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Abstract

This thesis focuses on qualitative and quantitative aspects of some nonlinear PDEs
arising in optimal control and differential games, ranging from regularity issues to
maximum principles. More precisely, it is concerned with the analysis of some fully
nonlinear second order degenerate PDEs over Hormander vector fields that can be
written in Hamilton-Jacobi-Bellman and Isaacs form and those arising in the recent
theory of Mean Field Games, where the prototype model is described by a coupled
system of PDEs involving a backward Hamilton-Jacobi and a forward Fokker-Planck
equation. The thesis is divided in three parts.

The first part is devoted to analyze strong maximum principles for fully nonlinear
second order degenerate PDEs structured on Hormander vector fields, having as a
particular example fully nonlinear subelliptic PDEs on Carnot groups. These re-
sults are achieved by introducing a notion of subunit vector field for these nonlinear
degenerate operators in the spirit of the seminal works on linear equations. As a
byproduct, we then prove some new strong comparison principles for equations that
can be written in Hamilton-Jacobi-Bellman form and Liouville theorems for some
second order fully nonlinear degenerate PDEs.

The second part of the thesis deals with time-dependent fractional Mean Field Game
systems. These equations arise when the dynamics of the average player is described
by a stable Lévy process to which corresponds a fractional Laplacian as diffusion
operator. More precisely, we establish existence and uniqueness of solutions to such
systems of PDEs with regularizing coupling among the equations for every order of
the fractional Laplacian s € (0,1). The existence of solutions is addressed via the
vanishing viscosity method and we prove that in the subcritical regime the equations
are satisfied in classical sense, while if s < 1/2 we find weak energy solutions. To
this aim, we develop an appropriate functional setting based on parabolic Bessel po-
tential spaces. We finally show uniqueness of solutions both under the Lasry-Lions
monotonicity condition and for short time horizons.

The last part focuses on the regularizing effect of evolutive Hamilton-Jacobi equa-
tions with Hamiltonian having superlinear growth in the gradient and unbounded
right-hand side. In particular, the analysis is performed both for viscous Hamilton-
Jacobi equations and its fractional counterpart in the subcritical regime via a dual-
ity method. The results are accomplished exploiting the regularity of solutions to
Fokker-Planck-type PDEs with rough velocity fields in parabolic Sobolev and Bessel
potential spaces respectively.
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Notations

(93/7 $>X',X
X =Y

Lr()

The d-dimensional Euclidean space, d > 1.

The d-dimensional flat torus R?/Z4, d > 1.

The open ball of radius r centered at x.

will always be a bounded domain of RY.

boundary of Q, namely 9Q = Q\.

The space of upper semicontinuous functions on 2.

The space of lower semicontinuous functions on ).

The space of continuous functions on (2.

The space of continuous functions on €2 with continuous derivatives
of order j, j =1,... k.

The space of functions m € L'() such that [,m =1 (probability
densities).

Partial derivatives with respect to the i-th variable and gradient
vector of f.

Partial derivative with respect to the time-variable.

Hessian matrix of f.

Trace of a square matrix A

matrix obtained by the tensor product @ : R? x R? — R?*? of two
vectors v, w € R? whose elements are v @ w = (vaw;)f,_;.
The space of square d X d symmetric matrices with real entries.
The i-th eigenvalue of A € Sy, i = 1,...,d, with ordering e;(A) <
... <eq(A). Sometimes we will drop the matrix variable inside the
brackets when it results implicit from the context.

almost everywhere

space of smooth functions with compact support on X.
characteristic function of A defined by ya(xz) = 1 if x € A and
xalx)=0ifx ¢ A

Banach space of linear continuous operators from the Banach space
X to the Banach space Y equipped with the norm topology. When
X =Y we only write £(X).

dual of the space X

duality product of 2’ € X’ and z € X.

if X C Y with continuous injection.

Fourier transform Fu(§) = [pa e ™ u(x)dx

Banach spaces of (classes) of measurable functions f : Q@ — R

such that || f|l, < oo with [jull, == ([, f(x)pd:v)% if p < oo and
| flloo := ess supq f if p = cc.
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Domain of the operator A : D(A) — X, namely a linear subspace

of X equipped with the graph norm ||z||4 = ||z| + || Az]|.

the real interpolation spaces.

the class Jy between X and Y.

the K function.

the class Ky between X and Y.

the space of a-Hélder continuous functions on T¢.

the Besov spaces.

the Bessel potential spaces.

the fractional Sobolev spaces.

the vector-valued Sobolev spaces, I C R open set.

Space of continuous functions v : I — X, I C R, equipped with

the norm [|u||c(r,x) := maxer ||u(t)|| x-

Space of all measurable functions v : I — X, I C R open set,

with respect to the equivalence relation f ~ g <= f(t) = g(¢)

for a.e. t € I, such that t — ||u(t)||x belong to LP(I). It is
1

endowed with the norm [|[ul|re(r,x) == ([} [u(®)|% dz)? if p < o
and ||ul|s 1= ess sup,;|| f(t)]|x if p = 0.

space of measurable functions u € LP(0,T; HF(S2)) with Qu €
LP(0,T; Hi?(Q)), being Qr = 2% (0,T) and Q@ = R? or TY. When
1 = 2 the space 'Hi ~ Wp2’1.

space of measurable functions u € LP(0,T; Hy(2)) with du €
LP(0,T; H7>*(Q)), s € (0,1).
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Some useful inequalities

Space-time Holder’s inequality: Let I C R, X be a Banach space and denote
by X' its dual. If f € LP([;X) and g € LY(/; X’) with 1/p+ 1/q = 1/r and
u(t) = (f(t),g(t))x x, then u(t) € L"(I) and

lullry < W llzeaollglloxn

Generalized Young’s inequality: For p € (1,00) and p’ = p/(p — 1) and any
positive € > 0 we have
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Introduction

This thesis collects new developments on the analysis of some nonlinear elliptic and
parabolic partial differential equations (briefly PDEs) arising in optimal control prob-
lems and differential games. More precisely, the manuscript is divided in three parts,
each of which is divided into chapters corresponding to different papers as follows:
Part I:

e M. Bardi and A. Goffi, New strong maximum and comparison principles for
fully nonlinear degenerate elliptic PDFEs, Calc. Var. Partial Differential Equa-
tions 58 (184), 2019.

e M. Bardi and A. Goffi, A note on the strong maximum principle for fully
nonlinear parabolic PDFEs, forthcoming.

e M. Bardi and A. Goffi, Liouville results for fully nonlinear equations modeled
on Hormander vector fields, forthcoming.

Part II:

e M. Cirant and A. Goffi, On the existence and uniqueness of solutions to time-
dependent fractional MFG, SIAM J. Math. Anal. 51 (2) 913-954.

Part I1I:

e M. Cirant and A. Goffi, Lipschitz reqularity for viscous Hamilton-Jacobi equa-
tions with LP terms, arXiv:1812.03706, submitted.

o A. Goffi, Transport equations with nonlocal diffusion and applications to Hamil-
ton-Jacobi equations, forthcoming.

More precisely, the first part is devoted to analyze strong maximum principles for
some fully nonlinear second order degenerate equations with the aim of providing
also some applications to comparison principles and Liouville-type results. It is
independent from the others, being mainly based on viscosity solutions’ theory for
such nonlinear PDEs. The second part contains only one wide chapter concerning
the analysis of evolutive Mean Field Game (MFG) systems driven by fractional
diffusion and three related appendices (Appendix [A] Appendix [B]and Appendix [C))
regarding some regularity aspects for parabolic Holder and Bessel potential spaces in
the periodic setting for the fractional heat operator, together with chain and product
rules on fractional spaces and some embedding theorems for the aforementioned
Bessel functional classes. The last part is devoted to study regularity issues for
Hamilton-Jacobi equations with classical and nonlocal diffusion with rough terms
via duality methods.
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Part I- Strong maximum principles for fully nonlinear degen-
erate equations and Liouville theorems for subelliptic prob-
lems

The Strong Maximum Principle (SMP) for elliptic equations goes back to the semi-
nal work by E. Hopf and, since then, it has had an increasing interest for nonlinear
equations, see e.g. the treatise [122] and the references therein. Such results heav-
ily rely on the uniform ellipticity of the operator rather than the regularity of the
coefficients and the particular structure of the PDE. In the case of the second order

equation
Za” 0”u+2b JOiu + c(z)u =0

with A = (a;;(z)) : @ = Sz, A > 0, b: Q — R? bounded and continuous and ¢
nonnegative and bounded, E. Hopf proved the SMP via the so-called Boundary Point
Lemma. In particular, the latter states that if u € C1(Q2), 9Q is smooth, Lu < 0 in
(2 and v attains a nonnegative maximum at some point xy € 0€, then %(mo) > 0 for
any vector v pointing outward from ) at xy, provided that OS2 satisfies an interior
sphere condition at x (see [122, Lemma 3.4]). As an immediate consequence, one
gets the SMP, which asserts that a subsolution to a homogeneous equation Lu = 0
in an open connected set 2 C R? that attains a nonnegative maximum at an interior
point zy € {2 must be constant, under the right choice of the sign of the coefficient
of the zero-th order term [122] Theorem 3.5].

In the case of degenerate elliptic operators, the way to deduce the SMP is more
delicate and the problem can be formulated as follows. Let 2y € 2 be given.

Is it always possible to determine a subset D(xq) of 2 such that if u is a
subsolution to a degenerate elliptic equation and u has a local mazimum at xy, then
u = u(wg) throughout D(xg)?

The answer is yes. However, it turns out that the set D(xg) := Prop(zy), usually
called propagation set, does not necessarily coincide with the whole {2 as in the uni-
formly elliptic case. The seminal contributions on degenerate elliptic linear equations
are due to J.-M. Bony [52], D. W. Stroock and S.R.S. Varadhan [225]. They consider
the above linear equation Lu(x) = 0 with smooth coefficients, A > 0 (i.e. positive
semidefinite) and ¢ > 0. Labeling by X, j = 1,...,m, the j — th column of A, one
defines the so-called drift vector field (also named subprincipal part of the operator
L) as
d
i=1
C. D. Hill [I35] described Prop(zy) in terms of all points that can be reached from
following a finite number of trajectories of X; backward and forward in time and of
Xy backward in time (we recall that a drift trajectory is a curve 6 : [t1, 3] — Q such
that 0'(t) = Xo(0(t)) on [t1,ts] oriented for increasing time). J.-M. Bony character-
ized the propagation set Prop(zg) for operators satisfying the Hérmander condition
[52, Corollary 3.1], saying that the Lie algebra £( X7, ..., X,,) generated by the vector
fields X has full rank at every point of €2, showing that Prop(z) = €2, and hence the
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validity of the SMP for classical subsolutions to Lu = 0. D. W. Stroock and S.R.S.
Varadhan proposed a description of the propagation set via probabilistic methods.
Our result is instead inspired by the work of K. Taira, who proved by purely ana-
lytical methods a characterization in terms of the subunit vector fields associated to
the linear operator L. According to C. Fefferman and D.H. Phong [I11], a subunit
vector field Z associated to the linear operator —Tr(A(z)D?u) verifies the inequality
A—7Z® 7 > 0. K. Taira proved that the propagation set can be described in terms
of all points that can be reached from z, following a finite number of trajectories
of the subunit vector fields backward and forward in time and of the drift vector
field X, backward in time (cf [226, Theorem 7.2.1]). See also Section for further
details and references.

In the context of viscosity subsolutions to second order fully nonlinear uniformly
elliptic equations, the SMP was proved by L. Caffarelli and X. Cabré [62] as a
consequence of the Harnack inequality. Under lower ellipticity assumptions it was
derived in a more direct way in [I48] (in a weaker form) and [2I]. Control theoretic
and probabilistic descriptions of the propagation set for Hamilton-Jacobi-Bellman
equations were given in [22] and [23]. Our SMP for such equations, Corollary [2.32]
is derived in a simpler way and extends also to Isaacs equations, see Section |3.4.3|
Here, we are interested in fully nonlinear equations of the general form

F(z,u, Du, D*u) =0 ,

where z € Q and u is a function defined in 2 and F(z,7,p, X) is a real-valued func-
tion defined in 2 x R x R? x S;. In particular, we will focus on some specific PDEs
of this form structured over Hormander vector fields, which indeed are degenerate
if represented in Euclidean coordinates. A particular case of vector fields satisfying
the Hormander condition are those families generating a Carnot group. The theory
of such fully nonlinear PDEs, usually named subelliptic, began with [179] and [40],
see also [34] 42, 234] and our Corollary seems to be the first Strong Maximum
Principle for such equations.

As announced, here we review and extend the concept of subunit vector field
to fully nonlinear operators F' = F(z,r,p,X) (see Definition [2.3), where F is a
real-valued function defined in 2 x R x RY x S;, providing a nonlinear analogue to
the description of the propagation set (see Theorem [2.4). This implies the SMP
for subunit vector fields associated to F' satisfying the Hormander condition, see
Corollary 2.6 Our results cover various fully nonlinear subelliptic equations arising
in stochastic control problems. In particular, our main examples are the Hamilton-
Jacobi-Bellman (HJB) and Isaacs (HJI) equations coming from stochastic control
and differential games whose dynamics is described by the stochastic differential
equation (SDE)

dX; = b(Xy, o, B)dt + o(Xy, o, B)d By

with o taking values in R*™, B, standing for a m-dimensional Brownian motion and
a, B taking value in some compact sets A and B respectively. Here, if one considers
a running cost functional [( Xy, o, §) and a discount rate ¢(X;, «, 3), then the PDE
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associated to the value function turns out to be of the form

max min{—Tr(co” D*u) —b- Du+cu—1} =0 .

ac€A BeB
The particular case in which A is a singleton and o (z, 8) = o(z)5 with 5 € {5 € Sy, :
VI < b < VAT } leads to a fully nonlinear equation driven by the so-called Pucci’s
minimal operator M~, and with the maximal operator M™ simply by reversing the
roles of the controls. Moreover, the case of uncontrolled diffusion matrix o = o(z)
leads to a quasi-linear subelliptic equation. Our properties turn out to be new even
for some of these quasi-linear PDEs, including the subelliptic p- and oco- Laplace
equations. In particular, our results in Section for Hamilton-Jacobi-Bellman
equations improve upon [22], 23], giving a more direct characterization of the strong
maximum and minimum principles, while those in Section [3.4.3|for Hamilton-Jacobi-
[saacs equations, which are neither convex nor concave, seems to be not yet explicitly
written down anywhere in the literature, although they can be obtained via similar
viscosity arguments used in the aforementioned contributions by M. Bardi and F. Da
Lio. Still, our results are completely new for all classes of nonlinear subelliptic PDEs
modeled on families of vector fields X7y, ..., X, satisfying the Hormander condition,
that appear in the compact form

G(z,u, Dyu, (D3u)*) = 01in Q |

where (D3u)* is the symmetrized Hessian matrix of Diu = X;Xju, 4,5 = 1,...,m,
Dyu is the intrinsic gradient and G : R? x R x R™ x S,, — R is proper. See Subsec-
tion and Subsection for explicit examples and properties.

An immediate consequence of the SMP for linear equations is the so-called Strong
Comparison Principle. In the case of linear operators it can be stated as follows:
let u,v € C?(Q) N C(Q) such that Lu < 0 and Lv > 0 in a open connected set (2.
If u < v in €, then either u = v or v < v in €. In the fully nonlinear framework,
such property was found by N.S. Trudinger [233] for Lipschitz viscosity solutions of
uniformly elliptic equations. However, very little is known for degenerate equations:
they concern particular PDEs motivated by geometric problems [121 [189] [170, 67]
and are quite different from our Theorem [2.41] On the other hand, the literature on
the (weak) Comparison Principle is huge: the results are very general if F' is strictly
proper (i.e., strictly increasing in r) since they include first order equations, see
[96), [15]. Under the mere properness (see (i) in Section [2.2), instead, some ellipticity
is needed and the minimal conditions are an open problem, see [143], 29, 148, [149],
and [20], 40}, 180} 25, 41] for equations involving Hérmander vector fields, see also the
references therein. Our Corollary completes the results of [25].

We apply similar strategies to analyze the SMP for the evolutive operator 9, + F',
following the seminal work [191] (see also [I17,[116]) and then adapted in the context
of viscosity solutions’ to fully nonlinear parabolic problems in [I00] (see also [60]).
In Chapter |3| we review and generalize the results in [100].

The classical Liouville theorem for harmonic functions on the whole space states
that the only harmonic functions in R? bounded from above or below are constants,
and it is a consequence of the Harnack inequality (see e.g. [122]). Such result actually
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holds for classical solutions to more general uniformly elliptic equations. The Liou-
ville property holds also in the much larger class of merely subharmonic functions
(i.e. subsolutions) if the space dimension is d = 2, by exploiting the behavior of the
fundamental solution log |x| and using the Hadamard Three-Circle Theorem (see,
e.g., [197, Theorem 2.29] and Theorem below for a different proof). However,
this result crucially fails in higher dimensions d > 3. Indeed, straightforward compu-
tations show that the functions u;(z) := —(1 + |z|?)™2 and uy(z) := —(1 + |z|?) ™"
are nonpositive nontrivial subharmonic functions in R? and, respectively, in R? with
d> 4.

Linear degenerate elliptic equations are studied in [51], Section 5.8], which gives
Liouville theorems for solutions to equations driven by sub-Laplacians; they are
again deduced from a suitable Harnack inequality. In the case of subsolutions (or
supersolutions) to —Ayu = 0 in R™, where X = {Xj, ..., X,,,} is a system of vector
fields satisfying the Hormander condition (e.g. those generating a Carnot group,
the simplest and most popular instance being the Heisenberg vector fields) we give
simple explicit examples of bounded non-constant classical sub- and supersolutions
of the sub-Laplace equation in any Heisenberg group H¢, see Section , and in the
Grushin plane, see Section [4.5 showing the failure of the Liouville property in this
setting. However, it can be recovered for super polyharmonic functions, i.e. solutions
to (=1)"Ap,u > 0 in R** for r = 1,..,k, k> 1, if 2k > @, Q = 2d + 2 being the
homogeneous dimension of the Heisenberg group, see [44, Theorem 1.6].

Liouville theorems were then widely investigated in the context of semilinear el-
liptic equations and we refer to the survey [68] and the references therein. We quote
also [153, 152] [69, [45] for PDEs on Carnot groups and [2] for some results on the
Heisenberg p-Laplacian equation.

In this manuscript, we are mostly interested in Liouville properties for viscosity
sub- and supersolutions of fully nonlinear degenerate elliptic equations. In the case
of uniformly elliptic equations of the form

F(x, D*u) = 0 in R? (1)

it was proved in [62, Remark 4.2.4] that continuous viscosity solutions either bounded
from above or below are constants. This is a consequence of the Harnack inequality
combined with the comparison with Pucci’s extremal operators

M;A(D2u) < F(x, D*u) — F(z,0) < M/J\“’A(Dzu), (2)

as usual in the theory of fully nonlinear second order uniformly elliptic equations.
Further related results for solutions to Hessian PDEs of the form F(D?*u) = 0 can
be found in [190, Section 1.7] and [9, Theorem 1.7]. We remark that to get Liouville
properties for solutions to Hessian equations of the form F(D?u) = 0, the assumption
F(0) = 0 is crucial and cannot be dropped when d > 5 (see [190, Section 1.7]),
although it is conjectured that for lower dimensions d < 4 the Liouville property
should hold without having this hypothesis in force (cf [I90, Conjecture 1.7.1])

The first results for mere sub- or supersolutions of are due to A. Cutri and
F. Leoni [98]. They proved that if u € C(R?) is either bounded below and satisfying

M\ (D*u) <0 in R? (3)
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in viscosity sense, or bounded above and satisfying
M \(D?u) > 0 in R? (4)

in viscosity sense, then u is constant provided that d < % +1, ./\/lf  standing for the
Pucci’s extremal operators with parameters A > A > 0 [62], 201]. This can be seen
as the fully nonlinear analogue of the Liouville theorem for subharmonic functions,
since when A = A one gets the Laplacian (up to constants) and the constraint reads
d < 2. Such conditions are known to be sharp: examples of nontrivial solutions to
Pucci’s extremal equations when d > £ + 1 can be found in [98, Remark 2] and will
be recalled in Section 3.1

This result was extended to the Heisenberg group H? in [99, Theorem 5.2] for the
inequalities and on R*"*! with D?u replaced by DZ,u. Here the condition
d < % + 1 is replaced by @ < % + 1, @ being the aforementioned homogeneous
dimension of the Heisenberg group. A counterexample to the Liouville property
when @) > % + 1 is in Section and this seems to be new to our knowledge. This
is consistent with the failure of Liouville properties for subharmonic functions in the
Heisenberg group, which can be formally seen via the fundamental solution (see e.g.
[51]); however, in Section we provide a new explicit counterexample built on
“radial” functions to show that the Liouville property is false in the linear case.

Liouville results were then found in the fully nonlinear case in [08] by adding a
semilinear perturbation term to the fully nonlinear uniformly elliptic operator. More
precisely, it is proved that there exists a number p > 0, depending on A/A and d,
such that the only nonnegative viscosity supersolution u to

F(x, D*u) +u? =0 in R,

with F(z,0) = 0 and p € (0,p), is u = 0. The results were then generalized in [§].
Such properties for equations involving gradient terms were first investigated in [70]
for PDEs of the form F(z, D*u) + g(|z|)|Du| + h(z)u? = 0, specifically by adding
a sublinear first order assumption on the gradient term, that is assuming that the
drift term g is bounded and such that
A= e <
= < gllal) <
for |z| large. We refer also to [210], [195] and [85] for Liouville results to fully
nonlinear PDEs with gradient dependence.

A new approach to Liouville properties for sub- and supersolutions of Hamilton-
Jacobi-Bellman equations involving operators of Ornstein-Uhlenbeck type was initi-
ated in [I7], based on the strong maximum principle and the existence of a sort of
Lyapunov function for the equation, that is a sub- and supersolution to the equation
respectively that blow-up at infinity. This leads to assumptions on the sign of the
coefficients of the first and zero-th order terms, and on their size, that must be large
enough for large |z|, contrary to the results quoted above, see [16]. Fully nonlinear
uniformly elliptic equations F(x,u, Du, D*u) = 0 are treated in [16], a linear degen-
erate case in [I81] and some quasilinear hypoelliptic equations in [16]. A particular
result of [16] concerns the inequalities

M (D*u) <0inRY, M7, (D*u) >0 in R,

A—A(d—1)

|
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and states that u € C'(R?) either bounded above and solving the former, or bounded
below and satisfying the latter, must be constant if d < %4— 1. This complements the
result of [98] on (3)) and (4)); note that the restriction on d is more stringent now but
is still sharp for the Laplacian, A = A. Still, we remark that this second constraint
on d is sharp, see Section [£.3.1] Note also that this result fits better the treatment
of uniformly elliptic equations via the inequalities .

Chapter [4| develops Liouville-type results in the spirit of [16] for fully nonlinear
inequalities involving the intrinsic (or horizontal) gradient and intrinsic Hessian

DXu: (Xlua"'7Xmu)7 (Dgc'u)lj :XZ(XJU)7

associated to a given family X = (Xi,..., X,,) of Cb! vector fields satisfying the
Hormander condition. Our main motivation are subelliptic equations of the form

G, u, Dyu, (Dyu)”) = 0 in R, (5)

where Y* is the symmetrized matrix of Y and G : R x R x R™ x S,, — R is proper.
We will give some sufficient conditions for the Liouville properties

any subsolution (resp. supersolution) of bounded from above (resp. below) is a
constant.

The main assumption on G is a comparison with Pucci’s extremal equations asociated
with the vector fields X

M\ ((D3u)*) < G(z,u, Dyu, (Dyu)*) — Gz, u, Dyu,0) < M}, ((Dju)*) .
Then a subsolution of is also a subsolution to
M; A (D)) + G(x,u, Dau, 0) = 0,

and a supersolution of solves a similar inequality for the maximal operator M.
A mild subadditivity condition is also required for G.

The main new tools we will use in Chapter (4| are the strong maximum and
minimum principles for fully nonlinear subelliptic equations obtained in Chapter
via the generalization of the concept of subunit vector field to the fully nonlinear
setting (cf Definition . Moreover, we use suitable homogeneous norms associated
to the vector fields X to build appropriate Lyapunov functions. The results are
made explicit in three cases: the Heisenberg group, free step 2 Carnot groups with
r-generators [120, 55], and Grushin-type geometries, where no group structure is
available.

An example of our results, in the case of the Heisenberg group H? ~ R24+1 s
the following: if

G, r,p, X) = My (X) + inf {e(2)r = b°(2) - p}

we prove the Liouville property for subsolutions under the condition
4

Sup{H(2) + T — () log o S A= AQ - 1)

acA |$H| |$H
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for large x, where xy = (21, ..., x24), b* takes values in R?!, n € R*® is defined by
ni = Ti|lrg)? + TiraTaaits Nivda = Tilrg|* — viveqsy, for i = 1,....d, p is a suitable
1-homogeneous norm with respect to the dilations of the group, and @Q = 2d + 2
is the homogeneous dimension of H? This condition is satisfied if ¢* > 0 and
b*(x) - n < 0 for x large, and under suitable growth conditions at infinity. Note also
that for subsolutions of M , (Df,u) < 0 the condition with ¢* = 0, b* = 0 becomes
Q< % + 1, as expected from the Euclidean case treated in [16] and recalled above
(cf. also the aforementioned result for M}, (D7,u) < 0 in [99] ). In Section m
we give an example showing that this condition is sharp.

Our study is motivated by applications of Liouville properties to various issues,
such as ergodic problems, large time stabilization in parabolic equations (see e.g. [16,
Section 5-6]), and regularity theory for fully nonlinear second order PDEs [138]. As
for fully nonlinear degenerate equations, we also mention the recent paper [169] in
the context of PDEs arising in conformal geometry and [46] for Liouville properties
of solutions to degenerate versions of Pucci’s extremal equations.

Part II- Time-dependent fractional Mean Field Games

In the second part of this manuscript, we focus on evolutive systems arising in the
recent theory of MFGs, which was developed almost simultaneously by P.-L. Lions
and J.-M. Lasry [163] and M. Huang, P. Caines and R. Malhamé [137], and aiming at
describing Nash equilibria in differential games with infinitely many players, each of
whom having a negligible impact on the overall system. In particular, the heuristic
interpretation of these models is the following: each player controls the dynamics
described by the following SDE

dX, = aydt +V2dB, , Xo =z ,

where B; stands for a classical Brownian motion, through the control «;. The goal
of each agent is to minimize, over a; € A, A being the set of controls, the cost

J(z,t,a) =E [/tT L(X,,m(), ar)dr + up(z)| |

where m denotes the density of the players, which in turn evolves according to a
transport equation, as described in the next lines. By classical dynamic programming
arguments it turns out that the value function associated to each player, namely
u(x,t) :=inf,eq J (2,1, @), solves a viscous Hamilton-Jacobi-type equation. Roughly
speaking, the value function indicates how the agent should choose his/her control
in order to behave in an optimal way. At least formally, by verification arguments
one easily finds an optimal feedback a* = —D,H(z, Du), which depends on the
(evolutive) family of probability measures {m(¢)}. Under the assumptions that each
player controls the same dynamics and minimizes the same cost, owing to the optimal
control o*, the population density evolves according to the previous SDE with drift
a = o, leading to a Fokker-Planck type equation describing the collective behavior
of the agents. As a byproduct, coupling the above PDEs, the classical MFG system
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takes the form

—0wu — Au+ H(x, Du) = Fim(t)|(z) in Qr =T x (0,7),
om — Am — div(mD,H (z, Du)) =0 in Qr =T x (0,7,
m(z,0) = mo(x), u(z,T) = ur(z) in T?

even though, usually, a further coupling through the terminal data u(z,T") is present
in the standard theory (which we avoid here for the sake of presentation). Recently,
this theory has been spread in several different directions, which regards on the one
hand analytic and probabilistic issues (see [78, [79, [80]) and, on the other hand,
applications to engineering, finance and social sciences, among others. From the
PDE viewpoint, the analysis of such models has been carried out either when the
dynamics of the average player is driven by standard diffusions (see for example
[127, 163]), possibly degenerate [73], or first order (deterministic) systems (see e.g.
[72, [75]). The purpose of this part is thus to analyze the intermediate situation
where the dynamics of agents is driven by a jump-diffusion process. More precisely,
we study a time-dependent model situation in which the underlying dynamics is
driven by a 2s-stable Lévy process, which gives rise to a fractional Laplacian as a
diffusion operator. We aim at providing an analytical model to study more general
PDEs and systems driven by integro-differential operators (see e.g. [83, Section 5]
for some MFG models in this direction). More precisely, the system we are going to
analyze in Chapter [0 is of the form

—Ou+ (—A)*u+ H(z, Du) = Fim(t)|(z) in Qr
om + (—A)*m — divimD,H(xz,Du)) =0 in Qr

m(z,0) = mo(x), u(z,T) = ur(z) in T¢

where H is a superlinear Hamiltonian in the gradient Du (see assumptions —
below) behaving like |Du|?, v > 1, F' is a smoothing operator, mg, ur are
sufficiently smooth data and (—A)® is a fractional Laplacian of order s € (0,1). Its
stationary counterpart has been recently analyzed in [81], using different techniques
than those we are going to present in this manuscript. We further mention the
recent analysis [65] of MFG systems with time-fractional derivatives arising from
subdiffusive dynamics of the players.

Lévy processes meet a variety of challenging topics ranging from financial modeling
(see e.g. the monograph [94]) to Physics and Biology among others. We refer to
[38, 211] for a comprehensive treatment of stable-like processes, to the monograph [6]
for a more general analysis on jump-type processes, the nice survey [5] and [208, 207]
and references therein for further research directions and applications to PDEs.
The main differences and novelties with respect to the aforementioned well-known
works on the analysis of MFG systems rely on the analytical methods used to study
the regularity of solutions. The presence of the time derivative and the fact that
the dynamics is driven by a nonlocal operator make necessary to analyze in depth
the regularity of the fractional heat operator d; + (—A)® on parabolic Holder and
Sobolev spaces. Therefore, our main contribution is to first develop a careful analysis
of fractional heat equations in the LP setting, whence we systematically treat spaces
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of the form
H;j(QT) = Hg;S(Q x (0,7)) ={u e LP(0,T; HI’,L(Q)) ,O € LP(0,T; Hg_%(Q))},

where H)} denotes the space of Bessel potentials, providing the fractional counterpart
of the analysis of the more popular parabolic Sobolev spaces Wﬁ"”’k , k €N, see [159].
Here, we are inspired by some results that appeared in the context of stochastic par-
tial differential equations, and we prove embedding theorems for %g(QT) that, apart
from their own interest, play a key role in the analysis of our system of PDEs. Our
results are consistent with the classical ones already known in the literature (see e.g.
[159] and Appendix |C]). We refer to [84] for some discussions on HA*(R? x (0,T)),
and [I55] and references therein for the case s = 1. We also mention that some of
the embeddings and maximal LP-regularity results we obtain here can be deduced
through methods for abstract evolution equations and we refer the interested reader
to [199], see also the references therein. Our aim is to give a PDE-oriented proof
of the results by also mixing some ingredients from interpolation theory in Banach
spaces with the purpose of providing a more transparent and self-contained treat-
ment.

As for parabolic Holder’s spaces and Schauder’s type estimates, the theory is still
incomplete and partially developed only during the last years. Some results in these
directions can be found in [59, 114, 209, 133]. However, we provide a study of
Schauder’s type regularity by using interpolation theory in Banach spaces in Ap-
pendix , following classical works on abstract Cauchy problems; see e.g. [178] [177,
220]. Here, the analysis is carried out on the periodic setting @ = T¢ in order to
exploit the compactness of the state space and we point out that a functional treat-
ment of the Sobolev classes % on R? x (0,T') can be obtained via the very same
schemes. Moreover, in order to study the regularity of the solutions in the subcrit-
ical regime s > 1/2, we will need some product and chain rules on Bessel potential
spaces on the torus which, up to our knowledge, were not available in literature and
are useful in various other fields of the analysis of PDEs (like Korteweg-de Vries,
Schrodinger equations,...). Their proofs require transference arguments from R? to
T¢ and harmonic analysis’ tools which we describe in details in Appendix .

We then provide existence of solutions via the vanishing viscosity method and using
the classical fixed point strategy [71]. Such procedure turns out to heavily depend on
a priori bounds for solutions of both equations. More precisely, we use the recent non-
linear adjoint method introduced by L.C. Evans [107] (which will be matter of further
investigation in Part I1I), to deduce semiconcavity bounds for the viscous-fractional
Hamilton-Jacobi equation, which are independent of the viscosity parameter. This
in turn ensures Lipschitz bounds, essential to prove the existence of smooth solu-
tions for HJ equations with coercive Hamiltonian. We point out that this duality
method was introduced to study more deeply the vanishing viscosity process, and
the gradient shock structures, i.e. the structure of the singularities, to solutions of
non-convex Hamilton-Jacobi equations. Furthermore, it has been extensively used
in the analysis of asymptotic problems for viscous and degenerate Hamilton-Jacobi
equations [64], 230, [187] (see also the references therein), and to study differentiabil-
ity properties of solutions to oo-Laplacian PDEs, see [109].

Uniqueness of solutions for such systems in general is not always expected. Under
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the classical Lasry-Lions monotonicity condition (see [163]) the result continue to
hold for every s € (0,1) and is consistent with the qualitative properties of solutions
to the PDE system in the borderline cases s =1 and s = 0.

Lately, there have been an increasing interest in uniqueness criteria for short time
horizons. The first results were announced in the recorded video lectures by P.-L.
Lions at College de France and first attacked by M. Bardi and M. Fisher [24] and
M. Bardi and M. Cirant [19] via energy methods for the continuous models (see
also [124] for an earlier result for finite-state MFGs and [24, Remark 4.13] for other
related references). However, one could expect the validity of such properties via
contraction mapping principle and methods for abstract evolution equations, which
is in fact a quite common approach in the framework of evolutive nonlinear PDEs
(see [229] and the recent work [91] for systems related to the mean-field equations).
Nonetheless, the subtle coupling among the PDEs and their backward-forward struc-
ture determine some new difficulties when applying such procedure. Here, we exploit
the aforementioned product rules on the spaces of Bessel potentials and the repre-
sentation of the PDE system in a forward-forward form via the variation of constants
formula to deduce such short-time uniqueness results when s € (1/2,1). The same
kind of strategy has been implemented in [92] and [91]. However, we point out that
uniqueness of solutions under this regime is at this stage open when s € (0, 1/2], since
the semigroup approach on Bessel potential spaces crucially fails: heuristically, this
is due to the fact that, somehow, under this regime the diffusion is deteriorating and
one looses the crucial decay estimates which allow the machinery to work. Anyhow,
we believe that short-time uniqueness in the case of supercritical and critical diffusion
can be both obtained in view of the recent developments for first order MFG systems
[T18), [183]. We highlight that our uniqueness result for short-time horizons requires
some additional smoothness assumptions on the Hamiltonian compared to [24], and
thus is closer to that appeared in [92] with respect to the regularity requirements.
Our regularity hypotheses are crucial to run the arguments via contraction mapping
theorem through chain and composition rules in fractional Sobolev classes. However,
we remark that the energy methods developed in [24] [19] do not directly apply to
the fractional framework due to the gap between the fractional derivatives and the
divergence operator, and this is the main reason of our extra regularity assumptions.

Part III-Lipschitz regularity to Hamilton-Jacobi equations
with rough data

It is well-known that bounded solutions of the heat equation posed on the whole
space R? starting from a bounded initial data become immediately Lipschitz contin-
uous as soon as t > 0 with a global Lipschitz estimate of the form ||Du(-,t)|le S

(1/vV1)|[uollso (see e.g. [229, p.35]). The aim of this last part is to address the same
question for viscous and fractional Hamilton-Jacobi (briefly HJ) equations

{atu(a:,t) + Au(z,t) + H(z, Du(z,t)) = f(z,t) in Qr =T x (0,T), (6)

u(x,0) = ug(z) in T9,

with unbounded right-hand side f, where H is superlinear in Du and the diffusion
operator A will be replaced by — >, . a;;(x,t)9;; in Chapter @ (under suitable regu-
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larity assumption on a;; that we will outline below) and (—A)* in Chapter [7} The
precise statement is the following: there exists a positive function D : (0,7] — [0, c0)
such that

[l ) llwr.ooay < D) ||uol| oo (ray 5t € (0,77 -

More precisely, we seek to show that weak solutions (in a suitable sense) with
bounded initial data ug to @ become Lipschitz continuous at positive times and
satisfy the above “decay” estimate.

The motivation for such work is twofold. On one hand, this is motivated by a re-
markable result by P.-L. Lions [175], that states Lipschitz regularity of solutions to
the stationary counterpart of the above HJ equation for A =1, f € L9, ¢ > d and
any v > 1, namely for the simpler viscous equation

— Au + |Dul” = f(x) on T . (7)

In [I75], a refinement of the classical Bernstein method that exploits both diffu-
sion and coercivity is developed, but unfortunately it does not seem to generalize to
time-dependent problems like @ This procedure, modeled on the Bernstein initial
idea for linear PDEs [37], consists in looking at the equation satisfied by w = |Dul?.
Owing to simple computations, one easily finds

w,, = 2Du - Du,; , Aw = 2[|D*u|* + Du - D(Au)] .

Differentiating then the equation with respect to z; and summing, one obtains
the following PDE satisfied by w

—Aw + y|Du|"?Du - Dw + 2|D*u|* = 2Df - Du .

The idea developed in [I75] for smooth solutions is basically based on multiplying
the above equation by w? for some p > 1 large to be determined, and integrating in
space. Roughly speaking, the third term (see [88]) gives rise to the integral

/ | Aul*w? dx .
Q

At this stage, the key tool is to use the above integral to get additional “coercivity”
by plugging the equation via the inequality

’AUP 2 ClyDUP’Y — 02f2

for some C,Cy > 0, and handle all the terms by a delicate combination of Sobolev,
Young and Holder inequalities in order to conclude the gradient bound. However,
if one tries to adapt the same procedure for the evolutive problem, mixed integral
terms involving d,w and suitable powers of w appear, and, unfortunately, it is not
clear how to handle them.

Typically, in the framework of quasi-linear equations with superlinear growth v in Du
two regimes are identified, namely the sub-quadratic 7 < 2 and the superquadratic
growth v > 2. Here, we have in mind Hamiltonians of the form

H(z,p) = h(z)[p]" + b(x) - p, (8)
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for some h,b € CYT%), v > 1 and 0 < hy < h(x). For f € L*, Lipschitz (and
further) regularity of solutions for quasi-linear equations of the form (6.1]) goes back
to classical literature, see e.g. [159].

On the other hand, in the super-quadratic case v > 2 the diffusion term is considered
“weaker”, and thus typically regarded as a perturbation of a first-order HJ equation.
In this direction, Holder and Sobolev regularity results with possibly unbounded f
have been obtained in [77, [75] (where a;; can indeed be degenerate). We refer also
to [224], 82] for a different approach in the viscous case and to Section for a
brief survey on the literature and the techniques used to derive gradient bounds for
such nonlinear PDEs. This different regimes can be easily detected by performing a
classical L*-scaling argument: by setting v(x,t) = u(ex, £7t), one finds the following
PDE satisfied by v

O — &7 2Av + |Dv|" = &7 f(ex, &Mt) .

By direct inspection, one observes that the equation can be typically considered as
a perturbation of the heat equation in the subquadratic regime, while in the case
v > 2 the usual approach is to regard the Laplacian as a perturbation of a first
order equation, due to the fact that at small scales the diffusion is weaker than the
gradient terms. However, when a nondegenerate diffusion is in force, one expects a
better regularization effect, even when + > 2, in the spirit of the elliptic results in
[175]: in fact, by performing a W1° parabolic scaling, one immediately sees that
w(z,t) = e tu(er, €%t) solves

ow — Aw + e|Dw|? = ef(ex, %) =: g.(x,1) .

Here, one notices that the space-time L? norm of g. is invariant under the previ-
ous scaling precisely when ¢ = d + 2, which is indeed the threshold we will meet
throughout our analysis and above which we see that solutions to @ exhibit a fur-
ther Lipschitz regularization effect. To overcome the aforementioned difficulties of
[175] in the evolutive framework, we perform our analysis via a duality approach.
The study of linear equations through their duals (adjoint) is a classical matter,
which has been recently explored in the nonlinear framework of HJ equations by
L.C. Evans [107]. Its applications to viscous HJ equations, appearing in particu-
lar in so-called MFG systems, have been then investigated in a series of papers by
D. Gomes and collaborators, see [127] and references therein. Lipschitz bounds of
solutions to equations of the form () with unbounded or rough data have been in
particular considered in [123], 128]. In these works, limitations on the regularity of u
itself (it is typically smooth), on the growth of H (more precisely the growth v < 3),
or on d are imposed. Here, we obtain results for all ¥ > 1 and d € N, and for weak
solutions to @ The regularization effect is based both on the non-degeneracy of
the diffusion operator and on the strong coercivity assumption of the Hamiltonian
H with respect to Du. Up to our knowledge, the results we are going to present
improve in several directions the known literature on the subject. Specifically, we are
able to handle right-hand sides unbounded both in space and time, unlike the quoted
contributions in the context of MFGs, and we provide a result which is completely
new when v > 3, see Section for additional comments on the literature.
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From the modeling viewpoint, a further motivation of our analysis comes indeed
from the theory of MFGs [162], where HJ equations of the form @ appear natu-
rally, and, as outlined above, describe the value function of a typical player in a
differential game involving a large population of agents. Here, f is a coupling term
that may belong to a Lebesgue space. An important point in such systems is to
prove boundedness of the gradient of u, that is crucial both for PDE purposes, since
it implies that the mean-field equations are satisfied in a stronger sense, and also
guarantees the boundedness of the optimal control-velocity of players at equilibrium
and regularity of their distribution. It is worth noting that MF'G systems naturally
exhibit the presence of an HJ equation and its (dual) Fokker-Planck: this feature
somehow inspired the methods by duality presented in this thesis. The regularity
results appearing here would be crucial to study the regularity of MFG systems with
power-like couplings [73], 92], which is not completely understood even in the sta-
tionary case, see the introduction in [90].

More precisely, in Chapter [6] we prove our Lipschitz regularity result for equations
with general second order diffusion operators 0y — a;;(x,t)0;;. We first seek to prove
the regularization effect for weak energy solutions to @ when f in L9(Qr) with

d+2

v =1
Note that for v < 2 this condition reads as ¢ > d 4+ 2 and it can be regarded as
the parabolic analogue of the result in [I75] presented before. Then, for classical
solutions we use a dual version of the Bernstein method to improve our condition to

d+2
2(v-1)°

which reads as the parabolic Lions’ condition ¢ > d 4+ 2 as soon as v < 3. As a
byproduct, we get a maximal L9 regularity result for the viscous HJ equation, giving
a first attempt to generalize Lions’ results to the evolutive setting.

A fundamental step towards this result is the analysis of the dual (Fokker-Planck
equation)

g>d+2andq>

— atp + A*,O + le(b([L’, t)P) =01in QT = Td X (07 T) ) (9)

A* standing for the formal adjoint of A, when the drift is assumed to have enough
Lebesgue integrability. The basic idea behind the proof is the following. If u is a
solution to with A = —A, then any directional derivative v = Ocu satisfies a
linearized equation of the form

0w — Av+ D,H(x,Du) - Dv = 0:f .

Then, one tests the equation against a solution of the backward equation @ with
drift b(x,t) = —D,H (x, Du), which develops a Dirac mass at the terminal time t = 7,
and integrates by parts to get the estimate (see Section for further details).

As for the adjoint problem, when A = —A, rephrasing the transport equation @ on
R? x (0,T), one immediately notices that the above equation has a natural scaling.
Indeed, if p is a solution to (9)), then py(z,t) := p(Az, \*t) solves a transport-diffusion
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equation with scaled drift by(z,t) := Ab(Ax, A*t). In particular, it can be observed
that the space L(L?) = L(L?) is invariant under the previous scaling of the
velocity field b precisely when d/(22) + 1/Q = 1/2. Then, we say that a Banach
space endowed with norm || - ||x is called critical if ||pxl|x = ||p||x for every A > 0,
subcritical when ||py||x — 0 as A\ — 0 and supercritical in the case ||p)||x — oo as
A — 0 (meaning that if one zooms in at a point, i.e. A — 0, then the bound on the
drift becomes better, invariant or worse respectively). Therefore, here the subcritical
space turns out to be the mixed space L(L*) when P, Q meet the inequality

d 1 < 1

2P + a S5
Such condition is sometimes called “Aronson-Serrin” interpolated condition and goes
back to the earlier works [I59, I1]. In particular, within the critical regime with
respect to the parabolic scaling, one usually expects some L°°(L?) bounds, while
in the subcritical regime L™ estimates (and even Holder continuity, see e.g. [50]
and references therein). On the contrary, when dealing with supercritical spaces,
space-time unboundedness may occur (see e.g. [39]). Anyhow, the importance of
this condition is twofold: on one hand it guarantees the well-posedness of the adjoint
problem and, on the other hand, it is also crucial to ensure the uniqueness of weak
solutions to HJ equations. Roughly speaking, under the above interpolated condition
one can regard the transport term as a lower order perturbation of the heat equation.
When A = (—A)?®, the regularity of solutions of the dual equation under rough
conditions of the drift is far from being complete. Therefore, we discuss properties
of fractional transport equations of the form

—Oip + (—A)°p+div(b(x,t)p) =0 in Q.

equipped with terminal data p(z,7) = p,(z) in T¢ and rough velocity field in b €
L2(L") spaces. Under the classical incompressible condition div(b) = 0, typical of
fluid dynamics settings, the previous PDE is formally equivalent to —d;p+ (—A)*p+
b- Dp = 0: in this framework some well-posedness and integrability estimates for
subcritical fractional parabolic equations with drift terms have been established in
the context of Surface Quasi-Geostrophic (SQG) equations (see e.g. [235], 03, 63, 218]
and the references therein). We also refer the reader to the survey at the beginning
of the paper [I88] for the extremal regimes s = 0 and s = 1. In particular, one
immediately realizes that on R% x (0,T) the equation is invariant under the scalings
px(z,t) = p(Az,\*t) and by(z,t) = A*71b(Az, \**t). Even in this case, when
s € (1/2,1) the subcritical space turns out to be a mixed space L(L?) when the
exponents P > d/(2s — 1) and Q > 2s/(2s — 1) fulfill the condition

d 1 2s — 1
<

27 Q= 25

which can be seen as the fractional counterpart of the above Aronson-Serrin inter-
polated condition met in the viscous problem, s = 1. No results in this fractional
setting can be tracked back to our knowledge under this general conditions on the
drift when, in addition, no information on its divergence is available. The above
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fractional range for the exponents 2 and Q can be found in [167] for fractional heat
equations, [142, Example 3] in the study of fundamental solutions to time-dependent
gradient perturbation of the fractional Laplacian.

As a byproduct, in the case of subcritical fractional diffusion, we deduce the result
for weak solutions to fractional HJ equations with coercive Hamiltonian in Du ex-
ploiting the analysis of parabolic spaces developed in Part II.

Anyhow, by assuming some additional fractional regularity hypothesis on the right-
hand side, that is imposing f € L9(0,T; Hz~*5(T%)) for

d+ 2s
2s—1)(v-1)"

we are able to show a Lipschitz regularization effect. This additional integrability
hypothesis on the right-hand side is required since in this manuscript we are merely
able to estimate fractional derivatives of p in Lebesgue spaces by means of (fractional)
parabolic Caldéron-Zygmund theory (see Section for additional comments on
the integrability assumptions).

We further emphasize that the approach carried out either in [I75], 27] via refinements
of the Bernstein method or by coupling the duality method and the integral Bernstein
method (cf Chapter @ cannot be directly reproduced due to the nonlocality of the
operator. These latter phenomena will be matter of further investigation, together
with a treatment of the stationary problem.

We finally conclude saying that a crucial point to achieve these estimates is an a
priori information on the crossed quantity

/ / |D,H(Du)|" p ddt,

that is obtained using a sort of duality between @ and its adjoint, and has a very pre-

cise meaning in terms of optimality in stochastic control problems. Indeed, recalling
the fact that p is the distribution law of X, one has that if b(-,¢t) = —D,H(-, Du(-, t))
is the optimal drift, then

//]D H(z, Du) |7pdxdt/ / —D,H (z, Du))p dxdt

T
_ / / p(D,H(x, Du)- Du— H(x, Du)) dxdt ~ E / D, H(X,, Du(X,, £)| dt ,
0 Q 0

q>d+2sand q >

and thus an a priori bound on such quantity highlights that the drift has LY'-
regularity along the trajectory of the associated stochastic dynamics. This is a quite
common condition appearing in regularity and uniqueness issues for Fokker-Planck
equations (see [194, 50] 185 [49] and references therein).
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Part 1

Strong maximum principles for
fully nonlinear degenerate PDEs
via subunit vector fields and
applications






Chapter 1

Few basic facts on viscosity
solutions and Carnot groups

1.0.1 Viscosity solutions to fully nonlinear PDEs

This subsection is devoted to collect some basic notions on viscosity solutions’ theory
for fully nonlinear second order PDEs. For a more detailed treatment we refer the
reader to [20, 96] for second order problems and [I15] [I] for first order equations.

Throughout this part we are interested in fully nonlinear second order PDEs of the

form
F(z,u, Du, D*u) = 0 in (1.1)

where x € €2, u is a function defined in 2 and F(z,r, p, X) is a real-valued function
defined in 2 x R x R? x S;. and their evolutive counterpart

O+ F(x,t,u, Du, D*u) = 01in Q x (0,T)

where (z,t) € Q x (0,7T), u is a function defined in Q x (0,7) and F(x,t.r,p, X) is a
real-valued function defined in  x (0,7) x R x R? x S;. The usual ordering is used
on Sy, i.e. Y < X means that X — Y is nonnegative semidefinite. We give some
notions of ellipticity that we will meet within the first part of the thesis.

Definition 1.1. We say that the operator F' = F(x,r,p, M) is uniformly elliptic
with ellipticity constants 0 < A < A if

ATr(N) < F(z,r,p, M) — F(xz,r,p, M + N) < ATr(N)

for everyz € Q, r €R, p e R? and M, N € S; with N > 0.
We say that F' is proper if

F(z,r,p, M) < F(z,s,p, N) ,r <sand N < M .

and degenerate if
F(z,r,p, M) < F(x,r,p,N) ,N <M

Analogous definitions can be given for the time-dependent operator d; + F' (see
e.g. [96, Section 8] and [100]). When dealing with such nonlinear operators the
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typical framework is that of viscosity solutions. The basic idea behind this concept
is to extend the notion of sub- and supersolution for classical linear operators to a
larger set of suitable non-smooth functions so that the classical maximum principle
is preserved. For instance, in the case of the Laplace equation one can prove that
u is subharmonic if and only if for all z € Q and ¢ € C?*(Q) such that u — ¢ has
a local maximum at x, then —Agp < 0 and, consistently, the idea is to take this as
definition of viscosity solution for such nonlinear equations, as we shall see below in
the next definition. This is somehow reminiscent of the classical Perron’s method
[122] for elliptic equations. We have the following

Definition 1.2. (1) We say that a function u : Q — R is a viscosity subsolution of
(equivalently a viscosity solution of FF < 0) in Q if u € USC(Q2) and for every
zg € Q and p € C*(Q) such that u — ¢ has a local maximum at xq, then

F (20, u(w0), Dp(0), D*p(x0)) <0 . (1.2)

(2) We say that a function u : Q — R is a wviscosity supersolution of
(equivalently a viscosity solution of F' > 0) in Q if u € LSC(Q) and for every xy € €2
and o € C?*(Q) such that uw — ¢ has a local minimum at xo, then

F (20, u(x0), Dp(xg), D*¢(20)) > 0 . (1.3)

(8) Finally, a function u : Q — R is called a viscosity solution of (L.1)) in Q if it
s both a viscosity subsolution and a viscosity supersolution.

We also say that F(z,u, Du, D*u) < (>,=) 0 is satisfied in the viscosity sense in
Q2 if u is a viscosity subsolution (resp. supersolution, solution) of in 2. Notice
that a viscosity solution is a continuous function since it is both upper and lower
semicontinuous.

Remark 1.3. One can also define viscosity solutions via the so-called semi-jets.
However, since we will not use such tool here, we prefer to skip the details, referring,
among others, to [96]. In addition, as we will see in the next chapter, when deal-
ing with PDEs modeled on the p-Laplacian, one needs to slightly revisit the above
definition (see Chapter [2)).

We now give some examples of fully nonlinear elliptic PDEs that we will meet
throughout the thesis, referring, among others, to the monographs [62] [190] for other
interesting examples and the expository paper [57] for a gentle introduction to the
subject.

Example 1.4 (Linear elliptic equations). Consider the equation

—Za” E)Zju—kZb JOiu + c(x)u = f(x) .

The corresponding operator is given by F(z,r,p, X) = —Tr(A(z)D?*u(z)) + b(x) -
Du+ ¢(x)u — f(x) and we observe that F' is degenerate elliptic if and only if A > 0.
By taking a;; = d;;, b = 0 and ¢ = f = 0 one recovers the classical Laplace equation.
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Example 1.5 (Quasilinear elliptic equations in divergence form). Such equations
appear in the general form

If the coefficients of the above PDE are differentiable, one can rewrite the operator
as

F(:Ev T, D, X) = —Tr(Dpa(x,p)X) + b(I, r, p) - Z 8l<az(x’p)) :
A well-known example we will discuss within Part I is the m-Laplacian equation
—Ayu := —div(|DulP">Du) =0,

where a(x,p) = |p|f~2p, p > 1. Note that for p = 1 one gets the mean curvature
operator, while for p = 2 the classical Laplace equation. In the limit p = oo one
obtains the so-called oco-Laplacian

ij
For the applications of these equations in the borderline cases in the context of
differential games we refer to [106].

Example 1.6 (Quasilinear elliptic equations in nondivergence form). An equation
of the form

covers all the previous examples as special cases. A relevant proptotype is the viscous
Hamilton-Jacobi equation

—oAu+ H(xz,u, Du) =0

which appears, among others, in models related to the recent theory of Mean Field
Games developed by J.-M. Lasry and P.-L. Lions [163] that we discuss in Part II,
when the diffusion operator —A is replaced by its fractional power (—A)*, s € (0,1),
and in this case we say that the equation is a quasilinear integro-differential equation,
see [31] (and references therein) where viscosity solutions for such PDEs are defined
and used, and Part III in their evolutive form.

Example 1.7 (Pucci’s equations). Pucci’s equations are the simplest examples of
PDEs that can be written in Hamilton-Jacobi-Bellman form and represent the cor-
nerstone to analyze fully nonlinear (uniformly elliptic) second order PDEs. Such
“extremal” equations were introduced by C. Pucci in [201] in d dimension (see also
the earlier work in the plane [200]). These operators were defined in the following
way: let Ly(M) = —Tr(AM), M € S; and B,, a > 0 be the class of matrices

By :={A€S;: A - € > al¢]?, Tr(A) = 1,V¢ € R} .
We define
PHM) = sup LaM (1.4)

AeBa
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and
P (M) = inf LM . (1.5)

@ A€Bqy

As pointed out in [201] (see also [I122, Chapter 17]), one can immediately check the
validity of the representation formulas

PI(M)=—a) e, —[1—(d—1)ale; = —aTr(M) — (1 —da)e;  (L.6)

and

d—1
Pa(M)=—a) e —[1—(d—1)aleg = —aTr(M) - (1 - da)eq (1.7)

k=1

for any M € Sy, where e; < ... < ¢4 are the ordered eigenvalues of the matrix M.
Such operators were then analyzed in the parabolic framework in [13].
These nonlinear operators defined over a different class of matrices were then revisited
by L. Caffarelli and X. Cabré to study properties of fully nonlinear PDEs (see [62]).
In particular, let

A = {A €S NEPP < AE-€ < AJE)? Ve e RY}

The so-called Pucci’s extremal operators on symmetric matrices M € Sy are defined
as

M{A(M) = sup LaM (1.8)
’ A€ Ay A
and

In particular, Mj A and My, are respectively called the mazimal and the minimal
Pucci’s operator. Even in this case, one can check (see [62, Section 2.2]) that the
following hold for every M € S,

MM ==AY e =N e (1.10)

er<0 er>0

and
MiA(M)==A) e =2 e (1.11)
e >0 er<0
The usefulness of the latter operators arises when dealing with uniformly elliptic fully
nonlinear second order equations, since they allow to transfer properties of solutions
from the fully nonlinear operator F' to sub- and supersolutions of equations driven by

the extremal operators M*. In fact one can prove the following easy characterization
that stems from Definition (see e.g. [62, Lemma 2.2]).

Proposition 1.8. The following are equivalent

(i) F is uniformly elliptic with ellipticity constants A and A with 0 < A < A, i.e.
for every M, N € Sg, N >0 and (z,r,p) € Q x R x R? we have

ATr(N) < F(z,r,p, M) — F(x,r,p, M + N) < ATr(N) .
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(ii)) F(x,r,p, M) — F(x,r,p, M — N) < ATr(N~) — ATr(N™") for every M,N € S,
and (x,7,p) € Q x R x R4, where N* and N~ stands for the positive and
negative part of N respectively.

(iti)) M~ (M—N) < F(z,r,p, M)—F(x,r,p, N) < M*(M—N) for every M, N € S,
and (x,7,p) € 2 x R x RY,

Such correspondence turns out to be useful even for some degenerate equations
(see the next Chapter |4 where it will be applied to equations driven by Pucci’s
subelliptic operators), and it is actually a standard way to analyze qualitative and
quantitative properties of viscosity solutions to fully nonlinear equations [62].
Moreover, one can prove that the following inequalities are in force

Py(M) < My qogn(M) and Pr(M) > My, g (M)

We will meet these relations among the extremal operators during the treatment of
Liouville theorems for PDEs over Hérmander vector fields in Chapter [4]

Exzample 1.9 (Hamilton-Jacobi-Bellman and Isaacs equations). When the family
Ay a is replaced by an arbitrary family of linear elliptic operators L®, a € A is any
set, one obtains the so-called Hamilton-Jacobi-Bellman equation, arising in stochastic
control problems

igf{Lau(I) —f*2)} =0
and

sup{Lfu(z) — [*(x)} =0

In particular let us recall that any fully nonlinear equation F = F(z,u, Du, D*u)
which is concave or convex in (u, Du, D*u) can be recasted in one of the above
formulations respectively by means of the Legendre transform. Other important
fully nonlinear second order PDEs are the Isaacs equations coming from differential
games

sup i%f{Lo"ﬁu(x) — [ ()} =0

and
iIﬁlf sup{L*Pu(z) — f*P(x)} =0 .

where «, 8 belong to arbitrary sets A and B respectively. We remind the reader that
every fully nonlinear uniformly elliptic operator can be written in Isaacs form [58]
Remark 1.5].

Example 1.10 (Subelliptic PDEs). One may replace the Euclidean gradient Du, and
hence classical derivatives 0;, by a suitable family of vector fields X = { X7, ..., X,,,},
m < d, which do not necessarily commute, leading to consider PDEs modeled on the
so-called horizontal gradient Dyu = (Xju, ..., X;,u). Analogously, one defines the
symmetrized horizontal Hessian (D%u)* (see Section below). These considera-
tions leads to fully nonlinear PDEs of the form

F(z,u, Dyu, (D?Yu)*) =0,
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where F' is a real-valued operator defined on Q x R x R™ x S,,,, 2 C R?, for some
m < d. Typically, this is the case of PDEs over Carnot groups and other particular
sub-Riemannian geometries that will be the matter of Part I (here m is the dimension
of the horizontal layer in the case of Carnot groups, while d = m = 2 in the Grushin
plane, see below)

Ezxample 1.11. Other important examples of fully nonlinear second order PDEs are
Monge-Ampére equations and Hessian equations. For these and other fully nonlinear
interesting examples we refer to [96], 190]. We finally mention the recent analysis on
“truncated” Laplacian-type operators that appear as sums of the first (or last) k£ < d
eigenvalues of the Hessian matrix (see [40] and references therein), which therefore
fall within the latter class of equations.

1.0.2 Carnot groups

In this section we collect some standard facts on Carnot groups. Here and in the
sequel we will take for granted some standard definitions, referring to [51] for more
details. We recall for the convenience of the reader that a Lie algebra is a vector
space V' endowed with a Lie bracket, that is a bilinear operation [, ] : V x V — V|
and satisfies [z, z] = 0 for every x € V and the Jacobi identity [z, [y, ]| + [z, [z, y]] +
[y, [z,2]] =0 for all z,y,z € V.

Definition 1.12. A Carnot group G of step r is a simply connected Lie group whose
Lie algebra g is stratified of step r, namely there exist linear subspaces Vi, ...,V of g
such that

g=Vid..aV,

with
Vi,Vi|=Vipn 1 <i<r—1and[W,V,]={0},

where [V1,V;] = Span{[a,b] : a € Vi,b € V;}. In particular, the subspace Vi is called
horizontal layer and its elements are called left invariant vector fields. The rank of
G is dim(V4).

One can prove that (see [51, Proposition 1.1.7]) [V;,V;] C Viy; if i +j < r and
[V;, V] = {0} otherwise. One can then identify g with R? via the so-called exponential
map exp : g — G, which turns out to be a diffeomorphism. Given a basis X1, ..., Xy
adapted to the stratification, any = € G can be written in a unique way as

x=-exp(r1 X1+ ... + x4Xy)

and we thus identify * € G with (z1,...,74) € R? and G with (R?,0), where the
group law in these coordinates is determined via the well-known Baker-Campbell-
Hausdorft formula.

We also say that a curve 7 : [a,b] — G is absolutely continuous if it is absolutely
continuous as a curve into R?. Fix now an orthonormal basis X1, ..., X,, of the first
layer Vi. We have the following



Definition 1.13. An absolutely continuous curve v : [a,b] — G is horizontal if there
exists ay, ..., € L([a,b]) such that

Z a;(t )) for almost every t € |a, b

The length of the curve is given by Lg(y f la].

A well-known result by Chow states that any two point in a Carnot group can
be connected by a horizontal curve. Hence, the following definition turns out to be
well-posed

Definition 1.14. The Carnot-Carathéodory (CC) distance between x,y € G is de-
fined by

deo(z,y) = inf{Lg () : v is a horizontal curve joining x to y}

In terms of the layer decomposition of G, one defines a one-parameter family of
dilations d) on G by setting for x = z1 + ... + z,, x; € R", where n; stands for the
dimension of the j-th layer,

T
x) = Z N .
j=1

Moreover, for any = € G, the Jacobian of the map z — §,(z) coincides with A%,
where Q = Z;Zl jn; is the so-called homogeneous dimension. Using such family
of dilations, one can define a norm on G given by ||z|lc := dcc(0,2). However,
one can introduce on G a new norm equivalent to the Carnot-Carathéodory norm
|| - |l which is more suited for computational purposes (see Chapter {4)) and typically
called homogeneou norm. More precisely, (see [51l Section 5.1] for further details)
a homogeneous norm on G is a mapping z — p(z) from G to R such that the
following properties hold true:

(i)  — p(x) is continuous on G and smooth on G\{0};

(i) p
(iif) p(z) = p(=2);
(iv) p(da(z)) = Ap(z) for every A > 0.

Example 1.15. Let G be a Carnot group with stratification Vi, ..., V,. We define a
homogeneous norm on G via the stratification as

(x) = 0 if and only if x = 0;

1

T 27!
2r!
fry E |I‘,L 7 s
=1

where |x;| is the k-dimensional Euclidean norm defined on the vector space V;.

One can show that all homogeneous norms on Carnot groups are equivalent [51]
Proposition 5.1.4] and they satisfy pseudo-triangle inequalities |51, Proposition 5.1.7
and Proposition 5.1.8].



1.0.3 Examples of Carnot groups: The Heisenberg group
and free step-2 Carnot groups

In this section we briefly recall some standard facts on Carnot groups, specifically
we discuss the Heisenberg group and free Carnot groups.

The Heisenberg group H¢ can be identified with (R?>*1 o), where 2d + 1 stands for
the topological dimension and the group law o is defined by

d
roy= <I1 + Y1y -, Tog + Yod, Tad1 + Y2d41 + 2 Z(l‘iywrd — $i+dyi)> :
i=1

The d-dimensional Heisenberg algebra is the Lie algebra spanned by the vector fields

Xi = 0i + 224900441

Xitd = Oiya — 27;00441
for i = 1,...,d and = denotes a point of R2¥*!. Such vector fields satisfy the commu-
tation relations

(Xi, Xivd] = —402¢11 and [X;, X =0forall j #i+d, ie{l,..,d}.

Following Example [1.15] the corresponding homogeneous norm for such structure
can be defined as

ple) = (Z(%)Q) + a0 |- (1.12)

=1

We now turn our attention to free step-2 Carnot groups following [51], Section
14.1], see also [I64]. Such structures appeared first in [120] and later in the context
of control problems in [55]. We first present a more abstract definition and then we
give the representation in coordinates. We start by recalling the following

Definition 1.16. Let r > 2 and s > 1 be integers. We say that F, s is the free
nilpotent Lee algebra with r generators xq,...,x,. of step s if

- F.s 15 a Lie algebra generated by xy, ..., x,.
- Frs is nilpotent of step s.

- For every Lie algebra g that is nilpotent of step s and for every map ® :
{1,...,2.} — @, there is an homomorphism of Lie algebras ® : F, s — g that
extends ®, and moreover it is unique.

Definition 1.17. A Free Carnot group is a Carnot group whose Lie algebra is iso-
morphic to a free nilpotent Lie algebra F, s for some r > 2 and s > 1. Moreover, the
horizontal layer of the free Carnot group is isomorphic to the span of the generators

of Frs.
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We now give a representation of free Carnot groups of step 2 via exponential
coordinates, which will be useful to deduce our sufficient conditions for Liouville
theorems in Chapter [4]

r(r—1)

More precisely, fix an integer 7 > 2 and denote by d = r+—=5—. In R?, let us denote

the coordinates of the first layer by z;, 1 <14 < r and that of the second layer by ¢;;,
1 <j<i<r. Let 0; and 0;; the standard basis vectors in this coordinate system.
Denote the d vector fields on R¢ by

Xy =0, +2 (ijajk—zxjakj> ifl<k<r,

j>k j<k
Xy =0, if1<j<k<r.
The Carnot structure of G, is given by
Vi =Span{X :1 <k <r}and Vo =Span{Xy;: 1 <j<k<r}
The commutation relations for 1 < j < k <r and 1 <i < r are given by
[ Xy, X;] = 4X; and [X;, X] =0

and denote by

r(r—1)
(vaxV) = (131, "'7xrvtr,17 "'7t7“,7“71> cR" xR 2

Definition 1.18. The free Carnot group of step 2 and r generators is G, = (R?

where the group law is defined as

7')7

(zoyk=ap+tyr if 1<k <7,
(xoy)ij =z +yij +2(vy; —wyizy) f 1 <j<k<r.

We also remark that free Carnot groups of step 2 are those that are isomorphic
to a Carnot group G, for some r (see again [51] and references therein).
According to [54] Section 3.4.2], free groups are those whose system of vector fields
X1, ..., X,, generating the algebra is free up to step r. Roughly speaking, this hap-
pens when the X;’s and their commutators up to step r» do not satisfy any linear
relation except the ones holding by the properties of the Lie algebra, namely the
antisymmetry of the Lie bracket and the Jacobi identity.

Remark 1.19. Observe that the free Carnot group of step 2 coincides with the
Heisenberg group only in one dimension, i.e. H! = (R3 o). Indeed for r = 2d
generators, we have a free Carnot group of step 2 if and only if the following equality
holds
2d(2d — 1)

2 )
which is fulfilled only when d = 1. This can be also seen by the commutation relation
between the vector fields, see [54], Section 3.4.2 Example 46]. In fact the vector fields
X,Y in H' are free up to step 2 since X,Y and [X,Y] are linearly independent.
This does not happen for H?, since [X;, X3] = [X5, Xy], which is a nontrivial relation
among the commutators of step 2.

2d+1=2d+
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Remark 1.20. The vector fields inducing the Grushin plane are not free of step 2
since, as we will see in the next Subsection [1.0.4] it happens that Y = x[X, Y], which
is a nontrivial relation between a generator and a commutator.

For later purposes, according to Definition we recall here that the homoge-
neous norm is defined by

PN

p) = (@i + .. +a})’ +t5, + ..+, ) (1.13)

1.0.4 Sub-riemannian geometries of Grushin-type

We now discuss an example of sub-Riemannian geometry which does not fall within
the previous theory of nilpotent stratified Lie groups. Grushin-type geometries are
defined on R? = R? x RY, d = p 4 ¢ > 2, and induced by the vector fields

Xi=0,, ,1<i<p;Y;= 2|70, ,1<j<q.

for (z,y) € R? x R9. The Grushin plane corresponds to d = 2, p = ¢ = a = 1, that
is R? equipped with the basis of vector fields

X =0, and Y =20, .

Note that the vector fields X,Y are not left invariant with respect to any group
law on R? [51, Proposition 1.2.13] and hence Grushin-type geometries cannot be
endowed with any group structure. However, one can easily check that X and Y
satisfy the Hormander condition (cf Definition since at the origin (0,0) we have
Span(X,Y) = Span(X) # R? but [X,Y] = 9, and hence Span(X,Y,[X,Y]) = R?
at any point (z,y) € R% Even in this case one can define a homogeneous norm
similarly to the one considered in the Heisenberg group, although a group structure
is not available. For (z,y) € R? x R? one defines the homogeneous norm

pl(z,9)) = (2P0 + (14 a)?yP)==

which turns out to be homogeneous of degree one with respect to the dilations
o((z,y)) = (Az, \!T*y) and reduces to

p((z,y)) = (2 + 471

in the case of the Grushin plane, where (z,y) € R? and a = 1.

1.0.5 On subelliptic equations

In this section we recall some standard notions one needs to deal with subelliptic
PDEs. Let X1, ..., X,, be a system of vector C'! vector fields. We give the following

Definition 1.21. Letu: Q2 — R, x € Q. The horizontal gradient of u at x is defined
as

Dyu(x) = (Xqu(z), ..., Xpu(z)) € R™ .
The symmetrized horizontal Hessian of u s the S,, matrix whose elements are given
by

(Dru(x)):, = |NiEu@) + X (Xu(x))

= 5 fori,g=1,...m
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Remark 1.22. We point out that the intrinsic Hessian, whose elements are X;(X;u)(x),
is different from the symmetrized horizontal Hessian defined above, since the vector
fields do not commute. Indeed

Xi(Xju(z)) + X;(Xiu(z))
2

Xi(Xju(z)) = + %[Xz-, Xjlu(z) .

We will test our results, especially in Chapter [] to equations of the form
G(z,u, Dyu(z), (Diu(z))*) =0 .

Typically we will consider those operators G satisfying a properly rescaled uniform
ellipticity condition, according to the next Definition.

Definition 1.23. We say that the operator G is uniformly subelliptic with ellipticity
constants 0 < A < A if

ATr(Y) < G(z,r,p, X) — G(z,r,p, X +Y) < ATr(Y)
for everyxz € Q, reR, peR™ and X,Y € S,, with Y > 0.

Similarly to the Euclidean case one can characterize the above property in terms
of (degenerate) Pucci’s extremal operators.

Lemma 1.24. The following are equivalent
(i) G is uniformly subelliptic with ellipticity constants 0 < A < A.

(it) My \(M—=N) < G(z,r,p, M)=G(z,7,p, N) < M3 (M —N) for every M, N €
S and (z,7,p) € Q x R x R™,

Proof. We use the well-known fact that any symmetric matrix N € §,, can be
uniquely decomposed as the sum of two nonnegative symmetric matrices with null
product, i.e. there exist N, N~ > 0 such that NTN- = 0and N = Nt — N~
(which we call the positive and negative part of N). Owing to this property, one
easily shows that (i) (i.e using the inequalities in Definition implies

G(x,r,p, M) — G(z,r,p, M — N) < ATr(N~) — ATr(N1)

for every M, N € S,, and (x,r,p) € Q@ x R x R™  and consequently the right-hand
side of the inequality stated in (ii). Indeed

G(z,r,p, M) — G(z,r,p, M — N) = G(x,r,p, M) — G(x,r,p, M + N7)
+G(z,r,p, M+ N7) = G(z,r,p, M — Nt + N7) < ATr(N™) = \Tr(N7) .

Similarly, one has
G(x,r,p, M) — G(z,r,p, M — N) > NTr(N~) — ATr(N*) .

Then, using the definition of Pucci’s extremal operators one immediately obtains
that the above properties implies (ii). The proof of the fact that (ii) implies (i) is
straightforward. m
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Remark 1.25. By taking N = 0 in Lemma M(ii), one immediately realizes that
M;,A(M> < G(iL‘, P, M) - G<x> D, 0) < M;A(M) :

Such equations with underlying subelliptic structure fall within the theory of
viscosity solutions (cf [I79]). Another way to look at such equations is to exploit
their representation in Euclidean coordinates. To this aim, let ¢ € R?™ be the
matrix whose columns are the coefficients of the vector fields X, ..., X,,, with respect
to the standard basis of R?. For any sufficiently smooth function u we have

Dyu = o” (z)Du

and
(Diu(x))* = o' (z) D*uo () + g(x, Du)

where g(z,p) is a m X m matrix whose elements are

gs(o.p) = <Daa'(x)ai(x> ; Daf(x)ai(x)) .

where the 07’s are the columns of 0. Note that the first order term ¢ is null for
Carnot groups of step 2. Simple examples where the symmetrized horizontal Hessian
contains also first order terms are the Engel group (which is a Carnot group of step
3, see e.g. [179, Example 3]), and the vector fields inducing the Grushin plane (see

Chapter .
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Chapter 2

Strong maximum principles for
fully nonlinear degenerate elliptic

PDEs

Maximum principles are among the most powerful tools in the study of elliptic and
parabolic PDEs. In particular, they allow to deduce several quantitative results such
as a priori estimates, and also uniqueness and stability theorems without knowing a
priori the explicit form of the solution. As we shall see, various forms of maximum
principles are linked to what are known in literature as comparison principles, and
also some important qualitative properties such as Liouville theorems (that we an-
alyze in Chapter . In particular, throughout this chapter we will deduce a form
of the so-called strong mazimum principle for functions satisfying suitable nonlinear
“differential inequalities” that we will make precise below, and apply the results to
study some comparison theorems. We are mainly interested in fully nonlinear second
order degenerate elliptic equations arising in the context of stochastic control and
differential games, among which HJB and HJI equations. Our results turn out to
be new even for some quasi-linear equations modeled on the horizontal p- and oo-
Laplacian.

2.1 Propagation of maxima for linear degenerate
equations: a survey

The purpose of this introductory section is to review some classical results for the
propagation of maxima of linear degenerate PDEs. Let us start recalling that the
strong maximum principle for the Laplace equation asserts that if u € C?(Q2),
being a connected open set of R, solves —Au < 0 and u takes its largest value at a
point xg € €2, then wu is constant.

Let us turn now to a more general linear elliptic operator of the form

Lu = —Tr(A(x)D*u) + b(x) - Du

and assume that A > 0 (i.e. the equation can be degenerate), A € C*(R?) with
bounded derivatives, b : R? — R? is C'' with bounded derivatives. As announced in
the introduction, the problem of propagation of maxima can be formulated as follows
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Problem 2.1. Let Q C R? be open and connected and xy € Q2. Determine the largest
connected, relatively closed subset D(zo) of Q0 containing xo, such that if u € C?*(Q)
satisfies Lu < 0 in Q and u attains its mazimum at xo, then u is constant throughout

D(I())

The set D(xg) is usually named propagation set of xy € Q and will be henceforth
denoted by Prop(zy).
We now remind the coordinate-free description proposed by K. Taira [220], and
obtained through analytical methods via the notion of subunit vector field for linear
operators that we will extend to the fully nonlinear framework in the next section.
We recall that a vector field Z is subunit for —Tr(A(x)D?u), or for the matrix A > 0,
atapointzif A—Z® 7 >0, ie.

T A@)E > |Z(x) - €] VE € R

This concept was introduced by C. Fefferman and D.H. Phong in [111], Section 6.9-
Theorem 6.9.4]. We highlight that this notion is coordinate free, in the sense that one
can always diagonalize the matrix A at  so that A(x) = (X\;d;5);; with Ay, ..., A\, >0
and Apy1 = ... = Ay = 0, where k = rank(A). As we shall see in the next Lemma
2.8 it is possible to prove that Z is subunit for A if and only if it is contained in the
following k-dimensional ellipsoid

k2
nERd5Zi§17nk+1:~‘~:nd:0 :
=1

1

A subunit trajectory is a Lipschitz path 0 : [t1, t5] — € such that the tangent vector
¢'(t) is subunit for A at 6(t) for almost every t. We also note that subunit trajectories
are not oriented, i.e. if 6'(¢) is subunit for A, —6'(¢) is subunit as well. Let also

d

=1

be the so-called drift vector field. A drift trajectory is a curve 0 : [t1,t3] — € such
that ¢'(t) = Xo(6(t)) on [t1, t2] oriented for increasing time. The main result on the
characterization of the propagation set for linear degenerate equations can be stated
as follows and was proved by K. Taira [226, Theorem 7.2.1].

Theorem 2.2. The propagation set Prop(xg) of xg € Q contains the closure in ) of
all points y € ) that can be reached from x following a finite number of subunit and
drift trajectories.

This result highlights the mechanism of propagation of maxima and why the
strong maximum principle holds true for the Laplace equation (or generally, uni-
formly elliptic equations). Roughly speaking, it is saying that if A is nondegenerate,
i.e. k =rank(A) = d, then the maximum propagates in a neighborhood of z,, but
when A is degenerate, the maximum propagates only in a small ellipsoid of dimen-
sion k and in the direction of the vector field Xj.

In addition, D. W. Stroock and S.R. S. Varadhan [225] gave a (non-coordinate free)
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characterization of the propagation set as a consequence of their results on the sup-
port of the diffusion process corresponding to the above linear operator. As it is
proved in [226, Theorem 7.2.2], the propagation set in Theorem coincides with
the Stroock-Varadhan’s characterization.

In the case when the operator is written as a sum of square of smooth vector fields
Yy, ..., Y, perturbed by a smooth vector field Yy, i.e. Lu:= - " Y2u— Yy, J.-M.
Bony [52] proved that the maximum propagates along the so-called Hill’s diffusion
and drift trajectories, whenever the Lie algebra generated by the vector fields has
constant rank throughout 2. We recall that a Hill’s diffusion trajectory is a curve
0 : [t1,t3] — Q such that 0'(¢t) = Yi(0(t)) with 0'(t) # 0 on [t1,t5], while Hill’s drift
trajectories are defined by replacing Y with Y;, see [135]. In particular, the propa-
gation set in Theorem coincides with that of J.-M. Bony and C. D. Hill, see [220],
Theorem 7.2.4].

The results presented above are our starting points to develop the analysis on strong
maximum principles for fully nonlinear degenerate equations, and our results can be
seen as nonlinear degenerate extensions to these fundamental contributions.

2.2 Results, basic notions and standing assump-
tions

Our aim is to investigate the validity of SMPs and some Strong Comparison Princi-

ples for semicontinuous viscosity subsolutions and supersolutions of fully nonlinear
second order PDEs
F(x,u,Du,D*u) =0 inQ, (2.1)

where F : Q x R x (R¥\{0}) x Sy — R, Q is an open connected set of R? and Sy is
the set of d x d symmetric matrices. Our basic assumptions are

(i) F is lower semicontinuous and proper in the sense of [90], i.e.

F(z,r,p,X) < F(z,s,p,Y), ifr<s,Y<X;

(i) (Scaling) for some ¢ : (0,1] — (0, +00), F satisfies

F(x,85,6p,X) > ¢(§)F(z,5,p,X)
for all £ € (0,1], s € [-1,0], z € Q, p € RN\{0}, and X € Sy;

where Y < X means that X —Y is nonnegative semidefinite, the usual ordering in Sy.
Moreover we assume that the operator F' is nondegenerate elliptic in the direction
of some rank-one matrices identified by the next definition.

Definition 2.3. Z € R? is a generalized subunit vector (briefly, SV) for F at x €

if
sup F'(z,0,p, I —yp®p) >0 Vp € R? such that Z -p #0;
>0

Z : Q0 — R? is a subunit vector field (briefly, SVF) if Z(x) is SV for F at x for
every x € €.
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The name is motivated by the the notion introduced by C. Fefferman and D.H.
Phong [I11] for linear operators

F(z, D*u(z)) := —Tr(A(z) D*u(z)) (2.2)

recalled in the previous section. It is easy to show that a classical subunit vector is
a generalized SV in our sense, and that if Z is a SV according to Definition with
F linear, then rZ is subunit for the matrix A for all » > 0 small enough, see Section
231

Our first result concerns the propagation of maxima of a subsolution to ([2.1)
along the trajectories of a subunit vector field.

Theorem 2.4. Assume F satisfies (i), (ii), and it has a locally Lipschitz subunit
vector field Z. Suppose u € USC(Q) is a viscosity subsolution of attaining a
nonnegative mazximum at xo € Q. Then u(z) = u(zg) = maxqu for all x = y(s) for
some s € R, where y'(t) = Z(y(t)) and y(0) = xy.

If F' has more than one SVF, say a family Z;, i = 1,...,m, we can piece together
their trajectories to find a larger set of propagation of the maximum. It is natural
to consider the control system

m

y(t) =Y Ziy1)Bi(t) , (2.3)

=1

where the controls ; are measurable functions taking values in a fixed neighborhood
of 0. If this system has the property of bounded time controllability , namely

Vxg,z1 € Q2 I atrajectory y(-) of (2.3) with y(0) = xg, y(s) = z1,
y(t) e QVte0,s], (BTC)

then a nonegative maximum of the subsolution u propagates to all €2, and therefore
u is constant. A classical sufficient condition for (BTC), for vector fields smooth
enough, is the Hormander condition [130], see also Remark below

Definition 2.5 (Hérmander condition). The C™ vector fields Zu, ..., Z,, are said to
satisfy the Hormander condition if Z1, ..., Zm and their commutators span R? at each
point of ).

Then we have the following

Corollary 2.6 (Strong Maximum Principle). Assume (i), (i), and the existence of
subunit vector fields Z;, v = 1,...,m, of F satisfying the Hormander condition. Then
any viscosity subsolution of ([2.1)) attaining a nonnegative mazimum in ) is constant.

This result is a generalization to fully nonlinear equations of the classical max-
imum principle of Bony [52] for smooth subsolutions of linear equations (see also
[226]).

Our main application concerns fully nonlinear subelliptic equations, as defined
by Manfredi [I79]. Given a family X = (X7, ..., X,,,) of C! vector fields in Q one
defines the intrinsic (or horizontal) gradient and intrinsic Hessian as

D/YU = (Xlu, ceey Xmu), (Di,u)w = Xl(X]u)
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A subelliptic equation has the form
G(z,u, Dyu, (D3u)*) =0, (2.4)

where Y* is the symmetrized matrix of Y and G : Q x R x (R™\{0}) x S, =+ R
satisfies at least (i). We assume that G is elliptic for any = and p fived in the
following sense:

supG(x,0,¢, X —vq®q) >0 Vre, geR™, 0, X €S, 2.5
pG(z,0,q, Y4 ® q q q

7>0

By rewriting the equation ([2.4)) in Euclidean coordinates we find an equivalent equa-
tion of the form (5.47) with F' having Xj,..., X, as subunit vector fields. As a
consequence we will prove the following SMP for fully nonlinear subelliptic prob-
lems:

Corollary 2.7. Assume G verifies (i), (ii), and (2.5)), and the vector fields X, ..., X,
satisfy the Hormander condition. Then any viscosity subsolution of (2.4) attaining
a nonnegative maximum in ) is constant.

In Section [2.4.1] we give several examples of operators satisfying the assumptions
of this result, including the p-Laplacian, the oco-Laplacian, and Pucci’s extremal
operators associated to Hormander vector fields. Let us recall that the generators
of stratified Lie groups, or Carnot groups, satisfy the Hormander property. Many
examples of such sub-Riemannian structures can be found in [51], the most famous
being the Heisenberg group, Example [2.26] and Subsection [1.0.2, Therefore the last
Corollary applies to a large number of degenerate elliptic PDEs. In Section [2.4] we
also give applications to Hamilton-Jacobi-Bellman and Isaacs equations.

Next we make an application to a Strong Comparison Principle, that is, the
following property:

(SCP) if u and v are a sub- and supersolution of (5.47) and u — v attains a non-
negative maximum in §2, then u = v+ constant.

If €2 is bounded the SCP implies the usual (weak) Comparison Principle, namely,
u < v in 2 if in addition v € USC(Q), v € LSC(Q), and u < v in 9. For a class of
equations that can be written in Hamilton-Jacobi-Bellman form we can show that
w := u — v is a subsolution of a homogeneous PDE Fy(z, w, Dw, D*w) = 0 satisfying
the SMP, and therefore we deduce immediately the SCP. A model problem is the
equation

MT((D3u)*) + H(z, Du) = 0, (2.6)

where M™ denotes the Pucci’s maximal operator (see Sectionfor the definition),
X =(Xy,..., X;,) are Hormander vector fields, and H(z,p) = sup,{p-b*(x)+ f*(z)}
with data 0%, f* bounded and Lipschitz uniformly in a. Remarkably, this result
implies the (weak) Comparison Principle also in some cases for which it was not yet
known, see Section [2.5]

The plan for this chapter is the following. In Section [2.3| we prove a geometric
property of the propagation set of an interior maximum in terms of SV and deduce
the connection with the controllability of system , as well as a Hopf boundary
lemma. Then we get some strong maximum and minimum principles. Section [2.4]
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presents the applications to some subelliptic nonlinear equations associated to a
family of vector fields, to HJB and HJI equations, and some other examples. All
these results are new, except for the Euclidean case, i.e., when X is a basis of R
Finally, in Section we prove the Strong Comparison Principle and give some
examples.

2.3 Strong Maximum and Minimum Principles

2.3.1 Definitions and preliminaries

We begin by comparing our Definition of subunit vector for the operator F' with
the classical one given by Fefferman-Phong for linear operators . We recall
that a vector Z is subunit for A at a point x, that we freeze and do not display, if
A>Z® Z(x). Then

F(z,0,p, 1 —yp@p) = —TrA+7p-Ap > —TrA+~ > ZiZip;p; = —TrA+~|Z(z) p|*
i,J
which can be made positive for v large enough if Z - p # 0. As a partial converse we

can prove the following.

Lemma 2.8. If Z is a SV at « for F linear (2.2)), then rZ is subunit for A(x) for

some r > 0.

Proof. In view of Definition [2.3] one easily observes that Z is SV if and only if

Z a;;pip; = Tr(Ap ® p) > 0 for all p such that p- Z # 0.

1,J

Set k = rank(A). Then, one may always diagonalize the matrix A in order to have
that
Q5 :/\,513 AN >0fore=1,..k \=0fori=k+1,...,d,

so the above condition reads

Z A\ip? > 0 for all p such that p- Z #0 . (2.7)

One can check the following easy characterization [226]: Z is subunit for A if and
only if rZ is contained in the following ellipsoid

k2
EZZ{UERCI:Z%Sl,77k+1:~-:77d=0}
i=1

1

for some small r. Then, if rZ does not belong to E there exists a component Z; # 0

2
with 7 = k4 1,...,d, since, up to rescaling, the condition Ele Z— < 1 is always
satisfied. Thus, by taking p = e; it follows that p- Z # 0, but >, \pp? = 0, a

contradiction with ([2.7]). O
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Example 2.9. It is easy to check, by means of Cauchy-Schwarz inequality, that the
columns of a positive semidefinite matrix A are subunit vectors after multiplication
by a sufficiently small constant. Moreover, if A can be decomposed as A = oo’ with
o € R¥™>™ then the columns of ¢ are subunit vectors for A (see, e.g., [23, Example
2.2-2.3)).

Since equation ([2.1]) can be singular at p = 0, e.g. those involving the p-Laplacian,
the notion of viscosity solution is slightly weakened with respect to the classical one
[96], as follows:

Definition 2.10. A function u € USC(2) (resp. LSC(Q)) is a viscosity subsolution
(resp. supersolution) of the [2.1)) in Q if, for every v € C*(Q) and x mazimum (resp.
minimum,) point of u — ¢ such that Dp(x) # 0

F(z,u(x), Dp(z), D*p(x)) < 0 (resp. > 0) .

We recall that the notion of viscosity solution for fully nonlinear PDEs is con-
sistent with that of classical C? solution by standard arguments. In the case of the
p-Laplace equation, the equivalence of the above definition to that of p-harmonic
functions can be found in [145, Theorem 2.7 and Corollary 2.8]. From now on all
sub- and supersolutions will be meant in the viscosity sense.

We define the Propagation set of a viscosity subsolution u of attaining a
nonnegative maximum at x € () as

Prop(z,u) :=={y € Q: u(y) = u(z) = mgxu}.

We will need the notion of generalized exterior normal, also called Bony normal
or proximal normal (see, e.g., [52] or [15, Definition 2.17]):

Definition 2.11. A unit vector v is a generalized exterior normal to a monempty
set K CR? at z € OK if there is a ball outside K centered at z + tv for somet > 0
touching K precisely at z, i.e. B(z+tv,t) N K = {z}. Then we write that vLK at
z, and we use also the notation

K* :={z € OK : there exists v1 K at z} .

As in the classical paper of Bony [52] we will use a geometric characterization
of invariant sets for the control system (2.3)), that we recall next. We consider as
admissible the control functions 5 = (51, ..., Bn) : [0, +00) — R™ in the set

B:={3:) B(t) < 1land B is measurable Vi =1,..,m},
=1

and denote with y,(-, 8) the solution of the system ([2.3]) with initial condition y(0) =
x, which exists at least locally if the vector fields Z; : Q@ — R? are locally Lipschitz.
A set K C Q is invariant for the system if for all x € K, 8 € B and 7 > 0 such
that the solution y, (-, 5) exists in [0, 7), we have y.(t, ) € K for all ¢t € [0, 7).
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Theorem 2.12. Let Z; : Q — R? be locally Lipschitz and K # 0 be a relatively
closed subset of Q. If for all x € K* N Q and for all v 1K at x

Zi(x)-v=0 Vi=1,...,m, (2.8)
then K is invariant for (2.3)).

Proof. We can repeat the proof of [22, Theorem 2.1}, which combines the classical
result for = RY with a localization argument. Then it is easy to see that it is
enough to assume ([2.8]) at points x € K N Q. O]

2.3.2 Propagation of maxima

We first give a technical result providing a crucial geometric property of the propa-
gation set.

Proposition 2.13. Let u be a viscosity subsolution of that achieves a nonneg-
ative mazimum at x € Q). Assume that (i)-(ii) hold and F has a subunit vector field
as in Definition . Then K := Prop(z,u) is such that for every z € K* N and
for every v 1K at z we have Z - v =0 for every subunit vector of F' at z.

Proof. We fix z € 0K N and vL K at z. Arguing by contradiction, we assume
there exists a subunit vector Z at z such that Z - v # 0. By definition of normal we
can take R > 0 and y = z + Ry such that B(y, R) C Q\K. We divide the proof in
two steps.

Step 1. We claim that there exist r > 0 and a function v € C%(R?) such that
F(x,v(x), Dv(z), D*v(z)) > C > 0 for every z € B(z,7) ,

with the properties v(z) =0, —1 < v < 0 in B(y, R) and v > 0 outside B(y, R).
To see this, consider
v(z) = e VR gmleul® (2.9)

Note that v = 0 on 0B(y, R) (which gives v(z) = 0) and v > 0 outside B(y, R).
Moreover —1 < v < 0 in B(y, R). By direct computations we have

Du(z) = 2ve " (2 — y))

and
D*v(x) = 2ve VT — 2y(z — y) @ (2 — y)) -

Now, using that z —y = —v and the scaling property (ii) we have

Pz, 0(2), Do(=), D*0(2) = F(2,0, 276 (<), 29¢ 7 (I — 20 @ 1))
> (25(2’}/6771%2)}7(2, 0,—v,I —2yw®v). (2.10)

By the definition of subunit vector at z and Z - v # 0 we obtain
F(z,0,—v,I —2yw®v) >0
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for some v > 0. Then and ¢(&) > 0 for all £ > 0 give
F(z,v(2), Dv(z), D*v(2)) >0 .
Since F' is lower semicontinuous we can conclude that there exists r > 0 such that
F(z,v(x), Dv(x), D*v(z)) > C > 0 for every x € B(z,7) . (2.11)

Step 2. We claim now that there exists € > 0 such that u(z) — u(z) < ev(z) in
X := B(z,r) N B(y, R).
Let us choose € > 0 small enough such that u(x) — u(z) < ev(x) for every x € 0X.
To prove that the inequality holds on the whole X, suppose by contradiction that
there exists Z € X such that u(Z) — u(z) — ev(Z) = maxy(u — u(z) — ev) > 0. Since
ev is smooth in RY, using that u — u(z) is a viscosity subsolution of and the
scaling property (ii) we get

o(e)F(z,v(T), Dv(T), D*v(%)) < F(Z,ev(Z), eDv(T), eD*v(z)) < 0

which contradicts because ¢ > 0.

Then u(z) — ev(z) < u(z) and u(z) — ev(z) = u(z) since v(z) = 0. Therefore, the
function ®(z) := u(z) — ev(z) has a maximum at z in X. Moreover, in B(z,7)\X,
we have v > 0 and u(z) — ev(x) < u(z) <u(z). As a consequence the function ®(x)
has a maximum in B(z,r) at 2. Since ev € C*®(R?), F is proper, using also the
definition of viscosity subsolution and (ii), we get

() F(z,v(2), Dv(z), D*v(z)) < F(z,u(2),eDv(z),eD*v(z)) <0,
a contradiction with (2.11]). O
Our main result is the following, containing Theorem as a special case.

Theorem 2.14. Let u be a viscosity subsolution of that achieves a nonnegative
mazimum at x € Q). Assume that (1)-(ii) hold and F' has locally Lipschitz continuous
subunit vector fields Z; - Q — R, i = 1,...,m. Then Prop(x,u) contains all the
points reachable by the system (2.3)) starting at x, i.e., if y = y.(t, ) for some
t> 0,5 € B, then y € Prop(x,u).

Proof. 1f Prop(z,u) = 2 the conclusion is true. Otherwise, for all z € 9 Prop(x, u)NQ2
Proposition implies Z;(z) - v = 0 for all v Prop(z,u) at z and i = 1,...,m.
Then Theorem ensures the invariance of Prop(x,u) for the system ({2.3)), and
therefore all trajectories starting at = remain forever in Prop(z, u). ]

Corollary 2.15 (Strong Maximum Principle). In addition to the assumptions of
Theorem suppose the system (2.3)) satisfies the bounded time controllability prop-

erty (BTC). Then u is constant.

Proof. 1If (BTC) holds then any point of Q2 is reachable by the system (2.3 starting
at z. Then Theorem [2.14] gives Prop(z, u) = Q. O
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Remark 2.16. Before proving Corollary we recall that the classical Hormander
condition requires that

(H) the vector fields Z;, i = 1,...,m, are C*° and the Lie algebra generated by them
has full rank d at each point of ).

The smoothness requirement on Z; can be reduced to C* for a suitable k and consid-
erably more if the Lie brackets are interpreted in a generalized sense, see [112] and
the references therein.

Proof of Corollary[2.6, By the classical Chow-Rashevskii theorem in sub-Riemannian
geometry and its control-theoretic version (see, e,g, [I5 Lemma IV.1.19]), for any
z € () the set of points reachable from z by the system contains a neighborhood
of z. Since u € USC(Q), K = Prop(z,u) = {y € Q : u(y) = maxu} is relatively
closed. Then 2 connected implies that either K = € or K is not relatively open.
In the latter case there would be z € K with no neighborhood contained in K, a
contradiction with Theorem 2.14l Then K = . O

Remark 2.17. Note that the existence of a SV at = for F' and the scaling property
(ii) imply
limsup F(z,s,p,X) >0,
(s,p,X)—(0,0,0)
a weaker condition than F'(x,0,0,0) > 0 used in [14§].

Remark 2.18. 1t is easy to see from the proof of Proposition that the function
¢ in the scaling property (ii) can be allowed to depend also on z, s, p, and X. What
is really needed is that F(z, s,p, X) > 0 implies F'(z,&s,&p, £X) > 0 for all € € (0, 1]
and all z,s,p, X.

Remark 2.19. In all the previous results the scaling assumption (ii) on F' can be
avoided if there is F' satisfying all conditions and approximating F' in the sense that

F(x,es,ep,eX) > F(z,es,ep, eX) + ¢(e)(e)

with lim. ,o+ ¢(¢) = 0. Indeed, in the proof of Proposition one can see that
(2.11]) still holds under this assumption (cf. [21]).

We end this section with

Lemma 2.20 (Hopf boundary lemma). Let U C Q be an open set, zo € OU, u €
USC(U U{zo}) be a viscosity subsolution of (2.1)) in U such that

(a) u(zo) > u(z) for every x € U and u(xy) > 0;
(b) there exists a ball B := B(y, R) such that B C U and BN OU = {x,}.

Assume that F' satisfies (i)-(ii) and there exists a SV Z for F' such that p := xo —y
satisfies p- Z # 0. Then, for any w € R? such that w - p < 0, we have

u(zg + Tw) — u(xg)

lim sup <0

T—0* T
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Proof. As in Step 1 of Proposition we define v as in , which turns out to
be a strict classical supersolution in X := B N B(wg,r) for a suitably small r > 0
because p - Z # 0. Then, arguing as in Step 2 of Proposition [2.13| one proves that
u(z) — u(wy) < ev(w) for every x € X. To conclude, it is then sufficient to observe
that, for any w € R? such that w - p < 0, one has

u(zo + Tw) — u(xg)

lim sup < eDu(xg) - w = 2ye ¥ p Ly <0 .

T—0t T

2.3.3 Propagation of minima

Various Strong Minimum Principles for (viscosity) supersolutions of (2.1)) can be
easily derived from the results of the previous section by recalling that v € LSC(2)
is a supersolution of ((2.1)) if and only if u = —wv is a subsolution of

—F(z,—u,—Du,—D*) =0 in Q.

Therefore one can read properties of the minima of v from the preceding results by
applying them to v and

F~(z,r,p,X) = —F(z,—r,—p,—X).

Let us make explicit the assumptions on F' that imply a Strong Minimum Principle.
First we replace (i)-(ii) by

(i) F:QxR?x RN\{0} x S; — R is upper semicontinuous and proper.

(ii") For some ¢ > 0 the operator satisfies F'(x,&s,&p, X)) < ¢(§)F(z, s,p, X) for
all £ € (0,1] and s € [0, 1].

Moreover, a vector Z is a subunit vector for F'~ at z if and only if

ir;%F(x,O,p, wRp—1)<0 VpeR? such that Z-p #0. (2.12)
ol

Now we can easily get the following properties of minima.

Corollary 2.21. Let v € LSC(Q) be a viscosity supersolution of that achieves
a nonnegative minimum at v € Q. Assume that (i')-(ii’) hold and Z; : Q — R,
t = 1,...,m, are locally Lipschitz subunit vector fields of F'~, i.e., at each x €
Zi(x) verifies (2.12). Then v(y) = v(x) = mingv for all points y reachable by the
system starting at x.

Corollary 2.22 (Strong Minimum Principle). In addition to the assumptions of
Corollary suppose the system satisfies the bounded time controllability
property . Then v is constant. This holds in particular if the fields Z;, i =
1,...,m, verify the Hormander condition.
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2.4 Some applications

2.4.1 Fully Nonlinear Subelliptic Equations

Our main application concerns fully nonlinear subelliptic equations. In this frame-
work, one is given a family X = (X1, ..., X,,) of C%! vector fields defined in Q. The
intrinsic gradient and intrinsic Hessian are defined as Dyu = (Xju, ..., X;yu) and
(Diu);; = X;(X;u). After choosing a base in Euclidean space we write X; = 07 - D,
with 07 : Q — R and o = o(z) = [o'(2), ..., c™(z)] € R™™. Then

Dyu=0"Du= (6" Du,...,c™ - Du)

and o
X;(Xju) = (6" D*u 0)i; + (Do’ o*) - Du .

Denote by Y* the symmetrized matrix of Y. By the chain rule (see, e.g., [34, Lemma
3]) one can obtain that for u € C*

(D3u)* = o" D*uo + g(z, Du) ,
where the correction term g is
(90, P))is = (Do’ o) - p+ (Do o) -]
Then the subelliptic equation can be written as
G(z,u,0" (x)Du, o’ (z)D*uo(x) + g(x, Du)) =0, (2.13)
which is of the form if we define
F(z,r,p,X) = G(x,r,0" (z)p, 0" (2) Xo(z) + g(z,p)) . (2.14)

Lemma 2.23. If G satisfies properties (i), (ii) and (2.5)), then F' satisfies properties
(i) and (ii) and the vector fields o' are subunit for F in the sense of Definition .

Proof. (i) holds because X <Y implies 0 ()Xo (z) < o7 (z)Yo(x), so F is proper.
(ii) holds for F'if it does for G' because g(z, p) is positively 1-homogeneous in the
variable p.
To prove that any X; is SV for F' we use property of G with ¢ = o' (2)p,
X =o0To+ g to get

F(2,0,p, I=yp@p) = G(x,0,0(x)" p,0" (z)Io(x)—y(o" (2)p)@(0" (z)p)+g(x,p)) > 0
for some v > 0 if o*(z) - p # 0. O

This Lemma and Theorem give the following propagation of maxima and
SMP.

Corollary 2.24. Assume G verifies (i), (ii), and [2.5)), and let u be a subsolution of
or, equivalently, , attaining a mazimum at x € Q). Then Prop(z,u) con-
tains all the points reachable from x by the system with Z; = X;. In particular
if the property holds for such system then u is constant.
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From this we get immediately the Strong Maximum Principle for subelliptic equa-
tions with the Hérmander condition, Corollary 2.7], as in the proof of Corollary [2.6]

Example 2.25. A very simple example in R? of vector fields that fail to span all
R? at some point but satisfy the Hormander condition are the Grushin vector fields,

namely,
1 0
og(x) = (O $1) :

In this case the symmetrized horizontal Hessian is given by

4 us
D%u)* = oL () D*uog(x) + g(x, Du) = oo @ ity ? :
(Dxu)" = og () g(7) +g(x, Du) Tilgyzy + 755 LUy,

Exzample 2.26. The most studied examples of vector fields satisfying the Hormander
condition are the generators of a Carnot group: see the treatise [51] for a comprehen-
sive introduction and for the theory of linear subelliptic equations in such groups.
The simplest prototype of Carnot group is the Heisenberg group H' in R?® whose
generators are

1 0
OmHL (I’) = 0 1
2[[’2 —2]71

Here the correction term of the Hessian is ¢ = 0, and this occurs for all groups of
step 2. An example of Carnot group of step 3 where g(x,p) # 0 is the Engel group,
see e.g. [34, Example 3].

Next we list some examples of equations of the form
c(x)|u* " u — a(z) E(Dxyu, (D3u)*) = 0 (2.15)

where we assume E : R?\{0} x R™*™ is positively homogeneous of degree a > 0,
¢, a are continuous and satisfy

¢c>0,a>0, and eitherc=0ora <k ,k>0. (2.16)

We give some examples of operators E for which the SMP and Strong Minimum
Principle for equation are known to hold in the Euclidean case, i.e., if the
fields X are the canonical basis of R see [2I]. Our contribution is that they hold
for Hormander vector fields as well.

Example 2.27. The subelliptic co-Laplacian |40} 42] 234] is
—Ax oot = —Dyu - (D3u)*Dyu
where ¥ = —p - Xp is homogeneous of degree o = 3 and is satisfied because
E(¢,X =14 ®q) = —q- Xq+q" .

Note that the associated operator F' satisfies also the condition (2.12). Then the
equation ([2.15) with E the oo-Laplacian satisfies both the SMP and the Strong
Minimum Principle.
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Exzample 2.28. A generalization of the previous example (considered in [43] for the
evolutive case) is

—Ah u=—|Dxu|"?(D3u)*Dau - Dyu
with h > 0, where F is homogeneous of degree h and satisfies because
E(q, X —vq®q) = E(g, X) +lq/""" .
Exzample 2.29. The subelliptic p-Laplacian, m > 1, is
—Axu = —divy(|Dayulf ?Dru) = —(|Dxulf *Axu+ (p — 2)| Daulf " Ax ou)

where Ayu := Tr(D%u) is the sub-Laplacian. Here E is homogeneous of degree
a = p—1and (2.5) holds because

E(q, X —vq®q) = E(q,X) +7]q/"(p — 1).

Similarly one checks . Recently the SMP and a Strong Comparison Principle
were proved in [67] for weak C solution of similar equations involving the subelliptic
m-Laplacian.

Since the p-Laplacian is in divergence form the natural notion of solution for
—Ay,u = 0 is variational. The equivalence of solutions in Sobolev spaces with
viscosity solutions was shown by T. Bieske [41] in Carnot groups. For this homoge-
neous equation the SMP can also be deduced from the Harnack inequality, see the
references in [67].

Example 2.30. For fixed 0 < A < A, the Pucci’s extremal operators on symmetric
matrices M € S; are

MFT(M) = -\ Z er — A Z e =sup{—Tr(AM): A€ Sy, NI < A<AI} (2.17)

e >0 er<0

M(M)==A> e =AY ep=inf{-Tr(AM): A€ Sy, Ml < A< AT} (2.18)

e >0 e <0

They are 1-homogeneous and satisfy (2.5)) because
MA(X =9q®q) 2 M (X =g ®q) > M (X) = Mgl

If we take a subelliptic Pucci’s operator E((D3u)*) = M™*((D%u)*) then the equa-
tion (2.15)) satisfy the SMP and the Strong Minimum principle, and the same holds
if M™ is replaced by M™.

2.4.2 Hamilton-Jacobi-Bellman Equations

We are given a family of linear degenerate elliptic operators
L = —Tr(A%*(x)D*u) — b*(x) - Du + ¢*(x)u (2.19)
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where the parameter « takes values in a given set, A%(z) > 0 and ¢*(x) > 0 for all
x and «. The H-J-B operators are

Fy(z,u, Du, D*u) := sup L*u, Fi(x,u, Du, D*u) := inf L*u (2.20)

and we assume that Fy(z,r,p, X), F;(x,r,p, X) are finite and continuous for all en-
tries. They are clearly proper and positively 1-homogeneous. We can characterize
the subunit vectors of these operators as follows.

Lemma 2.31. Let Z € R? and x € Q.

i) Z is SV for F; at x if and only if Z is subunit for all the matrices A*(x), i.e.,
A%(z) > Z ® Z for all a;

i) Z is SV for Fs at x if there exists & such that Z is subunit for the matriz A*(x).

Proof. i) First suppose A%(x) > Z ® Z for all a. Then, for p-Z # 0 and ~ large
enough,

Fy(w,0,p, I = 7p @ p) = inf{=TrA%(z) + yp - A%(x)p — b%(x) - p}
> inf{—TrA%(z) — b*(z) - p} +v|Z - p|* > 0.

Viceversa, suppose Z is not a subunit vector of A%(x). Then there exist p such
that p- Z # 0 and p- A%(x)p = 0. Then, for any n € R and v > 0

Fy(x,0,np, 1 = yn’p @ p) < —TrA%(z) — nb*(z) - p < —nb(z) - p.
But the right hand side is < 0 by choosing 1 = sign(b* - p), and so Z is not SV for
E;.
ii) Suppose A%(z) > Z ® Z. Then, for p- Z # 0 and ~ large enough
Fy(2,0,p, I =p @ p) = sup{=TrA(2) + 7p - A*(x)p — 0"(2) - p}
> —TrA%(x) +7|Z - p|* = b%(x) -p>0.
O

The results of sections [2.3.2] and [2.3.3| combined with this Lemma give informa-
tions on the sets of propagation of maxima and minima of sub- and supersolutions.
This was studied in detail in the papers by M. Bardi and F. Da Lio [22, 23] using also
tools from diffusion processes and differential games. Therefore we only point out
explicitly a SMP for the concave H-J-B operator F; that we will exploit in Section
2.5 Its proof is an immediate consequence of Corollary and Lemma 2.31] and
therefore it is more direct than the one in [23]. We also give a Strong Minimum
Principle for the convex operator F; following from Corollary

Corollary 2.32. Assume Z; : Q — R? i =1,...,m, are locally Lipschitz vector fields
such that

A¥(x) > Zi(z) ® Zi(x)  for all o, i, and x,

and the system (2.3) satisfies the bounded time controllability property (BTC|). Then
i) any subsolution of inf, L%u = 0 attaining a mazimum in Q is constant,
ii) any supersolution of sup, L®u =0 attaining a minimum in § is constant.
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2.4.3 Hamilton-Jacobi-Isaacs Equations

Now, we are given a two-parameter family of linear degenerate elliptic operators
L*Py = —Tr(A*?(2)D*u) — b*P(x) - Du + ™ (z)u

where the parameters «, 3 take values in two given sets, A%?(z) > 0 and ¢*?(z) > 0
for all z, a;, . The Hamilton-Jacobi-Isaacs (briefly, H-J-I) operators are

F_(z,u, Du, D*u) := supinf L*Pu F,(z,u, Du, D*u) := inf sup L*"u
g @ @ B

and we assume that F_(x,r,p, X), F(x,r,p, X) are finite and continuous for all
entries (z,7,p, X) € Q x R? x R? x S;. They are clearly proper and positively 1-
homogeneous. We can find subunit vectors of these operators following the arguments
of Lemma 2.31]

Lemma 2.33. Let Z € R? and x € Q. )
i) Z is SV for F_ at x if there exists 3 such that A%P(x) > Z ® Z for all a;
i) Z is SV for F\ at x if for all a there exists () such that A*P)(x) > 7 ® Z.

Then we get the following SMP for the H-J-I equations.

Corollary 2.34. Assume Z; : Q@ — R%, i = 1,...,m, are locally Lipschitz vector fields
such that the system satisfies the bounded time controllability property .
Then

i) if there exists 3 such that

AP (x) > Zi(2) ® Zi(z)  for all o, i, and z,

then any subsolution of supginf, LBy =0 attaining a mazimum in § is constant;
ii) if for all a there exists 5(«) such that

AP () > Zi(z) @ Zi(z)  for alli and x
then any subsolution of inf, supg LBy =0 attaining a mazimum in 0 is constant.

Sufficient conditions for the Strong Minimum Principle can be easily found in the
same way, as follows.

Corollary 2.35. Assume Z; : Q@ — R%, i =1,...,m, are locally Lipschitz vector fields
such that the system (2.3)) satisfies the bounded time controllability property (BTC)).
Then

i) if for all B there exists af3) such that

A“PB () > Zi(2) ® Zi(x)  for all i and z,

then any supersolution of supg inf, L*Pu = 0 attaining a minimum in Q) is constant;
ii) if there exists & such that

A%P(z) > Zi(2) ® Zi(x)  for all B, 4, and x,

then any supersolution of inf, supg LBy =0 attaining a minimum in ) is constant.

30



Exzample 2.36. If X = (X1,..., X,,) are C1! vector fields on Q satisfying (BTC),

a,b € C(Q) are nonnegative, and M™, M~ denote the Pucci’s extremal operators,
then the equation

a(x)M*((Diu)") + b(z) M~ ((Diu)") =0
is of H-J-I form and satisfies both the SMP and the Strong Minimum Principle.

2.4.4 Other examples and remarks

All the examples of the previous sections satisfy the following property, stronger than
Definition [2.3]

lim F(z,0,p, I —yp®p) = +oo ¥p € R? such that Z-p #0. (2.21)

Y—+0oo

If F" has a SV Z at z satisfying (2.21)), then clearly Z is a SV at z also for any
perturbation of F' with first or zero-th order terms

F(x,r,p,X) = F(x,r,p, X) + H(z,7,p).
As a consequence, if F' satisfies a SMP and H is lower semicontinuous, non-decreasing
in 7, and satisfies (ii) with the same ¢ as F', then F satisfies the same SMP as F.

Example 2.37. Consider the following perturbation of a Pucci’s subelliptic equation
associated to Hormander vector fields X

c(@)ul*"'u — a(z) M ((D3u)") + H(z, Du) = 0,
where ¢, a, H are continuous and satisfy
c>0,a>0, eitherc=0o0r 1<k, H(x,&)=EH(z,p) VE> 0.
Then the SMP and the Strong Minimum Principle hold, and the same is true if M™
is replaced by M™.

Next we give an example of operator that satisfies SMP but whose SV do not
satisfy the stronger property (2.21)).
Example 2.38. Consider the equation

—Au n
1+ |Aul
It is easy to see that F(x,X) = —TrX/(1 + |TrX|) + f(x) satisfies condition (i),

and also the scaling condition (ii) if f(z) > 0, by taking ¢(¢) = 1 if TrX > 0 and
P(€) = ¢ if TrX < 0. Moreover

lim F(z,0,p,] —yp®p) =1+ f(z) VpeR’

Y—>+00

so any vector Z € R%is SV for F at x if f(x) > —1. Then for f > 0 the equation
satisfies the SMP by Remark However the stronger property is not
verified for any Z € R?,

Example 2.39. (A counterexample from [148]) Consider equation with f(x) =
0 for all z # 0 and f(0) = —1. Then (i) holds everywhere, whereas (ii) and the
existence of SVs fail only at = 0. The SMP is violated by the subsolution u(z) = 0
for all z # 0 and u(0) = 1.

flz) =0. (2.22)
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2.5 Strong Comparison Principles

In this section, we consider non-homogeneous equations that can be written in H-J-
Bellman form, namely

igf{Lo‘u —fY )} =0 inQ (2.23)
sup{L%u — f*(z)} =0 inQ (2.24)

where L* are the linear operators defined in . We recall that F; and F, defined
in are the 1-homogeneous operators obtained by setting f* = 0 in the operator
of the equation and , respectively. We say that a PDE satisfies the
Comparison Principle in a ball B(x,r) if for any subsolution u and supersolution v
in B(z,7) such that v < v on dB(z,7) we have u < v on B(z,7). We will denote

F(z,r,p, X) := igf{—Tr(Aa(x)X) —b%(x) - p+c(x)r — f*(x)}

Lemma 2.40. Let u € USC(Q), v € LSC(Q) be, respectively, a sub- and a supersolu-
tion of . Assume that for some 7 the equation (2.23)) satisfies the Comparison
Principle in B(x,r) for all 0 < r < 7, and that F; is continuous and verifies the
SMP. If uw — v attains a nonnegative mazimum in 2, then u = v+ constant.

Proof. We claim that w = u — v is a subsolution of F;(z,w, Dw, D*w) = 0. This is
easily seen if u, v are smooth because

igf{La(u —v)} < igf{Lau — fYzx) — i(I)l/f[Lo‘/u — f¥(@)]} <0.

However, handling the viscosity subsolution property requires more care and the use
of the local Comparison Principle. Once the claim is proved the conclusion of the
lemma is immediately achieved by the SMP for F;.

We use the compact notations F[z], F;[z] to denote, respectively, F(x, z, Dz, D*z)
and F(z, 2z, Dz, D?z). Let & €  and ¢ be a smooth function such that (w—)(z) = 0
and w — ¢ has a strict maximum at z. Let us argue by contradiction, assuming that
Fi[e(Z)] > 0. We first observe that, by the continuity of F;, there exists ¢ > 0 such
that

Fi(Z, () — 8, Dp(T), D*p(7)) > 0 .

Therefore, using the continuity of F; and the smoothness of p, we get the existence
of r such that
Fil¢ —4d] > 01in B(z,r) .

Since w — ¢ attains a strict maximum at Z, there exists 0 < n < ¢§ such that
w—¢ < —n < 0ondB(z,r). We now claim that v+ ¢ —n satisfies Flv+¢p—n] > 0
in B(7,r). To this aim, take ¥ € B(Z,r) and ¢ smooth such that v + ¢ —n —
has a minimum at Z. Using that v is a supersolution of ({2.23)), denoting by L*u :=
—Tr(A%(z)D*u) — b*(z) - Du, we obtain

0 < F[1)(7) — ¢() +n] = mf{L(7) — L0 () + (@) (¥(2) — p(Z) + 1) = F*()}

< inf(£°0(3) + e (@)0(@) — £2(@)} - mH{L%0(3) + ¢ (2) (o(3) ~ 1)}
= Fl)(2)] = Eilp(r) —n] < Flp(x)] -
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This proves the claim that v + ¢ — 7 is a supersolution of (2.23) in B(z,r). Now,
since u < v+¢@—n on dB(Z, ), the (local) Comparison Principle yields u < v+¢—n
in B(Z,r), in contradiction with the fact that w(z) = v(Z) + ¢(Z). O

Now we can prove the second main result of Chapter[2l We will make the following
standard assumptions on the coefficients of F:

A%(z) = o%(z)(0*(x))", 0% :Q — {d x m matrices } (2.25)
o® and b® : Q — R? locally Lipschitz in & uniformly in a; (2.26)
>0, ¢®and f* continuous in x € Q uniformly in o . (2.27)

Theorem 2.41. Assume (2.25), (2.26), (2.27), and the existence of vector fields
Zi : Q= R4 i =1,...,m, satisfying the Hormander condition (H) and such that

A%(x) > Zi(z) @ Zi(x)  for all a, i, and .

If uw € USC(Q), v € LSC(Q) are, respectively, a sub- and a supersolution of (2.23))
and u — v attains a nonnegative maximum in §2, then u = v+ constant.

Proof. Under the current assumptions F is finite and continuous in Q x R? x R? x Sy
and it is proper. The homogeneous operator F; satisfies the SMP by Corollary [2.32]
Note that F satisfies the Lipschitz property in p in any compact subset K C 2:

|F(x,r,p,X)— F(z,7,q,X)| < Lglp—¢q|, VzeK. (2.28)

Moreover there is n € C(2), n > 0, such that
F(z,r,p, X +sI) < F(x,r,p,X) —n(x)s, Vs>0. (2.29)
In fact, Tr(A%(z)I) > Tr(Z;(z) @ Z;(z)) = | Zi(x)|* for all 7, and so

W)= — 312

does the job, because the Hormander condition prevents that all Z; vanish at the
same point.

By standard viscosity theory [96] the equation ([2.23|) verifies the Comparison
Principle between a supersolution v and a strict subsolution, say wu., in a ball
B(z,7) C Q for some 7 > 0. More precisely, u. is an upper semicontinuous function
in B(z,7) such that

F(z,uc, Du., D*u.) < a(z) in B(z,7)

with a € C(B(z,7)) and a < 0. If, in addition, u. — u for all x as € approaches to 0,
then one immediately concludes u < v in B(z,7). Next we show that the Comparison
Principle holds in all sufficiently small balls, following an argument in [25]. To this
aim, fix € Q, r; > 0 such that B(z,r) C Q, and let 7 := ming ., n > 0. We
choose 0 < § <7 and

_ B
7 := min (n—,rl) , K :=B(z,r).
L
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Consider the function

la—z|2

ue(z) = u(x) + €(e —\), z € B(z,7) .

We claim that u. is a strict subsolution in B(z,7) for A sufficiently large independent
r—T 2

of €. Let us take \ > == for every x € B(Z,T) so that u. < u. Straightforward

computations yield

le—z|?

al(ue) = alu + E(.CUZ‘ — :E)e 2

and
|o—z|2

0ij(uc) = Oiju + €(0y5 + (v, — &) (5 — T))e 2
so that

|lz— \95_55‘2

212
D*u. = D*u+e(I+ (z — %) ® (v — T))e 2 > Dutee I

Since F' is proper and u. < u, one obtains

|z — o—z|2

212
F(z,u., Du., D*u.) < F(x,u, Du+ e(x — T)e > ,D*u+ee 2 1)

Combining (2.28)) and ([2.29)), one immediately gets

le—z|2 la—z|2

F(x,u,Du+e(x —z)e 2 ,D*u+ee 2 I)< F(z,u, Du, D*u)

le—z|?

+ee 2 (Lglr —z| —n(x))

Using that w is a subsolution and = € B(Z,7), by the above choice of 7 we conclude

Jo—x|2

F(z,ue, Duc, D*u.) < —ee” 2 6 =: a(z) ,

as desired. [

Corollary 2.42. Under the assumptions of Theorem 12.41] and for bounded 2, if
u € USC(Q?) and v € LSC(Q) are, respectively, a sub- and a supersolution of (2.23)
such that uw < v in 0, then u < v in Q. Moreover, if u(x) = v(z) for some x € Q
then u = wv.

Proof. If maxg(u — v) is negative or attained on OS2 the first conclusion is achieved.
Otherwise we can apply Theorem and get u(z) —v(x) = k for all x € Q. Then,
for y € 092,

k <limsup(u(z) —v(z)) < u(y) —v(y) <0,

T—Y

which gives v < v. Then the last statement follows from Theorem [2.41] O
Remark 2.43. The last two results hold also for the equation ([2.24) with convex

instead of concave operator. In fact z = v—u is a supersolution of F,(z, z, Dz, D?z) =
0 and we apply the Strong Minimum Principle of Corollary ii) to this equation.
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Example 2.44. Theorem and Corollary apply to the quasilinear equations
—Tr(A(x)(Diu)*) + H(x,u, Du) = 0,
where either H = H; or H = H, with
Hy(,r,p) = inf {1 (2) -p + () — f(2)},

Hs(l'ﬂ’ap) = Slolép{_ba(x) “p+ Ca(.fb')’l" - fa(x)}a

the vector fields are X = (71, ..., Z,,), and the coefficients A, b*, c¢*, f* satisfy
and . Also the weak Comparison principle, i.e., the first statement of Corollary
is new for these equations, since the results of [25] cover either the case of a
Hamiltonian H depending only on the horizontal gradient Dyu, or the case where
the Lipschitz constant of H w.r.t. p and the diameter of { are small compared to
ming Y, |Z;|*/m (however, in [25] H is not necessarily concave or convex in p).

Example 2.45. All the statements of the previous example hold word by word also
for the fully nonlinear equations

M~ ((D3u)*) + Hy(z,u, Du) = 0,

MT((Diu)*) + Hy(z,u, Du) = 0.
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Chapter 3

Strong maximum principles for

fully nonlinear degenerate
parabolic PDEs

The main goal of this chapter is to extend the results of Chapter [2| to the parabolic
framework. We thus focus on the validity of the SMP for fully nonlinear parabolic
equations of the form

O+ F(x,t,u, Du,D*u) =0in O , (3.1)

where O := Q x (0,7) C R4 with Q bounded open set of R%. To compare our
results with those analyzed in the existing literature, it turns out to be useful to
rewrite the operator appearing in (3.1]) in the more general form

F(x,t,u,0u, Dyu, D2,u) =0 | (3.2)

see e.g. [100, 132]. By strong maximum and minimum principle we mean the fol-
lowing properties: any u € USC(Q x [0,7]) (resp. v € LSC(Q x [0,T7])) viscosity
subsolution (supersolution) to attaining a nonnegative maximum (nonpositive
minimum) at (zg,t) € 2 x (0,7, is constant in Q x [0, #).

We will work under the same kind of assumptions imposed in the elliptic framework
adding suitable modifications to deal with the time variable. More precisely, as for
the SMP, we suppose

(i) F is lower semicontinuous and proper in the sense of [96], i.e.
F(x,t,r,p,X) < F(z,t,8,p,Y) ,r<s,Y <X .
for every (z,t) € 2 x [0,T], r € R, p € RA\{0} and X,Y € S,.
(i) (Scaling) For some ¢ > 0 the operator satisfies
{s+ F(x,t,&r,Ep,€X) = o(§)(s + F(a,t,1,p, X))

for all £ € (0,1] and r € [~1,0] and for every (x,t) € Q x (0,T), p € RN\{0}
and X € S;.
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We refer to remark for the assumptions needed to get the strong minimum
principle. Analogously to the elliptic case, the idea is to characterize the set of
propagation of maxima of a (viscosity) subsolution to in terms of subunit vector
fields associated to the fully nonlinear operator 0; + F. To this aim, we note that
Definition 2.3] extends to the evolutive framework as follows.

Definition 3.1. Z € R s a generalized subunit vector field (briefly SV) for the
parabolic operator F at (x,t) € O if

Sulgﬁ(mataoyptapa I— 7(p7pt) & (pvpt)) >0
v>

for every (p,p;) € R™ such that (p,p;) - Z # 0. Accordingly, a subunit vector
7 € R s a generalized subunit vector for the parabolic operator O; + F in (3.1) at
(x,t) € O if

Sulo){pt + F(xata O7p7[ — P ®p)} >0 )

>

for every (p,p:) € R such that (p,p;) - Z # 0.

We point out that all the proofs can be formulated even for the general operator
F, but for the sake of simplicity and since our main examples will appear in the
evolution form (3.1)), we provide all the treatment for the evolutive operator 9, + F
only. We recall that one of the main purposes to describe the SMP for the operator
F in [I00] was to embrace the Levi operator, which in fact appear in the form ,
being defined as ﬁ(x,y, r, 8,0, X): R xR x S5 — R via

~ 3
Fi(z,y,7r,8,p, X) = =Tr(A(s, p) X) + k(z,y,6) (1 + |p*)?
where k is a nonnegative continuous function and

1+ s? 0 —Sp1 + Spo
A(s,p) = 0 14+s* —spp—m
—Sp1+ P2 —Sp2 — 1 pi+p;

The classical strong maximum principle for linear parabolic equations (see [1911 [117]
for uniformly parabolic operators) states that if a subsolution to

O+ Lu = Opu — Tr(A(z,t) D*u) + b(x,t) - Du+ c(x,t)u = 0in Q x (0,7T) ,

where Q x (0,T) is a domain of R4, A : Qx (0,T) — R™ b: Qx (0,T) — R? and
¢ > 0 are continuous, attains a nonnegative maximum at some point (zg,%y) € O,
then the maximum is achieved on every curve in O along which the time-coordinate
is nondecreasing.

Following the seminal paper [191] (see also [I17, Chapter 2]), we now set Qr =
Q x (0,7] and for any point Py = (zo,ty) € Qr, we denote by S(FP,) the set of
all points () € QQr which can be connected to Fy by a simple continuous curve in
Q7 along which the ¢-coordinate is nondecreasing from @ to Py and by C(F,) the
component of ) x {t = to} which contains P,. In the case that there is a propagation
of maxima in C'(P,) we say that there is a horizontal propagation, while in case the
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maximum propagates in S(Fp) we say that a vertical propagation of maxima occurs.
Note that C(F) C S(P). Similar strategies were implemented in the viscosity
solutions’ framework in [100, 60 132]. See also [87] for the case of fully nonlinear
integro-differential equations and [108] for reaction-diffusion systems of PDEs.

Our main result reads as follows

Theorem 3.2. Let u be a viscosity subsolution of attaining a nonnegative
mazimum at Py = (x9,19) € O . Assume F satisfies (i)-(ii) and there exist SVs for
O+ F, Zy,..., 2y, satisfying the Hormander’s condition and F(xg,t9,0,0,0) > 0.
Then we have both horizontal and vertical propagation of mazxima, that is u = u(Fp)
is constant in S(F).

This result is accomplished by studying separately the propagation of maxima in
C(Fy) and S(P). We will see that the additional assumption F'(xg,t,0,0,0) > 0
will be required for the vertical propagation only and this is consistent with the re-
sults of Chapter [2| where one needs (i)-(ii) and the existence of SVs for the operator.
We are mainly interested in evolutive fully nonlinear equations modeled on Hérmander
vector fields, among which the parabolic versions of the operators treated in Chapter
(i.e. PDEs on Carnot groups, Grushin plane,...). Given a family X = (X, ..., X,,)
of C'1 vector fields in O, as outlined in Section [1.0.5, one defines the intrinsic (or
horizontal) gradient Dyu and the symmetrized horizontal Hessian (D%u)*. The
model fully nonlinear parabolic equation in this setting reads as

O+ G(z,t,u, Dyu, (D3u)*) =0, (3.3)
which can be recasted in Euclidean coordinates by writing
o+ F(x,t,u, 0 (x)Du, o’ (v)D*uc(z)) =0 . (3.4)

We say that the evolutive operator 0; + G is parabolic in the following sense: for any
(x,t) and ¢ € R™ fixed

sup{G(z,t,0,¢, X —vq®q)} >0 (3.5)

>0

for every (z,t) € O, ¢ € R™,q # 0 and X € S,,. Similarly to the elliptic setting, our
result reads as follows

Corollary 3.3. Assume that the parabolic operator G verifies (i)-(ii) and and
the vector fields Xy, ..., X,, satisfy the Hormander condition. Then, for every vis-
cosity subsolution of attaining a nonnegative maximum in O we have both
horizontal and vertical propagation of maxima.

Clearly, all the results of Section [2.3.1| regarding subunit vector fields can be
reformulated exactly in the same manner allowing the time-dependence. We finally
recall that the SMP for linear evolutive PDEs modeled on Hérmander vector fields
can be deduced by Bony’s seminal paper, as pointed out in [I51, Proposition 2.4].
We remark that very little is known in the context of general fully nonlinear evolutive
PDEs over Hérmander’s vector fields and the results of this chapter seem to be the
first ones dealing with such parabolic subelliptic equations. However, some of the

39



examples we are going to present can be obtained by using the ideas established
in [21], 22, 23, 100] and, specifically, some results in the context of HJB and HJI
equations regarding propagation of maxima and minima have already appeared in
[100]. However, as announced, our results are obtained via a generalization of the
concept of subunit vector fields in the parabolic framework and the characterization
we propose, together with the examples in the subelliptic setting, seem to be new and
this is the main difference with respect to the known contributions in the parabolic
literature [100], 132]. This chapter is organized as follows. In the forthcoming section
we review the seminal results of L. Nirenberg and A. Friedman for linear uniformly
parabolic equations, in Section we prove the horizontal propagation of maxima,
while Section is devoted to the vertical propagation. Finally, Section collects
some applications of the results of the previous sections.

3.1 Propagation of maxima in the linear case: a
survey

In this section we highlight the main ideas presented by L. Nirenberg regarding the
mechanism of the propagation of maxima for linear uniformly parabolic equations.
Consider the linear parabolic equation

O — Tr(A(x,t)D*u) + b(z,t) - Du+ c(z,t)u =0 (3.6)

posed in Qp := Q x (0,T), Q being a connected open set of R?, and assume that
A: Qp — S, is bounded and continuous, b : O — R bounded and continuous and
¢ : Q7 — R bounded. Assume further that the above evolution operator is uniformly
parabolic, i.e. there exists a > 0 such that

Az, t) > al Y(x,t) € Qr .

The following theorem is proved in [I91] for the two-dimensional heat equation and
[117] for the general case

Theorem 3.4. Let u € C>Y(Q7) N C(Qr) be a subsolution to (3.6) and let ¢ > 0.

e If c = 0 and there exists Py = (xo,ty) € Qp such that u attains its greatest
value M at (xg,ty) € Qp, then u = M on S(Fp).

e [fc# 0 and there exists Py = (xo,t9) € Qp such that u attains its nonnegative
greatest value M at (xo,to) € Qr, then u = M on S(F).

As announced, the proof of this result relies on proving the propagation of maxima
on the horizontal component C(Fp), i.e. along 2 x {t = ¢y}, and then the vertical
propagation, namely the propagation of maxima over S(Fp), that we briefly describe
below.

- Horizontal propagation. Step 1. The proof is usually done by contradiction,
assuming that there exists a point P, = (x1,t9) € Q x {t = to} such that
u(Py) < u(Fp). By classical geometric arguments, one can find a closed ellipsoid
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E such that (Z,ty) € C(P), u < u(Py) in the interior of E with P* = (z*,t*) €
OF satisfying w(P*) = uw(Fp), £ # «* and P* ¢ 0Q x (0,7). One can then
determine a (d + 1)-dimensional ball B = B((7,%), R) C E with 90BN JE =
{(z7,17)}.

Step 2. Find a classical strict supersolution in B such that v < 0 in the interior
of E, v > 0 outside F and v = 0 on OF. Such v can be found among barrier-
type functions, as in Proposition Step 1. To find a contradiction, one
notices that the function w = u — ev solves dyw — Tr(A(x,t)D*w) + b(z,t) -
Dw+ ¢z, t)w < 0 and w attains its maximum at an interior point of B, which
would be impossible.

- Vertical propagation. The first part of the proof relies on proving a local vertical
propagation, i.e. if R is a rectangle of the form {(z,t) : z{ —a' < 2' <
xh +al, tg—ag <t < toy € Q x [0,t] with a; small enough, then for any
R C Q x (0,t], the rectangle R minus its top face contains a point Pr # P,
where the maximum propagates, i.e. such that u(Pr) = u(Fp). The proof
of this results is mainly based on geometric and contradiction arguments as
in the horizontal propagation. One finally shows indeed that the maximum
propagates over all S(F).

In the case of degenerate equations, we remark that the Bony’s strong maximum
principle for operators written as a sum of squared vector fields easily applies, for
instance, to the sub-parabolic heat equation dyu — Y ;" | X?u = 0.

The main issue in the program we develop in this chapter is to adapt the aforemen-
tioned geometric constructions to weak solutions (in the viscosity sense) of fully non-
linear parabolic equations, similarly to the elliptic counterpart developed in Chapter

2

3.2 Horizontal propagation
As usual, we denote
K* :={z € OK : there exists vL K at z} ,

where v denotes the Bony’s normal and K C R%! a compact set as in Chapter
. We prove the following results saying that if u is a viscosity subsolution to
attaining a nonnegative maximum at some point Py € ()7, then the subunit vector
fields associated to the operator F' are orthogonal to the proximal normal of the set
of maxima of w.

Proposition 3.5. Let u € USC(Qr) be a viscosity subsolution of that attains
a nonnegative maximum at some point Py = (xo,tg) € Qr. Suppose that (i)-(ii) hold
and 8 + F has a subunit vector field as in Definition[3.1. Then K := Prop((zo, to))
is such that for any z = (x*,t*) € K*NQr and (v,v;) LK at z we have Z - (v,1;) =0
for every subunit vector of 0y + F' at z.

Proof. Let z € 0K and v L K at z. We argue by contradiction, assuming that there
exists a subunit vector Z such that Z - v # 0. By definition of proximal normal,
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there exists § = (2,t) € Qr and R > 0 such that B(g, R) N K = {z} (hence
y=z+ R%) As in the elliptic case (cf Proposition [2.13]) we divide the proof in
two steps

Step 1. We claim that there exist r > 0 and a function v € C?*(Er), Er :=
R? x (0,T), such that

o + F(x,t,v(x,t), Du(z,t), D*v(z,t)) > C > 0 VY(z,t) € B(z,7) ,

v(z) =0, -1 <v < 0in B(y, R) and v > 0 outside B(y, R).
Let y = (z,t) and consider

o(y) = e VR _ oly-ilt
Direct calculations yields
Oroly) = 2ye (1 1)

Du(y) = 2ye W7 (2 — &)
and
D>u(y) = 2ve W ([ —2y(z — 7) @ (z — &) .

Now, using that z — § = —(v, 1) and the scaling property (ii) we have

() + F(z,v(2), Du(2), D*v(2)) = dw(a*, t*)
+ F(z*, t*, v(z*, t*), Dv(z*, t*), D*v(z*, t*))
= 2ve ¥ (=) + F(x*, 15,0, 2ve " (=1), 2v¢ (I — 290 @ V)
> ¢(2ve ) (v + F(x*, 5,0, -1, ] — 290 @ v))

where ¢ > 0. Now the definition of subunit vector at z and the fact that Z- (v, ;) # 0
imply that
v+ F(a*,t",0,—v, ] —2yw®v) >0

for some v > 0, giving thus
Ow(2) + F(z,t,v(2), Dv(z), D*v(2)) > 0 .
By the lower semicontinuity (i), there exists r € (0, R) such that

Ow(w,t) + F(z,t,v(x,t), Dv(x,t), D*v(z,t)) > C > 0 for every (z,t) € B(z,r) .
(3.7)
Step 2. We claim now that for e sufficiently small u(y) — u(z) < ev(y) for every
y € X = B(z,7) N B(y, R).
To this aim, choose € sufficiently small so that u(y) —u(z) < ev(y) for every y € 0.X.
To prove that the inequality holds on X, suppose by contradiction that there exists
(z,t) € X such that u(z,t) — u(z) — ev(z,t) = maxy(u — u(z) — ev) > 0. Since
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ev € C(E7), using that v —u(z) is a viscosity subsolution and the scaling property
(ii) we get

gb(E)(@tU(i’,f) + F(:Z‘,Z?,U(ZZ’,EL(:)tv(i',f)7DU(j},f>, D2U(j77t_)))
< edw(z,t) + F(z,t, ev(z, 1), eDv(z, 1), eD*v(z,1)) <0,

a contradiction with (3.7)) since ¢ > 0. This implies that the function ®(y,s) :=
u(y, s) — ev(y, s) has a maximum at z in B(z,r). Since ev € C*(Er), F is proper,
using also the definition of viscosity subsolution and (ii) we get

() (Opw(2) + F(x,t,v(2), Dv(z), D*v(2))) < edw(z) + F(z, ev(z), eDv(z), eD*v(z))
< edw(2) + F(z,u(z),eDv(z),eD*v(2)) <0,

again a contradiction with (3.7]). O

Corollary 3.6 (Horizontal propagation of maxima). Assume (i)-(ii) and the exis-
tence of subunit vector fields Z; € R*™1, i = 1,....m of F satisfying the Hormander
condition. Let w € USC(Qr) be a viscosity subsolution of attaming a nonnega-
tive maximum at Py = (xo,t0) € Qr. Then, u is constant in C(Fp).

Proof. We prove the result via a classical construction for parabolic problems (see
e.g. [117, [100]). Suppose by contradiction that there exists a point P, = (x1,1o)
such that u(P;) < u(Fy). Then, by the fact that u(P) < u(FP,) and the upper
semicontinuity of u, we can find a ball centered at P, such that u(z,t) < u(F)
for every (z,t) € B(Pi,¢€), where € < dist(FPy, P1) < dist(P,09). As a next step,
we construct a family of ellipsoids whose length of the vertical axes is § and the
horizontal one is A\. Again by the upper semicontinuity of u and eventually increasing

A, we find a A and an ellipsoid
Ene = {(x, 1) |z — 21]* + At — to]* < (¢/2)°A}

such that u(z,t) < u(Fp) for every (z,t) € Int€; . and u(z*,t*) = M at some point
(z*,t) € O p. Let P* := (z*,t*) and note that z* # x1. Let then B := B((Z,1),r)
with r small enough such that # # x*. Then we observe that y = (¥ — 2*,t —
t*) LProp((x*,t*)) at P*. Since the vector fields Zi,..., Z,, fulfill the Hérmander
condition, one can find d vector fields W; € L(Z1,...,Z,,), j = 1,....,d, which are
linearly independent and satisfy W; - = 0 in view of Proposition [3.5] However,
since (W;)a+1 = 0, the previous orthogonality condition would imply that the first d
components of p are 0, in contradiction with the fact that & # x*.

O

3.3 Vertical Propagation

We are now ready to study the vertical propagation of maxima. In particular, we
will prove first that if u € USC(Q7) is a viscosity subsolution of that attains
a nonnegative maximum at Py = (zo,ty) € Qr, then such a maximum propagates
locally in © x (0, ). More precisely, let us consider the following rectangle

R:{(‘Tat)xlo_az§$1§x6+al, to—aogtgto}
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with a’, ag small enough, and denote by R the rectangle R minus the top face t = t,.
We prove that for any rectangle R C Q x [0, t], Ro contains a point P # Py such
that w(P) = u(Fp).

Proposition 3.7. Let u € USC(Qr) be a viscosity subsolution of (3.1)) that attains
a nonnegative mazimum at some point Py = (xg,t9) € Qr. Assume that F satisfies
(i)-(ii) and F(xo,t9,0,0,0) > 0. Then, for any rectangle R C 2 x [0, o], the set Ro

contains a point P # Py such that u(P) = u(Fp).

Proof. Suppose by contradiction that there exists a rectangle R C Qx [0, ¢p) in which
u < u(Fy). Consider in R the auxiliary function

h(z,t) = e(t —to) .
Then, choose € > 0 sufficiently small such that
’LL(Z‘, t) o U(l’o, Z50) < h(ZE, t)

Moreover u(zg,ty) — h(xo,tg) = u(xo,to). Hence the function ®(x,t) := u(x,t) —
h(z,t) has a maximum at (zg,%). On one hand, since h is smooth and u is a
viscosity subsolution of (3.1]) we get

(9th(:c0, to) + F(Io, to, U(SL’(), to), Dh(ﬂ?o, to), Dzh(xo, to)) S 0.
On the other hand, we have
Oyh(xo, to) + F (w0, to, u(zo, to), Dh(xo, to), D*h(xo, t0)) = -

=€+ F(xo,to, u(xg,t0),0,0) > € + F(xg,t,0,0,0) >0,

where the first inequality follows by (i) together with u(zo,t9) > 0 and the second one
by the hypothesis F(zg,t9,0,0,0) > 0. This contradiction completes the proof. [J

Remark 3.8. As in the elliptic case (cf Remark [2.17)) the scaling property and the
existence of subunit vector fields imply that F'(xq,tp,0,0,0) > 0.

The next result shows the local vertical propagation of maxima. This is an
extension of [I17, Lemma 2.1.4 pag.36] to the viscosity solutions’ framework (see
also [100, Corollary 2.3]).

Corollary 3.9. Let u € USC(Q) be a viscosity subsolution of attaining a
nonnegative mazimum at Py = (xo,t0) € Qr. Assume that F satisfies (i)-(ii) and
F(x0,19,0,0,0) > 0. Moreover, suppose also that there exist SV fields for F'. Then
u is constant in any rectangle R = {(x,t) : i —a' < 2" < af +a’, tg—ap <t <
to} € Q x [0,10).

Proof. Let R := (x,t) szl —a' <2t <l +ad', to—ag <t <ty be arectangle
contained in 2 x [0, o] and suppose by contradiction that there is ) € R such that
uw(Q) < u(Fo).

Since u < u(P) also in a neighborhood of @), we may also assume that @) does not
lie on ¢t = ty. On the straight segment ~ connecting ) to F, there exists a point P

44



such that u(P) = u(Fy) and u < u(P;) for all points v connecting @ and P;. So we
may assume P; = Py and @) lying on t = ty — ag, otherwise we can restrict ourselves
to a smaller rectangle.

Since for every point ' € Ry, C(Q’) contains some point of v and u < u(F) in 7,
the horizontal propagation implies u(Q’) < u(Fp). Hence we may assume u < u(Fp)
in R and proceed as in Proposition to get a contradiction. O

The next proof is the same as in [117, Theorem 2.2.1], whose arguments are only
based on geometric constructions.

Corollary 3.10 (Strong Maximum Principle). Let u € USC(Q;) be a viscosity sub-
solution of (3.1) attaining a nonnegative mazximum at Py = (xo,19) € Qr. Assume

that F(xg,t0,0,0,0) > 0 and satisfies (i)-(ii) and that there exist SV Z, ..., Zy, for
F at (xo,to) satisfying the Hormander condition. Then u is constant in S(P).

Proof. The proof of this result is based only on geometric arguments. Suppose that
u # u(Py) in S(Py). Then there exists a point @ € S(Fy) such that u(Q) < u(Fp).
Connect @) to Py by a simple continuous curve 7 lying in S(F) such that the ¢-
coordinate is nondecreasing from @ to Py (it can be done since € is connected). As

before, on v there exists a point P; such that u(P) = u(F) and u(P) < u(P;) for
all P on ~ lying between () and P;. Denote by 7, the segment between () and P;.
Construct a rectangle whose top face is centered at Py, i.e.

R ={(z,t): 2 —a' <z' <2l +ad, t,—a<t<t},

where a is sufficiently small so that the rectangle lies in Q7. Applying the local
vertical propagation of maxima in Corollary [3.9| we get u = u(P;) in this rectangle.
As a consequence u = u(P;) in 7 (which in fact lies in the rectangle) and this
contradicts the definition of P;.

0

Remark 3.11. Results for the propagation of minima can be deduced from the
previous analysis simply by observing that v € LSC(€2 x (0, 7)) is a supersolution to
(3.1)) if and only if w = —wv is a subsolution to

O+ F(x, —u, —Du,—D*u) =0 in Q x (0,7T) .

Denote by F~(z,r,p,X) = —F(x,—r,—p, —X). Then, the assumptions needed to
get the strong minimum principle are the following

(i’) F is upper semicontinuous and proper.

(ii") (Scaling) For some ¢ > 0 the operator satisfies

Es+ F(x,1,8r,6p,EX) < @(&)(s + F(z,t,r,p, X))

for all £ € (0,1] and r € [—1,0] and for every (x,t) € Q x (0,T), p € RN\{0}
and X € S,.

Finally, Z € R4 is subunit for 9, + F~ at (z,t) € O if
inf{p; + F(z,4,0,pr,p,yp©p = 1)} > 0,
Y

for every (p,p;) € R4 such that (p,p;) - Z # 0.
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3.4 Some applications

3.4.1 Fully nonlinear degenerate parabolic equations

As in the elliptic case, the main application concerns fully nonlinear evolutive subel-
liptic equations. In this framework one is given a family X = (Xy, ..., X,,,) of C'1!
vector fields defined in €. The intrinsic gradient and intrinsic Hessian are defined
as Dyu = (Xju, ..., X;pu) and (D3u);; = X;(Xju). After choosing a basis in the
Euclidean space, we write X; = ¢/ - D, with 0/ : Q@ — R?Y and 0 = o(z) =
[o1(z),...,0™(x)] € R*™. Then

Dyu=o"Du = (¢" - Du,...,c™ - Du)

and o
X;(Xju) = (6" D*u o)y + (Do’ o*) - Du .

Denote by Y* the symmetrized matrix of Y. By the chain rule (see, e.g., [34, Lemma
3]) one can obtain that for u € C*

(D3u)* = o' D*uo + g(x, Du) ,
where the correction term g is
(90, P))is = (Do’ o) - p+ (Do o) -]
Then, we focus on the parabolic equation that can be written as
o+ G(z,t,u, 0 () Du, o (x)D*uc(z) + g(z, Du)) = 0, (3.8)
which is of the form if we define
po+ Fz,t,r,p, X) == p, + G(x, t,r, 0" (2)p, 0" (2) Xo(x) + g(z,p)) . (3.9)

Lemma 3.12. If p, + G satisfies properties (i), (ii) and (3.5)), then p; + F satisfies
properties (1) and (ii) and the vector fields (c*,0) are subunit for O, + F in the sense

of Definition [3.1]

Proof. (i) holds because X <Y implies o7 (z)Xo(x) < 0¥ (z)Yo(z), so F is proper.
(ii) holds for F'if it does for G because g(z, p) is positively 1-homogeneous in the
variable p.
To prove that any X; is SV for I’ we use property with ¢ = o7 (2)p, X =
olo + g to get

pe+ F(z,t,0,p,I —vp ®p)
=pi+G(2,t,0,0(x) p, 0" (2)Io(x) — y(c" (z)p) @ (" (x)p) + g(x,p)) > 0
for some v > 0 if o'(x) - p # 0. O

Combining this Lemma and Corollary we have the following SMP for evolu-
tive subelliptic equations. As largely discussed in Chapter [2| this result applies for
instance to PDEs on Carnot groups and over Grushin vector fields.

46



Corollary 3.13. Assume that G verifies (i), (ii), G(xg,t0,0,0,0) > 0 and (3.5)), and
let u be a subsolution of (2.13)), attaining a nonnegative mazimum at (xo,ty) € Qr.
Then we have both horizontal and vertical propagation of maxima.

The model equation to apply our results is
o+ c(x, ) |ul*u 4 a(x, t) E(Dyu, (D3u)*) = 0, (3.10)

where we assume F : R™\{0} x R™*™ is positively homogeneous of degree v > 0, a
is continuous and

c>0,a>0, and eitherc=0ora<k . k>0.

Example 3.14. The Pucci’s extremal operators M™ (M) and M~ (M) on symmetric
matrices M € S,, are 1-homogeneous and satisfy (3.5 because

MIA(X =g ®q) > M A (X =g ®q) > M, (X) + Mg

then the equation (3.10) with E(D3u)*) = M ,((D3u)*) and k = 1 (which ensures
the validity of (ii)) satisfy the SMP and the Strong Minimum principle, and the
same holds if M™ is replaced by M~. The first result for this evolutive operators
appeared in [I00] in the Euclidean framework. The first analysis of such parabolic
extremal operators goes back to [13].

Example 3.15. Another example of (3.10) are quasi-linear parabolic subelliptic
equations of the form

O — Axu + bz, t) [ Dyu(z, t)|™ + (@, t)|ul"tu =0 .
Setting G(q, X) = —Tr(X) + b(z,t)|g|™, we observe that (3.5) is clearly satisfied

since
G(q, X =74 ®q) = =Te(X) + b(z, t)|g|™ + vlal* -
Moreover, the scaling property is satisfied if either

b>0andm<lorb<Oandm>1,

and either
c=0ork=1.

Therefore, under these assumptions, we have both horizontal and vertical propaga-
tion of maxima for these subelliptic quasi-linear parabolic equations.

Example 3.16. Consider the equation
ou — |DXu|h_3AX7oou =0

for h > 1, where X is a system of vector fields inducing a Carnot group. The operator
is homogeneous of degree h in space and has been studied in [144] when h = 1, [196]
for 1 < h < 3 in the Euclidean case, and lately revisited in the context of Carnot
groups in [43]. The results of [I00] give both the horizontal and vertical propagation
of maxima for the Euclidean counterpart of such evolutive operator. Our analysis
provide the SMP for the particular case h = 1, which ensures the validity of the
scaling assumption (ii) (see also Example for the elliptic counterpart). See in
particular [I44] [43] for the definition of viscosity solution in this context. Note that
the above proofs can be accommodated to handle these singular PDEs by using
upper and lower semicontinuous envelopes of G as in the hypothesis given in [100].
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Remark 3.17. We remark that, unlike the elliptic setting, the parabolic p-Laplacian
equation with p # 2 is not covered by our results, since the scaling property (ii) for
the evolutive operator fails (see e.g. [100, Example 2.6]). However, for such parabolic
equations the SMP may fail when p > 2 due to the results in [146] for the parabolic
equation dyu — A,u = 0 in the Euclidean setting. We are not aware of similar results
in the subelliptic framework.

3.4.2 Hamilton-Jacobi-Bellman Equations

We are given a family of linear degenerate operators
Lo := —Tr(A%(x,t)D*u) — b*(x,t) - Du + c*(x,t)u (3.11)

where the parameter « takes values in a given set, A%(x,t) > 0, A, € S; and
c*(x,t) > 0 for all (z,t) and . Here, we consider the equations

O+ Fy(z,t,u, Du, D*u) := Oyu-+sup L*u , Ou+ Fy(z,t, u, Du, D*u) := dyu+inf L*u

(3.12)
and we assume that Fs@,t, r,p, X), Fi(x,t,r,p, X) are finite and continuous for all
entries (z,t,7,p,X) € O x RY x R x S;. They are clearly proper and positively
1-homogeneous.

Remark 3.18. It is straightforward to see that if Z € R? is subunit for F', then the
vector field (Z,0) € R is SV for the parabolic operator d; + F in the sense of
Definition B.1l

We can characterize the subunit vectors of these operators as follows

Lemma 3.19. Let Z € R? and (x,t) € O.

i) (Z,0) is SV for 0, + F; at (x,t) if and only if Z is subunit for all the matrices
A%(z,t), i.e., A%z, t) > Z ® Z for all a;

i) (Z,0) is SV for 0, + Fy at (x,t) if there exists & such that Z is subunit for the
matriz A%(x,t).

Proof. This is a consequence of Lemma [2.31] and Remark [3.18]
O

The results of the previous sections combined with Lemma|3.19 give informations
on the sets of propagation of maxima and minima of sub- and supersolutions.

Corollary 3.20. Assume Z; : O — R? i = 1,...,m, are locally Lipschitz vector
fields such that

A¥(x,t) > Zij(x,t) @ Zij(x,t)  for all o, i, and z,t,

and satisfying the Hormander condition. Then

i) any subsolution of Oyu + inf, L% = 0 attaining a nonnegative mazximum at
Py € Qr is constant in S(Fy),

i) any supersolution of Oyu + sup, L*u = 0 attaining a nonpositive minimum at
Py € Qr is constant in S(Fp).
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3.4.3 Hamilton-Jacobi-Isaacs Equations

Now we are given a two-parameter family of linear degenerate elliptic operators
L*Py = —Tr(A*P(z,t)D%u) — b*P(z,t) - Du+ P (z,t)u

where the parameters «, 3 take values in two given sets, A%%(z,t) > 0, A*% € S; and
c*P(z,t) > 0 for all z,t, a, 3. The Hamilton-Jacobi-Isaacs (briefly, H-J-I) operators
are
o+ F_(z,t,u, Du, D*u) := Oyu + sup inf L*"u
/8 0%

and
o+ Fy(z,t,u, Du, D*u) := Qyu + inf sup L*?u .
@ B

and we assume that F_(z,r, p, X), Fy(x,r,p, X) are finite and continuous for all
entries (z,t,7,p, X) € O x R4 x R? x 8;. They are clearly proper and positively 1-
homogeneous. We can find subunit vectors of these operators following the arguments

of Corollary

Lemma 3.21. Let Z € R? and (x,t) € O. . i

i) (Z,0) is SV for 0, + F_ at (x,t) if there exists B such that A% (x,t) > Z ® Z for
all o;

i) (Z,0) is SV for 0,+F, at (x,t) if for all o there exists B() such that AP (z,t) >
Q7.

Then we get the following SMP for the H-J-I equations.

Corollary 3.22. Assume Z; : O — R*! i = 1,...,m, are locally Lipschitz vector
Jields satisfying the Hormander condition. Then
i) if there exists 3 such that

A“’B(:U,t) > Zi(x,t) @ Zi(x,t)  for all a, i, and x,t,

then any subsolution of dyu+ supginf, L*Pu =0 attaining a nonnegative mazimum
in Qr is constant in S(Fy);
i) if for all « there exists (o) such that

Aaﬁ(a)(w’ t) > Zi(x,t) @ Zi(x,t)  for all i and z,t,

then any subsolution of dyu+ inf, supg LBy =0 attaining a nonnegative mazimum
in Qr is constant in S(F).

Sufficient conditions for the Strong Minimum Principle can be easily found in the
same way owing to Remark [3.11] as follows.

Corollary 3.23. Assume Z; : O — R, i = 1,...,m, are locally Lipschitz vector
fields satisfying the Hormander condition. Then
i) if for all B there exists o(f) such that

ABB (g t) > Zi(x,t) @ Zi(x,t)  for all i and x,t,
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then any supersolution of Oyu+ supg inf, L*%u = 0 attaining a nonpositive minimum
in Qr 1is constant in S(Py);
ii) if there exists & such that

A%P(z t) > Zi(x,t) @ Zi(x,t)  for all B, i, and x,t,

then any supersolution of dyu+ inf, supg LBy =0 attaining a nonpositive minimum
in Qr is constant in S(Fp).

Example 324. If X = (Xi,...,X,,) are CY! vector fields on O satisfying the

Hormander condition, a,b € C(Q) are nonnegative, and M, M~ denote the Pucci’s
extremal operators, then the evolutive equation

O+ a(w, )M 5 (D3u)") + bz, )M, ((D3u)*) =0

is of H-J-I form and satisfies both the SMP and the Strong Minimum Principle.
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Chapter 4

Liouville properties for fully
nonlinear subelliptic problems

In this chapter we are interested in Liouville theorems for fully nonlinear second
order subelliptic equations of the form

G(z,u, Dyu, (D3u)*) = 0 in R? (4.1)

where Dyu € R™ and (D3u)* € S,,, m < d, stand for the horizontal gradient
and the symmetrized horizontal Hessian respectively, as defined in Subsection [I.0.5]
The typical approach to handle such PDEs is to write the equation in Euclidean
coordinates by defining the (degenerate) operator

F(x,r, Du, D*u) := G(z,r,0" (2)p, 0 (x) D*uo(z) + g(z, Du)) .

(see Remark below). More precisely, we investigate sufficient conditions for the
validity of Liouville properties such as:

Any subsolution (resp. supersolution) of (4.1) bounded from above (resp. below) is
a constant.

In particular, we first give an abstract result for general equations of the form (4.1))
modeled on Hormander vector fields that are neither convex nor concave. We then
apply the results to PDEs driven by Pucci’s operators perturbed by first order
terms in the subelliptic setting in order to achieve the results for fully nonlinear
uniformly subelliptic equations. We provide several examples among which PDEs
on the Heisenberg group H? and free step 2 Carnot groups with r-generators (see
Subsection [1.0.3). We conclude our study by providing also some examples for fully
nonlinear equations on the Grushin plane (Subsection [1.0.4)), where no group struc-
ture is available but the Hormander condition is still in force.

4.1 A glimpse on the method of proof for linear
equations

Before showing our main results, we prefer to present the proof of the Liouville
theorem for classical C? subsolutions to linear uniformly elliptic equations in the
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Euclidean framework, which serves as a guideline for our proof in the nonlinear
and subelliptic setting. It is based on classical tools such as strong maximum and
comparison principles.

Theorem 4.1. Assume that the operator Lu := —Tr(A(z)D*u) + b(x) - Du is uni-
formly elliptic, with a : R* — Sy, b : R* — R? bounded and continuous. Suppose also
that there exists a classical supersolution w to Lu = 0 which blows up at infinity.
More precisely, we assume that there exist R > 0 and w € C*(R?\{0}) such that

(i) Lw >0 for|z| > R
(ZZ) lim|$|_>+oo w = +00.

Let also u € C*(RY) be such that Lu < 0 in Riand u(z) < C in R Then, u is
constant.

Remark 4.2. This result is a special case of [16, Theorem 2.1] and applies to the
case of the Laplacian (i.e. a;; = 0;; and b = 0) when d < 2; therefore it gives a
different proof of the Liouville theorem [197, Theorem 2.29]. Indeed, the function
w := log |z| fulfills the above assumptions, giving thus that every bounded from above
subharmonic function is constant. However, as pointed out in the introduction, the
Liouville property fails as soon as d > 3, where indeed w is no longer a classical
supersolution of —Au = 0. It also applies to subsolutions of —Awu + b(x) - Du = 0
in any space dimension under assumptions on the drift b implying the existence of a
Lyapunov-like function w, see e.g. [16, Section 1].

Proof. Let u be a classical subsolution to Lu = 0 in R? and let ¢ > 0. Set
ve(z) = u(x) — Cw(z) for |z| > R

for some R > R > 0. Clearly, v, € C?(Qz), where we set Qp := {r € R?: |z| > R}.
Moreover, we have

lim v¢(r) = —oc0 and Lv; = Lu — (Lw < 0 for every x such that |z| > R .

|z|—+o0
Define C¢ := maxy gy v¢(v). Since

lim wve(z) = —o0,
|| —+o0

there exists K¢ > R such that v < C, for every x such that |z| > K. By the weak
maximum principle (see [122]) applied on the set {x € R : R < |z| < K} we have

max ve(z) = max ve(z)
{zeR*:R<|z|<K } {zeR%:|z|=R or |z|=K }

Since v¢(z) < C¢ for every x such that |z| > K, we conclude that for every y such
that |y| > R

v =u — (w < max v, < max u— min w .
C(ZJ) (y> C <y) " {zeRd:|z|=R} = {z€R4:|z|=R} C{meRd:M:R}
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On one hand, letting { — 0 we conclude

u(y) <  max wforall |yl > R.
{zxeR:|z|=R}

On the other hand, owing to the weak maximum principle in the set B(0, R) we
obtain

u(y) <  max wforall jy| < R.
{xeR4:|z|=R}

Combining the above inequalities one concludes

u(y) <  max  wuforally € RY.

T {zeRd:|z|=R}

Hence, u attains its maximum over dB(0, R) and then the conclusion follows by the
strong maximum principle for classical linear uniformly elliptic equations [122]. O

Remark 4.3. The same result remains true if L is replaced by a degenerate elliptic
operator Lyu = — ;. X;X;u+b(z) - Dyu, provided the vector fields X satisfy the
Hormander condition and b : R — R™, m < d, bounded and continuous, the proof
being exactly the same owing to Bony’s strong maximum principle for subelliptic
equations. An example of such result is [I81] Proposition 3.1].

4.2 Liouville theorem: the general case

4.2.1 Abstract result
In this Section we consider a general equation of the form
F(x,u, Du, D*u) = 0 in R?, (4.2)
We will denote Fu] := F(z,u, Du, D*u) and make the following assumptions
(i) F' is continuous, proper, satisfies
Flip — ] < Flig] — Fl] for all p, 1 € C2(RY) (s1)
and F'(x,r,0,0) > 0 for every z € Q and r > 0.

(ii) F satisfies the comparison principle in any bounded open set €2, namely, if u
and v are respectively a viscosity subsolution and a viscosity supersolution of
(4.1]) such that u < v on 0€2, then u < wv in .

(iii) There exists R, > 0 and w € LSC(RY) viscosity supersolution of (4.2)) for
|z| > R, and satisfying lim, . w(z) = +o00.

iv) F satisfies the strong maximum principle, namely, any viscosity subsolution o
iv) F satisfies the strong maxi incipl ly, any viscosity subsolution of
(4.2) that attains an nonnegative maximum must be constant.

The prototype examples of operators satisfying are Pucci’s minimal operators,
or, more in general, Bellman operators defined as infimum of linear operators.

To prove the analogous results for viscosity supersolutions, we need to replace (i)-(ii)
and (iv) above by
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(i) F is continuous, proper, satisfies
Flp —¢] > Flg] = F[y] for all g, € C*(RY) (S2)
and F(x,r,0,0) <0 for every x € Q and r < 0.

(i) There exists R, > 0 and W € USC(RY) viscosity subsolution to (4.2)) for
|z| > R, and satisfying lim|;| o, W(x) = —o0.

(iv’) F satisfies the strong minimum principle.

We now adapt the procedure outlined in Theorem for linear equations in the
fully nonlinear degenerate setting. Similar arguments were used in [16], [I7] for fully
nonlinear uniformly elliptic equations and quasi-linear equations with Hormander
diffusion and in [I81, Proposition 3.1] for linear PDEs in the first Heisenberg group
H*.

Proposition 4.4. Assume (i)-(iv). Let u € USC(RY) be a viscosity subsolution to
(4.2) satisfying

lim sup &) < ¢ | (4.3)

|z| =00 w(z)

forw as in (iii). If u > 0, then u is constant.

Proof. We divide the proof in four steps.

Step 1. Define u¢(z) := u(z) — Cw(x) for ¢ > 0. Possibly increasing R,, we can
assume that u is not constant in B(0, R,) := {x € R?: |x| < Ry}, otherwise we are
done. Set

Ce = . 4.4

¢ 1= max ug(z) (4.4)

First of all, note that under the standing assumptions F[C¢] > 0 for every ( suf-

ficiently small. Since u > 0 by the standing assumptions we assume that C; > 0

for ¢ sufficiently small. In fact, if this were not the case, we could conclude letting

¢ — 0 that u(x) = 0 for every x such that |z[ < R,, in contradiction with the initial
assumption that u is not constant in the ball B(0, R,).

Step 2. The growth condition (4.3)) implies

lim sup () <—(C<0V(>0.
|z| =00 U)(J?)

As a consequence we have
lim wuc(x) = —o0. (4.5)
|z| =400
Then, for all ¢ > 0 there exists R: > R, such that
uc(x) < C¢ for all |z| > R, . (4.6)

Step 3. We prove that u, is a viscosity subsolution of F[u] =0 in {z € R?: |z| >
R,}. Fix z such that |z| > R, and a smooth function ¢ such that (us — ¢)(zZ) =0
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and u; — ¢ has a strict maximum at Z. Assume by contradiction that Fo(z)] > 0.
By the continuity of F' there exists 6 > 0 such that F[o(Z) — §] > 0. Hence, using
again the continuity of F' and the regularity of ¢ we can conclude that there exists
0 <r < |z| — R, such that

Flp — 0] > 0in B(z,r) .

Since u¢ — ¢ has a strict maximum at Z, there exists 0 < & < 0 such that u — ¢ <
—k < 0 on 0B(z,r) Moreover, we claim that (w + ¢ — k satisfies F[Cw+ ¢ —k] >0
in B(z,r). Indeed take & € B(z,r) and ¢ smooth such that

(w + ¢ — k — 1 has a minimum at 2.

Using that w is a viscosity supersolution to (4.1)), the fact that G is proper and (S1))
we get

0 < Fl(x) — o(2) + k] < F[(2) — ¢(7) + 0] < Flp(2)] = Flo(Z) — 0] < F[y(2)]

where in the last inequality we used that Flp(Z) — §] > 0. Therefore F[y(z)] > 0,
which in turn implies that (w + ¢ — k is a viscosity supersolution to F[u] = 0 in
B(z,r). Since u < (w + ¢ — k on 0B(Z,r), we can now apply the comparison
principle and get

u<({w+e¢—kin B(z,r),
in contradiction with the fact that u(z) = (w(z) + (7).

Step 4. We use the comparison principle in Q = {z : R, < |z| < R¢}. Since
F[C¢] > 0 by Step 1, we get uc < C¢ in Q by Step 2 (precisely by (4.6)) and Step 3.
Therefore we have

uc(z) < Cg for all |z| > R, .

By letting ¢ — 0" we obtain

uw(r) < max u
() < max u(y)

and hence u attains its maximum z over R%. If now u > 0, the SMP holds and we
have the desired conclusion. O

The next result emphasizes that the assumption v > 0 can be dropped provided
r+— F(x,r,p, X) is constant: this will be the case of HJB operators we discuss in
the next sections.

Corollary 4.5. Assume (i)-(iv). Let u € USC(RY) be a viscosity subsolution to (4.2)
such that (4.3)) holds for w as in (iii). Assume r — F(x,r,p, X) is constant for all
z,p, X and F(x,r,0,0) =0 for every x € Q. Then, u is constant.

Proof. The proof goes along the same lines as Proposition [£.4] It is sufficient to note
that under the standing assumptions on F, u + |u(Z)|,  standing for the maximum
point in Proposition , is again a subsolution to , since r — F(x,r,p, X) is
constant for all x, p, X, and one concludes. O
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Similar result holds for the case of supersolutions to (4.2)).

Proposition 4.6. Assume (i'),(ii),(iii’) and (iv’). Let v € USC(RY) be a viscosity
supersolution to (4.2)) satisfying

e v(2)
lfi?igof W) <0. (4.7)

for W as in (iii’). If v <0, then v is constant.

Proof. We proceed as in the previous theorem. We consider the function v, :=
v(z) — (W(z). As in Step 1 we get Fc¢] < 0 for ¢ sufficiently small, where

cc = |;|n£1£10 ve() -
Following Step 2, by (4.7) and W (z) < 0 for |z| large, we get lim;_, ;o0 vc(x) = 400
for every ¢ > 0. Then for all ¢ > 0 sufficiently small there exists R > R, such that

ve(x) > ¢ Y|z| > Re .

Moreover, arguing as in Step 3 of the same proof, one can show that Flv,] > 0
for |z| > R, under assumptions (i’) and exploiting (S2). As in Step 4 we use the
comparison principle to conclude that v.(y) > ¢¢ for |y| > R,. Letting ¢ — 0 we get
v(y) > minp<g, v(x) for |y| > R, meaning that v attains its minimum at a point Z
over R?. As before, the strong minimum principle gives the conclusion. O]

Corollary 4.7. Assume (i’),(ii’),(iii) and (iv’). Let v € USC(R?) be a wviscosity
supersolution to (4.2) satisfying (4.7) for W as in (iii’). Assume r — F(z,r,p, X)
is constant for all x,p, X and F(x,r,0,0) =0 for every x € S, then v is constant.

We can now state our main result for subsolutions. To do this, we first recall
a crucial scaling assumption for the validity of the strong maximum principle for
fully nonlinear subelliptic equations together with the concept of generalized subunit
vector field. For the definition of Hormander vector fields and further details we refer
to Chapter 2] We assume

(SC) For some ¢ : (0,1] — (0,400], F' satisfies
F(x,8s,6p,6X) > ¢(&)F(x,5,p, X)
for all £ € (0,1], s € [-1,0], z € Q, p € R\{0}, and X € S;;

We briefly recall the definition of generalized subunit vector field introduced in Chap-
ter 21

Definition 4.8. Z € R? is a generalized subunit vector (briefly, SV) for F =
F(z,r,p,X) at x € Q if

sup F(z,0,p,] —yp®p) >0 VpeR? such that Z-p#0;

v>0

Z : Q — R? is a subunit vector field (briefly, SVF) if Z(x) is SV for F at x for
every x € €.
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Theorem 4.9. Let F' be such that (i),(ii), (iii), and (SC) hold. Furthermore assume
that F' admits Z1, ..., Z,, generalized subunit vector fields satisfying the Hormander
condition. Let u € USC(R?) be a viscosity subsolution to ([4.2)) satisfying ([4.3)) for w

as in (iii). Assume either u >0, or r — F(x,r,p, X) is constant for all z,p, X and
F(z,7r,0,0) =0 for every x € ). Then u is constant.

Proof. The proof is a consequence of Proposition [£.4] and Corollary [4.5 by recalling
that under (1), (SC) and the existence of subunit vector fields for F' the strong
maximum principle holds (cf Chapter [2)). O

Similarly, in the case of supersolutions we have the following result by replacing
(SC) with

(SC”) For some ¢ : (0,1] — (0,400], F satisfies
F(z,85,6p,EX) < () F(x,s,p, X)
for all £ € (0,1], s € [-1,0], z € Q, p € RN\{0}, and X € S;;
and the condition in Definition [2.3]is replaced by

in%F(m,O,pﬁp@p—])>O Vp € R such that Z - p # 0;
>

Theorem 4.10. Let F' be such that (1),(ii’), (iil), and (SC’) hold. Furthermore as-
sume that F' admits Z1, ..., Z, generalized subunit vector fields satisfying the Hormander
condition. Let v € USC(RY) be a viscosity supersolution to satisfying for
W as in (iii’). Assume either v < 0, orrw— F(x,r,p, X) is constant for all z,p, X
and F(z,7,0,0) =0 for every x € Q. Then u is constant.

Proof. The proof is a consequence of Proposition and Corollary by recalling
that under (17), (SC’) and the existence of subunit vector fields for F' the strong
minimum principle holds (cf Chapter [2)). ]

Remark 4.11. In the subelliptic context, i.e. when dealing with PDEs of the form
(4.1)), if one assumes that G is elliptic for any x and p fized in the following sense:

sup G(z,0,¢, X —vq®q) >0 Ve, qeR™ ¢#0, X €8,

>0

then, by rewriting the equation in Euclidean coordinates, i.e.
Fla,r,p. X) = Glx, 7,07 (x)p, 0" (1) Xo(x) + g, Du)

one finds an equivalent equation of the form (4.2)) with F having ¢! as subunit vector
fields (cf Lemma [2.23). As Lemma shows, if G satisfies (SC) and (SC’), also F
does. Therefore, Theorem and Theorem [4.10] apply respectively to viscosity sub-
and supersolutions to (4.1]).
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4.2.2 Equations driven by Pucci’s subelliptic operators

Important examples of fully nonlinear second order subelliptic operators are the
Pucci’s extremal operators over horizontal Hessians. They are the simplest exam-
ples of degenerate HJB operators and they differ from those defined in the Euclidean
setting since horizontal Hessians carry an additional z-dependence through the ma-
trices o(z) (Section . More precisely, the minimal operator M} , defined in
Example enjoys the property simply as a consequence of the property of du-
ality (i.e. My (M) = =M ,(=M) for every M € S;) and the reverse inequalities
(ie. MIA(M 4 N) < M3 (M) + M\ (N) for every M, N € S, sce [62, Lemma
2.10 properties (3) and (6)]). Similarly, holds for the maximal operator M} ,.

We now prove the Liouville property for subsolutions of the equation

M;A((Diu)*) + H;(z,u,(Dyu) =0 in R? (4.8)
where
Hi(z,r,p) := inf{c*()r — b%(z) - p} (4.9)

and for supersolutions of

M\ ((D3u)*) + Ho(z,u, Dyu) = 0 in R, (4.10)
where
Hq(x,r,p) = sup{c*(x)r — b*(z) - p} . (4.11)
acA

Note that H; and H, satisfy and by the properties of infimum and supre-
mum. We assume that b*(z) is locally Lipschitz in z uniformly in «, namely for all
R > 0 there exists Kr > 0 such that

sup [0 (z) = b%(y)| < Krlr -y (4.12)
|z|,|y|<R,a€A
and
¢*(x) > 0 and continuous in |z| < R uniformly in a. (4.13)

We recall that (D3u)* = o (z)D*uo(x) + g(x, Du), where g = g(x,p) is linear and
1-homogeneous in the second entry. Typically ¢ = 0 in many interesting cases such
as Carnot groups, as outlined in Chapter [2]

Corollary 4.12. Under the previous conditions on H;, let u € USC(R?) be a viscos-
ity subsolution to (4.8)) satisfying (4.3)) for w asin (iii). If either u > 0 or ¢*(xz) =0,
then w s constant.

Proof. The proof is a consequence of Theorem [4.9 First, note that M~ enjoys
property and the scaling (SC) by the well-known properties [62], Lemma 2.10-
(3)-(4) and (6)]; this allows to run the arguments in Step 3 of Proposition [£.4]
Moreover, the comparison principle (ii) for M~ + H; = 0 holds in view of Example
2.45| Finally, observe that when ¢* = 0, then G(z,r,0,0) = 0 for every z €
r € R, and r — G(z,r,p, X) is constant for every z,p, X. ]
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Similar procedures yield the following generalization for supersolutions.

Corollary 4.13. Under the previous conditions on H,, let v € LSC(R?) be a viscosity
supersolution to (4.10) satisfying (4.7)) for W as in (iii’). If eitherv < 0 or ¢*(z) =0,

then v 1s constant.

Proof. The result is consequence of Theorem [4.10} First, observe that M* enjoys
property and the scaling (SC’) by using [62, Lemma 2.10-(3)-(4) and (5)]; this
allows to run the arguments in Step 3 of Proposition Moreover, the comparison
principle for M*+ H, = 0 holds in view of Example In particular, when ¢* = 0,
one notices that G(z,7,0,0) = 0 for every x € Q, r € R, and r — G(z,r,p, X) is
constant for every x,p, X. ]

4.2.3 Fully nonlinear uniformly subelliptic equations

In this section, we consider the Liouville property for viscosity sub- and supersolu-
tions to the prototype fully nonlinear second order subelliptic equation

G(x,u, Dyu, (D3u)*) =0 in R? . (4.14)

We assume that G satisfies a properly rescaled uniform ellipticity condition,
namely we consider those operators fulfilling the following inequalities

MG A(M = N) < G(z,r,p, M) = G(z,r,p, N) < M} (M — N) . (4.15)

for every (z,7,p) € Q@ x Rx R" and M, N € §, with N > 0. By taking N = 0 we
get
M A (M) < G(z,r,p, M) — G(z,7,p,0) < MjA(M)

(cf Section [L.0.5]), and, as a consequence, by setting H(z,r,p) := G(z,r,p,0), one
can infer Liouville results for viscosity subsolutions and supersolutions to (4.14))
by studying the corresponding properties to equations driven by Pucci’s extremal
operators M¥ composed with the (symmetrized) horizontal Hessian perturbed by the
gradient term H (x,r,p). We recall that this is indeed the main idea behind classical
works on qualitative and quantitative properties for second order fully nonlinear
uniformly elliptic PDEs, see [62] and references therein. In particular, we will focus
on the case in which the first order term is concave or convex and hence can be
written as infimum or supremum of linear operators. We further assume that

G(x,t,p,0) = Hi(,t,p) (4.16)

for some concave Hamiltonian of the form (4.9). Then Corollary gives immedi-
ately the conclusion

Corollary 4.14. Assume (4.15)) and (4.16) with b, c satisfying (4.12]) and (4.13).
Let u € USC(R?) be a viscosity subsolution to (4.14) satisfying (4.3)) for w as in (iii).

If either w > 0 or ¢*(x) = 0, then u is constant.

Proof. Tt is sufficient to observe that u satisfies the differential inequality
M;A((D%(u)*) + H(z,u, Dyu) < 0in R?
and apply Corollary 4.12] O]
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As for supersolutions, instead of (4.16)) we impose
G(z,t,p,0) < Hy(z,t,p) (4.17)
for some convex H; as in (4.11)).

Corollary 4.15. Assume (4.15)) and (4.17) with b, c satisfying (4.12)) and (4.13).
Let v € LSC(RY) be a viscosity subsolution to (4.14) satisfying ([4.7) for W as in

(iii"). If either v < 0 or ¢*(z) =0, then v is constant.

Proof. 1t is sufficient to observe that v satisfies the differential inequality
Mj\“A((Diu)*) + H(z,u, Dyu) <0 in R?

and apply Corollary [4.13] O

We conclude this section with an application of the previous results to parabolic
problems. This would be a first step to the prove the large-time stabilization with
respect to the space variable for parabolic problems (cf [16, Section 5]). Let u :
R? x [0, +00) — R and consider the general parabolic equation

O+ G(x,u, Dyu, (D3u)*) =0 in R? x (0, +00) .
We have the following

Corollary 4.16. Assume that G satisfies (4.15)), (4.16), together with (i)-(iv). If
u € USC(R? x [0, +00)) satisfies

oy + G(x,u, Dyu, (Diu)*) < 0 in R? x (0, +00) ,

and

t
lim sup u@,?)
|z| =400 W(l')

and either ¢ =0 or u > 0, then

< 0 wniformly int € [0, +00) ,

limsup wu(y,t) = u(z)

t——+o00,y—x
15 constant with respect to x.

Proof. As above, we exploit the fact that if u is a subsolution to
o+ G(z,u, Dyu, (D3u)*) <0 in R? x (0, +00) ,
then
Oru + M;A(Diu)*) + H;(z,u, Dyu) < 0 in R? x (0, 4+00) .
Then one argues as in [16, Corollary 5.1] to conclude the assertion. O]

Remark 4.17. One can immediately prove the counterpart of the above result for
supersolutions. Indeed, if G satisfies (£.15)),(4.17) and (1’)-(ii)-(iii") and (iv’), the
result reads as follows: let v be a LSC supersolution to ,u+ G(x,u, Dyu, (D%u)*) =
0 such that liminf}; 1 % < 0 uniformly in ¢. Assume also that either ¢ = 0 or
v <0, then liminf, ., . v(y,t) = v(z) is a constant.
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4.3 Example 1: the Heisenberg group

Aim of this section is to specialize the previous results to viscosity subsolutions of
over the Heisenberg vector fields. In the next theorem we provide sufficient
conditions for the validity of the Liouville property for viscosity subsolutions to the
fully nonlinear equation , confirming the behavior that can be observed for
sub- and super-solutions of the Heisenberg Laplacian, see Section below for
further details. Here 2d + 1 is the linear dimension of the Heisenberg group, and
m = 2d stands for the dimension of the horizontal layer. Here and in the next
examples we exploit a classical chain rule to compute the horizontal gradient and
Hessian of a “radial” function with respect to the homogeneous norm p. Indeed, for
a sufficiently smooth radial function f = f(p) and given a system of vector fields
X ={Xy,..., X;n}, we have

Dxf(p) = f'(p)Dxp
and

D3 f(p) = f'(p)Dxp+ f (p)Dxp ® Dxp .

In this section we denote the Heisenberg horizontal gradient and symmetrized Hessian
by Dya and (Dz,)*.

Theorem 4.18. Let X = {X1,...., Xog, Xoas1} be the system of vector fields gener-
ating the Heisenberg group H®. Assume that (4.12)) and (4.13) hold and that

sup{b*(zx) - - *(x) o' logp} < A—A(Q —1) (4.18)

a€A \IHP \$H|2

for p sufficiently large, where Q) = 2d + 2 stands for the homogeneous dimension of
H9, b (x) takes values in R* and n = (1;,ni1q) is defined by

2
N = 2| Th|” + TitaTaar

Nitd = l‘z|$H’2 — TiT2d+1
fori=1,...,d and zyg = (x1, ..., T2q).

(a) Let u € USC(R?*¥*Y) be a viscosity subsolution of (4.8)) such that

u(z) <0.

lim sup

Assume that either ¢*(x) =0 or u > 0, then u is a constant.

(b) Let v € LSC(R**1) be a viscosity supersolution of (#.10) such that

hmint "% S
lz|—»o0 log p()

Assume that either ¢®(x) =0 or v <0, then v is a constant.
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Remark 4.19. We highlight that the above result does not hold for the Heisenberg
sub-Laplacian, corresponding to the case b = ¢ = 0 and A = A = 1. In fact, condition
(4.18)) is not satisfied because in the Heisenberg group the homogeneous dimension
(Q > 4. This confirms the failure of the Liouville property observed at the beginning
of the section in the linear case.

Proof. We only have to check property (iii), namely the existence of the Lyapunov
function. Set w(p) = logp and note that lim, . w(p(x)) = oo because p — oo
whenever |z| — oco. Straightforward computations yield

,|DHdP’2 4 TitdTad+1 _ 1
i 3 ]
P p P

le = )
’DHd,O‘Q _ Tik2d+1 _ Ni+d

p P’ P
and |Dyap|® = |xg|*/p? (see e.g. [09, Lemma 3.1]). Then, we recall that for a radial
function w (with respect to the homogeneous norm p) the eigenvalues of (D2, w)*
are

Xitdp = Titd

2 2
B |$Ii| 73|wi| which are simple ,
p P
and 2
E2%d

— with multiplicity 2d — 2
p

(cf. [99, Lemma 3.2]). Hence we are able to compute the Pucci’s minimal operator
as in [99, Corollary 3.1]

M3 A(DRowy) = {=A(2a + 1) + 2}

Thus, w is a supersolution at all points where

2k + inf {c*(z)log p — b*(z) - E} >0
A aea A=

{=AQ2d+1) + A}

where 7 is defined as in the statement. In particular, this inequality holds when p is
sufficiently large under condition (4.18) by recalling that () = 2d + 2. Similarly one
can check that (4.18]) implies that the function W (p) = —logp is a subsolution to

(4.10]) for |z| sufficiently large. Therefore Corollary and Corollary give the
conclusion. O

Remark 4.20. Condition (4.18]) is comparable to that obtained in [16] eq. (2.17)],
but here typical quantities of Carnot groups appear. The ratio

p! . lzu|* + |y ]?

eul* el

plays the same role as |z|> in [16, condition (2.17)], while the dimension d of the
Euclidean setting is replaced by its subelliptic counterpart (), as expected.
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Remark 4.21. A simple condition that implies (4.18) and therefore the Liouville
property is
lim sup sup{b“(z) - 7 F<A-—AQ-1),

|z] =00 acA |5L‘H|2

since ¢ > 0. Compare the above condition to that in [I6, Remark 2.4]: @ replaces the
dimension d of the Euclidean case and x € R? is replaced by the vector n/|zy|? € R*.

We thus have the following

Corollary 4.22. Assume that the operator G in (4.14), where X = {Xy, ..., Xoas1}
are the Heisenberg vector fields, satisfies and . Assume also that ,
and ([4.18) are satisfied. Let u € USC(R2*Y) be a subsolution of (4.14])
satisfying with w(x) = log p(x). Assume either ¢*(x) =0 or u > 0, then u is
constant.

Proof. 1t is enough to exploit that u is a subsolution to (4.8) over the Heisenberg
vector fields and then apply Theorem [4.18}(i). O

Corollary 4.23. Assume that the operator G in ({4.14), where X = {X, ..., Xoq11}
are the Heisenberg vector fields, satisfies and @ Assume also that ,
and ([A.18)) are satisfied. Let v € LSC(R?**Y) be a supersolution of (4.14))
satisfying (4.7) with W(x) = —log p(z). Assume either ¢*(z) =0 orv <0, then v
15 constant.

Proof. Tt is enough to exploit that u is a supersolution to (4.10) over Heisenberg
vector fields and then apply Theorem [.18}(ii). O

We specialize the last corollaries to a class of examples in order to compare
with those in [I6]. Consider again the general PDE (4.14) satisfying the structure
condition (4.15)) and assume that

G(z,7,p,0) > =b(x) - p — g(x)|p| + e(x)r | (4.19)

where b : R?* — R?? and ¢ : R?**! — R is continuous and g > 0 and & > 0. We have
the following

Corollary 4.24. Assume that the operator G in (4.14)) satisfies (4.15)), and (4.12))-
(4.13) are in force. Moreover, suppose that (4.19)) holds and

4

- n nl
b L
(l’) |xH’2 +g(x)|3)'[—[‘2 — C‘xHP

logp+A—AQ—-1) . (4.20)

where 1 is defined in Theorem . Let u € USC(R?**Y) be a wviscosity subsolution
to (4.14) such that
lim sup

<0.

Assume that either ¢®(x) =0 or u > 0, then u is a constant.
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Proof. Observe that —|Dyau| = —|o” Du| = minj,—{—a - 07 Du}. Hence we can
write the right-hand side of the inequality (4.19) as

irelg{éu — (b+ga)-o"Du} ,

where A = {a € R* : |a| = 1}. Moreover, the Heisenberg gradient can be written

as Dyau = %n, where 7 is defined in Corollary . Then condition (4.18]) becomes
(4.20)) and the conclusion follows by Corollary |4.14] O

Arguing in a similar manner one gets the result for supersolutions using the
conclusions of Corollary [4.15]

Corollary 4.25. Assume that the operator G in (4.14)) satisfies (4.15) and (4.12])-
(4.13) are in force. If

G(z,7,p,0) < —b(z) -p+ g(z)|p| + &(x)r (4.21)

holds with b, g and ¢ as above. Let v € LSC(R**) be a wviscosity supersolution to
[@.14) in R?Y and assume that

liminf —2_ > (4.22)
|00 log p()

If either v < 0 or ¢*(x) =0, then v is constant.

Similar results can be achieved for equations driven by the Pucci’s extremal
operators P* introduced in Example . Consider thus the following counterpart

of (4.8)) and (4.10), namely
Py (D3u)*) + Hy(w,u, Dyu) = 0 in R* (4.23)

and
PE((D3u)*) + Hy(x,u, Dyu) = 0 in R*+ (4.24)

Sufficient conditions can be directly obtained by comparing the extremal operators
P* with M*. Indeed, straightforward computations give

Py (M) < M54 (M)
and
Py (M) = My -y (M)

for every M € S,q. However, one can exploit representation formulae for P* (see
Example (1.7])) to get optimal sufficient conditions. We have the following

Corollary 4.26. Let X = { Xy, ...., Xogq, Xoq11} be the system of vector fields gener-
ating the Heisenberg group H?. Assume that (£.12)) and (4.13) are in force and

4

Ui P
b (x) —— — () — 1 < =3+ 4dX 4.25
21613{ ([E) |5L'H|2 ¢ (x)leP ng} — ( )
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for p sufficiently large, where Q = 2d + 2 stands for the homogeneous dimension of
H9, b (x) takes values in R* and n = (1;,ni1a) is defined by

2
N = T|Th|” + TitaTaas

Nit+d = 33i|93H’2 — TiT2d+1
fori=1,....,d and xg = (x1, ..., Taq).

(¢c) Let u € USC(R?¥*Y) be a viscosity subsolution of (4.23) such that

lim sup <0.

Assume that either ¢*(x) =0 or u > 0, then u is a constant.

(d) Let v € LSC(R**Y) be a viscosity supersolution of (4.24) such that

fmint %) 5
lz|—»o0 log p()

Assume that either ¢®(x) =0 or v <0, then v is a constant.

Proof. The proof is exactly the same as Theorem [4.18 using the Lyapunov function
w(p) = log p and the representation formulas for Py (M) = —ATr(M) — (1 — 2d)\)e;
and P, (M) = —ATr(M) — (1 — 2d\)eqq for any M € Syq. Using the expression of
the eigenvalues of (DZ,w)* one finds

2
x
Py (Dfaw)*) = (4dX — 3)%
Similarly, one uses W = —logp as Lyapunov function for the maximal operator
Py 0

Remark 4.27. We observe that this condition is better than (4.18)) with A = X\ 4+

(1 —2d)\) and X < 55, since

—2d\ — (1 — 2dA)(2d + 1) < —3 + 4d)\ .

4.3.1 Comparison with the literature and sharpness of the
conditions

In this section we make a comparison with the results in the literature, showing the
sharpness of our conditions and those of [16] via several counterexamples. We first
observe that [16, Corollary 2.4] with b = ¢ = 0 states a Liouville-type result in the
Euclidean case either for viscosity subsolutions bounded from above to My A(D?u) =
0 in R? or viscosity supersolutions bounded from below to M} ,(D?*u) = 0 in R
whenever d < % + 1. This is consistent with the well-known Liouville property for
the Laplace equation in the case d < 2 (i.e. A = A, cf Remark and with some
counterexamples when d > % + 1 that we show next.
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Counterexample 4.28. For d = 2 and A = 2\ one can verify that the function

g0 — [z — |z if |z <1,

o) = L if |z > 1.

is bounded, satisfies MY ,,(D?*u;) > 0 in R? and it is not constant. Set u;(z) =
fi(Jz]). When |z] < 1 we have f{, f{' < 0 and hence the eigenvalues of the Hessian
D?uy are negative, which shows that MY ,,(D?u;) > 0. When |z| > 1 we have
fi(lz]) = =1/]z|* and f{'(|z|) = 2/|2z|*> and hence M ,,(D*u;) = 0 because A = 2.
Finally, it is a viscosity supersolution of the Pucci’s maximal equation simply by
observing that the subjet is empty at point where |x| = 1. Similarly, the function
vy = —uy gives a counterexample for subsolutions to M;Q)\(D%l) < 0). More in
general, when d > 2, one can prove that when

A
the function
BB =2t =28 = 4|z + B(B+2)] if [z <1,
ug(z) = L ;
if || >1.

|]P =2

is a bounded classical solution to My (D?*ug) > 0 in R? (cf [98, Remark 3.3, eq.
(3.19)]); therefore the Liouville property fails to be true whenever d > A/A + 1.
Similarly, v = —us gives a counterexample for solutions to ./\/l; A(DQUQ) < 0 in R4
Since uy is a radial function, the eigenvalues of the Hessian matrix can be immediately
computed thanks to [98, Lemma 3.1].

Some remarks are in order to compare [16] with the results obtained in [9§]. In the
latter work, the authors (cf [98, Theorem 3.2]) provided the Liouville property either
for viscosity supersolutions to My ,(D*u) = 0 in R? or for viscosity subsolutions
to /\/l;\r A(D?u) = 0 in R? under the condition d < % + 1, therefore providing less
restrictive conditions for the validity of the Liouville property in terms of the ratio
A/X > 1 compared to that of the Laplace equation.

The next example (cf [98, Remark 3.2]) shows that the assumption in [98, Theo-
rem 3.2] is optimal.

Counterexample 4.29. The condition

A
=—(d—1 1>2
a A( )+
found in [98, Theorem 3.2] in the Euclidean case is sharp. In fact, one can prove

that

! if || >1,

- [z]o—2

it = {2t 20 o)t

is a nonconstant classical solution to /\/l;\r A(D?u3) < 0 in R? which is bounded if
a > 2. Similarly, v3 = —u3 yields a counterexample for the corresponding property
for the minimal operator.
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Note that, although the condition for Liouville in [98, Theorem 3.2] is less de-
manding than the one in [I6], such Theorem cannot be applied to general uniformly
elliptic operators via the inequalities (4.17), as it is done in [16].

We now turn to consider the case of PDEs over the Heisenberg vector fields. Li-
ouville’s theorem for classical harmonic functions on the Heisenberg group is a con-
sequence of the Harnack inequality (see [51, Theorem 8.5.1]). However, Liouville’s
theorem for (classical) subsolutions (supersolutions) bounded from above (below) to

—Agau = 0 in R?¢!

is false. Indeed, one can check that the function

uy(x) = {

@Q = 2d + 2 standing for the homogeneous dimension of H?, is a bounded classical
supersolution to —Agau = 0 in R2**! and, similarly, v, = —uy gives a bounded sub-
solution —Apau = 0 in R?*1. It was observed in [I81], Lemma 2.2] that the Liouville
property for sub- or supersolutions of linear equations on the first Heisenberg group
can be recovered by adding first order terms multiplied by a vector field pointing
away from infinity.

[QQ—2)p" —2(Q* - 4)p* +Q(Q+2)] ifp<1,
iftp>1,

o I 00l

The counterpart of [98, Theorem 3.2] within the context of the Heisenberg group
is found in [99, Theorem 5.2], where the authors proved the Liouville property either
for viscosity supersolutions bounded from below to M ,((Djqu)*) = 0 in R***
or for viscosity subsolutions bounded from above to My ,((Dfu)*) = 0 in R***!
provided that @ < % + 1, where ) stands for the homogeneous dimension of the
Heisenberg group. Also in this case their result cannot be applied to infer Liouville
results for general uniformly subelliptic operators, as it happens in our case. Here,
we would like to show via a counterexample that the condition @) < % + 1 found in
[99, Theorem 5.2| is sharp. The proof of the optimality of the condition seems to be
omitted in [99] and is new to our knowledge.

Counterezample 4.30. Set & := £(Q — 1) + 1. One can prove that for & > 2

“la(a - 2)pt — 2@ — AP +a@a+2) ifp<l,

us(z) = ) ]

— =3 ifp>1,
P

is a bounded from above classical solution to MY , ((Djaus)*) < 0 in R and it is

not constant. Indeed, denote by us(z) = f5(p). For p < 1 we have

a—2

fi(p) = —

and




Recalling that |Dyap|®> = |xg|*/p?, the eigenvalues of the radial function fs5(p) are

(cf [99, Lemma 3.2])
2 el a—2 2 2 ~ ~
er = |Duapl*fi(p) = — 27 lzu|*[3p°a — (& + 2)]

O g% Pl — (@t 2)

ez = 3[Dyap

which are both simple, and

es = |Dyap

P S R anPlag? - (a+2)

< 1, even ey is

which has multiplicity 2d — 2. Thus we observe that when p < 1 and a > 2, the
a+2

3a

eigenvalues eg, e3 are always positive. Therefore, when p? <
at2 ¢, < 0, and hence

positive and hence My , ((Dfaus)*) < 0. When 1 > p* > &2,

o a—2 o
M A ((Dgaua)”) = A 2 | *[3p% — (6 + 2)]

+A {&2;22|w1{|2[dp2 —(G+2))(2d—2) + 3&2;22|M|2[&p2 Gt 2)]}

2
o= 2|:CH|2 {ap?[(2d + 1)\ + 3A] — A(2d + 1)(a +2) — A(a +2)}

2p?
o

2;22 lwu]? {ap’[(Q — A+ 3A] = [MQ — 1) + Al(a+2)}

= el {INQ@ ~ 1)+ Al(~a - 2+ 6?) + 20607}

< Sl {=2INQ = 1)+ A+ 204)

0‘2;22|95H|2 {=2MQ — 1) + 2A(G — 1)}

. ;22 lzg|* {Aap® — (& +2)](2d — 2) + 3ap* — 3(a + 2)] + A[3p*a — (@ +2)]}

0,

where the last equality is true in view of @ — 1 = %(Q —1). When p > 1 we have

&

filp) = —(2—a)p'~

ip)=—-2-a)(l-a)yp™"
and the eigenvalues are
rplP2—-a)(l—a
es = |Daspl () = ~ A=)
/ 2 2 a4
es = 3|DHdP|2—f4<p) = —3—|xH| §+2 &)
p p*
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and ~
JreP2-a)

pd—|—2

!
eg = |DHdp’2 f4£p) —

with multiplicity 2d — 2. Therefore, for p > 1, we have

ozl (2—a) -
M a((Dhans)') = S AL = 8) 2@~ 1] =0,
Similarly, vs = —us yields a counterexample for the corresponding property of the
miminal operator.

Furthermore, we emphasize that the sufficient condition obtained in Theorem
4.18|is consistent with the behavior observed in the case of the Heisenberg Laplacian
(i.,e. b=c=0and A = A), for which the Liouville property for subharmonic (super-
harmonic) functions bounded from above (below) functions is false (see the function
uy above). In particular, with b = ¢ = 0 suggests that one-side Liouville prop-
erties for viscosity subsolutions (supersolutions) to the minimal (maximal) Pucci’s
equations do not hold. Set

- A A
ﬁ::X(Q—1)+1>2,namelyQ>K+1.

The next counterexample shows the Liouville property for supersolutions bounded
from below to M ,((Djau)*) = 0 and subsolutions bounded from above to the
minimal Pucci’s equation My ,((Dg.u)*) = 0 fails (recall that for the Heisenberg
group @ > 4).

Counterexample 4.31. In the same way as in Counterexample [4.30 one can verify
that the function

(2) = HB(B—-2)p" =282 —)p*+B(B+2)] ifp<1,
U{t) =193 1 if p>1.

—2

P
is a bounded classical supersolution to MY , ((Dpaus)*) = 0, which is not constant.

Similarly, v4 = —ug gives the counterexample for subsolutions to the minimal
operator My , ((Dfav)*) = 0.

Therefore, we conclude that the presence of the gradient terms in Theorem
are fundamental to prove the Liouville property. The same phenomena occurs for
the Liouville properties in the Euclidean case for semilinear equations with fully
nonlinear second order terms, where the presence of the semilinear part plays a
crucial role (see e.g. [98, Theorem 4.1]).

4.4 Example 2: Free step-2 Carnot groups

This section is devoted to collect some Liouville results for nonlinear PDEs modeled
on free step 2 Carnot groups with r generators introduced in Subsection |1.0.3] Here
we denote the horizontal gradient and Hessian as Dg, and Dér respectively. The
homogeneous norm we are going to use here to build the Lyapunov function has the
same form of the one used for the Heisenberg group, namely

Bl

1
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Theorem 4.32. Assume that (4.12) and (4.13) hold true and

e Pz
log p} < 4
|$H\

for p large enough and 7 = p*Dg, p.

sup{b*(z) - —L — c*(x)

D¢, p|* — 3rA | 4.26
Sup PE | De, p| (4.26)

||2

(a) Let u € USC(R?) be a wviscosity subsolution of (4.8) where the vector fields
Xq, ..., X, are the generators of a free step-2 Carnot group defined in Section
[1.0.3 such that

U(iv)
hm sup

<

Assume that either ¢®(x) =0 or u > 0, then u is a constant.

(b) Let v € LSC(R?) be a wviscosity supersolution of (4.10)) where the vector fields
X1, ..., X, are the generators of a free step-2 Carnot group defined in Section
such that

o (@)
lim inf >0.

plw) o0 log p(x) —

Assume that either ¢*(x) =0 orv < 0, then v is a constant.

Proof. We have to check property (iii), namely the existence of the Lyapunov func-
tion w := log p. By the chain rule applied to f(p) = p, we first need to compute the
horizontal Hessian of the homogeneous norm p. We have

Xep =5 [%Zw + (Z“’a ik~ Z%%)]

>k i<k

Thus, we obtain

2
o = Ia:H\ L 3 (Z ity — ijtkj)
k

6
P >k j<k

Moreover, we can compute

1 3|z m|? 3
Xi(Xgp) = = Za: +2.:Ek—|—2 Z ——kaka— il I, — = XppXgp
1% o1k p? P
and ] 5
Xi(Xyp) = — [2z;2) — tgy — 22528 — = X;pXyp for @ < k;
p p
1 3 .
Xi(Xgp) = - [2z;x) + tik, — 22521 — = X;pXgp for i > k .
p p

Therefore, the horizontal hessian DéT p € R™" is given by
2 1 2 3
Dg,.p= ] [T+ 3lzul*L] — ;DGTP ® Dg,p ,
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where g = (21, ...,z,) and T is the skew-symmetric matrix

0 —tor ... —tn
t 0

T .= ?1
tr 0

We then compute
2 1 2 4
DGT 10g(p) = E [T+3|.Z'H| Ir] — EDGTp(}@DGTp .

Therefore the symmetrized matrix is given by

2 * 3|xH|2 4
(Dg, log(p))* = TL« - EDGTP ® Dg,p:=N+M
Note that the eigenvalues of M are —%|DGT p|?, which is simple, and 0 with mul-
tiplicity » — 1, while the eigenvalue of N is 3|zy|?/p* with multiplicity r. We thus
compute

4 1
M;A(Dérw)—kHi(x, w, Dg,w) > M; , _?DGTP ® DGM) +M;i A (E(3|$H|21r))

Dg, p
P

+ inf {ca(x) log p — b%(x) -

acA

By
:_DGTP2_A_1’H2
} Ds, 2~ A2

: a ary . PP
+;r€11f4{c (x)log p — b*(x) ; } :

Hence w is a supersolution of (4.8)) if

4N 3r ) Dg,.p
1D, p* = A |w]? + inf { < (x)logp — b%(z) - —E b >
oz De.pl” = Azlenl +é2,4{c (z)log p = b(x) - — }_0

Then, one can see that this inequality holds when |z| is sufficiently large under con-

dition (4.26])).
Similar computations holds for W = —log p thanks to the superadditivity inequali-
ties of the maximal operator, and noting that

1 4
(Dg, W) = T [Blaml’L] + ?DGT;O@ Dg,p

Finally, Corollary and Corollary give the conclusion. O

Remark 4.33. Note that (4.32)) is satisfied for instance when either b is bounded
and ¢*(z) > 0 or b*(x) - Dg,.p < 0 and ¢*(x) > 0.

Remark 4.34. Recall that in Remark we pointed out that the Heisenberg group
H? is a free step two Carnot groups if and only if d = 1 (and r = 2). We compare
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the above condition with the one obtained in the previous section. Since 77 = p*Dg, p

(4.26) reads

sup{b*(z) - 1 — ¢ (¢)p" log p} < 4Np*|Dgypl” — 6Alza [
[e1S

|z g |?

As pointed out in [99, Lemma 3.1], one immediately sees that |Dg,p|* = 5~ and

hence (4.26]) becomes

sup{b°(z) - 7 — ¢*(x)p log p} < (4N — 6A) |zg]? |

acA

and the sufficient condition (4.18)) was

sup{b®(x) - 77 — c*(x)p*log p} < (A = 3A)|zal” .

ae

We observe that (4 — 6A) < (A — 3A) with strict inequality when the constants
A, A are such that 0 < A < A. As expected, condition (4.26)) is more restrictive than
(4.18)) due to the fact that in Corollary sub- and superadditivity inequalities of
the extremal operators are used.

We remark that the main trouble in computing a sufficient condition in Corollary
[4.32| relies on determining the sign of the eigenvalues of the horizontal Hessian of the
radial Lyapunov function. However, within these geometries the extremal operators
P+ behave better than M™, since formulae and requires to know the trace
and an extremal eigenvalue of the Hessian only, without necessarily knowing their
sign. We have the following

Corollary 4.35. Let X = { X, ...., X,,} be the system of vector fields generating G,..
Assume that (4.12)) and (4.13)) are in force and

sug){bo‘(q:) - —c*(x)p*log p} < 3|zw|® — 4N(r — 1)p*| Dg, p|? , (4.27)
aE

for p sufficiently large, b*(x) takes values in R** and 7 = pDg, p.
(c) Let u € USC(RY) be a viscosity subsolution of (4.23)) such that

lim sup u(z)

<0.

Assume that either ¢*(x) =0 or u > 0, then u is a constant.

(d) Let v € LSC(RY) be a viscosity supersolution of (4.24)) such that

liminf —2_ >
jal—+00 log p()

Assume that either ¢®(x) =0 or v <0, then v is a constant.

Remark 4.36. Wee emphasize that when r = 2 and d = 1 (i.e. G, ~ H?) we find
the same condition as in Corollary [4.26] as expected.
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4.5 Example 3: the Grushin plane

We now provide sufficient conditions for the validity of Liouville-type results in the
Grushin plane for equations and (4.10) and hence, as a byproduct, for general
fully nonlinear equation satisfying (that we will not write for the sake
of brevity, being the same to Corollary and Corollary . Recall that the
Grushin plane (cf Section is the sub-Riemannian geometry induced on R? by
the two-dimensiuonal vector fields

X =0, ;Y =20,
for p = (z,y) € R% Here we use the following homogeneous norm
ple,y) = (o +4y°)3 .

We first underline that the Liouville property for the (classical) subsolutions (super-
solutions) bounded from above (below) of the Grushin sub-Laplacian does not hold.
Indeed, the function

_ $[15 =100 +3p" ifp<1,
u(r) = 7 :
= ifp>1.
p
is a nonconstant classical supersolution bounded to —Ayu = —0,,u — x28yyu =01in
R2. Similarly, v = —u shows the failure of the Liouville property for subsolutions.

This example underlines that as soon as the (classical) ellipticity is not in force,
then the Liouville property fails even in the case d = 2. We recall that one-side
Liouville results for sub- and supersolutions to the Laplace equation are true in R2,
see Remark [4.2]

We denote as usual by Dyu and (D3u)* the horizontal gradient and symmetrized
horizontal Hessian over Grushin vector fields respectively. The same example shows
also that one-side Liouville properties do not hold even for sub- and supersolutions
to Pucci’s extremal equations. In fact, for 0 < A < A, in view of the inequalities

MEA(D3)) = A e~ A e > ~ Al
e;>0 e; <0

and

“NAyu> =AY =AY e = M, (D)),

e; >0 e; <0
we can conclude that « is a nontrivial bounded classical supersolution to the maximal
Pucci’s equation ./\/lj\r A((D3u)*) = 0 and, similarly, v = —u is a bounded classical
subsolution to M; ,((D3u)*) = 0, providing a counterexample for the Liouville
property even for the extremal operators over the Grushin horizontal Hessian on R2.

Corollary 4.37. Let X = {X,Y} be the system of vector fields generating the
Grushin plane. Assume also that (4.12)) and (4.13)) are in force and

2sup{b®(z) - 1 — c*(x)p*log p} < (A — N)z® 4+ (=A + N\)/924 + 492,  (4.28)

a€cA

for |z, ly| sufficiently large, where 7 := (23, 2xy) € R?.
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(a) Let u € USC(R?) be a viscosity subsolution of (4.8) such that

lim sup <0.

(@) |00 108 ()
Assume that either ¢®(x) =0 or u > 0, then u is a constant.

(b) Let v € LSC(R?) be a viscosity supersolution of (4.10) such that

lim inf v(@) >
|(z,)|—o0 log p(z)

Assume that either ¢®(x) =0 orv <0, then v is a constant.

Proof. Similarly to Corollary and Corollary [£.32, we compute the symmetrized
horizontal Hessian of the Lyapunov function w = log p having in mind over the
Grushin vector fields defined above. We first note that w(p(z)) explodes as |z| — oc.
We have

0 2xy 1 1
XP:_:_ 7Yp:_:_ 7DX10:_ I3721’y
P pE pE pE ( )
which also gives
Dpl? = &
xXpP = — -
2

Moreover, the entries of the intrinsic Hessian D3 p are given by

32 3
X(Xp) =22 _3x vy

4 P

2y

Y(Xp)=—-YpXp,

222 3
Y(Yp)=—5 —-YpYp

Pp

Therefore, the matrix D% p can be written as

1 (32 2 3

Setting w := log p, by the chain rule we have

1 (322 2 4
Diw:E(O 2;/2>—EDXp®DXp.

Then, the symmetrized horizontal Hessian takes the form

32y

4
y 21,2) - ED)CP@ Dxp .

iy =
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We claim that the eigenvalues are

{$2+\/9x4+4y2 2% — /92 + 4y? (4.20)
2p4 ’ 204 ' '

Indeed the (symmetrized) horizontal Hessian is given by

322 42y _ Saly
2 _ ot o8 o o8
(DXw) - y 8zty 222 1622y '

Y

o
Then one computes

Sx?  4a? x?
Tr(Diw)") = —p — —5 (2" +4y%) = =,
o pt PP p*
and, by recalling the expression of p, we also get

6z 48x'y®  8a®  64a®y?  y? 642y’ 16a'y?

2 *\
det((DXw) )_ PE B o2 - 12 P16 _E pl6 pl2
(621 —y?)  32z1y*> 8B
- o8 R

Then the eigenvalues are given by the formulae

_ Tr((D3w)") — VTr((Diw)*)* — A det((D3w)*)

A 5 : (4.30)
and

v . D(DRw)) + V/Tr((DRw)*)? — 4 det((D3w)”)

9 = .
2
Note that
2 2 wtpt 4

\/ Tr((Diw)*)? — 4det((D3w)*) = PR (62 — y?)p® — 32zy?p* — Ba®pl] =

48_464_28_884 1
:\/xp (62 — y*)p px]:?/gxuzw?-

16
Then, we get the eigenvalues (4.30). In particular, we immediately observe that
A1 is positive and )\, is negative and this fact allows to compute Pucci’s extremal
operators over (D%w)*. We have

My A((D3)’) + inf (¢ () log p = 1 (2) - 1)

sz + /92 + 492 )\xQ — /924 +4y2+
B 2p* B 2p%

: (0% (e 77
+ ol[lelf {C (117) log 1% b (él?) p4} = 0

if condition (4.28)) is satisfied. One can obtain the same sufficient condition for
equations of the form (4.10)) using the Lyapunov function W (p) = —log p. O
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Part 11

Fractional Mean Field Games
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Chapter 5

Fractional MFGs

In this chapter, we deal with the well-posedness of the evolutive fractional MFG
system

—0wu + (—A)*u+ H(z, Du) = Flm(t)|(z) in Qr

om + (—A)*m — div(imD,H(z,Du)) =0 in Qr (5.1)

m(x,0) = mo(x), u(z,T) = ur(z) in T?

where Qr := T?x (0,T), H = H(x, Du) is a superlinear Hamiltonian in Du, (—A)%u
is the fractional Laplacian of order s € (0, 1), F'is a regularizing coupling and my, ur
are given functions. In particular, note that the first equation is a backward-in-time
fractional Hamilton-Jacobi equation, while the second equation is a forward frac-
tional Fokker-Planck equation.

As announced, the main contribution of this part of the manuscript, other than pro-
viding the well-posedness to the aforementioned system, is to provide the functional
setting to handle (nonlinear) nonlocal problems in the L? setting as perturbation of
fractional nonlocal equations, which will be discussed in the next Section [5.3] Then,
we will analyze separately both equations in the subsequent sections and, finally, we
will prove our main results that we state in detail below for reader convenience.

5.1 Assumptions and main results

We suppose that H is C?*(T? x RY), H(x,p) > H(x,0) = 0, convex in p, and there

exist constants v > 1 and ¢y, Cy, Cy > 0 such that

Dy H(x,p)-p— H(z,p) > Culp|” — cu , (H1F
|DpH (2,p)| < Cylp™ + Cy (H2F
| DeaH(z, p)| < Culpl” + Chr (H3

D2 H(z,p)| < Clp "+ Cn | (H4F
D2,H(x,p)§ - € > Culp|*I¢* = Cu (H5F

S
N N ~— ~—

for every x € T, p € R? and ¢ € R% We provide some examples of Hamiltonians
fulfilling the above listed assumptions in Section below. The following are the
standing assumptions on the regularizing coupling F": there exist a constant C'r > 0

79



such that

F:P(T% — C*T(T?) is continuous, (F1)
HF[ml] — F[mg]Hoo < del(ml, mg) le,mg S P(Td), (FQ)
|F(-,m)||g2+a(ray < Cr for every m € P(T?). (F3)

Finally, we suppose that
up € C(TY) and [ur | gavaqpay < C’ (I1)

mg € C*(T?) with [|mo]| qsra(pay < C" and non-negative, [ mo(z)de =1. (12)
Td
We denote by P(T?) the set of Borel probability measures on T endowed with the
Monge-Kantorovich distance d;, defined as

di(p,v) == Sup/ pd(pp—v),
¢ Jrd
where the supremum is taken over the 1-Lipschitz maps ¢ : T — R. Here, we
address the existence and uniqueness of solutions to (5.1) through the vanishing
viscosity method, namely solutions of ([5.1]) are obtained as limits (in some sense to
be specified below) of solutions u, of the approximating viscous coupled system of
PDEs

-0 — o Au+ (—=A)*u+ H(xz, Du) = Fim(t)](z) in Qr

om —oAm + (—A)*m — div(mD,H (x,Du)) =0 in Qr (5.2)

m(x,0) = mo(x), u(x,T) = urp(x) in T¢ .

Theorem 5.1. Let (11)-(I2), (H1E)-([H5EF) and (F1)-(F3) be in force. Then, for all

o >0 and s € (0,1), there exists a classical solution (u,,m,) € CH®2+/2(Qr) x
CAe2+2/2(Qr) to the fractional MFG system (5.2).

The proof of this result is a rather standard application of Schauder’s fixed point
theorem. For fixed o > 0, we treat (—A)*u, (—A)*m as perturbation terms in a
viscous MFG system. Semiconcavity estimates for the HJB equation with mixed
local and nonlocal diffusion term are obtained by means of the adjoint method, that
ensure existence of u. Note that these estimates are stable as ¢ — 0. This limiting
procedure is then described by the next main result:

Theorem 5.2. Let the assumptions of Theorem be satisfied. Let (u,,m,) be a
solution to (5.2). Then, as ¢ — 0 and up to subsequences, u, converges uniformly
to u, Du, converges strongly to Du, and m, converges weakly to m. In particular

o [fs e (0,1/2], then (u,m) is a weak energy solution to (5.1)) (in the sense of
Definition and Definition respectively);

o Ifs e (1/2,1), then dyu,dym, (—A)*u, (—=A)*m belong to some C*2(Qr), a €
(0,1), and (u,m) is a classical solution to (5.1]) .

Our uniqueness theorem can be states as follows. For its proof, see Theorems

.52} b.54
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Theorem 5.3. Suppose that -, (H1F)-(H5F) and - hold. Then (5.1))

admits a unique solution in the following cases:

(a) The monotone case. If H is convex and the following monotonicity condition
holds

/Td(F[ml](a:) — Flma)(@))d(my —ms)(x) > 0 ,¥my, ms € P(TY) ,my £ ms |

then (5.1) admits a unique solution.

(b) Small-time uniqueness. For s € (3,1) and H € C*(T% x R?), there exists

T* > 0, depending on d, s, H, F,mq,ur such that for all T € (0,7*], (5.1) has

at most a solution.

The chapter is organized as follows: Section [5.3|is devoted to some preliminary
tools on the functional spaces used in the following sections. We prove the Sobolev
embedding theorem for parabolic spaces in Subsection[5.3.3] Section [5.5]is completely
designed to the separate analysis of the viscous fractional Fokker-Planck and HJB
equations. In particular, the existence result for the latter is given in Subsection
5.5.2 In Section [5.6| we prove both Theorem and Theorem [5.2] postponing
the uniqueness to Section [5.7, where Theorem [5.3] is proven. As announced, in
the appendices we gather regularity results in Sobolev and Holder spaces for non-
homogeneous fractional heat-type equations together with fractional Leibniz and
composition rules on the torus.

5.2 Model Hamiltonians

In this section we list some model Hamiltonians fulfilling (H1E])-(H5F)).

Example 5.4. A first example fulfilling the above assumptions is
Hi(x,p) = h(z)(1+|p]*)? +b(x) .,y > 1,
where p € RY, h,b € C?(T?) and h(z) > hg > 0. Here we have for z € T?, p € R?
DyHy(z,p) - p — Hi(z,p) = DpHi(z,p) - p — vHi(z,p) + (v — 1) Hi(z, p)
> (v = DH(z,p) — h(x)y = ho(y = DIp|" = ([|2llocy + [[bl]o0)

ensuring the validity of (HIF). Moreover, |D,H| = h(x)y(1 + |p|*)2~"|p|, so it is
immediate to check the validity of (H2F])-(H4F]). In addition, we have

y—4 J_
Dy, H(w,p) = h(@)y[(y =2)(1 + [pI*) = p@p+ (1 +[p]*)2 ' 1d] -
Therefore, H is strictly convex since for every ¢ € R? it holds
y—4
Dy, H(x,p)§ - € = h(@)y(1+ [pI*) = [P [(y = Dlpl* + 1] = hoy[€]* -

The same computations shows the validity of (H5F]).

81



Example 5.5. Another example is represented by Hamiltonians behaving like O(|p|”)
for |p| — oo, namely

Hy(z,p) = h(z)|p|” +b(x) -p,v>2,

where p € RY, h,b € C?(T?) and h(z) > hg > 0. Here, simple computations and
Young’s inequality allows to conclude

1113

DyHy(2,p) - p — Hale,p) = ol [h(x)(v - ﬂ + o) - 1)

which gives (H1F)) by setting e.g. Cy := ho(y — 1) — %, ho := ﬁ + 9,0 > 0 and

cy = 2% — % It is straightforward to verify (H3F)-(H5F]). Moreover, H is convex
since it can be written as supremum of linear operators (see e.g. [212]).

Remark 5.6. We remark that if one requires to satisfy Hs(p) ~ |p|” in the sub-
quadratic case v < 2 in Example , then H fails to be C? in a neighborhood of
p =0, since H3 = Hs(p) € CY71(R?).

5.3 Fractional parabolic spaces

5.3.1 Holder spaces

We first recall the definition of Holder spaces on the torus and then define the
natural parabolic Holder spaces associated to the heat and fractional heat equation.

Let a € (0,1] and k be a non-negative integer. A real-valued function u defined on
T? belongs to C*t*(T?) if u € C*(T?) and

D - Dr
[DTU]CQ(W) ;= sup | u(yc) u@)| < 00
2AyeTd dist(z,y)®

for each multi-index r such that |r| = k, where dist(z, y) is the geodesic distance from
x to y on T Note that in the definition of the previous (and following) seminorm,
since u can be seen as a periodic function on R?, dist(x,) can be replaced by the
euclidean distance |z — y|, and the supremum be taken in RY. We will denote by
|| lloo:2 the sup-norm on €2 (and eventually drop €2 in the subscript if it is clear from
the context).

Let now I C [0,7] and Q = T? x I. First define

[U]Og(Q) ‘= sup [U('at)]ca(qrd)
te[0,7)
and

[U]CE(Q) = j;g[u(l’a ‘)}Cﬁ(z) .

For any integer k we denote by C?**(Q) the set of functions u = u(z,t) : Q —
R which are continuous in @ together with all derivatives of the form 97 D%u for
2r + |B| < 2k. Moreover, let C?FFek+a/2(() be functions of C**(Q) such that the
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derivatives 97 DPu, with 2r + |3| = 2k, are a-Holder in z and «/2-Holder in ¢, with
norm

[ullpzeransangy = Y N0 Diullao+ Y (07 Dfulcg (@) + 0 D] parz g
2r+|8|<2k 2r+|B|=2k

For these classical parabolic Holder spaces, we refer the interested reader to
[119] 154 [159] for a more comprehensive discussion.

We now consider some vector-valued Holder classes. Let X be a Banach space
and 3 € (0,1). Denote by CP(I; X) the space of functions u : I — X such that the
norm defined as

lu(®) = ()l

|t —7l°

Huucﬂ([;x) = sup ”u<t)HX + sup
tel t#£T

is finite. Hence, specializing to X = C%(T9), a € (0, 1), we have that C?(I; C*(T¢))
is the set of functions u : I — C%(T?) with finite norm

HUHCﬂ(I;ca(Td)) = ”u”oo;Q + St‘é?[u(wt)]oa(ﬂrd) + [U]CB(I;Ca(Td)) )

where the last seminorm is defined as

] — sup Ju(-, ) = ul 7)ll oo (o)
B(T-Ce(Td =
CH(L;C*(T?)) btrel it— 7|

When dealing with regularity of parabolic equations driven by fractional diffusion,
we also need the following Holder spaces with different regularity in time and space.
Following the lines of [59] and [114], we define C*#(Q) as the space of continuous
functions u such that the following Holder parabolic seminorm is finite

[u]cas@) = [ulee@ + [Ulep g (5.3)
The norm in the space C*?(Q) is defined naturally as
||u||caﬁ(Q) = ||U||oo;Q + [U]ca,B(Q) .

Note that if 8 = a/2, the space C*#(Q) coincides with C“%/2(Q). As pointed out in
[114], the following equivalence between seminorms holds

{U]C 5 ~ sup |U([E,t> —U(y77')| )
B(Q) z,y€Td t,7€[0,T) dlSt(.T, y)a + |t - 7-|B

All the spaces above can be defined analogously on R? and Q = R? x I. Moreover,
if u is a periodic function in the z-variable, norms on T¢ and R? coincide, e.g.
[l

Ca(’]l‘d) — Hu”ca(Rd),

Remark 5.7. It is worth noticing that we have to distinguish the vector-valued
Holder spaces CP([0,T]; C*(T¢)) and C*?(Q), since it results

C7([0,T]; C*(T) € C*7(Qr) -
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It can be easily seen by taking § = « and a periodic function in the z-variable that
behaves like (x + ¢)* in a neighborhood of (0,0) (see in particular [204, Section 4]).
We provide the explicit computations for reader’s convenience. On one hand, we
have

”UHCW(QT) ~ |ulo,qr + sup [u(z, ')]Cﬁ([O,T]) + sup [U('at)]ca(qrd)
zeRd t€[0,T]

< |ulo,g, + sup [u(z, ')]CB([O,T]) + sup [uf(-, f)]m(qrd) + [U]Cﬁ([O,T};Ca(Td))
r€R4 t€[0,7T7]

= HUHCﬁ([O,T];Ca(Rd)) :
On the other hand, to see that the converse inclusion does not hold, we consider the

function u(z,t) = (x +t)* in I? = [0,T] x [0, T]. We first prove that u € C**(I?) by
proving that the Holder seminorm below
ja(x, t) —a(a’, )] ja(z,t) — u(z,t')]

U|ca,a(2) := SUP SUp + sup sup
e (1) tel za'el |z — a']® z€l ti'el |t —t'|>

is finite. We first recall the following simple algebraic lemma

Lemma 5.8. Let o € (0,1) and a > b > 0. Then we have
a® —b* < 27%a — b)* . (5.4)

Proof. The inequality is proven in [103] Lemma I.4.4] and with sharp constant in
[53, Lemma A.2].
m

The above result immediately implies that the seminorms

sup[a(-, t)]ca(ry ,supla(-, t)]ca( < oo .
tel] zel

Indeed, supposing without loss of generality that x > 2’ (and hence z +t¢ > 2’ +1¢ for
every t € I), in view of the inequality in ([5.4)) we conclude for every t € I the bound
a / «
(x+1)* — (2" +1) <ol-a
(x —a) -

We now show that the seminorm [u]ce (,ce(r)) blows up in a neighborhood of (0,0) €
I, showing indeed that u does not belong to C*(I; C*(I)). We have

(x,t) — u(x,0) —u(0,t) + u(0,0)]
Tt

_ U
(U] ca(r,ca(n) > |

Y

and hence when (z,t) approaches to (0,0) the inequality on the right-hand side
behaves like
lu(x,t)|  (x+t\"
zote \ at ’

which blows up as (x,t) approaches to (0,0), and so does the seminorm [u]ce(r,ce (1))
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5.3.2 Fractional Sobolev and Bessel potential spaces

Recall that LP(T?) is the space of all measurable and periodic functions belonging
to Li, (R?) with norm || - ||, = || - llze(o1)e)- If f 2 T — R?, for brevity we write

loc
f € LP(T9) instead of f € (LP(T?))%. If k is a non-negative integer, W"?(T?) consists
of LP(T?) functions with (distributional) derivatives in LP(T¢) up to order k. For

p € Rand p € (1,00), we can directly define the Bessel potential space Hﬁ(’]l‘d) as

the space of all distributions u such that (I — A)zu € LP(T?), where (I — A)zu is
the operator defined in terms of Fourier series

(I =A)2u(e) = ) (1+ 4 [k 2a(k)e*™ |

kezd
where

u(k) :/ u(z)e "k dy
Td

The norm in H/(T?) will be denoted by

Note that H}(T?) coincides with W#*?(T%) when k is a non-negative integer and p €
(1,00), by standard arguments in Fourier series (see Remark below). Moreover,
C>(T?) is dense in H¥(T%), by a convolution procedure: this fact will be useful to
prove several properties of Bessel spaces, as it is sufficient to argue in the smooth
setting to get general results.

Bessel potential spaces can be also constructed via complex interpolation. We will
briefly present such a construction, that will be helpful to derive some useful prop-
erties of H!(T?). For additional details, we refer to [178, Chapter 2], [36, Chapter
4] and [231], Section 1.9]. We first recall the following

Definition 5.9. Let X be a Banach space and 2 C C be an open set. A function
f:Q — X is holomorphic if

flz) =  tim AGeth= )

h—0 ,heC\{0} h

exists for all zy € Q. We say that [ is weakly holomorphic in Q if it is continuous
in Q and the complez-valued function z — (f(x),2')x x is holomorphic in Q0 for
every ' € X',

In particular, it is straightforward to see that every vector-valued holomorphic
function is weakly holomorphic. Moreover, the converse implication is also true [7,
Appendix A].

In general, in complex interpolation theory one considers two Banach spaces X, Y,
that are continuously embedded in a Hausdorff topological vector space Z. Let S be
the set

S:={2€C:0<Rez<1}.

85



We define

Hxy(S) = {u(d) |u(®): S — X +Y bounded and continuous,
holomorphic on S, ||u(it)||x, [[u(1 + it)||y bounded for t € R}

and we equip it with the norm
[ull32x.y (s) = max{sup [lu(it)||x, sup [|u(l + it)ly }.
teR teR

For every 6 € [0, 1] we define the complex interpolation space with respect to (X,Y)
as
[X, Y]@ = {u(@) U € H)Qy(S)}

endowed with the norm

= inf .
S S L
Then, one has that H ;‘(']I'd) can be obtained by complex interpolation between LP(T¢)
and WkP(T4), see, e.g., [213], Section 3] or [36, Theorem 6.4.5 and p. 170], that is

HY(TY) = [LP(TY), WP (T%)]g,  where p = k6.

We briefly describe also some tools to construct real interpolation spaces, namely
the so-called K-method and the trace method, referring, among others, to [177,
Chapter 1] or [I78, Chapter 1] for additional details. In general, real interpolation
between LP(T?) and W*P(T4) leads to spaces that do not coincide with Bessel po-
tential spaces. Still, we will make use of this other class of fractional spaces to prove
useful properties of (—=A)*. Let X,Y be Banach spaces with Y C X, 6 € [0,1] and
p € [1,00]. For every z € X and t > 0, define

K(t,z, X,)Y) = inf l|lal|x + t]|o]|y -

r=a+b,acX,beY

Sometimes we will use the shorter notation K (¢, x) to denote the K-functional. If
I C (0,00), we denote by L2(I) the Lebesgue space LP(I, %) and L°(I) = L>(I).
We define the real interpolation space (X,Y)y, between the Banach spaces X,Y as

(X, Y)op={r e X+Y :t =t Ktz X,Y)ec L0,+00)}
endowed with the norm
Izllop = 1t K (t, 2, X, Y )| 120400 -

It can be proved that this is a Banach space. We remark that such a construction
turns out to be useful to prove Holder regularity of the solution of the fractional heat
equation in Theorem Another frequent characterization of real interpolation
spaces is given by means of the trace method (see [231), Section 1.8.1], [I77, Section
1.2.2] and [I72]). Let X, Y be Banach spaces as above. For o, p € R with p € (1, 400)
satisfying 0 < o + % < 1, we define the space

W(p, o, Y, X)={f:R" = X : t*f(t) € LP(0,+00;Y) and t* f'(t) € L*(0,+o0; X)} .

86



It is a Banach space endowed with the norm

| Fllw pavy,x) := max{[|[t* f ()| r(o,400:v), [T F (E) | Lr(0,400:x) } -

We then identify with T'(p, «, Y, X) the space of traces u of those functions f(t) €
W(p,a,Y, X), equipped with the norm

Jullrpenyi = inf (17w

By [177, Proposition 1.2.10], this provides a characterization for the real interpolation
space (X,Y)y, as a trace space. For p € (1,00), 6 € (0,1) and 6 = % + «, we define
fractional Sobolev spaces W1=%P(T?) by

W0 (1) = T(p, a, W (T%), L7(T)),

For ju > 1, W#P(T9) is defined as the space of functions in W4»(T?) with derivatives
of order |p| in Wr=Lu2(T) while for p < 0 it is defined by duality. Note that
T(p,a,Y, X) = T(p,—a, X", Y') by [172, Theorem 1.2]. We finally mention that
spaces WHP(T?) defined above can be characterized using the Gagliardo seminorm
on T¢ by transposing classical arguments on R? (see, e.g., [178]).

Finally, we need to introduce the Besov spaces B q(']I‘d), where p € R stands for the
order of differentiability and 1 < p,q < oo for the orders of integrability. If x4 is not
an integer, we denote by [u] and {u} be the integral and fractional parts of u. For
p,q < oo we define

Bl‘iq(Td) ={u e W[“Lp(’ﬂ"d) : [u]ng(W) < oo}

where

1
dh A%
Pp— (0% _ o p
[W)pg  ray == > ( T (/Td\D u(z + h) — Du(z)] dx) ) :

lo=p

and we set as usual Wo?(T%) = L?(T¢). When p = ¢ it results B (T?) = WP(T%).
These spaces in the intermediate cases 1 < p,q < oo are crucial to characterize
the initial traces for parabolic Sobolev spaces we shall define in the next sections.
For p,q = oo the L? norms are replaced by sup norms and B _(T%) = C*(T%)
(see e.g. [I78, p. 13]). Similarly to the case of fractional Sobolev spaces WP,
Besov spaces can be characterized via real interpolation. One can show the following
characterizations (cf [I78, Example 1.10]):

- For 6 € (0,1), m € N we have

(C(T4), C*(T))g,00 = Bl (T) -
- In particular, if m# is not an integer,

(C(T?), CH(T))g00 = C™(T7) .
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- For 1 <p,q < oo, m € N we have

(LP(T), W™ (T%))o, = By (T7) .

We conclude this introductory part with one of the main useful tool in interpola-
tion theory, namely the so-called Reiteration Theorem. We first recall the following
definition

Definition 5.10. Let § € [0,1] and E be a Banach space such that X N\ Y C E C
X+Y.

(i) E belongs to the class Jy between X and Y if there exists a constant Cy > 0
such that

lzle < Cullzll =]y Yo € X NY

(i) E belongs to the class Ky between X and Y if there ezists a constant Cy > 0
such that

K(t,ZE) < Cgt9||$|lE ,\V/ZE cFE, t>0.

Note that when Y C X we have K(t,x) < ||z||x (see [IT8, (c) pag. 2]). We quote
the result from [I78, Theorem 1.23].

Theorem 5.11 (Reiteration Theorem). Let 0 < 0y < 6; < 1. Set € (0,1) and
w=(1—=0)0y+00,. The following hold true.

(a) If E; belong to the class Ky, i = 0,1 between X and Y, then

(EOaEl)B,p C (X> Y)w,p aVP € [1700] 7(E07E1)9 - <X7 Y)w .

(b) If E; belong to the lass Jp,, i = 0,1 between X and Y, then

<X7 Y)UJJ? C (E()?El)@,p ,Vp € [1700] 7(X7 Y)w C (EOaEI)G .

As a consequence, if E; belong to Ky, N Jp,, then
(E(h El)@,p = <X7 Y)w,p ,Vp € [17 OO] ) (E()a El)@ = (Xa Y)w
with equivalence of their respective norms.

Parabolic spaces. We proceed with the definitions of some functional spaces
involving time and space weak derivatives. Let Q = T¢ x I be as before. For any
integer k and p > 1, we denote by Wp%’k(Q) the space of functions u such that
' DBy € LP(Q) for any multi-index 3 and r such that |3] + 2r < 2k endowed with
the norm

S =

[ / /Q > 10y Dlulrdadt

|B|+2r<2k
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We now define the fractional generalization of the above spaces. Let again p € R
and p € (1,00). We denote by HX(Q) := LP(0,T; H*(T?)) the space of measurable
functions u : (0,7) — H%(T%) endowed with the norm

r N\
lillagigr = ( [ Ny re
»(Q) 0 (

We define the space HA(Q) = HL*(Q) as the space of functions u € HA(Q) with
o € (Hff*“ (Q))" equipped with the norm

lellags ) = llellens ) + 100l gz g

We refer the reader to [84]. Note that the above definitions make sense also when
s = 1, see e.g. Chapter [f] (here we will usually drop the superscript s for brevity).
Those are natural spaces in the standard parabolic setting: see [155] and [92], [50,
Chapter 6] for properties in the case s = 1. Note that (HQS "(@Q)) coincides with
HA~ 25(Q) when p > 1. From here on for a function f : QT — R we will write for
brevity | D f||La(@r) meaning the norm ||Df||pa(qgqpiray-

Moreover, all the aforementioned spaces can be defined analogously on R? and
R? x I, mutatis mutandis. In particular, one has to consider (I — A)zZu as the
operator acting on tempered distributions in terms of the Fourier transform F:

FIUI = A)2u)(€) = (L+4n°I€]°)% Ful€),  VEeR

5.3.3 The fractional Laplacian on the torus

In this section we recall the definition of the fractional Laplacian on the flat torus.
Let v : T — R. The fractional Laplacian on the torus can be defined via the
multiple Fourier series

(=Aga)Pu(z) = 2m)* Y |kPPa(k)e™ . p>0.

kezd

With a slight abuse of notation, we will denote this operator by (—A)*. Indeed,
generally speaking (—Ag«)* coincides with the standard fractional laplacian on R?
acting on periodic functions. We refer the reader to [206, 62] for additional details,
and to [205] for transference properties from the torus to the Euclidean space. Note
that in our analysis of this chapter we never make use of the integral representation
formula for the fractional Laplacian on the torus. However, it can be immediately
obtained by properties of Fourier transform, as stated in the next

Proposition 5.12. Let 0 < s < 1, z € T¢, u € C>®(T?), then

u(z) — u(y)
(=A _Cdszpv/d z —y — k|d+25dy

kezd T
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Proof. This fact has been proved in the 2-dimensional case in [95, Proposition 2.2]
and can be easily adapted to the general d-dimensional case.
We further mention that in the case of the whole space the fractional Laplacian can
be also defined via the extension problem (see e.g. the seminal paper [61], [56] and
the references therein).

O

We present two standard results that will be useful in the sequel

Lemma 5.13. For every smooth f,qg, the following identity holds true for any s €
(0,1)

[ 8y pode = [ (-8)72f (~8)2gdn = [ f(-aygds.
Td Td Td
Proof. The functions f and g can be written by multiple Fourier series expansion

@) = 3 fw)em e and g(a) = 3 gu)emne.

vezad HEZA

Then

—A)® = (271)%° I/2SAV p2mivw 2T ]
oy sate = @i [ 30wl igoena

v,u€Zd

= Crp Y WP [ i

v,uEZY T4
= Y Pl f0)a) [ s
v+u=0

= rp Y Pl f0)at) [ s

v,uEZl

= (2m)? / 3 W g e = / ()i f(-A)igde

v,u€Ze

where we used that [, ez dy = 0 if and only if g + v # 0 and the fact that
the Fourier series defining f and g converge absolutely. O

Remark 5.14. We point out that the operator (I—A)z maps isometrically HH#(T)
to H?(T?) (and therefore spaces H™* to H]) for any n, 1 € R, This fact extends

also to Besov spaces Bk (T%). Moreover, for y > 0 the operator (—A)*% is bounded
from HI**(T%) to H1(T?). Indeed, T# := [(—A)5(I — A)~%], o > 0 is bounded in
LP(RY) (see [222, p. 133]), so

1(=2) % ull o ey < Cls,p) ] . (5.5)
In other words, (27)*|£|*(1+472|¢|?)~ 2 defines a Fourier multiplier on LP(R%). Then,
by the transference result [223, Theorem VIII.3.8], the periodized operator given by

Thu =y (2m) k(L + 4n* k)~ (k)

kezd
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is in turn bounded in LP(T?). It then follows
1(=2) 2 ull oray = | T7(1 =A) 2 ul| opay < ClI(T=A) 2] poray = Cllull g re) , (5.6)

so (—A)z is bounded from H4(TY) to LP(T?). The general case follows by using the
isometry (I — A)z.

Similarly, (1+ (2m)#€])/(1+4m2|¢)?)% and (1 +472|€)?)2 /(14 (27)#|€]*) define
Fourier multipliers on LP(R?) for 1 < p < oo, and by continuity they transfer to
LP(T%). This proves the equivalence of norms || - ||, and || - ||, + [[(=A)% - ||,.

The following interpolation estimates hold.
Lemma 5.15. Let u € LP(T?), p € (1, 00).

(i) If s € (0,3) and Du € LP(T?), then for every & > 0 there exists C'(§) > 0
depending on 0,d, s, p such that

I(=A)ull, < &[[Dull, + C(0) [[ull, -

(ii) If s € [3,1) and D*>u € LP(T?), then for every § > 0 there exists C'(5) > 0

29
depending on 0,d, s, p such that

I(=A)ull, < a[[D%ul|, + C(8) [lull,

Proof. The proof follows by interpolation arguments. We prove only the case (i),
the other being similar. Since H2*(T%) ~ [LP(T?), W'?(T%)]y, 6 = 2s, by (5.6) and
Young’s inequality we have

Hu\|p+256ﬁ

u”l,p

. ) C
-8l < s, < C el Jull < (129 (£)

where ¢ = C(d,s,p). We then conclude (i) by setting 0 := 2se2 and C(5) =
1
(1—2s) ()= + 2s€2s.
0
Embedding Theorems for H/', WP and B,
We recall some classical embeddings for (stationary) Bessel potential spaces H(T?).
Lemma 5.16. (i) Let v, € R with v < p, then HY(T?) C HY(T?).
(it) If pp > d and pn — d/p is not an integer, then HY(T%) C Cr=4/7(T?).

(#i) Let v, € R with v < p, p,q € (1,00) and

d d

Ww——==VvV-—-—,
D q

then H(T?) c HY(T?). In particular, for v = 0 this gives the continuous

embedding of Hﬁ(’]l‘d) onto L7555 and hence onto LY(TY) for1 < g < —dfip for
pp < d
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w) In particular, for p > 0 such that up < d and 1 < q¢ < 4 the embedding of
d—pp
HE(TY) onto LY(T?) is compact.

Proof. Ttem (i)-(iii) are proven in [I58, Corollary 13.3.9], [I58, Theorem 13.8.1] and
[158, Theorem 13.8.7] respectively for the whole space case. The transference to the
periodic setting can be obtained as follows. Let y € C5°(R?) be a cutoff function
such that y = 1 on the unit cube [0,1]¢ and 0 < y < 1.

Let now u be smooth function on T¢, namely a smooth periodic function on R%.
Then, it is easy to check that the extension operator

w4 =yxu  onR? (5.7)

extends to a linear continuous operator W*P(T4) — W*P(R?), for all non-negative
integers k and p > 1. The spaces Hf(R?) and H!(T?) can be both obtained via
complex interpolation, that is for some 6 € (0,1) and k > pu > 0, H4(TY) ~
[LP(T?), WFP(T?)]y and HY(RY) ~ [LP(R?), W*P(R%)]y. Moreover, they coincide
with HA(T%) and HE(R?) respectively when p is a non-negative integer. Therefore,
the extension operator is also bounded on H%(T*) — HK(R?) by interpolation
(see [231], Theorem (a), p. 59] and [I78, Chapter 2]).Thus, for all u > 0,

[l zoerey < il zr@ey < Cllt] gr@ay < Collwl| ge ey, (5.8)

that implies (i) in the case ¥ = 0 (note that for the first inequality in to be
true, it is crucial to work in LP, so that the restriction operator LP(RY) — LP(T4)
is continuous). The general case v # 0 follows by applying to the isometry
(I — A)/2. Ttems (ii) and (iii) are obtained analogously.

To prove (iv) one argues by interpolation. We restrict without loss of generality to
the case 1 € (0,1). One observes then that H¥(T%) = [LP(T*), W2 (T%)]y, W'2(T¢)
is compactly embedded onto L"(T¢) for 1 < r < ddTpp by Rellich-Kondrachov Theorem
and hence the identity map T : W1P(T9) — LP(T¢), T'(u) = u is compact. Moreover,
T is also continuous from LP(T¢) onto itself. Therefore, by classical compactness
results in interpolation theory (see e.g. [I73]), we have the compact embedding of
H!(T%) onto LP(T?). We now take a bounded sequence u,, in H#(T%). Then one can
extract a subsequence u,,, converging strongly in LP(T9). By interpolation, for every

p<q< df—f‘;p, there exists 6 € (0,1) such that
4, =, llg < Nty — iy 1, Nty — unjlli% —0

as j, k — oo since uy, is bounded in H}! (T?) which is in turn continuously embedded

d
onto Lﬁ('ﬂ‘d) by (iii). Then we have the strong convergence also in L9 with ¢ as
above.
0

Lemma 5.17. (i) Let v, € R with v < p, then WHP(T?) C W»P(T?).
(i) If pp > d and p — d/p is not an integer, then WHP(T4) C CH=4/P(T4).
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(#i) Let v, € R with v < p, p,q € (1,00) and

d d
w——=VvV—-—,
p q

then WP (T4) C W»4(T?).

Proof. For (i) and (ii) see [2I3] Section 3.5.5]. To prove (iii), we use the trace
method (see also [213, Section 3.5.5] and references therein for a different proof).
By the definition of the fractional Sobolev space WP it is sufficient to restrict to
prove the result when u € (0,1). By using the critical embedding W?(T9) C

L(T%) when é = % — é one concludes that the identity map is linear and continuous

from T'(p, oo, WHP(T), WOP(T9)) = W=92(T9) to T(p, v, LI(T?), LP(T?)). Tt is well-
known (see e.g. [I71]) that T'(p, o, LI(T?), LP(T%)) € L19 where

1 1 1-4 0 1 +
_— s = — o
q@) p d p
giving thus the embedding W'=%?(T?) onto L% (T?) for ¢(#) as above. O

Let us remark that if either ;1 > 0 noninteger or ¢ € N and p = 2 we have
WrP ~ B . When p is an integer and p # 2 we have WP # Bl . This motivates
the next lemma where we collect some results that link Bessel, Besov and Sobolev-
Slobodeckii spaces under different ranges of the integrability exponent p.

Lemma 5.18. We have the following inclusions for u € R.
(i) WrP(T?) € HY(T?) C B o(TY) for 1 <p < 2.
(i1) Bh,(T%) C HY(T?) € WHP(T?) for 2 < p < oc.

Proof. The result on R? is proven in [231), Section 2.3.3] (see also [36, Theorem 6.4.4].
Recalling that H}' is isomorphic to a Triebel-Lizkorin scale (see [213, Theorem 3.5.4-
(v)] and the same chapter for the definition of this space), one uses [213, Remark
3.5.1.4-(20)] to show (i) and (ii).

[l

Embedding Theorems for parabolic spaces H}

We now prove continuous embedding theorems for the spaces HY (Qr) = HS;S(QT),
where Qr = T? x (0,T). As usual, we will denote continuous embeddings of Banach
spaces by the symbol X < Y. All the results of this section are valid for s € (0, 1].
We will basically follow the strategy of [I55, Theorem 7.2], where analogous results
are proven for (stochastic) spaces associated to heat-type equations (that is, for
s=1) on R x (0,7) (see also [I57]). In addition, we refer to [50, Theorem 6.2.2],
[92, Proposition 2.2] and [I85, Theorem A.3] for the case s, u = 1. We first state the
main result of this section and, at the end, we will deduce some useful corollaries.
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Theorem 5.19. Let p € R, p > 1, u € HE(Qr) and u(0) € Wh=2s/pp (T, If B is
such that

s

- < B <s,

p

then u € Cgfi([O,T];Hﬁ*QB(Td)). In particular, there exists C' > 0 depending on
d,p,3,s, T, such that

Ju(-t) = ul, 7 ap, <
for 0 <t,7 <T. Hence,

Jull s

C'’s ;1) ([0,T); HE 2% (T4))

~ el ry + (O lywn-2rmmzay)”

< Clllullagsgry + (O lwn-20/m0(ra)) - (5.9)

Note that the constant C' remains bounded for bounded values of T'.

We first state the following trace result on the hyperplane ¢ = 0 for functions
belonging to HJ. The flexibility of this (functional) characterization of initial traces
give also a way to prove the result claimed in [159, Lemma I1.3.4] for classical spaces
associated to heat PDEs, were a proof is not presented.

Lemma 5.20. If u € HY(Qr), 1 € R and p > 1 satisfying pp — 2s/p > 0, then
u(0) € Wr=2s/pp(Td).

Proof. We restrict to the case pn = 2s. This is proven in [I78, Corollary 1.14] in an
abstract framework and the result is a consequence of embedding properties for the
domain of the fractional Laplacian D(—(—A)®) and the Reiteration Theorem. In-
deed, since s € (0, 1), by applying [I78, Proposition 4.7] one obtains that D(—(—A)*)
belongs to J,(LP(T9), D(—A)) N K (LP(T%), D(—A)). We now apply the Reiteration
Theorem (see Theorem[5.11)) with 6y = 0, 6; = s, 0 = 1—1/p (giving thus w = s—s/p)
X = LP(T%), Y = W2(T9), E, = L?(T%), B, = D(—(—A)*) to get that

(LP(T?), D(=(=2)D1-1/pp = (LP(T), WHP(TY)) sy = W22/PP(T)
Recall that W?2=25/pp(Td) ~ B25-25/P(Td), O
Remark 5.21. We remark that in the context of mixed Lebesgue spaces of the form

w9(Qr) == Wh(0,T; Hy**(T%)) N L0, T; HY)

the initial trace turns out to belong to a Besov s ace Wlth different orders of summa-
bility. When e.g. = 2s we have u(0) € Bay >*/? (see e.g. [199]).

We first need some estimates in the spaces of Bessel potentials for the semigroup
T associated to the fractional Laplacian. Recall that for a given smooth u, Tyu :=
v(t), where v solves

atU + (—A)SU =0 in QTa
v(0) = u in T¢.
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Then we have the following standard representation formula that can be obtained
via Fourier transform

Tuta) = [ o = w)ut)dy = porso (o) (5.10)

where p;(z) 1= f‘l(e_tm%)(iﬂ) = Jaa e2miw 8o —tE™ ¢ n the periodic case, namely if
w: T — R, defining p(2) := 3, cpape(@ +2) = 3, pa e 727 we note that

Ta) = [ e = pyuto)dy = Z/ — uly + 2)dy

2€74 1)d+z

= [ X nta =y 2uts)ay - /Wzat(x—y)u(y)dyzmdum. (511)

2€74

This shows that some properties of the fractional heat semigroup on the whole
space R? can be directly transferred to the periodic case. First, ||pt||L1(Rd) =1,
SO |P¢[| 1 (pay = 1, readily yielding

ITefll, < A, vpell oo, (5.12)

by Young’s inequality for convolutions. Moreover, p,(z) = t=%25p, (t~1/2°2) by rescal-
ing, hence for a multiindex g we have

85 8 ~181/2s || ~181/2s
LY (Re) —
| D% < ||D"p, <t D7 pi| ey < C , (5.13)

s ey <

by boundedness of HDﬁplﬂLl(Rd) (see, e.g., [236, Lemma 2.4]).

Remark 5.22. Representation formula ([5.11)) and decay estimates ((5.12)) imply that
for any f € C*(T?) and multiindices k,m € N,

|D* T f|l, < Ct 2

DUfl, el od. (5.14)

On the one hand, this shows that for ¢ > 0, 7; maps C™(T?) onto C**™(T?). On
the other hand, exploiting the density of C*°(T?) in H.(T?), one obtains that T; is
bounded from W™P(T?) to Wktmr(Td).

In addition, note that, for u € R, it results
T(I—A)ou= (I — A>T (5.15)
The equality can be verified by taking its Fourier transform.

Lemma 5.23. (i) Foranyp > 1 andv € R,y > 0, we have for all f € H;;(']I‘d)

||7;f||y+’yp < Ct 7/28 ||f||
where C' = C(v,7,d, s, p).

v,p

(ii) For any 6 € [0, s] and p > 1, there exists a constant C = C(d, s,p,0) such that,
for all f € HX(T?), it holds
ITef = Fll, < CE (| Fllyg, (5.16)
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(iii) For any p > q > 1, we have for all f € LI(R?)

where C'= C(d,p,q,s).

(iv) For anyp > q>1 and p,v € R we have for all f € Hg(]Rd)

1Tefllop < CE 3G9 7200 1],
where C' = C(d,p,q, i, v, s).

Proof. To prove (i) one can restrict without loss of generality to v = 0, since the
general case will follow by replacing f by (I — A)~" f. The proof is a consequence of
(complex) interpolation between inequalities and (5.14), see e.g. [231], Theo-
rem (a) p. 59].

We prove (ii), and follow the strategy of [I55, Lemma 7.3]. First, by (i) with
v=20and v =2s— 260 > 0, we get

0_
1 Tifllasp < Ct=7 1 fllzg - (5.17)
where C' = C(d, p,0,s). Note that (7;f) = —(—A)*T;f. Hence, we have

|7 = DAl < /0 I=20( = 2)7 L = AP T £, dr

t t
o _ 0
<c / 1Tl d7 < C 1l / Ny = O | flly,

where we used (5.17) and the fact that [(—A)*(1 — A)~¢] is bounded in LP(T¢) (see
Remark |5.14]).

(i) is a consequence of Young’s inequality for convolutions. We have

1Tef 1l = De *za fllp < lpellell fllq

where 1+ % = % + % and p; stands for the fractional heat kernel. Standard estimates
for the fractional heat kernel yields

~ _d_1
Bl < O30

This can be obtained by transference arguments in the periodic setting. Then one
immediately yields

The last item (iv) is a consequence of (i) and (iii). O

Remark 5.24. We observe that —(—A)® generates an analytic semigroup 7; on
LP(T9) for all p > 1, since the following inequality

I=(=A)Tefll, < CtHIfI,

holds (then, argue via [192, Theorem 2.5.2] for example). The above estimate is in
turn a straightforward consequence of Lemma [5.23}(i) with v = 0 and v = 2s.
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We recall the following useful lemma, and refer to [I55, Lemma 7.4] (and refer-
ences therein) for its proof.

Lemma 5.25. Let p > 1 and ap > 1. Then, for any continuous LP-valued function
h(-) and 7 <t we have

h(rg) — h(r;
[h(t) = W2 < Clap)(t - 7)™ / / 1 M) Z RO, s )

|ry — ry[1+op

. t—1 d/y t—y
= Claup)(t =7 / o [ Ihr ) =)

As a consequence one has

1A () = A(7)Il; / / 1A (r2) = h(r)ll;
< Cla ro>T1 dridry ,  (5.19)

o<r<t<r (t—T)P71 |79 — 1|1 FoP

where 14 denotes the indicator function of a given set A.
We now proceed with the proof of the embeddings of HY.

Proof of Theorem [5.19. Note first that since the operator (I — A)2 maps isometri-
cally HE(Qr) onto HE™"(Qr) for any 7, u (see Remark |5.14), we just consider the
case 23 = u. We then have to prove that

lu(®) = u(n)]l;

for 0 <t, v <T.
Define

P (ullyzegry + 16(0) lw2s-20m0(ra));

=0+ (—A)’u, (5.20)

and by the variation of constants formula (it is well-defined in view of [I77), Definition

4.1.4]) we have
t
+/ Ti f(T)dT
0

where T; is defined at the beginning of this section. We claim that
ulr+9) =) = (T, = Dulr) + [ T+ pldp
Indeed we have
Tulr) = u(r)+ [ Taf+ o)
Tt + [ Tormafhdr —alr) 4 [Tt o)y
= Toau0) + [ Ty f () = ulr) =l +) ~ ()

Therefore,
[u(r +7) — u(r)[, < C(A(r,7) + B(r,7)) ,
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where

A(r,y) = (T = Dyu(n)ll;

and

¥ p ¥ p

B(r,7) = ‘ / Typf(r+p)dp|| = ‘ / Tof(r+7v—w)dw
0 P 0 P
Choose a so that % <a< g By Lemma |5.25] we have
lu(t) = u(n)|l} < Cla, p)(t — )P~ (It 7) + I (t,7)) (5.21)
where e oy
_ 2l

I(t,7) —/0 71+ap/T A(r,~)dr

and

t—7 d’}/ t—y
J(t,T) :/o ,yl-f—ap/ B(r,y)dr .

To estimate B, we use Holder’s inequality and Lemma [5.23}(i) (with v = 0 and
v=2s—20 € (0,1). We have

N
B(r,”y):/w /0 wgflwlfgﬁf(r‘f"Y_W)dw

Y 8 q i 8
< ([wttman)" [ottr [ sty - s
0 0

<cwpﬁ,vw1/’Wr+v )8y s, de

p

dx

Q

(d prv ’ygp 1/ ||f r+p)||2,3 25p

This and the inequality o < g give
Jo.r) < Cldpanis) [ / o 1 D 2y
vt

wnﬁm/” o o [y

C(d,p,a, B, 5)(t — 7)+D) /Hflmgwr-@ﬂ)

Recalling that f = d,u + (—A)*u, by (5.5 -
t
ot B
‘](th> < C(d7p>a757 8)<t_7—)( JrS)p/ov <Hatu< )”25 2sp+ H(_ ) ( )||25 23p>

C(d,p,a B5)(t - 7)) /Q@MH&4W+MUMM)
_ A\ (= oc-‘r p p
C(d,p,a By 8)(t =) (|0l e, + Nl o))
_ . (—a+§) p
- C(d7p7a7678)(t T) p||uHHgE(QT)‘
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To estimate I, we apply Lemma m(u) with § = 5 € (0,s) and Theorem
to get

t
/ Alr,y)dr < C(d,p, B, s)7* / [[u(r IIQgp
0
< C’Y‘sp”UHIH_)Hga(QT) < Ci(d,p,a, B,8,T)v+ (Hf”pzﬁ 25(Qr) + ||U(O>||W2ﬁf2s/p,p(1rd))-

Thus,

t—7 d7 t
en< [ [ awaar
5 o s
< C(d,p,e, 8,5, T)(t = 7)5~(||du + (—A) Ullgzs-22(gpy T 11Oy 28-20100 (7))

B
< Ot 8,8, T)(t = 7l 10O) By o)
Finally, combining the last inequality with (5.21]) and (5.22)), we proved that

Ju(t) —u(r)|b < C(d,p,a, B,5,T)]

Pl g, + 10O )

(5.23)
To obtain (5.9), in the special case u = 20, it remains to show that
sup [u(O)l, < Cllullzs g+ 1O lys-mra) (5.24)

This is a consequence of ([5.23) and the continuous embedding of W?=25/P»(T4) into
LP(T4), as B > 2s/p. Indeed,

la()II} < C(8, 5,0, ) [[1(0) [y iy +CT 7 el oo gy TN R0/ )
[l

Remark 5.26. An alternative way of proving the embedding in Theorem [5.19 is
provided by the so-called mixed derivative theorem (see [221] and [199, Corollary
4.5.10]). Let us focus on the case p = 2s for simplicity and H2*(R? x R) =
WhP(R; LP(T?)) N LP(R; H2*(T?)). Here it suffices to take the operators A = (I —
A)? and B = (I — 0?)"/? and X = LP(T?). Since the hypothesis of the mixed
derivative theorem are fulfilled (see e.g. [186]), then we can apply it to the pair of
operator (A, B) acting on Y = LP(R; X) obtaining

|ASB¢|ly < C[|Ay + Bylly for all y € D(A) N D(B)
Since D(B) = H,(R; X), by the above estimate one obtains
H'(Qr) = Hy (0, T; Hy5(T1))

for all £ € [0, 1].

By taking ¢ = /s € (0,1) we have the embedding onto Hf/s(Hgs_sz). Us-
ing Lemma together with the fact that inclusions of Bessel and fractional
Sobolev classes (see e.g. Lemma below), one gets the desired inclusion onto

C575(0,T; HZ29(T9)).
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We now present some continuous embedding results that stem from Thereom

EI9
Proposition 5.27. Letq>p>1,0<60 <1 and u,n € R be such that

d d+2s(1-6
n<u+a—*. (5.25)

Then, for any u € HL(Qr),

0

T
([ 10, dt) < Ol + 10Oy

d+25

In particular, if u >0, 1 <p < andé>§—

T

[ullLa@r) < C(”UHH;;(QT) + ”U(O)”Ww%s/p,p(w))
Here, C' depends on d,p,q,u,n,0,T,s, but remains bounded for bounded values of T .
Proof. Let 0 < 8 < s to be chosen. Recall that, for any 6 € [0,1], if v = v(f) =

(1—2B)(1—0)+0pu, then H? can be obtained by (complex) interpolation between H¥
and H! 2P (see, e.g., [36, Theorem 6.4.5]). Moreover, HY is continuously embedded

n H Y747 iy view of Lemma [5.16] Hence, for a.e. t,
q
0
C<dap78’ﬁ> ||u(t)||y—i+é7q S ||u(t)||1/p — ||u< >||H 28,p ||u< )H/L,p .
p q

By (5.25)), we can choose 25>%sothatngu(ﬁ)—%+§<,u+g—d+28—(l_9)

and therefore
( /0T||u(t)||§,th> gc( /OTII u(®)| )8 e <>||z,pdt)9
< oswp =2 ([ lutony, )

Cllullagipy + 1100 lyw2s-20/mra) =7 lullghs g,

< C(HU”H*;(QT) + [|u(0 )HWW*%/M(W))]D

0

0

where, in the last inequality, we used Theorem and Young’s inequality.
The last statement follows by choosing n = 0 and 6 = p/q. m

Remark 5.28. We point out that the previous result does not allow to obtain the

critical embedding in L? for % = % Tros +2 . In order to do this, a possible way is to

slightly modify the above proof using the embeddings e.g. of H2* onto C/(W?2s~2/p»)
(see Proposition m C.3| for further details). An alternative proof of this fact in the case
p=2and s =1 can be found in [129, 14]. One can also exploit the mixed derivative
theorem introduced in Remark [(5.26]
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Proposition 5.29. Let % <s<1andp> %. Then for all u € Hgs_l(QT) the
following inequality holds

lllgr 2y < Clltllage-s gy + 16Ol ws-2mmcry)

where

and C' depends on d, s, p,T.
Proof. First apply Theorem with © = 2s — 1 to get

H(Qr) = C55([0,T); H25(TY) .

Then, exploit the embedding H4~ 2/ (T) — C’“_Qﬁ_%(’]l‘d) of Lemma [5.16, By choos-
ing (8 so that g — Il) = 5 and 7 as in the statement, then u — 28 — % =+, and one

concludes by the inclusion of C'z(C7) into C*2 (see Remark . O

Remark 5.30. We point out that all the results obtained in this section can be
proven exactly in the same manner for the whole space case R?. Indeed, the argu-
ments turn around decay estimates for the fractional heat operator and fractional
heat parabolic regularity that hold to the same extent on R? and T?. One can also
prove Sobolev embedding theorems even for the stochastic version of the parabolic
spaces introduced in [84] (see also [I55] and references therein for a deeper discus-
sion on such spaces). Finally, the flexibility of such approach allows to deal with
problems driven by hypoelliptic diffusion, for which the adaptation of this parabolic
construction is almost straightforward replacing H)' with its horizontal counterpart
(see [115]).

Using classical arguments like Aubin-Lions-Simon lemma one can even obtain
the compactness of the aforementioned embedding onto Lebesgue classes, as stated
in the next proposition.

Proposition 5.31. If1 <r < %, then H*(Qr), p € R is compactly embedded in

LY(Qr) for 1 < q < L2

Proof. To show the compactness, we restrict to consider the case u € (0, 2s], the gen-

eral case being consequence of the isometry property of the Bessel potential operator
(see Remark [5.14]). The idea is to exploit the so-called Aubin-Lions-Simon Lemma.
Let p € R and 0 < pu < 2s with p satisfying 1 < p < <25 Note first that H]’j,(']I‘d)

T
is reflexive and separable. Therefore the space LP(0, T’ (H,, (T?))) is isomorphic to
(L¥(0,T; HY(TY))) = (Hy,(Qr)). One can easily see that by definition #%(Qr) is

isomorphic to
E = {u € LP(0,T; HX(T%)), 0 € LP(0,T; (HZ*(T%)'}

Note also that H!(T?) is compactly embedded into L?(T%) by Lemma (iv) and
LP(T%) is continuously embedded in (Hz,s “H(T9)) since u < 2s. Then, Aubin-Lions-
Simon Lemma (see [219] and [215], Proposition II1.1.3]) implies that E is compactly
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embedded into LP(Qr). Hence HL(Qr) is compactly embedded in LI(Qr) for any
1 < q < p. Let u, be a bounded sequence in Hg(QT). By the previous discussion
we may extract a subsequence u,, converging to u strongly in LP(Qr). For any

p<q< ;ﬁ;ﬁffp, arguing by interpolation, we may assert the existence of 0 < 6 < 1
such that
0 1-6
[t = u”j”Lq(QT) < |lun, — unjHLP(QT) [t — unyHL% — 0

as j, k — 400, since u,, belongs to H*(Qr), which is in turn continuously embedded
(d+2s)
onto L in view of Proposition |C.3] so u,, converges strongly also in LY(Qr).

O

5.3.4 Relation between Hg‘ and WHP

We prove the embeddings between W#* and H) via the trace method. Without going
into the details, we mention that when p = 2 the space W2 coincides with H. by
properties of Fourier transform (or by the fact that complex and real interpolation
couples do agree on Hilbert spaces [I78]). For general p # 2, we follow the lines of
[I72, Theorem 3.1], shortening their proof by using the decay estimates obtained in

Lemma [(5.23]

Lemma 5.32. For everye >0, p € R and 1 < p < co we have

+e (rmd , d —e (md
HPFE(TY) s WHP(TY) — H(T%) .
Proof. Step 1. We first prove that H) +<(T?) < W'=%?(T?) for every ¢ > 0 and
6 € (0,1). To show this, it is sufficient to confine ourselves to the case ¢ < 6 since
HY(T%) — H)(T?) for every v,n € R such that v > 7. Set A :=1— 0+ ¢ and take
u € H)(T?). We need to show the existence of f(t) such that

t*f(t) € LP(0,1; WhP(T))

t*f'(t) e LP(0,1; LP(TY))

and
f(0)=wu

are fulfilled, for & = 6 —1/p. Once one finds such f(t), it is sufficient to multiply it by
a continuously differentiable function ((t) for ¢ € [0, +00), which vanishes for t > 1
and it is identically 1 for ¢ € [0,1/2] and then set g(t) = ((¢)f(t) for ¢t € [0,1] and
g(t) =0 for t > 1. As a consequence, it follows that t®g(t) € LP(0, +o0; WLP(T%)),
t*g'(t) € LP(0, 4+o00; LP(T?)) and g(0) = f(0) = u € W=%P(T?). To reach our goal,
we use the solution of the fractional heat equation with s = 1/2 and initial data
equal to u, that is

f(t) =T,

where here 7; is the semigroup associated to the half-laplacian. It is clear that
f(0) = u. We show only that t*f(t) € LP(0,1; WLP(T?)), the other case being
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similar. By Lemma [5.23}(i) with v = X and v = 6 — € > 0 we have

1

1
1 3 1 I3
( /0 \]t“Ttu\ﬁpdt) < ( /0 tapt(“)puuugpdt)
1 1
P
< ( / t<a—9+f>Pdt) lullsp < Cs.
0

Step 2. We claim that for every e > 0 it results W'~%#(T?) — H~~=(T). By

isometry (see Remark [5.14)), the operator (I — A)2 maps W2(T?) onto LP(T%) and
LP(T4) onto W—1P(T?). In addition, it also maps H'~%+¢(T?) onto H~?T¢(T¢). By
definition we have that it is also an isometry between

T(p, o, W'P(T?), LP(T?)) = W'7P(T?)
and

T(p, o, LP(T%), W2 (T) = (T(p, —c, WP (T), LY (T4)) Y
_ (Wlf(l/p’fa),p’(v]rd»/ _ er,p(r]rd)'

By Step 1 we obtain
H;0+E(Td) N W—G,p(Td) 7

which turns out to hold for every & > 0. By duality we also conclude W' (T¢) —
Hz,_E(Td) and hence the validity of the claim after replacing 6 by 1 — 6.

Step 3. Suppose pu > 0. We first prove the left inclusion H,(T?) < WHP(T?).
Let u € HYT(T?). Then D*u € LP(T?) for all |k| < [u], where [] stands for the

integer part. On the other hand, DFu € HLT"W(T9) for k = [u], which gives by
Step 1 D*u € Wr=IHP(T4). Then u € WHP(T?). Conversely, if u € WHP(T?), it
means that u € HY(T?). Thus in view of Step 2 we obtain DFu € HAL™ ¥ ™5(T4),
namely u € H!~¢(T%) which in turn implies W#*?(T?) < HA~*(T?). The case u < 0
follows by the previous one arguing by duality. O

5.4 Linear viscous partial integro-differential equa-
tions

In this section we collect some results on second order viscous integro-differential
equations the form

d d
ij=1 i=1

All the results of this section can be adapted to more general integro-differential
operators and for this classical matter we refer to [119], but for our purposes we
restrict ourselves to the particular case of the fractional Laplacian. We first begin
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with two auxiliary results, whose proof is standard and based on the transformation
u(x,t) = v(x,t)eM and the fact that at a maximum point (—A)*u(zg,ts) > 0. We
refer the reader to [159, Theorem 1.2.5] for similar arguments used for the case of
classical diffusion and [IT9, Theorem I1.2.11] for the adaptation to the nonlocal case.

Proposition 5.33. Let u be a classical solution of the Cauchy problem
Au = f in Qr and u(x,0) = ug(x) in T¢ (5.26)

where the local operator L is a uniformly parabolic operator with bounded continuous
coefficients a;;,b; and c. Then

t)e)\(Tft)
< inf 0 A(T—1) maxq, f(xa
u(z, 1) < jnf max{ ,up(z)e , N

for every T € [0,T). Similarly, it holds

] A(T—t)
u(z,T) > sup min {O’uo(m)ex\(Tt)7 ming, i”(x,t)e }
— ¢

A>co

Proof. We show only the first inequality, the second one being similar. We use
the transformation v(z,t) = e *u(x,t) with X to be specified. Then v solves the
parabolic problem

{(.A + Mo = fe inQr (5.27)

v(x,0) = up(z) in T¢.
Let 7 € (0,T]. There are three possibilities:
(i) v is non-positive in @, and hence maxg, v < 0.
(ii) v is non-negative and the maximum value is attained at T¢ x {0}, giving

at < 70 = 00
ole.0) < gpas 0(2,0) = ol

(iii) v is non-negative and its greatest value is assumed at some point (xg,tg) €
T? x (0, 7], that is
0< r%axv(:n,t) < v(xg, to)

In particular, we have
8tv(x0,to) Z 0

since, if this were not the case, the inequality dyv(xo,ty) < 0 would contradict
the maximality of (xg,ty). Moreover

811.1)(950,150) =0 ,-O’AU(.To,to) 2 0 s (—A)SU($0,t0) 2 0
Since v solves ([5.27]) we have
(A = co)v(zo, to) < f(zo,to)e ™,

which gives in turn
maxg, f(x,t)e
A — Co

vz, ) <
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Combining all the assertions and using the definition of v we obtain the desired
inequality. [

Corollary 5.34. Let u be a classical solution of the Cauchy problem
Au = f in Qr and u(z,0) = ug(x) in T (5.28)

where the local operator L is a uniformly parabolic operator with bounded continuous
coefficients a;j,b; and c. Assume that |lul .o < M for some M > 0. Then for
7€ 0,7
[tllosior < (luollos + 71 fllocsr )™
Proof. This is a consequence of Proposition [5.34 O]
We have the following comparison principle, whose proof relies on classical argu-
ments used for linear local equations [159].

Lemma 5.35. Let be in force, o > 0 and u,v be (classical) sub- and supersolu-
tions to the Cauchy problem

o — ocAu+ (—A)u + H(z,Du) =V in Qp and u(x,0) = uo(z) in T¢  (5.29)

with initial condition u(x,0) and v(z,0) respectively. Then, w := u — v satisfies the
estimate
lwllscio, < Cllw(z,0)lloce”

for some C' > 0.

Proof. By the regularity assumptions on H, w solves a linear equation of the form
Ow —ocAw+ (—A)'w+b-Dw=0

equipped with the terminal data w(z,7) = u(z,7) — v(z, T), where the coefficients

b= fol D,H(z, Du,)dn, u, := nu+(1—n)v, are bounded. Therefore, by Proposition
(.34 we have the desired estimate. O

Here we list some Schauder type theorems for such equations

Theorem 5.36. Let a;;,b;,c € C2(Qr). Then, for any f € C¥*(Qr) and
uy € C*(T?) there exists a unique solution u € C*T*1%%/2(Qr) such that

Hu”C”avHa/?(QT) < C(Hchwﬂ(QT) + HUOHCQM(W)) .

Proof. This result is standard and can be found in [IT19, Theorem II.3.1]. However,
we present here the idea on how to get the estimate by using tools from interpolation
theory in the simpler case a;; = d;; and b; = ¢ = 0, since it constitutes the basis for
the next Appendix [B] As it will be pointed out in the next sections the realization of
the full operator A — (—A)? is given by the composition of the semigroups associated
to the operators (see [232]), namely 7; := e #~2)°(¢*2) is the semigroup associated
to the sum A — (—A)®. The crucial point here is to get the decay estimates

1 Tef ooz ray < Ct= 70725 £l oy ay -

for every 0 < 0; < 603, 01,05 € R and C = C(6,,02). Then, the proof uses the
representation via Duhamel’s formula and the K-method, see e.g [I78]. O
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Theorem 5.37. Let a;; € C(Qr), bi,c € L>®(Qr). Then, for every f € LP(Qr) and
ug € W2 P2(T?) there exists a unique solution u € W2H(Qr) such that

[ullwz1gr < CUIfe@r) + lluollwe-2/mn(ra))
where C' is a positive constant. The same result is true on the whole space R?.

Proof. This maximal regularity result can be found in [I19]. However, in the simpler
case b; = ¢ = 0, results can also be obtained via the abstract approach in [160, 202,
134], since the semigroup 7; generated by A — (—A)?, satisfying the estimate

1T ll2sp < CEI

is analytic (see [192]). O

5.5 Fractional Fokker-Planck and HJB equations

5.5.1 On the fractional Fokker-Planck equation

In this section we gather some results on fractional Fokker-Planck equations in the
periodic setting of the form

{@m —oAm+ (=A)*m +div(bm) =0 in T¢ x (0,T) , (5.30)

m(z,0) = mg(x) in T |
with o > 0 and mg € L>°(T%). When o = 0, we expect low regularity of solutions,

in particular when 0 < s < 1/2. In this case we will adopt the usual notion of weak
solution, with the following integrability requirements.

Definition 5.38. Let b € L>®(Qr). A function
m € L*(0,T; Hy(T%)) = H3(Qr) with  Oym € L*(0,T; H; 1 (T%)) = H; Y (Qr)

is a weak solution to (5.30)) if, for every ¢ € C°°(T¢ x [0,T)), one has

//T —mdyp — bm - Dip + (—A)* " 2m(—A)7 o dudt :/ o(z,0)mo(z) dz .

Td

Remark 5.39. It can be verified that implies m € C([0,T]; HSV/2(T4)),
see e.g. [10I, p. 480]. This suggests, by a density argument, that test functions
¢ in the previous formulation can be chosen so that ¢ € L?(0,T; Hi(T)) with
Owp € L*(0,T; Hy*(T?)), therefore satisfying ¢ € C([O,T];HS*S)/Q(Td)). In this
case the integration by parts in time formula holds (with an abuse of notation,
integration in space is hiding duality pairings here):

Td

// ©Oym + moyp dxdt = / o(x, T)m(x,T)dx — / o(z,0)m(x,0) dz.
Qr T
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Uniqueness of solutions in the subcritical regime s € (1/2,1) can be deduced via
duality, i.e. exploiting the existence for the adjoint equation, see in particular the
next analysis in Chapter [7] where the drift actually belongs to mixed Lebesgue spaces
fulfilling a suitable interpolated condition. By linearity, it is sufficient to restrict to
the case m(0) = 0. Then, by using the solution v to the adjoint equation

—0w + (=A)’v+b(z,t) - Dv=01in Q,

with v(z,7) = v.(z) > 0 as a test function in the weak formulation above we get
0= [ m(0)v(0)dx = [ m(r)v(r)dz .
Td Td
This fact will be crucial to run the bootstrap argument in Theorem [5.2}Step 3.
We will need the following estimates independent of o, for classical solutions of

the viscous problem, under the assumption]] [divb]~ € L=(Qr).

Proposition 5.40. Let o > 0, mg € C(TY) and b € CL(Qr) with [divb]~ € L=(Q7)
such that
[m0l[00 + [1blloe + [[[div 0]~ [[oc < K.

Then, there exists C = C(K) such that for every classical solution m to (5.30]) it
holds

[m|seipy < C, (5.32)

/ / | Dm|? dxdt+ / / A)*2m)? dxdt < C, (5.33)
Qr

HathHg Q) = C. (5.34)

Proof. By standard comparison arguments involving the function

w(w, ) = m(x, t)e” " —|lmo
with e — 0 (see e.g. [119, Section II.2] and Proposition [5.34)), one concludes
KT

12 llocior < [0 oce

Multiply the equation in ([5.30) by m and integrate over Qr to get

1 [T d
5/ - HmHiQ(W)_g/ mAm da:dt+// )’m dxdt = / m div(bm)dzdt
0 Qr T Qr

Using Lemma and integrating by parts we have

2/ — ||m(-,t)|132 (1) 0 // |Dm)| dwdt+// 1? dzdt = / mb-Dm dxdt
0 T T Qr

__5//T(d1vb)m2dxdt. (5.35)

In what follows, we will denote by [u]~ the negative part of w.

107



Using that [div(b)]” < K and the L* bound on m (one could also argue via Gron-
wall’s lemma), we obtain

L 1
g (@) lzace + 0//62 | Dm*der + // (=A)Pm]* dw < C(K) + 5 [m(0)|[72pa)

which gives the desired inequality ((5.33)).
The last estimate follows by observing that, using the equation in (5.30)),

‘/Q 3tm<Pdl’dt‘ < bl z@n Ml 2@m 1 Del r2@ry + (=) 2m| 2o 1@ las@r)
T

< OHSDHH;(QT)-
]

5.5.2 On the HJB equation
Semiconcavity estimates

This subsection is devoted to the analysis of semiconcavity properties of solutions to
backward fractional HJB equations

(5.36)

-0 — o Au+ (—A)*u+ H(x,Du) =V (z,t) in Qr,
uw(x,T) = ur(x) in T?

We prove in particular that u is semiconcave, with semiconcavity constant depending
on the data and independent of 0. First, we stress that when o = 0 we mean that u
is a weak (energy) solution according to the following

Definition 5.41. Let 0 = 0 and V' be a continuous function on Qr. We say that
u € H3(Qr) with Du € L*(Qr) is a weak solution to (5.36) if

—/ go(x,T)uT(x)dx—l—/ (9tg0udxdt+// (=A)2u(—A)2 @ drdt
Td Qr T
+/ H(z, Du)godxdt:/ Ve dxdt
Qr Qr

for all p € C°°(T? x (0,T7).

Remark 5.42. We make a preliminary observation, which we will use in the sequel.
Recall that u € H3(Qr) means u € L*(0,T; H5(T)) with d,u € L*(0,T; Hy*(T%)).
Note that H5(Qr) is continuously embedded into C(0,7T; L*(T¢)) in view of [101],
Theorem XVIII.2.1]), so this is equivalent to

// [0 + (=A)2u(—A)2¢ + H(x, Du)p|drdt = // Ve dadt
T T
for all o € H5(Qr), and u(T) = up in the L?-sense. Uniqueness of solutions in

this sense in the subcritical case holds by usual energy arguments using the crucial
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property Du € L and the C! regularity of H. In fact, it is sufficient to observe
that the difference w = u— v is a subsolution to an equation with fractional diffusion
and drift, like

—0w + (—A)Y’w+b- Dw=0in Qr
with w(z, T) = 0. Then, using the comparison principle (see e.g. Proposition
we get uniqueness of solutions in the above parabolic class.

Proposition 5.43. Assume that V € C?***49/2(Qp), (HIF) and (H3E)-(H5E)
hold, and

V2@ + llurlleze < K
for some K > 0. Then every classical solution u to (5.36)) satisfies

D*u(x,t) < C1 on Qr,
where C' depends on K. As a consequence, we have the gradient bound
| Dull=(or) < CVd

The proof will be accomplished via the so-called adjoint method, that is, by using
information of the dual linearized problem. This procedure is particularly effective
when the Hamiltonian lacks uniform convexity. Here, we are inspired by some results
in [127], see also references therein and those provided in the introduction to Part II
of this manuscript. We stress that we do not require convexity of H, but just assump-

tions (H1F)) and (H3F)-(H5F]). Generally, for uniformly convex Hamiltonians similar

results can be obtained in a more straightforward way through maximum principle
arguments (see e.g. [182] [74]). When dealing with non-convex Hamiltonians, the
latter approach fails in general.

For any given p, € C*(T%), p, > 0, 7 € [0,T) and [|p-| 11 (ge) = 1 we consider
the adjoint equation

{875,0 —oAp+ (=AY p—div(DH(z,Du)p) =0 in T¢x [1,T], (5.37)

p(z,7) = p, () on T¢ .
We have the following preliminary result

Lemma 5.44. There exists a classical solution p to (5.37)). Moreover,

T
/ / | Du|"pdzdt < C,
T JTd

where C' depends on K and not on p, nor 7.

Proof. The well-posedness of (5.37)) is a consequence of [119, Theorem I1.3.1] and
the regularity assumptions on H and uw. By multiplying the fractional HJB equation
by p and the adjoint equation by wu, one easily obtains the following formula

/qrd u(z, 7)pr(x)dr = /1rd u(z, T)p(x, T)dx + /TT /?l‘d Vpdxdt (5.38)
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T
+/ / (DpH(z, Du) - Du — H(x, Du))p dxdt.
T JTd

Then, by (H1) we get

T T
/ u(x,T)pT(x)dxz/ / Vpd:cdt—l—CH/ / | Du|" p dxdt—
T4 T JTd T JT

T
—CH/ /pda;dt—i—/ p(x, T)u(x, T)dx. (5.39)
T JTd Td

Then, since u is a classical solution to ((5.36]), a standard linearization argument and
the application of the Comparison Principle for linear viscous integro-differential
PDE (see, e.g. [119, Section I1.2]) yield

ull i < lurlleirs + T IV e + IH (- 0) [l e )- (5.40)
Finally, plugging (5.40|) in (5.39) and using the fact that ||p(¢)|[; = 1 for all ¢, we
conclude the desired estimate. ]

We now prove the semiconcavity estimate.

Proof of Proposition[5.43. Since V € C* **%/2(Qr), by a bootstrap argument u
belongs to C*+*2+2/2(Qr) (see Proposition below). So, we can differentiate
twice the equation in any direction ¢ € R?, |¢] = 1. Observe that v = Jgcu satisfies

—0w —oAv+ (—=A)’v+ D,H(x,Du) - Dv+ DeH(z, Du) = 0,V , wv(x,0) = Jeu(0)
and w = Ogcu solves
— w — o Aw + (—A)*w + Dv - D2 H(z, Du)Dv + D, H (z, Du) - Dw+  (5.41)
+2D2 H(x, Du) - Dv+ DZH(z, Du) = 9V,  w(x,0) = Oeeu(0) .
Then, multiply (5.41)) by the adjoint variable p satisfying (5.37)) and integrate over
T x [7,T] to get
T
/ w(z, 7)pr () de + / Dv - D> H(x, Du)Dvp dxdt = / w(z, T)p(x,T) dx—
Td 7 Jrd Td
T T T
—2/ Df)gH(x,Du)-Dvpdxdt—/ DgEH(x, Du)pdxdt+/ / OceVpdxdt .
T Td T Td T Td
On one hand, by (H5F)) we have
T T
/ Dv - D2 H(x, Du)Dvp dzdt > C’l/ / | Du|""2| Dv|?p dxdt
T JTd T JTd

T
- C / / pdxdt
T Td
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and hence, using also (H3F))-(H4F)), we conclude

T T
/ w(x,T)pT(:p)d:E+C'1/ / | Du|""2| Dv|?p dzdt — C~’1/ / p dxdt
Td r JTd r Jrd

T T
S/ w(:t,T)p(:z:,T)dx+C’g/ / |Du|7_1|Dv|pdmdt—|—Cg/ / | Du|” p dzdt
Td T JTd T JTd

T T
+(62+é3)/ / pdxdt—i—/ / Veep dadt.
T Td T Td

Now, we apply Young’s inequality to the second term on the right-hand side of the
above inequality to get

T 62 T 1 T
| Du|" | Dv|p dzdt < — | Du|" 2| Dv|? pdadt + = | Du|” pdzdt.
9 2
T Td T Td € T Td

Taking € so that C} = % we finally obtain the estimate

T
/w(:p,T)pT(:p)d:pg/ w(z, T)p(x, T)dx + L+C'3 / / | Du|” p dedt+
Td Td 201 T Td

T
+/ / Veepdadt + Cy .
T Td

During the above computations C; = C;(Cy). By Lemma we finally deduce the
desired semiconcavity estimate after passing to the supremum over p,. The gradient
bound is a straightforward consequence of the fact that

||Du||Loo(QT) < Vid sup D2u(x,t)§ s
(z,t)eQr |§I<1

]

Remark 5.45. The viscosity parameter o does not play any role in the above proof,
and hence if v is sufficiently regular to perform a differentiation procedure in the
classical sense, the above scheme can be carried out with merely fractional diffusion
of any order s € (0, 1).

We now turn to space-time Hélder bounds for (forward) fractional HJB equations
with bounded right hand side. These will be useful in the vanishing viscosity limit
to have uniform convergence of solutions, and therefore to bring to the limit the
viscosity notion.

Proposition 5.46. Let f € L™(Qr) and u be a classical solution to
{8tu —cAu+ (—A)u= f(z,t) inQr

u(x,0) = up(x) in T4

with ug € CY(T?). Then
[ulleasgry < C (5.42)

for some o, B € (0,1), where the constant C' depends only on || f|| (g [|tollct(ra)
and is independent of o.

111



Remark 5.47. To prove the above result, we need to show the counterpart of Lemma
for the semigroup 7; generated by the full operator oA — (—A)*. We point out
that the two semigroups e *=*)° and e**® commute, and therefore

7*; _ eft(fA)S <€taA).
by a well-known result due to Trotter [232].

Proof of Proposition[5.46. We observe that by Lemmal5.23}(i) and (5.12)), it is straight-
forward to see that, for v € R, p > 1 and v > 0 we have

1Tef o < CET (£, - (5.43)

Note that C' does not depend on ¢ here.
Write u using Duhamel’s formula, that is w(t) = wuy(t) + ua(t), where

w () = Tg,  ualt) = /0 T f(r)dr

The estimate of u;(t) := T;uq follows using the same argument as in Theorem |B.4
and the estimates in Lemma |5.23. We focus on uy(t) = fg Ti—rf(T)dr. Take v =0,

7=2:in 5.43) to get

1 Ti—rflIE, < CE=7) 2 iy -
Therefore

1
T ? 3
\|uzr|H,s,<QT>=(/0 Huz(wuf;p) < CT% | fll1=0m

Since uy solves Oyug + (—A)*us = f, one has

T T
/0 10 ()], dt < C, ( / u<—A>Su2H€s,p+Hfufis,pdt) < Collfllim(om -

yielding the full estimate

[[ul H3(Qr) < O(Hf”LOO(QT) + ||u0||s—25/p+6)

for € < %. Then, for p > %, by Sobolev embedding theorems in Proposition [5.19
we conclude

Hu”caﬁ(QT) <C HUHH;(QT) <Ci.

Existence of solutions

In this section we prove an existence result for backward integro-differential HJB
equations of the form

(5.44)

—Ou — Au+ (=A)*u + H(z,Du) = V(z,t) on Qr ,
u(z, T) = ur(x) on T¢.
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Proposition 5.48. Let V € C***%/2(Qr), H satisfying (H1F)-(I5F) and ur €
C*(T?). Then, there exists a unique solution u € C**+4*+/2(Qr) to (5.44), and
the following estimate holds

[ullgarazsarzigry < CUVIgaranvar g + Uzl ciracre) - (5.45)

The crucial step to obtain this existence result are the semiconcavity estimates
of the previous section, that yield a priori gradient bounds of solutions. Then, the
construction of a solution follows by standard arguments. Since we were not able to
find a similar result in the literature, we detail the proof here for the convenience of
the reader.

Proof. Step 1: Local existence on Q, = T¢ x (T'—7,T) . Let 7 < 1 and

S, = {u € W2HQ,) - ulT) = ur . [lullyza g, < a,p>d+ 2}

be the space on which we apply the contraction mapping principle. The parameter
a will be chosen large enough. Fix z € Wg’l(QT), p>d+ 2 and let w = Jz be the
solution of the problem

{—@w —Aw=V - H(z,Dz) — (=A)*z inT¢x (T —71T], (5.46)

w(z,T) = ur(zx) in T¢.

We recall that since W2'(Q,) is continuously embedded onto C([0, 7]; W?~2/P#(T4))
and hence Dz € C([0,7]; W'=2/PP(T%)). By Sobolev embedding (see Lemma [5.17))
it turns out that W'=2/PP(T%) is continuously embedded onto an Hélder class for
p > d + 2 and hence we have Dz € L*(Q,) for the range of p chosen in S,. By
standard (local) parabolic regularity theory (see [I59, Theorem IV.9.1] or [91]), since
the right hand side of the equation in is in LP(Q;), (5.46) admits a unique
solution w € W2'(Q) satisfying the following estimate

lwllwz1q,) < CUV Iz, +I1H (2, D2) e + (=) 2] e @) + lurllwa-2rmsza)).

We show that we can choose 7 € (0,77 sufficiently small so that [[.Jz[yy214 ) < a.
By [91, Lemma 2.4]

a1 1
|1H (2, Dz)||Lr(q.) < C17 2 ||H (2, Dz)| 12w (q,) < Com? ||Dz[| L0,
Moreover, by [91, Proposition 2.5] we have
1Dz]loiq. < Cs(llzllwz1(q,) + luzllwe—2/m(e))
which gives
1
1H (e, DD)lian) < CxrB (1= s g, + 10 yasingon) -

Concerning the fractional term we observe that if either s € (0,3) or s € [2,1), then
by Lemma [5.15| we get for some § > 0

1(=2)2ll o,y < O l2llwz1 gy + CO) 2l Loy
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where C'(0) > 0 grows as d approaches to 0. Then, note that by writing

9) =url) - | ()

1
|2llr @) < TP llur|| pocray + T110c2] Lr(q.) -

we obtain

Then

1
2.y < C [max{llyzs g 1ol g HT™ +CO)T +6)
1 L
(7 + 7% ) max{lfur s, [0z lyassrpagm } + 1V 12000
< O [max{llzllyza g, 12121, HE# (1 + C(6)) +9)
+27% max{ urll pocray ur [y simogen } + VIl -
At this stage, take
a2 C (2max{ur| ocroy, urlyaasppiza } + VIl ) +2
to get
~ 1
lwllyziq., < C {maX{HzHWgJ(QT), 12020} [(1+ €@ + 6]} +a—2.
Then, choose § < &= so that
1
lwllwzaq,) = Cmax{|lzllyzaq,), 21521, (1 +CO) T2 +a—1
and finally 7 small to conclude

HwHW,?J(QT) <a.

This shows that J maps S, into itself.

To prove that J is a contraction, one has to argue as above, exploiting also the
fact that

for bounded z € W} (Q;), p > d+2, then Dz is bounded in L=(Q.) and hence,

by using (H2F|) we have
|1H(z, Dz1) = H(x, D)l 1p(q,) < C1D(z21 = 22) | 1o,

for some positive constant C'. Therefore, by using interpolation inequalities (see e.g.
[119, Proposition 1.1.8]) we have

| (2, Dz1) = H(z, Dz2) || o,y < Clllzr = 2allyza o,y + 17 21 = 22l e @)
< Clnllzr = zellyza (g, + 17 TN0(21 = 22) [l Lri@n))
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A similar procedure allows to handle the fractional term as
[(=A)°21 = (=A) 22/|r(q,) < dll21 — 22llyz1 (g, ) + CO)T|0:(21 — 22) |0 (@0))

and by choosing §,n and 7 small enough one concludes

1
1721 = Tz2llwza o < 5 21 = 22llwza gy

which ensures the existence of a unique fixed point, z = Jz, i.e. a solution z of the
HJB equation in the interval (7" — 7, T7.
Now note that by Sobolev embedding, if p > d + 2, then u € CHQ’HTQ(QT).

Then a bootstrap argument allows to conclude u € C*®2+2/2(Q.), since V €
02+a’1+a/2(Q7).

Step 2. Define
T* = inf{r € [0, 7] : (5.44) admits a solution C***2+*/2(Q )}

In view of Step 1 we claim that the above set is nonempty. We want to show that
T* < 0. To this aim, take a sequence {(7, ux)} in (T*,T) x W2H(Q,,), where
T converges decreasingly to T™ and wuy solves in @Tk. Since, by Sobolev
Embedding, uj, € C4+*2t2/2(Q,_ ), we have that u; is semiconcave independently on
k. Being also bounded by the Comparison Principle for classical solutions of integro-
differential uniformly parabolic equations (see [119, Corollary I1.2.18], there exists
C' > 0 such that
HDukHLw(QT) <C Vk e N

see [66, Remark 2.1.8]). Arguing as in Step 1, by , Theorem IV.9.1] we claim
66, R k 2.1.8]). Argui in S 1, by (159, Th IV.9.1 lai
that u; satisfies

”uk”Wﬁ’l(QT) <. (5.47)

In particular the solution turns out to be classical by bootstrapping and [119, The-
orem I1.3.1]. Again by the Comparison Principle, we also have

uy, = up, on Q,, for every k> h . (5.48)

We define a function u : T¢ x [T*,T] — R by setting u = u; on @m for every
k € N and then by taking its continuous extension to T¢ x [T, T]. Moreover, it
solves the Cauchy problem on T? x [T, T| by continuity of u, d;u, Du, D*u (using
the results for parabolic Holder spaces, since, as claimed above, at the end u has
classical regularity). If, by contradiction, 7* > 0, one argues as in Step 1 to find

w € W2(Q-) which solves
—0w — Aw + (—A)’w+ H(x, Dw) =V on Q,, w(-,T) = u(-, T*) on T¢

(basically one applies the local existence to the backward equation with datum in
T*) which at the end will have C*t®2+2/2 regularity. One can check that

(1) u(z,t) if (x,t) € T? x [T*,T] ,
u*(x,t) =
w(z, T+t—-T%) if (z,t) € T x [T* —7,T7]

belongs to C4+*2+a/2(T x [T* — 7, T]) and solves the problem on T? x [T* — 7, T,
contradicting the minimality of 7.
O
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5.6 Existence for the MFG system

This section is devoted to the proofs of existence for systems (5.1)) and (5.2). We

begin by the viscous case, then proceed with the vanishing viscosity procedure.

5.6.1 The viscous case

Proof of Theorem[5.1. The statement is a consequence of the Schauder fixed point
theorem (see [122], Corollary 11.2]). Let

X = Cl+a/2<[0, T], P(Td))
and _
C = {me X : Imllorsnagompisy < O

It is straightforward to see that C is closed and convex. We construct amap T : C — C
in the following way: given pu € C, let u be the unique solution to

{_3tu — oAu+ (—A)*u+ H(z, Du) = Flu](z) inT?x (0,T), (5.49)

w(z,T) = ur(x) in T¢ .
Then, we define m = T'(u) as the solution to the fractional Fokker-Planck equation

(5.50)

om — oAm + (=A)*m — div(mD,H (z, Du)) =0 in T? x (0,T) ,
m(z,0) = mo(x) in T? .

We divide the proof in three steps.

Step 1. T is well-defined. To show that the map T is well-defined, first note that,
since p € C™2(Qr), by the assumptions on F we have Flu] € C2rol+e/2(Qy);
in particular, F[u] is bounded in C***'+%/2(Q7) independently with respect to j.
By Proposition , problem has a unique classical solution belonging to
CAe2+e/2(Qr), and satisfies the a priori estimate

||U||C4+a72+a/2(QT) <G

where C in particular depends on [[ur||cisa(ga), but does not depend on y. Then,
we can expand the divergence term of the viscous fractional Fokker-Planck equation
as

dim — ohm + (~Ay'm — D,H(x, Du) - Dm — m div(D,H(x, Du)) = 0,

which turns out to be a linear equation with coefficients belonging to C2+®1+/2(Q),
uniformly with respect to pu. Indeed div(D,H (x, Du)) € C?*t*1+2/2(Qr) owing to
[154, Remark 8.8.7]. This gives that

||m||c4+a,2+a/2(QT) S CQ (551)

by [119, Theorem I1.3.1]. In particular, the map 7" is well-defined from C into itself
by choosing C' above large enough.
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Step 2. T is continuous. To this aim, let u, € C converging to some pu. Let
(tn, my), (u,m) be the corresponding solutions. By the continuity assumption (F1)
we conclude that the map (z,t) — F[u,(t)](x) uniformly converge to (x,t) —
Flu(t)](x). We can then consider the equation

—0Owuy, — 0Au, + (—A)°u, + H(z, Duy,) = Flu,(t)](z)

whose right-hand side F[u,(t)](z) is uniformly bounded in C?+®1**/2(Qr). Then
the sequence {u,} is uniformly bounded in C*+®*%/2(Q;) in view of Proposition
5.48 and thus converges in C*? to the unique solution u of the HJB equation. As
before, the m,, are solutions of a linear equation with Holder continuous coefficients,
providing uniform estimates in C***2+%/2(Q) for {m,,}. Therefore {m,,} converges
in C*? to the unique solution m of the Fokker-Planck equation. Note that the
convergence holds also in C.

Step 3. T(C) is compact. By bounds (5.51]), one proves that for every u, € C,
the sequence m,, = T'(u,) has a convergent subsequence. ]

5.6.2 The vanishing viscosity limit

We emphasize in passing that in the limiting procedure ¢ — 0 for the HJ equation,
one passes from classical parabolic W2 regularity to fractional parabolic H2*(Qr)
regularity. Similar phenomena occurs in the case of the Fokker-Planck equation.
The strategy will thus be to pass to the limit in some suitable weak sense, and then
recover maximal regularity by means of Theorem [B.4]

Proof of Theorem[5.3 Let (u,,m,) be a solution of (5.2). For ¢ > 0 we know
that a solution exists in view of Theorem Collecting the results in Proposition

Proposition and Proposition we are able to construct a sequence
o ={o,} — 0 such that, if (u,, m,) is the corresponding solution, we have

(i) u, converges to u in C'(Qr) as a consequence of the estimate (5.42)) and Ascoli-
Arzeld Theorem. Moreover, one easily has bounds for u, in Hj, so u, = u
weakly in H3.

(ii) The semiconcavity estimates in Proposition yield Du, — Du a.e. in Qr
in view of [66l Theorem 3.3.3]. In addition, by [66, Remark 2.1.8] they also
imply uniform bounds for Du, in L*(Qr), so Du, — Du in the L*™-weak-x
sense. Finally, u is semiconcave with the same semiconcavity bounds.

(iii) By (ii) and dominated convergence theorem Du, — Du in LP(Q7) for every
finite p > 1.

(iv) As a consequence of the semiconcavity estimates, we have [div(b)]” < C, where
b= —D,H(z, Du,). Indeed

div(—D,H(z, Dug)) = =Y D2, H—> D2 HOyuu, > —C.
] ]
The first term can be controlled by (ii) and (H4). Since 0 < D2 H(z, Du) <

Ci I; and D?u, < Cl;, we have a control on the second term by a constant
independent of o.
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(v) In view of the estimate (5.32)), m, converges to m € L>®(Qr), weakly-* in L>.

(vi) Proposition ensures that m,, d;m, are bounded uniformly with respect to
o in H3(Qr) and H,*(Q7) respectively, so they weakly converge.

In addition, note that (x,t) — F[m,(t)](x) uniformly converges to the map (z,t) —
Fim(t)](xz). We now pass to the limit in the weak formulation of both equations.

Step 1. Fokker-Planck FEquation. Multiplying the Fokker-Planck equation by a
test function ¢ € C*°(T? x [0,T)) and integrating over Qr we get

— me(z,0)e(x,0)dr — / MeOppdxdt — a/ meApdxdt

QT Qr

Td
+ // (=A)*2m, (= A)*Ppdxdt +/ meDpH (z, Du,) - Dpdzdt =0 (5.52)
Qr Qr

We then let ¢ — 0 to conclude

— m(x,O)g@(m,O)dx—/ m@tapd:pdt+// (=A)*2m(=A)*2pdxdt+
Qr Qr

Td

o—0

+ lim/ meDypH (z, Du,) - Dpdzdt =0 |
Qr
by the convergence of m, stated in (v)-(vi). It remains to prove
/ myD,H(x, Du,) - Dpdxdt — / mDyH (x, Du) - Dpdxdt .
Qr Qr
We write
'// (meDpH (z, Du,) — mD,H (z, Du)) - Dp dazdt‘ <
T
< / / iy D, H (z, Duy) — my Dy H(z, Du)| | De| dzdt
T
+ / / imy D, H(x, Du) — mD, H(z, Du)| | Dyp| dadt
T

The first term on the right-hand side of the above inequality can be handled using

(iii)-(v)
/ / \mq(D,H (x, Duy) — D,H(x, Du))| | Dy|dzdt

S C ||m0'||L°°(QT) ||DPH("L‘7DUU) - DpH(anu)HLl(QT) 5

Now observe that one can use the regularity of H together with the fact that
1
D,H(x, Du,) — D,H(z, Du) = / D> H(x, Du+ 6(Du, — Du))(Du, — Du)df
0
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to get, using also Holder’s inequality with exponents (p, q),
I|1DpH (2, Dug) — DpH (, Du)|||L1(QT) < C|Duy — DuHLq(QT)

and concluding exploiting the convergence of Du, to Du in L? for every finite ¢ > 1.
Finally,

// (my —m)DyH (z, Du) - Dodxdt — 0

T

in view of the L*> weak-* convergence m, to m and the fact that
1D, H(w, DUl ) < C DUl gy < o

Step 2. The HJB equation. We now pass to the limit in the fractional HJB
equation. Multiplying the equation satisfied by u, by a test function ¢ € C>(T9 x
(0,7]) we get

—/ Oy pdxdt — a// Augpdxdt + // (—A) uy pdxdt
Qr T T
+/ H(z, Du,)pdxdt = // Flm,(t)]pdxdt
Qr T

We now integrate by parts using Lemma [5.13] to obtain

—/ Uy (z, T)o(z, T)dx + // UsOppdrdt + 0‘/ Dug, - Dpdxdt
Qr Qr

/ / A)iu,(—A)ipdedt + / H(x, Dug)pdrdt = / / [me (t)]pdadt.
T Qr T

Now note that (iii) together with Lemma implies also that (—A)2u, — (—A)2u
in L?(Qr). By the regularity assumptions of the coupling F’, the term on the right-
hand side converges to [ fQT F[m(t)]edzdt as o — 0. We only need to prove that

/ H(x, Du,)pdxdt — / H(z, Du)pdxdt
Qr Qr

as 0 — 0. To this aim we argue as above using the assumptions on H and the
convergence of Du, to Du in LP for every finite p > 1.

Step 3. Recall that the energy solution u belongs to the parabolic class H5(Qr).
Moreover, when s > 1/2 weak solutions of fractional Hamilton-Jacobi equations are
unique in view of Remark Therefore, since Du € L, one can regard the
equation as a perturbation of a fractional heat equation to get u € HgS(QT) for
every p > 1 via Theorem [B.4] As for the solution of the Fokker-Planck equation, we
note that in the regime s € (0,1/2] we have that m € H3(Qr) with dym € Hy ' (Qr).
However, in the subcritical case s € (1/2,1), m belongs also to H3* '(Qr) and
uniqueness within this class holds by duality (see Remark . Therefore, since a
posteriori m is also bounded, we have m € ”Hf,s_l(QT) for every p > 1.

Step 4. Finally, if s > 1/2 one can set up a bootstrap procedure to obtain classical
regularity. This will be proven in the following Theorem |5.50]
O]

Remark 5.49. By uniform convergence of u, and F[m,] on Q7 we can also conclude
that the limit u solves the HJB equation in ({5.1]) in the viscosity sense.
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5.6.3 Classical regularity in the subcritical case s > 1/2

In what follows, we will assume that
1
5 < s < 1.

We aim at proving that (u,m) previously found in Theorem solves the MFG
system in the classical sense. We stress that for a (linear) bootstrap procedure to
be performed, s must be greater than 1/2, because the Hamiltonian and divergence
terms deteriorate the regularity of the unknowns up to one derivative, while the gain
realized by the fractional Laplacian is of order 2s.

Theorem 5.50. Let s € (1,1) and (u,m) be a solution to (5.2)) (in the sense of

2
Deﬁm’tions and . Then u, m both satisfy (B.2) for some 0 < & < 1, and in

particular solve (5.2)) in the classical sense. Moreover, there exists a constant C' > 0
depending on the data and remaining bounded for bounded values of T such that

[1]|oe + | Dulloe < C.

Proof of Theorem [5.50 We first observe that since m € H2*~'(Qr) for all p > 1, by

Proposition we have that m is bounded in C%2: (Qr) for some 0 < @ < 1, by
choosing p large enough. Therefore, in view of (F3), F[m] € C%/%3(]0, T]; C***(T%)),
that is in turn embedded in HIQ, for all p > 1.

Note that u solves the following equation

—Oiu + (—A)*u = G(z, 1), u(z,T) = ur(x),

where G(z,t) := F[m(t)](x) — H(z, Du(x,t)), and Du € L*. Then, at first glance,
G € LP(Qr) for all p. This yields u € H2*(Qr) by applying Theorem , and
in particular Du € HX*"'(Qr). Then H(x,Du) € HX*"'~*(Qr) by the fractional
chain rule in Lemma , so G € ]H[gsflfe(QT). Using that s > % and taking e
small, we can iterate this procedure until, in a finite number of steps, G € ]HI]%(QT),
that is the maximal regularity allowed by F[m] € H2(Qr). Another iteration yields
u € H25(Qr) for all p > 1. Since 2425 > 3, we can apply Theoremwithp large
and 3 close to zero to obtain u € C° ([0, T]; C3t*2(T?)), for some 0 < ay,as < 1,
thus H(x, Du) € C°1([0, T]; C?*t2(T%)). As a consequence, G' € C%3: (Qr), possibly
for a smaller & than the one appeared at the beginning of the proof. So, Theorem
applies, providing the desired regularity for u.

Let us now focus on the Fokker-Planck equation. By similar arguments we have
that D,H(x, Du) € H}**7° N L>(Qr). Moreover, m € H2*~' N L*(Qr), so by
Lemma we obtain that div(mD,H (z, Du)) € H2*"*(Qr). An application of
fractional parabolic regularity stated in Theorem provides m € H;S_Q(QT). We
may iterate this procedure until we get m € ’H;SJF N L*(Qr), and another time to
conclude m € ’H;LS_E(QT) for all p > 1. Since 4s > 2, we can use Theorem m
with p large and 8 small to get m € C**([0, T]; C1+4(T?)), for some 0 < a3, ay <
1. Since we previously obtained D,H(x, Du) € C*(]0,T]; C*t*2(T%)), we finally
have div(mD,H (x, Du)) € C%2:(Qr), reducing eventually the value of & previously
chosen. We deduce the stated regularity for m again from Theorem
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Last, the estimate on the sup-norm of Du on Q)7 follows by comparison and semi-
concavity bounds. Note that Proposition applies in view of C1([0, T]; C3+°2(T?))
regularity of u, see in particular Remark [5.45] Analogous bounds for m are then a
direct consequence of Theorems [B.4] and [5.19]

O

Remark 5.51. We mention that if up, mg, H and F are smoother, an additional
bootstrap procedure yields further regularity of u, m, up to C*°. We will not detail
here this procedure for brevity.

5.7 Uniqueness

Here, we prove some uniqueness results in the case ¢ = 0, that is for system (5.1]).
We assume that equations are satisfied in the sense of Definitions [5.38 and [5.41]
The case o > 0 is easier, since solutions enjoy classical regularity, and the following
arguments apply similarly.

5.7.1 Uniqueness in the monotone case

Theorem 5.52. Assume that H is convex and the following monotonicity condition
holds

/Td(F[ml](x) — F[mo](x))d(my —my)(z) >0, VYmi,my € P(TY) ,my # my .

Then, the solution to (5.1)) is unique.

Proof. Uniqueness in the monotone case follows from the usual ideas by Lasry-Lions
[163]. One has to be careful that (u,m) is regular enough to run the argument. Let
(u1,my) and (ug,mg) be two solutions of the MFG system . Set v = u; — Uy
and g = my; — my. Then v and pu satisfy respectively the equations

—0w + (—=A)°v+ H(x, Duy) — H(x, Duy) = Flmy(t)](z) — Fma(t)](z) ,v(z,T) =0
and
O+ (—A)°p — div (my D, H (x, Duy) — meDyH (z, Dus)) =0, u(z,0) =0 .

We distinguish between the supercritical-critical (namely s € (0,1/2) and s = 1/2)
case and the subcritical (s € (1/2,1)) one.
Case 1. The supercritical-critical case. Recall that wu;, Du;,m; € L*(Qr), so

v, Dv, € L>®(Qr). Moreover, v € H5(Qr). Hence, using u € H(Qr) N L>(Qr) as
a test function in the weak formulation of Definition [5.41], we get

// —pdp + p(H(z, Duy) — H(z, Dus)) — p(F[mq(t)](x) — Flma(t)](z))dadt+

T s
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Then, we use v € H5(Qr) N L0, T; WH>(T?)) as a test function in the weak
formulation of the equation satisfied by u, recalling also that d,u € H, ' (Qr), to
conclude

0= // —pdyv drdt + (—A)2 p(—A) 3 v dedt+
T
n / [ Do Dy H (. D) = maDy i, D) ot (354
T
Subtracting from we obtain
0= // —p((Flmi())(z) — F[ma(t)|(z)) + p(H (z, Duy) — H(z, Duy))dzdt—
T
- // Dv - (m1DpH (z, Duy) — maDyH(x, Duy))dadt . (5.55)
T
The following inequality holds true
// H(z, Duy)—H (x, Duy))—Dv-(myD,H(x, Duy)—maDyH (z, Dus))dzdt <0,
T
by convexity of H. Using we can conclude that

/ / (1 — ma) (Flma(£)] — Flma(t)])dtdz < 0 |

In view of the monotonicity condition we get m; = ms a.e..

Finally, by the fact that u; and uy solve the same equation with the same final
datum (see Remark below), they must concide.

Case 2. The subcritical case. The proof of the case s € (3,1) is simpler and it
can be carried out as in Step 1, observing that (u,m) is a classical solution. O

Remark 5.53. The above uniqueness proof under monotonicity conditions on the
cost F' in the case s € (0,1/2] uses in turn an underlying uniqueness result for
weak energy solutions to fractional HJ equations. We show this fact using a similar
argument that we will also exploit in Part III, where actually rough data are consid-
ered. Let uy, us be two weak energy solutions, in the sense of Definition [5.41], of the
(forward) fractional HJ equation,

O+ (—A)’u+ H(z, Du) = f(x,t) on Qr

equipped with u(x,0) = uy, bemg f,up smooth, H = H(x,p) convex in p, as in
the assumptions of Theorem Take their dlfference v = u; — uy on Qp with
Dv € L™ (as in the requlrement of Definition |5.41]), which satisfies

O + (—A)°v+ H(x, Duy) — H(x, Dug) = 0 on Qr

in weak sense, equipped with zero initial data. Let 7 € (0,7]. By convexity of
H(z,-), v solves

/(atv dt+// A)iv (=A)2 + DyH(x, Duy) - Dv @ dxdt < 0
Tdx ( wT)
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for all w € (0,7), and v(-,0) = 0. Let now p be the adjoint variable with respect to
ug, namely p be the weak solution to

{—&p(x,t) + (=A)°p(z,t) — div (D, H (z, Dus(z,t)) p(z,1)) =0 in Q, ,
p(z,7) = pr(2) on T¢,

for some non-negative and smooth probability density p,.. Then, by duality we get

/Td?f(ffﬁ)m(:v)dx g/ o(, w)plz, w)dz.

Td

Since Dv € L™, we assert that v enjoys better regularity, more precisely v € H>*
3.

for all p > 25 By the fractional Sobolev embedding developed in Section ,

2s
one can argue similarly to Proposition m to conclude w € C(Q;). Hence w is
uniformly continuous on Qr, giving w(-,t) — w(-,0) = 0 uniformly in T¢. Moreover,
Jpa v(@,w)p(z, w)de = [r[v(z,w) — v(x,0)]p(z, w)dz. Thus, by Holder’s inequality
and ||p(s)||p1ray = 1, Jpa v(w)p(w) — 0, yielding

[ ot mion e <o

for arbitrary p,. As p, varies, u;(7) < ug(7) follows, and by exchanging the role of
uy and uy and varying 7, we eventually obtain u; = us.

5.7.2 Small-time uniqueness

The result of this section is the following

Theorem 5.54. For s € (1,1) and H € C3(T*xR?), there exists T* > 0, depending
ond, s, H, F,mg,ur such that for allT € (0, T system (5.1)) has at most one solution
(u,m).

Rewriting (5.1)) as a forward-forward system for v, m setting v(-,t) := u(-, T —t)
for all ¢ € [0, T, then

{v(z, t) = Tour(x) = [y Toer @ [0, m](7) (z)dr (5.56)

m(x,t) = Tomo(x) + [3 Tor ®™[v, m](7)(2x)dT

where

v, m|(7)(-) = Fm(T — 7)|(-) — H(-, Dv(-,7)) ,
O™, m|(7)(-) = div(D,H (-, Dv(-,T — 7))m(r1))
for 7 € [0,T]. We will exploit the decay properties of T;.

Proof of Theorem [5.54. For p > 1 and u > 0, let us denote by

Xt = C([0,T); HY(TY).

p
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First, observe that any solution is classical by Theorem [5.50, and therefore it
belongs to X2* x X2°~'. Moreover, every solution of (5.1I)) can be seen as a fixed
point of the map ¥ : (v, m) — (0,m), where

{w) = Taur(w) = [y Tor®°[o, ml(7) (@) (557

m(t) = Tomo(z) + [y Tor®™ [0, m](7)(z)dr .

We remark that such representation holds in view of the fact that the solutions
are classical. We prove that the fixed point of ¥ defined in ([5.57]) is unique by the
contraction properties of W itself that are valid for small T'. Let (vq,my) and (vq, ms)

be two fixed points of W. Set € = d <% — %) < 2s — 1 with p > p. This choice yields

() gs1-c; < Clm(T)ll26-1,

for some C' > 0 in view of Lemma We apply Lemma[5.23} (i) (with v = 2s—1—¢
and v = 1+ ¢) and the assumptions on F' and H to get

<
2s,p

S/O [Tt (®°[or, ma](7) () = @ [vg, m2](7) ()|, AT

/0 T (8 or, ] (7) () — B¥[va, ma] (7) () dr

<c ( / (t — 1) % | Ffma(T = 1)]() = Flma(T — 7](Ylger_o drt
# [t =) DT =) = HC D T - r>>||25_1_a,pd7)

t
<G (/ (t—7)" %
0

t
+/ (t—7)"2 |Dv(-,T — 1) —sz(vT—T)”Qs—l,pdT)
0

||ml('7 T — 7—) - mQ('7 T — T)HQs—l,p dT+

2s—1—
< CyT 5 <Hm1 - m2HX§S’1 + [Jv1 — UQ“X,%S) )

by taking 7" small enough.
We now consider the term related to the Fokker-Planck equation. We apply Lemma
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5.23(i) with v = 2s — 2 — ¢ and v = 1 + ¢ to obtain

H / To (B [or, ma](7)(2) — ™ (v, ) (7) (@)l [l <

S/O [Tt (@7 [1, M) (7) () — @ (v, M2 (7) ()| 25-1,p0T

/0 (t—7) 5

= DpH (-, Dva (-, T = 7))ma(7)) 2s—2-c

t
scl(/(t—f)‘lff
0

T / (t — 7)" 5 | div(ma(r) (D, H(, Dos(- T — 7))
D, H( Dus(, T — 7)) |as2epdl7)

t
gcg(/ (t— 7
0
t 1+4¢
+ [(-n
0

Then one has to observe that

div (DpH(-, Doy (-, T — 7))my (7)

div(DpH (-, Dy (-, T — 7)) (ma (1) — ma(7)))||2s—2—e pdT+

dr+

[DpH (-, Duy (- T = 7)) (ma(7) — ma(7))

||25—1—e,p

mo(7)(DpH (-, Doy (-, T — 7))
=Dy H(:, Dva (-, T = 7)))[[25-1-,pd7))

HDPH(Dvl(-, T — T))(ml(T) - mQ(T)) ||2s—1—e,p
S C3(||DPH||q ||m1 - m2||25_1_67p + ||DPH||287176,(7 Hml - mQHﬁ)

< Cyllmy — m2||25_1—€p < Cs[[my — m2||2$—1,p )

where we applied Lemma to the second inequality, Lemma (iii) to the last
one, the fact that ||DyH|[,, , ., is bounded independently of T' by the regularity
assumption on H and the L* bound on Du and m.

Similarly,

[ma(T)(DpH (-, Dui(, T = 7)) = DpH(, Dua (4, T = 7))l g1,

< Cu((Imally IDH(, Don) = DyH(, Dvs)lg, -y, +
 Imallyg1g 1 DpH (- Doy = DyH( Do), )
< Cy||DpH(-, Dvr) — DpyH(:, DU2)||257176,15 < Gs[|D(v1 — U2)||2s—1—e,ﬁ
< Cy||D(vr = v2)llaso1y < Csllvr = vaflyg,

where C; = Cy(d, s,€,p, p, q). This gives

/0 T (®™ o1, ma] (7) () — B[, ma] (7) () )dr

2s5—1—
<G % (flor - Vol xze + lma = mafl x20-1)

25—1,p
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by eventually taking 7" small enough. At the end we get

lor = Uszgs + [lma1 — m2Hx§S—1 = [ (v1,m1) — ‘I’(Uzamz)||xngX,?S*1

S (||fU1 - U2HXI2)S + ||m1 - m2||XI2)s—l> 5

1
2

which allows to conclude (vy,m1) = (v9, m2) for T sufficiently small. O
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Part 111

Lipschitz regularity to
Hamilton-Jacobi equations with
rough data
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Chapter 6

Lipschitz regularity to
time-dependent viscous
Hamilton-Jacobi equations with LP
terms

The aim of this chapter is to develop a duality method to deduce Lipschitz regu-
larity of suitable weak energy solutions to time-dependent viscous Hamilton-Jacobi
equations with unbounded right-hand side of the forn|

Ouulx,t) = aii(x, t)0u(z, t) + H(x, Du(x,t)) = f(x,t) in Qr =TI x (0,7),
irj
u(z,0) = up(x) in T¢.
(6.1)
We recall that the main peculiarity of our approach is to exploit both the diffusion
and the coercivity of the Hamiltonian, while usual treatments for regularity esti-
mates of solutions to these equations regard the Laplacian as a perturbation. We
refer to Section [0.3| for additional details, references and comparison with the known
techniques on gradient bounds for such nonlinear PDEs.

6.1 Assumptions and main results

We now state our two main results we are going to present throughout this chapter,
the first one for weak energy solutions and the second one dealing with classical
solutions. Assume that d > 2, and A = (a;;) : Qr — Sym,, where Sym,; is the set of
symmetric d X d real matrices, a;; € C(0,T; W»>(T%)) and

for some A >0, A|¢)? < aij(z, )&E < ATHEP for all € € RY and a. e. (7,t) € Q7.
(A)

We perform again our analysis on the flat torus T¢ in order to avoid boundary
phenomena. We suppose that H(z, p) is C*(T? x R?), convex in the second variable,

From now on the summation over repeated indices is understood.
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and without loss of generality H > 0 (if not, one may compensate by adding a
positive constant to f). Moreover,

there exist constants v > 1 and C'y > 0 such that
Cy'lpl" = Cr < H(z,p) < Cu(lp|” +1)
DyH (x,p) - p— H(z,p) > Cy'lp|" = Cir , (H)
| Do H (z,p)| < Cr(lpl” +1) ,
Cy'lp"™! = Cu < |DyH (2, p)| < Crlp|"”™' + Cur

for every x € T¢, p € R?. Moreover, one can add an explicit dependence with respect
to the time variable ¢ to H provided that it respects the growth properties stated
above in ((HJ).

The first result concerns the regularizing effect of the equation, namely Lipschitz
regularity of weak solutions u for positive times. Below 4" = ~/(y—1) is the conjugate
exponent of .

Theorem 6.1. Suppose that
e a;; € C(0,T;W*>(T)) and satisfies (A),
o Hc CYTe x RY), it is convex in the second variable, and satisfies (H]),

o f e LUQr), for some q>d+2 and g > ;lfj,

o uy € L>°(T?).

(a) Let u be a local weak solution to (in the sense of Definition [6.5). Then,
u(-,7) € WLe(T9) for all T € (0,T). In particular, for all t; € (0,T) there exists a
positive constant Cy depending on ti, A, ||a|lcw2ey, Ch, ||u| Le@r), ||f||Lq(QT), q, d,
T such that

||U(',7_)||W1,oo(']1'd) < (] for all T € [ty,T). (6.2)

(b) If, in addition, u is a global weak solution with uy € W1H(T4%), then there exists
a positive constant Co depending on A, ||al|cw2ey, Cu, |[uollw.eo(a, Hf”Lq(QT)’ q,
d, T such that

|u(-, 7) |lwroo(ray < Co for all T€10,T]. (6.3)

Moreover, the same conclusions hold if u is a weak solution to (6.1) with P # Q
in (6.13) whenever a;j(z,t) = Ay on Qr for some A;; € Sym(R?) satisfying (A).

Note that if v < 2 (i.e. the subquadratic/quadratic regime) f is required to be
in L9(Qr) for some ¢ > d + 2, while in the superquadratic case v > 2 conditions on
f are more strict.

We are then able to show the existence and uniqueness of weak solutions

Theorem 6.2. Suppose that the assumptions on a, f, H of Theorem[6.1] are in force,
If ug € C(T?), then there exists a unique local weak solution to (6.1). If ug €
WLee(TY), then such a solution is a global weak solution.
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If we assume in addition that u is a classical solution to (6.1]), we will show the
following a priori regularity results. Note that, with respect to the previous Theorem
6.1 Lipschitz bounds will depend on weaker properties of the data a, f.

Theorem 6.3. Suppose that
e a; € C([0,T]; CY(T%)) and satisfies (A]),
o H e C*Tex RY) and satisfies ([H]),
o feC(0,T];CHT)),
e uy € CH(TY).

Let

d+2
¢ > min d+2,/—}. 6.4
{ 2(v' = 1) 04

Then, there exists a positive constant Cs depending on q, d, T, X, Cy, |[ug||w1.00(ray,
1f La(@y: Nalloomwroo(ray, such that every classical solution to (6.1) satisfies

lu(, D) lwroeray < C3 - for all 7 €[0,T]. (6.5)

Note that (6.4) reads

a2 ify > 3.

{d+2 if1<vy<3,
q>
2(v'-1)

In particular, we obtain “LP-maximal regularity” whenever v < 3, that is a control
on Oyu, O;ju and H(Du) in L with respect to the the L¢ norm of f for any ¢ > d+2
by exploiting classical Caldéron-Zygmund results for linear equations. Still, the re-
sults obtained for v > 3 are new, since, as far as we know, Lipschitz estimates in this
regime are not available in the literature of parabolic viscous HJ equations. Anyhow,
we remark that Lipschitz bounds in the regime v > 3 and d 4+ 2 < ¢ < 2(?—21) are at
this stage an open problem.

q.

d+2F

In the next Section [6.2] we briefly describe our methods, and comment on crucial hy-
potheses that appear in Theorems|[6.1], and in the Definition [6.5|of weak solutions
to . In Section we present some preliminary facts and results on the adjoint
equation. Sections [6.7] and [6.9 will be devoted mainly to the proofs of Theorems

and [6.3] respectively.
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6.2 Heuristic derivation of Lipschitz estimates

The adjoint method implemented here can be heuristically described as follows. Let
us assume that v is a smooth solution of the viscous HJ equation

Owu(z,t) — Au(z,t) + H(Du(z,t)) = f(z,t) (6.6)

with u(-,0) € C*(T?) and f be C! in the space variable. We differentiate the equation
to study the regularity of Du, namely, for any direction ¢ € R? with |[£] = 1, we
consider v = J:u. Then, v solves the linearized equation

0w — Av+ DyH(Du) - Dv = 0O¢f . (6.7)

For any 7 € (0,T), zo € T¢, we then look at the adjoint equation which develops a

Dirac mass at the terminal time ¢ = 7, namely

—0p — Ap — div(D,H(Du)p) =0 in T¢ x (0,7) , (6.5)
p(T) = 0z, on T¢ . '

By duality between (6.7]) and we immediately get

deatzo. ) = )o@ = [ ot [ eo0)

— [ top+ [ ouso)
Tdx (0,7) Td

Thanks to integration by parts in the previous formula, we realize that our repre-
sentation of Jgu(zo, 7) roughly depends on || f||z4(qr) and || Dp[ v ,. so, the more
we know on the integrability of Dp, the less we can assume on the integrability of
the datum f. The difficulty here is that p depends on Du itself through the drift in
, and has a final datum that is a Dirac measure. Therefore, even disregarding
completely the divergence term in , and using as final datum an L' approxima-
tion of d,,, the best we can expect is || Dp|| v, for ¢" < (d+2)". This is actually
an integrability limit on Dp imposed by the heat part of the equation. Therefore, we
will always require f to be L? with ¢ > d + 2 (which is optimal, see Remark [6.33)).

The transport (divergence) term in (6.8 is handled by exploiting a crucial infor-
mation on the crossed quantity

/ / D, H(Du)|" p dudt, (6.9)

that is obtained using a sort of duality between and , and has a very precise
meaning in terms of optimality in stochastic control problems. Such a quantity is ac-
tually a weighted LY’ (p) norm of the drift — D, H (Du) that appears in the divergence
term, and turns out to be enough to derive bounds for [|Dp|| g, The presence
of this crossed term is standard in the study of the Lebesgue regularity of Fokker-
Planck PDEs (see e.g. [50, [185] 184]). This crucial result is stated in Proposition
and exploits a delicate combination of parabolic regularity, interpolation and
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embeddings of parabolic spaces. It is worth noting that such an L' (p) integrability
deteriorates as v grows. In particular, we observe that in the subquadratic regime
v < 2, this information is strong enough to guarantee || Dp|| v g, for ¢ < (d +2)".
We can then regard the div() term in (6.8) as perturbation of a heat equation. On
the other hand, in the superquadratic case v > 2, we are just able to prove that
||Dp||Lq/(QT) for ¢ < ¢, with ¢/, < (d +2), and actually ¢/ — 1 as v — oo. As
expected, in the superquadratic case the Hamiltonian term in (6.1)) may overcome
the regularizing effect of Laplacian. Still, under the additional hypothesis f € L%,
we obtain Lipschitz regularity results for every v > 1. This is a major difference
with respect to previous works [123], [128], where the techniques involved produce
estimates on Dp only under the assumption that the drift entering into the dual
equation is at least L?(p), thus limiting the range of +.

In the next sections we make precise all the above formal computations, and for
more general equations of the form . In the first part our plan is to obtain Lip-
schitz regularity of weak solutions to (6.1]), in a sense specified below (see Definition
. The main issues in this program are the following:

e To exploit duality between (6.1)) and in a weak framework, one has to

understand the right weak setting for both equations. We realize here that a
suitable weak notion guaranteeing Lipschitz regularity is basically the usual
energy one for both equations (i.e. wu,p € Hi, see below for the definition).
This relies strongly on the additional assumption D,H(Du) € L2((0,T); L"),
which can be considered as a requirement for the adjoint equation rather
than for the given HJ equation , but one should always keep in mind the
subtle interplay between the two equations. Of course this forces the final
datum p(7) to be in L?, and therefore introduces an additional approximation
step from L? to L! in our scheme.
One may argue that, for v very large, |Du|""! ~ D,H(Du) € L%((0,T); L")
is very close to Du € L*. We stress in Section that to perform this
(seemingly) small step, one cannot avoid in general this assumption on Du,
and therefore our requirements on weak solutions are optimal to guarantee
Lipschitz regularity.

e A weak solution u is not a priori a.e. differentiable, and f € L9, so no differ-
entiation procedure of is justified. This is circumvented by considering
difference quotients of u in the z-variable, which are handled via a method that
is again based on the optimality of —D,H (Du) in stochastic optimal control
problems (though here PDE methods will be involved only).

e Though they are not our main focus, we have also to be careful with regularity
of H and a in the z-variable. Moreover, we are able slightly relax the above
assumption Du(0) € L* by localizing our estimates in time, thus assuming
u(0) € L™ only.

The study of regularity, rather than the proof of a priori estimates of smooth
solutions to (6.1]), is a key difference with respect to works previously mentioned
(e.g. [123], 128]). We take this different viewpoint in the final Section assuming
regularity of the solution, we can improve in some directions the previous procedure.
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First, it is possible to enhance by absorbing part of the gradient term in the left
hand side of the Lipschitz estimate. Second, rather than studying the equation for
deu, we consider the equation for |Dul?, following a classical idea of Bernstein. This
yields a similar “linearized” equation, with additional information on D?u coming
from strict ellipticity of the operator. This allows us to prove a priori regularity of
smooth solutions u to that depend on weaker integrability properties of f and
regularity of a;; with respect to x.

6.3 Comparison with the literature

The research on regularity and gradient bounds for (elliptic) PDEs began with the
seminal work by S.V. Bernstein [37] and it has been later explored in the context of
nonlinear elliptic [122} 174] and parabolic [214, [159] equations. The literature on this
subject is too wide to keep track of all the references and hence, without aiming to
give a comprehensive bibliography, we rather prefer to focus only on the contributions
in the nonlinear parabolic setting, quoting also some results for nonlinear elliptic
PDEs which are close to ours and which inspired our analysis. As underlined in the
introduction, by performing L scaling arguments, it is common to distinguish two
regimes, namely the subquadratic (v < 2) and the superquadratic (y > 2) case. We
list the works following mainly this classification, describing briefly the assumptions
and the techniques used in each work.

The subquadratic/quadratic case (7 < 2) If H(p) ~ |p|” and 1 < v < 2 the
diffusion terms are the prevailing ones at small scales. When the right-hand side
f € L, Lipschitz (and further) regularity of quasi-linear equations of the form
(6.1) goes back to classical literature [I59, 214]. The most popular approach used
to obtain gradient bounds to Hamilton-Jacobi equations like with superlinear
growth in Du and f continuous is the Ishii-Lions method [140]. This method is in
turn based on viscosity solutions’ techniques and typically takes advantage of the
strict ellipticity of the diffusion, although the assumptions to run such arguments
restrict the growth of the Hamiltonian to vy < 2 [I40), assumption (3.2)] (or at most
v < 3, see e.g. [28, assumption (3.4)]) in the gradient variable. Generalizations in
the context of fully nonlinear evolutive PDEs are due to A. Porretta and E. Priola
(see e.g. [195]). When the right-hand side is unbounded in space and v < 2, i.e.
f € L*°(I; LY(T%)) and g > d, the first Lipschitz estimates for evolutive problems like
have been obtained by D. Gomes et al [127, Theorem 5.11],[126] for classical
solutions with Lipschitz initial data. As for the quadratic regime v = 2, Lipschitz
estimates are proven in [I27, Theorem 8.3] in the context of MFGs, where again
the right-hand side f € L>°(I; LY(T?)) and q > d. These are the first attempts to
generalize a very general elliptic result by P.L. Lions [I75] (see also [88, Theorem
A 3] and the Introduction of this manuscript) to the evolutive framework.

The superquadratic case (y > 2) The works treating Lipschitz regularity for
time-dependent viscous HJ equations having nonlinearities with general superlinear
power growth v > 1 in Du, and thus embracing the superquadratic case, when f
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is at least bounded, are mainly established via the Bernstein method. This method
requires typically to assume a “convexity-type” assumptions, i.e.

D H(x,p)-p— H(z,p) > Cxlp|” ,peR? vy >1,

which typically appear when differentiating the equation, a usual drawback of the
first versions of the Bernstein method.

The first contribution in the parabolic framework goes back to [97], where the authors
were able to handle Hamiltonians behaving like either |p|”, v > 1 with right-hand
side f = f(z) € C(T?) or a(z)|p]”, v < 2, a € C(T?) with f = f(z) € C(T?).
Related works in the time-dependent setting are due to G. Barles and P. Souganidis
[32] via the weak Bernstein method. Recent results appeared via refinements of the
Bernstein method in the viscosity solutions’ framework [10], where convexity in the
Hamiltonian is not required, and the Ishii-Lions method [168], which also allows to
treat degenerate problems [I04]. We emphasize that in all of these works both the
Hamiltonian and the right-hand side are time-independent, and at least continuous
in space. Existence and uniqueness results for viscous HJ equations with superlinear
Hamiltonians exploiting the bounds in [I0] are given in [102].

As for the case of unbounded right-hand side, the research began with the work by
P.-L. Lions in [I75] (see also [161]) for the stationary problem, showing Lipschitz reg-
ularization effect for f € L4(T9), ¢ > d and any 7 > 1 via an integral variant of the
Bernstein method. We also quote the results obtained by M. Bardi and B. Perthame
[27], where the authors obtained a “maximal” L%regularity result for quasi-linear
elliptic equations with natural growth in the gradient (i.e. v = 2) via a refinement of
the same method. This improvement leads to minimal regularity assumptions on the
diffusion coefficients , and also permits to treat some degenerated cases, i.e. where
A > 0 only. In this latter case, the aforementioned approach gives an estimate on
|ADu| € L% implying also Holder bounds when the Hérmander condition is in force
via well-knwon embedding theorems.

After these contributions, we mention the work by P. Souplet [35] (see also [203] and
the references therein), which provides an extensive analysis for the Cauchy problem
on the whole space with f = 0 and initial data belonging to Lebesgue spaces both
for absorbing and repulsive gradient terms, and [33] for the corresponding evolutive
problem driven by the p-Laplacian. Lately, there has been an increasing interest
in the regularization effect for these nonlinear evolutive problem, mainly motivated
by the recent research in the context of MFGs. More precisely, P. Cardaliaguet
and L. Silvestre [77] proved Holder’s regularization effect for viscous HJ equations
with superquadratic growth and unbounded right-hand side, treating also degener-
ate problems, where the underlying idea is to regard the diffusion as a perturbation
of a first order equation and exploit a scaling argument. We mention also the re-
sults obtained in [82], 224] via De Giorgi’s techniques for the viscous and first order
version of the problem, respectively. In the context of MFGs recent results have
been obtained by D. Gomes and collaborators [128] via duality methods, showing
the Lipschitz regularity for smooth solutions and smooth data with H(p) ~ |p|” and
v < 3 when f € L*®(I; LY(T%)) and ¢ > d.

Due to this discussion, we believe that the results we present below improve
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significantly the knowledge on the subject of parabolic Hamilton-Jacobi equations
coercive in the gradient and space-time unbounded terms. More precisely, we improve
the aforementioned known results when the growth v < 3, treating right-hand sides
belonging to space-time Lebesgue spaces in a weaker setting, and we provide the first
Lipschitz regularity result when v > 3 and f € L9(T¢ x I).

6.4 Scaling

In this section, we perform some scaling arguments to guess the critical exponents
ensuring the Lipschitz regularization effect. To this aim, let us consider the simpler
case a;; = 0;;. As outlined in the introduction, the typical idea is to employ a W
scaling, meaning to zoom in and look at the function z(z,t) = e~ 'u(ex, €*t), where
u solves . Simple computations yield the following equation satisfied by z

Oz — Az +e|Dz|" = ef (ew,e%t) =: ro(z,1) .

It is then straightforward to verify that the LY(R%x (0, T")) norm of r.(z,t) is invariant
under the previous scaling precisely when ¢ = d+2. Therefore, one expects to obtain
Lipschitz regularity of the solution of the HJ equation in the subcritical regime,
namely assuming f € L? with ¢ > d 4+ 2. As announced, our arguments involves the
estimates of solutions to a dual Fokker-Planck equation of the form

Op — Ap —div(bp) =0,
where b stands for the drift, in terms of the crossed quantity [ [b|”'p. We zoom in
again and set p(x,t) = e%p(cw, %) and v(x,t) = e°b(ew, €%t) to find that the variable
1 with scaled drift v solves the equation

Oppt — Ap — div(vp) = 2T (0yp — Ap) — TP div(b(x, t)p) =0 .

Therefore, it is immediate to check that the correct scaling leaving the equation
invariant imposes 8 = 1. Therefore, the crossed quantity corresponding to the scaled

quantities (p,v) is
[ wrtu=eremes [,

which allows to find the optimal critical exponent
a=d+2—-7+".

Since our arguments rely on estimates on Dp in some Lebesgue space L7, where ¢’
is the conjugate of ¢ > 1, one finds

[l = vz [ [y

(a+1)¢ —d—2=0

Therefore, imposing
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we get

, o d+2
=013
after plugging the previous expression for . This forces the critical threshold for ¢
to be
_d+2
q= ﬁ )

which is in fact the one appearing in Theorem [6.1}

Remark 6.4. Recall that, typically, summability results for solution to parabolic
equations as well as embedding theorems can be obtained from their stationary
counterpart by the substitution d — d + 2, i.e. taking two more dimensions with
respect to the elliptic case. For instance, it is well-known that the first order Sobolev
space W1P(T?) is embedded onto Ld%d?(']l‘d) and, in fact, we will prove in Proposi-
tion [7.7] that its parabolic analogue ) is embedded onto L2#2/4(T4). This fact
can be heuristically inferred to the correspondence “one time derivative-two space
derivatives” appearing in the heat equation, which is in fact the diffusion operator
appearing in our dynamics.

6.5 Functional spaces, weak solutions and basic
properties

First, recall that the Lagrangian L : T¢ x R — R, L(z,§) := sup,{p-&§ — H(z,p)},
namely the Legendre transform of H in the p-variable, is well defined by the super-
linear character of H(z,-). Moreover, by convexity of H(z,-),

H(x,p) = sup{& - p— L(z,§)},
£€Rd
and

H(z,p)=§&-p— L(x,¢) ifand only if &= D,H(z,p). (6.10)
The following properties of L are standard (see, e.g. [66] and also [89, Proposition
2.1]): for some Cp, > 0,
Crel" = Cu < L(w,€) < Culél” (L1)
Do L(x,€)] < Cp(|€]" +1). (L2)
for all ¢ € R

For any time interval I C R, let Q = T¢ x I. For any time interval (¢;,t,) C R,
let Q.1 := T x (t1,2). We will also use the notation Qy, := T? x (0,t). For any
p > 1 and Q = Q,4,- Recalling the definition of Lebesgue and Sobolev spaces in
the periodic setting given in Subsection [5.3.2] for any p > 1, we recall that the space
W2(Q) is the space of functions u such that 9y Dfu € LP(Q) for all multi-indices /3
and r such that 3] + 2r < 2, endowed with the norm

iz = | [ 3 1orpupaads

|B|+2r<2

S =
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The space Wpl’o(Q) is defined similarly, and is endowed with the norm

HUHWZ}O Q) ’uHLP + Z ||D6UHLP
18]=1

Similarly to the fractional spaces Hgs_l introduced in Part II to study fractional
MFG systems, we define the space ’H;(Q) (i.e. the local s = 1 analogue of 'H]%S*l) as

the space of functions u € W, (Q) with dyu € (Wpl,’O(Q))’, equipped with the norm

||u||H11)(Q) = ||u||wz}0 + ||6tu|| LO@Q)y
We have the following isomorphisms: W,*(Q) ~ L*(I; W"2(T%)), and

Hy(Q) ~ {u € L*(I; W"(TY)), dyu € (L*(I; WH*(T4)) )'}
~ {u e L*(I; W"(T%), du € L*(I; (W*(T%))) },
and the latter is known to be continuously embedded into C(I; L*(T¢)) (see, e.g.,

[T0T, Theorem XVIIL.2.1]). Sometimes, we will use the compact notation C'(X) and
LY(X).

6.5.1 A notion of weak solution to viscous HJ equations

We will say that u is a weak solution to (6.1)) in the following sense.
Definition 6.5. We say that
i) w is a local weak solution to (6.1) if for all0 < s < T

uw€ Hy(T x (5,T))NC(Qp), H(-,Du) € L*(s,T;L°(T?) for some o > 1,

(6.11)
and D H (-, Du) € LY(s, T; L*(T%)) (6.12)
d 1 1
for some d < P < o0, and 2 < Q < 0o such that2—+a 5 (6.13)

and for all0 < s <7 < T, ¢ € HY(T4 x (s,7)) N L>(s, 7; L7 (T))

/ (Opu(t), o(t))dt + // 0w 0;(aij) + H(x, Du)p dxdt
s Tdx (s,7)

:// feodxdt (6.14)
Tex(s,7)

(here, (-,-) denotes the duality pairing between (W12(T9))" and WH(T?) ).

it) w is a global weak solution if (6.11)-(6.12))-(6.13) hold for all 0 < s < T, that
is, on all Qr (and therefore, (6.14)) is also satisfied up to s = 0).
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Note that when s = 0 the parabolic space H}(Q,) is continuously embedded in
C(0,7; L?(T%)), so the weak formulation above is equivalent to

/ (Opu(t), (t))dt + / 0w 0;(aij) + H(z, Du)p drdt = / fodxdt

0 Qr Qr

for all ¢ € C*(Q,), and u(0) = ug in the L*sense (here, (-,-) is the duality pairing
between (W12(T9))" and W2(T?) ). Note that for to be meaningful, one
could just require H(x,Du) € L' (ie. w € L7(W'7)); we ask for slightly better
integrability since we will use the adjoint variable p (see below) as test function,
that is not necessarily in L>(Qr) (particularly when ([6.13)) is satisfied as an equality).
In particular, holds in general for ¢ € H}(Q,-) N L¥(s,7; L7 (T%)). Anyway,
as it will be pointed out in the following remark, i) implies i) in many interesting
cases. Though condition i) appears to be unrelated to , it actually guarantees
the existence of a weak (energy) solution of the adjoint equation (see Proposition
below), that will be crucial in our subsequent analysis. In what follows, when
talking about local and global weak solutions, we will always assume that they are

also distributional solution, as stated in Definition [6.5]

Remark 6.6. Under the growth assumptions (H) on the Hamiltonian, one can easily
verify the following implications: if D,H (z, Du) satisfies i) for some ? = Q > d+2,
then i) holds for sure whenever v > %. Or, if D,H (z, Du) satisfies i) for Q = oo
and some P > d, then i) always holds if v > d%‘ll.

6.5.2 On viscous equations with unbounded drifts

In this section we prove the uniqueness of weak solutions to (6.1]) by using classical
tools for linear equations with unbounded coefficients. Let us consider the model

problem
d

Oyu — Z a;j(x,t)0u(x,t) + b(x,t) - Du=0 (6.15)
ij=1
with A satisfying . We first give the following comparison principle for equations
with unbounded L%(L?) drifts following classical arguments used in [193] 113].

Proposition 6.7. Let u,v be two weak solutions in L>(0,T; L*(T?)))NL*(0, T; H*(T?))
of (6.15) such that u(x,0) < v(z,0) a.e. in T Then u < v a.e. in Qr under one
of the following assumptions on the drift

(i) be L*(Qr), 2> d + 2.

(ii) b € L>(0,T; LY Q7)) and |B(-,t)|¢ is uniformly integrable with respect to the
time variable.

(iii) b€ L(LP(TY)) with P, Q fulfilling (6.13) (with strict inequality when d = 2).

Proof. We first prove (i). We argue by contradiction assuming w := u — v > 0 in
O C Qr with |O| > 0 and denote by

wr—k ifwt >k
Wy = .
0 otherwise .
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for k € (0,supp w). First, note that wg(z,0) = 0. We use wy, as a test function in
the weak formulation to find

/ wwy(t) dx—/ w(z, 0)wg(x,0) dr — // wo Wy, d:ch—l-)\// | Dwy |* dxdr
Td Td Q¢ t

< / |b|| Dwy||wi | dzdr .
Q1

One immediately checks that, using the sign of the initial condition, it holds

1
/ wwy dr — // woywy, dxdr > —/ wi (t) dw
Td t 2 Td

giving thus

1
—/ w,%dx—i-)\/ ]Dwk|2da:d7'§// |b|| Dwy;||wg | dzdT
2 Jya Q Qi

Passing to the supremum over ¢ € [0, 7] in the left-hand side and applying generalized

. . . . . . 2(d+2)
Holder’s inequality with the triple (d + 2,2, =5

), we have

1
€88 SUDye (0,7 / wi dr + A // | Dwy |* dodr
2 ’ Td Apg

< [ellzaecan IDwell2@nllwll 2ep - (6:16)

where A; := {(z,t) € Qr : k < w" < sup, w}. By [103, Proposition 1.3.1] we have
the embedding

3 1
2 2
HwkHL%dfjm S Cl €SS Supte(O’T) </ wl% dx) + (/ ‘Dwk‘Q dxdT)
(Qt) Td "

where C depends solely on d. By combining all the above inequalities and applying
Young’s inequality one immediately finds

A
min {1, —} (ess SUP;e(0,7) / w,% +/ | Dy | dgsdT)
2 " J1d Ay,

S CQHbH%d"'Q(Ak) (GSS SUpte(o,T) /d w,% + // |Dwk|2 dl’dT)
T Ag

where Cy = Cy(d, A). This yields

&

< ——— v bl araca,) -
min {1, 5

Then, by letting & — sup, w we note that the right-hand side approaches to 0, giving
thus the contradiction.

To prove (ii), we argue as in the elliptic case (see e.g. [122], 193]). We define Al :=
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{r € TY: k < wt <supy, w} for ae. t € [0,T] and we use wy, as test function as
above. Then, Holder’s and Gagliardo-Nirenberg inequality both imply

1 t t
—ess supte(O,T)/ w,%#—)\// |Dwk\2dxd7§/ 10l Laca) [ Dwsl| 2 rayl|we || 24 dT
2 Td 0 JA, 0 Ld=2(T
< Cul1bl] oo o524 a0 1 Dwe || 220 (1wl 22 (@) + [1Dwi |l 2200))
< C2HbHLoo(0,t;Ld(Ak))HwkH2L2(o,t;W1»2(1rd))

Moreover

1 t
5/ U)]% + )\/ / |Dwk|2 dxdt Z Cg|‘wkHL2(07T;W1,2(Td))
Td 0 JAg

for some C5 > 0 depending also on A\. Then

Cy
1< FHbHL“’ 0,75L4(Ap))

and one concludes as above, using the assumption on b.
We finally prove (iii). We have

1
—ess suptE(OT)/ wkdx+/\// |Dwk|2dzvdt</ / |b|| Dwy ||wi | dxdt

2 2
(/ﬁwwmpAkﬁ) (AHDwm;mwﬁ)

g 2 A g 2
<O ([ Mounliacny ) +5 [ 1DuRlscu
We then have

A
min{l, —} (ess suptE(OT)/ w; +// | Dy |? dmdt)
2 0 Ja Ay

< CH|b|H%Q(O,T;L7’(Ak))HwkH;Q’(o,T;Lﬁ’(Ak))
where Q = Q/2 and P = P/2. First, note that
d 1
— =<1
2P Q™

and then use [I12, Lemma 3] to obtain

||wk||iQQ1(0,T;L27§/(Ak)) S CT0 (GSS Supte(oj) /Ed /LU}% + //A |Dwk|2 dxdt)
k

with 6 =1 — % — é > 0, except for the case d = 2, where the quoted [12, Lemma
3] requires the strict inequality. To prove the above fact in dimension 2 when

d n 1

2P Q

one can use [103, Proposition 1.3.3](with r = 2Q/, ¢ = 2?’, p = 2) to obtain
1< OB 0,717 a1

and conclude again as in the previous items. O]

=1
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Notice that under the assumptions of Definition , weak solutions of must
be unique (except for a subtle endpoint case Q = 0o, P = d where one needs uniform
in time integrability as in Proposition [6.7}(ii)). This can be proven via a simple
linearization argument:

Theorem 6.8. Under the standing assumptions (H)), every (global) weak solution to

(6.1)) is unique.

Proof. Let v(x,t) := uy(z,t) — ug(z,t) on Qr, where u; are two solutions of (6.1
in the sense of Definition Then, v € H3(Qr) is a weak (energy) solution to the
linear equation

d
O — Z a;j(z,t)0;v(x,t) + B(x,t) - Dv(z,t) =0,

ij=1

satisfying v(0) = 0 in the L%sense, where B(z,t) is some measurable vector field
such that, in view of ,

|B(z,t)] < C(|Duy (2, )]~ + |Dug(, 1)~ + 1).

Hence, again by and (6.13), B(x,t) € L(0,T; L*(T?)) for some P, Q satisfying
% + é < % Hence by Proposition we get v < 0. Repeating the same arguments
replacing v with —v one gets the conclusion. O]

As for the existence, here we argue via a fixed point theorem, since, in general,

the operator dyu — Au+b- Du is not coercive, unless ||b|| .o(r#) With Q, P satisfy the
Aronson-Serrin condition is small enough.
We thus prove, for simplicity, the well-posedness in H}(Q,) of the adjoint problem
to , focusing on the case ? = Q. The full proof for the this result in the general
case with unbounded data is well-established and can be found in [159] by means of
the Galerkin’s approximation method.

Proposition 6.9. Let be in force, b € L(0,7; L%(T?)) for some ® > d, Q > 2

satisfying 75 + é < 1. Define the map T : Hy(Qr) x [0,1] = H3(Qr) such that for

any v € H3(Qr) we have T[v; o] = u if and only if
d
Oyu — Z ai;(,)0u(z,t) = ab- Dv in Qr ,u(z,0) = oug(x) in T* . (6.17)
ij=1

with ug € L*(T?). Then

(i) T is compact;

(i) There exists a constant M > 0 such that

[l <M

for every u € H3(Qr) and every o € [0, 1] such that u = T[u; ).
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Therefore, problem (6.17)) has a unique solution in Hi(Qr). Moreover, if ug > 0,
then u >0 a.e. on Q.

Proof. The proof of the existence is a consequence of the Leray-Schauder fixed point
theorem (see e.g. [122] Theorem 11.6]) once (i) and (ii) are proven. To prove (i),
take a sequence v, bounded in H}(Qr) and let u, = T[v,,0,]. We first observe
that |b||Dvy| is bounded in H,*(Qr). To see this, it is sufficient to note that by the
(stationary) Sobolev and Hélder inequalities

161Dl iy < WOIDwal

< Mol 2o rszecray [ Donll2@ry < CllIblllLaorize ray [ Donll 2@z -

for P, Q satisfying (6.13). By the compactness of the embedding H3(Qr) in L*(Qr)
(see e.g. [92 Proposition 2.2] and also Part II for a similar statement), there exists a
subsequence, which we still call u,,, converging strongly to some limiting function u
in L?(Qr) and such that the sequence of gradients Du,, converges weakly in L*(Qr)
to Du and d,u,, to yu in ]H[Q_l(QT). We take u,, — u as a test function to get

/Tlduu ul? +)\// D (uy — )2 dadt
Ly i o
o 2dt LAT) or

< // b Dv,(u, —u) dxdt—)\/ Du - D(u,, — u) d:vdt—l—/ O (v, — ) .
T Qr Qr

In the case 7 = Q = d + 2, the first term on the right-hand side converges to 0
by applying Holder’s inequality with the triple (d + 2,2(d + 2)/d,2), and using that
u, — u is bounded in L*9t2/4(Q) by the parabolic Sobolev embedding H3(Qr) —
L24+2)/4(Q1). The general case P # Q can be handled exploiting the embeddings
for mixed summability exponents (cf Remark

M, (Qr) — L®(0,T; L (T7))

1 d(l 1) 1 1
2 2\pr @ D2 Q2

In particular, when p; = py = 2 we have Hi(Qr) — L%(0,T; L% (T?))

whenever

d 1 d

21 ¢ 4

Therefore, using Holder inequality in space and time with exponents (2, ¢;,2) and
(Q, q2, 2) respectively, with ¢, g2 as above, we conclude the convergence of the first
integral term in the general case.

The convergence of the second term is standard in view of the fact that Du,, — Du
in L?(Qr). As for the last term, it is sufficient to exploit the weak convergence of v,
to v in H(Qr) and the fact that d,v € H, ' (Qr).
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This in particular gives the strong convergence of Du,, to Du in L?*(Q7). Finally, we
observe that

‘/ O (uy — u)p d:z:dt' < C(N) // |D(u, — u)||Dypl| dxdt
QT T
T / /Q 161D (v, — )| [oo| diedt << C (|l — ullasiapy + [ Do — Dvllz2n)
T

for some C' > 0. Then, the right-hand side approaches to 0 due to the above strong
convergences. To prove (ii), we argue by contradiction, assuming that for any n the
sequence u, € H5(Qr), on € [0,1] such that u, = Tlun, 0] and |Jun|l2y0.) = 7,
namely [|unll31(q,) — 00. This implies that

Ortty, — @i (x, 1) 0ijun(z,t) = 0,0 - Duy(x,t) .

Let us set w,, : and observe that since o,, <1

~ Tl op
atu}n - aij(xv t)a”’wn(l', t) S |b||Dwn|

with wy,(z,0) = Un%. As in (i), we can deduce the strong convergence of w,,
o\l

in H1(Qr) and hence, by letting n — oo, we conclude
0w — a;j(x,t)0;w(x, t) < |b||Dw

with w(x,0) = 0, which gives w < 0 by the comparison principle (see Proposition
. The same procedure can be applied mutatis mutandis to —w leading to w > 0,
which allows to conclude w = 0 on @Q,. However, [|wy[33q,) = 1 and hence by
the strong convergence we also have |[w|ly1q,) = 1, giving the contradiction. The
last conclusion follows readily again by Proposition Finally, one notices that
T'[u; 0] = 0 by standard results for heat equations. The uniqueness is a consequence
of the comparison principle in Proposition [6.7] O

6.5.3 Some auxiliary results

Lemma 6.10. Let p > 1, and suppose that a;; € C(Qr) satisfies (A)). Then, there
exists a unique solution in W2 (Qr) to

atu('ra t) - Zij:1 aij(xa t)aiju(xv t) = f(ZE, t) mn QT 5
u(z,0) =0 in T

Moreover, there exists a constant C' (depending on X\, p, and the modulus of continuity

of a on Qr) such that
[ully21 o) < ClfllLe@r - (6.18)

For u(x,0) = ug € W2=2/PP(T%) then there exists a constant C (depending on X, p,
and the modulus of continuity of a on Qr) such that

HUHWZ?J(QT) < C(HfHLP(QT) + HUOHW%WM(W)) ‘ (6-19)
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Proof. This is a classical maximal LP regularity statement for uniformly elliptic equa-
tions with continuous coefficients, that can be deduced from results contained in
[159]; see [91, Appendix A] for additional details on the periodic setting. One
can also rely on abstract results on maximal regularity for parabolic equations in
[198]. In particular, in the case of non-zero initial trace, one has to use that the
sharp space of initial trace is described via the trace method from interpolation the-
ory in Banach spaces (see e.g. [I78, Corollary 1.14] and Part II) to conclude that
u(0) € (LP, W*P)1_yp, = W22/PP, O

The following continuous embedding result of H!(Qr) into LP(Qr) is rather
known and can be found for example in [92] [185], where, however, the estimates
are local in time. Here we need its stability as 7" — 0 and hence this requires an
additional control on the trace at some time (e.g. t = 0). We provide a proof here
for the reader’s convenience, that does not make use of fractional Sobolev spaces.

Proposition 6.11. If1 < o < (d+2)/(d+1), then H (T % (11,7)), 0 <7y <7 < T
is continuously embedded into LP(T? x (11, 7)) for

1 1 1

p o d+2

Moreover, if u € HL(T? x (11,7)) and u(-,7) € L}(T), we have

1]l o rasery vy < C (Nl (rasery ry) + 10CT) g1 ray ) (6.20)

where the constant C' depends on d,p,o, T, but remains bounded for bounded values
of T.

Proof. Let f € LV (T? x (11,7)) and ¢ be the solution to

—Oip(z,t) — Ap(z,t) = f(z,t) in T x (7,7) ,
oz, 7) =0 in T¢ .

By Lemma [6.10, ¢ satisfies

||90HW§;1(QT) < C”fHLp’(QT) : (6.21)

Note that C' here may depend on 7, but it is the same for all 7 < 1 (if 7 < 1, it is
sufficient to extend trivially f on T% x (7, 1) and use (6.19)) on T? x (0,1)). Note that
(d+2)/2 < p < d+ 2. Therefore, by the embedding results in [159, Lemma I1.3.3],

lellemax ) < C||90||W§;1(1rdx(n,r))a ||90||W;;0(1rdx(n,r)) < C||90||W§;1(qrdx(nﬁ))
(6.22)
Note that a straightforward application of [159, Lemma I1.3.3] yields bounded con-
stants in as 7 — 0, plus an additional term on the right-hand sides of the
form Cy7 ||| 1 (g,; this term can be removed using the fact that () = 0, that
guarantees [|¢[| 1y i (ry 1)) < TNOPI Lo (masc(ry 1)) < ||‘P||W§;1(de(n,7))' Note also that

here we can identify norms on T¢ with norms on Q = (0,1)%.
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Therefore, integrating by parts in time and using (6.21]) and (6.22)),

//ufdxdt': / / u(—@tgo—Agp)dxdt‘
71 JTd 71 JTd

s/ (e, m)ule, m)|de + / / (‘9tugod:vdt'+/ / Dol [Dul dudt
Td T1 Td T1 Td

< C(HSO(Tl)HLoo(Td)||U(71)HL1(W) + (| O]l (W;;O(TdX(TLT)))/HSOHW;;O(TdX(Tl,T))

+ ||Du||La(11‘d><(Tl,7'))HDQOHLU/(’]I‘CZX(TMT)))

< O (hem)lascen + 10 ()7 10 @ )
yielding the desired result.

]

We need the following generalization of [236, Theorem 2.1.6] for weak derivatives
of difference quotients
u(x + h,t) —u(x,t)

DMy = heR?.
u h s

Lemma 6.12. Let 1 <p<oc and 0 <7 <7 <T. Assume u € LP(r, 7; WIP(T9))
and f € LY(T? x (r1,7)), with % + % = 1. Then

Hth“HLl(de(n,T)) = Hf“Lq(TdX(n,T)) ||D“HLP(de(n,T))

Proof. Let u € C*(T¢ x (1y,7)) N LP(11, 7; WHP(T?)) and for the general case argue
by density. We first show that

[ul- + R, t) =l )l pocray < NRLIDu( D Lo pay

We write

h

By Jensen’s inequality we obtain

u(@+h,t) —u(z,t) 1 b
~|Al /0

h
Du x—l—Q—,t)‘d@
( |h

p

u(z + h,t) —u(x,t) o

h

=] e (o)
= — Dulxz+60—.t
1l Jo |h

and we then conclude the assertion integrating over () and exchanging the order of
integration by Fubini’s Theorem. Then

T u(z + h,t) —u(x,t)
/ - f(xvt) h dr < ||f||Lq(1rdx(Tl,T)) ||Dhu||Lp(1rdx(n,T))
T1

< HfHLq(qrdx(n,T)) HDUHLP(TdX(T1,T))
O
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6.5.4 Well-posedness and regularity of the adjoint equation

This section is devoted to the analysis of the following Fokker-Planck equation
_atp<x7 t) - Z?J:l aij(aij(x7 t)p(%’, t)) + le(b(l‘, t) p(ZL“, t)) =0 inQ-,
p(z,7) = p-(x) in T¢ .

Note that when the vector field b(x,t) = —D,H (x, Du(z,t)), then (6.23)) becomes
the adjoint equation of the linearization of (6.1)).
Here, 7 € (0,7] and Q, := T x (0, 7).

Definition 6.13. For b € L(0,T; L*(T4)) for some ? > d, and Q > 2 satisfying
(6.13), a (weak) solution p € H(Q,) is such that p(T) = p, in the L*-sense, and

(6.23)

- [[ @0 ettar+ | [ s —tp-Dotrir=0 (621

for all ¢ € H3(Q,).
Remark 6.14. Note that the integral term

]:// pb - Dy dxdt

1< 1Dl IBllseiomasrep ol g, o e

is well-posed. Indeed, we have

where Q, P fulfills

4, 1_1
20 Q 2

In particular, such condition implies also that

Q—2 +d(gp—2) _d
2Q 4P 4
and this allows to apply [103, Proposition 1.3.3] to exploit the embedding of V5(Q,) =

L>(0, 7; LA(T%)) N L2(0, 7; W2(T4)) onto La-2 (0, 7; L#2(T%)). Then

11| < CillDell 2@ bl Leqorize@ap lollvaiar) < Coll Dol 2@ llbl|Lago,rizzcray Pl @0
by finally using the fact that H3 — C(L?).

Throughout this section we will assume that
pr € C(T%, p, >0, and /Td pr(z)de = 1. (6.25)
Note that p € C([0,7]; L*(T4)), so p € C([0, 7]; L(T4)), and
/d plx,t)de =1 for all t € [0, 7]. (6.26)
T
This can be easily verified using ¢ = 1 as a test function in . Evolutive equations

with divergence type terms and discontinuous coefficients were analyzed in [48] [39],
while we refer to [47] and references therein for the elliptic counterpart.
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Proposition 6.15. Let (A]) be in force, b € L2(0,1; L*(T)) for some ? > d,
Q > 2 satisfying (6.13)), and p, € L*(T%). Then, there exists a unique weak solution
p € HIQ,) to (6.23)) satisfying the estimate

1ol < C

If in addition p, € L™(T%) for m € (1,00), then p is bounded in L>(0,7; L™(T%)) N
L0, 7; WE(TY)), withn =2 if m > 2 and n = %Id?) if m € (1,2). Finally, p is
a.e. non-negative on Q.

Proof. The existence part when p, € L?(T9), i.e. the PDE is driven by the Lapla-
cian, can be proven as in Theorem for the case of the fractional Laplacian via
Caldéron-Zygmund parabolic regularity (roughly speaking, it is enough to set s =1
ans exploit the local analogue of Theorem and Leray-Schauder fixed point the-
orem [I122] Theorem 11.6], while the general case is proven in [I59] via Galerkin
approximation method. The uniqueness can be inferred by duality. As for integra-
bility estimates, we quote the results in [48, Lemma 3.2], which can be achieved in
the case p = 2 by using ¢ = p as a test function, and in the more general case
pr € L™(T%) by using a suitable power of p. The adaptation in the periodic setting
of the arguments used there is straightforward. m

Remark 6.16. We remark that when condition [6.13]is fulfilled as a strict inequality,
actually p is bounded. This can be seen via an appropriate choice of the test function
as in [48, Theorem 2.1]. See also the approach via Duhamel’s formula in [39] and the
next Proposition for the case of subcritical fractional diffusion. We also point
out that is sharp. In fact, in [39] it is proven in the whole space setting that
when

d n 1 - 1

20 Q27
then p does not enjoy any estimates uniform in time better than in L'(R?) for a
smooth velocity field and initial datum.

By gathering the previous results we basically get the well-posedness of the
Fokker-Planck equation for fixed p,. The main goal is now to derive estimates on p
that are stable for any p, satisfying merely ; one may have in mind that p, is
an item of a sequence approaching a Dirac delta. These estimates will be achieved
using some information on the integrability of the vector field b with respect to the
solution p itself, that is a typical datum in the analysis of Hamilton-Jacobi equations.

The following proposition is a modification of [92, Proposition 2.4], and is a kind
of Caldéron-Zygmund parabolic regularity result for equations with divergence-type
terms. Similar regularity estimates already appeared in [194, Prop. 3.10-(iii)] when
b € L*(pdzdt) via the renormalized formulation, and [185, Section 3]. We stress that
here the constraint on the integrability exponent ¢’ is completely determined by the
regularity of the initial datum. Both in the context of regularity theory for transport
equations and MFGs, our main achievement is to obtain Sobolev regularity whenever
b € L*(pdxdt) with k < 2 (in the context of MFGs this allows a treatment of the
superquadratic case vy > 2)

We will show in the forthcoming Proposition that one can actually reach the
threshold ¢’ = 2 whenever p, € L*(T¢) via the same procedure.
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Proposition 6.17. Let p be a (non-negative) weak solution to (6.23) and

Then, there exists C' > 0, depending on A, ||a||cw.~,q¢',d, T such that
Pl @y = CUIbol e @,y + 2Nl @p) + lorllrcray)- (6.27)

Note that C' here does not depend on 7 € (0, 7.

Proof. We assume that the coefficients a;j, b; are smooth, and therefore p is smooth
as well on Q,. The general case Da € L>(Q,), b € L(0,T; L*(T%)) follows by an
approximation argument as in Proposition [6.15]

Fix k =1,...,d. For § > 0, let v = 15 be the classical solution to

0ut(,1) — S, sy, 00z, 1) = (0 + Bhplr, 0)2) 2Okl 1) i Q-
Y(z,0) =0 on T¢ .
(6.28)
Since ¢’ < 2, § > 0 serves as a regularizing perturbation. By standard parabolic

regularity (see Lemma [6.10)), we have (for a positive constant not depending on
T<T)

q -1
s ¢ 190120 o)

(6.29)

=2 ’_
[Wlhwzan <€ |6 +10 T 0], < C iakrl™

Set ¢(x,t) = 0y, (x,t). Then, ¢ is a classical solution to

{(9,590 - Em &ijaijSO = Ok [(5 + ‘aka)qTiQakp} + Zz’,j ak(aij)aijq/} in @, (6 30)

¢(z,0) =0 on T¢ .

Using ¢ as a test function for the equation satisfied by p,
// p(Opp — a;0ij0 — b - Dyp)dxdt = —/ pr(z)p(x, T)dx |

and using the equation in (6.30]) satisfied by ¢ we get, after integration by parts
q'—2
/ (0 4 10kp*) = |Okpl® — Ok(aig)disth p + bp - Dy ddt = / pr(z)p(z,T)dz
Qr

Applying Holder’s inequality,

=2
//Q <5+ yaka) 2 ’akp’2d$dt < HDGHLOO(QT)HwHWqQJ(QT)HpHLq’(QT)
+ 1ol e (@ 1Dl La@r) + lorllLras le (7)o

Since ¢ > d + 2, by [159, Lemma I1.3.3], the parabolic space W”(QT) is contin-
uously embedded into C([0,7]; C1(T9)), therefore [|p(-,7)|lo0 < ||1D( )lcrray <
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C’Hqﬂ”wg,l(@) (to be sure that C' does not explode as 7 — 0, one has to exploit that
1 (0) = 0, and argue as in the proof of Proposition 6.11)). Hence, since ¢ = 0,, 7,

a=2
S @+ 1000 5wl e < €ty Mool + o) gy
By (6.29)) and letting 6 — 0,
J[ 100l st < iy + ol + lor o) 1usl

Summarizing, we conclude

”DpHLlI'(Q.,) < C(HPHLQ'(QT) + ||bp||L¢I'(QT) + ||pT||L1(']1'd)) : (6.31)

By Poincaré-Wirtinger inequality and (6.31)), together with the fact that [, p(x,t)dx =
1 for all t € [0, 7], we obtain

||pl|i‘1,(Q7—) S C(HDpHiq/(QT) + THPTH%I(Td)) )
yielding, together with (6.31))
ol < Cllolle @ + 102l .y + llprllorcra)-

Finally, for any smooth test function ¢ (which may not vanish at the terminal time
7), again by Hélder’s inequality

/OT<atp(t),so(t)>dt‘ < //Q 10, (as;p)050| + |bp| | Deo| dwdt

< [(lallz=(@n) + 1 Dall=@n) lellwiog. + 6ol oo I DE Il acan).

Thus,
100l wragqryy < CUlP L g, + 100l v @,y + [lorllLrcre)) -
]
Proposition 6.18. Let p be the (non-negative) weak solution to (6.23)) and
d+2
1<q¢ < —.
TS ayT
Then, there exists C' > 0, depending on A, ||a||cwr.~y, T, ¢, d such that
by < ([[ a0 staydsas +1). (632)
Qr
where g9
P14 252 (6.33)
q
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Proof. Inequality (6.27]), (6.25) and the generalized Hélder’s inequality yield

el @) < CUBL 9 iy + 1Pl + 1)

1/r'
so(( //Q |b|rpdxdt) ||p||241Q,)+||p||Lq,(QT)H), 6.34)

for p > ¢’ satisfying
1

_ ! + (6.35)
q - v Tp‘ )
Then, by Young’s inequality, for all € > 0
1 y
by < € (3 [ W pdsat+ il + olivioy +1) . (630

Since || p||11(@,) = T, by interpolation between L'(Q,) and L?(Q,) we have 1ol 0.y <
V7 p||1L/pT(QT)7 and again by Young’s inequality

/1 .
by <€ (2 [[[ W pdoti+ il +1). @)
One can verify that (6.33)) and (6.35]) yield
I R
p ¢ d+2

The continuous embedding of H,,(Q-) in LP(Q,) stated in Proposition then
implies

lolle(@n) < Crlllollze, @ +7) -
Hence, the term €| p|| 1»(g,) can be absorbed by the left hand side of (6.37) by choosing
e = (2CC4)~1, thus providing the assertion. O

6.6 Additional regularity results

We remark that the above results, especially those obtained in Proposition [6.17], are
based on (parabolic) Caldéron-Zygmund regularity and duality arguments. These
parabolic regularity results allows to get Sobolev regularity of the adjoint equation
when b € L¥(p), i.e. in terms of the crossed quantity

[ o <oc.

for some k > 1. We conclude this section by providing a Sobolev regularity result
for solutions of the forward equation driven by the Laplacian

(6.38)

{8,5,0 — Ap—div(b(z,t)p) =0 inT¢x (0,7) ,
p(0) = po() on T?.
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in terms of [[ b]¥p, without using maximal LP-regularity results and duality ar-
guments, which, however, we will not use in the sequel. This is inspired by the
approach used in the stationary setting in [184] (see also [185, Proposition 3.3] for
similar results).

Proposition 6.19. Let b € L*(p), i.e. [[, [b]'p < oo for 2 < k < 2+ d/2,

B = d_’f_’f and py € LPH(T?). Then every non-negative weak solution p € H(Q,)N
L>(Q,) to (6.38) satisfies, for k as above, the estimate

Il e, < (/] |b|’fpdxdt+||po|rm+1<m)

where C' is a positive constant depending on d, k and q = . Finally, as a conse-
quence, we have

HpHHI ar2 (@r) S c (// |b| dedt+ ||p0||Lﬁ+1 Td )
d+3—F

Proof. As in the elliptic case [184] the strategy is to use ¢ = p” with 8 :=
better ¢ = (p+ ¢)? and then let ¢ — 0). By Young’s inequality we have

1
. / o, TP+ d + B / / P Dpl? dudt
Td N
1
< bl o®|Dp| dadt + ——— Al g
_//T||pr oldz +5+1/W|p<x,o>| v
1
<(JB// 1b%p 5+1dxdt+§// ,oﬂ—1|Dp|2dxdt+—/ |p(z,0)|" ™ dx .
4 Qr B+1Jpa

Denote by

—2
d+2 k

(or

J = ess supc(o 1) /Td \p(z, )P do + ﬁ// P~ Dp|? dxdt .

and by first passing to the supremum over ¢ € (0,7) and then applying the Sobolev
embedding in [I03, Proposition 1.3.1]

J 1 L
=t (s swan [ Qote ¥ ao s 5 ([ D5 Pacar)

1__2_
> C ( / / pBrDEE dxdt) "
We then have

-7
(// pPHOEE d:cdt) +é// p" | Dpl? ddt
1-2/k
(// 0] pdxdt) (// a= 2“) + Collpoll 7541 . -
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We then apply Holder’s and Young’s inequalities to the first term of the right-hand
side of the above inequality to get

2 1-2/k
o o) (f 7
<0, ( // |b|’“pdxdt> 5( // <ﬁ+1>d“dxdt) .

We note then that

d+2 k d+2

p— 1_—
R S sy

Bg=(B+1)

giving thus

_d_
d+2 | 42
(// pdﬁ—k) +§// P’ Dp|? dxdt
_d
d+2—k
<c|(f[ wroasat) ™ 4 imlitt g, +1

and finally, noting that 8+ 1 = 55— +2 - we have

+2
(// pd+2 k> <C (// ‘b’klgdaﬁdt—l— HpOHLB+1(Td)) .

The second estimate can be obtained via [I85, Lemma 3.2]. However, it can be proven
simply by observing that the above computations gives a bound on [, 0. PP~ Dp|? dzdt.
Therefore, we can use it to estimate

Y

(B-1)/2 (1-8)/2
1Doll gz ) < 1P~ Dpll 2. 10 | T
1
z ST
= (// pﬁ*1|Dp|2 dxdt>2 (// pdigﬂk) 2d+2 .
The estimate for d;p follows by duality (see [185]). O

Proposition 6.20. Let p be a (non-negative) weak solution to (6.23). Then, there
exists C > 0, depending on A, ||a||cwi=y, d, T such that

lPllrs@n) = CUIbAl 2@ + lPllz2@n) + llorll2cre))- (6.39)

Proof. We assume that the coefficients a;j, b; are smooth, and therefore p is smooth
as well on Q,. The general case Da € L>(Q,), b € L2(0,T; L*(T?)) follows by an
approximation argument.

Fix k =1,...,d. Let ¥ be the classical solution to

8t77b(x’ t) - Zi,j Qij (17? t)aljw(xa t) = akp(xa t) in QT 5 (6 40)
P(2,0) =0 on T? . '
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By standard parabolic regularity (see Lemma [6.10]), we have (for a positive constant
not depending on 7 < T')

HwHWQQ’l(QT) < C“ak/)HL?(QT)- (6.41)
Set p(x,t) = 0., 1(x,t). Then, ¢ is a classical solution to

Opp — Z” aij@j@ = a}%kﬂ + Z” ak(aij)aijw in Qr , (6 42)
(p(va):O on Td. '

Using ¢ as a test function for the equation satisfied by p,
[ #toe = asogo—b- Dot = = [ prta)eto e
and using the e(;uation in satisfied by ¢ we get, after integration by parts
// |Okp|* = Ok(aiy) Dyt p + bp - Dep dedt = /Td pr(@)p(z, T)dz .

Applying Holder’s inequality,

/ /Q 9upl? dadt < [|Dall =i [z g o]0,

+bollz2@n 1ol 2i@ny + [l 2cray [[9(T) | 2 (pay

Hence, since ¢ = 0,, v,

J[ 10w dzdt < ey + ol + lorlizas)lélhuz o,y

By (6.41) we have
/ / Bl drdt < Cllpllizon + I150ll2i0ny + v o) 19upll 2.

Summarizing, we conclude

1Dpll 2,y < Cllloll2@q + 10012 + o7l L2(ray) - (6.43)

By Poincaré-Wirtinger inequality and ([6.43)), together with the fact that [, p(z, t)dz =
1 for all ¢ € [0, 7], we obtain

2 2
1017200,y < CUIDPI 2.y + TlorlT2may)
yielding, together with (/6.43])
oo,y < Cllpllzqn + 10oll2@.) + llorllr2(re).

Finally, for any smooth test function ¢ (which may not vanish at the terminal time
7), again by Hélder’s inequality

| 0o ewnat] <[] 1oianiiel + ol 1Dl s

< [(lallz=(@,) + I1Dallz=@) lelwroq,) + ool 2@ I1D¢llL2(o.)-

Thus,
10eoll w12,y < Cllollza@n + 10oll2@0) + lorlr2(re)) -

154



6.7 Lipschitz regularity

This section is devoted to the proof of Lipschitz regularity of u, stated in Theo-
rem [6.1] We will assume that the assumptions of Theorem are in force: a;; €
C(0,T; W2>(T%)) and satisfies (A), H € C'(T%xR?), it is convex in the second vari-
able, and satisfies and ug € L>®(T%). Moreover, f € LY(Qr) for some ¢ > d + 2.
At a certain stage we will require ¢ > ;l,tzl also.

The result will be obtained using regularity properties of the adjoint variable p,

i.e. the solution to

d
—Oip(x,t) — Z O (ai;(z,t)p(x,t)) — div (DpH (2, Du(z,t)) p(z,t)) =0 in Q, ,
pla. ) = pr(a) on e,

(6.44)
for 7 € (0,T), p, € C(T%, p. > 0 with |p;|[z1pey = 1. Recall that u is a
weak solution to the viscous Hamilton-Jacobi equation (6.1)). By the integrability
assumptions on D,H, the adjoint state p € H3(Q.) is, for any p,, well-defined,
non-negative and bounded in L*(0,7; L (T?)) for all ¢’ > 1, by a straightforward
application of Proposition [6.15
In what follows, we establish bounds on p that are independent on the choice of
7 and p, with [|p7||z1¢re) = 1.

6.7.1 Estimates on the adjoint variable

Let us point out first that from now on we will denote by C, C1, ... positive constants
that may depend on A, Ch, HUOHC(Td)7 HfHLfI(QT)7 HaHC(leOO), HDQ&HL‘X’(QT)aTa q.,d,
but do not depend on 7, p;.

Lemma 6.21. Let u be a local weak solution to (6.1). Assume that p is a weak
solution to (6.44)). Then, for all T, 75 such that 0 < 71 < 12 < T we have

/u(l’,Tg)p(I,TQ)d(L’:/ u(x,ﬁ)p(x,ﬁ)—i-/ /L(x,DpH(x,Du))pdxdt
T4 Td n JTd

T2
—|—/ fpdxdt. (6.45)
T Td

1
Moreover, if u is a global weak solution, the previous identity holds up to s = 0.
Proof. Using —p € HY(T? x (11, 72)) N L=(1y, 79; L7 (T?)) as a test function in the

weak formulation of problem (6.1), u € H3(T? x (1, 72)) as a test function for the
corresponding adjoint equation ((6.44) and summing both expressions, one obtains

_ / T2<8tu(t), p(t))dt — / N (Op(t), u(t))dt

T1 T1

T2 T2
+/ / (D,H(x,Du) - Du— H(x, Du))pdxdt + / fpdxdt =0 .
T1 Td Td

71
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The desired equality follows after integrating by parts in time and using property
(7.28)) of L. Note that since H(x, Du) € L*(7y,79; L7 (T?)), and then L(z, D, H(Du)) €

L(7y, 79; L7 (T%)) by and (H), so all the terms in (6.45]) make sense. O

We are now ready to prove a crucial estimate on the the integrability of D,H
with respect to p, that depends in particular on the sup norm ||u||C@T). Note that
this estimate is obtained on the whole parabolic cylinder.

Proposition 6.22. Let u be a local weak solution to (6.1)) and p be a weak solution to
(6.44). Then, there exist positive constants C' (depending on A, ||a|| o1, HUHC@T)’
Cu, | fllpagpy: @4, T) such that

// |D, H (x, Du(z,t))|" p(x,t) dedt < C. (6.46)

Remark 6.23. Note that as a straightforward consequence of (6.46)), one has

// |Du(z, t)|’ p(, t) dedt < Cj forall 1 <8 <+. (6.47)
Indeed, by (H), [, |Du(z,t)]"p(x,t)dzdt < C, which yields (6.47) for 8 = ~. For
B < 7y it is sufficient to use Young’s inequality and (6.26)).
Proof. Rearrange the representation formula (6.45)) to get, for s € (0, 7),

// L(xz, D,H(z, Du))pdzdt = / u(z, 7)pr(x)dr — / u(z, s)p(z, s)dz
S, T Td

Td

—/ fpdxdt. (6.48)
Qs,r

Fix some 7 such that (d+2)/7 < n < d+2 (< ¢). Use now bounds on the Lagrangian
(L1), and Holder’s inequality to obtain

Cct // |D,H(x, Du)|7/pdxdt§// L(z, D,H(x, Du))p dzdt
QS,T S, T
< 2ulleg,y + 1 len@anllolliLr g, ) (6-49)

Let now ¢ be such that
1 1 1

no ¢ d+2
By Proposition , Hé/(Qs,T) is continuously embedded in L7 (Q,.). Moreover,

choosing n > (d + 2)/2 guarantees ¢ < (d+2)/(d+ 1), so by inequality (6.32]) (with
q replaced by §),

ol < Cllolhes .y +1) < O ( J| e DY ) o + 1) ,
| (6.50)
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where ' = 1 + %. Plugging this inequality into (6.49), we obtain
c;! // |D, H (x, Du)|" p dzdt
Qs,r

< 2ulloy) + CillFlinaun ( [[[ 10t Dl eyt -+ 1)

Finally, the right hand side can be absorbed in the left hand side whenever ' < +/
by Young’s inequality: this is assured by
, d+2 d+2 ,
r=14+—=—<7.
q n
One then gets (6.46) by taking the limit s — 0 (constants here remain bounded for
s € (0,7)).

O
Integrability of D,H with respect to p provides finally LY regularity of Dp. From
now on, we will suppose that ¢ > d + 2 and ¢ > %.

Corollary 6.24. Let u be a local weak solution to (6.1)) and p be a weak solution to
(6.44). Let q be such that
d—+2

q>d+2 and q=> — )
v —1

Then, there exists a positive constant C' such that

||P||H;,(QT) <C,

where C' depends in particular on A, ||lal|lcoviey, Cu, || fllLa,), @ d,T (but not on
7,0+ ), |[uollpee(ray if w is a local weak solution and ||u||pe~(qpy if u is a local weak
solution.

Proof. Since ¢ < %, (6.32)) applies (with ¢ = q), yielding

lolhaian <€ ([ 1D,H G Duta, DI ot ) dadt +1)

with
=14+ —
q
If v’ = 4/, use Proposition [6.22] to conclude. Otherwise, if r’ < 4/ then use Young’s in-
equality first to control [[ |D,H (z, Du(z,t))|" pdzdt with [[ |D,H (z, Du)[Y p dzdt+
T. [

d+2 _

Remark 6.25. It is worth noting that in the sub-quadratic regime v < 2, the
information b € LY (p) is strong enough to guarantee ||Dpl| 1o (Qp) forall ¢ < (d+
2)/(d + 1), that is expected for distributional solutions to heat equations with L'
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data (see e.g. [194]). We can then regard the div() term in (6.8)) as perturbation of
a heat equation. On the other hand, in the super-quadratic case v > 2, we are just
able to prove the weaker regularity || Dp|| v, for ¢ < ¢, with ¢/, < (d+2)/(d+1),
where actually q’V — 1 as v — oo. As expected, in the super-quadratic case the
Hamiltonian term in (6.1) may overcome the regularizing effect of Laplacian.

Finally, if one thinks p(¢) as a flow of probability measures, then p enjoys also
some Holder regularity in time.

Corollary 6.26. Let u be a local weak solution to (6.1) and p be a weak solution to
(6.44). Then, there exists a positive constant C' such that

di(p(t), p(t)) < Clt —¢'|2"5 v, € [0,7],

where C' depends in particular on A, [lallcqvr=), Cu, ||[ullog,ys 1fllpq.) & T (but
not on T, p. ).

Proof. Since p solves the Fokker-Planck equation (6.44)) with drift D,H (x, Du(x,t)),
given the L' bound (6.46) on |D,H (-, Du)|" p, the result is a straightforward appli-
cation of [73, Lemma 4.1]. O

6.7.2 Further bounds for global weak solutions

If u is a global weak solution, i.e. an energy solution up to initial time, it is possible to
control its sup norm in terms of ||ug||¢(4). This will be done in the next proposition.

Proposition 6.27. There exists C' > 0 (depending on A, ||al|cwrec), T, d) such that
any global weak solution u to (6.1) satisfies

u(, T lleerey < C for all 7 € [0,T]. (6.51)
Proof. First, we prove a bound from above for u:

u(x, 7) < [uolloers) + Cllfller) (6.52)

for all 7 € (0,7T) and z € T?. Consider indeed the (strong) non-negative solution of
the following backward problem

{—atﬂ(%t) - Z” i (ay(z, t)u(z,t)) =0 on Q- ,
w(x, 7) = pr(x) on T? .

with g, € C®(T9), p, > 0 and [[#6r || 11 ¢pay = 1. Note that p is a solution of a Fokker-
Planck equation of the form with drift b= 0. Then, since ¢’ < (d+2)/(d+1),
by Proposition there exists a positive constant C' (not depending on 7, i) such
that [, 0, < -

Use i as a test function in the weak formulation of the Hamilton-Jacobi equation
(6-1) to get
/ u(z, 7) - (z)de = / uo(x)p(x,0)dr + / fudzdt — / H(x, Du)pdzxdt .
Td T4 Q- Q-
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Applying Holder’s inequality to the second term of the right-hand side of the above
inequality and the fact that [|x(t)||,1(ray = 1 for all ¢ € [0, 7], we get

/d u(x,O)u(x,O)dx+/ / fudzdt < |luolloerey + Cll fl Lac@r) »
T 0 T

By the assumption H(x,p) > 0, we then conclude

[ @)z < Jusles + €l e, -
T

Finally, by passing to the supremum over g, > 0, ||u.|| pirey = 1, one deduces the

estimate (6.52)) by duality.

To prove the bound from below of u, one can argue exactly as in the proof of
Proposition m, starting from the representation formula ((6.48) with s = 0. Using
the additional upper bound (6.52]),

S 10w Dt 1), e < 2lcon +Cl lnian 1 Lol

This provides as before a control on fo |D,H (x, Du))|" p dzdt and thus on 1ol 2o .y
which depends on |[|ug||¢(re) instead of the full sup norm |[ull¢g,)- Going back to

(6.45),
/’JI‘d u(z, 7)pr(x)de > /’JI‘d u(z,0)p(x,0) — Cp, //, p(x,t)dxdt + / o fpdxdt.

Since [ fp can be bounded (from below) by Holder’s inequality,

/d u(z, 7)pr(x)dr > —lu(-,0)||c(re) — Cp7 — C.
T

Since p, can be arbitrarily chosen so that ||p-||;1(rey = 1, we have the desired result.
[

6.7.3 Proof of Theorem [6.1]

Theorem 6.28. Let u be a distributional solution to (7.3)).

(i) Let u be a local weak solution to with = Q and n = n(t) € C((0,T])
be a positive smooth function satisfying n(t) < 1 for all t. Then, (nu)(-,7) €
Whee(T9) for all T € (0,T), and there exists C > 0 depending on Cg, ullea,)s
1/ pa(@pys @ d. T such that

), lwroeieoy < C([1Dallii@n) Dulissn-nin + sup I (6)] + 1)

for all T € (0,T). Without requiring P = Q in (6.13), but assuming in addition
that Da = 0 on Qr, we have the same assertion, and in particular

BN, e < C(sup ' (8)] +1)
(0,7)
for all T € [0,T7].
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Proof. Step 1. Since H is convex and superlinear we can write for a.e. (x,t) € Qr
H(z, Du(z,t)) = sup{v - Du(z,t) — L(x,v)}.

veRd

Hence we get, for 0 < s < 7,

| t@utt). ptnar
+ / g Oiu(z,t) 0j(ai;(z,t)p(z,t) + [E(x, t) - Du(x,t) — L(z, =(x, t))]e dzdt

g/?wﬂ%wﬂawmﬁ (6.53)

for all test functions ¢ € H3(Q,,) N L>(s, 7; L7 (T?)) and measurable = : Q, , — R?
such that L(-,Z(-,-)) € L(s,7; L7(T¢)) and Z- Du € L'(s,7; L (T¢)). Note that the
previous inequality becomes an equality if Z(z,t) = D,H(z, Du(z,t)) in Qs .
We fix p; as in (6.25]). Set
w(z,t) = n(t)u(x,t).

Use now (6.53) with Z(z,¢) = D,H(x, Du(z,t)) and ¢ = np € Hi(Q,) N
L>(s,7; L7 (T9)) for all 1 < ¢’ < oo, where p is the adjoint variable (i.e. the
weak solution to (6.44])) to find

/ <8tw(t),p(t)>dt+// 0w 0;(a;;p)+DyH (x, Du)-Dwp—L(x, DyH (z, Du))np dzdt

_ / / Fnp dzdt + / / wun pdwdt. (6.54)
QS,T Qs,r

Then, use w € H3(Qr) as a test function in the weak formulation of the equation
satisfied by p to get

— / (Op(t), w(t))dt + / 0j(aijp)0iw + DpH (x, Du)p - Dwdzxdt = 0. (6.55)
S QS;T

We now fix s small so that n(s) = 0. We then obtain, subtracting the previous
equality to (6.54)), and integrating by parts in time

/Td w(z,T)p,(r)dr = //T n(t)f(z,t)p(x, t)dedt

+ // n(t)L(z, DyH (z, Du(z,t))) p(z, t)dzdt + // n'(t)u(z, t)p(x, t)dzdt.
. (6.56)

For h > 0 and ¢ € RY, [¢] = 1, define p(z,t) := p(x — h&,t). After a change of
variables in ([6.44]), it can be seen that p satisfies, using w as a test function,

- / Oplt), wlt))dt

~|—// 0; (aij(x—hf,t)ﬁ(x,t))@iijDpH(x—hé’, Du(x—h&,t))p(x, t)-Dw(z,t) dedt = 0.
. (6.57)
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As before, plugging =(z,t) = D,H (x — h&, Du(z — h&, t)) and ¢ = np in (6.53)) yields

/ (Bau(t), p(o))dt+

/ 0w 8 (aip)+ Dy H (—hE, Du(a—he, 1))- Dwp—L(x, DyH (x—h€, Dulz—hE, 1)) )np dedt
Qs,r

§/ fnﬁd:z:dt+// un' pdxdt.
Qs,r

S, T

Hence, subtracting (6.57)) to the previous inequality,
/ w(x, 7)pr(z)dx < // 0; ((aij(ac — h&, t) — aij(z, 1)) p(z, t))@iw dxdt
Td 8,7

+// L(m,DpH(:B—hf,Du(x—hf,t)))nﬁd:ﬂdt—i—/ fnﬁd:vdt+// un' pdxdt,
S,T QS,T S, T

which, after the change of variables x — x + h&, becomes

/ﬂ‘d w(x 4+ hé, 7)p-(z)dr < // 0; <(a,~j(m — h&,t) — aij(z, 1)) p(z, t))(?iw dxdt

n / / (6 Lz + he, DyH (x, Du(x, )))pl, t) dudt

+/ fnﬁdxdt—l—// un' pdxdt, (6.58)
Qs,r

S, T

Taking the difference between ([6.58|) and (6.56) we obtain

/Td(w(a: + hé, ) —w(z, 7)) p(x)de < //T @-((aij(q} — h&,t) — aij(x,t))p(x,t)>@-w dxdt
+ / / n(t) (L(x + hé, DyH(x, Du(, 1)) — L(z, D,H(z, Du(z, t)))> plz, 1) dadt
+ / / n(0)f (2, 1) (ol — hE, t) — pla, 1)) dudt

[ wOu (oo~ he.t) — plo.0) dae.
(6.59)

Step 2. We now estimate all the right hand side terms of (6.59)). We stress that
constants C, (1, ... are not going to depend on 7, p,, h, .

Regarding the first term, assuming that 2 = Q holds in (6.13]), we have by the
growth assumptions on D,H that nDu € L4+20-1(Q.). Note that this fact will
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be used in the next chain of inequalities only. By Young’s and Holder’s inequality

'// 0j<(aij($ — h&t) — a,ij(x,t))p(x,t)>8iw dxdt| =

0;a;;(x — h&,t) — O;a(x,t)) p Oyw dzdt
7 7

+ // (aij([E — hg,t) — aij(x,t))ajp @w dxdt

< 1Dl olhl [[  Dulpdsdt + |Dallima, ] [ [ InDul Dl drd
QS,T QS,T

< C|h| (// |Du|"pdxdt + 7

+Dallr=(q..) ’|77DU||L<d+2><v—1>(QS,T) 1Dpll oo >’(QS,T)>
< Gilh] (II1Dallz=(q.. InDull as2e-(q,.,) + 1), (6.60)

where in the last inequality we used (6.47) and Corollary (with ¢ = (d+2)(y —
) =(d+2)/0=1) ).

Next, using first the mean value theorem (that yields a function ¢ : T¢ — T9),

then property of D, L and (/6.46]),

' / / L(z + hé, D,H(x, Du(z, 1)) — L(x,DpH(:c,Du(x,t)))> p(x, ) dudt

<|h|// |D.L(¢(x), DpyH (z, Du(z, t)))|p(x, t) dudt
< CLlh| // (IDpH(x, Du(x,t))|" + 1) p(x, t) dzdt < C|h).
Qs,r
Denote by D"p(x,t) := |h|~'(p(x + hé,t) — p(x,t)). Then, for the term involving
P P P

f we use again Corollary with § = ¢, and control the L? norm of difference
quotient D"p via Dp (as in, e.g. Lemma [6.12)), to get

V/ W) F (2, 1) (ol — he, 1) — p(a, 1)) dadlt

<4l [ 1501100t 0| dzdt < i1 Dol < ClAL
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Finally, by boundedness of u stated in (6.51]) and again Corollary

|// n'(t)u(z,t) (p(:r — hét) — p($,t)) dudt

< !h!(?ou% 'O lullz=@.» IPpllr @)

< Clh|sup [n'(2)].
(0,1)
Plugging all the estimates in ([6.59) we obtain

[ (wlathe, ) -w(e, 1)pr(a)ds < CI| (1 Dalli @ Dl s [/ ()] +1).
T
(6.61)
Step 3. Since (6.61) holds for all smooth p. > 0 with ||p;||f1(rey = 1, we get
(7 lur+ b, 7) = (e 1) < Ol (| Dl llnDullssai-vig. + sup i ()] + 1)
for all z € T¢, ¢ € RY, h > 0. Thus, u(-,7) is Lipschitz continuous, and

AIDuC )y < C(IPalli@n Dl wsnir-nian + sup (O] + 1)

Since C' does not depend on 7 € (0,7T), we have proved the theorem.

Finally, for the special case Da = 0 on ()7, one may follow the very same lines,
with the difference that there is no need to control the term appearing in (which
is identically zero). Therefore, there is no need to keep track of ||nDul| ;+2)0-1 (0,
and therefore the theorem is proven without assuming the constraint 2 = Q in

m

The following lemma shows that ||Dul/z~(g,) can be bounded by a constant de-
pending on the data only.

Lemma 6.29. Let u be a local weak solution. Then, there exists a constant C
depending on Cu, ||ullc@,y: 1/ Lo I1PallL~@.). ¢ d, T such that

| Dull17(r) < C-

Proof. Plugging ¢ = 1 as a test function in the weak formulation of (6.1]) we obtain,
for s > 0,

/ uw(z,T)dx — / u(z, s)dr + // 0w 0;(ai;) + H(x, Du) dvdt = // fdxdt
Td Td QS7T QS,T

Hence, using , and Young’s inequality we get

o // Dl ddt < [l T ey + ) e + // Duf* ddt
QsT QsT
+CTIIDa¢jHZw(QSYT)+//Q |fledzdt + T + C5'T.
s, T

Therefore, we conclude by passing to the limit s — 0.
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We are now ready to prove the main theorem on Lipschitz regularity stated in
the introduction.

Proof of Theorem[6.1. Fort; € (0,T),let n = n(t) be anon negative smooth function
on [0, 7] satisfying n(t) < 1 for all ¢, n(¢t) = 1 on [¢t;,T] and vanishing on [0,%,/2].
Then, Theorem yields u(-,7) € Wh=(T9) for all 7 € (0,7T), and the existence
of C' > 0 (depending on the data and 7, so t; itself) such that

(M) IDu(, 7)o (rey < C (1 Dall (@ INDull Liar2ra-1 o,y + 1)

for all 7 € [0,T]. If (d+2)(y—1) <7, we immediately conclude (6.5)) using Lemma
6.29, Otherwise, by interpolation of L@+20=1(Q.) between L7(Q,) and L>®(Q,) we
get

n(m) [ Du(-, )l oo (ray < C <HDCLHL<» (@) IIUDU||Loo((Sf)”‘”\|nD |I§i+(8” U+ 1) :

that implies (6.5 after passing to the supremum with respect to 7 € (0,7), and
again using Lemma to control ||nDul|zv(q,)-

To prove the global in time bound (6.3 one may follow the same lines, using n = 1
on [0, 7] instead. Being the solution global, s = 0 can indeed be chosen throughout
the proof of Theorem [6.28, and norms ||ul| ¢, can be replaced by |[u||¢(ra) in view

of Proposition Note that an additional term [i,(u(z 4 h,0) —u(z,0))p(x, 0)dx

pops up in (6.59): this can be easily bounded by || Dug|| 0 (ray.

Finally, if a;;(x,t) = A;; on Qr for some A;; satisfying (A)), then Da = 0 on Qr,
and we obtain the same conclusion, exploiting the fact that Theorem does not
require anymore ? = Q.

O

6.7.4 Some consequences of Lipschitz regularity

Once Lipschitz regularity is established, one can deduce further properties of weak
solutions. Indeed, the viscous HJ equation (/6.1)) can be treated in terms of regularity
as a linear equation, being the H(z, Du) term (locally in time) bounded in L*>°. Thus,
the classical Calderén-Zygmund parabolic theory applies, and the so-called maximal
regularity for u follows, i.e.: Qyu, O;;u, H(x, Du) € LA.

Corollary 6.30. Under the assumptions of Theorem any local weak solution u
of is a strong solution belonging to qu’l(']l‘d X (t1,T)) for allt; € (0,T), namely
it solves almost everywhere in Q.

Proof. For any t; > 0, Theorem yields H(z, Du(z,t)) € L®(T% x (t,/2,T)).
Therefore, since f € LY(T? x (t,/2,T)) and g > d + 2, there exists a weak (energy)
solution v to the linear equation

@v(:p,t)—z a;j(x,t)0;v(x,t) = —H (x, Du(z,t))+ f(x,t) € LYT? x (t,/2,T)),

(6.62)
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that satisfies v(t1/2) = wu(t;/2) in the L%sense, and enjoys the additional strong
regularity property W' (T%x (t1,T)). This can be proven using, e.g., local estimates
in [I59, Theorem IV.10.1]. Since weak solutions to are unique, u coincides a.e.
with v on T? x (t;,T), and we obtain the assertion. O

6.7.5 Some remarks on the exponents ?, Q, q

In the following remarks, we stress the importance of the condition D,H (z, Du) €
LR(0,T; L?(T?)) with ?, Q satisfying
d 1 1
— 4+ =< -, 6.63
2P * Q ~ 2 (6.63)
Not only it guarantees Lipschitz regularity of u, but is also related to uniqueness of
solutions in the distributional sense. In the following examples it is indeed possible
to observe multiple solutions; among them, there is one that satisfies (6.63|) and is
Lipschitz continuous, while the other(s) are not, showing therefore that Lipschitz
regularity for positive times stated in Theorem fails in general without extra
integrability properties of D,H (x, Du).
We will also comment on the condition f € LY(Qr) for some ¢ > d + 2.
Remark 6.31. We consider first the super-quadratic regime v > 2. For Q = oo,
(6.63]) reads
D,H(z, Du) € L=(L*(T%)) for some P >d.

Let a;; = 6;; and H(x,p) = |p|”, v > 2. For ¢,a > 0, we consider the (time-
independent) function

uy(z,t) = e(x)|z|® on Qr,

where 1) is a smooth function having support on Bj/(0) and is identically one in
B1,4(0). Note that ¢ has the role of a localizing term only, so that u(z,t) is a
representative on [—1/2,1/2]¢ of a periodic function on RY. If we let

v—2 (d+a— Z)ﬁ

o= —- CcC =

v—1 o

then u; solves, for some f; € L>(T?) (that vanishes on Bj4(0))
(6.64)
u(z,0) = cp(z) 2]

in the sense that it satisfies all the requirements in Definition [6.5], except the Aronson-

Serrin condition (6.12))-(6.13]). More precisely,
(y = 1)|Du|""" = |D,H(z, Du)| € L=(0,T; L*(T%)) if and only if P < d.

{@u — Au(x,t) + |Du(z,t)|” = fi(z)

Moreover, u; (-, 7) is clearly not Lipschitz continuous for any 7 € [0, T.

Note that u(z,0) € C(T?) and f; € L*(Qr), so by Theorem there exists
a unique solution to (6.64]) in the sense of Definition [6.5| Thus, admits two
distinct strong solutions, but only the one satisfying fully the Definition [6.5] in par-
ticular the crucial integrability condition on D,H (z, Du), enjoys Lipschitz regularity.
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Remark 6.32. In the sub-quadratic regime 1+ 2/(d 4+ 2) < v < 2, for a;; = ¢;; and
H(z,p) = |p|”, we can produce an energy solution to such that D,H(x, Du) €
L&(0,T; L*(T?)) if and only if

d 1 1

2P + Q - 2’
that is not Lipschitz continuous, and not even bounded in L* uniformly on Q. It
then satisfies all requirements of Definition [6.5] except the Aronson-Serrin condition
- and the continuity up to ¢ = 0: the initial datum is assumed in the
L?-sense only.

The construction of such a u is based on the existence, for k& > 0 small, of

U € C?(0,00) N C1[0,00) to the Cauchy problem

U'(y) + (52 +4) U'(y) + Uly) + [U(y)) =0 for0<y < oo

U'(0) =0 '
U(O) = Q,

for some ag > 0, that satisfies for some positive ¢
U+ U ()| +|U"(y)| < ce™  asy— oo

The existence of such a U is proven in [35, Section 3|, see in particular Theorem
3.5, Proposition 3.11, Proposition 3.14 and Remark 3.8 (see also [166]). As in our
Remark [6.31] we need a smooth localization term ¢ having support on (—1/2,1/2)
and identically one in [—1/4,1/4]. Let then

-0 — 2 — g
us(,t) = —t7U (|2 t7/2)(|]), 0= m
We have that us is a classical solution to
Owu(z,t) — Au(z,t) + |Du(z, )| = fo(z, 1), (6.65)

where u3(0) = 0 in the L?-sense (since v > 1+ 2/(d + 2)). Moreover,

o _ d—1 || t=1/2 _
punt) = =t 0al ) 4 (i + LG ) Uel )

n kU<|x|t—1/2>]w<|x|>

o |U el £ ) ]) + 20 (o] 2 ()|

+ 262U (|| t72)0 (Ja]) + U (| £72)0)" (|]) + %tU(\xl t_l/Q)w’(\ﬂﬁl)}-
Note that fy(x,t) is identically zero on |z| < 1/4 and |x| > 1/2; otherwise, it is
bounded in L%, since |U(|z|t~V2)| + |U'(|z|t7V2)| + |U"(Ja| t7/2)] < ce t "4,
Therefore, one should expect the existence of a weak solution to the HJ equation
(6.65) with zero initial datum that is Lipschitz continuous on the whole Q7 (by
Theorem [6.8)), but such a solution cannot be us, since us(t) becomes unbounded as
t—0.
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Remark 6.33. To have Lipschitz bounds for solutions to (6.1)), one cannot avoid in
general the condition

fe LY Qr) forsome ¢>d+ 2. (6.66)

This constraint is actually imposed by the linear (heat) part of . Consider indeed
aij = 6;j and H(z,p) = |p|”, v > 1. For T > 0, let x € C§°(R?), ['(x,t) be fundamen-
tal solution of the heat equation in R?, f3(z,t) := x(x//T — t)[v/T — t log(T —t)]*
and usz be the function

wlot)i= [ oL@yt - s)dyds  on Qs
R4 x (0,t)
Clearly, us is a classical solution to

Opu(z,t) — Au(x,t) + |Du(z, t)|" = f3(x,t) + [Dus(x, t)]”
u(z,0) =0,

f3 € L1(Qr) for all ¢ < d+2 and |Dus|? € L>(0,T; LP(T?)) for all 8 < co. In turn,
we have that ||Dus(-,t)||lcc — o0 as t — T. Note that this example can be recast
into the periodic setting by multiplying us by a cut-off function ¢, as in the previous
remarks.

Therefore, with respect to integrability requirements on f, Theorem is opti-
mal, at least when v < 3, namely when d + 2 > =&2_. We do not know whether

2(y'-1)
is enough also when ~ > 3.

6.8 Existence and uniqueness of solutions

This section is devoted to the proof of existence and uniqueness of solutions to the
HJ equation (6.1)). We start with the simpler case of regular initial datum.

Proof of Theorem[0.§ Existence. We start with a sequence of classical solutions
u, to regularized problems

Ortin (2,1) = Y~ ayi(2,1)djun (2, t) + H(x, Duy(x,t)) = fo(z,t) in Qr,

1,7=1
Un(x,0) = Uy o(x) in T4,

(6.67)

where f,, u, o are smooth functions converging to f,ug in L(Qr), C(T?) respectively.
The existence of solutions to the regularized equations can be proven using standard
methods as in Proposition [5.48 We sketch the proof for reader’s convenience.
Let 7 € (0,7] and « € (0,1) be the exponent in [102, Proposition 2.1]. We set

1+

Sa = {u e C"*75(Q;) s u(0) = ug and lull rarge ) < @)
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We define J mapping S, into itself by u = Jv, where u,, = u solves

Owu(x,t) — Zaij(a:,t)(?iju(a:,t) + H,(z, Dv(z,t)) = folx,t) in Qp =T x (0,T),
u(z,0) = ugl(jx) in T4

By [159, Theorem IV.5.1] (see also [91, Proposition 2.6] for the periodic setting) the
above problem has a unique solution u € C?**!+2(Q,) satisfying the estimate

[ull g2an+sg g,y < CUHn(Z, DV)l| gag g,y + 146 llc2ra(re))
(@) (@)

where C' is a constant independent of 7, ug and v. By using classical interpolation
arguments in Holder spaces (see e.g. [102, Proposition 2.2] and the same strategy
applied in Proposition in the L? setting), one can choose 7 small enough to get
0] o5 g, <

to show that J maps &, into itself for such 7. This allows to apply the contraction
mapping principle to show the existence and uniqueness of a fixed point in @,
™ € (0,77.

Step 2. One uses the same arguments of [102, Proposition 2.2] and Proposition [5.4§
to show the continuation in time by using the gradient bound and get a solution
on the whole Q7.

The global bound on [lu, ||, depending on [lugllc(re) (see Proposition 6.27)
and the local in time Lipschitz estimate ([6.5)) hold, namely, for any fixed ¢; > 0,

HDun(',t)HLoo(Td) S Ctl forall te [tl,T]

Hence, since f,, is equibounded in L9(Qr), u, is equibounded in W(12’1<Qt17T) by stan-
dard maximal parabolic regularity (e.g. [I59, Theorem IV.10.1]). Then, weak limits
Oyu, D*u exist (up to subsequences), and are in L9 locally in time. Moreover, since
q > d + 2, parabolic embeddings of W2>! (see e.g. [I59]) guarantee that w, and Du,
are equibounded and equicontinuous in [t1, T for all ¢; > 0. Therefore, Ascoli theo-
rem and a further diagonalization argument imply that, again up to subsequences,
u,, converges uniformly on [t1, 7] for all ¢; > 0 to some limit u, and the same con-
vergence holds for Du,. Note that the desired limit equation is locally satisfied in
the strong sense, namely a.e. on Qr.

To prove that u is a local weak solution, it just remains to show that it is con-
tinuous up to ¢t = 0. This is a delicate step since the control on Du deteriorates as
t — 0. We start with the l.s.c. inquality

uo(zo) < liminf u(z, ) V.
t—)OO

The following fact will be crucial: for all (z,f) € Qr, there exists p = pz; €
O ([0, 4], P(T)) N HL(Qs) such that pg(f) = 6 and

w(z,t) > /Td uo () pz,e(0, dz) + / Qif(x,t)p@,g(a:,t)dxdt — Crt, (6.68)
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and pj 7 is bounded in C3"5([0,7], P(TY)) NH,, (Qz) uniformly in (Z,7). Indeed, let u,
be as in the previous part of the proof, and p, be the corresponding adjoint variable
solving , where p,(t) is any sequence converging to 0z in the sense of measures.
By duality (see Lemma we get

/Td tn(@, D)pn(z, ) = /Td Un,0(2) pu (2, 0)dx:

+ / / <L(x, D, H(z, Duy,))pudadt + fn,on> dedt.

Moreover, p,, is bounded in C’%A%([O,ﬂ,P(Td)) N H,; (Q7) by means of Corollaries
and and these bounds do not depend on p,(f) nor on (z,f). By (LI,
L > —Cf. Moreover, u, () and uy, (-, ) converge uniformly in T¢, p,(¢) converges in
the sense of measures, f, converges strongly to f in L(Q;) while p, enjoys the same
convergence in the weak L? sense, eventually up to subsequences (actually it could
be made strong convergence by compact embeddings of parabolic spaces). Hence we
obtain by passing to the limit n — oo.

Fix now zg € T%, and let (Z,,,%,) be any sequence such that (Z,,,%,) — (2o, 0).
By adding ug(xo) to both sides of (6.68), rearranging the terms and using Holder’s
inequality, we have

uo(z0) < u(Tpm, tn)

+ Hf”LQ(de(o,EmnHpim,fm||m’(1rdx(o,fm)) + Crlpm + /Td UO(ﬂf)((sxo = Pzt (0)) (dz).
On one hand, || f|lza(rix (0, — 0 as tn, — 0, while ||pz,, 7, ||« is equibounded. On
the other hand, as z,, — g,

/Td UO(-T) (5xo = PZmitm (O))(dm) = uo(xo) _ u0<§:m)
+ /Td uo(x) (me,im(fm) — me,t’m(o))(dx) 0,

by continuity of ug, and the fact that di(pz,, i,,(tm), Pz, (0)) < C’|fm|%/\% — 0
implies the convergence of pz, 7. () to pz,, 7, (0) in the weak sense of measures. We
then get the claimed lower semicontinuity of u on Q.

The reverse inequality

uo(zo) = ligl_zup u(z,t) Vo
t%O0

can be obtained following analogous lines: instead of testing the approximating
equation for u,, by solutions p, to the adjoint Fokker-Planck equation, it is sufficient
to use

—Opin (2, 1) — Zaij (aij(a:,t)un(x, t)) =0 on Qf ,

i7j
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i.e. a solution of a Fokker-Planck equation of the form ([6.23) with drift b = 0,
such that g, (f) converges to 0z in the sense of measures. By duality with u, and
H > —Cy, it holds

[ e Bt Do < [ wolohun(o 0o+ [ fupdade + Cat
Td Td

Qr

and by taking limits
w(Z,t) < / uo(x) iz 7(0, dx) —I—/ fudzdt + Cyt,
Td Qs

so it is possible to proceed as before.

Uniqueness. Consider_two solutions wuq, us of the HJ equation, and take their
difference w := w3 — uy on Qp. Let 7 € (0,7]. By convexity of H(z,-), w solves

/ (Opw(t), @(t))dt + // 0w 0j(aijp) + DpH (x, Dus) - Dw ¢ dxdt <0
s Tdx (s,7

for all s € (0,7), and w(-,0) = 0. Let now p be the adjoint variable with respect to
uy, namely p be the weak solution to

d
—Op(z,t) — Z Oy (aij(z,t)p(x,t)) — div (DpH (z, Dus(z,t)) p(x,t)) =0  in Q. ,
p(2,7) = ps(x) on T?

(6.69)
for some non-negative and smooth probability density p,. Then, by duality we get

/ w(x, 7)pr(z)dr < / w(zx, s)p(z, s)dz.

T T4

Since w € C(Qr), it is uniformly Continuous on @T, Slo) w(-,t) — w(-,0) = 0 uni-
formly in T¢. Moreover, [, w(z,s)p(z,s)dr = de w(z,0)]p(z, s)dz. Thus,
by Holder’s inequality and ||p(s)|| ey = 1, [a w( —> 0, yielding

A;w%ﬂm@mxso

for arbitrary p,. As p, varies, ui(7) < ug(7) follows, and by exchanging the role of
uy and uy and varying 7, we eventually obtain u; = us.

Additional regularity. When uy € W1 using global Lipschitz bounds ([6.3)
one can bring Lipschitz (and further) regularity of u, to the limit solution u on the
whole time interval [0, 7).

O

Remark 6.34. Note that the uniqueness proof works in the sub-quadratic case v < 2
if one requires ug € L>®(T%) and u;(s) — ug in L> only. This follows by the fact that

pin (6.69) can be proven (as in Proposition [6.22)) to satisfy fOT [|D,H (z, Dus)|" p <
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0o. When +' > 2, then p € C([0, 7], L'(T?)) by [194, Theorem 3.6]. Strong conver-
gence of p( ) in L' and weak-* convergence of u;(s) — us(s) is then enough to have
de p(s,) — 0 along some sequence s, — 0. We believe that existence and
Llpschltz regularity of solutions could be addressed in this weaker framework, but
this is a bit beyond the scopes of this analysis. Nevertheless, these considerations are
consistent with the principle that in the super-quadratic case v > 2, the HJ equation
“sees points” [77], and thus requires uy to be continuous in order to be well-posed,
while for v < 2 it may be enough to have informations a.e. at initial time.

6.9 A priori estimates: Bernstein’s and the ad-
joint methods

This section is devoted to the proof of Theorem [6.3] and complements regularity
results of the previous section. Here, u is a classical solution to . This will
allow to perform the Bernstein’s method, namely to analyse the equation satisfied
by |Dul|?>. The adjoint of such an equation is basically (6.44). As before we will
exploit the interplay between the equation itself and its adjoint.

We will assume that a;; € C([0,7]; C*(T%)) and satisfies (A), H € C*(T? x R?)
and satisfies (H)), f € C([0,T]; C*(T?)), up € C*(T?) and

d+2
¢ > min d+2—}.
{ 2(v - 1)

As before, for any fixed 7 € (0,T), p, € C=(T?), p; > 0 with ||p;|[1pe) = 1, let
p be the (classical) solution to (6.44). Note that Proposition |6.27, Lemma and
Proposition apply. We start with a revised version of Corollary [6.24]

Corollary 6.35. Let u and p be solutions to (6.1)) and (6.44) respectively. Let q be

such that
d+2

> —.
2(v = 1)
Then, there exist constants C' >0 and 0 < 6 < 1 such that

ol 0 < CIDullig,) +1)

where C' depends in particular on A, |[allcwre), Cr, [uollpooays 1fllLaopy: @ d:T
(but not on T, p, ).

A straightforward consequence of the corollary is that

d+2

ol g,y < C(IDullj g, + 1),  forall p> AR

(6.70)

Indeed, since ¢ < &2, Proposition gives the result.

d+1°
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Proof. Since ¢ < jﬁ, (6.32)) applies (with ¢ = q), yielding by

lolles o,y < C ( / / D, H (x, Du)|" pdudt + 1)
! Q-

< (// | Du| O~V p dadt + 1)
< <|Du||Loo(Q // | Du| O~ =14 ) dadt + 1)

with 7' = 1+(d+2)g~!. Note that § > 0 can be chosen small so that (y—1)r'—1+4 <
. One then uses the estimate (| - on [[|Du|"p to conclude. ]

We are now ready to prove our main a priori Lipschitz regularity result.

 |Dulw)l? ~ )
Proof of Theorem[0.3. Step 1. Set z(x,t) : 5~ on Qp. Straightforward com
putations yield

0;z=Du-DOu, 0;z=D0ju-Dou+ Du-D0jju, 0z=Du-D(0wu),

which give

d d
Tr(AD?2) = Y ADOgu- Doju+ Du- D{Tr(AD*u)} = " dhuTr(0pADu) . (6.71)
k=1 k=1

Then, differentiating the HJ equation (6.1) with respect to xj, multiplying the re-
sulting equation by Jdyu, and summing for £ = 1,...,d, one finds

Du - D(dyu) — Du - D{Tr(AD*v)} + DyH - Dz + D,H - Du= Df - Du .

Therefore, by plugging (6.71]) into the previous equality we obtain the following
equation satisfied by z

d d
01z — Tr(ADz) + Y  ADOyu - DOyu + DpH - Dz = 0huTr(0, ADu)
k=1 k=1

—D,H -Du+Df-Du. (6.72)
Using the uniform ellipticity condition we estimate the third term on the left-

hand side by
d

> ADOgu - Dou > ATe((D*u)?).

k=1

Multiply (6.72) by the adjoint variable p and integrate by parts in space-time to get

/Td z(z, 7)p- () do + A// Tr((D%*u)?)p dadt < /Td z(z,0)p(z,0) dedt+

// |D,H||Du|p dzdt + / Df - Dupdzdt + / OuTr (0, AD?*u) p dxdt.
(6.73)
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Step 2. We proceed by estimating the four terms on the right hand side of (6.73]).
First,

1
/ 2, 0)p(,0) drdt < ]| Du(-, 0) oo (6.74)
Td
Second, thanks to (H]), Proposition and Young’s inequality,

1
//Q | D, H||Du|p < || Dul| Lo (0. [CH //Q ]Duppdxdt—i-C'HT} < C'2+§HDUH%00(QT).

(6.75)
We then consider [[ Df - Dup. Integrating by parts,

’// Df-Dupdxdt‘ = ’/Q fdiv(Dup) da:dt‘

< ‘/ fDu - Dpda:dt‘ + ‘/ fTr(D%)pda:dt‘ =1+ 1
Qr Q-

The term I; can be controlled by means of Holder’s and Young’s inequalities, and
the control on ||p[/1, stated in Corollary [6.35

Ly < || Dul| (o) | fllLaen 1Doll 1o 0,y < ClIDull L@l fll oo (1Dull 1., + 1)

1
< O3+ E|yDu||‘io<,(QT). (6.76)

We apply to I, also Holder’s and Young’s inequalities to get, for a p > 1 to be chosen,

I, < i// fPpdxdt + é// Tr((D*u)?)p dzdt
2) J Jo. 2 .

1 2 A 2,12
< ﬁHfHL25(Q7—)”pHL15’(QT) + E//QT Tr((D*u))p dadt.

Let us focus on the first term of the right-hand side of the above inequality: it can
be bounded by (6.70) and || f{|z«(g,) Whenever there exists p such that

2(d + 2)

20T Y  c95<y
o0y — ) +1 =1

Such a p indeed exists, since ¢ > min {d + 2, %} Therefore,

1 A
I < Cs+ 1—6HDuH%m(QT) +3 // Tr((D?*u)?)p dadt. (6.77)

For the last term [ [ g, Tr(A,, D*u)p, Cauchy-Schwartz and Young’s inequalities
yield

// Uy, Tr(A,, D*u)pdzdt < C||Dal|?, //Q |Du|2pd:rdt+%// Tr((D?*u)?)p dadt

173



We distinguish two cases: if v > 2, we have by ((6.47)) (with 8 = 2) that foT |Dul?p <
C. Otherwise, if 1 < v < 2,

[ 1uto < 1D, [[ 1Durodsar < il

In both cases we end up with

1
/ O uTr(O,AD*u)p dzdt < Oy + §||Du||%oo(QT) + % // Tr((D*u)?)p dxdt.
Qr Qr

(6.78)
Step 3. Plugging (6.74)), (6.75)), (6.76]), (6.77) and (6.78]) into (6.73) we get

1 1 3
y / |Du(a, 7)p- () da = / 2(2,7)pr (@) da < 5|1 Du(-, 0)|2 e gy +C+ = [ Dl -
2 Td Td 2 8

Since this inequality holds for all smooth p, > 0 with ||p-||1(re) = 1, we obtain

1 1 3
EHDU(',T)H%oo(Td) < §||DU(‘» 0)”%00(’]1“1) +C+ §||Du||%°°(c2r)7

and we conclude by passing to the supremum with respect to 7 € (0,7). ]

174



Chapter 7

Transport equations with
subcritical fractional diffusion and
applications to Hamilton-Jacobi
equations

This chapter is concerned with the study of the regularity properties of solutions
to evolutive transport equations with subcritical fractional viscosity and unbounded
coefficients. Our final aim is to apply this analysis to study the regularization effect
of fractional Hamilton-Jacobi equations with superlinear growth in the gradient and
possibly unbounded data in the spirit of Chapter [6]

More precisely, we begin focusing on the backward problem

{—atp(x, t) + (—=A)p(x, 1) + div(b(z, t) p(z, ) =0 in T¢ x (0,7)

p($, T) = p7<x> in T¢ ’ (7-1)

with 7 € (0,7), where the diffusion term is a fractional Laplacian operator (—A)*

of order s € (1/2,1) and the velocity field b = b(z,t) belongs to some suitable
space-time Lebesgue space. We remind the reader that when the above problem
is recasted as a PDE on the whole space R? with non-periodic data, the above
advection-diffusion equation is invariant under the (parabolic) scaling py(z,t) =
p(Ax, A?t) and by(z,t) = A\>*71b(Ax, \**t) and, in particular, the L2(L?) norm of
the velocity field is invariant under the previous scaling of b when d/(2s?) +1/Q =
1 — 1/2s. In the classical viscous case s = 1, it is well-known that this is the
critical threshold in terms of the integrability of the drift ensuring well-posedness
of the Fokker-Planck equation (see Chapter [6]). Therefore, we will work under the
following assumption for the drift b:

1 2s — 1

<

d
b(x,t) € LU0, 7: L7(T%) with — + —

(7.2)

where
P?>d/(2s—1)and Q > 2s/(2s — 1) .

This can be regarded as a fractional analogue of the interpolated condition (6.13])
presented in the previous chapter. The analysis on these transport-type equations

175



with unbounded coefficients and fractional diffusion can be tracked back to the liter-
ature of Surface Quasi-Geostrophic equations (see e.g. [93, 235] 63]), where, however,
information on the divergence of the velocity field is available. We are not able to
find a treatment on nonlocal diffusive transport equations without information on
the divergence (typically the incompressibility condition div(b) = 0). As for ([7.1)),
unlike the discussion developed in Chapter |§|, we assume that is satisfied with
a strict inequality (see Remark for further details). In particular, we prove the
following

Theorem 7.1. Let b € L%(0,7; L*(T9)) with ? > d/(2s — 1) and Q > 2s/(2s — 1)
satisfying
d 1 2s—1

— =<

25P + Q 2s
and p, € H* Y (TY). Then, there exists a unique weak solution p € H3* 1(Q,) to
(71). If, in addition, p, € LP(T?), p € (1,00], then p € L*°(0,7; LP(T?)). Moreover,
if pr >0, then p >0 a.e. on Q.

Our main goal is to apply the above results to study the regularization effect of
the fractional (forward) Hamilton-Jacobi equation

(7.3)

{&u(az,t) + (=A)u(z,t) + H(z, Du(z, 1)) = f(z,t) in Qr =T x (0,T),
u(z,0) = ug(x) in T9,

where the right-hand side f belongs to some vector-valued Lebesgue space L4(0,T; X),
q > 1, where X will be a suitable Bessel potential space of positive order of differ-
entiability (to be specified later) and H behaving like |Du|” in the second entry,
exactly under the assumptions in force throughout the previous chapter. As an-
nounced, we work in the subcritical regime s > % for the fractional diffusion operator
(—A)® due to the fact that under this condition the diffusion components are the
dominating terms at small scales. In particular, by means of the duality procedure
implemented in Chapter @, we seek to prove that weak solutions (in a suitable sense)
with bounded initial data uy become immediately Lipschitz continuous at positive
times. In particular, we prove the following

Theorem 7.2. Suppose that s € (1/2,1) and
o H e CYTxRY), it is convex in the second variable, and satisfies ,

o f € LI0,T; HX>(T%) with ¢ > d+2s and q > W*ﬁ%

o uy € L>(TY).
Let w be a distributional solution to (7.3) (in the sense of Deﬁmtz'on

(1) If u is a local weak solution to (7.3)), then u(-,7) € WL°(T%) for all T € (0, T].
In particular, for all ty € (0,T) there exists a constant Cy > 0 depending on
tr, Cu, |lullz=@r): HfHLQ(O,T;Hg_QS(Td)V q,d,T,s such that

[, T)l[wr.oe(ray < Ch
for all T € [t1,T].
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(2) If, in addition, u is a global weak solution to with ug € W1°°(T?), then
there exists Cy > 0 depending on Ch, [[ug||w1.00 (4, HfHLq(O’T;HgQS(Td)), q,d, T, s
such that

lu(-, 7)lwroe(ray < Co

for all T € [0,T7].

We would like to highlight that when s = 1 our analysis is consistent with the
results obtained in Chapter [6] (¢f Theorem [6.1). However, as it is clear from the
context of PDEs with fractional diffusion, we are not able to directly reproduce the
gradient estimate in Theorem [6.3| via the interplay between the Bernstein and adjoint
method developed in Section Anyhow, this latter Lipschitz regularity result
seems to be the first one for Hamilton-Jacobi equations driven by fractional diffusion
dealing with coercive Hamiltonians with general superlinear growth in the gradient
and unbounded coefficients on the right-hand side source term f (at least in time).
This would be also the first step towards maximal LP-regularity for such quasi-linear
integro-differential PDEs, which is still open nowadays even in the viscous case. We
remark that as far as the integrability of f € L9(H, 3*23) is concerned, the results are
somehow optimal (see Section . We emphasize that the integrability condition
on ¢ assumed in Theorem can be rewritten as

{d—i—Qs it 1 <~ < 2s,
q >

d+2s :
m lf’}/>257

and thus, even under these assumptions, the regularization effect for the range d +

2s < q < %fﬁ% remains open, as summarized in the next picture.

d+ 2s

7.1 Some known results

We recall that (Holder’s) regularization effect of degenerate HJ equations with super-
quadratic growth in the gradient and unbounded right-hand side has been discussed
in [77] (see also [82] for a different approach). We also mention the Bernstein-type
argument developed for quasi-linear equations with quadratic growth and degenerate
diffusion in [27] in the stationary setting. The intermediate case in which the dynam-
ics is driven by a jump process has been widely investigated during the last decade
in the context of viscosity solutions’ theory for integro-differential PDEs. Regularity
results for HJ equations of the form

ou+ (—A)*u+ H(Du) =0

177



with H locally Lipschitz are well-known. The conservation of Lipschitz regularity
(i.e. starting with u(0) € W) for every s € (0,1) goes back to [105, Theorem
5] (see also [139, [147]). Lipschitz regularity was then investigated in the case of
critical diffusion s = 1/2 by L. Silvestre in [217]. Holder’s regularity of nonlocal
HJ equations with superquadratic growth has been first analyzed in [76]. Holder’s
regularization effect of (viscosity) solutions to fractional HJ equations in the “frac-
tional” quadratic regime v = 2s (i.e. when H(p) ~ d|p|**) starting from a bounded
initial data has been observed by L. Silvestre in [216]. There, the author obtains also
a Holder’s regularity result in the fractional superquadratic regime v > 2s under
a smallness condition on ||ul|f~. More recently, the regularization effect in Besov
spaces when s = 1/2 is investigated in [I41] under a smallness condition on the
initial data. Lipschitz regularity for viscosity solutions of coercive Hamilton-Jacobi
equations has been widely analyzed using revisited techniques coming from classical
viscosity solutions’ theory. In [30] the authors study Lipschitz regularity of solutions
via Ishii-Lions method when f is bounded (which unfortunately requires to restrict
the growth to the fractional subquadratic regime v < 2s, as it happens for the clas-
sical viscous case s = 1) and via a weak version of the Bernstein method in the
periodic setting [31], where f € W1 in the space variable and v > 1, even for more
general integro-differential operators than fractional powers of the Laplacian. We
finally mention that fractional HJ-type PDEs with coercive Hamiltonians have been
also recently investigated in the framework of periodic homogenization [18].

The plan of this chapter is the following: after some preliminary results on em-
bedding theorems for fractional parabolic spaces, in Section we present some
crucial results on transport equations with subcritical fractional diffusion. Section

will be mainly devoted to the proof of Theorem [7.2]

7.2 Preliminaries

7.2.1 Sobolev embedding theorems for parabolic Bessel po-
tential spaces

This section is devoted to present a Sobolev embedding theorem for the parabolic
Bessel potential class H2~!. We borrow from Part II of this manuscript all functional
tools and definitions, which we will not recall here to avoid a cumbersome discussion.

More precisely, we show a trace result for parabolic Bessel potential spaces on the

hyperplane ¢ = 0 that can be regarded as the fractional counterpart of Proposition
6.1T]

Proposition 7.3. Let s € (3,1). If 1 <o < (d+2s)/(d+2s — 1), then HZ(Qr)

is continuously embedded onto LP(Qr) for
11 2s—1
p o d+2s

Moreover, if u € H* YQr) and u(-,0) € L}(T?), we have
lull ory < € (lullyzer(gpy + 110l apay ) (7.4)
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where the constant C' depends on d,p,o,T, but remains bounded for bounded values
of T.

Proof. Let f € L”(Qr) and let ¢ be the unique strong solution to the backward
problem

_at90<x>t) + (—A)Sgp(x,t) - f(I,t) in QT )
oz, T) =0 in T¢ .

By maximal-L? regularity results for fractional evolution equations, see Theorem

B.4 we write
lellzzson < CllA ey @) -

By the embedding result in Proposition we get
el @) < Cllelle @ - (7.5)

owing to the fact that ¢ has null terminal trace and Dy € H;?fl(QT). Moreover,
by the embeddings in Holder’s spaces developed in Part II (see Proposition [5.42)) we
have

Iello@n = Cllelleser - (7.6)

for
d+2s ,  d+2s

< < .
2s P S os—1
Therefore, integrating by parts in time and using (7.5)) and (7.6)) we have

’/ /Q W dxdt‘ B ‘//QT u(=0kp + (~4)°) d:cdt‘
< /Td p(, 0)u(z, 0)|dz + )//QT 8tu<pd:cdt‘ + ’//T<_A)

< O (Ol oo O) oo Hl Ol

[NIES

© (—A)S%udxdt'

Hl/(QT))/ ||QOHH}T/(QT)+HU||H§S*1(QT) HD(pHLa/(QT))

< o0} 1o+ 0,

Len) T ”““H?,H@T)) £l gy - (77)

yielding the desired result.
O

Remark 7.4. As in Proposition [7.7, one can prove the result for a generic time-
intervals I = (7, 7) with obvious modifications.

7.3 Fractional diffusion equations with unbounded
drifts

7.3.1 Scaling

In this section we perform different scalings to guess the critical integrability expo-
nents ensuring the well-posedness and integrability estimates of solutions to

Op+ (—A)°p — div(b(x,t)p) =0
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and the regularity of solutions under rough assumptions on the right-hand side f(z,t)
of the fractional HJ equation . Let p be a solution to the above equation with
drift b = b(z,t), p(z,t) = e*p(ex,e*t) and v(z,t) = ePb(ex, 2t) for some a, B € R
to be later determined. Simple computations yield that the variable p with drift v
satisfies the equality

Oupr+ (=A)°p = div(v(z, t)p) = e (Dup + (=A)°p) + e div(b(x, t)p) -

We look for possible scalings under which the above fractional Fokker-Planck equa-
tion is invariant, i.e. we impose

2s+a=a+3+1,

giving § =2s —1 > 0 since s € (1/2,1).

As announced, our arguments will exploit a bound on the crossed quantity [ 1b]"" p.
In particular, we will use this bound to extract regularity informations for p to handle
a crucial term of the form [[ f|Dp|. Therefore, we observe that

// o] = @t +ama-2s / s,

to find the optimal critical exponent
a=d+2s—(2s—1),

which leaves the crossed quantity invariant under the scaling. First, since the equa-
tion is in divergence form, by parabolic Caldéron-Zygmund theory (see e.g. Theorem
with p = 2s — 1) we expect at most to control (—A)*~'/2p in some Lebesgue
space L7, where ¢ is the conjugate of ¢ > 1 to be later determined. Hence

// |(_A)sfl/2,u/‘q’ — 8(a+2371)q’7d72s // |<_A)sfl/2m|q’ .

Therefore, we impose
(a+2s—1)¢ —d—2s=0
giving
;L d+2s
S d+2s—(2s—1)(y = 1)
after plugging the previous expression for . This forces ¢ to be
d+2s
257 -1
which is the threshold appearing in Theorem [7.2 In view of this fact, in order to
control [[ f|Dp| we need to require some additional space regularity on the right-

hand side of ([7.3)), that is we impose f € Lq(Hg_QS), see ([7.25)). By performing a

Whoo_scaling argument, if u solves (7.3]), then one immediately notices that w.(z,t) =

e lu(ex, €%t) is a solution to

Owe + (=AY w, + e* | Dw.|" = > f(ex,e*t) = r.(x,t) .

q

T

In particular, we observe that 7. € HZ 7> if and only if ||rc[l, + [[(=A)"*rc|l; < oo,
and the last norm is invariant under the scaling precisely when ¢ = d + 2s, which
is the other threshold appearing in Theorem [7.2] We remark that when s = 1 the
above arguments are consistent with the integrability assumptions of Chapter [6]

180



7.3.2 Weak solutions for the fractional Fokker-Planck equa-
tion and its dual

This part is devoted to study the following advection equation with fractional diffu-
sion
—oip(x,t) + (=A)p(x, t) + div(b(z,t) p(x,t)) =0 in Q, ,
o (7.8)
plx,7) = p-(x) in T .
Note that when the vector field b(x,t) = —D,H (x, Du(x,t)), then (7.8) becomes the
adjoint equation of the linearization of (6.1)). Here, 7 € (0,7] and Q, := T? x (0, 7).
From now on, unless otherwise specified, we will focus on d > 2. We will consider

the following notion of weak solution
Definition 7.5. Let b € L(0,T; L*(T%)) with ? > d/(2s — 1) and Q > 2s/(2s — 1)
be such that .

d

L 2s —1
2sP Q 2s
and p, € H"L(T%). A (weak) solution p belongs to H3* '(Q,) and satisfies

(7.9)

| [ owodsier [[ -a14p(-)k0~bp- Dodudt = | po(wyptor)do
0 Td - Td

(7.10)
for all ¢ € C=(T? x (0, 7]).

In particular, the above formulation holds even when test functions are chosen
to belong to the class Hy° := {p € L*(0,7; H'(T%) ,dyp € L*(0,7; H->T1(T%))}.
We stress out that when s = 1 the above setting falls within the classical matter
described in [48], 159, [39] under the interpolated condition on the velocity field.
We remark in passing that p € H3*(Q,) — C([0,T); (H*(T?), H 1 (T))1/22) ~
C([0,T]; H*1(T%)) in view of the classical abstract trace result [I01) Section XVIII.3
eq. (1.61)]. We finally point out that time-integration by parts holds by using that
C>([0,T); H**~Y(T%)) is dense in H5* *(Qr), see [10I, p. 480].

Remark 7.6. Some observations are in order to compare the various notions of
weak solutions met throughout the thesis. Note that the functional framework above
described is different from the one developed in Section (when o = 0): in fact,

here p belong to the smaller parabolic space H2* ' instead of
{p € L*(0,7; H¥(T?) ,0p € L*(0, 75 H'(T))} .

This is due to the additional assumption on the negative part of the divergence (see
Definition . Here, the parabolic space H3* ! is the suited functional class to
develop the fractional counterpart of the results in [I59] under the rough assumptions
on the drift stated in (7.9)).

Remark 7.7. Here, as announced in the introduction, we will obtain our existence
and integrability results under the assumption that the exponents P, Q meet

d 1 2s — 1

— <
2sP + Q 2s
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For instance, this is required when dealing with the variation of constants formula
for abstract evolution equations in Step 2 of Theorem [7.12, Some details about the

critical case
d 1 2s — 1

2s?  Q 2s
will be provided in Remark [7.14]

Throughout this section we will assume that
c HHT%), p,>0, and (p,,1)=1. (7.11)

We further observe that p € H3* ' and H5* ' < L? — L' and hence p(t) € L'(T?)
for a.e. t. Therefore, by using suitable test functions one obtains de p(t) =1 for
fixed t.

Classical Fokker-Planck equations with low regularity on the drift have been studied
in [194] 185, 50] and references therein. A key role to understand properties both
for HJ and Fokker-Planck equations is played by the dual equation to with
subcritical fractional diffusion, namely

{atv+(—A)Sv—b~Dv:0 in Q, =T x (w,7), (7.12)

v(x,w) = v,(x) in T¢ .

with w € [0,7), where b satisfies (7.9) (see e.g. Chapter [f] and [194, Section 3.1] for
the viscous case, s = 1). We consider the following notion of weak solution for (7.12))

Definition 7.8. [[For b € L(0,T; LT(Td)) for ., Q satisfying (7.9), a (weak) solu—

tion v € Hy*(Qy,) == {v € L*(w,; HY(T%), dw € L*(w,7; H'=2(T%))} to is
such that

//wvatgom//w

for all p € C°(T? x [w,T)).

l\)\)—l

~A)» V20 4 b Dvpdadt = / v (2)p(z, w) dr
Td
(7.13)

Here test functions can be chosen to belong to H3* '(Q.). Note that by well-
known abstract results for parabolic spaces we have that

v € 1y (Qu) = Clw, 7ls (H'(T?), H*7H(T%))1 5) = C(lw, 7); H'7(T7))

w\»—t

and hence the trace v(w) makes sense in H'=*(T9).

We recall that the comparison principle ensures uniqueness of suitably defined
weak solutions to Hamilton-Jacobi equations by a simple linearization argument (see
Remark below and the discussion in Chapter @ We prove the following com-
parison principle, which is a simple consequence of the parabolic Kato’s inequality
stated in the next lemma (see e.g. [167, Theorem 34| for the proof).

"Here we use the superscript s € (0,1) to emphasize the difference with the classical space Ha
used in the case of classical diffusion throughout Chapter @
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Lemma 7.9 (parabolic Kato’s inequality). Let Q be a bounded domain in R? and
¢ : R — R be a non-decreasing bounded continuous function (except at most in a
finite number of points). Then, for any weak solution to the fractional heat equation

Ot + (—=A)u = f(z,1) in Q x (0,T)
with f € LY(Q x (0,T)) we have that, in the weak sense, it holds
Op®(u) + (=A)*®(u) < (Qyu + (=A)*u)®(u) ,
where ®(r) = [ (o) do.

Proposition 7.10. Let b € L%(w,7;L*(T9)) with P, Q satisfying and let
uy, uy € Hy*(Qu) be a weak sub- and a supersolution with u(w) < v(w), w € [0,7),
a.e. on T?. Then u < v on Q.. Moreover, if v is a solution to with v(w) >0,
then v > 0 a.e. 1 Q.

Proof. We have just to prove that if u; and uy are two solutions of ([7.12)), then
v = u; — up and v(w) < 0 satisfying

o+ (=A)v=5b-Dv

fulfills v < 0.

To see this, let us restrict to the case v™ := max{v,0}. First, note that since
v € Hy*(Qu), we have v € HL(Q,,) for 1 < ¢ < T2 and this implies that ]| Dvl

belong at least to L'(Q,,). Therefore, by the parabolic Kato’s inequality in Lemma
[7.9] we can write
Ot + (=A)* vt < ||| Dvt| . (7.14)

Let ¢ be the unique solution in H3* *(Q,,) to the problem

— oo+ (—A)p +div(pg) =1 (7.15)
with zero terminal trace ¢(7) = 0, where

G {|b|—ggi| if |Dut| #0

0 otherwise .

First, notice that this equation is the adjoint of . Note that such a solution
exists in view of the next Proposition and, moreover, it enjoys ¢ € L*(Q,,) and
@ > 0a.e. Weuse o € H3*1(Q,) as admissible test function in the weak formulation
to equation ((7.14)) and v as a test function for to get

—/ v+(x,w)g0(x,w)+// @Q-Dv+dxdt+// v+d:pdt§// | Dvt||b| dadt
Td w Qu Qu

which gives in particular foT vt <0, ie vT <0, owing to the fact that ¢(z,7) = 0,
o(r,w) >0 and v+ (z,w) <O0. O

We have the following existence result obtained by similar arguments used in
Proposition covering also the equality in (7.9)).
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Proposition 7.11. Let v, € H7*(T%) and b € Lw, 7; L*(T?)) with ? > d/(2s —
1) and Q > 2s/(2s — 1) such that d/2sP +1/Q < 1 —1/2s. Then, there erists a
unique solution v € Hy*(Q,,) to ([712).

Proof. Let Y = Hy*(Q,,) and define the map W : Y x [0,1] — Y defined as z —
Ulz; 0] = v with v solving the parametrized PDE

o + (=A)Yv =0b- Dz in Q, ,v(z,w) = ov, in T¢

for the parameter o € [0, 1]. We consider the case ? = Q only, so that 2 > g:ff , the
general case being handled as in Proposition exploiting the (critical) embeddings
in mixed Lebesgue spaces, see also Appendix . First, observe that W[z;0] = 0 by
standard results for fractional heat equations. We also note that b- Dz € Hy **(Q,,)
by a straightforward consequence of Sobolev inequality in Lemma [5.16}(iii) (with

i = 2s — 1) and Hélder’s inequality. Indeed, we have
IBI1D2 2o rstrr=2s ooy < MDD,

<1l

w,T;L%(TdD
W;L%(W))HD'ZHLQ(QQ < Cloll eq,rszecrapn 1 Dzl 2. -

Then, in view of Theorem , we can infer that v € Hy*(Q,,) to (7.12) and the
following estimate holds

||U||H§?S(Qw) < C(|||b||DZ|||H§’2S(QW) + ||Uw||H1—s(1rd))

since o € [0,1]. This shows that the map ¥ is well-defined. The same procedure
by contradiction implemented in Proposition [6.9}(ii), which works exploiting the
comparison principle stated in Proposition [7.10] actually gives the a priori estimate
for every fixed point g € ) of the map V¥, that is satisfying g = ¥lg; o].

We now prove the compactness of the map. Let z, be a bounded sequence in H;S(Qw)
and v, = U[z,,0]. Arguing as above, we exploit the compactness of H;*(Q,,) onto
L?*(Q,) (see Proposition with 4 = 1), so as to have the strong convergence
of v, to v in L2(Q,) and the weak convergence of (—A)zv, to (=A)zv in L2(Q,)
along a subsequence. The compactness of ¥ follows exactly as in Proposition of
Chapter [6] by using now ¢ = (—A)1=%(v, — v) that satisfies ¢ € L*(H?*~1) with
Oyp € L*(H™'), and so it is an admissible test function. We write

Tld 1—s 1
LAY (0 — )P + / / (—A) (v, — v)P dadt
/w 2dt LA Q

which shows the strong convergence of (—A)2v, to (—A)zv in L%(Q,,) by using the
aforementioned strong convergence of v, to v in L*(Q,), the weak convergence of

(=A)zv, to (—A)2v in L2(Q,,) and the bound of |b||Dz| € HL"%(Q,,). By duality we
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finally get the strong convergence of the time-derivative in Hj **(Q,,) arguing exactly
as in Proposition We conclude the existence of solutions by the Leray-Schauder
fixed point theorem [122, Theorem 11.6]. The uniqueness follows by Proposition

10
O

7.3.3 Existence and integrability estimates to fractional Fokker-
Planck equations

We present the main result of this section

Theorem 7.12. Let b € L%(0,7; L*(T9)) with ®, Q satisfying (7.9). Then, there
exists a unique solution p € H3* (Q,) to (7.8) satisfying the estimate

||p||H§S’1(QT) <G

for some positive Cy > 0 depending in particular on ||b||Lerey and ||p;|
particular, if p, >0, then p >0 a.e. in Q.
Let now p, € LP(T9), p € (1,00|. Then, p € L>(0,7; LP(T?)) and we have

Hs=1(Td)- In

1o(, )| o rayy < CollprllLo(ray for a.e. t €0,7]
for some Cy > 0 where Cy = Cy(d, p, P, Q, s, ||b|| Le(zr) ).

Remark 7.13. We remark that our existence proof in Step 1 is based on a fixed
point argument and exploits Caldéron-Zygmund regularity for fractional PDEs in
divergence form (cf Theorem [B.4). This is a different procedure than the one im-
plemented in [48], where the authors argue by regularization and truncation due to
the low regularity of the diffusion term (it is typically the approach when the data
are only measurable and thus classical maximal LP regularity approach is not rea-
sonable) and also to [I59], where a refinement of the Galerkin method for the case
of unbounded coefficients is used.

Proof. Step 1. Exzistence and uniqueness in the energy space Ha* *(Q.). We apply
Leray-Schauder fixed point theorem for the existence (see [122] Theorem 11.6] on
the space

X =H"H(Qr) -
Consider the map G : X x [0, 1] — & defined by m —— p = G|m; o] given by solving
the following parametrized PDE

—0p + (=A)p = odiv(b(z,t)m) in Q. , p(x,7) = op.(x) in T¢ .

Note that G[m;0] = 0 by standard results for fractional heat equations. We first
show that G : X x [0,1] — X is well-defined. We first consider the case 7 = Q
for simplicity (whence condition becomes P > d + 2). By parabolic Caldéron-
Zygmund regularity theory (cf Theorem [B.4]) we have

Hsfl(’]rd))

+ || p-
)Hp!

ol = llpllaze—1 .y < CT)(@lbml|z2@.) + ollpr]
< CT)([bll @ lml

1, )

1 .
< Colblle@n + 5llmllag-1q,) + C(D)llpr|

Hsfl(Td) (716)
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The last inequality is due to the fact that we have

27 2(d + 2s)
d+2—2s’
which allows to argue by interpolation and exploit the embedding of H3* '(Q,) —

2(d+2s)

La+2=2(Q),) (see Remark [5.28 and Proposition [C.3)) to show

1<

HmH 2L 0. < CleHLl (Qr) ”mHl 2(d+25) = ClTaHmul 2(d+2s) <0y

L7=2(Qr) 225 (Q,) La+2-25 (Q,)
1
+ %HWHH?*(QT)

for some 6 € (0,1). This shows that G is well-defined from X into itself since
m € X. Moreover, if p € X and o € [0,1] is such that p = G|p; o] we have that
p € X is a solution of and the a priori estimate carry through uniformly
on o € [0,1]. Thus we obtain the existence of a constant M > 0 depending only on
the data (namely ||b||z7(q,), p-, T') such that

pllx < M .

We finally show that the map 7" is compact using similar arguments to that of Propo-
sition . (ii). Let m, be a bounded sequence in 7—[25 1(Q,) and let p, = G[my,; ).
Since |b|m,, € L*(Q,) we have that div(bm,,) € H;"(Q,) and hence by Theorem
we have p, € H3*"'(Q,). By the compactness of 7-[%5_1 onto L*(Q,) (cf Proposition
, which is ensured by the restriction s > 1/2, we have that, along a subse-
quence, p, converges strongly in L*(Q,) to p and (—A)*~'/2p, converges weakly to
(=A)*~2pin L2(Q,). We use (—A)*"'(p, — p) € H5*(Q,) as admissible test func-

tion to the weak formulation of the equation satisfied by p,,.

/ Oi(pn — p)(—=A)* N p, — p) dadt + //T —p)|? dzdt
<c| / Bl [(~8)° 6 — )| dadt ~ [ / T<—A>Sp<—A>H<pn — p) dudt
-/ =) — p)

Since |blm,, € L*(Q,) and (—A)*~"Y/2p, converges weakly to (—A)*""2p in L*(Q,)
the first term on the right-hand side of the above inequality converges to 0. Similarly,
since 9;p € H,'(Q,) and exploiting again the weak convergence of (—A)*~'/2p, in
L*(Q,) the third term goes to 0. Similar motivations provide the convergence of
the second term. This shows that (—A)*~!/2p, converges strongly to (—A)*~'/2p in
L*(Q,). Finally, to show the strong convergence of ,p, to d,p in H;'(Q,) we argue
by duality. For every ¢ € H3(Q,) we have

'//fﬁw—MWwﬁ%ﬁ/yfﬂMm%_mwmﬂﬂ//ﬁww%_MMMMt
<C//T HDMMﬁ+// — p||b|| Dy dzdt
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which yields the strong convergence of d;p,, to ;p in H, *(Q,) in view of the previous
claims. The general case P # Q can be treated similarly, observing that

2¢ 2d

1< <
P—2 d—2(2s—1)

which yields by interpolation

I ) 22y gy < e )G gy I O

|| 27 d d
L7=2(T L3=2(25=T) (Td)

for a.e. t € (0,7). Then one integrates in time the above inequality and applies
first Holder’s inequality and then exploits the Sobolev embedding H3* !(T9) onto

L#CIS*U(T‘{) and argue exactly as above. The uniqueness of solutions can be ob-
tained by duality, see Step 3 below.

Step 2. A priori estimate via Duhamel’s formula. We claim that there exists
t* € (0, 7] independently of p, € LP(T¢) such that

(-, )l Loray < Col|prll o(ray for all t € [t 7]

for some Cy > 0. Set p(-,t) := p(-,7 —t) for all t € [0, 7]. We use Duhamel’s formula
to represent the solution as

p(t) = Tipr —/0 Ti—wdiv(bp) (-, w)dw .

Though this is a formal computation, it can be made rigorous by approximation. We
have

/0 Ti—wdiv(bp) (-, w)dw

18O cray < [Tp0 oy + ‘
Lr(T4)

¢

_dl_1y_1

< HPTHLP(W)JF/(I?—W) 0670758 |div (05) (- w) | g ray o
0

t
_d¢l_1y_ 1 ~
< ||PT||LP(Td>+/(t—W) 2070733 || b (-, w) || o ray duw
0

where we applied the decay estimates in Lemma (iv). We then use Hoélder’s
inequality to bound the right-hand side of the last inequality with

. T _d1_1y_ 1
TP / (t — ) G b, )l ooy dov
0

1
t _d(1_1y_ 17~/ o ~
< (/ (t—w)[ 2075 QS]Q) 16/ Lao,r; L2y 1Al oo (0,750 (T4
0

where
1 1 1

b P p
In particular, the above integral term is well-posed provided that



which is indeed satisfied precisely when

d 1 25 — 1

<
2sP Q 2s

Hence

5 at1
11l oo 0,75 2p (1)) < |l prll o (ray + Cllbl Leomszecrant @ 1Al Lo (0,751 ()

which gives
161l oo 0,m:20 (1)) < 2| o7l Lo (e
by taking

’

Q

(o)
t >t =
2C(Hb“LQ(O,T;L“’('JTCZ))

and hence the validity of the estimate on [0,t*] with Cy = 2. Note that t* does not
depend on ||p;||r»(rey and hence one can iterate the argument in the following way.
Let n be the integer part of ti Then one applies the above scheme in the intervals
[0, %], [t*, 2t*],....,[nt*, 1] getting the estimate with Cy = 2",

Step 3. Positivity. This is a straightforward consequence of the comparison
principle in Proposition [7.10, whose proof can be done e.g. by duality. We take
¢ = v as a test function in the weak formulation of , where v solves in
Q. = T x (w,7) with v(w) = v, > 0 and p as a test function to . By summing
the expressions one obtains

/Td v(w)p(w)dr = / p(T)v(r) dx

Td

and since the right-hand side is nonnegative, the left-hand side is so since v, > 0.
O

Remark 7.14. In Step 1 we can actually reach the threshold

d 1 2s — 1

%P Q" 2s

by assuming a smallness condition on ||b]|ze(L#), since interpolation inequalities are
no longer available. Furtheremore, the approach used to get L>°(L?) estimate in
Step 2 (i.e. with p = 2) can be modified by accommodating the above endpoint
case by implementing a L? version of the adjoint method (see e.g. [125] Section 4]),
i.e. by testing the equation against the solution v € 7—[;;5 to with initial data
v, € L*(T?) with ||vy||z2(re) = 1, following the lines described in Step 3. However,
we prefer to keep the strict inequality for the sake of exposition.

Estimates on parabolic Sobolev spaces 7-[5,5_1(@7)

We finally describe further regularity results that rely on the information b € L*(p)
for some k > 1, that will be used in the next section.
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Proposition 7.15. Let p be a (non-negative) weak solution to (6.23) and
P (7.17)
Then, there exists C > 0, depending on ¢',d, T, s such that

||P||H§f*1(QT) < C(”prLQ'(QT) + HpTHLl(Td))' (7.18)

Note that C' here does not depend on 7 € (0,7].

Proof. Let us rewrite the equation (7.8]) as a perturbation of the fractional heat
equation

0+ (~A)*p = div(b(z, )p) on Qs
with terminal data p(z,7) := p,(z) on T?. We observe that p € H3* ! readily implies

pE 7-[2,8 ~! for every 1 < ¢’ < 2. By parabolic regularity theory (see Theorem } p
enjoys the estimate

Pllzz-10,) = CUIbPI L @,y + o7 llwaemr—2esarw pa)) -

By exploiting Sobolev embedding for fractional Sobolev spaces in Lemma [5.17, one
immediately obtains that

lprllyzer-2e/arar (ray < Cllorllarey

whenever 1 < ¢’ < dj‘gffl. Indeed

/ prpdx
'ﬂ*d

< ellocllorllzrcrey < Cllellwas/a-2straeayllorllzrway < CllprllLicray

||p7—||W237172s/q’,q/(’H‘d) - SU-p

peW?e/a' 2+ La(Td) g -1

W25/q’725+1,q(Td)

where the last inequality is a consequence of the embedding TW?2s/¢'=2s+1La(T9) —
C(T%) (cf Lemma [5.17}(ii)) when

(2s/q —2s+1)qg > d,

that is ¢ > d + 2s or, in other words, when ¢’ satisfies ((7.17)). H
Proposition 7.16. Let p be the (non-negative) weak solution to (7.8)) and
l<d < d+2s
7= +2s5—1

Then, there exists C > 0, depending on T,q ,d, s such that

ot ia < € ([ o0 plot)doe 1)), (7.19)

where
=14+ ———. (7.20)



Proof. Inequality (7.18)), (7.11]) and the generalized Holder’s inequality yield

lolzgn < CUBY P g,y + 1)

1/r'
((// ybvpdxdt) Hpul/’“Q)H) (7.21)

111
it et (7.22)

Then, by Young’s inequality, for all € > 0

for p > ¢ satisfying

1 .
a0 < (1 [ W pdat+elilon+1). (123

One can verify that ((7.20)) and (7.22)) yield

Indeed, (7.22)) gives

p ¢ " q q
and then the definition of 7’ in ([7.20]) gives the conclusion. The continuous embedding
of ’Hg/s_l(QT) in LP(Q,) stated in Proposition [7.3| then implies

Iellr@n < Crlllollaz1 o) +7)

finally giving

1 .
ol zr(@.) < CCY (g// b]" pdxdt + <l|pl|Lrq,) + 1) , (7.24)
Q-

Hence, the term €||p||Lr(@,) can be absorbed by the left hand side of ([7.24]) by choosing
e = (2CC})™1, thus providing the assertion. O

7.4 Lipschitz regularity to Hamilton-Jacobi equa-
tions with subcritical fractional diffusion

This last part is concerned with the proof of Lipschitz regularity of u, stated in
Theorem The adjoint method implemented here follows the very same lines of
Chapter [6] and one can repeat the same heuristic idea described in Section to
obtain the gradient bound. However, unlike the classical case in which Dp can be
controlled in some Lebesgue norm, here, due to the subtle gap between the (sub-
critical) fractional diffusion operator and the divergence term, we expect to control
[(=A)*2p|| ra(Q,) for some ¢ > 1, as we observed in the previous sections. This
forces to assume some (spatial) fractional differentiability on the right-hand side of

190



the fractional HJ equation, just as a simple consequence of vector-valued Hélder’s
inequality. More precisely

a < a 5 ;8 . S—
’//de(o,r) Efp‘ = ” §f”Lq(0,T,H;/ 2 (Td))”pHLq(o,T,Hg L(mdy)

1
S H(_A>2fHL‘I'(O,T;H;/_QS(’]I‘d))HpHL(I(O,T;Hgs_l(’]Td))

S “f”Lq’(o,T;ij%(Td))||:0||Lq(o,T;H§S*1(Td)) . (7.25)

This is the major difference with respect to the Lipschitz regularity analyzed in
Chapter [6]

We will suppose that the assumptions of Theorem stated in the Introduction
are in force: H € C*(T¢ x T?), it is convex in the second variable, satisfies and
up € L>°(T?). Moreover, f € L%(0,T; H2?*(T?)) for some ¢ > d+2s. At some stage
we will require ¢ > % also. The result will be accomplished using regularity

properties of the adjoint variable p, i.e. the solution to

"7 (7.26)

{—8“0(1:, t)+ (—=A)p(z,t) — div (DpH (z, Du(z,t)) p(z,t)) =0 in Q, ,
plx,7) = p-(x) on T

for 7 € (0,T), p; € C®(T?), p, > 0, and |p;||z1re) = 1 and u is a weak solution
to (6.1) (see the next section). By the integrability assumptions on D,H, the ad-
joint state p € H3* 1(Q,) is, for any p,, well-defined, non-negative and bounded in
L>®(Q,). In what follows, we establish bounds on p that are independent on the
choice of 7 and p,.

We will say that u is a weak solution to in the following sense. In what follows

we denote by Qi 1,) = T% x (t1,t2) for 0 <t <ty <T.

Definition 7.17. A function u € L7(0,T; W7 (T?%)) N L>(Qr) is a distribu-
tional solution to (7.3) if

- /T unp(0)dr+ / / it (-A)

for all p € C=(T¢ x [0,T)).

N

u (=AY zp+ H(x, Du)p dudt = / fodxdt
Qr
(7.27)

(1) We say that u is a local weak solution if (7.27) holds and, in addition,
i) u € Hy*(Qury) = {u € L2(t, T; HY(TY)) ,0u € L2(t,T; H'=>(T%)} for
allt € (0,7,
ii) DyH(x, Du) € L(t,T; L*(T4)) fort € (0,T), 2 < P < 0o and 52
Q < oo such that (7.9) holds ,

(2) We say that u is a global weak solution if (i)-(ii) in (1) holds on Qr = T? x
(0,7).
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In what follows, when talking about local and global weak solutions, we will
always assume that they are also distributional solutions as in Definition [7.17}(1)
and so identity holds. In particular, in the case (2) of global weak solution,
holds in general for ¢ € H3* 1 (Qr) N L®(Q7). In view of the results of the
previous section it turns out that i) actually guarantees the well-posedness of the
adjoint equation by the results of the previous section. Specifically, in the case of
local weak solution we will consider ¢ = p defined on (¢, 7) for all ¢ > 0, while in the
case of global weak solutions p is defined on (0, 7). This condition, as in Chapter |§|,
will be crucial in our analysis in order to achieve Lipschitz regularity.

Remark 7.18. Notice that under the assumptions of Definition [7.17] global weak
solutions of ([7.3) must be unique, as it happens in the viscous case, as pointed out
in Proposition [6.8} this can be seen again via a simple linearization argument.

Let us point out first that from now on we will denote by C, (4, ... positive
constants that may depend on Cy, [[uol| oo (pay, | f1lLa(qgy)» T @, d, but do not depend
on T, p,.

We first bound from above the solution of the Hamilton-Jacobi equation (6.1)),
using a duality argument that involves solutions of a backward heat equation. First,
recall that the Lagrangian L : T x RY — R, L(z, &) := sup,{p-& — H(z,p)}, namely
the Legendre transform of H in the p-variable, is well defined by the superlinearity
of H(z,-) in the gradient variable. Moreover, by convexity of H(z, ),

H(z,p) = sup{& - p— L(z,§)},

geRrd
and
H(z,p)=¢&-p— L(x,¢) ifand only if ¢ = D,H(z,p). (7.28)
We further recall the following properties of L are standard: for some C7, > 0,
CLEN = O < Liw,€) < Culé]” (L1)
Do L, €)| < CL(€] +1). (L2)

for all £ € T

Proposition 7.19. There exists C > 0 (depending on T,q',d) such that any global
weak solution u to (7.3)) satisfies

u(@,7) < Juol|poe(rey + Cllfl Laar) (7.29)
for all 7 € (0,T) and a.e. x € T?.

Proof. Let 7 € (0,7). Consider the nonnegative solution of the following backward
fractional heat equation

{—am,w +(=A)Pu(z,t) =0 onQ,,
p(x, 7) = () on T .

with p, € C®(T9), pu, > 0 and [terll prpay = 1. Note that p can be seen as a
solution of a Fokker-Planck equation of the form ([7.8) with drift 6 = 0. Then, since
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q < (d+2s)/(d+ 2s — 1), by Proposition there exists a positive constant C'
(not depending on u.) such that ||ull;2s-1.) < C.
q

Use p as a test function in the weak formulation of the HJ equation (7.3)) and
recalling that for v € H%’S(QT) time-integration by parts holds, one gets

/w u(x, ) pr(z)de = /]I‘d up(z)p(z, 0)dx + / o fudxdt — / o H(z, Du)pdzdt .

Applying Holder’s inequality to the second term of the right-hand side of the above
inequality, the estimate on p € L7(Q,), and the fact that ||z(t)||iay = 1 for all
t € (0,7), we get

/]I‘d w(z, 7)) (z)dz —i—/o /Td fudzdt < luo|| poo(ray + ‘WHLq’(QT)HfHLq(QT)

< [luoll oo ey + Cll f |l 2o(@s) -

By the assumption H(z, Du) > 0, we then conclude

| vl @)da < oo + €l s -

Finally, by passing to the supremum over p, > 0, /x| pirey = 1, one deduces the
estimate (6.52)) by duality. O

Remark 7.20. We remark that actually gradient of solutions to
_at:u(xv t) + <_A)S/L<'r7t) =0 on QT )
p(x, 7) = () on T? .

with p, € L' enjoys better regularity. This can be immediately seen by noting that
Caldéron-Zygmund theory applies on the space ’H;ﬁs (cf Theorem D yielding

HM”H}Z;S(QT) < CHMT”WF?T?'(I/(W) .

Then, one has the estimate

Il 2.0 ) < Calliellzara

when ¢ < % by arguing as in Proposition , giving thus a little gain of integra-

bility of the test function pu.

Lemma 7.21. Let u be a local weak solution to (7.3). Assume that p is a weak
solution to (7.26)). Then, for all0 < <17 <T

[ wte.montorin = [ wtemptemyae+ [ [ we Dt Du))pdsa
Td Td T Td
+/ fpdxdt. (7.30)
T1 Td
Moreover, if u is a global weak solution, (7.30) holds also with 7 = 0.
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Proof. Using —p € M3 NQrym)) N L¥(Qrym)) as a test function in the weak
formulation of problem (7.3), u € Hy*(Q(.m)) as a test function for the corre-
sponding adjoint equation and summing both expressions, one obtains for all
O<mm<n<T

_/ﬁgmm%mwmwi/?&Mﬂw@»ﬁ

T1 T1

T2 T2
+ / / (D,H(x,Du) - Du — H(z, Du))pdxdt + / fpdxdt =0 .
1 Td

el Td

The desired equality follows after integrating by parts in time and using property
(7.28) of L. Note that since u € H{(Q(r ) is a distributional solution, then

H(z,Du) € L'(Q(r,,ry)), and also L(x, D,H(z, Du)) € L' (Q(r, ) by and (H),
so all the terms in (7.30) make sense. O

We now prove the crossed integrability bound on D,H with respect to p.

Proposition 7.22. Let u be a local weak solution to (7.3)) and p be a weak solution to
(7.26). Then, there exist a positive constant C' (depending on Cy, ||| o (gl Uoll oo (ra).
1fll Lacgpy: @@, T s) such that for all T € (0,T)

//L@H@DmmmeaﬂwﬁgC, (7.31)
Q.

and if u is a global weak solution, then
(-, 7)[ oo (ray < Cy for all T € [0,T]. (7.32)

Remark 7.23. An immediate consequence of ((7.31)) is the bound
// | Du(z, t)|°p(z, t) dodt < Cg forall 1 < g <#. (7.33)

Indeed, by and [ p(t) = 1 for ae. t, [[, |[Du(z,t)["p(z,t)dzdt < C, which
yields ([7.33)) for 5 = ~. For § < ~ it is sufficient to use Young’s inequality and
o) L1 (rey = 1.

Proof. Rearrange the representation formula (7.30]) to get, for 0 <7 <7 < T,

Il

L(z, D,H (z, Du))p dzdt = /

Td

u(x,T)pT(x)dx—/ u(z,m)p(x, )

(m1,7)

Td
- / fpdxdt. (7.34)
Q

(T1,7)

Use the bounds on the Lagrangian , (7.29) and Holder’s inequality with the
exponent ¢ = ¢ such that

d+ 2s

qg>d+ 2 dg
q > d+ 2s an q>(7/_1)(28_1)

194



and its conjugate ¢’ to obtain

],

where we exploit the fact that for a.e. t € (0,7)

|D,H (x, Du)|" p dudt < // L(xz, D,H(x, Du))pdxdt
Qry,m)

(71,7)

g QHUHLOO(QT) + O”fHL‘?(Tl,T;Hqg_QS(Td))HpHL‘?/(Tl,T;H;S_Q(Td)) ) (735>

()| oo (ray < llullLoe(@r) -
Since
7 < d+2s
d+2s—1"
owing to (7.19) (with ¢ replaced by @), one finds that inequality is less
than or equal to

Cllplher (g, ) +1) < C ( / /d|DpH(x,Du)|f’p(a;,t)dxdt+1), (7.36)
a T 71 JT

where ' = 1 + (‘”2“’1). Finally, the right hand side of ([7.36|) can be absorbed in
the left hand side of (7.35) whenever " < 4" by Young’s inequality. This is in fact

guaranteed by

- d—+ 2s o
T Tges-y

As a byproduct, one obtains ([7.31)) after letting 74 — 0.

Regarding ((7.32), in view of Proposition we have that u(-,7) is essentially
bounded from above. To prove the bound from below, use formula (7.30) and the
bounds from below for the Lagrangian to get

/Tdu(x,T)Pr(x)dx > /Tdu(x,())p(l‘,()) - Cy //Tp(x,t)dxdt+/QT fpdzdt.

Since [[ fp can be bounded from below using as before Holder’s inequality and

[39),

u(z, 7)p-(x)dr > —|ju(-,0)| peo(ray — CL7 — C,

Td
that holds for any smooth p, with ||p-||z1rey = 1, implying the desired result.
O

The crossed integrability of D,H against the adjoint variable p finally provides
the L9 regularity of (—A)*~*/2p. From now on, we will suppose that ¢ > d + 2s and

d+2s
12 57 nes -

Corollary 7.24. Let u be a weak solution to (7.3) and p be a weak solution to ([7.26)).
Let @ be such that

d+ 2s
(v —1)(2s-1)

g>d+2s and q>
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Then, there exists a positive constant C' such that
”pHH?_I(Qf) <C,

where C' depends in particular on Cy, ||f||Lq(0 rH225(Tdy)r @ d,T,s (but not on T, p-)
and either on |[uol| oo (pay if u is a global weak solution or |[ull e (g, i w is a local
weak solution.

d+2s
d+2s—17

Proof. Since ¢ < (7.19) applies (with ¢ = @), yielding

||p||H§771(QT) <C <// |D,H (x, Du(z,t))|" p(z,t) dedt + 1) :

with Q49
s
/ — 1 = < l‘
Tt es—n )
If " = 4/, use Proposition to conclude, otherwise. If v’ < 4/ use Young’s inequal-
ity first to control [[|D,H (z, Du(x,t))|" pdzdt with [[ |D,H (z, Du)[Y dvdt+7. O

Remark 7.25. We remark that the assumption

d—+ 2s
(v —-1D@2s—1)

g>d+2s and ¢>

reduces to § > d + 2s when v < 2s. Anyhow, we provide the above estimates
for the solution p of the fractional Fokker-Planck equation even for the (fractional)
superquadratic regime v > 2s, even though the above threshold for ¢ deteriorates as
v increases.

7.4.1 Proof of the main results
We now prove our main result.
Theorem 7.26. Let u be a distributional solution to ([7.3)).

(i) Let u be a local weak solution to (7.3)). Then, there exists n = n(t) € C§°((0,T7])
positive smooth function satisfying n(t) < 1 for all t such that (nu)(-,7) €
Wheo(T4) for allT € (0,T), and there ezists C > 0 depending on Cy, ||ul| Lo (0r),
HfHLq(O’T;H?QS(Td)), q,d, T, s such that

n()[ul, T)l[wreersy < C
for all 7 € (0,T].

(it) Let u be a global weak solution to (7.3) and n = n(t) € C*([0,T)) be a positive
smooth function satisfying n(t) < 1 for all t. Then, (qu)(-,7) € W1H(T9)
for all 7 € (0,T), and there exists C > 0 depending on Cy, |luo|w1.ee(ray,
HfHLq(O’T;H?QS(Td)), q,d,T,s such that

7)) lwrosiee) < C(0(0) Datolliany + sup i (1) + 1)
for all T € (0,T].
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Proof. Step 1. Since H is convex and superlinear we can write for a.e. (z,t) € Qr

H(z, Du(z,t)) = sup{¢ - Du(z,t) — L(z,§)}.

£eRd

Let 0 < 73 <7 < T. We then obtain

/(&u dt+/ /T A)zu(z,t) (—A) " 2p(x, 1)

/ / [Z(z,t) - Du(x,t) — L(z,Z(x,t))]p dedt < /T f(z, t)p(x, t) dedt
Td 71 JTd
(7.37)

for all test functions ¢ € H3* ' (Q(r,.1))NL>®(Q(r,.-) and measurable = : Q(r, ,) — T4
such that L(-,Z(+,-)) € LYQ(n.») and E- Du € LY(Q(7,,-)). Note that the previous
inequality becomes an equality if =(x,t) = DpyH (x, Du(x,t)) in Q5 . Let n be as
in (i) satisfying the additional requirement

,r]/

7 EL0.T). (7.38)

We first fix 7 € (0,7T), 71 > 0 outside supp(n), p- as in (7.11])) and 0 # h € R, Set

w(z,t) = n(t)u(x,t).

Use now (T37) with Z(z.1) = DyH(z, Du(z.t)) and ¢ = np € HZ (Quury) N
L®(Qz,7)), where p is the adjoint variable (i.e. the weak solution to (7.26))) to find

/(&w dt—i—/ /Td

—|—/ D,H(x, Du) - Dwp — L(x, D,H (z, Du))np dzdt
T JTd

_ / / Fnpdrdt + / / wn/pdedt. (7.39)
T1 Td T1 T4

Then, use w € Hj(Q(r,-)) as a test function in the weak formulation of the equation

satisfied by p to get
(—A)s_%p(x, t)+D,H (z, Du)p-Dw dxdt = 0.

/ (Dup(t), w(t))di+ / /T d
(7.40)

We obtain, subtracting the previous equality to (7.39), and integrating by parts in
time

/Td w(z, T)pr(v)dr = /w w(x, m)p(x,m)dr + /T /w n(t)f(x,t)p(x,t)dvdt

+/ /T 0(t)L(x, D, H(x, Du(x, ) plz, ) dxdt+/ /T w(e, O)plar, t)dudt.
(7.41)

m\»—t

) (—A) 2 p(a, )

N\»—A
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For h > 0 and h € R?, |h| = 1 define p(z,t) := p(x—h,t). After a change of variables
in ((7.26)), it can be seen that p satisfies, using w as a test function,

/ Oup(), w(t)de

/ /d %ﬁ t)(— A)%UH—D H(x—h, Du(x—h,t))p(z,t)-Dw(x,t) dedt = 0.
T (7.42)

As before, plugging =(z,t) = D,H(z — h, Du(xz — h,t)) and ¢ = np in (7.37)) yields

/<atw dt+// Aduw (~A)=Hp
Td

+ / D,H(x — h, Du(z — h,t)) - Dwp — L(z, D,H(x — h, Du(x — h,t)))np dzdt
71 JTd

S/ fnﬁdxdt—i—// un pdzdt.
T1 Td Q‘r

Hence, subtracting (7.42)) to the previous inequality,

/wa(I,T)ﬁT(I)dI—/ w(z, m)pz, m)de <

Td

//L(x,DpH(a:—h,Du(x—h,t)))nﬁd$dt+/ fnﬁda:dt+//u77’ﬁd:vdt,
m JTd

T JTd T JTd

which, after the change of variables = — x + h, becomes

/wa(anh 7)p-(v)dz —/ w(z + h,m)p(x, )dx
/ / L(z + h, DyH(x, Du(x,t)))p(x, t) dedt

—l—/ fnﬁda:dt—i—/ / un' pdxdt, (7.43)
m JTd 71 JTd

Taking the difference between and ( - we obtain

/Td(w(x + h, 1) —w(z, 7)) pr(x)dr < / (w(z + h, 1) —w(z,m))p(x,)dx

Td

+ / /Td n(t) L(x + h, D,H(x, Du(z,t))) — L(z, D,H(z, Du(z, t))))p(x, t) dxdt

/ /Td (p(x = ht) = p(x,t)) dadt
+ /T1 /Td 7' (tu(z, t) (p(x — h,t) — p(z,t)) dzdt.
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Step 2. We now estimate all the right hand side terms of ([7.44)). We remark that
constants C, C, ... are not going to depend on 7, p-, h. First, since ||p(z, 1) 11 (14) =
1,

/Td(w(x +h, 1) —w(z,n))p(r,mn)de| < 77(7—1)||Du(7—1>||Loo(']Td)|h|. (7.45)

Next, using (7.31) and property of DL

[ [ nte)(Lte + b Dyt @, D, ) = L, D, H (s, Due. 1)) . dxdt\
T JTd
<UL [ [ IDLLC Dy (o, D)) ool ) dde
T JT
< \h|/ / (|DpH(a;,Du(ac,t))|7/ + 1) p(z, t) dedt < C|h|.
71 JTd
Denote by D"p(z,t) := |h|™ (p(z +h,t) — p(x,t)). Then, for the term involving f we

use again Corollary with ¢ = ¢, and control the difference quotient D"p(x,t)
via the norm of p in the space of Bessel potentials Hzf_l(QT), to get

/T /Td n@t) f(z,t)(p(x — h,t) — p(x,t)) dxdt

/T /Td n(t)f(z,t)(p(x = h,t) — p(x,1)) dodt
< |h| /T /Td |f(z,t)] \Dh([ _ A)27282(x,t)‘ dedt

< CulbI s -y 1Dl ) < Colllirq 1 < ol
Here, we exploited the Bessel potential representation of p by means of z € LY in
the first inequality (see e.g. [3, Section 1.2.6]) and we applied Lemma since

(I — A7 2p(z,t) € LI(0,7; WH(T?)). Arguing by interpolation, we exploit the
following abstract result

[Lq<0’ T’ Xl)? Lq(oa T7 XQ)]H = Lq<07 Ta [le XQ]O)

where (X, Xp) = (H;t, Hy?) with s; =0, s, = 1 and 0 = 2s — 1 so that [X;, Xs]y =
HZ7?* (see [231], Section 1.18.4]) in order to interpolate the L(H;~?*) norm in the
following way:

1-6 0
||U||Lq(n,f;H3*2S(Td)) < CHUHLQ(Q(TLT))||u||H(1](Q(T1’T)) :
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Then, using the above inequality and Corollary we deduce

Td

< Cilhl ([ ) 0 ) (1000 )

< caltl ([ 00 1o~ | D) ey o )

T1

t)(p(x — h,t) — p(z, 1)) da:dt‘

1
Py

1
T 77I a\ g B
<anl ([ (%)) i, D, ) < O+ llDuli,, .
T1

for 0 =2s—1 € (0,1) using ([7.38). Plugging all the estimates in ((7.44]) and recalling
the choice of n € C2°((0,T]) with 7, ¢ supp(n), we obtain

/Td(w(x +h7) — iz, ) (2)dz < Clh| + —|h|||77Du||Loo(Q oy (140)
Since (7.46) holds for all smooth p, > 0 with ||p;||z1(rey = 1, we conclude
1
n(r)(w(a +h,7) —u(z, 7)) < Clhl + Slhl[nDull=(q, ) -

Observe that the previous inequality holds for any h # 0 € R?. Therefore, one may
select a continuous representative of u(-, 7) such that the above inequality is fulfilled
for all € T? and h € R%. To this aim, one could take the uniform limit as § — 0 of
ux0~%x(-/8), where x is a smooth mollifier). Thus, u(-,7) has a Lipschitz continuous
representative and

n(T) |, 7)llwreerey < C (7.47)

The proof of (ii) in the context of global weak solution follows goes through the very
same steps . For n € C°°([0,7T]) as in (ii), it is enough to let 771 — 0 and use the
bound ([7.45)) to deduce the estimate

1
n(r)(w(@ + h,7) = u(z, 7)) < ClA[(L +n(0)| Duoll=(r)) + 5 IhlInDull=(or) -
and conclude as above. O

Proof of Theorem[7.4 The first part of Theorem is a straightforward conse-
quence of Theorem (i), while the second part follows by Theorem (ii).
0

7.5 Final remarks on the integrability exponent of
the right-hand side

As outlined in the introduction, by performing a W scaling, i.e. by zooming in
and looking at z(x,t) = e lu(ex, e*t), one finds the following equation satisfied by
z

Oz + (=A)z + e Dz|" = 7 few, et) =i r(,t) .
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If one wants to observe a (Lipschitz) regularization effect under space-time Lebesgue
integrability assumptions on the right-hand side, it is straightforward to verify that
the LY(R? x (0,T)) norm of r.(x,t) is invariant under the previous scaling when
q = (d+2s)/(2s — 1). Therefore, following the analysis of Chapter [6 one expects to
obtain the Lipschitz regularization effect of the solution of the HJ equation assuming
f € L% with ¢ > 225 only (note that throughout this chapter we have f € LI(H; %)
with at least ¢ > d+2s). To run all the arguments in Chapter @, one needs to control
Dp in some Lebesgue space and this regularity of the gradient of the solution to
is not a priori expected, and, at this stage, seems to be still unknown. However,
arguing as in Section m, setting u(z,t) = e®p(ex, e¥t) and v(x,t) = e’b(ew, 25t),
we find that (u,v) solves the equation

¥ (Op + (=A)°p) + e div(b(a, t)p) = 0 .

The equation is invariant under the scaling when = 2s — 1 > 0 since s € (1/2,1).
Therefore, we observe that

// ’UP,/L _ 5(25—1)7’+o¢—d—25 // |b|'y’p

and thus find the optimal exponent
a=d+2s—(2s—1)y".

Then, if one wants the estimate of Dp in some Lebesgue space L?, where ¢ is the
conjugate of ¢ > 1, we find

/ / Dl = el —d-2s / / Dl .

(a+1)¢d —d—2s=0.

Therefore, we impose

giving
. d+2s
Cd+25s— (25— 1)y 4+ 1
after plugging the previous expression for a. In particular, note that when v = 2s
we have

q

,  d+2s
=T
which is the threshold for the maximal LP-regularity for the gradient of the fractional
heat equation. Anyhow, this forces ¢ to be

B d+2s
1= 2s—1Dy -1
The additional regularity of Dp is an interesting open problem which, apparently,
cannot be achieved via parabolic Caldéron-Zygmund regularity.

Anyhow, assuming our additional regularity f € LY(H>**) and using similar argu-
ments to Remark [6.33] namely exploiting the parabolic regularity of the fractional
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heat kernel, we can show that our assumption ¢ > d+ 2s is minimal to have the Lip-
schitz regularization effect. To this aim, consider H(z,p) = |p|”, v > 1. For T' > 0,
let y € Cg°(R?), I'(z,t) be fundamental solution of the fractional heat equation in

Rd

H@t) = 7 1og(T = 1)

and @ be the function
e t)i= [ FwsNe -yt s)dyds  on Qr
R x (0,t)

Clearly, u is a classical solution to

{atu(:c, £) + (=A)u(z,t) + |[Du(z, )" = f(z,t) + |Dulz, t)|”
u(z,0) =0,

f e LY0,T; H7*(T?)) if and only if ¢ < d+2s and |Dul" € L>®(0,T; L?(T%)) for all
f < oco. In turn, we have that ||Du(-,t)||.c — oo as t — T'. Note that this example
can be recast into the periodic setting multiplying u by a suitable cut-off function,
as in Chapter [0

Therefore, with respect to integrability requirements on f, Theorem is opti-

mal, at least when v < 2s, namely when d 4 2s > (25_‘15’%.
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Appendix A

Fractional product and chain rules
on the torus

We first present a version of the Kato-Ponce inequality on Bessel potential spaces
on the torus. We refer the reader to the classical results in [I50} 131] (and references
therein) for more recent developments, all stated in the Euclidean case (see also [227,
eq. (3.1.59)], [228] and [165, Proposition 2] for the periodic setting).

LemmaA L. Let p € (0,1) and 1 < p,p1,q1,p2,q2 < 00 and such that = -+ - =
o +q—2. Then,

HngH” (Tdy < CULF o (T4) HQHH“ (T9) T HfHH” (Td) 191l a2 ’Jl‘d))
for some C' > 0.

We recall that the inequality can be proven in the Euclidean case as follows, see
e.g. [I130]. First, a bilinear multiplier operator with symbol m acting on f, g € S(R?)
is defined as

0= [[[ mien i@t c=dey. (A1)
We are interested in the symbol [€ 4 n|*, since
APR(fa)w) = [[ 1€+ nPF e Fotndean
Then one performs the partition m(&,n) = o1(&,n)|E* + 02(&,n)|n|*, where

o) = S (1-0 () e = 50 ()

and ¢ is a suitable C§° cut-off function; we are then reduced to prove the boundedness
of the operators T,,, on LPi(RY) x L4%(R?). Indeed, this would yield

[(=2)""(£9)]| ;o gy < C (H(—A)qum(w) 19l Lon gty

1y 120 )
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and the desired estimate with H} norms would follow by equivalence of || - ||, with

|- I, + [(=A)2 - ||,. The key result for boundedness of T, is the Coifman-Meyer
multiplier theorem (see [I31, Theorem A] and references therein). Note that the
assumptions of such theorem are fulfilled, since the multipliers ¢; are homogeneous
of degree zero.

Proof of Lemma[A.1. One may argue as in the Euclidean case. We start by observing
that bilinear operators 7, have a periodic counterpart defined on the torus, that is

By, (f,9)(x) = Y Y oi(pv) f(u)g(v)em ¢ (A.2)

By the transference results on multilinear multipliers in [I10, Theorem 3], since o;
are bilinear Coifman-Meyer multipliers on R? x R?, then they are so also on T¢ x T¢9.
One has just to be careful since o; are discontinuous at (0,0), but it is sufficient to
have them defined in (0,0) so that (0,0) is a Lebesgue point for both o;. O

We also present a chain rule for fractional Sobolev spaces.

Lemma A.2. Let ¢ > 0, and ¥ : T? x R — R be of class C'*(T? x R?) with
bounded derivatives on T x R? up to order [y]. Let w € WHP(T?) N HY(T?). Then

W ulDlhwerray < Clllullwnems +1)

and, for all € > 0,

IO ul D e ray < Cllwl g ray +1) -

Remark A.3. As far as the fractional composition rules are concerned, we stress
out that such results continue to hold even for ¢ = 0, as in the seminal paper by [80]
(see also [165], Proposition 3| for the periodic setting)

Proof. We just consider the case 0 < p < 1, the general case being treated similarly.
We start with the inequality in WP spaces, using their construction through the
trace method. It is sufficient to recall that

l|ullwr-np(ray = uir}fo) maxc{ ||t "7 £ () || Lo 0 coromay; [ 2 £ ()| Lo (i (0.00))
and observe that

U (, f(2)lwremay < O+ || fllwreiray),

where the constant C' depends on global bounds on the derivatives of W. Then, one
uses W(z, f(r)) to estimate |[W(-,u(-))|lwi-nr(ra), where f is close to the infimum
in the definition of |luy1-ur(rey. The analogous inequality in H} spaces is then a
consequence of Lemma [5.32] O]
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Appendix B

Regularity in parabolic fractional
Holder and Bessel spaces

We consider the problem

{@u + (=A)*u = f(x,t) in Qr,

u(z,0) = ug(x) in T . (B-1)

The purpose of this section is to present a fractional analogue of classical parabolic
Holder and Sobolev regularity. We point out that related results for this problem
on the Euclidean space appeared in [59, Appendix A] and [84], see also references
therein. We stress that transference of these results to the periodic setting is delicate,
in particular concerning regularity in Sobolev spaces, and to our knowledge they
are not explicitly stated in the literature. We present some proofs that make use of
interpolation methods and results for abstract parabolic equations, with some details
for the reader’s convenience.

As for regularity in Holder spaces, we follow the approach of [I76, Chapter 3-4]
(see also [I77, Chapter 5]).

Theorem B.1. Let a € (0,1) so that 2s 4+ « is not an integer, f € C*2 (Qr)
and uy € C?t%(T?). Then problem (B.1) has a unique classical solution u, and

there exists a positive constant C' depending on d, T, «, s (which remains bounded for
bounded values of T') such that

10l g gy + (=2 ullgots o) < Cllltollcasaqeny + [ fllen ) - (B2)

We begin with some preliminary decay estimates for the fractional heat semigroup
T; in Holder spaces.

Lemma B.2. For every 0 < 6y < 0y, 01,05 € R, there exists C = C(01,02) such that
for all f € C*(T?)

[T 1l o2 (may < Ct= 700725 £ oy (Td) -

Proof. Computations of Remark (in particular the representation formula for
7; and Young’s inequality for convolution) show that for every k > h, k,h € NU{0}
there exists C' = C'(h, k)

_k
||7;fHCk+h(Td) S Ct 2

flleneray -
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This implies that 7;f : C"(T?) — C**"(T9) is bounded for ¢ > 0. Recall that, as a
consequence of Theorem [5.11] one easily gets

(Ch(Td), Ck+h(Td))a,oo — Ch+a(Td)

(See e.g. [176, Example 1.1.7], where the proofs can be readily adapted to the periodic
setting). In addition, one also has T;f : L>°(T¢) — L>(T¢). By interpolation (see
[T77, Proposition 1.2.6]), 7; maps C%(T?) onto C%(T9) with the desired estimate.

m

Proof of Theorem [B.1] Step 1. We first prove the existence of a constant C' > 0 such
that

sup Hu<'>t)H025+a(Td) < C( sup Hf(',t)HCa(wrd) + HU0|\c2s+a(Td)) .
te[0,T] te[0,T7]

We first observe that for s,a € (0, 1) such that 2s + « is not an integer we have
O2s+a(r]rd) (Ca—&—zi(r]rd) Ozs+a+6(Td>)1 5/25.00 0<d<2s.

We show that u(-,#) is bounded with values in C?*7*(T9). Fix t € [0,T]. Then, for
every £ > 0 we split u(t) as u(t) = a(&) + b(§) + c¢(§) using Duhamel’s formula, that
is

min{¢,t}
al€) = / Tof(t - 7)(x)dr,

b(e) = / Tof(t — 7)(x)dr,

min{¢,t}
c(§) = t—min{g,t}fnin{g,t}uo-
Then a(€) € CoH(T9), b(€), c(t) € C*FT+9(T?) for each § € (0,2s). Indeed,
min{¢,t} C
lo@llowsan < [ sazdr sup 17 llewces
0 7/ T€[0,]

C
< 1-6/2s N ]
<1 3572 5/235 TZ%PT] £ (7)o ey

In addition

t

1B(6) lczeessgra) < /

C
infe. }7.1+5/25d7' SUP 1f(T)llca(ray

C
< . /28 o .
< 5/255 Til[lp £ (7)o ey

Similarly to the above computations we have
|’C<€>H025+a+6(’ﬂ‘d) S ||I7:nin{§7t}u0||025+a+6(’]1‘d) S 0576/28"UO||C25+a(Td).
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Therefore, by the definition of K in Section [5.3.2] we have

E ORI (€, uft), O (T4), €20 (T))

< &0 (Y| a(&) || gt ray + ENNB(E) + (&) || costarts(pay)
< C(sup || f(7)llcacray + [[uollc2sta(ray) -
T7€[0,T]

This shows in particular that u(t) € C?+(T?) = (C*T(T?), C?T*(T?));_s /25 00 and

||U(t)||c2s+a(1rd) < C(||f||C§:(QT) + ||U0||c2s+a(1rd)) .

for all ¢ € [0,T]. Since Qu = —(—A)*u+ f and [|(=A)*u(t)||ca(rey is controlled by
|u(t)||c2s+a(ray (see, e.g. [206, Theorem 1.4]), we obtain the bound on ||0yul|ce(ray +
1(=A) u(t)]|ca(re).

Step 2. We need to show that dyu and (—A)%u are both «/2s-Hélder continuous
in time. In view of the regularity of f, it is sufficient to estimate the term (—A)*u.
Our setting falls into the broader treatment for abstract parabolic equations of [220],
[T76, Theorem 4.0.15] and [I77, Theorem 4.3.1]. Anyhow, one can proceed adapting
the arguments in [I76, Theorem 4.0.14] to the fractional framework, and essentially
use estimates of Lemma [B.2] We thus provide the proof for reader convenience to
have a self-contained discussion. We use Lemma with #; = 0 and 6, = 0,2s,4s
to obtain

s C s C.
1Tl zoerayy < Co; || = (=A)Tel| g rayy < 71; (= (= ATl (e ray) < t_;

respectively and with 6; = «a, 6, = 2s to conclude

Il = (=2)"Teull cioncray ooy < 5o

Recall that such decay estimates can be also obtained exploiting the one for the
Laplacian obtained in [I78] and arguing via Bochner-Pollard subordination identity.
We then split u = uy + us as

(1) = / Tiolf(0) = F(,1))do .

and

us (-, t) = Tiug +/ Ti—of(-,t)do
0
for t € [0,T]. Direct computations gives
~(=A ult) = [ (A To(F(e) = f(0)do

and

—(=A)us(t) = =(=A)"Teuo + (Te = 1) f(t)do
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which in turn yields for 0 < 7 < ¢ < T
A )~ A < [ AT - T ) (fle) - St
T T = £60)+ [ CAPTe 7o) - (o
Since —(=A)*(Tr—o — Tr—o) = [1_2(—(=A)*)*Todw, we have

T t—o
< C’Q/ (1 —0)2 / w2dwdo sup [f(z, '>]C%([0,T])
0 T

—0 rE€R4

+2Co(t — 1) sup [f(2, )] 5 oy + O /(T-a) tdo sup [f (2. )] o o )

IERd $€Rd
< 02/ da/ 22 dw sup [f(z, )]C%([O,T])
T— z€R4
501 a
+ (200 + o ) (t—7)2 :;lﬂgi[f(x’ .>]C%([07T])
CQ @
< t—7T)2s N o
S (a/29) (1 —ayzs) 0 = TF 3@ less oy

2sC o
+ (200 + « 1) (t — )2 sup|f(z, ')]c%([O,T]) '

zcRd

where we used ((5.4) within the last inequality. Concerning us, we add and subtract

(T.—=T-) f(-, )to obtaln

| = (=A)°uz(+t) = [=(=A)us](-, 7)| < [(Ts — T )(—=(=A)*uo + (-, 0)]
+ (T = T O+ (T = DfC 1) — £ 7))
< [ = (AT 2o ray,crapdoll — (=A)°ug + f(+,0)||co e+
+ 72| [ —(=A) Todo| o e cema Sup (@l o
+ (Co +1)(t — 7_)2% S:ng[f(x’ ')]cz%([oj’])
Clas o a
<2 [(=A)uo+f (-, 0 caqra)(t=7) 7 +(Co+1)(E=7)2 sup [f (2, )] 017 -

z€R4

showing that that —(—A)® is «/2s-Holder continuous in time with the following
estimate in force

sup [atu('7t)]0% 0.7 sSup [_(_A>Su(x7 )]CT 0,7 (Hf”caf +Hu0H029+a 'H‘d))
Td (fo,11) Rd (I ]) (@Qr)
S re

We also observe that the first partial derivative Q;u are 2 21“‘ time Holder con-
tinuous noting that C'(T?) belongs to the class Ji2s_qa/2s between C%(T?) and
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C?*+2(T4) (more generally, it holds that for ¥ € N and o < k < (3, the space
C*(T?) belongs to the class Jix_q)/(5-a) between C*(T%) and CP(T?), see [177,
Proposition 1.1.3]). Then, using that ||0;u||ca(ray is bounded in [0, T], then the map
t — wu(-,t) is Lipschitz continuous with values in C*(T%) and Lipschitz constant

SUDse0,7) ||8tu('a(7)||ca(1rd)-

1 _a
2s  2s

1heg
Hu(7t) - u('vT)HCl(']I‘d) < CHU(,t) - u('aT>HCa§’H‘d)2 u(7t> - u('77—> C2s+o(Td)
1

_ 14 a 1 _ o
<O((t =) sup [[Ou(-0)llcacma) 242 (2 sup [u(-,0)||cosra(ra) 22
o€[0,T] c€[0,T7]

<Ot — )it
[

Remark B.3. This result is actually consequence of the optimal regularity results
in Holder spaces appeared in [220] (see also [I77, Theorem 1 and Theorem 2]).

We now turn to the case of strong solutions. Recall that (B.1)) can be written as
an abstract evolution equation with diffusion semigroup A = (—A)® as

W) + Au(t) = f(t) .t €[0,T) . (B.3)

and f € LP(Qr). Concerning strong solutions, we have the following maximal regu-
larity result in LP classes.

Theorem B.4. Let p > 1. Suppose that u € HE(Qr) solves (B.1)). Then there exists
a unique strong solution to (B.1)) and there exists a constant C > 0, that depends on
d,T,p,s (but remains bounded for bounded values of T') such that

[l @r) < CUF -2y + luollwn-2erp0(pe))-

Proof. Recall that (—A)® generates the analytic semigroup 7; on LP(T?) in view of
Remark [5.24, Without loss of generality we can restrict ourselves to consider the
case i1 = 2s, the general case being consequence of the isometry property of the
operator (I — A)%. This observation allows to apply the abstract regularity result
[160, Theorem 1] (see also the more recent works [I134], Section 3.2.E] and [198], both
in the framework of evolution problems in Banach spaces and [84] Theorem 1.4] for
the stochastic counterpart of these spaces). Note in particular that the initial trace
belongs to the real interpolation space (H2*(T?), LP(T%))y/pp = W2s=2s/pp(Td) ~

By 2/P2(Td)  However, if one works in the larger space of initial traces Hj /7™,

the estimate of the term involving the initial datum is simpler than the one involving
fractional Sobolev (or equivalently Besov) spaces (cf [84, Lemma 3.2]). Indeed, the
estimate

| Tewoll 3 @ry < Clluollu—2s/prep

can be directly managed using decay estimates of 7; (see e.g. [I506]). We assume
without loss of generality ¢ < %. By Lemma |5.231(i) we have

_1ly e
lan(®)ll,, = I Teuoll,, < CF 345

u0||p,—2s/p+e,p :
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Note that C' here does not depend on T'. Integrating between 0 and T" we have

p
pu—2s/p+e,p

T
E
Hul”ﬁz(QT):/o lua G O, dt < CT Juol|

Since u; solves dyuy + (—A)*u; = 0 we get

T T
n@uﬁgu%@ﬂ::/‘n@umywm;%p=1/ [(=2) un( B)E sy, dt
P 0 0

T T
scA|w—AwM¢wgwﬁ=CAHm@mmw,

that allows to conclude.

]

Remark B.5. As pointed out in [160} 134, 202], the result holds even for f belonging
to spaces with different order of summability in space and time. More precisely, let
p,q > 1 and suppose that u € H54(Qr) solves (B.1)). Then there exists C' > 0, that

depends on d, T, p,q, s (but remains bounded for bounded values of T") such that

HUHHZL“Z(QT) < C(Hf“H;—QW(QT)) + HUOHWW%/P’P(W))'

where
HEN(Qr) = {u € LU0, T; H;(Td)); O € LI(0,T; Hg*%(']rd))} .

and HE9(Qr) = LU0, T; Hﬁ(Td»
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Appendix C

Some other facts on embedding
theorems for (parabolic) Sobolev
spaces

The purpose of this section is to first complete the results presented in [155] [157] for
the deterministic case and s = 1, where the critical embedding onto Lebesgue classes
is not discussed. Recall that for s = 1 the space 7—[?,’“ is isomorphic to Wﬁk’k’ , ke N.
The results we present below provide a different proof of the critical embedding com-
pared to those existing in literature, which are well-established at least when p = 2k,
k € N, namely for the spaces szk’k(QT) (see e.g. [159, Lemma I1.3.3] and references
therein, [14, Theorem 1.7], [129, Theorem 5.1]). As for the space H,(Qr), which
is the natural one for equations with divergence type terms as analyzed throughout
Chapter [0 a careful analysis seems to be available only within [I85, Appendix A]
(see also [92] for the periodic setting), which however does not cover the trace on the
hyperplane t = 0 since the estimates are local in time. Aim of Proposition is to
give the embedding onto Lebesgue classes in the local case s = 1 (cf [I59, Lemma
11.3.3]). For the sake of simplicity we only sketch the result in the case p = 2,
the procedure being similar for the general case exploiting the isometry properties
described in Remark [5.14] Then, Proposition covers the case of the fractional
Bessel potential spaces introduced in Part II. We stress out that such scheme easily
extends to the whole space case R? x (0, T), for which the result is not written down
anywhere in the literature to our knowledge.

Proposition C.1. Let 1 < p < 2. Then H2(Qr) ~ W2HQr), is continuously

embedded onto LY (Qr), where qi* = % - m and

[ull 2o (@r) < Clllullzi@r) + 1u(0)lw2-2/mn(ra)) -
Proof. Let v = v(B) = (2 —2/p)(1 — 6) + 20. We now use the interpolation in
the Sobolev-Slobodeckij scale to observe that W*? can be obtained by interpolation
between WP and W22/ (see [231, Theorem 2.4.2 p.186 and eq. (16)]. We recall
that for W2! the sharp space of initial trace is W2=%?? (see e.g. [I78, Corollary

1.14]). Moreover, W"? is continuously embedded in W¥**4/4=4/P¢ in view of Lemma
Hence, for a.e. t,

G
o(d, p, 5, B) [u(O)ll a0y < N0 lweniray < Jlut Msw2-21m0(nay 1) 2 -
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Then,forallngy—§+§:,u+9l—wWehave

([ 1ot o)

0

T ) 0
1
sc(A||mmwwMannmww )

T
(1-0)p
SCfgﬂW(szmqw (A|W@W%wm%“)

0

At this stage, one has to use the embedding in [I78, Corollary 1.14] to get
Hp(Qr) = C([0,T); W**/7r(T%)

and finally conclude the assertion suing Young’s inequality and recalling that W2?(T¢)
is isomorphic to H2(T?). O

Remark C.2. Similarly, when p = 1 one can prove the embedding of M3 onto L
for the range 1/¢* =1/2 —1/(d + 2) (see e.g. [185, Appendix A], [02]). In addition,
by a suitable choice of § € (0,1) the same arguments yield the embedding of the
space

Hy(Qr) — L=(0,T; L (T7))

L_d(1 1) 1 1

2 2\2 q/) 2 @
which is consistent with the embeddings found in [129, Theorem 5.1] for W?2k*
ke N.

when

We now show the critical embedding for the spaces associated to the fractional
heat operator, i.e. H/*, noting a different behavior depending on the range of p.

We recall that thorughout this manuscript we also provided a proof of the criti-
cal embedding in Proposition and Proposition without using interpolation
theory and exploiting duality arguments.

Proposition C.3. Let 1 < p < d*}fs, p>2s/p, p € R. Then HE*(Qr) is continu-

ously embedded onto LY (Qr), where qi* = i — 7555 and

[ull o @y < Cllullag@r) + 1uO)lwu-2emn(ra)) -

Proof. We drop the superscript s and write H:*(Qr) = HE(Qr) to simplify the
notation. Here, we distinguish the cases 1 < p < 2 and 2 < p < oo in view of the
inclusions stated in Lemma [5.18, To prove the first case 1 < p < 2, we note that
for any ¢ € (0,1), if v = v(0) = (u — 2s/p)(1 — 0) + pbd, then H; can be obtained
by interpolation between H) and Hy /7 (see, e.g., |36, Theorem 6.4.5]). Moreover,
1/+d/q a/p .

H} is continuously embedded in Hg in view of Lemma [5.16| Hence, for a.e.

t,

c(d,p, s, B) [u)l,—ay a4 < u@®)ll,, < [lult M50/ ()1 -
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ISH

Therefore, for all n < v — g +d—=y4d_ d+25(1-6)

q q P ’
T P
( / lu®)l2, dt)

0 0

<o ([ o, o, @)

T 0
(1-6)2

where we use that for 1 < p < 2, WA=25/P? i5 embedded onto HA ™ **/? (cf Lemma
5.18(i)). Then, the last inequality is less than or equal to

T
Coup 01 ([ N0 1)

< Cll[ullgsgpy + 110 lyu-zermmeray) P () s
< C(H“”yﬁ@ﬂ + [Ju(0 )‘|Wu—2S/P7P(’]I‘d))p

where, in the second inequality we used again the embedding
Hy (Qr) = C([0,T]; WH=2/P2(T7)

(see [, Theorem I11.4.10.2] and [199]), while, in the last one, Young’s inequality.
As for the case 2 < p < 0o, we need to restrict ourselves to the case n € Z in
order to exploit that H] ~ W™ and interpolate in the Sobolev-Slobodeckij scale.
In particular, one uses that W*"P can be obtained by interpolation between WP
and WH=2s/pP Moreover, W"? is continuously embedded in W¥+#/9=4/P4 ip view of
Lemma [5.17}(iii). Hence, for a.e. t,

0

0
o(d, p; 8, B) [l a0 ) < Nl ey < flut Msws-2s/p¢zay 140 [iymnra) -

Then,forallnEZsuchthatnSV—g—i—g§u—|—4— we have

( /OTIIu(t)Ilﬁ,th) _ ( /0T||u(t)\|§m(w) dt)

T D
<C )¢ dt
AR TCI—
g (1-90)
< Co ([ T2, 10 2
0

0
T
p
< Cj 22713 ||l u(t )||WM 25/p.p(Td) (/0 w7, dt)

where we used that H/ is embedded onto W#? when p > 2 (see Lemma [5.18). At
this stage, one has to use the maximal regularity result (see [4, Theorem I11.4.10.2])
to get

d+2s(1—0)
p

0 0 0

0

H;(QT) — C’([O7 T]’ W#—Qs/pm(,]rd»

and finally conclude the assertion setting n = 0 to get

r :
([ 1atolzde) < Cllulggn, + 1Oy annies)
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Remark C.4. By a suitable choice of # one can even obtain the critical parabolic
embeddings of H/** onto L5(0,T; L9(T%)) under the fractional counterpart of the
conditions listed in Remark [C.2]
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