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Abstract

This thesis focuses on qualitative and quantitative aspects of some nonlinear PDEs
arising in optimal control and differential games, ranging from regularity issues to
maximum principles. More precisely, it is concerned with the analysis of some fully
nonlinear second order degenerate PDEs over Hörmander vector fields that can be
written in Hamilton-Jacobi-Bellman and Isaacs form and those arising in the recent
theory of Mean Field Games, where the prototype model is described by a coupled
system of PDEs involving a backward Hamilton-Jacobi and a forward Fokker-Planck
equation. The thesis is divided in three parts.
The first part is devoted to analyze strong maximum principles for fully nonlinear
second order degenerate PDEs structured on Hörmander vector fields, having as a
particular example fully nonlinear subelliptic PDEs on Carnot groups. These re-
sults are achieved by introducing a notion of subunit vector field for these nonlinear
degenerate operators in the spirit of the seminal works on linear equations. As a
byproduct, we then prove some new strong comparison principles for equations that
can be written in Hamilton-Jacobi-Bellman form and Liouville theorems for some
second order fully nonlinear degenerate PDEs.
The second part of the thesis deals with time-dependent fractional Mean Field Game
systems. These equations arise when the dynamics of the average player is described
by a stable Lévy process to which corresponds a fractional Laplacian as diffusion
operator. More precisely, we establish existence and uniqueness of solutions to such
systems of PDEs with regularizing coupling among the equations for every order of
the fractional Laplacian s ∈ (0, 1). The existence of solutions is addressed via the
vanishing viscosity method and we prove that in the subcritical regime the equations
are satisfied in classical sense, while if s ≤ 1/2 we find weak energy solutions. To
this aim, we develop an appropriate functional setting based on parabolic Bessel po-
tential spaces. We finally show uniqueness of solutions both under the Lasry-Lions
monotonicity condition and for short time horizons.
The last part focuses on the regularizing effect of evolutive Hamilton-Jacobi equa-
tions with Hamiltonian having superlinear growth in the gradient and unbounded
right-hand side. In particular, the analysis is performed both for viscous Hamilton-
Jacobi equations and its fractional counterpart in the subcritical regime via a dual-
ity method. The results are accomplished exploiting the regularity of solutions to
Fokker-Planck-type PDEs with rough velocity fields in parabolic Sobolev and Bessel
potential spaces respectively.

v



vi



Contents

Notations xi

Some useful inequalities xiii

Introduction xv

I Strong maximum principles for fully nonlinear degen-
erate PDEs via subunit vector fields and applications 1

1 Few basic facts on viscosity solutions and Carnot groups 3
1.0.1 Viscosity solutions to fully nonlinear PDEs . . . . . . . . . . . 3
1.0.2 Carnot groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.0.3 Examples of Carnot groups: The Heisenberg group and free

step-2 Carnot groups . . . . . . . . . . . . . . . . . . . . . . . 10
1.0.4 Sub-riemannian geometries of Grushin-type . . . . . . . . . . 12
1.0.5 On subelliptic equations . . . . . . . . . . . . . . . . . . . . . 12

2 Strong maximum principles for fully nonlinear degenerate elliptic
PDEs 15
2.1 Propagation of maxima for linear degenerate equations: a survey . . . 15
2.2 Results, basic notions and standing assumptions . . . . . . . . . . . . 17
2.3 Strong Maximum and Minimum Principles . . . . . . . . . . . . . . . 20

2.3.1 Definitions and preliminaries . . . . . . . . . . . . . . . . . . . 20
2.3.2 Propagation of maxima . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Propagation of minima . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Some applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Fully Nonlinear Subelliptic Equations . . . . . . . . . . . . . . 26
2.4.2 Hamilton-Jacobi-Bellman Equations . . . . . . . . . . . . . . . 28
2.4.3 Hamilton-Jacobi-Isaacs Equations . . . . . . . . . . . . . . . . 30
2.4.4 Other examples and remarks . . . . . . . . . . . . . . . . . . . 31

2.5 Strong Comparison Principles . . . . . . . . . . . . . . . . . . . . . . 32

3 Strong maximum principles for fully nonlinear degenerate parabolic
PDEs 37
3.1 Propagation of maxima in the linear case: a survey . . . . . . . . . . 40
3.2 Horizontal propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



3.3 Vertical Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Some applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Fully nonlinear degenerate parabolic equations . . . . . . . . . 46
3.4.2 Hamilton-Jacobi-Bellman Equations . . . . . . . . . . . . . . . 48
3.4.3 Hamilton-Jacobi-Isaacs Equations . . . . . . . . . . . . . . . . 49

4 Liouville properties for fully nonlinear subelliptic problems 51
4.1 A glimpse on the method of proof for linear equations . . . . . . . . . 51
4.2 Liouville theorem: the general case . . . . . . . . . . . . . . . . . . . 53

4.2.1 Abstract result . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Equations driven by Pucci’s subelliptic operators . . . . . . . 58
4.2.3 Fully nonlinear uniformly subelliptic equations . . . . . . . . . 59

4.3 Example 1: the Heisenberg group . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Comparison with the literature and sharpness of the conditions 65

4.4 Example 2: Free step-2 Carnot groups . . . . . . . . . . . . . . . . . 69
4.5 Example 3: the Grushin plane . . . . . . . . . . . . . . . . . . . . . . 73

II Fractional Mean Field Games 77

5 Fractional MFGs 79
5.1 Assumptions and main results . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Model Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Fractional parabolic spaces . . . . . . . . . . . . . . . . . . . . . . . . 82
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Notations

Rd The d-dimensional Euclidean space, d ≥ 1.
Td The d-dimensional flat torus Rd/Zd, d ≥ 1.
B(x, r) The open ball of radius r centered at x.
Ω will always be a bounded domain of Rd.
∂Ω boundary of Ω, namely ∂Ω = Ω\Ω.
USC(Ω) The space of upper semicontinuous functions on Ω.
LSC(Ω) The space of lower semicontinuous functions on Ω.
C(Ω) The space of continuous functions on Ω.
Ck(Ω) The space of continuous functions on Ω with continuous derivatives

of order j, j = 1, . . . , k.
P(Ω) The space of functions m ∈ L1(Ω) such that

∫
Ω
m = 1 (probability

densities).
∂if , Df Partial derivatives with respect to the i-th variable and gradient

vector of f .
∂tf Partial derivative with respect to the time-variable.
D2f Hessian matrix of f .
Tr(A) Trace of a square matrix A
v ⊗ w matrix obtained by the tensor product ⊗ : Rd ×Rd → Rd×d of two

vectors v, w ∈ Rd whose elements are v ⊗ w = (viwj)
d
i,j=1.

Sd The space of square d× d symmetric matrices with real entries.
ei(A) The i-th eigenvalue of A ∈ Sd, i = 1, . . . , d, with ordering e1(A) ≤

. . . ≤ ed(A). Sometimes we will drop the matrix variable inside the
brackets when it results implicit from the context.

a.e. almost everywhere
C∞0 (X) space of smooth functions with compact support on X.
χA(x) characteristic function of A defined by χA(x) = 1 if x ∈ A and

χA(x) = 0 if x /∈ A
L(X, Y ) Banach space of linear continuous operators from the Banach space

X to the Banach space Y equipped with the norm topology. When
X = Y we only write L(X).

X ′ dual of the space X
〈x′, x〉X′,X duality product of x′ ∈ X ′ and x ∈ X.
X ↪→ Y if X ⊂ Y with continuous injection.
F Fourier transform Fu(ξ) =

∫
Rd e

−2πix·ξu(x)dx
Lp(Ω) Banach spaces of (classes) of measurable functions f : Ω → R

such that ‖f‖p < ∞ with ‖u‖p :=
(∫

Ω
f(x)p dx

) 1
p if p < ∞ and

‖f‖∞ := ess supΩf if p =∞.

xi



D(A) Domain of the operator A : D(A) → X, namely a linear subspace
of X equipped with the graph norm ‖x‖A = ‖x‖+ ‖Ax‖.

(X, Y )θ,p the real interpolation spaces.
Jθ(X, Y ) the class Jθ between X and Y .
K(t, x,X, Y ) the K function.
Kθ(X, Y ) the class Kθ between X and Y .
Cα(Td) the space of α-Hölder continuous functions on Td.
Bµ
p,q(Ω) the Besov spaces.

Hµ
p (Ω) the Bessel potential spaces.

W µ,p(Ω) the fractional Sobolev spaces.
W 1,p(I;X) the vector-valued Sobolev spaces, I ⊂ R open set.
C(I;X) Space of continuous functions u : I → X, I ⊆ R, equipped with

the norm ‖u‖C(I;X) := maxt∈I ‖u(t)‖X .
Lp(I;X) Space of all measurable functions u : I → X, I ⊂ R open set,

with respect to the equivalence relation f ∼ g ⇐⇒ f(t) = g(t)
for a.e. t ∈ I, such that t 7−→ ‖u(t)‖X belong to Lp(I). It is

endowed with the norm ‖u‖Lp(I;X) :=
(∫

I
‖u(t)‖pX dx

) 1
p if p < ∞

and ‖u‖∞ := ess supt∈I‖f(t)‖X if p =∞.
Hµ
p (QT ) space of measurable functions u ∈ Lp(0, T ;Hµ

p (Ω)) with ∂tu ∈
Lp(0, T ;Hµ−2

p (Ω)), being QT = Ω×(0, T ) and Ω = Rd or Td. When
µ = 2 the space H2

p ' W 2,1
p .

Hµ,s
p (QT ) space of measurable functions u ∈ Lp(0, T ;Hµ

p (Ω)) with ∂tu ∈
Lp(0, T ;Hµ−2s

p (Ω)), s ∈ (0, 1).
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Some useful inequalities

Space-time Hölder’s inequality : Let I ⊆ R, X be a Banach space and denote
by X ′ its dual. If f ∈ Lp(I;X) and g ∈ Lq(I;X ′) with 1/p + 1/q = 1/r and
u(t) = 〈f(t), g(t)〉X′,X , then u(t) ∈ Lr(I) and

‖u‖Lr(I) ≤ ‖f‖Lp(I;X)‖g‖Lq(I;X′)

Generalized Young’s inequality : For p ∈ (1,∞) and p′ = p/(p − 1) and any
positive ε > 0 we have

ab ≤ εp
ap

p
+

1

εp′
bp
′

p′
∀a, b > 0 .
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Introduction

This thesis collects new developments on the analysis of some nonlinear elliptic and
parabolic partial differential equations (briefly PDEs) arising in optimal control prob-
lems and differential games. More precisely, the manuscript is divided in three parts,
each of which is divided into chapters corresponding to different papers as follows:
Part I:

• M. Bardi and A. Goffi, New strong maximum and comparison principles for
fully nonlinear degenerate elliptic PDEs, Calc. Var. Partial Differential Equa-
tions 58 (184), 2019.

• M. Bardi and A. Goffi, A note on the strong maximum principle for fully
nonlinear parabolic PDEs, forthcoming.

• M. Bardi and A. Goffi, Liouville results for fully nonlinear equations modeled
on Hörmander vector fields, forthcoming.

Part II:

• M. Cirant and A. Goffi, On the existence and uniqueness of solutions to time-
dependent fractional MFG, SIAM J. Math. Anal. 51 (2) 913-954.

Part III:

• M. Cirant and A. Goffi, Lipschitz regularity for viscous Hamilton-Jacobi equa-
tions with Lp terms, arXiv:1812.03706, submitted.

• A. Goffi, Transport equations with nonlocal diffusion and applications to Hamil-
ton-Jacobi equations, forthcoming.

More precisely, the first part is devoted to analyze strong maximum principles for
some fully nonlinear second order degenerate equations with the aim of providing
also some applications to comparison principles and Liouville-type results. It is
independent from the others, being mainly based on viscosity solutions’ theory for
such nonlinear PDEs. The second part contains only one wide chapter concerning
the analysis of evolutive Mean Field Game (MFG) systems driven by fractional
diffusion and three related appendices (Appendix A, Appendix B and Appendix C)
regarding some regularity aspects for parabolic Hölder and Bessel potential spaces in
the periodic setting for the fractional heat operator, together with chain and product
rules on fractional spaces and some embedding theorems for the aforementioned
Bessel functional classes. The last part is devoted to study regularity issues for
Hamilton-Jacobi equations with classical and nonlocal diffusion with rough terms
via duality methods.
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Part I- Strong maximum principles for fully nonlinear degen-
erate equations and Liouville theorems for subelliptic prob-
lems

The Strong Maximum Principle (SMP) for elliptic equations goes back to the semi-
nal work by E. Hopf and, since then, it has had an increasing interest for nonlinear
equations, see e.g. the treatise [122] and the references therein. Such results heav-
ily rely on the uniform ellipticity of the operator rather than the regularity of the
coefficients and the particular structure of the PDE. In the case of the second order
equation

Lu(x) = −
∑
i,j

aij(x)∂iju+
∑
i

bi(x)∂iu+ c(x)u = 0

with A = (aij(x)) : Ω → Sd, A > 0, b : Ω → Rd bounded and continuous and c
nonnegative and bounded, E. Hopf proved the SMP via the so-called Boundary Point
Lemma. In particular, the latter states that if u ∈ C1(Ω), ∂Ω is smooth, Lu ≤ 0 in
Ω and u attains a nonnegative maximum at some point x0 ∈ ∂Ω, then ∂u

∂ν
(x0) > 0 for

any vector ν pointing outward from Ω at x0, provided that ∂Ω satisfies an interior
sphere condition at x0 (see [122, Lemma 3.4]). As an immediate consequence, one
gets the SMP, which asserts that a subsolution to a homogeneous equation Lu = 0
in an open connected set Ω ⊆ Rd that attains a nonnegative maximum at an interior
point x0 ∈ Ω must be constant, under the right choice of the sign of the coefficient
of the zero-th order term [122, Theorem 3.5].
In the case of degenerate elliptic operators, the way to deduce the SMP is more
delicate and the problem can be formulated as follows. Let x0 ∈ Ω be given.

Is it always possible to determine a subset D(x0) of Ω such that if u is a
subsolution to a degenerate elliptic equation and u has a local maximum at x0, then

u ≡ u(x0) throughout D(x0)?

The answer is yes. However, it turns out that the set D(x0) := Prop(x0), usually
called propagation set, does not necessarily coincide with the whole Ω as in the uni-
formly elliptic case. The seminal contributions on degenerate elliptic linear equations
are due to J.-M. Bony [52], D. W. Stroock and S.R.S. Varadhan [225]. They consider
the above linear equation Lu(x) = 0 with smooth coefficients, A ≥ 0 (i.e. positive
semidefinite) and c ≥ 0. Labeling by Xj, j = 1, ...,m, the j − th column of A, one
defines the so-called drift vector field (also named subprincipal part of the operator
L) as

X0 :=
d∑
i=1

(bi(x)− ∂iaij(x))∂i .

C. D. Hill [135] described Prop(x0) in terms of all points that can be reached from x0

following a finite number of trajectories of Xj backward and forward in time and of
X0 backward in time (we recall that a drift trajectory is a curve θ : [t1, t2]→ Ω such
that θ′(t) = X0(θ(t)) on [t1, t2] oriented for increasing time). J.-M. Bony character-
ized the propagation set Prop(x0) for operators satisfying the Hörmander condition
[52, Corollary 3.1], saying that the Lie algebra L(X1, ..., Xm) generated by the vector
fields Xj has full rank at every point of Ω, showing that Prop(x0) = Ω, and hence the
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validity of the SMP for classical subsolutions to Lu = 0. D. W. Stroock and S.R.S.
Varadhan proposed a description of the propagation set via probabilistic methods.
Our result is instead inspired by the work of K. Taira, who proved by purely ana-
lytical methods a characterization in terms of the subunit vector fields associated to
the linear operator L. According to C. Fefferman and D.H. Phong [111], a subunit
vector field Z associated to the linear operator −Tr(A(x)D2u) verifies the inequality
A−Z ⊗Z ≥ 0. K. Taira proved that the propagation set can be described in terms
of all points that can be reached from x0 following a finite number of trajectories
of the subunit vector fields backward and forward in time and of the drift vector
field X0 backward in time (cf [226, Theorem 7.2.1]). See also Section 2.1 for further
details and references.

In the context of viscosity subsolutions to second order fully nonlinear uniformly
elliptic equations, the SMP was proved by L. Caffarelli and X. Cabré [62] as a
consequence of the Harnack inequality. Under lower ellipticity assumptions it was
derived in a more direct way in [148] (in a weaker form) and [21]. Control theoretic
and probabilistic descriptions of the propagation set for Hamilton-Jacobi-Bellman
equations were given in [22] and [23]. Our SMP for such equations, Corollary 2.32,
is derived in a simpler way and extends also to Isaacs equations, see Section 3.4.3.
Here, we are interested in fully nonlinear equations of the general form

F (x, u,Du,D2u) = 0 ,

where x ∈ Ω and u is a function defined in Ω and F (x, r, p,X) is a real-valued func-
tion defined in Ω×R×Rd × Sd. In particular, we will focus on some specific PDEs
of this form structured over Hörmander vector fields, which indeed are degenerate
if represented in Euclidean coordinates. A particular case of vector fields satisfying
the Hörmander condition are those families generating a Carnot group. The theory
of such fully nonlinear PDEs, usually named subelliptic, began with [179] and [40],
see also [34, 42, 234] and our Corollary 2.7 seems to be the first Strong Maximum
Principle for such equations.

As announced, here we review and extend the concept of subunit vector field
to fully nonlinear operators F = F (x, r, p,X) (see Definition 2.3), where F is a
real-valued function defined in Ω × R × Rd × Sd, providing a nonlinear analogue to
the description of the propagation set (see Theorem 2.4). This implies the SMP
for subunit vector fields associated to F satisfying the Hörmander condition, see
Corollary 2.6. Our results cover various fully nonlinear subelliptic equations arising
in stochastic control problems. In particular, our main examples are the Hamilton-
Jacobi-Bellman (HJB) and Isaacs (HJI) equations coming from stochastic control
and differential games whose dynamics is described by the stochastic differential
equation (SDE)

dXt = b(Xt, α, β)dt+ σ(Xt, α, β)dBt

with σ taking values in Rd×m, Bt standing for a m-dimensional Brownian motion and
α, β taking value in some compact sets A and B respectively. Here, if one considers
a running cost functional l(Xt, α, β) and a discount rate c(Xt, α, β), then the PDE

xvii



associated to the value function turns out to be of the form

max
α∈A

min
β∈B
{−Tr(σσTD2u)− b ·Du+ cu− l} = 0 .

The particular case in which A is a singleton and σ(x, β) = σ(x)β with β ∈ {β ∈ Sm :√
λI ≤ β ≤

√
ΛI} leads to a fully nonlinear equation driven by the so-called Pucci’s

minimal operatorM−, and with the maximal operatorM+ simply by reversing the
roles of the controls. Moreover, the case of uncontrolled diffusion matrix σ = σ(x)
leads to a quasi-linear subelliptic equation. Our properties turn out to be new even
for some of these quasi-linear PDEs, including the subelliptic p- and ∞- Laplace
equations. In particular, our results in Section 3.4.2 for Hamilton-Jacobi-Bellman
equations improve upon [22, 23], giving a more direct characterization of the strong
maximum and minimum principles, while those in Section 3.4.3 for Hamilton-Jacobi-
Isaacs equations, which are neither convex nor concave, seems to be not yet explicitly
written down anywhere in the literature, although they can be obtained via similar
viscosity arguments used in the aforementioned contributions by M. Bardi and F. Da
Lio. Still, our results are completely new for all classes of nonlinear subelliptic PDEs
modeled on families of vector fields X1, ..., Xm satisfying the Hörmander condition,
that appear in the compact form

G(x, u,DXu, (D
2
Xu)∗) = 0 in Ω ,

where (D2
Xu)∗ is the symmetrized Hessian matrix of D2

Xu = XiXju, i, j = 1, ...,m,
DXu is the intrinsic gradient and G : Rd×R×Rm×Sm → R is proper. See Subsec-
tion 1.0.5 and Subsection 2.4.1 for explicit examples and properties.
An immediate consequence of the SMP for linear equations is the so-called Strong
Comparison Principle. In the case of linear operators it can be stated as follows:
let u, v ∈ C2(Ω) ∩ C(Ω) such that Lu ≤ 0 and Lv ≥ 0 in a open connected set Ω.
If u ≤ v in Ω, then either u ≡ v or u < v in Ω. In the fully nonlinear framework,
such property was found by N.S. Trudinger [233] for Lipschitz viscosity solutions of
uniformly elliptic equations. However, very little is known for degenerate equations:
they concern particular PDEs motivated by geometric problems [121, 189, 170, 67]
and are quite different from our Theorem 2.41. On the other hand, the literature on
the (weak) Comparison Principle is huge: the results are very general if F is strictly
proper (i.e., strictly increasing in r) since they include first order equations, see
[96, 15]. Under the mere properness (see (i) in Section 2.2), instead, some ellipticity
is needed and the minimal conditions are an open problem, see [143, 29, 148, 149],
and [26, 40, 180, 25, 41] for equations involving Hörmander vector fields, see also the
references therein. Our Corollary 2.42 completes the results of [25].
We apply similar strategies to analyze the SMP for the evolutive operator ∂t + F ,
following the seminal work [191] (see also [117, 116]) and then adapted in the context
of viscosity solutions’ to fully nonlinear parabolic problems in [100] (see also [60]).
In Chapter 3 we review and generalize the results in [100].

The classical Liouville theorem for harmonic functions on the whole space states
that the only harmonic functions in Rd bounded from above or below are constants,
and it is a consequence of the Harnack inequality (see e.g. [122]). Such result actually
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holds for classical solutions to more general uniformly elliptic equations. The Liou-
ville property holds also in the much larger class of merely subharmonic functions
(i.e. subsolutions) if the space dimension is d = 2, by exploiting the behavior of the
fundamental solution log |x| and using the Hadamard Three-Circle Theorem (see,
e.g., [197, Theorem 2.29] and Theorem 4.1 below for a different proof). However,
this result crucially fails in higher dimensions d ≥ 3. Indeed, straightforward compu-
tations show that the functions u1(x) := −(1 + |x|2)−1/2 and u2(x) := −(1 + |x|2)−1

are nonpositive nontrivial subharmonic functions in R3 and, respectively, in Rd with
d ≥ 4.

Linear degenerate elliptic equations are studied in [51, Section 5.8], which gives
Liouville theorems for solutions to equations driven by sub-Laplacians; they are
again deduced from a suitable Harnack inequality. In the case of subsolutions (or
supersolutions) to −∆Xu = 0 in Rm, where X = {X1, ..., Xm} is a system of vector
fields satisfying the Hörmander condition (e.g. those generating a Carnot group,
the simplest and most popular instance being the Heisenberg vector fields) we give
simple explicit examples of bounded non-constant classical sub- and supersolutions
of the sub-Laplace equation in any Heisenberg group Hd, see Section 4.3, and in the
Grushin plane, see Section 4.5, showing the failure of the Liouville property in this
setting. However, it can be recovered for super polyharmonic functions, i.e. solutions
to (−1)r∆r

Hdu ≥ 0 in R2d+1 for r = 1, ..., k, k > 1, if 2k ≥ Q, Q = 2d + 2 being the
homogeneous dimension of the Heisenberg group, see [44, Theorem 1.6].

Liouville theorems were then widely investigated in the context of semilinear el-
liptic equations and we refer to the survey [68] and the references therein. We quote
also [153, 152, 69, 45] for PDEs on Carnot groups and [2] for some results on the
Heisenberg p-Laplacian equation.

In this manuscript, we are mostly interested in Liouville properties for viscosity
sub- and supersolutions of fully nonlinear degenerate elliptic equations. In the case
of uniformly elliptic equations of the form

F (x,D2u) = 0 in Rd (1)

it was proved in [62, Remark 4.2.4] that continuous viscosity solutions either bounded
from above or below are constants. This is a consequence of the Harnack inequality
combined with the comparison with Pucci’s extremal operators

M−
λ,Λ(D2u) ≤ F (x,D2u)− F (x, 0) ≤M+

λ,Λ(D2u), (2)

as usual in the theory of fully nonlinear second order uniformly elliptic equations.
Further related results for solutions to Hessian PDEs of the form F (D2u) = 0 can
be found in [190, Section 1.7] and [9, Theorem 1.7]. We remark that to get Liouville
properties for solutions to Hessian equations of the form F (D2u) = 0, the assumption
F (0) = 0 is crucial and cannot be dropped when d ≥ 5 (see [190, Section 1.7]),
although it is conjectured that for lower dimensions d ≤ 4 the Liouville property
should hold without having this hypothesis in force (cf [190, Conjecture 1.7.1])

The first results for mere sub- or supersolutions of (1) are due to A. Cutr̀ı and
F. Leoni [98]. They proved that if u ∈ C(Rd) is either bounded below and satisfying

M+
λ,Λ(D2u) ≤ 0 in Rd (3)
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in viscosity sense, or bounded above and satisfying

M−
λ,Λ(D2u) ≥ 0 in Rd (4)

in viscosity sense, then u is constant provided that d ≤ Λ
λ

+ 1,M±
λ,Λ standing for the

Pucci’s extremal operators with parameters Λ ≥ λ > 0 [62, 201]. This can be seen
as the fully nonlinear analogue of the Liouville theorem for subharmonic functions,
since when λ = Λ one gets the Laplacian (up to constants) and the constraint reads
d ≤ 2. Such conditions are known to be sharp: examples of nontrivial solutions to
Pucci’s extremal equations when d > Λ

λ
+ 1 can be found in [98, Remark 2] and will

be recalled in Section 4.3.1.
This result was extended to the Heisenberg group Hd in [99, Theorem 5.2] for the

inequalities (3) and (4) on R2d+1 with D2u replaced by D2
Hdu. Here the condition

d ≤ Λ
λ

+ 1 is replaced by Q ≤ Λ
λ

+ 1, Q being the aforementioned homogeneous
dimension of the Heisenberg group. A counterexample to the Liouville property
when Q > Λ

λ
+ 1 is in Section 4.3.1 and this seems to be new to our knowledge. This

is consistent with the failure of Liouville properties for subharmonic functions in the
Heisenberg group, which can be formally seen via the fundamental solution (see e.g.
[51]); however, in Section 4.3.1 we provide a new explicit counterexample built on
“radial” functions to show that the Liouville property is false in the linear case.

Liouville results were then found in the fully nonlinear case in [98] by adding a
semilinear perturbation term to the fully nonlinear uniformly elliptic operator. More
precisely, it is proved that there exists a number p̄ > 0, depending on λ/Λ and d,
such that the only nonnegative viscosity supersolution u to

F (x,D2u) + up = 0 in Rd,

with F (x, 0) = 0 and p ∈ (0, p̄), is u ≡ 0. The results were then generalized in [8].
Such properties for equations involving gradient terms were first investigated in [70]
for PDEs of the form F (x,D2u) + g(|x|)|Du| + h(x)up = 0, specifically by adding
a sublinear first order assumption on the gradient term, that is assuming that the
drift term g is bounded and such that

−Λ(d− 1)

|x|
≤ g(|x|) ≤ λ− Λ(d− 1)

|x|

for |x| large. We refer also to [210], [195] and [85] for Liouville results to fully
nonlinear PDEs with gradient dependence.

A new approach to Liouville properties for sub- and supersolutions of Hamilton-
Jacobi-Bellman equations involving operators of Ornstein-Uhlenbeck type was initi-
ated in [17], based on the strong maximum principle and the existence of a sort of
Lyapunov function for the equation, that is a sub- and supersolution to the equation
respectively that blow-up at infinity. This leads to assumptions on the sign of the
coefficients of the first and zero-th order terms, and on their size, that must be large
enough for large |x|, contrary to the results quoted above, see [16]. Fully nonlinear
uniformly elliptic equations F (x, u,Du,D2u) = 0 are treated in [16], a linear degen-
erate case in [181] and some quasilinear hypoelliptic equations in [16]. A particular
result of [16] concerns the inequalities

M−
λ,Λ(D2u) ≤ 0 in Rd, M+

λ,Λ(D2u) ≥ 0 in Rd,
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and states that u ∈ C(Rd) either bounded above and solving the former, or bounded
below and satisfying the latter, must be constant if d ≤ λ

Λ
+1. This complements the

result of [98] on (3) and (4); note that the restriction on d is more stringent now but
is still sharp for the Laplacian, λ = Λ. Still, we remark that this second constraint
on d is sharp, see Section 4.3.1. Note also that this result fits better the treatment
of uniformly elliptic equations via the inequalities (2).

Chapter 4 develops Liouville-type results in the spirit of [16] for fully nonlinear
inequalities involving the intrinsic (or horizontal) gradient and intrinsic Hessian

DXu = (X1u, ..., Xmu), (D2
Xu)ij = Xi(Xju),

associated to a given family X = (X1, ..., Xm) of C1,1 vector fields satisfying the
Hörmander condition. Our main motivation are subelliptic equations of the form

G(x, u,DXu, (D
2
Xu)∗) = 0 in Rd , (5)

where Y ∗ is the symmetrized matrix of Y and G : Rd×R×Rm×Sm → R is proper.
We will give some sufficient conditions for the Liouville properties

any subsolution (resp. supersolution) of (5) bounded from above (resp. below) is a
constant.

The main assumption onG is a comparison with Pucci’s extremal equations asociated
with the vector fields X

M−
λ,Λ((D2

Xu)∗) ≤ G(x, u,DXu, (D
2
Xu)∗)−G(x, u,DXu, 0) ≤M+

λ,Λ((D2
Xu)∗) .

Then a subsolution of (5) is also a subsolution to

M−
λ,Λ((D2

Xu)∗) +G(x, u,DXu, 0) = 0,

and a supersolution of (5) solves a similar inequality for the maximal operatorM+.
A mild subadditivity condition is also required for G.

The main new tools we will use in Chapter 4 are the strong maximum and
minimum principles for fully nonlinear subelliptic equations obtained in Chapter 2
via the generalization of the concept of subunit vector field to the fully nonlinear
setting (cf Definition 2.3). Moreover, we use suitable homogeneous norms associated
to the vector fields X to build appropriate Lyapunov functions. The results are
made explicit in three cases: the Heisenberg group, free step 2 Carnot groups with
r-generators [120, 55], and Grushin-type geometries, where no group structure is
available.

An example of our results, in the case of the Heisenberg group Hd ' R2d+1, is
the following: if

G(x, r, p,X) ≥M−
λ,Λ(X) + inf

α∈A
{cα(x)r − bα(x) · p} ,

we prove the Liouville property for subsolutions under the condition

sup
α∈A
{bα(x) · η

|xH |2
− cα(x)

ρ4

|xH |2
log ρ} ≤ λ− Λ(Q− 1)
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for large x, where xH := (x1, ..., x2d), b
α takes values in R2d, η ∈ R2d is defined by

ηi = xi|xH |2 + xi+dx2d+1, ηi+d = xi|xH |2 − xix2d+1, for i = 1, ..., d, ρ is a suitable
1-homogeneous norm with respect to the dilations of the group, and Q = 2d + 2
is the homogeneous dimension of Hd. This condition is satisfied if cα ≥ 0 and
bα(x) · η ≤ 0 for x large, and under suitable growth conditions at infinity. Note also
that for subsolutions ofM−

λ,Λ(D2
Hdu) ≤ 0 the condition with cα ≡ 0, bα ≡ 0 becomes

Q ≤ λ
Λ

+ 1, as expected from the Euclidean case treated in [16] and recalled above
(cf. also the aforementioned result for M+

λ,Λ(D2
Hdu) ≤ 0 in [99] ). In Section 4.3.1

we give an example showing that this condition is sharp.

Our study is motivated by applications of Liouville properties to various issues,
such as ergodic problems, large time stabilization in parabolic equations (see e.g. [16,
Section 5-6]), and regularity theory for fully nonlinear second order PDEs [138]. As
for fully nonlinear degenerate equations, we also mention the recent paper [169] in
the context of PDEs arising in conformal geometry and [46] for Liouville properties
of solutions to degenerate versions of Pucci’s extremal equations.

Part II- Time-dependent fractional Mean Field Games

In the second part of this manuscript, we focus on evolutive systems arising in the
recent theory of MFGs, which was developed almost simultaneously by P.-L. Lions
and J.-M. Lasry [163] and M. Huang, P. Caines and R. Malhamé [137], and aiming at
describing Nash equilibria in differential games with infinitely many players, each of
whom having a negligible impact on the overall system. In particular, the heuristic
interpretation of these models is the following: each player controls the dynamics
described by the following SDE

dXt = αt dt+
√

2dBt , X0 = x ,

where Bt stands for a classical Brownian motion, through the control αt. The goal
of each agent is to minimize, over αt ∈ A, A being the set of controls, the cost

J(x, t, α) = E
[∫ T

t

L(Xτ ,m(τ), ατ )dτ + uT (x)

]
,

where m denotes the density of the players, which in turn evolves according to a
transport equation, as described in the next lines. By classical dynamic programming
arguments it turns out that the value function associated to each player, namely
u(x, t) := infα∈A J(x, t, α), solves a viscous Hamilton-Jacobi-type equation. Roughly
speaking, the value function indicates how the agent should choose his/her control
in order to behave in an optimal way. At least formally, by verification arguments
one easily finds an optimal feedback α∗ = −DpH(x,Du), which depends on the
(evolutive) family of probability measures {m(t)}. Under the assumptions that each
player controls the same dynamics and minimizes the same cost, owing to the optimal
control α∗, the population density evolves according to the previous SDE with drift
α = α∗, leading to a Fokker-Planck type equation describing the collective behavior
of the agents. As a byproduct, coupling the above PDEs, the classical MFG system
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takes the form
−∂tu−∆u+H(x,Du) = F [m(t)](x) in QT = Td × (0, T ),

∂tm−∆m− div(mDpH(x,Du)) = 0 in QT = Td × (0, T ),

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td ,

even though, usually, a further coupling through the terminal data u(x, T ) is present
in the standard theory (which we avoid here for the sake of presentation). Recently,
this theory has been spread in several different directions, which regards on the one
hand analytic and probabilistic issues (see [78, 79, 80]) and, on the other hand,
applications to engineering, finance and social sciences, among others. From the
PDE viewpoint, the analysis of such models has been carried out either when the
dynamics of the average player is driven by standard diffusions (see for example
[127, 163]), possibly degenerate [73], or first order (deterministic) systems (see e.g.
[72, 75]). The purpose of this part is thus to analyze the intermediate situation
where the dynamics of agents is driven by a jump-diffusion process. More precisely,
we study a time-dependent model situation in which the underlying dynamics is
driven by a 2s-stable Lévy process, which gives rise to a fractional Laplacian as a
diffusion operator. We aim at providing an analytical model to study more general
PDEs and systems driven by integro-differential operators (see e.g. [83, Section 5]
for some MFG models in this direction). More precisely, the system we are going to
analyze in Chapter 5 is of the form

−∂tu+ (−∆)su+H(x,Du) = F [m(t)](x) in QT

∂tm+ (−∆)sm− div(mDpH(x,Du)) = 0 in QT

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td ,

where H is a superlinear Hamiltonian in the gradient Du (see assumptions (H1F)-
(H5F) below) behaving like |Du|γ, γ > 1, F is a smoothing operator, m0, uT are
sufficiently smooth data and (−∆)s is a fractional Laplacian of order s ∈ (0, 1). Its
stationary counterpart has been recently analyzed in [81], using different techniques
than those we are going to present in this manuscript. We further mention the
recent analysis [65] of MFG systems with time-fractional derivatives arising from
subdiffusive dynamics of the players.
Lévy processes meet a variety of challenging topics ranging from financial modeling
(see e.g. the monograph [94]) to Physics and Biology among others. We refer to
[38, 211] for a comprehensive treatment of stable-like processes, to the monograph [6]
for a more general analysis on jump-type processes, the nice survey [5] and [208, 207]
and references therein for further research directions and applications to PDEs.
The main differences and novelties with respect to the aforementioned well-known
works on the analysis of MFG systems rely on the analytical methods used to study
the regularity of solutions. The presence of the time derivative and the fact that
the dynamics is driven by a nonlocal operator make necessary to analyze in depth
the regularity of the fractional heat operator ∂t + (−∆)s on parabolic Hölder and
Sobolev spaces. Therefore, our main contribution is to first develop a careful analysis
of fractional heat equations in the Lp setting, whence we systematically treat spaces
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of the form

Hµ
p (QT ) = Hµ;s

p (Ω× (0, T )) = {u ∈ Lp(0, T ;Hµ
p (Ω)) , ∂tu ∈ Lp(0, T ;Hµ−2s

p (Ω))},

where Hµ
p denotes the space of Bessel potentials, providing the fractional counterpart

of the analysis of the more popular parabolic Sobolev spaces W 2k,k
p , k ∈ N, see [159].

Here, we are inspired by some results that appeared in the context of stochastic par-
tial differential equations, and we prove embedding theorems for Hµ

p (QT ) that, apart
from their own interest, play a key role in the analysis of our system of PDEs. Our
results are consistent with the classical ones already known in the literature (see e.g.
[159] and Appendix C). We refer to [84] for some discussions on Hµ,s

p (Rd × (0, T )),
and [155] and references therein for the case s = 1. We also mention that some of
the embeddings and maximal Lp-regularity results we obtain here can be deduced
through methods for abstract evolution equations and we refer the interested reader
to [199], see also the references therein. Our aim is to give a PDE-oriented proof
of the results by also mixing some ingredients from interpolation theory in Banach
spaces with the purpose of providing a more transparent and self-contained treat-
ment.
As for parabolic Hölder’s spaces and Schauder’s type estimates, the theory is still
incomplete and partially developed only during the last years. Some results in these
directions can be found in [59, 114, 209, 133]. However, we provide a study of
Schauder’s type regularity by using interpolation theory in Banach spaces in Ap-
pendix B, following classical works on abstract Cauchy problems, see e.g. [178, 177,
220]. Here, the analysis is carried out on the periodic setting Ω = Td in order to
exploit the compactness of the state space and we point out that a functional treat-
ment of the Sobolev classes Hµ

p on Rd × (0, T ) can be obtained via the very same
schemes. Moreover, in order to study the regularity of the solutions in the subcrit-
ical regime s > 1/2, we will need some product and chain rules on Bessel potential
spaces on the torus which, up to our knowledge, were not available in literature and
are useful in various other fields of the analysis of PDEs (like Korteweg-de Vries,
Schrödinger equations,...). Their proofs require transference arguments from Rd to
Td and harmonic analysis’ tools which we describe in details in Appendix A.
We then provide existence of solutions via the vanishing viscosity method and using
the classical fixed point strategy [71]. Such procedure turns out to heavily depend on
a priori bounds for solutions of both equations. More precisely, we use the recent non-
linear adjoint method introduced by L.C. Evans [107] (which will be matter of further
investigation in Part III), to deduce semiconcavity bounds for the viscous-fractional
Hamilton-Jacobi equation, which are independent of the viscosity parameter. This
in turn ensures Lipschitz bounds, essential to prove the existence of smooth solu-
tions for HJ equations with coercive Hamiltonian. We point out that this duality
method was introduced to study more deeply the vanishing viscosity process, and
the gradient shock structures, i.e. the structure of the singularities, to solutions of
non-convex Hamilton-Jacobi equations. Furthermore, it has been extensively used
in the analysis of asymptotic problems for viscous and degenerate Hamilton-Jacobi
equations [64, 230, 187] (see also the references therein), and to study differentiabil-
ity properties of solutions to ∞-Laplacian PDEs, see [109].
Uniqueness of solutions for such systems in general is not always expected. Under
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the classical Lasry-Lions monotonicity condition (see [163]) the result continue to
hold for every s ∈ (0, 1) and is consistent with the qualitative properties of solutions
to the PDE system in the borderline cases s = 1 and s = 0.
Lately, there have been an increasing interest in uniqueness criteria for short time
horizons. The first results were announced in the recorded video lectures by P.-L.
Lions at Collège de France and first attacked by M. Bardi and M. Fisher [24] and
M. Bardi and M. Cirant [19] via energy methods for the continuous models (see
also [124] for an earlier result for finite-state MFGs and [24, Remark 4.13] for other
related references). However, one could expect the validity of such properties via
contraction mapping principle and methods for abstract evolution equations, which
is in fact a quite common approach in the framework of evolutive nonlinear PDEs
(see [229] and the recent work [91] for systems related to the mean-field equations).
Nonetheless, the subtle coupling among the PDEs and their backward-forward struc-
ture determine some new difficulties when applying such procedure. Here, we exploit
the aforementioned product rules on the spaces of Bessel potentials and the repre-
sentation of the PDE system in a forward-forward form via the variation of constants
formula to deduce such short-time uniqueness results when s ∈ (1/2, 1). The same
kind of strategy has been implemented in [92] and [91]. However, we point out that
uniqueness of solutions under this regime is at this stage open when s ∈ (0, 1/2], since
the semigroup approach on Bessel potential spaces crucially fails: heuristically, this
is due to the fact that, somehow, under this regime the diffusion is deteriorating and
one looses the crucial decay estimates which allow the machinery to work. Anyhow,
we believe that short-time uniqueness in the case of supercritical and critical diffusion
can be both obtained in view of the recent developments for first order MFG systems
[118, 183]. We highlight that our uniqueness result for short-time horizons requires
some additional smoothness assumptions on the Hamiltonian compared to [24], and
thus is closer to that appeared in [92] with respect to the regularity requirements.
Our regularity hypotheses are crucial to run the arguments via contraction mapping
theorem through chain and composition rules in fractional Sobolev classes. However,
we remark that the energy methods developed in [24, 19] do not directly apply to
the fractional framework due to the gap between the fractional derivatives and the
divergence operator, and this is the main reason of our extra regularity assumptions.

Part III-Lipschitz regularity to Hamilton-Jacobi equations
with rough data

It is well-known that bounded solutions of the heat equation posed on the whole
space Rd starting from a bounded initial data become immediately Lipschitz contin-
uous as soon as t > 0 with a global Lipschitz estimate of the form ‖Du(·, t)‖∞ .
(1/
√
t)‖u0‖∞ (see e.g. [229, p.35]). The aim of this last part is to address the same

question for viscous and fractional Hamilton-Jacobi (briefly HJ) equations{
∂tu(x, t) +Au(x, t) +H(x,Du(x, t)) = f(x, t) in QT = Td × (0, T ),

u(x, 0) = u0(x) in Td,
(6)

with unbounded right-hand side f , where H is superlinear in Du and the diffusion
operator A will be replaced by −

∑
i,j aij(x, t)∂ij in Chapter 6 (under suitable regu-
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larity assumption on aij that we will outline below) and (−∆)s in Chapter 7. The
precise statement is the following: there exists a positive function D : (0, T ]→ [0,∞)
such that

‖u(·, t)‖W 1,∞(Td) ≤ D(t)‖u0‖L∞(Td) , t ∈ (0, T ] .

More precisely, we seek to show that weak solutions (in a suitable sense) with
bounded initial data u0 to (6) become Lipschitz continuous at positive times and
satisfy the above “decay” estimate.
The motivation for such work is twofold. On one hand, this is motivated by a re-
markable result by P.-L. Lions [175], that states Lipschitz regularity of solutions to
the stationary counterpart of the above HJ equation for A = I, f ∈ Lq, q > d and
any γ > 1, namely for the simpler viscous equation

−∆u+ |Du|γ = f(x) on Td . (7)

In [175], a refinement of the classical Bernstein method that exploits both diffu-
sion and coercivity is developed, but unfortunately it does not seem to generalize to
time-dependent problems like (6). This procedure, modeled on the Bernstein initial
idea for linear PDEs [37], consists in looking at the equation satisfied by w = |Du|2.
Owing to simple computations, one easily finds

wxj = 2Du ·Duxj , ∆w = 2[|D2u|2 +Du ·D(∆u)] .

Differentiating then the equation (7) with respect to xj and summing, one obtains
the following PDE satisfied by w

−∆w + γ|Du|γ−2Du ·Dw + 2|D2u|2 = 2Df ·Du .

The idea developed in [175] for smooth solutions is basically based on multiplying
the above equation by wp for some p > 1 large to be determined, and integrating in
space. Roughly speaking, the third term (see [88]) gives rise to the integral∫

Ω

|∆u|2wp dx .

At this stage, the key tool is to use the above integral to get additional “coercivity”
by plugging the equation via the inequality

|∆u|2 ≥ C1|Du|2γ − C2f
2

for some C1, C2 > 0, and handle all the terms by a delicate combination of Sobolev,
Young and Hölder inequalities in order to conclude the gradient bound. However,
if one tries to adapt the same procedure for the evolutive problem, mixed integral
terms involving ∂tw and suitable powers of w appear, and, unfortunately, it is not
clear how to handle them.
Typically, in the framework of quasi-linear equations with superlinear growth γ in Du
two regimes are identified, namely the sub-quadratic γ < 2 and the superquadratic
growth γ > 2. Here, we have in mind Hamiltonians of the form

H(x, p) = h(x)|p|γ + b(x) · p, (8)

xxvi



for some h, b ∈ C1(Td), γ > 1 and 0 < h0 ≤ h(x). For f ∈ L∞, Lipschitz (and
further) regularity of solutions for quasi-linear equations of the form (6.1) goes back
to classical literature, see e.g. [159].
On the other hand, in the super-quadratic case γ > 2 the diffusion term is considered
“weaker”, and thus typically regarded as a perturbation of a first-order HJ equation.
In this direction, Hölder and Sobolev regularity results with possibly unbounded f
have been obtained in [77, 75] (where aij can indeed be degenerate). We refer also
to [224, 82] for a different approach in the viscous case and to Section 6.3 for a
brief survey on the literature and the techniques used to derive gradient bounds for
such nonlinear PDEs. This different regimes can be easily detected by performing a
classical L∞-scaling argument: by setting v(x, t) = u(εx, εγt), one finds the following
PDE satisfied by v

∂tv − εγ−2∆v + |Dv|γ = εγf(εx, εγt) .

By direct inspection, one observes that the equation can be typically considered as
a perturbation of the heat equation in the subquadratic regime, while in the case
γ > 2 the usual approach is to regard the Laplacian as a perturbation of a first
order equation, due to the fact that at small scales the diffusion is weaker than the
gradient terms. However, when a nondegenerate diffusion is in force, one expects a
better regularization effect, even when γ > 2, in the spirit of the elliptic results in
[175]: in fact, by performing a W 1,∞ parabolic scaling, one immediately sees that
w(x, t) = ε−1u(εx, ε2t) solves

∂tw −∆w + ε|Dw|γ = εf(εx, ε2t) =: gε(x, t) .

Here, one notices that the space-time Lq norm of gε is invariant under the previ-
ous scaling precisely when q = d + 2, which is indeed the threshold we will meet
throughout our analysis and above which we see that solutions to (6) exhibit a fur-
ther Lipschitz regularization effect. To overcome the aforementioned difficulties of
[175] in the evolutive framework, we perform our analysis via a duality approach.
The study of linear equations through their duals (adjoint) is a classical matter,
which has been recently explored in the nonlinear framework of HJ equations by
L.C. Evans [107]. Its applications to viscous HJ equations, appearing in particu-
lar in so-called MFG systems, have been then investigated in a series of papers by
D. Gomes and collaborators, see [127] and references therein. Lipschitz bounds of
solutions to equations of the form (6) with unbounded or rough data have been in
particular considered in [123, 128]. In these works, limitations on the regularity of u
itself (it is typically smooth), on the growth of H (more precisely the growth γ < 3),
or on d are imposed. Here, we obtain results for all γ > 1 and d ∈ N, and for weak
solutions to (6). The regularization effect is based both on the non-degeneracy of
the diffusion operator and on the strong coercivity assumption of the Hamiltonian
H with respect to Du. Up to our knowledge, the results we are going to present
improve in several directions the known literature on the subject. Specifically, we are
able to handle right-hand sides unbounded both in space and time, unlike the quoted
contributions in the context of MFGs, and we provide a result which is completely
new when γ ≥ 3, see Section 6.3 for additional comments on the literature.
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From the modeling viewpoint, a further motivation of our analysis comes indeed
from the theory of MFGs [162], where HJ equations of the form (6) appear natu-
rally, and, as outlined above, describe the value function of a typical player in a
differential game involving a large population of agents. Here, f is a coupling term
that may belong to a Lebesgue space. An important point in such systems is to
prove boundedness of the gradient of u, that is crucial both for PDE purposes, since
it implies that the mean-field equations are satisfied in a stronger sense, and also
guarantees the boundedness of the optimal control-velocity of players at equilibrium
and regularity of their distribution. It is worth noting that MFG systems naturally
exhibit the presence of an HJ equation and its (dual) Fokker-Planck: this feature
somehow inspired the methods by duality presented in this thesis. The regularity
results appearing here would be crucial to study the regularity of MFG systems with
power-like couplings [73, 92], which is not completely understood even in the sta-
tionary case, see the introduction in [90].

More precisely, in Chapter 6 we prove our Lipschitz regularity result for equations
with general second order diffusion operators ∂t − aij(x, t)∂ij. We first seek to prove
the regularization effect for weak energy solutions to (6) when f in Lq(QT ) with

q > d+ 2 and q ≥ d+ 2

γ′ − 1
.

Note that for γ ≤ 2 this condition reads as q > d + 2 and it can be regarded as
the parabolic analogue of the result in [175] presented before. Then, for classical
solutions we use a dual version of the Bernstein method to improve our condition to

q > d+ 2 and q ≥ d+ 2

2(γ′ − 1)
,

which reads as the parabolic Lions’ condition q > d + 2 as soon as γ ≤ 3. As a
byproduct, we get a maximal Lq regularity result for the viscous HJ equation, giving
a first attempt to generalize Lions’ results to the evolutive setting.
A fundamental step towards this result is the analysis of the dual (Fokker-Planck
equation)

− ∂tρ+A∗ρ+ div(b(x, t)ρ) = 0 in Qτ := Td × (0, τ) , (9)

A∗ standing for the formal adjoint of A, when the drift is assumed to have enough
Lebesgue integrability. The basic idea behind the proof is the following. If u is a
solution to (6.1) with A = −∆, then any directional derivative v = ∂ξu satisfies a
linearized equation of the form

∂tv −∆v +DpH(x,Du) ·Dv = ∂ξf .

Then, one tests the equation against a solution of the backward equation (9) with
drift b(x, t) = −DpH(x,Du), which develops a Dirac mass at the terminal time t = τ ,
and integrates by parts to get the estimate (see Section 6.2 for further details).
As for the adjoint problem, when A = −∆, rephrasing the transport equation (9) on
Rd × (0, T ), one immediately notices that the above equation has a natural scaling.
Indeed, if ρ is a solution to (9), then ρλ(x, t) := ρ(λx, λ2t) solves a transport-diffusion
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equation with scaled drift bλ(x, t) := λb(λx, λ2t). In particular, it can be observed
that the space LQ (LP ) = LQ

t (LP
x) is invariant under the previous scaling of the

velocity field b precisely when d/(2P ) + 1/Q = 1/2. Then, we say that a Banach
space endowed with norm ‖ · ‖X is called critical if ‖ρλ‖X = ‖ρ‖X for every λ > 0,
subcritical when ‖ρλ‖X → 0 as λ → 0 and supercritical in the case ‖ρλ‖X → ∞ as
λ→ 0 (meaning that if one zooms in at a point, i.e. λ→ 0, then the bound on the
drift becomes better, invariant or worse respectively). Therefore, here the subcritical
space turns out to be the mixed space LQ (LP ) when P ,Q meet the inequality

d

2P
+

1

Q
≤ 1

2
.

Such condition is sometimes called “Aronson-Serrin” interpolated condition and goes
back to the earlier works [159, 11]. In particular, within the critical regime with
respect to the parabolic scaling, one usually expects some L∞(Lp) bounds, while
in the subcritical regime L∞ estimates (and even Hölder continuity, see e.g. [50]
and references therein). On the contrary, when dealing with supercritical spaces,
space-time unboundedness may occur (see e.g. [39]). Anyhow, the importance of
this condition is twofold: on one hand it guarantees the well-posedness of the adjoint
problem and, on the other hand, it is also crucial to ensure the uniqueness of weak
solutions to HJ equations. Roughly speaking, under the above interpolated condition
one can regard the transport term as a lower order perturbation of the heat equation.
When A = (−∆)s, the regularity of solutions of the dual equation under rough
conditions of the drift is far from being complete. Therefore, we discuss properties
of fractional transport equations of the form

−∂tρ+ (−∆)sρ+ div(b(x, t)ρ) = 0 in Qτ

equipped with terminal data ρ(x, τ) = ρτ (x) in Td and rough velocity field in b ∈
LQ (LP ) spaces. Under the classical incompressible condition div(b) = 0, typical of
fluid dynamics settings, the previous PDE is formally equivalent to −∂tρ+(−∆)sρ+
b · Dρ = 0: in this framework some well-posedness and integrability estimates for
subcritical fractional parabolic equations with drift terms have been established in
the context of Surface Quasi-Geostrophic (SQG) equations (see e.g. [235, 93, 63, 218]
and the references therein). We also refer the reader to the survey at the beginning
of the paper [188] for the extremal regimes s = 0 and s = 1. In particular, one
immediately realizes that on Rd× (0, T ) the equation is invariant under the scalings
ρλ(x, t) := ρ(λx, λ2st) and bλ(x, t) := λ2s−1b(λx, λ2st). Even in this case, when
s ∈ (1/2, 1) the subcritical space turns out to be a mixed space LQ (LP ) when the
exponents P ≥ d/(2s− 1) and Q ≥ 2s/(2s− 1) fulfill the condition

d

2sP
+

1

Q
≤ 2s− 1

2s
,

which can be seen as the fractional counterpart of the above Aronson-Serrin inter-
polated condition met in the viscous problem, s = 1. No results in this fractional
setting can be tracked back to our knowledge under this general conditions on the
drift when, in addition, no information on its divergence is available. The above

xxix



fractional range for the exponents P and Q can be found in [167] for fractional heat
equations, [142, Example 3] in the study of fundamental solutions to time-dependent
gradient perturbation of the fractional Laplacian.
As a byproduct, in the case of subcritical fractional diffusion, we deduce the result
for weak solutions to fractional HJ equations with coercive Hamiltonian in Du ex-
ploiting the analysis of parabolic spaces developed in Part II.
Anyhow, by assuming some additional fractional regularity hypothesis on the right-
hand side, that is imposing f ∈ Lq(0, T ;H2−2s

q (Td)) for

q > d+ 2s and q ≥ d+ 2s

(2s− 1)(γ′ − 1)
,

we are able to show a Lipschitz regularization effect. This additional integrability
hypothesis on the right-hand side is required since in this manuscript we are merely
able to estimate fractional derivatives of ρ in Lebesgue spaces by means of (fractional)
parabolic Caldéron-Zygmund theory (see Section 7.3.1 for additional comments on
the integrability assumptions).
We further emphasize that the approach carried out either in [175, 27] via refinements
of the Bernstein method or by coupling the duality method and the integral Bernstein
method (cf Chapter 6) cannot be directly reproduced due to the nonlocality of the
operator. These latter phenomena will be matter of further investigation, together
with a treatment of the stationary problem.
We finally conclude saying that a crucial point to achieve these estimates is an a
priori information on the crossed quantity∫∫

|DpH(Du)|γ′ρ dxdt,

that is obtained using a sort of duality between (6) and its adjoint, and has a very pre-
cise meaning in terms of optimality in stochastic control problems. Indeed, recalling
the fact that ρ is the distribution law of Xt, one has that if b(·, t) = −DpH(·, Du(·, t))
is the optimal drift, then∫∫

|DpH(x,Du)|γ′ρ dxdt
∫ T

0

∫
Ω

L(x,−DpH(x,Du))ρ dxdt

=

∫ T

0

∫
Ω

ρ(DpH(x,Du) ·Du−H(x,Du)) dxdt ' E
∫ T

0

|DpH(Xt, Du(Xt, t))|γ
′
dt ,

and thus an a priori bound on such quantity highlights that the drift has Lγ
′
-

regularity along the trajectory of the associated stochastic dynamics. This is a quite
common condition appearing in regularity and uniqueness issues for Fokker-Planck
equations (see [194, 50, 185, 49] and references therein).
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Part I

Strong maximum principles for
fully nonlinear degenerate PDEs

via subunit vector fields and
applications
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Chapter 1

Few basic facts on viscosity
solutions and Carnot groups

1.0.1 Viscosity solutions to fully nonlinear PDEs

This subsection is devoted to collect some basic notions on viscosity solutions’ theory
for fully nonlinear second order PDEs. For a more detailed treatment we refer the
reader to [20, 96] for second order problems and [15, 1] for first order equations.
Throughout this part we are interested in fully nonlinear second order PDEs of the
form

F (x, u,Du,D2u) = 0 in Ω (1.1)

where x ∈ Ω, u is a function defined in Ω and F (x, r, p,X) is a real-valued function
defined in Ω× R× Rd × Sd. and their evolutive counterpart

∂tu+ F (x, t, u,Du,D2u) = 0 in Ω× (0, T )

where (x, t) ∈ Ω× (0, T ), u is a function defined in Ω× (0, T ) and F (x, t.r, p,X) is a
real-valued function defined in Ω× (0, T )×R×Rd×Sd. The usual ordering is used
on Sd, i.e. Y ≤ X means that X − Y is nonnegative semidefinite. We give some
notions of ellipticity that we will meet within the first part of the thesis.

Definition 1.1. We say that the operator F = F (x, r, p,M) is uniformly elliptic
with ellipticity constants 0 < λ ≤ Λ if

λTr(N) ≤ F (x, r, p,M)− F (x, r, p,M +N) ≤ ΛTr(N)

for every x ∈ Ω, r ∈ R, p ∈ Rd and M,N ∈ Sd with N ≥ 0.
We say that F is proper if

F (x, r, p,M) ≤ F (x, s, p,N) , r ≤ s and N ≤M .

and degenerate if
F (x, r, p,M) ≤ F (x, r, p,N) , N ≤M

Analogous definitions can be given for the time-dependent operator ∂t + F (see
e.g. [96, Section 8] and [100]). When dealing with such nonlinear operators the
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typical framework is that of viscosity solutions. The basic idea behind this concept
is to extend the notion of sub- and supersolution for classical linear operators to a
larger set of suitable non-smooth functions so that the classical maximum principle
is preserved. For instance, in the case of the Laplace equation one can prove that
u is subharmonic if and only if for all x ∈ Ω and ϕ ∈ C2(Ω) such that u − ϕ has
a local maximum at x, then −∆ϕ ≤ 0 and, consistently, the idea is to take this as
definition of viscosity solution for such nonlinear equations, as we shall see below in
the next definition. This is somehow reminiscent of the classical Perron’s method
[122] for elliptic equations. We have the following

Definition 1.2. (1) We say that a function u : Ω→ R is a viscosity subsolution of
(1.1) (equivalently a viscosity solution of F ≤ 0) in Ω if u ∈ USC(Ω) and for every
x0 ∈ Ω and ϕ ∈ C2(Ω) such that u− ϕ has a local maximum at x0, then

F (x0, u(x0), Dϕ(x0), D2ϕ(x0)) ≤ 0 . (1.2)

(2) We say that a function u : Ω → R is a viscosity supersolution of (1.1)
(equivalently a viscosity solution of F ≥ 0) in Ω if u ∈ LSC(Ω) and for every x0 ∈ Ω
and ϕ ∈ C2(Ω) such that u− ϕ has a local minimum at x0, then

F (x0, u(x0), Dϕ(x0), D2ϕ(x0)) ≥ 0 . (1.3)

(3) Finally, a function u : Ω→ R is called a viscosity solution of (1.1) in Ω if it
is both a viscosity subsolution and a viscosity supersolution.

We also say that F (x, u,Du,D2u) ≤ (≥,=) 0 is satisfied in the viscosity sense in
Ω if u is a viscosity subsolution (resp. supersolution, solution) of (1.1) in Ω. Notice
that a viscosity solution is a continuous function since it is both upper and lower
semicontinuous.

Remark 1.3. One can also define viscosity solutions via the so-called semi-jets.
However, since we will not use such tool here, we prefer to skip the details, referring,
among others, to [96]. In addition, as we will see in the next chapter, when deal-
ing with PDEs modeled on the p-Laplacian, one needs to slightly revisit the above
definition (see Chapter 2).

We now give some examples of fully nonlinear elliptic PDEs that we will meet
throughout the thesis, referring, among others, to the monographs [62, 190] for other
interesting examples and the expository paper [57] for a gentle introduction to the
subject.

Example 1.4 (Linear elliptic equations). Consider the equation

−
∑
ij

aij(x)∂iju+
∑
i

bi(x)∂iu+ c(x)u = f(x) .

The corresponding operator is given by F (x, r, p,X) = −Tr(A(x)D2u(x)) + b(x) ·
Du+ c(x)u− f(x) and we observe that F is degenerate elliptic if and only if A ≥ 0.
By taking aij = δij, b ≡ 0 and c = f = 0 one recovers the classical Laplace equation.
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Example 1.5 (Quasilinear elliptic equations in divergence form). Such equations
appear in the general form

−
∑
i

∂i(ai(x,Du)) + b(x, u,Du) = 0 .

If the coefficients of the above PDE are differentiable, one can rewrite the operator
as

F (x, r, p,X) = −Tr(Dpa(x, p)X) + b(x, r, p)−
∑
i

∂i(ai(x, p)) .

A well-known example we will discuss within Part I is the m-Laplacian equation

−∆pu := −div(|Du|p−2Du) = 0 ,

where a(x, p) = |p|p−2p, p ≥ 1. Note that for p = 1 one gets the mean curvature
operator, while for p = 2 the classical Laplace equation. In the limit p = ∞ one
obtains the so-called ∞-Laplacian

−∆∞u =
∑
ij

∂iu∂ju∂iju .

For the applications of these equations in the borderline cases in the context of
differential games we refer to [106].

Example 1.6 (Quasilinear elliptic equations in nondivergence form). An equation
of the form

−
∑
ij

aij(x)∂iju(x) + b(x, u,Du) = 0

covers all the previous examples as special cases. A relevant proptotype is the viscous
Hamilton-Jacobi equation

−σ∆u+H(x, u,Du) = 0

which appears, among others, in models related to the recent theory of Mean Field
Games developed by J.-M. Lasry and P.-L. Lions [163] that we discuss in Part II,
when the diffusion operator −∆ is replaced by its fractional power (−∆)s, s ∈ (0, 1),
and in this case we say that the equation is a quasilinear integro-differential equation,
see [31] (and references therein) where viscosity solutions for such PDEs are defined
and used, and Part III in their evolutive form.

Example 1.7 (Pucci’s equations). Pucci’s equations are the simplest examples of
PDEs that can be written in Hamilton-Jacobi-Bellman form and represent the cor-
nerstone to analyze fully nonlinear (uniformly elliptic) second order PDEs. Such
“extremal” equations were introduced by C. Pucci in [201] in d dimension (see also
the earlier work in the plane [200]). These operators were defined in the following
way: let LA(M) = −Tr(AM), M ∈ Sd and Bα, α > 0 be the class of matrices

Bα := {A ∈ Sd : Aξ · ξ ≥ α|ξ|2,Tr(A) = 1,∀ξ ∈ Rd} .

We define
P+
α (M) = sup

A∈Bα
LAM (1.4)
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and
P−α (M) = inf

A∈Bα
LAM . (1.5)

As pointed out in [201] (see also [122, Chapter 17]), one can immediately check the
validity of the representation formulas

P+
α (M) = −α

d∑
k=2

ek − [1− (d− 1)α]e1 = −αTr(M)− (1− dα)e1 (1.6)

and

P−α (M) = −α
d−1∑
k=1

ek − [1− (d− 1)α]ed = −αTr(M)− (1− dα)ed (1.7)

for any M ∈ Sd, where e1 ≤ ... ≤ ed are the ordered eigenvalues of the matrix M .
Such operators were then analyzed in the parabolic framework in [13].
These nonlinear operators defined over a different class of matrices were then revisited
by L. Caffarelli and X. Cabré to study properties of fully nonlinear PDEs (see [62]).
In particular, let

Aλ,Λ := {A ∈ Sd : λ|ξ|2 ≤ Aξ · ξ ≤ Λ|ξ|2 ,∀ξ ∈ Rd} .

The so-called Pucci’s extremal operators on symmetric matrices M ∈ Sd are defined
as

M+
λ,Λ(M) = sup

A∈Aλ,Λ
LAM (1.8)

and
M−

λ,Λ(M) = inf
A∈Aλ,Λ

LAM . (1.9)

In particular, M+
λ,Λ and M−

λ,Λ are respectively called the maximal and the minimal
Pucci’s operator. Even in this case, one can check (see [62, Section 2.2]) that the
following hold for every M ∈ Sd

M+
λ,Λ(M) = −Λ

∑
ek<0

ek − λ
∑
ek>0

ek (1.10)

and
M−

λ,Λ(M) = −Λ
∑
ek>0

ek − λ
∑
ek<0

ek . (1.11)

The usefulness of the latter operators arises when dealing with uniformly elliptic fully
nonlinear second order equations, since they allow to transfer properties of solutions
from the fully nonlinear operator F to sub- and supersolutions of equations driven by
the extremal operatorsM±. In fact one can prove the following easy characterization
that stems from Definition 1.1 (see e.g. [62, Lemma 2.2]).

Proposition 1.8. The following are equivalent

(i) F is uniformly elliptic with ellipticity constants λ and Λ with 0 < λ ≤ Λ, i.e.
for every M,N ∈ Sd, N ≥ 0 and (x, r, p) ∈ Ω× R× Rd we have

λTr(N) ≤ F (x, r, p,M)− F (x, r, p,M +N) ≤ ΛTr(N) .
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(ii) F (x, r, p,M)− F (x, r, p,M −N) ≤ ΛTr(N−)− λTr(N+) for every M,N ∈ Sd
and (x, r, p) ∈ Ω × R × Rd, where N+ and N− stands for the positive and
negative part of N respectively.

(iii) M−(M−N) ≤ F (x, r, p,M)−F (x, r, p,N) ≤M+(M−N) for every M,N ∈ Sd
and (x, r, p) ∈ Ω× R× Rd.

Such correspondence turns out to be useful even for some degenerate equations
(see the next Chapter 4 where it will be applied to equations driven by Pucci’s
subelliptic operators), and it is actually a standard way to analyze qualitative and
quantitative properties of viscosity solutions to fully nonlinear equations [62].
Moreover, one can prove that the following inequalities are in force

P+
λ (M) ≤M+

λ,λ+(1−dλ)(M) and P−λ (M) ≥M−
λ,λ+(1−dλ)(M) .

We will meet these relations among the extremal operators during the treatment of
Liouville theorems for PDEs over Hörmander vector fields in Chapter 4.

Example 1.9 (Hamilton-Jacobi-Bellman and Isaacs equations). When the family
Aλ,Λ is replaced by an arbitrary family of linear elliptic operators Lα, α ∈ A is any
set, one obtains the so-called Hamilton-Jacobi-Bellman equation, arising in stochastic
control problems

inf
α
{Lαu(x)− fα(x)} = 0

and

sup
α
{Lαu(x)− fα(x)} = 0 .

In particular let us recall that any fully nonlinear equation F = F (x, u,Du,D2u)
which is concave or convex in (u,Du,D2u) can be recasted in one of the above
formulations respectively by means of the Legendre transform. Other important
fully nonlinear second order PDEs are the Isaacs equations coming from differential
games

sup
α

inf
β
{Lα,βu(x)− fα,β(x)} = 0

and

inf
β

sup
α
{Lα,βu(x)− fα,β(x)} = 0 .

where α, β belong to arbitrary sets A and B respectively. We remind the reader that
every fully nonlinear uniformly elliptic operator can be written in Isaacs form [58,
Remark 1.5].

Example 1.10 (Subelliptic PDEs). One may replace the Euclidean gradient Du, and
hence classical derivatives ∂i, by a suitable family of vector fields X = {X1, ..., Xm},
m ≤ d, which do not necessarily commute, leading to consider PDEs modeled on the
so-called horizontal gradient DXu = (X1u, ..., Xmu). Analogously, one defines the
symmetrized horizontal Hessian (D2

Xu)∗ (see Section 1.0.5 below). These considera-
tions leads to fully nonlinear PDEs of the form

F (x, u,DXu, (D
2
Xu)∗) = 0 ,
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where F is a real-valued operator defined on Ω × R × Rm × Sm, Ω ⊆ Rd, for some
m ≤ d. Typically, this is the case of PDEs over Carnot groups and other particular
sub-Riemannian geometries that will be the matter of Part I (here m is the dimension
of the horizontal layer in the case of Carnot groups, while d = m = 2 in the Grushin
plane, see below)

Example 1.11. Other important examples of fully nonlinear second order PDEs are
Monge-Ampére equations and Hessian equations. For these and other fully nonlinear
interesting examples we refer to [96, 190]. We finally mention the recent analysis on
“truncated” Laplacian-type operators that appear as sums of the first (or last) k < d
eigenvalues of the Hessian matrix (see [46] and references therein), which therefore
fall within the latter class of equations.

1.0.2 Carnot groups

In this section we collect some standard facts on Carnot groups. Here and in the
sequel we will take for granted some standard definitions, referring to [51] for more
details. We recall for the convenience of the reader that a Lie algebra is a vector
space V endowed with a Lie bracket, that is a bilinear operation [·, ·] : V × V → V ,
and satisfies [x, x] = 0 for every x ∈ V and the Jacobi identity [x, [y, z]] + [z, [x, y]] +
[y, [z, x]] = 0 for all x, y, z ∈ V .

Definition 1.12. A Carnot group G of step r is a simply connected Lie group whose
Lie algebra g is stratified of step r, namely there exist linear subspaces V1, ..., Vr of g
such that

g = V1 ⊕ ...⊕ Vr

with

[V1, Vi] = Vi+1 1 ≤ i ≤ r − 1 and [V1, Vr] = {0} ,

where [V1, Vi] = Span{[a, b] : a ∈ V1, b ∈ Vi}. In particular, the subspace V1 is called
horizontal layer and its elements are called left invariant vector fields. The rank of
G is dim(V1).

One can prove that (see [51, Proposition 1.1.7]) [Vi, Vj] ⊂ Vi+j if i + j ≤ r and
[Vi, Vj] = {0} otherwise. One can then identify g with Rd via the so-called exponential
map exp : g→ G, which turns out to be a diffeomorphism. Given a basis X1, ..., Xd

adapted to the stratification, any x ∈ G can be written in a unique way as

x = exp(x1X1 + ...+ xdXd)

and we thus identify x ∈ G with (x1, ..., xd) ∈ Rd and G with (Rd, ◦), where the
group law in these coordinates is determined via the well-known Baker-Campbell-
Hausdorff formula.
We also say that a curve γ : [a, b] → G is absolutely continuous if it is absolutely
continuous as a curve into Rd. Fix now an orthonormal basis X1, ..., Xm of the first
layer V1. We have the following
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Definition 1.13. An absolutely continuous curve γ : [a, b]→ G is horizontal if there
exists α1, ..., αm ∈ L1([a, b]) such that

γ′(t) =
m∑
j=1

αj(t)Xj(γ(t)) for almost every t ∈ [a, b]

The length of the curve is given by LG(γ) =
∫ b
a
|α|.

A well-known result by Chow states that any two point in a Carnot group can
be connected by a horizontal curve. Hence, the following definition turns out to be
well-posed

Definition 1.14. The Carnot-Carathéodory (CC) distance between x, y ∈ G is de-
fined by

dCC(x, y) = inf{LG(γ) : γ is a horizontal curve joining x to y}

In terms of the layer decomposition of G, one defines a one-parameter family of
dilations δλ on G by setting for x = x1 + ... + xr, xj ∈ Rnj , where nj stands for the
dimension of the j-th layer,

δλ(x) =
r∑
j=1

λjxj .

Moreover, for any x ∈ G, the Jacobian of the map x 7−→ δλ(x) coincides with λQ ,
where Q =

∑r
j=1 jnj is the so-called homogeneous dimension. Using such family

of dilations, one can define a norm on G given by ‖x‖C := dCC(0, x). However,
one can introduce on G a new norm equivalent to the Carnot-Carathéodory norm
‖ · ‖C which is more suited for computational purposes (see Chapter 4) and typically
called homogeneou norm. More precisely, (see [51, Section 5.1] for further details)
a homogeneous norm on G is a mapping x 7−→ ρ(x) from G to R+ such that the
following properties hold true:

(i) x 7−→ ρ(x) is continuous on G and smooth on G\{0};

(ii) ρ(x) = 0 if and only if x = 0;

(iii) ρ(x) = ρ(−x);

(iv) ρ(δλ(x)) = λρ(x) for every λ > 0.

Example 1.15. Let G be a Carnot group with stratification V1, ..., Vr. We define a
homogeneous norm on G via the stratification as

ρ(x) :=

(
r∑
i=1

|xi|
2r!
i

) 1
2r!

,

where |xi| is the k-dimensional Euclidean norm defined on the vector space Vi.

One can show that all homogeneous norms on Carnot groups are equivalent [51,
Proposition 5.1.4] and they satisfy pseudo-triangle inequalities [51, Proposition 5.1.7
and Proposition 5.1.8].
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1.0.3 Examples of Carnot groups: The Heisenberg group
and free step-2 Carnot groups

In this section we briefly recall some standard facts on Carnot groups, specifically
we discuss the Heisenberg group and free Carnot groups.
The Heisenberg group Hd can be identified with (R2d+1, ◦), where 2d + 1 stands for
the topological dimension and the group law ◦ is defined by

x ◦ y =

(
x1 + y1, ..., x2d + y2d, x2d+1 + y2d+1 + 2

d∑
i=1

(xiyi+d − xi+dyi)

)
.

The d-dimensional Heisenberg algebra is the Lie algebra spanned by the vector fields

Xi = ∂i + 2xi+d∂2d+1 ,

Xi+d = ∂i+d − 2xi∂2d+1 ,

for i = 1, ..., d and x denotes a point of R2d+1. Such vector fields satisfy the commu-
tation relations

[Xi, Xi+d] = −4∂2d+1 and [Xi, Xj] = 0 for all j 6= i+ d, i ∈ {1, ..., d} .

Following Example 1.15, the corresponding homogeneous norm for such structure
can be defined as

ρ(x) =

( 2d∑
i=1

(xi)
2

)2

+ x2
2d+1

 1
4

. (1.12)

We now turn our attention to free step-2 Carnot groups following [51, Section
14.1], see also [164]. Such structures appeared first in [120] and later in the context
of control problems in [55]. We first present a more abstract definition and then we
give the representation in coordinates. We start by recalling the following

Definition 1.16. Let r ≥ 2 and s ≥ 1 be integers. We say that Fr,s is the free
nilpotent Lee algebra with r generators x1, ..., xr. of step s if

- Fr,s is a Lie algebra generated by x1, ..., xr.

- Fr,s is nilpotent of step s.

- For every Lie algebra g that is nilpotent of step s and for every map Φ :
{x1, ..., xr} → g, there is an homomorphism of Lie algebras Φ̃ : Fr,s → g that
extends Φ, and moreover it is unique.

Definition 1.17. A Free Carnot group is a Carnot group whose Lie algebra is iso-
morphic to a free nilpotent Lie algebra Fr,s for some r ≥ 2 and s ≥ 1. Moreover, the
horizontal layer of the free Carnot group is isomorphic to the span of the generators
of Fr,s.
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We now give a representation of free Carnot groups of step 2 via exponential
coordinates, which will be useful to deduce our sufficient conditions for Liouville
theorems in Chapter 4.
More precisely, fix an integer r ≥ 2 and denote by d = r+ r(r−1)

2
. In Rd, let us denote

the coordinates of the first layer by xi, 1 ≤ i ≤ r and that of the second layer by tij,
1 ≤ j < i ≤ r. Let ∂i and ∂ij the standard basis vectors in this coordinate system.
Denote the d vector fields on Rd by

Xk := ∂k + 2

(∑
j>k

xj∂jk −
∑
j<k

xj∂kj

)
if 1 ≤ k ≤ r ,

Xkj := ∂kj if 1 ≤ j < k ≤ r .

The Carnot structure of Gr is given by

V1 = Span{Xk : 1 ≤ k ≤ r} and V2 = Span{Xkj : 1 ≤ j < k ≤ r}

The commutation relations for 1 ≤ j < k ≤ r and 1 ≤ i ≤ r are given by

[Xk, Xj] = 4Xkj and [Xi, Xkj] = 0

and denote by

(xH , xV ) = (x1, ..., xr, tr,1, ..., tr,r−1) ∈ Rr × R
r(r−1)

2

Definition 1.18. The free Carnot group of step 2 and r generators is Gr ≡ (Rd, •),
where the group law is defined as

(x • y)k = xk + yk if 1 ≤ k ≤ r ,

(x • y)ij = xij + yij + 2(xiyj − yixj) if 1 ≤ j < k ≤ r .

We also remark that free Carnot groups of step 2 are those that are isomorphic
to a Carnot group Gr for some r (see again [51] and references therein).
According to [54, Section 3.4.2], free groups are those whose system of vector fields
X1, ..., Xm generating the algebra is free up to step r. Roughly speaking, this hap-
pens when the Xi’s and their commutators up to step r do not satisfy any linear
relation except the ones holding by the properties of the Lie algebra, namely the
antisymmetry of the Lie bracket and the Jacobi identity.

Remark 1.19. Observe that the free Carnot group of step 2 coincides with the
Heisenberg group only in one dimension, i.e. H1 ≡ (R3, ◦). Indeed for r = 2d
generators, we have a free Carnot group of step 2 if and only if the following equality
holds

2d+ 1 = 2d+
2d(2d− 1)

2
,

which is fulfilled only when d = 1. This can be also seen by the commutation relation
between the vector fields, see [54, Section 3.4.2 Example 46]. In fact the vector fields
X, Y in H1 are free up to step 2 since X,Y and [X, Y ] are linearly independent.
This does not happen for H2, since [X1, X3] = [X2, X4], which is a nontrivial relation
among the commutators of step 2.
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Remark 1.20. The vector fields inducing the Grushin plane are not free of step 2
since, as we will see in the next Subsection 1.0.4, it happens that Y = x[X, Y ], which
is a nontrivial relation between a generator and a commutator.

For later purposes, according to Definition 1.15 we recall here that the homoge-
neous norm is defined by

ρ(x) =
(
(x2

1 + ...+ x2
r)

2 + t22,1 + ...+ t2r,r−1

) 1
4 . (1.13)

1.0.4 Sub-riemannian geometries of Grushin-type

We now discuss an example of sub-Riemannian geometry which does not fall within
the previous theory of nilpotent stratified Lie groups. Grushin-type geometries are
defined on Rd = Rp × Rq, d = p+ q ≥ 2, and induced by the vector fields

Xi = ∂xi , 1 ≤ i ≤ p ;Yj = |x|α∂yj , 1 ≤ j ≤ q .

for (x, y) ∈ Rp × Rq. The Grushin plane corresponds to d = 2, p = q = α = 1, that
is R2 equipped with the basis of vector fields

X = ∂x and Y = x∂y .

Note that the vector fields X, Y are not left invariant with respect to any group
law on R2 [51, Proposition 1.2.13] and hence Grushin-type geometries cannot be
endowed with any group structure. However, one can easily check that X and Y
satisfy the Hörmander condition (cf Definition 2.5) since at the origin (0, 0) we have
Span(X, Y ) = Span(X) 6= R2, but [X, Y ] = ∂y and hence Span(X, Y, [X, Y ]) = R2

at any point (x, y) ∈ R2. Even in this case one can define a homogeneous norm
similarly to the one considered in the Heisenberg group, although a group structure
is not available. For (x, y) ∈ Rp × Rq one defines the homogeneous norm

ρ((x, y)) = (|x|2(1+α) + (1 + α)2|y|2)
1

2(1+α) ,

which turns out to be homogeneous of degree one with respect to the dilations
δλ((x, y)) = (λx, λ1+αy) and reduces to

ρ((x, y)) = (x4 + 4y2)
1
4

in the case of the Grushin plane, where (x, y) ∈ R2 and α = 1.

1.0.5 On subelliptic equations

In this section we recall some standard notions one needs to deal with subelliptic
PDEs. Let X1, ..., Xm be a system of vector C1,1 vector fields. We give the following

Definition 1.21. Let u : Ω→ R, x ∈ Ω. The horizontal gradient of u at x is defined
as

DXu(x) = (X1u(x), ..., Xmu(x)) ∈ Rm .

The symmetrized horizontal Hessian of u is the Sm matrix whose elements are given
by

(D2
Xu(x))∗i,j =

[
Xi(Xju(x)) +Xj(Xiu(x))

2

]
for i, j = 1, ...,m
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Remark 1.22. We point out that the intrinsic Hessian, whose elements areXi(Xju)(x),
is different from the symmetrized horizontal Hessian defined above, since the vector
fields do not commute. Indeed

Xi(Xju(x)) =
Xi(Xju(x)) +Xj(Xiu(x))

2
+

1

2
[Xi, Xj]u(x) .

We will test our results, especially in Chapter 4, to equations of the form

G(x, u,DXu(x), (D2
Xu(x))∗) = 0 .

Typically we will consider those operators G satisfying a properly rescaled uniform
ellipticity condition, according to the next Definition.

Definition 1.23. We say that the operator G is uniformly subelliptic with ellipticity
constants 0 < λ ≤ Λ if

λTr(Y ) ≤ G(x, r, p,X)−G(x, r, p,X + Y ) ≤ ΛTr(Y )

for every x ∈ Ω, r ∈ R, p ∈ Rm and X, Y ∈ Sm with Y ≥ 0.

Similarly to the Euclidean case one can characterize the above property in terms
of (degenerate) Pucci’s extremal operators.

Lemma 1.24. The following are equivalent

(i) G is uniformly subelliptic with ellipticity constants 0 < λ ≤ Λ.

(ii) M−
λ,Λ(M−N) ≤ G(x, r, p,M)−G(x, r, p,N) ≤M+

λ,Λ(M−N) for every M,N ∈
Sm and (x, r, p) ∈ Ω× R× Rm.

Proof. We use the well-known fact that any symmetric matrix N ∈ Sm can be
uniquely decomposed as the sum of two nonnegative symmetric matrices with null
product, i.e. there exist N+, N− ≥ 0 such that N+N− = 0 and N = N+ − N−

(which we call the positive and negative part of N). Owing to this property, one
easily shows that (i) (i.e using the inequalities in Definition 1.23) implies

G(x, r, p,M)−G(x, r, p,M −N) ≤ ΛTr(N−)− λTr(N+)

for every M,N ∈ Sm and (x, r, p) ∈ Ω × R × Rm, and consequently the right-hand
side of the inequality stated in (ii). Indeed

G(x, r, p,M)−G(x, r, p,M −N) = G(x, r, p,M)−G(x, r, p,M +N−)

+G(x, r, p,M +N−)−G(x, r, p,M −N+ +N−) ≤ ΛTr(N−)− λTr(N+) .

Similarly, one has

G(x, r, p,M)−G(x, r, p,M −N) ≥ λTr(N−)− ΛTr(N+) .

Then, using the definition of Pucci’s extremal operators one immediately obtains
that the above properties implies (ii). The proof of the fact that (ii) implies (i) is
straightforward.
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Remark 1.25. By taking N = 0 in Lemma 1.24-(ii), one immediately realizes that

M−
λ,Λ(M) ≤ G(x, r, p,M)−G(x, r, p, 0) ≤M+

λ,Λ(M) .

Such equations with underlying subelliptic structure fall within the theory of
viscosity solutions (cf [179]). Another way to look at such equations is to exploit
their representation in Euclidean coordinates. To this aim, let σ ∈ Rd×m be the
matrix whose columns are the coefficients of the vector fields X1, ..., Xm with respect
to the standard basis of Rd. For any sufficiently smooth function u we have

DXu = σT (x)Du

and
(D2
Xu(x))∗ = σT (x)D2uσ(x) + g(x,Du) ,

where g(x, p) is a m×m matrix whose elements are

gij(x, p) =

(
Dσj(x)σi(x) +Dσj(x)σi(x)

2

)
· p ,

where the σj’s are the columns of σ. Note that the first order term g is null for
Carnot groups of step 2. Simple examples where the symmetrized horizontal Hessian
contains also first order terms are the Engel group (which is a Carnot group of step
3, see e.g. [179, Example 3]), and the vector fields inducing the Grushin plane (see
Chapter 2).
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Chapter 2

Strong maximum principles for
fully nonlinear degenerate elliptic
PDEs

Maximum principles are among the most powerful tools in the study of elliptic and
parabolic PDEs. In particular, they allow to deduce several quantitative results such
as a priori estimates, and also uniqueness and stability theorems without knowing a
priori the explicit form of the solution. As we shall see, various forms of maximum
principles are linked to what are known in literature as comparison principles, and
also some important qualitative properties such as Liouville theorems (that we an-
alyze in Chapter 4). In particular, throughout this chapter we will deduce a form
of the so-called strong maximum principle for functions satisfying suitable nonlinear
“differential inequalities” that we will make precise below, and apply the results to
study some comparison theorems. We are mainly interested in fully nonlinear second
order degenerate elliptic equations arising in the context of stochastic control and
differential games, among which HJB and HJI equations. Our results turn out to
be new even for some quasi-linear equations modeled on the horizontal p- and ∞-
Laplacian.

2.1 Propagation of maxima for linear degenerate

equations: a survey

The purpose of this introductory section is to review some classical results for the
propagation of maxima of linear degenerate PDEs. Let us start recalling that the
strong maximum principle for the Laplace equation asserts that if u ∈ C2(Ω), Ω
being a connected open set of Rd, solves −∆u ≤ 0 and u takes its largest value at a
point x0 ∈ Ω, then u is constant.
Let us turn now to a more general linear elliptic operator of the form

Lu := −Tr(A(x)D2u) + b(x) ·Du
and assume that A ≥ 0 (i.e. the equation can be degenerate), A ∈ C2(Rd) with
bounded derivatives, b : Rd → Rd is C1 with bounded derivatives. As announced in
the introduction, the problem of propagation of maxima can be formulated as follows
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Problem 2.1. Let Ω ⊂ Rd be open and connected and x0 ∈ Ω. Determine the largest
connected, relatively closed subset D(x0) of Ω containing x0, such that if u ∈ C2(Ω)
satisfies Lu ≤ 0 in Ω and u attains its maximum at x0, then u is constant throughout
D(x0).

The set D(x0) is usually named propagation set of x0 ∈ Ω and will be henceforth
denoted by Prop(x0).
We now remind the coordinate-free description proposed by K. Taira [226], and
obtained through analytical methods via the notion of subunit vector field for linear
operators that we will extend to the fully nonlinear framework in the next section.
We recall that a vector field Z is subunit for −Tr(A(x)D2u), or for the matrix A ≥ 0,
at a point x if A− Z ⊗ Z ≥ 0, i.e.

ξTA(x)ξ ≥ |Z(x) · ξ|2 ∀ξ ∈ Rd .

This concept was introduced by C. Fefferman and D.H. Phong in [111, Section 6.9-
Theorem 6.9.4]. We highlight that this notion is coordinate free, in the sense that one
can always diagonalize the matrix A at x so that A(x) = (λiδij)ij with λ1, ..., λk > 0
and λk+1 = ... = λd = 0, where k = rank(A). As we shall see in the next Lemma
2.8, it is possible to prove that Z is subunit for A if and only if it is contained in the
following k-dimensional ellipsoid{

η ∈ Rd :
k∑
i=1

η2
i

λi
≤ 1 , ηk+1 = ... = ηd = 0

}
.

A subunit trajectory is a Lipschitz path θ : [t1, t2]→ Ω such that the tangent vector
θ′(t) is subunit for A at θ(t) for almost every t. We also note that subunit trajectories
are not oriented, i.e. if θ′(t) is subunit for A, −θ′(t) is subunit as well. Let also

X0 :=
d∑
i=1

(bi(x)− ∂iaij(x))∂i

be the so-called drift vector field. A drift trajectory is a curve θ : [t1, t2] → Ω such
that θ′(t) = X0(θ(t)) on [t1, t2] oriented for increasing time. The main result on the
characterization of the propagation set for linear degenerate equations can be stated
as follows and was proved by K. Taira [226, Theorem 7.2.1].

Theorem 2.2. The propagation set Prop(x0) of x0 ∈ Ω contains the closure in Ω of
all points y ∈ Ω that can be reached from x following a finite number of subunit and
drift trajectories.

This result highlights the mechanism of propagation of maxima and why the
strong maximum principle holds true for the Laplace equation (or generally, uni-
formly elliptic equations). Roughly speaking, it is saying that if A is nondegenerate,
i.e. k = rank(A) = d, then the maximum propagates in a neighborhood of x0, but
when A is degenerate, the maximum propagates only in a small ellipsoid of dimen-
sion k and in the direction of the vector field X0.
In addition, D. W. Stroock and S.R. S. Varadhan [225] gave a (non-coordinate free)
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characterization of the propagation set as a consequence of their results on the sup-
port of the diffusion process corresponding to the above linear operator. As it is
proved in [226, Theorem 7.2.2], the propagation set in Theorem 2.2 coincides with
the Stroock-Varadhan’s characterization.
In the case when the operator is written as a sum of square of smooth vector fields
Y1, ..., Ym, perturbed by a smooth vector field Y0, i.e. Lu := −

∑m
i=1 Y

2
i u− Y0, J.-M.

Bony [52] proved that the maximum propagates along the so-called Hill’s diffusion
and drift trajectories, whenever the Lie algebra generated by the vector fields has
constant rank throughout Ω. We recall that a Hill’s diffusion trajectory is a curve
θ : [t1, t2] → Ω such that θ′(t) = Yk(θ(t)) with θ′(t) 6= 0 on [t1, t2], while Hill’s drift
trajectories are defined by replacing Yk with Y0, see [135]. In particular, the propa-
gation set in Theorem 2.2 coincides with that of J.-M. Bony and C. D. Hill, see [226,
Theorem 7.2.4].
The results presented above are our starting points to develop the analysis on strong
maximum principles for fully nonlinear degenerate equations, and our results can be
seen as nonlinear degenerate extensions to these fundamental contributions.

2.2 Results, basic notions and standing assump-

tions

Our aim is to investigate the validity of SMPs and some Strong Comparison Princi-
ples for semicontinuous viscosity subsolutions and supersolutions of fully nonlinear
second order PDEs

F (x, u,Du,D2u) = 0 in Ω , (2.1)

where F : Ω×Rd × (Rd\{0})×Sd → R, Ω is an open connected set of Rd and Sd is
the set of d× d symmetric matrices. Our basic assumptions are

(i) F is lower semicontinuous and proper in the sense of [96], i.e.

F (x, r, p,X) ≤ F (x, s, p, Y ) , if r ≤ s , Y ≤ X ;

(ii) (Scaling) for some φ : (0, 1]→ (0,+∞), F satisfies

F (x, ξs, ξp, ξX) ≥ φ(ξ)F (x, s, p,X)

for all ξ ∈ (0, 1], s ∈ [−1, 0], x ∈ Ω, p ∈ Rd\{0}, and X ∈ Sd;

where Y ≤ X means that X−Y is nonnegative semidefinite, the usual ordering in Sd.
Moreover we assume that the operator F is nondegenerate elliptic in the direction
of some rank-one matrices identified by the next definition.

Definition 2.3. Z ∈ Rd is a generalized subunit vector (briefly, SV) for F at x ∈ Ω
if

sup
γ>0

F (x, 0, p, I − γp⊗ p) > 0 ∀p ∈ Rd such that Z · p 6= 0;

Z : Ω → Rd is a subunit vector field (briefly, SVF) if Z(x) is SV for F at x for
every x ∈ Ω.
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The name is motivated by the the notion introduced by C. Fefferman and D.H.
Phong [111] for linear operators

F (x,D2u(x)) := −Tr(A(x)D2u(x)) (2.2)

recalled in the previous section. It is easy to show that a classical subunit vector is
a generalized SV in our sense, and that if Z is a SV according to Definition 2.3, with
F linear, then rZ is subunit for the matrix A for all r > 0 small enough, see Section
2.3.1.

Our first result concerns the propagation of maxima of a subsolution to (2.1)
along the trajectories of a subunit vector field.

Theorem 2.4. Assume F satisfies (i), (ii), and it has a locally Lipschitz subunit
vector field Z. Suppose u ∈ USC(Ω) is a viscosity subsolution of (2.1) attaining a
nonnegative maximum at x0 ∈ Ω. Then u(x) = u(x0) = maxΩ u for all x = y(s) for
some s ∈ R, where y′(t) = Z(y(t)) and y(0) = x0.

If F has more than one SVF, say a family Zi, i = 1, . . . ,m, we can piece together
their trajectories to find a larger set of propagation of the maximum. It is natural
to consider the control system

y′(t) =
m∑
i=1

Zi(y(t))βi(t) , (2.3)

where the controls βi are measurable functions taking values in a fixed neighborhood
of 0. If this system has the property of bounded time controllability , namely

∀x0, x1 ∈ Ω ∃ a trajectory y(·) of (2.3) with y(0) = x0, y(s) = x1,

y(t) ∈ Ω ∀ t ∈ [0, s], (BTC)

then a nonegative maximum of the subsolution u propagates to all Ω, and therefore
u is constant. A classical sufficient condition for (BTC), for vector fields smooth
enough, is the Hörmander condition [136], see also Remark 2.16 below

Definition 2.5 (Hörmander condition). The C∞ vector fields Z1, ..., Zm are said to
satisfy the Hörmander condition if Z1, ..., Zm and their commutators span Rd at each
point of Ω.

Then we have the following

Corollary 2.6 (Strong Maximum Principle). Assume (i), (ii), and the existence of
subunit vector fields Zi, i = 1, ...,m, of F satisfying the Hörmander condition. Then
any viscosity subsolution of (2.1) attaining a nonnegative maximum in Ω is constant.

This result is a generalization to fully nonlinear equations of the classical max-
imum principle of Bony [52] for smooth subsolutions of linear equations (see also
[226]).

Our main application concerns fully nonlinear subelliptic equations, as defined
by Manfredi [179]. Given a family X = (X1, ..., Xm) of C1,1 vector fields in Ω one
defines the intrinsic (or horizontal) gradient and intrinsic Hessian as

DXu = (X1u, ..., Xmu), (D2
Xu)ij = Xi(Xju).
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A subelliptic equation has the form

G(x, u,DXu, (D
2
Xu)∗) = 0 , (2.4)

where Y ∗ is the symmetrized matrix of Y and G : Ω × R × (Rm\{0}) × Sm → R
satisfies at least (i). We assume that G is elliptic for any x and p fixed in the
following sense:

sup
γ>0

G(x, 0, q,X − γq ⊗ q) > 0 ∀x ∈ Ω, q ∈ Rm, q 6= 0, X ∈ Sm. (2.5)

By rewriting the equation (2.4) in Euclidean coordinates we find an equivalent equa-
tion of the form (5.47) with F having X1, ..., Xm as subunit vector fields. As a
consequence we will prove the following SMP for fully nonlinear subelliptic prob-
lems:

Corollary 2.7. Assume G verifies (i), (ii), and (2.5), and the vector fields X1, ..., Xm

satisfy the Hörmander condition. Then any viscosity subsolution of (2.4) attaining
a nonnegative maximum in Ω is constant.

In Section 2.4.1 we give several examples of operators satisfying the assumptions
of this result, including the p-Laplacian, the ∞-Laplacian, and Pucci’s extremal
operators associated to Hörmander vector fields. Let us recall that the generators
of stratified Lie groups, or Carnot groups, satisfy the Hörmander property. Many
examples of such sub-Riemannian structures can be found in [51], the most famous
being the Heisenberg group, Example 2.26 and Subsection 1.0.2. Therefore the last
Corollary applies to a large number of degenerate elliptic PDEs. In Section 2.4 we
also give applications to Hamilton-Jacobi-Bellman and Isaacs equations.

Next we make an application to a Strong Comparison Principle, that is, the
following property:

(SCP) if u and v are a sub- and supersolution of (5.47) and u − v attains a non-
negative maximum in Ω, then u ≡ v+constant.

If Ω is bounded the SCP implies the usual (weak) Comparison Principle, namely,
u ≤ v in Ω if in addition u ∈ USC(Ω), v ∈ LSC(Ω), and u ≤ v in ∂Ω. For a class of
equations that can be written in Hamilton-Jacobi-Bellman form we can show that
w := u−v is a subsolution of a homogeneous PDE F0(x,w,Dw,D2w) = 0 satisfying
the SMP, and therefore we deduce immediately the SCP. A model problem is the
equation

M+((D2
Xu)∗) +H(x,Du) = 0, (2.6)

whereM+ denotes the Pucci’s maximal operator (see Section 2.4.1 for the definition),
X =(X1, ..., Xm) are Hörmander vector fields, and H(x, p) = supα{p · bα(x) + fα(x)}
with data bα, fα bounded and Lipschitz uniformly in α. Remarkably, this result
implies the (weak) Comparison Principle also in some cases for which it was not yet
known, see Section 2.5.

The plan for this chapter is the following. In Section 2.3 we prove a geometric
property of the propagation set of an interior maximum in terms of SV and deduce
the connection with the controllability of system (2.3), as well as a Hopf boundary
lemma. Then we get some strong maximum and minimum principles. Section 2.4
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presents the applications to some subelliptic nonlinear equations associated to a
family of vector fields, to HJB and HJI equations, and some other examples. All
these results are new, except for the Euclidean case, i.e., when X is a basis of Rd.
Finally, in Section 2.5 we prove the Strong Comparison Principle and give some
examples.

2.3 Strong Maximum and Minimum Principles

2.3.1 Definitions and preliminaries

We begin by comparing our Definition 2.3 of subunit vector for the operator F with
the classical one given by Fefferman-Phong for linear operators (2.2). We recall
that a vector Z is subunit for A at a point x, that we freeze and do not display, if
A ≥ Z ⊗ Z(x). Then

F (x, 0, p, I−γp⊗p) = −TrA+γp·Ap ≥ −TrA+γ
∑
i,j

ZiZjpjpi = −TrA+γ|Z(x)·p|2

which can be made positive for γ large enough if Z · p 6= 0. As a partial converse we
can prove the following.

Lemma 2.8. If Z is a SV at x for F linear (2.2), then rZ is subunit for A(x) for
some r > 0.

Proof. In view of Definition 2.3, one easily observes that Z is SV if and only if∑
i,j

aijpipj = Tr(Ap⊗ p) > 0 for all p such that p · Z 6= 0.

Set k = rank(A). Then, one may always diagonalize the matrix A in order to have
that

aij = λiδij , λi > 0 for i = 1, ...k , λi = 0 for i = k + 1, ..., d ,

so the above condition reads∑
i

λip
2
i > 0 for all p such that p · Z 6= 0 . (2.7)

One can check the following easy characterization [226]: Z is subunit for A if and
only if rZ is contained in the following ellipsoid

E :=

{
η ∈ Rd :

k∑
i=1

η2
i

λi
≤ 1 , ηk+1 = ... = ηd = 0

}

for some small r. Then, if rZ does not belong to E there exists a component Zj 6= 0

with j = k + 1, ..., d, since, up to rescaling, the condition
∑k

i=1
η2
i

λi
≤ 1 is always

satisfied. Thus, by taking p = ej it follows that p · Z 6= 0, but
∑

i λip
2
i = 0, a

contradiction with (2.7).
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Example 2.9. It is easy to check, by means of Cauchy-Schwarz inequality, that the
columns of a positive semidefinite matrix A are subunit vectors after multiplication
by a sufficiently small constant. Moreover, if A can be decomposed as A = σσT with
σ ∈ Rd×m, then the columns of σ are subunit vectors for A (see, e.g., [23, Example
2.2-2.3]).

Since equation (2.1) can be singular at p = 0, e.g. those involving the p-Laplacian,
the notion of viscosity solution is slightly weakened with respect to the classical one
[96], as follows:

Definition 2.10. A function u ∈ USC(Ω) (resp. LSC(Ω)) is a viscosity subsolution
(resp. supersolution) of the (2.1) in Ω if, for every ϕ ∈ C2(Ω) and x maximum (resp.
minimum) point of u− ϕ such that Dϕ(x) 6= 0

F (x, u(x), Dϕ(x), D2ϕ(x)) ≤ 0 (resp. ≥ 0) .

We recall that the notion of viscosity solution for fully nonlinear PDEs is con-
sistent with that of classical C2 solution by standard arguments. In the case of the
p-Laplace equation, the equivalence of the above definition to that of p-harmonic
functions can be found in [145, Theorem 2.7 and Corollary 2.8]. From now on all
sub- and supersolutions will be meant in the viscosity sense.

We define the Propagation set of a viscosity subsolution u of (2.1) attaining a
nonnegative maximum at x ∈ Ω as

Prop(x, u) := {y ∈ Ω : u(y) = u(x) = max
Ω

u}.

We will need the notion of generalized exterior normal, also called Bony normal
or proximal normal (see, e.g., [52] or [15, Definition 2.17]):

Definition 2.11. A unit vector ν is a generalized exterior normal to a nonempty
set K ⊆ Rd at z ∈ ∂K if there is a ball outside K centered at z + tν for some t > 0
touching K precisely at z, i.e. B(z + tν, t) ∩K = {z}. Then we write that ν⊥K at
z, and we use also the notation

K∗ := {z ∈ ∂K : there exists ν⊥K at z} .

As in the classical paper of Bony [52] we will use a geometric characterization
of invariant sets for the control system (2.3), that we recall next. We consider as
admissible the control functions β = (β1, ..., βm) : [0,+∞)→ Rm in the set

B := {β :
m∑
i=1

β2
i (t) ≤ 1 and βi is measurable ∀ i = 1, ...,m},

and denote with yx(·, β) the solution of the system (2.3) with initial condition y(0) =
x, which exists at least locally if the vector fields Zi : Ω→ Rd are locally Lipschitz.

A set K ⊆ Ω is invariant for the system (2.3) if for all x ∈ K, β ∈ B and τ > 0 such
that the solution yx(·, β) exists in [0, τ), we have yx(t, β) ∈ K for all t ∈ [0, τ).
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Theorem 2.12. Let Zi : Ω → Rd be locally Lipschitz and K 6= ∅ be a relatively
closed subset of Ω. If for all x ∈ K∗ ∩ Ω and for all ν⊥K at x

Zi(x) · ν = 0 ∀ i = 1, . . . ,m, (2.8)

then K is invariant for (2.3).

Proof. We can repeat the proof of [22, Theorem 2.1], which combines the classical
result for Ω = Rd with a localization argument. Then it is easy to see that it is
enough to assume (2.8) at points x ∈ ∂K ∩ Ω.

2.3.2 Propagation of maxima

We first give a technical result providing a crucial geometric property of the propa-
gation set.

Proposition 2.13. Let u be a viscosity subsolution of (2.1) that achieves a nonneg-
ative maximum at x ∈ Ω. Assume that (i)-(ii) hold and F has a subunit vector field
as in Definition 2.3. Then K := Prop(x, u) is such that for every z ∈ K∗ ∩ Ω and
for every ν⊥K at z we have Z · ν = 0 for every subunit vector of F at z.

Proof. We fix z ∈ ∂K ∩ Ω and ν⊥K at z. Arguing by contradiction, we assume
there exists a subunit vector Z̄ at z such that Z̄ · ν 6= 0. By definition of normal we
can take R > 0 and y = z + R ν

|ν| such that B(y,R) ⊆ Ω\K. We divide the proof in
two steps.

Step 1. We claim that there exist r > 0 and a function v ∈ C2(Rd) such that

F (x, v(x), Dv(x), D2v(x)) ≥ C > 0 for every x ∈ B(z, r) ,

with the properties v(z) = 0, −1 < v < 0 in B(y,R) and v > 0 outside B(y,R).
To see this, consider

v(x) = e−γR
2 − e−γ|x−y|2 . (2.9)

Note that v ≡ 0 on ∂B(y,R) (which gives v(z) = 0) and v > 0 outside B(y,R).
Moreover −1 < v < 0 in B(y,R). By direct computations we have

Dv(x) = 2γe−γ|x−y|
2

(x− y)

and
D2v(x) = 2γe−γ|x−y|

2

(I − 2γ(x− y)⊗ (x− y)) .

Now, using that z − y = −ν and the scaling property (ii) we have

F (z, v(z), Dv(z), D2v(z)) = F (z, 0, 2γe−γR
2

(−ν), 2γe−γR
2

(I − 2γν ⊗ ν))

≥ φ(2γe−γR
2

)F (z, 0,−ν, I − 2γν ⊗ ν) . (2.10)

By the definition of subunit vector at z and Z̄ · ν 6= 0 we obtain

F (z, 0,−ν, I − 2γν ⊗ ν) > 0
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for some γ > 0. Then (2.10) and φ(ξ) > 0 for all ξ > 0 give

F (z, v(z), Dv(z), D2v(z)) > 0 .

Since F is lower semicontinuous we can conclude that there exists r > 0 such that

F (x, v(x), Dv(x), D2v(x)) ≥ C > 0 for every x ∈ B(z, r) . (2.11)

Step 2. We claim now that there exists ε > 0 such that u(x) − u(z) ≤ εv(x) in
X := B(z, r) ∩B(y,R).
Let us choose ε > 0 small enough such that u(x) − u(z) ≤ εv(x) for every x ∈ ∂X.
To prove that the inequality holds on the whole X, suppose by contradiction that
there exists x̄ ∈ X such that u(x̄)− u(z)− εv(x̄) = maxX(u− u(z)− εv) > 0. Since
εv is smooth in Rd, using that u − u(z) is a viscosity subsolution of (2.1) and the
scaling property (ii) we get

φ(ε)F (x̄, v(x̄), Dv(x̄), D2v(x̄)) ≤ F (x̄, εv(x̄), εDv(x̄), εD2v(x̄)) ≤ 0

which contradicts (2.11) because φ > 0.
Then u(x) − εv(x) ≤ u(z) and u(z) − εv(z) = u(z) since v(z) = 0. Therefore, the

function Φ(x) := u(x) − εv(x) has a maximum at z in X. Moreover, in B(z, r)\X,
we have v ≥ 0 and u(x)− εv(x) ≤ u(x) ≤ u(z). As a consequence the function Φ(x)
has a maximum in B(z, r) at z. Since εv ∈ C∞(Rd), F is proper, using also the
definition of viscosity subsolution and (ii), we get

φ(ε)F (z, v(z), Dv(z), D2v(z)) ≤ F (z, u(z), εDv(z), εD2v(z)) ≤ 0,

a contradiction with (2.11).

Our main result is the following, containing Theorem 2.4 as a special case.

Theorem 2.14. Let u be a viscosity subsolution of (2.1) that achieves a nonnegative
maximum at x ∈ Ω. Assume that (i)-(ii) hold and F has locally Lipschitz continuous
subunit vector fields Zi : Ω → Rd, i = 1, ...,m. Then Prop(x, u) contains all the
points reachable by the system (2.3) starting at x, i.e., if y = yx(t, β) for some
t > 0, β ∈ B, then y ∈ Prop(x, u).

Proof. If Prop(x, u) = Ω the conclusion is true. Otherwise, for all z ∈ ∂ Prop(x, u)∩Ω
Proposition 2.13 implies Zi(z) · ν = 0 for all ν⊥Prop(x, u) at z and i = 1, . . . ,m.
Then Theorem 2.12 ensures the invariance of Prop(x, u) for the system (2.3), and
therefore all trajectories starting at x remain forever in Prop(x, u).

Corollary 2.15 (Strong Maximum Principle). In addition to the assumptions of
Theorem 2.14 suppose the system (2.3) satisfies the bounded time controllability prop-
erty (BTC). Then u is constant.

Proof. If (BTC) holds then any point of Ω is reachable by the system (2.3) starting
at x. Then Theorem 2.14 gives Prop(x, u) = Ω.

23



Remark 2.16. Before proving Corollary 2.6 we recall that the classical Hörmander
condition requires that

(H) the vector fields Zi, i = 1, ...,m, are C∞ and the Lie algebra generated by them
has full rank d at each point of Ω.

The smoothness requirement on Zi can be reduced to Ck for a suitable k and consid-
erably more if the Lie brackets are interpreted in a generalized sense, see [112] and
the references therein.

Proof of Corollary 2.6. By the classical Chow-Rashevskii theorem in sub-Riemannian
geometry and its control-theoretic version (see, e,g, [15, Lemma IV.1.19]), for any
z ∈ Ω the set of points reachable from z by the system contains a neighborhood
of z. Since u ∈ USC(Ω), K = Prop(x, u) = {y ∈ Ω : u(y) = maxu} is relatively
closed. Then Ω connected implies that either K = Ω or K is not relatively open.
In the latter case there would be z ∈ K with no neighborhood contained in K, a
contradiction with Theorem 2.14. Then K = Ω.

Remark 2.17. Note that the existence of a SV at x for F and the scaling property
(ii) imply

lim sup
(s,p,X)→(0,0,0)

F (x, s, p,X) ≥ 0 ,

a weaker condition than F (x, 0, 0, 0) ≥ 0 used in [148].

Remark 2.18. It is easy to see from the proof of Proposition 2.13 that the function
φ in the scaling property (ii) can be allowed to depend also on x, s, p, and X. What
is really needed is that F (x, s, p,X) > 0 implies F (x, ξs, ξp, ξX) > 0 for all ξ ∈ (0, 1]
and all x, s, p,X.

Remark 2.19. In all the previous results the scaling assumption (ii) on F can be
avoided if there is F̃ satisfying all conditions and approximating F in the sense that

F (x, εs, εp, εX) ≥ F̃ (x, εs, εp, εX) + φ(ε)ψ(ε)

with limε→0+ ψ(ε) = 0. Indeed, in the proof of Proposition 2.13 one can see that
(2.11) still holds under this assumption (cf. [21]).

We end this section with

Lemma 2.20 (Hopf boundary lemma). Let U ⊆ Ω be an open set, x0 ∈ ∂U , u ∈
USC(U ∪ {x0}) be a viscosity subsolution of (2.1) in U such that

(a) u(x0) > u(x) for every x ∈ U and u(x0) ≥ 0;

(b) there exists a ball B := B(y,R) such that B ⊆ U and B ∩ ∂U = {x0}.

Assume that F satisfies (i)-(ii) and there exists a SV Z for F such that p := x0 − y
satisfies p · Z 6= 0. Then, for any w ∈ Rd such that w · p < 0, we have

lim sup
τ→0+

u(x0 + τw)− u(x0)

τ
< 0
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Proof. As in Step 1 of Proposition 2.13 we define v as in (2.9), which turns out to
be a strict classical supersolution in X := B ∩ B(x0, r) for a suitably small r > 0
because p · Z 6= 0. Then, arguing as in Step 2 of Proposition 2.13 one proves that
u(x) − u(x0) ≤ εv(x) for every x ∈ X. To conclude, it is then sufficient to observe
that, for any w ∈ Rd such that w · p < 0, one has

lim sup
τ→0+

u(x0 + τw)− u(x0)

τ
≤ εDv(x0) · w = 2γe−γ|x0−y|2p · w < 0 .

2.3.3 Propagation of minima

Various Strong Minimum Principles for (viscosity) supersolutions of (2.1) can be
easily derived from the results of the previous section by recalling that v ∈ LSC(Ω)
is a supersolution of (2.1) if and only if u = −v is a subsolution of

−F (x,−u,−Du,−D2v) = 0 in Ω.

Therefore one can read properties of the minima of v from the preceding results by
applying them to u and

F−(x, r, p,X) := −F (x,−r,−p,−X).

Let us make explicit the assumptions on F that imply a Strong Minimum Principle.
First we replace (i)-(ii) by

(i’) F : Ω× Rd × Rd\{0} × Sd → R is upper semicontinuous and proper.

(ii’) For some φ > 0 the operator satisfies F (x, ξs, ξp, ξX) ≤ φ(ξ)F (x, s, p,X) for
all ξ ∈ (0, 1] and s ∈ [0, 1].

Moreover, a vector Z is a subunit vector for F− at x if and only if

inf
γ>0

F (x, 0, p, γp⊗ p− I) < 0 ∀p ∈ Rd such that Z · p 6= 0. (2.12)

Now we can easily get the following properties of minima.

Corollary 2.21. Let v ∈ LSC(Ω) be a viscosity supersolution of (2.1) that achieves
a nonnegative minimum at x ∈ Ω. Assume that (i’)-(ii’) hold and Zi : Ω → Rd,
i = 1, ...,m, are locally Lipschitz subunit vector fields of F−, i.e., at each x ∈ Ω
Zi(x) verifies (2.12). Then v(y) = v(x) = minΩ v for all points y reachable by the
system (2.3) starting at x.

Corollary 2.22 (Strong Minimum Principle). In addition to the assumptions of
Corollary 2.22 suppose the system (2.3) satisfies the bounded time controllability
property (BTC). Then v is constant. This holds in particular if the fields Zi, i =
1, ...,m, verify the Hörmander condition.
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2.4 Some applications

2.4.1 Fully Nonlinear Subelliptic Equations

Our main application concerns fully nonlinear subelliptic equations. In this frame-
work, one is given a family X = (X1, ..., Xm) of C1,1 vector fields defined in Ω. The
intrinsic gradient and intrinsic Hessian are defined as DXu = (X1u, ..., Xmu) and
(D2
Xu)ij = Xi(Xju). After choosing a base in Euclidean space we write Xj = σj ·D,

with σj : Ω→ Rd, and σ = σ(x) = [σ1(x), ..., σm(x)] ∈ Rd×m. Then

DXu = σTDu = (σ1 ·Du, ..., σm ·Du)

and
Xi(Xju) = (σTD2u σ)ij + (Dσj σi) ·Du .

Denote by Y ∗ the symmetrized matrix of Y . By the chain rule (see, e.g., [34, Lemma
3]) one can obtain that for u ∈ C2

(D2
Xu)∗ = σTD2uσ + g(x,Du) ,

where the correction term g is

(g(x, P ))ij =
1

2
[(Dσj σi) · p+ (Dσi σj) · p] .

Then the subelliptic equation (2.4) can be written as

G(x, u, σT (x)Du, σT (x)D2uσ(x) + g(x,Du)) = 0 , (2.13)

which is of the form (5.47) if we define

F (x, r, p,X) := G(x, r, σT (x)p, σT (x)Xσ(x) + g(x, p)) . (2.14)

Lemma 2.23. If G satisfies properties (i), (ii) and (2.5), then F satisfies properties
(i) and (ii) and the vector fields σi are subunit for F in the sense of Definition 2.3.

Proof. (i) holds because X ≤ Y implies σT (x)Xσ(x) ≤ σT (x)Y σ(x), so F is proper.
(ii) holds for F if it does for G because g(x, p) is positively 1-homogeneous in the

variable p.
To prove that any Xi is SV for F we use property (2.5) of G with q = σT (x)p,

X = σTσ + g to get

F (x, 0, p, I−γp⊗p) = G(x, 0, σ(x)Tp, σT (x)Iσ(x)−γ(σT (x)p)⊗(σT (x)p)+g(x, p)) > 0

for some γ > 0 if σi(x) · p 6= 0.

This Lemma and Theorem 2.14 give the following propagation of maxima and
SMP.

Corollary 2.24. Assume G verifies (i), (ii), and (2.5), and let u be a subsolution of
(2.4) or, equivalently, (2.13), attaining a maximum at x ∈ Ω. Then Prop(x, u) con-
tains all the points reachable from x by the system (2.3) with Zi = Xi. In particular
if the property (BTC) holds for such system then u is constant.

26



From this we get immediately the Strong Maximum Principle for subelliptic equa-
tions with the Hörmander condition, Corollary 2.7, as in the proof of Corollary 2.6.

Example 2.25. A very simple example in R2 of vector fields that fail to span all
R2 at some point but satisfy the Hörmander condition are the Grushin vector fields,
namely,

σG(x) =

(
1 0
0 x1

)
.

In this case the symmetrized horizontal Hessian is given by

(D2
Xu)∗ = σTG (x)D2uσG(x) + g(x,Du) =

(
ux1x1 x1ux1x2 +

ux2

2

x1ux1x2 +
ux2

2
x2

1ux2x2

)
.

Example 2.26. The most studied examples of vector fields satisfying the Hörmander
condition are the generators of a Carnot group: see the treatise [51] for a comprehen-
sive introduction and for the theory of linear subelliptic equations in such groups.
The simplest prototype of Carnot group is the Heisenberg group H1 in R3 whose
generators are

σH1(x) =

 1 0
0 1

2x2 −2x1

 .

Here the correction term of the Hessian is g ≡ 0, and this occurs for all groups of
step 2. An example of Carnot group of step 3 where g(x, p) 6= 0 is the Engel group,
see e.g. [34, Example 3].

Next we list some examples of equations of the form

c(x)|u|k−1u− a(x)E(DXu, (D
2
Xu)∗) = 0 (2.15)

where we assume E : Rd\{0} × Rm×m is positively homogeneous of degree α ≥ 0,
c, a are continuous and satisfy

c ≥ 0 , a > 0 , and either c = 0 or α ≤ k , k > 0 . (2.16)

We give some examples of operators E for which the SMP and Strong Minimum
Principle for equation (2.15) are known to hold in the Euclidean case, i.e., if the
fields X are the canonical basis of Rd, see [21]. Our contribution is that they hold
for Hörmander vector fields as well.

Example 2.27. The subelliptic ∞-Laplacian [40, 42, 234] is

−∆X ,∞u = −DXu · (D2
Xu)∗DXu

where E = −p ·Xp is homogeneous of degree α = 3 and (2.5) is satisfied because

E(q,X − γq ⊗ q) = −q ·Xq + γ|q|4 .

Note that the associated operator F satisfies also the condition (2.12). Then the
equation (2.15) with E the ∞-Laplacian satisfies both the SMP and the Strong
Minimum Principle.
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Example 2.28. A generalization of the previous example (considered in [43] for the
evolutive case) is

−∆h
X ,∞u = −|DXu|h−3(D2

Xu)∗DXu ·DXu

with h ≥ 0, where E is homogeneous of degree h and satisfies (2.5) because

E(q,X − γq ⊗ q) = E(q,X) + γ|q|h+1 .

Example 2.29. The subelliptic p-Laplacian, m > 1, is

−∆X ,pu := −divX (|DXu|p−2DXu) = −(|DXu|p−2∆Xu+ (p − 2)|DXu|p−4∆X ,∞u)

where ∆Xu := Tr(D2
Xu) is the sub-Laplacian. Here E is homogeneous of degree

α = p − 1 and (2.5) holds because

E(q,X − γq ⊗ q) = E(q,X) + γ|q|p(p − 1).

Similarly one checks (2.12). Recently the SMP and a Strong Comparison Principle
were proved in [67] for weak C1 solution of similar equations involving the subelliptic
m-Laplacian.

Since the p-Laplacian is in divergence form the natural notion of solution for
−∆X ,pu = 0 is variational. The equivalence of solutions in Sobolev spaces with
viscosity solutions was shown by T. Bieske [41] in Carnot groups. For this homoge-
neous equation the SMP can also be deduced from the Harnack inequality, see the
references in [67].

Example 2.30. For fixed 0 < λ ≤ Λ, the Pucci’s extremal operators on symmetric
matrices M ∈ Sd are

M+(M) := −λ
∑
ek>0

ek−Λ
∑
ek<0

ek = sup{−Tr(AM) : A ∈ Sd, λI ≤ A ≤ ΛI} (2.17)

M−(M) = −Λ
∑
ek>0

ek − λ
∑
ek<0

ek = inf{−Tr(AM) : A ∈ Sd, λI ≤ A ≤ ΛI}. (2.18)

They are 1-homogeneous and satisfy (2.5) because

M+(X − γq ⊗ q) ≥M−(X − γq ⊗ q) ≥M−(X)− λγ|q|2.

If we take a subelliptic Pucci’s operator E((D2
Xu)∗) =M+((D2

Xu)∗) then the equa-
tion (2.15) satisfy the SMP and the Strong Minimum principle, and the same holds
if M+ is replaced by M−.

2.4.2 Hamilton-Jacobi-Bellman Equations

We are given a family of linear degenerate elliptic operators

Lαu := −Tr(Aα(x)D2u)− bα(x) ·Du+ cα(x)u (2.19)
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where the parameter α takes values in a given set, Aα(x) ≥ 0 and cα(x) ≥ 0 for all
x and α. The H-J-B operators are

Fs(x, u,Du,D
2u) := sup

α
Lαu , Fi(x, u,Du,D

2u) := inf
α
Lαu (2.20)

and we assume that Fs(x, r, p,X), Fi(x, r, p,X) are finite and continuous for all en-
tries. They are clearly proper and positively 1-homogeneous. We can characterize
the subunit vectors of these operators as follows.

Lemma 2.31. Let Z ∈ Rd and x ∈ Ω.
i) Z is SV for Fi at x if and only if Z is subunit for all the matrices Aα(x), i.e.,
Aα(x) ≥ Z ⊗ Z for all α;
ii) Z is SV for Fs at x if there exists ᾱ such that Z is subunit for the matrix Aᾱ(x).

Proof. i) First suppose Aα(x) ≥ Z ⊗ Z for all α. Then, for p · Z 6= 0 and γ large
enough,

Fi(x, 0, p, I − γp⊗ p) = inf
α
{−TrAα(x) + γp · Aα(x)p− bα(x) · p}

≥ inf
α
{−TrAα(x)− bα(x) · p}+ γ|Z · p|2 > 0 .

Viceversa, suppose Z is not a subunit vector of Aᾱ(x). Then there exist p̄ such
that p̄ · Z 6= 0 and p̄ · Aᾱ(x)p̄ = 0. Then, for any η ∈ R and γ > 0

Fi(x, 0, ηp̄, I − γη2p̄⊗ p̄) ≤ −TrAᾱ(x)− ηbᾱ(x) · p̄ ≤ −ηbᾱ(x) · p̄ .

But the right hand side is ≤ 0 by choosing η = sign(bᾱ · p̄), and so Z is not SV for
Fi.

ii) Suppose Aᾱ(x) ≥ Z ⊗ Z. Then, for p · Z 6= 0 and γ large enough

Fs(x, 0, p, I − γp⊗ p) = sup
α
{−TrAα(x) + γp · Aα(x)p− bα(x) · p}

≥ −TrAᾱ(x) + γ|Z · p|2 − bᾱ(x) · p > 0 .

The results of sections 2.3.2 and 2.3.3 combined with this Lemma give informa-
tions on the sets of propagation of maxima and minima of sub- and supersolutions.
This was studied in detail in the papers by M. Bardi and F. Da Lio [22, 23] using also
tools from diffusion processes and differential games. Therefore we only point out
explicitly a SMP for the concave H-J-B operator Fi that we will exploit in Section
2.5. Its proof is an immediate consequence of Corollary 2.15 and Lemma 2.31, and
therefore it is more direct than the one in [23]. We also give a Strong Minimum
Principle for the convex operator Fs following from Corollary 2.22.

Corollary 2.32. Assume Zi : Ω→ Rd, i = 1, ...,m, are locally Lipschitz vector fields
such that

Aα(x) ≥ Zi(x)⊗ Zi(x) for all α, i, and x ,

and the system (2.3) satisfies the bounded time controllability property (BTC). Then
i) any subsolution of infα L

αu = 0 attaining a maximum in Ω is constant,
ii) any supersolution of supα L

αu = 0 attaining a minimum in Ω is constant.
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2.4.3 Hamilton-Jacobi-Isaacs Equations

Now, we are given a two-parameter family of linear degenerate elliptic operators

Lα,βu := −Tr(Aα,β(x)D2u)− bα,β(x) ·Du+ cα,β(x)u

where the parameters α, β take values in two given sets, Aα,β(x) ≥ 0 and cα,β(x) ≥ 0
for all x, α, β. The Hamilton-Jacobi-Isaacs (briefly, H-J-I) operators are

F−(x, u,Du,D2u) := sup
β

inf
α
Lα,βu , F+(x, u,Du,D2u) := inf

α
sup
β
Lα,βu

and we assume that F−(x, r, p,X), F+(x, r, p,X) are finite and continuous for all
entries (x, r, p,X) ∈ Ω × Rd × Rd × Sd. They are clearly proper and positively 1-
homogeneous. We can find subunit vectors of these operators following the arguments
of Lemma 2.31.

Lemma 2.33. Let Z ∈ Rd and x ∈ Ω.
i) Z is SV for F− at x if there exists β̄ such that Aα,β̄(x) ≥ Z ⊗ Z for all α;
ii) Z is SV for F+ at x if for all α there exists β(α) such that Aα,β(α)(x) ≥ Z ⊗ Z.

Then we get the following SMP for the H-J-I equations.

Corollary 2.34. Assume Zi : Ω→ Rd, i = 1, ...,m, are locally Lipschitz vector fields
such that the system (2.3) satisfies the bounded time controllability property (BTC).
Then
i) if there exists β̄ such that

Aα,β̄(x) ≥ Zi(x)⊗ Zi(x) for all α, i, and x ,

then any subsolution of supβ infα L
α,βu = 0 attaining a maximum in Ω is constant;

ii) if for all α there exists β(α) such that

Aα,β(α)(x) ≥ Zi(x)⊗ Zi(x) for all i and x ,

then any subsolution of infα supβ L
α,βu = 0 attaining a maximum in Ω is constant.

Sufficient conditions for the Strong Minimum Principle can be easily found in the
same way, as follows.

Corollary 2.35. Assume Zi : Ω→ Rd, i = 1, ...,m, are locally Lipschitz vector fields
such that the system (2.3) satisfies the bounded time controllability property (BTC).
Then
i) if for all β there exists α(β) such that

Aα(β),β(x) ≥ Zi(x)⊗ Zi(x) for all i and x ,

then any supersolution of supβ infα L
α,βu = 0 attaining a minimum in Ω is constant;

ii) if there exists ᾱ such that

Aᾱ,β(x) ≥ Zi(x)⊗ Zi(x) for all β, i, and x ,

then any supersolution of infα supβ L
α,βu = 0 attaining a minimum in Ω is constant.
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Example 2.36. If X = (X1, ..., Xm) are C1,1 vector fields on Ω satisfying (BTC),
a, b ∈ C(Ω) are nonnegative, and M+,M− denote the Pucci’s extremal operators,
then the equation

a(x)M+((D2
Xu)∗) + b(x)M−((D2

Xu)∗) = 0

is of H-J-I form and satisfies both the SMP and the Strong Minimum Principle.

2.4.4 Other examples and remarks

All the examples of the previous sections satisfy the following property, stronger than
Definition 2.3,

lim
γ→+∞

F (x, 0, p, I − γp⊗ p) = +∞ ∀p ∈ Rd such that Z · p 6= 0. (2.21)

If F has a SV Z at x satisfying (2.21), then clearly Z is a SV at x also for any
perturbation of F with first or zero-th order terms

F̄ (x, r, p,X) = F (x, r, p,X) +H(x, r, p).

As a consequence, if F satisfies a SMP and H is lower semicontinuous, non-decreasing
in r, and satisfies (ii) with the same φ as F , then F̄ satisfies the same SMP as F .

Example 2.37. Consider the following perturbation of a Pucci’s subelliptic equation
associated to Hörmander vector fields X

c(x)|u|k−1u− a(x)M+((D2
Xu)∗) +H(x,Du) = 0 ,

where c, a,H are continuous and satisfy

c ≥ 0 , a > 0 , either c = 0 or 1 ≤ k , H(x, ξp) = ξH(x, p) ∀ ξ > 0 .

Then the SMP and the Strong Minimum Principle hold, and the same is true ifM+

is replaced by M−.

Next we give an example of operator that satisfies SMP but whose SV do not
satisfy the stronger property (2.21).

Example 2.38. Consider the equation

−∆u

1 + |∆u|
+ f(x) = 0. (2.22)

It is easy to see that F (x,X) = −TrX/(1 + |TrX|) + f(x) satisfies condition (i),
and also the scaling condition (ii) if f(x) ≥ 0, by taking φ(ξ) = 1 if TrX ≥ 0 and
φ(ξ) = ξ if TrX < 0. Moreover

lim
γ→+∞

F (x, 0, p, I − γp⊗ p) = 1 + f(x) ∀p ∈ Rd ,

so any vector Z ∈ Rd is SV for F at x if f(x) > −1. Then for f ≥ 0 the equation
satisfies the SMP by Remark 2.18. However the stronger property (2.21) is not
verified for any Z ∈ Rd.

Example 2.39. (A counterexample from [148]) Consider equation (2.22) with f(x) =
0 for all x 6= 0 and f(0) = −1. Then (i) holds everywhere, whereas (ii) and the
existence of SVs fail only at x = 0. The SMP is violated by the subsolution u(x) = 0
for all x 6= 0 and u(0) = 1.
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2.5 Strong Comparison Principles

In this section, we consider non-homogeneous equations that can be written in H-J-
Bellman form, namely

inf
α
{Lαu− fα(x)} = 0 in Ω (2.23)

sup
α
{Lαu− fα(x)} = 0 in Ω (2.24)

where Lα are the linear operators defined in (2.19). We recall that Fi and Fs defined
in (3.12) are the 1-homogeneous operators obtained by setting fα = 0 in the operator
of the equation (2.23) and (2.24), respectively. We say that a PDE satisfies the
Comparison Principle in a ball B(x, r) if for any subsolution u and supersolution v
in B(x, r) such that u ≤ v on ∂B(x, r) we have u ≤ v on B(x, r). We will denote

F (x, r, p,X) := inf
α
{−Tr(Aα(x)X)− bα(x) · p+ cα(x)r − fα(x)}

Lemma 2.40. Let u ∈ USC(Ω), v ∈ LSC(Ω) be, respectively, a sub- and a supersolu-
tion of (2.23). Assume that for some r̄ the equation (2.23) satisfies the Comparison
Principle in B(x, r) for all 0 < r < r̄, and that Fi is continuous and verifies the
SMP. If u− v attains a nonnegative maximum in Ω, then u ≡ v+constant.

Proof. We claim that w = u − v is a subsolution of Fi(x,w,Dw,D
2w) = 0. This is

easily seen if u, v are smooth because

inf
α
{Lα(u− v)} ≤ inf

α
{Lαu− fα(x)− inf

α′
[Lα

′
u− fα′(x)]} ≤ 0 .

However, handling the viscosity subsolution property requires more care and the use
of the local Comparison Principle. Once the claim is proved the conclusion of the
lemma is immediately achieved by the SMP for Fi.

We use the compact notations F [z], Fi[z] to denote, respectively, F (x, z,Dz,D2z)
and Fi(x, z,Dz,D

2z). Let x̄ ∈ Ω and ϕ be a smooth function such that (w−ϕ)(x̄) = 0
and w−ϕ has a strict maximum at x̄. Let us argue by contradiction, assuming that
Fi[ϕ(x̄)] > 0. We first observe that, by the continuity of Fi, there exists δ > 0 such
that

Fi(x̄, ϕ(x̄)− δ,Dϕ(x̄), D2ϕ(x̄)) > 0 .

Therefore, using the continuity of Fi and the smoothness of ϕ, we get the existence
of r such that

Fi[ϕ− δ] > 0 in B(x̄, r) .

Since w − ϕ attains a strict maximum at x̄, there exists 0 < η < δ such that
w−ϕ ≤ −η < 0 on ∂B(x̄, r). We now claim that v+ϕ− η satisfies F [v+ϕ− η] ≥ 0
in B(x̄, r). To this aim, take x̃ ∈ B(x̄, r) and ψ smooth such that v + ϕ − η − ψ
has a minimum at x̃. Using that v is a supersolution of (2.23), denoting by L̃αu :=
−Tr(Aα(x)D2u)− bα(x) ·Du, we obtain

0 ≤ F [ψ(x̃)−ϕ(x̃) + η] = inf
α
{L̃αψ(x̃)− L̃αϕ(x̃) + cα(x̃)(ψ(x̃)−ϕ(x̃) + η)− fα(x̃)}

≤ inf
α
{L̃αψ(x̃) + cα(x̃)ψ(x̃)− fα(x̃)} − inf

α
{L̃αϕ(x̃) + cα(x̃)(ϕ(x̃)− η)}

= F [ψ(x̃)]− Fi[ϕ(x̃)− η] < F [ψ(x̃)] .
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This proves the claim that v + ϕ − η is a supersolution of (2.23) in B(x̄, r). Now,
since u ≤ v+ϕ−η on ∂B(x̄, r), the (local) Comparison Principle yields u ≤ v+ϕ−η
in B(x̄, r), in contradiction with the fact that u(x̄) = v(x̄) + ϕ(x̄).

Now we can prove the second main result of Chapter 2. We will make the following
standard assumptions on the coefficients of F :

Aα(x) = σα(x)(σα(x))T , σα : Ω→ {d×m matrices } (2.25)

σα and bα : Ω→ Rd locally Lipschitz in x uniformly in α ; (2.26)

cα ≥ 0 , cα and fα continuous in x ∈ Ω uniformly in α . (2.27)

Theorem 2.41. Assume (2.25), (2.26), (2.27), and the existence of vector fields
Zi : Ω→ Rd, i = 1, ...,m, satisfying the Hörmander condition (H) and such that

Aα(x) ≥ Zi(x)⊗ Zi(x) for all α, i, and x .

If u ∈ USC(Ω), v ∈ LSC(Ω) are, respectively, a sub- and a supersolution of (2.23)
and u− v attains a nonnegative maximum in Ω, then u ≡ v+constant.

Proof. Under the current assumptions F is finite and continuous in Ω×Rd×Rd×Sd
and it is proper. The homogeneous operator Fi satisfies the SMP by Corollary 2.32.

Note that F satisfies the Lipschitz property in p in any compact subset K ⊂ Ω:

|F (x, r, p,X)− F (x, r, q,X)| ≤ LK |p− q| , ∀x ∈ K. (2.28)

Moreover there is η ∈ C(Ω), η > 0, such that

F (x, r, p,X + sI) ≤ F (x, r, p,X)− η(x)s, ∀ s > 0. (2.29)

In fact, Tr(Aα(x)I) ≥ Tr(Zi(x)⊗ Zi(x)) = |Zi(x)|2 for all i, and so

η(x) :=
1

m

m∑
i=1

|Zi(x)|2

does the job, because the Hörmander condition prevents that all Zi vanish at the
same point.

By standard viscosity theory [96] the equation (2.23) verifies the Comparison
Principle between a supersolution v and a strict subsolution, say uε, in a ball
B(x, r̄) ⊆ Ω for some r̄ > 0. More precisely, uε is an upper semicontinuous function
in B(x, r̄) such that

F (x, uε, Duε, D
2uε) ≤ α(x) in B(x, r̄)

with α ∈ C(B(x, r̄)) and α < 0. If, in addition, uε → u for all x as ε approaches to 0,
then one immediately concludes u ≤ v in B(x, r̄). Next we show that the Comparison
Principle holds in all sufficiently small balls, following an argument in [25]. To this
aim, fix x̄ ∈ Ω, r1 > 0 such that B(x̄, r1) ⊆ Ω, and let η̄ := minB(x̄,r1) η > 0. We
choose 0 < δ < η̄ and

r̄ := min

(
η̄ − δ
LK

, r1

)
, K := B(x̄, r1).
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Consider the function

uε(x) = u(x) + ε(e
|x−x̄|2

2 − λ), x ∈ B(x̄, r̄) .

We claim that uε is a strict subsolution in B(x̄, r̄) for λ sufficiently large independent

of ε. Let us take λ ≥ e
|x−x̄|2

2 for every x ∈ B(x̄, r̄) so that uε ≤ u. Straightforward
computations yield

∂i(uε) = ∂iu+ ε(xi − x̄)e
|x−x̄|2

2

and

∂ij(uε) = ∂iju+ ε(δij + (xi − x̄)(xj − x̄))e
|x−x̄|2

2

so that

D2uε = D2u+ ε(I + (x− x̄)⊗ (x− x̄))e
|x−x̄|2

2 ≥ D2u+ εe
|x−x̄|2

2 I

Since F is proper and uε ≤ u, one obtains

F (x, uε, Duε, D
2uε) ≤ F (x, u,Du+ ε(x− x̄)e

|x−x̄|2
2 , D2u+ εe

|x−x̄|2
2 I)

Combining (2.28) and (2.29), one immediately gets

F (x, u,Du+ ε(x− x̄)e
|x−x̄|2

2 , D2u+ εe
|x−x̄|2

2 I) ≤ F (x, u,Du,D2u)

+ εe
|x−x̄|2

2 (LK |x− x̄| − η(x))

Using that u is a subsolution and x ∈ B(x̄, r̄), by the above choice of r̄ we conclude

F (x, uε, Duε, D
2uε) ≤ −εe

|x−x̄|2
2 δ =: α(x) ,

as desired.

Corollary 2.42. Under the assumptions of Theorem 2.41 and for bounded Ω, if
u ∈ USC(Ω) and v ∈ LSC(Ω) are, respectively, a sub- and a supersolution of (2.23)
such that u ≤ v in ∂Ω, then u ≤ v in Ω. Moreover, if u(x) = v(x) for some x ∈ Ω
then u ≡ v.

Proof. If maxΩ̄(u− v) is negative or attained on ∂Ω the first conclusion is achieved.
Otherwise we can apply Theorem 2.41 and get u(x)− v(x) = k for all x ∈ Ω. Then,
for y ∈ ∂Ω,

k ≤ lim sup
x→y

(u(x)− v(x)) ≤ u(y)− v(y) ≤ 0,

which gives u ≤ v. Then the last statement follows from Theorem 2.41.

Remark 2.43. The last two results hold also for the equation (2.24) with convex
instead of concave operator. In fact z = v−u is a supersolution of Fs(x, z,Dz,D

2z) =
0 and we apply the Strong Minimum Principle of Corollary 2.32 ii) to this equation.
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Example 2.44. Theorem 2.41 and Corollary 2.42 apply to the quasilinear equations

−Tr(A(x)(D2
Xu)∗) +H(x, u,Du) = 0,

where either H = Hi or H = Hs with

Hi(x, r, p) := inf
α
{−bα(x) · p+ cα(x)r − fα(x)},

Hs(x, r, p) := sup
α
{−bα(x) · p+ cα(x)r − fα(x)},

the vector fields are X = (Z1, ..., Zm), and the coefficients A, bα, cα, fα satisfy (2.26)
and (2.27). Also the weak Comparison principle, i.e., the first statement of Corollary
2.42, is new for these equations, since the results of [25] cover either the case of a
Hamiltonian H depending only on the horizontal gradient DXu, or the case where
the Lipschitz constant of H w.r.t. p and the diameter of Ω are small compared to
minΩ

∑
i |Zi|2/m (however, in [25] H is not necessarily concave or convex in p).

Example 2.45. All the statements of the previous example hold word by word also
for the fully nonlinear equations

M−((D2
Xu)∗) +Hi(x, u,Du) = 0,

M+((D2
Xu)∗) +Hs(x, u,Du) = 0.
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Chapter 3

Strong maximum principles for
fully nonlinear degenerate
parabolic PDEs

The main goal of this chapter is to extend the results of Chapter 2 to the parabolic
framework. We thus focus on the validity of the SMP for fully nonlinear parabolic
equations of the form

∂tu+ F (x, t, u,Du,D2u) = 0 in O , (3.1)

where O := Ω × (0, T ) ⊆ Rd+1, with Ω bounded open set of Rd. To compare our
results with those analyzed in the existing literature, it turns out to be useful to
rewrite the operator appearing in (3.1) in the more general form

F (x, t, u, ∂tu,Dxu,D
2
xtu) = 0 , (3.2)

see e.g. [100, 132]. By strong maximum and minimum principle we mean the fol-
lowing properties: any u ∈ USC(Ω × [0, T ]) (resp. v ∈ LSC(Ω × [0, T ])) viscosity
subsolution (supersolution) to (3.1) attaining a nonnegative maximum (nonpositive
minimum) at (x0, t0) ∈ Ω× (0, T ], is constant in Ω× [0, t0].
We will work under the same kind of assumptions imposed in the elliptic framework
adding suitable modifications to deal with the time variable. More precisely, as for
the SMP, we suppose

(i) F is lower semicontinuous and proper in the sense of [96], i.e.

F (x, t, r, p,X) ≤ F (x, t, s, p, Y ) , r ≤ s , Y ≤ X .

for every (x, t) ∈ Ω× [0, T ], r ∈ R, p ∈ Rd\{0} and X, Y ∈ Sd.

(ii) (Scaling) For some φ > 0 the operator satisfies

ξs+ F (x, t, ξr, ξp, ξX) ≥ φ(ξ)(s+ F (x, t, r, p,X))

for all ξ ∈ (0, 1] and r ∈ [−1, 0] and for every (x, t) ∈ Ω × (0, T ), p ∈ Rd\{0}
and X ∈ Sd.
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We refer to remark 3.11 for the assumptions needed to get the strong minimum
principle. Analogously to the elliptic case, the idea is to characterize the set of
propagation of maxima of a (viscosity) subsolution to (3.1) in terms of subunit vector
fields associated to the fully nonlinear operator ∂t + F . To this aim, we note that
Definition 2.3 extends to the evolutive framework as follows.

Definition 3.1. Z ∈ Rd+1 is a generalized subunit vector field (briefly SV) for the
parabolic operator F at (x, t) ∈ O if

sup
γ>0

F (x, t, 0, pt, p, I − γ(p, pt)⊗ (p, pt)) > 0

for every (p, pt) ∈ Rd+1 such that (p, pt) · Z 6= 0. Accordingly, a subunit vector
Z ∈ Rd+1 is a generalized subunit vector for the parabolic operator ∂t +F in (3.1) at
(x, t) ∈ O if

sup
γ>0
{pt + F (x, t, 0, p, I − γp⊗ p)} > 0 ,

for every (p, pt) ∈ Rd+1 such that (p, pt) · Z 6= 0.

We point out that all the proofs can be formulated even for the general operator
F , but for the sake of simplicity and since our main examples will appear in the
evolution form (3.1), we provide all the treatment for the evolutive operator ∂t + F
only. We recall that one of the main purposes to describe the SMP for the operator
F in [100] was to embrace the Levi operator, which in fact appear in the form (3.2),

being defined as F̃ (x, y, r, s, p,X) : R3 × R3 × S3 → R via

F̃1(x, y, r, s, p,X) = −Tr(A(s, p)X) + k(x, y, t)(1 + |p|2)
3
2 ,

where k is a nonnegative continuous function and

A(s, p) =

 1 + s2 0 −sp1 + sp2

0 1 + s2 −sp2 − p1

−sp1 + p2 −sp2 − p1 p2
1 + p2

2

 .

The classical strong maximum principle for linear parabolic equations (see [191, 117]
for uniformly parabolic operators) states that if a subsolution to

∂tu+ Lu = ∂tu− Tr(A(x, t)D2u) + b(x, t) ·Du+ c(x, t)u = 0 in Ω× (0, T ) ,

where Ω× (0, T ) is a domain of Rd+1, A : Ω× (0, T )→ Rd×d, b : Ω× (0, T )→ Rd and
c ≥ 0 are continuous, attains a nonnegative maximum at some point (x0, t0) ∈ O,
then the maximum is achieved on every curve in O along which the time-coordinate
is nondecreasing.

Following the seminal paper [191] (see also [117, Chapter 2]), we now set QT =
Ω × (0, T ] and for any point P0 = (x0, t0) ∈ QT , we denote by S(P0) the set of
all points Q ∈ QT which can be connected to P0 by a simple continuous curve in
QT along which the t-coordinate is nondecreasing from Q to P0 and by C(P0) the
component of Ω×{t = t0} which contains P0. In the case that there is a propagation
of maxima in C(P0) we say that there is a horizontal propagation, while in case the
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maximum propagates in S(P0) we say that a vertical propagation of maxima occurs.
Note that C(P0) ⊂ S(P0). Similar strategies were implemented in the viscosity
solutions’ framework in [100, 60, 132]. See also [87] for the case of fully nonlinear
integro-differential equations and [108] for reaction-diffusion systems of PDEs.
Our main result reads as follows

Theorem 3.2. Let u be a viscosity subsolution of (3.1) attaining a nonnegative
maximum at P0 = (x0, t0) ∈ O . Assume F satisfies (i)-(ii) and there exist SVs for
∂t + F , Z1, ..., Zm, satisfying the Hörmander’s condition and F (x0, t0, 0, 0, 0) ≥ 0.
Then we have both horizontal and vertical propagation of maxima, that is u = u(P0)
is constant in S(P0).

This result is accomplished by studying separately the propagation of maxima in
C(P0) and S(P0). We will see that the additional assumption F (x0, t0, 0, 0, 0) ≥ 0
will be required for the vertical propagation only and this is consistent with the re-
sults of Chapter 2, where one needs (i)-(ii) and the existence of SVs for the operator.
We are mainly interested in evolutive fully nonlinear equations modeled on Hörmander
vector fields, among which the parabolic versions of the operators treated in Chapter
2 (i.e. PDEs on Carnot groups, Grushin plane,...). Given a family X = (X1, ..., Xm)
of C1,1 vector fields in O, as outlined in Section 1.0.5, one defines the intrinsic (or
horizontal) gradient DXu and the symmetrized horizontal Hessian (D2

Xu)∗. The
model fully nonlinear parabolic equation in this setting reads as

∂tu+G(x, t, u,DXu, (D
2
Xu)∗) = 0 , (3.3)

which can be recasted in Euclidean coordinates by writing

∂tu+ F (x, t, u, σT (x)Du, σT (x)D2uσ(x)) = 0 . (3.4)

We say that the evolutive operator ∂t+G is parabolic in the following sense: for any
(x, t) and q ∈ Rm fixed

sup
γ>0
{G(x, t, 0, q,X − γq ⊗ q)} > 0 (3.5)

for every (x, t) ∈ O, q ∈ Rm, q 6= 0 and X ∈ Sm. Similarly to the elliptic setting, our
result reads as follows

Corollary 3.3. Assume that the parabolic operator G verifies (i)-(ii) and (3.5) and
the vector fields X1, ..., Xm satisfy the Hörmander condition. Then, for every vis-
cosity subsolution of (3.4) attaining a nonnegative maximum in O we have both
horizontal and vertical propagation of maxima.

Clearly, all the results of Section 2.3.1 regarding subunit vector fields can be
reformulated exactly in the same manner allowing the time-dependence. We finally
recall that the SMP for linear evolutive PDEs modeled on Hörmander vector fields
can be deduced by Bony’s seminal paper, as pointed out in [151, Proposition 2.4].
We remark that very little is known in the context of general fully nonlinear evolutive
PDEs over Hörmander’s vector fields and the results of this chapter seem to be the
first ones dealing with such parabolic subelliptic equations. However, some of the
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examples we are going to present can be obtained by using the ideas established
in [21, 22, 23, 100] and, specifically, some results in the context of HJB and HJI
equations regarding propagation of maxima and minima have already appeared in
[100]. However, as announced, our results are obtained via a generalization of the
concept of subunit vector fields in the parabolic framework and the characterization
we propose, together with the examples in the subelliptic setting, seem to be new and
this is the main difference with respect to the known contributions in the parabolic
literature [100, 132]. This chapter is organized as follows. In the forthcoming section
we review the seminal results of L. Nirenberg and A. Friedman for linear uniformly
parabolic equations, in Section 3.2 we prove the horizontal propagation of maxima,
while Section 3.3 is devoted to the vertical propagation. Finally, Section 3.4 collects
some applications of the results of the previous sections.

3.1 Propagation of maxima in the linear case: a

survey

In this section we highlight the main ideas presented by L. Nirenberg regarding the
mechanism of the propagation of maxima for linear uniformly parabolic equations.
Consider the linear parabolic equation

∂tu− Tr(A(x, t)D2u) + b(x, t) ·Du+ c(x, t)u = 0 (3.6)

posed in ΩT := Ω × (0, T ), Ω being a connected open set of Rd, and assume that
A : ΩT → Sd is bounded and continuous, b : ΩT → Rd bounded and continuous and
c : ΩT → R bounded. Assume further that the above evolution operator is uniformly
parabolic, i.e. there exists α > 0 such that

A(x, t) ≥ αI ∀(x, t) ∈ ΩT .

The following theorem is proved in [191] for the two-dimensional heat equation and
[117] for the general case

Theorem 3.4. Let u ∈ C2,1(ΩT ) ∩ C(ΩT ) be a subsolution to (3.6) and let c ≥ 0.

• If c ≡ 0 and there exists P0 = (x0, t0) ∈ ΩT such that u attains its greatest
value M at (x0, t0) ∈ ΩT , then u ≡M on S(P0).

• If c 6= 0 and there exists P0 = (x0, t0) ∈ ΩT such that u attains its nonnegative
greatest value M at (x0, t0) ∈ ΩT , then u ≡M on S(P0).

As announced, the proof of this result relies on proving the propagation of maxima
on the horizontal component C(P0), i.e. along Ω × {t = t0}, and then the vertical
propagation, namely the propagation of maxima over S(P0), that we briefly describe
below.

- Horizontal propagation. Step 1. The proof is usually done by contradiction,
assuming that there exists a point P1 = (x1, t0) ∈ Ω × {t = t0} such that
u(P1) < u(P0). By classical geometric arguments, one can find a closed ellipsoid
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E such that (x̄, t0) ∈ C(P0), u < u(P0) in the interior of E with P ∗ = (x∗, t∗) ∈
∂E satisfying u(P ∗) = u(P0), x̄ 6= x∗ and P ∗ /∈ ∂Ω × (0, T ). One can then
determine a (d + 1)-dimensional ball B = B((x̃, t̃), R) ⊆ E with ∂B ∩ ∂E =
{(x∗, t∗)}.
Step 2. Find a classical strict supersolution in B such that v < 0 in the interior
of E, v > 0 outside E and v = 0 on ∂E. Such v can be found among barrier-
type functions, as in Proposition 2.13- Step 1. To find a contradiction, one
notices that the function w = u − εv solves ∂tw − Tr(A(x, t)D2w) + b(x, t) ·
Dw+ c(x, t)w < 0 and w attains its maximum at an interior point of B, which
would be impossible.

- Vertical propagation. The first part of the proof relies on proving a local vertical
propagation, i.e. if R is a rectangle of the form {(x, t) : xi0 − ai ≤ xi ≤
xi0 + ai, t0 − a0 ≤ t ≤ t0} ⊆ Ω × [0, t0] with ai small enough, then for any
R ⊆ Ω × (0, t0], the rectangle R minus its top face contains a point PR 6= P0

where the maximum propagates, i.e. such that u(PR) = u(P0). The proof
of this results is mainly based on geometric and contradiction arguments as
in the horizontal propagation. One finally shows indeed that the maximum
propagates over all S(P0).

In the case of degenerate equations, we remark that the Bony’s strong maximum
principle for operators written as a sum of squared vector fields easily applies, for
instance, to the sub-parabolic heat equation ∂tu−

∑m
i=1X

2
i u = 0.

The main issue in the program we develop in this chapter is to adapt the aforemen-
tioned geometric constructions to weak solutions (in the viscosity sense) of fully non-
linear parabolic equations, similarly to the elliptic counterpart developed in Chapter
2.

3.2 Horizontal propagation

As usual, we denote

K∗ := {z ∈ ∂K : there exists ν⊥K at z} ,

where ν denotes the Bony’s normal and K ⊆ Rd+1 a compact set as in Chapter
2. We prove the following results saying that if u is a viscosity subsolution to (3.1)
attaining a nonnegative maximum at some point P0 ∈ QT , then the subunit vector
fields associated to the operator F are orthogonal to the proximal normal of the set
of maxima of u.

Proposition 3.5. Let u ∈ USC(QT ) be a viscosity subsolution of (3.1) that attains
a nonnegative maximum at some point P0 = (x0, t0) ∈ QT . Suppose that (i)-(ii) hold
and ∂t + F has a subunit vector field as in Definition 3.1. Then K := Prop((x0, t0))
is such that for any z = (x∗, t∗) ∈ K∗∩QT and (ν, νt)⊥K at z we have Z · (ν, νt) = 0
for every subunit vector of ∂t + F at z.

Proof. Let z ∈ ∂K and ν⊥K at z. We argue by contradiction, assuming that there
exists a subunit vector Z such that Z · ν 6= 0. By definition of proximal normal,
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there exists ỹ = (x̃, t̃) ∈ QT and R > 0 such that B(ỹ, R) ∩ K = {z} (hence

ỹ = z +R (ν,νt)
|(ν,νt)|). As in the elliptic case (cf Proposition 2.13) we divide the proof in

two steps

Step 1. We claim that there exist r > 0 and a function v ∈ C2(ET ), ET :=
Rd × (0, T ), such that

∂tv + F (x, t, v(x, t), Dv(x, t), D2v(x, t)) ≥ C > 0 ∀(x, t) ∈ B(z, r) ,

v(z) = 0, −1 < v < 0 in B(y,R) and v > 0 outside B(y,R).
Let y = (x, t) and consider

v(y) = e−γR
2 − e−γ|y−ỹ|2 .

Direct calculations yields

∂tv(y) = 2γe−γ|y−ỹ|
2

(t− t̃) ,

Dv(y) = 2γe−γ|y−ỹ|
2

(x− x̃)

and

D2v(y) = 2γe−γ|y−ỹ|
2

(I − 2γ(x− x̃)⊗ (x− x̃)) .

Now, using that z − ỹ = −(ν, νt) and the scaling property (ii) we have

∂tv(z) + F (z, v(z), Dv(z), D2v(z)) = ∂tv(x∗, t∗)

+ F (x∗, t∗, v(x∗, t∗), Dv(x∗, t∗), D2v(x∗, t∗))

= 2γe−γR
2

(−νt) + F (x∗, t∗, 0, 2γe−γR
2

(−ν), 2γe−γR
2

(I − 2γν ⊗ ν))

≥ φ(2γe−γR
2

)(−νt + F (x∗, t∗, 0,−ν, I − 2γν ⊗ ν))

where φ > 0. Now the definition of subunit vector at z and the fact that Z ·(ν, νt) 6= 0
imply that

−νt + F (x∗, t∗, 0,−ν, I − 2γν ⊗ ν) > 0

for some γ > 0, giving thus

∂tv(z) + F (x, t, v(z), Dv(z), D2v(z)) > 0 .

By the lower semicontinuity (i), there exists r ∈ (0, R) such that

∂tv(x, t) + F (x, t, v(x, t), Dv(x, t), D2v(x, t)) ≥ C > 0 for every (x, t) ∈ B(z, r) .
(3.7)

Step 2. We claim now that for ε sufficiently small u(y) − u(z) ≤ εv(y) for every
y ∈ X := B(z, r) ∩B(y,R).
To this aim, choose ε sufficiently small so that u(y)−u(z) ≤ εv(y) for every y ∈ ∂X.
To prove that the inequality holds on X, suppose by contradiction that there exists
(x̄, t̄) ∈ X such that u(x̄, t̄) − u(z) − εv(x̄, t̄) = maxX(u − u(z) − εv) > 0. Since
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εv ∈ C∞(ET ), using that u−u(z) is a viscosity subsolution and the scaling property
(ii) we get

φ(ε)(∂tv(x̄, t̄) + F (x̄, t̄, v(x̄, t̄), ∂tv(x̄, t̄), Dv(x̄, t̄), D2v(x̄, t̄)))

≤ ε∂tv(x̄, t̄) + F (x̄, t̄, εv(x̄, t̄), εDv(x̄, t̄), εD2v(x̄, t̄)) ≤ 0 ,

a contradiction with (3.7) since φ > 0. This implies that the function Φ(y, s) :=
u(y, s) − εv(y, s) has a maximum at z in B(z, r). Since εv ∈ C∞(ET ), F is proper,
using also the definition of viscosity subsolution and (ii) we get

φ(ε)(∂tv(z) +F (x, t, v(z), Dv(z), D2v(z))) ≤ ε∂tv(z) +F (z, εv(z), εDv(z), εD2v(z))

≤ ε∂tv(z) + F (z, u(z), εDv(z), εD2v(z)) ≤ 0 ,

again a contradiction with (3.7).

Corollary 3.6 (Horizontal propagation of maxima). Assume (i)-(ii) and the exis-
tence of subunit vector fields Zi ∈ Rd+1, i = 1, ...,m of F satisfying the Hörmander
condition. Let u ∈ USC(QT ) be a viscosity subsolution of (3.1)attaining a nonnega-
tive maximum at P0 = (x0, t0) ∈ QT . Then, u is constant in C(P0).

Proof. We prove the result via a classical construction for parabolic problems (see
e.g. [117, 100]). Suppose by contradiction that there exists a point P1 = (x1, t0)
such that u(P1) < u(P0). Then, by the fact that u(P1) < u(P0) and the upper
semicontinuity of u, we can find a ball centered at P1 such that u(x, t) < u(P0)
for every (x, t) ∈ B(P1, ε), where ε < dist(P0, P1) < dist(P1, ∂Ω). As a next step,
we construct a family of ellipsoids whose length of the vertical axes is ε

2
and the

horizontal one is λ. Again by the upper semicontinuity of u and eventually increasing
λ, we find a λ̄ and an ellipsoid

Eλ̄,ε := {(x, t) : |x− x1|2 + λ̄|t− t0|2 ≤ (ε/2)2λ̄}

such that u(x, t) < u(P0) for every (x, t) ∈ IntEλ̄,ε and u(x∗, t∗) = M at some point
(x∗, t∗) ∈ ∂Eλ̄,R. Let P ∗ := (x∗, t∗) and note that x∗ 6= x1. Let then B := B((x̃, t̃), r)
with r small enough such that x̃ 6= x∗. Then we observe that µ := (x̃ − x∗, t̃ −
t∗)⊥Prop((x∗, t∗)) at P ∗. Since the vector fields Z1, ..., Zm fulfill the Hörmander
condition, one can find d vector fields Wj ∈ L(Z1, ..., Zm), j = 1, ..., d, which are
linearly independent and satisfy Wj · µ = 0 in view of Proposition 3.5. However,
since (Wj)d+1 = 0, the previous orthogonality condition would imply that the first d
components of µ are 0, in contradiction with the fact that x̃ 6= x∗.

3.3 Vertical Propagation

We are now ready to study the vertical propagation of maxima. In particular, we
will prove first that if u ∈ USC(QT ) is a viscosity subsolution of (3.1) that attains
a nonnegative maximum at P0 = (x0, t0) ∈ QT , then such a maximum propagates
locally in Ω× (0, t0). More precisely, let us consider the following rectangle

R := {(x, t) : xi0 − ai ≤ xi ≤ xi0 + ai, t0 − a0 ≤ t ≤ t0}
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with ai, a0 small enough, and denote byR0 the rectangleR minus the top face t = t0.
We prove that for any rectangle R ⊆ Ω × [0, t0], R0 contains a point P 6= P0 such
that u(P ) = u(P0).

Proposition 3.7. Let u ∈ USC(QT ) be a viscosity subsolution of (3.1) that attains
a nonnegative maximum at some point P0 = (x0, t0) ∈ QT . Assume that F satisfies
(i)-(ii) and F (x0, t0, 0, 0, 0) ≥ 0. Then, for any rectangle R ⊆ Ω× [0, t0], the set R0

contains a point P 6= P0 such that u(P ) = u(P0).

Proof. Suppose by contradiction that there exists a rectangleR ⊆ Ω×[0, t0) in which
u < u(P0). Consider in R the auxiliary function

h(x, t) = ε(t− t0) .

Then, choose ε > 0 sufficiently small such that

u(x, t)− u(x0, t0) ≤ h(x, t)

Moreover u(x0, t0) − h(x0, t0) = u(x0, t0). Hence the function Φ(x, t) := u(x, t) −
h(x, t) has a maximum at (x0, t0). On one hand, since h is smooth and u is a
viscosity subsolution of (3.1) we get

∂th(x0, t0) + F (x0, t0, u(x0, t0), Dh(x0, t0), D2h(x0, t0)) ≤ 0 .

On the other hand, we have

∂th(x0, t0) + F (x0, t0, u(x0, t0), Dh(x0, t0), D2h(x0, t0)) = .

= ε+ F (x0, t0, u(x0, t0), 0, 0) ≥ ε+ F (x0, t0, 0, 0, 0) > 0 ,

where the first inequality follows by (i) together with u(x0, t0) ≥ 0 and the second one
by the hypothesis F (x0, t0, 0, 0, 0) ≥ 0. This contradiction completes the proof.

Remark 3.8. As in the elliptic case (cf Remark 2.17) the scaling property and the
existence of subunit vector fields imply that F (x0, t0, 0, 0, 0) ≥ 0.

The next result shows the local vertical propagation of maxima. This is an
extension of [117, Lemma 2.1.4 pag.36] to the viscosity solutions’ framework (see
also [100, Corollary 2.3]).

Corollary 3.9. Let u ∈ USC(QT ) be a viscosity subsolution of (3.1) attaining a
nonnegative maximum at P0 = (x0, t0) ∈ QT . Assume that F satisfies (i)-(ii) and
F (x0, t0, 0, 0, 0) ≥ 0. Moreover, suppose also that there exist SV fields for F . Then
u is constant in any rectangle R = {(x, t) : xi0 − ai ≤ xi ≤ xi0 + ai, t0 − a0 ≤ t ≤
t0} ⊆ Ω× [0, t0].

Proof. Let R := {(x, t) : xi0 − ai ≤ xi ≤ xi0 + ai, t0 − a0 ≤ t ≤ t0} be a rectangle
contained in Ω× [0, t0] and suppose by contradiction that there is Q ∈ R such that
u(Q) < u(P0).
Since u < u(P0) also in a neighborhood of Q, we may also assume that Q does not
lie on t = t0. On the straight segment γ connecting Q to P0 there exists a point P1
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such that u(P1) = u(P0) and u < u(P1) for all points γ connecting Q and P1. So we
may assume P1 = P0 and Q lying on t = t0 − a0, otherwise we can restrict ourselves
to a smaller rectangle.
Since for every point Q′ ∈ R0, C(Q′) contains some point of γ and u < u(P0) in γ,
the horizontal propagation implies u(Q′) < u(P0). Hence we may assume u < u(P0)
in R and proceed as in Proposition 3.7 to get a contradiction.

The next proof is the same as in [117, Theorem 2.2.1], whose arguments are only
based on geometric constructions.

Corollary 3.10 (Strong Maximum Principle). Let u ∈ USC(QT ) be a viscosity sub-
solution of (3.1) attaining a nonnegative maximum at P0 = (x0, t0) ∈ QT . Assume
that F (x0, t0, 0, 0, 0) ≥ 0 and satisfies (i)-(ii) and that there exist SV Z1, ..., Zm for
F at (x0, t0) satisfying the Hörmander condition. Then u is constant in S(P0).

Proof. The proof of this result is based only on geometric arguments. Suppose that
u 6= u(P0) in S(P0). Then there exists a point Q ∈ S(P0) such that u(Q) < u(P0).
Connect Q to P0 by a simple continuous curve γ lying in S(P0) such that the t-
coordinate is nondecreasing from Q to P0 (it can be done since Ω is connected). As
before, on γ there exists a point P1 such that u(P1) = u(P0) and u(P ) < u(P1) for
all P on γ lying between Q and P1. Denote by γ0 the segment between Q and P1.
Construct a rectangle whose top face is centered at P1, i.e.

R′ := {(x, t) : xi1 − ai ≤ xi ≤ xi1 + ai, t1 − a ≤ t ≤ t1} ,

where a is sufficiently small so that the rectangle lies in QT . Applying the local
vertical propagation of maxima in Corollary 3.9 we get u ≡ u(P1) in this rectangle.
As a consequence u ≡ u(P1) in γ0 (which in fact lies in the rectangle) and this
contradicts the definition of P1.

Remark 3.11. Results for the propagation of minima can be deduced from the
previous analysis simply by observing that v ∈ LSC(Ω× (0, T )) is a supersolution to
(3.1) if and only if u = −v is a subsolution to

∂tu+ F (x,−u,−Du,−D2u) = 0 in Ω× (0, T ) .

Denote by F−(x, r, p,X) = −F (x,−r,−p,−X). Then, the assumptions needed to
get the strong minimum principle are the following

(i’) F is upper semicontinuous and proper.

(ii’) (Scaling) For some φ > 0 the operator satisfies

ξs+ F (x, t, ξr, ξp, ξX) ≤ φ(ξ)(s+ F (x, t, r, p,X))

for all ξ ∈ (0, 1] and r ∈ [−1, 0] and for every (x, t) ∈ Ω × (0, T ), p ∈ Rd\{0}
and X ∈ Sd.

Finally, Z ∈ Rd+1 is subunit for ∂t + F− at (x, t) ∈ O if

inf
γ>0
{pt + F (x, t, 0, pt, p, γp⊗ p− I)} > 0 ,

for every (p, pt) ∈ Rd+1 such that (p, pt) · Z 6= 0.
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3.4 Some applications

3.4.1 Fully nonlinear degenerate parabolic equations

As in the elliptic case, the main application concerns fully nonlinear evolutive subel-
liptic equations. In this framework one is given a family X = (X1, ..., Xm) of C1,1

vector fields defined in Ω. The intrinsic gradient and intrinsic Hessian are defined
as DXu = (X1u, ..., Xmu) and (D2

Xu)ij = Xi(Xju). After choosing a basis in the
Euclidean space, we write Xj = σj · D, with σj : Ω → Rd, and σ = σ(x) =
[σ1(x), ..., σm(x)] ∈ Rd×m. Then

DXu = σTDu = (σ1 ·Du, ..., σm ·Du)

and
Xi(Xju) = (σTD2u σ)ij + (Dσj σi) ·Du .

Denote by Y ∗ the symmetrized matrix of Y . By the chain rule (see, e.g., [34, Lemma
3]) one can obtain that for u ∈ C2

(D2
Xu)∗ = σTD2uσ + g(x,Du) ,

where the correction term g is

(g(x, P ))ij =
1

2
[(Dσj σi) · p+ (Dσi σj) · p] .

Then, we focus on the parabolic equation (3.3) that can be written as

∂tu+G(x, t, u, σT (x)Du, σT (x)D2uσ(x) + g(x,Du)) = 0 , (3.8)

which is of the form (3.1) if we define

pt + F (x, t, r, p,X) := pt +G(x, t, r, σT (x)p, σT (x)Xσ(x) + g(x, p)) . (3.9)

Lemma 3.12. If pt + G satisfies properties (i), (ii) and (3.5), then pt + F satisfies
properties (i) and (ii) and the vector fields (σi, 0) are subunit for ∂t +F in the sense
of Definition 3.1.

Proof. (i) holds because X ≤ Y implies σT (x)Xσ(x) ≤ σT (x)Y σ(x), so F is proper.
(ii) holds for F if it does for G because g(x, p) is positively 1-homogeneous in the

variable p.
To prove that any Xi is SV for F we use property (3.5) with q = σT (x)p, X =

σTσ + g to get

pt + F (x, t, 0, p, I − γp⊗ p)
= pt +G(x, t, 0, σ(x)Tp, σT (x)Iσ(x)− γ(σT (x)p)⊗ (σT (x)p) + g(x, p)) > 0

for some γ > 0 if σi(x) · p 6= 0.

Combining this Lemma and Corollary 3.10 we have the following SMP for evolu-
tive subelliptic equations. As largely discussed in Chapter 2, this result applies for
instance to PDEs on Carnot groups and over Grushin vector fields.
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Corollary 3.13. Assume that G verifies (i), (ii), G(x0, t0, 0, 0, 0) ≥ 0 and (3.5), and
let u be a subsolution of (2.13), attaining a nonnegative maximum at (x0, t0) ∈ QT .
Then we have both horizontal and vertical propagation of maxima.

The model equation to apply our results is

∂tu+ c(x, t)|u|k−1u+ a(x, t)E(DXu, (D
2
Xu)∗) = 0 , (3.10)

where we assume E : Rm\{0} ×Rm×m is positively homogeneous of degree α ≥ 0, a
is continuous and

c ≥ 0 , a > 0 , and either c = 0 or α ≤ k , k > 0 .

Example 3.14. The Pucci’s extremal operators M+(M) andM−(M) on symmetric
matrices M ∈ Sm are 1-homogeneous and satisfy (3.5) because

M+
λ,Λ(X − γq ⊗ q) ≥M−

λ,Λ(X − γq ⊗ q) ≥M−
λ,Λ(X) + λγ|q|2.

then the equation (3.10) with E(D2
Xu)∗) =M+

λ,Λ((D2
Xu)∗) and k = 1 (which ensures

the validity of (ii)) satisfy the SMP and the Strong Minimum principle, and the
same holds if M+ is replaced by M−. The first result for this evolutive operators
appeared in [100] in the Euclidean framework. The first analysis of such parabolic
extremal operators goes back to [13].

Example 3.15. Another example of (3.10) are quasi-linear parabolic subelliptic
equations of the form

∂tu−∆Xu+ b(x, t)|DXu(x, t)|m + c(x, t)|u|k−1u = 0 .

Setting G(q,X) = −Tr(X) + b(x, t)|q|m, we observe that (3.5) is clearly satisfied
since

G(q,X − γq ⊗ q) = −Tr(X) + b(x, t)|q|m + γ|q|2 .
Moreover, the scaling property is satisfied if either

b ≥ 0 and m ≤ 1 or b ≤ 0 and m ≥ 1 ,

and either
c ≡ 0 or k = 1 .

Therefore, under these assumptions, we have both horizontal and vertical propaga-
tion of maxima for these subelliptic quasi-linear parabolic equations.

Example 3.16. Consider the equation

∂tu− |DXu|h−3∆X ,∞u = 0

for h ≥ 1, where X is a system of vector fields inducing a Carnot group. The operator
is homogeneous of degree h in space and has been studied in [144] when h = 1, [196]
for 1 < h < 3 in the Euclidean case, and lately revisited in the context of Carnot
groups in [43]. The results of [100] give both the horizontal and vertical propagation
of maxima for the Euclidean counterpart of such evolutive operator. Our analysis
provide the SMP for the particular case h = 1, which ensures the validity of the
scaling assumption (ii) (see also Example 2.28 for the elliptic counterpart). See in
particular [144, 43] for the definition of viscosity solution in this context. Note that
the above proofs can be accommodated to handle these singular PDEs by using
upper and lower semicontinuous envelopes of G as in the hypothesis given in [100].
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Remark 3.17. We remark that, unlike the elliptic setting, the parabolic p-Laplacian
equation with p 6= 2 is not covered by our results, since the scaling property (ii) for
the evolutive operator fails (see e.g. [100, Example 2.6]). However, for such parabolic
equations the SMP may fail when p > 2 due to the results in [146] for the parabolic
equation ∂tu−∆pu = 0 in the Euclidean setting. We are not aware of similar results
in the subelliptic framework.

3.4.2 Hamilton-Jacobi-Bellman Equations

We are given a family of linear degenerate operators

Lαu := −Tr(Aα(x, t)D2u)− bα(x, t) ·Du+ cα(x, t)u (3.11)

where the parameter α takes values in a given set, Aα(x, t) ≥ 0, Aα ∈ Sd and
cα(x, t) ≥ 0 for all (x, t) and α. Here, we consider the equations

∂tu+Fs(x, t, u,Du,D
2u) := ∂tu+sup

α
Lαu , ∂tu+Fi(x, t, u,Du,D

2u) := ∂tu+inf
α
Lαu

(3.12)
and we assume that Fs(x, t, r, p,X), Fi(x, t, r, p,X) are finite and continuous for all
entries (x, t, r, p,X) ∈ O × Rd × Rd × Sd. They are clearly proper and positively
1-homogeneous.

Remark 3.18. It is straightforward to see that if Z ∈ Rd is subunit for F , then the
vector field (Z, 0) ∈ Rd+1 is SV for the parabolic operator ∂t + F in the sense of
Definition 3.1.

We can characterize the subunit vectors of these operators as follows

Lemma 3.19. Let Z ∈ Rd and (x, t) ∈ O.
i) (Z, 0) is SV for ∂t + Fi at (x, t) if and only if Z is subunit for all the matrices
Aα(x, t), i.e., Aα(x, t) ≥ Z ⊗ Z for all α;
ii) (Z, 0) is SV for ∂t + Fs at (x, t) if there exists ᾱ such that Z is subunit for the
matrix Aᾱ(x, t).

Proof. This is a consequence of Lemma 2.31 and Remark 3.18.

The results of the previous sections combined with Lemma 3.19 give informations
on the sets of propagation of maxima and minima of sub- and supersolutions.

Corollary 3.20. Assume Zi : O → Rd, i = 1, ...,m, are locally Lipschitz vector
fields such that

Aα(x, t) ≥ Zi(x, t)⊗ Zi(x, t) for all α, i, and x, t ,

and satisfying the Hörmander condition. Then
i) any subsolution of ∂tu + infα L

αu = 0 attaining a nonnegative maximum at
P0 ∈ QT is constant in S(P0),
ii) any supersolution of ∂tu + supα L

αu = 0 attaining a nonpositive minimum at
P0 ∈ QT is constant in S(P0).
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3.4.3 Hamilton-Jacobi-Isaacs Equations

Now we are given a two-parameter family of linear degenerate elliptic operators

Lα,βu := −Tr(Aα,β(x, t)D2
xu)− bα,β(x, t) ·Du+ cα,β(x, t)u

where the parameters α, β take values in two given sets, Aα,β(x, t) ≥ 0, Aα,β ∈ Sd and
cα,β(x, t) ≥ 0 for all x, t, α, β. The Hamilton-Jacobi-Isaacs (briefly, H-J-I) operators
are

∂tu+ F−(x, t, u,Du,D2u) := ∂tu+ sup
β

inf
α
Lα,βu

and
∂tu+ F+(x, t, u,Du,D2u) := ∂tu+ inf

α
sup
β
Lα,βu .

and we assume that F−(x, r, p,X), F+(x, r, p,X) are finite and continuous for all
entries (x, t, r, p,X) ∈ O × Rd × Rd × Sd. They are clearly proper and positively 1-
homogeneous. We can find subunit vectors of these operators following the arguments
of Corollary 3.19.

Lemma 3.21. Let Z ∈ Rd and (x, t) ∈ O.
i) (Z, 0) is SV for ∂t + F− at (x, t) if there exists β̄ such that Aα,β̄(x, t) ≥ Z ⊗Z for
all α;
ii) (Z, 0) is SV for ∂t+F+ at (x, t) if for all α there exists β(α) such that Aα,β(α)(x, t) ≥
Z ⊗ Z.

Then we get the following SMP for the H-J-I equations.

Corollary 3.22. Assume Zi : O → Rd+1, i = 1, ...,m, are locally Lipschitz vector
fields satisfying the Hörmander condition. Then
i) if there exists β̄ such that

Aα,β̄(x, t) ≥ Zi(x, t)⊗ Zi(x, t) for all α, i, and x, t ,

then any subsolution of ∂tu+ supβ infα L
α,βu = 0 attaining a nonnegative maximum

in QT is constant in S(P0);
ii) if for all α there exists β(α) such that

Aα,β(α)(x, t) ≥ Zi(x, t)⊗ Zi(x, t) for all i and x, t ,

then any subsolution of ∂tu+ infα supβ L
α,βu = 0 attaining a nonnegative maximum

in QT is constant in S(P0).

Sufficient conditions for the Strong Minimum Principle can be easily found in the
same way owing to Remark 3.11, as follows.

Corollary 3.23. Assume Zi : O → Rd, i = 1, ...,m, are locally Lipschitz vector
fields satisfying the Hörmander condition. Then
i) if for all β there exists α(β) such that

Aα(β),β(x, t) ≥ Zi(x, t)⊗ Zi(x, t) for all i and x, t ,
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then any supersolution of ∂tu+ supβ infα L
α,βu = 0 attaining a nonpositive minimum

in QT is constant in S(P0);
ii) if there exists ᾱ such that

Aᾱ,β(x, t) ≥ Zi(x, t)⊗ Zi(x, t) for all β, i, and x, t ,

then any supersolution of ∂tu+ infα supβ L
α,βu = 0 attaining a nonpositive minimum

in QT is constant in S(P0).

Example 3.24. If X = (X1, ..., Xm) are C1,1 vector fields on O satisfying the
Hörmander condition, a, b ∈ C(O) are nonnegative, andM+,M− denote the Pucci’s
extremal operators, then the evolutive equation

∂tu+ a(x, t)M+
λ,Λ((D2

Xu)∗) + b(x, t)M−
λ,Λ((D2

Xu)∗) = 0

is of H-J-I form and satisfies both the SMP and the Strong Minimum Principle.
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Chapter 4

Liouville properties for fully
nonlinear subelliptic problems

In this chapter we are interested in Liouville theorems for fully nonlinear second
order subelliptic equations of the form

G(x, u,DXu, (D
2
Xu)∗) = 0 in Rd , (4.1)

where DXu ∈ Rm and (D2
Xu)∗ ∈ Sm, m ≤ d, stand for the horizontal gradient

and the symmetrized horizontal Hessian respectively, as defined in Subsection 1.0.5.
The typical approach to handle such PDEs is to write the equation in Euclidean
coordinates by defining the (degenerate) operator

F (x, r,Du,D2u) := G(x, r, σT (x)p, σT (x)D2uσ(x) + g(x,Du)) .

(see Remark 4.11 below). More precisely, we investigate sufficient conditions for the
validity of Liouville properties such as:

Any subsolution (resp. supersolution) of (4.1) bounded from above (resp. below) is
a constant.

In particular, we first give an abstract result for general equations of the form (4.1)
modeled on Hörmander vector fields that are neither convex nor concave. We then
apply the results to PDEs driven by Pucci’s operators perturbed by first order
terms in the subelliptic setting in order to achieve the results for fully nonlinear
uniformly subelliptic equations. We provide several examples among which PDEs
on the Heisenberg group Hd and free step 2 Carnot groups with r-generators (see
Subsection 1.0.3). We conclude our study by providing also some examples for fully
nonlinear equations on the Grushin plane (Subsection 1.0.4), where no group struc-
ture is available but the Hörmander condition is still in force.

4.1 A glimpse on the method of proof for linear

equations

Before showing our main results, we prefer to present the proof of the Liouville
theorem for classical C2 subsolutions to linear uniformly elliptic equations in the
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Euclidean framework, which serves as a guideline for our proof in the nonlinear
and subelliptic setting. It is based on classical tools such as strong maximum and
comparison principles.

Theorem 4.1. Assume that the operator Lu := −Tr(A(x)D2u) + b(x) ·Du is uni-
formly elliptic, with a : Rd → Sd, b : Rd → Rd bounded and continuous. Suppose also
that there exists a classical supersolution w to Lu = 0 which blows up at infinity.
More precisely, we assume that there exist R > 0 and w ∈ C2(Rd\{0}) such that

(i) Lw ≥ 0 for |x| > R

(ii) lim|x|→+∞w = +∞.

Let also u ∈ C2(Rd) be such that Lu ≤ 0 in Rdand u(x) ≤ C in Rd. Then, u is
constant.

Remark 4.2. This result is a special case of [16, Theorem 2.1] and applies to the
case of the Laplacian (i.e. aij = δij and b = 0) when d ≤ 2; therefore it gives a
different proof of the Liouville theorem [197, Theorem 2.29]. Indeed, the function
w := log |x| fulfills the above assumptions, giving thus that every bounded from above
subharmonic function is constant. However, as pointed out in the introduction, the
Liouville property fails as soon as d ≥ 3, where indeed w is no longer a classical
supersolution of −∆u = 0. It also applies to subsolutions of −∆u + b(x) · Du = 0
in any space dimension under assumptions on the drift b implying the existence of a
Lyapunov-like function w, see e.g. [16, Section 1].

Proof. Let u be a classical subsolution to Lu = 0 in Rd and let ζ > 0. Set

vζ(x) = u(x)− ζw(x) for |x| ≥ R̄

for some R̄ > R > 0. Clearly, vζ ∈ C2(ΩR̄), where we set ΩR̄ := {x ∈ Rd : |x| ≥ R̄}.
Moreover, we have

lim
|x|→+∞

vζ(x) = −∞ and Lvζ = Lu− ζLw ≤ 0 for every x such that |x| > R̄ .

Define Cζ := max{|x|=R̄} vζ(x). Since

lim
|x|→+∞

vζ(x) = −∞ ,

there exists Kζ > R̄ such that vζ < Cη for every x such that |x| ≥ Kζ . By the weak
maximum principle (see [122]) applied on the set {x ∈ Rd : R̄ < |x| < Kζ} we have

max
{x∈Rd:R̄<|x|<Kζ}

vζ(x) = max
{x∈Rd:|x|=R̄ or |x|=Kζ}

vζ(x)

Since vζ(x) < Cζ for every x such that |x| ≥ Kζ , we conclude that for every y such
that |y| ≥ R̄

vζ(y) = u(y)− ζw(y) ≤ max
{x∈Rd:|x|=R̄}

vη ≤ max
{x∈Rd:|x|=R̄}

u− ζ min
{x∈Rd:|x|=R̄}

w .
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On one hand, letting ζ → 0 we conclude

u(y) ≤ max
{x∈Rd:|x|=R̄}

u for all |y| > R̄ .

On the other hand, owing to the weak maximum principle in the set B(0, R̄) we
obtain

u(y) ≤ max
{x∈Rd:|x|=R̄}

u for all |y| < R̄ .

Combining the above inequalities one concludes

u(y) ≤ max
{x∈Rd:|x|=R̄}

u for all y ∈ Rd .

Hence, u attains its maximum over ∂B(0, R̄) and then the conclusion follows by the
strong maximum principle for classical linear uniformly elliptic equations [122].

Remark 4.3. The same result remains true if L is replaced by a degenerate elliptic
operator LXu = −

∑
i,j XiXju+ b(x) ·DXu, provided the vector fields X satisfy the

Hörmander condition and b : Rd → Rm, m ≤ d, bounded and continuous, the proof
being exactly the same owing to Bony’s strong maximum principle for subelliptic
equations. An example of such result is [181, Proposition 3.1].

4.2 Liouville theorem: the general case

4.2.1 Abstract result

In this Section we consider a general equation of the form

F (x, u,Du,D2u) = 0 in Rd. (4.2)

We will denote F [u] := F (x, u,Du,D2u) and make the following assumptions

(i) F is continuous, proper, satisfies

F [ϕ− ψ] ≤ F [ϕ]− F [ψ] for all ϕ, ψ ∈ C2(Rd) (S1)

and F (x, r, 0, 0) ≥ 0 for every x ∈ Ω and r ≥ 0.

(ii) F satisfies the comparison principle in any bounded open set Ω, namely, if u
and v are respectively a viscosity subsolution and a viscosity supersolution of
(4.1) such that u ≤ v on ∂Ω, then u ≤ v in Ω.

(iii) There exists Ro ≥ 0 and w ∈ LSC(Rd) viscosity supersolution of (4.2) for
|x| > Ro and satisfying lim|x|→∞w(x) = +∞.

(iv) F satisfies the strong maximum principle, namely, any viscosity subsolution of
(4.2) that attains an nonnegative maximum must be constant.

The prototype examples of operators satisfying (S1) are Pucci’s minimal operators,
or, more in general, Bellman operators defined as infimum of linear operators.
To prove the analogous results for viscosity supersolutions, we need to replace (i)-(ii)
and (iv) above by
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(i’) F is continuous, proper, satisfies

F [ϕ− ψ] ≥ F [ϕ]− F [ψ] for all ϕ, ψ ∈ C2(Rd) (S2)

and F (x, r, 0, 0) ≤ 0 for every x ∈ Ω and r ≤ 0.

(ii’) There exists Ro ≥ 0 and W ∈ USC(Rd) viscosity subsolution to (4.2) for
|x| > Ro and satisfying lim|x|→∞W (x) = −∞.

(iv’) F satisfies the strong minimum principle.

We now adapt the procedure outlined in Theorem 4.1 for linear equations in the
fully nonlinear degenerate setting. Similar arguments were used in [16, 17] for fully
nonlinear uniformly elliptic equations and quasi-linear equations with Hörmander
diffusion and in [181, Proposition 3.1] for linear PDEs in the first Heisenberg group
H1.

Proposition 4.4. Assume (i)-(iv). Let u ∈ USC(Rd) be a viscosity subsolution to
(4.2) satisfying

lim sup
|x|→∞

u(x)

w(x)
≤ 0 . (4.3)

for w as in (iii). If u ≥ 0, then u is constant.

Proof. We divide the proof in four steps.

Step 1. Define uζ(x) := u(x) − ζw(x) for ζ > 0. Possibly increasing Ro, we can
assume that u is not constant in B(0, Ro) := {x ∈ Rd : |x| ≤ R0}, otherwise we are
done. Set

Cζ := max
|x|≤Ro

uζ(x) . (4.4)

First of all, note that under the standing assumptions F [Cζ ] ≥ 0 for every ζ suf-
ficiently small. Since u ≥ 0 by the standing assumptions we assume that Cζ > 0
for ζ sufficiently small. In fact, if this were not the case, we could conclude letting
ζ → 0 that u(x) = 0 for every x such that |x| ≤ Ro, in contradiction with the initial
assumption that u is not constant in the ball B(0, Ro).

Step 2. The growth condition (4.3) implies

lim sup
|x|→∞

uζ(x)

w(x)
≤ −ζ < 0 ∀ζ > 0 .

As a consequence we have
lim
|x|→+∞

uζ(x) = −∞ . (4.5)

Then, for all ζ > 0 there exists Rζ > Ro such that

uζ(x) ≤ Cζ for all |x| ≥ Rζ . (4.6)

Step 3. We prove that uζ is a viscosity subsolution of F [u] = 0 in {x ∈ Rd : |x| >
Ro}. Fix x̄ such that |x̄| > Ro and a smooth function ϕ such that (uζ − ϕ)(x̄) = 0

54



and uζ − ϕ has a strict maximum at x̄. Assume by contradiction that F [ϕ(x̄)] > 0.
By the continuity of F there exists δ > 0 such that F [ϕ(x̄) − δ] > 0. Hence, using
again the continuity of F and the regularity of ϕ we can conclude that there exists
0 < r < |x̄| −Ro such that

F [ϕ− δ] > 0 in B(x̄, r) .

Since uζ − ϕ has a strict maximum at x̄, there exists 0 < k < δ such that uζ − ϕ ≤
−k < 0 on ∂B(x̄, r) Moreover, we claim that ζw+ϕ− k satisfies F [ζw+ϕ− k] ≥ 0
in B(x̄, r). Indeed take x̃ ∈ B(x̄, r) and ψ smooth such that

ζw + ϕ− k − ψ has a minimum at x̃.

Using that w is a viscosity supersolution to (4.1), the fact that G is proper and (S1)
we get

0 ≤ F [ψ(x̃)− ϕ(x̃) + k] ≤ F [ψ(x̃)− ϕ(x̃) + δ] ≤ F [ψ(x̃)]− F [ϕ(x̃)− δ] < F [ψ(x̃)] ,

where in the last inequality we used that F [ϕ(x̃) − δ] > 0. Therefore F [ψ(x̃)] ≥ 0,
which in turn implies that ζw + ϕ − k is a viscosity supersolution to F [u] = 0 in
B(x̄, r). Since u ≤ ζw + ϕ − k on ∂B(x̄, r), we can now apply the comparison
principle and get

u ≤ ζw + ϕ− k in B(x̄, r) ,

in contradiction with the fact that u(x̄) = ζw(x̄) + ϕ(x̄).

Step 4. We use the comparison principle in Ω = {x : Ro < |x| < Rζ}. Since
F [Cζ ] ≥ 0 by Step 1, we get uζ ≤ Cζ in Ω by Step 2 (precisely by (4.6)) and Step 3.
Therefore we have

uζ(x) ≤ Cζ for all |x| ≥ Ro .

By letting ζ → 0+ we obtain

u(x) ≤ max
|y|≤Ro

u(y)

and hence u attains its maximum x̄ over Rd. If now u ≥ 0, the SMP holds and we
have the desired conclusion.

The next result emphasizes that the assumption u ≥ 0 can be dropped provided
r 7−→ F (x, r, p,X) is constant: this will be the case of HJB operators we discuss in
the next sections.

Corollary 4.5. Assume (i)-(iv). Let u ∈ USC(Rd) be a viscosity subsolution to (4.2)
such that (4.3) holds for w as in (iii). Assume r 7→ F (x, r, p,X) is constant for all
x, p,X and F (x, r, 0, 0) = 0 for every x ∈ Ω. Then, u is constant.

Proof. The proof goes along the same lines as Proposition 4.4. It is sufficient to note
that under the standing assumptions on F , u+ |u(x̄)|, x̄ standing for the maximum
point in Proposition 4.4, is again a subsolution to (4.2), since r 7→ F (x, r, p,X) is
constant for all x, p,X, and one concludes.
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Similar result holds for the case of supersolutions to (4.2).

Proposition 4.6. Assume (i’),(ii),(iii’) and (iv’). Let v ∈ USC(Rd) be a viscosity
supersolution to (4.2) satisfying

lim inf
|x|→∞

v(x)

W (x)
≤ 0 . (4.7)

for W as in (iii’). If v ≤ 0, then v is constant.

Proof. We proceed as in the previous theorem. We consider the function vζ :=
v(x)− ζW (x). As in Step 1 we get F [cζ ] ≤ 0 for ζ sufficiently small, where

cζ := min
|x|≤Ro

vζ(x) .

Following Step 2, by (4.7) and W (x) < 0 for |x| large, we get lim|x|→+∞ vζ(x) = +∞
for every ζ > 0. Then for all ζ > 0 sufficiently small there exists Rζ > Ro such that

vζ(x) ≥ cζ ∀|x| ≥ Rζ .

Moreover, arguing as in Step 3 of the same proof, one can show that F [vη] ≥ 0
for |x| ≥ Ro under assumptions (i’) and exploiting (S2). As in Step 4 we use the
comparison principle to conclude that vζ(y) ≥ cζ for |y| ≥ Ro. Letting ζ → 0 we get
v(y) ≥ min|x|≤Ro v(x) for |y| ≥ Ro meaning that v attains its minimum at a point x̄
over Rd. As before, the strong minimum principle gives the conclusion.

Corollary 4.7. Assume (i’),(ii’),(iii) and (iv’). Let v ∈ USC(Rd) be a viscosity
supersolution to (4.2) satisfying (4.7) for W as in (iii’). Assume r 7→ F (x, r, p,X)
is constant for all x, p,X and F (x, r, 0, 0) = 0 for every x ∈ Ω, then v is constant.

We can now state our main result for subsolutions. To do this, we first recall
a crucial scaling assumption for the validity of the strong maximum principle for
fully nonlinear subelliptic equations together with the concept of generalized subunit
vector field. For the definition of Hörmander vector fields and further details we refer
to Chapter 2. We assume

(SC) For some φ : (0, 1]→ (0,+∞], F satisfies

F (x, ξs, ξp, ξX) ≥ φ(ξ)F (x, s, p,X)

for all ξ ∈ (0, 1], s ∈ [−1, 0], x ∈ Ω, p ∈ Rd\{0}, and X ∈ Sd;

We briefly recall the definition of generalized subunit vector field introduced in Chap-
ter 2.

Definition 4.8. Z ∈ Rd is a generalized subunit vector (briefly, SV) for F =
F (x, r, p,X) at x ∈ Ω if

sup
γ>0

F (x, 0, p, I − γp⊗ p) > 0 ∀p ∈ Rd such that Z · p 6= 0;

Z : Ω → Rd is a subunit vector field (briefly, SVF) if Z(x) is SV for F at x for
every x ∈ Ω.
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Theorem 4.9. Let F be such that (i),(ii), (iii), and (SC) hold. Furthermore assume
that F admits Z1, ..., Zm generalized subunit vector fields satisfying the Hörmander
condition. Let u ∈ USC(Rd) be a viscosity subsolution to (4.2) satisfying (4.3) for w
as in (iii). Assume either u ≥ 0, or r 7→ F (x, r, p,X) is constant for all x, p,X and
F (x, r, 0, 0) = 0 for every x ∈ Ω. Then u is constant.

Proof. The proof is a consequence of Proposition 4.4 and Corollary 4.5 by recalling
that under (1), (SC) and the existence of subunit vector fields for F the strong
maximum principle holds (cf Chapter 2).

Similarly, in the case of supersolutions we have the following result by replacing
(SC) with

(SC’) For some φ : (0, 1]→ (0,+∞], F satisfies

F (x, ξs, ξp, ξX) ≤ φ(ξ)F (x, s, p,X)

for all ξ ∈ (0, 1], s ∈ [−1, 0], x ∈ Ω, p ∈ Rd\{0}, and X ∈ Sd;

and the condition in Definition 2.3 is replaced by

inf
γ>0

F (x, 0, p, γp⊗ p− I) > 0 ∀p ∈ Rd such that Z · p 6= 0;

Theorem 4.10. Let F be such that (i’),(ii’), (iii), and (SC’) hold. Furthermore as-
sume that F admits Z1, ..., Zm generalized subunit vector fields satisfying the Hörmander
condition. Let v ∈ USC(Rd) be a viscosity supersolution to (4.2) satisfying (4.7) for
W as in (iii’). Assume either v ≤ 0, or r 7→ F (x, r, p,X) is constant for all x, p,X
and F (x, r, 0, 0) = 0 for every x ∈ Ω. Then u is constant.

Proof. The proof is a consequence of Proposition 4.6 and Corollary 4.7 by recalling
that under (1’), (SC’) and the existence of subunit vector fields for F the strong
minimum principle holds (cf Chapter 2).

Remark 4.11. In the subelliptic context, i.e. when dealing with PDEs of the form
(4.1), if one assumes that G is elliptic for any x and p fixed in the following sense:

sup
γ>0

G(x, 0, q,X − γq ⊗ q) > 0 ∀x ∈ Ω, q ∈ Rm, q 6= 0, X ∈ Sm,

then, by rewriting the equation in Euclidean coordinates, i.e.

F (x, r, p,X) = G(x, r, σT (x)p, σT (x)Xσ(x) + g(x,Du)) ,

one finds an equivalent equation of the form (4.2) with F having σi as subunit vector
fields (cf Lemma 2.23). As Lemma 2.23 shows, if G satisfies (SC) and (SC’), also F
does. Therefore, Theorem 4.9 and Theorem 4.10 apply respectively to viscosity sub-
and supersolutions to (4.1).
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4.2.2 Equations driven by Pucci’s subelliptic operators

Important examples of fully nonlinear second order subelliptic operators are the
Pucci’s extremal operators over horizontal Hessians. They are the simplest exam-
ples of degenerate HJB operators and they differ from those defined in the Euclidean
setting since horizontal Hessians carry an additional x-dependence through the ma-
trices σ(x) (Section 1.0.5). More precisely, the minimal operator M−

λ,Λ defined in
Example 1.7 enjoys the property (S1) simply as a consequence of the property of du-
ality (i.e. M−

λ,Λ(M) = −M+
λ,Λ(−M) for every M ∈ Sd) and the reverse inequalities

(i.e. M−
λ,Λ(M + N) ≤ M−

λ,Λ(M) +M+
λ,Λ(N) for every M,N ∈ Sd, see [62, Lemma

2.10 properties (3) and (6)]). Similarly, (S2) holds for the maximal operator M+
λ,Λ.

We now prove the Liouville property for subsolutions of the equation

M−
λ,Λ((D2

Xu)∗) +Hi(x, u, (DXu) = 0 in Rd , (4.8)

where
Hi(x, r, p) := inf

α∈A
{cα(x)r − bα(x) · p} (4.9)

and for supersolutions of

M+
λ,Λ((D2

Xu)∗) +Hs(x, u,DXu) = 0 in Rd , (4.10)

where
Hs(x, r, p) := sup

α∈A
{cα(x)r − bα(x) · p} . (4.11)

Note that Hi and Hs satisfy (S1) and (S2) by the properties of infimum and supre-
mum. We assume that bα(x) is locally Lipschitz in x uniformly in α, namely for all
R > 0 there exists KR > 0 such that

sup
|x|,|y|≤R,α∈A

|bα(x)− bα(y)| ≤ KR|x− y| (4.12)

and
cα(x) ≥ 0 and continuous in |x| ≤ R uniformly in α. (4.13)

We recall that (D2
Xu)∗ = σT (x)D2uσ(x) + g(x,Du), where g = g(x, p) is linear and

1-homogeneous in the second entry. Typically g ≡ 0 in many interesting cases such
as Carnot groups, as outlined in Chapter 2.

Corollary 4.12. Under the previous conditions on Hi, let u ∈ USC(Rd) be a viscos-
ity subsolution to (4.8) satisfying (4.3) for w as in (iii). If either u ≥ 0 or cα(x) ≡ 0,
then u is constant.

Proof. The proof is a consequence of Theorem 4.9. First, note that M− enjoys
property (S1) and the scaling (SC) by the well-known properties [62, Lemma 2.10-
(3)-(4) and (6)]; this allows to run the arguments in Step 3 of Proposition 4.4.
Moreover, the comparison principle (ii) for M− + Hi = 0 holds in view of Example
2.45. Finally, observe that when cα ≡ 0, then G(x, r, 0, 0) = 0 for every x ∈ Ω,
r ∈ R, and r 7→ G(x, r, p,X) is constant for every x, p,X.
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Similar procedures yield the following generalization for supersolutions.

Corollary 4.13. Under the previous conditions on Hs, let v ∈ LSC(Rd) be a viscosity
supersolution to (4.10) satisfying (4.7) for W as in (iii’). If either v ≤ 0 or cα(x) ≡ 0,
then v is constant.

Proof. The result is consequence of Theorem 4.10. First, observe that M+ enjoys
property (S2) and the scaling (SC’) by using [62, Lemma 2.10-(3)-(4) and (5)]; this
allows to run the arguments in Step 3 of Proposition 4.6. Moreover, the comparison
principle forM++Hs = 0 holds in view of Example 2.45. In particular, when cα ≡ 0,
one notices that G(x, r, 0, 0) = 0 for every x ∈ Ω, r ∈ R, and r 7→ G(x, r, p,X) is
constant for every x, p,X.

4.2.3 Fully nonlinear uniformly subelliptic equations

In this section, we consider the Liouville property for viscosity sub- and supersolu-
tions to the prototype fully nonlinear second order subelliptic equation

G(x, u,DXu, (D
2
Xu)∗) = 0 in Rd . (4.14)

We assume that G satisfies a properly rescaled uniform ellipticity condition,
namely we consider those operators fulfilling the following inequalities

M−
λ,Λ(M −N) ≤ G(x, r, p,M)−G(x, r, p,N) ≤M+

λ,Λ(M −N) . (4.15)

for every (x, r, p) ∈ Ω × R × Rn and M,N ∈ Sn with N ≥ 0. By taking N = 0 we
get

M−
λ,Λ(M) ≤ G(x, r, p,M)−G(x, r, p, 0) ≤M+

λ,Λ(M)

(cf Section 1.0.5), and, as a consequence, by setting H(x, r, p) := G(x, r, p, 0), one
can infer Liouville results for viscosity subsolutions and supersolutions to (4.14)
by studying the corresponding properties to equations driven by Pucci’s extremal
operatorsM± composed with the (symmetrized) horizontal Hessian perturbed by the
gradient term H(x, r, p). We recall that this is indeed the main idea behind classical
works on qualitative and quantitative properties for second order fully nonlinear
uniformly elliptic PDEs, see [62] and references therein. In particular, we will focus
on the case in which the first order term is concave or convex and hence can be
written as infimum or supremum of linear operators. We further assume that

G(x, t, p, 0) ≥ Hi(x, t, p) (4.16)

for some concave Hamiltonian of the form (4.9). Then Corollary 4.12 gives immedi-
ately the conclusion

Corollary 4.14. Assume (4.15) and (4.16) with b, c satisfying (4.12) and (4.13).
Let u ∈ USC(Rd) be a viscosity subsolution to (4.14) satisfying (4.3) for w as in (iii).
If either u ≥ 0 or cα(x) ≡ 0, then u is constant.

Proof. It is sufficient to observe that u satisfies the differential inequality

M−
λ,Λ((D2

Xu)∗) +H(x, u,DXu) ≤ 0 in Rd

and apply Corollary 4.12.
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As for supersolutions, instead of (4.16) we impose

G(x, t, p, 0) ≤ Hs(x, t, p) (4.17)

for some convex Hs as in (4.11).

Corollary 4.15. Assume (4.15) and (4.17) with b, c satisfying (4.12) and (4.13).
Let v ∈ LSC(Rd) be a viscosity subsolution to (4.14) satisfying (4.7) for W as in
(iii’). If either v ≤ 0 or cα(x) ≡ 0, then v is constant.

Proof. It is sufficient to observe that v satisfies the differential inequality

M+
λ,Λ((D2

Xu)∗) +H(x, u,DXu) ≤ 0 in Rd

and apply Corollary 4.13.

We conclude this section with an application of the previous results to parabolic
problems. This would be a first step to the prove the large-time stabilization with
respect to the space variable for parabolic problems (cf [16, Section 5]). Let u :
Rd × [0,+∞)→ R and consider the general parabolic equation

∂tu+G(x, u,DXu, (D
2
Xu)∗) = 0 in Rd × (0,+∞) .

We have the following

Corollary 4.16. Assume that G satisfies (4.15), (4.16), together with (i)-(iv). If
u ∈ USC(Rd × [0,+∞)) satisfies

∂tu+G(x, u,DXu, (D
2
Xu)∗) ≤ 0 in Rd × (0,+∞) ,

and

lim sup
|x|→+∞

u(x, t)

w(x)
≤ 0 uniformly in t ∈ [0,+∞) ,

and either c = 0 or u ≥ 0, then

lim sup
t→+∞,y→x

u(y, t) = ū(x)

is constant with respect to x.

Proof. As above, we exploit the fact that if u is a subsolution to

∂tu+G(x, u,DXu, (D
2
Xu)∗) ≤ 0 in Rd × (0,+∞) ,

then
∂tu+M−

λ,Λ(D2
Xu)∗) +Hi(x, u,DXu) ≤ 0 in Rd × (0,+∞) .

Then one argues as in [16, Corollary 5.1] to conclude the assertion.

Remark 4.17. One can immediately prove the counterpart of the above result for
supersolutions. Indeed, if G satisfies (4.15),(4.17) and (i’)-(ii)-(iii’) and (iv’), the
result reads as follows: let v be a LSC supersolution to ∂tu+G(x, u,DXu, (D

2
Xu)∗) =

0 such that lim inf |x|→+∞
v(x,t)
W (x)

≤ 0 uniformly in t. Assume also that either c ≡ 0 or

v ≤ 0, then lim inft→+∞,y→x v(y, t) = v̄(x) is a constant.
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4.3 Example 1: the Heisenberg group

Aim of this section is to specialize the previous results to viscosity subsolutions of
(4.14) over the Heisenberg vector fields. In the next theorem we provide sufficient
conditions for the validity of the Liouville property for viscosity subsolutions to the
fully nonlinear equation (4.8), confirming the behavior that can be observed for
sub- and super-solutions of the Heisenberg Laplacian, see Section 4.3.1 below for
further details. Here 2d + 1 is the linear dimension of the Heisenberg group, and
m = 2d stands for the dimension of the horizontal layer. Here and in the next
examples we exploit a classical chain rule to compute the horizontal gradient and
Hessian of a “radial” function with respect to the homogeneous norm ρ. Indeed, for
a sufficiently smooth radial function f = f(ρ) and given a system of vector fields
X = {X1, ..., Xm}, we have

DXf(ρ) = f ′(ρ)DXρ

and

D2
Xf(ρ) = f ′(ρ)D2

Xρ+ f
′′
(ρ)DXρ⊗DXρ .

In this section we denote the Heisenberg horizontal gradient and symmetrized Hessian
by DHd and (D2

Hd)
∗.

Theorem 4.18. Let X = {X1, ...., X2d, X2d+1} be the system of vector fields gener-
ating the Heisenberg group Hd. Assume that (4.12) and (4.13) hold and that

sup
α∈A
{bα(x) · η

|xH |2
− cα(x)

ρ4

|xH |2
log ρ} ≤ λ− Λ(Q− 1) (4.18)

for ρ sufficiently large, where Q = 2d + 2 stands for the homogeneous dimension of
Hd, bα(x) takes values in R2d and η = (ηi, ηi+d) is defined by

ηi = xi|xH |2 + xi+dx2d+1 ,

ηi+d = xi|xH |2 − xix2d+1

for i = 1, ..., d and xH = (x1, ..., x2d).

(a) Let u ∈ USC(R2d+1) be a viscosity subsolution of (4.8) such that

lim sup
|x|→∞

u(x)

log ρ(x)
≤ 0 .

Assume that either cα(x) ≡ 0 or u ≥ 0, then u is a constant.

(b) Let v ∈ LSC(R2d+1) be a viscosity supersolution of (4.10) such that

lim inf
|x|→∞

v(x)

log ρ(x)
≥ 0 .

Assume that either cα(x) ≡ 0 or v ≤ 0, then v is a constant.
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Remark 4.19. We highlight that the above result does not hold for the Heisenberg
sub-Laplacian, corresponding to the case b ≡ c ≡ 0 and λ = Λ = 1. In fact, condition
(4.18) is not satisfied because in the Heisenberg group the homogeneous dimension
Q ≥ 4. This confirms the failure of the Liouville property observed at the beginning
of the section in the linear case.

Proof. We only have to check property (iii), namely the existence of the Lyapunov
function. Set w(ρ) = log ρ and note that lim|x|→∞w(ρ(x)) = ∞ because ρ → ∞
whenever |x| → ∞. Straightforward computations yield

Xiρ = xi
|DHdρ|2

ρ
+
xi+dx2d+1

ρ3
=
ηi
ρ3

,

Xi+dρ = xi+d
|DHdρ|2

ρ
− xix2d+1

ρ3
=
ηi+d
ρ3

,

and |DHdρ|2 = |xH |2/ρ2 (see e.g. [99, Lemma 3.1]). Then, we recall that for a radial
function w (with respect to the homogeneous norm ρ) the eigenvalues of (D2

Hdw)∗

are

−|xH |
2

ρ4
, 3
|xH |2

ρ4
which are simple ,

and
|xH |2

ρ4
with multiplicity 2d− 2

(cf. [99, Lemma 3.2]). Hence we are able to compute the Pucci’s minimal operator
as in [99, Corollary 3.1]

M−
λ,Λ((D2

Hdw)∗) = {−Λ(2d+ 1) + λ}|xH |
2

ρ4
.

Thus, w is a supersolution at all points where

{−Λ(2d+ 1) + λ}|xH |
2

ρ4
+ inf

α∈A
{cα(x) log ρ− bα(x) · η

ρ4
} ≥ 0 ,

where η is defined as in the statement. In particular, this inequality holds when ρ is
sufficiently large under condition (4.18) by recalling that Q = 2d+ 2. Similarly one
can check that (4.18) implies that the function W (ρ) = − log ρ is a subsolution to
(4.10) for |x| sufficiently large. Therefore Corollary 4.12 and Corollary 4.13 give the
conclusion.

Remark 4.20. Condition (4.18) is comparable to that obtained in [16, eq. (2.17)],
but here typical quantities of Carnot groups appear. The ratio

ρ4

|xH |2
=
|xH |4 + |xV |2

|xH |2

plays the same role as |x|2 in [16, condition (2.17)], while the dimension d of the
Euclidean setting is replaced by its subelliptic counterpart Q, as expected.
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Remark 4.21. A simple condition that implies (4.18) and therefore the Liouville
property is

lim sup
|x|→∞

sup
α∈A
{bα(x) · η

|xH |2
} < λ− Λ(Q− 1) ,

since c ≥ 0. Compare the above condition to that in [16, Remark 2.4]: Q replaces the
dimension d of the Euclidean case and x ∈ Rd is replaced by the vector η/|xH |2 ∈ R2d.

We thus have the following

Corollary 4.22. Assume that the operator G in (4.14), where X = {X1, ..., X2d+1}
are the Heisenberg vector fields, satisfies (4.15) and (4.16). Assume also that (4.12),
(4.13) and (4.18) are satisfied. Let u ∈ USC(R2d+1) be a subsolution of (4.14)
satisfying (4.3) with w(x) = log ρ(x). Assume either cα(x) ≡ 0 or u ≥ 0, then u is
constant.

Proof. It is enough to exploit that u is a subsolution to (4.8) over the Heisenberg
vector fields and then apply Theorem 4.18-(i).

Corollary 4.23. Assume that the operator G in (4.14), where X = {X1, ..., X2d+1}
are the Heisenberg vector fields, satisfies (4.15) and (4.17). Assume also that (4.12),
(4.13) and (4.18) are satisfied. Let v ∈ LSC(R2d+1) be a supersolution of (4.14)
satisfying (4.7) with W (x) = − log ρ(x). Assume either cα(x) ≡ 0 or v ≤ 0, then v
is constant.

Proof. It is enough to exploit that u is a supersolution to (4.10) over Heisenberg
vector fields and then apply Theorem 4.18-(ii).

We specialize the last corollaries to a class of examples in order to compare
with those in [16]. Consider again the general PDE (4.14) satisfying the structure
condition (4.15) and assume that

G(x, r, p, 0) ≥ −b̄(x) · p− g(x)|p|+ c̄(x)r , (4.19)

where b̄ : R2d → R2d and g : R2d+1 → R is continuous and g ≥ 0 and c̄ ≥ 0. We have
the following

Corollary 4.24. Assume that the operator G in (4.14) satisfies (4.15), and (4.12)-
(4.13) are in force. Moreover, suppose that (4.19) holds and

b̄(x) · η

|xH |2
+ g(x)

|η|
|xH |2

≤ c̄
ρ4

|xH |2
log ρ+ λ− Λ(Q− 1) . (4.20)

where η is defined in Theorem 4.18. Let u ∈ USC(R2d+1) be a viscosity subsolution
to (4.14) such that

lim sup
|x|→∞

u(x)

log ρ(x)
≤ 0 .

Assume that either cα(x) ≡ 0 or u ≥ 0, then u is a constant.
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Proof. Observe that −|DHdu| = −|σTDu| = min|α|=1{−α · σTDu}. Hence we can
write the right-hand side of the inequality (4.19) as

inf
α∈A
{c̄u− (b̄+ gα) · σTDu} ,

where A = {α ∈ R2d : |α| = 1}. Moreover, the Heisenberg gradient can be written
as DHdu = 1

ρ4η, where η is defined in Corollary 4.18. Then condition (4.18) becomes

(4.20) and the conclusion follows by Corollary 4.14.

Arguing in a similar manner one gets the result for supersolutions using the
conclusions of Corollary 4.15.

Corollary 4.25. Assume that the operator G in (4.14) satisfies (4.15) and (4.12)-
(4.13) are in force. If

G(x, r, p, 0) ≤ −b̄(x) · p+ g(x)|p|+ c̄(x)r (4.21)

holds with b̄, g and c̄ as above. Let v ∈ LSC(R2d+1) be a viscosity supersolution to
(4.14) in R2d+1 and assume that

lim inf
|x|→∞

v(x)

log ρ(x)
≥ 0 . (4.22)

If either v ≤ 0 or cα(x) ≡ 0, then v is constant.

Similar results can be achieved for equations driven by the Pucci’s extremal
operators P± introduced in Example 1.7. Consider thus the following counterpart
of (4.8) and (4.10), namely

P−λ ((D2
Xu)∗) +Hi(x, u,DXu) = 0 in R2d+1 , (4.23)

and
P+
λ ((D2

Xu)∗) +Hs(x, u,DXu) = 0 in R2d+1 . (4.24)

Sufficient conditions can be directly obtained by comparing the extremal operators
P± with M±. Indeed, straightforward computations give

P+
λ (M) ≤M+

λ,λ+(1−dλ)(M)

and
P−λ (M) ≥M−

λ,λ+(1−dλ)(M)

for every M ∈ S2d. However, one can exploit representation formulae for P± (see
Example (1.7)) to get optimal sufficient conditions. We have the following

Corollary 4.26. Let X = {X1, ...., X2d, X2d+1} be the system of vector fields gener-
ating the Heisenberg group Hd. Assume that (4.12) and (4.13) are in force and

sup
α∈A
{bα(x) · η

|xH |2
− cα(x)

ρ4

|xH |2
log ρ} ≤ −3 + 4dλ (4.25)
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for ρ sufficiently large, where Q = 2d + 2 stands for the homogeneous dimension of
Hd, bα(x) takes values in R2d and η = (ηi, ηi+d) is defined by

ηi = xi|xH |2 + xi+dx2d+1 ,

ηi+d = xi|xH |2 − xix2d+1

for i = 1, ..., d and xH = (x1, ..., x2d).

(c) Let u ∈ USC(R2d+1) be a viscosity subsolution of (4.23) such that

lim sup
|x|→∞

u(x)

log ρ(x)
≤ 0 .

Assume that either cα(x) ≡ 0 or u ≥ 0, then u is a constant.

(d) Let v ∈ LSC(R2d+1) be a viscosity supersolution of (4.24) such that

lim inf
|x|→∞

v(x)

log ρ(x)
≥ 0 .

Assume that either cα(x) ≡ 0 or v ≤ 0, then v is a constant.

Proof. The proof is exactly the same as Theorem 4.18 using the Lyapunov function
w(ρ) = log ρ and the representation formulas for P+

λ (M) = −λTr(M)− (1− 2dλ)e1

and P−λ (M) = −λTr(M) − (1 − 2dλ)e2d for any M ∈ S2d. Using the expression of
the eigenvalues of (D2

Hdw)∗ one finds

P−λ ((D2
Hdw)∗) = (4dλ− 3)

|xH |2

ρ4
.

Similarly, one uses W = − log ρ as Lyapunov function for the maximal operator
P+
λ .

Remark 4.27. We observe that this condition is better than (4.18) with Λ = λ +
(1− 2dλ) and λ < 1

2d
, since

−2dλ− (1− 2dλ)(2d+ 1) < −3 + 4dλ .

4.3.1 Comparison with the literature and sharpness of the
conditions

In this section we make a comparison with the results in the literature, showing the
sharpness of our conditions and those of [16] via several counterexamples. We first
observe that [16, Corollary 2.4] with b ≡ c ≡ 0 states a Liouville-type result in the
Euclidean case either for viscosity subsolutions bounded from above toM−

λ,Λ(D2u) =

0 in Rd or viscosity supersolutions bounded from below to M+
λ,Λ(D2u) = 0 in Rd

whenever d ≤ λ
Λ

+ 1. This is consistent with the well-known Liouville property for
the Laplace equation in the case d ≤ 2 (i.e. λ = Λ, cf Remark 4.2) and with some
counterexamples when d > λ

Λ
+ 1 that we show next.
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Counterexample 4.28. For d = 2 and Λ = 2λ one can verify that the function

u1(x) =

{
1
8
[10− |x|2 − |x|4] if |x| < 1 ,

1
|x| if |x| ≥ 1 .

is bounded, satisfies M+
λ,2λ(D

2u1) ≥ 0 in R2 and it is not constant. Set u1(x) =
f1(|x|). When |x| < 1 we have f ′1, f

′′
1 < 0 and hence the eigenvalues of the Hessian

D2u1 are negative, which shows that M+
λ,2λ(D

2u1) > 0. When |x| ≥ 1 we have

f ′1(|x|) = −1/|x|2 and f ′′1 (|x|) = 2/|x|3 and henceM+
λ,2λ(D

2u1) = 0 because Λ = 2λ.
Finally, it is a viscosity supersolution of the Pucci’s maximal equation simply by
observing that the subjet is empty at point where |x| = 1. Similarly, the function
v1 = −u1 gives a counterexample for subsolutions to M−

λ,2λ(D
2v1) ≤ 0). More in

general, when d ≥ 2, one can prove that when

β :=
Λ

λ
(d− 1) + 1 > 2 ,

the function

u2(x) =

{
1
8
[β(β − 2)|x|4 − 2(β2 − 4)|x|2 + β(β + 2)] if |x| < 1 ,
1

|x|β−2 if |x| ≥ 1 .

is a bounded classical solution to M+
λ,Λ(D2u2) ≥ 0 in Rd (cf [98, Remark 3.3, eq.

(3.19)]); therefore the Liouville property fails to be true whenever d > λ/Λ + 1.
Similarly, v2 = −u2 gives a counterexample for solutions to M−

λ,Λ(D2v2) ≤ 0 in Rd.
Since u2 is a radial function, the eigenvalues of the Hessian matrix can be immediately
computed thanks to [98, Lemma 3.1].

Some remarks are in order to compare [16] with the results obtained in [98]. In the
latter work, the authors (cf [98, Theorem 3.2]) provided the Liouville property either
for viscosity supersolutions to M−

λ,Λ(D2u) = 0 in Rd or for viscosity subsolutions

to M+
λ,Λ(D2u) = 0 in Rd under the condition d ≤ Λ

λ
+ 1, therefore providing less

restrictive conditions for the validity of the Liouville property in terms of the ratio
Λ/λ > 1 compared to that of the Laplace equation.

The next example (cf [98, Remark 3.2]) shows that the assumption in [98, Theo-
rem 3.2] is optimal.

Counterexample 4.29. The condition

α :=
λ

Λ
(d− 1) + 1 > 2

found in [98, Theorem 3.2] in the Euclidean case is sharp. In fact, one can prove
that

u3(x) =

{
−1

8
[α(α− 2)|x|4 − 2(α2 − 4)|x|2 + α(α + 2)] if |x| < 1 ,

− 1
|x|α−2 if |x| ≥ 1 ,

is a nonconstant classical solution to M+
λ,Λ(D2u3) ≤ 0 in Rd which is bounded if

α ≥ 2. Similarly, v3 = −u3 yields a counterexample for the corresponding property
for the minimal operator.
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Note that, although the condition for Liouville in [98, Theorem 3.2] is less de-
manding than the one in [16], such Theorem cannot be applied to general uniformly
elliptic operators via the inequalities (4.15), as it is done in [16].
We now turn to consider the case of PDEs over the Heisenberg vector fields. Li-
ouville’s theorem for classical harmonic functions on the Heisenberg group is a con-
sequence of the Harnack inequality (see [51, Theorem 8.5.1]). However, Liouville’s
theorem for (classical) subsolutions (supersolutions) bounded from above (below) to

−∆Hdu = 0 in R2d+1

is false. Indeed, one can check that the function

u4(x) =

{
1
8
[Q(Q− 2)ρ4 − 2(Q2 − 4)ρ2 +Q(Q+ 2)] if ρ ≤ 1 ,

1
ρ

if ρ ≥ 1 ,

Q = 2d + 2 standing for the homogeneous dimension of Hd, is a bounded classical
supersolution to −∆Hdu = 0 in R2d+1 and, similarly, v4 = −u4 gives a bounded sub-
solution −∆Hdu = 0 in R2d+1. It was observed in [181, Lemma 2.2] that the Liouville
property for sub- or supersolutions of linear equations on the first Heisenberg group
can be recovered by adding first order terms multiplied by a vector field pointing
away from infinity.

The counterpart of [98, Theorem 3.2] within the context of the Heisenberg group
is found in [99, Theorem 5.2], where the authors proved the Liouville property either
for viscosity supersolutions bounded from below to M−

λ,Λ((D2
Hdu)∗) = 0 in R2d+1

or for viscosity subsolutions bounded from above to M+
λ,Λ((D2

Hdu)∗) = 0 in R2d+1

provided that Q ≤ Λ
λ

+ 1, where Q stands for the homogeneous dimension of the
Heisenberg group. Also in this case their result cannot be applied to infer Liouville
results for general uniformly subelliptic operators, as it happens in our case. Here,
we would like to show via a counterexample that the condition Q ≤ Λ

λ
+ 1 found in

[99, Theorem 5.2] is sharp. The proof of the optimality of the condition seems to be
omitted in [99] and is new to our knowledge.

Counterexample 4.30. Set α̃ := λ
Λ

(Q− 1) + 1. One can prove that for α̃ > 2

u5(x) =

{
−1

8
[α̃(α̃− 2)ρ4 − 2(α̃2 − 4)ρ2 + α̃(α̃ + 2)] if ρ < 1 ,

− 1
ρα̃−2 if ρ ≥ 1 ,

is a bounded from above classical solution toM+
λ,Λ((D2

Hdu5)∗) ≤ 0 in R2d+1 and it is
not constant. Indeed, denote by u5(x) = f5(ρ). For ρ < 1 we have

f ′5(ρ) = − α̃− 2

2
ρ[α̃ρ2 − (α̃ + 2)] ,

and

f ′′5 (ρ) = − α̃− 2

2
[3ρ2α̃− (α̃ + 2)]
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Recalling that |DHdρ|2 = |xH |2/ρ2, the eigenvalues of the radial function f5(ρ) are
(cf [99, Lemma 3.2])

e1 = |DHdρ|2f ′′4 (ρ) = − α̃− 2

2ρ2
|xH |2[3ρ2α̃− (α̃ + 2)]

e2 = 3|DHdρ|2
f ′4(ρ)

ρ
= −3

α̃− 2

2ρ2
|xH |2[α̃ρ2 − (α̃ + 2)]

which are both simple, and

e3 = |DHdρ|2
f ′4(ρ)

ρ
= − α̃− 2

2ρ2
|xH |2[α̃ρ2 − (α̃ + 2)]

which has multiplicity 2d − 2. Thus we observe that when ρ < 1 and α̃ > 2, the
eigenvalues e2, e3 are always positive. Therefore, when ρ2 ≤ α̃+2

3α̃
< 1, even e1 is

positive and hence M+
λ,Λ((D2

Hdu5)∗) ≤ 0. When 1 > ρ2 > α̃+2
3α̃

, e1 < 0, and hence

M+
λ,Λ((D2

Hdu4)∗) = Λ
α̃− 2

2ρ2
|xH |2[3ρ2α̃− (α̃ + 2)]

+ λ

{
α̃− 2

2ρ2
|xH |2[α̃ρ2 − (α̃ + 2)](2d− 2) + 3

α̃− 2

2ρ2
|xH |2[α̃ρ2 − (α̃ + 2)]

}
=
α̃− 2

2ρ2
|xH |2

{
λ[α̃ρ2 − (α̃ + 2)](2d− 2) + 3α̃ρ2 − 3(α̃ + 2)] + Λ[3ρ2α̃− (α̃ + 2)]

}
=
α̃− 2

2ρ2
|xH |2

{
α̃ρ2[(2d+ 1)λ+ 3Λ]− λ(2d+ 1)(α̃ + 2)− Λ(α̃ + 2)

}
=
α̃− 2

2ρ2
|xH |2

{
α̃ρ2[(Q− 1)λ+ 3Λ]− [λ(Q− 1) + Λ](α̃ + 2)

}
=
α̃− 2

2ρ2
|xH |2

{
[λ(Q− 1) + Λ](−α̃− 2 + α̃ρ2) + 2Λα̃ρ2

}
≤ α̃− 2

2ρ2
|xH |2 {−2[λ(Q− 1) + Λ] + 2Λα̃}

=
α̃− 2

2ρ2
|xH |2 {−2λ(Q− 1) + 2Λ(α̃− 1)} = 0 ,

where the last equality is true in view of α̃− 1 = λ
Λ

(Q− 1). When ρ > 1 we have

f ′5(ρ) = −(2− α̃)ρ1−α̃

f ′′5 (ρ) = −(2− α̃)(1− α̃)ρ−α̃

and the eigenvalues are

e4 = |DHdρ|2f ′′4 (ρ) = −|xH |
2(2− α̃)(1− α̃)

ρα̃+2

e5 = 3|DHdρ|2
f ′4(ρ)

ρ
= −3

|xH |2(2− α̃)

ρα̃+2
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and

e6 = |DHdρ|2
f ′4(ρ)

ρ
= −|xH |

2(2− α̃)

ρα̃+2

with multiplicity 2d− 2. Therefore, for ρ ≥ 1, we have

M+
λ,Λ((D2

Hdu4)∗) =
|xH |2(2− α̃)

ρα̃+2
[Λ(1− α̃) + λ(Q− 1)] = 0 ,

Similarly, v5 = −u5 yields a counterexample for the corresponding property of the
miminal operator.

Furthermore, we emphasize that the sufficient condition obtained in Theorem
4.18 is consistent with the behavior observed in the case of the Heisenberg Laplacian
(i.e. b ≡ c ≡ 0 and λ = Λ), for which the Liouville property for subharmonic (super-
harmonic) functions bounded from above (below) functions is false (see the function
u4 above). In particular, (4.18) with b ≡ c ≡ 0 suggests that one-side Liouville prop-
erties for viscosity subsolutions (supersolutions) to the minimal (maximal) Pucci’s
equations do not hold. Set

β̃ :=
Λ

λ
(Q− 1) + 1 > 2 , namely Q >

λ

Λ
+ 1 .

The next counterexample shows the Liouville property for supersolutions bounded
from below to M+

λ,Λ((D2
Hdu)∗) = 0 and subsolutions bounded from above to the

minimal Pucci’s equation M−
λ,Λ((D2

Hdu)∗) = 0 fails (recall that for the Heisenberg
group Q ≥ 4).

Counterexample 4.31. In the same way as in Counterexample 4.30, one can verify
that the function

u6(x) =

{
1
8
[β̃(β̃ − 2)ρ4 − 2(β̃2 − 4)ρ2 + β̃(β̃ + 2)] if ρ < 1 ,
1

ρβ̃−2
if ρ ≥ 1 .

is a bounded classical supersolution to M+
λ,Λ((D2

Hdu6)∗) = 0, which is not constant.
Similarly, v6 = −u6 gives the counterexample for subsolutions to the minimal

operator M−
λ,Λ((D2

Hdv6)∗) = 0.

Therefore, we conclude that the presence of the gradient terms in Theorem 4.18
are fundamental to prove the Liouville property. The same phenomena occurs for
the Liouville properties in the Euclidean case for semilinear equations with fully
nonlinear second order terms, where the presence of the semilinear part plays a
crucial role (see e.g. [98, Theorem 4.1]).

4.4 Example 2: Free step-2 Carnot groups

This section is devoted to collect some Liouville results for nonlinear PDEs modeled
on free step 2 Carnot groups with r generators introduced in Subsection 1.0.3. Here
we denote the horizontal gradient and Hessian as DGr and D2

Gr respectively. The
homogeneous norm we are going to use here to build the Lyapunov function has the
same form of the one used for the Heisenberg group, namely

ρ(x) =
(
|xH |4 + |xV |2

) 1
4 =

(
(x2

1 + ...+ x2
r)

2 + t22,1 + ...+ t2r,r−1

) 1
4 .
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Theorem 4.32. Assume that (4.12) and (4.13) hold true and

sup
α∈A
{bα(x) · η̄

|xH |2
− cα(x)

ρ4

|xH |2
log ρ} ≤ 4λ

ρ2

|xH |2
|DGrρ|2 − 3rΛ , (4.26)

for ρ large enough and η̄ = ρ3DGrρ.

(a) Let u ∈ USC(Rd) be a viscosity subsolution of (4.8) where the vector fields
X1, ..., Xm are the generators of a free step-2 Carnot group defined in Section
1.0.3 such that

lim sup
ρ(x)→∞

u(x)

log ρ(x)
≤ 0 .

Assume that either cα(x) ≡ 0 or u ≥ 0, then u is a constant.

(b) Let v ∈ LSC(Rd) be a viscosity supersolution of (4.10) where the vector fields
X1, ..., Xm are the generators of a free step-2 Carnot group defined in Section
1.0.3 such that

lim inf
ρ(x)→∞

v(x)

log ρ(x)
≥ 0 .

Assume that either cα(x) ≡ 0 or v ≤ 0, then v is a constant.

Proof. We have to check property (iii), namely the existence of the Lyapunov func-
tion w := log ρ. By the chain rule applied to f(ρ) = ρ, we first need to compute the
horizontal Hessian of the homogeneous norm ρ. We have

Xkρ =
1

ρ3

[
xk

r∑
j=1

x2
j +

(∑
j>k

xjtjk −
∑
j<k

xjtkj

)]
.

Thus, we obtain

|DGrρ|2 =
|xH |6

ρ6
+

1

ρ6

∑
k

(∑
j>k

xjtjk −
∑
j<k

xjtkj

)2

Moreover, we can compute

Xk(Xkρ) =
1

ρ3

[
r∑
j=1

x2
j + 2x2

k + 2
r∑

j=1,j 6=k

x2
j

]
− 3

ρ
XkρXkρ =

3|xH |2

ρ3
Ir −

3

ρ
XkρXkρ

and

Xi(Xkρ) =
1

ρ3
[2xixk − tki − 2xixk]−

3

ρ
XiρXkρ for i < k;

Xi(Xkρ) =
1

ρ3
[2xixk + tik − 2xixk]−

3

ρ
XiρXkρ for i > k .

Therefore, the horizontal hessian D2
Grρ ∈ Rr×r is given by

D2
Grρ =

1

ρ3

[
T + 3|xH |2Ir

]
− 3

ρ
DGrρ⊗DGrρ ,
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where xH = (x1, ..., xr) and T is the skew-symmetric matrix

T :=


0 −t21 . . . −tr1
t21 0 . . . . . .
...

...
...

...
tr1 . . . . . . 0


We then compute

D2
Gr log(ρ) =

1

ρ4

[
T + 3|xH |2Ir

]
− 4

ρ2
DGrρ⊗DGrρ .

Therefore the symmetrized matrix is given by

(D2
Gr log(ρ))∗ =

3|xH |2

ρ4
Ir −

4

ρ2
DGrρ⊗DGrρ := N +M

Note that the eigenvalues of M are − 4
ρ2 |DGrρ|2, which is simple, and 0 with mul-

tiplicity r − 1, while the eigenvalue of N is 3|xH |2/ρ4 with multiplicity r. We thus
compute

M−
λ,Λ(D2

Grw)+Hi(x,w,DGrw) ≥M−
λ,Λ

(
− 4

ρ2
DGrρ⊗DGrρ

)
+M−

λ,Λ

(
1

ρ4
(3|xH |2Ir)

)
+ inf

α∈A

{
cα(x) log ρ− bα(x) · DGrρ

ρ

}
=

4λ

ρ2
|DGrρ|2 − Λ

3r

ρ4
|xH |2

+ inf
α∈A

{
cα(x) log ρ− bα(x) · DGrρ

ρ

}
.

Hence w is a supersolution of (4.8) if

4λ

ρ2
|DGrρ|2 − Λ

3r

ρ4
|xH |2 + inf

α∈A

{
cα(x) log ρ− bα(x) · DGrρ

ρ

}
≥ 0

Then, one can see that this inequality holds when |x| is sufficiently large under con-
dition (4.26).
Similar computations holds for W = − log ρ thanks to the superadditivity inequali-
ties of the maximal operator, and noting that

(D2
GrW )∗ = − 1

ρ4

[
3|xH |2Ir

]
+

4

ρ2
DGrρ⊗DGrρ

Finally, Corollary 4.12 and Corollary 4.13 give the conclusion.

Remark 4.33. Note that (4.32) is satisfied for instance when either b is bounded
and cα(x) > 0 or bα(x) ·DGrρ < 0 and cα(x) ≥ 0.

Remark 4.34. Recall that in Remark 1.19 we pointed out that the Heisenberg group
Hd is a free step two Carnot groups if and only if d = 1 (and r = 2). We compare
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the above condition with the one obtained in the previous section. Since η̄ = ρ3DGrρ
(4.26) reads

sup
α∈A
{bα(x) · η̄ − cα(x)ρ4 log ρ} ≤ 4λρ2|DG2ρ|2 − 6Λ|xH |2

As pointed out in [99, Lemma 3.1], one immediately sees that |DG2ρ|2 = |xH |2
ρ2 and

hence (4.26) becomes

sup
α∈A
{bα(x) · η̄ − cα(x)ρ4 log ρ} ≤ (4λ− 6Λ) |xH |2 ,

and the sufficient condition (4.18) was

sup
α∈A
{bα(x) · η̄ − cα(x)ρ4 log ρ} ≤ (λ− 3Λ)|xH |2 .

We observe that (4λ − 6Λ) ≤ (λ − 3Λ) with strict inequality when the constants
λ,Λ are such that 0 < λ < Λ. As expected, condition (4.26) is more restrictive than
(4.18) due to the fact that in Corollary 4.32 sub- and superadditivity inequalities of
the extremal operators are used.

We remark that the main trouble in computing a sufficient condition in Corollary
4.32 relies on determining the sign of the eigenvalues of the horizontal Hessian of the
radial Lyapunov function. However, within these geometries the extremal operators
P± behave better thanM±, since formulae (1.6) and (1.7) requires to know the trace
and an extremal eigenvalue of the Hessian only, without necessarily knowing their
sign. We have the following

Corollary 4.35. Let X = {X1, ...., Xm} be the system of vector fields generating Gr.
Assume that (4.12) and (4.13) are in force and

sup
α∈A
{bα(x) · η̄ − cα(x)ρ4 log ρ} ≤ 3|xH |2 − 4λ(r − 1)ρ2|DGrρ|2 , (4.27)

for ρ sufficiently large, bα(x) takes values in R2d and η̄ = ρ3DGrρ.

(c) Let u ∈ USC(Rd) be a viscosity subsolution of (4.23) such that

lim sup
|x|→∞

u(x)

log ρ(x)
≤ 0 .

Assume that either cα(x) ≡ 0 or u ≥ 0, then u is a constant.

(d) Let v ∈ LSC(Rd) be a viscosity supersolution of (4.24) such that

lim inf
|x|→∞

v(x)

log ρ(x)
≥ 0 .

Assume that either cα(x) ≡ 0 or v ≤ 0, then v is a constant.

Remark 4.36. Wee emphasize that when r = 2 and d = 1 (i.e. Gr ' Hd) we find
the same condition as in Corollary 4.26, as expected.
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4.5 Example 3: the Grushin plane

We now provide sufficient conditions for the validity of Liouville-type results in the
Grushin plane for equations (4.8) and (4.10) and hence, as a byproduct, for general
fully nonlinear equation (4.1) satisfying (4.15) (that we will not write for the sake
of brevity, being the same to Corollary 4.22 and Corollary 4.23). Recall that the
Grushin plane (cf Section 1.0.4) is the sub-Riemannian geometry induced on R2 by
the two-dimensiuonal vector fields

X = ∂x ;Y = x∂y

for p = (x, y) ∈ R2. Here we use the following homogeneous norm

ρ(x, y) = (x4 + 4y2)
1
4 .

We first underline that the Liouville property for the (classical) subsolutions (super-
solutions) bounded from above (below) of the Grushin sub-Laplacian does not hold.
Indeed, the function

ū(x) =

{
1
8
[15− 10ρ2 + 3ρ4] if ρ ≤ 1 ,

1
ρ

if ρ ≥ 1 .

is a nonconstant classical supersolution bounded to −∆Xu = −∂xxu− x2∂yyu = 0 in
R2. Similarly, v = −u shows the failure of the Liouville property for subsolutions.
This example underlines that as soon as the (classical) ellipticity is not in force,
then the Liouville property fails even in the case d = 2. We recall that one-side
Liouville results for sub- and supersolutions to the Laplace equation are true in R2,
see Remark 4.2.
We denote as usual by DXu and (D2

Xu)∗ the horizontal gradient and symmetrized
horizontal Hessian over Grushin vector fields respectively. The same example shows
also that one-side Liouville properties do not hold even for sub- and supersolutions
to Pucci’s extremal equations. In fact, for 0 < λ < Λ, in view of the inequalities

M+
λ,Λ((D2

Xu)∗) = −λ
∑
ei>0

ei − Λ
∑
ei<0

ei ≥ −Λ∆Xu

and
−λ∆Xu ≥ −Λ

∑
ei>0

−λ
∑
ei<0

ei =M−
λ,Λ((D2

Xu)∗) ,

we can conclude that ū is a nontrivial bounded classical supersolution to the maximal
Pucci’s equation M+

λ,Λ((D2
Xu)∗) = 0 and, similarly, v̄ = −ū is a bounded classical

subsolution to M−
λ,Λ((D2

Xu)∗) = 0, providing a counterexample for the Liouville
property even for the extremal operators over the Grushin horizontal Hessian on R2.

Corollary 4.37. Let X = {X, Y } be the system of vector fields generating the
Grushin plane. Assume also that (4.12) and (4.13) are in force and

2 sup
α∈A
{bα(x) · η̃ − cα(x)ρ4 log ρ} ≤ (−Λ− λ)x2 + (−Λ + λ)

√
9x4 + 4y2 , (4.28)

for |x|, |y| sufficiently large, where η̃ := (x3, 2xy) ∈ R2.
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(a) Let u ∈ USC(R2) be a viscosity subsolution of (4.8) such that

lim sup
|(x,y)|→∞

u(x)

log ρ(x)
≤ 0 .

Assume that either cα(x) ≡ 0 or u ≥ 0, then u is a constant.

(b) Let v ∈ LSC(R2) be a viscosity supersolution of (4.10) such that

lim inf
|(x,y)|→∞

v(x)

log ρ(x)
≥ 0 .

Assume that either cα(x) ≡ 0 or v ≤ 0, then v is a constant.

Proof. Similarly to Corollary 4.18 and Corollary 4.32, we compute the symmetrized
horizontal Hessian of the Lyapunov function w = log ρ having in mind (4.8) over the
Grushin vector fields defined above. We first note that w(ρ(x)) explodes as |x| → ∞.
We have

Xρ =
x3

ρ3
=
η̃1

ρ3
, Y ρ =

2xy

ρ3
=
η̃2

ρ3
, DXρ =

1

ρ3

(
x3, 2xy

)
which also gives

|DXρ|2 =
x2

ρ2
.

Moreover, the entries of the intrinsic Hessian D2
Xρ are given by

X(Xρ) =
3x2

ρ3
− 3

ρ
XρXρ ,

X(Y ρ) =
2y

ρ3
− 3

ρ
XρY ρ ,

Y (Xρ) = −3

ρ
Y ρXρ ,

Y (Y ρ) =
2x2

ρ3
− 3

ρ
Y ρY ρ .

Therefore, the matrix D2
Xρ can be written as

D2
Xρ =

1

ρ3

(
3x2 2y
0 2x2

)
− 3

ρ
DXρ⊗DXρ .

Setting w := log ρ, by the chain rule we have

D2
Xw =

1

ρ4

(
3x2 2y
0 2x2

)
− 4

ρ2
DXρ⊗DXρ .

Then, the symmetrized horizontal Hessian takes the form

(D2
Xw)∗ =

1

ρ4

(
3x2 y
y 2x2

)
− 4

ρ2
DXρ⊗DXρ .
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We claim that the eigenvalues are{
x2 +

√
9x4 + 4y2

2ρ4
,
x2 −

√
9x4 + 4y2

2ρ4

}
. (4.29)

Indeed the (symmetrized) horizontal Hessian is given by

(D2
Xw)∗ =

(
3x2

ρ4 − 4x6

ρ8
y
ρ4 − 8x4y

ρ8

y
ρ4 − 8x4y

ρ8
2x2

ρ4 − 16x2y2

ρ8

)
.

Then one computes

Tr((D2
Xw)∗) =

5x2

ρ4
− 4x2

ρ8
(x4 + 4y2) =

x2

ρ4
,

and, by recalling the expression of ρ, we also get

det((D2
Xw)∗) =

6x4

ρ8
− 48x4y2

ρ12
− 8x8

ρ12
+

64x8y2

ρ16
− y2

ρ8
− 64x8y2

ρ16
+

16x4y2

ρ12
=

=
(6x4 − y2)

ρ8
− 32x4y2

ρ12
− 8x8

ρ12
.

Then the eigenvalues are given by the formulae

λ1 :=
Tr((D2

Xw)∗)−
√

Tr((D2
Xw)∗)2 − 4 det((D2

Xw)∗)

2
, (4.30)

and

λ2 :=
Tr((D2

Xw)∗) +
√

Tr((D2
Xw)∗)2 − 4 det((D2

Xw)∗)

2
.

Note that√
Tr((D2

Xw)∗)2 − 4 det((D2
Xw)∗) =

√
x4ρ8

ρ16
− 4

ρ16
[(6x4 − y2)ρ8 − 32x4y2ρ4 − 8x8ρ4] =

=

√
x4ρ8 − 4[(6x4 − y2)ρ8 − 8ρ8x4]

ρ16
=

1

ρ4

√
9x4 + 4y2 .

Then, we get the eigenvalues (4.30). In particular, we immediately observe that
λ1 is positive and λ2 is negative and this fact allows to compute Pucci’s extremal
operators over (D2

Xw)∗. We have

M−
λ,Λ((D2

Xw)∗) + inf
α∈A
{cα(x) log ρ− bα(x) · η̃

ρ4
}

= −Λ
x2 +

√
9x4 + 4y2

2ρ4
− λx

2 −
√

9x4 + 4y2

2ρ4
+

+ inf
α∈A
{cα(x) log ρ− bα(x) · η̃

ρ4
} ≥ 0

if condition (4.28) is satisfied. One can obtain the same sufficient condition for
equations of the form (4.10) using the Lyapunov function W (ρ) = − log ρ.
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Part II

Fractional Mean Field Games
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Chapter 5

Fractional MFGs

In this chapter, we deal with the well-posedness of the evolutive fractional MFG
system 

−∂tu+ (−∆)su+H(x,Du) = F [m(t)](x) in QT

∂tm+ (−∆)sm− div(mDpH(x,Du)) = 0 in QT

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td ,
(5.1)

where QT := Td×(0, T ), H = H(x,Du) is a superlinear Hamiltonian in Du, (−∆)su
is the fractional Laplacian of order s ∈ (0, 1), F is a regularizing coupling and m0, uT
are given functions. In particular, note that the first equation is a backward-in-time
fractional Hamilton-Jacobi equation, while the second equation is a forward frac-
tional Fokker-Planck equation.
As announced, the main contribution of this part of the manuscript, other than pro-
viding the well-posedness to the aforementioned system, is to provide the functional
setting to handle (nonlinear) nonlocal problems in the Lp setting as perturbation of
fractional nonlocal equations, which will be discussed in the next Section 5.3. Then,
we will analyze separately both equations in the subsequent sections and, finally, we
will prove our main results that we state in detail below for reader convenience.

5.1 Assumptions and main results

We suppose that H is C2(Td × Rd), H(x, p) ≥ H(x, 0) = 0, convex in p, and there
exist constants γ > 1 and cH , CH , C̃H > 0 such that

DpH(x, p) · p−H(x, p) ≥ CH |p|γ − cH , (H1F)

|DpH(x, p)| ≤ CH |p|γ−1 + C̃H (H2F)

|DxxH(x, p)| ≤ CH |p|γ + C̃H , (H3F)

|D2
pxH(x, p)| ≤ CH |p|γ−1 + C̃H , (H4F)

D2
ppH(x, p)ξ · ξ ≥ CH |p|γ−2|ξ|2 − C̃H (H5F)

for every x ∈ Td, p ∈ Rd and ξ ∈ Rd. We provide some examples of Hamiltonians
fulfilling the above listed assumptions in Section 5.2 below. The following are the
standing assumptions on the regularizing coupling F : there exist a constant CF > 0
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such that

F : P(Td)→ C2+α(Td) is continuous, (F1)

‖F [m1]− F [m2]‖∞ ≤ CFd1(m1,m2) ∀m1,m2 ∈ P(Td), (F2)

‖F (·,m)‖C2+α(Td) ≤ CF for every m ∈ P(Td). (F3)

Finally, we suppose that

uT ∈ C4+α(Td) and ‖uT‖C4+α(Td) ≤ C ′ (I1)

m0 ∈ C4+α(Td) with ‖m0‖C4+α(Td) ≤ C ′′ and non-negative,

∫
Td
m0(x)dx = 1. (I2)

We denote by P(Td) the set of Borel probability measures on Td endowed with the
Monge-Kantorovich distance d1, defined as

d1(µ, ν) := sup
ϕ

∫
Td
ϕd(µ− ν) ,

where the supremum is taken over the 1-Lipschitz maps ϕ : Td → R. Here, we
address the existence and uniqueness of solutions to (5.1) through the vanishing
viscosity method, namely solutions of (5.1) are obtained as limits (in some sense to
be specified below) of solutions uσ of the approximating viscous coupled system of
PDEs 

−∂tu− σ∆u+ (−∆)su+H(x,Du) = F [m(t)](x) in QT

∂tm− σ∆m+ (−∆)sm− div(mDpH(x,Du)) = 0 in QT

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td .
(5.2)

Theorem 5.1. Let (I1)-(I2), (H1F)-(H5F) and (F1)-(F3) be in force. Then, for all
σ > 0 and s ∈ (0, 1), there exists a classical solution (uσ,mσ) ∈ C4+α,2+α/2(QT ) ×
C4+α,2+α/2(QT ) to the fractional MFG system (5.2).

The proof of this result is a rather standard application of Schauder’s fixed point
theorem. For fixed σ > 0, we treat (−∆)su, (−∆)sm as perturbation terms in a
viscous MFG system. Semiconcavity estimates for the HJB equation with mixed
local and nonlocal diffusion term are obtained by means of the adjoint method, that
ensure existence of u. Note that these estimates are stable as σ → 0. This limiting
procedure is then described by the next main result:

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied. Let (uσ,mσ) be a
solution to (5.2). Then, as σ → 0 and up to subsequences, uσ converges uniformly
to u, Duσ converges strongly to Du, and mσ converges weakly to m. In particular

• If s ∈ (0, 1/2], then (u,m) is a weak energy solution to (5.1) (in the sense of
Definition 5.41 and Definition 5.38 respectively);

• If s ∈ (1/2, 1), then ∂tu, ∂tm, (−∆)su, (−∆)sm belong to some Cᾱ, ᾱ2s (QT ), ᾱ ∈
(0, 1), and (u,m) is a classical solution to (5.1) .

Our uniqueness theorem can be states as follows. For its proof, see Theorems
5.52, 5.54.

80



Theorem 5.3. Suppose that (I1)-(I2), (H1F)-(H5F) and (F1)-(F3) hold. Then (5.1)
admits a unique solution in the following cases:

(a) The monotone case. If H is convex and the following monotonicity condition
holds∫

Td
(F [m1](x)− F [m2](x))d(m1 −m2)(x) > 0 , ∀m1,m2 ∈ P(Td) ,m1 6= m2 ,

then (5.1) admits a unique solution.

(b) Small-time uniqueness. For s ∈ (1
2
, 1) and H ∈ C3(Td × Rd), there exists

T ∗ > 0, depending on d, s,H, F,m0, uT such that for all T ∈ (0, T ∗], (5.1) has
at most a solution.

The chapter is organized as follows: Section 5.3 is devoted to some preliminary
tools on the functional spaces used in the following sections. We prove the Sobolev
embedding theorem for parabolic spaces in Subsection 5.3.3. Section 5.5 is completely
designed to the separate analysis of the viscous fractional Fokker-Planck and HJB
equations. In particular, the existence result for the latter is given in Subsection
5.5.2. In Section 5.6 we prove both Theorem 5.1 and Theorem 5.2, postponing
the uniqueness to Section 5.7, where Theorem 5.3 is proven. As announced, in
the appendices we gather regularity results in Sobolev and Hölder spaces for non-
homogeneous fractional heat-type equations together with fractional Leibniz and
composition rules on the torus.

5.2 Model Hamiltonians

In this section we list some model Hamiltonians fulfilling (H1F)-(H5F).

Example 5.4. A first example fulfilling the above assumptions is

H1(x, p) = h(x)(1 + |p|2)
γ
2 + b(x) , γ > 1 ,

where p ∈ Rd, h, b ∈ C2(Td) and h(x) ≥ h0 > 0. Here we have for x ∈ Td, p ∈ Rd

DpH1(x, p) · p−H1(x, p) = DpH1(x, p) · p− γH1(x, p) + (γ − 1)H1(x, p)

≥ (γ − 1)H1(x, p)− h(x)γ ≥ h0(γ − 1)|p|γ − (‖h‖∞γ + ‖b‖∞)

ensuring the validity of (H1F). Moreover, |DpH| = h(x)γ(1 + |p|2)
γ
2
−1|p|, so it is

immediate to check the validity of (H2F)-(H4F). In addition, we have

D2
ppH(x, p) = h(x)γ[(γ − 2)(1 + |p|2)

γ−4
2 p⊗ p+ (1 + |p|2)

γ
2
−1Id] .

Therefore, H is strictly convex since for every ξ ∈ Rd it holds

D2
ppH(x, p)ξ · ξ = h(x)γ(1 + |p|2)

γ−4
2 |ξ|2[(γ − 1)|p|2 + 1] ≥ h0γ|ξ|2 .

The same computations shows the validity of (H5F).

81



Example 5.5. Another example is represented by Hamiltonians behaving likeO(|p|γ)
for |p| → ∞, namely

H2(x, p) = h(x)|p|γ + b(x) · p , γ ≥ 2 ,

where p ∈ Rd, h, b ∈ C2(Td) and h(x) ≥ h0 > 0. Here, simple computations and
Young’s inequality allows to conclude

DpH2(x, p) · p−H2(x, p) ≥ |p|γ
[
h(x)(γ − 1)− 1

γ

]
+ b(x)− ‖b‖

γ′
∞

γ′

which gives (H1F) by setting e.g. CH := h0(γ − 1) − 1
γ
, h0 := 1

γ(γ−1)
+ δ,δ > 0 and

cH = 2‖b‖
γ′
∞

γ′
− 1

γ
. It is straightforward to verify (H3F)-(H5F). Moreover, H is convex

since it can be written as supremum of linear operators (see e.g. [212]).

Remark 5.6. We remark that if one requires to satisfy H3(p) ∼ |p|γ in the sub-
quadratic case γ < 2 in Example 5.5, then H fails to be C2 in a neighborhood of
p = 0, since H3 = H3(p) ∈ C1,γ−1(Rd).

5.3 Fractional parabolic spaces

5.3.1 Hölder spaces

We first recall the definition of Hölder spaces on the torus and then define the
natural parabolic Hölder spaces associated to the heat and fractional heat equation.
Let α ∈ (0, 1] and k be a non-negative integer. A real-valued function u defined on
Td belongs to Ck+α(Td) if u ∈ Ck(Td) and

[Dru]Cα(Td) := sup
x 6=y∈Td

|Dru(x)−Dru(y)|
dist(x, y)α

<∞

for each multi-index r such that |r| = k, where dist(x, y) is the geodesic distance from
x to y on Td. Note that in the definition of the previous (and following) seminorm,
since u can be seen as a periodic function on Rd, dist(x, y) can be replaced by the
euclidean distance |x − y|, and the supremum be taken in Rd. We will denote by
‖ · ‖∞;Ω the sup-norm on Ω (and eventually drop Ω in the subscript if it is clear from
the context).

Let now I ⊆ [0, T ] and Q = Td × I. First define

[u]Cαx (Q) := sup
t∈[0,T ]

[u(·, t)]Cα(Td)

and
[u]Cβt (Q) := sup

x∈Td
[u(x, ·)]Cβ(I) .

For any integer k we denote by C2k,k(Q) the set of functions u = u(x, t) : Q →
R which are continuous in Q together with all derivatives of the form ∂rtD

β
xu for

2r + |β| ≤ 2k. Moreover, let C2k+α,k+α/2(Q) be functions of C2k,k(Q) such that the
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derivatives ∂rtD
β
xu, with 2r + |β| = 2k, are α-Hölder in x and α/2-Hölder in t, with

norm

‖u‖C2k+α,k+α/2(Q) =
∑

2r+|β|≤2k

‖∂rtDβ
xu‖∞;Q +

∑
2r+|β|=2k

[∂rtD
β
xu]Cαx (Q) + [∂rtD

β
xu]

C
α/2
t (Q)

.

For these classical parabolic Hölder spaces, we refer the interested reader to
[119, 154, 159] for a more comprehensive discussion.

We now consider some vector-valued Hölder classes. Let X be a Banach space
and β ∈ (0, 1). Denote by Cβ(I;X) the space of functions u : I → X such that the
norm defined as

‖u‖Cβ(I;X) := sup
t∈I
‖u(t)‖X + sup

t6=τ

‖u(t)− u(τ)‖X
|t− τ |β

is finite. Hence, specializing to X = Cα(Td), α ∈ (0, 1), we have that Cβ(I;Cα(Td))
is the set of functions u : I → Cα(Td) with finite norm

‖u‖Cβ(I;Cα(Td)) := ‖u‖∞;Q + sup
t∈I

[u(·, t)]Cα(Td) + [u]Cβ(I;Cα(Td)) ,

where the last seminorm is defined as

[u]Cβ(I;Cα(Td)) := sup
t6=τ∈I

‖u(·, t)− u(·, τ)‖Cα(Td)

|t− τ |β
.

When dealing with regularity of parabolic equations driven by fractional diffusion,
we also need the following Hölder spaces with different regularity in time and space.
Following the lines of [59] and [114], we define Cα,β(Q) as the space of continuous
functions u such that the following Hölder parabolic seminorm is finite

[u]Cα,β(Q) := [u]Cαx (Q) + [u]Cβt (Q). (5.3)

The norm in the space Cα,β(Q) is defined naturally as

‖u‖Cα,β(Q) := ‖u‖∞;Q + [u]Cα,β(Q) .

Note that if β = α/2, the space Cα,β(Q) coincides with Cα,α/2(Q). As pointed out in
[114], the following equivalence between seminorms holds

[u]Cα,β(Q) ∼ sup
x,y∈Td,t,τ∈[0,T ]

|u(x, t)− u(y, τ)|
dist(x, y)α + |t− τ |β

.

All the spaces above can be defined analogously on Rd and Q = Rd×I. Moreover,
if u is a periodic function in the x-variable, norms on Td and Rd coincide, e.g.
‖u‖Cα(Td) = ‖u‖Cα(Rd), ...

Remark 5.7. It is worth noticing that we have to distinguish the vector-valued
Hölder spaces Cβ([0, T ];Cα(Td)) and Cα,β(Q), since it results

Cβ([0, T ];Cα(Td)) ( Cα,β(QT ) .
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It can be easily seen by taking β = α and a periodic function in the x-variable that
behaves like (x + t)α in a neighborhood of (0, 0) (see in particular [204, Section 4]).
We provide the explicit computations for reader’s convenience. On one hand, we
have

‖u‖Cα,β(QT ) ∼ |u|0;QT + sup
x∈Rd

[u(x, ·)]Cβ([0,T ]) + sup
t∈[0,T ]

[u(·, t)]Cα(Td)

≤ |u|0;QT + sup
x∈Rd

[u(x, ·)]Cβ([0,T ]) + sup
t∈[0,T ]

[u(·, t)]Cα(Td) + [u]Cβ([0,T ];Cα(Td))

= ‖u‖Cβ([0,T ];Cα(Rd)) .

On the other hand, to see that the converse inclusion does not hold, we consider the
function ū(x, t) = (x+ t)α in I2 = [0, T ]× [0, T ]. We first prove that ū ∈ Cα,α(I2) by
proving that the Hölder seminorm below

[ū]Cα,α(I2) := sup
t∈I

sup
x,x′∈I

|ū(x, t)− ū(x′, t)|
|x− x′|α

+ sup
x∈I

sup
t,t′∈I

|ū(x, t)− ū(x, t′)|
|t− t′|α

is finite. We first recall the following simple algebraic lemma

Lemma 5.8. Let α ∈ (0, 1) and a > b > 0. Then we have

aα − bα ≤ 21−α(a− b)α . (5.4)

Proof. The inequality is proven in [103, Lemma I.4.4] and with sharp constant in
[53, Lemma A.2].

The above result immediately implies that the seminorms

sup
t∈I]

[ū(·, t)]Cα(I) , sup
x∈I

[ū(·, t)]Cα(I) <∞ .

Indeed, supposing without loss of generality that x > x′ (and hence x+ t > x′+ t for
every t ∈ I), in view of the inequality in (5.4) we conclude for every t ∈ I the bound

(x+ t)α − (x′ + t)α

(x− x′)α
≤ 21−α .

We now show that the seminorm [u]Cα(I;Cα(I)) blows up in a neighborhood of (0, 0) ∈
I, showing indeed that u does not belong to Cα(I;Cα(I)). We have

[ū]Cα(I;Cα(I)) ≥
|ū(x, t)− ū(x, 0)− ū(0, t) + ū(0, 0)|

xαtα
,

and hence when (x, t) approaches to (0, 0) the inequality on the right-hand side
behaves like

|ū(x, t)|
xαtα

=

(
x+ t

xt

)α
,

which blows up as (x, t) approaches to (0, 0), and so does the seminorm [u]Cα(I;Cα(I)).
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5.3.2 Fractional Sobolev and Bessel potential spaces

Recall that Lp(Td) is the space of all measurable and periodic functions belonging
to Lploc(Rd) with norm ‖ · ‖p = ‖ · ‖Lp((0,1)d). If f : Td → Rd, for brevity we write
f ∈ Lp(Td) instead of f ∈ (Lp(Td))d. If k is a non-negative integer, W k,p(Td) consists
of Lp(Td) functions with (distributional) derivatives in Lp(Td) up to order k. For
µ ∈ R and p ∈ (1,∞), we can directly define the Bessel potential space Hµ

p (Td) as

the space of all distributions u such that (I − ∆)
µ
2 u ∈ Lp(Td), where (I − ∆)

µ
2 u is

the operator defined in terms of Fourier series

(I −∆)
µ
2 u(x) =

∑
k∈Zd

(1 + 4π2|k|2)
µ
2 û(k)e2πik·x ,

where

û(k) =

∫
Td
u(x)e−2πik·xdx .

The norm in Hµ
p (Td) will be denoted by

‖u‖µ,p :=
∥∥∥(I −∆)

µ
2 u
∥∥∥
p
.

Note that Hk
p (Td) coincides with W k,p(Td) when k is a non-negative integer and p ∈

(1,∞), by standard arguments in Fourier series (see Remark 5.14 below). Moreover,
C∞(Td) is dense in Hµ

p (Td), by a convolution procedure: this fact will be useful to
prove several properties of Bessel spaces, as it is sufficient to argue in the smooth
setting to get general results.

Bessel potential spaces can be also constructed via complex interpolation. We will
briefly present such a construction, that will be helpful to derive some useful prop-
erties of Hµ

p (Td). For additional details, we refer to [178, Chapter 2], [36, Chapter
4] and [231, Section 1.9]. We first recall the following

Definition 5.9. Let X be a Banach space and Ω ⊂ C be an open set. A function
f : Ω→ X is holomorphic if

f ′(z0) := lim
h→0 ,h∈C\{0}

f(z0 + h)− f(z0)

h

exists for all z0 ∈ Ω. We say that f is weakly holomorphic in Ω if it is continuous
in Ω and the complex-valued function z 7−→ 〈f(x), x′〉X′,X is holomorphic in Ω for
every x′ ∈ X ′.

In particular, it is straightforward to see that every vector-valued holomorphic
function is weakly holomorphic. Moreover, the converse implication is also true [7,
Appendix A].

In general, in complex interpolation theory one considers two Banach spacesX, Y ,
that are continuously embedded in a Hausdorff topological vector space Z. Let S be
the set

S := {z ∈ C : 0 < Rez < 1} .
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We define

HX,Y (S) := {u(θ) |u(θ) : S → X + Y bounded and continuous,

holomorphic on S, ‖u(it)‖X , ‖u(1 + it)‖Y bounded for t ∈ R}

and we equip it with the norm

‖u‖HX,Y (S) = max{sup
t∈R
‖u(it)‖X , sup

t∈R
‖u(1 + it)‖Y }.

For every θ ∈ [0, 1] we define the complex interpolation space with respect to (X, Y )
as

[X, Y ]θ = {u(θ) : u ∈ HX,Y (S)}
endowed with the norm

‖f‖[X,Y ]θ := inf
u∈HX,Y (S),u(θ)=f

‖u‖HX,Y (S) .

Then, one has that Hµ
p (Td) can be obtained by complex interpolation between Lp(Td)

and W k,p(Td), see, e.g., [213, Section 3] or [36, Theorem 6.4.5 and p. 170], that is

Hµ
p (Td) ' [Lp(Td),W k,p(Td)]θ, where µ = kθ.

We briefly describe also some tools to construct real interpolation spaces, namely
the so-called K-method and the trace method, referring, among others, to [177,
Chapter 1] or [178, Chapter 1] for additional details. In general, real interpolation
between Lp(Td) and W k,p(Td) leads to spaces that do not coincide with Bessel po-
tential spaces. Still, we will make use of this other class of fractional spaces to prove
useful properties of (−∆)s. Let X, Y be Banach spaces with Y ⊂ X, θ ∈ [0, 1] and
p ∈ [1,∞]. For every x ∈ X and t > 0, define

K(t, x,X, Y ) = inf
x=a+b,a∈X,b∈Y

‖a‖X + t‖b‖Y .

Sometimes we will use the shorter notation K(t, x) to denote the K-functional. If
I ⊂ (0,∞), we denote by Lp∗(I) the Lebesgue space Lp(I, dt

t
) and L∞∗ (I) = L∞(I).

We define the real interpolation space (X, Y )θ,p between the Banach spaces X, Y as

(X, Y )θ,p = {x ∈ X + Y : t 7→ t−θK(t, x,X, Y ) ∈ Lp∗(0,+∞)}

endowed with the norm

‖x‖θ,p = ‖t−θK(t, x,X, Y )‖Lp∗(0,+∞) .

It can be proved that this is a Banach space. We remark that such a construction
turns out to be useful to prove Hölder regularity of the solution of the fractional heat
equation in Theorem B.1. Another frequent characterization of real interpolation
spaces is given by means of the trace method (see [231, Section 1.8.1], [177, Section
1.2.2] and [172]). Let X, Y be Banach spaces as above. For α, p ∈ R with p ∈ (1,+∞)
satisfying 0 < α + 1

p
< 1, we define the space

W (p, α, Y,X) = {f : R+ → X : tαf(t) ∈ Lp(0,+∞;Y ) and tαf ′(t) ∈ Lp(0,+∞;X)} .
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It is a Banach space endowed with the norm

‖f‖W (p,α,Y,X) := max{‖tαf(t)‖Lp(0,+∞;Y ), ‖tαf ′(t)‖Lp(0,+∞;X)} .

We then identify with T (p, α, Y,X) the space of traces u of those functions f(t) ∈
W (p, α, Y,X), equipped with the norm

‖u‖T (p,α,Y,X) = inf
u=f(0)

‖f‖W (p,α,Y,X)

By [177, Proposition 1.2.10], this provides a characterization for the real interpolation
space (X, Y )θ,p as a trace space. For p ∈ (1,∞), θ ∈ (0, 1) and θ = 1

p
+ α, we define

fractional Sobolev spaces W 1−θ,p(Td) by

W 1−θ,p(Td) = T (p, α,W 1,p(Td), Lp(Td)).

For µ > 1, W µ,p(Td) is defined as the space of functions in W bµc,p(Td) with derivatives
of order bµc in W µ−bµc,p(Td), while for µ < 0 it is defined by duality. Note that
T (p, α, Y,X) = T (p′,−α,X ′, Y ′) by [172, Theorem 1.2]. We finally mention that
spaces W µ,p(Td) defined above can be characterized using the Gagliardo seminorm
on Td by transposing classical arguments on Rd (see, e.g., [178]).
Finally, we need to introduce the Besov spaces Bµ

p,q(Td), where µ ∈ R stands for the
order of differentiability and 1 < p, q ≤ ∞ for the orders of integrability. If µ is not
an integer, we denote by [µ] and {µ} be the integral and fractional parts of µ. For
p, q <∞ we define

Bµ
p,q(Td) := {u ∈ W [µ],p(Td) : [u]Bµp,q(Td) <∞}

where

[u]Bµp,q(Td) :=
∑
|α|=µ

(∫
Td

dh

|h|d+{µ}q

(∫
Td
|Dαu(x+ h)−Dαu(x)|p dx

) q
p

) 1
q

,

and we set as usual W 0,p(Td) = Lp(Td). When p = q it results Bµ
p,p(Td) = W µ,p(Td).

These spaces in the intermediate cases 1 < p, q < ∞ are crucial to characterize
the initial traces for parabolic Sobolev spaces we shall define in the next sections.
For p, q = ∞ the Lp norms are replaced by sup norms and Bµ

∞,∞(Td) = Cµ(Td)
(see e.g. [178, p. 13]). Similarly to the case of fractional Sobolev spaces W µ,p,
Besov spaces can be characterized via real interpolation. One can show the following
characterizations (cf [178, Example 1.10]):

- For θ ∈ (0, 1), m ∈ N we have

(C(Td), Ck(Td))θ,∞ = Bmθ
∞,∞(Td) .

- In particular, if mθ is not an integer,

(C(Td), Ck(Td))θ,∞ = Cmθ(Td) .
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- For 1 ≤ p, q <∞, m ∈ N we have

(Lp(Td),Wm,p(Td))θ,q = Bmθ
p,q (Td) .

We conclude this introductory part with one of the main useful tool in interpola-
tion theory, namely the so-called Reiteration Theorem. We first recall the following
definition

Definition 5.10. Let θ ∈ [0, 1] and E be a Banach space such that X ∩ Y ⊂ E ⊂
X + Y .

(i) E belongs to the class Jθ between X and Y if there exists a constant C1 > 0
such that

‖x‖E ≤ C1‖x‖1−θ
X ‖x‖

θ
Y ,∀x ∈ X ∩ Y .

(ii) E belongs to the class Kθ between X and Y if there exists a constant C2 > 0
such that

K(t, x) ≤ C2t
θ‖x‖E ,∀x ∈ E, t > 0 .

Note that when Y ⊂ X we have K(t, x) ≤ ‖x‖X (see [178, (c) pag. 2]). We quote
the result from [178, Theorem 1.23].

Theorem 5.11 (Reiteration Theorem). Let 0 ≤ θ0 < θ1 ≤ 1. Set θ ∈ (0, 1) and
ω = (1− θ)θ0 + θθ1. The following hold true.

(a) If Ei belong to the class Kθi, i = 0, 1 between X and Y , then

(E0, E1)θ,p ⊂ (X, Y )ω,p ,∀p ∈ [1,∞] , (E0, E1)θ ⊂ (X, Y )ω .

(b) If Ei belong to the lass Jθi, i = 0, 1 between X and Y , then

(X, Y )ω,p ⊂ (E0, E1)θ,p ,∀p ∈ [1,∞] , (X, Y )ω ⊂ (E0, E1)θ .

As a consequence, if Ei belong to Kθi ∩ Jθi, then

(E0, E1)θ,p = (X, Y )ω,p , ∀p ∈ [1,∞] , (E0, E1)θ = (X, Y )ω

with equivalence of their respective norms.

Parabolic spaces. We proceed with the definitions of some functional spaces
involving time and space weak derivatives. Let Q = Td × I be as before. For any
integer k and p ≥ 1, we denote by W 2k,k

p (Q) the space of functions u such that
∂rtD

β
xu ∈ Lp(Q) for any multi-index β and r such that |β| + 2r ≤ 2k endowed with

the norm

‖u‖W 2k,k
p (Q) =

∫∫
Q

∑
|β|+2r≤2k

|∂rtDβ
xu|pdxdt

 1
p

.
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We now define the fractional generalization of the above spaces. Let again µ ∈ R
and p ∈ (1,∞). We denote by Hµ

p(Q) := Lp(0, T ;Hµ
p (Td)) the space of measurable

functions u : (0, T )→ Hµ
p (Td) endowed with the norm

‖u‖Hµp (Q) :=

(∫ T

0

‖u(·, t)‖p
Hµ
p (Td)

dt

) 1
p

.

We define the space Hµ
p (Q) = Hµ;s

p (Q) as the space of functions u ∈ Hµ
p(Q) with

∂tu ∈ (H2s−µ
p′ (Q))′ equipped with the norm

‖u‖Hµp (Q) := ‖u‖Hµp (Q) + ‖∂tu‖(H2s−µ
p′ (Q))′ .

We refer the reader to [84]. Note that the above definitions make sense also when
s = 1, see e.g. Chapter 6 (here we will usually drop the superscript s for brevity).
Those are natural spaces in the standard parabolic setting: see [155] and [92], [50,
Chapter 6] for properties in the case s = 1. Note that (H2s−µ

p′ (Q))′ coincides with
Hµ−2s
p (Q) when p > 1. From here on for a function f : QT → R we will write for

brevity ‖Df‖Lq(QT ) meaning the norm ‖Df‖Lq(QT ;Rd).

Moreover, all the aforementioned spaces can be defined analogously on Rd and
Rd × I, mutatis mutandis. In particular, one has to consider (I − ∆)

µ
2 u as the

operator acting on tempered distributions in terms of the Fourier transform F :

F [(I −∆)
µ
2 u](ξ) = (1 + 4π2|ξ|2)

µ
2 Fu(ξ), ∀ξ ∈ Rd.

5.3.3 The fractional Laplacian on the torus

In this section we recall the definition of the fractional Laplacian on the flat torus.
Let u : Td → R. The fractional Laplacian on the torus can be defined via the
multiple Fourier series

(−∆Td)
µu(x) = (2π)2µ

∑
k∈Zd
|k|2µû(k)e2πik·x , µ > 0 .

With a slight abuse of notation, we will denote this operator by (−∆)µ. Indeed,
generally speaking (−∆Td)

µ coincides with the standard fractional laplacian on Rd

acting on periodic functions. We refer the reader to [206, 62] for additional details,
and to [205] for transference properties from the torus to the Euclidean space. Note
that in our analysis of this chapter we never make use of the integral representation
formula for the fractional Laplacian on the torus. However, it can be immediately
obtained by properties of Fourier transform, as stated in the next

Proposition 5.12. Let 0 < s < 1, x ∈ Td, u ∈ C∞(Td), then

(−∆)su(x) = cd,s
∑
k∈Zd

P.V.

∫
Td

u(x)− u(y)

|x− y − k|d+2s
dy .
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Proof. This fact has been proved in the 2-dimensional case in [95, Proposition 2.2]
and can be easily adapted to the general d-dimensional case.
We further mention that in the case of the whole space the fractional Laplacian can
be also defined via the extension problem (see e.g. the seminal paper [61], [56] and
the references therein).

We present two standard results that will be useful in the sequel

Lemma 5.13. For every smooth f, g, the following identity holds true for any s ∈
(0, 1) ∫

Td
(−∆)sfgdx =

∫
Td

(−∆)s/2f (−∆)s/2gdx =

∫
Td
f(−∆)sgdx .

Proof. The functions f and g can be written by multiple Fourier series expansion

f(x) =
∑
ν∈Zd

f̂(ν)e2πiν·x and g(x) =
∑
µ∈Zd

ĝ(µ)e2πiµ·x.

Then∫
Td

(−∆)sfgdx = (2π)2s

∫
Td

∑
ν,µ∈Zd

|ν|2sf̂(ν)e2πiν·xĝ(µ)e2πiµ·xdx

= (2π)2s
∑
ν,µ∈Zd

|ν|2sf̂(ν)ĝ(µ)

∫
Td
e2πi(ν+µ)·xdx

= (2π)2s
∑
ν+µ=0

|µ|s|ν|sf̂(ν)ĝ(µ)

∫
Td
e2πi(ν+µ)·xdx

= (2π)2s
∑
ν,µ∈Zd

|µ|s|ν|sf̂(ν)ĝ(µ)

∫
Td
e2πi(ν+µ)·xdx

= (2π)2s

∫
Td

∑
ν,µ∈Zd

|ν|sf̂(ν)eiν·x|µ|sĝ(µ)e2πiµ·xdx =

∫
Td

(−∆)
s
2f(−∆)

s
2 gdx ,

where we used that
∫
Td e

2πi(ν+µ)·xdx = 0 if and only if µ + ν 6= 0 and the fact that
the Fourier series defining f and g converge absolutely.

Remark 5.14. We point out that the operator (I−∆)
µ
2 maps isometrically Hη+µ

p (Td)
to Hη

p (Td) (and therefore spaces Hη+µ
p to Hη

p) for any η, µ ∈ R, This fact extends

also to Besov spaces Bµ
pp(Td). Moreover, for µ > 0 the operator (−∆)

µ
2 is bounded

from Hη+µ
p (Td) to Hη

p (Td). Indeed, T µ := [(−∆)
µ
2 (I − ∆)−

µ
2 ], µ > 0 is bounded in

Lp(Rd) (see [222, p. 133]), so

‖(−∆)
µ
2 u‖Lp(Rd) ≤ C(s, p)‖u‖Hµ

p (Rd). (5.5)

In other words, (2π)µ|ξ|µ(1+4π2|ξ|2)−
µ
2 defines a Fourier multiplier on Lp(Rd). Then,

by the transference result [223, Theorem VIII.3.8], the periodized operator given by

T̃ µu :=
∑
k∈Zd

(2π)µ|k|µ(1 + 4π2|k|2)−
µ
2 û(k)e2πik·x
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is in turn bounded in Lp(Td). It then follows

‖(−∆)
µ
2 u‖Lp(Td) = ‖T̃ µ(I−∆)

µ
2 u‖Lp(Td) ≤ C‖(I−∆)

µ
2 u‖Lp(Td) = C‖u‖Hµ

p (Td) , (5.6)

so (−∆)
µ
2 is bounded from Hµ

p (Td) to Lp(Td). The general case follows by using the

isometry (I −∆)
η
2 .

Similarly, (1 + (2π)µ|ξ|µ)/(1 + 4π2|ξ|2)
µ
2 and (1 + 4π2|ξ|2)

µ
2 /(1 + (2π)µ|ξ|µ) define

Fourier multipliers on Lp(Rd) for 1 < p < ∞, and by continuity they transfer to
Lp(Td). This proves the equivalence of norms ‖ · ‖µ,p and ‖ · ‖p + ‖(−∆)

µ
2 · ‖p.

The following interpolation estimates hold.

Lemma 5.15. Let u ∈ Lp(Td), p ∈ (1,∞).

(i) If s ∈ (0, 1
2
) and Du ∈ Lp(Td), then for every δ > 0 there exists C(δ) > 0

depending on δ, d, s, p such that

‖(−∆)su‖p ≤ δ ‖Du‖p + C(δ) ‖u‖p .

(ii) If s ∈ [1
2
, 1) and D2u ∈ Lp(Td), then for every δ > 0 there exists C(δ) > 0

depending on δ, d, s, p such that

‖(−∆)su‖p ≤ δ
∥∥D2u

∥∥
p

+ C(δ) ‖u‖p .

Proof. The proof follows by interpolation arguments. We prove only the case (i),
the other being similar. Since H2s

p (Td) ' [Lp(Td),W 1,p(Td)]θ, θ = 2s, by (5.6) and
Young’s inequality we have

‖(−∆)su‖p ≤ ‖u‖2s,p ≤ C ‖u‖1−θ
p ‖u‖θ1,p ≤ (1− 2s)

(
C

ε

) 1
1−2s

‖u‖p + 2sε
1
2s ‖u‖1,p

where C = C(d, s, p). We then conclude (i) by setting δ := 2sε
1
2s and C(δ) :=

(1− 2s)
(
C
ε

) 1
1−2s + 2sε

1
2s .

Embedding Theorems for Hµ
p , W µ,p and Bµ

pp

We recall some classical embeddings for (stationary) Bessel potential spaces Hµ
p (Td).

Lemma 5.16. (i) Let ν, µ ∈ R with ν ≤ µ, then Hµ
p (Td) ⊂ Hν

p (Td).

(ii) If pµ > d and µ− d/p is not an integer, then Hµ
p (Td) ⊂ Cµ−d/p(Td).

(iii) Let ν, µ ∈ R with ν ≤ µ, p, q ∈ (1,∞) and

µ− d

p
= ν − d

q
,

then Hµ
p (Td) ⊂ Hν

q (Td). In particular, for ν = 0 this gives the continuous

embedding of Hµ
p (Td) onto L

dp
d−µp and hence onto Lq(Td) for 1 < q ≤ dp

d−µp for
µp < d
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(iv) In particular, for µ > 0 such that µp < d and 1 < q < dp
d−µp the embedding of

Hµ
p (Td) onto Lq(Td) is compact.

Proof. Item (i)-(iii) are proven in [158, Corollary 13.3.9], [158, Theorem 13.8.1] and
[158, Theorem 13.8.7] respectively for the whole space case. The transference to the
periodic setting can be obtained as follows. Let χ ∈ C∞0 (Rd) be a cutoff function
such that χ ≡ 1 on the unit cube [0, 1]d and 0 ≤ χ ≤ 1.

Let now u be smooth function on Td, namely a smooth periodic function on Rd.
Then, it is easy to check that the extension operator

u 7→ ũ = χu on Rd (5.7)

extends to a linear continuous operator W k,p(Td) → W k,p(Rd), for all non-negative
integers k and p ≥ 1. The spaces Hµ

p (Rd) and Hµ
p (Td) can be both obtained via

complex interpolation, that is for some θ ∈ (0, 1) and k ≥ µ ≥ 0, Hµ
p (Td) '

[Lp(Td),W k,p(Td)]θ and Hµ
p (Rd) ' [Lp(Rd),W k,p(Rd)]θ. Moreover, they coincide

with Hµ
p (Td) and Hµ

p (Rd) respectively when µ is a non-negative integer. Therefore,
the extension operator (5.7) is also bounded on Hµ

p (Td)→ Hµ
p (Rd) by interpolation

(see [231, Theorem (a), p. 59] and [178, Chapter 2]).Thus, for all µ ≥ 0,

‖u‖Lp(Td) ≤ ‖ũ‖Lp(Rd) ≤ C‖ũ‖Hµ
p (Rd) ≤ C1‖u‖Hµ

p (Td), (5.8)

that implies (i) in the case ν = 0 (note that for the first inequality in (5.8) to be
true, it is crucial to work in Lp, so that the restriction operator Lp(Rd) → Lp(Td)
is continuous). The general case ν 6= 0 follows by applying to (5.8) the isometry
(I −∆)ν/2. Items (ii) and (iii) are obtained analogously.
To prove (iv) one argues by interpolation. We restrict without loss of generality to
the case µ ∈ (0, 1). One observes then that Hµ

p (Td) = [Lp(Td),W 1,p(Td)]θ, W 1,p(Td)
is compactly embedded onto Lr(Td) for 1 < r < dp

d−p by Rellich-Kondrachov Theorem

and hence the identity map T : W 1,p(Td)→ Lp(Td), T (u) = u is compact. Moreover,
T is also continuous from Lp(Td) onto itself. Therefore, by classical compactness
results in interpolation theory (see e.g. [173]), we have the compact embedding of
Hµ
p (Td) onto Lp(Td). We now take a bounded sequence un in Hµ

p (Td). Then one can
extract a subsequence unk converging strongly in Lp(Td). By interpolation, for every
p < q < dp

d−µp , there exists θ ∈ (0, 1) such that

‖unk − unj‖q ≤ ‖unk − unj‖1−θ
p ‖unk − unj‖θ dp

d−µp
→ 0

as j, k →∞ since unk is bounded in Hµ
p (Td) which is in turn continuously embedded

onto L
dp

d−µp (Td) by (iii). Then we have the strong convergence also in Lq with q as
above.

Lemma 5.17. (i) Let ν, µ ∈ R with ν ≤ µ, then W µ,p(Td) ⊂ W ν,p(Td).

(ii) If pµ > d and µ− d/p is not an integer, then W µ,p(Td) ⊂ Cµ−d/p(Td).
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(iii) Let ν, µ ∈ R with ν ≤ µ, p, q ∈ (1,∞) and

µ− d

p
= ν − d

q
,

then W µ,p(Td) ⊂ W ν,q(Td).

Proof. For (i) and (ii) see [213, Section 3.5.5]. To prove (iii), we use the trace
method (see also [213, Section 3.5.5] and references therein for a different proof).
By the definition of the fractional Sobolev space W µ,p it is sufficient to restrict to
prove the result when µ ∈ (0, 1). By using the critical embedding W 1,p(Td) ⊂
Lq(Td) when 1

q
= 1

p
− 1

d
one concludes that the identity map is linear and continuous

from T (p, α,W 1,p(Td),W 0,p(Td)) = W 1−θ,p(Td) to T (p, α, Lq(Td), Lp(Td)). It is well-
known (see e.g. [171]) that T (p, α, Lq(Td), Lp(Td)) ⊂ Lq(θ), where

1

q(θ)
=

1

p
− 1− θ

d
, θ =

1

p
+ α .

giving thus the embedding W 1−θ,p(Td) onto Lq(θ)(Td) for q(θ) as above.

Let us remark that if either µ > 0 noninteger or µ ∈ N and p = 2 we have
W µ,p ' Bµ

p,p. When µ is an integer and p 6= 2 we have W µ,p 6= Bµ
p,p. This motivates

the next lemma, where we collect some results that link Bessel, Besov and Sobolev-
Slobodeckii spaces under different ranges of the integrability exponent p.

Lemma 5.18. We have the following inclusions for µ ∈ R.

(i) W µ,p(Td) ⊂ Hµ
p (Td) ⊂ Bµ

p,2(Td) for 1 < p ≤ 2.

(ii) Bµ
p,2(Td) ⊂ Hµ

p (Td) ⊆ W µ,p(Td) for 2 ≤ p <∞.

Proof. The result on Rd is proven in [231, Section 2.3.3] (see also [36, Theorem 6.4.4].
Recalling that Hµ

p is isomorphic to a Triebel-Lizkorin scale (see [213, Theorem 3.5.4-
(v)] and the same chapter for the definition of this space), one uses [213, Remark
3.5.1.4-(20)] to show (i) and (ii).

Embedding Theorems for parabolic spaces Hµ
p

We now prove continuous embedding theorems for the spaces Hµ
p (QT ) = Hµ;s

p (QT ),
where QT = Td× (0, T ). As usual, we will denote continuous embeddings of Banach
spaces by the symbol X ↪→ Y . All the results of this section are valid for s ∈ (0, 1].
We will basically follow the strategy of [155, Theorem 7.2], where analogous results
are proven for (stochastic) spaces associated to heat-type equations (that is, for
s = 1) on Rd × (0, T ) (see also [157]). In addition, we refer to [50, Theorem 6.2.2],
[92, Proposition 2.2] and [185, Theorem A.3] for the case s, µ = 1. We first state the
main result of this section and, at the end, we will deduce some useful corollaries.
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Theorem 5.19. Let µ ∈ R, p > 1, u ∈ Hµ
p (QT ) and u(0) ∈ W µ−2s/p,p(Td). If β is

such that
s

p
< β < s,

then u ∈ C
β
s
− 1
p ([0, T ];Hµ−2β

p (Td)). In particular, there exists C > 0 depending on
d, p, β, s, T , such that

‖u(·, t)− u(·, τ)‖pµ−2β,p ≤ C|t− τ |
β
s
p−1(‖u‖Hµp (QT ) + ‖u(0)‖Wµ−2s/p,p(Td))

p

for 0 ≤ t, τ ≤ T . Hence,

‖u‖
C
β
s−

1
p ([0,T ];Hµ−2β

p (Td))
≤ C(‖u‖Hµp (QT ) + ‖u(0)‖Wµ−2s/p,p(Td)) . (5.9)

Note that the constant C remains bounded for bounded values of T .

We first state the following trace result on the hyperplane t = 0 for functions
belonging to Hµ

p . The flexibility of this (functional) characterization of initial traces
give also a way to prove the result claimed in [159, Lemma II.3.4] for classical spaces
associated to heat PDEs, were a proof is not presented.

Lemma 5.20. If u ∈ Hµ
p (QT ), µ ∈ R and p > 1 satisfying µ − 2s/p > 0, then

u(0) ∈ W µ−2s/p,p(Td).

Proof. We restrict to the case µ = 2s. This is proven in [178, Corollary 1.14] in an
abstract framework and the result is a consequence of embedding properties for the
domain of the fractional Laplacian D(−(−∆)s) and the Reiteration Theorem. In-
deed, since s ∈ (0, 1), by applying [178, Proposition 4.7] one obtains that D(−(−∆)s)
belongs to Js(L

p(Td), D(−∆))∩Ks(L
p(Td), D(−∆)). We now apply the Reiteration

Theorem (see Theorem 5.11) with θ0 = 0, θ1 = s, θ = 1−1/p (giving thus ω = s−s/p)
X = Lp(Td), Y = W 2,p(Td), E0 = Lp(Td), E1 = D(−(−∆)s) to get that

(Lp(Td), D(−(−∆)s))1−1/p,p = (Lp(Td),W 2,p(Td))s−s/p,p ' W 2s−2s/p,p(Td)

Recall that W 2s−2s/p,p(Td) ' B
2s−2s/p
p,p (Td).

Remark 5.21. We remark that in the context of mixed Lebesgue spaces of the form

Hµ,q
p (QT ) := W 1,q(0, T ;Hµ−2s

p (Td)) ∩ Lq(0, T ;Hµ
p )

the initial trace turns out to belong to a Besov space with different orders of summa-
bility. When e.g. µ = 2s we have u(0) ∈ B2s−2s/p

p,q (Td) (see e.g. [199]).

We first need some estimates in the spaces of Bessel potentials for the semigroup
Tt associated to the fractional Laplacian. Recall that for a given smooth u, Ttu :=
v(t), where v solves {

∂tv + (−∆)sv = 0 in QT ,

v(0) = u in Td.
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Then we have the following standard representation formula that can be obtained
via Fourier transform

Ttu(x) =

∫
Rd
pt(x− y)u(y)dy = pt ?Rd u(x), (5.10)

where pt(x) := F−1(e−t|ξ|
2s

)(x) =
∫
Rd e

2πix·ξe−t|ξ|
2s
dξ. In the periodic case, namely if

u : Td → R, defining p̂t(x) :=
∑

z∈Zd pt(x+ z) =
∑

z∈Zd e
−t|z|2se2πiz·x, we note that

Ttu(x) =

∫
Rd
pt(x− y)u(y)dy =

∑
z∈Zd

∫
(0,1)d+z

pt(x− y)u(y + z)dy

=

∫
Td

∑
z∈Zd

pt(x− y − z)u(y)dy =

∫
Td
p̂t(x− y)u(y)dy = p̂t ?Td u(x). (5.11)

This shows that some properties of the fractional heat semigroup on the whole
space Rd can be directly transferred to the periodic case. First, ‖pt‖L1(Rd) = 1,
so ‖p̂t‖L1(Td) = 1, readily yielding

‖Ttf‖p ≤ ‖f‖p ∀p ∈ [1,∞] , (5.12)

by Young’s inequality for convolutions. Moreover, pt(x) = t−d/2sp1(t−1/2sx) by rescal-
ing, hence for a multiindex β we have∥∥Dβ p̂t

∥∥
L1(Td)

≤
∥∥Dβpt

∥∥
L1(Rd)

≤ t−|β|/2s
∥∥Dβp1

∥∥
L1(Rd)

≤ Ct−|β|/2s, (5.13)

by boundedness of
∥∥Dβp1

∥∥
L1(Rd)

(see, e.g., [236, Lemma 2.4]).

Remark 5.22. Representation formula (5.11) and decay estimates (5.12) imply that
for any f ∈ C∞(Td) and multiindices k,m ∈ N,

‖Dk+mTtf‖p ≤ Ct−
k
2s‖Dmf‖p ∀p ∈ [1,∞] . (5.14)

On the one hand, this shows that for t > 0, Tt maps Cm(Td) onto Ck+m(Td). On
the other hand, exploiting the density of C∞(Td) in Hµ

p (Td), one obtains that Tt is
bounded from Wm,p(Td) to W k+m,p(Td).

In addition, note that, for µ ∈ R, it results

Tt(I −∆)
µ
2 u = (I −∆)

µ
2 Ttu. (5.15)

The equality can be verified by taking its Fourier transform.

Lemma 5.23. (i) For any p > 1 and ν ∈ R,γ ≥ 0, we have for all f ∈ Hν
p (Td)

‖Ttf‖ν+γ,p ≤ Ct−γ/2s ‖f‖ν,p ,

where C = C(ν, γ, d, s, p).

(ii) For any θ ∈ [0, s] and p > 1, there exists a constant C = C(d, s, p, θ) such that,
for all f ∈ H2θ

p (Td), it holds

‖Ttf − f‖p ≤ Ctθ/s ‖f‖2θ,p . (5.16)
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(iii) For any p ≥ q > 1, we have for all f ∈ Lq(Rd)

‖Ttf‖p ≤ Ct−
d
2s

( 1
q
− 1
p

)‖f‖q .

where C = C(d, p, q, s).

(iv) For any p ≥ q > 1 and µ, ν ∈ R we have for all f ∈ Hµ
q (Rd)

‖Ttf‖ν,p ≤ Ct−
d
2s

( 1
q
− 1
p

)− 1
2s

(ν−µ)‖f‖µ,q

where C = C(d, p, q, µ, ν, s).

Proof. To prove (i) one can restrict without loss of generality to ν = 0, since the
general case will follow by replacing f by (I −∆)−νf . The proof is a consequence of
(complex) interpolation between inequalities (5.12) and (5.14), see e.g. [231, Theo-
rem (a) p. 59].

We prove (ii), and follow the strategy of [155, Lemma 7.3]. First, by (i) with
ν = 2θ and γ = 2s− 2θ ≥ 0, we get

‖Ttf‖2s,p ≤ Ct
θ
s
−1 ‖f‖2θ,p , (5.17)

where C = C(d, p, θ, s). Note that (Ttf)′ = −(−∆)sTtf . Hence, we have

‖(Tt − 1)f‖p ≤
∫ t

0

∥∥[(−∆)s(I −∆)−s](I −∆)sTτf
∥∥
p
dτ

≤ C

∫ t

0

‖Tτf‖2s,p dτ ≤ C ‖f‖2θ,p

∫ t

0

τ
θ
s
−1dτ = Ct

θ
s ‖f‖2θ,p

where we used (5.17) and the fact that [(−∆)s(I −∆)−s] is bounded in Lp(Td) (see
Remark 5.14).
(iii) is a consequence of Young’s inequality for convolutions. We have

‖Ttf‖p = ‖p̂t ?Td f‖p ≤ ‖pt‖r‖f‖q

where 1 + 1
p

= 1
r

+ 1
q

and pt stands for the fractional heat kernel. Standard estimates
for the fractional heat kernel yields

‖p̂t‖r ≤ Ct−
d
2s

(1− 1
r

)

This can be obtained by transference arguments in the periodic setting. Then one
immediately yields

‖Ttf‖p ≤ Ct−
d
2s

( 1
p
− 1
q

)‖f‖p .
The last item (iv) is a consequence of (i) and (iii).

Remark 5.24. We observe that −(−∆)s generates an analytic semigroup Tt on
Lp(Td) for all p > 1, since the following inequality

‖−(−∆)sTtf‖p ≤ Ct−1 ‖f‖p

holds (then, argue via [192, Theorem 2.5.2] for example). The above estimate is in
turn a straightforward consequence of Lemma 5.23-(i) with ν = 0 and γ = 2s.
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We recall the following useful lemma, and refer to [155, Lemma 7.4] (and refer-
ences therein) for its proof.

Lemma 5.25. Let p ≥ 1 and αp > 1. Then, for any continuous Lp-valued function
h(·) and τ ≤ t we have

‖h(t)− h(τ)‖pp ≤ C(α, p)(t− τ)αp−1

∫ t

τ

∫ t

τ

1r2>r1
‖h(r2)− h(r1)‖pp
|r2 − r1|1+αp

dr1dr2 (5.18)

= C(α, p)(t− τ)αp−1

∫ t−τ

0

dγ

γ1+αp

∫ t−γ

τ

‖h(r + γ)− h(r)‖pp dr .

As a consequence one has

sup
0≤τ<t≤T

‖h(t)− h(τ)‖pp
(t− τ)αp−1

≤ C(α, p)

∫ T

0

∫ T

0

1r2>r1
‖h(r2)− h(r1)‖pp
|r2 − r1|1+αp

dr1dr2 , (5.19)

where 1A denotes the indicator function of a given set A.

We now proceed with the proof of the embeddings of Hµ
p .

Proof of Theorem 5.19. Note first that since the operator (I −∆)
η
2 maps isometri-

cally Hµ
p (QT ) onto Hµ−η

p (QT ) for any η, µ (see Remark 5.14), we just consider the
case 2β = µ. We then have to prove that

‖u(t)− u(τ)‖pp ≤ C|t− τ |
β
s
p−1(‖u‖H2β

p (QT ) + ‖u(0)‖W 2β−2s/p,p(Td)),

for 0 ≤ t, τ ≤ T .
Define

f := ∂tu+ (−∆)su, (5.20)

and by the variation of constants formula (it is well-defined in view of [177, Definition
4.1.4]) we have

u(t) = Ttu(0) +

∫ t

0

Tt−τf(τ)dτ ,

where Tt is defined at the beginning of this section. We claim that

u(r + γ)− u(r) = (Tγ − 1)u(r) +

∫ γ

0

Tγ−ρf(r + ρ)dρ .

Indeed we have

Tγu(r)− u(r) +

∫ γ

0

Tγ−ρf(r + ρ)dρ

= Tr+γu(0) +

∫ r

0

Tr+γ−τf(τ)dτ − u(r) +

∫ γ

0

Tγ−ρf(r + ρ)dρ

= Tr+γu(0) +

∫ r+γ

0

Tr+γ−τf(τ)dτ − u(r) = u(r + γ)− u(r) .

Therefore,
‖u(r + γ)− u(r)‖pp ≤ C(A(r, γ) +B(r, γ)) ,
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where
A(r, γ) = ‖(Tγ − 1)u(r)‖pp

and

B(r, γ) =

∥∥∥∥∫ γ

0

Tγ−ρf(r + ρ)dρ

∥∥∥∥p
p

=

∥∥∥∥∫ γ

0

Tωf(r + γ − ω)dω

∥∥∥∥p
p

.

Choose α so that 1
p
< α < β

s
. By Lemma 5.25 we have

‖u(t)− u(τ)‖pp ≤ C(α, p)(t− τ)αp−1(I(t, τ) + J(t, τ)) , (5.21)

where

I(t, τ) =

∫ t−τ

0

dγ

γ1+αp

∫ t−γ

τ

A(r, γ)dr

and

J(t, τ) =

∫ t−τ

0

dγ

γ1+αp

∫ t−γ

τ

B(r, γ)dr .

To estimate B, we use Hölder’s inequality and Lemma 5.23-(i) (with ν = 0 and
γ = 2s− 2β ∈ (0, 1). We have

B(r, γ) =

∫
Td

∣∣∣∣∫ γ

0

ω
β
s
−1ω1−β

s Tωf(r + γ − ω)dω

∣∣∣∣p dx
≤
(∫ γ

0

ω(β
s
−1)qdω

) p
q
∫ γ

0

ω(1−β
s

)p

∫
Td
|Tωf(r + γ − ω)|pdx dω

≤ C(d, p, β, s)γ
β
s
p−1

∫ γ

0

‖f(r + γ − ω)‖p2β−2s,p dω

= C(d, p, β, s)γ
β
s
p−1

∫ γ

0

‖f(r + ρ)‖p2β−2s,p dρ.

This and the inequality α < β
s

give

J(t, τ) ≤ C(d, p, α, β, s)

∫ t−τ

0

dγ

γ2+(α−β
s

)p

∫ γ

0

dρ

∫ t−γ

τ

‖f(r + ρ)‖p2β−2s,p dr

≤ C(d, p, α, β, s)

∫ t−τ

0

dγ

γ2+(α−β
s

)p

∫ γ

0

dρ

∫ t

0

‖f(r)‖p2β−2s,p dr

= C(d, p, α, β, s)(t− τ)(−α+β
s

)p

∫ t

0

‖f(r)‖p2β−2s,p dr. (5.22)

Recalling that f = ∂tu+ (−∆)su, by (5.5)

J(t, τ) ≤ C(d, p, α, β, s)(t−τ)(−α+β
s

)p

∫ t

0

(
‖∂tu(r)‖p2β−2s,p + ‖(−∆)su(r)‖p2β−2s,p

)
dr

≤ C(d, p, α, β, s)(t− τ)(−α+β
s

)p

∫ t

0

(
‖∂tu(r)‖p2β−2s,p + ‖u(r)‖p2β,p

)
dr

= C(d, p, α, β, s)(t− τ)(−α+β
s

)p
(
‖∂tu‖pH2β−2s

p (QT )
+ ‖u‖p

H2β
p (QT )

)
= C(d, p, α, β, s)(t− τ)(−α+β

s
)p ‖u‖p

H2β
p (QT )

.
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To estimate I, we apply Lemma 5.23-(ii) with θ = β ∈ (0, s) and Theorem B.4
to get∫ t

0

A(r, γ)dr ≤ C(d, p, β, s)γ
β
s
p

∫ t

0

‖u(r)‖p2β,p dr

≤ Cγ
β
s
p‖u‖p

H2β
p (QT )

≤ C1(d, p, α, β, s, T )γ
β
s
p(‖f‖p

H2β−2s
p (QT )

+ ‖u(0)‖W 2β−2s/p,p(Td)).

Thus,

I(t, τ) ≤
∫ t−τ

0

dγ

γ1+αp

∫ t

0

A(r, γ)dr

≤ C(d, p, α, β, s, T )(t− τ)(β
s
−α)p(‖∂tu+ (−∆)su‖p

H2β−2s
p (QT )

+ ‖u(0)‖p
W 2β−2s/p,p(Td)

)

≤ C(d, p, α, β, s, T )(t− τ)(−α+β
s

)p(‖u‖p
H2β
p (QT )

+ ‖u(0)‖p
W 2β−2s/p,p(Td)

).

Finally, combining the last inequality with (5.21) and (5.22), we proved that

‖u(t)− u(τ)‖pp ≤ C(d, p, α, β, s, T )|t− τ |
β
s
p−1(‖u‖p

H2β
p (QT )

+ ‖u(0)‖p
W 2β−2s/p,p(Td)

) .

(5.23)
To obtain (5.9), in the special case µ = 2β, it remains to show that

sup
t≤T
‖u(t)‖p ≤ C(‖u‖H2β

p (QT ) + ‖u(0)‖W 2β−2s/p,p(Td)) , (5.24)

This is a consequence of (5.23) and the continuous embedding of W 2β−2s/p,p(Td) into
Lp(Td), as β > 2s/p. Indeed,

‖u(t)‖pp ≤ C(β, s, p, d) ‖u(0)‖p
W 2β−2s/p,p(Td)

+CT
β
s
p−1(‖u‖p

H2β
p (QT )

+‖u(0)‖p
W 2β−2s/p,p(Td)

).

Remark 5.26. An alternative way of proving the embedding in Theorem 5.19 is
provided by the so-called mixed derivative theorem (see [221] and [199, Corollary
4.5.10]). Let us focus on the case µ = 2s for simplicity and H2s

p (Rd × R) =
W 1,p(R;Lp(Td)) ∩ Lp(R;H2s

p (Td)). Here it suffices to take the operators A = (I −
∆)µ/2 and B = (I − ∂2

t )
1/2 and X = Lp(Td). Since the hypothesis of the mixed

derivative theorem are fulfilled (see e.g. [186]), then we can apply it to the pair of
operator (A,B) acting on Y = Lp(R;X) obtaining

‖AξB1−ξ‖Y ≤ C‖Ay +By‖Y for all y ∈ D(A) ∩D(B)

Since D(B) = H1
p (R;X), by the above estimate one obtains

H2s
p (QT ) ↪→ Hξ

p(0, T ;H2s−2sξ
p (Td))

for all ξ ∈ [0, 1].

By taking ξ = β/s ∈ (0, 1) we have the embedding onto H
β/s
p (H2s−2β

p ). Us-
ing Lemma 5.25 together with the fact that inclusions of Bessel and fractional
Sobolev classes (see e.g. Lemma 5.32 below), one gets the desired inclusion onto

C
β
s
− 1
p (0, T ;H2s−2β

p (Td)).
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We now present some continuous embedding results that stem from Thereom
5.19.

Proposition 5.27. Let q ≥ p > 1, 0 ≤ θ ≤ 1 and µ, η ∈ R be such that

η < µ+
d

q
− d+ 2s(1− θ)

p
. (5.25)

Then, for any u ∈ Hµ
p (QT ),

(∫ T

0

‖u(·, t)‖
p
θ
η,q dt

)θ
≤ C(‖u‖pHµp (QT )

+ ‖u(0)‖p
W 2β−2s/p,p(Td)

) .

In particular, if µ > 0, 1 < p < d+2s
µ

and 1
q
> 1

p
− µ

d+2s
,

‖u‖Lq(QT ) ≤ C(‖u‖Hµp (QT ) + ‖u(0)‖W 2β−2s/p,p(Td))

Here, C depends on d, p, q, µ, η, θ, T, s, but remains bounded for bounded values of T .

Proof. Let 0 < β < s to be chosen. Recall that, for any θ ∈ [0, 1], if ν = ν(β) =
(µ−2β)(1−θ)+θµ, then Hν

p can be obtained by (complex) interpolation between Hµ
p

and Hµ−2β
p (see, e.g., [36, Theorem 6.4.5]). Moreover, Hν

p is continuously embedded

in H
ν+d/q−d/p
q in view of Lemma 5.16. Hence, for a.e. t,

c(d, p, s, β) ‖u(t)‖ν− d
p

+ d
q
,q ≤ ‖u(t)‖ν,p ≤ ‖u(t)‖1−θ

µ−2β,p ‖u(t)‖θµ,p .

By (5.25), we can choose 2β > 2s
p

so that η ≤ ν(β)− d
p

+ d
q
< µ + d

q
− d+2s(1−θ)

p
,

and therefore(∫ T

0

‖u(t)‖
p
θ
η,q dt

)θ
≤ C

(∫ T

0

‖u(t)‖(1−θ) p
θ

µ−2β,p ‖u(t)‖pµ,p dt
)θ

≤ C sup
t≤T
‖u(t)‖(1−θ)p

µ−2β,p

(∫ T

0

‖u(t)‖pµ,p dt
)θ

≤ C(‖u‖Hµp (QT ) + ‖u(0)‖W 2β−2s/p,p(Td))
(1−θ)p ‖u‖θpHµp (QT )

≤ C(‖u‖Hµp (QT ) + ‖u(0)‖W 2β−2s/p,p(Td))
p

where, in the last inequality, we used Theorem 5.19 and Young’s inequality.
The last statement follows by choosing η = 0 and θ = p/q.

Remark 5.28. We point out that the previous result does not allow to obtain the
critical embedding in Lq for 1

q
= 1

p
− µ

d+2s
. In order to do this, a possible way is to

slightly modify the above proof using the embeddings e.g. of H2s
p onto C(W 2s−2s/p,p)

(see Proposition C.3 for further details). An alternative proof of this fact in the case
µ = 2 and s = 1 can be found in [129, 14]. One can also exploit the mixed derivative
theorem introduced in Remark 5.26.
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Proposition 5.29. Let 1
2
< s < 1 and p > d+2s

2s−1
. Then for all u ∈ H2s−1

p (QT ) the
following inequality holds

‖u‖Cγ, γ2s (QT )
≤ C(‖u‖H2s−1

p (QT ) + ‖u(0)‖W 2β−2s/p,p(Td)),

where

γ = s− s

p
− d

2p
− 1

2
,

and C depends on d, s, p, T .

Proof. First apply Theorem 5.19 with µ = 2s− 1 to get

Hµ
p (QT ) ↪→ C

β
s
− 1
p ([0, T ];Hµ−2β

p (Td)) .

Then, exploit the embedding Hµ−2β
p (Td) ↪→ Cµ−2β− d

p (Td) of Lemma 5.16. By choos-

ing β so that β
s
− 1

p
= γ

2s
and γ as in the statement, then µ − 2β − d

p
= γ, and one

concludes by the inclusion of C
γ
2s (Cγ) into Cγ, γ2s (see Remark 5.7).

Remark 5.30. We point out that all the results obtained in this section can be
proven exactly in the same manner for the whole space case Rd. Indeed, the argu-
ments turn around decay estimates for the fractional heat operator and fractional
heat parabolic regularity that hold to the same extent on Rd and Td. One can also
prove Sobolev embedding theorems even for the stochastic version of the parabolic
spaces introduced in [84] (see also [155] and references therein for a deeper discus-
sion on such spaces). Finally, the flexibility of such approach allows to deal with
problems driven by hypoelliptic diffusion, for which the adaptation of this parabolic
construction is almost straightforward replacing Hµ

p with its horizontal counterpart
(see [115]).

Using classical arguments like Aubin-Lions-Simon lemma one can even obtain
the compactness of the aforementioned embedding onto Lebesgue classes, as stated
in the next proposition.

Proposition 5.31. If 1 < r < d+2s
µ

, then Hµ
r (QT ), µ ∈ R is compactly embedded in

Lq(QT ) for 1 ≤ q < (d+2s)r
d+2s−µr

Proof. To show the compactness, we restrict to consider the case µ ∈ (0, 2s], the gen-
eral case being consequence of the isometry property of the Bessel potential operator
(see Remark 5.14). The idea is to exploit the so-called Aubin-Lions-Simon Lemma.
Let µ ∈ R and 0 < µ ≤ 2s with p satisfying 1 < p < d+2s

µ
. Note first that Hµ

p′(Td)
is reflexive and separable. Therefore the space Lp(0, T ; (Hµ

p′(Td))′) is isomorphic to

(Lp
′
(0, T ;Hµ

p′(Td)))′ ≡ (Hµ
p′(QT ))′. One can easily see that by definition Hµ

p (QT ) is
isomorphic to

E := {u ∈ Lp(0, T ;Hµ
p (Td)), ∂tu ∈ Lp(0, T ; (H2s−µ

p′ (Td))′}

Note also that Hµ
p (Td) is compactly embedded into Lp(Td) by Lemma 5.16-(iv) and

Lp(Td) is continuously embedded in (H2s−µ
p′ (Td))′ since µ ≤ 2s. Then, Aubin-Lions-

Simon Lemma (see [219] and [215, Proposition III.1.3]) implies that E is compactly
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embedded into Lp(QT ). Hence Hµ
p (QT ) is compactly embedded in Lq(QT ) for any

1 ≤ q ≤ p. Let un be a bounded sequence in Hµ
p (QT ). By the previous discussion

we may extract a subsequence unk converging to u strongly in Lp(QT ). For any

p < q < (d+2s)p
d+2s−µp , arguing by interpolation, we may assert the existence of 0 < θ < 1

such that ∥∥unk − unj∥∥Lq(QT )
≤
∥∥unk − unj∥∥θLp(QT )

∥∥unk − unj∥∥1−θ

L
(d+2s)p
d+2s−µp

→ 0

as j, k → +∞, since unk belongs to Hµ
r (QT ), which is in turn continuously embedded

onto L
(d+2s)p
d+2s−µp in view of Proposition C.3, so unk converges strongly also in Lq(QT ).

5.3.4 Relation between Hµ
p and W µ,p

We prove the embeddings betweenW µ,p andHµ
p via the trace method. Without going

into the details, we mention that when p = 2 the space W µ,2 coincides with Hµ
2 by

properties of Fourier transform (or by the fact that complex and real interpolation
couples do agree on Hilbert spaces [178]). For general p 6= 2, we follow the lines of
[172, Theorem 3.1], shortening their proof by using the decay estimates obtained in
Lemma 5.23.

Lemma 5.32. For every ε > 0, µ ∈ R and 1 < p <∞ we have

Hµ+ε
p (Td) ↪→ W µ,p(Td) ↪→ Hµ−ε

p (Td) .

Proof. Step 1. We first prove that H1−θ+ε
p (Td) ↪→ W 1−θ,p(Td) for every ε > 0 and

θ ∈ (0, 1). To show this, it is sufficient to confine ourselves to the case ε < θ since
Hν
p (Td) ↪→ Hη

p (Td) for every ν, η ∈ R such that ν > η. Set λ := 1 − θ + ε and take
u ∈ Hλ

p (Td). We need to show the existence of f(t) such that

tαf(t) ∈ Lp(0, 1;W 1,p(Td))

tαf ′(t) ∈ Lp(0, 1;Lp(Td))

and

f(0) = u

are fulfilled, for α = θ−1/p. Once one finds such f(t), it is sufficient to multiply it by
a continuously differentiable function ζ(t) for t ∈ [0,+∞), which vanishes for t ≥ 1
and it is identically 1 for t ∈ [0, 1/2] and then set g(t) = ζ(t)f(t) for t ∈ [0, 1] and
g(t) = 0 for t > 1. As a consequence, it follows that tαg(t) ∈ Lp(0,+∞;W 1,p(Td)),
tαg′(t) ∈ Lp(0,+∞;Lp(Td)) and g(0) = f(0) = u ∈ W 1−θ,p(Td). To reach our goal,
we use the solution of the fractional heat equation with s = 1/2 and initial data
equal to u, that is

f(t) := Ttu ,

where here Tt is the semigroup associated to the half-laplacian. It is clear that
f(0) = u. We show only that tαf(t) ∈ Lp(0, 1;W 1,p(Td)), the other case being
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similar. By Lemma 5.23-(i) with ν = λ and γ = θ − ε > 0 we have

(∫ 1

0

‖tαTtu‖p1,pdt
) 1

p

≤ C1

(∫ 1

0

tαpt−(θ−ε)p‖u‖pλ,pdt
) 1

p

≤ C2

(∫ 1

0

t(α−θ+ε)pdt

) 1
p

‖u‖λ,p ≤ C3.

Step 2. We claim that for every ε > 0 it results W 1−θ,p(Td) ↪→ H1−θ−ε
p (Td). By

isometry (see Remark 5.14), the operator (I −∆)
1
2 maps W 1,p(Td) onto Lp(Td) and

Lp(Td) onto W−1,p(Td). In addition, it also maps H1−θ+ε(Td) onto H−θ+ε(Td). By
definition we have that it is also an isometry between

T (p, α,W 1,p(Td), Lp(Td)) = W 1−θ,p(Td)

and

T (p, α, Lp(Td),W−1,p(Td)) = (T (p′,−α,W 1,p′(Td), Lp′(Td)))′

= (W 1−(1/p′−α),p′(Td))′ = W−θ,p(Td).

By Step 1 we obtain
H−θ+εp (Td) ↪→ W−θ,p(Td) ,

which turns out to hold for every ε > 0. By duality we also conclude W θ,p′(Td) ↪→
Hθ−ε
p′ (Td) and hence the validity of the claim after replacing θ by 1− θ.

Step 3. Suppose µ ≥ 0. We first prove the left inclusion Hµ+ε
p (Td) ↪→ W µ,p(Td).

Let u ∈ Hµ+ε
p (Td). Then Dku ∈ Lp(Td) for all |k| ≤ [µ], where [·] stands for the

integer part. On the other hand, Dku ∈ H
µ+ε−[µ]
p (Td) for k = [µ], which gives by

Step 1 Dku ∈ W µ−[µ],p(Td). Then u ∈ W µ,p(Td). Conversely, if u ∈ W µ,p(Td), it

means that u ∈ H
[µ]
p (Td). Thus in view of Step 2 we obtain Dku ∈ H

µ−[µ]−ε
p (Td),

namely u ∈ Hµ−ε
p (Td) which in turn implies W µ,p(Td) ↪→ Hµ−ε

p (Td). The case µ < 0
follows by the previous one arguing by duality.

5.4 Linear viscous partial integro-differential equa-

tions

In this section we collect some results on second order viscous integro-differential
equations the form

Au := (L+ (−∆)s)u = −
d∑

i,j=1

aij∂iju+
d∑
i=1

bi∂iu+ cu+ (−∆)su

All the results of this section can be adapted to more general integro-differential
operators and for this classical matter we refer to [119], but for our purposes we
restrict ourselves to the particular case of the fractional Laplacian. We first begin
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with two auxiliary results, whose proof is standard and based on the transformation
u(x, t) = v(x, t)eλt and the fact that at a maximum point (−∆)su(x0, t0) ≥ 0. We
refer the reader to [159, Theorem I.2.5] for similar arguments used for the case of
classical diffusion and [119, Theorem II.2.11] for the adaptation to the nonlocal case.

Proposition 5.33. Let u be a classical solution of the Cauchy problem

Au = f in QT and u(x, 0) = u0(x) in Td (5.26)

where the local operator L is a uniformly parabolic operator with bounded continuous
coefficients aij, bi and c. Then

u(x, τ) ≤ inf
λ>c0

max

{
0, u0(x)eλ(τ−t),

maxQτ f(x, t)eλ(τ−t)

λ− c0

}
for every τ ∈ [0, T ]. Similarly, it holds

u(x, τ) ≥ sup
λ>c0

min

{
0, u0(x)eλ(τ−t),

minQτ f(x, t)eλ(τ−t)

λ− c0

}
Proof. We show only the first inequality, the second one being similar. We use
the transformation v(x, t) = e−λtu(x, t) with λ to be specified. Then v solves the
parabolic problem {

(A+ λ)v = fe−λt in QT

v(x, 0) = u0(x) in Td.
(5.27)

Let τ ∈ (0, T ]. There are three possibilities:

(i) v is non-positive in Qτ and hence maxQτ v ≤ 0.

(ii) v is non-negative and the maximum value is attained at Td × {0}, giving

v(x, t) ≤ max
Td×{0}

v(x, 0) = ‖u0‖∞

(iii) v is non-negative and its greatest value is assumed at some point (x0, t0) ∈
Td × (0, τ ], that is

0 ≤ max
Qτ

v(x, t) ≤ v(x0, t0)

In particular, we have
∂tv(x0, t0) ≥ 0

since, if this were not the case, the inequality ∂tv(x0, t0) < 0 would contradict
the maximality of (x0, t0). Moreover

∂xiv(x0, t0) = 0 ,−σ∆u(x0, t0) ≥ 0 , (−∆)su(x0, t0) ≥ 0

Since v solves (5.27) we have

(λ− c0)v(x0, t0) ≤ f(x0, t0)e−λt0 ,

which gives in turn

v(x, τ) ≤ maxQτ f(x, t)e−λt

λ− c0
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Combining all the assertions and using the definition of v we obtain the desired
inequality.

Corollary 5.34. Let u be a classical solution of the Cauchy problem

Au = f in QT and u(x, 0) = u0(x) in Td (5.28)

where the local operator L is a uniformly parabolic operator with bounded continuous
coefficients aij, bi and c. Assume that ‖u‖∞;QT

≤ M for some M > 0. Then for
τ ∈ [0, T ]

‖u‖∞;QT ≤ (‖u0‖∞ + τ‖f‖∞;QT )ec0τ

Proof. This is a consequence of Proposition 5.34.

We have the following comparison principle, whose proof relies on classical argu-
ments used for linear local equations [159].

Lemma 5.35. Let (H) be in force, σ > 0 and u, v be (classical) sub- and supersolu-
tions to the Cauchy problem

∂tu− σ∆u+ (−∆)su+H(x,Du) = V in QT and u(x, 0) = u0(x) in Td (5.29)

with initial condition u(x, 0) and v(x, 0) respectively. Then, w := u− v satisfies the
estimate

‖w‖∞;Qτ ≤ C‖w(x, 0)‖∞eCτ

for some C > 0.

Proof. By the regularity assumptions on H, w solves a linear equation of the form

∂tw − σ∆w + (−∆)sw + b ·Dw = 0

equipped with the terminal data w(x, τ) = u(x, τ) − v(x, τ), where the coefficients

bi :=
∫ 1

0
DpH(x,Duη)dη, uη := ηu+(1−η)v, are bounded. Therefore, by Proposition

5.34 we have the desired estimate.

Here we list some Schauder type theorems for such equations

Theorem 5.36. Let aij, bi, c ∈ Cα,α/2(QT ). Then, for any f ∈ Cα,α/2(QT ) and
u0 ∈ C2+α(Td) there exists a unique solution u ∈ C2+α,1+α/2(QT ) such that

‖u‖C2+α,1+α/2(QT ) ≤ C(‖f‖Cα,α/2(QT ) + ‖u0‖C2+α(Td)) .

Proof. This result is standard and can be found in [119, Theorem II.3.1]. However,
we present here the idea on how to get the estimate by using tools from interpolation
theory in the simpler case aij = δij and bi = c = 0, since it constitutes the basis for
the next Appendix B. As it will be pointed out in the next sections the realization of
the full operator ∆−(−∆)s is given by the composition of the semigroups associated
to the operators (see [232]), namely T̄t := e−t(−∆)s(et∆) is the semigroup associated
to the sum ∆− (−∆)s. The crucial point here is to get the decay estimates

‖T̄tf‖Cθ2 (Td) ≤ Ct−(θ2−θ1)/2s‖f‖Cθ1 (Td) .

for every 0 ≤ θ1 < θ2, θ1, θ2 ∈ R and C = C(θ1, θ2). Then, the proof uses the
representation via Duhamel’s formula and the K-method, see e.g [178].
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Theorem 5.37. Let aij ∈ C(QT ), bi, c ∈ L∞(QT ). Then, for every f ∈ Lp(QT ) and
u0 ∈ W 2−2/p,p(Td) there exists a unique solution u ∈ W 2,1

p (QT ) such that

‖u‖W 2,1
p (QT ) ≤ C(‖f‖Lp(QT ) + ‖u0‖W 2−2/p,p(Td))

where C is a positive constant. The same result is true on the whole space Rd.

Proof. This maximal regularity result can be found in [119]. However, in the simpler
case bi = c = 0, results can also be obtained via the abstract approach in [160, 202,
134], since the semigroup Tt generated by ∆− (−∆)s, satisfying the estimate

‖T̄tf‖2s,p ≤ Ct−1‖f‖p ,

is analytic (see [192]).

5.5 Fractional Fokker-Planck and HJB equations

5.5.1 On the fractional Fokker-Planck equation

In this section we gather some results on fractional Fokker-Planck equations in the
periodic setting of the form{

∂tm− σ∆m+ (−∆)sm+ div(bm) = 0 in Td × (0, T ) ,

m(x, 0) = m0(x) in Td ,
(5.30)

with σ ≥ 0 and m0 ∈ L∞(Td). When σ = 0, we expect low regularity of solutions,
in particular when 0 < s < 1/2. In this case we will adopt the usual notion of weak
solution, with the following integrability requirements.

Definition 5.38. Let b ∈ L∞(QT ). A function

m ∈ L2(0, T ;Hs
2(Td)) = Hs

2(QT ) with ∂tm ∈ L2(0, T ;H−1
2 (Td)) = H−1

2 (QT )
(5.31)

is a weak solution to (5.30) if, for every ϕ ∈ C∞(Td × [0, T )), one has∫∫
QT

−m∂tϕ− bm ·Dϕ+ (−∆)s−
1
2m(−∆)

1
2ϕdxdt =

∫
Td
ϕ(x, 0)m0(x) dx .

Remark 5.39. It can be verified that (5.31) implies m ∈ C([0, T ];H
(s−1)/2
2 (Td)),

see e.g. [101, p. 480]. This suggests, by a density argument, that test functions
ϕ in the previous formulation can be chosen so that ϕ ∈ L2(0, T ;H1

2 (Td)) with

∂tϕ ∈ L2(0, T ;H−s2 (Td)), therefore satisfying ϕ ∈ C([0, T ];H
(1−s)/2
2 (Td)). In this

case the integration by parts in time formula holds (with an abuse of notation,
integration in space is hiding duality pairings here):∫∫

QT

ϕ∂tm+m∂tϕdxdt =

∫
Td
ϕ(x, T )m(x, T ) dx−

∫
Td
ϕ(x, 0)m(x, 0) dx.
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Uniqueness of solutions in the subcritical regime s ∈ (1/2, 1) can be deduced via
duality, i.e. exploiting the existence for the adjoint equation, see in particular the
next analysis in Chapter 7 where the drift actually belongs to mixed Lebesgue spaces
fulfilling a suitable interpolated condition. By linearity, it is sufficient to restrict to
the case m(0) = 0. Then, by using the solution v to the adjoint equation

−∂tv + (−∆)sv + b(x, t) ·Dv = 0 in Qτ

with v(x, τ) = vτ (x) > 0 as a test function in the weak formulation above we get

0 =

∫
Td
m(0)v(0) dx =

∫
Td
m(τ)v(τ) dx .

This fact will be crucial to run the bootstrap argument in Theorem 5.2-Step 3.

We will need the following estimates independent of σ, for classical solutions of
the viscous problem, under the assumption1 [div b]− ∈ L∞(QT ).

Proposition 5.40. Let σ ≥ 0, m0 ∈ C(Td) and b ∈ C1
x(QT ) with [div b]− ∈ L∞(QT )

such that
‖m0‖∞ + ‖b‖∞ + ‖[div b]−‖∞ ≤ K.

Then, there exists C = C(K) such that for every classical solution m to (5.30) it
holds

‖m‖∞;QT ≤ C, (5.32)

σ

∫∫
QT

|Dm|2 dxdt+
∫∫

QT

[(−∆)s/2m]2 dxdt ≤ C, (5.33)

‖∂tm‖H−1
2 (QT ) ≤ C. (5.34)

Proof. By standard comparison arguments involving the function

w(x, t) := m(x, t)e−(K+ε)t − ‖m0‖∞

with ε→ 0 (see e.g. [119, Section II.2] and Proposition 5.34), one concludes

‖m‖∞;QT ≤ ‖m0‖∞eKT .

Multiply the equation in (5.30) by m and integrate over QT to get

1

2

∫ T

0

d

dt
‖m‖2

L2(Td)−σ
∫∫

QT

m∆mdxdt+

∫∫
QT

m(−∆)smdxdt = −
∫∫

QT

m div(bm)dxdt

Using Lemma 5.13 and integrating by parts we have

1

2

∫ T

0

d

dt
‖m(·, t)‖2

L2(Td)+σ

∫∫
QT

|Dm|2dxdt+
∫∫

QT

[(−∆)
s
2m]2 dxdt =

∫∫
QT

mb·Dmdxdt

= −1

2

∫∫
QT

(div b)m2 dxdt. (5.35)

1In what follows, we will denote by [u]− the negative part of u.
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Using that [div(b)]− ≤ K and the L∞ bound on m (one could also argue via Gron-
wall’s lemma), we obtain

1

2
‖m(T )‖2

L2(Td) + σ

∫∫
QT

|Dm|2dx+

∫∫
QT

[(−∆)s/2m]2 dx ≤ C(K) +
1

2
‖m(0)‖2

L2(Td)

which gives the desired inequality (5.33).
The last estimate follows by observing that, using the equation in (5.30),∣∣∣∣∫∫

QT

∂tmϕdxdt

∣∣∣∣ ≤ ‖b‖L∞(QT )‖m‖L2(QT )‖Dϕ‖L2(QT ) + ‖(−∆)
s
2m‖L2(QT )‖ϕ‖Hs2(QT )

≤ C‖ϕ‖H1
2(QT ).

5.5.2 On the HJB equation

Semiconcavity estimates

This subsection is devoted to the analysis of semiconcavity properties of solutions to
backward fractional HJB equations{

−∂tu− σ∆u+ (−∆)su+H(x,Du) = V (x, t) in QT ,

u(x, T ) = uT (x) in Td ,
(5.36)

We prove in particular that u is semiconcave, with semiconcavity constant depending
on the data and independent of σ. First, we stress that when σ = 0 we mean that u
is a weak (energy) solution according to the following

Definition 5.41. Let σ = 0 and V be a continuous function on QT . We say that
u ∈ Hs

2(QT ) with Du ∈ L∞(QT ) is a weak solution to (5.36) if

−
∫
Td
ϕ(x, T )uT (x)dx+

∫∫
QT

∂tϕudxdt+

∫∫
QT

(−∆)
s
2u(−∆)

s
2ϕdxdt

+

∫∫
QT

H(x,Du)ϕdxdt =

∫∫
QT

V ϕdxdt

for all ϕ ∈ C∞(Td × (0, T ]).

Remark 5.42. We make a preliminary observation, which we will use in the sequel.
Recall that u ∈ Hs

2(QT ) means u ∈ L2(0, T ;Hs
2(Td)) with ∂tu ∈ L2(0, T ;H−s2 (Td)).

Note that Hs
2(QT ) is continuously embedded into C(0, T ;L2(Td)) in view of [101,

Theorem XVIII.2.1]), so this is equivalent to∫∫
QT

[−∂tuϕ+ (−∆)
s
2u(−∆)

s
2ϕ+H(x,Du)ϕ]dxdt =

∫∫
QT

V ϕdxdt

for all ϕ ∈ Hs
2(QT ), and u(T ) = uT in the L2-sense. Uniqueness of solutions in

this sense in the subcritical case holds by usual energy arguments using the crucial

108



property Du ∈ L∞ and the C1 regularity of H. In fact, it is sufficient to observe
that the difference w = u−v is a subsolution to an equation with fractional diffusion
and drift, like

−∂tw + (−∆)sw + b ·Dw = 0 in QT

with w(x, T ) = 0. Then, using the comparison principle (see e.g. Proposition 7.10)
we get uniqueness of solutions in the above parabolic class.

Proposition 5.43. Assume that V ∈ C2+α,1+α/2(QT ), (H1F) and (H3F)-(H5F)
hold, and

‖V ‖C2
x(QT ) + ‖uT‖C2(Td) ≤ K

for some K > 0. Then every classical solution u to (5.36) satisfies

D2u(x, t) ≤ C I on QT ,

where C depends on K. As a consequence, we have the gradient bound

‖Du‖L∞(QT ) ≤ C
√
d

The proof will be accomplished via the so-called adjoint method, that is, by using
information of the dual linearized problem. This procedure is particularly effective
when the Hamiltonian lacks uniform convexity. Here, we are inspired by some results
in [127], see also references therein and those provided in the introduction to Part II
of this manuscript. We stress that we do not require convexity of H, but just assump-
tions (H1F) and (H3F)-(H5F). Generally, for uniformly convex Hamiltonians similar
results can be obtained in a more straightforward way through maximum principle
arguments (see e.g. [182, 74]). When dealing with non-convex Hamiltonians, the
latter approach fails in general.

For any given ρτ ∈ C∞(Td), ρτ ≥ 0, τ ∈ [0, T ) and ‖ρτ‖L1(Td) = 1 we consider
the adjoint equation{

∂tρ− σ∆ρ+ (−∆)sρ− div(DpH(x,Du)ρ) = 0 in Td × [τ, T ] ,

ρ(x, τ) = ρτ (x) on Td .
(5.37)

We have the following preliminary result

Lemma 5.44. There exists a classical solution ρ to (5.37). Moreover,∫ T

τ

∫
Td
|Du|γρ dxdt ≤ C,

where C depends on K and not on ρτ nor τ .

Proof. The well-posedness of (5.37) is a consequence of [119, Theorem II.3.1] and
the regularity assumptions on H and u. By multiplying the fractional HJB equation
by ρ and the adjoint equation by u, one easily obtains the following formula∫

Td
u(x, τ)ρτ (x)dx =

∫
Td
u(x, T )ρ(x, T )dx+

∫ T

τ

∫
Td
V ρ dxdt (5.38)
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+

∫ T

τ

∫
Td

(DpH(x,Du) ·Du−H(x,Du))ρ dxdt.

Then, by (H1) we get∫
Td
u(x, τ)ρτ (x)dx ≥

∫ T

τ

∫
Td
V ρ dxdt+ CH

∫ T

τ

∫
Td
|Du|γρ dxdt−

− cH
∫ T

τ

∫
Td
ρ dxdt+

∫
Td
ρ(x, T )u(x, T )dx. (5.39)

Then, since u is a classical solution to (5.36), a standard linearization argument and
the application of the Comparison Principle for linear viscous integro-differential
PDE (see, e.g. [119, Section II.2]) yield

‖u‖∞;Q ≤ ‖uT‖∞;Td + T
(
‖V ‖∞;Q + ‖H(·, 0)‖∞;Td

)
. (5.40)

Finally, plugging (5.40) in (5.39) and using the fact that ‖ρ(t)‖1 = 1 for all t, we
conclude the desired estimate.

We now prove the semiconcavity estimate.

Proof of Proposition 5.43. Since V ∈ C2+α,1+α/2(QT ), by a bootstrap argument u
belongs to C4+α,2+α/2(QT ) (see Proposition 5.48 below). So, we can differentiate
twice the equation in any direction ξ ∈ Rd, |ξ| = 1. Observe that v = ∂ξξu satisfies

−∂tv− σ∆v+ (−∆)sv+DpH(x,Du) ·Dv+DξH(x,Du) = ∂ξV , v(x, 0) = ∂ξu(0)

and w = ∂ξξu solves

− ∂tw − σ∆w + (−∆)sw +Dv ·D2
ppH(x,Du)Dv +DpH(x,Du) ·Dw+ (5.41)

+2D2
pξH(x,Du) ·Dv +D2

ξξH(x,Du) = ∂ξξV , w(x, 0) = ∂ξξu(0) .

Then, multiply (5.41) by the adjoint variable ρ satisfying (5.37) and integrate over
Td × [τ, T ] to get∫

Td
w(x, τ)ρτ (x) dx+

∫ T

τ

∫
Td
Dv ·D2

ppH(x,Du)Dvρ dxdt =

∫
Td
w(x, T )ρ(x, T ) dx−

−2

∫ T

τ

∫
Td
D2
pξH(x,Du)·Dvρ dxdt−

∫ T

τ

∫
Td
D2
ξξH(x,Du)ρ dxdt+

∫ T

τ

∫
Td
∂ξξV ρ dxdt .

On one hand, by (H5F) we have∫ T

τ

∫
Td
Dv ·D2

ppH(x,Du)Dvρ dxdt ≥ C1

∫ T

τ

∫
Td
|Du|γ−2|Dv|2ρ dxdt

− C̃1

∫ T

τ

∫
Td
ρ dxdt
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and hence, using also (H3F)-(H4F), we conclude∫
Td
w(x, τ)ρτ (x)dx+ C1

∫ T

τ

∫
Td
|Du|γ−2|Dv|2ρ dxdt− C̃1

∫ T

τ

∫
Td
ρ dxdt

≤
∫
Td
w(x, T )ρ(x, T )dx+ C2

∫ T

τ

∫
Td
|Du|γ−1|Dv|ρdxdt+ C3

∫ T

τ

∫
Td
|Du|γρ dxdt

+ (C̃2 + C̃3)

∫ T

τ

∫
Td
ρ dxdt+

∫ T

τ

∫
Td
Vξξρ dxdt.

Now, we apply Young’s inequality to the second term on the right-hand side of the
above inequality to get∫ T

τ

∫
Td
|Du|γ−1|Dv|ρ dxdt ≤ ε2

2

∫ T

τ

∫
Td
|Du|γ−2|Dv|2ρdxdt+

1

ε2

∫ T

τ

∫
Td
|Du|γρdxdt.

Taking ε so that C1 = ε2

2
we finally obtain the estimate∫

Td
w(x, τ)ρτ (x)dx ≤

∫
Td
w(x, T )ρ(x, T )dx+

(
1

2C1

+ C3

)∫ T

τ

∫
Td
|Du|γρ dxdt+

+

∫ T

τ

∫
Td
Vξξρ dxdt+ C̃4 .

During the above computations Ci = Ci(CH). By Lemma 5.44 we finally deduce the
desired semiconcavity estimate after passing to the supremum over ρτ . The gradient
bound is a straightforward consequence of the fact that

‖Du‖L∞(QT ) ≤
√
d sup

(x,t)∈QT ,|ξ|≤1

D2u(x, t)ξ · ξ

Remark 5.45. The viscosity parameter σ does not play any role in the above proof,
and hence if u is sufficiently regular to perform a differentiation procedure in the
classical sense, the above scheme can be carried out with merely fractional diffusion
of any order s ∈ (0, 1).

We now turn to space-time Hölder bounds for (forward) fractional HJB equations
with bounded right hand side. These will be useful in the vanishing viscosity limit
to have uniform convergence of solutions, and therefore to bring to the limit the
viscosity notion.

Proposition 5.46. Let f ∈ L∞(QT ) and u be a classical solution to{
∂tu− σ∆u+ (−∆)su = f(x, t) in QT

u(x, 0) = u0(x) in Td.

with u0 ∈ C1(Td). Then
‖u‖Cα,β(QT ) ≤ C (5.42)

for some α, β ∈ (0, 1), where the constant C depends only on ‖f‖L∞(QT ), ‖u0‖C1(Td)

and is independent of σ.
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Remark 5.47. To prove the above result, we need to show the counterpart of Lemma
5.23 for the semigroup T̄t generated by the full operator σ∆− (−∆)s. We point out
that the two semigroups e−t(−∆)s and etσ∆ commute, and therefore

T̄t = e−t(−∆)s(etσ∆).

by a well-known result due to Trotter [232].

Proof of Proposition 5.46. We observe that by Lemma 5.23-(i) and (5.12), it is straight-
forward to see that, for ν ∈ R, p > 1 and γ ≥ 0 we have

‖T̄tf‖ν+γ,p ≤ Ct−γ/2s ‖f‖ν,p . (5.43)

Note that C does not depend on σ here.
Write u using Duhamel’s formula, that is u(t) = u1(t) + u2(t), where

u1(t) = T̄tu0, u2(t) =

∫ t

0

T̄t−τf(τ)dτ.

The estimate of u1(t) := T̄tu0 follows using the same argument as in Theorem B.4
and the estimates in Lemma 5.23. We focus on u2(t) =

∫ t
0
T̄t−τf(τ)dτ . Take ν = 0,

γ = s
p

in (5.43) to get

‖T̄t−τf‖ps,p ≤ C(t− τ)−1/2‖f‖pL∞(QT ) .

Therefore

‖u2‖Hsp(QT ) =

(∫ T

0

‖u2(t)‖ps,p
) 1

p

≤ CT
3
2p‖f‖L∞(QT )

Since u2 solves ∂tu2 + (−∆)su2 = f , one has∫ T

0

‖∂tu2(t)‖p−s,p dt ≤ C1

(∫ T

0

‖(−∆)su2‖p−s,p + ‖f‖p−s,pdt
)
≤ C2‖f‖L∞(QT ) ,

yielding the full estimate

‖u‖Hsp(QT ) ≤ C(‖f‖L∞(QT ) + ‖u0‖s−2s/p+ε)

for ε < 2s
p

. Then, for p > d+2s
s

, by Sobolev embedding theorems in Proposition 5.19
we conclude

‖u‖Cα,β(QT ) ≤ C ‖u‖Hsp(QT ) ≤ C1 .

Existence of solutions

In this section we prove an existence result for backward integro-differential HJB
equations of the form{

−∂tu−∆u+ (−∆)su+H(x,Du) = V (x, t) on QT ,

u(x, T ) = uT (x) on Td .
(5.44)
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Proposition 5.48. Let V ∈ C2+α,1+α/2(QT ), H satisfying (H1F)-(H5F) and uT ∈
C4+α(Td). Then, there exists a unique solution u ∈ C4+α,2+α/2(QT ) to (5.44), and
the following estimate holds

‖u‖C4+α,2+α/2(QT ) ≤ C(‖V ‖C2+α,1+α/2(QT ) + ‖uT‖C4+α(Td)) . (5.45)

The crucial step to obtain this existence result are the semiconcavity estimates
of the previous section, that yield a priori gradient bounds of solutions. Then, the
construction of a solution follows by standard arguments. Since we were not able to
find a similar result in the literature, we detail the proof here for the convenience of
the reader.

Proof. Step 1: Local existence on Qτ = Td × (T − τ, T ) . Let τ ≤ 1 and

Sa :=
{
u ∈ W 2,1

p (Qτ ) : u(T ) = uT , ‖u‖W 2,1
p (Qτ ) ≤ a , p > d+ 2

}
be the space on which we apply the contraction mapping principle. The parameter
a will be chosen large enough. Fix z ∈ W 2,1

p (Qτ ), p > d + 2 and let w = Jz be the
solution of the problem{

−∂tw −∆w = V −H(x,Dz)− (−∆)sz in Td × (T − τ, T ] ,

w(x, T ) = uT (x) in Td.
(5.46)

We recall that since W 2,1
p (Qτ ) is continuously embedded onto C([0, τ ];W 2−2/p,p(Td))

and hence Dz ∈ C([0, τ ];W 1−2/p,p(Td)). By Sobolev embedding (see Lemma 5.17)
it turns out that W 1−2/p,p(Td) is continuously embedded onto an Hölder class for
p > d + 2 and hence we have Dz ∈ L∞(Qτ ) for the range of p chosen in Sa. By
standard (local) parabolic regularity theory (see [159, Theorem IV.9.1] or [91]), since
the right hand side of the equation in (5.46) is in Lp(Qτ ), (5.46) admits a unique
solution w ∈ W 2,1

p (Qτ ) satisfying the following estimate

‖w‖W 2,1
p (Qτ ) ≤ C(‖V ‖Lp(Qτ ) +‖H(x,Dz)‖Lp(Qτ ) +‖(−∆)sz‖Lp(Qτ ) +‖uT‖W 2−2/p,p(Td)).

We show that we can choose τ ∈ (0, T ] sufficiently small so that ‖Jz‖W 2,1
p (Qτ ) ≤ a.

By [91, Lemma 2.4]

‖H(x,Dz)‖Lp(Qτ ) ≤ C1τ
1
2p‖H(x,Dz)‖L2p(Qτ ) ≤ C2τ

1
2p‖Dz‖γ∞;Qτ

Moreover, by [91, Proposition 2.5] we have

‖Dz‖∞;Qτ ≤ C3(‖z‖W 2,1
p (Qτ ) + ‖uT‖W 2−2/p,p(Td)) ,

which gives

‖H(x,Dz)‖Lp(Qτ ) ≤ C4τ
1
2p (‖z‖γ

W 2,1
p (Qτ )

+ ‖uT‖γW 2−2/p,p(Td)
) .

Concerning the fractional term we observe that if either s ∈ (0, 1
2
) or s ∈

[
1
2
, 1
)
, then

by Lemma 5.15 we get for some δ > 0

‖(−∆)sz‖Lp(Qτ ) ≤ δ ‖z‖W 2,1
p (Qτ ) + C(δ) ‖z‖Lp(Qτ )
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where C(δ) > 0 grows as δ approaches to 0. Then, note that by writing

z(·, s) = uT (·)−
∫ T

s

∂tz(·, ω)dω ,

we obtain

‖z‖Lp(Qτ ) ≤ τ
1
p‖uT‖Lp(Td) + τ‖∂tz‖Lp(Qτ ) .

Then

‖w‖W 2,1
p (Qτ ) ≤ C

[
max{‖z‖W 2,1

p (Qτ ), ‖z‖
γ

W 2,1
p (Qτ )

}(τ
1
2p + C(δ)τ + δ)

+(τ
1
p + τ

1
2p ) max{‖uT‖Lp(Td), ‖uT‖γW 2−2/p,p(Td)

}+ ‖V ‖Lp(Qτ )

]
≤ C

[
max{‖z‖W 2,1

p (Qτ ), ‖z‖
γ

W 2,1
p (Qτ )

}(τ
1
2p (1 + C(δ)) + δ)

+2τ
1
2p max{‖uT‖Lp(Td), ‖uT‖γW 2−2/p,p(Td)

}+ ‖V ‖Lp(Qτ )

]
.

At this stage, take

a ≥ C
(

2 max{‖uT‖Lp(Td), ‖uT‖γW 2−2/p,p(Td)
}+ ‖V ‖Lp(Qτ )

)
+ 2

to get

‖w‖W 2,1
p (Qτ ) ≤ C

{
max{‖z‖W 2,1

p (Qτ ), ‖z‖
γ

W 2,1
p (Qτ )

}
[
(1 + C(δ))τ

1
2p + δ

]}
+ a− 2 .

Then, choose δ ≤ 1
Ca

so that

‖w‖W 2,1
p (Qτ ) ≤ C max{‖z‖W 2,1

p (Qτ ), ‖z‖
γ

W 2,1
p (Qτ )

}(1 + C(δ))τ
1
2p + a− 1

and finally τ small to conclude

‖w‖W 2,1
p (Qτ ) ≤ a .

This shows that J maps Sa into itself.
To prove that J is a contraction, one has to argue as above, exploiting also the

fact that
for bounded z ∈ W 2,1

p (Qτ ), p > d+ 2, then Dz is bounded in L∞(Qτ ) and hence,
by using (H2F) we have

‖H(x,Dz1)−H(x,Dz2)‖Lp(Qτ ) ≤ C ‖D(z1 − z2)‖Lp(Qτ )

for some positive constant C. Therefore, by using interpolation inequalities (see e.g.
[119, Proposition I.1.8]) we have

‖H(x,Dz1)−H(x,Dz2)‖Lp(Qτ ) ≤ C(η‖z1 − z2‖W 2,1
p (Qτ ) + η−1‖z1 − z2‖Lp(Qτ ))

≤ C(η‖z1 − z2‖W 2,1
p (Qτ ) + η−1T‖∂t(z1 − z2)‖Lp(Qτ ))
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A similar procedure allows to handle the fractional term as

‖(−∆)sz1 − (−∆)sz2‖Lp(Qτ ) ≤ δ‖z1 − z2‖W 2,1
p (Qτ ) + C(δ)T‖∂t(z1 − z2)‖Lp(Qτ ))

and by choosing δ, η and τ small enough one concludes

‖Jz1 − Jz2‖W 2,1
p (QT̄ ) ≤

1

2
‖z1 − z2‖W 2,1

p (QT̄ ) ,

which ensures the existence of a unique fixed point, z = Jz, i.e. a solution z of the
HJB equation in the interval (T − τ, T ].

Now note that by Sobolev embedding, if p > d + 2, then u ∈ C1+α, 1+α
2 (Qτ ).

Then a bootstrap argument allows to conclude u ∈ C4+α,2+α/2(Qτ ), since V ∈
C2+α,1+α/2(Qτ ).

Step 2. Define

T ∗ := inf{τ ∈ [0, T ] : (5.44) admits a solution C4+α,2+α/2(Qτ )}
In view of Step 1 we claim that the above set is nonempty. We want to show that
T ∗ ≤ 0. To this aim, take a sequence {(τk, uk)} in (T ∗, T ) × W 2,1

p (Qτk
), where

τk converges decreasingly to T ∗ and uk solves (5.44) in Qτk
. Since, by Sobolev

Embedding, uk ∈ C4+α,2+α/2(Qτk), we have that uk is semiconcave independently on
k. Being also bounded by the Comparison Principle for classical solutions of integro-
differential uniformly parabolic equations (see [119, Corollary II.2.18], there exists
C > 0 such that

‖Duk‖L∞(Qτ ) ≤ C ∀k ∈ N
(see [66, Remark 2.1.8]). Arguing as in Step 1, by [159, Theorem IV.9.1] we claim
that uk satisfies

‖uk‖W 2,1
p (Qτ ) ≤ C. (5.47)

In particular the solution turns out to be classical by bootstrapping and [119, The-
orem II.3.1]. Again by the Comparison Principle, we also have

uk = uh on Qτh
for every k ≥ h . (5.48)

We define a function u : Td × [T ∗, T ] → R by setting u = uk on Qτk
for every

k ∈ N and then by taking its continuous extension to Td × [T ∗, T ]. Moreover, it
solves the Cauchy problem on Td × [T ∗, T ] by continuity of u, ∂tu,Du,D

2u (using
the results for parabolic Hölder spaces, since, as claimed above, at the end u has
classical regularity). If, by contradiction, T ∗ > 0, one argues as in Step 1 to find
w ∈ W 2,1

p (Qτ ) which solves

−∂tw −∆w + (−∆)sw +H(x,Dw) = V on Qτ , w(·, T ) = u(·, T ∗) on Td

(basically one applies the local existence to the backward equation with datum in
T ∗) which at the end will have C4+α,2+α/2 regularity. One can check that

u∗(x, t) =

{
u(x, t) if (x, t) ∈ Td × [T ∗, T ] ,

w(x, T + t− T ∗) if (x, t) ∈ Td × [T ∗ − τ, T ∗]

belongs to C4+α,2+α/2(Td × [T ∗ − τ, T ]) and solves the problem on Td × [T ∗ − τ, T ],
contradicting the minimality of T ∗.
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5.6 Existence for the MFG system

This section is devoted to the proofs of existence for systems (5.1) and (5.2). We
begin by the viscous case, then proceed with the vanishing viscosity procedure.

5.6.1 The viscous case

Proof of Theorem 5.1. The statement is a consequence of the Schauder fixed point
theorem (see [122, Corollary 11.2]). Let

X = C1+α/2([0, T ];P(Td))

and
C = {m ∈ X : ‖m‖C1+α/2([0,T ];P(Td)) ≤ C}.

It is straightforward to see that C is closed and convex. We construct a map T : C → C
in the following way: given µ ∈ C, let u be the unique solution to{

−∂tu− σ∆u+ (−∆)su+H(x,Du) = F [µ](x) in Td × (0, T ) ,

u(x, T ) = uT (x) in Td .
(5.49)

Then, we define m = T (µ) as the solution to the fractional Fokker-Planck equation{
∂tm− σ∆m+ (−∆)sm− div(mDpH(x,Du)) = 0 in Td × (0, T ) ,

m(x, 0) = m0(x) in Td .
(5.50)

We divide the proof in three steps.

Step 1. T is well-defined. To show that the map T is well-defined, first note that,
since µ ∈ C

1+α/2
t (QT ), by the assumptions on F we have F [µ] ∈ C2+α,1+α/2(QT );

in particular, F [µ] is bounded in C2+α,1+α/2(QT ) independently with respect to µ.
By Proposition 5.48, problem (5.49) has a unique classical solution belonging to
C4+α,2+α/2(QT ), and satisfies the a priori estimate

‖u‖C4+α,2+α/2(QT ) ≤ C1

where C1 in particular depends on ‖uT‖C4+α(Td), but does not depend on µ. Then,
we can expand the divergence term of the viscous fractional Fokker-Planck equation
as

∂tm− σ∆m+ (−∆)sm−DpH(x,Du) ·Dm−m div(DpH(x,Du)) = 0 ,

which turns out to be a linear equation with coefficients belonging to C2+α,1+α/2(QT ),
uniformly with respect to µ. Indeed div(DpH(x,Du)) ∈ C2+α,1+α/2(QT ) owing to
[154, Remark 8.8.7]. This gives that

‖m‖C4+α,2+α/2(QT ) ≤ C2 (5.51)

by [119, Theorem II.3.1]. In particular, the map T is well-defined from C into itself
by choosing C above large enough.
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Step 2. T is continuous. To this aim, let µn ∈ C converging to some µ. Let
(un,mn), (u,m) be the corresponding solutions. By the continuity assumption (F1)
we conclude that the map (x, t) 7−→ F [µn(t)](x) uniformly converge to (x, t) 7−→
F [µ(t)](x). We can then consider the equation

−∂tun − σ∆un + (−∆)sun +H(x,Dun) = F [µn(t)](x)

whose right-hand side F [µn(t)](x) is uniformly bounded in C2+α,1+α/2(QT ). Then
the sequence {un} is uniformly bounded in C4+α,2+α/2(QT ) in view of Proposition
5.48 and thus converges in C4,2 to the unique solution u of the HJB equation. As
before, the mn are solutions of a linear equation with Hölder continuous coefficients,
providing uniform estimates in C4+α,2+α/2(QT ) for {mn}. Therefore {mn} converges
in C4,2 to the unique solution m of the Fokker-Planck equation. Note that the
convergence holds also in C.

Step 3. T (C) is compact. By bounds (5.51), one proves that for every µn ∈ C,
the sequence mn = T (µn) has a convergent subsequence.

5.6.2 The vanishing viscosity limit

We emphasize in passing that in the limiting procedure σ → 0 for the HJ equation,
one passes from classical parabolic W 2,1

p regularity to fractional parabolic H2s
p (QT )

regularity. Similar phenomena occurs in the case of the Fokker-Planck equation.
The strategy will thus be to pass to the limit in some suitable weak sense, and then
recover maximal regularity by means of Theorem B.4.

Proof of Theorem 5.2. Let (uσ,mσ) be a solution of (5.2). For σ > 0 we know
that a solution exists in view of Theorem 5.1. Collecting the results in Proposition
5.40, Proposition 5.43 and Proposition 5.46, we are able to construct a sequence
σ = {σn} → 0 such that, if (uσ,mσ) is the corresponding solution, we have

(i) uσ converges to u in C(QT ) as a consequence of the estimate (5.42) and Ascoli-
Arzelá Theorem. Moreover, one easily has bounds for uσ in Hs

2, so uσ → u
weakly in Hs

2.

(ii) The semiconcavity estimates in Proposition 5.43 yield Duσ → Du a.e. in QT

in view of [66, Theorem 3.3.3]. In addition, by [66, Remark 2.1.8] they also
imply uniform bounds for Duσ in L∞(QT ), so Duσ → Du in the L∞-weak-∗
sense. Finally, u is semiconcave with the same semiconcavity bounds.

(iii) By (ii) and dominated convergence theorem Duσ → Du in Lp(QT ) for every
finite p ≥ 1.

(iv) As a consequence of the semiconcavity estimates, we have [div(b)]− ≤ C, where
b = −DpH(x,Duσ). Indeed

div(−DpH(x,Duσ)) = −
∑
i,j

D2
pixj

H −
∑
i,j

D2
pipj

H∂xixjuσ ≥ −C.

The first term can be controlled by (ii) and (H4). Since 0 ≤ D2
ppH(x,Du) ≤

C1 Id and D2uσ ≤ CId, we have a control on the second term by a constant
independent of σ.
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(v) In view of the estimate (5.32), mσ converges to m ∈ L∞(QT ), weakly-∗ in L∞.

(vi) Proposition 5.40 ensures that mσ, ∂tmσ are bounded uniformly with respect to
σ in Hs

2(QT ) and H−1
2 (QT ) respectively, so they weakly converge.

In addition, note that (x, t) 7−→ F [mσ(t)](x) uniformly converges to the map (x, t) 7−→
F [m(t)](x). We now pass to the limit in the weak formulation of both equations.

Step 1. Fokker-Planck Equation. Multiplying the Fokker-Planck equation by a
test function ϕ ∈ C∞(Td × [0, T )) and integrating over QT we get

−
∫
Td
mσ(x, 0)ϕ(x, 0)dx−

∫∫
QT

mσ∂tϕdxdt− σ
∫∫

QT

mσ∆ϕdxdt

+

∫∫
QT

(−∆)s/2mσ(−∆)s/2ϕdxdt+

∫∫
QT

mσDpH(x,Duσ) ·Dϕdxdt = 0 (5.52)

We then let σ → 0 to conclude

−
∫
Td
m(x, 0)ϕ(x, 0)dx−

∫∫
QT

m∂tϕdxdt+

∫∫
QT

(−∆)s/2m(−∆)s/2ϕdxdt+

+ lim
σ→0

∫∫
QT

mσDpH(x,Duσ) ·Dϕdxdt = 0 ,

by the convergence of mσ stated in (v)-(vi). It remains to prove∫∫
QT

mσDpH(x,Duσ) ·Dϕdxdt→
∫∫

QT

mDpH(x,Du) ·Dϕdxdt .

We write∣∣∣∣∫∫
QT

(mσDpH(x,Duσ)−mDpH(x,Du)) ·Dϕdxdt
∣∣∣∣ ≤

≤
∫∫

QT

|mσDpH(x,Duσ)−mσDpH(x,Du)| |Dϕ| dxdt

+

∫∫
QT

|mσDpH(x,Du)−mDpH(x,Du)| |Dϕ| dxdt .

The first term on the right-hand side of the above inequality can be handled using
(iii)-(v)∫∫

QT

|mσ(DpH(x,Duσ)−DpH(x,Du))| |Dϕ|dxdt

≤ C ‖mσ‖L∞(QT ) ‖DpH(x,Duσ)−DpH(x,Du)‖L1(QT ) ,

Now observe that one can use the regularity of H together with the fact that

DpH(x,Duσ)−DpH(x,Du) =

∫ 1

0

D2
ppH(x,Du+ θ(Duσ −Du))(Duσ −Du)dθ
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to get, using also Hölder’s inequality with exponents (p, q),

‖|DpH(x,Duσ)−DpH(x,Du)|‖L1(QT ) ≤ C ‖Duσ −Du‖Lq(QT )

and concluding exploiting the convergence of Duσ to Du in Lq for every finite q ≥ 1.
Finally, ∫∫

QT

(mσ −m)DpH(x,Du) ·Dϕdxdt→ 0

in view of the L∞ weak-∗ convergence mσ to m and the fact that

‖DpH(x,Du)‖L1(QT ) ≤ C ‖Du‖γ−1
Lγ−1(QT ) <∞ .

Step 2. The HJB equation. We now pass to the limit in the fractional HJB
equation. Multiplying the equation satisfied by uσ by a test function ϕ ∈ C∞(Td ×
(0, T ]) we get

−
∫∫

QT

∂tuσϕdxdt− σ
∫∫

QT

∆uσϕdxdt+

∫∫
QT

(−∆)suσϕdxdt

+

∫∫
QT

H(x,Duσ)ϕdxdt =

∫∫
QT

F [mσ(t)]ϕdxdt

We now integrate by parts using Lemma 5.13 to obtain

−
∫
Td
uσ(x, T )ϕ(x, T )dx+

∫∫
QT

uσ∂tϕdxdt+ σ

∫∫
QT

Duσ ·Dϕdxdt

+

∫∫
QT

(−∆)
s
2uσ(−∆)

s
2ϕdxdt+

∫∫
QT

H(x,Duσ)ϕdxdt =

∫∫
QT

F [mσ(t)]ϕdxdt.

Now note that (iii) together with Lemma 5.15 implies also that (−∆)
s
2uσ → (−∆)

s
2u

in Lp(QT ). By the regularity assumptions of the coupling F , the term on the right-
hand side converges to

∫∫
QT
F [m(t)]ϕdxdt as σ → 0. We only need to prove that∫∫

QT

H(x,Duσ)ϕdxdt→
∫∫

QT

H(x,Du)ϕdxdt

as σ → 0. To this aim we argue as above using the assumptions on H and the
convergence of Duσ to Du in Lp for every finite p ≥ 1.

Step 3. Recall that the energy solution u belongs to the parabolic class Hs
2(QT ).

Moreover, when s > 1/2 weak solutions of fractional Hamilton-Jacobi equations are
unique in view of Remark 5.42. Therefore, since Du ∈ L∞, one can regard the
equation as a perturbation of a fractional heat equation to get u ∈ H2s

p (QT ) for
every p > 1 via Theorem B.4. As for the solution of the Fokker-Planck equation, we
note that in the regime s ∈ (0, 1/2] we have that m ∈ Hs

2(QT ) with ∂tm ∈ H−1
2 (QT ).

However, in the subcritical case s ∈ (1/2, 1), m belongs also to H2s−1
2 (QT ) and

uniqueness within this class holds by duality (see Remark 5.39). Therefore, since a
posteriori m is also bounded, we have m ∈ H2s−1

p (QT ) for every p > 1.

Step 4. Finally, if s > 1/2 one can set up a bootstrap procedure to obtain classical
regularity. This will be proven in the following Theorem 5.50.

Remark 5.49. By uniform convergence of uσ and F [mσ] on QT we can also conclude
that the limit u solves the HJB equation in (5.1) in the viscosity sense.
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5.6.3 Classical regularity in the subcritical case s > 1/2

In what follows, we will assume that

1

2
< s < 1.

We aim at proving that (u,m) previously found in Theorem 5.2 solves the MFG
system in the classical sense. We stress that for a (linear) bootstrap procedure to
be performed, s must be greater than 1/2, because the Hamiltonian and divergence
terms deteriorate the regularity of the unknowns up to one derivative, while the gain
realized by the fractional Laplacian is of order 2s.

Theorem 5.50. Let s ∈ (1
2
, 1) and (u,m) be a solution to (5.2) (in the sense of

Definitions 5.38 and 5.41). Then u,m both satisfy (B.2) for some 0 < ᾱ < 1, and in
particular solve (5.2) in the classical sense. Moreover, there exists a constant C > 0
depending on the data and remaining bounded for bounded values of T such that

‖m‖∞ + ‖Du‖∞ ≤ C.

Proof of Theorem 5.50. We first observe that since m ∈ H2s−1
p (QT ) for all p > 1, by

Proposition 5.29 we have that m is bounded in Cᾱ, ᾱ2s (QT ) for some 0 < ᾱ < 1, by
choosing p large enough. Therefore, in view of (F3), F [m] ∈ C ᾱ/2s([0, T ];C2+α(Td)),
that is in turn embedded in H2

p for all p > 1.
Note that u solves the following equation

−∂tu+ (−∆)su = G(x, t), u(x, T ) = uT (x),

where G(x, t) := F [m(t)](x) −H(x,Du(x, t)), and Du ∈ L∞. Then, at first glance,
G ∈ Lp(QT ) for all p. This yields u ∈ H2s

p (QT ) by applying Theorem B.4, and
in particular Du ∈ H2s−1

p (QT ). Then H(x,Du) ∈ H2s−1−ε
p (QT ) by the fractional

chain rule in Lemma A.2, so G ∈ H2s−1−ε
p (QT ). Using that s > 1

2
and taking ε

small, we can iterate this procedure until, in a finite number of steps, G ∈ H2
p(QT ),

that is the maximal regularity allowed by F [m] ∈ H2
p(QT ). Another iteration yields

u ∈ H2+2s
p (QT ) for all p > 1. Since 2+2s > 3, we can apply Theorem 5.19 with p large

and β close to zero to obtain u ∈ Cα1([0, T ];C3+α2(Td)), for some 0 < α1, α2 < 1,
thus H(x,Du) ∈ Cα1([0, T ];C2+α2(Td)). As a consequence, G ∈ Cᾱ, ᾱ2s (QT ), possibly
for a smaller ᾱ than the one appeared at the beginning of the proof. So, Theorem
B.1 applies, providing the desired regularity for u.

Let us now focus on the Fokker-Planck equation. By similar arguments we have
that DpH(x,Du) ∈ H1+2s−ε

p ∩ L∞(QT ). Moreover, m ∈ H2s−1
p ∩ L∞(QT ), so by

Lemma A.1 we obtain that div(mDpH(x,Du)) ∈ H2s−2
p (QT ). An application of

fractional parabolic regularity stated in Theorem B.4 provides m ∈ H4s−2
p (QT ). We

may iterate this procedure until we get m ∈ H2s+1
p ∩ L∞(QT ), and another time to

conclude m ∈ H4s−ε
p (QT ) for all p > 1. Since 4s > 2, we can use Theorem 5.19

with p large and β small to get m ∈ Cα3([0, T ];C1+α4(Td)), for some 0 < α3, α4 <
1. Since we previously obtained DpH(x,Du) ∈ Cα1([0, T ];C2+α2(Td)), we finally

have div(mDpH(x,Du)) ∈ Cᾱ, ᾱ2s (QT ), reducing eventually the value of ᾱ previously
chosen. We deduce the stated regularity for m again from Theorem B.1.
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Last, the estimate on the sup-norm of Du on QT follows by comparison and semi-
concavity bounds. Note that Proposition 5.43 applies in view of Cα1([0, T ];C3+α2(Td))
regularity of u, see in particular Remark 5.45. Analogous bounds for m are then a
direct consequence of Theorems B.4 and 5.19.

Remark 5.51. We mention that if uT ,m0, H and F are smoother, an additional
bootstrap procedure yields further regularity of u,m, up to C∞. We will not detail
here this procedure for brevity.

5.7 Uniqueness

Here, we prove some uniqueness results in the case σ = 0, that is for system (5.1).
We assume that equations are satisfied in the sense of Definitions 5.38 and 5.41.
The case σ > 0 is easier, since solutions enjoy classical regularity, and the following
arguments apply similarly.

5.7.1 Uniqueness in the monotone case

Theorem 5.52. Assume that H is convex and the following monotonicity condition
holds∫

Td
(F [m1](x)− F [m2](x))d(m1 −m2)(x) > 0 , ∀m1,m2 ∈ P(Td) ,m1 6= m2 .

Then, the solution to (5.1) is unique.

Proof. Uniqueness in the monotone case follows from the usual ideas by Lasry-Lions
[163]. One has to be careful that (u,m) is regular enough to run the argument. Let
(u1,m1) and (u2,m2) be two solutions of the MFG system (5.1). Set v = u1 − u2

and µ = m1 −m2. Then v and µ satisfy respectively the equations

−∂tv + (−∆)sv +H(x,Du1)−H(x,Du2) = F [m1(t)](x)− F [m2(t)](x) , v(x, T ) = 0

and

∂tµ+ (−∆)sµ− div
(
m1DpH(x,Du1)−m2DpH(x,Du2)

)
= 0 , µ(x, 0) = 0 .

We distinguish between the supercritical-critical (namely s ∈ (0, 1/2) and s = 1/2)
case and the subcritical (s ∈ (1/2, 1)) one.

Case 1. The supercritical-critical case. Recall that ui, Dui,mi ∈ L∞(QT ), so
v,Dv, µ ∈ L∞(QT ). Moreover, v ∈ Hs

2(QT ). Hence, using µ ∈ Hs
2(QT ) ∩ L∞(QT ) as

a test function in the weak formulation of Definition 5.41, we get∫∫
QT

−µ∂tv + µ
(
H(x,Du1)−H(x,Du2)

)
− µ

(
F [m1(t)](x)− F [m2(t)](x)

)
dxdt+

+

∫∫
QT

(−∆)
s
2µ(−∆)

s
2v dxdt = 0 . (5.53)
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Then, we use v ∈ Hs
2(QT ) ∩ L∞(0, T ;W 1,∞(Td)) as a test function in the weak

formulation of the equation satisfied by µ, recalling also that ∂tµ ∈ H−1
2 (QT ), to

conclude

0 =

∫∫
QT

−µ∂tv dxdt+ (−∆)
s
2µ(−∆)

s
2v dxdt+

+

∫∫
QT

Dv · (m1DpH(x,Du1)−m2DpH(x,Du2)) dxdt , (5.54)

Subtracting (5.54) from (5.53) we obtain

0 =

∫∫
QT

−µ
(
(F [m1(t)](x)− F [m2(t)](x)

)
+ µ(H(x,Du1)−H(x,Du2))dxdt−

−
∫∫

QT

Dv ·
(
m1DpH(x,Du1)−m2DpH(x,Du2)

)
dxdt . (5.55)

The following inequality holds true∫∫
QT

µ(H(x,Du1)−H(x,Du2))−Dv·(m1DpH(x,Du1)−m2DpH(x,Du2))dxdt ≤ 0 ,

by convexity of H. Using (5.55) we can conclude that∫∫
QT

(m1 −m2)
(
F [m1(t)]− F [m2(t)]

)
dtdx ≤ 0 ,

In view of the monotonicity condition we get m1 = m2 a.e..
Finally, by the fact that u1 and u2 solve the same equation with the same final

datum (see Remark 5.53 below), they must concide.
Case 2. The subcritical case. The proof of the case s ∈ (1

2
, 1) is simpler and it

can be carried out as in Step 1, observing that (u,m) is a classical solution.

Remark 5.53. The above uniqueness proof under monotonicity conditions on the
cost F in the case s ∈ (0, 1/2] uses in turn an underlying uniqueness result for
weak energy solutions to fractional HJ equations. We show this fact using a similar
argument that we will also exploit in Part III, where actually rough data are consid-
ered. Let u1, u2 be two weak energy solutions, in the sense of Definition 5.41, of the
(forward) fractional HJ equation,

∂tu+ (−∆)su+H(x,Du) = f(x, t) on QT

equipped with u(x, 0) = u0, being f, u0 smooth, H = H(x, p) convex in p, as in
the assumptions of Theorem 5.52. Take their difference v := u1 − u2 on QT with
Dv ∈ L∞ (as in the requirement of Definition 5.41), which satisfies

∂tv + (−∆)sv +H(x,Du1)−H(x,Du2) = 0 on QT

in weak sense, equipped with zero initial data. Let τ ∈ (0, T ]. By convexity of
H(x, ·), v solves∫ τ

ω

〈∂tv(t), ϕ(t)〉dt+

∫∫
Td×(ω,τ)

(−∆)
s
2v (−∆)

s
2ϕ+DpH(x,Du2) ·Dv ϕdxdt ≤ 0
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for all ω ∈ (0, τ), and v(·, 0) = 0. Let now ρ be the adjoint variable with respect to
u2, namely ρ be the weak solution to{

−∂tρ(x, t) + (−∆)sρ(x, t)− div
(
DpH(x,Du2(x, t)) ρ(x, t)

)
= 0 in Qτ ,

ρ(x, τ) = ρτ (x) on Td ,

for some non-negative and smooth probability density ρτ . Then, by duality we get∫
Td
v(x, τ)ρτ (x)dx ≤

∫
Td
v(x, ω)ρ(x, ω)dx.

Since Dv ∈ L∞, we assert that v enjoys better regularity, more precisely v ∈ H2s
p

for all p > d+2s
2s

. By the fractional Sobolev embedding developed in Section 5.3.2,

one can argue similarly to Proposition 5.29 to conclude w ∈ C(QT ). Hence w is
uniformly continuous on QT , giving w(·, t)→ w(·, 0) ≡ 0 uniformly in Td. Moreover,∫
Td v(x, ω)ρ(x, ω)dx =

∫
Td [v(x, ω) − v(x, 0)]ρ(x, ω)dx. Thus, by Hölder’s inequality

and ‖ρ(s)‖L1(Td) = 1,
∫
Td v(ω)ρ(ω)→ 0, yielding∫

Td
v(x, τ)ρτ (x)dx ≤ 0

for arbitrary ρτ . As ρτ varies, u1(τ) ≤ u2(τ) follows, and by exchanging the role of
u1 and u2 and varying τ , we eventually obtain u1 ≡ u2.

5.7.2 Small-time uniqueness

The result of this section is the following

Theorem 5.54. For s ∈ (1
2
, 1) and H ∈ C3(Td×Rd), there exists T ∗ > 0, depending

on d, s,H, F,m0, uT such that for all T ∈ (0, T ∗] system (5.1) has at most one solution
(u,m).

Rewriting (5.1) as a forward-forward system for v,m setting v(·, t) := u(·, T − t)
for all t ∈ [0, T ], then{

v(x, t) = TtuT (x)−
∫ t

0
Tt−τΦv[v,m](τ)(x)dτ ,

m(x, t) = Ttm0(x) +
∫ t

0
Tt−τΦm[v,m](τ)(x)dτ ,

(5.56)

where

Φv[v,m](τ)(·) = F [m(T − τ)](·)−H(·, Dv(·, τ)) ,

Φm[v,m](τ)(·) = div(DpH(·, Dv(·, T − τ))m(τ))

for τ ∈ [0, T ]. We will exploit the decay properties of Tt.

Proof of Theorem 5.54. For p > 1 and µ ≥ 0, let us denote by

Xµ
p := C([0, T ];Hµ

p (Td)).
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First, observe that any solution is classical by Theorem 5.50, and therefore it
belongs to X2s

p × X2s−1
p . Moreover, every solution of (5.1) can be seen as a fixed

point of the map Ψ : (v,m) 7−→ (v̂, m̂), where

{
v̂(t) = TtuT (x)−

∫ t
0
Tt−τΦv[v,m](τ)(x)dτ ,

m̂(t) = Ttm0(x) +
∫ t

0
Tt−τΦm[v,m](τ)(x)dτ .

(5.57)

We remark that such representation holds in view of the fact that the solutions
are classical. We prove that the fixed point of Ψ defined in (5.57) is unique by the
contraction properties of Ψ itself that are valid for small T . Let (v1,m1) and (v2,m2)

be two fixed points of Ψ. Set ε = d
(

1
p
− 1

p̄

)
< 2s− 1 with p̄ > p. This choice yields

‖m(τ)‖2s−1−ε,p̄ ≤ C ‖m(τ)‖2s−1,p

for some C > 0 in view of Lemma 5.16. We apply Lemma 5.23-(i) (with ν = 2s−1−ε
and γ = 1 + ε) and the assumptions on F and H to get

∥∥∥∥∫ t

0

Tt−τ (Φv[v1,m1](τ)(x)− Φv[v2,m2](τ)(x))dτ

∥∥∥∥
2s,p

≤

≤
∫ t

0

‖Tt−τ (Φv[v1,m1](τ)(x)− Φv[v2,m2](τ)(x))‖2s,p dτ

≤ C1

(∫ t

0

(t− τ)−
1+ε
2s ‖F [m1(T − τ)](·)− F [m2(T − τ)](·)‖2s−1−ε,p dτ+

+

∫ t

0

(t− τ)−
1+ε
2s ‖H(·, Dv1(·, T − τ))−H(·, Dv2(·, T − τ))‖2s−1−ε,p dτ

)
≤ C2

(∫ t

0

(t− τ)−
1+ε
2s ‖m1(·, T − τ)−m2(·, T − τ)‖2s−1,p dτ+

+

∫ t

0

(t− τ)−
1+ε
2s ‖Dv1(·, T − τ)−Dv2(·, T − τ)‖2s−1,p dτ

)
≤ C3T

2s−1−ε
2s

(
‖m1 −m2‖X2s−1

p
+ ‖v1 − v2‖X2s

p

)
,

by taking T small enough.
We now consider the term related to the Fokker-Planck equation. We apply Lemma
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5.23-(i) with ν = 2s− 2− ε and γ = 1 + ε to obtain

‖
∫ t

0

Tt−τ (Φm[v1,m1](τ)(x)− Φm[v2,m2](τ)(x))dτ‖2s−1,p ≤

≤
∫ t

0

‖Tt−τ (Φm[v1,m1](τ)(x)− Φm[v2,m2](τ)(x))‖2s−1,pdτ∫ t

0

(t− τ)−
1+ε
2s ‖ div

(
DpH(·, Dv1(·, T − τ))m1(τ)

−DpH(·, Dv2(·, T − τ))m2(τ)
)
‖2s−2−ε,p

≤ C1

(∫ t

0

(t− τ)−
1+ε
2s ‖ div(DpH(·, Dv1(·, T − τ))(m1(τ)−m2(τ)))‖2s−2−ε,pdτ+

+

∫ t

0

(t− τ)−
1+ε
2s ‖ div(m2(τ)(DpH(·, Dv1(·, T − τ))

−DpH(·, Dv2(·, T − τ))))‖2s−2−ε,pdτ)

≤ C2

(∫ t

0

(t− τ)−
1+ε
2s ‖DpH(·, Dv1(·, T − τ))(m1(τ)−m2(τ))‖2s−1−ε,p dτ+

+

∫ t

0

(t− τ)−
1+ε
2s ‖m2(τ)(DpH(·, Dv1(·, T − τ))

−DpH(·, Dv2(·, T − τ)))‖2s−1−ε,pdτ))

Then one has to observe that

‖DpH(Dv1(·, T − τ))(m1(τ)−m2(τ))‖2s−1−ε,p

≤ C3(‖DpH‖q̄ ‖m1 −m2‖2s−1−ε,p̄ + ‖DpH‖2s−1−ε,q̄ ‖m1 −m2‖p̄)
≤ C4 ‖m1 −m2‖2s−1−ε,p̄ ≤ C5 ‖m1 −m2‖2s−1,p ,

where we applied Lemma A.1 to the second inequality, Lemma 5.16-(iii) to the last
one, the fact that ‖DpH‖2s−1−ε,q̄ is bounded independently of T by the regularity
assumption on H and the L∞ bound on Du and m.

Similarly,

‖m2(τ)(DpH(·, Dv1(·, T − τ))−DpH(·, Dv2(·, T − τ)))‖2s−1−ε,p

≤ C1

(
‖m2‖q̄ ‖DpH(·, Dv1)−DpH(·, Dv2)‖2s−1−ε,p̄ +

+ ‖m2‖2s−1−ε,q̄ ‖DpH(·, Dv1)−DpH(·, Dv2)‖p̄
)

≤ C2 ‖DpH(·, Dv1)−DpH(·, Dv2)‖2s−1−ε,p̄ ≤ C3 ‖D(v1 − v2)‖2s−1−ε,p̄

≤ C4 ‖D(v1 − v2)‖2s−1,p ≤ C5 ‖v1 − v2‖2s,p ,

where Ci = Ci(d, s, ε, p, p̄, q̄). This gives∥∥∥∥∫ t

0

Tt−τ (Φm[v1,m1](τ)(x)− Φm[v2,m2](τ)(x))dτ

∥∥∥∥
2s−1,p

≤ C4T
2s−1−ε

2s (‖v1 − v2‖X2s
p

+ ‖m1 −m2‖X2s−1
p

)
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by eventually taking T small enough. At the end we get

‖v1 − v2‖X2s
p

+ ‖m1 −m2‖X2s−1
p

= ‖Ψ(v1,m1)−Ψ(v2,m2)‖X2s
p ×X

2s−1
p

≤ 1

2
(‖v1 − v2‖X2s

p
+ ‖m1 −m2‖X2s−1

p
) ,

which allows to conclude (v1,m1) = (v2,m2) for T sufficiently small.

126



Part III

Lipschitz regularity to
Hamilton-Jacobi equations with

rough data
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Chapter 6

Lipschitz regularity to
time-dependent viscous
Hamilton-Jacobi equations with Lp

terms

The aim of this chapter is to develop a duality method to deduce Lipschitz regu-
larity of suitable weak energy solutions to time-dependent viscous Hamilton-Jacobi
equations with unbounded right-hand side of the form1∂tu(x, t)−

∑
i,j

aij(x, t)∂iju(x, t) +H(x,Du(x, t)) = f(x, t) in QT = Td × (0, T ),

u(x, 0) = u0(x) in Td.
(6.1)

We recall that the main peculiarity of our approach is to exploit both the diffusion
and the coercivity of the Hamiltonian, while usual treatments for regularity esti-
mates of solutions to these equations regard the Laplacian as a perturbation. We
refer to Section 6.3 for additional details, references and comparison with the known
techniques on gradient bounds for such nonlinear PDEs.

6.1 Assumptions and main results

We now state our two main results we are going to present throughout this chapter,
the first one for weak energy solutions and the second one dealing with classical
solutions. Assume that d ≥ 2, and A = (aij) : QT → Symd, where Symd is the set of
symmetric d× d real matrices, aij ∈ C(0, T ;W 2,∞(Td)) and

for some λ > 0, λ|ξ|2 ≤ aij(x, t)ξiξj ≤ λ−1|ξ|2 for all ξ ∈ Rd and a. e. (x, t) ∈ QT .

(A)

We perform again our analysis on the flat torus Td in order to avoid boundary
phenomena. We suppose that H(x, p) is C1(Td×Rd), convex in the second variable,

1From now on the summation over repeated indices is understood.
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and without loss of generality H ≥ 0 (if not, one may compensate by adding a
positive constant to f). Moreover,

there exist constants γ > 1 and CH > 0 such that

C−1
H |p|

γ − CH ≤ H(x, p) ≤ CH(|p|γ + 1) ,

DpH(x, p) · p−H(x, p) ≥ C−1
H |p|

γ − CH ,

|DxH(x, p)| ≤ CH(|p|γ + 1) ,

C−1
H |p|

γ−1 − CH ≤ |DpH(x, p)| ≤ CH |p|γ−1 + CH ,

(H)

for every x ∈ Td, p ∈ Rd. Moreover, one can add an explicit dependence with respect
to the time variable t to H provided that it respects the growth properties stated
above in (H).

The first result concerns the regularizing effect of the equation, namely Lipschitz
regularity of weak solutions u for positive times. Below γ′ = γ/(γ−1) is the conjugate
exponent of γ.

Theorem 6.1. Suppose that

• aij ∈ C(0, T ;W 2,∞(Td)) and satisfies (A),

• H ∈ C1(Td × Rd), it is convex in the second variable, and satisfies (H),

• f ∈ Lq(QT ), for some q > d+ 2 and q ≥ d+2
γ′−1

,

• u0 ∈ L∞(Td).

(a) Let u be a local weak solution to (6.1) (in the sense of Definition 6.5). Then,
u(·, τ) ∈ W 1,∞(Td) for all τ ∈ (0, T ]. In particular, for all t1 ∈ (0, T ) there exists a
positive constant C1 depending on t1, λ, ‖a‖C(W 2,∞), CH , ‖u‖L∞(QT ), ‖f‖Lq(QT ), q, d,
T such that

‖u(·, τ)‖W 1,∞(Td) ≤ C1 for all τ ∈ [t1, T ]. (6.2)

(b) If, in addition, u is a global weak solution with u0 ∈ W 1,∞(Td), then there exists
a positive constant C2 depending on λ, ‖a‖C(W 2,∞), CH , ‖u0‖W 1,∞(Td), ‖f‖Lq(QT ), q,
d, T such that

‖u(·, τ)‖W 1,∞(Td) ≤ C2 for all τ ∈ [0, T ]. (6.3)

Moreover, the same conclusions hold if u is a weak solution to (6.1) with P 6= Q
in (6.13) whenever aij(x, t) = Aij on QT for some Aij ∈ Sym(Rd) satisfying (A).

Note that if γ ≤ 2 (i.e. the subquadratic/quadratic regime) f is required to be
in Lq(QT ) for some q > d+ 2, while in the superquadratic case γ > 2 conditions on
f are more strict.
We are then able to show the existence and uniqueness of weak solutions

Theorem 6.2. Suppose that the assumptions on a, f,H of Theorem 6.1 are in force,
If u0 ∈ C(Td), then there exists a unique local weak solution to (6.1). If u0 ∈
W 1,∞(Td), then such a solution is a global weak solution.
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If we assume in addition that u is a classical solution to (6.1), we will show the
following a priori regularity results. Note that, with respect to the previous Theorem
6.1, Lipschitz bounds will depend on weaker properties of the data a, f .

Theorem 6.3. Suppose that

• aij ∈ C([0, T ];C1(Td)) and satisfies (A),

• H ∈ C2(Td × Rd) and satisfies (H),

• f ∈ C([0, T ];C1(Td)),

• u0 ∈ C1(Td).

Let

q > min

{
d+ 2,

d+ 2

2(γ′ − 1)

}
. (6.4)

Then, there exists a positive constant C3 depending on q, d, T , λ, CH , ‖u0‖W 1,∞(Td),
‖f‖Lq(QT ), ‖a‖C(0,T ;W 1,∞(Td)), such that every classical solution to (6.1) satisfies

‖u(·, τ)‖W 1,∞(Td) ≤ C3 for all τ ∈ [0, T ]. (6.5)

Note that (6.4) reads

q >

{
d+ 2 if 1 < γ ≤ 3,
d+2

2(γ′−1)
if γ > 3.

In particular, we obtain “Lp-maximal regularity” whenever γ ≤ 3, that is a control
on ∂tu, ∂iju and H(Du) in Lq with respect to the the Lq norm of f for any q > d+ 2
by exploiting classical Caldéron-Zygmund results for linear equations. Still, the re-
sults obtained for γ > 3 are new, since, as far as we know, Lipschitz estimates in this
regime are not available in the literature of parabolic viscous HJ equations. Anyhow,
we remark that Lipschitz bounds in the regime γ > 3 and d+ 2 < q < d+2

2(γ′−1)
are at

this stage an open problem.

γ

q

d+ 2
?

2 3

In the next Section 6.2 we briefly describe our methods, and comment on crucial hy-
potheses that appear in Theorems 6.1, 6.3 and in the Definition 6.5 of weak solutions
to (6.1). In Section 6.5 we present some preliminary facts and results on the adjoint
equation. Sections 6.7 and 6.9 will be devoted mainly to the proofs of Theorems 6.1
and 6.3 respectively.
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6.2 Heuristic derivation of Lipschitz estimates

The adjoint method implemented here can be heuristically described as follows. Let
us assume that u is a smooth solution of the viscous HJ equation

∂tu(x, t)−∆u(x, t) +H(Du(x, t)) = f(x, t) (6.6)

with u(·, 0) ∈ C1(Td) and f be C1 in the space variable. We differentiate the equation
to study the regularity of Du, namely, for any direction ξ ∈ Rd with |ξ| = 1, we
consider v = ∂ξu. Then, v solves the linearized equation

∂tv −∆v +DpH(Du) ·Dv = ∂ξf . (6.7)

For any τ ∈ (0, T ), x0 ∈ Td, we then look at the adjoint equation which develops a
Dirac mass at the terminal time t = τ , namely{

−∂tρ−∆ρ− div(DpH(Du)ρ) = 0 in Td × (0, τ) ,

ρ(τ) = δx0 on Td .
(6.8)

By duality between (6.7) and (6.8) we immediately get

∂ξu(x0, τ) = 〈v(τ), ρ(τ)〉 =

∫∫
Td×(0,τ)

∂ξf ρ+

∫
Td
vρ(0)

= −
∫∫

Td×(0,τ)

f ∂ξρ+

∫
Td
∂ξu ρ(0).

Thanks to integration by parts in the previous formula, we realize that our repre-
sentation of ∂ξu(x0, τ) roughly depends on ‖f‖Lq(QT ) and ‖Dρ‖Lq′ (QT ), so, the more
we know on the integrability of Dρ, the less we can assume on the integrability of
the datum f . The difficulty here is that ρ depends on Du itself through the drift in
(6.8), and has a final datum that is a Dirac measure. Therefore, even disregarding
completely the divergence term in (6.8), and using as final datum an L1 approxima-
tion of δx0 , the best we can expect is ‖Dρ‖Lq′ (QT ) for q′ < (d + 2)′. This is actually
an integrability limit on Dρ imposed by the heat part of the equation. Therefore, we
will always require f to be Lq with q > d+ 2 (which is optimal, see Remark 6.33).

The transport (divergence) term in (6.8) is handled by exploiting a crucial infor-
mation on the crossed quantity∫∫

|DpH(Du)|γ′ρ dxdt, (6.9)

that is obtained using a sort of duality between (6.1) and (6.8), and has a very precise
meaning in terms of optimality in stochastic control problems. Such a quantity is ac-
tually a weighted Lγ

′
(ρ) norm of the drift −DpH(Du) that appears in the divergence

term, and turns out to be enough to derive bounds for ‖Dρ‖Lq′ (QT ). The presence
of this crossed term is standard in the study of the Lebesgue regularity of Fokker-
Planck PDEs (see e.g. [50, 185, 184]). This crucial result is stated in Proposition
6.18 and exploits a delicate combination of parabolic regularity, interpolation and

132



embeddings of parabolic spaces. It is worth noting that such an Lγ
′
(ρ) integrability

deteriorates as γ grows. In particular, we observe that in the subquadratic regime
γ ≤ 2, this information is strong enough to guarantee ‖Dρ‖Lq′ (QT ) for q′ < (d + 2)′.
We can then regard the div() term in (6.8) as perturbation of a heat equation. On
the other hand, in the superquadratic case γ > 2, we are just able to prove that
‖Dρ‖Lq′ (QT ) for q′ ≤ q′γ, with q′γ < (d + 2)′, and actually q′γ → 1 as γ → ∞. As
expected, in the superquadratic case the Hamiltonian term in (6.1) may overcome
the regularizing effect of Laplacian. Still, under the additional hypothesis f ∈ Lqγ ,
we obtain Lipschitz regularity results for every γ > 1. This is a major difference
with respect to previous works [123, 128], where the techniques involved produce
estimates on Dρ only under the assumption that the drift entering into the dual
equation is at least L2(ρ), thus limiting the range of γ.

In the next sections we make precise all the above formal computations, and for
more general equations of the form (6.1). In the first part our plan is to obtain Lip-
schitz regularity of weak solutions to (6.1), in a sense specified below (see Definition
6.5). The main issues in this program are the following:

• To exploit duality between (6.1) and (6.8) in a weak framework, one has to
understand the right weak setting for both equations. We realize here that a
suitable weak notion guaranteeing Lipschitz regularity is basically the usual
energy one for both equations (i.e. u, ρ ∈ H1

2, see below for the definition).
This relies strongly on the additional assumption DpH(Du) ∈ LQ ((0, T );LP ),
which can be considered as a requirement for the adjoint equation (6.8) rather
than for the given HJ equation (6.1), but one should always keep in mind the
subtle interplay between the two equations. Of course this forces the final
datum ρ(τ) to be in L2, and therefore introduces an additional approximation
step from L2 to L1 in our scheme.
One may argue that, for γ very large, |Du|γ−1 ≈ DpH(Du) ∈ LQ ((0, T );LP )
is very close to Du ∈ L∞. We stress in Section 6.7.5 that to perform this
(seemingly) small step, one cannot avoid in general this assumption on Du,
and therefore our requirements on weak solutions are optimal to guarantee
Lipschitz regularity.

• A weak solution u is not a priori a.e. differentiable, and f ∈ Lq, so no differ-
entiation procedure of (6.1) is justified. This is circumvented by considering
difference quotients of u in the x-variable, which are handled via a method that
is again based on the optimality of −DpH(Du) in stochastic optimal control
problems (though here PDE methods will be involved only).

• Though they are not our main focus, we have also to be careful with regularity
of H and a in the x-variable. Moreover, we are able slightly relax the above
assumption Du(0) ∈ L∞ by localizing our estimates in time, thus assuming
u(0) ∈ L∞ only.

The study of regularity, rather than the proof of a priori estimates of smooth
solutions to (6.1), is a key difference with respect to works previously mentioned
(e.g. [123, 128]). We take this different viewpoint in the final Section 6.9: assuming
regularity of the solution, we can improve in some directions the previous procedure.
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First, it is possible to enhance (6.9) by absorbing part of the gradient term in the left
hand side of the Lipschitz estimate. Second, rather than studying the equation for
∂ξu, we consider the equation for |Du|2, following a classical idea of Bernstein. This
yields a similar “linearized” equation, with additional information on D2u coming
from strict ellipticity of the operator. This allows us to prove a priori regularity of
smooth solutions u to (6.1) that depend on weaker integrability properties of f and
regularity of aij with respect to x.

6.3 Comparison with the literature

The research on regularity and gradient bounds for (elliptic) PDEs began with the
seminal work by S.V. Bernstein [37] and it has been later explored in the context of
nonlinear elliptic [122, 174] and parabolic [214, 159] equations. The literature on this
subject is too wide to keep track of all the references and hence, without aiming to
give a comprehensive bibliography, we rather prefer to focus only on the contributions
in the nonlinear parabolic setting, quoting also some results for nonlinear elliptic
PDEs which are close to ours and which inspired our analysis. As underlined in the
introduction, by performing L∞ scaling arguments, it is common to distinguish two
regimes, namely the subquadratic (γ < 2) and the superquadratic (γ > 2) case. We
list the works following mainly this classification, describing briefly the assumptions
and the techniques used in each work.

The subquadratic/quadratic case (γ ≤ 2) If H(p) ∼ |p|γ and 1 < γ < 2 the
diffusion terms are the prevailing ones at small scales. When the right-hand side
f ∈ L∞, Lipschitz (and further) regularity of quasi-linear equations of the form
(6.1) goes back to classical literature [159, 214]. The most popular approach used
to obtain gradient bounds to Hamilton-Jacobi equations like (6.1) with superlinear
growth in Du and f continuous is the Ishii-Lions method [140]. This method is in
turn based on viscosity solutions’ techniques and typically takes advantage of the
strict ellipticity of the diffusion, although the assumptions to run such arguments
restrict the growth of the Hamiltonian to γ < 2 [140, assumption (3.2)] (or at most
γ < 3, see e.g. [28, assumption (3.4)]) in the gradient variable. Generalizations in
the context of fully nonlinear evolutive PDEs are due to A. Porretta and E. Priola
(see e.g. [195]). When the right-hand side is unbounded in space and γ < 2, i.e.
f ∈ L∞(I;Lq(Td)) and q > d, the first Lipschitz estimates for evolutive problems like
(6.1) have been obtained by D. Gomes et al [127, Theorem 5.11],[126] for classical
solutions with Lipschitz initial data. As for the quadratic regime γ = 2, Lipschitz
estimates are proven in [127, Theorem 8.3] in the context of MFGs, where again
the right-hand side f ∈ L∞(I;Lq(Td)) and q > d. These are the first attempts to
generalize a very general elliptic result by P.L. Lions [175] (see also [88, Theorem
A.3] and the Introduction of this manuscript) to the evolutive framework.

The superquadratic case (γ > 2) The works treating Lipschitz regularity for
time-dependent viscous HJ equations having nonlinearities with general superlinear
power growth γ > 1 in Du, and thus embracing the superquadratic case, when f
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is at least bounded, are mainly established via the Bernstein method. This method
requires typically to assume a “convexity-type” assumptions, i.e.

DpH(x, p) · p−H(x, p) ≥ CH |p|γ , p ∈ Rd , γ > 1 ,

which typically appear when differentiating the equation, a usual drawback of the
first versions of the Bernstein method.
The first contribution in the parabolic framework goes back to [97], where the authors
were able to handle Hamiltonians behaving like either |p|γ, γ > 1 with right-hand
side f = f(x) ∈ C(Td) or a(x)|p|γ, γ ≤ 2, a ∈ C(Td) with f = f(x) ∈ C(Td).
Related works in the time-dependent setting are due to G. Barles and P. Souganidis
[32] via the weak Bernstein method. Recent results appeared via refinements of the
Bernstein method in the viscosity solutions’ framework [10], where convexity in the
Hamiltonian is not required, and the Ishii-Lions method [168], which also allows to
treat degenerate problems [104]. We emphasize that in all of these works both the
Hamiltonian and the right-hand side are time-independent, and at least continuous
in space. Existence and uniqueness results for viscous HJ equations with superlinear
Hamiltonians exploiting the bounds in [10] are given in [102].
As for the case of unbounded right-hand side, the research began with the work by
P.-L. Lions in [175] (see also [161]) for the stationary problem, showing Lipschitz reg-
ularization effect for f ∈ Lq(Td), q > d and any γ > 1 via an integral variant of the
Bernstein method. We also quote the results obtained by M. Bardi and B. Perthame
[27], where the authors obtained a “maximal” Lq-regularity result for quasi-linear
elliptic equations with natural growth in the gradient (i.e. γ = 2) via a refinement of
the same method. This improvement leads to minimal regularity assumptions on the
diffusion coefficients , and also permits to treat some degenerated cases, i.e. where
A ≥ 0 only. In this latter case, the aforementioned approach gives an estimate on
|ADu| ∈ Lq, implying also Hölder bounds when the Hörmander condition is in force
via well-knwon embedding theorems.
After these contributions, we mention the work by P. Souplet [35] (see also [203] and
the references therein), which provides an extensive analysis for the Cauchy problem
on the whole space with f ≡ 0 and initial data belonging to Lebesgue spaces both
for absorbing and repulsive gradient terms, and [33] for the corresponding evolutive
problem driven by the p-Laplacian. Lately, there has been an increasing interest
in the regularization effect for these nonlinear evolutive problem, mainly motivated
by the recent research in the context of MFGs. More precisely, P. Cardaliaguet
and L. Silvestre [77] proved Hölder’s regularization effect for viscous HJ equations
with superquadratic growth and unbounded right-hand side, treating also degener-
ate problems, where the underlying idea is to regard the diffusion as a perturbation
of a first order equation and exploit a scaling argument. We mention also the re-
sults obtained in [82, 224] via De Giorgi’s techniques for the viscous and first order
version of the problem, respectively. In the context of MFGs recent results have
been obtained by D. Gomes and collaborators [128] via duality methods, showing
the Lipschitz regularity for smooth solutions and smooth data with H(p) ∼ |p|γ and
γ < 3 when f ∈ L∞(I;Lq(Td)) and q > d.

Due to this discussion, we believe that the results we present below improve
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significantly the knowledge on the subject of parabolic Hamilton-Jacobi equations
coercive in the gradient and space-time unbounded terms. More precisely, we improve
the aforementioned known results when the growth γ < 3, treating right-hand sides
belonging to space-time Lebesgue spaces in a weaker setting, and we provide the first
Lipschitz regularity result when γ ≥ 3 and f ∈ Lq(Td × I).

6.4 Scaling

In this section, we perform some scaling arguments to guess the critical exponents
ensuring the Lipschitz regularization effect. To this aim, let us consider the simpler
case aij = δij. As outlined in the introduction, the typical idea is to employ a W 1,∞

scaling, meaning to zoom in and look at the function z(x, t) = ε−1u(εx, ε2t), where
u solves (6.1). Simple computations yield the following equation satisfied by z

∂tz −∆z + ε|Dz|γ = εf(εx, ε2t) =: rε(x, t) .

It is then straightforward to verify that the Lq(Rd×(0, T )) norm of rε(x, t) is invariant
under the previous scaling precisely when q = d+2. Therefore, one expects to obtain
Lipschitz regularity of the solution of the HJ equation in the subcritical regime,
namely assuming f ∈ Lq with q > d+ 2. As announced, our arguments involves the
estimates of solutions to a dual Fokker-Planck equation of the form

∂tρ−∆ρ− div(bρ) = 0 ,

where b stands for the drift, in terms of the crossed quantity
∫∫
|b|γ′ρ. We zoom in

again and set µ(x, t) = εαρ(εx, ε2t) and v(x, t) = εβb(εx, ε2t) to find that the variable
µ with scaled drift v solves the equation

∂tµ−∆µ− div(vµ) = ε2+α(∂tρ−∆ρ)− εα+β+1div(b(x, t)ρ) = 0 .

Therefore, it is immediate to check that the correct scaling leaving the equation
invariant imposes β = 1. Therefore, the crossed quantity corresponding to the scaled
quantities (µ, v) is ∫∫

|v|γ′µ = εγ
′+α−d−2

∫∫
|b|γ′ρ ,

which allows to find the optimal critical exponent

α = d+ 2− γ′ .

Since our arguments rely on estimates on Dρ in some Lebesgue space Lq
′
, where q′

is the conjugate of q > 1, one finds∫∫
|Dµ|q′ = ε(α+1)q′−d−2

∫∫
|Dρ|q′ .

Therefore, imposing

(α + 1)q′ − d− 2 = 0

136



we get

q′ =
d+ 2

d+ 3− γ′
after plugging the previous expression for α. This forces the critical threshold for q
to be

q =
d+ 2

γ′ − 1
,

which is in fact the one appearing in Theorem 6.1.

Remark 6.4. Recall that, typically, summability results for solution to parabolic
equations as well as embedding theorems can be obtained from their stationary
counterpart by the substitution d 7−→ d + 2, i.e. taking two more dimensions with
respect to the elliptic case. For instance, it is well-known that the first order Sobolev

space W 1,p(Td) is embedded onto L
2d
d−2 (Td) and, in fact, we will prove in Proposi-

tion 7.7 that its parabolic analogue H1
p is embedded onto L2(d+2)/d(Td). This fact

can be heuristically inferred to the correspondence “one time derivative-two space
derivatives” appearing in the heat equation, which is in fact the diffusion operator
appearing in our dynamics.

6.5 Functional spaces, weak solutions and basic

properties

First, recall that the Lagrangian L : Td × Rd → R, L(x, ξ) := supp{p · ξ −H(x, p)},
namely the Legendre transform of H in the p-variable, is well defined by the super-
linear character of H(x, ·). Moreover, by convexity of H(x, ·),

H(x, p) = sup
ξ∈Rd
{ξ · p− L(x, ξ)},

and
H(x, p) = ξ · p− L(x, ξ) if and only if ξ = DpH(x, p). (6.10)

The following properties of L are standard (see, e.g. [66] and also [89, Proposition
2.1]): for some CL > 0,

C−1
L |ξ|

γ′ − CL ≤ L(x, ξ) ≤ CL|ξ|γ
′

(L1)

|DxL(x, ξ)| ≤ CL(|ξ|γ′ + 1). (L2)

for all ξ ∈ Rd.

For any time interval I ⊂ R, let Q = Td × I. For any time interval (t1, t2) ⊆ R,
let Qt1,t2 := Td × (t1, t2). We will also use the notation Qt2 := Td × (0, t2). For any
p ≥ 1 and Q = Qt1,t2 . Recalling the definition of Lebesgue and Sobolev spaces in
the periodic setting given in Subsection 5.3.2, for any p ≥ 1, we recall that the space
W 2,1
p (Q) is the space of functions u such that ∂rtD

β
xu ∈ Lp(Q) for all multi-indices β

and r such that |β|+ 2r ≤ 2, endowed with the norm

‖u‖W 2,1
p (Q) =

∫∫
Q

∑
|β|+2r≤2

|∂rtDβ
xu|pdxdt

 1
p

.
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The space W 1,0
p (Q) is defined similarly, and is endowed with the norm

‖u‖W 1,0
p (Q) := ‖u‖Lp(Q) +

∑
|β|=1

∥∥Dβ
xu
∥∥
Lp(Q)

.

Similarly to the fractional spaces H2s−1
p introduced in Part II to study fractional

MFG systems, we define the space H1
p(Q) (i.e. the local s = 1 analogue of H2s−1

p ) as

the space of functions u ∈ W 1,0
p (Q) with ∂tu ∈ (W 1,0

p′ (Q))′, equipped with the norm

‖u‖H1
p(Q) := ‖u‖W 1,0

p (Q) + ‖∂tu‖(W 1,0

p′ (Q))′ .

We have the following isomorphisms: W 1,0
2 (Q) ' L2(I;W 1,2(Td)), and

H1
2(Q) ' {u ∈ L2(I;W 1,2(Td)), ∂tu ∈ (L2(I;W 1,2(Td)) )′}

'
{
u ∈ L2(I;W 1,2(Td)), ∂tu ∈ L2

(
I; (W 1,2(Td))′

)}
,

and the latter is known to be continuously embedded into C(I;L2(Td)) (see, e.g.,
[101, Theorem XVIII.2.1]). Sometimes, we will use the compact notation C(X) and
Lq(X).

6.5.1 A notion of weak solution to viscous HJ equations

We will say that u is a weak solution to (6.1) in the following sense.

Definition 6.5. We say that

i) u is a local weak solution to (6.1) if for all 0 < s < T

u ∈ H1
2(Td × (s, T )) ∩ C(QT ), H(·, Du) ∈ L1(s, T ;Lσ(Td)) for some σ > 1,

(6.11)

and DpH(·, Du) ∈ LQ (s, T ;LP (Td)) (6.12)

for some d ≤ P ≤ ∞, and 2 ≤ Q ≤ ∞ such that
d

2P
+

1

Q
≤ 1

2
, (6.13)

and for all 0 < s < τ ≤ T , ϕ ∈ H1
2(Td × (s, τ)) ∩ L∞(s, τ ;Lσ

′
(Td))∫ τ

s

〈∂tu(t), ϕ(t)〉dt+

∫∫
Td×(s,τ)

∂iu ∂j(aijϕ) +H(x,Du)ϕdxdt

=

∫∫
Td×(s,τ)

fϕ dxdt (6.14)

(here, 〈·, ·〉 denotes the duality pairing between (W 1,2(Td))′ and W 1,2(Td) ).

ii) u is a global weak solution if (6.11)-(6.12)-(6.13) hold for all 0 ≤ s < T , that
is, on all QT (and therefore, (6.14) is also satisfied up to s = 0).
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Note that when s = 0 the parabolic space H1
2(Qτ ) is continuously embedded in

C(0, τ ;L2(Td)), so the weak formulation above is equivalent to∫ τ

0

〈∂tu(t), ϕ(t)〉dt+

∫∫
Qτ

∂iu ∂j(aijϕ) +H(x,Du)ϕdxdt =

∫∫
Qτ

fϕ dxdt

for all ϕ ∈ C∞(Qτ ), and u(0) = u0 in the L2-sense (here, 〈·, ·〉 is the duality pairing
between (W 1,2(Td))′ and W 1,2(Td) ). Note that for (6.14) to be meaningful, one
could just require H(x,Du) ∈ L1 (i.e. u ∈ Lγ(W 1,γ)); we ask for slightly better
integrability since we will use the adjoint variable ρ (see (6.23) below) as test function,
that is not necessarily in L∞(QT ) (particularly when (6.13) is satisfied as an equality).
In particular, (6.14) holds in general for ϕ ∈ H1

2(Qs,τ ) ∩ L∞(s, τ ;Lσ
′
(Td)). Anyway,

as it will be pointed out in the following remark, ii) implies i) in many interesting
cases. Though condition ii) appears to be unrelated to (6.1), it actually guarantees
the existence of a weak (energy) solution of the adjoint equation (see Proposition
6.15 below), that will be crucial in our subsequent analysis. In what follows, when
talking about local and global weak solutions, we will always assume that they are
also distributional solution, as stated in Definition 6.5.

Remark 6.6. Under the growth assumptions (H) on the Hamiltonian, one can easily
verify the following implications: if DpH(x,Du) satisfies ii) for some P = Q ≥ d+ 2,
then i) holds for sure whenever γ > d+2

d+1
. Or, if DpH(x,Du) satisfies ii) for Q = ∞

and some P ≥ d, then i) always holds if γ > d
d−1

.

6.5.2 On viscous equations with unbounded drifts

In this section we prove the uniqueness of weak solutions to (6.1) by using classical
tools for linear equations with unbounded coefficients. Let us consider the model
problem

∂tu−
d∑

i,j=1

aij(x, t)∂iju(x, t) + b(x, t) ·Du = 0 (6.15)

with A satisfying (A). We first give the following comparison principle for equations
with unbounded LQ (LP ) drifts following classical arguments used in [193, 113].

Proposition 6.7. Let u, v be two weak solutions in L∞(0, T ;L2(Td)))∩L2(0, T ;H1(Td))
of (6.15) such that u(x, 0) ≤ v(x, 0) a.e. in Td. Then u ≤ v a.e. in QT under one
of the following assumptions on the drift

(i) b ∈ LP (QT ), P ≥ d+ 2.

(ii) b ∈ L∞(0, T ;Ld(QT )) and |B(·, t)|d is uniformly integrable with respect to the
time variable.

(iii) b ∈ LQ(LP(Td)) with P ,Q fulfilling (6.13) (with strict inequality when d = 2).

Proof. We first prove (i). We argue by contradiction assuming w := u − v > 0 in
O ⊂ QT with |O| > 0 and denote by

wk :=

{
w+ − k if w+ > k

0 otherwise .
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for k ∈ (0, supO w). First, note that wk(x, 0) = 0. We use wk as a test function in
the weak formulation to find∫

Td
wwk(t) dx−

∫
Td
w(x, 0)wk(x, 0) dx−

∫∫
Qt

w∂twk dxdτ + λ

∫∫
Qt

|Dwk|2 dxdτ

≤
∫∫

Qt

|b||Dwk||wk| dxdτ .

One immediately checks that, using the sign of the initial condition, it holds∫
Td
wwk dx−

∫∫
Qt

w∂twk dxdτ ≥
1

2

∫
Td
w2
k(t) dx

giving thus

1

2

∫
Td
w2
k dx+ λ

∫∫
Qt

|Dwk|2 dxdτ ≤
∫∫

Qt

|b||Dwk||wk| dxdτ .

Passing to the supremum over t ∈ [0, T ] in the left-hand side and applying generalized

Hölder’s inequality with the triple (d+ 2, 2, 2(d+2)
d

), we have

1

2
ess supt∈(0,T )

∫
Td
w2
k dx+ λ

∫∫
Ak

|Dwk|2 dxdτ

≤ ‖b‖Ld+2(Ak)‖Dwk‖L2(QT )‖wk‖
L

2(d+2)
d (QT )

(6.16)

where Ak := {(x, t) ∈ QT : k < w+ < supO w}. By [103, Proposition I.3.1] we have
the embedding

‖wk‖
L

2(d+2)
d (Qt)

≤ C1

(
ess supt∈(0,T )

(∫
Td
w2
k dx

) 1
2

+

(∫∫
Ak

|Dwk|2 dxdτ
) 1

2

)

where C1 depends solely on d. By combining all the above inequalities and applying
Young’s inequality one immediately finds

min

{
1,
λ

2

}(
ess supt∈(0,T )

∫
Td
w2
k +

∫∫
Ak

|Dwk|2 dxdτ
)

≤ C2‖b‖2
Ld+2(Ak)

(
ess supt∈(0,T )

∫
Td
w2
k +

∫∫
Ak

|Dwk|2 dxdτ
)

where C2 = C2(d, λ). This yields

1 ≤ C2

min
{

1, λ
2

}‖b‖2
Ld+2(Ak) .

Then, by letting k → supO w we note that the right-hand side approaches to 0, giving
thus the contradiction.
To prove (ii), we argue as in the elliptic case (see e.g. [122, 193]). We define Atk :=
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{x ∈ Td : k < w+ < supQT w} for a.e. t ∈ [0, T ] and we use wk as test function as
above. Then, Hölder’s and Gagliardo-Nirenberg inequality both imply

1

2
ess supt∈(0,T )

∫
Td
w2
k+λ

∫ t

0

∫
Ak

|Dwk|2 dxdτ ≤
∫ t

0

‖b‖Ld(Ak)‖Dwk‖L2(Td)‖wk‖
L

2d
d−2 (Td)

dτ

≤ C1‖b‖L∞(0,t;Ld(Ak))‖Dwk‖L2(Qt)(‖wk‖L2(Qt) + ‖Dwk‖L2(Qt))

≤ C2‖b‖L∞(0,t;Ld(Ak))‖wk‖2
L2(0,t;W 1,2(Td))

Moreover
1

2

∫
Td
w2
k + λ

∫ t

0

∫
Ak

|Dwk|2 dxdt ≥ C3‖wk‖L2(0,T ;W 1,2(Td))

for some C3 > 0 depending also on λ. Then

1 ≤ C2

C3

‖b‖L∞(0,T ;Ld(Ak))

and one concludes as above, using the assumption on b.
We finally prove (iii). We have

1

2
ess supt∈(0,T )

∫
Td
w2
k dx+ λ

∫∫
Ak

|Dwk|2 dxdt ≤
∫ t

0

∫
Ak

|b||Dwk||wk| dxdt

≤
(∫ t

0

‖bwk‖2
L2(Ak) dt

) 1
2
(∫ t

0

‖Dwk‖2
L2(Ak) dt

) 1
2

≤ C(λ)

(∫ T

0

‖bwk‖2
L2(Ak)

)
+
λ

2

∫ T

0

‖Dwk‖2
L2(Ak) dt

We then have

min

{
1,
λ

2

}(
ess supt∈(0,T )

∫
Td
w2
k +

∫∫
Ak

|Dwk|2 dxdt
)

≤ C‖|b|‖2
LQ(0,T ;LP (Ak))‖wk‖

2
L2Q̄′ (0,T ;L2P̄′ (Ak))

where Q̄ = Q/2 and P̄ = P/2. First, note that

d

2P̄
+

1

Q̄
≤ 1

and then use [12, Lemma 3] to obtain

‖wk‖2
L2Q̄′ (0,T ;L2P̄′ (Ak))

≤ CT θ
(

ess supt∈(0,T )

∫
Td
w2
k +

∫∫
Ak

|Dwk|2 dxdt
)

with θ = 1 − d
2P −

1
Q > 0, except for the case d = 2, where the quoted [12, Lemma

3] requires the strict inequality. To prove the above fact in dimension 2 when

d

2P̄
+

1

Q̄
= 1

one can use [103, Proposition I.3.3](with r = 2Q̄ ′, q = 2P̄ ′, p = 2) to obtain

1 ≤ C(λ)‖|b|‖2
LQ(0,T ;LP (Atk))

and conclude again as in the previous items.

141



Notice that under the assumptions of Definition 6.5, weak solutions of (6.1) must
be unique (except for a subtle endpoint case Q =∞, P = d where one needs uniform
in time integrability as in Proposition 6.7-(ii)). This can be proven via a simple
linearization argument:

Theorem 6.8. Under the standing assumptions (H), every (global) weak solution to
(6.1) is unique.

Proof. Let v(x, t) := u1(x, t) − u2(x, t) on QT , where ui are two solutions of (6.1)
in the sense of Definition 6.5. Then, v ∈ H1

2(QT ) is a weak (energy) solution to the
linear equation

∂tv −
d∑

i,j=1

aij(x, t)∂ijv(x, t) +B(x, t) ·Dv(x, t) = 0,

satisfying v(0) = 0 in the L2-sense, where B(x, t) is some measurable vector field
such that, in view of (H),

|B(x, t)| ≤ C(|Du1(x, t)|γ−1 + |Du2(x, t)|γ−1 + 1).

Hence, again by (H) and (6.13), B(x, t) ∈ LQ (0, T ;LP (Td)) for some P , Q satisfying
d

2P + 1
Q ≤

1
2
. Hence by Proposition 6.7 we get v ≤ 0. Repeating the same arguments

replacing v with −v one gets the conclusion.

As for the existence, here we argue via a fixed point theorem, since, in general,
the operator ∂tu−∆u+ b ·Du is not coercive, unless ‖b‖LQ (LP ) with Q , P satisfy the
Aronson-Serrin condition is small enough.
We thus prove, for simplicity, the well-posedness in H1

2(Qτ ) of the adjoint problem
to (6.23), focusing on the case P = Q . The full proof for the this result in the general
case with unbounded data is well-established and can be found in [159] by means of
the Galerkin’s approximation method.

Proposition 6.9. Let (A) be in force, b ∈ LQ (0, τ ;LP (Td)) for some P ≥ d, Q ≥ 2
satisfying d

2P + 1
Q ≤

1
2
. Define the map T : H1

2(QT )× [0, 1] → H1
2(QT ) such that for

any v ∈ H1
2(QT ) we have T [v;σ] = u if and only if

∂tu−
d∑

i,j=1

aij(x, t)∂iju(x, t) = σb ·Dv in QT , u(x, 0) = σu0(x) in Td . (6.17)

with u0 ∈ L2(Td). Then

(i) T is compact;

(ii) There exists a constant M > 0 such that

‖u‖H1
2(QT ) ≤M

for every u ∈ H1
2(QT ) and every σ ∈ [0, 1] such that u = T [u;σ].
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Therefore, problem (6.17) has a unique solution in H1
2(QT ). Moreover, if u0 ≥ 0,

then u ≥ 0 a.e. on QT .

Proof. The proof of the existence is a consequence of the Leray-Schauder fixed point
theorem (see e.g. [122, Theorem 11.6]) once (i) and (ii) are proven. To prove (i),
take a sequence vn bounded in H1

2(QT ) and let un = T [vn, σn]. We first observe
that |b||Dvn| is bounded in H−1

2 (QT ). To see this, it is sufficient to note that by the
(stationary) Sobolev and Hölder inequalities

‖|b||Dvn|‖L2(0,T ;H−1(Td)) ≤ ‖|b||Dvn|‖
L2(0,T ;L

2d
d+2 (Td))

≤ ‖|b|‖L2(0,T ;Ld(Td))‖Dvn‖L2(QT ) ≤ C‖|b|‖LQ (0,T ;LP (Td))‖Dvn‖L2(QT ) .

for P ,Q satisfying (6.13). By the compactness of the embedding H1
2(QT ) in L2(QT )

(see e.g. [92, Proposition 2.2] and also Part II for a similar statement), there exists a
subsequence, which we still call un, converging strongly to some limiting function u
in L2(QT ) and such that the sequence of gradients Dun converges weakly in L2(QT )
to Du and ∂tun to ∂tu in H−1

2 (QT ). We take un − u as a test function to get

∫ T

0

1

2

d

dt
‖un − u‖2

L2(Td) + λ

∫∫
QT

|D(un − u)|2 dxdt

≤
∫∫

QT

b ·Dvn(un − u) dxdt− λ
∫∫

QT

Du ·D(un − u) dxdt+

∫∫
QT

∂tv(vn − v) .

In the case P = Q = d + 2, the first term on the right-hand side converges to 0
by applying Hölder’s inequality with the triple (d+ 2, 2(d+ 2)/d, 2), and using that
un − u is bounded in L2(d+2)/d(QT ) by the parabolic Sobolev embedding H1

2(QT ) ↪→
L2(d+2)/d(QT ). The general case P 6= Q can be handled exploiting the embeddings
for mixed summability exponents (cf Remark C.2)

H1,p2
p1

(QT ) ↪→ Lq2(0, T ;Lq1(Td))

whenever
1

2
=
d

2

(
1

p1

− 1

q1

)
+

1

p2

− 1

q2

.

In particular, when p1 = p2 = 2 we have H1
2(QT ) ↪→ Lq2(0, T ;Lq1(Td))

d

2q1

+
1

q2

=
d

4
.

Therefore, using Hölder inequality in space and time with exponents (P , q1, 2) and
(Q , q2, 2) respectively, with q1, q2 as above, we conclude the convergence of the first
integral term in the general case.
The convergence of the second term is standard in view of the fact that Dun ⇀ Du
in L2(QT ). As for the last term, it is sufficient to exploit the weak convergence of vn
to v in H1

2(QT ) and the fact that ∂tv ∈ H−1
2 (QT ).

143



This in particular gives the strong convergence of Dun to Du in L2(QT ). Finally, we
observe that∣∣∣∣∫∫

QT

∂t(un − u)ϕdxdt

∣∣∣∣ ≤ C(λ)

∫∫
QT

|D(un − u)||Dϕ| dxdt

+

∫∫
QT

|b||D(vn − v)||ϕ| dxdt ≤≤ C(‖un − u‖H1
2(QT ) + ‖Dvn −Dv‖L2(QT ))

for some C > 0. Then, the right-hand side approaches to 0 due to the above strong
convergences. To prove (ii), we argue by contradiction, assuming that for any n the
sequence un ∈ H1

2(QT ), σn ∈ [0, 1] such that un = T [un, σn] and ‖un‖H1
2(QT ) ≥ n,

namely ‖un‖H1
2(QT ) →∞. This implies that

∂tun − aij(x, t)∂ijun(x, t) = σnb ·Dun(x, t) .

Let us set wn := un
‖un‖H1

2(QT )
and observe that since σn ≤ 1

∂twn − aij(x, t)∂ijwn(x, t) ≤ |b||Dwn|

with wn(x, 0) = σn
u0(x)

‖un‖H1
2(QT )

. As in (i), we can deduce the strong convergence of wn

in H1
2(QT ) and hence, by letting n→∞, we conclude

∂tw − aij(x, t)∂ijw(x, t) ≤ |b||Dw|

with w(x, 0) = 0, which gives w ≤ 0 by the comparison principle (see Proposition
6.7). The same procedure can be applied mutatis mutandis to −w leading to w ≥ 0,
which allows to conclude w = 0 on Qτ . However, ‖wn‖H1

2(QT ) = 1 and hence by
the strong convergence we also have ‖w‖H1

2(QT ) = 1, giving the contradiction. The
last conclusion follows readily again by Proposition 6.7. Finally, one notices that
T [u; 0] = 0 by standard results for heat equations. The uniqueness is a consequence
of the comparison principle in Proposition 6.7.

6.5.3 Some auxiliary results

Lemma 6.10. Let p > 1, and suppose that aij ∈ C(QT ) satisfies (A). Then, there
exists a unique solution in W 2,1

p (QT ) to{
∂tu(x, t)−

∑d
i,j=1 aij(x, t)∂iju(x, t) = f(x, t) in QT ,

u(x, 0) = 0 in Td .

Moreover, there exists a constant C (depending on λ, p, and the modulus of continuity
of a on QT ) such that

‖u‖W 2,1
p (QT ) ≤ C‖f‖Lp(QT ) . (6.18)

For u(x, 0) = u0 ∈ W 2−2/p,p(Td), then there exists a constant C (depending on λ, p,
and the modulus of continuity of a on QT ) such that

‖u‖W 2,1
p (QT ) ≤ C(‖f‖Lp(QT ) + ‖u0‖W 2−2/p,p(Td)) . (6.19)
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Proof. This is a classical maximal Lp regularity statement for uniformly elliptic equa-
tions with continuous coefficients, that can be deduced from results contained in
[159]; see [91, Appendix A] for additional details on the periodic setting. One
can also rely on abstract results on maximal regularity for parabolic equations in
[198]. In particular, in the case of non-zero initial trace, one has to use that the
sharp space of initial trace is described via the trace method from interpolation the-
ory in Banach spaces (see e.g. [178, Corollary 1.14] and Part II) to conclude that
u(0) ∈ (Lp,W 2,p)1−1/p,p ' W 2−2/p,p.

The following continuous embedding result of H1
σ(QT ) into Lp(QT ) is rather

known and can be found for example in [92, 185], where, however, the estimates
are local in time. Here we need its stability as T → 0 and hence this requires an
additional control on the trace at some time (e.g. t = 0). We provide a proof here
for the reader’s convenience, that does not make use of fractional Sobolev spaces.

Proposition 6.11. If 1 < σ < (d+2)/(d+1), then H1
σ(Td×(τ1, τ)), 0 < τ1 < τ ≤ T

is continuously embedded into Lp(Td × (τ1, τ)) for

1

p
=

1

σ
− 1

d+ 2
.

Moreover, if u ∈ H1
σ(Td × (τ1, τ)) and u(·, τ) ∈ L1(Td), we have

‖u‖Lp(Td×(τ1,τ)) ≤ C
(
‖u‖H1

σ(Td×(τ1,τ)) + ‖u(τ1)‖L1(Td)

)
, (6.20)

where the constant C depends on d, p, σ, T , but remains bounded for bounded values
of T .

Proof. Let f ∈ Lp′(Td × (τ1, τ)) and ϕ be the solution to{
−∂tϕ(x, t)−∆ϕ(x, t) = f(x, t) in Td × (τ1, τ) ,

ϕ(x, τ) = 0 in Td .

By Lemma 6.10, ϕ satisfies

‖ϕ‖W 2,1

p′ (QT ) ≤ C‖f‖Lp′ (QT ) . (6.21)

Note that C here may depend on τ , but it is the same for all τ ≤ 1 (if τ < 1, it is
sufficient to extend trivially f on Td× (τ, 1) and use (6.19) on Td× (0, 1)). Note that
(d+ 2)/2 < p′ < d+ 2. Therefore, by the embedding results in [159, Lemma II.3.3],

‖ϕ‖C(Td×(τ1,τ)) ≤ C‖ϕ‖W 2,1

p′ (Td×(τ1,τ)), ‖ϕ‖W 1,0

σ′ (Td×(τ1,τ)) ≤ C‖ϕ‖W 2,1

p′ (Td×(τ1,τ))

(6.22)
Note that a straightforward application of [159, Lemma II.3.3] yields bounded con-
stants in (6.22) as τ → 0, plus an additional term on the right-hand sides of the
form C1τ

−1‖ϕ‖Lp′ (QT ); this term can be removed using the fact that ϕ(τ) = 0, that
guarantees ‖ϕ‖Lp′ (Td×(τ1,τ)) ≤ τ‖∂tϕ‖Lp′ (Td×(τ1,τ)) ≤ ‖ϕ‖W 2,1

p′ (Td×(τ1,τ)). Note also that

here we can identify norms on Td with norms on Ω = (0, 1)d.
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Therefore, integrating by parts in time and using (6.21) and (6.22),∣∣∣∣∫ τ

τ1

∫
Td
uf dxdt

∣∣∣∣ =

∣∣∣∣∫ τ

τ1

∫
Td
u(−∂tϕ−∆ϕ) dxdt

∣∣∣∣
≤
∫
Td
|ϕ(x, τ1)u(x, τ1)|dx+

∣∣∣∣∫ τ

τ1

∫
Td
∂tuϕdxdt

∣∣∣∣+

∫ τ

τ1

∫
Td
|Dϕ| |Du| dxdt

≤ C
(
‖ϕ(τ1)‖L∞(Td)‖u(τ1)‖L1(Td) + ‖∂tu‖(

W 1,0

σ′ (Td×(τ1,τ))
)′‖ϕ‖W 1,0

σ′ (Td×(τ1,τ))

+ ‖Du‖Lσ(Td×(τ1,τ))‖Dϕ‖Lσ′ (Td×(τ1,τ))

)
≤ C

(
‖u(τ1)‖L1(Td) + ‖∂tu‖(

W 1,0

σ′ (Td×(τ1,τ))
)′ + ‖Du‖Lσ(Td×(τ1,τ))

)
‖f‖Lp′ (Td×(τ1,τ)),

yielding the desired result.

We need the following generalization of [236, Theorem 2.1.6] for weak derivatives
of difference quotients

Dhu :=
u(x+ h, t)− u(x, t)

h
, h ∈ Rd .

Lemma 6.12. Let 1 < p <∞ and 0 < τ1 < τ ≤ T . Assume u ∈ Lp(τ1, τ ;W 1,p(Td))
and f ∈ Lq(Td × (τ1, τ)), with 1

p
+ 1

q
= 1. Then∥∥fDhu

∥∥
L1(Td×(τ1,τ))

≤ ‖f‖Lq(Td×(τ1,τ)) ‖Du‖Lp(Td×(τ1,τ))

Proof. Let u ∈ C1(Td × (τ1, τ)) ∩ Lp(τ1, τ ;W 1,p(Td)) and for the general case argue
by density. We first show that

‖u(·+ h, t)− u(·, t)‖Lp(Td) ≤ |h| ‖Du(·, t)‖Lp(Td)

We write
u(x+ h, t)− u(x, t)

h
=

1

|h|

∫ |h|
0

∣∣∣∣Du(x+ θ
h

|h|
, t

)∣∣∣∣ dθ
By Jensen’s inequality we obtain∣∣∣∣u(x+ h, t)− u(x, t)

h

∣∣∣∣p =
1

|h|

∫ |h|
0

∣∣∣∣Du(x+ θ
h

|h|
, t

)∣∣∣∣p dθ
and we then conclude the assertion integrating over QT and exchanging the order of
integration by Fubini’s Theorem. Then∫ τ

τ1

∫
Td
f(x, t)

u(x+ h, t)− u(x, t)

h
dx ≤ ‖f‖Lq(Td×(τ1,τ)) ‖D

hu‖Lp(Td×(τ1,τ))

≤ ‖f‖Lq(Td×(τ1,τ)) ‖Du‖Lp(Td×(τ1,τ))
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6.5.4 Well-posedness and regularity of the adjoint equation

This section is devoted to the analysis of the following Fokker-Planck equation{
−∂tρ(x, t)−

∑d
i,j=1 ∂ij(aij(x, t)ρ(x, t)) + div(b(x, t) ρ(x, t)) = 0 in Qτ ,

ρ(x, τ) = ρτ (x) in Td .
(6.23)

Note that when the vector field b(x, t) = −DpH(x,Du(x, t)), then (6.23) becomes
the adjoint equation of the linearization of (6.1).

Here, τ ∈ (0, T ] and Qτ := Td × (0, τ).

Definition 6.13. For b ∈ LQ (0, T ;LP (Td)) for some P ≥ d, and Q ≥ 2 satisfying
(6.13), a (weak) solution ρ ∈ H1

2(Qτ ) is such that ρ(τ) = ρτ in the L2-sense, and

−
∫ τ

0

〈∂tρ(t), ϕ(t)〉dt+

∫∫
Qτ

∂j(aijρ)∂iϕ− bρ ·Dϕdxdt = 0 (6.24)

for all ϕ ∈ H1
2(Qτ ).

Remark 6.14. Note that the integral term

I =

∫∫
Qτ

ρb ·Dϕdxdt

is well-posed. Indeed, we have

|I| ≤ ‖Dϕ‖L2(QT )‖|b|‖LQ (0,τ ;LP (Td))‖ρ‖
L

2Q
Q−2 (0,τ ;L

2P
P−2 (Td))

where Q , P fulfills
d

2P
+

1

Q
=

1

2

In particular, such condition implies also that

Q − 2

2Q
+
d(P − 2)

4P
=
d

4

and this allows to apply [103, Proposition I.3.3] to exploit the embedding of V2(Qτ ) =

L∞(0, τ ;L2(Td)) ∩ L2(0, τ ;W 1,2(Td)) onto L
2Q

Q−2 (0, τ ;L
2P

P−2 (Td)). Then

|I| ≤ C1‖Dϕ‖L2(QT )‖|b|‖LQ (0,τ ;LP (Td))‖ρ‖V2(Qτ ) ≤ C2‖Dϕ‖L2(QT )‖|b|‖LQ (0,τ ;LP (Td))‖ρ‖H1
2(Qτ )

by finally using the fact that H1
2 ↪→ C(L2).

Throughout this section we will assume that

ρτ ∈ C∞(Td), ρτ ≥ 0, and

∫
Td
ρτ (x) dx = 1. (6.25)

Note that ρ ∈ C([0, τ ];L2(Td)), so ρ ∈ C([0, τ ];L1(Td)), and∫
Td
ρ(x, t) dx = 1 for all t ∈ [0, τ ]. (6.26)

This can be easily verified using ϕ ≡ 1 as a test function in (7.5). Evolutive equations
with divergence type terms and discontinuous coefficients were analyzed in [48, 39],
while we refer to [47] and references therein for the elliptic counterpart.
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Proposition 6.15. Let (A) be in force, b ∈ LQ (0, τ ;LP (Td)) for some P ≥ d,
Q ≥ 2 satisfying (6.13), and ρτ ∈ L2(Td). Then, there exists a unique weak solution
ρ ∈ H1

2(Qτ ) to (6.23) satisfying the estimate

‖ρ‖H1
2(Qτ ) ≤ C

If in addition ρτ ∈ Lm(Td) for m ∈ (1,∞), then ρ is bounded in L∞(0, τ ;Lm(Td)) ∩
Lη(0, τ ;W 1,η(Td)), with η = 2 if m ≥ 2 and η = m(d+2)

m+d
if m ∈ (1, 2). Finally, ρ is

a.e. non-negative on Qτ .

Proof. The existence part when ρτ ∈ L2(Td), i.e. the PDE is driven by the Lapla-
cian, can be proven as in Theorem 7.12 for the case of the fractional Laplacian via
Caldéron-Zygmund parabolic regularity (roughly speaking, it is enough to set s = 1
ans exploit the local analogue of Theorem B.4) and Leray-Schauder fixed point the-
orem [122, Theorem 11.6], while the general case is proven in [159] via Galerkin
approximation method. The uniqueness can be inferred by duality. As for integra-
bility estimates, we quote the results in [48, Lemma 3.2], which can be achieved in
the case p = 2 by using ϕ = ρ as a test function, and in the more general case
ρτ ∈ Lm(Td) by using a suitable power of ρ. The adaptation in the periodic setting
of the arguments used there is straightforward.

Remark 6.16. We remark that when condition 6.13 is fulfilled as a strict inequality,
actually ρ is bounded. This can be seen via an appropriate choice of the test function
as in [48, Theorem 2.1]. See also the approach via Duhamel’s formula in [39] and the
next Proposition 7.12 for the case of subcritical fractional diffusion. We also point
out that (6.13) is sharp. In fact, in [39] it is proven in the whole space setting that
when

d

2P
+

1

Q
>

1

2
,

then ρ does not enjoy any estimates uniform in time better than in L1(Rd) for a
smooth velocity field and initial datum.

By gathering the previous results we basically get the well-posedness of the
Fokker-Planck equation for fixed ρτ . The main goal is now to derive estimates on ρ
that are stable for any ρτ satisfying merely (6.25); one may have in mind that ρτ is
an item of a sequence approaching a Dirac delta. These estimates will be achieved
using some information on the integrability of the vector field b with respect to the
solution ρ itself, that is a typical datum in the analysis of Hamilton-Jacobi equations.

The following proposition is a modification of [92, Proposition 2.4], and is a kind
of Caldéron-Zygmund parabolic regularity result for equations with divergence-type
terms. Similar regularity estimates already appeared in [194, Prop. 3.10-(iii)] when
b ∈ L2(ρ dxdt) via the renormalized formulation, and [185, Section 3]. We stress that
here the constraint on the integrability exponent q′ is completely determined by the
regularity of the initial datum. Both in the context of regularity theory for transport
equations and MFGs, our main achievement is to obtain Sobolev regularity whenever
b ∈ Lk(ρ dxdt) with k < 2 (in the context of MFGs this allows a treatment of the
superquadratic case γ > 2)

We will show in the forthcoming Proposition 6.20 that one can actually reach the
threshold q′ = 2 whenever ρτ ∈ L2(Td) via the same procedure.
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Proposition 6.17. Let ρ be a (non-negative) weak solution to (6.23) and

1 < q′ <
d+ 2

d+ 1
.

Then, there exists C > 0, depending on λ, ‖a‖C(W 1,∞), q
′, d, T such that

‖ρ‖H1
q′ (Qτ ) ≤ C(‖bρ‖Lq′ (Qτ ) + ‖ρ‖Lq′ (Qτ ) + ‖ρτ‖L1(Td)). (6.27)

Note that C here does not depend on τ ∈ (0, T ].

Proof. We assume that the coefficients aij, bi are smooth, and therefore ρ is smooth
as well on Qτ . The general case Da ∈ L∞(Qτ ), b ∈ LQ (0, T ;LP (Td)) follows by an
approximation argument as in Proposition 6.15.

Fix k = 1, ..., d. For δ > 0, let ψ = ψδ be the classical solution to{
∂tψ(x, t)−

∑
i,j aij(x, t)∂ijψ(x, t) = (δ + |∂kρ(x, t)|2)

q′−2
2 ∂kρ(x, t) in Qτ ,

ψ(x, 0) = 0 on Td .
(6.28)

Since q′ < 2, δ > 0 serves as a regularizing perturbation. By standard parabolic
regularity (see Lemma 6.10), we have (for a positive constant not depending on
τ ≤ T )

‖ψ‖W 2,1
q (Qτ ) ≤ C

∥∥∥(δ + |∂kρ|2)
q′−2

2 ∂kρ
∥∥∥
Lq(Qτ )

≤ C
∥∥∥|∂kρ|q′−1

∥∥∥
Lq(Qτ )

= C ‖∂kρ‖q
′−1

Lq′ (Qτ )
.

(6.29)
Set ϕ(x, t) = ∂xkψ(x, t). Then, ϕ is a classical solution to{
∂tϕ−

∑
i,j aij∂ijϕ = ∂k

[
(δ + |∂kρ|2)

q′−2
2 ∂kρ

]
+
∑

i,j ∂k(aij)∂ijψ in Qτ ,

ϕ(x, 0) = 0 on Td .
(6.30)

Using ϕ as a test function for the equation satisfied by ρ,∫∫
Qτ

ρ(∂tϕ− aij∂ijϕ− b ·Dϕ)dxdt = −
∫
Td
ρτ (x)ϕ(x, τ)dx ,

and using the equation in (6.30) satisfied by ϕ we get, after integration by parts∫∫
Qτ

(δ + |∂kρ|2)
q′−2

2 |∂kρ|2 − ∂k(aij)∂ijψ ρ+ bρ ·Dϕdxdt =

∫
Td
ρτ (x)ϕ(x, τ)dx ,

Applying Hölder’s inequality,∫∫
Qτ

(δ + |∂kρ|2)
q′−2

2 |∂kρ|2 dxdt ≤ ‖Da‖L∞(Qτ )‖ψ‖W 2,1
q (Qτ )‖ρ‖Lq′ (Qτ )

+ ‖bρ‖Lq′ (Qτ )‖Dϕ‖Lq(Qτ ) + ‖ρτ‖L1(Td)‖ϕ(·, τ)‖∞.

Since q > d + 2, by [159, Lemma II.3.3], the parabolic space W 2,1
q (Qτ ) is contin-

uously embedded into C([0, τ ];C1(Td)), therefore ‖ϕ(·, τ)‖∞ ≤ ‖ψ(·, τ)‖C1(Td) ≤
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C‖ψ‖W 2,1
q (Qτ ) (to be sure that C does not explode as τ → 0, one has to exploit that

ψ(0) = 0, and argue as in the proof of Proposition 6.11). Hence, since ϕ = ∂xkψ,∫∫
Qτ

(δ+ |∂kρ|2)
q′−2

2 |∂kρ|2 dxdt ≤ C(‖ρ‖Lq′ (Qτ ) +‖bρ‖Lq′ (Qτ ) +‖ρτ‖L1(Td))‖ψ‖W 2,1
q (Qτ ).

By (6.29) and letting δ → 0,∫∫
Qτ

|∂kρ|q
′
dxdt ≤ C(‖ρ‖Lq′ (Qτ ) + ‖bρ‖Lq′ (Qτ ) + ‖ρτ‖L1(Td))‖∂kρ‖q

′−1

Lq′ (Qτ )
.

Summarizing, we conclude

‖Dρ‖Lq′ (Qτ ) ≤ C(‖ρ‖Lq′ (Qτ ) + ‖bρ‖Lq′ (Qτ ) + ‖ρτ‖L1(Td)) . (6.31)

By Poincaré-Wirtinger inequality and (6.31), together with the fact that
∫
Td ρ(x, t)dx =

1 for all t ∈ [0, τ ], we obtain

‖ρ‖q
′

Lq′ (Qτ )
≤ C(‖Dρ‖q

′

Lq′ (Qτ )
+ τ‖ρτ‖q

′

L1(Td)
) ,

yielding, together with (6.31)

‖ρ‖W 1,0

q′ (Qτ ) ≤ C(‖ρ‖Lq′ (Qτ ) + ‖bρ‖Lq′ (Qτ ) + ‖ρτ‖L1(Td)).

Finally, for any smooth test function ϕ (which may not vanish at the terminal time
τ), again by Hölder’s inequality∣∣∣∣∫ τ

0

〈∂tρ(t), ϕ(t)〉dt
∣∣∣∣ ≤ ∫∫

Qτ

|∂j(aijρ)∂iϕ|+ |bρ| |Dϕ| dxdt

≤
[
(‖a‖L∞(Qτ ) + ‖Da‖L∞(Qτ )) ‖ρ‖W 1,0

q′ (Qτ ) + ‖bρ‖Lq′ (Qτ )

]
‖Dϕ‖Lq(Qτ ).

Thus,
‖∂tρ‖(W 1,q(Qτ ))′ ≤ C(‖ρ‖Lq′ (Qτ ) + ‖bρ‖Lq′ (Qτ ) + ‖ρτ‖L1(Td)) .

Proposition 6.18. Let ρ be the (non-negative) weak solution to (6.23) and

1 < q′ <
d+ 2

d+ 1
.

Then, there exists C > 0, depending on λ, ‖a‖C(W 1,∞), T, q
′, d such that

‖ρ‖H1
q′ (Qτ ) ≤ C

(∫∫
Qτ

|b(x, t)|r′ρ(x, t) dxdt+ 1

)
, (6.32)

where

r′ = 1 +
d+ 2

q
. (6.33)
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Proof. Inequality (6.27), (6.25) and the generalized Hölder’s inequality yield

‖ρ‖H1
q′ (Qτ ) ≤ C(‖bρ1/r′ρ1/r‖Lq′ (Qτ ) + ‖ρ‖Lq′ (Qτ ) + 1)

≤ C

((∫∫
Qτ

|b|r′ρ dxdt
)1/r′

‖ρ‖1/r
Lp(Qτ ) + ‖ρ‖Lq′ (Qτ ) + 1

)
, (6.34)

for p > q′ satisfying
1

q′
=

1

r′
+

1

rp
. (6.35)

Then, by Young’s inequality, for all ε > 0

‖ρ‖H1
q′ (Qτ ) ≤ C

(
1

ε

∫∫
Qτ

|b|r′ρ dxdt+ ε‖ρ‖Lp(Qτ ) + ‖ρ‖Lq′ (Qτ ) + 1

)
, (6.36)

Since ‖ρ‖L1(Qτ ) = τ , by interpolation between L1(Qτ ) and Lp(Qτ ) we have ‖ρ‖Lq′ (Qτ ) ≤
τ 1/r′‖ρ‖1/r

Lp(Qτ ), and again by Young’s inequality

‖ρ‖H1
q′ (Qτ ) ≤ C̃

(
1

ε

∫∫
Qτ

|b|r′ρ dxdt+ ε‖ρ‖Lp(Qτ ) + 1

)
, (6.37)

One can verify that (6.33) and (6.35) yield

1

p
=

1

q′
− 1

d+ 2
.

The continuous embedding of H1
q′(Qτ ) in Lp(Qτ ) stated in Proposition 6.11 then

implies
‖ρ‖Lp(Qτ ) ≤ C1

(
‖ρ‖H1

q′ (Qτ ) + τ
)
.

Hence, the term ε‖ρ‖Lp(Qτ ) can be absorbed by the left hand side of (6.37) by choosing

ε = (2C̃C1)−1, thus providing the assertion.

6.6 Additional regularity results

We remark that the above results, especially those obtained in Proposition 6.17, are
based on (parabolic) Caldéron-Zygmund regularity and duality arguments. These
parabolic regularity results allows to get Sobolev regularity of the adjoint equation
when b ∈ Lk(ρ), i.e. in terms of the crossed quantity∫∫

|b|kρ <∞ ,

for some k > 1. We conclude this section by providing a Sobolev regularity result
for solutions of the forward equation driven by the Laplacian{

∂tρ−∆ρ− div(b(x, t)ρ) = 0 in Td × (0, τ) ,

ρ(0) = ρ0(x) on Td .
(6.38)
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in terms of
∫∫
|b|kρ, without using maximal Lp-regularity results and duality ar-

guments, which, however, we will not use in the sequel. This is inspired by the
approach used in the stationary setting in [184] (see also [185, Proposition 3.3] for
similar results).

Proposition 6.19. Let b ∈ Lk(ρ), i.e.
∫∫

QT
|b|kρ < ∞ for 2 < k < 2 + d/2,

β := k−2
d+2−k and ρ0 ∈ Lβ+1(Td). Then every non-negative weak solution ρ ∈ H1

2(Qτ )∩
L∞(Qτ ) to (6.38) satisfies, for k as above, the estimate

‖ρ‖
L

d+2
d+2−k (Qτ )

≤ C

(∫∫
Qτ

|b|kρ dxdt+ ‖ρ0‖Lβ+1(Td)

)
where C is a positive constant depending on d, k and q = d+2

k−2
. Finally, as a conse-

quence, we have

‖ρ‖H1
d+2

d+3−k
(Qτ ) ≤ C

(∫∫
Qτ

|b|kρ dxdt+ ‖ρ0‖Lβ+1(Td)

)
Proof. As in the elliptic case [184] the strategy is to use ϕ = ρβ with β := k−2

d+2−k (or

better ϕ = (ρ+ ε)β and then let ε→ 0). By Young’s inequality we have

1

β + 1

∫
Td
|ρ(x, τ)|β+1 dx+ β

∫∫
Qτ

ρβ−1|Dρ|2 dxdt

≤
∫∫

Qτ

|b|ρβ|Dρ| dxdt+
1

β + 1

∫
Td
|ρ(x, 0)|β+1 dx

≤ Cβ

∫∫
Qτ

|b|2ρβ+1 dxdt+
β

4

∫∫
Qτ

ρβ−1|Dρ|2 dxdt+
1

β + 1

∫
Td
|ρ(x, 0)|β+1 dx .

Denote by

J = ess supt∈(0,T )

∫
Td
|ρ(x, τ)|β+1 dx+ β

∫∫
Qτ

ρβ−1|Dρ|2 dxdt .

and by first passing to the supremum over t ∈ (0, τ) and then applying the Sobolev
embedding in [103, Proposition I.3.1]

J

β + 1
=

1

β + 1

(
ess supt∈(0,T )

∫
Td

(|ρ(x, τ)|
β+1

2 )2 dx+ β

∫∫
Qτ

|Dρ
β+1

2 |2 dxdt
)

≥ C

(∫∫
Qτ

ρ(β+1) d+2
d dxdt

)1− 2
d+2

.

We then have(∫∫
Qτ

ρ(β+1) d+2
d dxdt

)1− 2
d+2

+
β

4

∫∫
Qτ

ρβ−1|Dρ|2 dxdt

≤ C1

(∫∫
Qτ

|b|kρ dxdt
) 2

k
(∫∫

Qτ

ρβ
k
k−2

+1

)1−2/k

+ C2‖ρ0‖β+1
Lβ+1(Qτ )

.
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We then apply Hölder’s and Young’s inequalities to the first term of the right-hand
side of the above inequality to get

C1

(∫∫
Qτ

|b|kρ dxdt
) 2

k
(∫∫

Qτ

ρβ
k
k−2

+1

)1−2/k

≤ C2

(∫∫
Qτ

|b|kρ dxdt
) d

d+2−k

+
1

2

(∫∫
Qτ

ρ(β+1) d+2
d dxdt

)1− 2
d+2

.

We note then that

βq = (β + 1)
d+ 2

d
= β

k

k − 2
+ 1 =

d+ 2

d+ 2− k

giving thus(∫∫
Qτ

ρ
d+2

d+2−k

) d
d+2

+
β

4

∫∫
Qτ

ρβ−1|Dρ|2 dxdt

≤ C

[(∫∫
Qτ

|b|kρ dxdt
) d

d+2−k

+ ‖ρ0‖β+1
Lβ+1(Qτ )

+ 1

]
,

and finally, noting that β + 1 = d
d+2−k we have(∫∫

Qτ

ρ
d+2

d+2−k

) d+2−k
d+2

≤ C

(∫∫
Qτ

|b|kρ dxdt+ ‖ρ0‖Lβ+1(Td)

)
.

The second estimate can be obtained via [185, Lemma 3.2]. However, it can be proven
simply by observing that the above computations gives a bound on

∫∫
Qτ
ρβ−1|Dρ|2 dxdt.

Therefore, we can use it to estimate

‖Dρ‖
L

d+2
d+3−k (Qτ )

≤ ‖ρ(β−1)/2Dρ‖L2(Qτ )‖ρ(1−β)/2‖
L

2(d+2)
d+4−2k (Qτ )

=

(∫∫
Qτ

ρβ−1|Dρ|2 dxdt
) 1

2
(∫∫

Qτ

ρ
d+2

d+2−k

) d+4−2k
2(d+2)

.

The estimate for ∂tρ follows by duality (see [185]).

Proposition 6.20. Let ρ be a (non-negative) weak solution to (6.23). Then, there
exists C > 0, depending on λ, ‖a‖C(W 1,∞), d, T such that

‖ρ‖H1
2(Qτ ) ≤ C(‖bρ‖L2(Qτ ) + ‖ρ‖L2(Qτ ) + ‖ρτ‖L2(Td)). (6.39)

Proof. We assume that the coefficients aij, bi are smooth, and therefore ρ is smooth
as well on Qτ . The general case Da ∈ L∞(Qτ ), b ∈ LQ (0, T ;LP (Td)) follows by an
approximation argument.

Fix k = 1, ..., d. Let ψ be the classical solution to{
∂tψ(x, t)−

∑
i,j aij(x, t)∂ijψ(x, t) = ∂kρ(x, t) in Qτ ,

ψ(x, 0) = 0 on Td .
(6.40)
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By standard parabolic regularity (see Lemma 6.10), we have (for a positive constant
not depending on τ ≤ T )

‖ψ‖W 2,1
2 (Qτ ) ≤ C‖∂kρ‖L2(Qτ ). (6.41)

Set ϕ(x, t) = ∂xkψ(x, t). Then, ϕ is a classical solution to{
∂tϕ−

∑
i,j aij∂ijϕ = ∂2

kkρ+
∑

i,j ∂k(aij)∂ijψ in Qτ ,

ϕ(x, 0) = 0 on Td .
(6.42)

Using ϕ as a test function for the equation satisfied by ρ,∫∫
Qτ

ρ(∂tϕ− aij∂ijϕ− b ·Dϕ)dxdt = −
∫
Td
ρτ (x)ϕ(x, τ)dx ,

and using the equation in (6.42) satisfied by ϕ we get, after integration by parts∫∫
Qτ

|∂kρ|2 − ∂k(aij)∂ijψ ρ+ bρ ·Dϕdxdt =

∫
Td
ρτ (x)ϕ(x, τ)dx .

Applying Hölder’s inequality,∫∫
Qτ

|∂kρ|2 dxdt ≤ ‖Da‖L∞(Qτ )‖ψ‖W 2,1
2 (Qτ )‖ρ‖L2(Qτ )

+ ‖bρ‖L2(Qτ )‖Dϕ‖L2(Qτ ) + ‖ρτ‖L2(Td)‖ϕ(τ)‖L2(Td).

Hence, since ϕ = ∂xkψ,∫∫
Qτ

|∂kρ|2 dxdt ≤ C(‖ρ‖L2(Qτ ) + ‖bρ‖L2(Qτ ) + ‖ρτ‖L2(Td))‖ψ‖W 2,1
2 (Qτ ).

By (6.41) we have∫∫
Qτ

|∂kρ|2 dxdt ≤ C(‖ρ‖L2(Qτ ) + ‖bρ‖L2(Qτ ) + ‖ρτ‖L2(Td))‖∂kρ‖L2(Qτ ).

Summarizing, we conclude

‖Dρ‖L2(Qτ ) ≤ C(‖ρ‖L2(Qτ ) + ‖bρ‖L2(Qτ ) + ‖ρτ‖L2(Td)) . (6.43)

By Poincaré-Wirtinger inequality and (6.43), together with the fact that
∫
Td ρ(x, t)dx =

1 for all t ∈ [0, τ ], we obtain

‖ρ‖2
L2(Qτ ) ≤ C(‖Dρ‖2

L2(Qτ ) + τ‖ρτ‖2
L2(Td)) ,

yielding, together with (6.43)

‖ρ‖W 1,0
2 (Qτ ) ≤ C(‖ρ‖L2(Qτ ) + ‖bρ‖L2(Qτ ) + ‖ρτ‖L2(Td)).

Finally, for any smooth test function ϕ (which may not vanish at the terminal time
τ), again by Hölder’s inequality∣∣∣∣∫ τ

0

〈∂tρ(t), ϕ(t)〉dt
∣∣∣∣ ≤ ∫∫

Qτ

|∂j(aijρ)∂iϕ|+ |bρ| |Dϕ| dxdt

≤
[
(‖a‖L∞(Qτ ) + ‖Da‖L∞(Qτ )) ‖ρ‖W 1,0

2 (Qτ ) + ‖bρ‖L2(Qτ )

]
‖Dϕ‖L2(Qτ ).

Thus,
‖∂tρ‖(W 1,2(Qτ ))′ ≤ C(‖ρ‖L2(Qτ ) + ‖bρ‖L2(Qτ ) + ‖ρτ‖L2(Td)) .
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6.7 Lipschitz regularity

This section is devoted to the proof of Lipschitz regularity of u, stated in Theo-
rem 6.1. We will assume that the assumptions of Theorem 6.1 are in force: aij ∈
C(0, T ;W 2,∞(Td)) and satisfies (A), H ∈ C1(Td×Rd), it is convex in the second vari-
able, and satisfies (H) and u0 ∈ L∞(Td). Moreover, f ∈ Lq(QT ) for some q > d+ 2.
At a certain stage we will require q ≥ d+2

γ′−1
also.

The result will be obtained using regularity properties of the adjoint variable ρ,
i.e. the solution to
−∂tρ(x, t)−

d∑
i,j=1

∂ij(aij(x, t)ρ(x, t))− div
(
DpH(x,Du(x, t)) ρ(x, t)

)
= 0 in Qτ ,

ρ(x, τ) = ρτ (x) on Td ,
(6.44)

for τ ∈ (0, T ), ρτ ∈ C∞(Td), ρτ ≥ 0 with ‖ρτ‖L1(Td) = 1. Recall that u is a
weak solution to the viscous Hamilton-Jacobi equation (6.1). By the integrability
assumptions on DpH, the adjoint state ρ ∈ H1

2(Qτ ) is, for any ρτ , well-defined,
non-negative and bounded in L∞(0, τ ;Lσ

′
(Td)) for all σ′ > 1, by a straightforward

application of Proposition 6.15.
In what follows, we establish bounds on ρ that are independent on the choice of

τ and ρτ with ‖ρτ‖L1(Td) = 1.

6.7.1 Estimates on the adjoint variable

Let us point out first that from now on we will denote by C,C1, ... positive constants
that may depend on λ, CH , ‖u0‖C(Td), ‖f‖Lq(QT ), ‖a‖C(W 1,∞), ‖D2a‖L∞(Qτ ), T, q, d,
but do not depend on τ , ρτ .

Lemma 6.21. Let u be a local weak solution to (6.1). Assume that ρ is a weak
solution to (6.44). Then, for all τ1, τ2 such that 0 < τ1 < τ2 ≤ T we have∫

Td
u(x, τ2)ρ(x, τ2)dx =

∫
Td
u(x, τ1)ρ(x, τ1) +

∫ τ2

τ1

∫
Td
L(x,DpH(x,Du))ρdxdt

+

∫ τ2

τ1

∫
Td
fρ dxdt. (6.45)

Moreover, if u is a global weak solution, the previous identity holds up to s = 0.

Proof. Using −ρ ∈ H1
2(Td × (τ1, τ2)) ∩ L∞(τ1, τ2;Lσ

′
(Td)) as a test function in the

weak formulation of problem (6.1), u ∈ H1
2(Td × (τ1, τ2)) as a test function for the

corresponding adjoint equation (6.44) and summing both expressions, one obtains

−
∫ τ2

τ1

〈∂tu(t), ρ(t)〉dt−
∫ τ2

τ1

〈∂tρ(t), u(t)〉dt

+

∫ τ2

τ1

∫
Td

(DpH(x,Du) ·Du−H(x,Du))ρdxdt+

∫ τ2

τ1

∫
Td
fρ dxdt = 0 .
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The desired equality follows after integrating by parts in time and using property
(7.28) of L. Note that sinceH(x,Du) ∈ L1(τ1, τ2;Lσ(Td)), and then L(x,DpH(Du)) ∈
L1(τ1, τ2;Lσ(Td)) by (L1) and (H), so all the terms in (6.45) make sense.

We are now ready to prove a crucial estimate on the the integrability of DpH
with respect to ρ, that depends in particular on the sup norm ‖u‖C(QT ). Note that
this estimate is obtained on the whole parabolic cylinder.

Proposition 6.22. Let u be a local weak solution to (6.1) and ρ be a weak solution to
(6.44). Then, there exist positive constants C (depending on λ, ‖a‖C(W 1,∞), ‖u‖C(QT ),
CH , ‖f‖Lq(QT ), q, d, T ) such that∫∫

Qτ

|DpH(x,Du(x, t))|γ′ρ(x, t) dxdt ≤ C. (6.46)

Remark 6.23. Note that as a straightforward consequence of (6.46), one has∫∫
Qτ

|Du(x, t)|βρ(x, t) dxdt ≤ Cβ for all 1 ≤ β ≤ γ. (6.47)

Indeed, by (H),
∫∫

Qτ
|Du(x, t)|γρ(x, t) dxdt ≤ C, which yields (6.47) for β = γ. For

β < γ it is sufficient to use Young’s inequality and (6.26).

Proof. Rearrange the representation formula (6.45) to get, for s ∈ (0, τ),∫∫
Qs,τ

L(x,DpH(x,Du))ρ dxdt =

∫
Td
u(x, τ)ρτ (x)dx−

∫
Td
u(x, s)ρ(x, s)dx

−
∫∫

Qs,τ

fρ dxdt. (6.48)

Fix some η such that (d+2)/γ′ < η < d+2 (< q). Use now bounds on the Lagrangian
(L1), and Hölder’s inequality to obtain

C−1
L

∫∫
Qs,τ

|DpH(x,Du)|γ′ρ dxdt ≤
∫∫

Qs,τ

L(x,DpH(x,Du))ρ dxdt

≤ 2‖u‖C(QT ) + ‖f‖Lη(Qs,τ )‖ρ‖Lη′ (Qs,τ ). (6.49)

Let now q̄ be such that
1

η′
=

1

q̄′
− 1

d+ 2

By Proposition 6.11, H1
q̄′(Qs,τ ) is continuously embedded in Lη

′
(Qs,τ ). Moreover,

choosing η > (d+ 2)/2 guarantees q̄′ < (d+ 2)/(d+ 1), so by inequality (6.32) (with
q replaced by q̄),

‖ρ‖Lη′ (Qs,τ ) ≤ C(‖ρ‖H1
q̄′ (Qs,τ ) + 1) ≤ C1

(∫∫
Qs,τ

|DpH(x,Du)|r′ρ(x, t) dxdt+ 1

)
,

(6.50)
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where r′ = 1 + d+2
q̄

. Plugging this inequality into (6.49), we obtain

C−1
L

∫∫
Qs,τ

|DpH(x,Du)|γ′ρ dxdt

≤ 2‖u‖C(QT ) + C1‖f‖Lη(Qs,τ )

(∫∫
Qs,τ

|DpH(x,Du)|r′ρ(x, t) dxdt+ 1

)

Finally, the right hand side can be absorbed in the left hand side whenever r′ < γ′

by Young’s inequality: this is assured by

r′ = 1 +
d+ 2

q̄
=
d+ 2

η
< γ′.

One then gets (6.46) by taking the limit s→ 0 (constants here remain bounded for
s ∈ (0, τ)).

Integrability of DpH with respect to ρ provides finally Lq
′
regularity of Dρ. From

now on, we will suppose that q > d+ 2 and q ≥ d+2
γ′−1

.

Corollary 6.24. Let u be a local weak solution to (6.1) and ρ be a weak solution to
(6.44). Let q̄ be such that

q̄ > d+ 2 and q̄ ≥ d+ 2

γ′ − 1
.

Then, there exists a positive constant C such that

‖ρ‖H1
q̄′ (Qτ ) ≤ C ,

where C depends in particular on λ, ‖a‖C(W 1,∞), CH , ‖f‖Lq(Qτ ), q̄, d, T (but not on
τ, ρτ), ‖u0‖L∞(Td) if u is a local weak solution and ‖u‖L∞(QT ) if u is a local weak
solution.

Proof. Since q̄′ < d+2
d+1

, (6.32) applies (with q = q̄), yielding

‖ρ‖H1
q̄′ (Qτ ) ≤ C

(∫∫
Qτ

|DpH(x,Du(x, t))|r′ρ(x, t) dxdt+ 1

)
,

with

r′ = 1 +
d+ 2

q̄
≤ γ′.

If r′ = γ′, use Proposition 6.22 to conclude. Otherwise, if r′ < γ′ then use Young’s in-
equality first to control

∫∫
|DpH(x,Du(x, t))|r′ρ dxdt with

∫∫
|DpH(x,Du)|γ′ρ dxdt+

τ .

Remark 6.25. It is worth noting that in the sub-quadratic regime γ ≤ 2, the
information b ∈ Lγ′(ρ) is strong enough to guarantee ‖Dρ‖Lq′ (QT ) for all q′ < (d +

2)/(d + 1), that is expected for distributional solutions to heat equations with L1
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data (see e.g. [194]). We can then regard the div() term in (6.8) as perturbation of
a heat equation. On the other hand, in the super-quadratic case γ > 2, we are just
able to prove the weaker regularity ‖Dρ‖Lq′ (QT ) for q′ ≤ q′γ, with q′γ < (d+2)/(d+1),
where actually q′γ → 1 as γ → ∞. As expected, in the super-quadratic case the
Hamiltonian term in (6.1) may overcome the regularizing effect of Laplacian.

Finally, if one thinks ρ(t) as a flow of probability measures, then ρ enjoys also
some Hölder regularity in time.

Corollary 6.26. Let u be a local weak solution to (6.1) and ρ be a weak solution to
(6.44). Then, there exists a positive constant C such that

d1(ρ(t), ρ(t′)) ≤ C|t− t′|
1
2
∧ 1
γ ∀t, t′ ∈ [0, τ ],

where C depends in particular on λ, ‖a‖C(W 1,∞), CH , ‖u‖C(QT ), ‖f‖Lq(Qτ ), d, T (but
not on τ, ρτ).

Proof. Since ρ solves the Fokker-Planck equation (6.44) with drift DpH(x,Du(x, t)),
given the L1 bound (6.46) on |DpH(·, Du)|γ′ρ, the result is a straightforward appli-
cation of [73, Lemma 4.1].

6.7.2 Further bounds for global weak solutions

If u is a global weak solution, i.e. an energy solution up to initial time, it is possible to
control its sup norm in terms of ‖u0‖C(Td). This will be done in the next proposition.

Proposition 6.27. There exists C > 0 (depending on λ, ‖a‖C(W 1,∞), T, d) such that
any global weak solution u to (6.1) satisfies

‖u(·, τ)‖C(Td) ≤ C for all τ ∈ [0, T ]. (6.51)

Proof. First, we prove a bound from above for u:

u(x, τ) ≤ ‖u0‖C(Td) + C‖f‖Lq(Qτ ) (6.52)

for all τ ∈ (0, T ) and x ∈ Td. Consider indeed the (strong) non-negative solution of
the following backward problem{

−∂tµ(x, t)−
∑

i,j ∂ij(aij(x, t)µ(x, t)) = 0 on Qτ ,

µ(x, τ) = µτ (x) on Td .

with µτ ∈ C∞(Td), µτ ≥ 0 and ‖µτ‖L1(Td) = 1. Note that µ is a solution of a Fokker-
Planck equation of the form (6.23) with drift b ≡ 0. Then, since q′ < (d+ 2)/(d+ 1),
by Proposition 6.18 there exists a positive constant C (not depending on τ, µτ ) such
that ‖µ‖H1

q′ (Qτ ) ≤ C.

Use µ as a test function in the weak formulation of the Hamilton-Jacobi equation
(6.1) to get∫

Td
u(x, τ)µτ (x)dx =

∫
Td
u0(x)µ(x, 0)dx+

∫∫
Qτ

fµdxdt−
∫∫

Qτ

H(x,Du)µdxdt .

158



Applying Hölder’s inequality to the second term of the right-hand side of the above
inequality and the fact that ‖µ(t)‖L1(Td) = 1 for all t ∈ [0, τ ], we get∫

Td
u(x, 0)µ(x, 0)dx+

∫ τ

0

∫
Td
fµdxdt ≤ ‖u0‖C(Td) + C‖f‖Lq(Qτ ) ,

By the assumption H(x, p) ≥ 0, we then conclude∫
Td
u(x, τ)µτ (x)dx ≤ ‖u0‖C(Td) + C‖f‖Lq(Qτ ) .

Finally, by passing to the supremum over µτ ≥ 0, ‖µτ‖L1(Td) = 1, one deduces the
estimate (6.52) by duality.

To prove the bound from below of u, one can argue exactly as in the proof of
Proposition 6.22, starting from the representation formula (6.48) with s = 0. Using
the additional upper bound (6.52),∫∫

Qτ

|DpH(x,Du(x, t))|γ′ρ(x, t) dxdt ≤ 2‖u0‖C(Td)+C‖f‖Lq(Qτ )+‖f‖Lη(Qτ )‖ρ‖Lη′ (Qτ ).

This provides as before a control on
∫∫

Qτ
|DpH(x,Du))|γ′ρ dxdt and thus on ‖ρ‖Lη′ (Qτ ),

which depends on ‖u0‖C(Td) instead of the full sup norm ‖u‖C(QT ). Going back to
(6.45),∫

Td
u(x, τ)ρτ (x)dx ≥

∫
Td
u(x, 0)ρ(x, 0)− CL

∫∫
Qτ

ρ(x, t)dxdt+

∫∫
Qτ

fρ dxdt.

Since
∫∫

fρ can be bounded (from below) by Hölder’s inequality,∫
Td
u(x, τ)ρτ (x)dx ≥ −‖u(·, 0)‖C(Td) − CLτ − C.

Since ρτ can be arbitrarily chosen so that ‖ρτ‖L1(Td) = 1, we have the desired result.

6.7.3 Proof of Theorem 6.1

Theorem 6.28. Let u be a distributional solution to (7.3).

(i) Let u be a local weak solution to (7.3) with P = Q and η = η(t) ∈ C∞0 ((0, T ])
be a positive smooth function satisfying η(t) ≤ 1 for all t. Then, (ηu)(·, τ) ∈
W 1,∞(Td) for all τ ∈ (0, T ), and there exists C > 0 depending on CH , ‖u‖C(QT ),
‖f‖Lq(QT ), q, d, T such that

η(τ)‖u(·, τ)‖W 1,∞(Td) ≤ C
(
‖Da‖L∞(Qτ )‖ηDu‖L(d+2)(γ−1)(Qτ ) + sup

(0,T )

|η′(t)|+ 1
)

for all τ ∈ (0, T ]. Without requiring P = Q in (6.13), but assuming in addition
that Da ≡ 0 on QT , we have the same assertion, and in particular

η(τ)‖Du(·, τ)‖L∞(Td) ≤ C
(

sup
(0,T )

|η′(t)|+ 1
)

for all τ ∈ [0, T ].
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Proof. Step 1. Since H is convex and superlinear we can write for a.e. (x, t) ∈ QT

H(x,Du(x, t)) = sup
ν∈Rd
{ν ·Du(x, t)− L(x, ν)}.

Hence we get, for 0 < s < τ ,∫ τ

s

〈∂tu(t), ϕ(t)〉dt

+

∫∫
Qs,τ

∂iu(x, t) ∂j(aij(x, t)ϕ(x, t)) + [Ξ(x, t) ·Du(x, t)− L(x,Ξ(x, t))]ϕdxdt

≤
∫∫

Qs,τ

f(x, t)ϕ(x, t) dxdt (6.53)

for all test functions ϕ ∈ H1
2(Qs,τ )∩L∞(s, τ ;Lσ

′
(Td)) and measurable Ξ : Qs,τ → Rd

such that L(·,Ξ(·, ·)) ∈ L1(s, τ ;Lσ(Td)) and Ξ ·Du ∈ L1(s, τ ;Lσ(Td)). Note that the
previous inequality becomes an equality if Ξ(x, t) = DpH(x,Du(x, t)) in Qs,τ .

We fix ρτ as in (6.25). Set

w(x, t) = η(t)u(x, t).

Use now (6.53) with Ξ(x, t) = DpH(x,Du(x, t)) and ϕ = ηρ ∈ H1
2(Qτ ) ∩

L∞(s, τ ;Lσ
′
(Td)) for all 1 < σ′ < ∞, where ρ is the adjoint variable (i.e. the

weak solution to (6.44)) to find∫ τ

s

〈∂tw(t), ρ(t)〉dt+
∫∫

Qs,τ

∂iw ∂j(aijρ)+DpH(x,Du)·Dwρ−L(x,DpH(x,Du))ηρ dxdt

=

∫∫
Qs,τ

fηρ dxdt+

∫∫
Qs,τ

uη′ρ dxdt. (6.54)

Then, use w ∈ H1
2(QT ) as a test function in the weak formulation of the equation

satisfied by ρ to get

−
∫ τ

s

〈∂tρ(t), w(t)〉dt+

∫∫
Qs,τ

∂j(aijρ)∂iw +DpH(x,Du)ρ ·Dw dxdt = 0. (6.55)

We now fix s small so that η(s) = 0. We then obtain, subtracting the previous
equality to (6.54), and integrating by parts in time∫

Td
w(x, τ)ρτ (x)dx =

∫∫
Qs,τ

η(t)f(x, t)ρ(x, t)dxdt

+

∫∫
Qs,τ

η(t)L
(
x,DpH(x,Du(x, t))

)
ρ(x, t)dxdt+

∫∫
Qs,τ

η′(t)u(x, t)ρ(x, t)dxdt.

(6.56)

For h > 0 and ξ ∈ Rd, |ξ| = 1, define ρ̂(x, t) := ρ(x − hξ, t). After a change of
variables in (6.44), it can be seen that ρ̂ satisfies, using w as a test function,

−
∫ τ

s

〈∂tρ̂(t), w(t)〉dt

+

∫∫
Qs,τ

∂j
(
aij(x−hξ, t)ρ̂(x, t)

)
∂iw+DpH(x−hξ,Du(x−hξ, t))ρ̂(x, t)·Dw(x, t) dxdt = 0.

(6.57)
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As before, plugging Ξ(x, t) = DpH(x−hξ,Du(x−hξ, t)) and ϕ = ηρ̂ in (6.53) yields

∫ τ

s

〈∂tw(t), ρ̂(t)〉dt+∫∫
Qs,τ

∂iw ∂j(aij ρ̂)+DpH(x−hξ,Du(x−hξ, t))·Dwρ̂−L(x,DpH(x−hξ,Du(x−hξ, t)))ηρ̂ dxdt

≤
∫∫

Qs,τ

fηρ̂ dxdt+

∫∫
Qs,τ

uη′ρ̂ dxdt.

Hence, subtracting (6.57) to the previous inequality,

∫
Td
w(x, τ)ρ̂τ (x)dx ≤

∫∫
Qs,τ

∂j

((
aij(x− hξ, t)− aij(x, t)

)
ρ̂(x, t)

)
∂iw dxdt

+

∫∫
Qs,τ

L(x,DpH(x−hξ,Du(x−hξ, t)))ηρ̂ dxdt+
∫∫

Qs,τ

fηρ̂ dxdt+

∫∫
Qs,τ

uη′ρ̂ dxdt,

which, after the change of variables x 7→ x+ hξ, becomes

∫
Td
w(x+ hξ, τ)ρτ (x)dx ≤

∫∫
Qs,τ

∂j

((
aij(x− hξ, t)− aij(x, t)

)
ρ(x, t)

)
∂iw dxdt

+

∫∫
Qs,τ

η(t)L(x+ hξ,DpH(x,Du(x, t)))ρ(x, t) dxdt

+

∫∫
Qs,τ

fηρ̂ dxdt+

∫∫
Qs,τ

uη′ρ̂ dxdt, (6.58)

Taking the difference between (6.58) and (6.56) we obtain

∫
Td

(w(x+ hξ, τ)− w(x, τ))ρτ (x)dx ≤
∫∫

Qs,τ

∂j

((
aij(x− hξ, t)− aij(x, t)

)
ρ(x, t)

)
∂iw dxdt

+

∫∫
Qs,τ

η(t)
(
L(x+ hξ,DpH(x,Du(x, t)))− L(x,DpH(x,Du(x, t)))

)
ρ(x, t) dxdt

+

∫∫
Qs,τ

η(t)f(x, t)
(
ρ(x− hξ, t)− ρ(x, t)

)
dxdt

+

∫∫
Qs,τ

η′(t)u(x, t)
(
ρ(x− hξ, t)− ρ(x, t)

)
dxdt.

(6.59)

Step 2. We now estimate all the right hand side terms of (6.59). We stress that
constants C,C1, . . . are not going to depend on τ, ρτ , h, ξ.

Regarding the first term, assuming that P = Q holds in (6.13), we have by the
growth assumptions (H) on DpH that ηDu ∈ L(d+2)(γ−1)(Qτ ). Note that this fact will
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be used in the next chain of inequalities only. By Young’s and Holder’s inequality

∣∣∣∣∣
∫∫

Qs,τ

∂j

((
aij(x− hξ, t)− aij(x, t)

)
ρ(x, t)

)
∂iw dxdt

∣∣∣∣∣ =∣∣∣∣∣
∫∫

Qs,τ

(
∂jaij(x− hξ, t)− ∂jaij(x, t)

)
ρ ∂iw dxdt

+

∫∫
Qs,τ

(aij(x− hξ, t)− aij(x, t))∂jρ ∂iw dxdt

∣∣∣∣∣
≤ ‖D2a‖L∞(Qs,τ )|h|

∫∫
Qs,τ

|Du|ρ dxdt+ ‖Da‖L∞(Qs,τ )|h|
∫∫

Qs,τ

|ηDu| |Dρ| dxdt

≤ C|h|

(∫∫
Qs,τ

|Du|γρ dxdt+ τ

+‖Da‖L∞(Qs,τ )‖ηDu‖L(d+2)(γ−1)(Qs,τ )‖Dρ‖L( (d+2)(γ−1) )′ (Qs,τ )

)
≤ C1|h|

(
‖Da‖L∞(Qs,τ )‖ηDu‖L(d+2)(γ−1)(Qs,τ ) + 1

)
, (6.60)

where in the last inequality we used (6.47) and Corollary 6.24 (with q̄ = (d+ 2)(γ −
1) = (d+ 2)/(γ′ − 1) ).

Next, using first the mean value theorem (that yields a function ζ : Td → Td),
then property (L2) of DxL and (6.46),

∣∣∣∣∣
∫∫

Qs,τ

η(t)
(
L(x+ hξ,DpH(x,Du(x, t)))− L(x,DpH(x,Du(x, t)))

)
ρ(x, t) dxdt

∣∣∣∣∣
≤ |h|

∫∫
Qs,τ

∣∣DxL
(
ζ(x), DpH(x,Du(x, t))

)∣∣ρ(x, t) dxdt

≤ CL|h|
∫∫

Qs,τ

(
|DpH(x,Du(x, t))|γ′ + 1

)
ρ(x, t) dxdt ≤ C|h|.

Denote by Dhρ(x, t) := |h|−1(ρ(x + hξ, t) − ρ(x, t)). Then, for the term involving
f we use again Corollary 6.24, with q̄ = q, and control the Lq

′
norm of difference

quotient Dhρ via Dρ (as in, e.g. Lemma 6.12), to get

∣∣∣∣∣
∫∫

Qs,τ

η(t)f(x, t)
(
ρ(x− hξ, t)− ρ(x, t)

)
dxdt

∣∣∣∣∣
≤ |h|

∫∫
Qs,τ

|f(x, t)| |Dhρ(x, t)| dxdt ≤ |h|‖f‖Lq(Qs,τ )‖Dρ‖Lq′ (Qs,τ ) ≤ C|h|.
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Finally, by boundedness of u stated in (6.51) and again Corollary 6.24∣∣∣∣∣
∫∫

Qs,τ

η′(t)u(x, t)
(
ρ(x− hξ, t)− ρ(x, t)

)
dxdt

∣∣∣∣∣
≤ |h|

(
sup
(0,T )

|η′(t)|
)
‖u‖L∞(Qs,τ )‖Dρ‖L1(Qs,τ )

≤ C|h| sup
(0,T )

|η′(t)|.

Plugging all the estimates in (6.59) we obtain∫
Td

(w(x+hξ, τ)−w(x, τ))ρτ (x)dx ≤ C|h|
(
‖Da‖L∞(Qτ )‖ηDu‖L(d+2)(γ−1)(Qτ )+sup

(0,T )

|η′(t)|+1
)
.

(6.61)
Step 3. Since (6.61) holds for all smooth ρτ ≥ 0 with ‖ρτ‖L1(Td) = 1, we get

η(τ)[u(x+hξ, τ)−u(x, τ)] ≤ C|h|
(
‖Da‖L∞(Qτ )‖ηDu‖L(d+2)(γ−1)(Qτ ) + sup

(0,T )

|η′(t)|+ 1
)

for all x ∈ Td, ξ ∈ Rd, h > 0. Thus, u(·, τ) is Lipschitz continuous, and

η(τ)‖Du(·, τ)‖L∞(Td) ≤ C
(
‖Da‖L∞(Qτ )‖ηDu‖L(d+2)(γ−1)(Qτ ) + sup

(0,T )

|η′(t)|+ 1
)
.

Since C does not depend on τ ∈ (0, T ), we have proved the theorem.
Finally, for the special case Da ≡ 0 on QT , one may follow the very same lines,

with the difference that there is no need to control the term appearing in (6.60) (which
is identically zero). Therefore, there is no need to keep track of ‖ηDu‖L(d+2)(γ−1)(Qτ ),
and therefore the theorem is proven without assuming the constraint P = Q in (6.13).

The following lemma shows that ‖Du‖Lγ(QT ) can be bounded by a constant de-
pending on the data only.

Lemma 6.29. Let u be a local weak solution. Then, there exists a constant C
depending on CH , ‖u‖C(QT ), ‖f‖Lq(QT ), ‖Da‖L∞(Qτ ), q, d, T such that

‖Du‖Lγ(QT ) ≤ C.

Proof. Plugging ϕ ≡ 1 as a test function in the weak formulation of (6.1) we obtain,
for s > 0,∫

Td
u(x, T ) dx−

∫
Td
u(x, s) dx+

∫∫
Qs,T

∂iu ∂j(aij) +H(x,Du) dxdt =

∫∫
Qs,T

fdxdt

Hence, using (H), and Young’s inequality we get

CH

∫∫
Qs,T

|Du|γ dxdt ≤ ‖u(·, T )‖C(Td) + ‖u(·, s)‖C(Td) +
CH
2

∫∫
Qs,T

|Du|γ dxdt

+ CT‖Daij‖γ
′

L∞(Qs,T ) +

∫∫
Qs,T

|f |qdxdt+ T + C−1
H T.

Therefore, we conclude by passing to the limit s→ 0.
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We are now ready to prove the main theorem on Lipschitz regularity stated in
the introduction.

Proof of Theorem 6.1. For t1 ∈ (0, T ), let η = η(t) be a non negative smooth function
on [0, T ] satisfying η(t) ≤ 1 for all t, η(t) ≡ 1 on [t1, T ] and vanishing on [0, t1/2].
Then, Theorem 6.28 yields u(·, τ) ∈ W 1,∞(Td) for all τ ∈ (0, T ), and the existence
of C > 0 (depending on the data and η, so t1 itself) such that

η(τ)‖Du(·, τ)‖L∞(Td) ≤ C
(
‖Da‖L∞(Qτ )‖ηDu‖L(d+2)(γ−1)(Qτ ) + 1

)
for all τ ∈ [0, T ]. If (d+ 2)(γ − 1) ≤ γ, we immediately conclude (6.5) using Lemma
6.29. Otherwise, by interpolation of L(d+2)(γ−1)(Qτ ) between Lγ(Qτ ) and L∞(Qτ ) we
get

η(τ)‖Du(·, τ)‖L∞(Td) ≤ C

(
‖Da‖L∞(Qτ )‖ηDu‖

1− γ
(d+2)(γ−1)

L∞(Qτ ) ‖ηDu‖
γ

(d+2)(γ−1)

Lγ(Qτ ) + 1

)
,

that implies (6.5) after passing to the supremum with respect to τ ∈ (0, T ), and
again using Lemma 6.29 to control ‖ηDu‖Lγ(Qτ ).

To prove the global in time bound (6.3) one may follow the same lines, using η ≡ 1
on [0, T ] instead. Being the solution global, s = 0 can indeed be chosen throughout
the proof of Theorem 6.28, and norms ‖u‖C(QT ) can be replaced by ‖u0‖C(Td) in view

of Proposition 6.27. Note that an additional term
∫
Td(u(x+ h, 0)− u(x, 0))ρ(x, 0)dx

pops up in (6.59): this can be easily bounded by ‖Du0‖L∞(Td).

Finally, if aij(x, t) = Aij on QT for some Aij satisfying (A), then Da ≡ 0 on QT ,
and we obtain the same conclusion, exploiting the fact that Theorem 6.28 does not
require anymore P = Q .

6.7.4 Some consequences of Lipschitz regularity

Once Lipschitz regularity is established, one can deduce further properties of weak
solutions. Indeed, the viscous HJ equation (6.1) can be treated in terms of regularity
as a linear equation, being the H(x,Du) term (locally in time) bounded in L∞. Thus,
the classical Calderón-Zygmund parabolic theory applies, and the so-called maximal
regularity for u follows, i.e.: ∂tu, ∂iju,H(x,Du) ∈ Lq.

Corollary 6.30. Under the assumptions of Theorem 6.1, any local weak solution u
of (6.1) is a strong solution belonging to W 2,1

q (Td×(t1, T )) for all t1 ∈ (0, T ), namely
it solves (6.1) almost everywhere in QT .

Proof. For any t1 > 0, Theorem 6.1 yields H(x,Du(x, t)) ∈ L∞(Td × (t1/2, T )).
Therefore, since f ∈ Lq(Td × (t1/2, T )) and q > d + 2, there exists a weak (energy)
solution v to the linear equation

∂tv(x, t)−
d∑

i,j=1

aij(x, t)∂ijv(x, t) = −H(x,Du(x, t))+f(x, t) ∈ Lq(Td × (t1/2, T )),

(6.62)
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that satisfies v(t1/2) = u(t1/2) in the L2-sense, and enjoys the additional strong
regularity property W 2,1

q (Td×(t1, T )). This can be proven using, e.g., local estimates
in [159, Theorem IV.10.1]. Since weak solutions to (6.62) are unique, u coincides a.e.
with v on Td × (t1, T ), and we obtain the assertion.

6.7.5 Some remarks on the exponents P , Q , q

In the following remarks, we stress the importance of the condition DpH(x,Du) ∈
LQ (0, T ;LP (Td)) with P , Q satisfying

d

2P
+

1

Q
≤ 1

2
. (6.63)

Not only it guarantees Lipschitz regularity of u, but is also related to uniqueness of
solutions in the distributional sense. In the following examples it is indeed possible
to observe multiple solutions; among them, there is one that satisfies (6.63) and is
Lipschitz continuous, while the other(s) are not, showing therefore that Lipschitz
regularity for positive times stated in Theorem 6.1 fails in general without extra
integrability properties of DpH(x,Du).
We will also comment on the condition f ∈ Lq(QT ) for some q > d+ 2.

Remark 6.31. We consider first the super-quadratic regime γ > 2. For Q = ∞,
(6.63) reads

DpH(x,Du) ∈ L∞(LP (Td)) for some P ≥ d.

Let aij = δij and H(x, p) = |p|γ, γ > 2. For c, α > 0, we consider the (time-
independent) function

u1(x, t) = cψ(x)|x|α on QT ,

where ψ is a smooth function having support on B1/2(0) and is identically one in
B1/4(0). Note that ψ has the role of a localizing term only, so that u1(x, t) is a
representative on [−1/2, 1/2]d of a periodic function on Rd. If we let

α =
γ − 2

γ − 1
, c =

(d+ α− 2)
1

γ−1

α

then u1 solves, for some f1 ∈ L∞(Td) (that vanishes on B1/4(0)){
∂tu−∆u(x, t) + |Du(x, t)|γ = f1(x)

u(x, 0) = cψ(x)|x|α,
(6.64)

in the sense that it satisfies all the requirements in Definition 6.5, except the Aronson-
Serrin condition (6.12)-(6.13). More precisely,

(γ − 1)|Du|γ−1 = |DpH(x,Du)| ∈ L∞(0, T ;LP (Td)) if and only if P < d.

Moreover, u1(·, τ) is clearly not Lipschitz continuous for any τ ∈ [0, T ].
Note that u(x, 0) ∈ C(Td) and f1 ∈ L∞(QT ), so by Theorem 6.8 there exists

a unique solution to (6.64) in the sense of Definition 6.5. Thus, (6.64) admits two
distinct strong solutions, but only the one satisfying fully the Definition 6.5, in par-
ticular the crucial integrability condition on DpH(x,Du), enjoys Lipschitz regularity.
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Remark 6.32. In the sub-quadratic regime 1 + 2/(d+ 2) < γ < 2, for aij = δij and
H(x, p) = |p|γ, we can produce an energy solution to (6.1) such that DpH(x,Du) ∈
LQ (0, T ;LP (Td)) if and only if

d

2P
+

1

Q
>

1

2
,

that is not Lipschitz continuous, and not even bounded in L∞ uniformly on QT . It
then satisfies all requirements of Definition 6.5 except the Aronson-Serrin condition
(6.12)-(6.13) and the continuity up to t = 0: the initial datum is assumed in the
L2-sense only.

The construction of such a u is based on the existence, for k > 0 small, of
U ∈ C2(0,∞) ∩ C1[0,∞) to the Cauchy problem

U ′′(y) +
(
d−1
y

+ y
2

)
U ′(y) + U(y) + |U ′(y)|γ = 0 for 0 < y <∞

U ′(0) = 0

U(0) = α0,

for some α0 > 0, that satisfies for some positive c

|U(y)|+ |U ′(y)|+ |U ′′(y)| ≤ ce−y as y →∞.

The existence of such a U is proven in [35, Section 3], see in particular Theorem
3.5, Proposition 3.11, Proposition 3.14 and Remark 3.8 (see also [166]). As in our
Remark 6.31, we need a smooth localization term ψ having support on (−1/2, 1/2)
and identically one in [−1/4, 1/4]. Let then

u2(x, t) = −t−σU(|x| t−1/2)ψ(|x|), σ =
2− γ

2(γ − 1)
.

We have that u2 is a classical solution to

∂tu(x, t)−∆u(x, t) + |Du(x, t)|γ = f2(x, t), (6.65)

where u2(0) = 0 in the L2-sense (since γ > 1 + 2/(d+ 2)). Moreover,

f2(x, t) = −t−σ−1

{[
U ′′(|x| t−1/2) +

(
d− 1

|x| t−1/2
+
|x| t−1/2

2

)
U ′(|x| t−1/2)

+ kU(|x| t−1/2)

]
ψ(|x|)

+
∣∣∣U ′(|x| t−1/2)ψ(|x|) + t1/2U(|x| t−1/2)ψ′(|x|)

∣∣∣γ
+ 2t1/2U ′(|x| t−1/2)ψ′(|x|) + tU(|x| t−1/2)ψ′′(|x|) +

d− 1

|x|
tU(|x| t−1/2)ψ′(|x|)

}
.

Note that f2(x, t) is identically zero on |x| ≤ 1/4 and |x| ≥ 1/2; otherwise, it is

bounded in L∞, since |U(|x| t−1/2)| + |U ′(|x| t−1/2)| + |U ′′(|x| t−1/2)| ≤ ce−t
−1/2/4.

Therefore, one should expect the existence of a weak solution to the HJ equation
(6.65) with zero initial datum that is Lipschitz continuous on the whole QT (by
Theorem 6.8), but such a solution cannot be u2, since u2(t) becomes unbounded as
t→ 0.
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Remark 6.33. To have Lipschitz bounds for solutions to (6.1), one cannot avoid in
general the condition

f ∈ Lq(QT ) for some q > d+ 2. (6.66)

This constraint is actually imposed by the linear (heat) part of (6.1). Consider indeed
aij = δij and H(x, p) = |p|γ, γ > 1. For T > 0, let χ ∈ C∞0 (Rd), Γ(x, t) be fundamen-
tal solution of the heat equation in Rd, f3(x, t) := χ(x/

√
T − t)[

√
T − t log(T − t)]−1

and u3 be the function

u3(x, t) :=

∫∫
Rd×(0,t)

f3(y, s)Γ(x− y, t− s) dyds on QT

Clearly, u3 is a classical solution to{
∂tu(x, t)−∆u(x, t) + |Du(x, t)|γ = f3(x, t) + |Du3(x, t)|γ

u(x, 0) = 0,

f3 ∈ Lq(QT ) for all q ≤ d+ 2 and |Du3|γ ∈ L∞(0, T ;Lβ(Td)) for all β <∞. In turn,
we have that ‖Du3(·, t)‖∞ → ∞ as t → T . Note that this example can be recast
into the periodic setting by multiplying u3 by a cut-off function ψ, as in the previous
remarks.

Therefore, with respect to integrability requirements on f , Theorem 6.3 is opti-
mal, at least when γ < 3, namely when d + 2 ≥ d+2

2(γ′−1)
. We do not know whether

(6.66) is enough also when γ ≥ 3.

6.8 Existence and uniqueness of solutions

This section is devoted to the proof of existence and uniqueness of solutions to the
HJ equation (6.1). We start with the simpler case of regular initial datum.

Proof of Theorem 6.8. Existence. We start with a sequence of classical solutions
un to regularized problems


∂tun(x, t)−

d∑
i,j=1

aij(x, t)∂ijun(x, t) +H(x,Dun(x, t)) = fn(x, t) in QT ,

un(x, 0) = un,0(x) in Td,
(6.67)

where fn, un,0 are smooth functions converging to f, u0 in Lq(QT ), C(Td) respectively.
The existence of solutions to the regularized equations can be proven using standard
methods as in Proposition 5.48. We sketch the proof for reader’s convenience.
Let τ ∈ (0, T ] and α ∈ (0, 1) be the exponent in [102, Proposition 2.1]. We set

Sa := {u ∈ C1+α, 1+α
2 (Qτ ) : u(0) = u0 and ‖u‖

C1+α, 1+α
2 (Qτ )

≤ a}
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We define J mapping Sa into itself by u = Jv, where un = u solves∂tu(x, t)−
∑
i,j

aij(x, t)∂iju(x, t) +Hn(x,Dv(x, t)) = fn(x, t) in QT = Td × (0, T ),

u(x, 0) = un0 (x) in Td.

By [159, Theorem IV.5.1] (see also [91, Proposition 2.6] for the periodic setting) the
above problem has a unique solution u ∈ C2+α,1+α

2 (Qτ ) satisfying the estimate

‖u‖
C2+α,1+α

2 (Qτ )
≤ C(‖Hn(x,Dv)‖

Cα,
α
2 (Qτ )

+ ‖un0‖C2+α(Td)) ,

where C is a constant independent of τ , u0 and v. By using classical interpolation
arguments in Hölder spaces (see e.g. [102, Proposition 2.2] and the same strategy
applied in Proposition 5.48 in the Lp setting), one can choose τ small enough to get

‖Jv‖
C1+α, 1+α

2 (Qτ )
≤ a

to show that J maps Sa into itself for such τ . This allows to apply the contraction
mapping principle to show the existence and uniqueness of a fixed point in Qτ∗ ,
τ ∗ ∈ (0, T ].
Step 2. One uses the same arguments of [102, Proposition 2.2] and Proposition 5.48
to show the continuation in time by using the gradient bound (6.3) and get a solution
on the whole QT .

The global bound on ‖un‖C(QT ) depending on ‖u0‖C(Td) (see Proposition 6.27)
and the local in time Lipschitz estimate (6.5) hold, namely, for any fixed t1 > 0,

‖Dun(·, t)‖L∞(Td) ≤ Ct1 for all t ∈ [t1, T ].

Hence, since fn is equibounded in Lq(QT ), un is equibounded in W 2,1
q (Qt1,T ) by stan-

dard maximal parabolic regularity (e.g. [159, Theorem IV.10.1]). Then, weak limits
∂tu,D

2u exist (up to subsequences), and are in Lq locally in time. Moreover, since
q > d+ 2, parabolic embeddings of W 2,1

q (see e.g. [159]) guarantee that un and Dun
are equibounded and equicontinuous in [t1, T ] for all t1 > 0. Therefore, Ascoli theo-
rem and a further diagonalization argument imply that, again up to subsequences,
un converges uniformly on [t1, T ] for all t1 > 0 to some limit u, and the same con-
vergence holds for Dun. Note that the desired limit equation is locally satisfied in
the strong sense, namely a.e. on QT .

To prove that u is a local weak solution, it just remains to show that it is con-
tinuous up to t = 0. This is a delicate step since the control on Du deteriorates as
t→ 0. We start with the l.s.c. inquality

u0(x0) ≤ lim inf
x→x0
t→0

u(x, t) ∀x0.

The following fact will be crucial: for all (x̄, t̄) ∈ QT , there exists ρ = ρx̄,t̄ ∈
C

1
2
∧ 1
γ ([0, t̄],P(Td)) ∩H1

q′(Qt̄) such that ρx̄,t̄(t̄) = δx̄ and

u(x̄, t̄) ≥
∫
Td
u0(x)ρx̄,t̄(0, dx) +

∫∫
Qt̄

f(x, t)ρx̄,t̄(x, t)dxdt− CLt̄, (6.68)
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and ρx̄,t̄ is bounded in C
1
2
∧ 1
γ ([0, t̄],P(Td))∩H1

q′(Qt̄) uniformly in (x̄, t̄). Indeed, let un
be as in the previous part of the proof, and ρn be the corresponding adjoint variable
solving (6.23), where ρn(t̄) is any sequence converging to δx̄ in the sense of measures.
By duality (see Lemma 6.21) we get∫

Td
un(x, t̄)ρn(x, t̄) =

∫
Td
un,0(x)ρn(x, 0)dx

+

∫∫
Qt̄

(
L(x,DpH(x,Dun))ρndxdt+ fnρn

)
dxdt.

Moreover, ρn is bounded in C
1
2
∧ 1
γ ([0, t̄],P(Td)) ∩ H1

q′(Qt̄) by means of Corollaries
6.24 and 6.26, and these bounds do not depend on ρn(t̄) nor on (x̄, t̄). By (L1),
L ≥ −CL. Moreover, un,0(·) and un(·, t̄) converge uniformly in Td, ρn(t) converges in
the sense of measures, fn converges strongly to f in Lq(Qt̄) while ρn enjoys the same
convergence in the weak Lq

′
sense, eventually up to subsequences (actually it could

be made strong convergence by compact embeddings of parabolic spaces). Hence we
obtain (6.68) by passing to the limit n→∞.

Fix now x0 ∈ Td, and let (x̄m, t̄m) be any sequence such that (x̄m, t̄m)→ (x0, 0).
By adding u0(x0) to both sides of (6.68), rearranging the terms and using Hölder’s
inequality, we have

u0(x0) ≤ u(x̄m, t̄m)

+ ‖f‖Lq(Td×(0,t̄m))‖ρx̄m,t̄m‖Lq′ (Td×(0,t̄m)) + CLt̄m +

∫
Td
u0(x)

(
δx0 − ρx̄m,t̄m(0)

)
(dx).

On one hand, ‖f‖Lq(Td×(0,t̄m)) → 0 as t̄m → 0, while ‖ρx̄m,t̄m‖Lq′ is equibounded. On
the other hand, as x̄m → x0,∫

Td
u0(x)

(
δx0 − ρx̄m,t̄m(0)

)
(dx) = u0(x0)− u0(x̄m)

+

∫
Td
u0(x)

(
ρx̄m,t̄m(t̄m)− ρx̄m,t̄m(0)

)
(dx)→ 0,

by continuity of u0, and the fact that d1(ρx̄m,t̄m(t̄m), ρx̄m,t̄m(0)) ≤ C|t̄m|
1
2
∧ 1
γ → 0

implies the convergence of ρx̄m,t̄m(t̄m) to ρx̄m,t̄m(0) in the weak sense of measures. We
then get the claimed lower semicontinuity of u on QT .

The reverse inequality

u0(x0) ≥ lim sup
x→x0
t→0

u(x, t) ∀x0

can be obtained following analogous lines: instead of testing the approximating
equation for un by solutions ρn to the adjoint Fokker-Planck equation, it is sufficient
to use

−∂tµn(x, t)−
∑
i,j

∂ij
(
aij(x, t)µn(x, t)

)
= 0 on Qt̄ ,
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i.e. a solution of a Fokker-Planck equation of the form (6.23) with drift b ≡ 0,
such that µn(t̄) converges to δx̄ in the sense of measures. By duality with un and
H ≥ −CH , it holds∫

Td
un(x, t̄)µn(x, t̄)dx ≤

∫
Td
u0(x)µn(x, 0)dx+

∫∫
Qt̄

fnµndxdt+ CH t̄,

and by taking limits

u(x̄, t̄) ≤
∫
Td
u0(x)µx̄,t̄(0, dx) +

∫∫
Qt̄

fµdxdt+ CH t̄,

so it is possible to proceed as before.

Uniqueness. Consider two solutions u1, u2 of the HJ equation, and take their
difference w := u1 − u2 on QT . Let τ ∈ (0, T ]. By convexity of H(x, ·), w solves∫ τ

s

〈∂tw(t), ϕ(t)〉dt+

∫∫
Td×(s,τ)

∂iw ∂j(aijϕ) +DpH(x,Du2) ·Dwϕdxdt ≤ 0

for all s ∈ (0, τ), and w(·, 0) = 0. Let now ρ be the adjoint variable with respect to
u2, namely ρ be the weak solution to
−∂tρ(x, t)−

d∑
i,j=1

∂ij(aij(x, t)ρ(x, t))− div
(
DpH(x,Du2(x, t)) ρ(x, t)

)
= 0 in Qτ ,

ρ(x, τ) = ρτ (x) on Td ,
(6.69)

for some non-negative and smooth probability density ρτ . Then, by duality we get∫
Td
w(x, τ)ρτ (x)dx ≤

∫
Td
w(x, s)ρ(x, s)dx.

Since w ∈ C(QT ), it is uniformly continuous on QT , so w(·, t) → w(·, 0) ≡ 0 uni-
formly in Td. Moreover,

∫
Td w(x, s)ρ(x, s)dx =

∫
Td [w(x, s)−w(x, 0)]ρ(x, s)dx. Thus,

by Hölder’s inequality and ‖ρ(s)‖L1(Td) = 1,
∫
Td w(s)ρ(s)→ 0, yielding∫

Td
w(x, τ)ρτ (x)dx ≤ 0

for arbitrary ρτ . As ρτ varies, u1(τ) ≤ u2(τ) follows, and by exchanging the role of
u1 and u2 and varying τ , we eventually obtain u1 ≡ u2.

Additional regularity. When u0 ∈ W 1,∞, using global Lipschitz bounds (6.3)
one can bring Lipschitz (and further) regularity of un to the limit solution u on the
whole time interval [0, T ].

Remark 6.34. Note that the uniqueness proof works in the sub-quadratic case γ ≤ 2
if one requires u0 ∈ L∞(Td) and ui(s)

∗
⇀ u0 in L∞ only. This follows by the fact that

ρ in (6.69) can be proven (as in Proposition 6.22) to satisfy
∫ T

0

∫
|DpH(x,Du2)|γ′ρ <
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∞. When γ′ ≥ 2, then ρ ∈ C([0, T ], L1(Td)) by [194, Theorem 3.6]. Strong conver-
gence of ρ(s) in L1 and weak-* convergence of u1(s)− u2(s) is then enough to have∫
Td w(sn)ρ(sn) → 0 along some sequence sn → 0. We believe that existence and

Lipschitz regularity of solutions could be addressed in this weaker framework, but
this is a bit beyond the scopes of this analysis. Nevertheless, these considerations are
consistent with the principle that in the super-quadratic case γ > 2, the HJ equation
“sees points” [77], and thus requires u0 to be continuous in order to be well-posed,
while for γ ≤ 2 it may be enough to have informations a.e. at initial time.

6.9 A priori estimates: Bernstein’s and the ad-

joint methods

This section is devoted to the proof of Theorem 6.3, and complements regularity
results of the previous section. Here, u is a classical solution to (6.1). This will
allow to perform the Bernstein’s method, namely to analyse the equation satisfied
by |Du|2. The adjoint of such an equation is basically (6.44). As before we will
exploit the interplay between the equation itself and its adjoint.

We will assume that aij ∈ C([0, T ];C1(Td)) and satisfies (A), H ∈ C2(Td × Rd)
and satisfies (H), f ∈ C([0, T ];C1(Td)), u0 ∈ C1(Td) and

q > min

{
d+ 2,

d+ 2

2(γ′ − 1)

}
.

As before, for any fixed τ ∈ (0, T ), ρτ ∈ C∞(Td), ρτ ≥ 0 with ‖ρτ‖L1(Td) = 1, let
ρ be the (classical) solution to (6.44). Note that Proposition 6.27, Lemma 6.21 and
Proposition 6.22 apply. We start with a revised version of Corollary 6.24.

Corollary 6.35. Let u and ρ be solutions to (6.1) and (6.44) respectively. Let q̄ be
such that

q̄ >
d+ 2

2(γ′ − 1)
.

Then, there exist constants C > 0 and 0 < δ < 1 such that

‖ρ‖H1
q̄′ (Qτ ) ≤ C

(
‖Du‖1−δ

L∞(Qτ ) + 1
)
,

where C depends in particular on λ, ‖a‖C(W 1,∞), CH , ‖u0‖L∞(Td), ‖f‖Lq(QT ), q̄, d, T
(but not on τ, ρτ).

A straightforward consequence of the corollary is that

‖ρ‖Lp̄′ (Qτ ) ≤ C
(
‖Du‖1−δ

L∞(Qτ ) + 1
)
, for all p̄ >

d+ 2

2(γ′ − 1) + 1
. (6.70)

Indeed, since q̄′ < d+2
d+1

, Proposition 6.11 gives the result.
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Proof. Since q̄′ < d+2
d+1

, (6.32) applies (with q = q̄), yielding by (H)

‖ρ‖H1
q̄′ (Qτ ) ≤ C

(∫∫
Qτ

|DpH(x,Du)|r′ρ dxdt+ 1

)
≤ C1

(∫∫
Qτ

|Du|(γ−1)r′ρ dxdt+ 1

)
≤ C1

(
‖Du‖1−δ

L∞(Qτ )

∫∫
Qτ

|Du|(γ−1)r′−1+δρ dxdt+ 1

)
,

with r′ = 1+(d+2)q̄−1. Note that δ > 0 can be chosen small so that (γ−1)r′−1+δ ≤
γ. One then uses the estimate (6.47) on

∫∫
|Du|γρ to conclude.

We are now ready to prove our main a priori Lipschitz regularity result.

Proof of Theorem 6.3. Step 1. Set z(x, t) := |Du(x,t)|2
2

on QT . Straightforward com-
putations yield

∂iz = Du ·D∂iu , ∂ijz = D∂ju ·D∂iu+Du ·D∂iju , ∂tz = Du ·D(∂tu) ,

which give

Tr(AD2z) =
d∑

k=1

AD∂ku ·D∂ku+Du ·D{Tr(AD2u)}−
d∑

k=1

∂kuTr(∂kAD
2u) . (6.71)

Then, differentiating the HJ equation (6.1) with respect to xk, multiplying the re-
sulting equation by ∂ku, and summing for k = 1, . . . , d, one finds

Du ·D(∂tu)−Du ·D{Tr(AD2u)}+DpH ·Dz +DxH ·Du = Df ·Du .

Therefore, by plugging (6.71) into the previous equality we obtain the following
equation satisfied by z

∂tz − Tr(AD2z) +
d∑

k=1

AD∂ku ·D∂ku+DpH ·Dz =
d∑

k=1

∂kuTr(∂kAD
2u)

−DxH ·Du+Df ·Du . (6.72)

Using the uniform ellipticity condition (A) we estimate the third term on the left-
hand side by

d∑
k=1

AD∂ku ·D∂ku ≥ λTr((D2u)2).

Multiply (6.72) by the adjoint variable ρ and integrate by parts in space-time to get∫
Td
z(x, τ)ρτ (x) dx+ λ

∫∫
Qτ

Tr((D2u)2)ρ dxdt ≤
∫
Td
z(x, 0)ρ(x, 0) dxdt+∫∫

Qτ

|DxH||Du|ρ dxdt+

∫∫
Qτ

Df ·Duρ dxdt+

∫∫
Qτ

∂kuTr(∂kAD
2u)ρ dxdt.

(6.73)
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Step 2. We proceed by estimating the four terms on the right hand side of (6.73).
First, ∫

Td
z(x, 0)ρ(x, 0) dxdt ≤ 1

2
‖Du(·, 0)‖2

L∞(Td). (6.74)

Second, thanks to (H), Proposition 6.22 and Young’s inequality,∫∫
Qτ

|DxH||Du|ρ ≤ ‖Du‖L∞(Qτ )

[
CH

∫∫
Qτ

|Du|γρ dxdt+ CHτ

]
≤ C2+

1

8
‖Du‖2

L∞(Qτ ).

(6.75)
We then consider

∫∫
Df ·Duρ. Integrating by parts,∣∣∣∣∫∫

Qτ

Df ·Duρ dxdt
∣∣∣∣ =

∣∣∣∣∫∫
Qτ

fdiv(Duρ) dxdt

∣∣∣∣
≤
∣∣∣∣∫∫

Qτ

fDu ·Dρdxdt
∣∣∣∣+

∣∣∣∣∫∫
Qτ

fTr(D2u)ρ dxdt

∣∣∣∣ =: I1 + I2

The term I1 can be controlled by means of Hölder’s and Young’s inequalities, and
the control on ‖ρ‖H1

q̄′
stated in Corollary 6.35:

I1 ≤ ‖Du‖L∞(Qτ )‖f‖Lq̄(Qτ )‖Dρ‖Lq̄′ (Qτ ) ≤ C‖Du‖L∞(Qτ )‖f‖Lq̄(Qτ )

(
‖Du‖1−δ

L∞(Qτ ) + 1
)

≤ C3 +
1

16
‖Du‖2

L∞(Qτ ). (6.76)

We apply to I2 also Hölder’s and Young’s inequalities to get, for a p̄ > 1 to be chosen,

I2 ≤
1

2λ

∫∫
Qτ

f 2ρ dxdt+
λ

2

∫∫
Qτ

Tr((D2u)2)ρ dxdt

≤ 1

2λ
‖f‖2

L2p̄(Qτ )‖ρ‖Lp̄′ (Qτ ) +
λ

2

∫∫
Qτ

Tr((D2u)2)ρ dxdt.

Let us focus on the first term of the right-hand side of the above inequality: it can
be bounded by (6.70) and ‖f‖Lq(QT ) whenever there exists p̄ such that

2(d+ 2)

2(γ′ − 1) + 1
< 2p̄ ≤ q.

Such a p̄ indeed exists, since q > min
{
d+ 2, d+2

2(γ′−1)

}
. Therefore,

I2 ≤ C3 +
1

16
‖Du‖2

L∞(Qτ ) +
λ

2

∫∫
Qτ

Tr((D2u)2)ρ dxdt. (6.77)

For the last term
∫∫

uxkTr(AxkD
2u)ρ, Cauchy-Schwartz and Young’s inequalities

yield∫∫
Qτ

uxkTr(AxkD
2u)ρ dxdt ≤ C‖Da‖2

∞

∫∫
Qτ

|Du|2ρ dxdt+ λ

2

∫∫
Qτ

Tr((D2u)2)ρ dxdt
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We distinguish two cases: if γ ≥ 2, we have by (6.47) (with β = 2) that
∫∫

Qτ
|Du|2ρ ≤

C. Otherwise, if 1 < γ < 2,∫∫
Qτ

|Du|2ρ ≤ ‖Du‖2−γ
L∞(Qτ )

∫∫
Qτ

|Du|γρ dxdt ≤ C‖Du‖2−γ
L∞(Qτ ).

In both cases we end up with∫∫
Qτ

∂kuTr(∂kAD
2u)ρ dxdt ≤ C4 +

1

8
‖Du‖2

L∞(Qτ ) +
λ

2

∫∫
Qτ

Tr((D2u)2)ρ dxdt.

(6.78)
Step 3. Plugging (6.74), (6.75), (6.76), (6.77) and (6.78) into (6.73) we get

1

2

∫
Td
|Du(x, τ)|2ρτ (x) dx =

∫
Td
z(x, τ)ρτ (x) dx ≤ 1

2
‖Du(·, 0)‖2

L∞(Td)+C+
3

8
‖Du‖2

L∞(Qτ ).

Since this inequality holds for all smooth ρτ ≥ 0 with ‖ρτ‖L1(Td) = 1, we obtain

1

2
‖Du(·, τ)‖2

L∞(Td) ≤
1

2
‖Du(·, 0)‖2

L∞(Td) + C +
3

8
‖Du‖2

L∞(Qτ ),

and we conclude by passing to the supremum with respect to τ ∈ (0, T ).
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Chapter 7

Transport equations with
subcritical fractional diffusion and
applications to Hamilton-Jacobi
equations

This chapter is concerned with the study of the regularity properties of solutions
to evolutive transport equations with subcritical fractional viscosity and unbounded
coefficients. Our final aim is to apply this analysis to study the regularization effect
of fractional Hamilton-Jacobi equations with superlinear growth in the gradient and
possibly unbounded data in the spirit of Chapter 6.
More precisely, we begin focusing on the backward problem{

−∂tρ(x, t) + (−∆)sρ(x, t) + div(b(x, t) ρ(x, t)) = 0 in Td × (0, τ) ,

ρ(x, τ) = ρτ (x) in Td ,
(7.1)

with τ ∈ (0, T ), where the diffusion term is a fractional Laplacian operator (−∆)s

of order s ∈ (1/2, 1) and the velocity field b = b(x, t) belongs to some suitable
space-time Lebesgue space. We remind the reader that when the above problem
is recasted as a PDE on the whole space Rd with non-periodic data, the above
advection-diffusion equation is invariant under the (parabolic) scaling ρλ(x, t) =
ρ(λx, λ2st) and bλ(x, t) = λ2s−1b(λx, λ2st) and, in particular, the LQ (LP ) norm of
the velocity field is invariant under the previous scaling of b when d/(2sP ) + 1/Q =
1 − 1/2s. In the classical viscous case s = 1, it is well-known that this is the
critical threshold in terms of the integrability of the drift ensuring well-posedness
of the Fokker-Planck equation (see Chapter 6). Therefore, we will work under the
following assumption for the drift b:

b(x, t) ∈ LQ (0, τ ;LP (Td)) with
d

2sP
+

1

Q
≤ 2s− 1

2s
(7.2)

where
P ≥ d/(2s− 1) and Q ≥ 2s/(2s− 1) .

This can be regarded as a fractional analogue of the interpolated condition (6.13)
presented in the previous chapter. The analysis on these transport-type equations
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with unbounded coefficients and fractional diffusion can be tracked back to the liter-
ature of Surface Quasi-Geostrophic equations (see e.g. [93, 235, 63]), where, however,
information on the divergence of the velocity field is available. We are not able to
find a treatment on nonlocal diffusive transport equations without information on
the divergence (typically the incompressibility condition div(b) = 0). As for (7.1),
unlike the discussion developed in Chapter 6, we assume that (7.2) is satisfied with
a strict inequality (see Remark 7.7 for further details). In particular, we prove the
following

Theorem 7.1. Let b ∈ LQ (0, τ ;LP (Td)) with P ≥ d/(2s − 1) and Q ≥ 2s/(2s − 1)
satisfying

d

2sP
+

1

Q
<

2s− 1

2s
,

and ρτ ∈ Hs−1(Td). Then, there exists a unique weak solution ρ ∈ H2s−1
2 (Qτ ) to

(7.1). If, in addition, ρτ ∈ Lp(Td), p ∈ (1,∞], then ρ ∈ L∞(0, τ ;Lp(Td)). Moreover,
if ρτ ≥ 0, then ρ ≥ 0 a.e. on Qτ .

Our main goal is to apply the above results to study the regularization effect of
the fractional (forward) Hamilton-Jacobi equation{

∂tu(x, t) + (−∆)su(x, t) +H(x,Du(x, t)) = f(x, t) in QT = Td × (0, T ),

u(x, 0) = u0(x) in Td,
(7.3)

where the right-hand side f belongs to some vector-valued Lebesgue space Lq(0, T ;X),
q > 1, where X will be a suitable Bessel potential space of positive order of differ-
entiability (to be specified later) and H behaving like |Du|γ in the second entry,
exactly under the assumptions (H) in force throughout the previous chapter. As an-
nounced, we work in the subcritical regime s > 1

2
for the fractional diffusion operator

(−∆)s due to the fact that under this condition the diffusion components are the
dominating terms at small scales. In particular, by means of the duality procedure
implemented in Chapter 6, we seek to prove that weak solutions (in a suitable sense)
with bounded initial data u0 become immediately Lipschitz continuous at positive
times. In particular, we prove the following

Theorem 7.2. Suppose that s ∈ (1/2, 1) and

• H ∈ C1(Td × Rd), it is convex in the second variable, and satisfies (H),

• f ∈ Lq(0, T ;H2−2s
q (Td)) with q > d+ 2s and q > d+2s

(γ′−1)(2s−1)

• u0 ∈ L∞(Td).

Let u be a distributional solution to (7.3) (in the sense of Definition 7.17)

(1) If u is a local weak solution to (7.3), then u(·, τ) ∈ W 1,∞(Td) for all τ ∈ (0, T ].
In particular, for all t1 ∈ (0, T ) there exists a constant C1 > 0 depending on
t1, CH , ‖u‖L∞(QT ), ‖f‖Lq(0,T ;H2−2s

q (Td)), q, d, T, s such that

‖u(·, τ)‖W 1,∞(Td) ≤ C1

for all τ ∈ [t1, T ].

176



(2) If, in addition, u is a global weak solution to (7.3) with u0 ∈ W 1,∞(Td), then
there exists C2 > 0 depending on CH , ‖u0‖W 1,∞(Td), ‖f‖Lq(0,T ;H2−2s

q (Td)), q, d, T, s
such that

‖u(·, τ)‖W 1,∞(Td) ≤ C2

for all τ ∈ [0, T ].

We would like to highlight that when s = 1 our analysis is consistent with the
results obtained in Chapter 6 (cf Theorem 6.1). However, as it is clear from the
context of PDEs with fractional diffusion, we are not able to directly reproduce the
gradient estimate in Theorem 6.3 via the interplay between the Bernstein and adjoint
method developed in Section 6.9. Anyhow, this latter Lipschitz regularity result
seems to be the first one for Hamilton-Jacobi equations driven by fractional diffusion
dealing with coercive Hamiltonians with general superlinear growth in the gradient
and unbounded coefficients on the right-hand side source term f (at least in time).
This would be also the first step towards maximal Lp-regularity for such quasi-linear
integro-differential PDEs, which is still open nowadays even in the viscous case. We
remark that as far as the integrability of f ∈ Lq(H2−2s

q ) is concerned, the results are
somehow optimal (see Section 7.5). We emphasize that the integrability condition
on q assumed in Theorem 7.2 can be rewritten as

q >

{
d+ 2s if 1 < γ ≤ 2s,

d+2s
(2s−1)(γ′−1)

if γ > 2s,

and thus, even under these assumptions, the regularization effect for the range d +
2s < q < d+2s

(2s−1)(γ′−1)
remains open, as summarized in the next picture.

γ

q

d+ 2s
?

2s

7.1 Some known results

We recall that (Hölder’s) regularization effect of degenerate HJ equations with super-
quadratic growth in the gradient and unbounded right-hand side has been discussed
in [77] (see also [82] for a different approach). We also mention the Bernstein-type
argument developed for quasi-linear equations with quadratic growth and degenerate
diffusion in [27] in the stationary setting. The intermediate case in which the dynam-
ics is driven by a jump process has been widely investigated during the last decade
in the context of viscosity solutions’ theory for integro-differential PDEs. Regularity
results for HJ equations of the form

∂tu+ (−∆)su+H(Du) = 0
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with H locally Lipschitz are well-known. The conservation of Lipschitz regularity
(i.e. starting with u(0) ∈ W 1,∞) for every s ∈ (0, 1) goes back to [105, Theorem
5] (see also [139, 147]). Lipschitz regularity was then investigated in the case of
critical diffusion s = 1/2 by L. Silvestre in [217]. Hölder’s regularity of nonlocal
HJ equations with superquadratic growth has been first analyzed in [76]. Hölder’s
regularization effect of (viscosity) solutions to fractional HJ equations in the “frac-
tional” quadratic regime γ = 2s (i.e. when H(p) ∼ δ|p|2s) starting from a bounded
initial data has been observed by L. Silvestre in [216]. There, the author obtains also
a Hölder’s regularity result in the fractional superquadratic regime γ > 2s under
a smallness condition on ‖u‖L∞ . More recently, the regularization effect in Besov
spaces when s = 1/2 is investigated in [141] under a smallness condition on the
initial data. Lipschitz regularity for viscosity solutions of coercive Hamilton-Jacobi
equations has been widely analyzed using revisited techniques coming from classical
viscosity solutions’ theory. In [30] the authors study Lipschitz regularity of solutions
via Ishii-Lions method when f is bounded (which unfortunately requires to restrict
the growth to the fractional subquadratic regime γ < 2s, as it happens for the clas-
sical viscous case s = 1) and via a weak version of the Bernstein method in the
periodic setting [31], where f ∈ W 1,∞ in the space variable and γ > 1, even for more
general integro-differential operators than fractional powers of the Laplacian. We
finally mention that fractional HJ-type PDEs with coercive Hamiltonians have been
also recently investigated in the framework of periodic homogenization [18].

The plan of this chapter is the following: after some preliminary results on em-
bedding theorems for fractional parabolic spaces, in Section 7.3 we present some
crucial results on transport equations with subcritical fractional diffusion. Section
7.4 will be mainly devoted to the proof of Theorem 7.2.

7.2 Preliminaries

7.2.1 Sobolev embedding theorems for parabolic Bessel po-
tential spaces

This section is devoted to present a Sobolev embedding theorem for the parabolic
Bessel potential classH2s−1

2 . We borrow from Part II of this manuscript all functional
tools and definitions, which we will not recall here to avoid a cumbersome discussion.

More precisely, we show a trace result for parabolic Bessel potential spaces on the
hyperplane t = 0 that can be regarded as the fractional counterpart of Proposition
6.11.

Proposition 7.3. Let s ∈ (1
2
, 1). If 1 < σ < (d+ 2s)/(d+ 2s− 1), then H2s−1

σ (QT )
is continuously embedded onto Lp(QT ) for

1

p
=

1

σ
− 2s− 1

d+ 2s
.

Moreover, if u ∈ H2s−1
σ (QT ) and u(·, 0) ∈ L1(Td), we have

‖u‖Lp(QT ) ≤ C
(
‖u‖H2s−1

σ (QT ) + ‖u(0)‖L1(Td)

)
, (7.4)
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where the constant C depends on d, p, σ, T , but remains bounded for bounded values
of T .

Proof. Let f ∈ Lp
′
(QT ) and let ϕ be the unique strong solution to the backward

problem {
−∂tϕ(x, t) + (−∆)sϕ(x, t) = f(x, t) in QT ,

ϕ(x, T ) = 0 in Td .
By maximal-Lp regularity results for fractional evolution equations, see Theorem
B.4, we write

‖ϕ‖H2s
p′ (QT ) ≤ C‖f‖Lp′ (QT ) .

By the embedding result in Proposition 5.27 we get

‖ϕ‖H1
σ′ (QT ) ≤ C‖ϕ‖H2s

p′ (QT ) , (7.5)

owing to the fact that ϕ has null terminal trace and Dϕ ∈ H2s−1
p′ (QT ). Moreover,

by the embeddings in Hölder’s spaces developed in Part II (see Proposition 5.42) we
have

‖ϕ‖C(QT ) ≤ C‖ϕ‖H2s
p′ (QT ) . (7.6)

for
d+ 2s

2s
< p′ <

d+ 2s

2s− 1
.

Therefore, integrating by parts in time and using (7.5) and (7.6) we have∣∣∣∣∫∫
QT

uf dxdt

∣∣∣∣ =

∣∣∣∣∫∫
QT

u(−∂tϕ+ (−∆)sϕ) dxdt

∣∣∣∣
≤
∫
Td
|ϕ(x, 0)u(x, 0)|dx+

∣∣∣∣∫∫
QT

∂tuϕdxdt

∣∣∣∣+

∣∣∣∣∫∫
QT

(−∆)
1
2ϕ (−∆)s−

1
2u dxdt

∣∣∣∣
≤ C1

(
‖ϕ(0)‖L∞(Td)‖u(0)‖L1(Td)+‖∂tu‖(H1

σ′ (QT )
)′‖ϕ‖H1

σ′ (QT )+‖u‖H2s−1
σ (QT )‖Dϕ‖Lσ′ (QT )

)
≤ C2

(
‖u(0)‖L1(Td) + ‖∂tu‖(H1

σ′ (QT )
)′ + ‖u‖H2s−1

σ (QT )

)
‖f‖Lp′ (QT ) . (7.7)

yielding the desired result.

Remark 7.4. As in Proposition 7.7, one can prove the result for a generic time-
intervals I = (τ1, τ) with obvious modifications.

7.3 Fractional diffusion equations with unbounded

drifts

7.3.1 Scaling

In this section we perform different scalings to guess the critical integrability expo-
nents ensuring the well-posedness and integrability estimates of solutions to

∂tρ+ (−∆)sρ− div(b(x, t)ρ) = 0
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and the regularity of solutions under rough assumptions on the right-hand side f(x, t)
of the fractional HJ equation (7.3). Let ρ be a solution to the above equation with
drift b = b(x, t), µ(x, t) = εαρ(εx, ε2st) and v(x, t) = εβb(εx, ε2st) for some α, β ∈ R
to be later determined. Simple computations yield that the variable µ with drift v
satisfies the equality

∂tµ+ (−∆)sµ− div(v(x, t)µ) = ε2s+α(∂tρ+ (−∆)sρ) + εα+β+1div(b(x, t)ρ) .

We look for possible scalings under which the above fractional Fokker-Planck equa-
tion is invariant, i.e. we impose

2s+ α = α + β + 1 ,

giving β = 2s− 1 > 0 since s ∈ (1/2, 1).
As announced, our arguments will exploit a bound on the crossed quantity

∫∫
|b|γ′ρ.

In particular, we will use this bound to extract regularity informations for ρ to handle
a crucial term of the form

∫∫
f |Dρ|. Therefore, we observe that∫∫

|v|γ′µ = ε(2s−1)γ′+α−d−2s

∫∫
|b|γ′ρ ,

to find the optimal critical exponent

α = d+ 2s− (2s− 1)γ′ ,

which leaves the crossed quantity invariant under the scaling. First, since the equa-
tion is in divergence form, by parabolic Caldéron-Zygmund theory (see e.g. Theorem
B.4 with µ = 2s − 1) we expect at most to control (−∆)s−1/2ρ in some Lebesgue
space Lq

′
, where q′ is the conjugate of q > 1 to be later determined. Hence∫∫

|(−∆)s−1/2µ|q′ = ε(α+2s−1)q′−d−2s

∫∫
|(−∆)s−1/2m|q′ .

Therefore, we impose
(α + 2s− 1)q′ − d− 2s = 0

giving

q′ =
d+ 2s

d+ 2s− (2s− 1)(γ′ − 1)

after plugging the previous expression for α. This forces q to be

q =
d+ 2s

(2s− 1)(γ′ − 1)
,

which is the threshold appearing in Theorem 7.2. In view of this fact, in order to
control

∫∫
f |Dρ| we need to require some additional space regularity on the right-

hand side of (7.3), that is we impose f ∈ Lq(H2−2s
q ), see (7.25). By performing a

W 1,∞-scaling argument, if u solves (7.3), then one immediately notices that wε(x, t) =
ε−1u(εx, ε2st) is a solution to

∂twε + (−∆)swε + ε2s−1|Dwε|γ = ε2s−1f(εx, ε2st) = rε(x, t) .

In particular, we observe that rε ∈ H2−2s
q if and only if ‖rε‖q + ‖(−∆)1−srε‖q <∞,

and the last norm is invariant under the scaling precisely when q = d + 2s, which
is the other threshold appearing in Theorem 7.2. We remark that when s = 1 the
above arguments are consistent with the integrability assumptions of Chapter 6.
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7.3.2 Weak solutions for the fractional Fokker-Planck equa-
tion and its dual

This part is devoted to study the following advection equation with fractional diffu-
sion {

−∂tρ(x, t) + (−∆)sρ(x, t) + div(b(x, t) ρ(x, t)) = 0 in Qτ ,

ρ(x, τ) = ρτ (x) in Td .
(7.8)

Note that when the vector field b(x, t) = −DpH(x,Du(x, t)), then (7.8) becomes the
adjoint equation of the linearization of (6.1). Here, τ ∈ (0, T ] and Qτ := Td× (0, τ).
From now on, unless otherwise specified, we will focus on d > 2. We will consider
the following notion of weak solution

Definition 7.5. Let b ∈ LQ (0, T ;LP (Td)) with P ≥ d/(2s− 1) and Q ≥ 2s/(2s− 1)
be such that

d

2sP
+

1

Q
<

2s− 1

2s
(7.9)

and ρτ ∈ Hs−1(Td). A (weak) solution ρ belongs to H2s−1
2 (Qτ ) and satisfies∫ τ

0

∫
Td
∂tϕρ dxdt+

∫∫
Qτ

(−∆)s−
1
2ρ (−∆)

1
2ϕ− bρ ·Dϕdxdt =

∫
Td
ρτ (x)ϕ(x, τ) dx

(7.10)
for all ϕ ∈ C∞(Td × (0, τ ]).

In particular, the above formulation holds even when test functions are chosen
to belong to the class H1;s

2 := {ϕ ∈ L2(0, τ ;H1(Td)) , ∂tϕ ∈ L2(0, τ ;H−2s+1(Td))}.
We stress out that when s = 1 the above setting falls within the classical matter
described in [48, 159, 39] under the interpolated condition (6.13) on the velocity field.
We remark in passing that ρ ∈ H2s−1

2 (Qτ ) ↪→ C([0, T ]; (H2s−1(Td), H−1(Td))1/2,2) '
C([0, T ];Hs−1(Td)) in view of the classical abstract trace result [101, Section XVIII.3
eq. (1.61)]. We finally point out that time-integration by parts holds by using that
C∞([0, T ];H2s−1(Td)) is dense in H2s−1

2 (QT ), see [101, p. 480].

Remark 7.6. Some observations are in order to compare the various notions of
weak solutions met throughout the thesis. Note that the functional framework above
described is different from the one developed in Section 5.5.1 (when σ = 0): in fact,
here ρ belong to the smaller parabolic space H2s−1

2 instead of

{ρ ∈ L2(0, τ ;Hs(Td)) , ∂tρ ∈ L2(0, τ ;H−1(Td))} .

This is due to the additional assumption on the negative part of the divergence (see
Definition 5.38). Here, the parabolic space H2s−1

2 is the suited functional class to
develop the fractional counterpart of the results in [159] under the rough assumptions
on the drift stated in (7.9).

Remark 7.7. Here, as announced in the introduction, we will obtain our existence
and integrability results under the assumption that the exponents P ,Q meet

d

2sP
+

1

Q
<

2s− 1

2s
.
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For instance, this is required when dealing with the variation of constants formula
for abstract evolution equations in Step 2 of Theorem 7.12. Some details about the
critical case

d

2sP
+

1

Q
=

2s− 1

2s

will be provided in Remark 7.14.

Throughout this section we will assume that

ρτ ∈ Hs−1(Td), ρτ ≥ 0, and 〈ρτ , 1〉 = 1 . (7.11)

We further observe that ρ ∈ H2s−1
2 and H2s−1

2 ↪→ L2 ↪→ L1 and hence ρ(t) ∈ L1(Td)
for a.e. t. Therefore, by using suitable test functions one obtains

∫
Td ρ(t) = 1 for

fixed t.
Classical Fokker-Planck equations with low regularity on the drift have been studied
in [194, 185, 50] and references therein. A key role to understand properties both
for HJ and Fokker-Planck equations is played by the dual equation to (7.8) with
subcritical fractional diffusion, namely{

∂tv + (−∆)sv − b ·Dv = 0 in Qω := Td × (ω, τ) ,

v(x, ω) = vω(x) in Td .
(7.12)

with ω ∈ [0, τ), where b satisfies (7.9) (see e.g. Chapter 6 and [194, Section 3.1] for
the viscous case, s = 1). We consider the following notion of weak solution for (7.12)

Definition 7.8. 1For b ∈ LQ (0, T ;LP (Td)) for P ,Q satisfying (7.9), a (weak) solu-
tion v ∈ H1;s

2 (Qω) := {v ∈ L2(ω, τ ;H1(Td)), ∂tv ∈ L2(ω, τ ;H1−2s(Td))} to (7.12) is
such that

−
∫∫

Qω

v∂tϕdt+

∫∫
Qω

(−∆)
1
2v (−∆)s−1/2ϕ+ b ·Dv ϕdxdt =

∫
Td
vω(x)ϕ(x, ω) dx

(7.13)
for all ϕ ∈ C∞(Td × [ω, τ)).

Here test functions can be chosen to belong to H2s−1
2 (Qτ ). Note that by well-

known abstract results for parabolic spaces we have that

v ∈ H1;s
2 (Qω) ↪→ C([ω, τ ]; (H1(Td), Hs−1(Td)) 1

2
,2) ' C([ω, τ ];H1−s(Td))

and hence the trace v(ω) makes sense in H1−s(Td).
We recall that the comparison principle ensures uniqueness of suitably defined

weak solutions to Hamilton-Jacobi equations by a simple linearization argument (see
Remark 7.18 below and the discussion in Chapter 6). We prove the following com-
parison principle, which is a simple consequence of the parabolic Kato’s inequality
stated in the next lemma (see e.g. [167, Theorem 34] for the proof).

1Here we use the superscript s ∈ (0, 1) to emphasize the difference with the classical space H1
2

used in the case of classical diffusion throughout Chapter 6.
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Lemma 7.9 (parabolic Kato’s inequality). Let Ω be a bounded domain in Rd and
ϕ : R → R be a non-decreasing bounded continuous function (except at most in a
finite number of points). Then, for any weak solution to the fractional heat equation

∂tu+ (−∆)su = f(x, t) in Ω× (0, T )

with f ∈ L1(Ω× (0, T )) we have that, in the weak sense, it holds

∂tΦ(u) + (−∆)sΦ(u) ≤ (∂tu+ (−∆)su)Φ(u) ,

where Φ(r) =
∫ r

0
ϕ(σ) dσ.

Proposition 7.10. Let b ∈ LQ (ω, τ ;LP (Td)) with P ,Q satisfying (7.9) and let
u1, u2 ∈ H1;s

2 (Qω) be a weak sub- and a supersolution with u(ω) ≤ v(ω), ω ∈ [0, τ),
a.e. on Td. Then u ≤ v on Qω. Moreover, if v is a solution to (7.12) with v(ω) ≥ 0,
then v ≥ 0 a.e. in Qω.

Proof. We have just to prove that if u1 and u2 are two solutions of (7.12), then
v := u1 − u2 and v(ω) ≤ 0 satisfying

∂tv + (−∆)sv = b ·Dv

fulfills v ≤ 0.
To see this, let us restrict to the case v+ := max{v, 0}. First, note that since

v ∈ H1;s
2 (Qω), we have v ∈ H1

q(Qω) for 1 < q < d+2s
d+1

and this implies that |b||Dv|
belong at least to L1(Qω). Therefore, by the parabolic Kato’s inequality in Lemma
7.9, we can write

∂tv
+ + (−∆)sv+ ≤ |b||Dv+| . (7.14)

Let ϕ be the unique solution in H2s−1
2 (Qω) to the problem

− ∂tϕ+ (−∆)sϕ+ div(ϕG) = 1 (7.15)

with zero terminal trace ϕ(τ) = 0, where

G :=

{
|b| Dv+

|Dv+| if |Dv+| 6= 0

0 otherwise .

First, notice that this equation is the adjoint of (7.12). Note that such a solution
exists in view of the next Proposition 7.12 and, moreover, it enjoys ϕ ∈ L∞(Qω) and
ϕ ≥ 0 a.e. We use ϕ ∈ H2s−1

2 (Qω) as admissible test function in the weak formulation
to equation (7.14) and v+ as a test function for (7.15) to get

−
∫
Td
v+(x, ω)ϕ(x, ω) +

∫∫
Qω

ϕG ·Dv+ dxdt+

∫∫
Qω

v+ dxdt ≤
∫∫

Qω

|Dv+||b|ϕdxdt

which gives in particular
∫∫

Qτ
v+ ≤ 0, i.e. v+ ≤ 0, owing to the fact that ϕ(x, τ) = 0,

ϕ(x, ω) ≥ 0 and v+(x, ω) ≤ 0.

We have the following existence result obtained by similar arguments used in
Proposition 6.9, covering also the equality in (7.9).
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Proposition 7.11. Let vω ∈ H1−s(Td) and b ∈ LQ (ω, τ ;LP (Td)) with P ≥ d/(2s −
1) and Q ≥ 2s/(2s − 1) such that d/2sP + 1/Q ≤ 1 − 1/2s. Then, there exists a
unique solution v ∈ H1;s

2 (Qω) to (7.12).

Proof. Let Y = H1;s
2 (Qω) and define the map Ψ : Y × [0, 1] → Y defined as z 7−→

Ψ[z;σ] = v with v solving the parametrized PDE

∂tv + (−∆)sv = σb ·Dz in Qω , v(x, ω) = σvω in Td ,

for the parameter σ ∈ [0, 1]. We consider the case P = Q only, so that P ≥ d+2s
2s−1

, the
general case being handled as in Proposition 6.9 exploiting the (critical) embeddings
in mixed Lebesgue spaces, see also Appendix C. First, observe that Ψ[z; 0] = 0 by
standard results for fractional heat equations. We also note that b ·Dz ∈ H1−2s

2 (Qω)
by a straightforward consequence of Sobolev inequality in Lemma 5.16-(iii) (with
µ = 2s− 1) and Hölder’s inequality. Indeed, we have

‖|b||Dz|‖L2(ω,τ ;H1−2s(Td)) ≤ ‖|b||Dz|‖
L2(ω,τ ;L

2d
d−2(2s−1) (Td))

≤ ‖|b|‖
L2(ω,τ ;L

d
2s−1 (Td))

‖Dz‖L2(Qω) ≤ C‖|b|‖LQ (ω,τ ;LP (Td))‖Dz‖L2(Qω) .

Then, in view of Theorem B.4, we can infer that v ∈ H1;s
2 (Qω) to (7.12) and the

following estimate holds

‖v‖H1;s
2 (Qω) ≤ C(‖|b||Dz|‖H1−2s

2 (Qω) + ‖vω‖H1−s(Td))

since σ ∈ [0, 1]. This shows that the map Ψ is well-defined. The same procedure
by contradiction implemented in Proposition 6.9-(ii), which works exploiting the
comparison principle stated in Proposition 7.10, actually gives the a priori estimate
for every fixed point g ∈ Y of the map Ψ, that is satisfying g = Ψ[g;σ].
We now prove the compactness of the map. Let zn be a bounded sequence inH1;s

2 (Qω)
and vn = Ψ[zn, σ]. Arguing as above, we exploit the compactness of H1;s

2 (Qω) onto
L2(Qω) (see Proposition 5.31 with µ = 1), so as to have the strong convergence

of vn to v in L2(Qω) and the weak convergence of (−∆)
1
2vn to (−∆)

1
2v in L2(Qω)

along a subsequence. The compactness of Ψ follows exactly as in Proposition 6.9 of
Chapter 6, by using now ϕ := (−∆)1−s(vn − v) that satisfies ϕ ∈ L2(H2s−1) with
∂tϕ ∈ L2(H−1), and so it is an admissible test function. We write∫ τ

ω

1

2

d

dt
‖(−∆)

1−s
2 (vn − v)‖2

L2(Td) +

∫∫
Qω

|(−∆)
1
2 (vn − v)|2 dxdt

≤
∫∫

Qω

b ·Dzn(−∆)1−s(vn − v) dxdt−
∫∫

Qω

(−∆)
1
2v · (−∆)

1
2 (vn − v) dxdt

−
∫∫

Qω

∂tv(−∆)1−s(vn − v) dxdt ,

which shows the strong convergence of (−∆)
1
2vn to (−∆)

1
2v in L2(Qω) by using the

aforementioned strong convergence of vn to v in L2(Qω), the weak convergence of

(−∆)
1
2vn to (−∆)

1
2v in L2(Qω) and the bound of |b||Dz| ∈ H1−2s

2 (Qω). By duality we
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finally get the strong convergence of the time-derivative in H1−2s
2 (Qω) arguing exactly

as in Proposition 6.9. We conclude the existence of solutions by the Leray-Schauder
fixed point theorem [122, Theorem 11.6]. The uniqueness follows by Proposition
7.10.

7.3.3 Existence and integrability estimates to fractional Fokker-
Planck equations

We present the main result of this section

Theorem 7.12. Let b ∈ LQ (0, τ ;LP (Td)) with P ,Q satisfying (7.9). Then, there
exists a unique solution ρ ∈ H2s−1

2 (Qτ ) to (7.8) satisfying the estimate

‖ρ‖H2s−1
2 (Qτ ) ≤ C1

for some positive C1 > 0 depending in particular on ‖b‖LQ (LP ) and ‖ρτ‖Hs−1(Td). In
particular, if ρτ ≥ 0, then ρ ≥ 0 a.e. in Qτ .
Let now ρτ ∈ Lp(Td), p ∈ (1,∞]. Then, ρ ∈ L∞(0, τ ;Lp(Td)) and we have

‖ρ(·, t)‖Lp(Td)) ≤ C2‖ρτ‖Lp(Td) for a.e. t ∈ [0, τ ]

for some C2 > 0 where C2 = C2(d, p, P ,Q , s, ‖b‖LQ (LP )).

Remark 7.13. We remark that our existence proof in Step 1 is based on a fixed
point argument and exploits Caldéron-Zygmund regularity for fractional PDEs in
divergence form (cf Theorem B.4). This is a different procedure than the one im-
plemented in [48], where the authors argue by regularization and truncation due to
the low regularity of the diffusion term (it is typically the approach when the data
are only measurable and thus classical maximal Lp regularity approach is not rea-
sonable) and also to [159], where a refinement of the Galerkin method for the case
of unbounded coefficients is used.

Proof. Step 1. Existence and uniqueness in the energy space H2s−1
2 (Qτ ). We apply

Leray-Schauder fixed point theorem for the existence (see [122, Theorem 11.6] on
the space

X = H2s−1
2 (Qτ ) .

Consider the map G : X × [0, 1]→ X defined by m 7−→ ρ = G[m;σ] given by solving
the following parametrized PDE

−∂tρ+ (−∆)sρ = σdiv(b(x, t)m) in Qτ , ρ(x, τ) = σρτ (x) in Td .

Note that G[m; 0] = 0 by standard results for fractional heat equations. We first
show that G : X × [0, 1] → X is well-defined. We first consider the case P = Q
for simplicity (whence condition (7.9) becomes P > d + 2). By parabolic Caldéron-
Zygmund regularity theory (cf Theorem B.4) we have

‖ρ‖X = ‖ρ‖H2s−1
2 (Qτ ) ≤ C̃(T )(σ‖bm‖L2(Qτ ) + σ‖ρτ‖Hs−1(Td))

≤ C̃(T )(‖b‖LP (Qτ )‖m‖
L

2P
P−2 (Qτ )

+ ‖ρτ‖Hs−1(Td))

≤ C2‖b‖LP (Qτ ) +
1

2
‖m‖H2s−1

2 (Qτ ) + C̃(T )‖ρτ‖Hs−1(Td) (7.16)

185



The last inequality is due to the fact that we have

1 <
2P

P − 2
<

2(d+ 2s)

d+ 2− 2s
,

which allows to argue by interpolation and exploit the embedding of H2s−1
2 (Qτ ) ↪→

L
2(d+2s)
d+2−2s (Qτ ) (see Remark 5.28 and Proposition C.3) to show

‖m‖
L

2P
P−2 (Qτ )

≤ C1‖m‖θL1(Qτ )‖m‖1−θ

L
2(d+2s)
d+2−2s (Qτ )

= C1T
θ‖m‖1−θ

L
2(d+2s)
d+2−2s (Qτ )

≤ C2

+
1

2C̃
‖m‖H2s−1

2 (Qτ )

for some θ ∈ (0, 1). This shows that G is well-defined from X into itself since
m ∈ X . Moreover, if ρ ∈ X and σ ∈ [0, 1] is such that ρ = G[ρ;σ] we have that
ρ ∈ X is a solution of (7.8) and the a priori estimate (7.16) carry through uniformly
on σ ∈ [0, 1]. Thus we obtain the existence of a constant M > 0 depending only on
the data (namely ‖b‖LP (Qτ ), ρτ , T ) such that

‖ρ‖X ≤M .

We finally show that the map T is compact using similar arguments to that of Propo-
sition 6.9-(ii). Let mn be a bounded sequence in H2s−1

2 (Qτ ) and let ρn = G[mn;σ].
Since |b|mn ∈ L2(Qτ ) we have that div(bmn) ∈ H−1

2 (Qτ ) and hence by Theorem B.4
we have ρn ∈ H2s−1

2 (Qτ ). By the compactness of H2s−1
2 onto L2(Qτ ) (cf Proposition

5.31), which is ensured by the restriction s > 1/2, we have that, along a subse-
quence, ρn converges strongly in L2(Qτ ) to ρ and (−∆)s−1/2ρn converges weakly to
(−∆)s−1/2ρ in L2(Qτ ). We use (−∆)s−1(ρn − ρ) ∈ H1;s

2 (Qτ ) as admissible test func-
tion to the weak formulation of the equation satisfied by ρn.

∫∫
Qτ

∂t(ρn − ρ)(−∆)s−1(ρn − ρ) dxdt+

∫∫
Qτ

|(−∆)s−
1
2 (ρn − ρ)|2 dxdt

≤ C

∫∫
Qτ

|b|mn||(−∆)s−
1
2 (ρn − ρ)| dxdt−

∫∫
Qτ

(−∆)sρ(−∆)s−1(ρn − ρ) dxdt

−
∫∫

Qτ

∂tρ(−∆)s−1(ρn − ρ) dxdt

Since |b|mn ∈ L2(Qτ ) and (−∆)s−1/2ρn converges weakly to (−∆)s−1/2ρ in L2(Qτ )
the first term on the right-hand side of the above inequality converges to 0. Similarly,
since ∂tρ ∈ H−1

2 (Qτ ) and exploiting again the weak convergence of (−∆)s−1/2ρn in
L2(Qτ ) the third term goes to 0. Similar motivations provide the convergence of
the second term. This shows that (−∆)s−1/2ρn converges strongly to (−∆)s−1/2ρ in
L2(Qτ ). Finally, to show the strong convergence of ∂tρn to ∂tρ in H−1

2 (Qτ ) we argue
by duality. For every ϕ ∈ H1

2(Qτ ) we have∣∣∣∣∫∫
Qτ

∂t(ρn − ρ)ϕdxdt

∣∣∣∣ ≤ ∣∣∣∣∫∫
Qτ

(−∆)s(ρn − ρ)ϕdxdt

∣∣∣∣+∣∣∣∣∫∫
Qτ

div(b(ρn − ρ))ϕdxdt

∣∣∣∣
≤ C

∫∫
Qτ

|(−∆)s−
1
2 (ρn − ρ)||Dϕ| dxdt+

∫∫
Qτ

|ρn − ρ||b||Dϕ| dxdt
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which yields the strong convergence of ∂tρn to ∂tρ in H−1
2 (Qτ ) in view of the previous

claims. The general case P 6= Q can be treated similarly, observing that

1 <
2P

P − 2
<

2d

d− 2(2s− 1)

which yields by interpolation

‖m(·, t)‖
L

2P
P−2 (Td)

≤ C‖m(·, t)‖θL1(Td)‖m(·, t)‖1−θ

L
2d

d−2(2s−1) (Td)

for a.e. t ∈ (0, τ). Then one integrates in time the above inequality and applies
first Hölder’s inequality and then exploits the Sobolev embedding H2s−1

2 (Td) onto

L
2d

d−2(2s−1) (Td) and argue exactly as above. The uniqueness of solutions can be ob-
tained by duality, see Step 3 below.

Step 2. A priori estimate via Duhamel’s formula. We claim that there exists
t∗ ∈ (0, τ ] independently of ρτ ∈ Lp(Td) such that

‖ρ(·, t)‖Lp(Td) ≤ C2‖ρτ‖Lp(Td) for all t ∈ [t∗, τ ]

for some C2 > 0. Set ρ̃(·, t) := ρ(·, τ − t) for all t ∈ [0, τ ]. We use Duhamel’s formula
to represent the solution as

ρ̃(t) = Ttρτ −
∫ t

0

Tt−ωdiv(bρ̃)(·, ω)dω .

Though this is a formal computation, it can be made rigorous by approximation. We
have

‖ρ̃(t)‖Lp(Td) ≤ ‖Ttρτ‖Lp(Td) +

∥∥∥∥∫ t

0

Tt−ωdiv(bρ̃)(·, ω)dω

∥∥∥∥
Lp(Td)

≤ ‖ρτ‖Lp(Td) +

∫ t

0

(t− ω)−
d
2s

( 1
b
− 1
p

)− 1
2s‖div(bρ̃)(·, ω)‖H−1

b (Td)dω

≤ ‖ρτ‖Lp(Td) +

∫ t

0

(t− ω)−
d
2s

( 1
b
− 1
p

)− 1
2s‖bρ̃(·, ω)‖Lb(Td)dω ,

where we applied the decay estimates in Lemma 5.23-(iv). We then use Hölder’s
inequality to bound the right-hand side of the last inequality with

‖ρ̃‖L∞(0,τ ;Lp(Td))

∫ τ

0

(t− ω)−
d
2s

( 1
b
− 1
p

)− 1
2s‖b(·, ω)‖LP (Td)dω

≤
(∫ t

0

(t− ω)[− d
2s

( 1
b
− 1
p

)− 1
2s

]Q ′
) 1

Q ′

‖b‖LQ (0,τ ;LP (Td))‖ρ̃‖L∞(0,τ ;Lp(Td))

where
1

b
=

1

P
+

1

p
.

In particular, the above integral term is well-posed provided that

α :=

(
− d

2sP
− 1

2s

)
Q ′ > −1 ,
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which is indeed satisfied precisely when

d

2sP
+

1

Q
<

2s− 1

2s
.

Hence

‖ρ̃‖L∞(0,τ ;Lp(Td)) ≤ ‖ρτ‖Lp(Td) + C‖b‖LQ (0,τ ;LP (Td))t
α+1

Q ′ ‖ρ̃‖L∞(0,τ ;Lp(Td)) ,

which gives

‖ρ̃‖L∞(0,τ ;Lp(Td)) ≤ 2‖ρτ‖Lp(Td)

by taking

t ≥ t∗ :=

(
1

2C‖b‖LQ (0,τ ;LP (Td))

) Q ′
α+1

and hence the validity of the estimate on [0, t∗] with C2 = 2. Note that t∗ does not
depend on ‖ρτ‖Lp(Td) and hence one can iterate the argument in the following way.
Let n be the integer part of 1

t∗
. Then one applies the above scheme in the intervals

[0, t∗], [t∗, 2t∗],....,[nt∗, 1] getting the estimate with C2 = 2n+1.
Step 3. Positivity. This is a straightforward consequence of the comparison

principle in Proposition 7.10, whose proof can be done e.g. by duality. We take
ϕ = v as a test function in the weak formulation of (7.8), where v solves (7.12) in
Qω = Td× (ω, τ) with v(ω) = vω ≥ 0 and ρ as a test function to (7.12). By summing
the expressions one obtains∫

Td
v(ω)ρ(ω) dx =

∫
Td
ρ(τ)v(τ) dx

and since the right-hand side is nonnegative, the left-hand side is so since vω ≥ 0.

Remark 7.14. In Step 1 we can actually reach the threshold

d

2sP
+

1

Q
=

2s− 1

2s

by assuming a smallness condition on ‖b‖LQ (LP ), since interpolation inequalities are
no longer available. Furtheremore, the approach used to get L∞(L2) estimate in
Step 2 (i.e. with p = 2) can be modified by accommodating the above endpoint
case by implementing a L2 version of the adjoint method (see e.g. [125, Section 4]),
i.e. by testing the equation against the solution v ∈ H1;s

2 to (7.12) with initial data
vω ∈ L2(Td) with ‖vω‖L2(Td) = 1, following the lines described in Step 3. However,
we prefer to keep the strict inequality for the sake of exposition.

Estimates on parabolic Sobolev spaces H2s−1
q′ (Qτ )

We finally describe further regularity results that rely on the information b ∈ Lk(ρ)
for some k > 1, that will be used in the next section.
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Proposition 7.15. Let ρ be a (non-negative) weak solution to (6.23) and

1 < q′ <
d+ 2s

d+ 2s− 1
. (7.17)

Then, there exists C > 0, depending on q′, d, T, s such that

‖ρ‖H2s−1
q′ (Qτ ) ≤ C(‖bρ‖Lq′ (Qτ ) + ‖ρτ‖L1(Td)). (7.18)

Note that C here does not depend on τ ∈ (0, T ].

Proof. Let us rewrite the equation (7.8) as a perturbation of the fractional heat
equation

−∂tρ+ (−∆)sρ = div(b(x, t)ρ) on Qτ

with terminal data ρ(x, τ) := ρτ (x) on Td. We observe that ρ ∈ H2s−1
2 readily implies

ρ ∈ H2s−1
q′ for every 1 < q′ < 2. By parabolic regularity theory (see Theorem B.4) ρ

enjoys the estimate

‖ρ‖H2s−1
q′ (Qτ ) ≤ C(‖bρ‖Lq′ (Qτ ) + ‖ρτ‖W 2s−1−2s/q′,q′ (Td)) .

By exploiting Sobolev embedding for fractional Sobolev spaces in Lemma 5.17, one
immediately obtains that

‖ρτ‖W 2s−1−2s/q′,q′ (Td) ≤ C‖ρτ‖L1(Td)

whenever 1 < q′ < d+2s
d+2s−1

. Indeed

‖ρτ‖W 2s−1−2s/q′,q′ (Td) = sup
ϕ∈W 2s/q′−2s+1,q(Td) ,‖ϕ‖

W2s/q′−2s+1,q(Td)
=1

∣∣∣∣∫
Td
ρτϕdx

∣∣∣∣
≤ ‖ϕ‖∞‖ρτ‖L1(Td) ≤ C‖ϕ‖W 2s/q′−2s+1,q(Td)‖ρτ‖L1(Td) ≤ C‖ρτ‖L1(Td)

where the last inequality is a consequence of the embedding W 2s/q′−2s+1,q(Td) ↪→
C(Td) (cf Lemma 5.17-(ii)) when

(2s/q′ − 2s+ 1)q > d ,

that is q > d+ 2s or, in other words, when q′ satisfies (7.17).

Proposition 7.16. Let ρ be the (non-negative) weak solution to (7.8) and

1 < q′ <
d+ 2s

d+ 2s− 1
.

Then, there exists C > 0, depending on T, q′, d, s such that

‖ρ‖H2s−1
q′ (Qτ ) ≤ C

(∫∫
Qτ

|b(x, t)|r′ρ(x, t) dxdt+ 1

)
, (7.19)

where

r′ = 1 +
d+ 2s

q(2s− 1)
. (7.20)
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Proof. Inequality (7.18), (7.11) and the generalized Hölder’s inequality yield

‖ρ‖H2s−1
q′ (Qτ ) ≤ C(‖bρ1/r′ρ1/r‖Lq′ (Qτ ) + 1)

≤ C

((∫∫
Qτ

|b|r′ρ dxdt
)1/r′

‖ρ‖1/r
Lp(Qτ ) + 1

)
, (7.21)

for p > q′ satisfying
1

q′
=

1

r′
+

1

rp
. (7.22)

Then, by Young’s inequality, for all ε > 0

‖ρ‖H2s−1
q′ (Qτ ) ≤ C

(
1

ε

∫∫
Qτ

|b|r′ρ dxdt+ ε‖ρ‖Lp(Qτ ) + 1

)
. (7.23)

One can verify that (7.20) and (7.22) yield

1

p
=

1

q′
− 2s− 1

d+ 2s
.

Indeed, (7.22) gives
1

p
=
r

q′
− r

r′
=

1

q′
− r − 1

q

and then the definition of r′ in (7.20) gives the conclusion. The continuous embedding
of H2s−1

q′ (Qτ ) in Lp(Qτ ) stated in Proposition 7.3 then implies

‖ρ‖Lp(Qτ ) ≤ C1

(
‖ρ‖H2s−1

q′ (Qτ ) + τ
)
,

finally giving

‖ρ‖Lp(Qτ ) ≤ CC1

(
1

ε

∫∫
Qτ

|b|r′ρ dxdt+ ε‖ρ‖Lp(Qτ ) + 1

)
, (7.24)

Hence, the term ε‖ρ‖Lp(Qτ ) can be absorbed by the left hand side of (7.24) by choosing
ε = (2CC1)−1, thus providing the assertion.

7.4 Lipschitz regularity to Hamilton-Jacobi equa-

tions with subcritical fractional diffusion

This last part is concerned with the proof of Lipschitz regularity of u, stated in
Theorem 7.2. The adjoint method implemented here follows the very same lines of
Chapter 6 and one can repeat the same heuristic idea described in Section 6.2 to
obtain the gradient bound. However, unlike the classical case in which Dρ can be
controlled in some Lebesgue norm, here, due to the subtle gap between the (sub-
critical) fractional diffusion operator and the divergence term, we expect to control

‖(−∆)s−
1
2ρ‖Lq(Qτ ) for some q > 1, as we observed in the previous sections. This

forces to assume some (spatial) fractional differentiability on the right-hand side of
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the fractional HJ equation, just as a simple consequence of vector-valued Hölder’s
inequality. More precisely∣∣∣∣∫∫

Td×(0,τ)

∂ξf ρ

∣∣∣∣ ≤ ‖∂ξf‖Lq(0,T ;H1−2s
q′ (Td))‖ρ‖Lq(0,T ;H2s−1

q (Td))

. ‖(−∆)
1
2f‖Lq′ (0,T ;H1−2s

q′ (Td))‖ρ‖Lq(0,T ;H2s−1
q (Td))

. ‖f‖Lq′ (0,T ;H2−2s
q′ (Td))‖ρ‖Lq(0,T ;H2s−1

q (Td)) . (7.25)

This is the major difference with respect to the Lipschitz regularity analyzed in
Chapter 6.

We will suppose that the assumptions of Theorem 7.2 stated in the Introduction
are in force: H ∈ C1(Td × Td), it is convex in the second variable, satisfies (H) and
u0 ∈ L∞(Td). Moreover, f ∈ Lq(0, T ;H2−2s

q (Td)) for some q > d+ 2s. At some stage

we will require q ≥ d+2s
(γ′−1)(2s−1)

also. The result will be accomplished using regularity
properties of the adjoint variable ρ, i.e. the solution to{
−∂tρ(x, t) + (−∆)sρ(x, t)− div

(
DpH(x,Du(x, t)) ρ(x, t)

)
= 0 in Qτ ,

ρ(x, τ) = ρτ (x) on Td ,
(7.26)

for τ ∈ (0, T ), ρτ ∈ C∞(Td), ρτ ≥ 0, and ‖ρτ‖L1(Td) = 1 and u is a weak solution
to (6.1) (see the next section). By the integrability assumptions on DpH, the ad-
joint state ρ ∈ H2s−1

2 (Qτ ) is, for any ρτ , well-defined, non-negative and bounded in
L∞(Qτ ). In what follows, we establish bounds on ρ that are independent on the
choice of τ and ρτ .
We will say that u is a weak solution to (7.3) in the following sense. In what follows
we denote by Q(t1,t2) = Td × (t1, t2) for 0 ≤ t1 ≤ t2 ≤ T .

Definition 7.17. A function u ∈ Lγ(0, T ;W 1,γ(Td)) ∩ L∞(QT ) is a distribu-
tional solution to (7.3) if

−
∫
Td
u0ϕ(0)dx+

∫∫
QT

−u ∂tϕ+(−∆)
1
2u (−∆)s−

1
2ϕ+H(x,Du)ϕdxdt =

∫∫
QT

fϕ dxdt

(7.27)
for all ϕ ∈ C∞(Td × [0, T )).

(1) We say that u is a local weak solution if (7.27) holds and, in addition,

i) u ∈ H1;s
2 (Q(t,T )) = {u ∈ L2(t, T ;H1(Td)) , ∂tu ∈ L2(t, T ;H1−2s(Td))} for

all t ∈ (0, T ),

ii) DpH(x,Du) ∈ LQ (t, T ;LP (Td)) for t ∈ (0, T ), d
2s−1
≤ P ≤ ∞ and 2s

2s−1
≤

Q ≤ ∞ such that (7.9) holds ,

(2) We say that u is a global weak solution if (i)-(ii) in (1) holds on QT = Td ×
(0, T ).
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In what follows, when talking about local and global weak solutions, we will
always assume that they are also distributional solutions as in Definition 7.17-(1)
and so identity (7.27) holds. In particular, in the case (2) of global weak solution,
(7.27) holds in general for ϕ ∈ H2s−1

2 (QT ) ∩ L∞(QT ). In view of the results of the
previous section it turns out that ii) actually guarantees the well-posedness of the
adjoint equation by the results of the previous section. Specifically, in the case of
local weak solution we will consider ϕ = ρ defined on (t, τ) for all t > 0, while in the
case of global weak solutions ρ is defined on (0, τ). This condition, as in Chapter 6,
will be crucial in our analysis in order to achieve Lipschitz regularity.

Remark 7.18. Notice that under the assumptions of Definition 7.17, global weak
solutions of (7.3) must be unique, as it happens in the viscous case, as pointed out
in Proposition 6.8: this can be seen again via a simple linearization argument.

Let us point out first that from now on we will denote by C,C1, ... positive
constants that may depend on CH , ‖u0‖L∞(Td), ‖f‖Lq(QT ) , T, q, d, but do not depend
on τ , ρτ .

We first bound from above the solution of the Hamilton-Jacobi equation (6.1),
using a duality argument that involves solutions of a backward heat equation. First,
recall that the Lagrangian L : Td×Rd → R, L(x, ξ) := supp{p · ξ−H(x, p)}, namely
the Legendre transform of H in the p-variable, is well defined by the superlinearity
of H(x, ·) in the gradient variable. Moreover, by convexity of H(x, ·),

H(x, p) = sup
ξ∈Rd
{ξ · p− L(x, ξ)},

and
H(x, p) = ξ · p− L(x, ξ) if and only if ξ = DpH(x, p). (7.28)

We further recall the following properties of L are standard: for some CL > 0,

C−1
L |ξ|

γ′ − CL ≤ L(x, ξ) ≤ CL|ξ|γ
′

(L1)

|DxL(x, ξ)| ≤ CL(|ξ|γ′ + 1). (L2)

for all ξ ∈ Td.

Proposition 7.19. There exists C > 0 (depending on T, q′, d) such that any global
weak solution u to (7.3) satisfies

u(x, τ) ≤ ‖u0‖L∞(Td) + C‖f‖Lq(QT ) (7.29)

for all τ ∈ (0, T ) and a.e. x ∈ Td.

Proof. Let τ ∈ (0, T ). Consider the nonnegative solution of the following backward
fractional heat equation{

−∂tµ(x, t) + (−∆)sµ(x, t) = 0 on Qτ ,

µ(x, τ) = µτ (x) on Td .

with µτ ∈ C∞(Td), µτ ≥ 0 and ‖µτ‖L1(Td) = 1. Note that µ can be seen as a
solution of a Fokker-Planck equation of the form (7.8) with drift b ≡ 0. Then, since
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q′ < (d + 2s)/(d + 2s − 1), by Proposition 7.16 there exists a positive constant C
(not depending on µτ ) such that ‖µ‖H2s−1

q′ (Qτ ) ≤ C.

Use µ as a test function in the weak formulation of the HJ equation (7.3) and
recalling that for u ∈ H1,s

2 (Qτ ) time-integration by parts holds, one gets∫
Td
u(x, τ)µτ (x)dx =

∫
Td
u0(x)µ(x, 0)dx+

∫∫
Qτ

fµdxdt−
∫∫

Qτ

H(x,Du)µdxdt .

Applying Hölder’s inequality to the second term of the right-hand side of the above
inequality, the estimate on µ ∈ Lq

′
(Qτ ), and the fact that ‖µ(t)‖L1(Td) = 1 for all

t ∈ (0, τ), we get∫
Td
u(x, τ)µτ (x)dx+

∫ τ

0

∫
Td
fµdxdt ≤ ‖u0‖L∞(Td) + ‖µ‖Lq′ (Qτ )‖f‖Lq(Qτ )

≤ ‖u0‖L∞(Td) + C‖f‖Lq(Qτ ) .

By the assumption H(x,Du) ≥ 0, we then conclude∫
Td
u(x, τ)µτ (x)dx ≤ ‖u0‖L∞(Td) + C‖f‖Lq(Qτ ) .

Finally, by passing to the supremum over µτ ≥ 0, ‖µτ‖L1(Td) = 1, one deduces the
estimate (6.52) by duality.

Remark 7.20. We remark that actually gradient of solutions to{
−∂tµ(x, t) + (−∆)sµ(x, t) = 0 on Qτ ,

µ(x, τ) = µτ (x) on Td .

with µτ ∈ L1 enjoys better regularity. This can be immediately seen by noting that
Caldéron-Zygmund theory applies on the space H1;s

q′ (cf Theorem B.4) yielding

‖µ‖H1;s

q′ (Qτ ) ≤ C‖µτ‖
W

1− 2s
q′ ,q
′
(Td)

.

Then, one has the estimate

‖µτ‖
W

1− 2s
q′ ,q
′
(Td)
≤ C1‖µτ‖L1(Td)

when q′ < d+2s
d+1

by arguing as in Proposition 7.15, giving thus a little gain of integra-
bility of the test function µ.

Lemma 7.21. Let u be a local weak solution to (7.3). Assume that ρ is a weak
solution to (7.26). Then, for all 0 < τ1 < τ2 ≤ T∫

Td
u(x, τ2)ρτ (x)dx =

∫
Td
u(x, τ1)ρ(x, τ1) dx+

∫ τ2

τ1

∫
Td
L(x,DpH(x,Du))ρdxdt

+

∫ τ2

τ1

∫
Td
fρ dxdt. (7.30)

Moreover, if u is a global weak solution, (7.30) holds also with τ1 = 0.
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Proof. Using −ρ ∈ H2s−1
2 (Q(τ1,τ2)) ∩ L∞(Q(τ1,τ2)) as a test function in the weak

formulation of problem (7.3), u ∈ H1,s
2 (Q(τ1,τ2)) as a test function for the corre-

sponding adjoint equation (7.26) and summing both expressions, one obtains for all
0 < τ1 < τ2 ≤ T

−
∫ τ2

τ1

〈∂tu(t), ρ(t)〉dt−
∫ τ2

τ1

〈∂tρ(t), u(t)〉dt

+

∫ τ2

τ1

∫
Td

(DpH(x,Du) ·Du−H(x,Du))ρdxdt+

∫ τ2

τ1

∫
Td
fρ dxdt = 0 .

The desired equality follows after integrating by parts in time and using property
(7.28) of L. Note that since u ∈ Hγ

1(Q(τ1,τ2)) is a distributional solution, then
H(x,Du) ∈ L1(Q(τ1,τ2)), and also L(x,DpH(x,Du)) ∈ L1(Q(τ1,τ2)) by (L1) and (H),
so all the terms in (7.30) make sense.

We now prove the crossed integrability bound on DpH with respect to ρ.

Proposition 7.22. Let u be a local weak solution to (7.3) and ρ be a weak solution to
(7.26). Then, there exist a positive constant C (depending on CH , ‖u‖L∞(QT ),‖u0‖L∞(Td),
‖f‖Lq(QT ), q, d, T, s) such that for all τ ∈ (0, T )∫∫

Qτ

|DpH(x,Du(x, t))|γ′ρ(x, t) dxdt ≤ C , (7.31)

and if u is a global weak solution, then

‖u(·, τ)‖L∞(Td) ≤ C1 for all τ ∈ [0, T ]. (7.32)

Remark 7.23. An immediate consequence of (7.31) is the bound∫∫
Qτ

|Du(x, t)|βρ(x, t) dxdt ≤ Cβ for all 1 ≤ β ≤ γ. (7.33)

Indeed, by (H) and
∫
Td ρ(t) = 1 for a.e. t,

∫∫
Qτ
|Du(x, t)|γρ(x, t) dxdt ≤ C, which

yields (7.33) for β = γ. For β < γ it is sufficient to use Young’s inequality and
‖ρ(t)‖L1(Td) = 1.

Proof. Rearrange the representation formula (7.30) to get, for 0 < τ1 < τ < T ,∫∫
Q(τ1,τ)

L(x,DpH(x,Du))ρ dxdt =

∫
Td
u(x, τ)ρτ (x)dx−

∫
Td
u(x, τ1)ρ(x, τ1)

−
∫∫

Q(τ1,τ)

fρ dxdt. (7.34)

Use the bounds on the Lagrangian (L1), (7.29) and Hölder’s inequality with the
exponent q = q̄ such that

q̄ > d+ 2s and q̄ >
d+ 2s

(γ′ − 1)(2s− 1)
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and its conjugate q̄′ to obtain

C−1
L

∫∫
Q(τ1,τ)

|DpH(x,Du)|γ′ρ dxdt ≤
∫∫

Q(τ1,τ)

L(x,DpH(x,Du))ρ dxdt

≤ 2‖u‖L∞(QT ) + C‖f‖Lq̄(τ1,τ ;H2−2s
q̄ (Td))‖ρ‖Lq̄′ (τ1,τ ;H2s−2

q̄′ (Td)) , (7.35)

where we exploit the fact that for a.e. t ∈ (0, T )

‖u(t)‖L∞(Td) ≤ ‖u‖L∞(QT ) .

Since

q̄′ <
d+ 2s

d+ 2s− 1
,

owing to (7.19) (with q replaced by q̄), one finds that inequality (7.35) is less
than or equal to

C(‖ρ‖H2s−1
q̄′ (Q(τ1,τ))

+ 1) ≤ C1

(∫ τ

τ1

∫
Td
|DpH(x,Du)|r′ρ(x, t) dxdt+ 1

)
, (7.36)

where r′ = 1 + d+2s
q̄(2s−1)

. Finally, the right hand side of (7.36) can be absorbed in

the left hand side of (7.35) whenever r′ < γ′ by Young’s inequality. This is in fact
guaranteed by

r′ = 1 +
d+ 2s

q̄(2s− 1)
< γ′.

As a byproduct, one obtains (7.31) after letting τ1 → 0.

Regarding (7.32), in view of Proposition 7.19 we have that u(·, τ) is essentially
bounded from above. To prove the bound from below, use formula (7.30) and the
bounds from below for the Lagrangian (L1) to get∫

Td
u(x, τ)ρτ (x)dx ≥

∫
Td
u(x, 0)ρ(x, 0)− CL

∫∫
Qτ

ρ(x, t)dxdt+

∫∫
Qτ

fρ dxdt.

Since
∫∫

fρ can be bounded from below using as before Hölder’s inequality and
(7.36), ∫

Td
u(x, τ)ρτ (x)dx ≥ −‖u(·, 0)‖L∞(Td) − CLτ − C,

that holds for any smooth ρτ with ‖ρτ‖L1(Td) = 1, implying the desired result.

The crossed integrability of DpH against the adjoint variable ρ finally provides
the Lq

′
regularity of (−∆)s−1/2ρ. From now on, we will suppose that q > d+ 2s and

q ≥ d+2s
(γ′−1)(2s−1)

.

Corollary 7.24. Let u be a weak solution to (7.3) and ρ be a weak solution to (7.26).
Let q̄ be such that

q̄ > d+ 2s and q̄ ≥ d+ 2s

(γ′ − 1)(2s− 1)
.
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Then, there exists a positive constant C such that

‖ρ‖H2s−1
q̄′ (Qτ ) ≤ C ,

where C depends in particular on CH , ‖f‖Lq(0,τ ;H2−2s
q (Td)), q̄, d, T, s (but not on τ, ρτ)

and either on ‖u0‖L∞(Td) if u is a global weak solution or ‖u‖L∞(QT ) if u is a local
weak solution.

Proof. Since q̄′ < d+2s
d+2s−1

, (7.19) applies (with q = q̄), yielding

‖ρ‖H2s−1
q̄′ (Qτ ) ≤ C

(∫∫
Qτ

|DpH(x,Du(x, t))|r′ρ(x, t) dxdt+ 1

)
,

with

r′ = 1 +
d+ 2s

q̄(2s− 1)
≤ γ′.

If r′ = γ′, use Proposition 7.22 to conclude, otherwise. If r′ < γ′ use Young’s inequal-
ity first to control

∫∫
|DpH(x,Du(x, t))|r′ρ dxdt with

∫∫
|DpH(x,Du)|γ′ dxdt+τ .

Remark 7.25. We remark that the assumption

q̄ > d+ 2s and q̄ ≥ d+ 2s

(γ′ − 1)(2s− 1)
.

reduces to q̄ > d + 2s when γ ≤ 2s. Anyhow, we provide the above estimates
for the solution ρ of the fractional Fokker-Planck equation even for the (fractional)
superquadratic regime γ > 2s, even though the above threshold for q̄ deteriorates as
γ increases.

7.4.1 Proof of the main results

We now prove our main result.

Theorem 7.26. Let u be a distributional solution to (7.3).

(i) Let u be a local weak solution to (7.3).Then, there exists η = η(t) ∈ C∞0 ((0, T ])
positive smooth function satisfying η(t) ≤ 1 for all t such that (ηu)(·, τ) ∈
W 1,∞(Td) for all τ ∈ (0, T ), and there exists C > 0 depending on CH , ‖u‖L∞(QT ),
‖f‖Lq(0,T ;H2−2s

q (Td)), q, d, T, s such that

η(τ)‖u(·, τ)‖W 1,∞(Td) ≤ C

for all τ ∈ (0, T ].

(ii) Let u be a global weak solution to (7.3) and η = η(t) ∈ C∞([0, T ]) be a positive
smooth function satisfying η(t) ≤ 1 for all t. Then, (ηu)(·, τ) ∈ W 1,∞(Td)
for all τ ∈ (0, T ), and there exists C > 0 depending on CH , ‖u0‖W 1,∞(Td),
‖f‖Lq(0,T ;H2−2s

q (Td)), q, d, T, s such that

η(τ)‖u(·, τ)‖W 1,∞(Td) ≤ C
(
η(0)‖Du0‖L∞(QT ) + sup

(0,T )

|η′(t)|+ 1
)

for all τ ∈ (0, T ].
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Proof. Step 1. Since H is convex and superlinear we can write for a.e. (x, t) ∈ QT

H(x,Du(x, t)) = sup
ξ∈Rd
{ξ ·Du(x, t)− L(x, ξ)}.

Let 0 < τ1 < τ < T . We then obtain∫ τ

τ1

〈∂tu(t), ϕ(t)〉dt+

∫ τ

τ1

∫
Td

(−∆)
1
2u(x, t) (−∆)s−

1
2ϕ(x, t)

+

∫ τ

τ1

∫
Td

[Ξ(x, t) ·Du(x, t)− L(x,Ξ(x, t))]ϕdxdt ≤
∫ τ

τ1

∫
Td
f(x, t)ϕ(x, t) dxdt

(7.37)

for all test functions ϕ ∈ H2s−1
2 (Q(τ1,τ))∩L∞(Q(τ1,τ)) and measurable Ξ : Q(τ1,τ) → Td

such that L(·,Ξ(·, ·)) ∈ L1(Q(τ1,τ)) and Ξ ·Du ∈ L1(Q(τ1,τ)). Note that the previous
inequality becomes an equality if Ξ(x, t) = DpH(x,Du(x, t)) in Q(τ1,τ). Let η be as
in (i) satisfying the additional requirement

η′

ηθ
∈ Lq(0, T ) . (7.38)

We first fix τ ∈ (0, T ), τ1 > 0 outside supp(η), ρτ as in (7.11) and 0 6= h ∈ Rd. Set

w(x, t) = η(t)u(x, t).

Use now (7.37) with Ξ(x, t) = DpH(x,Du(x, t)) and ϕ = ηρ ∈ H2s−1
2 (Q(τ1,τ)) ∩

L∞(Q(τ1,τ)), where ρ is the adjoint variable (i.e. the weak solution to (7.26)) to find∫ τ

τ1

〈∂tw(t), ρ(t)〉dt+

∫ τ

τ1

∫
Td

(−∆)
1
2w(x, t) (−∆)s−

1
2ρ(x, t)

+

∫ τ

τ1

∫
Td
DpH(x,Du) ·Dwρ− L(x,DpH(x,Du))ηρ dxdt

=

∫ τ

τ1

∫
Td
fηρ dxdt+

∫ τ

τ1

∫
Td
uη′ρ dxdt. (7.39)

Then, use w ∈ H1
2(Q(τ1,τ)) as a test function in the weak formulation of the equation

satisfied by ρ to get

−
∫ τ

τ1

〈∂tρ(t), w(t)〉dt+
∫ τ

τ1

∫
Td

(−∆)
1
2w(x, t) (−∆)s−

1
2ρ(x, t)+DpH(x,Du)ρ·Dw dxdt = 0 .

(7.40)
We obtain, subtracting the previous equality to (7.39), and integrating by parts in
time∫

Td
w(x, τ)ρτ (x)dx =

∫
Td
w(x, τ1)ρ(x, τ1)dx+

∫ τ

τ1

∫
Td
η(t)f(x, t)ρ(x, t)dxdt

+

∫ τ

τ1

∫
Td
η(t)L

(
x,DpH(x,Du(x, t))

)
ρ(x, t)dxdt+

∫ τ

τ1

∫
Td
η′(t)u(x, t)ρ(x, t)dxdt.

(7.41)
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For h > 0 and h ∈ Rd, |h| = 1 define ρ̂(x, t) := ρ(x−h, t). After a change of variables
in (7.26), it can be seen that ρ̂ satisfies, using w as a test function,

−
∫ τ

τ1

〈∂tρ̂(t), w(t)〉dt

+

∫ τ

τ1

∫
Td

(−∆)s−
1
2 ρ̂(x, t)(−∆)

1
2w+DpH(x−h,Du(x−h, t))ρ̂(x, t)·Dw(x, t) dxdt = 0.

(7.42)

As before, plugging Ξ(x, t) = DpH(x− h,Du(x− h, t)) and ϕ = ηρ̂ in (7.37) yields∫ τ

τ1

〈∂tw(t), ρ̂(t)〉dt+

∫ τ

τ1

∫
Td

(−∆)
1
2w (−∆)s−

1
2 ρ̂

+

∫ τ

τ1

∫
Td
DpH(x− h,Du(x− h, t)) ·Dwρ̂− L(x,DpH(x− h,Du(x− h, t)))ηρ̂ dxdt

≤
∫ τ

τ1

∫
Td
fηρ̂ dxdt+

∫∫
Qτ

uη′ρ̂ dxdt.

Hence, subtracting (7.42) to the previous inequality,∫
Td
w(x, τ)ρ̂τ (x)dx−

∫
Td
w(x, τ1)ρ̂(x, τ1)dx ≤∫ τ

τ1

∫
Td
L(x,DpH(x−h,Du(x−h, t)))ηρ̂ dxdt+

∫ τ

τ1

∫
Td
fηρ̂ dxdt+

∫ τ

τ1

∫
Td
uη′ρ̂ dxdt,

which, after the change of variables x 7→ x+ h, becomes∫
Td
w(x+ h, τ)ρτ (x)dx−

∫
Td
w(x+ h, τ1)ρ(x, τ1)dx

≤
∫ τ

τ1

∫
Td
η(t)L(x+ h,DpH(x,Du(x, t)))ρ(x, t) dxdt

+

∫ τ

τ1

∫
Td
fηρ̂ dxdt+

∫ τ

τ1

∫
Td
uη′ρ̂ dxdt, (7.43)

Taking the difference between (7.43) and (7.41) we obtain∫
Td

(w(x+ h, τ)− w(x, τ))ρτ (x)dx ≤
∫
Td

(w(x+ h, τ1)− w(x, τ1))ρ(x, τ1)dx

+

∫ τ

τ1

∫
Td
η(t)

(
L(x+ h,DpH(x,Du(x, t)))− L(x,DpH(x,Du(x, t)))

)
ρ(x, t) dxdt

+

∫ τ

τ1

∫
Td
η(t)f(x, t)

(
ρ(x− h, t)− ρ(x, t)

)
dxdt

+

∫ τ

τ1

∫
Td
η′(t)u(x, t)

(
ρ(x− h, t)− ρ(x, t)

)
dxdt.

(7.44)
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Step 2. We now estimate all the right hand side terms of (7.44). We remark that
constants C,C1, . . . are not going to depend on τ, ρτ , h. First, since ‖ρ(x, τ1)‖L1(Td) =
1,

∣∣∣∣∫
Td

(w(x+ h, τ1)− w(x, τ1))ρ(x, τ1)dx

∣∣∣∣ ≤ η(τ1)‖Du(τ1)‖L∞(Td)|h|. (7.45)

Next, using (7.31) and property (L2) of DxL

∣∣∣∣∫ τ

τ1

∫
Td
η(t)

(
L(x+ h,DpH(x,Du(x, t)))− L(x,DpH(x,Du(x, t)))

)
ρ(x, t) dxdt

∣∣∣∣
≤ |h|

∫ τ

τ1

∫
Td
‖DxL(·, DpH(x,Du(x, t)))‖L∞(Td)ρ(x, t) dxdt

≤ |h|
∫ τ

τ1

∫
Td

(
|DpH(x,Du(x, t))|γ′ + 1

)
ρ(x, t) dxdt ≤ C|h|.

Denote by Dhρ(x, t) := |h|−1(ρ(x+h, t)−ρ(x, t)). Then, for the term involving f we
use again Corollary 7.24, with q̄ = q, and control the difference quotient Dhρ(x, t)
via the norm of ρ in the space of Bessel potentials H2s−1

q′ (QT ), to get

∣∣∣∣∫ τ

τ1

∫
Td
η(t)f(x, t)

(
ρ(x− h, t)− ρ(x, t)

)
dxdt

∣∣∣∣
=

∣∣∣∣∫ τ

τ1

∫
Td
η(t)f(x, t)

(
ρ(x− h, t)− ρ(x, t)

)
dxdt

∣∣∣∣
≤ |h|

∫ τ

τ1

∫
Td
|f(x, t)| |Dh(I −∆)2−2sz(x, t)| dxdt

≤ C1|h|‖f‖Lq(τ1,τ ;H2−2s
q (Td))‖Dρ‖H2s−2

q′ (Q(τ1,τ))
≤ C2‖ρ‖H2s−1

q′ (Q(τ1,τ))
|h| ≤ C3|h| .

Here, we exploited the Bessel potential representation of ρ by means of z ∈ Lq′ in
the first inequality (see e.g. [3, Section 1.2.6]) and we applied Lemma 6.12 since
(I − ∆)2s−2ρ(x, t) ∈ Lq

′
(0, τ ;W 1,q′(Td)). Arguing by interpolation, we exploit the

following abstract result

[Lq(0, T ;X1), Lq(0, T ;X2)]θ ' Lq(0, T ; [X1, X2]θ)

where (X1, X2) = (Hs1
p , H

s2
p ) with s1 = 0, s2 = 1 and θ = 2s− 1 so that [X1, X2]θ =

H2−2s
q (see [231, Section 1.18.4]) in order to interpolate the Lq(H2−2s

q ) norm in the
following way:

‖u‖Lq(τ1,τ ;H2−2s
q (Td)) ≤ C‖u‖1−θ

Lq(Q(τ1,τ))
‖u‖θH1

q(Q(τ1,τ))
.
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Then, using the above inequality and Corollary 7.24 we deduce∣∣∣∣∫ τ

τ1

∫
Td
η′(t)u(x, t)

(
ρ(x− h, t)− ρ(x, t)

)
dxdt

∣∣∣∣
≤ C1|h|

(∫ τ

τ1

(η′(t))q‖u(t)‖q
H2−2s
q (Td)

dt

) 1
q
(∫ τ

τ1

‖ρ(t)‖q
′

H2s−1
q′ (Td)

dt

) 1
q′

≤ C2|h|
(∫ τ

τ1

(η′)q‖u(t)‖(1−θ)q
L∞(Td)

‖Du(t)‖θq
L∞(Td)

dt

) 1
q

≤ C2|h|
(∫ τ

τ1

(
η′

ηθ

)q) 1
q

‖u‖1−θ
L∞(Q(τ1,τ))

‖ηDu‖θL∞(Q(τ1,τ))
≤ C +

1

2
|h|‖ηDu‖L∞(Q(τ1,τ))

for θ = 2s−1 ∈ (0, 1) using (7.38). Plugging all the estimates in (7.44) and recalling
the choice of η ∈ C∞c ((0, T ]) with τ1 /∈ supp(η), we obtain∫

Td
(w(x+ h, τ)− w(x, τ))ρτ (x)dx ≤ C|h|+ 1

2
|h|‖ηDu‖L∞(Q(τ1,τ)) (7.46)

Since (7.46) holds for all smooth ρτ ≥ 0 with ‖ρτ‖L1(Td) = 1, we conclude

η(τ)(u(x+ h, τ)− u(x, τ)) ≤ C|h|+ 1

2
|h|‖ηDu‖L∞(Q(τ1,τ)) .

Observe that the previous inequality holds for any h 6= 0 ∈ Rd. Therefore, one may
select a continuous representative of u(·, τ) such that the above inequality is fulfilled
for all x ∈ Td and h ∈ Rd. To this aim, one could take the uniform limit as δ → 0 of
u?δ−dχ(·/δ), where χ is a smooth mollifier). Thus, u(·, τ) has a Lipschitz continuous
representative and

η(τ)‖u(·, τ)‖W 1,∞(Td) ≤ C . (7.47)

The proof of (ii) in the context of global weak solution follows goes through the very
same steps . For η ∈ C∞([0, T ]) as in (ii), it is enough to let τ1 → 0 and use the
bound (7.45) to deduce the estimate

η(τ)(u(x+ h, τ)− u(x, τ)) ≤ C|h|(1 + η(0)‖Du0‖L∞(QT )) +
1

2
|h|‖ηDu‖L∞(QT ) .

and conclude as above.

Proof of Theorem 7.2. The first part of Theorem 7.2 is a straightforward conse-
quence of Theorem 7.26-(i), while the second part follows by Theorem 7.26-(ii).

7.5 Final remarks on the integrability exponent of

the right-hand side

As outlined in the introduction, by performing a W 1,∞ scaling, i.e. by zooming in
and looking at z(x, t) = ε−1u(εx, ε2st), one finds the following equation satisfied by
z

∂tz + (−∆)sz + ε2s−1|Dz|γ = ε2s−1f(εx, ε2st) =: rε(x, t) .
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If one wants to observe a (Lipschitz) regularization effect under space-time Lebesgue
integrability assumptions on the right-hand side, it is straightforward to verify that
the Lq(Rd × (0, T )) norm of rε(x, t) is invariant under the previous scaling when
q = (d+ 2s)/(2s− 1). Therefore, following the analysis of Chapter 6, one expects to
obtain the Lipschitz regularization effect of the solution of the HJ equation assuming
f ∈ Lq with q > d+2s

2s−1
only (note that throughout this chapter we have f ∈ Lq(H2−2s

q )
with at least q > d+2s). To run all the arguments in Chapter 6, one needs to control
Dρ in some Lebesgue space and this regularity of the gradient of the solution to (7.8)
is not a priori expected, and, at this stage, seems to be still unknown. However,
arguing as in Section 7.3.1, setting µ(x, t) = εαρ(εx, ε2st) and v(x, t) = εβb(εx, ε2st),
we find that (µ, v) solves the equation

ε2s+α(∂tρ+ (−∆)sρ) + εα+β+1div(b(x, t)ρ) = 0 .

The equation is invariant under the scaling when β = 2s− 1 > 0 since s ∈ (1/2, 1).
Therefore, we observe that∫∫

|v|γ′µ = ε(2s−1)γ′+α−d−2s

∫∫
|b|γ′ρ

and thus find the optimal exponent

α = d+ 2s− (2s− 1)γ′ .

Then, if one wants the estimate of Dρ in some Lebesgue space Lq
′
, where q′ is the

conjugate of q > 1, we find∫∫
|Dµ|q′ = ε(α+1)q′−d−2s

∫∫
|Dρ|q′ .

Therefore, we impose
(α + 1)q′ − d− 2s = 0 .

giving

q′ =
d+ 2s

d+ 2s− (2s− 1)γ′ + 1

after plugging the previous expression for α. In particular, note that when γ = 2s
we have

q′ =
d+ 2s

d+ 1
,

which is the threshold for the maximal Lp-regularity for the gradient of the fractional
heat equation. Anyhow, this forces q to be

q =
d+ 2s

(2s− 1)γ′ − 1
.

The additional regularity of Dρ is an interesting open problem which, apparently,
cannot be achieved via parabolic Caldéron-Zygmund regularity.
Anyhow, assuming our additional regularity f ∈ Lq(H2−2s

q ) and using similar argu-
ments to Remark 6.33, namely exploiting the parabolic regularity of the fractional
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heat kernel, we can show that our assumption q > d+ 2s is minimal to have the Lip-
schitz regularization effect. To this aim, consider H(x, p) = |p|γ, γ > 1. For T > 0,
let χ ∈ C∞0 (Rd), Γ(x, t) be fundamental solution of the fractional heat equation in
Rd,

f̄(x, t) :=
χ
(

x
(T−t)1/2s

)
(T − t)1/2s log(T − t)

and ū be the function

ū(x, t) :=

∫∫
Rd×(0,t)

f̄(y, s)Γ(x− y, t− s) dyds on QT

Clearly, ū is a classical solution to{
∂tu(x, t) + (−∆)su(x, t) + |Du(x, t)|γ = f̄(x, t) + |Du(x, t)|γ

u(x, 0) = 0,

f̄ ∈ Lq(0, T ;H2−2s
q (Td)) if and only if q ≤ d+2s and |Dū|γ ∈ L∞(0, T ;Lβ(Td)) for all

β < ∞. In turn, we have that ‖Dū(·, t)‖∞ → ∞ as t → T . Note that this example
can be recast into the periodic setting multiplying ū by a suitable cut-off function,
as in Chapter 6.

Therefore, with respect to integrability requirements on f , Theorem 7.2 is opti-
mal, at least when γ ≤ 2s, namely when d+ 2s ≥ d+2s

(2s−1)(γ′−1)
.
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Appendix A

Fractional product and chain rules
on the torus

We first present a version of the Kato-Ponce inequality on Bessel potential spaces
on the torus. We refer the reader to the classical results in [150, 131] (and references
therein) for more recent developments, all stated in the Euclidean case (see also [227,
eq. (3.1.59)], [228] and [165, Proposition 2] for the periodic setting).

Lemma A.1. Let µ ∈ (0, 1) and 1 < p, p1, q1, p2, q2 <∞ and such that 1
p

= 1
p1

+ 1
q1

=
1
p2

+ 1
q2

. Then,

‖fg‖Hµ
p (Td) ≤ C(‖f‖Lp1 (Td) ‖g‖Hµ

q1
(Td) + ‖f‖Hµ

p2
(Td) ‖g‖Lq2 (Td))

for some C > 0.

We recall that the inequality can be proven in the Euclidean case as follows, see
e.g. [130]. First, a bilinear multiplier operator with symbol m acting on f, g ∈ S(Rd)
is defined as

Tm(f, g)(x) :=

∫∫
R2d

m(ξ, η)f̂(ξ)ĝ(η)e2πi(ξ+η)·xdξdη . (A.1)

We are interested in the symbol |ξ + η|µ, since

(−∆)µ/2(fg)(x) =

∫∫
R2d

|ξ + η|µFf(ξ)Fg(η)dξdη .

Then one performs the partition m(ξ, η) = σ1(ξ, η)|ξ|µ + σ2(ξ, η)|η|µ, where

σ1(ξ, η) :=
|ξ + η|µ

|ξ|µ

(
1− φ

(
|ξ|
|η|

))
, σ2(ξ, η) :=

|ξ + η|µ

|η|µ
φ

(
|ξ|
|η|

)
and φ is a suitable C∞0 cut-off function; we are then reduced to prove the boundedness
of the operators Tσi on Lpi(Rd)× Lqi(Rd). Indeed, this would yield∥∥(−∆)µ/2(fg)

∥∥
Lp(Rd)

≤ C
(∥∥(−∆)µ/2f

∥∥
Lp1 (Rd)

‖g‖Lq1 (Rd)

+ ‖f‖Lp2 (Rd)

∥∥(−∆)µ/2g
∥∥
Lq2 (Rd)

)
,
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and the desired estimate with Hµ
p norms would follow by equivalence of ‖ · ‖µ,p with

‖ · ‖p + ‖(−∆)
µ
2 · ‖p. The key result for boundedness of Tσi is the Coifman-Meyer

multiplier theorem (see [131, Theorem A] and references therein). Note that the
assumptions of such theorem are fulfilled, since the multipliers σi are homogeneous
of degree zero.

Proof of Lemma A.1. One may argue as in the Euclidean case. We start by observing
that bilinear operators Tσi have a periodic counterpart defined on the torus, that is

Bσi(f, g)(x) :=
∑
µ∈Zd

∑
ν∈Zd

σi(µ, ν)f̂(µ)ĝ(ν)e2πi(µ+ν)·x (A.2)

By the transference results on multilinear multipliers in [110, Theorem 3], since σi
are bilinear Coifman-Meyer multipliers on Rd×Rd, then they are so also on Td×Td.
One has just to be careful since σi are discontinuous at (0, 0), but it is sufficient to
have them defined in (0, 0) so that (0, 0) is a Lebesgue point for both σi.

We also present a chain rule for fractional Sobolev spaces.

Lemma A.2. Let µ > 0, and Ψ : Td × Rd → R be of class Cdµe(Td × Rd) with
bounded derivatives on Td × Rd up to order dµe. Let u ∈ W µ,p(Td) ∩Hµ

p (Td). Then

‖Ψ(·, u(·))‖Wµ,p(Td) ≤ C(‖u‖Wµ,p(Td) + 1) ,

and, for all ε > 0,

‖Ψ(·, u(·))‖Hµ−ε
p (Td) ≤ C(‖u‖Hµ

p (Td) + 1) .

Remark A.3. As far as the fractional composition rules are concerned, we stress
out that such results continue to hold even for ε = 0, as in the seminal paper by [86]
(see also [165, Proposition 3] for the periodic setting)

Proof. We just consider the case 0 < µ < 1, the general case being treated similarly.
We start with the inequality in W µ,p spaces, using their construction through the
trace method. It is sufficient to recall that

‖u‖W 1−µ,p(Td) = inf
u=f(0)

max{‖tµ−1/pf(t)‖Lp(0,∞;W 1,p(Td)); ‖tµ−1/pf ′(t)‖Lp(Td×(0,∞))},

and observe that

‖Ψ(x, f(x))‖W 1,p(Td) ≤ C(1 + ‖f‖W 1,p(Td)),

where the constant C depends on global bounds on the derivatives of Ψ. Then, one
uses Ψ(x, f(x)) to estimate ‖Ψ(·, u(·))‖W 1−µ,p(Td), where f is close to the infimum
in the definition of ‖u‖W 1−µ,p(Td). The analogous inequality in Hµ

p spaces is then a
consequence of Lemma 5.32.
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Appendix B

Regularity in parabolic fractional
Hölder and Bessel spaces

We consider the problem{
∂tu+ (−∆)su = f(x, t) in QT ,

u(x, 0) = u0(x) in Td .
(B.1)

The purpose of this section is to present a fractional analogue of classical parabolic
Hölder and Sobolev regularity. We point out that related results for this problem
on the Euclidean space appeared in [59, Appendix A] and [84], see also references
therein. We stress that transference of these results to the periodic setting is delicate,
in particular concerning regularity in Sobolev spaces, and to our knowledge they
are not explicitly stated in the literature. We present some proofs that make use of
interpolation methods and results for abstract parabolic equations, with some details
for the reader’s convenience.

As for regularity in Hölder spaces, we follow the approach of [176, Chapter 3-4]
(see also [177, Chapter 5]).

Theorem B.1. Let α ∈ (0, 1) so that 2s + α is not an integer, f ∈ Cα, α2s (QT )
and u0 ∈ C2s+α(Td). Then problem (B.1) has a unique classical solution u, and
there exists a positive constant C depending on d, T, α, s (which remains bounded for
bounded values of T ) such that

‖∂tu‖Cα, α2s (QT )
+ ‖(−∆)su‖Cα, α2s (QT )

≤ C(‖u0‖C2s+α(Td) + ‖f‖Cα, α2s (QT )
) . (B.2)

We begin with some preliminary decay estimates for the fractional heat semigroup
Tt in Hölder spaces.

Lemma B.2. For every 0 ≤ θ1 < θ2, θ1, θ2 ∈ R, there exists C = C(θ1, θ2) such that
for all f ∈ Cθ1(Td)

‖Ttf‖Cθ2 (Td) ≤ Ct−(θ2−θ1)/2s‖f‖Cθ1 (Td) .

Proof. Computations of Remark 5.22 (in particular the representation formula for
Tt and Young’s inequality for convolution) show that for every k > h, k, h ∈ N∪{0}
there exists C = C(h, k)

‖Ttf‖Ck+h(Td) ≤ Ct−
k
2s‖f‖Ch(Td) .
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This implies that Ttf : Ch(Td) → Ck+h(Td) is bounded for t > 0. Recall that, as a
consequence of Theorem 5.11 one easily gets

(Ch(Td), Ck+h(Td))α,∞ = Ch+α(Td)

(See e.g. [176, Example 1.1.7], where the proofs can be readily adapted to the periodic
setting). In addition, one also has Ttf : L∞(Td) → L∞(Td). By interpolation (see
[177, Proposition 1.2.6]), Tt maps Cθ1(Td) onto Cθ2(Td) with the desired estimate.

Proof of Theorem B.1. Step 1. We first prove the existence of a constant C > 0 such
that

sup
t∈[0,T ]

‖u(·, t)‖C2s+α(Td) ≤ C( sup
t∈[0,T ]

‖f(·, t)‖Cα(Td) + ‖u0‖C2s+α(Td)) .

We first observe that for s, α ∈ (0, 1) such that 2s+ α is not an integer we have

C2s+α(Td) = (Cα+δ(Td), C2s+α+δ(Td))1−δ/2s,∞ , 0 < δ < 2s .

We show that u(·, t) is bounded with values in C2s+α(Td). Fix t ∈ [0, T ]. Then, for
every ξ > 0 we split u(t) as u(t) = a(ξ) + b(ξ) + c(ξ) using Duhamel’s formula, that
is

a(ξ) =

∫ min{ξ,t}

0

Tτf(t− τ)(x)dτ,

b(ξ) =

∫ t

min{ξ,t}
Tτf(t− τ)(x)dτ,

c(ξ) = Tt−min{ξ,t}Tmin{ξ,t}u0.

Then a(ξ) ∈ Cα+δ(Td), b(ξ), c(t) ∈ C2s+α+δ(Td) for each δ ∈ (0, 2s). Indeed,

‖a(ξ)‖Cα+δ(Td) ≤
∫ min{ξ,t}

0

C

τ δ/2s
dτ sup

τ∈[0,T ]

‖f(τ)‖Cα(Td)

≤ C

1− δ/2s
ξ1−δ/2s sup

τ∈[0,T ]

‖f(τ)‖Cα(Td) .

In addition

‖b(ξ)‖C2s+α+δ(Td) ≤
∫ t

min{ξ,t}

C

τ 1+δ/2s
dτ sup

τ∈[0,T ]

‖f(τ)‖Cα(Td)

≤ C

δ/2s
ξ−δ/2s sup

τ∈[0,T ]

‖f(τ)‖Cα(Td) .

Similarly to the above computations we have

‖c(ξ)‖C2s+α+δ(Td) ≤ ‖Tmin{ξ,t}u0‖C2s+α+δ(Td) ≤ Cξ−δ/2s‖u0‖C2s+α(Td).
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Therefore, by the definition of K in Section 5.3.2 we have

ξ−(1−δ/2s)K(ξ, u(t), Cα+δ(Td), C2s+α+δ(Td))
≤ ξ−(1−δ/2s)(‖a(ξ)‖Cα+δ(Td) + ξ‖b(ξ) + c(ξ)‖C2s+α+δ(Td))

≤ C( sup
τ∈[0,T ]

‖f(τ)‖Cα(Td) + ‖u0‖C2s+α(Td)) .

This shows in particular that u(t) ∈ C2s+α(Td) = (Cα+δ(Td), C2s+α(Td))1−δ/2s,∞ and

‖u(t)‖C2s+α(Td) ≤ C(‖f‖Cαx (QT ) + ‖u0‖C2s+α(Td)) .

for all t ∈ [0, T ]. Since ∂tu = −(−∆)su + f and ‖(−∆)su(t)‖Cα(Td) is controlled by
‖u(t)‖C2s+α(Td) (see, e.g. [206, Theorem 1.4]), we obtain the bound on ‖∂tu‖Cα(Td) +
‖(−∆)su(t)‖Cα(Td).

Step 2. We need to show that ∂tu and (−∆)su are both α/2s-Hölder continuous
in time. In view of the regularity of f , it is sufficient to estimate the term (−∆)su.
Our setting falls into the broader treatment for abstract parabolic equations of [220],
[176, Theorem 4.0.15] and [177, Theorem 4.3.1]. Anyhow, one can proceed adapting
the arguments in [176, Theorem 4.0.14] to the fractional framework, and essentially
use estimates of Lemma B.2. We thus provide the proof for reader convenience to
have a self-contained discussion. We use Lemma B.2 with θ1 = 0 and θ2 = 0, 2s, 4s
to obtain

‖Tt‖L(C(Td)) ≤ C0; ‖ − (−∆)sTt‖L(C(Td)) ≤
C1

t
; ‖(−(−∆)s)2Tt‖L(C(Td)) ≤

C2

t2

respectively and with θ1 = α, θ2 = 2s to conclude

‖ − (−∆)sTtu‖L(Cα(Td),C(Td)) ≤
C1,α,s

t1−α/2s

Recall that such decay estimates can be also obtained exploiting the one for the
Laplacian obtained in [178] and arguing via Bochner-Pollard subordination identity.
We then split u = u1 + u2 as

u1(·, t) =

∫ t

0

Tt−σ(f(·, σ)− f(·, t))dσ ,

and

u2(·, t) = Ttu0 +

∫ t

0

Tt−σf(·, t)dσ

for t ∈ [0, T ]. Direct computations gives

−(−∆)su1(t) =

∫ t

0

−(−∆)sTt−σ(f(σ)− f(t))dσ

and

−(−∆)su2(t) = −(−∆)sTtu0 + (Tt − 1)f(t)dσ ,
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which in turn yields for 0 ≤ τ ≤ t ≤ T

− (−∆)su1(t)− [−(−∆)su1(τ)] ≤
∫ τ

0

−(−∆)s(Tt−σ − Tτ−σ)(f(σ)− f(τ))dσ+

+ (Tt − Tt−τ )(f(τ)− f(·, t)) +

∫ t

τ

(−∆)sTt−σ(f(σ)− f(τ))dσ

Since −(−∆)s(Tt−σ − Tτ−σ) =
∫ t−σ
τ−σ (−(−∆)s)2Tωdω, we have

| − (−∆)su1(·, t)− [−(−∆)su1(·, τ)]|

≤ C2

∫ τ

0

(τ − σ)
α
2s

∫ t−σ

τ−σ
ω−2dωdσ sup

x∈Rd
[f(x, ·)]

C
α
2s ([0,T ])

+ 2C0(t− τ)
α
2s sup
x∈Rd

[f(x, ·)]
C
α
2s ([0,T ])

+ C1

∫ t

τ

(τ − σ)
α
2s
−1dσ sup

x∈Rd
[f(x, ·)]

C
α
2s ([0,T ])

≤ C2

∫ τ

0

dσ

∫ t−σ

τ−σ
ω

α
2s
−2dω sup

x∈Rd
[f(x, ·)]

C
α
2s ([0,T ])

+

(
2C0 +

2sC1

α

)
(t− τ)

α
2s sup
x∈Rd

[f(x, ·)]
C
α
2s ([0,T ])

≤ C2

(α/2s)(1− α/2s)
(t− τ)

α
2s sup
x∈Rd

[f(x, ·)]
C
α
2s ([0,T ])

+

(
2C0 +

2sC1

α

)
(t− τ)

α
2s sup
x∈Rd

[f(x, ·)]
C
α
2s ([0,T ])

.

where we used (5.4) within the last inequality. Concerning u2, we add and subtract
(Tt − Tτ )f(·, 0) to obtain

| − (−∆)su2(·, t)− [−(−∆)su2](·, τ)| ≤ |(Tt − Tτ )(−(−∆)su0 + f(·, 0)|
+ |(Tt − Tτ )f(·, 0)|+ |(Tt − I)(f(·, t)− f(·, τ))|

≤
∫ t

τ

‖ − (−∆)sTσ‖L(Cα(Td),C(Td))dσ‖ − (−∆)su0 + f(·, 0)‖Cα(Td)+

+ τα/2s‖
∫ t

τ

−(−∆)sTσdσ‖L(Cα(Td),C(Td)) sup
x∈Rd

[f(x, ·)]
C
α
2s ([0,T ])

+ (C0 + 1)(t− τ)
α
2s sup
x∈Rd

[f(x, ·)]
C
α
2s ([0,T ])

≤ 2sC1,α,s

α
‖(−∆)su0+f(·, 0)‖Cα(Td)(t−τ)

α
2s +(C0+1)(t−τ)

α
2s sup
x∈Rd

[f(x, ·)]
C
α
2s ([0,T ])

.

showing that that −(−∆)s is α/2s-Hölder continuous in time with the following
estimate in force

sup
x∈Td

[∂tu(·, t)]
C
α
2s ([0,T ])

+ sup
x∈Rd

[−(−∆)su(x, ·)]
C
α
2s ([0,T ])

≤ C(‖f‖Cα, α2s (QT )
+‖u0‖C2s+α(Td))

We also observe that the first partial derivative ∂iu are 2s−1+α
2s

-time Hölder con-
tinuous noting that C1(Td) belongs to the class J1/2s−α/2s between Cα(Td) and
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C2s+α(Td) (more generally, it holds that for k ∈ N and α < k < β, the space
Ck(Td) belongs to the class J(k−α)/(β−α) between Cα(Td) and Cβ(Td), see [177,
Proposition 1.1.3]). Then, using that ‖∂tu‖Cα(Td) is bounded in [0, T ], then the map
t 7−→ u(·, t) is Lipschitz continuous with values in Cα(Td) and Lipschitz constant
supσ∈[0,T ] ‖∂tu(·, σ)‖Cα(Td).

‖u(·, t)− u(·, τ)‖C1(Td) ≤ C‖u(·, t)− u(·, τ)‖1− 1
2s

+ α
2s

Cα(Td)
‖u(·, t)− u(·, τ)‖

1
2s
− α

2s

C2s+α(Td)

≤ C((t− τ) sup
σ∈[0,T ]

‖∂tu(·, σ)‖Cα(Td))
1− 1

2s
+ α

2s (2 sup
σ∈[0,T ]

‖u(·, σ)‖C2s+α(Td))
1
2s
− α

2s

≤ C ′(t− τ)1− 1
2s

+ α
2s

Remark B.3. This result is actually consequence of the optimal regularity results
in Hölder spaces appeared in [220] (see also [177, Theorem 1 and Theorem 2]).

We now turn to the case of strong solutions. Recall that (B.1) can be written as
an abstract evolution equation with diffusion semigroup A = (−∆)s as

u′(t) + Au(t) = f(t) , t ∈ [0, T ] . (B.3)

and f ∈ Lp(QT ). Concerning strong solutions, we have the following maximal regu-
larity result in Lp classes.

Theorem B.4. Let p > 1. Suppose that u ∈ Hµ
p (QT ) solves (B.1). Then there exists

a unique strong solution to (B.1) and there exists a constant C > 0, that depends on
d, T, p, s (but remains bounded for bounded values of T ) such that

‖u‖Hµp (QT ) ≤ C(‖f‖Hµ−2s
p (QT ) + ‖u0‖Wµ−2s/p,p(Td)).

Proof. Recall that (−∆)s generates the analytic semigroup Tt on Lp(Td) in view of
Remark 5.24. Without loss of generality we can restrict ourselves to consider the
case µ = 2s, the general case being consequence of the isometry property of the
operator (I − ∆)

µ
2 . This observation allows to apply the abstract regularity result

[160, Theorem 1] (see also the more recent works [134, Section 3.2.E] and [198], both
in the framework of evolution problems in Banach spaces and [84, Theorem 1.4] for
the stochastic counterpart of these spaces). Note in particular that the initial trace
belongs to the real interpolation space (H2s

p (Td), Lp(Td))1/p,p ' W 2s−2s/p,p(Td) '
B

2s−2s/p,p
pp (Td). However, if one works in the larger space of initial traces H

µ−2s/p+ε
p ,

the estimate of the term involving the initial datum is simpler than the one involving
fractional Sobolev (or equivalently Besov) spaces (cf [84, Lemma 3.2]). Indeed, the
estimate

‖Ttu0‖Hµp (QT ) ≤ C‖u0‖µ−2s/p+ε,p

can be directly managed using decay estimates of Tt (see e.g. [156]). We assume
without loss of generality ε < 2s

p
. By Lemma 5.23-(i) we have

‖u1(t)‖µ,p = ‖Ttu0‖µ,p ≤ Ct−
1
p

+ ε
2s ‖u0‖µ−2s/p+ε,p .
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Note that C here does not depend on T . Integrating between 0 and T we have

‖u1‖pHµp (QT )
=

∫ T

0

‖u1(·, t)‖pµ,p dt ≤ CT
pε
2s ‖u0‖pµ−2s/p+ε,p

Since u1 solves ∂tu1 + (−∆)su1 = 0 we get

‖∂tu1‖pHµ−2s
p (QT )

=

∫ T

0

‖∂tu1(·, t)‖pµ−2s,p =

∫ T

0

‖(−∆)su1(·, t)‖pµ−2s,p dt

≤ C

∫ T

0

‖(I −∆)su1(·, t)‖pµ−2s,p dt = C

∫ T

0

‖u1(·, t)‖pµ,p dt ,

that allows to conclude.

Remark B.5. As pointed out in [160, 134, 202], the result holds even for f belonging
to spaces with different order of summability in space and time. More precisely, let
p, q > 1 and suppose that u ∈ Hµ,q

p (QT ) solves (B.1). Then there exists C > 0, that
depends on d, T, p, q, s (but remains bounded for bounded values of T ) such that

‖u‖Hµ,qp (QT ) ≤ C(‖f‖Hµ−2s,q
p (QT )) + ‖u0‖Wµ−2s/p,p(Td)).

where

Hµ,q
p (QT ) = {u ∈ Lq(0, T ;Hµ

p (Td)); ∂tu ∈ Lq(0, T ;Hµ−2s
p (Td))} .

and Hµ,q
p (QT ) = Lq(0, T ;Hµ

p (Td))
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Appendix C

Some other facts on embedding
theorems for (parabolic) Sobolev
spaces

The purpose of this section is to first complete the results presented in [155, 157] for
the deterministic case and s = 1, where the critical embedding onto Lebesgue classes
is not discussed. Recall that for s = 1 the space H2k

p is isomorphic to W 2k,k
p , k ∈ N.

The results we present below provide a different proof of the critical embedding com-
pared to those existing in literature, which are well-established at least when µ = 2k,
k ∈ N, namely for the spaces W 2k,k

p (QT ) (see e.g. [159, Lemma II.3.3] and references
therein, [14, Theorem 1.7], [129, Theorem 5.1]). As for the space H1

p(QT ), which
is the natural one for equations with divergence type terms as analyzed throughout
Chapter 6, a careful analysis seems to be available only within [185, Appendix A]
(see also [92] for the periodic setting), which however does not cover the trace on the
hyperplane t = 0 since the estimates are local in time. Aim of Proposition C.1 is to
give the embedding onto Lebesgue classes in the local case s = 1 (cf [159, Lemma
II.3.3]). For the sake of simplicity we only sketch the result in the case µ = 2,
the procedure being similar for the general case exploiting the isometry properties
described in Remark 5.14. Then, Proposition C.3 covers the case of the fractional
Bessel potential spaces introduced in Part II. We stress out that such scheme easily
extends to the whole space case Rd× (0, T ), for which the result is not written down
anywhere in the literature to our knowledge.

Proposition C.1. Let 1 < p < d+2
2

. Then H2
p(QT ) ' W 2,1

p (QT ), is continuously
embedded onto Lq

∗
(QT ), where 1

q∗
= 1

p
− 2

d+2
and

‖u‖Lq∗ (QT ) ≤ C(‖u‖H2
p(QT ) + ‖u(0)‖W 2−2/p,p(Td)) .

Proof. Let ν = ν(β) = (2 − 2/p)(1 − θ) + 2θ. We now use the interpolation in
the Sobolev-Slobodeckij scale to observe that W ν,p can be obtained by interpolation
between W 2,p and W 2−2/p,p (see [231, Theorem 2.4.2 p.186 and eq. (16)]. We recall
that for W 2,1

p the sharp space of initial trace is W 2−2/p,p (see e.g. [178, Corollary

1.14]). Moreover, W ν,p is continuously embedded in W ν+d/q−d/p,q in view of Lemma
5.17. Hence, for a.e. t,

c(d, p, s, β) ‖u(t)‖
W
ν− dp+ d

q ,q(Td)
≤ ‖u(t)‖W ν,p(Td) ≤ ‖u(t)‖1−θ

W 2−2/p,p(Td) ‖u(t)‖θW 2,p(Td) .
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Then, for all η ≤ ν − d
p

+ d
q

= µ+ d
q
− d+2(1−θ)

p
we have

(∫ T

0

‖u(t)‖
p
θ
η,q dt

)θ
≤ C

(∫ T

0

‖u(t)‖(1−θ) p
θ

W 2−2/p,p(Td)
‖u(t)‖p

W 2,p(Td)
dt

)θ
≤ C sup

t≤T
‖u(t)‖(1−θ)p

W 2−2/p,p(Td)

(∫ T

0

‖u(t)‖p
W 2,p(Td)

dt

)θ
At this stage, one has to use the embedding in [178, Corollary 1.14] to get

H2
p(QT ) ↪→ C([0, T ];W 2−2/p,p(Td))

and finally conclude the assertion suing Young’s inequality and recalling thatW 2,p(Td)
is isomorphic to H2

p (Td).

Remark C.2. Similarly, when µ = 1 one can prove the embedding of H1
2 onto Lq

∗

for the range 1/q∗ = 1/2− 1/(d+ 2) (see e.g. [185, Appendix A], [92]). In addition,
by a suitable choice of θ ∈ (0, 1) the same arguments yield the embedding of the
space

H1
2(QT ) ↪→ Lq2(0, T ;Lq1(Td))

when
1

2
=
d

2

(
1

2
− 1

q1

)
+

1

2
− 1

q2

which is consistent with the embeddings found in [129, Theorem 5.1] for W 2k,k,
k ∈ N.

We now show the critical embedding for the spaces associated to the fractional
heat operator, i.e. Hµ,s

p , noting a different behavior depending on the range of p.

We recall that thorughout this manuscript we also provided a proof of the criti-
cal embedding in Proposition 6.11 and Proposition 7.3 without using interpolation
theory and exploiting duality arguments.

Proposition C.3. Let 1 < p < d+2s
µ

, µ > 2s/p, µ ∈ R. Then Hµ;s
p (QT ) is continu-

ously embedded onto Lq
∗
(QT ), where 1

q∗
= 1

p
− µ

d+2s
and

‖u‖Lq∗ (QT ) ≤ C(‖u‖Hµ:s
p (QT ) + ‖u(0)‖Wµ−2s/p,p(Td)) .

Proof. We drop the superscript s and write Hµ;s
p (QT ) = Hµ

p (QT ) to simplify the
notation. Here, we distinguish the cases 1 < p ≤ 2 and 2 < p < ∞ in view of the
inclusions stated in Lemma 5.18. To prove the first case 1 < p ≤ 2, we note that
for any θ ∈ (0, 1), if ν = ν(θ) = (µ − 2s/p)(1 − θ) + µθ, then Hν

p can be obtained

by interpolation between Hµ
p and H

µ−2s/p
p (see, e.g., [36, Theorem 6.4.5]). Moreover,

Hν
p is continuously embedded in H

ν+d/q−d/p
q in view of Lemma 5.16. Hence, for a.e.

t,

c(d, p, s, β) ‖u(t)‖ν− d
p

+ d
q
,q ≤ ‖u(t)‖ν,p ≤ ‖u(t)‖1−θ

µ−2s/p,p ‖u(t)‖θµ,p .
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Therefore, for all η ≤ ν − d
p

+ d
q

= µ+ d
q
− d+2s(1−θ)

p
,(∫ T

0

‖u(t)‖
p
θ
η,q dt

)θ
≤ C1

(∫ T

0

‖u(t)‖(1−θ) p
θ

µ−2s/p,p ‖u(t)‖pµ,p dt
)θ

≤ C2

(∫ T

0

‖u(t)‖(1−θ) p
θ

W
µ−2s/p,p
p (Td)

‖u(t)‖pµ,p dt
)θ

where we use that for 1 < p ≤ 2, W µ−2s/p,p is embedded onto H
µ−2s/p
p (cf Lemma

5.18-(i)). Then, the last inequality is less than or equal to

C sup
t≤T
‖u(t)‖(1−θ)p

Wµ−2s/p,p(Td)

(∫ T

0

‖u(t)‖pµ,p dt
)θ

≤ C(‖u‖Hµp (QT ) + ‖u(0)‖Wµ−2s/p,p(Td))
(1−θ)p ‖u(t)‖θpHµp (QT )

≤ C(‖u‖Hµp (QT ) + ‖u(0)‖Wµ−2s/p,p(Td))
p

where, in the second inequality we used again the embedding

Hµ
p (QT ) ↪→ C([0, T ];W µ−2s/p,p(Td))

(see [4, Theorem III.4.10.2] and [199]), while, in the last one, Young’s inequality.
As for the case 2 < p < ∞, we need to restrict ourselves to the case η ∈ Z in
order to exploit that Hη

q ' W η,q and interpolate in the Sobolev-Slobodeckij scale.
In particular, one uses that W ν,p can be obtained by interpolation between W µ,p

and W µ−2s/p,p. Moreover, W ν,p is continuously embedded in W ν+d/q−d/p,q in view of
Lemma 5.17-(iii). Hence, for a.e. t,

c(d, p, s, β) ‖u(t)‖
W
ν− dp+ d

q ,q(Td)
≤ ‖u(t)‖W ν,p(Td) ≤ ‖u(t)‖1−θ

Wµ−2s/p,p(Td) ‖u(t)‖θWµ,p(Td) .

Then, for all η ∈ Z such that η ≤ ν − d
p

+ d
q
≤ µ+ d

q
− d+2s(1−θ)

p
we have(∫ T

0

‖u(t)‖
p
θ
η,q dt

)θ
=

(∫ T

0

‖u(t)‖
p
θ

W η,q(Td)
dt

)θ
≤ C1

(∫ T

0

‖u(t)‖
p
θ

W
ν− dp+ d

q ,q(Td)
dt

)θ
≤ C2

(∫ T

0

‖u(t)‖(1−θ)p
Wµ−2s/p,p(Td)

‖u(t)‖p
Wµ,p(Td)

dt

)θ
≤ C3 sup

t≤T
‖u(t)‖(1−θ)p

Wµ−2s/p,p(Td)

(∫ T

0

‖u(t)‖pµ,p dt
)θ

where we used that Hµ
p is embedded onto W µ,p when p > 2 (see Lemma 5.18). At

this stage, one has to use the maximal regularity result (see [4, Theorem III.4.10.2])
to get

Hµ
p (QT ) ↪→ C([0, T ];W µ−2s/p,p(Td))

and finally conclude the assertion setting η = 0 to get(∫ T

0

‖u(t)‖qq dt
) p

q

≤ C(‖u‖Hµp (QT ) + ‖u(0)‖p
Wµ−2s/p,p(Td)

)
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Remark C.4. By a suitable choice of θ one can even obtain the critical parabolic
embeddings of Hµ;s

p onto L
p
θ (0, T ;Lq(Td)) under the fractional counterpart of the

conditions listed in Remark C.2.
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Linéaire, 14(3):295–308, 1997.

[46] I. Birindelli, G. Galise, and F. Leoni. Liouville theorems for a family of very
degenerate elliptic nonlinear operators. Nonlinear Anal., 161:198–211, 2017.

[47] L. Boccardo and G. Croce. Elliptic partial differential equations, volume 55 of
De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2014. Existence and
regularity of distributional solutions.

[48] L. Boccardo, L. Orsina, and A. Porretta. Some noncoercive parabolic equations
with lower order terms in divergence form. J. Evol. Equ., 3(3):407–418, 2003.

[49] V. I. Bogachev, G. Da Prato, and M. Röckner. Uniqueness for solutions of
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ble), 19(fasc. 1):277–304 xii, 1969.

[53] P. Bousquet and L. Brasco. C1 regularity of orthotropic p-harmonic functions
in the plane. Anal. PDE, 11(4):813–854, 2018.

[54] M. Bramanti. An invitation to hypoelliptic operators and Hörmander’s vector
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