia, ad oggi
sono state fornite poche garanzie teoriche sul loro funzionamento. Questo manoscritto si
propone di colmare queste lacune procedendo lungo diverse direzioni chiave.

Gli approcci data-driven sono state oggetto di attenzione poiché richiedono meno co-
noscenze a priori. Nel primo lavoro, proponiamo e studiamo un approccio di Statistical
Learning, basato su Empirical Risk Minimization (ERM), per determinare parametri a par-
tire da esempi. Il nostro principale contributo è un’analisi teorica che dimostra come, se
il numero di esempi è abbastanza grande, questo approccio sia ottimale ed adattattivo
al livello di rumore e alla regolarità della soluzione. Mostriamo l’applicabilità del nostro
framework a una vasta classe di problemi inversi, inclusi i metodi di regolarizzazione spet-
trale e le norme che promuovono sparsità. Simulazioni numeriche supportano e illustrano
ulteriormente i risultati teorici.

Inoltre, introduciamo un approccio data-driven per costruire operatori (fortemente)
nonespansivi. Presentiamo l’utilità di tale tecnica nel contesto dei metodi Plug-and-Play,
in cui un operatore prossimale in algoritmi classici come Forward-Backward Splitting o
l’iterazione primale-duale di Chambolle–Pock viene sostituito da un operatore che mira ad
essere fortemente nonespansivo. Stabiliamo un rigoroso quadro teorico per imparare tali
operatori utilizzando un approccio ERM. Inoltre, deriviamo una soluzione che è garantita
essere fortemente nonespansiva e affine a tratti nell’inviluppo convesso del training set.
Dimostriamo che questo operatore converge alla migliore soluzione empirica aumentando
il numero di punti all’interno dell’inviluppo. Infine, proponiamo una strategia di imple-
mentazione pratica e un’applicazione nel contesto dell’image denoising.

Spesso, i problemi data-driven si scontrano con la sfida di affrontare problemi di di-
mensione infinita. I teoremi di rappresentazione, introdotti nel contesto dei metodi kernel
e recentemente estesi allo studio di problemi variazionali generali, possono essere applica-
ti per affrontare questa questione. Questi teoremi caratterizzano le soluzioni di problemi
di dimensione infinita come una combinazione convessa finita di un numero limitato di
“atomi”. In casi specifici, si può dimostrate che questi atomi sono i punti estremali di
una palla unitaria specifica. In questo contesto, contribuiamo caratterizzando l’insieme
dei punti estremali della palla unitaria delle funzioni Lipschitziane in spazi metrici finiti.
Di conseguenza, verrà fornito un teorema di rappresentazzione in questa impostazione,
generalizzando il cosiddetto Teorema di Minkowski-Carathéodory a spazi di dimensione
infinita.
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Abstract

Inverse problems serve as a general playground for analyzing many real-world applica-
tions. Typical examples are MRI, X-Ray CT, and image recovery. An inverse problem
involves reconstructing an unknown source from limited and possibly distorted observa-
tions. The so-called data-driven techniques for solving inverse problems have become
popular in recent years due to their effectiveness in many practical scenarios. Yet, few
theoretical guarantees have been provided to date. This manuscript aims to bridge this
gap in several key directions.

Data driven approaches have gained attention since they require less prior knowledge.
First, we propose and study a statistical machine learning approach, based on Empirical
Risk Minimization, to determine the best regularization parameter given a finite set of
examples. Our main contribution is a theoretical analysis, showing that, if the number
of examples is big enough, this approach is optimal and adaptive to the noise level and
the smoothness of the solution. We showcase the applicability of our framework to a
broad class of inverse problems, including spectral regularization methods and sparsity-
promoting norms. Numerical simulations further support and illustrate the theoretical
findings.

Moreover, we introduce a data-driven approach for constructing (firmly) nonexpan-
sive operators. We present the utility of such a technique in the context of Plug-and-Play
methods, where one proximal operator in classical algorithms such as Forward-Backward
Splitting or the Chambolle–Pock primal-dual iteration is substituted by an operator that
aims to be firmly nonexpansive. We establish a rigorous theoretical framework for learn-
ing such operators using an ERM approach. Further, we derive a solution that is ensured
to be firmly nonexpansive and piecewise affine in the convex envelope of the training data.
We prove that such an operator converges to the best empirical solution when increasing
the number of points inside the envelope. Finally, we propose a practical implementation
strategy and an application in the context of image denoising.

Often, data-driven approaches require to deal with infinite-dimensional problems.
Representer theorems, introduced in the context of kernel methods, and recently extended
for studying general variational problems, can be applied for tackling this issue. These
theorems characterize solutions of infinite-dimensional problems as a finite convex com-
bination of a limited number of “atoms”. In specific cases, these atoms can be shown to be
the extreme points of a specific unit ball. In this setting, we contribute by characterizing
the set of extreme points of the Lipzchitz unit ball in finite metric spaces. Consequently, a
representer theorem in this setting will be provided, generalizing the so-called Minkowski-
Carathéodory Theorem to infinite-dimensional spaces.

x



Acknowledgements

First, I would like to thank Dr. Curzio Basso and Prof. Silvia Villa, who gave me the
unique opportunity to do this PhD Thesis within the TraDE-OPT ITN project. Notwith-
standing this, they also brightly guided and helped me through this beautiful hike which,
like most of the ones one may find here, in Liguria, has been full of ups and downs. But
always, always, close to the sea. I also want to thank them for the immense patience
that they have had with me, almost infinite. I can say, without a doubt, that they always
trusted in me and gave me their sincere help and honest opinion in any of the doubts I
have had during these three years. In a more personal note, I would particularly like to
thank Silvia. For showing me, not only mathematics, but also what it really means to be a
researcher. For her patience. For her time. For her never-ending energy. For the advises.
For her bright sense of humor, which gave me tons of laughs. For opening me the doors of
her house and her family. Thank you, Silvia!

Next, I would like to thank both Lorenzo Rosasco and Ernesto de Vito, both experts
and worldwide known researchers in the areas of Machine Learning and Inverse Problems,
and with whom I had the pleasure to deepen my knowledge in these subject.

I would also like to thank Gaspare Piemontese and Lara Provenzano, from Camelot,
and Giulia Casu and the recent but impressive sign of Nathalie Baxs, from MaLGa. In a
world full of anger and stress, they have all helped me in everything I needed throughout
these almost four years. Bureaucracy has never been my main strength, and they have
always been open to help, always with the best manners and kindness. I am convinced
that, without the help of such great, not only professionals, but also human beings, my
stay in this country would have been, for sure, more difficult. Thank you all!

Quisiera también dar las gracias a Cesare Molinari, por estar presente desde el princi-
pio de mis días en Génova. Cesare fue, y es, una persona con quien siempre pude contar y
en quien siempre pude confiar independientemente de lo que necesitara. Además, Cesare
fue quien me introdujo en varios de los temas de los que trata este manuscrito: Optimiza-
tión Convexa y Problemas Inversos y, no en menor importancia, quien me enseñó también,
a su particular manera, la ciudad de Génova y muchos (o casi todos) de sus secretos (tam-
bién llamados ’vicoli’ en italiano). En resumen, puedo decir, sin lugar a dudas, que de esta
ciudad me llevo un amigo con un corazón gigantesco.

This beautiful path started with other three people: Cristian Vega, Cheik Traoré and
Marco Rando. We four started together and lived, always together, this tremendously
large and steep hike. We were there when it was needed, helping each other and trying
to push the best out of us. Without competitions or childish moves. Always with honesty
and friendship. Thank you guys, for everything. Really!

En particular, Cristian no ha sido solo un compañero de trabajo. Cris ha sido un amigo.
Mi mano derecha, el hombro en el que siempre me apoyé cuando estuve jodido. Quien

xi



xii

me escuchó en mis peores momentos: esos en los que a nadie le apetece escucharte. Cris
con sus puntos de vista particulares y nuevos. Cris con su manera de contar las cosas, de
expresarse, de sentir y de ser. Cris. Siempre Cris. Cris fue, y es, también, mi compañero de
piso. A quien desperté tantas mañanas con mi molinillo de café y que siempre aguantó mis
manías y estrés con el orden extremo. Cris nunca se quejó y eso también se lo agradezco.
Mi confidente, mi hermano mayor. Gracias, Cris. Te quiero!

Questi quasi quattro anni in Italia sono stati pieni di bei momenti vissuti con delle
persone fantastiche. Persone che ho avuto l’infinito piacere di conoscere sia fuori che den-
tro MaLGa. Con loro ho condiviso momenti pieni di risate, buon cibo, mare, vicoli, tor-
tillas, arepitas, birre, amari. . . Per questo e altri motivi, volevo ringraziare Elena, Alessan-
dro, Andrea, Francesco, Matteo Monti, Matteo Levi, Paolo, Giacomo, Noemi, Bastiano,
Rosanna, Luca Ratti, Nicola, Marco Letizia, Vassi, Edoardo, Massimiliano, Vito, Pietro,
Emilia, Simone Sanna, Matteo Santacesaria, Francesca, Simone di Marino, e anche i miei
francesi del cuore Antoine, Mathurin, Romain, Hippolyte e Nicolas. Non meno importanti
sono i miei colleghi di calcetto, e alcuni anche di Dipartimento (DIMA) Andrea Poggio,
Stefano, Larbi, Giovani Minuto, Francesco Zerman, Luis, Jack, Javier, Laura,... E a Bea.
Per arrivare nel momento giusto. Per gli aperitivi e le risate. Grazie davvero a tutti, di
cuore.

An important part of these three years was my stay in the beautiful city of Graz, in
Austria, where I lived for a total of seven months, in two different periods. Both of the
periods where scientific internships under the supervision of Prof. Kristian Bredies, from
the University of Graz. I would like to thank him for his time. For all of the days where I
knocked at his door with a pletora of questions, which he always answered with patience
and calmness. For the ideas. For all the discussions about his point of view in research and
science in general. For his passion for mathematics. For the personal discussions about
present and future. Thank you, Kristian!

During my first period in Graz, I shared appartment with Emanuele Naldi, Ema. At
some point I thought that this was not going to happen, but in the end we managed to
organize and coordinate to share the same period together in Graz. With him, and also
with Rodolfo and Enis, I learned the Italian I know, but not only. With all of them four I
had fun like a kid. We cooked pizza, desserts and handmade pasta. We drunk tons of wine
and beer. We discussed about math and politics and economics and love and passion for
what we do or we don’t do and many other things. We became friends from the beginning
and I learned a lot from each of them. From the very first day. I have to say that this has
to be seen as luck. I don’t see any other way. Four is already a number of people where
things could not go well. But they did. They really did. In Graz I also met Lisi. The amaz-
ing Lisi. An unbelievable human being with whom I had the pleasure to share hundreds
of hours, weirdly cooked cakes that made us laugh without control, parties, dinners and
many other things. I will never forget any of them. I have no doubt.

A Carlos. Mandando cartas desde su trinchera particular. Por su paz. Y por transmi-
tirmela. Por Chipre y por Bari. Por aquel penúltimo ron con el Atlántico de fondo. Porque
queda al menos uno más. A su familia también, Javi, Manolo y Maria José, por acogerme
cuando tocaba. Por hacerme sentir uno más. Por mostrarme su Madrid. A Isabel, por sus
Jonathan en mayúsculas, por las infinitas risas hasta la lágrima. Por estar siempre, pero
sobre todo en lo malo. A su familia también, Maribel y Antonio. Por su amabilidad eterna.
Y a Troy, mi fiel compadre Troy. Por todos y cada uno de esos viajes. Y por los que nos
quedan también. Por los vinos y las recetas. Por ese ritmo pausado que tanto nos define.



xiii

Doy gracias a la vida por ese regalo que me dio Madrid y no me ha robado aún. Y ya me
queda para siempre.

A mis compañeros del LOL, Julio, Sergio, Pablo y, a veces, Pedro. Por las infinitas horas
en llamada. Por escucharme, a su manera, cuando lo necesité. Por las discusiones. Por las
cervezas en La Concepción. Por las risas también. Sobre todo por las risas. A mis amigos
de siempre: Alba, Elisa, Isabel y Coki, que siguen a mi lado, como de costumbre. A Bruno
y Ayarith, por los cafés, los juegos de mesa, las discusiones y las risas. Por su calma. Por su
espacio y por su tiempo. Por acompañarme también. A Cristo, mi viejo amigo Cristo. Que
aunque pasen los años parece que nada cambió. Por mi primer viaje en moto en Tenerife,
por no dejar nunca de ser como es. Por creer en él mismo y en mí, a pesar de todo. Gracias
a todos, por estar.

Gracias a mi mafia. A Pedro, Héctor y Amine. Los que me llevo a todas partes. Hasta
el fin del mundo. Gracias por ser mi norte. Y mi sur también cuando tocaba. Por es-
cucharme. Por decirme lo que tenía que escuchar, no lo que quería. Por venir a verme
cuando pudieron. Por las birras. Por los guachinches y las playas. Por los conciertos. Por
todos esos momentos en genera. Por las risas también, infinitas. Por ser los hermanos que
nunca tuve. Por ser, chicos. Gracias.

A la casa Amine y a las de dentro: Soheila, Alma y Amine, mi negra. Por las charlas
eternas. Por los almuerzos y las cenas. Por los cafés. Por ser la familia postiza perfecta.
Por los consejos y las risas. Por los libros y los poemas. Por acompañarme y escucharme
en este camino tan especial. Por su amor. A pesar de todo, por su amor. Por indicarme el
camino cuando hizo falta. Por todos estos años y los que quedan. Siempre. Gracias.

Finalmente, a Maribel. mi madre. Mi luz. El motivo por el que estoy donde estoy. Mi
causa y mi consecuencia. Quien me empuja, me acompaña y me apoya. Quien me aguanta
cuando no estoy bien. Siempre a mi vera. And to Peter, for the laughs and conversations.
For the coffe and the football. For being there when most needed. For being a key element
in my life in the past years.





Table of Contents

1 Introduction 1
1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11
2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Proximal operators and set-valued maps . . . . . . . . . . . . . . . . 15
2.2.2 Bregman divergence and Legendre functions . . . . . . . . . . . . . . 17
2.2.3 Extreme Points and Minkowski–Carathéodory Theorem . . . . . . . . 19

2.3 Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Ill-posed (linear) inverse problems . . . . . . . . . . . . . . . . . . . 20
2.3.2 Regularization of inverse problems . . . . . . . . . . . . . . . . . . . 23

3 On Learning the Optimal Regularization Parameter in Inverse Problems 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Learning one parameter functions . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Spectral regularization for linear inverse problems . . . . . . . . . . . . . . 34
3.4 Tikhonov regularization for non linear inverse problems . . . . . . . . . . . 38
3.5 General variational approaches for linear inverse problems . . . . . . . . . . 42

3.5.1 Sparsity inducing regularizers . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Legendre Regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1 Spectral regularization methods . . . . . . . . . . . . . . . . . . . . . 48
3.6.2 Sparsity inducing regularizers . . . . . . . . . . . . . . . . . . . . . . 52

4 Learning Firmly Nonexpansive Operators 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 The spaces Lip0(X )Lip0(X )Lip0(X ) and Lip(X )Lip(X )Lip(X ) . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Properties of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Learning firmly nonexpansive operators . . . . . . . . . . . . . . . . . . . . 64
4.3.1 A general problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 The statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Simplicial partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.4 Piecewise affine nonexpansive operators . . . . . . . . . . . . . . . . 72
4.3.5 A density result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Convergent PnP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Image denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xv



xvi TABLE OF CONTENTS

5 On extreme points and representer theorems for the Lipschitz unit ball on
finite metric spaces 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Representer theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusions 93
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

References 95



CHAPTER 1

Introduction

1.1 General context

An inverse problem consists in recovering a solution u∗ from a set of linear measurements
Au∗, where A is an operator modelling the measurements acquisition process. This task
appears in a broad range of practical problems in engineering, signal processing, medical
imaging or computer vision. For instance, in signal processing, one often wishes to re-
cover a signal from possibly noisy distorted observations. In medical imaging, Magnetic
Resonance Imaging (MRI) or X-ray computed tomography (CT) are typical and give rise
to such observations. More generally, image restoration problems, which consist in recon-
structing degraded images, also fit into this framework (we refer the reader to [16, 64]
for more examples). In mathematical terms, an inverse problem can be written as

x = Au∗ + ε, (1.1.1)

where x denotes the available measurements and ε is a deterministic quantity modelling
the possible presence of noise in the observations. The task of finding u∗ from the knowl-
edge of x becomes hard when the problem is ill-posed. In general, a problem is said to be
ill-posed whenever (i) solutions do not exist, (ii) solutions are not unique, or (iii) solutions
do not depend continuously on the data. For instance, ill-posedness corresponds in our
case to the matrix A not being injective (since the inverse would not exist), or having an
inverse with large norm. Regularization theory [15, 64] offers a systematic way to address
ill-posedness by providing stable approximations of the inverse. A classical approach for
restoring well-posedness is based on finding solutions of the following variational problem

min
u

ℓ(Au, x) + λR(u), (1.1.2)

for some λ ∈ (0,+∞). The term ℓ(A·, x) is known as the data-fitting term, and constraints
the solution to remain close to the available measurements. The function R : U → (0,+∞],
referred to as the regularization function, incorporates prior knowledge about the solution
into the problem formulation. For instance, R could be designed in such a way that the
values of R(u) are low if u has approximately the same structure as u∗ (e.g., is sparse,
low-rank, etc.), and high otherwise. Finally, the scalar λ ∈ (0,+∞) is known as the reg-
ularization parameter. This parameter allows to choose the relative importance of the
data-fitting term and the regularization function, thereby influencing the quality of the
recovery results. In addition, for fixed ℓ and R, solutions of (1.1.2) should converge to u∗

for a suitable choice of λ = λ(∥ε∥) → 0 as ∥ε∥ → 0. Consequently, a proper selection of the
regularization parameter is essential for achieving optimal reconstruction outcomes. To
this day, selecting an appropiate R and a suitable regularization parameter remain chal-
lenging problems.

1



2 1. INTRODUCTION

The above strategy for solving inverse problems can be viewed as a model-based tech-
nique, relying on a mathematical model with well-established properties. For instance,
variational methods have for a long time achieved state-of-the-art results [118] in imag-
ing problems. The design of refined regularization terms (e.g. Total Variation [115]
or Total Generalized Variation [29]) contributed to achieve remarkable practical perfor-
mances, while additionally providing robust theoretical guarantees. Notwithstanding this,
data-driven methodologies have gained significant attention in recent years, since they
demonstrate improved performance in various practical scenarios while overcoming some
challenges of classical methods (see [5] and references therein). The starting point of
data-driven approaches is the assumption that a finite set of pairs of measurements and
exact solutions (x̄1, ū1), . . . , (x̄n, ūn), n ∈ N, is available. This training set is then used to
define, or refine, a regularization strategy to be applied to any future observation x̄new,
for which an exact solution is not known. Here, we will focus on studying data-driven
approaches that maintain a fixed underlying variational model, and learn particular ele-
ments therein. We list below some relevant examples:

• In the variational model (1.1.2), we fix the regularizer R and we aim to learn the
regularization parameter λ ∈ (0,+∞) from the given training set. This approach is
based on the following bilevel optimization problem (see, for instance, [111, 97]).
Given a set Λ ⊂ (0,+∞), we select the regularization parameter as

λ̂ ∈ argmin
λ∈Λ

1

n

n∑
i=1

∥uiλ − ūi∥2U , (1.1.3)

where uiλ := uλ(x̄i) is such that

uλ(x̄i) ∈ argmin
u∈U

ℓ(Au, x̄i) + λR(u),

for some discrepancy ℓ (see [53, Chapter 3] and references therein). We then utilize
λ̂ as regularization parameter for subsequent instances of the same inverse problem:
given x̄new, we consider u

λ̂
(x̄new) as an approximation of ūnew. This approach will

be further developed in Chapter 3.

• The previous framework can be generalized by fixing instead regularizers R : U ×
Θ → (0,+∞], that are parametrized by a vector θ = (θ1, ..., θk) ∈ Θ ⊆ Rk, k ∈ N.
The variational model in this cases reads as

min
u∈U

ℓ(Au, x) +R(u, θ).

Here, the objective is to learn the vector of parameters θ. Neural Networks that are
parametrized by a large set of scalars have been considered, e.g. the Total Deep
Variation [96]. A similar approach to the one defined above can be used to find the
optimal θ given a finite training set of input/output pairs.

• Finally, an intriguing recent approach involves learning the entire regularization
function R without assuming any prior structure on it. A relevant example can be
found in the case where the training set is relative to the denoising problem (A is
equal to the identity). If the fidelity term ℓ in (1.1.2) is given by the squared norm,
ℓ(x, x′) := 1

2∥x − x′∥2X for every x, x′ ∈ X , a possible approach is to learn directly
the proximal operator of R, since finding solutions of the variational problem

min
u

1

2
∥u− x∥2X +R(u),



1.2. MOTIVATION AND CONTRIBUTIONS 3

amounts to find elements u ∈ U such that u = proxR(x). Motivated by the denoising
property of proximal operators, the so-called Plug-and-Play (PnP) methods [138]
aim to learn instead the best “denoiser” T ∗ such that u = T ∗(x). Further, this oper-
ator can then be plugged into any first-order minimization algorithm as a substitute
of the proximal map. A possible approach for tackling the problem of learning T ∗ is
to find instead

T̂ ∈ argmin
T∈M

1

n

n∑
i=1

∥T (x̄i)− ūi∥2X , (1.1.4)

over the space M of firmly nonexpansive operators [13]. By constraining T̂ to be
firmly nonexpansive, we ensure that PnP algorithms converge to a fixed point, see
[107]. This problem will be further studied in Chapter 4.

A key observation is that the constrained optimization problem (1.1.4) is defined on an
infinite-dimensional space, and hence, it remains somewhat unclear how classical first-
order optimization algorithms could be practically implemented. Representer theorems,
introduced in the context of kernel methods [119], serve as a natural tool for tackling
this issue. In short, a representer theorem enables to write solutions of problems such as
(1.1.4) as a convex combination of a finite number of atoms. Consequently, the problem
of finding the best operator in an infinite-dimensional space can be reduced to the finite-
dimensional problem of finding the right weights for each atom. In Chapter 5, we provide
a representation result that can be further applied for solving (1.1.4) in a particular frame-
work.

In this manuscript, we aim to develop the theory for the above mentioned problems
in two primary directions: first, to provide theoretical support for data-driven parameter
selection methods, and second, to design a data-driven approach for constructing firmly
nonexpansive operators with theoretical guarantees. Additionally, we will provide a char-
acterization to the extreme points of the Lipschitz unit ball in finite metric spaces. Further
connections between extreme points and representer theorems will be provided. Next, we
describe the main motivations and contributions of the thesis.

1.2 Motivation and contributions

We now briefly describe the content of the three main works in this manuscript. We
start by introducing the problem of learning the best regularization parameter in inverse
problems.

Learning the regularization parameter

Let (X , ⟨·, ·⟩X ) and (U , ⟨·, ·⟩U ) be real and separable Hilbert spaces, with x ∈ X and u∗ ∈ U
representing the measurement/solution pair given by the deterministic inverse problem
stated in (1.1.1). As we mentioned above, in order to find stable approximations of u∗, a
regularization perspective is essential. Towards this end, we consider a family of regular-
ization operators uλ : X → U parametrized by the positive scalar λ ∈ (0,+∞). Ideally, for
some given discrepancy ℓ, a proper choice of the regularization parameter λ should allow
to optimally control the error ℓ(uλ(x), u∗).

Strategies such as the Morozov discrepancy principle [104] or the balancing principle
[99, 132] were extensively studied in the past and rely on prior knowledge about the noise
level ∥ε∥. However, this information is often unavailable in many practical scenarios. Mo-
tivated by this challenge, subsequent studies have focused on providing parameter choice
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rules that solely depend on the measurements x. For instance, we mention generalized
cross validation [73, 139] or the quasi-optimality criterion [130, 131]. An exhaustive in-
troduction to parameter choice rules will be given in Section 2.3.1.

In this work, we aim to analyze a particular class of heuristic rules that has gained
attention in recent years: the so-called data-driven parameter selection methods described
above. Although these approaches have demonstrated significant success in practice (as
shown in [33, 34, 88, 97, 111]), limited convergence guarantees have been established to
date. The theoretical analysis we conduct is grounded on the following observations:

• Transition to a stochastic perspective: thus far, we have considered the determin-
istic perspective of inverse problems. In this context, the so-called Bakushinskii veto
[8] dictates that no family (uλ)λ>0 can serve as a convergent regularization method
if the regularization parameter λ does not depend on the noise level ∥ε∥; i.e., there
is no hope to show that uλ(x) → u∗ as λ → 0. Consequently, providing convergence
guarantees for data-driven approaches within this framework seems infeasible. It
therefore seems reasonable to pivot towards a stochastic setting for inverse prob-
lems: consider the model

X̄ = A(Ū) + ε (1.2.1)

where both X̄ and Ū are random variables taking values in X and U respectively.
Here, ε ∈ X is an additive random variable modelling the noise and A : U → X
defines the forward operator, not necessarily linear. This stochastic perspective has
already been explored for yielding provably convergent parameter selection meth-
ods, see [11].

• Empirical Risk Minimization (ERM) paradigm: the bilevel formulation for se-
lecting the regularization parameter that was stated in (1.1.3) closely resembles
a classical regression problem within the context of Supervised Learning [54, 137].
Specifically, it aligns with the well-established theory of ERM. This approach is based
on the assumption that the probability distribution of the pair (X̄, Ū) is inaccessible,
but a finite set {(X̄i, Ūi)}ni=1, n ∈ N, of independent copies of (X̄, Ū) is available. By
fixing a regularization method Ūλ = Ūλ(X̄) and a loss function ℓ : U × U → [0,∞),
we define λ̂Λ as the minimizer of the empirical risk

λ̂Λ ∈ argmin
λ∈Λ

L̂(Ūλ), L̂(Ūλ) :=
1

n

n∑
i=1

ℓ(Ūλ(X̄i), Ūi)

within a set of parameters Λ ⊆ (0,+∞). To perform the theoretical analysis, we
borrow ideas from the literature of model selection in statistics and machine learning
[60, 75], particularly adapting concepts from [36].

We next outline the primary contributions of this work.

1. We provide a general theoretical analysis that shows that, if E[ℓ(Ūλ, Ū)] ≤ Φ(λ) for
some function Φ and for any λ ∈ (0,+∞), then the ERM approach for learning the
regularization parameter can essentially achieve the same performance as the one
by the optimal a-priori choice, up to an error term which decreases with the size of
the training set. This result is expressed as follows: given η ∈ (0, 1), with probability
greater than 1− η,

E[ℓ(Ū
λ̂Λ
, Ū)] ≲ Φ(λ∗) +

log(|Λ|/η)
n

,

where λ∗ is a minimizer of Φ and |Λ| denotes the cardinality of the set Λ.
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2. We show that the scheme presented above can be applied to a broad class of inverse
problems. For linear inverse problems in Hilbert spaces, we investigate spectral reg-
ularization methods and variational approaches with general convex regularizers.
Specifically, we show that the above result is valid for Legendre regularizers [12]
and sparsity-promoting regularization functions [7] in the finite-dimensional set-
ting. In addition, we consider non-linear inverse problems in Hilbert spaces and the
corresponding Tikhonov regularization [64, Chapter 10].

3. We support the theoretical analysis through numerical experiments, showing the
validity of the derived probabilistic bounds for some of the examples mentioned
above. We study the cases of Tikhonov and Landweber regularization [64] in a syn-
thetic context, signal denoising and signal deblurring with ℓ1 regularization [129],
and Total Variation regularization [115] for solving an image denoising problem.

Next, we introduce the problem of learning firmly nonexpansive operators.

Learning firmly nonexpansive operators

The focal point of this work is to consider the denoising problem, where we set X = U
to be a real and separable Hilbert space, and we fix the forward operator A equal to the
identity in (1.1.1). In essence, our objective is to construct an operator T ∗ functioning as
a denoiser: given x ∈ X , T ∗ should output a denoised version of x, T ∗(x), that is close, in
some sense, to u∗. As previously discussed, classical approaches involve considering the
variational model stated in (1.1.2), with R being a proper, convex and lower semicontinu-
ous function that acts as a denoiser. Several regularization functions for tackling denoising
problems have been designed in the literature. Notable examples include Total Variation
regularization [38, 115] and its further higher-order generalizations [29, 28, 42]. Prior to
the advent of deep learning techniques, these methods represented the state-of-the-art for
addressing, for instance, image denoising problems. Next, we develop a different class of
methods that can be applied in the same context, and are naturally related to the so-called
Plug-and-Play (PnP) approaches.

A novel data-driven approach for solving denoising problems is based on the follow-
ing observation: finding solutions of (1.1.2) in this case amounts to find u ∈ U such that
u = proxR(x) for a given measurement x ∈ X . Consequently, it seems reasonable to
learn an operator T such that T = proxR for some unknown R. The latter approach for
learning the regularization operator is related to the so-called Plug-and-Play (PnP) meth-
ods. In short, a PnP algorithm substitutes the proximal map in general splitting algorithms
such as the Forward-Backward Splitting (FBS) algorithm [6, 50, 72], the Chambolle–Pock
primal-dual iteration (CP) [40] or other dual/primal-dual approaches [38, 49, 51], with a
general operator T that acts as a denoiser. This choice is motivated by the definition of the
proximal operator since, for a given input x ∈ X , proxR(x) outputs a denoised version of
x. The latter approach would, in some sense, solve two main paradigms that are faced in
classical approaches: it avoids choosing an appropriate regularizer R which, as we men-
tioned, is not an easy task, and it does not require to compute the proximal operator of a
convex function which, in general, does not have a closed-form expression.

PnP approaches have demonstrated remarkable empirical performance across a diverse
range of imaging applications [32, 61, 123, 127, 138] and, since then, several follow-up
works have been published. Notably, the BM3D method [55, 82, 123], although “hand-
crafted”, has been extensively employed within PnP approaches [93]. Denoising methods
based on deep learning techniques have gained attention in recent years [81, 102, 142].
However, theoretical guarantees for this class of methods remain limited. Before diving
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into a concise explanation to the term “theoretical guarantees” in this context, it is crucial
to highlight that, as we will explore, much of the effort to address the absence of theoret-
ical backing is based on the following rudimentary, yet reasonably accurate, notion:

Constructing proximal operators of convex functions is “equivalent” to constructing
nonexpansive operators.

Indeed, the above statement lacks precision, and we will later render it more mathemat-
ically rigurous (specifically in Chapter 2). However, constructing nonexpansive operators
is, in general, difficult [107], and consequently, many theoretical difficulties arise. Below,
we provide two particular consequences that serve as the main motivation of our work.

• Convergence guarantees. It has been observed that ensuring convergence guaran-
tees for PnP methods is often challenging due to the dependence on prior properties
of the denoiser. Some works have already studied the theoretical properties of de-
noising functions within the framework of first-order methods. Among them, we
mention [41], which proves convergence with a bounded denoiser, or [123, 128],
where they prove convergence for PnP Forward-Backward splitting (PnP-FBS) and
for PnP-ADMM assuming the denoiser to be nonexpansive. Additionally, authors in
[116] provide a convergence analysis for both PnP-FBS and PnP-ADMM under spe-
cific contractivity assumptions on the denoiser. However, enforcing a nonexpansivity
constraint, or more broadly, a Lipschitz constraint on Neural Networks [107] is chal-
lenging in practice. To restore more classical convergence guarantees, and inspired
by the fact that the proximal operator of a convex function is a firmly nonexpansive
operator, some authors have designed the denoiser as a Neural Network that aims
to be an averaged – or firmly nonexpansive – operator [85, 107, 121]. All of the
aforementioned studies exhibit promising practical results.

• Density results. Another significant motivation arises from the inherent infinite-
dimensional nature of the set of nonexpansive operators. As a result, a possible ap-
proach to tackle this issue in practice is to discretize this set. For example, method-
ologies relying on neural networks approximate this space using a vast array of
parameters. Consequently, several pertinent questions arise: How closely does the
discretized problem resemble its continuous counterpart? Is it possible to provide
any density results? Does the solution of the discretized problem converge to that of
its continuous counterpart?

The contributions of our work are described below:

1. We study and analyze the properties of the space of nonexpansive operators which,
we show, can be characterized as a subset of the dual of a suitable Banach space.
Leveraging this, we introduce a natural notion of weak* convergence. With these
tools, we provide a rigurous mathematical framework to address the problem of
learning an operator through a constrained minimization problem.

2. To construct nonexpansive operators, we adopt the same Statistical Learning ap-
proach that we followed for tackling the problem of learning the regularization pa-
rameter. We fix (X̄, Ū) to be a pair of random variables taking values in X . From
a theoretical standpoint, we aim at finding N∗, the minimizer of the expected risk,
within the set of nonexpansive operators,

N∗ ∈ argmin
N∈N

L(N), L(N) := E[∥N(X̄)− Ū∥2X ],

where

N := {N : X → X | ∥N(x)−N(x′)∥ ≤ ∥x− x′∥, for every x, x′ ∈ X}.
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By simply assuming that the pair (X̄, Ū) satisfies E[∥X̄∥2X + ∥Ū∥2X ] < ∞, we show
that N∗ exists. As before, we do not have access to the exact distribution of the pair
(X̄, Ū), but to a finite set {(X̄i, Ūi)}ni=1, n ∈ N, of independent copies of (X̄, Ū).
Then, the nonexpansive operator that approximates N∗ will be the minimizer of an
ERM problem over the space of nonexpansive operators:

N̂ ∈ argmin
N∈N

L̂(N), L̂(N) :=
1

n

n∑
i=1

∥N(X̄i)− Ūi∥2X . (1.2.2)

This operator can also be subsequently utilized for denoising future measurements
x̄new.

3. In the aforementioned setting, we prove that the ERM (1.2.2) Γ-converges, almost
surely, to the expected risk as the number of points in the training set goes to infinity.
This result holds significant importance as it implies, in particular, that if a sequence
of minimizers of the ERM, for every n ∈ N, is considered, then (up to subsequences)
it converges almost surely to N∗.

4. As previously mentioned, the class of nonexpansive operators is infinite-dimensional,
and a further discretization is required. To address this, we propose a discretization
for such a space via piecewise affine functions uniquely determined by simplicial
partitions, or triangulations, of the underlying space. This approach yields two main
consequences:

(i) We propose a constructive approach for designing an operator which will be
ensured to be piecewise affine and nonexpansive. With this, it is possible to
prove that classical minimization algorithms converge to a fixed point.

(ii) We establish a density result, showing that the class of considered approximat-
ing operators is actually large enough: we show that succesively finer triangu-
lations lead to a closer approximation to N̂ , minimizer of (1.2.2).

5. We provide a detailed explanation in Section 4.4 on how to design the PnP ver-
sions of some algorithms of interest and show their convergence by standard re-
sults: PnP Forward-Backward Splitting, PnP ADMM, PnP Douglas–Rachford, and
PnP Chambolle–Pock primal-dual iteration.

6. In order to solve the discretized problem in practice, an efficient algorithm must
be designed. We propose an algorithm that can work well in practice while having
strong theoretical guarantees. Specifically, we design a PnP Chambolle–Pock method
by making use of the Moreau’s identity. This approach also ensures interpretability
of the proposed method.

7. Finally, we evaluate our proposed method in imaging applications, particularly ad-
dressing the problem of image denoising. We conclude by comparing our learned
denoiser with classic Total Variation regularizers.

We finally describe the third work of this thesis, which tackles the problem of finding the
extreme points of the Lipzchitz unit ball and further consequences.

Extreme points and representer theorems for the Lipschitz unit ball

Let (X , ⟨·, ·⟩X ) and (U , ⟨·, ·⟩U ) be real Hilbert spaces. Denote by Lip the space of Lipschitz
functions f : X → U , and by LipM the space of Lipschitz functions with Lipschitz constant
M > 0. Recall that the space Lip is a Banach space with norm

∥f∥Lip := ∥f − f(0)∥Lip0 + ∥f(0)∥U ,
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where ∥·∥Lip0 stands for the smallest Lipschitz constant of f and ∥·∥U is the norm induced
by the inner product of U . In addition, given x0 ∈ X we denote by Lip0 as the space of
Lipschitz functions that vanish at x0 (it is often common to assume x0 = 0). The latter is
a Banach space with norm ∥ · ∥Lip0 . Finally, we denote by LipM0 its bounded analogue. A
detailed work about Lipschitz functions can be found in [140].

In the particular case where X = U is a real Hilbert space, the space Lip1 coincides
with the space of nonexpansive operators described in the section above. The main objec-
tive of this work to study certain structural properties of the bounded analogue Lip10. In
particular, we are interested in characterizing the set of its extreme points. We recall that,
given a convex set C, an extreme point of C is a point x ∈ C such that C \ {x} remains
a convex set. Next, we describe why such a result could be relevant, particularly in the
context of variational problems and optimization algorithms.

• Connection to optimization algorithms. Recently, it has been observed in [24, 25,
52] that an accurate characterization of extreme points can significantly enhance the
efficiency and speed of certain optimization algorithms, particularly the Conditional
Gradient Methods (CGM) [71, 91]. These methods, commonly used for constrained
optimization problems, are known to move along extreme points during iterations.
For instance, the ERM formulated in (1.2.2) is a natural example where CGM could
be applied.

• Representer theorems and dimensionality reduction. Another motivation for
studying such a characterization is drawn by the well-known representer theorems.
Originally introduced in the context of kernel methods [119] for Machine Learning,
these theorems enable expressing some solutions to certain optimization algorithms
as a finite convex combination of a few atoms. Recent works [19, 21, 43] explore
representation results for more general variational problems than (1.1.2). In our
case, we are interested in problems of the form

inf
u∈Lip1

F (Φu), or inf
u∈Lip

F (Φu) + λ∥u∥Lip0 (1.2.3)

where F is an arbitrary function, not necessarily convex nor differentiable, Φ is a
linear operator – mapping elements in U to a finite-dimensional space –, ∥u∥Lip0 is
the smallest Lipschitz constant of u, and λ ∈ (0,+∞) is the regularization parameter.
Authors in [19] prove that there are solutions of problem (1.2.3) that can be written
as a convex combination of a finite number of atoms.

Motivated by the so-called Minkowski–Carathéodory Theorem [87], it has been
shown that when the dimension of X is finite, (say dimX = d, d ≥ 1), these atoms
are the extreme points of the unit ball associated with the regularizer [63]. In our
constrained problem, this translates to the set Lip1, and in the unconstrained case,
{u ∈ U | ∥u∥Lip0 ≤ 1}. Consequently, for every u ∈ Lip1, there exist u0, ..., ud ex-
treme points of Lip1 and a vector of non-negative scalars α = (α0, ..., αd), with∑d

i=0 αi = 1, such that

u =

d∑
i=0

αiu
i.

Hence, finding solutions of (1.2.3) amounts to find the vector α ∈ Rd, satisfying
the conditions above, such that u ∈ Lip solves (1.2.3). This establishes a natural
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connection between extreme points and representation results. Moreover, recall that
the ERM described in (1.2.2) perfectly fits into this setting, where F ◦ Φ = L̂. The
study in [19] shows that some solutions to problem (1.2.3) in our scenario can be
expressed as a convex combination of finitely many extreme points of the Lipschitz
unit ball. However, such a characterization is lacking. Finally, it is worth mentioning
that Lipschitz-type constraints are increasingly relevant in the context of Plug-and-
Play regularization [116], monotone splitting algorithms [107], and unconstrained
variational problems like (1.2.3), see [58].

Providing a characterization of the extreme points of the Lipschitz unit ball has been
widely studied during the years. In particular, the case of real-valued functions f : X → R
has been analyzed to a large extent, see [48, 65, 110, 113, 114, 122], and more recently
in [2, 30], but, no information about the extreme points of the set Lip10 has been provided
in the more general case U ̸= R.

While the complete characterization of extreme points in Lip10 presents significant tech-
nical challenges, this work aims to partially address this gap by focusing on a specific and
intriguing framework. Our key contributions are:

1. We show that the extreme points of Lip10 can be characterized under specific con-
ditions. This characterization applies when U is a non-trivial, strictly convex real
Banach space and (X , d) a finite metric space with distinct points x0, . . . , xn, for
n ≥ 1.

2. We present a representation result for the space Lip10 within the same setting. As we
will see, this result generalizes the Minkowski–Carathéodory Theorem for infinite-
dimensional spaces.

1.3 Dissemination

Journal articles

This thesis collects the content of the following papers:

• Bredies, K., Chirinos Rodriguez, J. and Naldi, E. “On extreme points and representer
theorems for the Lipschitz unit ball on finite metric spaces”, Archiv der Mathematik,
2024, https://doi.org/10.1007/s00013-024-01978-y [26].

• Chirinos Rodriguez, J., De Vito, E., Molinari, C., Rosasco, L. and Villa, S. “On learning
the optimal regularization parameter in inverse problems”, 2023. In arxiv [46].

• Bredies, K., Chirinos Rodriguez, J. and Naldi, E. “Learning firmly nonexpansive op-
erators”. In preparation.

Talks and participation to conferences

• Regularization in a continuous setting, TraDE-OPT Winter School, February 2021.
Online.

• A Supervised Learning Approach to Regularization Methods, TraDE-OPT Summer School,
July 2021. Online.

• Learning Resolvent Operators, “Mathematical analysis and Applied Mathematics Sem-
inar”, April 2022. Universidad de La Laguna, La Laguna, Spain.

https://doi.org/10.1007/s00013-024-01978-y
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• A Supervised Learning Approach to Regularization of Inverse Problems, TraDE-OPT
Summer School, July 2022. UCL, Louvain-La-Neuve, Belgium.

• Learning Firmly Nonexpansive Operators, “International Conference on Optimization
and Decision Science”, September 2022. Università degli Studi di Firenze, Florence,
Italy.

• Learning Firmly Nonexpansive Operators, “Workshop on Mathematical Models for
Plug-and-play Image Restoration”, December 2022. Centre Culturel Irlandaise, Paris,
France.

• A Supervised Learning Approach to Regularization of Inverse Problems, “Conference on
Deep Learning for Computational Physics”, July 2023. UCL, London, England.

• A Supervised Learning Approach to Regularization of Inverse Problems, “Seminars
MDS”, October 2023. University of Twente, Enschede, Netherlands.

• On Learning the Optimal Regularization Parameter in Inverse Problems, “Journées
SMAI MODE 2024”, March 2024. ENS Lyon, Lyon, France.

1.4 Outline

In Chapter 2, we introduce the notation and the main tools and results that we use. In
particular, we introduce basic notions of Supervised Learning, Convex Analysis, and In-
verse Problems. In Chapter 3 we set the problem of learning the regularization parameter
in inverse problems, corresponding to [46]. Next, we dedicate Chapter 4 to the problem
of learning firmly nonexpansive operators. Finally, Chapter 5 is devoted to the characteri-
zation of extreme points of the Lipschitz unit ball in finite metric spaces, and corresponds
to [26]. We conclude this manuscript in Chapter 6, where we present the conclusions and
further directions.



CHAPTER 2

Preliminaries

In this chapter, we will introduce all the preliminary tools that will be needed throughout
the thesis. In particular, we fix the general notation that we will consider, and we recall
basic notions of Supervised Learning, Convex Analysis and Inverse Problems. First, we
introduce the general notation.

General notation

In the following, (X , ⟨·, ·⟩X ) denotes a real separable Hilbert space and X ∗ its topological
dual space. The space X its endowed with the norm ∥ · ∥X induced by the inner product;
i.e. ∥x∥X =

√
⟨x, x⟩. If X is finite-dimensional, then we assume that the associated norm

is the Euclidean one, ∥ · ∥2. Moreover, if (U , ⟨·, ·⟩U ) is also a real separable Hilbert space,
given a linear and bounded operator A : X → U , we denote by A∗ its adjoint operator
and, if A is injective, by A−1 its inverse. Moreover, we denote by σ(A) the spectrum of A
and by σ the elements of σ(A). With ∥ · ∥op we denote the operator norm; i.e.

∥A∥op := sup
∥x∥X=1

∥Ax∥U .

In the finite-dimensional case, we associate ∥A∥op = ∥A∥2; i.e. the maximum singular
value of the matrix A. We next fix some notation and recall basic results in the context of
probability theory.

Probability theory

In the following, (Ω,A, P ) will denote a probability space; i.e. a triple composed of the set
of events Ω, the σ−algebra A and the probability measure P defined on Ω. In addition, we
assume that, given a Hilbert space X , it is endowed with the Borel σ− algebra B; i.e. the
smallest σ−algebra that contains the open sets of X . We say that a function X̄ : Ω → X is
measurable if, for every B ∈ B, we have

X̄−1(B) = {ω ∈ Ω | X(ω) ∈ B} ∈ A.

If X = R, then we say that X̄ is a random variable. Moreover, we say that a property E
holds almost surely (abbreviated as a.s.) whenever

P ({ω ∈ Ω | E holds }) = 1.

The latter concept will constantly appear along the thesis. In particular, whenever random
variables are into play, properties must be understood in the almost sure sense, whether
or not it has been explicitly mentioned. We finally recall some basic results in probability
theory, which are typically known as concentration inequalities, and will be further used
in the context of Statistical Learning theory.

11
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Proposition 2.1. ([54, Proposition 2] and [36, Proposition 11]) Let Z̄1, . . . , Z̄n, n ∈ N, be a
sequence of i.i.d. random variables with mean E[Z̄i] = µ, µ > 0, and variance E[|Z̄i −µ|2] ≤
σ2 for every i = 1, ..., n. We have that

• (Bernstein ineq.) If there exist B > 0 such that |Z̄i − µ| ≤ B a.s., then for all ε > 0
we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Z̄i − µ

∣∣∣∣∣ ≥ ε

)
≤ 2e

− nε2

2(σ2+
1
3Bε) . (2.0.1)

• (Hoeffding ineq.) If there exist B > 0 such that |Z̄i − µ| ≤ B a.s., then for all ε > 0
we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Z̄i − µ

∣∣∣∣∣ ≥ ε

)
≤ 2e−

nε2

2B2 . (2.0.2)

• If there exists B > 0 such that |Z̄i| ≤ B a.s. for every i = 1, ..., n, then for all α, ε > 0
we have that

P

(∣∣∣∣∣ 1n
n∑

i=1

Z̄i − µ

∣∣∣∣∣ ≥ ε+ ασ2

)
≤ 2e

− 6nαε
3+4αB . (2.0.3)

Next, we introduce the necessary concepts of Supervised Learning Theory that will be
used along this text.

2.1 Supervised learning

Let X and U be real separable Hilbert spaces and let (Ω,A, P ) be a probability space. The
goal of Supervised Learning [54, 137] is to determine a functional relationship between a
pair of random variables (X̄, Ū) ∈ X×U , with unknown joint Borel probability distribution
µ on X × U . Given a measurable loss function ℓ : U × U → [0,+∞), the so-called expected
risk,

L(f) := E[ℓ(f(X̄), Ū)] =

∫
X×U

ℓ(f(x̄), ū) dµ(x̄, ū), (2.1.1)

for some f : X → U , measures the average error, with respect to the loss ℓ, between Ū and
f(X̄). Ideally, one would like to find f∗ minimizing the expected risk

f∗ ∈ argmin
f∈M

L(f), (2.1.2)

where M stands for the space of measurable functions from X to U . In this context,
two challenges need to be faced: first, the space of measurable functions M is “too big”,
making the above problem unfeasible, and second, since the probability distribution µ is
unknown, a solution can not be computed. A common way to tackle the latter problem is
to assume access to a finite training set {(X̄i, Ūi)}ni=1 of independent copies of (X̄, Ū). In
this case, a natural discretization of (2.1.1) is given by the empirical risk

L̂(f) :=
1

n

n∑
i=1

ℓ(f(X̄i), Ūi). (2.1.3)

The function f̂ minimizing the empirical risk within the space of measurable functions is
known as learning algorithm. We say that a learning algorithm generalizes if it is able to
correctly predict or classify new data.

Next, we recall some examples of loss functions used for linear regression and binary
classification.
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• Let U = R. Then, for regression problems it is common to consider, for every u,
u′ ∈ U ,

– the square loss: ℓ(u, u′) := (u− u′)2,

– the absolute loss: ℓ(u, u′) := |u− u′|, or

– the ε-sensitive loss: ℓ(u, u′) := max{|u− u′| − ε, 0}.

• Let U = {±1}. Then, for binary classification problems, one can consider, for every
u, u′ ∈ U ,

– the missclasification loss: ℓ(u, u′) :=

{
1, if uu′ ≤ 0,

0, else,

– the hinge loss: ℓ(u, u′) := max{0, 1− uu′}, or

– the logistic loss: ℓ(u, u′) := ln(1 + e−uu′
).

A natural approach to measure the generalization properties of a learning algorithm f̂ is
given by the so-called excess risk

L(f̂)− L(f∗).

Observe that the function above is stochastic since it depends on the set of random vari-
ables {(X̄i, Ūi)}ni=1. Hence, estimations of the excess risk should be stated either in expec-
tation, where one aims to show that

lim
n→∞

E
[
L(f̂)− L(f∗)

]
= 0,

or in high probability, where one aims to prove that, for every ε > 0,

lim
n→∞

P
(
L(f̂)− L(f∗) > ε

)
= 0.

If any of the above conditions are satisfied, we say that our learning algorithm f̂ is consis-
tent.

Often, it is common to consider minimizers of the empirical risk within a “smaller”
set H that encodes prior information about the problem. The latter is typically known
as hypothesis space, and popular examples of H are the space of linear functions (e.g.
for linear regression) or the so-called Reproducing Kernel Hilbert Spaces (RKHS). The
approach of finding minimizers of the empirical risk within H is known as Empirical Risk
Minimization (ERM):

f̂H ∈ argmin
f∈H

L̂(f) (2.1.4)

Here, the objective is to consider H in such a way that f̂H is close to f∗ in the sense
explained above; i.e. to show that f̂H is consistent. If L(fH) = L(f∗), where fH is the
minimizer of the expected risk within H, we say that the hypothesis space H is universal.
However, it may happen that the hypothesis space is not large enough and L(fH) > L(f∗).
If this is the case, proving any consistency result becomes difficult. In order to circumvent
this issue, it is common to assume that f∗ ∈ H (see, e.g. [36]), or just compare L(f̂H)
with L(fH) instead of L(f∗). The objective of this latter approach is to show that, in
expectation or in high probability, the quantity

L(f̂H)− L(fH) (2.1.5)

is small when n → ∞. The term above is typically known as sample error, and accounts
for the fact that a finite set is being used to find approximate solutions of fH. Next, we aim



14 2. PRELIMINARIES

at presenting a typical statistical learning result, showing that (2.1.5) goes to 0 as n → ∞.
To do so, we first recall that

L(f̂H)− L(fH) = L(f̂H)− L̂(f̂H) + L̂(f̂H)− L̂(fH) + L̂(fH)− L(fH)

≤ L(f̂H)− L̂(f̂H) + L̂(fH)− L(fH)

≤ 2 sup
f∈H

|L(f)− L̂(f)|,

where we used that the quantity L̂(f̂H) − L̂(fH) is negative by the definition of f̂H. In
order to state the result, we first recall the definition of covering number. Let s > 0 be a
positive scalar. We define the covering number N (H, s) to be the minimal number of balls
of radius s covering H. In the following, we state an estimate for (2.1.5), in the particular
case where H is a compact subset of the space of real-valued continuous functions from
X , H ⊆ C(X ), and the loss ℓ is the square loss.

Theorem 2.2. Let H be a compact subset of C(X ). Assume that there exists M > 0 such that
|f(x)− u| ≤ M almost everywhere and that supf∈H(f(x)− u)2 ≤ σ2. Then, for all ε > 0,

P

(
sup
f∈H

|L(f)− L̂(f)| ≤ ε

)
≥ 1−N

(
H, ε

8M

)
2e

− −nε2

4(2σ2)

Observe that the compactness assumption on H ensures, by definition, that the cover-
ing number is finite. A proof of this result can be found in [54, Theorem B], and is based
on Bernstein inequality (2.0.1).

We next introduce the necessary notions of Convex Analysis.

2.2 Convex analysis

All of the results and definitions that will be presented in this section have been taken
from [12, 13] when treating with infinite-dimensional Hilbert spaces, and [3, 87] in finite-
dimensional settings. For now, we consider X to be a real separable Hilbert space. Let f
be a function mapping from X to the extended real line, f : X → R ∪ {+∞}. We recall
some basic definitions. The domain of f is given by

dom f := {x ∈ X | f(x) ∈ R},

the graph of f is defined as

gra f := {(x,m) ∈ X × R | f(x) = m},

and the sublevel set of f at height m ∈ R, denoted {f ≤ m}, is

{x ∈ X | f(x) ≤ m}.

In addition, we say that f is (assume it has full domain for simplicity)

• proper if −∞ /∈ f(X ) and dom f ̸= ∅,

• convex if for every x, x′ ∈ X and for every λ ∈ (0, 1) we have that

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′),
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• lower semicontinuous at a point x ∈ X if, for every sequence (xn)n∈N in X such that
xn → x as n → ∞, then

f(x) ≤ lim inf
n→∞

f(xn),

and

• lower semicontinuous if it is lower semicontinuous at every point in X .

We say that f ∈ Γ0(X ) if it is proper, convex and lower semicontinuous. We conclude this
part by recalling some commonly used functions in the context of Convex Optimization.
Given C a nonempty convex subset of X , we denote by ιC the indicator function onto C,
defined as

ιC(x) :=

{
0, if x ∈ C,

+∞, else,

and by NC the normal cone of C, defined for every x ∈ X as the set

NC(x) :=

{
{u ∈ X | ⟨x′ − x, u⟩ ≤ 0, for every x′ ∈ C}, if x ∈ C,

∅, else.

Next, we introduce proximal operators, basic notions of set-valued mappings, and further
relationships between these two concepts.

2.2.1 Proximal operators and set-valued maps

Given a function f ∈ Γ0(X ), the proximal operator of R is defined as ([13, Definition
12.23])

proxf : x 7→ argmin
z

f(z) +
1

2
∥z − x∥2X . (2.2.1)

Note that, since for every x ∈ X the function z 7→ f(z) + (1/2)∥z − x∥22 is proper, strongly
convex and lower semicontinuous, it has a unique minimizer [13, Corollary 11.17]. There-
fore, the proximal mapping of any function f ∈ Γ0(X ) is well-defined. We recall now some
relevant examples of proximal operators.

Example 2.3. Let X = Rd, 1 ≤ d < +∞. Let C ⊆ X be a nonempty, closed, convex set
and consider f = ιC the indicator function onto C, Then, for every x ∈ X ,

proxf (x) = projC(x),

where projC denotes the orthogonal projection onto C.

Example 2.4. Let X = Rd, 1 ≤ d < +∞, and let f = λ∥ · ∥1 for some scalar λ ∈ (0,+∞).
Then, its proximal operator, denoted as Sλ, is known as soft-thresholding operator and it
is defined element-wise for every x ∈ X as

(Sλ(x))i :=

{
0, if |xi| ≤ λ,

xi − λsign(xi), if |xi| > λ,
(2.2.2)

for every i ≤ d.

We next turn our attention to set-valued mappings: if U is a real Hilbert space, a set-
valued operator T : X → 2U , where 2U denotes the power set of U , maps an element x ∈ X
to the set T (x) ⊆ 2U . In this setting, basic notions such as graph, domain or inverse can
be naturally extended: the graph of a set-valued map is given by

gra T = {(x, u) ∈ X × U | u ∈ T (x)},
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the domain of T is defined as

dom T := {x ∈ X | T (x) ̸= ∅},

and the inverse of T , naturally denoted as T −1, is defined through its graph,

gra T −1 := {(u, x) ∈ U × X | (x, u) ∈ gra T }.

In particular, we are interested in those set-valued operators T that are monotone and
maximally monotone. A set-valued operator T : X → 2U is monotone if

⟨u− u′, x− x′⟩ ≥ 0, for every (x, u), (x′, u′) ∈ gra T .

The operator T is said to be maximally monotone if there exists no monotone operator T ′

such that gra T ⊊ gra T ′. A relevant example of a maximally monotone operator is the
subdifferential of proper, convex and lower semicontinuous functions (see [13, Theorem
20.25]): given a function f ∈ Γ0(X ), its subdifferential is the set-valued operator ∂f : X →
2U , defined for every x ∈ dom f as the set

∂f(x) := {u ∈ X | for every y ∈ X , f(x) + ⟨y − x, u⟩X ≤ f(y)}.

If x /∈ dom f , then ∂f(x) = ∅. The latter concept is a generalization of the gradient for
convex, non-differentiable functions. In short, an element u ∈ X belongs to ∂f(x) for
some x ∈ X if u is the slope of an affine minorant of f that coincides with f at x. In
addition, if f is also differentiable at x, then ∂f(x) = {∇f(x)}, where ∇f(x) denotes the
gradient of f at x. In the following result, we recall when the subdifferential of a function
in Γ0(X ) is nonempty.

Lemma 2.5. [13, Theorem 9.23] Let f ∈ Γ0(X ) and let x ∈ int(dom f). Then, x ∈ dom ∂f .

We recall some common examples of subdifferential maps.

Example 2.6. [13, Example 16.13] Let X = Rd, 1 ≤ d < +∞, and let C ⊆ X be a
nonempty convex set. Then ∂ιC = NC where NC is the normal cone of C above defined.

Example 2.7. [7, Remark 1.1] Let X = Rd, 1 ≤ d < +∞, consider a general norm ∥ · ∥ in
Rd (not necessarily the Euclidean one) and denote as ∥ · ∥∗ its dual norm. Then,

∂∥ · ∥(x) = {η ∈ Rd | ⟨η, x⟩ = ∥x∥, ∥η∥∗ ≤ 1}.

In Chapter 5, we are interested in studying the so-called resolvent operator of set-valued
operators T , defined as

JT := (Id+T )−1.

Actually, if T = λ∂f for some f ∈ Γ0(X ) and some λ ∈ (0,+∞), it is possible to derive
the following property.

Lemma 2.8. [13, Proposition 16.44] Let f ∈ Γ0(X ). Then,

proxf = J∂f .

Therefore, the proximal operator of a proper, convex and lower semicontinuous func-
tion coincides with the resolvent operator of its subdifferential, establishing in this way
a natural link between proximal operators, and subdifferentials, of functions in Γ0(X ).
However, note that, in general, the resolvent of a maximally monotone operator is not
necessarily a proximal operator.
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In order to state the next result, we first recall some relevant definitions: we say that
an operator T : X → X is firmly nonexpansive if

∥T (x)− T (x′)∥2 + ∥(x− x′) + (T (x′)− T (x))∥2 ≤ ∥x− x′∥2, for every x, x′ ∈ X .

In addition, we say that T is nonexpansive if

∥T (x)− T (x′)∥ ≤ ∥x− x′∥, for every x, x′ ∈ X .

In other words, nonexpansive operators are 1− Lipschitz functions mapping from X to
itself. We are now ready to state the desired result.

Lemma 2.9. [13, Corollary 23.9] The mapping T : X → X is the resolvent of a maximally
monotone operator if and only if T is firmly nonexpansive.

As a direct consequence, by combining both Lemma 2.8 and Lemma 2.9, we can write
the following corollary.

Corollary 2.10. Let f ∈ Γ0(X ). Then, proxf is a firmly nonexpansive operator.

In addition, the following lemma holds.

Lemma 2.11. [13, Proposition 4.4] Let T : X → X be an operator. Then, T is firmly
nonexpansive if and only if the operator 2T − Id is nonexpansive.

Hence, for every firmly nonexpansive operator T : X → X , the operator N := 2T − Id
is nonexpansive and, for every nonexpansive operator N : X → X , we can construct a
firmly nonexpansive operator as T := 1

2(N + Id). By combining both Corollary 2.10 and
Lemma 2.11, we have been able to show that a larger class where to study proximal oper-
ators of convex functions is actually the set of nonexpansive operators. This sequence of
results will be useful, in particular, in the context of Chapter 5.

We next introduce the so-called Bregman divergence, we recall the definition of Leg-
endre functions, and provide a link between these two concepts.

2.2.2 Bregman divergence and Legendre functions

Given f ∈ Γ0(X ), not necessarily differentiable, the Bregman divergence of f is defined,
for every x, x′ ∈ X , as

Df (x, x
′) :=

{
f(x)− f(x′)− ⟨sf (x′), x− x′⟩X , if x′ ∈ int(dom f),

+∞, elsewhere,
(2.2.3)

where sf (x
′) is an element of ∂f(x′). We recall that, by Lemma 2.5, ∂f(x′) is nonempty

as long as x′ ∈ int(dom f). In addition, if both x and x′ belong to int(dom f), we can
consider also the symmetric Bregman distance, that is

df (x, x
′) := Df (x, x

′) +Df (x
′, x) =

〈
sf (x)− sf (x

′), x− x′
〉
X . (2.2.4)

Observe that both the Bregman divergence and the symmetric Bregman distance depend
on the choice of the specific subgradient sf (x) (and sf (x

′)). If such a choice is not speci-
fied, then it is common to choose the one with minimal norm. Obviously, for every x ∈ X
such that f is differentiable at x, then the subdifferential is single valued in x and so
sf (x) = ∇f(x).
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In Chapter 4, we will need to consider a suitable projection operator with respect to
the Bregman divergence. Given a set C ⊆ X , x ∈ X , and f ∈ Γ0(X ), we define the
Bregman projection of f onto C as

πC(x) := argmin
z∈C

Df (z, x). (2.2.5)

Next, we aim to provide necessary conditions so that, for every x ∈ X , πC(x) exists and is
unique. To do so, we first introduce some preliminary concepts.

Definition 2.12. [12, Definition 5.2] A function f : X → R ∪ {+∞} such that f ∈ Γ0(X )
is said to be:

• essentially smooth if its subdifferential ∂f is locally bounded and single valued on its
domain,

• essentially strictly convex if (∂f)−1 is locally bounded on its domain and f is strictly
convex on every convex subset of dom ∂f , and

• Legendre if it is both essentially smooth and essentially strictly convex.

In particular, the essencial smoothness property for functions f ∈ Γ0(X ) can be further
characterized.

Lemma 2.13. [12, Theorem 5.6] Let f ∈ Γ0(X ). Then, f is essentially smooth if and only if
dom ∂f = int(dom f) ̸= ∅ and ∂f is single valued on its domain.

We are now ready to characterize the properties of f ∈ Γ0(X ) that make (2.2.5) well-
defined.

Lemma 2.14. [12, Corollary 7.9] Let f be a Legendre function, C a closed, convex subset
of X such that C ∩ int(dom f) ̸= ∅ and let x ∈ int(dom f). Then, πC(x) is a singleton and
πC(x) ∈ int(dom f).

By assuming that f is Legendre, the Bregman projection is univocally defined, mean-
ing that it does not depend on the choice of the subgradient: if x /∈ int(dom f), then
Df (z, x) = +∞. Otherwise, x ∈ int(dom f) = dom ∂f by Lemma 2.13, where the subdif-
ferential of f is single valued.

The following result extends the classical Pythagorean equality in this setting, and
involves the Bregman divergence and its projection onto a closed, convex set C ⊂ X .

Lemma 2.15. Let f be a Legendre function, let C ⊂ X be a closed, convex set, and let
x ∈ int(dom f). Then, for every z ∈ C we have that

Df (z, x) ≥ Df (z, πC(x)) +Df (πC(x), x). (2.2.6)

Proof. We write the optimality condition of the set of minimizers of Df (·, x). By definition,

y ∈ argmin
z∈X

Df (z, x) ⇐⇒ y ∈ argmin
z∈C

f(z)− f(x)− ⟨sf (x), z − x⟩+ ιC(z),

⇐⇒ y ∈ argmin
z∈C

f(z)− ⟨sf (x), z⟩+ ιC(z).

Moreover, by Example 2.6, ∂ιC = NC . We therefore get that

y ∈ argmin
z∈C

Df (z, x) ⇐⇒ 0 ∈ ∂f(y)− sf (x) +NC(y)

⇐⇒ ⟨sf (x)− ∂f(y), u− y⟩ ≤ 0, for every u ∈ C,
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by the definition of normal cone. Next, by Lemma 2.14, we know that such a minimizer
exists, is unique, and is denoted as y = πC(x). Observe that the inequality above holds for
every element in ∂f(y). In particular, for sf (πC(x)) ∈ dom ∂f(πC(x)). With this choice,
the latter inequality reads, for every u ∈ C, as

⟨sf (x)− sf (πC(x)), u− πC(x)⟩ ≤ 0. (2.2.7)

Finally, (2.2.6) holds true if and only if, for every z ∈ C,

−⟨sf (x), z − x⟩ ≥ −⟨sf (πC(x)), z − πC(x)⟩ − ⟨sf (x), πC(x)− x⟩.

By developing the above condition, we derive that

⟨sf (x)− sf (πC(x)), z − πC(x)⟩ ≤ 0,

Since z ∈ C, this latter condition coincides with the optimality condition derived in
(2.2.7), proving the result.

We conclude this preliminary section of Convex Analysis by recalling the notion of
extreme point and its connection with the so-called Minkowski–Carathéodory Theorem.

2.2.3 Extreme Points and Minkowski–Carathéodory Theorem

In this section, we restrict ourselves to the finite-dimensional setting by fixing X = Rd,
1 ≤ d < ∞. The convex hull – or convex envelope – of C, denoted as conv(C), is the
smallest convex subset of X containing C. We recall the following result by Carathéodory
[87, Theorem III.1.3.6].

Theorem 2.16. Let C ⊆ X be a nonempty set. Then, any element x ∈ conv(C) can be
written as the convex combination of at most d+ 1 elements of C.

Moreover, given a convex set C ⊆ X , an extreme point of C is a point x in C such
that C \ {x} is convex. Equivalently, an extreme point is an element x ∈ C such that, if
x = 1

2x
1 + 1

2x
2 with x1, x2 ∈ C, then x1 = x2 = x. We denote by ext(C) the set of extreme

points of C.

However, not every convex set has extreme points. For instance, the upper half plane
in R2,

H = {(x, y) ∈ R2 | y ≥ 0},

is indeed a convex set and does not have extreme points. We next provide a necessary
condition for a convex set C to have extreme points.

Lemma 2.17. Let C ⊆ Rd, d ≥ 1 be a convex set. If C is compact, then ext(C) ̸= ∅.

Proof. Since C is compact, by the Weierstrass’ Theorem, there exists x̄ ∈ C such that
∥x∥22 ≤ ∥x̄∥22 for every x ∈ C. We will now show that x ∈ ext(C). Let x1, x2 ∈ C such that
x̄ = 1

2x
1 + 1

2x
2 and suppose that x1 ̸= x2. Observe that, for every, a, b ∈ R with a ̸= b, it

holds true that
1

4
∥a+ b∥22 =

1

2
∥a∥22 +

1

2
∥b∥22 −

1

4
∥a− b∥22.

Since a ̸= b, we get that
1

4
∥a+ b∥22 <

1

2
∥a∥22 +

1

2
∥b∥22.
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With this, we derive that

∥x̄∥22 =
∥∥∥∥x12 +

x2

2

∥∥∥∥2
2

<
1

2
∥x1∥22 +

1

2
∥x2∥22

≤ 1

2
∥x̄∥22 +

1

2
∥x̄∥22 = ∥x̄∥22 ,

which is a contradiction. We hence conclude that x̄ ∈ ext(C) and so ext(C) ̸= ∅.

Since we are in the finite-dimensional setting, [3, Corollary 5.33] tells us that the
convex hull of a compact set is again compact. Therefore, if C is a compact set in X , its
convex hull has extreme points. The following result is due to Minkowski [87, Theorem
III.2.3.4].

Theorem 2.18. Let C ⊆ X be a nonempty, convex and compact set. We have that

C = conv(ext(C)).

By combining both Theorem 2.16 and Theorem 2.18, we derive the main result of this
section, known as Minkowski-Carathéodory Theorem.

Corollary 2.19. Let C ⊆ X be a nonempty, convex and compact set of dimension k ≤ d.
Then, for any x ∈ C, there exist x1, ..., xk+1 ∈ ext(C) and scalars λ1, ..., λk+1 ≥ 0 with∑k+1

i=1 λi = 1 such that x =
∑k+1

i=1 λix
i.

In other words, the above result gives conditions for a set C so that any point inside C
can be written as a convex combination of a finite number of particular atoms in C. As we
mentioned in the introduction, Corollary 2.19 motivates the introduction of the so-called
representer theorems, first introduced in the context of Reproducing Kernel Hilbert Spaces
[119].

2.3 Inverse problems

In this section, we provide a brief introduction to inverse problems, defining ill-posed
inverse problems and presenting basic definitions and examples of classic regularization
techniques. We start by giving a proper definition of the concept of ill-posedness.

2.3.1 Ill-posed (linear) inverse problems

Let (U , ⟨·, ·⟩U ) and (X , ⟨·, ·⟩X ) be real separable Hilbert spaces and let A : U → X be a
linear and bounded operator between the Hilbert spaces U and X . The goal of an inverse
problem is, given a measurement operator A and observations of the form x = Au∗ ∈ X ,
to retrieve u∗ ∈ U . We recall that this amouts to solving the following equation

x = Au∗. (2.3.1)

In general, finding solutions of the above problem is hard. Most problems of interest are
modelled by a linear operator A which is in general not injective or, even if it is, its inverse
has large norm. This phenomena makes the reconstruction task difficult. When this is the
case, we say that problem (2.3.1) is ill-posed. The inverse problem (2.3.1) is said to be
ill-posed if at least one of the following conditions is satisfied [76]:

• a solution does not exist,

• the solution is not unique,
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• solutions are unstable with respect to the measurements.

We provide some comments regarding these conditions. First, if a solution does not ex-
ist, then it is common to relax the notion of solution. For instance, one could consider
solutions u in the least-squares sense: an element u ∈ U satisfying

∥Au− x∥X = inf
z∈U

∥Az − x∥X

is said to be a least-squares solution of (2.3.1). The second concern is that least-square
solutions may not be unique. In this case, a natural approach is to consider least-square
solutions of minimal norm: an element u ∈ U that is the least-squares solution of (2.3.1)
and satisfies

∥u∥U = inf{∥z∥ | z is a least-squares solution of (2.3.1)},

is said to be the best-approximate solution of (2.3.1). The latter definition motivates us to
introduce the so-called Moore–Penrose pseudo-inverse of A, denoted by A†, and defined as
the operator that maps each measurement x to the least-squares solution of minimal norm
of (2.3.1). A precise definition is given in the following.

Definition 2.20. [64, Definition 2.2] Let A : U → X be a linear and bounded operator.
The Moore–Penrose pseudo-inverse of A is defined as the unique linear extension of Ã−1,
where

Ã := A|ker(A)⊥ : ker(A)⊥ → ran(A),

and such that

dom(A†) := ran(A) + ran(A)⊥, ker(A†) := ran(A)⊥.

Such solution will be denoted as u† = u†(x). In fact, we have the following result.

Theorem 2.21. [64, Theorem 2.5] Let x ∈ dom(A†). Then, (2.3.1) admits a unique best
approximate solution u†. The set of all least-squares solutions is u† + ker(A).

So far, we have operated under the assumption of having access to the precise observa-
tion x through the forward operator A. However, this is not the case in general. In reality,
it is common to observe only noisy versions of the measurement x. This discrepancy may
arise, for instance, due to limitations in the measurement process, environmental inter-
ferences, or other sources of disturbance affecting the measurements. Consequently, it is
more appropiate to reframe problem (2.3.1) as follows:

x = Au∗ + ε (2.3.2)

where ε ∈ X is an additive term modelling the noise, and can be either deterministic or
stochastic. If there exists τ > 0 such that ∥ε∥X ≤ τ (or E[∥ε∥X ] ≤ τ if ε is a random
variable) we call τ the noise level of ε. This revised formulation provides a more accurate
model. Below, we outline some relevant examples in the context of signal processing,
image recovery, and matrix reconstruction.

Example 2.22. Let U and X be a real Hilbert spaces. The denoising problem consists in
recovering a clean the ground-truth term u∗ ∈ U from noisy observations x ∈ X . It writes
as

x = u∗ + ε.

For example, we can think of ε to be sampled from the standard Gaussian distribution
N(0, τ2 Id), τ > 0, and the forward operator A equal to the identity. Two relevant exam-
ples in this framework are
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• X = U = Rd, 1 ≤ d < +∞, and u∗ ∈ Rd an s-sparse signal, s ≪ d; i.e. a signal with
s non-zero entries, which corresponds to the problem of sparse signal denoising.

• X = U = RN×N , 1 ≤ N < +∞ and u∗ ∈ RN×N a clean discrete image, which
corresponds to the problem of image denoising.

The latter examples will be relevant in the forthcoming chapters. Additionally, we will
deal with the sparse signal deblurring problem in the experimental section of Chapter 3.
For this reason, we describe it below.

Example 2.23. Considering the particular framework of X = U = Rd, 1 ≤ d < +∞, the
problem of sparse signal deblurring consists in recovering the clean signal u∗ from blurry,
noisy observations x, and can be written as

x = Au∗ + ε,

where ε follows the same model as above. In this case, A is a linear convolution operator
that adds blur to the image. For example, following [108], we may think of A to be the
following map

u ∈ Rd 7→ Au = h ∗ u ∈ Rd,

with h a Gaussian and “∗” denoting the discrete convolution operator.

Example 2.24. If U = RN×N , 1 ≤ N < +∞, the problem of subsampled MRI consists in
recovering a discrete image u∗ ∈ RN×N by having access to an incomplete version from
a subsampling of its (discrete) Fourier transform in the so-called k−space – or frequency
domain –. It can be expressed as

x = DFu∗ + ε,

where ε models the noise as in the above cases, F denotes the (discrete) Fourier transform
and D denotes a general subsampling operator. In this case, A = DF .

Example 2.25. Let U = Rm×d, 1 ≤ m < d < +∞. Consider a matrix U∗ ∈ U , assumed to
be low-rank, with real entries (u∗i,j)i≤m, j≤d, and let Θ denote a subset of the complete set
of entries, Θ ⊂ {1, ...,m}×{1, ..., d}. Then, let PΘ denote the linear map that encodes the
available information about U∗, defined element-wise as

(PΘ(U
∗))i,j =

{
u∗i,j , if (i, j) ∈ Θ,

0, otherwise.

The inverse problem of matrix completion consists in finding U∗ only from the information
entailed in X (see [35]), and can be expressed as

X = PΘ(U
∗).

In general, the pseudo-inverse is not a continuous operator (see e.g. [64, Proposition
2.4]). Hence, if we only have access to noisy versions of the measurements xε, then A†(xε)
does not necessarily need to be close to u† = A†x, where x = Au∗. This motivates the
construction of continuous operators that converge to the best-approximate solution u†.
The latter task is precisely the purpose of regularization theory, which we introduce below.
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2.3.2 Regularization of inverse problems
The goal of regularization theory is to construct an operator that outputs stable approxi-
mations of the solution. In addition, such operator should contain prior knowledge about
the problem. For instance, if available, it is common to construct operators that depend
on the noise level or on the forward operator itself. The inherent variability in these con-
siderations make the construction of such an operator akin to an art form. As mentioned
in the introduction, a classical way to tackle instability is to find solutions of the following
variational problem

min
u

ℓ(Au, x) + λR(u), (2.3.3)

for some regularization parameter λ ∈ (0,+∞), some discrepancy ℓ : X × X → (0,+∞)
and fixed regularizer R : U → (0,+∞] . In this manuscript, and in particular in Chapter 3,
we will consider operators uλ : X → U indexed by a positive scalar λ ∈ (0,+∞), that are
solutions of the variational problem above; i.e. for every λ ∈ (0,+∞), x ∈ X ,

uλ(x) = uλ ∈ argmin
u∈U

ℓ(Au, x) + λR(u).

We now recall the definition of a convergent regularization method (see [64, Chapter 3]
for more details).

Definition 2.26. Let uλ : X → U be a family of continuous maps indexed by λ ∈ (0,+∞),
and define

ũ := argmin
u

{R(u) |u ∈ argmin
z

ℓ(Az, x)}

Then, the family (uλ)λ>0 is said to be a convergent regularization method for the inverse
problem (2.3.2) if there exists a parameter choice rule λ = λ(τ, xε) such that the family
uλ(τ,xε)(x

ε) converges to ũ as the noise level vanishes. More precisely, we have

lim sup
τ→0

∥uλ(τ,xε)(x
ε)− ũ∥U = 0, as long as lim sup

τ→0
λ(τ, xε) = 0.

If ℓ is the square loss and R = ∥·∥2U , then ũ = u† and we recover the classical definition
of regularization method given in [64], since the family uλ would converge pointwise to
the pseudo-inverse.

The latter definition indicates that the regularization parameter should depend on the
noise level τ , in the sense that λ → 0 whenever τ → 0. Actually, the so-called Bakushinskii
veto [8] tells us that no family (uλ)λ>0 can be a convergent regularization method if
the regularization parameter λ does not depend on the noise level τ . Therefore, if we
have access to such information, it should be used in order to construct a corresponding
parameter choice rule. We distinguish the main directions that have been explored among
the years:

• a priori rules, that depend on the noise level τ and, possibly, on some prior informa-
tion about the solution u∗,

• a posteriori rules, which depend both on τ and on the noisy measurements xε, and

• heuristic rules, which only depend on the noisy observations xε.

The dependence on the solution u∗ for a-priori choices is related to some regularity as-
sumption, which is usually characterized by a certain smoothness parameter. Such choices
are primarily of theoretical interest. The main reason is that they allow to derive sharp
convergence rates, in the sense that they match optimal lower bounds [64, Chapter 3].
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A-posteriori rules were widely studied in the past century. We mention, for instance,
the Morozov discrepancy principle [104, 135], the balancing principle [99, 132] or the
monotone error rule [77, 126]. As we mentioned in the introduction, in most practical
problems, neither the noise level τ nor any smoothness assumptions are known, mak-
ing it impossible to design an automatic parameter selection method. Heuristic rules are
the common choice in practice, since they only depend on the measurements xε. Among
them, we mention generalized cross-validation [73, 139], the quasi-optimality criterion
[131, 130], the L-curve method [79], or methods based on an estimation of the Mean
Squared Error, e.g. [124] (see [9] for a meticulous comparative study). Another pop-
ular example of heuristic rules are the data-driven selection methods, described in the
introduction. In Chapter 3 we will focus on providing convergence guarantees for this
approach in a stochastic setting.

Next, we introduce a popular family of linear regularization approaches, called spec-
tral regularization methods, that will be further considered in Chapter 3. Therein, we
will show that data-driven parameter selection methods are provably convergent when
considering spectral regularization methods.

Spectral regularization methods

A standard choice for both both ℓ and R in (2.3.3) is given by fixing ℓ to be the square
loss, ℓ(x, x′) = 1

2∥x − x′∥2X and R = ∥ · ∥2U . For such a choice, the solution is unique and
can be explicitly computed. It writes, for every λ ∈ (0,+∞), as,

uλ(x) = (A∗A+ λ Id)−1A∗x. (2.3.4)

The expression above is typically known as Tikhonov regularizer (see [64, Chapter 5]).
Actually, it can be naturally generalized by considering a family of spectral functions
gλ : (0, ∥A∥2op] → R, indexed by a parameter λ ∈ (0,+∞), called spectral regularization
methods or filter functions, as follows

uλ(x) := gλ(A
∗A)A∗x. (2.3.5)

By definition, every gλ is defined on (0, ∥A∥2op], a set containing the spectrum σ(A∗A);
and each gλ is a continuous function that approximates the inverse 1/σ; i.e., for every
σ ∈ [0, ∥A∥2op], we have

lim
λ→0

gλ(σ) =
1

σ
.

Remark 2.27. In order to give a precise definition to the expression 2.3.5, we need to
recall classical spectral calculus results. First, since gλ, λ ∈ (0,+∞), is continuous on
σ(A∗A) ⊆ [0, ∥A∥2op] by assumption, it is the uniform limit of a sequence of polynomi-
als (pnt)nt∈N. Moreover, the sequence (pnt(A

∗A))n∈N is well defined (see [84, Theorem
VI.31.1]) and converges in norm by [84, Theorem VI.32.1]. The operator gλ(A

∗A) is
defined as its limit.

Following [10, 64], we define the family of regularization methods gλ, λ ∈ (0,+∞),
as follows.

Definition 2.28. The family gλ : (0, ∥A∥2op] → R, λ ∈ (0,+∞), is said to be a spectral
regularization method if

(i) there exists a constant B > 0 such that

sup
σ∈(0,∥A∥2op]

|σgλ(σ)| ≤ B, for every λ ∈ (0,+∞),
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(ii) there exists a constant C > 0 such that

sup
σ∈(0,∥A∥2op]

|gλ(σ)| ≤
C

λ
, for every λ ∈ (0,+∞),

(iii) there is a constant γ > 0 such that

sup
σ∈(0,∥A∥2op]

|1− gλ(σ)σ| ≤ γ, for every λ ∈ (0,+∞),

(iv) there is a constant ν̄ > 0, called qualification parameter, such that, for all ν ≤ ν̄, we
have

sup
σ∈(0,∥A∥2op]

σν |1− σgλ(σ)| ≤ Dνλ
ν , for every λ ∈ (0,+∞),

where Dν depends on ν but not on λ.

The above conditions are satisfied by a large class of examples. We recall here some of
them (see [10, 64]).

Example 2.29 (Tikhonov regularization). By applying Remark 2.27, the expression (A∗A+
λ Id)−1 in (2.3.4) can be rewritten in terms of the singular values of A∗A in order to obtain
the Tikhonov filter, which corresponds, for every λ ∈ (0,+∞), to the function

gλ(σ) =
1

σ + λ
.

In this example, it is clear that gλ(σ) → 1
σ as λ → 0. Moreover, B = C = γ = Dν = 1 and

the qualification is ν̄ = 1.

Example 2.30 (Landweber iteration). If we consider the least-squares problem

min
u

∥Au− x∥2X ,

performing the Gradient Descent algorithm in the problem above receives the name of
Landweber iteration. Given λ ∈ (0,+∞), with the reparametrization k = ⌊1/λ⌋, the
Landweber filter is defined as gλ = (Id−ωA∗A)k with ω denoting a constant stepsize.
For this example, B = C = γ = 1 and (iv) holds for any qualification parameter ν̄ ≥ 0.
Finally, Dν = 1 if v ∈ (0, 1] and Dν = νν otherwhise.

Example 2.31 (Spectral cut-off). The spectral cut-off filter, or Truncated Singular Value
Decomposition (TSVD) corresponds, for every λ ∈ (0,+∞), to the function

gλ(σ) =

{
1
σ , if σ ≥ λ,

0, otherwise.

The corresponding constants are B = C = γ = Dν = 1 and the qualification parameter is
arbitrary.

The class of filter functions that fit in this setting is way larger. We mention for instance
heavy-ball methods, the ν-method [64], or Nesterov accelerations [106].

Up to this point, the regularization methods that we have considered are linear with
respect to the given measurement. Next, we aim to go beyond linear regularization meth-
ods by considering general convex regularizers in (2.3.3), which leads to minimization
problems whose minimizer may not have a closed-form expression or may not be unique.
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General variational regularization

The objective of this section is to recall some famous choices of convex regularizers R to
be used in (2.3.3). In particular, we provide corresponding regularization schemes for
solving some of the inverse problems presented at the beginning of this section. We start
by considering R to be the ℓ1 norm.

Soft-thresholding operator. Given the sparse signal denoising problem described in
Example 2.22 with U = Rd, 1 ≤ d < +∞, we consider the following variational approach

min
u

1

2
∥u− x∥22 + λ∥u∥1, (2.3.6)

where in this case R = ∥ · ∥1 stands for the ℓ1 norm, included in order to induce sparsity
in the solution [44, 62]. In this case, the set of minimizers of the problem above coincides
with the proximal operator of λ∥ · ∥1:

argmin
u

1

2
∥u− x∥22 + λ∥u∥1 =: proxλ∥·∥1(x) = Sλ(x), (2.3.7)

where the right hand side is the soft-thresholding operator (2.2.2).

Thus far, we have studied examples of regularization methods whose associated recon-
structions have explicit expressions. However, this might not be the case in general. Next,
we recall three examples where the solution of (2.3.3) does not have a closed-form, and
present numerical tools for solving it.

The Lasso Problem. Given the sparse signal deblurring problem described in Example
2.23 with U = Rd, 1 ≤ d < +∞, a classical way to tackle it is to consider solutions, for
some λ ∈ (0,+∞), of

min
u

1

2
∥Au− x∥22 + λ∥u∥1. (2.3.8)

The problem above typically receives the name of the Lasso problem (or basis pursuit
denoising in the signal processing literature) [7, 129], and does not have a closed-form
solution in general. Nevertheless, proximal-gradient-type algorithms such as the Iterative
Shrinkage-Thresholding Algorithm (ISTA) [56] – or FISTA [14], its accelerated version –
can be applied to this problem in order to recover approximate solutions of (2.3.8).

Total Variation Regularization. Consider the image denoising problem introduced in
Example 2.22 for U = RN×N , 1 ≤ N < +∞. A popular approach, introduced in [115]
(see also [39]), is to find solutions on the following variational problem:

min
u

1

2
∥u− x∥22 + λTV(u), (2.3.9)

for some λ ∈ (0,+∞), and where TV denotes the (discrete) Total Variation regularizer.
In order to give a proper definition, we first recall the definition of the discrete gradient
given in [38]: for u ∈ U , the discrete gradient Du is a vector in U × U , defined pixel-wise
for every 1 ≤ i, j ≤ N , by (Du)i,j = ((Du)1i,j , (Du)2i,j) ∈ R2, where

(Du)1i,j =

{
ui+1,j − ui,j , if i < N,

0, if i = N,

(Du)2i,j =

{
ui,j+1 − ui,j , if j < N,

0, if j = N,
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denote the discrete horizontal and vertical derivatives for i, j = 1, ..., N . Then, the
isotropic total variation of u is defined as

TViso(u) =
∑

1≤i,j≤N

√
|(Du)1i,j |2 + |(Du)2i,j |2. (2.3.10)

Moreover, the anisotropic total variation is defined as

TVaniso(u) =
∑

1≤i,j≤N

(
|(Du)1i,j |+ |(Du)2i,j |

)
. (2.3.11)

We refer the reader to [28, 29, 42] for higher order versions. Similarly to the case above,
problem (2.3.9) does not have a closed form solution. In addition, proximal gradient al-
gorithms cannot be directly applied in this case since a closed-form expression of the prox-
imity operator of the Total Variation is not available. A possible approach to circumvent
this issue can be found in [38], which proposes to apply a proximal gradient algorithm on
the dual problem. In this case, the proximal operator coincides with the projection onto
the ball of radius λ with respect to the 2−norm.

In the experimental section of Chapter 4, we consider a generalized version of (2.3.9)
for dealing with image denoising problems, and writes as

min
u

1

2
∥u− x∥22 + λR(Du),

where R is a general convex regularizer and D denotes the discrete derivative defined
above. With this formulation, we cover a wider range of regularization methods such as
higher order versions of the TV functional or the so-called H1 regularization (see [28]),
while also including the examples mentioned above.

Nuclear norm regularization. Given the problem of matrix completion presented in
Example 2.25, one of the main approaches for solving it has been to consider the so-called
Rank Minimization Problem:

min
U

rank(U), s.t. PΘ(U) = PΘ(X).

This approach is motivated by the fact that the solution is assumed to be low-rank. Nev-
ertheless, it is well known that such problem is computationally hard to solve [136]. Con-
sequently, further relaxations have been proposed. One of the most popular ones consists
in solving, for some λ ∈ (0,+∞), the following variational problem [35, 66, 67]:

min
U

∥PΘ(U −X)∥22 + λ∥U∥∗, (2.3.12)

where ∥ · ∥∗ stands for the nuclear norm of the matrix; i.e. the sum of its singular values.
With this reformulation, solving (2.3.12) amounts to use the fact that the proximal oper-
ator of the ℓ1 norm is the soft thresholding operator, and therefore ISTA-type algorithms
can be applied.





CHAPTER 3

On Learning the Optimal Regularization
Parameter in Inverse Problems

3.1 Introduction

The primary motivation of this chapter is to explore convergence guarantees for data-
driven parameter choice rules. As mentioned earlier, regularization theory provides a
structured approach for providing stable and accurate solutions of ill-posed inverse prob-
lems. In this context, an appropriate choice of the regularization parameter is crucial
for providing both good reconstructions and convergent guarantees for the chosen reg-
ularization method. To do so, we adapt techniques from Statistical Learning Theory. In
particular, the learned regularization parameter will be the minimizer of an Empirical Risk
Minimization (ERM) problem [54] within a predefined grid of parameters. Drawing inspi-
ration from the Bakushinskii veto [8], we demonstrate that theoretical guarantees can be
provided within a stochastic inverse problems framework, where both the measurement
and solution are random variables. We will explore the applicability of this approach
across various examples of inverse problems.

From a theoretical standpoint, similar approaches have been previously explored for
learning the regularization parameter. For example, in [1] a general approach is analyzed
to learn a regularizer in Tikhonov-like regularization schemes for linear inverse problems.
The results presented therein can be adapted to determine the optimal regularization pa-
rameter in certain scenarios. Another learning approach is analyzed in [57] and [94],
where an unsupervised approach is studied. Additionally, a bilevel optimization perspec-
tive is taken in [70], where some theoretical results are also given, under the assumption
that the set of candidate parameters is compact.

We now describe the organization of this Chapter. In Section 3.2, we establish a gen-
eral framework for learning one parameter functions. We introduce the main assumptions
and present the main result, showing the error behavior of the best empirical parameter
with respect to the number of points in the training set. A precise formulation of this re-
sult will be given in Theorem 3.1. Next, we delve into specific examples of regularization
methods to which the result above mentioned can be applied: Section 3.3 explores spectral
regularization methods [64] for linear inverse problems, Section 3.4 focuses on Tikhonov
regularization for nonlinear inverse problems [64] and, finally, in Section 3.5 we study
general convex regularizers for solving linear inverse problems. In the latter, we provide
convergence guarantees for the regularization parameter in two different settings: Leg-
endre regularizers [12] and sparsity-inducing norms [7] in the finite-dimensional setting.
The structure of Sections 3.3, 3.4 and 3.5 will be similar. We describe it below.

29
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1. We set the inverse problems framework and state the main assumptions on both the
model and the regularization method,

2. we verify that the required assumptions for Theorem 3.1 are satisfied,

3. we fix the discrepancy ℓ and, consequently, both the expected and empirical risks,
and

4. we present the consequence of Theorem 3.1, showing the desired error bound for
the learned regularization parameter.

We conclude this Chapter in Section 3.6, where we validate, experimentally, the theo-
retical findings obtained in the above sections. In particular, we will focus on Tikhonov and
Landweber regularization. In this case, we also perform a comparison between the studied
approach and the so-called quasi-optimality criterion, for which convergence guarantees
have also been provided in a stochastic setting [11]. Finally, we explore ℓ1 regularization
applied to the problems of sparse signal denoising and deblurring, and Total Variation
regularization for solving an image denoising problem.

3.2 Learning one parameter functions

In this section, we derive Statistical Learning results to learn functions parameterized by
one parameter. In particular, in the context of learning in inverse problems, this will be the
regularization parameter. For the time being, we consider an abstract learning framework.

Let (X , ⟨·, ·⟩X ) and (U , ⟨·, ·⟩U ) be real and separable Hilbert spaces and let (Ω,A, P )
be a probability space. Let (X̄, Ū) be a pair of random variables with values in X × U
and, for λ ∈ (0,+∞), we fix fλ : X → U to be a family of measurable functions that are
parametrized by λ. Moreover, for some N ∈ N, define Λ, the finite grid of regularization
parameters, as

Λ = {λ1, . . . , λN} (3.2.1)

with 0 < λ1 ≤ λ2 · · · ≤ λN < ∞. Given a measurable loss ℓ : U × U → [0,+∞), we aim to
find λΛ minimizing the expected risk (2.1.1) within Λ:

λΛ ∈ argmin
λ∈Λ

L(fλ) (3.2.2)

Such parameter is the ideal regularization parameter when restricting ourselves to the set
Λ. However, we next assume that we do not have access to the exact distribution of the
pair (X̄, Ū), but to the set {(X̄i, Ūi)}ni=1, n ∈ N, of independent copies of (X̄, Ū). The ERM
(2.1.4) in this case writes as

λ̂Λ ∈ argmin
λ∈Λ

L̂(fλ). (3.2.3)

We aim at characterizing L(f
λ̂Λ
), namely the expected risk evaluated at the regularization

parameter chosen accordingly to the rule in (3.2.3). As we did in Section 2.1, a first
idea would be to prove an analogous version of Theorem 2.2 and compare it directly to
L(fλΛ

). Instead, as discussed next, we assume that a suitable error bound L(fλΛ
) ≤ Φ(λ∗)

is available, being λ∗ the minimizer of Φ, and then we compare L(f
λ̂Λ
) to Φ(λ∗). Next, we

list and comment the main assumptions of the chapter.

Assumption 1. The loss function ℓ is bounded by a constant M > 0.
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In the following, we will consider loss functions defined by classic discrepancy errors
in inverse problems. In particular, we focus on Hilbertian norms, see Sections 3.3 and
3.4, and Bregman divergences associated with convex functionals, see Section 3.5. While
none one of these examples are bounded in general, since we will assume Ū to be almost
surely bounded, a bounded loss will be obtained by composing ℓ with suitable truncation
operators. We next state the assumption related to an available bound on the expected
risk L(fλ).

Assumption 2. There exists a positive function Φ : (0,+∞) → (0,+∞) such that, for every
λ ∈ (0,+∞),

L(fλ) ≤ Φ(λ). (3.2.4)

Moreover, there exists λ∗ > 0 such that

λ∗ ∈ argmin
λ∈(0,+∞)

Φ(λ). (3.2.5)

Finally, there exists a non-decreasing function C : [1,+∞) → [0,+∞) such that, for all
q ≥ 1,

Φ(qλ∗) ≤ C(q)Φ(λ∗). (3.2.6)

The main reason for the above assumption is to avoid smoothness conditions on the
dependence of fλ on λ which are required in classic studies of ERM, see e.g. [1, 54]. This
assumption might seem unusual for a learning setting but, as shown in Sections 3.3, 3.4
and 3.5, it is naturally satisfied for a large class of inverse problems. Moreover, this is
the usual strategy to design a priori choices of the regularization parameter. In this latter
setting, it is often possible to derive tight bounds in the sense that the two quantities, L(fλ)
and Φ(λ), have the same behavior with respect to λ and the noise level. Consequently,
L(fλΛ

) is comparable to Φ(λ∗) (see e.g. [64, Chapter 4]). We make one last assumption
on how large is the set of candidate values Λ.

Assumption 3. Let Λ be defined as in (3.2.1). Assume that

λ∗ ∈ [λ1, λN ] (3.2.7)

and, for every j = 1, . . . , N , λj = λ1Q
j−1, where

Q :=

(
λN

λ1

) 1
N−1

. (3.2.8)

The above assumption states that we can choose a sufficiently large interval for our
discretization so that λ∗ in (3.2.5) always falls within the interval. This is an approxi-
mation assumption which is satisfied in practice by taking λ1 sufficiently small (and λN

sufficiently big).

Given the above assumptions, we next show that the choice λ̂Λ achieves an error close
to that of λ∗.

Theorem 3.1. Let Assumptions 1, 2 and 3 be satisfied and let η ∈ (0, 1). Then, with proba-
bility at least 1− η,

L(f
λ̂Λ
) ≤ 2C(Q)Φ(λ∗) +

13M

2n
log

2N

η
.

The above result shows that λ̂Λ achieves an error of the same order of λ∗, up to a
multiplicative factor depending on C(Q), and a corrective term which decreases as 1/n.
Moreover, from the expression (3.2.8), once the minimal and maximal elements of the dis-
cretization are fixed, we can see that Q ≈ 1 if N is large enough. At the same time, taking
N large has a minor effect on the bound, since the corrective term depends logarithmically
on N . We first provide the proof of Theorem 3.1.
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Proof of Theorem 1

We begin providing a sketch of the main steps in the proof. The idea is to first compare the
behavior of λ̂Λ to that of λΛ. Indeed, we prove in Lemma 3.2 that with high probability

L(f
λ̂Λ
) ≤ 2L(fλΛ

) + c
log(2N)

n
,

for some constant c > 0. After, we show in Lemma 3.3 that there exists 1 ≤ q ≤ Q such
that qλ∗ ∈ Λ. Therefore, by definition of λΛ, we get that

L(fλΛ
) ≤ L(fqλ∗).

Combining the above results and using condition (3.2.6), we get with high probability
that

L(f
λ̂Λ
) ≲ 2L(fqλ∗) +

log(2N)

n
≲ 2C(Q)Φ(λ∗) +

log(2N)

n
,

which is the desired result. We next provide the detailed proof. First, we introduce the
following probabilistic lemma.

Lemma 3.2. Let Assumption 1 be satisfied and let η ∈ (0, 1). Then, with probability at least
1− η, we have that

L(f
λ̂Λ
) ≤ 2L(fλΛ

) +
13M

2n
log

2N

η
.

The proof adapts ideas from [36], and is based on a classic union bound argument and
the concentration inequality stated in (2.0.3).

Proof. (of Lemma 3.2). For λ ∈ Λ, define for every i = 1, ..., n, the random variable
Z̄i(λ) = ℓ(fλ(X̄i), Ūi). Then,

1

n

n∑
i=1

Z̄i(λ) = L̂(fλ),

and
E[Z̄i(λ)] = L(fλ).

Moreover, since ℓ is bounded by Assumption 1, then Z̄i(λ) ≤ M and this implies

E[|Z̄i(λ)|2] = E[ℓ(fλ(X̄i), Ūi)ℓ(fλ(X̄i), Ūi)] ≤ ML(fλ).

Now, we apply (2.0.3) with B = M and, by recalling that

E[|Z̄i(λ)− E[Z̄i(λ)]|2] ≤ E[|Z̄i(λ)|2],

we fix σ2 := ML(fλ). Now, by defining for each λ ∈ Λ and for all α, ε > 0, the event

Eλ :=
{
|L̂(fλ)− L(fλ)| ≥ ε+ αML(fλ)

}
,

we get that, for any λ ∈ Λ,
P (Eλ) ≤ 2e−

6nαε
3+4αM .

By definition of probability measure, we derive that, for all α, ε > 0,

P

(⋃
λ∈Λ

Eλ

)
≤
∑
λ∈Λ

P (Eλ) = 2|Λ|e−
6nαε

3+4αM ,
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where in this case |Λ| denotes the cardinality of the set Λ. Now, let η ∈ (0, 1). Since the
above is valid for any α > 0, fix α = 1/(3M). With this choice, let ε = 13M

6n log 2|Λ|
η . Then,

with probability at least 1− η, for all λ ∈ Λ we have that

L̂(fλ) ≤
4

3
L(fλ) + ε

and

L(fλ) ≤
3

2

(
L̂(fλ) + ε

)
.

Using the above inequalities and the definition of λ̂Λ we have that,

L(f
λ̂Λ
) ≤ 3

2

(
L̂(f

λ̂Λ
) + ε

)
≤ 3

2

(
L̂(fλΛ

) + ε
)

≤ 2L(fλΛ
) + 3ε.

By recalling that |Λ| = N , we conclude that

L(f
λ̂Λ
) ≤ 2L(fλΛ

) +
13M

2n
log

2N

η
,

proving the result.

Note that the above result holds by only assuming that the loss ℓ is bounded. In-
deed, the structural assumptions that we have introduced are used to prove the following
lemma.

Lemma 3.3. Let Assumptions 2 and 3 be satisfied and consider λ∗ as in Assumption 2. Then,
there exists 1 ≤ q ≤ Q such that qλ∗ ∈ Λ and so

L(fλΛ
) ≤ L(fqλ∗).

Proof. From Assumption 3, since λ∗ ∈ [λ1, λN ], there exists j0 ∈ {2, . . . , N} such that

λj0−1 ≤ λ∗ ≤ λj0 .

If we let q = λj0/λ∗, then qλ∗ = λj0 ∈ Λ. It is only left to prove that 1 ≤ q ≤ Q. Given the
definition of Q and the construction of Λ, if we divide the above inequalities by λj0 , then

1

Q
≤ 1

q
≤ 1,

so that
1 ≤ q ≤ Q.

Finally, by the definition of λΛ, we get

L(fλΛ
) ≤ L(fqλ∗),

concluding the proof.

We add one final remark.
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Remark 3.4 (Comparison with Theorem 2.2). A slightly different estimate can be obtained
following the same techniques for proving Theorem 2.2. In particular, considering Hoeffd-
ing’s inequality (2.0.2). If we let η ∈ (0, 1), the following bound holds with probability at
least 1− η:

L(f
λ̂Λ
) ≤ L(fλΛ

) + 2

√
2M

n
log

2N

η
. (3.2.9)

Compared to the estimate obtained in Lemma 3.2, the above inequality avoids the factor
2 in front of L(fλΛ

). However, the dependence on the data cardinality n is considerably
worse. In addition, note that in this case we use the fact that set of candidate parame-
ters Λ is finite. If the set Λ were a compact set, one could consider a similar covering
argument than the one applied in Theorem 2.2. For completeness, we report the proof of
inequality (3.2.9). As we did in Section 2.1, we can see that

L(f
λ̂Λ
)− L(fλΛ

) ≤ 2 sup
λ∈Λ

|L(fλ)− L̂(fλ)|.

Next, define for every i = 1, ..., n, the random variable Z̄i(λ) = ℓ(fλ(X̄i), Ūi). Then,

1

n

n∑
i=1

Z̄i(λ) = L̂(fλ),

and
E[Z̄i(λ)] = L(fλ),

and recall that L(fλ) ≤ M by assumption. Then, |Z̄i − E[Z̄i(λ)]| ≤ 2M =: B. By Hoeffd-
ing’s inequality (2.0.2), we get that, for every λ > 0 and for all ε > 0,

P
(
|L(fλ)− L̂(fλ)| ≥ ε

)
≤ 2e−

nε2

8M2 .

By deifnition, the probability of a union of events is less or equal than the sum of their
probabilities. Then,

P

(
sup
λ∈Λ

|L(fλ)− L̂(fλ)| ≥ ε

)
= P

(⋃
λ∈Λ

|L(fλ)− L̂(fλ)| ≥ ε

)
≤
∑
λ∈Λ

P
(
|L(fλ)− L̂(fλ)| ≥ ε

)
≤ 2Ne−

nε2

8M2 .

Inequality (3.2.9) follows by setting η := 2Ne−
nε2

8M2 and deriving the expression for ε.

In the following, we provide concrete examples in the context of inverse problems that
illustrate and instantiate the above results.

3.3 Spectral regularization for linear inverse prob-
lems

In this section, we illustrate Theorem 3.1 considering spectral regularization methods,
already introduced in Section 2.3.2, for a class of stochastic linear inverse problems, ex-
tending the classical deterministic framework. The key point is to derive a suitable error
bound and a corresponding a priori parameter choice, which will correspond to λ∗, so that
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Assumption 2 holds. We next fix the framework. Let (U , ⟨·, ·⟩U ) and (X , ⟨·, ·⟩X ) be real and
separable Hilbert spaces, let A : U → X be a linear and bounded operator and assume, for
simplicity, that ∥A∥op ≤ 1. Then, let Ū and ε be a pair of random variables with values in
U and X respectively, and consider the model

X̄ = AŪ + ε, a.s.. (3.3.1)

We make several assumptions. The first is on the noise ε.

Assumption 4. We assume that
E[ε|Ū ] = 0

and, moreover, that there exists τ > 0 such that

E[∥ε∥2X |Ū ] ≤ τ2.

The above condition is a simple and natural stochastic extension of the classical bounded
noise variance assumption. We also assume that Ū satisfies the following stochastic exten-
sion of the classical Hölder source condition [64].

Assumption 5. The random variable Ū is such that ∥Ū∥U ≤ 1 a.s.. Moreover, there exist a
random variable Z̄ with values in U and scalars β, s > 0 such that,

Ū = (A∗A)sZ̄,

and
E[
∥∥Z̄∥∥2U ] ≤ β2.

In this setting, we recall that the class of spectral regularization methods that we aim
to analyze is given by

Ūλ := gλ(A
∗A)A∗X̄. (3.3.2)

defined by the spectral functions gλ : (0, 1] → R as mentioned in Remark 2.27. Clearly,
Ūλ = Ūλ(X̄), but we omit the dependence for conciseness. Note that the above expression
ensures that Ūλ is measurable, since it is the image of a linear operator applied to X̄.
Already in Section 2.3.2 we gave the necessary conditions for the class of spectral func-
tions gλ to be a regularization method. In this Chapter, instead, we will just assume the
following conditions.

Assumption 6. There exists a general constant C1 > 0 such that, for all λ ∈ (0,+∞),

sup
σ∈(0,1]

|gλ(σ)
√
σ| ≤ C1√

λ
.

Moreover, there is a constant C2 > 0 and α > 0 such that, for s > 0 as in Assumption 5,

sup
σ∈(0,1]

|(1− gλ(σ)σ)σ
s| ≤ C2λ

α. (3.3.3)

It can be easily shown that assumption 6 is also satisfied by all of the examples listed
in Section 2.3.2. We add some remarks regarding this assumption. The first assumption
implies that the norm of the regularization method gλ(A

∗A)A∗ is always bounded and
controlled by 1/

√
λ. Moreover, expression (3.3.3) is an approximation condition, which

characterizes the extent to which the considered spectral regularization method can take
advantage of the regularity of the problem, expressed by the source condition. Finally,
it is satisfied for α = min(ν̄, s), where ν̄ is the qualification parameter given in Defini-
tion 2.28. Both of the above assumptions allow us to derive suitable error bounds and a
corresponding a priori parameter choice, extending classical results in the deterministic
setting.
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Theorem 3.5. Under Assumptions 4, 5 and 6, for every λ ∈ (0,+∞) it holds that

E[
∥∥Ūλ − Ū

∥∥2
X ] ≤

C2
1τ

2

λ
+ C2

2β
2λ2α. (3.3.4)

In particular, taking

λ∗ =

(
C2
1

2αC2
2

)1/(2α+1)(
τ

β

)2/(2α+1)

,

the following bound holds

E[
∥∥Ūλ∗ − Ū

∥∥2
U ] ≤ (2α+ 1)

[(
C2
1

2α

)2α

C2
2

]1/(2α+1)(
τ2α

β

)2/(2α+1)

. (3.3.5)

Proof. To relate Ūλ and Ū , we observe that

E[Ūλ|Ū ] = E[gλ(A∗A)A∗X̄|Ū ] = E[gλ(A∗A)A∗AŪ |Ū ] = gλ(A
∗A)A∗AŪ,

where we used the definition of X̄ and Assumption 4. With this, we can decompose the
deviation of Ūλ to Ū as

Ūλ − Ū = Ūλ − E[Ūλ|Ū ] + E[Ūλ|Ū ]− Ū

= gλ(A
∗A)A∗(X̄ −AŪ) + (gλ(A

∗A)A∗A− Id)Ū

= gλ(A
∗A)A∗ε+ (gλ(A

∗A)A∗A− Id)(A∗A)sZ̄. (3.3.6)

Next, recall that, under Assumption 6, the following operator estimates hold

∥gλ(A∗A)A∗∥op ≤ C1√
λ
, ∥(I − gλ(A

∗A)A∗A)(A∗A)s∥op ≤ C2λ
α, (3.3.7)

see e.g. [64]. If we take the expectation of the squared norm in (3.3.6) and develop the
square, we get

E[
∥∥Ūλ − Ū

∥∥2
U ] = E[∥gλ(A∗A)A∗ε∥2X ] + E[∥(gλ(A∗A)A∗A− Id)Ū∥2U ],

since, by Assumption 4, we have

E[
〈
gλ(A

∗A)A∗ε, (gλ(A
∗A)A∗A− Id)Ū

〉
U ]

= E[
〈
gλ(A

∗A)A∗E[ε|Ū ], (gλ(A
∗A)A∗A− Id)Ū

〉
U ] = 0.

Then, using again Assumptions 4, 5, and 6 as well as the estimates (3.3.7), we derive

E[
∥∥Ūλ − Ū

∥∥2
U ] ≤ ∥gλ(A∗A)A∗∥2op E[∥ε∥

2
X ]

+ ∥(Id−gλ(A
∗A)A∗A)(A∗A)s∥2op E[

∥∥Z̄∥∥2U ]
≤ C2

1τ
2

λ
+ C2

2β
2λ2α,

since, by the tower property [112],

E[∥ε∥2X ] = E[E[∥ε∥2|Ū ]] ≤ τ2.

Finally, the value of λ minimizing the above bound is

λ∗ =

(
C2
1τ

2

2αC2
2β

2

)1/(2α+1)

,

and the corresponding error bound is

E[
∥∥Ūλ∗ − Ū

∥∥2
U ] ≤ (2α+ 1)

[(
C2
1

2α

)2α

C2
2

]1/(2α+1)(
τ2α

β

)2/(2α+1)

,

which is the inequality that we were aiming for.
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The expression given in (3.3.4) provides a bound, for any value of the regularization
parameter, of the distance between the regularized and the exact solutions. This bound is
composed of two terms. The first one is related to τ , the noise level, and decreases with
the regularization parameter as 1/λ. The second one is related to β in the source condi-
tion, and increases with the regularization parameter as λ2α. The choice of the parameter
λ∗ is then obtained by minimizing this upper bound in λ. Once we plug λ∗ in (3.3.4),
we obtain the bound in (3.3.5). These results are analogous to the ones usually obtained
in the deterministic setting (see for instance Corollary 4.4 in [64]), and are known to be
optimal in the sense of Definition 3.17 in [64].

Next, we show that, with the aid of the previous result, and in combination with
Theorem 3.1, the regularization parameter on the grid learned from data, namely λ̂Λ

defined in (3.2.3), achieves a similar performance to the one of λ∗. Toward this end, we
consider the truncation operator T : U → U , defined for all u ∈ U as

Tu =

 u, if ∥u∥U ≤ 1,
u

∥u∥U
, otherwise. (3.3.8)

The above operator can also be seen as the projection map that sends any element u ∈ U
into the unit ball of U centered at 0. To apply the result in Section 3.2, we consider the
loss defined, for every (u, u′) ∈ U × U , as

ℓ(u, u′) =
∥∥Tu− Tu′

∥∥2
U . (3.3.9)

Next, we aim to define the expected risk (3.2.2) in this setting. To do so, for every λ ∈
(0,+∞) let fλ(X̄) := Ūλ, where Ūλ is defined as in (3.3.2). Then, the corresponding
expected risk in this case writes,

L(Ūλ) := E[∥TŪλ − TŪ∥2U ]. (3.3.10)

We study now the error obtained in this context by choosing the regularization parameter
λ with ERM. Consider a finite set of independent and identical copies (X̄i, Ūi), i = 1, ..., n,
n ∈ N, of the pair (X̄, Ū) distributed as in (3.3.1) and let Ū i

λ := Ūλ(X̄i). Then, the
corresponding ERM is given by

λ̂Λ ∈ argmin
λ∈Λ

1

n

n∑
i=1

∥∥TŪ i
λ − Ūi

∥∥2
U , (3.3.11)

where we used that Ūi = TŪi a.s. for every i = 1, ..., n since
∥∥Ū∥∥U ≤ 1 a.s. by Assumption

5. The following corollary provides the desired error estimates.

Corollary 3.6. Let Assumption 3 be satisfied with λ∗ as in Theorem 3.5. Suppose that
Assumptions 4, 5 and 6 hold, and choose the loss as in (3.3.9). Let η ∈ (0, 1). Then, with
probability at least 1− η,

L(Ū
λ̂Λ
) ≤ 2(2α+Q2α+1)

Q

[(
C2
1

2α

)2α

C2
2

]1/(2α+1)(
τ2α

β

)2/(2α+1)

+
26

n
log

2N

η
.

In this setting, Assumption 1 is trivially satisfied with M = 4. The proof will therefore
consist in verifying that also Assumption 2 holds, so that Theorem 3.1 can be applied.

Proof. In this case, we just need to show that Assumption 2 is satisfied for fλ(X̄) = Ūλ and
L defined as in (3.3.10). Since T is a projection, it is 1-Lipschitz. Then, for all λ ∈ (0,+∞),
it holds that

L(Ūλ) = E[
∥∥TŪλ − TŪ

∥∥2
U ] ≤ E[

∥∥Ūλ − Ū
∥∥2
U ].
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Moreover, if we define Φ(λ) as the right hand side of equation (3.3.4), then (3.2.4) holds.
In addition, λ∗ defined as in Theorem 3.5 is the minimizer of Φ. Now, define the function

C : [1,+∞) → [0,+∞); C(q) :=
2α+ q2α+1

q(2α+ 1)
,

and observe that it is non-decreasing. Then, from the error bound (3.3.5), we derive, for
any q ∈ [1,+∞), that

Φ(qλ∗) = C(q)Φ(λ∗) =
2α+ q2α+1

q

[(
C2
1

2α

)2α

C2
2

]1/(2α+1)(
τ2α

β

)2/(2α+1)

.

Hence, Assumption 2 is satisfied. The result follows by applying Theorem 3.1.

Corollary 3.6 shows that, under a natural generalization of the classical assumptions
in deterministic inverse problems to the stochastic setting, the error obtained with the
optimal parameter on the grid for the empirical risk, namely λ̂Λ, is close to that of λ∗, up
to a logarithmic factor that increases very slowly with N , and decreases with n. We add
one final remark for this section.

Remark 3.7 (Comparison with Theorem 4.1 in [1]). The paper [1] aims to learn the
optimal Tikhonov regularizer, of the form ∥B(· − h)∥2, for a linear operator B and a bias
vector h ∈ U . The main result of [1] is Theorem 4.1, which establishes an excess risk
bound for parameters (B̂, ĥ) learned by minimizing the empirical risk. The setting is quite
different since, in [1], the authors learn a general Tikhonov regularizer by demonstrating
that the optimal pair (B∗, h∗) consists of the covariance operator and the mean of Ū ,
respectively. In this paper, we only learn the regularization parameter, but our setting
allows for a large class of spectral filters. The assumptions of Theorem 4.1, as seen in
(20) and (21) of [1], are quite different from Assumption 5 and Assumption 6, making a
direct comparisong between our Corollary 1 and Theorem 4.1 not meaningful. We only
observe that the proof of Theorem 4.1 in [1] relies on learning techniques that exploit
the Lipschitz continuity of the empirical risk with respect to the pair (h,B) and a classic
covering argument. In this paper, we use instead a different approach introduced in [36]
for the cross-validation method.

Next, we consider the problem of selecting the regularization parameter for Tikhonov
regularization in the setting of nonlinear inverse problems [64, Chapter 10].

3.4 Tikhonov regularization for non linear inverse prob-
lems

Let A : dom(A) ⊆ U → X be a (nonlinear) operator whose domain has nonempty interior
and let Ū and ε be a pair of random variables with values in U and X respectively. Then,
let

X̄ = A(Ū) + ε, a.s. (3.4.1)

with Ū ∈ int(dom(A)) a.s.. We make several assumptions. The first one is on the noise ε.

Assumption 7. There exists a constant τ > 0 such that

E[∥ε∥2X |Ū ] ≤ τ2 a.s.
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Using Jensen’s inequality for the conditional expectation [141, 9.7 (h)], we derive
from the previous assumption that

E[∥ε∥X |Ū ] ≤ τ a.s. (3.4.2)

Next we impose fairly standard conditions on the operator A.

Assumption 8. The operator A : dom(A) → X is a continuous and weakly closed operator
with int(dom(A)) non-empty, and with dom(A) convex. Moreover, A is Fréchet differentiable
in int(dom(A)) with derivative denoted by A′, and there exists a constant C0 > 0 such that,
for all u, u′ ∈ int(dom(A)),∥∥A′(u)−A′(u′)

∥∥
op

≤ C0

∥∥u− u′
∥∥
U . (3.4.3)

The previous assumption implies that, for all u ∈ int(dom(A)) and u′ ∈ dom(A),

∥∥A(u′)−A(u)−A′(u)(u′ − u)
∥∥
X ≤ C0

2

∥∥u′ − u
∥∥2
U ,

so that, by the triangle inequality,∥∥A′(u)(u′ − u)
∥∥
X ≤

∥∥A(u′)−A(u)
∥∥
X +

C0

2

∥∥u′ − u
∥∥2
U . (3.4.4)

Here, we assume global Lipschitz continuity of the derivative to avoid technicalities, but
the argument could be extended under a local smoothness assumption as in [47].

For nonlinear inverse problems, the Tikhonov estimator is defined with respect to a
suitable initialization. Here, we assume the initialization to be described by a random
variable Ū0 with values in U , and that the set of minimizers

argmin
u∈dom(A)

∥∥A(u)− X̄(ω)
∥∥2
X + λ

∥∥u− Ū0(ω)
∥∥2
U

is nonempty for every ω ∈ Ω thanks to Assumption 8, see [47, Theorem 10.1]. A corre-
sponding Tikhonov regularized estimator is a random variable Ūλ defined by setting, for
almost every ω ∈ Ω,

Ūλ(ω) ∈ argmin
u∈dom(A)

∥∥A(u)− X̄(ω)
∥∥2
X + λ

∥∥u− Ū0(ω)
∥∥2
U . (3.4.5)

Note that Ūλ = Ūλ(X̄, Ū0), but we omit this dependence for simplicity. The existence
of a random variable Ūλ taking values in the set of minimizers is ensured under some
additional assumptions, see e.g. Filippov’s Implicit function Theorem [86, Theorem 7.1].
For that reason, we directly assume that such measurable selection exists. The following
assumption will be needed to derive the error bounds and extends analogous conditions
in the deterministic case.

Assumption 9. The random variable Ū is such that ∥Ū − Ū0∥U ≤ 1 a.s. and, under As-
sumption 8, there exists a random variable Z̄ with values in X , and a scalar β > 0 such that
a.s.

Ū − Ū0 = A′(Ū)∗Z̄,

and ∥∥Z̄∥∥X ≤ β a.s., with βC0 < 1,

where C0 is the constant introduced in Assumption 8.
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The latter assumption can be seen as a nonlinear version of the source condition con-
sidered in Assumption 5 for s = 1.

In the next result, which is analogous to Theorem 3.5, we derive a bound on the error
of the Tikhonov regularized solution, leading to a priori parameter choices, and its proof
is a modification of the one in the deterministic setting, see e.g. [47, 64].

Theorem 3.8. Let Assumptions 7, 8 and 9 be satisfied. Then, for every λ ∈ (0,+∞), it holds
that

E[
∥∥Ūλ − Ū

∥∥2
U ] ≤

(τ + βλ)2

λ(1− βC0)
. (3.4.6)

In particular, setting λ∗ =
τ
β ,

E[
∥∥Ūλ∗ − Ū

∥∥2
U ] ≤

4

1− βC0
τβ.

Proof. The expressions below are all intended to hold a.s.. By definition of Ūλ, Ū and ε, it
follows that ∥∥A(Ūλ)− X̄

∥∥2
X + λ

∥∥Ūλ − Ū0

∥∥2
U ≤

∥∥A(Ū)− X̄
∥∥2
X + λ

∥∥Ū − Ū0

∥∥2
U

= ∥ε∥2X + λ
∥∥Ū − Ū0

∥∥2
U . (3.4.7)

Since ∥∥Ūλ − Ū0

∥∥2
U =

∥∥Ūλ − Ū
∥∥2
U +

∥∥Ū − Ū0

∥∥2
U + 2

〈
Ūλ − Ū , Ū − Ū0

〉
U , (3.4.8)

inequality (3.4.7) implies∥∥A(Ūλ)− X̄
∥∥2
X + λ

∥∥Ūλ − Ū
∥∥2
U ≤ ∥ε∥2X − 2λ

〈
Ūλ − Ū , Ū − Ū0

〉
U .

Then, Assumption 9 and Cauchy-Schwartz inequality yield∥∥A(Ūλ)− X̄
∥∥2
X + λ

∥∥Ūλ − Ū
∥∥2
U ≤ ∥ε∥2X + 2λ

∥∥A′(Ū)(Ūλ − Ū)
∥∥
X
∥∥Z̄∥∥X . (3.4.9)

Since X̄ ∈ int(dom(A)) and Ūλ ∈ dom(A), and dom(A) is convex by assumption, inequal-
ity (3.4.4) with u = Ū and u′ = Ūλ yields∥∥A′(Ū)(Ūλ − Ū)

∥∥
X ≤

∥∥A(Ūλ)−A(X̄)
∥∥
X +

C0

2

∥∥Ūλ − Ū
∥∥2
U ,

so that, by adding and subtracting X̄ in
∥∥A(Ūλ)−A(X̄)

∥∥
X , we obtain

∥∥A′(Ū)(Ūλ − Ū)
∥∥
X ≤

∥∥A(Ūλ)− X̄
∥∥
X + ∥ε∥X +

C0

2

∥∥Ūλ − Ū
∥∥2
U .

Plugging the above inequality into (3.4.9), we get∥∥A(Ūλ)− X̄
∥∥2
X + λ

∥∥Ūλ − Ū
∥∥2
U ≤ ∥ε∥2X + 2λ

∥∥Z̄∥∥X (
∥∥A(Ūλ)− X̄

∥∥
X

+ ∥ε∥X +
C0

2

∥∥Ūλ − Ū
∥∥2
U ).

By adding λ2∥Z̄∥2X to both sides and rearranging the terms, we get(∥∥A(Ūλ)− X̄
∥∥
X − λ∥Z̄∥X

)2
+ λ∥Ūλ − Ū∥2U ≤ ∥ε∥2X + 2λ∥Z̄∥X (∥ε∥X

+
C0

2
∥Ūλ − Ū∥2U ) + λ2∥Z̄∥2X .
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Next, we take expectations on both sides. First, recall that Assumption 7 implies (3.4.2),
i.e. E[∥ε∥X ] ≤ τ and therefore, with Assumption 9,

E[∥Z̄∥X ∥ε∥X ] ≤ βτ.

Assumption 9 implies also that

E[∥Z̄∥X ∥Ūλ − Ū∥2U ] ≤ βE[∥Ūλ − Ū∥2U ].

We then get that

E[
(∥∥A(Ūλ)− X̄

∥∥
X − λ∥Z̄∥X

)2
] + λE[∥Ūλ − Ū∥2U ] ≤ τ2 + 2λβτ

+ λ2β2 + λC0βE[∥Ūλ − Ū∥2U ].

In particular,

E[
∥∥Ūλ − Ū

∥∥2
U ] ≤

(τ + βλ)2

λ(1− βC0)
,

where we used that βC0 < 1 by assumption. Finally, the value of λ that minimizes the
above bound is

λ∗ =
τ

β
,

and the corresponding error bound is

E[
∥∥Ūλ∗ − Ū

∥∥2
U ] ≤

4

1− βC0
τβ,

which proves the result.

To apply Theorem 3.1, we consider the truncated square loss:

ℓ(u, u′) = ∥T (u− Ū0)− T (u′ − Ū0)∥2U , (3.4.10)

where T is the truncation operator defined in (3.3.8). Next, for every λ ∈ (0,+∞),
consider fλ(X̄) := Ūλ, where Ūλ is given by (3.4.5). The corresponding expected risk is
given in this case by

L(Ūλ) = E[∥T (Uλ − Ū0)− T (Ū − Ū0)∥2U ],

We now analyze the error corresponding to the choice of the regularization parameter
with ERM. Consider independent and identical copies (X̄i, Ūi), i = 1, ..., n, n ∈ N, of the
pair of random variables (X̄, Ū) as in (3.4.1). The ERM problem is given by

λ̂Λ ∈ argmin
λ∈Λ

1

n

n∑
i=1

∥∥T (Ū i
λ − Ū0)− (Ūi − Ū0)

∥∥2
U . (3.4.11)

with Ū i
λ := Ūλ(X̄i) and where we used that T (Ūi − Ū0) = Ū − Ū0 for every i = 1, ..., n

since ∥Ū − Ū0∥U ≤ 1 by Assumption 9. In the following result we derive an upper bound
corresponding to the expected risk.

Corollary 3.9. Suppose that Assumptions 7, 8 and 9 hold. Let Assumption 3 be satisfied with
λ∗ = τ

β and choose the loss as in (3.4.10). Let η ∈ (0, 1). Then, with probability at least
1− η,

L(Ū
λ̂Λ
) ≤ (1 +Q)2

2Q(1− βC0)
τβ +

26

n
log

2N

η
.
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Proof. To prove the result, it is enough to show that Assumptions 1 and 2 are satisfied.
First, note that Assumption 1 is satisfied since the truncated square loss in (3.4.10) is
bounded by 4. We recall that the operator T defined in (3.3.8) is 1−Lipschitz. Therefore,
Theorem 3.8 implies

L(Ūλ) ≤ E[
∥∥Ūλ − Ū

∥∥2
U ] ≤ Φ(λ),

with Φ(λ) = (τ+βλ)2

λ(1−βC0)
. The minimizer of Φ is λ∗ = τ

β with Φ(λ∗) = 4τβ
1−βC0

and, for every
q ≥ 1 we have that

Φ(qλ∗) =
(1 + q)2

q
(1− βC0)

−1τβ =
(1 + q)2

4q
Φ(λ∗).

Since the function

C : [1,+∞) → [0,+∞); C(q) :=
(1 + q)2

4q

is non-decreasing, Assumption 2 is satisfied. The result then follows from Theorem 3.1.

Corollary 3.9 establishes an upper bound on the expected risk of Ū
λ̂Λ

, corresponding to
the choice of the optimal regularization parameter based on ERM in the grid Λ. Actually,
it ensures that the error obtained when considering λ̂Λ is close to that of λ∗, except for an
additive error term that decreases with n. Notably, the dependence on the cardinality of
the grid N is only logarithmic.

3.5 General variational approaches for linear inverse
problems

In this section, we consider the linear inverse problem setting in Section 3.3, with As-
sumption 4 on the noise. We study Tikhonov regularization with a general function
R : U → R ∪ {+∞} instead of the squared norm,

Ūλ(ω) ∈ argmin
u∈U

1

2

∥∥Au− X̄(ω)
∥∥2
X + λR(u). (3.5.1)

In this section, we assume that the set of minimizers of the function

u 7→ 1

2

∥∥Au− X̄(ω)
∥∥2
X + λR(u)

is nonempty for almost every ω ∈ Ω, and that ω 7→ Ūλ(ω) is a measurable selection of the
set of minimizers. This setting includes various examples of sparsity-inducing regularizers
beyond Hilbertian norms, see e.g. [15] for references. We discuss specific examples in
Sections 3.5.1 and 3.5.2. For this class of regularization schemes, natural error metrics
are given by the Bregman divergence DR, defined by (2.2.3), and the symmetric Bregman
distance dR, given (2.2.4), and which is well defined as long as both arguments belong to
int(domR), as we already mentioned in Section 2.2. To derive an error bound we consider
the following assumptions.

Assumption 10. We assume that R ∈ Γ0(U) and that dom(∂R) = int(domR).

The previous assumption is satisfied in two main settings, which are discussed in the
following: in the finite-dimensional setting; i.e., where domR = Rd, 1 ≤ d < +∞, and
in the infinite-dimensional setting, where, by Lemma 2.13, R must be essentially smooth.
The following assumption extends classic smoothness assumptions for this setting.
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Assumption 11. The random variable Ū takes values in int(domR) a.s.. Moreover, we
assume that there exists a random variable Z̄ ∈ X , measurable with respect to the σ-algebra
generated by Ū , such that A∗Z̄ ∈ ∂R(X̄) a.s.. Finally, we assume that there exists β > 0
such that

E[
∥∥Z̄∥∥2X ] ≤ β2.

Assumption 11 can be seen as a generalization of the source condition for the squared
norm regularization in Assumption 5 for s = 1. In the following, we analyze the behavior
of dR(Ūλ, Ū) with respect to the regularization parameter λ. We first show that this quan-
tity is well-defined. From the optimality condition for the Tikhonov problem (3.5.1) we
derive that, a.s.,

1

λ
A∗(X̄ −AŪλ) ∈ ∂R(Ūλ). (3.5.2)

In particular, we know that Ūλ ∈ dom ∂R and so, by Assumption 10, that Ūλ ∈ int(domR).
Moreover, from Assumption 11 we have that Ū ∈ int(domR) a.s., and

A∗Z̄ ∈ ∂R(Ū).

Then, the symmetric Bregman distance is well defined, and can be written as

dR(Ūλ, Ū) =

〈
1

λ
A∗(X̄ −AŪλ)−A∗Z̄, Ūλ − Ū

〉
U
. (3.5.3)

The Bregman distances we consider (both the symmetric and the standard one) are based
on the specific subdifferentials considered in the latter formula. In the setting above, we
have the following upper bound.

Theorem 3.10. Suppose that Assumptions 4, 10 and 11 hold. Then, for all λ ∈ (0,+∞), we
have

E[dR(Ūλ, Ū)] ≤ τ2

2λ
+

β2λ

2
. (3.5.4)

In particular, taking λ∗ =
τ
β , we have

E[dR(Ūλ∗ , Ū)] ≤ βτ. (3.5.5)

Proof. The identities and inequalities below are intended to hold a.s.. By Assumption 11,

λdR(Ūλ, Ū) +
∥∥A(Ūλ − Ū)

∥∥2
X =

〈
A∗(X̄ −AŪλ)− λA∗Z̄, Ūλ − Ū

〉
U

+
∥∥A(Ūλ − Ū)

∥∥2
X

=
〈
X̄ −AŪλ − λZ̄ +AŪλ −AŪ,A(Ūλ − Ū)

〉
X

=
〈
X̄ −AŪ − λZ̄,A(Ūλ − Ū)

〉
X

≤ 1

2

∥∥X̄ −AŪ − λZ̄
∥∥2
X +

1

2

∥∥A(Ūλ − Ū)
∥∥2
X .

Rearranging the terms, we obtain

λdR(Ūλ, Ū) +
1

2

∥∥A(Ūλ − Ū)
∥∥2
X ≤ 1

2

∥∥X̄ −AŪ − λZ̄
∥∥2
X .

Taking the conditional expectation with respect to Ū , we get

λE[dR(Ūλ, Ū)|Ū ] +
1

2
E[
∥∥A(Ūλ − Ū)

∥∥2
X |Ū ] ≤ 1

2
E[
∥∥X̄ −AŪ

∥∥2
X |Ū ] +

λ2

2
E[
∥∥Z̄∥∥2X |Ū ]

− λE[
〈
X̄ −AŪ, Z̄

〉
X |Ū ].
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By Assumption 11, Z̄ is a measurable function with respect to Ū , and therefore the last
term is zero since X̄ = AŪ + ε and by Assumption 4. Thus, if we take the full expectation,
the previous inequality implies

λE[dR(Ūλ, Ū)] +
1

2
E[
∥∥A(Ūλ − Ū)

∥∥2
X ] ≤

1

2
E[
∥∥X̄ −AŪ

∥∥2
X ] +

λ2

2
E[
∥∥Z̄∥∥2X ]

≤ τ2

2
+

β2λ2

2
,

by Assumptions 4 and 11. Therefore,

E[dR(Ūλ, Ū)] ≤ τ2

2λ
+

β2λ

2
. (3.5.6)

The value of λ minimizing the above upper bound is

λ∗ =
τ

β
.

and the theorem follows.

We add a small remark regarding the above result.

Remark 3.11. Following [31], the above analysis can be extended considering U to be a
Banach space embedded in a Hilbert space. In this case, the inner product in U needs to
be replaced by the corresponding duality pairing.

In the rest of the section, we will apply Theorem 3.1 to different loss functions, all
based on the Bregman divergence. To perform the analysis, additional assumptions are
needed on R to ensure that the hypotheses of Theorem 3.1 are satisfied, e.g. the bound-
edness of the loss. We focus on two different settings: the case of sparsity-inducing regu-
larizers, of the form R(u) = |Gu|, where G is a general linear and bounded operator and
| · | a general norm (for instance, the ℓ1-norm), and the case of regularizers R of Legendre
type.

3.5.1 Sparsity inducing regularizers

In this section, we focus on the finite-dimensional setting, where U = Rd, 1 ≤ d < +∞,
is endowed with the Euclidean norm ∥ · ∥2. We study sparsity-inducing regularizers such
as the ℓ1 norm [7] or the Total Variation regularization [115]. Towards this end, we first
introduce a generic norm on Rm (not necessarily the Euclidean one), which we denote by
∥ · ∥, and the corresponding dual norm ∥ · ∥∗. We then fix a linear and bounded operator
G : (U , ∥ · ∥2) → (Rm, ∥ · ∥). We will consider the following structural assumption.

Assumption 12. The regularizer R : Rd → R is defined by setting, for every x ∈ Rd,

R(u) = ∥Gu∥, (3.5.7)

and ∥G∥op ≤ C1, for some constant C1 > 0 (here the operator norm is meant with respect to
the spaces U = Rd and Rm with their norms ∥ · ∥2 and ∥ · ∥, respectively).

The above condition describes the class of sparsity inducing regularizers we consider.
This class includes, for instance, all of the examples of regularization functions mentioned
in Section 2.3.2, but also Graph-Lasso [103], penalties for multitask learning [105], group
lasso [117], or ℓq penalties [74], among others (see [80] and references therein).
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For these regularization functions R, the subdifferential can be written as

∂R(·) = G∗∂∥ · ∥(G·),

which is nonempty at every point u ∈ U . Moreover, we recall that ∂∥·∥ is given by Example
2.7. In this section, we consider the loss function defined by the Bregman divergence for
every u, u′ ∈ Rd:

ℓ(u, u′) = DR(u, u
′) (3.5.8)

where DR is defined as in (2.2.3), for some subgradient sR(u′) ∈ ∂R(u′). As before, if we
let fλ(X̄) = Ūλ for every λ ∈ (0,+∞), then the corresponding expected risk is given by

L(Ūλ) = E[DR(Ū , Ūλ)]. (3.5.9)

In this case, and as in Section 3.3, we also assume that the random variable Ū is such
that ∥Ū∥2 ≤ 1 a.s.. In order to write the ERM in this case, we consider independent
and identical copies (X̄i, Ūi), i = 1, ..., n, n ∈ N, of the pair of random variables (X̄, Ū),
distributed as in (3.3.1). Finally, if we denote Ū i

λ := Ūλ(X̄i), then the ERM is given by

λ̂Λ ∈ argmin
λ∈Λ

1

n

n∑
i=1

DR(Ūi, Ū
i
λ). (3.5.10)

A similar approach has been applied in order to learn the optimal regularization parameter
in the case of R being the Total Variation [45]. We can now state the probabilistic error
estimates for this setting.

Corollary 3.12. In the setting of this subsection, let Assumptions 4, 11 and 12 be satisfied, let
Assumption 3 be satisfied with λ∗ = τ

β as in Theorem 3.10 and choose the loss as in (3.5.8).
Let η ∈ (0, 1). Then, with probability at least 1− η,

L(U
λ̂Λ
) ≤ 1 +Q2

Q
βτ +

13C1

n
log

2N

η
. (3.5.11)

Proof. To apply Theorem 3.1, we need to check that Assumptions 1 and 2 are satisfied.
For every u ∈ Rd with ∥u∥ ≤ 1 and u′ ∈ Rd, we have

DR(u, u
′) = ∥Gu∥ − ∥Gu′∥ − ⟨G∗s∥·∥(Gu′), u− u′⟩Rm

= ∥Gu∥ − ∥Gu′∥ − ⟨s∥·∥(Gu′), Gu−Gu′⟩Rm

= ∥Gu∥ − ⟨s∥·∥(Gu′), Gu⟩Rm

≤ (1 + ∥s∥·∥(Gu′)∥∗)∥Gu∥
≤ 2∥G∥op∥u∥2
≤ 2C1.

Hence, the loss function is bounded on the cylinder {(u, u′) ∈ Rd×d : ∥u∥2 ≤ 1} , and
Assumption 1 is therein satisfied with M = 2C1. We are left to show that Assumption 2 is
satisfied for fλ(X̄) = Ūλ and L defined as in (3.5.11). From the inequality

DR(Ū , Ūλ) ≤ dR(Ū , Ūλ)

and Theorem 3.10, we derive that

L(Ūλ) ≤ Φ(λ),

where Φ(λ) = τ2

2λ + β2λ
2 . The latter is minimized by λ∗ =

τ
β and satisfies

Φ(qλ∗) ≤
1 + q2

2q
βτ,

where the multiplicative factor depending on q is a non-decreasing function for q ≥ 1. The
statement then follows from Theorem 3.1.
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3.5.2 Legendre Regularizers
In this section, we consider Legendre regularizers 2.12. We will rely on the following
assumption.

Assumption 13. The function R : U → [0,+∞] is Legendre.

In particular, Assumption 13 implies Assumption 10, since dom(∂R) = int(domR) by
Lemma 2.13.

Now, we need to consider a projection operator in order to prove that Assumption 1 is
satisfied. To do so, let u0 ∈ int(domR) and r > 0 such that Br := {u ∈ U : ∥u− u0∥ ≤ r}
is a subset of int(domR). With this, we consider πBr be the Bregman projection onto Br,
defined in (2.2.5). Observe that, by definition, πBr(u) ∈ Br ⊆ int(domR) for every u ∈ U .
Next, recalling that it always holds int(domR) ⊆ dom(∂R), we know that the subdiffer-
ential of R is non empty at each point of Br, which is contained in dom ∂R. In particular,
under Assumption 13, R is essentially smooth and hence, again by Lemma 2.13, the sub-
differential of R is single valued on Br. Then, for every u ∈ Br, we denote by ∇R(u) the
subdifferential of R at u ∈ Br.

We need an additional assumption on the function R in the set B, namely a uniform
upper-bound for the norm of ∇R.

Assumption 14. There exists C2 > 0 such that

sup
u∈Br

∥∇R(u)∥U ≤ C2.

Note that, since R is Legendre and essentially smooth, then ∇R is locally bounded
on int(domR). This means that for every u ∈ int(domR) there exists ε > 0 such that
supz∈Bε(u) ∥∇R(z)∥ < +∞, but this does not imply the validity of Assumption 14. In this
context, we consider the loss function defined for all u, u′ ∈ U as the Bregman divergence
between the projections onto B, namely

ℓ(u, u′) = DR(πBr(u), πBr(u
′)), (3.5.12)

which is univocally defined since πBr(u
′) ∈ B, and the subdifferential of R is non empty

and single valued on B. Next, for every λ ∈ (0,+∞), consider fλ(X̄) := Ūλ, where Ūλ is
defined as in (3.5.1). The corresponding expected risk for this problem is given by

L(f) = E[DR(πBr(Ū), πBr(Ūλ))]. (3.5.13)

In this case, and in opposition with the other sections where we assumed that ∥Ū∥ ≤ 1,
we assume that Ū is such that Ū ∈ B a.s.. As in the previous sections, we want to bound
the expected risk of the regularization method Ūλ, when the regularization parameter
λ is selected by ERM. To do so, we consider independent and identical copies (X̄i, Ūi),
i = 1, ..., n, n ∈ N, of the pair of random variables (X̄, Ū), distributed as in (3.3.1). Let
Ū i
λ := Ūλ(X̄i) for every i = 1, ..., n. Then, the ERM writes as

λ̂Λ ∈ argmin
λ∈Λ

1

n

n∑
i=1

DR(Ūi, πBr(Ū
i
λ))), (3.5.14)

where we used that πBr(Ūi) = Ūi, i = 1, ..., n, by assumption. The corresponding error
bound is given in the following corollary.
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Corollary 3.13. Let Assumptions 4, 11, 13 and 14 be satisfied, let Assumption 3 be satisfied
with λ∗ = τ

β as in Theorem 3.10 and choose the loss as in (3.5.12). Let η ∈ (0, 1). Then,
with probability at least 1− η,

L(Ū
λ̂Λ
) ≤ 1 +Q2

Q
βτ +

26C2r

n
log

2N

η
.

Proof. To prove the statement, we will rely again on Theorem 3.1. Therefore we just need
to show that Assumptions 1 and 2 hold. We first show that Assumption 1 is satisfied. From
πBr(u), πBr(u

′) ∈ B and Assumption 14, recalling that ∂R is single valued on B, it follows
that

0 ≤ ℓ(u, u′) = DR(πBr(u), πBr(u
′)) ≤ DR(πBr(u), πBr(u

′)) +DR(πBr(u
′), πBr(u))

= ⟨∇R(πBr(u))−∇R(πBr(u
′)), πBr(u)− πBr(u

′)⟩ ≤ 4C2r.

Then, the considered loss function (3.5.12) is bounded and Assumption 1 is satisfied with
M = 4C2r. Next, we check Assumption 2 in this setting. First, observe that both Ū and Ūλ

belong to dom(∂R) a.s. since Ū ∈ B ⊆ int(domR) by assumption and by the optimality
condition stated in (3.5.2). Then, the subdifferential of R is non-empty (and so single
valued) at Ū and Ūλ and, by Lemma 2.15,

dJ(Ū , Ūλ) ≥ DR(Ū , Ūλ) ≥ DR(Ū , πBr(Ūλ)) +DR(πBr(Ūλ), Ūλ).

Again, since Ū ∈ B a.s., we have that πBr(Ū) = Ū a.s.. Then, the previous inequality
implies that

L(Ūλ) = E[DR(πBr(Ū), πBr(Ūλ))] = E[DR(Ū , πBr(Ūλ))] ≤ E[dJ(Ū , Ūλ)]. (3.5.15)

Theorem 3.10 gives the bound E[dJ(Ū , Ūλ)] ≤ Φ(λ), where Φ(λ) = τ2

2λ + β2λ
2 . So, together

with (3.5.15), this implies that
L(Ūλ) ≤ Φ(λ).

The minimizer of Φ(λ) is given by λ∗ = τ
β with Φ(λ∗) = βτ . We derive directly from the

definition that

Φ(qλ∗) =
1 + q2

2q
βτ =

1 + q2

2q
Φ(λ∗)

for any q ≥ 1, where the multiplicative term 1+q2

2q is a non-decreasing function for q ≥ 1.
Hence, Assumption 2 is satisfied and we can apply Theorem 3.1 to obtain the desired
result.

3.6 Numerical results

In this section, we provide empirical validation of the theoretical results discussed in the
previous sections. We consider different experimental settings and, for each of them, we
illustrate the expected risk decay, evaluated at the learned regularization parameter λ̂Λ,
showing that it goes to a certain constant as n goes to infinity. First, we consider the set-
ting of linear inverse problems with squared norm regularization. In this case, we focus on
Tikhonov regularization, defined in Example 2.29, and the Landweber method, given in
Example 2.30. For both of them we compare the proposed data-driven procedure with the
so-called quasi-optimality criterion [11]. Then, we turn to more general regularization
penalties. More precisely, we consider the problem of denoising and deblurring sparse
signals with the ℓ1-norm, and TV denoising for images.
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In all the subsequent experiments, the expected risk L is always approximated with
the empirical one, computed with either N = 500 or N = 1000 points, depending on the
complexity of the experiment. Similarly, the optimal parameter λ∗ is selected on a suffi-
ciently fine grid to approximate the interval (0,+∞).

Code statement: All of the simulations have been implemented in Python on a laptop
with 32GB of RAM and 2.2 GHz Intel Core I7 CPU. In Section 3.6.2 we also use the
library Numerical Tours by G. Peyré [108]. The code is available at https://github.com/
TraDE-OPT/Learning-the-Regularization-Parameter.

3.6.1 Spectral regularization methods
In this section, we empirically analyze the proposed data-driven parameter selection strat-
egy for Tikhonov regularization and the Landweber method to solve an instance of a linear
inverse problem as in Section 3.3. We consider a problem of the form

X̄ = AŪ + ε,

which we describe next. The operator A is a 70× 70 square matrix, with Gaussian entries
ai,j ∼ N(0, 1), 1 ≤ i, j ≤ 70, that will be then normalized by its operator norm, which in
this case coincides with the 2-norm. To ensure that Assumption 5 is satisfied with a known
exponent, we define the random variable Ū ∈ R70 as

Ū = (A∗A)sZ̄,

with s > 0 to be fixed later and Z̄ sampled uniformly in the unit ball. This, jointly with
∥A∥2 ≤ 1, ensures that ∥Ū∥ ≤ 1 a.s.. Note that, in this setting, Assumption 5 is satisfied
with β = 1. Finally, ε ∼ N(0, τ2Id), which satisfies Assumption 4. The training set is
obtained by sampling n independent pairs (x̄i, ūi), i = 1, ..., n, from the previous model.
The section is divided into two parts:

• empirical validation of the theoretical results,

• comparison of the studied method with the quasi-optimality criterion [130].

In both cases, every experiment is run 30 times, and we report both the mean (in solid
lines) and the values between the 5th-percentile and 95th-percentile of the data (in shaded
regions).

Illustration of the data-driven parameter choice

We start considering the problem described in Section 3.6.1 with noise level τ = 10−2 and
source condition s = 0.5. Starting from the training set {(x̄i, ūi)}50i=1, for every λ ∈ Λ, we
define the empirical risk for the Tikhonov regularized solution as

L̂(Ūλ) =
1

50

50∑
i=1

∥TŪ i
λ − ūi∥2, (3.6.1)

where Ū i
λ := (A∗A + λI)−1A∗x̄i and T stands for the truncation operator onto the unit

ball. The empirical risk for the Landweber method is defined analogously, where in this
case Ū i

λ = (I − γA∗A)⌊1/λ⌋A∗x̄i with constant stepsize γ = 0.2. For both Tikhonov
regularization and Landweber iteration, we build a grid of regularization parameters
Λ = {λ1, . . . , λN} as in Assumption 3, namely with λj = λ1Q

j−1 for j = 1, . . . , N and
Q = (λN/λ1)

1/(N−1). In the case of Tikhonov, we choose Λ ⊆ [10−4, 100] with N = 500

https://github.com/TraDE-OPT/Learning-the-Regularization-Parameter
https://github.com/TraDE-OPT/Learning-the-Regularization-Parameter
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and so Q ≈ 1.0281. For Landweber, we choose Λ ⊆ [10−3, 1], while N remains the same
and Q ≈ 1.0139. According to Section 3.2, the parameter proposed by our approach is λ̂,
a minimizer of (3.6.1) within the grid Λ. In Figure 3.6.1, the function λ ∈ Λ 7→ L̂(Ūλ)
is plotted for Tikhonov regularization. For Landweber, we plot the function in terms of
number of iterations k.

10 4 10 3 10 2 10 1 100 101 1020.0

0.1

0.2

0.3

0.4

0.5 Tikhonov

100 101 102 103

k

0.05

0.10
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L(
U

)

Figure 3.1: Empirical risk trajectories, of the Tikhonov and Landweber regularization
methods, with respect to the regularization parameter λ.

Illustration of Theorem 3.5

In this section we investigate the dependence on the noise level τ of the error L(Ūλ∗), see
equation (3.3.5) in Theorem 3.5. For every fixed noise level τ > 0 of ε, let λ∗(τ), or k∗(τ)
in the case of Landweber, be a minimizer of the expected risk,

λ∗(τ) ∈ argmin
λ∈(0,+∞)

L(Ūλ). (3.6.2)

As stated in Theorem 3.5, L(Ūλ∗(τ)) goes to zero when τ vanishes. The parameter α in
Assumption 6 plays an important role in the bound, since L(Ūλ∗(τ)) ≲ τ4α/(2α+1). In partic-
ular, we expect L(Ūλ∗(τ)) to go to 0 faster when α increases. For Tikhonov, α = min{1, s}
(since 1 is the qualification parameter for Tikhonov regularization). For Landweber, in-
stead, α = s. The influence of s on the decay rate of the reconstruction error is shown in
Figure 3.6.1 for the values s = 0.5 and s = 1. To determine λ∗(τ), we first consider 30 dif-
ferent values of the noise level τ within the interval [10−4, 10−1]. The selected smoothness
parameters allow us to gain a deeper insight into the behavior of the expected risk with
respect to the deterministic rate obtained in Theorem 3.5. In Figure 3.6.1, we illustrate
the quantity L(Ūλ∗(τ))/τ

(4s)/(2s+1), where it can be seen that all the curves are bounded
when τ goes to zero. We can also observe that the quantity of interest is not going to zero,
therefore suggesting that the derived bounds are tight.

In the following experiment, we study the behavior of the best empirical regularization
parameters, λ̂(τ) and k̂(τ), with respect to the noise level τ and the smoothness parameter
s for both Tikhonov and Landweber methods. Here, the empirical risk is computed with 10
training points for smoothness parameters s = 0.5 and 1. We fix 30 different values of the
noise level τ in the interval [10−4, 10−1], and we consider the following grids: Λ ⊆ [10−5, 1]
with N = 500 in the case of Tikhonov regularization, and Λ ⊆ [10−4, 1] with N = 5000 for
Landweber. It can be seen that the empirical parameters λ̂(τ) and k̂(τ) exhibit a similar
behavior to the a priori optimal ones ([64] and Theorem 3.5): in the case of Tikhonov
regularization, λ̂(τ) increases with the noise, and in the case of Landweber, the number
of iterations decreases with respect to the noise. The smoothness parameter has also an
effect on the optimal regularization parameter: λ̂ is increasing with respect to s, while the
required number of iterations in Landweber is decreasing. This behavior can be observed
in Figure 3.6.1.
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Figure 3.2: Behavior of L(Ūλ∗) with respect to the rate τT , T = (4s)/(2s+ 1), obtained in
Theorem 3.5, for different smoothness parameters s for Tikhonov and Landweber. It can
be seen that each trajectory is upper bounded, as suggested by the rate in Theorem 3.5.
The horizontal axes are shown in logarithmic scale.

10 4 10 3 10 2 10 1

10 3

10 2

10 1

100

(
)

Tikhonov
s = 0.5
s = 1

10 4 10 3 10 2 10 1100

101

102

103

k(
)

Landweber
s = 0.5
s = 1

Figure 3.3: Value of λ̂, k̂ when varying the noise level for both Tikhonov and Landweber
methods. Both parameters have been selected over a training set of 10 points, constructed
with different smoothness parameters as shown in the plot. Solid lines represent the mean
value, while the shaded regions represent the 5th-percentiles and 95th-percentiles over 30
trials. Both axis are shown in logarithmic scale.

Illustration of error bounds

In this section, we discuss some numerical experiments supporting the error bound stated
in Corollary 3.6, both for Tikhonov and Landweber regularization methods. By Corollary
3.6, with high probability, there exist constants c1, c2 > 0 such that

L(Ū
λ̂Λ
) ≤ c1τ

4α/(2α+1) +
c2
n
.

Therefore, the quantity L(Ū
λ̂Λ
) with fixed noise level τ > 0 behaves as L(Ūλ∗) up to an

additive constant. The same holds for fixed n, and τ → 0. We consider the same setting as
for Figure 3.6.1 with noise level τ = 0.01 and smoothness parameter s = 0.5. We define
the empirical risk, L̂(Ūλ), for every n ∈ {5, 10, ..., 100}, where we sample fresh training
points for every different value of n, and we denote by λ̂(n) and k̂(n) the parameters
corresponding to the minimizers of the empirical risk with n points. In Figure 3.6.1 we
show that L(Ū

λ̂(n)
) goes to a certain constant, that depends on the noise level, when n

increases, see Figure 3.6.1.

Next, we illustrate the behavior of the expected risk L with respect to the noise level
τ . First, we fix as smoothness parameter s = 0.5 and consider 30 different values of the
noise level τ within the interval [10−4, 10−1]. Next, for every τ , we find λ∗(τ), k∗(τ) as the
minimizers of the expected risk L. Then, we fix the grid Λ ⊆ [10−5, 1] with N = 500 and
Q ≈ 1.0233 in the case of Tikhonov, and Λ ⊆ [10−4, 1] with N = 3000 and Q ≈ 1.0031 in
the case of Landweber. With this, we find λ̂Λ(τ), k̂Λ(τ) as the minimizers of the empirical
risk L̂(Ūλ), constructed with n = 5 freshly generated training points. In Figure 3.6.1 we
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Figure 3.4: Behavior of L(Ū
λ̂(n)

), both for Tikhonov and Landweber regularization, as a
function of n. The solid lines represent the mean value, while the shaded regions represent
the 5th-percentiles and 95th-percentiles over 30 trials. The x-axis is shown in logarithmic
scale.

plot, for every noise level τ , the values L(Ūλ∗(τ)) and L(Ū
λ̂Λ(τ)

) in the cases of Tikhonov
and Landweber, showing that their behavior with respect to τ is comparable.
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Figure 3.5: Comparison between L(Ūλ∗(τ)), in orange, and L(Ū
λ̂Λ(τ)

), in blue, when vary-
ing the noise level τ both for Tikhonov and Landweber regularization. As it can be ob-
served, in such a scale, the lines almost coincide.

Comparison with the quasi-optimality criterion

In this section we compare our data-driven approach to the quasi-optimality criterion
[130]. The latter is one of the most common and simple-to-implement heuristic parameter
selection methods and does not require the noise level to be computed. Theoretical guar-
antees on its performance are available in the stochastic inverse problems setting [11].
First, note that the computational cost of the two methods can be very different. The quasi-
optimality criterion performs instance-wise as all the usual parameter selection methods;
i.e. given a set of test data {(x̄i, ūi)}ntest

i=1 , ntest ∈ N, and a regularization method Ūλ, it
outputs the best regularization parameter λ̂i for each x̄i, i = 1, ..., ntest. This could lead to
high computational costs when the number of test points is big. Indeed, the method needs
to be run as many times as the number of points, and for each test point the computation
of the whole regularization path is required (see below). On the contrary, our algorithm
requires to have access to a training set, but then, on test problems, the learned parameter
λ̂ will be the same for every i = 1, ..., ntest, and only one regularized problem needs to be
solved. In the following we compare the two approaches in terms of average performance
on the test problems for Tikhonov and Landweber methods.

For Tikhonov regularization, we fix a grid of N = 1000 regularization parameters
Λ ⊆ [10−5, 10], with Q ≈ 1.0139 and we denote Ū i

λj
the solution of the regularized problem

for the parameter λj and datum x̄i, i ∈ {1, . . . , ntest}. We fix ntest = 50. For each pair
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Llearn − Lqo, Tikhonov
noise lev. τ = 10−3 τ = 10−2 τ = 10−1 τ = 0.5

mean −0.0025 −0.0665 −0.6071 −0.9935

std 4.07× 10−7 4.27× 10−6 4.22× 10−5 0.0

Table 3.1: Mean value and standard deviation of the error difference between our method
and the quasi-optimality criterion. Above, we compare methods in the case of Tikhonov
regularization for different values of the noise level.

Llearn − Lqo, Landweber
noise lev. τ = 10−3 τ = 10−2 τ = 10−1 τ = 0.5

mean −0.9987 −0.9348 −0.5042 0.5775

std 4.60× 10−7 1.56× 10−6 1.11× 10−16 0.0

Table 3.2: Mean value and standard deviation of the error difference between our method
and the quasi-optimality criterion with different values of the noise level.

(x̄i, ūi) in the test set, we select the parameter with the quasi-optimality criterion, namely
we set λqo

i = λj∗(i), where j∗(i) is defined as

j∗(i) ∈ argmin
j∈{1,...,1000}

∥Ū i
λj

− Ū i
λj+1

∥.

Our method instead provides a unique λ̂Λ, depending on the training set. For this ex-
periment, we fix a training set of 1000 points. We then compare the average test error
corresponding to the two methods, where, for the quasi-optimality criterion we consider

Lqo =
1

50

50∑
i=1

∥Ū i
λ

qo
i
− ūi∥2.

For the Landweber iteration, we fix a grid of N = 800 regularization parameters Λ ⊆
[1/103, 1], with Q ≈ 1.0087 we follow the implementation of the quasi-optimality criterion
proposed in [9], and we define λqo

i = λj∗ , where j∗(i) is defined as

j∗(i) ∈ argmin
j∈{1,...,800}

∥Ū i
2⌊1/λj+1⌋ − Ū i

⌊1/λj+1⌋∥,

and we compare the average test error as for the Tikhonov method.

We denote the test error corresponding to our method Llearn (for both Tikhonov and
Landweber) and we compute the quantity Llearn − Lqo for 30 different realizations of the
training set. We show in tables 3.6.1 and 3.6.1 the mean value and standard deviation
of the proposed experiment for both Tikhonov and Landweber with source condition s =
0.5. As the tables suggest, the data-driven selection method performs differently than the
quasi-optimality criterion for both Tikhonov and Landweber methods. On the one hand,
in the case of Tikhonov regularization, the difference between the two studied methods is
small when the noise level is small. Instead, when such noise level increases, the learned
regularization parameter performs considerably better. In the case of Landweber, it can be
seen in 3.6.1 that the learned regularization parameter performs better for lower values
of the noise level.

3.6.2 Sparsity inducing regularizers
In this section, we explore the theoretical results in Section 3.5.1 for three different ex-
amples: denoising and deblurring of a sparse signal, and Total Variation regularization
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for image denoising, which were already discussed in Section 2.3.2. In particular, we will
focus on illustrating, experimentally, Corollary 3.12. To do so, we will perform the same
experiments that we did for the spectral case: first, we show that the expected risk, evalu-
ated at the best empirical parameter λ̂Λ with fixed noise level τ , tends to a certain constant
when the number of training points goes to infinity. Second, we show that the expected
risk, when evaluated at the best empirical parameter λ̂Λ for a fixed number of training
points, has a comparable behavior, with respect to the noise level τ , to the expected risk
evaluated at its minimum. We start with the simplest case: denoising of a sparse signal.

Denoising of a sparse signal

Let X = U = Rd, 1 ≤ d < ∞ and consider the sparse signal denoising problem stated in
Example 2.22:

x = u∗ + ε. (3.6.3)

Consider the white noise model ε ∼ N(0, τ2Id), with noise level τ > 0, and assume the
solution u∗ to be such that ∥u∗∥2 ≤ 1 as required by assumption. The sparsity paramter
We consider the same regularization approach as in Section 2.3.2; i.e. Ūλ = Sλ(x), for
every λ ∈ (0,+∞), to be the soft-thresholding operator as regularization method.

As an illustrative example, we show in Figure 3.6 the behavior of the empirical risk
in this setting, where the training set {(x̄i, ūi)}ni=1 is generated according to (3.6.3) with
d = 1024, s = 64 and noise level τ = 0.25,

L̂(Sλ) =
1

n

n∑
i=1

D∥·∥1(ūi,Sλ(x̄i)), (3.6.4)

for n = 10 and λ in a grid Λ ⊆ [10−4, 10] with N = 1000 and so Q ≈ 1.0116. As it can
be seen, this empirical behavior matches the theoretical one: we first recall the Bregman
divergence for this case: for every u, x ∈ Rd, we have

D∥·∥1(u,Sλ(x)) = ∥u∥1 − ⟨s|·|(x), u⟩ = ∥u∥1 − ⟨sign(x), u⟩.

On the one hand, observe that, for every i = 1, ..., n, sign(Sλ(ūi)) → sign(x̄i) as λ → 0.
This leads to

L̂(Sλ) →
1

n

n∑
i=1

D∥·∥1(ūi, x̄i), as λ → 0,

where the right hand side is constant. On the other hand, the for every λ ∈ (0,+∞)
with λ > supi=1,...,n ∥x̄i∥∞, we have that Sλ(x̄i) = 0 for every i = 1, ..., n. Therefore,
D∥·∥1(ūi,Sλ(x̄i)) = ∥ūi∥ for every i = 1, ..., n and so

L̂(Sλ) →
1

n

n∑
i=1

∥ūi∥1, as λ → +∞,

where the right hand side is again constant in this case.

Next, we illustrate, from a numerical point of view, Corollary 3.12 for this setting.
First, we show that the expected risk for this problem, when evaluated at the learned
regularization parameter λ̂Λ, goes to a certain constant as n goes to infinity. First, we
fix as noise level τ = 0.25 and a grid of regularization parameters of N = 1000 points
Λ ⊆ [10−5, 1], with Q ≈ 1.0116 and, for every n ∈ {1, 2, ..., 20} we define λ̂(n) as a mini-
mizer of the empirical risk (3.6.4) where, for every n, we consider an independent set of
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Figure 3.6: Behavior of L̂(Sλ) with respect to the regularizaton parameter λ for the signal
denoising problem.

training points {(x̄i, ūi)}ni=1, generated according to (3.6.3). In Figure 3.6.2, we plot the
quantity L(S

λ̂(n)
) for different values of the dimension, d ∈ {512, 1024, 2048}, and fixed

sparsity s = 16, showing that, empirically, it is converging to a certain constant when the
number of training points goes to infinity. As expected, this convergence does not depend
on the dimension of the problem.
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Figure 3.7: Behavior of L(S
λ̂(n)

) as a function of n for different values of the dimension.

The solid lines represent the mean value, while the shaded regions represent the 5th-
percentiles and 95th-percentiles over 30 trials. The x-axis is shown in logarithmic scale.

Finally, we show the behavior of the expected risk L with respect to the noise level τ .
First, we fix d = 1024 and sparsity s = 16. Next, we fix 30 different values of the noise level
τ ∈ [0.1, 1]. Then, for every value of the noise level τ , we find λ∗(τ) as the minimizer of the
expected risk L. After, we consider the grid Λ ⊆ [10−5, 1] with N = 500 and Q ≈ 1.0233.
With this, we find λ̂Λ as the minimizer of the empirical risk L̂, constructed with n = 5
fresh training points. n Figure 3.6.2, we confirm that the behavior of both L(Sλ∗(τ)) and
L(S

λ̂Λ(τ)
) with respect to τ is comparable.
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Figure 3.8: Behavior of the expected risk L with respect to the noise level τ . Recall that
L(S

λ̂Λ(τ)
) has been computed 30 times. We therefore report the mean value, in a solid

line, and the values between the 5th-percentile and 95th-percentile, which corresponds to
the shaded region. Both axis are shown in logarithmic scale.

Deblurring of a sparse signal

In this section, we consider the problem of deblurring a sparse signal explained in Example
2.23. Let X = U = Rd, 1 ≤ d < ∞ and consider

x = Au∗ + ε, (3.6.5)

where A is the blur operator defined therein and ε ∼ N(0, τ2 Id) with noise level τ > 0.
In order to define a regularization method, we consider the Lasso problem, developed in
Section 2.3.2. We let Ūλ to be the output of FISTA [14] until convergence; i.e. until the
difference between iterates is smaller than 10−6. We now aim at illustrating Corollary
3.12; i.e., showing the error behavior of the learned regularization parameter when n
goes to infinity. For this example, we fix τ = 0.1 and the grid of admissible regularization
parameters to be Λ ⊆ [10−2, 1] with N = 50 and Q ≈ 1.0985. The ERM writes as

λ̂(n) ∈ argmin
λ∈Λ

1

n

n∑
i=1

D∥·∥1(ūi, Ū
i
λ).

where Ū i
λ := Ūλ(x̄i) and, for every n ∈ {5, 10, ..., 50}, we consider independent sets of

training points {(x̄i, ūi)}ni=1, that have been generated according to (3.6.5). According
to Corollary 3.12, the expected risk L evaluated at λ̂Λ(n), L(Ūλ̂Λ(n)

), should converge to
certain constant when n → ∞. We plot this behavior in Figure 3.9.
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Figure 3.9: Behavior of L(Ū
λ̂(n)

) for the signal deblurring problem, showing that it goes
to a certain constant as n increases. The solid line represents the mean value, while the
shaded region represents the values between 5th-percentile and 95th-percentile over 30
trials. The x-axis is shown in logarithmic scale.



56
3. ON LEARNING THE OPTIMAL REGULARIZATION PARAMETER IN INVERSE

PROBLEMS

Next, we aim to show, empirically, that the behavior of the learned regularization pa-
rameter and the optimal one is comparable with respect to the noise level τ . We therefore
fix 30 different values of the noise level within the interval [0.1, 1] and define, for every
τ , λ∗(τ) as the minimizer of the expected risk L. After, we fix a grid of regularization
parameters Λ ⊆ [10−2, 1] with N = 10 and Q ∼ 2.1544. Hence, λ̂Λ will be the minimizer
of the empirical risk L̂, constructed with n = 5 freshly generated training points for every
value of the noise level τ . In Figure 3.6.2, we plot the quantities L(Ūλ∗(τ)) and L(Ū

λ̂Λ(τ)
),

showing that their behavior is comparable with respect to the noise level τ .

10 1 100
100

2 × 100

3 × 100 L(U ( ))
L(U ( ))

Figure 3.10: Behavior of the expected risk L, with respect to the noise level τ , for the
signal deblurring problem. Recall that L(Ū

λ̂Λ(τ)
), in blue, has been computed 30 times. We

therefore report the mean value, in a solid line, and the values between the 5th-percentile
and 95th-percentile, which corresponds to the shaded region. Both axis are shown in
logarithmic scale.

Finally, we show one example of a reconstructed signal using our regularization pa-
rameter choice. In order to learn the parameter λ̂, we first construct a training set of
ntrain = 100 clean/corrupted signals with the same distribution as the test element that
we want to reconstruct, with noise level τ = 0.1. Then, the regularization parameter will
be the minimizer of the empirical risk (3.5.10) with respect to the fixed training set. We
show in the third row of Figure 3.6.2, the resulting regularized solution with the learned
regularization parameter.

0.25
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0.25
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0.5

0.0

0.5
Blurred, noisy

0 50 100 150 200 250
0.25
0.00
0.25

Recovered

Figure 3.11: Deblurring of a sparse noisy, blurred signal with learned regularization pa-
rameter. In the first row, we show the original signal; in the second, its blurred and noisy
version; and in the third row, the regularized solution with learned regularization param-
eter.
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Total Variation for image denoising

In this section, we use our data-driven algorithm for choosing the regularization parameter
of the anisotropic Total Variation regularizer (2.3.11). To do so, we focus on the image
denoising problem as in Example 2.22: we let X = U = Rd×d, 1 ≤ d < ∞ and

x = u∗ + ε, (3.6.6)

where ε ∼ N(0, τ2 Id) with noise level τ > 0. Moreover, we consider Ūλ as a solution of
the variational problem (2.3.9), via FISTA on the dual problem [38], as already indicated
in Section 2.3.2, until convergence; i.e. until the difference between iterates is smaller
than 10−8. In order to illustrate Corollary 3.12, we first show the behavior of the expected
risk, evaluated at the learned regularization parameter λ̂Λ for this example.

We consider the MNIST dataset [59] of 28×28 images of digits from 0 to 9, and corrupt
them as in (3.6.6). In order to give empirical evidence of Corollary 3.12, we fix the noise
level τ = 0.25. Then, we fix a grid of N = 50 points Λ ⊆ [10−3, 1], with Q ≈ 1.1514. For
every n ∈ {5, 10, ..., 50}, we let λ̂(n) be a minimizer of the empirical risk,

λ̂(n) ∈ argmin
λ∈Λ

1

n

n∑
i=1

DTV(ūi, Ū
i
λ).

where, for every n, we consider an independent training set of points {(x̄i, ūi)}ni=1 ran-
domly selected from a set of 3000 images. We therefore plot in Figure 3.6.2 the behavior
of the expected risk L, evaluated a λ̂(n). As it can be seen, it converges to a certain con-
stant as n → ∞.
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Figure 3.12: Behavior of L(Ū
λ̂(n)

) as a function of n for the image denoising problem,
showing that it goes to a certain constant as n increases. The solid line represents the
mean value, while the shaded regions represent the 5th-percentiles and 95th-percentiles
over 30 trials. The x-axis is shown in logarithmic scale.

We now want to illustrate the behavior of the expected risk, with respect to the noise
level τ , for the TV regularization problem. To do so, we consider the exact same experi-
mental setting as we did for Figure 3.6.2 for the signal deblurring problem, and we show
in Figure 3.6.2 that the behavior of both L(Ūλ∗(τ)) and L(Ū

λ̂Λ(τ)
) is comparable with re-

spect to τ .

Finally, as an illustrative example, we explore the performance of the studied parame-
ter selection method on test images from the MNIST dataset. We compute four different
data-driven regularization parameters for four different training sets, each of 100 train-
ing points, and check the reconstruction results of the TV regularized solution for two
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Figure 3.13: Comparison between L(Ūλ∗(τ)), in orange, and L(Ū
λ̂Λ(τ)

), in blue, when
varying the noise level τ for the Total Variation regularization. In the case of L(Ū

λ̂Λ(τ)
),

the solid line represents the mean value, while the shaded region represents the values
between the 5th-percentile and 95th-percentile over 30 trials. Bot axes are shown in loga-
rithmic scale.

different digits in the test set. The results are shown in Figure 3.6.2. We observe that
the recovery results on single test images may vary depending on the set of points that
was used for training. This is expected, since our parameter selection method has been
designed in order to perform effectively on average.
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Figure 3.14: Total Variation denoising algorithm for two digits in the test set. From left to
right, in every row, we plot the original image, its noisy version, and the recovery obtained
with different regularization parameters. We also include, accordingly, the Bregman di-
vergence with respect to the original image and the value of the regularization parameter
that has been used for such recovery.



CHAPTER 4

Learning Firmly Nonexpansive Operators

4.1 Introduction

In this work, we aim to devise a data-driven approach for constructing firmly nonexpansive
operators. This class of functions has gained significant popularity with the emergence of
the so-called Plug-and-Play (PnP) methods [138]. In short, a PnP method substitutes the
proximal operator in first-order optimization algorithms with a general “denoising” func-
tion. In particular, if such a denoiser is firmly nonexpansive, then the resulting algorithm
still converges to a fixed point. This strategy stems from the common challenge of lack-
ing closed-form expressions for proximal operators of convex functions. PnP approaches
have proven to show promising results in many applications [93, 142], but few theoretical
guarantees have been provided.

This work aims to address this gap by constructing an operator as the minimizer of an
ERM problem within the space of nonexpansive operators. By borrowing classical tools
from the theory of Lipschitz functions, we show the existence of a minimizer. Further,
since such a space is infinite-dimensional, a proper discretization will be required in order
to construct it in practice. Our proposal is to define a space of certain piecewise affine
functions on simplices. With such a selection, we prove that the problem has a nice and
easy-to-implement finite-dimensional characterization.

Some works have already tried to tackle the theoretical difficulties in this context. For
instance, in order to provide convergence guarantees to a fixed point, authors in [107]
employ a stochastic penalization of the Lipschitz norm of the gradient of the proposed net-
work. Additionally, the studies conducted in [85, 121] are, to the best of our knowledge,
pioneering efforts in constructing α-averaged, nonexpansive, neural networks. Further-
more, in [107], the authors demonstrated that their proposed set of denoisers is dense
within a subclass of maximal monotone operators. This work remains the only known
instance of a density analysis in this context, highlighting the gap in understanding and
the potential for further research.

We now describe the organization of this chapter. In Section 4.2 we start by recalling
a crucial observation of this work: in order to analyze the problem of learning firmly non-
expansive operators, it is enough to consider nonexpansive operators. We observe that
the latter can be see as a subset of the space of Lipschitz functions and, in particular, we
notice that this space is isometrically isomorphic with the dual of the so-called Arens–Eels
space. Therefore, considering the weak* topology induced by this characterization, we
also present some preliminary results which will be useful for the forthcoming analysis.
In Section 4.3 we present the abstract constrained optimization setting. By combining
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Theorem 4.8 and Proposition 4.9, we show that the our learning problem has a minimizer.
Next, in Theorem 4.10 we show that the ERM Γ−converges to its continuous version.
In Sections 4.3.3 and 4.3.4 we construct the class of operators that will be then used in
practice. As we mentioned above, such a construction will be based on defining piecewise
affine operators on simplicial partitions. We conclude the theoretical part in Section 4.4,
where we explaining in detail how to design the PnP versions of some algorithms of in-
terest and show their convergence by standard results: PnP Forward-Backward Splitting,
PnP ADMM, PnP Douglas–Rachford, and PnP Chambolle–Pock primal-dual iteration. Fi-
nally, in Section 4.5 we develop the experimental setting that we consider and show its
applicability to the problem of image denoising.

4.2 Preliminaries

Let (X , ⟨·, ·⟩X ) be a real separable Hilbert space. In this section, we introduce the prelim-
inary mathematical tools in order to study the desired learning problem. To do so, we
recall that the main motivation of this work was to construct proximal operators of func-
tions in Γ0(X ). For such class of mappings, we know that they can be written, by Lemma
2.8, as the resolvent of their subdifferential operator. Hence, a first step would be analyze
the properties of the set

M := {T : X → X : T = JA, where A is maximally monotone} .

We recall that, indeed, every T ∈ M is not necessarily a proximal operator, but every
proximal operator of a function in Γ0(X ) is contained in M. Moreover, by Lemma 2.9,
T ∈ M if and only if T is firmly nonexpansive. Finally, by Lemma 2.11, for every firmly
nonexpansive operator T , there exists a nonexpansive operator N such that T = (1/2)(N+
Id), and viceversa. Therefore, from now on, we will restrict our study to the space of
nonexpansive operators; i.e. the space

N := {T : X → X : T is nonexpansive} .

In the context of PnP methods, this observation has been already pointed out, for instance,
in [107]. In the next section, and motivated by the fact that nonexpansive operators
are 1-Lipschitz operators from X to X , we study the space of Lipschitz operators and its
topological structure. Therein, we describe the required mathematical tools for studying
the problem of learning nonexpansive operators.

4.2.1 The spaces Lip0(X )Lip0(X )Lip0(X ) and Lip(X )Lip(X )Lip(X )

Given an operator T : X → X , the Lipschitz space Lip0(X ) is defined as the space of
Lipschitz operators which vanish at 0. If we endow the space Lip0(X ) with the norm

∥T∥Lip0 := sup
x ̸=y

∥T (x)− T (y)∥X
∥x− y∥X

,

it becomes a Banach space (see [140]). This norm corresponds to the smallest Lipschitz
constant of T . Moreover, the space of Lipschitz operators mapping from X to X , denoted
as Lip(X ) is also a Banach space by endowing it with the norm

∥T∥Lip := ∥T (0)∥X + ∥T − T (0)∥Lip0

Such property can also be derived from the following result.
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Proposition 4.1. Given the space Y = X × Lip0(X ), we have that

Lip(X ) ∼= Y,

where the right-hand side is a Banach space with norm

∥(x, T0)∥Y := ∥x∥X + ∥T0∥Lip0 ,

for every x ∈ X , T0 ∈ Lip0(X ).

Proof. Define the following mapping

φ : Lip(X ) → X × Lip0(X )

T 7→ (T (0), T − T (0)),

and observe that φ is an isometry:

∥φ(T )∥Y = ∥T (0)∥X + ∥T − T (0)∥Lip0 = ∥T∥Lip.

Moreover, φ is bijective. If we take T1, T2 ∈ Lip(X ) such that

(T1(0), T1 − T1(0)) = (T2(0), T2 − T2(0)),

we get first that T1(0) = T2(0), and by using this fact in the second component we obtain
that T1 = T2. Thus, φ is injective. Finally, let (x, T0) ∈ X × Lip0(X ). We aim at proving
that there exists T ∈ Lip(X ) such that φ(T ) = (T (0), T − T (0)) = (x, T0). To do so, we
choose T = x+ T0 (note that T (0) = x+ T0(0) = x).

Due to this result, we can identify every T ∈ Lip(X) as T ≡ (T (0), T−T (0)). Moreover,
by [140, Theorem 3.3], we know that

Lip0(X ) ∼= (Æ(X ))∗ ,

where Æ(X ) is the so-called Arens–Eels space of X . Combining this with Proposition 4.1,
we get that

(X × Æ(X ))∗ = X ∗ × Lip0(X ) = X × Lip0(X ) ∼= Lip(X ).

The above result allows us to gain further insights about the topological structure of the
set Lip(X ). First, observe that, being Lip(X ) a dual space, it has an associated weak∗

topology which, by Proposition 4.1, can be decomposed as τX × τLip0(X ), where τX is the
weak topology on X and τLip0(X ) is the weak∗ topology on Lip0(X ). First, observe that,
since X is separable, then so is Æ(X ) (this can be seen as a consequence of [140, Theorem
3.14]) and, hence, every bounded set of Lip0(X ) is first countable. This implies that we
can restrict ourselves to sequences when studying convergence. Next, by referring again
to [140, Theorem 3.3], τLip0(X ) corresponds to the topology of pointwise convergence in
bounded sets; i.e. a bounded sequence (Tk)k∈N in Lip0(X ) (i.e., there exists C > 0 such
that L(Tk) ≤ C for every k ∈ N) is converging to T ∈ Lip0(X ) if Tk(x) → T (x) for every
x ∈ X . Combining all of the above comments, we characterize the weak∗ topology in
Lip(X) in the following Corollary.

Corollary 4.2. Let (Tk)k∈N be a sequence in Lip(X ) and T ∈ Lip(X ). Then, Tk
∗
⇀ T in

Lip(X ) if and only if Tk(0) ⇀ T (0) and Tk(0)− Tk(x) → T (0)− T (x) for every x ∈ X .

We now note, as a further consequence of the corollary above, that the weak∗ conver-
gence becomes uniform convergence when considering compact sets.
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Corollary 4.3. Let (Tk)k∈N be a sequence in Lip(X ) and let T ∈ Lip(X ) such that Tk
∗
⇀ T

as k → ∞. Then,

(i) Let K ⊂ X be a compact set. Then, the sequence (Tk(x) − Tk(0))k∈N converges to
T (x)− T (0) as k → ∞ uniformly for x ∈ K.

(ii) Let f : X × X → X be a continuous function and let K ⊂ X × X be a compact
set. Then, the sequence (⟨f(x, y), Tk(0) − T (0)⟩X )k∈N converges uniformly to zero as
k → ∞ for every (x, y) ∈ K.

Proof. We start with the proof of (i). Let ε > 0. Since K is compact, there exists a finite
collection of points x1, ..., xm ∈ K, m ∈ N, and balls B ε

2
(xi), centered at xi with radius ε

2 ,

such that

K ⊂
m⋃
i=1

B ε
2
(xi)

Now, recall that, by Corollary 4.2, Tk(xi) − Tk(0) → T (xi) − T (0) as k → ∞ for every
i = 1, ...,m. On the other hand, for every x ∈ K, we have that

∥Tk(x)− Tk(0)− T (x) + T (0)∥X ≤ ∥Tk(x)− Tk(xi)∥X + ∥T (xi)− T (x)∥X
+ ∥Tk(xi)− Tk(0)− T (xi) + T (0)∥X .

Observe that, as T ∈ Lip(X ), there exists c1 > 0 such that ∥T (x)−T (xi)∥X ≤ c1∥x−xi∥X .
In addition, since the sequence (Tk)k∈N is weak∗ convergent, it is bounded; i.e. there
exists a constant c2 > 0 such that ∥Tk∥Lip = ∥Tk − Tk(0)∥Lip0 + ∥Tk(0)∥X ≤ c2, which
immediately implies that ∥Tk − T (0)∥Lip0 = ∥Tk∥Lip0 ≤ c2 for every k ∈ N. Hence,
∥Tk(x) − Tk(xi)∥X ≤ c2∥x − xi∥X for every k ∈ N. Therefore, if the added point xi is
chosen in such a way that ∥x− xi∥X ≤ ε

2 , we get that

∥Tk(x)− Tk(0)− T (x) + T (0)∥X ≤ (c1 + c2)
ε

2
+ ∥Tk(xi)− Tk(0)− T (xi) + T (0)∥X

Finally, for k ≥ k0, k0 ∈ N appropriate,

∥Tk(xi)− Tk(0)− T (xi) + T (0)∥X <
ε

2
,

concluding the proof of (i). Now, we want to prove (ii). Since the sequence (Tk(0))k∈N
converges weakly to T (0) by Corollary 4.2, there exists a constant C > 0 such that
∥Tk(0)∥X ≤ C for every k ∈ N. Let ε > 0. Since f is continuous, and hence uniformly
continuous in compact sets, for each (x, y) ∈ K, we can choose δ = δ(x, y) > 0 such that

∥f(x′, y′)− f(x, y)∥X ≤ ε

4C
(4.2.1)

for ∥(x′, y′)−(x, y)∥X×X < δ(x, y). Next, since K is compact, there exists a finite collection
of points {(xi, yi)}mi=1, m ∈ N, in K and balls Bδi(xi, yi) centered at (xi, yi), with radius
δi := δ(xi, yi), such that

K ⊂
m⋃
i=1

Bδi(xi, yi).

By the weak convergence of the sequence (Tk(0))k∈N, we have, for every i = 1, ...,m,

|⟨f(xi, yi), Tk(0)− T (0)⟩| ≤ ε

2
.
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Finally, for (x, y) ∈ K, choose i0 ∈ {1, ...,m} such that ∥(xi0 , yi0) − (x, y)∥X×X < δi0 . We
conclude that

|⟨f(x, y), Tk(0)− T (0)⟩| ≤ |⟨f(xi0 , yi0), Tk(0)− T (0)⟩|
+ |⟨f(x, y)− f(xi0 , yi0), Tk(0)− T (0)⟩|

≤ ε

2
+ ∥f(x, y)− f(xi0 , yi0)∥X ∥Tk(0)− T (0)∥X

≤ ε

2
+

ε

4C
2C = ε.

Since ε was arbitrary, we conclude the proof.

As we will see in the forthcoming sections, the above results turn out to be key in our
analysis, since we have now the correct tools for providing good structural results about
the set N .

4.2.2 Properties of N
The next step is to study the topological properties of the subset N . To do so, we recall
that nonexpansive operators are 1-Lipschitz operators; i.e., a subset of Lip(X ). As we did
in Proposition 4.1, it is easy to prove that

N ∼= X ×N0,

where N0 is the space of nonexpansive operators that vanish at 0. Note that, as a subset
of Lip0(X ), it is bounded. Therefore, its topology is the one of pointwise convergence and
Corollary 4.2 is also valid for N . Now, for further convenience, let us define, for every
x, y ∈ X , the function

φx,y : Lip(X ) → R,
T 7→ ∥T (x)− T (y)∥X − ∥x− y∥X .

With this, we will prove two results that will be useful in the forthcoming analysis. First,
we prove the following set equality.

Lemma 4.4. We have that
N =

⋂
x,y∈X

φ−1
x,y ((−∞, 0]) . (4.2.2)

Proof. First, let us observe that, given x, y ∈ X ,

φ−1
x,y ((−∞, 0]) = {T ∈ Lip(X ) : ∥T (x)− T (y)∥X − ∥x− y∥X ≤ 0} ,

i.e., the pre-image of the function φ in the interval (−∞, 0] coincides with the set of func-
tions that are nonexpansive for the given pair (x, y) ∈ X × X . By taking the intersection
over every pair (x, y) ∈ X ∈ X , we recover the definition of the set of nonexpansive op-
erators. Conversely, if N ∈ N , then N is nonexpansive for every x, y ∈ X and hence
N ∈ φ−1

x,y ((−∞, 0]) for every x, y ∈ X .

Now, we prove several properties of the set φ−1
x,y ((−∞, 0]).

Lemma 4.5. For every x, y ∈ X , the set φ−1
x,y ((−∞, 0]) is non-empty, convex and weak*

closed.
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Proof. Let x, y ∈ X . First, observe that the set is non-empty since the identity mapping is
nonexpansive. Let T , S ∈ φ−1

x,y ((−∞, 0]) and α ∈ (0, 1). Then,

∥[(1− α)T + αS](x)− [(1− α)T + αS](y)∥X
≤ (1− α)∥T (x)− T (y)∥X + α∥S(x)− S(y)∥X
≤ ∥x− y∥X ,

hence (1−α)T+αS ∈ φ−1
x,y ((−∞, 0]), showing convexity. It is only left to prove that the set

φ−1
x,y ((−∞, 0]) is weak* closed. To do so, let T ∈ Lip(X ) and choose a sequence (Tk)k∈N

in φ−1
x,y ((−∞, 0]) such that Tk

∗
⇀ T in Lip(X ). We have to show that T ∈ φ−1

x,y ((−∞, 0]).
Using Corollary 4.2, we see that Tk(x) ⇀ T (x) and Tk(y) ⇀ T (y) as k → ∞. Consequently

∥T (x)− T (y)∥X ≤ lim inf
k→∞

∥Tk(x)− Tk(y)∥X ≤ ∥x− y∥X .

Thus, T ∈ φ−1
x,y ((−∞, 0]).

We are ready to state the main result of the class N .

Corollary 4.6. The set N is non-empty, weak* closed and convex. Moreover, N0 is weak*
compact.

Proof. First, note that both convexity and closedness are preserved by arbitrary intersec-
tions. Therefore, combining both Lemma 4.4 and Lemma 4.5, we get that N is convex and
weak* closed. Also, the identity mapping belongs to N , so N is non-empty. Finally, recall
that functions in N0 are nonexpansive, hence bounded in Lip0(X ). By [101, Corollary
2.6.19], we get that N0 is weak* compact.

Finally, in Section 4.3.5, we make use of the following density result, taken from [92],
and which we report here for completeness.

Theorem 4.7. Let X be a separable Banach space and Y a general Banach space. Then, for
every Lipschitz function f : X → Y with Lipschitz constant L > 0 and every ε > 0, there
exists a function g : X → Y which is uniformly Gâteaux differentiable, Lipschitz with the
same constant L > 0, and such that ∥f − g∥∞ < ε.

We have all the necessary tools to analyze the problem of learning firmly nonexpansive
operators.

4.3 Learning firmly nonexpansive operators

We turn now our attention to the main problem, which is the one of constructing, in
a feasible way, nonexpansive operators approximating some given data. First, we state
the problem in the set N from a very general optimization point of view and prove the
existence of minimizers in the class N .

4.3.1 A general problem
We are interested in finding solutions of the following problem

inf
N∈N

F (N). (P)

By mimicking classical results [13], we observe that existence is satisfied if we assume
that F : N → (−∞,∞] is proper, convex, weak∗ lower semicontinuous; i.e.,

if Nk
∗
⇀ N, then F (N) ≤ lim inf

k→∞
F (Nk), (4.3.1)
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and coercive in the following sense:

if ∥Nk(0)∥X → ∞, then F (Nk) → ∞. (4.3.2)

We state such result in the following.

Theorem 4.8. Let F : N → (−∞,+∞] be a proper and convex operator that satisfies
assumptions (4.3.1) and (4.3.2). Then, there exists a minimizer of (P).

Proof. Define
m0 := inf

N∈N
F (N) ≥ −∞,

and observe that, for every m > m0, the sublevel set of F , {F ≤ m}, is bounded by the
coercivity of F . Indeed, for every N ∈ N we have that ∥N∥Lip0 ≤ 1, so ∥Nk∥Lip → ∞
as k → ∞ for some sequence (Nk)k∈N implies ∥Nk(0)∥X → ∞ as k → ∞, and hence,
F (Nk) → ∞ as k → ∞, a contradiction. Also, by weak* lower semicontinuity of F ,
{F ≤ m} is weak* closed. Therefore, the sublevel sets {F ≤ m} are weak* compact.
Moreover, for every m > m0, each sublevel set is non-empty (since m0 is the infimum of
F ). Now, observe that ⋂

m>m0

{F ≤ m} ≠ ∅,

since the weak* closed family ({F ≤ m})m>m0 has the finite intersection property (it is
nested) and {F ≤ m} is weak* compact for each m > m0. This also implies that m0 is
finite, as otherwise, F would admit −∞. Finally, as⋂

m>m0

{F ≤ m} = {F ≤ m0} = F−1(m0),

we have the thesis.

4.3.2 The statistical model

Let (Ω,A, P ) be a probability space. The statistical model that we want to study can be ex-
pressed in terms of a Supervised Learning problem [54]: we consider the pair of random
variables (X̄, Z̄) with joint Borel probability measure µ′ on X×X which is unknown. The-
oretically, we want to find a firmly nonexpansive operator T ∗ : X → X such that T ∗(X̄) is
close to Z̄ in the following sense: : using a quadratic loss, T ∗ will be the minimizer of the
expected risk,

T ∗ ∈ argmin
T∈M

L(T ); L(T ) :=

∫
X×X

∥T (x̄)− z̄∥2dµ′(x̄, z̄), (4.3.3)

within the space of firmly nonexpansive operators M. As we have already mentioned at
the beginning of Section 4.2, this problem can be equivalently formulated in the language
of nonexpansive operators by applying the formula T = 1

2(Id+N): indeed, if we define
Ū := 2Z̄ − X̄, then the probability measure µ of the pair (X̄, Ū) is given by the push-
forward of µ′ via the following transformation:

φ : X × X → X ×X ; (x, z) 7→ (x, 2z − x).

We now aim at finding a nonexpansive operator N∗ minimizing the expected risk (2.1.1)
with respect to the square loss, which in this case writes as

N∗ ∈ argmin
N∈N

L(N); L(N) :=

∫
X×X

∥N(x̄)− ū∥2X dµ(x̄, ū), (CP)
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To prove that there exists a minimizer for (CP), we need to assume that∫
X×X

(
∥x̄∥2X + ∥ū∥2X

)
dµ(x̄, ū) < ∞. (4.3.4)

We obtain the desired existence result by combining Assumption (4.3.4) with both Theo-
rem 4.8 and the following result.

Proposition 4.9. The expected risk (CP) is proper, convex, weak* lower semicontinuous, and
coercive.

Proof. First, let us prove that L is proper. If we take N = Id, we get

L(Id) =

∫
X×X

∥x̄− ū∥2X dµ(x̄, ū) ≤ 2

∫
X×X

(
∥x̄∥2X + ∥ū∥2X

)
dµ(x̄, ū),

where the right-hand side is bounded by Assumption 4.3.4. We want to see now that L is
convex. Let N , S ∈ N . Take α ∈ (0, 1) and observe that

L(αN + (1− α)S) =

∫
X×X

∥(αN + (1− α)S)(x̄)− ū∥2X dµ(x̄, ū)

=

∫
X×X

∥α(N(x̄)− ū) + (1− α)(S(x̄)− ū)∥2X dµ(x̄, ū)

≤
∫
X×X

(
α∥N(x̄)− ū∥2X + (1− α)∥S(x̄)− ū∥2X

)
dµ(x̄, ū),

where we use that the squared norm is convex. By the linearity of the integral, we obtain
the desired result. Let us prove now that L is coercive in the sense of (4.3.2). Let (Nk)k∈N
be a sequence in N such that ∥Nk(0)∥X → ∞ when k → ∞. Observe that, for every
x̄, ū ∈ X ,

∥Nk(x̄)− ū∥X ≥ ∥Nk(0)∥X − ∥Nk(x̄)−Nk(0)∥X − ∥ū∥X ≥ ∥Nk(0)∥X − (∥x̄∥X + ∥ū∥X ),

since ∥Nk∥Lip0 ≤ 1 and, if ∥x̄∥X + ∥ū∥X ≤ 1
2∥Nk(0)∥X , then

∥Nk(x̄)− ū∥X ≥ 1

2
∥Nk(0)∥X . (4.3.5)

Now, consider K > 0 such that∫
{∥x̄∥X+∥ū∥X≤K}

dµ(x̄, ū) > 0

and K0 ∈ N such that, for every k ≥ K0, 1
2∥Nk(0)∥X ≥ K. We obtain that, for every

k ≥ K0,

L(Nk) =

∫
X×X

∥Nk(x̄)− ū∥2X dµ(x̄, ū)

≥
∫
{∥x̄∥X+∥ū∥X≤K}

∥Nk(x̄)− ū∥2X dµ(x̄, ū)

≥ 1

4
∥Nk(0)∥2X

∫
{∥x̄∥X+∥ū∥X≤K}

dµ(x̄, ū),

where in the last inequality we used (4.3.5). Since the last integral is strictly positive
by hypothesis, we obtain the desired result. It is left to prove that L is weak* lower
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semicontinuous in the sense of (4.3.1). Let (Nk)k∈N be a sequence in N and N ∈ N such
that Nk

∗
⇀ N as k → ∞. Observe that, by Fatou’s Lemma,

lim inf
k→∞

L(Nk) = lim inf
k→∞

∫
X×X

∥Nk(x̄)− ū∥2X dµ(x̄, ū)

≥
∫
X×X

lim inf
k→∞

∥Nk(x̄)− ū∥2X dµ(x̄, ū)

≥
∫
X×X

∥N(x̄)− ū∥2X dµ(x̄, ū) = L(N),

where we have used the fact that the squared norm is lower semicontinuous w.r.t. the
weak topology on X and, by Corollary 4.2, that Nk(x̄)− ū ⇀ N(x̄)− ū as k → ∞ for every
x̄, ū ∈ X .

In practice, the minimizer of (CP) cannot be computed since, as we mentioned, the
probability measure µ is unknown. Instead, we suppose to have access to a finite set
{(X̄i, Ūi)}ni=1 of identical and independent copies of the pair (X̄, Ū), and we aim at finding
minimizers of the empirical risk (2.1.3) with respect to the square loss, which for this
problem writes as

N∗
n ∈ argmin

N∈N
Ln(N), Ln(N) :=

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2X (EP)

in the space of nonexpansive operators. Note the slight change of notation with respect to
(2.1.3). This will be later justified during the statement of Theorem 4.10. Now, we aim to
show that problem (EP) is a good approximation of (CP) for n large enough. As we have
explored in Section 2.1, this is a standard question Supervised Learning theory [54]. A
corresponding version of Theorem 2.2 in this setting would show that

L(N∗
n)− L(N∗) ∼ O

(
1√
n

)
,

i.e. that the the excess risk goes to zero as 1/
√
n. Note that, on top of showing that the

error when considering N∗
n as an approximant of N∗ converges to 0, it also gives a precise

rate of convergence. As it can be seen in Theorem 2.2, it is common to assume that
the underlying space is compact. However, since the space N is not compact in general,
such an assumption can not be satisfied in our setting. We therefore avoid this approach.
Instead, we present in the following theorem a rather more qualitative result, by showing
that problem (EP) Γ-converges (see [20]) to (CP) when n goes to infinity.

Theorem 4.10. We have that Ln Γ-converges a.s. to the expected risk L as n → ∞; i.e., both
of the following conditions are satisfied:

(i) (“lim inf” inequality) For every N ∈ N and for every sequence (Nn)n∈N in N with
Nn

∗
⇀ N in Lip(X), we have that

L(N) ≤ lim inf
n→∞

Ln(Nn);

(ii) (existence of a recovery sequence) for every N ∈ N , there exists a sequence (Nn)n∈N
in N with Nn

∗
⇀ N in Lip(X) such that

lim sup
n→∞

Ln(Nn) ≤ L(N).
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Proof. We start first with the existence of a recovery sequence. Let N be a nonexpansive
operator and define the random variable

Ḡ := ∥N(X̄)− Ū∥2X

and observe that, since

E[|Ḡ|] =
∫
X×X

∥N(x̄)− ū∥2X dµ(x̄, ū)

≤ 2

∫
X×X

(∥N(x̄)−N(0)∥2X + ∥N(0)− ū∥2X ) dµ(x̄, ū)

≤ 2

∫
X×X

(∥x̄∥2X + ∥N(0)− ū∥2X ) dµ(x̄, ū),

there exists a constant C > 0 such that

E[|Ḡ|] ≤ C

∫
X×X

(
∥x̄∥2X + ∥ū∥2X + 1

)
dµ(x̄, ū) < ∞.

Now, define for every i = 1, ..., n,

Ḡi := ∥N(X̄i)− Ūi∥2X

which are also random variables that are independent and identically distributed as G. By
the law of large numbers [68, Theorem 10.13],

Ln(N) =
1

n

(
Ḡ1 + ...+ Ḡn

)
→ E[Ḡ] = L(N) as n → ∞ a.s.. (4.3.6)

Hence,
lim sup
n→∞

Ln(Nn) ≤ L(N) a.s.,

for Nn = N for every n ∈ N.
We want now to prove the “lim inf” inequality. Let Nn : X → X , n ∈ N, be a sequence

of nonexpansive operators such that Nn
∗
⇀ N for some N ∈ N . Let ε > 0 and observe

that, by Ulam’s tightness Theorem [17], the measure µ, being a probability measure, is
tight. Then, since it is finite, the measure µ′ = (∥x̄∥2X + ∥ū∥2X )µ is tight too by hypothesis.
Therefore, we can choose a compact set K ⊂ X × X such that∫

X×X\K
(∥x̄∥2X + ∥ū∥2X ) dµ(x̄, ū) < ε.

Moreover, since Ln(Nn) = Ln(Nn)− Ln(N) + Ln(N), we obtain

Ln(Nn)− Ln(N) =
1

n

n∑
i=1

(
∥Nn(X̄i)− Ūi∥2X − ∥N(X̄i)− Ūi∥2X

)
,

where

∥N(X̄i)− Ūi +Nn(X̄i)−N(X̄i)∥2X − ∥N(X̄i)− Ūi∥2X
= 2⟨N(X̄i)− Ūi, Nn(X̄i)−N(X̄i)⟩X + ∥Nn(X̄i)−N(X̄i)∥2X
≥ 2⟨N(X̄i)− Ūi, Nn(X̄i)−N(X̄i)⟩X .

Observe that there exists a constant C > 0 such that ∥Nn(0)∥X ≤ C. Now, we define, for
every i = 1, ..., n,

Ḡ′
i := εχK(X̄i, Ūi), H̄i := ∥N(X̄i)− Ūi∥X 2(C + ∥X̄i∥X )χX\K(X̄i, Ūi),
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where χK denotes the characteristic function of K, defined as

χK(x) :=

{
1, if x ∈ K,

0, otherwise.

Then, we claim that, for n large enough,

⟨N(X̄i)− Ūi, Nn(X̄i)−N(X̄i)⟩X ≥ −Ḡ′
i − H̄i.

On one hand, observe that, for every i = 1, ..., n,

−⟨N(X̄i)− Ūi,Nn(X̄i)−N(X̄i)⟩XχK(X̄i, Ūi)

≤ |⟨N(X̄i)− Ūi, Nn(X̄i)−Nn(0)−N(X̄i) +N(0)⟩X |χK(X̄i, Ūi)

+ |⟨N(X̄i)− Ūi, Nn(0)−N(0)⟩X |χK(X̄i, Ūi)

≤ ∥N(X̄i)− Ūi∥X ∥Nn(X̄i)−Nn(0)−N(X̄i) +N(0)∥XχK(X̄i, Ūi)

+ |⟨N(X̄i)− Ūi, Nn(0)−N(0)⟩X |χK(X̄i, Ūi).

First, since K is compact, it is bounded. Then, there exists a ball Br(0) centered at 0 with
radius r > 0 such that K ⊂ Br(0). This implies that ∥N(X̄i) − Ūi∥X ≤ 2r as long as
(X̄i, Ūi) ∈ K. In addition, by Corollary 4.3 (i), for (X̄i, Ūi) ∈ K and for n large enough
we get that

∥Nn(X̄i)−Nn(0)−N(X̄i) +N(0)∥X ≤ ε

4r
.

Finally, by Corollary 4.3 (ii), and for n large enough, we obtain

|⟨N(X̄i)− Ūi, Nn(0)−N(0)⟩X | <
ε

2
,

as long as (X̄i, Ūi) ∈ K. Combining everything, we get

⟨N(X̄i)− Ūi, Nn(X̄i)−N(X̄i)⟩XχK(X̄i, Ūi) ≥ −Ḡ′
i.

On the other hand,

−⟨N(X̄i)− Ūi, Nn(X̄i)−N(X̄i)⟩XχX\K(X̄i, Ūi)

≤ ∥N(X̄i)− Ūi∥X ∥Nn(X̄i)−N(X̄i)∥XχX\K(X̄i, Ūi)

≤ ∥N(X̄i)− Ūi∥X (∥Nn(X̄i)−Nn(0)∥X + ∥N(0)−N(X̄i)∥X
+ ∥Nn(0)−N(0)∥X )χX\K(X̄i, Ūi)

≤ ∥N(X̄i)− Ūi∥X 2(C + ∥X̄i∥X )χX\K(X̄i, Ūi) = H̄i,

and the claim has been proven. Now, note that Ḡ′ = εχK(X̄, ū) is a random variable with

E[|Ḡ′|] = ε

∫
X×X

|χK(x̄, ū)| dµ(x̄, ū) = εµ(K) ≤ ε,

and H̄ = ∥N(X̄)− Ū∥X 2(C + ∥X̄∥X )(1− χK(X̄, Ū)) is a random variable with

E[|H̄|] = 2

∫
X×X\K

∥N(x̄)− ū∥X (C + ∥x̄∥X ) dµ(x̄, ū)

≤ 2

∫
X×X\K

(∥x̄∥X + C + ∥ū∥X )(C + ∥x̄∥X ) dµ(x̄, ū)

≤ C ′
∫
X×X\K

(∥x̄∥2X + ∥ū∥2X + 1) dµ(x̄, ū) < C ′ε
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for a suitable constant C ′ > 0. By the law of large numbers,

1

n

n∑
i=1

(Ḡ′
i + H̄i) → E[Ḡ] + E[H̄] as n → ∞ a.s.,

which implies that, for n large enough, we have

1

n

n∑
i=1

(Ḡ′
i + H̄i) ≤ ε+ E[Ḡ] + E[H̄] ≤ (2 + C ′)ε, a.s..

Now, for n large enough,

Ln(Nn)− Ln(N) ≥ − 2

n

n∑
i=1

(Ḡ′
i + H̄i) ≥ −2(2 + C ′)ε, a.s..

On the other hand, recall that, by (4.3.6), Ln(N) → F (N) a.s. as n → ∞. Combining this
with the inequality above, we derive that

lim inf
n→∞

Ln(Nn) ≥ L(N)− 2(2 + C ′)ε.

Since ε was arbitrary, we conclude.

The Fundamental Theorem of Γ−convergence [20, Theorem 2.1] states that, if (Ln)n∈N
is an equicoercive sequence of functions that is Γ−converging to L, then, up to subse-
quences, the sequence of minimizers (N∗

n)n∈N of (EP) converges a.s. to a minimizer of the
continuous problem (CP). In our case, it is only left to prove that the sequence (Ln)n∈N is
equicoercive, as we do in the following.

Proposition 4.11. The sequence (Ln)n∈N, defined as in (EP), is equicoercive a.s. on N with
respect to the weak∗ convergence.

Proof. First, observe that

∥N(X̄i)− Ūi∥2X = ∥N(X̄i)−N(0)− Ūi∥2X + ∥N(0)∥2X + 2⟨N(X̄i)−N(0)− Ūi, N(0)⟩X
≥ ∥N(X̄i)−N(0)− Ūi∥2X + ∥N(0)∥2X − 2∥N(X̄i)−N(0)− Ūi∥X ∥N(0)∥X

≥ 1

2
∥N(0)∥2X − ∥N(X̄i)−N(0)− Ūi∥2X

≥ 1

2
∥N(0)∥2X − 2

(
∥X̄i∥2X + ∥Ūi∥2X

)
since, for every a, b ∈ R, it holds that ab ≤ a2/4 + b2, and this immediately implies that
−2ab ≥ −a2/2− 2b2. Then,

Ln(N) ≥ 1

2
∥N(0)∥2X − 2

n

n∑
i=1

(
∥X̄i∥2X + ∥Ūi∥2X

)
where, by the law of large numbers,

1

n

n∑
i=1

(∥X̄i∥2X + ∥Ūi∥2X ) −−−→n→∞

∫
X×X

(
∥x̄∥2X + ∥ū∥2X

)
dµ(x̄, ū), a.s..

Since it is a converging sequence, it is also bounded by some constant C > 0, which leads
to

Ln(N) ≥ c∥N(0)∥2X − C, a.s.,
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for some c > 0. Hence, for every C ′ > 0 we have that{
Ln(N) ≤ C ′} ⊆

{
N ∈ N : ∥N(0)∥X ≤ C ′′}

for some C ′′ > 0 (in fact, C ′′ = ((C ′ + C)/c)1/2) and where the set on the right-hand side
is weak∗ compact in Lip(X ). Indeed, by [101, Corollary 2.6.19], we only need to show
that the set above is bounded in Lip(X):

∥N∥Lip = ∥N(0)∥X + ∥N −N(0)∥Lip0 ≤ C ′′ + 1.

This concludes the proof.

As we already mentioned above, the following corollary is a direct consequence of
both Theorem 4.10 and Theorem 4.11. Its proof can be found in [20] in a more general
setting.

Corollary 4.12. Let (N∗
n)n∈N, be the sequence of minimizers of (EP) for every n ∈ N. Then,

there exists a minimizer N∗ of (CP) such that, up to subsequences, N∗
n

∗
⇀ N∗, a.s., as n → ∞.

The above results provide a theoretical analysis that highlights the fact that the ERM
(EP) is indeed approximating its continuous version (CP) for large values of n.

In the next section, we will introduce and analyze a practical approach to learn non-
expansive operators. To do so, we shift to the deterministic setting and fix a training set of
noisy measurements/solutions {(x̄i, ūi)}ni=1, n ∈ N, instead of a set of random variables.
We consider, from now on, the following problem

N̂ ∈ argmin
N∈N

L̂(N), L̂(N) :=
1

n

n∑
i=1

∥N(x̄i)− ūi∥2X (DP)

as a natural substitute of (EP) in the deterministic case. In order to solve this, classi-
cal optimization algorithms can be considered, but the class of nonexpansive operators
is infinite-dimensional, and so, Problem (DP) remains computationally unfeasible. There-
fore, a further approximation needs to be considered. To do so, a first idea could be to con-
sider Problem (DP) restricted to the set N (D̄) of nonexpansive operators on D̄ := {x̄i}ni=1,
i.e., operators N : D̄ → X such that ∥N(x̄i) − N(x̄j)∥X ≤ ∥x̄i − x̄j∥X for i, j = 1, . . . , n.
Actually, every N in N (D̄) is uniquely characterized by n values ui := N(x̄i) that are
required to satisfy the nonexpansivity condition. The corresponding reformulation of this
discrete version of Problem (DP) would be

min
u1,..., un∈X

1

n

n∑
i=1

∥ui − ūi∥2X

s.t. ∥ui − uj∥X ≤ ∥x̄i − x̄j∥X , for every i, j ∈ {1, . . . , n}.
(4.3.7)

This leaves us with the following challenge: given a solution of (4.3.7), how can we extend
it to the whole space? In fact, in practical scenarios, we need to know the value of such an
operator at any point in X . For instance, we know that a nonexpansive extension to the
whole space always exists [95], but it is difficult to construct it in practice. For this reason,
our proposed approach will be to consider, on the one hand, finite-dimensional spaces X ;
i.e. X = Rd, d ≥ 1 and, on the other hand, operators N that are, in addition, piecewise
affine in d-simplices (or just simplices). In this way, we will show that problem (DP) can
be reduced to finding N in the finitely many points D̄. This idea will be explained in the
following.

In the following, we develop the main tool that we consider in order to discretize the
set N : simplicial partitions.
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4.3.3 Simplicial partitions

Let X = Rd, 2 ≤ d < ∞, endowed with the norm ∥·∥X := ∥·∥2, and let D := {x1, . . . , xm},
with xi ∈ Rd, d+1 ≤ m be a general finite set of points, independent of the training inputs
above considered, that do not lie on a (d − 1)−dimensional hyperplane. Consider its
convex envelope conv(D), which has non-empty interior. We want to consider a simplicial
partition of conv(D). Let ℓ ∈ N and

T = {S1, ..., Sℓ},

where for every t = 1, ..., ℓ, St = conv{xt,0, . . . , xt,d}, for some subcollection of d + 1
distinct elements of D. We assume T to have the following properties:

(P1) T forms a partition of conv(D);

(P2) the interior of every simplex St is non-empty;

(P3) the intersection of every two simplices has to be, either empty or coincide with the
convex envelope of its common vertices.

A partition defined by these conditions is also known as face-to-face simplicial partition for
a polytope [78], where face stands for the convex hull of any collection of “d” vertices. For
example, in dimension d = 2, face denotes the edge of a triangle, while in dimension d = 3,
the faces of a tetrahedron are triangles. An example of a classical partition satisfying all
of the above conditions is the so-called Delaunay Triangulation [69]. Nevertheless, we are
not interested in fixing a particular method, but only one satisfying the above conditions.

4.3.4 Piecewise affine nonexpansive operators
In this section, we want to construct a finite-dimensional set of operators which will be
characterized only by their value on each node xi, i = 1, . . . ,m. To do so, we first in-
troduce an arbitrary set of points D′ = {u1, . . . , um}, independent of D. Such elements
will determine the value of the constructed nonexpansive operator at every point in D,
i.e. the nonexpansive operator N will be uniquely defined by N(xi) := ui. In addition,
we want to construct N in such a way that it is also nonexpansive. To do so, we first con-
struct an operator N that will be affine on every simplex St and, second, find a suitable
condition for the vertices so that the resulting operator is nonexpansive. Let us remark
that, once the nonexpansive operator N is well defined, in order to then construct a firmly
nonexpansive operator T , one just needs to recall the formula T = 1

2(Id+N), since the
samples (x̄1, ū1), . . . , (x̄n, ūn) were drawn from (X̄, Ū), and Ū = 2Z̄−X̄, see Section 4.3.2.

Consider the convex envelope of the set D, conv(D), and let T = {S1, ..., Sℓ}, ℓ ∈ N,
denote a simplicial partition of conv(D) with properties (P1), (P2) and (P3) given in the
section above. Consider

λ1, . . . , λm : conv(D) → [0, 1]

the Lagrange elements of order 1 associated with the simplicial partition T (see [109,
Chapter 4] for more details); i.e., such that

(i) λi(xj) = δij , for i, j = 1, . . . ,m (here, δij denotes the Kronecker delta),
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(ii) λi|St is a polynomial of degree at most 1 for each i = 1, . . . ,m and t = 1, . . . , ℓ.

Note that each λi is continuous in conv(D). In addition, if i0, . . . , id denote the indices of
the vertices xi0 , . . . , xid of the simplex St, then λi0 |St , . . . , λid |St correspond to the barycen-
tric coordinates on St; i.e. the unique non-negative functions that satisfy

d∑
j=0

λij (x) = 1,

d∑
j=0

λij (x)xij = x, (4.3.8)

for each x ∈ St. Further, as λi|St = 0 for each i ∈ {1, . . . ,m} \ {i0, . . . , id}, we have that∑m
i=1 λi(x) = 1 for any x ∈ conv(D), which immediately implies that

m∑
i=1

λi = χ
conv(D), and

m∑
i=1

λixi = Id |conv(D).

Next, given D′ = {u1, ..., um}, we define the operator

Ñ : conv(D) → Rd; Ñ(x) :=

m∑
i=1

λi(x)ui. (4.3.9)

Finally, for every simplex St, t = 1, . . . , ℓ, with vertices i0, . . . , id, we have that

Ñ |St =

d∑
j=0

λij |Stuij ,

which, since each λij |St is affine linear, implies that Ñ |St is also affine linear.

In order to extend such an operator to the whole space, we consider the following

N := Ñ ◦ πconv(D)

where πconv(D) stands for the projection onto conv(D). Given this construction, we can
define the space of piecewise affine operators on conv(D), and therefore on its simplicial
partition T, that are extended to the whole space via projections:

PA(T) :=
{
N : Rd → Rd : N := Ñ ◦ πconv(D)

}
,

where Ñ has been defined above in every simplex of conv(D). We are now ready to
introduce the finite-dimensional space of nonexpansive operators N ∩ PA(T). We focus
on solving the deterministic problem (DP) in this class:

min
N∈N∩PA(T)

L̂(N). (PAP)

Observe that the function L̂ is only defined on the set D̄, but the constraint does not
necessarily need to be imposed only on D̄. We therefore assume that PA(T) is de-
fined on a bigger set D and that D̄ ⊆ D. Moreover, notice that the problem above is
finite-dimensional since, as we already mentioned, an element N in PA(T) is uniquely
characterized by the set D. Our objective now is to study whether we can propose
an equivalent formulation of the above problem by imposing conditions on the finitely
many points (x1, N(x1)), . . . (xm, N(xm)), as we mentioned at the beginning of the sec-
tion. A first attempt could be to impose the nonexpansivity condition on these points i.e.,



74 4. LEARNING FIRMLY NONEXPANSIVE OPERATORS

Figure 4.1: In dimension d = 2, we define the nonexpansive operator as described in the
picture and such that ∥Ñ(x0)−Ñ(x2)∥2 = ∥x0−x2∥2, ∥Ñ(x1)−Ñ(x2)∥2 = ∥x1−x2∥2 and
∥Ñ(x0)− Ñ(x1)∥2 < ∥x0 − x1∥2. If we consider the point z = 1

2x0 +
1
2x1, by construction,

∥Ñ(z)− Ñ(x2)∥2 > ∥z − x2∥2.

∥N(xi) − N(xj)∥2 ≤ ∥xi − xj∥2, for every i, j = 1, ...,m. In Figure 4.3.4, we show a
counterexample in dimension d = 2. The defined operator satisfies the nonexpansivity
condition ∥N(xi) − N(xj)∥2 ≤ ∥xi − xj∥2, for every i, j = 1, ...,m, over all the vertices,
but fails to be nonexpansive in general.

In order to find the right condition, we first observe that the operator Ñ can be rewrit-
ten in a more convenient way. First, let us introduce some useful tools. For every simplex
St ∈ T, denote by i0, . . . , id the indices associated to the vertices xi0 , . . . , xid in St. Define
the matrices

At := [xi1 − xi0 | · · · | xid − xi0 ], Bt = [ui1 − ui0 | . . . | uid − ui0 ]. (4.3.10)

Moreover, for every x ∈ conv(D), there exists t = 1, . . . , ℓ such that x ∈ St. Then, since
the barycentric coordinates sum up to 1, we can write

x =

d∑
j=0

λij (x)xij =

d∑
j=1

λij (x)(xij − xi0) + xi0 .

Then,

x− xi0 =

d∑
j=1

λij (x)(xij − xi0) = At[λi1(x), . . . , λid(x)]
T .

By defining Λt(x) := [λi1(x), . . . , λid(x)]
T , we derive that

Λt(x) = A−1
t (x− xi0).

Hence, we obtain the following affine expression for the operator Ñ in every simplex:

Ñ |St(x) =
d∑

j=1

λij (uij − ui0) + ui0 = BtΛt(x) + ui0 = BtA
−1
t (x− xi0) + ui0 . (4.3.11)

We are now ready to present a sufficient condition for Ñ (hence for N) to be nonexpansive.
Actually, we are able to characterize the elements in N ∩ PA(T). To do so, we first recall
a preliminary result about the differentiability of Lipschitz functions, see [83] for a proof.
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Proposition 4.13. Let N be a nonexpansive operator. Then, it is differentiable almost every-
where, and, for every differentiability point x, it holds that ∥∇N(x)∥2 ≤ 1.

Recall that ∇N(x) denotes the Jacobian matrix of N at the point x, and that the
operator norm of a matrix is defined as its 2- norm; i.e., its maximum singular value. The
nonexpansivity characterization reads as follows.

Theorem 4.14. The operator N = Ñ ◦ πconv(D) is nonexpansive if and only if, for every
t = 1, ..., ℓ we have ∥BtA

−1
t ∥2 ≤ 1.

Proof. Let N = Ñ ◦πconv(D) be a nonexpansive operator. By Proposition 4.13 ∥∇N(x)∥2 ≤
1. In particular, for every t = 1, . . . , ℓ we can take a point x in the interior of St and
observe that the derivative of N at x coincides with the derivative of Ñ at x, which is
∇Ñ(x) = BtA

−1
t by the characterization (4.3.11). Conversely, observe that projections

are nonexpansive operators. Therefore, if we prove that Ñ is nonexpansive, then the
operator N , as we have defined it, will also be nonexpansive, since the composition of
two nonexpansive operators is, again, nonexpansive. Let x, x′ ∈ conv(D) and suppose
first that both points belong to the same simplex St. We consider the path γ : [0, 1] → Rd;
γ(s) = (1 − s)x + sx′ and observe that the function Ñ ◦ γ is differentiable since it is the
composition of a segment and Ñ , which is an affine function in every simplex. Therefore,
by the fundamental theorem of calculus, we get that

∥Ñ(x′)− Ñ(x)∥2 = ∥(Ñ ◦ γ)(1)− (Ñ ◦ γ)(0)∥2 =
∥∥∥∥∫ 1

0
(Ñ ◦ γ)′(s) ds

∥∥∥∥
2

≤
∫ 1

0
∥(Ñ ◦ γ)′(s)∥2 ds =

∫ 1

0
∥∇Ñ(γ(s))γ′(s)∥2 ds

≤
∫ 1

0
∥BtA

−1
t ∥2∥x′ − x∥2 ds ≤ ∥x′ − x∥2,

where we used that ∇Ñ(x) = BtA
−1
t for every x ∈ Rd since (4.3.11) holds. Now, if x ∈ St,

x′ ∈ St′ for t ̸= t′, we consider again the segment connecting both points

γ : [0, 1] → Rd; γ(s) = (1− s)x+ sx′,

and observe that the whole line is contained in conv(D) since, by definition, T partitions
the convex hull conv(D). Moreover, the segment intersects a finite number of distinct
simplices. We consider the collection of the entry and exit points of the segment to these
simplices. In this way, we obtain a set of k+1 points as follows: p0 = x; pi, i = 1, ..., k−1,
are the entry or exit points of the segment intersecting a simplex (as we explained above),
and finally, pk = x′. To each of these points, we associate k + 1 numbers (si)

k
i=0 with

γ(si) = xh, i = 0, . . . , k. Now, for every i = 1, ..., k, we define the subsegment γh :
[si−1, si] → Rd from pi−1 to pi. By construction, we have that each one of these segments
lies entirely in a simplex that we denote by Sti and that length(γ) =

∑k
i=1 length(γi).

Noticing that Ñ ◦ γi is differentiable for every i = 0, . . . , k, we obtain

∥Ñ(x′)− Ñ(x)∥2 ≤
k∑

i=1

∥∥∥Ñ(pi)− Ñ(pi−1)
∥∥∥
2
=

k∑
h=1

∥∥∥∥∥
∫ si

si−1

(Ñ ◦ γi)′(s)ds

∥∥∥∥∥
2

≤
k∑

i=1

∫ si

si−1

∥(Ñ ◦ γi)′(s)∥2 ds =
k∑

i=1

∫ si

si−1

∥∇Ñ(γi(s))γ
′
i(s)∥2 ds

≤
k∑

i=1

∫ si

si−1

∥BtiA
−1
ti

∥2∥pi − pi−1∥2 ds ≤
k∑

h=1

∫ si

si−1

∥pi − pi−1∥2 ds

=

k∑
i=1

length(γi) = length(γ) = ∥x− x′∥2.
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Now that we have found the right condition. We now aim at tackling (PAP) from a
computational point of view. First, for simplicity we assume that xi = x̄i for i = 1, . . . , n
and then consider the following problem:

min
u1,..., um∈Rd

1

n

n∑
i=1

∥ui − ūi∥22

s.t. ∥Bt(u1, ..., um)A−1
t ∥2 ≤ 1, for every t ∈ {1, . . . , ℓ},

(FP)

where the matrices At, Bt(u1, ..., um), t = 1, ..., ℓ, are defined as in (4.3.10). Note that
here we introduce the notation Bt(u1, ..., um) in order to recall the fact that Bt depends
on the variables ui, while At is fixed. Observe that only the first n vectors ui are taken
into consideration in the minimization, while all the m points are required to satisfy the
constraint. A direct consequence of Theorem 4.14 is that problems (FP) and (PAP) are
equivalent.

4.3.5 A density result
Next, we present a convergence result of (PAP) to (DP). The idea will be that when in-
creasing the number of points in the triangulation, piecewise affine functions approximate
better the solution of (DP). To do so, we adapt the definition given in [78, Definition 2.2]
and recall some preliminary results.

Definition 4.15. Let Ω ⊂ Rd be a bounded polytope. We say that F = (Tk)k∈N is a
vanishing family of simplicial partitions for Ω if, for every k ∈ N, the longest edge of Tk

is of length at most 1/k. In addition, we say that F is strongly regular if there exists a
constant c > 0 such that for all partitions Tk ∈ F and all simplices S ∈ Tk we have

measd S ≥ ck−d.

In the sequel, the bounded polytope Ω that we will consider is conv(D). We are ready
to present the first preliminary lemma.

Lemma 4.16. Let F = (Tk)k∈N be a strongly regular vanishing family of simplicial partitions
for conv(D). Then, there exists a constant c′ > 0 such that, for every partition Tk ∈ F and
all simplices St ∈ Tk, t = 1, . . . , ℓ(k), ℓ(k) ∈ N, if we denote by At the matrix relative to the
simplex St defined in (4.3.10), we have

∥A−1
t ∥2 ≤

k

c′
.

Proof. Fix t and consider the singular values of the matrix At, σ(At) = (σi)
d
i=1, σ1 ≥ . . . ≥

σd > 0, and observe that for every i = 1, . . . , d,

σi ≤ σ1 := ∥At∥2 ≤ ∥At∥F,

where

∥At∥2F =

d∑
i,j=1

a2ij =

d∑
i=1

∥ai∥2 ≤
d

k2
,

with ai = (xti−xt0), aij = (xti−xt0)j , i, j = 1, . . . , d, where the sequence (xti)
d
i=0 denotes

the vertices of St. Then, for every i = 1, . . . , d,

σi ≤
√
d

k
. (4.3.12)
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Now, let us recall that (1/d!)|detAt| = measd St. Thus, by strong regularity we obtain

d∏
i=1

σi = | detAt| ≥ measd St ≥ ck−d,

for some c > 0. Thus, for every j = 1, . . . , d,

σj =

∏d
i=1 σi∏d
i ̸=j σi

≥ ck−d

(
√
d/k)d−1

≥ c′

k
,

for some c′ > 0. Since ∥A−1
t ∥2 = σ−1

d , we conclude.

From now on, we will assume that, for every k ∈ N, the partition Tk, formed with
the points (xki )

nk
i=1, nk ∈ N, contains the set D̄; i.e., for every k ∈ N, xki = x̄i for every

i = 1, . . . , n.

The following lemma is key to prove our convergence result. As it will be seen, we
prove that the minimizer of L̂ on the set PA(Tk) ∩ N converges, in some sense, to the
minimizer of (DP) as k goes to infinity. We recall that the function L̂ remains the same
for every k ∈ N. In other words, although we augment the number of points at every
iteration, the penalization is done only for the initial training points. Therefore, once a
training set is fixed, we are able to prove that our constructed operators converge to a
minimizer of (DP).

Lemma 4.17. Let F = (Tk)k∈N be a vanishing family of simplicial partitions for conv(D)
and define, for every k ∈ N,

N̂k ∈ argmin
N∈PA(Tk)∩N

L̂(N), (4.3.13)

where L̂ is defined as in (DP). Then, the sequence (N̂k)k∈N is bounded in Lip(X ) and there
exists a subsequence {kj}j∈N and an operator N̂ ∈ N such that N̂kj

∗
⇀ N̂ .

Proof. Let k ∈ N and let N̂k be a minimizer of L̂ in PA(Tk) ∩ N . Define, for every k ∈ N,
the operator N0

k := N̂k − N̂k(0) and observe that N0
k ∈ N0. Since N0 is weak∗ compact

by Corollary 4.6, there exists a subsequence {kj}j∈N and an operator N0
∞ ∈ N0 such that

N0
kj

∗
⇀ N0

∞ as j → ∞. By Corollary 4.2, this implies in particular that, for every x ∈ X,

N̂kj (x)− N̂kj (0) → N0
∞(x)−N0

∞(0) = N0
∞(x), as j → ∞. (4.3.14)

Next, we claim that the sequence (N̂k(0))k∈N is bounded in X . Indeed, observe first that,
for every k ∈ N, L̂(N̂k) ≤ L̂(πconv(D)) as, for every k ∈ N, πconv(D) ∈ PA(Tk) ∩ N and
N̂k minimizes L̂ in PA(Tk) ∩ N . Since L̂ is coercive in the sense of (4.3.2) by Proposition
4.9 (applied to the empirical measure µ̂ := 1

n

∑n
i=1 δ(x̄i,ūi

)), we conclude the proof of the
claim. Therefore, up to subsequences, there exists u ∈ X such that N̂kj (0) ⇀ u. Now,
let us define the operator N∞ := N0

∞ + u, observe that N∞ ∈ N and note that, up to
subsequences

N̂kj (0) ⇀ u = N∞(0). (4.3.15)

Finally, by (4.3.14), we obtain that, for every x ∈ X,

N̂kj (x)− N̂kj (0) → N0
∞(x) = N∞(x)−N∞(0), as j → ∞.

By combining this with (4.3.15) and the characterization provided in Corollary 4.2, we
have shown that, up to subsequences,

N̂kj
∗
⇀ N∞ =: N̂ , as j → ∞,

which is the result that we were aiming for.
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We are now ready to present the main result of the section.

Theorem 4.18. Let F = (Tk)k be a strongly regular vanishing family of simplicial partitions
for conv(D). Then, for every sequence of operators defined as in (4.3.13) there exists a
subsequence {kj}j∈N such that

N̂kj
∗
⇀ N̂ with N̂ ∈ argmin

N∈N
L̂(N).

Proof. For every k ∈ N, let {xki }
nk
i=1 be the vertices of all the simplices of the partition

Tk (notice that in particular {x̄i}ni=1 ⊂ {xki }
nk
i=1 for every k, since Tk are subsequent re-

finements). Let M̂ be a minimizer of (DP) and let δ > 0. From Theorem 4.7, there
exists a differentiable operator N δ ∈ N such that ∥N δ − M̂∥∞ ≤ δ. We define for all k
the operators N δ

k (x
k
i ) := N δ(xki ) in the points xki and extend them in a piecewise affine

manner following Tk (in particular for all k it holds N δ
k (xi) = N δ(xi), i = 1, . . . , n). For

every simplex St ∈ Tk we indicate the vertices as {xki(t,j)}
d
j=0, we introduce the numbers

{uki(t,j) = N δ
(
xki(t,j)

)
}dj=0 and we define the matrices At, Bt as in (4.3.10). We recall the

fact that ∥xki(t,j) − xki(t,0)∥2 ≤ 1
k for every St ∈ Tk and j ∈ {1, . . . , d}. Since N δ is differen-

tiable, we there exists a function q : N → R, independent on j and t, such that kq(k) → 0
and

N δ(xki(t,j)) = N δ(xki(t,0)) +∇N δ
(
xki(t,0)

)
(xki(t,j) − xki(t,0)) + q(k),

for every St ∈ Tk and j ∈ {1, . . . , d}. We can write Bt = ∇N δ(xki(t,0))At + q(k). It follows
that

∥BtA
−1
t ∥2 ≤ ∥∇N δ∥∞ + q(k)∥A−1

t ∥2 ≤ 1 + q(k)∥A−1
t ∥2,

where we used that ∥∇N δ∥∞ ≤ 1 again by Theorem 4.7. By Lemma 4.16 we have
∥BtA

−1
t ∥ ≤ 1 + kq(k)/c′. Since this estimate is independent of t, we have

∥N δ
k∥Lip0 = max

t=1,..., ℓ(k)
∥BtA

−1
t ∥ ≤ 1 + kq(k)/c′.

In particular, we obtain max{∥N δ
k∥Lip0 , 1} → 1 as k → ∞. We define now for every x ∈ X ,

Ñ δ
k (x) :=

N δ
k (x)

max{∥N δ
k∥Lip0 , 1}

.

We notice that Ñ δ
k ∈ PA(Tk) ∩N and, for every i = 1, . . . , n,

Ñ δ
k (x̄i) =

N δ
k (x̄i)

max{∥N δ
k∥Lip0 , 1}

=
N δ(x̄i)

max{∥N δ
k∥Lip0 , 1}

→ N δ(x̄i) as k → ∞. (4.3.16)

By Lemma 4.17, there exists a subsequence {N̂kj}j of {N̂k}k weakly converging to an
operator N̂ ∈ N . By weak∗ lower semicontinuity of the functional L̂ and the fact that
L̂(N̂kj ) ≤ L̂(Ñ δ

kj
) (since Ñ δ

kj
∈ PA(Tk) ∩N ) we obtain

L̂(N̂) ≤ lim inf
j→∞

L̂(N̂kj ) ≤ lim inf
j→∞

L̂(Ñ δ
kj
).

On the other hand, from 4.3.16 we get

L̂(Ñ δ
kj
) =

1

n

n∑
i=1

∥Ñ δ
kj
(x̄i)− ūi∥2 → L̂(N δ), as k → ∞.
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Hence, L̂(N̂) ≤ L̂(N δ). Using Young’s inequality and the definition of L̂ we obtain

L̂(N̂) ≤ L̂(N δ) =
1

n

n∑
i=1

∥N δ(x̄i)− ūi∥2

≤ 1

n

[
n∑

i=1

(
1 +

1

δ

)
∥N δ(x̄i)− M̂(x̄i)∥2 + (1 + δ) ∥M̂(x̄i)− ūi∥2

]

≤ δ2
(
1 +

1

δ

)
+ (1 + δ) L̂(M̂).

As δ was arbitrary we obtain L̂(N̂) ≤ L̂(M̂) and the thesis.

Remark 4.19. The problem of constructing strongly regular refinements is not a trivial
task. In the case of d = 2, there are examples of strongly regular sequences of refinements.
In particular, one can use the face-to-face longest-edge bisection algorithm [98], which
was proven to provide a strongly regular sequence of refinements. Whether this technique
gives strongly regular sequences in higher dimensions is still an open problem. However, it
seems to perform well in practice and numerical experiments have been already provided
for such issue, see for example [78].

We finish this section by providing the convergent PnP versions for some of the most
well-known optimization algorithms: the Forward-Backward splitting algorithm, the Douglas–
Rachford algorithm, and the Chambolle–Pock primal-dual iteration.

4.4 Convergent PnP methods

As it has been already mentioned in the introduction, the purpose of constructing firmly
nonexpansive operators is that classical splitting methods require this property in order to
achieve good convergence guarantees. In the following, we show how to rephrase classi-
cal methods in the PnP framework and recall some standard convergence results.

Finding a solution to a minimization problem of the form minx f(x) + R(x), where
both f and R are in Γ0(X ), is equivalent (under some mild assumptions) to finding a
point x ∈ X such that 0 ∈ ∂f(x) + ∂R(x). We have already mentioned in Chapter 2 that
subdifferentials are a particular case of maximal monotone operators. This is the reason
why, from a more general point of view, splitting methods and their relative convergence
theory are often developed in the context of finding zeros in the sum of maximal monotone
operators. In particular, these methods aim to find solutions of

0 ∈ A1x+A2x, (4.4.1)

where Ai, i = 1, 2, are maximal monotone operators. A first example of such methods is
the Forward-Backward Splitting algorithm (FBS), which iterates

xk+1 = JτA2(x
k − τA1x

k),

where JτA2 denotes the resolvent operator of A2 with step-size τ . The weak convergence
of the sequence (xk)k generated by the algorithm to a solution of Problem (4.4.1) is guar-
anteed under the assumption that A1 is β-cocoercive, i.e.,

⟨A1x−A1x
′, x− x′⟩ ≥ β∥A1x−A1x

′∥ for all x, x′ ∈ X ,

and τ ∈ (0, 2/β). We recall that, by Lemma 2.9, the set of resolvents of maximal mono-
tone operators coincides with the set of firmly nonexpansive operators. For this reason,
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substituting JτA2 with any firmly nonexpansive operator does not alter the convergence
guarantees of the method. If we consider a firmly nonexpansive operator T , then the
PnP-FBS algorithm iterates can be written as

xk+1 = T (xk − τA1x
k). (PnP-FBS)

If τ satisfies the same hypothesis stated above, then we can still guarantee convergence of
the generated sequence. In particular, the sequence will converge (weakly) to a solution
of the maximal monotone inclusion problem 0 ∈ A1x + ATx, where AT is the (unique)
maximal monotone operator that satisfies T = (I + τAT )

−1.

Many other splitting methods have similar properties. We mention the so-called ADMM
algorithm or, equivalently, the Douglas-Rachford algorithm (see [100] for the equiva-
lence), which iterates

xk+1
1 = JτA1(w

k),

xk+1
2 = JτA2(2x

k+1
1 − wk),

wk+1 = wk + (xk+1
2 − xk+1

1 ).

(4.4.2)

It is known from [125] that, without further assumptions, both the sequences (xk1)k and
(xk2)k generated by the algorithm, converge weakly to the same solution of Problem
(4.4.1). Substituting again JτA2 with a firmly nonexpansive operator T , we obtain the
PnP-DR algorithm

xk+1
1 = JτA1(w

k),

xk+1
2 = T (2xk+1

1 − wk),

wk+1 = wk + (xk+1
2 − xk+1

1 ),

(PnP-DR)

generating two sequences (xk1)k and (xk2)k weakly converging to a solution of 0 ∈ A1x +
ATx, with the same operator AT introduced above.

When the problem is more structured, further splitting methods can be applied. Let
us consider the problem minx f(x) + R(Gx), where G : X → X ′ is a linear operator, X ′

a Hilbert space, f ∈ Γ0(X ), and R ∈ Γ0(X ′). The corresponding monotone inclusion
problem becomes finding x ∈ X such that 0 ∈ ∂f(x) +G∗∂R(Gx), and in general, finding
x ∈ X such that

0 ∈ A1x+G∗A2Gx, (4.4.3)

with A1, A2 maximal monotone operators on X and X ′ respectively. In order to solve
such a problem, one can employ the so-called Chambolle–Pock primal-dual iteration. The
iterations in the context of maximal monotone inclusions read as

xk+1 = JτA1(x
k − τG∗yk),

yk+1 = JσA−1
2

(
yk + σG(2xk+1 − xk)

)
.

Without assuming any further properties on the operators A1 or A2, the convergence of
the method is guaranteed when τσ∥G∥2 ≤ 1 (see [40], or [27] for the limiting case). In
particular, the sequence (xk)k generated by the algorithm weakly converges to a solution
of (4.4.3). This time, in order to find the corresponding PnP version of the algorithm, we
first make use of Moreau’s identity, which gives, for every x ∈ X ,

JσA−1
2
(x) = σ(Id−Jσ−1A2

)(σ−1x).

We can now write the iterations of the algorithm as

xk+1 = JτA1(x
k − τG∗yk),

yk+1 = σ(Id−Jσ−1A2
)
(
σ−1yk +G(2xk+1 − xk)

)
.
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Now again, we substitute the resolvent operator of A2 with a firmly nonexpansive operator
T and obtain the PnP-CP method

xk+1 = JτA1(x
k − τG∗yk),

yk+1 = σ(Id−T )
(
σ−1yk +G(2xk+1 − xk)

)
.

(PnP-CP)

Assuming τσ∥G∥22 ≤ 1 we guarantee convergence of the method to a solution of the
monotone inclusion problem 0 ∈ A1x + G∗ATGx, where AT is defined by the equality
T = (Id+σ−1AT )

−1. Therefore, we have

0 ∈ A1x+G∗ATGx = A1x+ σG∗(T−1 − Id)Gx. (4.4.4)

In applications, we consider T coming from a learning process and thus, we consider the
operator (T−1 − Id) as fixed. This means that changing σ does change the underlying
problem and thanks to the explicit expression in (4.4.4), we can think of σ as a regulariza-
tion parameter (see also Section 4.5.1). This was only possible by making use of Moreau’s
identity which provides us with more interpretability of the solution than the one we could
have achieved by only substituting JσA−1

2
directly.

4.5 Experiments

In applications, given a set of data points {(x̄i, z̄i)}ni=1 we are interested in finding the best
firmly nonexpansive operator that approximates these points in terms of the least squares
distance. In order to do so, as explained at the beginning of Section 4.2 we can focus on
learning a nonexpansive operator. We first define the points ūi = 2z̄i − x̄i, we then fix a
triangulation T for D = D̄ = {x̄i}ni=1 (as explained in Section 4.3.3), and try to solve the
following problem

min
u1,...un∈Rd

1

n

n∑
i=1

∥ui − ūi∥22

s.t. ∥Bt(u1, . . . , un)A
−1
t ∥2 ≤ 1, for every St ∈ T,

(4.5.1)

where At and Bt are defined as in Section 4.3.4 considering m = n. This problem can be
written in matricial form as follows

min
U∈Rd×n

1

n
∥U − Ū∥2F +

∑
St∈T

ι{∥Bt(·)A−1
t ∥2≤1}(U).

Let us introduce the functions f , g : Rd×d → R ∪ {+∞}, defined by

f(U) =
1

n
∥U − Ū∥2F , R(M) = ι{∥·∥2≤1}(M).

Moreover, define Gt : Rd×n → Rd×d linear operators that map U into Bt(U)A−1
t for each

t = 1, . . . , ℓ. The problem can be written in the form

min
U∈Rd×n

Vt∈Rd×d

f(U) +
∑
St∈T

R(Vt) s.t. Vt = GtU t = 1, . . . , ℓ
(4.5.2)

In order to solve it, we make use of the ADMM algorithm [18], considering a sequence of
non-decreasing penalty parameters ρk > 0, that becomes stationary after a finite number
of iterations (see [18, Section 3.4.1] for further details). The algorithm we use to solve
Problem (4.5.2) is not relevant and one can make use of other suited iterative methods.
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4.5.1 Image denoising

In the following, we focus on the image denoising problem described in Example 2.22.
Let X = RN×N . We aim to reconstruct the clean image u∗ by having only access to
the measurement x, corrupted via a random additive noise ε ∼ N(0, τ2 Id). We set a
parameter λ > 0 and consider a rather more general problem than the one stated in
Section 2.3.2, which writes as

min
u

1

2
∥u− x∥2F + λR(Du) (4.5.3)

where D denotes the discrete gradient defined in Section 2.3.2. Moreover, the function
R : X × X → R, assumed be convex, determines the penalization one wants to impose
on the (discrete) gradient of the image. In practice, such a regularization function is
difficult to choose this function since it must entail some prior knowledge of the image
one wants to reconstruct. Some examples of R include R(v) = λ

2∥v∥
2
F , known as H1

regularization, R(v) = λ∥v∥1,1, where λ > 0 denotes the regularization parameter or, if
we define vij := (Du)i,j ∈ R2 as the gradient of the image u in the position (i, j), and
define the functions ∥.∥p,1, for p = 1, 2,

∥v∥p,1 =
n∑

i=1

m∑
j=1

∥(Du)i,j∥p,

then the choice λ∥v∥1,1 correspond to the anisotropic TV (2.3.11), and the choice λ∥v∥2,1
to the isotropic TV (2.3.10).

Our goal is to learn the operator R from scratch using a data-driven approach, and we
do this by learning its proximal operator. In particular, we learn a firmly nonexpansive
operator that we think of as a denoiser of gradients of images. In particular, observe
that all of the possible choices for the function R that we presented above are separable
with respect to the pixels and, moreover, the function is the same in every pixel (in the
examples above, respectively, λ

2∥ · ∥
2
2, λ∥ · ∥1 and λ∥ · ∥2). Such observation is key in our

study since we will assume that the gradient can be locally and equally treated, pixel per
pixel, by the learned resolvent. This corresponds to assume that R is of the form

R(v) =

n∑
i=1

m∑
j=1

r(vij),

with r : R2 → R. Then, we learn ∂r : R2 ⇒ R2 through its resolvent (Id+∂r)−1 : R2 → R2.
In practice, the resulting learned operator should preserve the properties of proxR, but it
will not necessarily be a proximal operator: we only guarantee that it is firmly nonexpan-
sive. With the assumptions introduced above, instead of learning the firmly nonexpansive
operator associated with proxR, we just need to do such thing for proxr instead, which is
defined on R2 and can be well approximated by our method.

In practice, for the learning process, we consider gradients pixel by pixel of noisy
images as inputs (called x̄i ∈ R2 in Section 4.3) and their corresponding clean gradients
on the same pixels as outputs (called z̄i ∈ R2 at the beginning of Section 4.5). Once this
firmly nonexpansive operator is learned, we denote it by Tr and we can plug it inside a
splitting method to solve (4.5.3). In our experiments, we make use of the PnP-CP method
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introduced in Section 4.4. The resulting algorithm reads as follows

uk+1 = (uk − τD∗vk + τ ûδ)/(1 + τ)

zk+1 = vk + σD(2xk+1 − xk)

for i = 1, . . . , n, j = 1, . . . ,m, do

vk+1
ij = σ(I − Tr)(zij/σ)

(4.5.4)

where the step-sizes τ > 0 and σ > 0, are such that τσ ≤ ∥D∥22, and Tr is the learned
firmly nonexpansive operator (corresponding to the proximal operator of r). The variable
u lives in Rn×m and is the one that converges to the clean image. The variables v and z
both live in Rn×m×2, with components vij , zij ∈ R2. Finally, the loop plays the role of the
proximal operator of the dual of R. Notice that we used Moreau’s identity to use directly
Tr, as we explained in Section 4.4.

The learning process of our proposed denoiser was done over samples from an im-
age of a butterfly and images from the MNIST dataset, shown in Figure 4.2. This choice
was made to learn an operator that would allow the reconstruction of both edges and
smoother parts. Notice, that it is possible to choose any image sample. To achieve better
performance, a good choice for training images could be using images similar to the one
that has to be reconstructed, if available. If the interest is focused more on the reconstruc-
tion of edges, a possibility is to choose manually pixels near edges or images with many
edges. We show this in our experiments. After some analysis, we noticed that we arrived
at good results also with a low number of data points (this made the learning process easy
and relatively fast), for this reason, we chose n = 1000 pairs of data points {(x̄i, z̄i)}ni=1

and perform the learning process as described in the first part of Section 4.5. The noisy
data were generated using Gaussian distributions with variance equal to 10. As discussed
at the end of Section 4.4, we use the dual stepsize as a regularization parameter. Tuning
such parameters allows us to deal with different noise levels (in the experiments we will
set the variance of the Gaussian noise to 10, 20, and 30).

Code statement: All of the simulations have been implemented in Matlab on a laptop
with Intel Core i7 1165G7 CPU @ 2.80GHz and 8 Gb of RAM. The code is available at
https://github.com/TraDE-OPT/Learning-firmly-nonexpansive-operators.

Figure 4.2: Clean data images. In order to construct the data set, we make use of Gaussian
noise with noise variance τ2 = 10.

First experiments: butterfly In the first experiment, we test the learned operator using
images similar to the ones used during the learning process. We use as training set clean
and noisy data from the picture on the left in Figure 4.2 and as test image we consider
a noisy version of the picture on the left in Figure 4.3. We perform experiments using

https://github.com/TraDE-OPT/Learning-firmly-nonexpansive-operators
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Figure 4.3: Clean version of the test images for experiments 1 and 2, respectively.

three different levels of noise applied to the test image, considering Gaussian noise with
variance τ2 = 10, 20, and 30, respectively. In Figure 4.4, we report some results given
by solving (4.5.3) with R = α

2 ∥ · ∥
2
F (indicated as “H1” in the experiments), isotropic TV

( indicated as “TV”), and the learned denoiser (indicated as “Learned”). Parameter and
step-size choices were done manually, looking for best performance. In Table 4.5.1, we
report the results in terms of PSNR and SSIM for reconstructions given by solving (4.5.3).
As it can be seen in Table 4.5.1, our method can perform well in practice. We do not
claim to have a method that improves state-of-the-art approaches. As we have already
mentioned, the main contribution of our work is to propose a data-driven approach in
the context of learning the proximal operator of convex regularizers, while still providing
good theoretical guarantees.

Figure 4.4: Butterfly images. Results of the experiment performed using a noisy image
with Gaussian noise with noise variance τ2 = 30.

Second experiment: circles and edges In the second experiment we performed tests
on images of circles and shadows, using two different data sets and thus, two different
learned operators. We use data derived from the pictures shown in Figure 4.2. This
choice was made to understand how Plug-and-Play methods were able to reconstruct both
edges and smooth parts when provided with operators learned using completely different
datasets. In Figure 4.5, we report some results given by solving (4.5.3) with R = α

2 ∥ · ∥
2
F
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Butterfly images
Noisy H1 TV Learned

τ2 = 10
PSNR (dB) 28.2806 32.1127 33.3655 33.7698
SSIM 0.67053 0.88882 0.82597 0.90678

τ2 = 20
PSNR (dB) 22.5353 29.5202 29.8667 29.8926
SSIM 0.41033 0.83430 0.79383 0.82949

τ2 = 30
PSNR (dB) 19.3036 27.2511 27.4723 27.5141
SSIM 0.27491 0.76491 0.75531 0.77291

Table 4.1: Comparison of performance for denoising using various regularization meth-
ods: H1 penalty (indicated by H1), Isotropic Total Variation (indicated by TV), and ours
(Learned). The comparison is given in terms of Peak Signal-to-Noise ratio (PSNR), and
Structural Similarity Index Measure (SSIM).

(H1), isotropic TV (TV), the denoiser learned using the image of butterflies on the left
in Figure 4.2 (Learned 1) and the denoiser learned using the MNIST images on the right
in Figure 4.2 (Learned 2). Parameter and step-size choices were done manually, looking
for best performance. We show the values in terms of PSNR and SSIM for three different
values of the noise variance in Table 4.5.1. It is possible to see that (for both datasets)
our data-driven method reconstructs well edges while not introducing too many artifacts
in the image. It is interesting to notice that while the operator learned using more natural
images (the images of butterflies) reconstructs smoother solutions, the one learned us-
ing the MNIST dataset seems to reconstruct better edges while introducing some artifacts
(similarly to what happens for TV regularization).

Since we have the full expression of the learned operators, we can analyze them fur-
ther. In Figure 4.6 (on the left) we plot the Lipschitz constants for the learned operator in
every element of the triangulation St ∈ T. In particular, we plot the norm of the linear op-
erator BtA

−1
t for each triangle. Recall that the Lipschitz constant for the learned operator

is the maximum of the Lipschitz constant in every triangle. Even if the Lipschitz constant
is not less or equal to 1 (but still close to 1), the PnP algorithm converges. The reason why
the Lipschitz constant is not less than one is that we use an algorithm to find a solution
of Problem (4.5.2) and we do not compute the minimizer exactly. To find a 1-Lipschitz
operator one can try to replace the constraints ∥Bt(·)A−1

t ∥2 ≤ 1 with ∥Bt(·)A−1
t ∥2 ≤ 1− ε,

ε ∈ (0, 1), searching in this way for (1− ε)-Lipschitz operators. We did some experiments
in this direction, where we chose ε = 0.01. We learned in this way actual nonexpansive
operators but we got similar results and the performance didn’t improve. In the same fig-
ure, on the right, it is possible to see the decreasing behavior of the PnP Chambolle-Pock
method described in (4.5.4). Figure 4.7 shows how the action of the learned operator
from R2 to R2 looks like. The images show how the learned operator has both features of
the prox of the 2-norm and the 2-norm squared.
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Figure 4.5: Circles. Results of the experiment performed using a noisy image with Gaus-
sian noise, with noise variance τ2 = 30. Comparison for different training sets.

Circle images
Noisy H1 TV Learned

1
Learned
2

τ2 = 10
PSNR (dB) 28.3301 30.2135 36.1745 36.4605 37.6887
SSIM 0.54501 0.94343 0.89702 0.96562 0.96444

τ2 = 20
PSNR (dB) 22.5004 27.6047 31.1407 33.4358 33.8865
SSIM 0.28188 0.92580 0.78223 0.93806 0.93652

τ2 = 30
PSNR (dB) 19.1533 25.4987 30.9583 30.8230 31.1913
SSIM 0.17782 0.92462 0.87905 0.92247 0.90443

Table 4.2: Comparison of performance for denoising using various regularization meth-
ods: H1 penalty (H1), Isotropic Total Variation (TV), the learned operator using the but-
terfly dataset (Learned 1), and the learned operator using the MNIST dataset (Learned
2). The comparison is given in terms of Peak Signal-to-Noise ratio (PSNR), and Structural
Similarity Index Measure (SSIM).
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Figure 4.6: On the left: Lipschitz constants for the learned operator (Learned 1) in every
element of the triangulation St ∈ T. On the right: decreasing behavior of the primal and
dual residuals for the PnP Chambolle-Pock method described in (4.5.4), using the learned
operator using butterfly data images (Learned 1).
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Figure 4.7: Action of proximal operators on a section of R2. Top-left: our learned operator
(Learned 1), top-right: prox of the 1-norm (used for the anisotropic TV), bottom-left: prox
of the 2-norm (used in the isotropic TV), bottom-right: prox of the 2-norm squared. It
is possible to see that it shares some properties of the prox of the 1-norm and 2-norm.
However, contrary to those, the magnitude of shift for the learned operator depends on
the distance to zero, as it happens also for the prox of the 2-norm squared.





CHAPTER 5

On extreme points and representer
theorems for the Lipschitz unit ball on finite

metric spaces

5.1 Introduction

Let (X , d) be a metric space, (U , ∥ · ∥U ) a non-trivial, strictly convex real Banach space. We
denote by Lip0 to be the Banach space of Lipschitz functions from X to U that vanish at
the distinct point x0 ∈ X [140]. Let L ≥ 0. We define the set

LipL0 = {f : X → U | f(x0) = 0 and ∥f(x)− f(x′)∥U ≤ Ld(x, x′) for all x, x ∈ X}.

The objective of this chapter is to characterize the set of extreme points of the set Lip10,
which remains to be a challenging problem to date. Although the case U = R has been
studied to a large extent [65], no information about the general setting U = Rd, d ≥ 2, has
been provided. We partially fill this gap in Theorem 5.2, where we consider the general
setting mentioned above with U being a strictly convex real Banach space, and X a finite
metric space; i.e., X = {x0, ..., xn}, being x0, . . . , xn, n ≥ 1, distinct points.

The second contribution of this work is to provide a representer theorem in this set-
ting. These results have recently become popular in the context of variational inverse
problems [19, 21, 133]. In the finite-dimensional setting, a natural connection can be
provided: a representer theorem enables the expression of some solutions of variational
problems through a finite number of extreme points: the extreme points associated to
the unit ball of the regularizer [63]. For these reasons, there is increasing recent interest
in characterizing extreme points associated with various regularizers, see [21, 23] and
[25] and [4, 22, 37, 90, 134]. We provide in Theorem 5.3 a representation result for the
space Lip10 that improves Theorem 2.19. As we will see, the number of required extreme
points is independent of the dimension of the space. In this sense, a generalization to the
Minkowski-Carathéodory Theorem in infinite-dimensional spaces is provided.

5.2 Extreme points

We recall that, given C a convex subset of a real vector space, an extreme point of C is a
point u ∈ C such that, if u = 1

2u
1 + 1

2u
2 with u1, u2 ∈ C, then u1 = u2 = u. We denote

with ext(C) the set of extreme points of C.
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For further convenience, we consider the following definition of the set Lip10.

Lip10 := {u = (u0, . . . , un) ∈ Un+1 : u0 = 0 and ∥ui − uj∥U ≤ d(xi, xj),

for every i, j = 1, ..., n}.

Note that both of the definitions of the set Lip10 are equivalent, since in this case, we are
only considering the images of the finite set X = {x0, ..., xn} through functions f mapping
to U . We provide now a preliminary lemma.

Lemma 5.1. Let u ∈ Lip10. For every i = 1, ..., n, there exists 0 = i0, i1, .., ik = i, k ≥ 1,
such that ∥uij+1 − uij∥U = d(xij+1 , xij ), for every j = 0, ..., k − 1 if and only if there does
not exist a nonempty subset S ⊂ {1, ..., n} such that ∥ui − uj∥U < d(xi, xj), for every i ∈ S,
j ∈ Sc.

Proof. We proceed by contradiction: let S ⊂ {1, ..., n}, S ̸= ∅, such that ∥ui − uj∥U <
d(xi, xj) for every i ∈ S, j ∈ Sc, and let i ∈ S. By hypothesis, we can choose k ≥ 1 with
0 = i0, ..., ik = i such that ∥uij+1 − uij∥U = d(xij , xij+1) for every j = 0, ..., k − 1. As
i0 = 0 ∈ Sc and ik = i ∈ S, we derive that there must exist j = 0, ..., k − 1 such that
ij+1 ∈ S and ij ∈ Sc. It follows that ∥uij+1 − uij∥U < d(xij+1 , xij ) but this contradicts the
hypothesis and, hence, concludes the first part of the proof.

Conversely, let us consider the set

T = {i ∈ {1, ..., n} | there exists 0 = i0, ..., ik = i s.t.

∥uiℓ+1
− uiℓ∥U = d(xiℓ+1

, xiℓ+1
), ℓ = 0, ..., k − 1},

and suppose that T ̸= {1, ..., n}. Define the set S := T c ⊂ {1, ..., n}, and observe that
S ̸= ∅. It is left to prove that, for every i ∈ S, j ∈ Sc, ∥ui−uj∥U < d(xi, xj). Let us suppose
that there exists i ∈ S and j ∈ Sc such that ∥ui − uj∥U = d(xi, xj). Since j ∈ Sc, there
exists 0 = i0, ..., ik = j, k ≥ 1, such that ∥uiℓ+1

− uiℓ∥U = d(xiℓ , xiℓ+1
) for ℓ = 0, ..., k − 1.

Since, by hypothesis, we have that ∥ui−uj∥U = d(xi, xj), and defining ik+1 := i we obtain
a path from 0 to i satisfying the equalities for ℓ = 1, ..., k. This implies that i ∈ T = Sc, a
contradiction. We therefore have found that there exists S ⊂ {1, ..., n}, S ̸= ∅ such that
∥ui − uj∥U < d(xi, xj), for every i ∈ S, j ∈ Sc.

Define now the set

E := {u ∈ Un+1 | u0 = 0 and, for every i = 1, ..., n, there exists

0 = i0, ..., ik = i, k ≥ 1 : ∥uij+1 − uij∥U = d(xij , xij+1), j = 0, ..., k − 1}.

Observe that the definition of E is motivated by the previous lemma, since every point
u ∈ E satisfies the first condition of Lemma 5.1. We are now ready to characterize the
extreme points of the set Lip10.

Theorem 5.2. We have that ext(Lip10) = E .

Proof. First, we will prove that, if u /∈ E , then u /∈ ext(Lip10). Let u ∈ Lip10 such that
u /∈ E . By the previous lemma, we get that there exists S ⊂ {1, ..., n}, S ̸= ∅, such that
∥ui − uj∥U < d(xi, xj), for every i ∈ S, j ∈ Sc. Choose now

ε = min
i∈S, j∈Sc

d(xi, xj)− ∥ui − uj∥U ,

and observe that ε > 0. Moreover, choose v ∈ U such that ∥v∥U = 1 (which exists since U
is non-trivial) and set

u1i :=

{
ui + εv, if i ∈ S;

ui, else,
u2i :=

{
ui − εv, if i ∈ S;

ui, else.
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Indeed, if we define uk := (uk0, u
k
1, ..., u

k
n), k = 1, 2, then u1 ̸= u2. Moreover, observe that

∥uki − ukj ∥U = ∥ui − uj∥U ≤ d(xi, xj), for every i, j ∈ S or i, j ∈ Sc, k = 1, 2,

since u ∈ Lip10 and

∥uki − ukj ∥U = ∥ui ± εv − uj∥U ≤ ∥ui − uj∥U + ε

≤ ∥ui − uj∥U + d(xi, xj)− ∥ui − uj∥U
= d(xi, xj), for i ∈ S, j ∈ Sc, k = 1, 2.

Therefore, uk ∈ Lip10, k = 1, 2 and u = 1
2u

1 + 1
2u

2, u1 ̸= u2 and so u /∈ ext(Lip10). Hence,
ext(Lip10) ⊂ E .

We would like to prove now that E ⊂ ext(Lip10). Let u ∈ Lip10 \ ext(Lip10). We will prove
that there exists S ⊂ {1, ..., n}, S ̸= ∅, such that ∥ui − uj∥U < d(xi, xj), for every i ∈ S,
j ∈ Sc. If so, by the previous lemma, this would mean that u /∈ E . Since u /∈ ext(Lip10),
there exist u1, u2 ∈ Lip10, u

1 ̸= u2, such that u = 1
2u

1 + 1
2u

2. Now, define the set

S = {i ∈ {1, ..., n} | u1i ̸= u2i },

and observe that it is nonempty since u1 ̸= u2 by hypothesis. Now, let i ∈ S, j ∈ Sc. Then,

∥ui − uj∥U =

∥∥∥∥12u1i − 1

2
u1j +

1

2
u2i −

1

2
u2j

∥∥∥∥
U
=

∥∥∥∥12u1i − 1

2
uj +

1

2
u2i −

1

2
uj

∥∥∥∥
U
.

In order to finish the proof, define a := u1i −uj , b := u2i −uj , and observe that a ̸= b. Now,
we distinguish two cases: if a is not proportional to b, we get

∥ui − uj∥U <
1

2
∥a∥U +

1

2
∥b∥U ≤ d(xi, xj),

since we assumed that U is a strictly convex space. If they are proportional, then, by
possibly interchanging a and b, we have b = λa for some λ ̸= 1, we can further assume
that −1 ≤ λ < 1, and obtain that

∥ui − uj∥U =

∥∥∥∥a2 +
λa

2

∥∥∥∥
U
≤ |1 + λ|

2
∥a∥U < d(xi, xj).

The result immediately follows.

In the next section, we provide a representation result as a natural consequence of the
extreme points characterization shown above.

5.3 Representer theorems

We are now ready to state the representer theorem for the space Lip10. In the case of
U = Rd, the Minkowski–Carathéodory theorem would imply that every function in Lip10
can be represented as a convex combination of at most nd+1 extreme points. We are able
to improve this number up to n+1 extreme points, which is independent of d, and covers
the infinite-dimensional case as well.

Theorem 5.3. For every u ∈ Lip10, there exist k ≤ n+ 1, u1, ..., uk ∈ ext(Lip10), and scalars
λ1, ..., λk ≥ 0 with

∑k
i=1 λi = 1 such that u =

∑k
i=1 λiu

i.
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Proof. Let u ∈ Lip10 and recall that it is of the form u = (u0, ..., un), with u0 = 0. Choose
v ∈ U such that ∥v∥U = 1. Define the set

D =
{
t = (t0, ..., tn) ∈ Rn+1 | u+ tv ∈ Lip10

}
,

being (u + tv)i := ui + tiv, for every i = 0, ..., n. Moreover, observe that t0 = 0 for
every t ∈ D since, if t0 ̸= 0 then (u + tv)0 ̸= 0. Now, we claim that, if t ∈ ext(D), then
u + tv ∈ ext(Lip10). Indeed, if t ∈ D and u + tv /∈ ext(Lip10), then there exists a subset
S ⊂ {1, ..., n}, S ̸= ∅, such that ∥ui − uj + (ti − tj)v∥U < d(xi, xj), for every i ∈ S, j ∈ Sc.
Choose

ε = min
i∈S, j∈Sc

d(xi, xj)− ∥ui − uj + (ti − tj)v∥U ,

and observe that ε > 0. Moreover, define

t1i :=

{
ti + ε, if i ∈ S;

ti, else,
t2i :=

{
ti − ε, if i ∈ S;

ti, else.

With such definitions, observe that t1 ̸= t2. Now, u+ tkv ∈ Lip10, for k = 1, 2, because

∥ui − uj + (tki − tkj )v∥U = ∥ui − uj + (ti − tj)v∥U
≤ d(xi, xj), for every i, j ∈ S or i, j ∈ Sc,

since t ∈ D and

∥ui − uj + (tki − tkj )v∥U ≤ ∥ui − uj + (ti − tj)v∥U + ε∥v∥U
≤ ∥ui − uj + (ti − tj)v∥U + d(xi, xj)− ∥ui − uj + (ti − tj)v∥U
= d(xi, xj), for i ∈ S, j ∈ Sc, k = 1, 2.

Then, t1, t2 ∈ D and t = 1
2 t

1 + 1
2 t

2, t1 ̸= t2, which implies that t /∈ ext(D). Consequently,
t ∈ ext(D) implies u + tv ∈ ext(Lip10). Now, we show that D is a nonempty, convex,
compact subset of Rn+1. First, note that 0 ∈ D and that convexity follows from fact that D
is the preimage of the convex set Lip10 through the affine mapping t 7→ u + tv. Moreover,
boundedness follows because, for every t ∈ D, we have

d(xi, x0) ≥ ∥(u+ tv)i − (u+ tv)0∥U = ∥ui − u0 + tiv∥U ≥ |ti| − ∥ui − u0∥U
and so, for every i = 1, . . . , n we have that

|ti| ≤ d(xi, x0) + ∥ui − u0∥U ≤ 2d(xi, x0).

It is only left to prove that D is closed. Let (tk)k∈N be a sequence in D converging to some
t ∈ Rn+1. We have that

∥ui − uj + (ti − tj)v∥U = ∥ui − uj + (tki − tkj )v − (tki − tkj )v + (ti − tj)v∥U
≤ ∥ui − uj + (tki − tkj )v∥U + ∥(ti − tj)v − (tki − tkj )v∥U
≤ d(xi, xj) + |ti − tki |+ |tj − tkj |,

for every i, j = 0, . . . , n.We obtain the result by taking limits when k → ∞. By the
Krein–Milman theorem, we know that D = conv(ext(D)). Moreover, we can apply the
Minkowski–Carathéodory theorem, and since 0 ∈ D, span D ⊂ {0} × Rn, we have
dim span D ≤ n. Consequently, there exist k ≤ n + 1 and scalars λ1, ..., λk ≥ 0 with∑k

i=1 λi = 1 such that 0 =
∑k

i=1 λit
i, with ti ∈ ext(D), i = 1, ..., k. Finally, by the previous

claim, we know that for every i = 1, ..., k, if we define ui := u + tiv, then ui ∈ ext(Lip10)
and, hence

k∑
i=1

λiu
i =

k∑
i=1

λi(u+ tiv) = u+

(
k∑

i=1

λit
i

)
v = u,

concluding the proof.



CHAPTER 6

Conclusions

6.1 Summary

In this work, we studied data-driven approaches for solving inverse problems from dif-
ferent points of view. In particular, we focused on providing, or maintaining, the same
theoretical guarantees obtained classical approaches. Below, we provide a detailed list of
the topics that have been treated.

• We analyzed the problem of learning the regularization parameter for a large class
of regularization methods in inverse problems. Such topic has gained atention in
the past years due to its promising results in many applications [96, 97, 120], since
it does not require to have any prior knowledge neither on the noise level nor on the
ground truth. By applying statistical learning techniques [54, 137], we were able to
characterize the error performance of this method following an Empirical Risk Min-
imization approach. Our analysis studies a wide variety of regularization methods,
including spectral regularization methods (Tikhonov regularization, Landweber it-
eration, the ν-method), non-linear Tikhonov regularization [64] and general convex
regularizers such as sparsity inducing norms [7]. Various numerical experiments
have been included in order to validate and illustrate the theoretical findings. We
believe that our results are a step forward towards understanding the theoretical
principles of data-driven approaches applied to classical regularization techniques.

• We designed a data-driven approach for constructing firmly nonexpansive operators.
This particular class of maps have recently become popular in the context of Plug-
and-Play methods [138], which have turned out to be very successful in a wide vari-
ety of applications such as image recovery problems. In this work, considering a su-
pervised learning approach, we present a complete theoretical framework for study-
ing the problem of learning firmly nonexpansive operators. In addition, we propose
a constructive method to produce firmly nonexpansive operators that adapts well
to the characteristics of a given training set of noisy measurements/solutions. Our
proposed approach, based on simplicial partitions and their refinements, gives theo-
retical guarantees for the convergence of PnP algorithms. In practice, the method is
well-suited for low-dimensional problems.

• Finally, we explored certain geometric properties of the space of Lipschitz functions.
In particular, we provided a characterization to the extreme points of the Lipschitz
unit ball. Consequently, we studied representation results for such space and im-
proved the Minkowski-Carathéodory Theorem in this context, showing that the re-
quired number of extreme points does not depend on the dimension of the space.
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6.2 Future directions

In the context of Chapter 3, we mention an intriguing future direction.

• Extension to deep-learning methods. As we mentioned in the introduction, deep-
learning techniques have been considered in the literature [96]. In this context, it is
common to consider regularizers R that are implicitly parametrized by a large vector
θ = (θ1, ..., θk) ∈ Rk, for some k ≫ 1. However, they are in general nonconvex, and
therefore our approach can not be directly applied. Therefore, it would be natural
to extend the provided framework in order to derive error bounds for this setting,
which have not yet been studied.

The possible future directions of the work developed in Chapters 4 and 5 are many.
We list below some of them

• Extension to proximal operators of nonconvex regularizers. Recent works [89,
116] have pointed out that going beyond convexity can be beneficial and help
achieving better reconstruction outcomes. In all these cases, it is required to learn an
operator with a fixed Lipschitz constant. Since the theory developed in the Chapter
4 easily adapts to the case of learning L-Lipschitz operator for any L > 0, we believe
that our contribution could be an important complement to the existing analyses.

• Dimensionality reduction techniques. The experimental setting that we propose
is based on learning firmly nonexpansive operators from R2 to R2, since the task of
constructing simplicial partitions is costly in higher dimensions. Hence, we would
like to explore whether any dimensionality reduction technique could be applied in
order to learn firmly nonexpansive operators in higher dimensions.

• Conditional Gradient Methods. Recent works [24, 25, 52] have pointed out that a
proper extreme points characterization could be useful to improve the performance
of Conditional Gradient methods (CGM) in various settings. Both the extreme points
characterization and the representation result provided in [26] fit perfectly into the
framework of problem (4.3.7). Hence, a possible approach would be to consider our
extreme points characterization and check whether classical CGMs can provide an
efficient approach for solving (4.3.7).

• Extension to general metric spaces. Finally, much work needs to be done in order
to provide a complete characterization to the extreme points of the Lipschitz unit
ball; i.e. when X is a general metric space. We indeed aim to extend our result to
this latter case.
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[75] Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. A distribution-free theory of non-
parametric regression. Springer Series in Statistics. Springer-Verlag, New York,

2002, pp. xvi+647. ISBN: 0-387-95441-4. DOI: 10.1007/b97848.

[76] Hadamard, J. Lectures on Cauchy’s problem in linear partial differential equations.
Vol. 15. Yale university press, 1923.

[77] Hämarik, U. and Tautenhahn, U. “On the Monotone Error Rule for Parameter

Choice in Iterative and Continuous Regularization Methods”. In: BIT 41 (Dec.

2001), pp. 1029–1038. DOI: 10.1023/A:1021945429767.
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