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Abstract

The provision of hospital resources, such as beds, operating theatres and nurses, is

a matter of considerable public and political concern and has been the subject of

widespread debate. The political element of healthcare emphasises the need for ob-

jective methods and tools to inform the debate and provide a better foundation for

decision-making. An appreciation of the dynamics governing a hospital system, and

the flow of patients through it, point towards the need for sophisticated capacity models

reflecting the complexity, uncertainty, variability and limited resources.

A common current practice is to plan and manage hospital capacities through a simple

deterministic models using average patient flows, average needs, average length-of-stay,

average duration of surgical operations etc. Average analysis can be misleading since

the underlying distribution is not symmetric. To overcome such limit it is described

the probability distribution of some of the most important proxies for measuring the

consumption of hospital resources such as discharge rate, admission rate, number of

hospitalized patients, and Length of Stay (LoS). While model proposed to describe

the LoS is an innovative generalization of models previously applied in this area, the

model for the description of the discharge and admission rate is borrowed from the

financial mathematics. It is assumed that exist an analogy between the default of a

financial institution and discharge of a patient. This approach come up with a simple

and closed-form formula for the distribution function of the discharge rate and the ad-

mission rate. Moreover some risk metrics, used in financial mathematics, are applied

in order to analysis the tail of the distributions.

In order to investigate the activities of the hospital departments, a deterministic analy-

sis of numeric indicators is performed. Among the common measured clinical parame-

ters, a robust metrics, characterizing the constituent entities and the best opportunity

tools for the characterization of the results, have been identified. Using this approach is
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provided an application in the evolution of the department. Particularly, the attention

is focused on the evolving of the medical team.

Deterministic approached turns out to be not suitable for the development of decision

support tools, mathematically speaking, a hospital corresponds to a complex stochas-

tic system so that the common deterministic approach for planning and managing the

system can be expected to be inadequate.

Hence it is also provided a methodological approach to optimize the hospital resource

allocation based on stochastic dynamic programming (SDP). SDP approach is well-

positioned to model these types of problems because of the explicitly sequential nature

of the decision policies they produce. The aim is to reduce the probability of having a

number of patients di↵erent from a fixed level over a define interval of time. It is shown

that the optimal policy proposed performs better than an empirical policy.

In modern societies, the cost of healthcare are increasing year by year. The require-

ment is to cut costs without diminishing the quality of care. One solution is to increase

e�ciency; hospital need to plan their operations to use available resources in an opti-

mal fashion. In order to analysed the relation between LoS, risk score, and costs, Real

Option Approach (ROA) is applied. Physician has the right but not the obligation to

discharge a patent if some e�ciency conditions are not verified. In according financial

yield curve models, a cost function is estimated and the results are compared whit value

obtain from ROA.

It is also proposed an application of the Lotka-Volterra model and an extension of the

Heston model.

The thesis has the following outline: Chapter 1 presents an introduction to healthcare

systems and briefly discusses sources of fund and issues a↵ecting healthcare quality

and costs. It also highlights the importance of using quantitative models to analyse

di↵erent healthcare delivery strategies and optimize costs. Chapter 2 focuses on health-

care financing systems in di↵erent countries and describes di↵erent methods of paying

for healthcare providers. The strengths and weaknesses of the discussed methods are

also pointed out. Chapter 3 introduces a generic framework for healthcare planning.

This framework, encompassing 4 hierarchical levels of control and four managerial ar-

eas, is used to identify external and internal environmental characteristics a↵ecting

the organization of healthcare systems. Chapter 4 provides an overview of the main
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mathematical theories used in subsequent chapters. These include stochastic di↵eren-

tial equations, real option analysis, option pricing and Poisson processes. Chapter 5

introduces a statistical model to describe the length of stay of hospital patients. The

proposed model overcomes some of the limitations of previous models by using a Phase-

Type Gamma distribution which is able to capture the data characteristics in a more

accurate way. The model is tested on a case study based on the Campus Bio-Medico

hospital database. Chapter 6 introduces some quality indicators as a tool to evaluate

health systems performance and quality. A dynamic stochastic optimization model is

then proposed to optimize hospital bed occupancy. Three di↵erent models to describe

patient discharge probabilities are also proposed and then used to evaluate the optimal

policies. Chapter 7 introduces three financial-like models to describe the variable costs

associated with patient hospitalization: a Nelson-Siegel model; a Black-Scholes model

and a Cox-Ingersoll-Ross model.

The second part of the dissertation, Chapters 8 and 9, tackles di↵erent problems that

the student has investigated during his doctoral studies and which are not related to

healthcare system planning. Specifically, Chapter 8 describes a model to optimize the

consumption of financial inspection resources for tax evasion by analysing the interac-

tion between prevention/control activities and illegal behaviours. Chapter 9 proposes

a new stochastic volatility model for the calibration of option prices.
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Glossary

DRG Diagnosis Related Groups is a system to classify hospital cases into groups.

ES EuroSCORE (European System for Cardiac Operative Risk Evaluation) is a method

of calculating predicted operative mortality for patients undergoing cardiac surgery.

GDF Guardia di Finanza is an Italian law enforcement agency under the authority

of the Minister of Economy and Finance MEF and part of the Italian armed forces.

GDP Gross Domestic Product is a monetary measure of the value of all final goods

and services produced in a period (quarterly or yearly).

LoS Length of Stay is a term to describe the duration of a single episode of hospi-

talization. Inpatient days are calculated by subtracting day of admission from day of

discharge.

NPV Net Present Value is the di↵erence between the present value of cash inflows

and the present value of cash outflows.

OECD Organisation for Economic Co-operation and Development is an international

economic organisation of 34 countries, founded in 1961 to stimulate economic progress

and world trade.

PPP Purchasing Power Parity. PPP is used to compare the income levels in dif-

ferent countries. The theory aims to determine the adjustments needed to be made in

the exchange rates of two currencies to make them at par with the purchasing power
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of each other. In other words, the expenditure on a similar commodity must be same

in both currencies when accounted for exchange rate. The purchasing power of each

currency is determined in the process.

ROA Real Option Analysis is a mathematical approach that calculates the value of

options associated with a decision.

STEEPLED is an abbreviation for the following external environment factors: So-

cial factors, Technology, Economic factors, Environmental factors, Political factors,

Legislation, Ethical factors, and Demographics.

VaR Value at Risk is a measure of the risk of investments. It estimates how much

a set of investments might lose, given normal market conditions, in a set time period

such as a day.

VLoS is the smallest time such that the probability of discharge is greater than a

fixed level.

WHO World Health Organization is a specialized agency of the United Nations that

is concerned with international public health.
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1

Introduction

This Chapter presents an introduction to healthcare systems and briefly discusses

sources of fund and issues a↵ecting healthcare quality and costs. It also highlights

the importance of using quantitative models to analyse di↵erent healthcare delivery

strategies and optimize costs.

Healthcare systems are a prominent focus for national leaders and policy makers in

most countries today. This fact reflects concerns about the availability of necessary

health services for the population, as well as about the e�ciency and costs of current

health systems in delivering those services. The degree of importance of this issue in

any given country is directly related to the size of the healthcare system relative to the

national economy. Nearly all decisions of policy makers about national health systems

must be based on the quantitative aspects of the options available, and the impact

of any decisions taken. A quantitative description of the current health system and

projection of the impact of changes is also critical. Hence, the ability to quantitatively

describe health systems as well as to create a range of what if scenarios based on new

directions for those systems is increasingly important in all countries.

The WHO defines health as a state of complete physical, mental and social well-being,

and not merely the absence of disease or infirmity [3]. People’s health is influenced

by the quality of the air they breathe, the cleanliness of the water they drink, the

types of food they consume, their hygiene, their habitat and their environment. All

these factors are related to the economic situation of individuals and nations. Health

generally deteriorates most where national economies are unable to generate adequate

incomes or provide stable social systems, infrastructure and services (including primary
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healthcare), or where the environment and use of natural resources are poorly managed.

The most critical healthcare needs are not only determined directly by the prevalent

disease burden, but also indirectly by general conditions that either cause or prevent

the introduction and transmission of disease.

Every country has an epidemiological profile that determines its healthcare needs, mea-

sured by changes in such factors as life expectancy, the number of inhabitants living in

urban and peri-urban settlements, birth rates, mortality rates, survival rates of infants

and mothers, the extent of non-communicable diseases, the degree of exposure to dis-

eases, as well as epidemics, disability and mental disorders.

Changes in economic and living conditions have had a profound e↵ect in changing

healthcare needs in most countries. The evolution of medical knowledge and biomedi-

cal technology, the escalating proportions of elderly people and the di↵erent perceptions

of health explained the increase of the healthcare costs. Table 1.1 shows that in the

last decade there is an increasing of the life expectancy and a reduction of mortality

rate. Data also show that this behaviour is common in di↵erent countries. One result

Life

expectancy[1]

Mortality

rate[1]

Percentage

people over 65[4]

2000 2013 2000 2013 2000 2013

Australia 80 83 77 61 12.35% 14.36%

Brazil 71 75 183 147 5.05% 7.33%

Canada 79 82 81 66 12.55% 15.25%

Germany 78 81 94 71 16.20% 20.95%

India 62 66 239 201 4.41% 5.38%

Israel 79 82 79 56 10.02% 10.83%

Italy 80 83 76 54 18.08% 21.59%

Japan 81 84 73 62 17.18% 25.01%

Norway 79 82 85 61 15.17% 15.69%

Russian Federation 65 69 312 232 12.44% 13.16%

Saudi Arabia 73 76 112 80 2.91% 2.76%

Sierra Leone 39 46 536 433 2.50% 2.67%

Spain 79 83 86 63 16.64% 18.09%

Switzerland 80 83 77 53 15.30% 17.60%

Turkey 70 75 150 109 5.99% 7.27%

United States of America 77 79 114 102 12.32% 14.00%

Table 1.1: Life expectancy, adult mortality rate (probability of dying between 15 and 60

years per 1000 population), and population ages 65 and above (% of total)
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of social and economic development has been an increase in the percentage of people

over 65 years of age in most countries. Even if the elderly are healthier today than

in the past, they are still more susceptible to non-communicable diseases (such as car-

diovascular conditions, cancer, diabetes or tobacco-related diseases) and to physical or

mental disability. As a result, they require nursing care services to replace traditional

but rapidly eroding family-support structures. Urbanization, an ongoing and increas-

ing phenomenon, also changes health needs because it requires capacity increases and

structural changes in the medical and public health infrastructure.

The provision of healthcare services is perhaps one of the largest and most complex

industries worldwide. As one of the essential necessities to sustain life, it faces the con-

sequences of increasing demand in times of limited financial resources and competing

social needs. Providing the appropriate medical care involves decision-making in terms

of planning and management of healthcare resources. All countries, rich and poor,

struggle to raise the funds required to pay for the health services their populations

need or demand (which is sometimes a di↵erent matter). No country, no matter how

rich, is able to provide its entire population with every technology or intervention that

may improve health or prolong life. But while rich countries health systems may face

budget limitations, often exacerbated by the dual pressures of ageing populations and

shrinking workforces, spending on health remains relatively high. Many richer countries

will also need to raise additional funds to meet constantly evolving health demands,

driven partly by ageing populations and the new medicines, procedures and technologies

being developed to serve them. A key aspect of this complex issue is the diminishing

workingage population in some countries. Dwindling contributions from income taxes

or wage-based health insurance deductions (payroll taxes) will force policy-makers to

consider alternative sources of funding. There are three main ways to raise additional

funds or diversify sources of funding:

Make health a higher priority in existing spending, particularly in a gov-

ernments budget Governments in the Americas, the European and Western Pacific

Regions, on average, allocate more to health than the other regions. African countries

as a group are increasing their commitment to health as are those in the European

and Western Pacific Regions. In South-East Asia, the relative priority given to health

fell in 2004 and 2005, but is increasing again, while governments in the WHO Eastern
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Mediterranean Region have reduced the share allocated to health since 2003. Some of

the variation across regions can be explained by di↵erences in country wealth. Gener-

ally, health accounts for a higher proportion of total government spending as countries

get richer. Chile is a good example, having increased its share of government spending

on health from 11% in 1996 to 16% a decade later during a period of strong economic

growth [5]. But a countries relative wealth is not the only factor at play. Substantial

variations across countries with similar income levels indicate di↵erent levels of govern-

ment commitment to health.

There are several reasons countries do not prioritize health in their budgets, some fis-

cal, some political, some perhaps linked to the perception in ministries of finance that

ministries of health are not e�cient. In addition, the budget priority governments give

to health reflects the degree to which those in power care, or are made to care, about

the health of their people. Dealing with universal health coverage also means dealing

with the poor and the marginalized, people who are often politically disenfranchised

and lack representation.

This is why making health a key political issue is so important and why civil soci-

ety, joined by eminent champions of universal coverage, can help persuade politicians

to move health financing for universal coverage to the top of the political agenda [6].

Improving e�ciency and accountability may also convince ministries of finance, and

increasingly donors, that more funding will be well used.

Find new or diversified sources of domestic funding The international commu-

nity has taken several important steps since 2000 to raise additional funding to improve

health in poor countries. They are outlined briefly here because they o↵er ideas for

countries to raise domestic funds as well. These developments have helped pinpoint new

sources of funds and maintained the momentum for increased international solidarity

in health financing. However, discussions on innovative financing have so far ignored

the needs of countries to find new sources of domestic funds for their own use: low-

and middle-income countries that simply need to raise more and high-income countries

that need to innovate in the face of changing health needs, demands and work pat-

terns. Not all the options will be applicable in all settings, and the income-generating

potential of those that are will also vary by country. Though we do make some sugges-

tions about the likely level of funding that could be raised at the country level [7]. For
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example so-called solidarity taxes on specific goods and services are another promising

option, o↵ering a proven capacity to generate income, relatively low administration

costs and sustainability. With political support, they can be implemented quickly. In-

troducing mechanisms that involve taxes can be politically sensitive and will invariably

be resisted by particular interest groups. A tax on foreign exchange transactions, for

example, may be perceived as a brake on the banking sector or as a disincentive to ex-

porters/importers. Meanwhile, so-called sin taxes have the advantage of raising funds

and improving health at the same time by reducing consumption of harmful products

such as tobacco or alcohol. Studies in 80 countries have found that the real price of

tobacco, adjusted for purchasing power, fell between 1990 and 2000. Although there

have been some increases since 2000, there is great scope for revenue raising in this

area, as advocated by the WHO Framework Convention on Tobacco Control [8].

Increase external financial support Prior to the global economic downturn that

started late in 2008, development assistance for health from richer to poorer countries

was increasing at a robust rate. Countries saw funding from external sources rise on

average from 11.1% of their total health expenditures in 2000 to 17.3% in 2013 [1].

According to the databases maintained by the OECDs development assistance com-

mittee, government commitments for health reported by bilateral donors jumped from

about US$ 4 billion in 1995 to US$ 17 billion in 2007 and US$ 20 billion in 2008.

This may represent a significant underestimate given that the committee database

does not capture all contributions from non-OECD governments, such as China, India

and some Middle-Eastern countries; reports data for only a limited number of multi-

lateral institutions; and does not collate funds provided by key private players in the

health domain and nongovernmental organizations. A recent study suggested that the

combined contribution from all these sources might have been about US$ 21.8 billion,

almost US$ 5 billion greater than reported to the OECD in 2007 [9]. However, in at

least four key ways, the outlook for aid-recipient countries is less positive than these

numbers might suggest. First, despite the increase in external support, total health

expenditures remain pitifully low insu�cient to ensure universal access to even a basic

set of health services in many countries. Second, even though external funding has

increased substantially, about half of the countries reporting their development assis-

tance disbursements to OECD are on track to meet the targets they have committed
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1.1 Optimize healthcare cost

to internationally (for overall development, including health) [2]. The other countries

are failing to meet their pledges, some by a long way. Slow progress towards fulfilling

these commitments comes at a huge human cost. Third, the development assistance

for health numbers reported above represent commitments; actual disbursements are

lower. In addition, some of the funds that donors report as disbursed do not arrive

in recipient countries for them to spend. Sometimes considerable proportion of aid is

devoted to so-called technical cooperation. Finally, concerns have also been expressed

recently that some of the aid arriving in countries is subject to spending constraints.

Macroeconomic and monetary targets set for inflation and the level of foreign exchange

reserves are based on a concept of prudent macroeconomic management. A more sus-

tainable option is for external partners to reduce the volatility of their aid flows. This

would, at a minimum, allow government budget ceilings in health to be relaxed and

more aid could be used to improve health.

1.1 Optimize healthcare cost

Healthcare is important for all countries. Receiving quality care when needed to ensure

a long and healthy life is a basic tenet of life. Securing the correct solution that bal-

ances financing and quality care is now the subject of great debate. Many reforms have

sought to ensure that all population have access to a↵ordable quality care and insur-

ance. Providers struggle to deliver quality care at a reasonable price. Insurers struggle

to provide a fair and a↵ordable funding solution. Government o�cials are trying to

balance the needs of all participants to ensure a viable, long term, stable solution.

Healthcare issuers are operating in a volatile and fluid environment today. Increased

demand, combined with increasing healthcare costs, have forced healthcare issuers to

manage administrative expenses. With evolving complexity of product o↵erings, un-

derstanding costs become essential information for managing the business. All of these

issues are creating challenges and opportunities for the healthcare issuers. Increasing

the e�ciency will allow insurers to maintain stability in their operations and rates. It

will also allow them to react quickly to changes in regulation and demand. Receiving

accurate information and using adequate model will allow to make better decisions

regarding their operations [10], [11] and [12].
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1.1 Optimize healthcare cost

The key emphasis here is on developing health support systems that are capable of pro-

viding, analysing, evaluating and distributing information necessary for health manage-

ment. Information is indispensable for modelling as well as for progress in policy-making

and implementation activities. Developments in science, technology and clinical prac-

tice have resulted in the less costly but equally e↵ective ambulatory treatment of a

growing number of conditions that were formerly treated on an inpatient basis. Meet-

ing healthcare needs requires the elaboration of strategies to improve health. Since

resources are invariably limited, priorities should be established to reflect the needs of

the population, the general health situation, and national health priorities as revealed

by information analysis.

For health systems to be sustainable, they must have a reliable source of finance and

ensure equal access to a basic level of health services. Models can help in analysing

various national healthcare delivery strategies, such as patient allocation strategy and

bed planning model, their e↵ects on health expenditure, and perhaps even their e↵ects

on aggregate indicators of health status. However, no model can select a strategy. De-

cision makers should use modelling to evaluate more clearly the implications of their

policy options and decisions.
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2

Economic environment of the

health sector

This Chapter focuses on healthcare financing systems in di↵erent countries and de-

scribes di↵erent methods of paying for healthcare providers. The strengths and weak-

nesses of the discussed methods are also pointed out.

A country’s health system has an e↵ect on its economic growth and labour productiv-

ity. This is because the health status of the population a↵ects the work force, which

is an important factor in determining its productivity. Productivity, in turn, has a

strong influence on economic growth. Many factors relating to healthcare services will

have a significant impact on morbidity and mortality patterns - these include the type

of services provided, the quantity and quality of these services, the method of their

distribution, and the extent of their accessibility by the population.

Financing is a critical element determining the quantity, distribution and quality of

health services. Financing also has an enormous e↵ect on operational e�ciency, and

the ability to provide necessary health services according to need rather than ability to

pay. Therefore, governments have considerable means to influence the health status of

their citizens through their choice of health financing policies.

healthcare goods and services are exchanged on the healthcare market. There is ample

reason to believe that the market is distorted by a variety of factors, most importantly

by the asymmetry of information between consumers and providers and by the need to

insure against potentially substantial healthcare costs. Third-party payment systems,

together with inevitably under-informed consumers, lead to a market situation in which
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providers of care have a dominant influence on the volume and structure of demand.

The individual need for health services is highly uncertain, which implies that the de-

mand for services is also uncertain, and possibly di�cult to predict. Demand is only

an approximate function of need; it also depends on the availability and a↵ordability

of services.

The most important aspect for the modeller regarding health expenditure is that it

is highly income elastic. It is obviously easy to persuade consumers with incomes in-

creasing in real terms to spend more and more on healthcare. This microeconomic

relationship obviously aggregates into a macroeconomic relationship. The level of na-

tional economic development is also obviously a significant determinant of the level

of national health expenditure. Table 2.1 shows the national health expenditure as a

percentage of GDP, and per capita GDP in PPP US dollars. This Table shows that

national policy, commitment to health, political and historical factors and other influ-

ences results in substantial di↵erences, even among countries within the same region

or at similar levels of development. Several observations can be made about overall

health expenditure at the national level:

1. There are great di↵erences in health expenditure between countries. In Europe

total per capita health expenditures vary from less than PPP $2098 per capita in

Greece to over PPP $6468 in Switzerland [1].

2. Total spending depends on economic output. Although there are di↵erences, as

some countries spend more on health than others, GDP levels are directly related

to the level of health expenditures.

3. As national income rises, the proportion of total health expenditure accounted

for by the public sector increases.

4. The lower public spending on health in developing countries is the result of a

lower share of government spending devoted to health.

5. External funding in the form of foreign aid is a major source of financing for

health in Africa and some countries in other regions.

6. The level of insurance coverage varies widely. In Americas, over 60 per cent of

the population is covered by health insurance. In Africa, the percentage is in the

single digits (see Table 2.2).
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2.1 National healthcare financing system

The level of expenditure on healthcare in a country depends on many factors, including

the need for services (i.e. the existence of medical problems for which there is a useful

intervention), the ability to a↵ord care, the e�ciency of the financing mechanisms in

mobilizing resources, and the e�ciency and costs of the health sector. It is important to

understand that the level of health spending is a matter of policy and choice, although

it is constrained by the wealth of the country and other priorities competing for use of

the country’s resources. One main factor that determines the choices made on the level

of health spending is income. The proportion of a country’s income spent on healthcare

tends to be around 6.12% in countries with very low yearly GDP per capita (yearly

GDP per capita < $3600), around 6.78% for medium-income countries (yearly GDP

per capita > $3600 and < $12000), and up to 7.58% in the richest countries (yearly

GDP per capita > $12000).

2.1 National healthcare financing system

All national healthcare systems are pluralistic, which means they consist of a variety of

schemes or subsystems. These schemes are distinguished by their pattern of financing

and delivery, the scope of their benefits, and their population coverage. In principle,

combinations of the following characteristics are possible:

• Population coverage

• Benefit range

• Benefit delivery

• Financing

An important distinction must be made between the financing and delivery of health

services. Services may be provided in both the public and private sectors. Thus,

it is possible that services would be financed by the public sector, but provided by

the private sector. The provision of health services by the public sector may occur

at government health facilities or at social health insurance facilities. Private-sector

healthcare providers include hospitals, practitioners, and pharmacies operated by non-

governmental organizations (NGOs) or the not-for-profit sector, as well as those oper-

ated for profit. Health services may also be provided directly by employers. However,
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2.1 National healthcare financing system

with respect to financing sources and population coverage, only a few types of health-

care schemes are typically dominant components of national healthcare systems.

National Health Service systems are characterized by public tax financing, a mix of

public and private delivery, full or almost full scope (range of benefits) and universal

coverage of the population. Social insurance schemes combine public contribution fi-

nancing, public and/or private delivery, usually a full benefit range and less than full

population coverage. Private insurance schemes in many countries combine partial pop-

ulation coverage, less than full scope, private financing and private delivery. A private

insurance subsystem or scheme, however, may also operate alongside a dominant public

sector scheme. Health services may be financed through public or private expenditure.

Traditionally, the primary source of financing for the health sector in many countries

has been the government, although other sources of financing have more recently in-

creased in importance. Where health services are paid for with taxes or compulsory

insurance (through individual and/or employer contributions), they are counted as pub-

lic expenditure. Private expenditure includes payments by individuals and employers

which are generally voluntary, with the rare exception of mandatory healthcare savings

schemes. Funding for recurrent operating and long-term development costs for health

services may come from any of three primary sources:

1. Public sources of financing

• Direct government contributions to finance the provision of health services,

through national or local budgets

• Social health insurance, sponsored by the government (may be mandatory)

• Community financing schemes for health services

2. Private sources of financing

• Direct payment by patients (fee-for-service or other household expenditure)

• Private, voluntary health insurance (indirect individual and employer pay-

ments)

• Employer-based health insurance

• Payments by community and other voluntary local organizations that finance

health services
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2.2 Public Healthcare financing system

• healthcare savings schemes, in which individuals save a stipulated amount

each month to cover healthcare costs in case of need

• Mutuals or cooperative-based insurance schemes

3. External financing

• Donor monies for health services (institutional aid, foreign aid or develop-

ment loans)

It is possible to categorize the various types of healthcare systems along the main char-

acteristics of their financing dimension. One type of financing will generally dominate

a national system. The relative importance of each funding source varies dramatically

among countries and within regions. Table 2.1 provides examples of the public/private

mix in healthcare financing in countries. The Table reflects the pluralistic structures of

virtually all national healthcare systems. In the United States, for example, which is

generally regarded as having a privately financed healthcare system, the public share

nevertheless exceeds 50 per cents of total expenditures. Meanwhile, the healthcare sys-

tems of European Union, which are generally dominated by public financing, still show

on average 25 per cent share of private financing in total healthcare expenditure.

In sum, the relative proportion of public spending and private spending in national

health expenditure varies widely between regions and countries. The pluralism of na-

tional health financing systems is an important factor, there is interaction between the

various subsystem in every national healthcare financing system. The reason is simple:

many providers operate in both the public and the private segment of the market, for

example, physicians in public hospitals might also see private patients.

2.2 Public Healthcare financing system

Publicly financed healthcare systems remain the backbone of healthcare financing in

most countries. There are basically two approaches to the public financing of health-

care: the public health service approach (including national health service and public

service health systems), and the social health insurance approach. In the former type

of system, the public sector is both the financing agent and provider of health services.

In the latter, the government is the financier, but may or may not be the provider.

These are the two main paradigms to which the modelling tools developed later in this
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2.2 Public Healthcare financing system

volume can be applied.

There are two crucial characteristic of public service health system. First on the mi-

croeconomic level, the money does not follow the patient. Provider units are financed

by budgetary allocation, and not paid for specific services rendered to specific patients.

Second, on the macroeconomic level, there is no relationship between the amount of

taxes paid be the population and the volume and structure of services delivered each

year. This is because the financial resources of the health sector come from general

revenues, and are determined by an annual budget procedure in which the health sec-

tor has to compete with alternative uses for resources. Therefore, increased overall tax

payments do not automatically result in increased allocations to the health sector.

The public health service model is a defined-income scheme, where the volume

and structure of services available to the public is largely defined by whatever income

the public health service can obtain from the general budget. Resources are allocated

to di↵erent categories of care in di↵erent regions through the bureaucratic budgeting

mechanism. The structure of the flow of money and services is portrayed graphically

below.

Populations

(taxpayers and

patients)

State

(provider and

financing agency)
Taxes

Services

2.2.1 The outflow of funds: Paying for service delivery

Healthcare financing schemes generally have two main categories of expenditure: ad-

ministrative costs and medical benefits. In the latter category, medical services may be

purchased from providers (i.e. provided indirectly), or delivered in the scheme’s own

facilities (i.e. provided directly). All healthcare financing systems incur administrative

costs, even if they are not directly visible. Particularly in public service healthcare

systems, the administrative cost structure of the scheme may lack transparency. These

schemes are administered by ministries of health, and costs for the provision of services

are incurred in various institutions and facilities, such as the supervising ministry, the

health section of the ministry of finance, other ministries, and a whole hierarchy of

healthcare facilities, each with its own administration. In social insurance schemes,

these administrative costs are (or at least should be) visible in the scheme accounts.
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2.2 Public Healthcare financing system

The level of administrative costs varies greatly, and depends on the complexity of the

benefit package, the system of reimbursement for services, the means of contribution

collection, and the maturity of the respective scheme (young schemes generally require

more administrative input than mature schemes). Administrative costs can be a fre-

quent source of waste, and when they exceed 5-10 per cent of total benefit outgo, an

in-depth audit of administrative practice is always warranted. The bulk of the funds

of a social health insurance scheme should be spent on the purchase or direct delivery

of benefits. A critical determinant of benefit expenditure is the way providers of care

are paid by the scheme. We explore some alternatives in provider payment systems,

which are largely independent of the type of financing system. Virtually all of these

systems could be applied within national health service systems. Payment mechanisms

determine the amount of financial flows from third party payers or patients (or both)

to providers of care, in exchange for healthcare services. Essentially, the mechanisms

define two critical items:

• the unit or basket of service for which a provider is paid per individual payment

• the price of the unit or basket.

The units or baskets used as a basis for payment exhibit a wide variety of aggregation.

Sometimes they include all services rendered by a provider in a given period of time,

such as one month in the case of payment by salary, or three months (or more) in

the case of providers receiving budgets, such as hospitals. At the other end of the

spectrum, payment may be for a single act performed by a professional, for example

for an injection under a fee-for-service system. Prices might be implicitly or explicitly

negotiated, they might be related to costs, or they might reflect other objectives such as

deterring or encouraging utilization. They may also be linked to the quantity of units

or baskets of services provided. Table 2.3 lists the most common pure forms of payment

mechanisms and their most common applications, in an ascending order of aggregation:

Payment methods are usually an element in the service contract between third-party

payers and providers, but contracts generally regulate more than just payment issues.

There may be various combinations of payment systems and relationships between

payers and providers. One example of a mixed payment arrangement would be a

doctor who receives a salary, but who is an employee either of the payer (e.g. the

social insurance scheme) or of an institution which provides services to the payer (e.g.
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2.2 Public Healthcare financing system

government healthcare units). If this doctor is employed directly by the payer, the

scheme may contain additional rules and incentives, apart from the payment system,

to ensure that quality and e�ciency standards are met. For example, there may be

rules on the minimum number of patients to be treated in a given period of time, a

maximum average cost per patient, or rules regarding professional advancement. If

the doctor were employed by a provider that supplies services to the payer (such as

a hospital), the payer would have to develop other means of influencing the provider,

which in turn would have to develop internal procedures to ensure that standards are

maintained.

Pure payment methods are rarely found in healthcare systems. In most cases, several

payment methods are combined to form a more or less complex payment system. There

are two general categories of payment systems:

• In an indirect delivery system, di↵erent payment methods can be used at various

levels. For example, where an insurance scheme pays a public hospital, and the

hospital pays individual providers (e.g. doctors), the hospital might be paid by

budget or by daily charge, while the doctors are paid by salary or on a fee-for-

service basis.

• Combined methods are also found within a single level of contractual relations.

For example, a budget may be paid for primary care, but special services not

covered by the budget may be paid through additional fees, according to a fee

schedule. Fee-for-service payments may also be restricted by a budgetary cap.

Per diem charges in hospitals may only cover current variable costs, while in-

vestments are reimbursed through lump-sum payments, possibly split between

di↵erent payers.

2.2.2 Methods of paying healthcare providers

Combined payment systems are used to avoid the apparent weaknesses of pure payment

methods. Since an understanding of the mechanisms of provider payment systems is of

crucial importance to the modeller, the main strengths and weaknesses of pure provider

payment methods are discussed.
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2.2 Public Healthcare financing system

Fee-for-service payments have three main characteristics:

1. Definition of a list of services.

The initial problem in a fee-for-service system Is the description of the units of

services for which the providers are individually paid. These are listed In an of-

ficial list of services. This list can either be defined through negotiation between

providers’ organizations and healthcare funds, or administered by an independent

authority. The list must be updated regularly, in line with developments in med-

ical technology and practice as well as in consideration of the financial resources

available. However, frequent or numerous changes may complicate the handling

of payment procedures.

2. Determination of the price of a specific service unit.

The prices for units of care may be the result of negotiations, set by an indepen-

dent authority or. In extreme cases set directly by the social insurance schemes.

The list of services and corresponding fees is called a fee schedule.

3. Definition of special rules and restrictions.

Each fee schedule must be accompanied by instructions for its use, defining specific

aspects of delivery, billing and payment. There may be quantity restrictions, e.g.

limits on the number of units paid per treatment, per case or for a period of time.

There may also be regulations concerning the conditions for payment or non-

payment of fees. An annex to the fee schedule might list services which are not

paid for if billed simultaneously (such as a consultation fee and fee for a specific

treatment), or services that are only paid for certain categories of patients (such

as children). Other services might be paid only if billed in connection with a

specific diagnosis, or only if approved by the fund’s management.

There are at least three central disadvantages of a fee-for-service payment system.

1. Creating and maintaining a fee schedule is complex and requires considerable

administrative capacity, as do payment calculations and billing control.

2. Fee-for-service payments encourage a greater quantity of care.
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2.2 Public Healthcare financing system

3. Inadequate absolute or relative prices in a fee schedule might create distortions in

medical practice, e.g. by moving provider behaviour towards high-profit items on

the fee schedule (which is often the case for laboratory and diagnostic services).

One advantage of the fee-for-service method is that it will hardly lead to an under

supply of services. However, international experience has shown that fee-for-service

systems require very sophisticated calculations if these calculations are not exact, re-

sources are wasted and desired distributive e↵ects are not achieved. Generally, a fee-for-

service system requires supplementary mechanisms, such as total expenditure ceilings

and quantity restrictions.

Case payment may be made to providers (e.g. to doctors or health centres in pri-

mary care) on a fixed basis (or flat-rate-per-case payment system) per patient contact,

or according to specific fees for the treatment of specific illnesses, as classified by a

list of diagnoses.1 Under this type of payment system, morbidity risk is born by the

payer, while the provider bears the risk of expenditure per case. If the rate per case is

uniform, total expenditure (for a category of services, such as treatment by GPs) is the

product of the number of cases and the per case rate. If the rate varies by diagnosis,

expenditure is also determined in part by the morbidity structure. The risk of varying

treatment costs per diagnosis is then borne by the provider.

When looking at provider incentives, the case payment method has crucial advantages

over the fee-for-service method. Providers cannot influence their income by supplying

”too many”, or ”incorrect”, or ”ine�cient” service packages. Their net income can

be maximized only by minimizing treatment costs with respect to the given morbidity

structure.

The case payment method, however, has at least two disadvantages. First, there is no

incentive for providers to ensure a minimum standard of quality, since quality will usu-

ally increase costs. Thus, strict quality control procedures are necessary. An element of

competition between providers might be helpful to ensure quality. If patients can choose

between providers, the providers are forced to ensure a certain standard demanded by

the patients. Competition between providers as a quality-enhancing mechanism has

1The first major payment system based on diagnoses (DRGs or diagnosis-related groups) was

developed by researchers at Yale University during the 1970s. The system has been in use for the

reimbursement of hospital care for Medicare patients in the United States since October 1983.
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2.2 Public Healthcare financing system

clear limitations, however, due to the patients’ lack of information and limited ability

to pass an educated judgement on the quality of care they are receiving. Thus, ad-

ditional quality control mechanisms must be installed by the payer. Second, adverse

selection of patients can be a problem. If primary care is paid according to a flat-rate

structure, providers have an incentive to transfer patients to specialists or hospitals.

This risk can be mitigated, for example, by including the average costs of specialist care

and (if necessary) fees for specialist care in the per case payment. The unit providing

primary care would then pay the specialist. Similarly, hospital and drug expenditures

may be paid by the primary care provider.

Payment through fees related to diagnoses are a sophistication of the crude case pay-

ment method. Prerequisites for a functioning diagnosis-related payment system are a

precisely defined system of diagnosis classification and a limit on the number of items

on the fee schedule. The larger the number of items on the schedule, the greater room

providers have to influence the diagnosis of a case to change their income. Diagnosis-

related fee systems might be successfully applied in hospitals, if the diagnosis is made

before the patient is transferred to the hospital. Even in this case, however, alternative

or additional diagnoses may emerge during the patient’s hospital stay.

Per diem fees (daily charges) are used in hospitals, either to pay for the entire

service package delivered per day of stay, or for restricted packages complemented by

additional charges for special services. This system has two main problems. First, a

hospital can (and, according to experience, tends to) influence the length of a patient’s

stay. Generally, the marginal cost at the end of a hospital stay - the cost produced by

an additional day - is less than the average daily cost. If charges are the main source

of funds, the daily charge must cover at least the average daily costs. The hospital

therefore makes a (marginal) profit by extending the average length of stay at the

end of a treatment. Additional contractual regulations are necessary to eliminate this

incentive, e.g. by instituting a restriction on the number of billable days, in total or

per case.

A second problem is that the daily rate must be negotiated. If the rate is calculated

by the hospital - even by a non-profit hospital - the hospital might finance ine�cient

equipment or treatment procedures. The healthcare scheme needs a basis for its own

calculations, with at least the following information:
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2.2 Public Healthcare financing system

1. A classification of contracted hospitals by level of care (ranging from general

secondary care facilities to tertiary care facilities such as university hospitals).

2. A minimum infrastructure standard for each class of hospital (e.g. equipment,

patient / sta↵ ratios, or minimum number of departments).

3. A calculation scheme providing guidance on which per diem fees are considered

reasonable for each class of hospital, including variables such as infrastructure,

wages, and price levels in the area.

The cost structure of an individual hospital is di�cult to calculate or determine from

the ”outside”, especially for insurance schemes which might not even have access to

tax data or other government data sources.

Capitation payment method is generally used in primary care, especially for private

providers (general practitioners). Under this system, a flat-rate fee (perhaps di↵eren-

tiated by age and sex of the covered persons) is paid for every covered person enrolled

with an individual provider. This fee covers all care that covered persons require dur-

ing a defined period of time. Generally, covered persons can choose from among more

than one provider. (If they were allocated to providers by an administrative procedure,

there would be no di↵erence between capitation and budget payments.) In a capita-

tion system, morbidity risk is borne by the providers, at least in the short run. The

system can calculate a fixed amount of expenditure per insured person and per period.

Economic disadvantages of this method are in general the same as under a flat-rate-

per-case payment system. Given a defined list of patients, the net income of providers

is maximized by minimizing their production costs. Thus, quality control (e.g. on the

equipment used in provider facilities) and competition among providers are necessary

to ensure a minimum quality standard. The capitation method is often combined with

bonus and fee-for-service elements, in order to steer provider behaviour to less costly

health-promoting activities, such as preventive care.

Bonus payments are global, flat-rate payments made to providers for executing

specific duties, or as reimbursement for the purchase and operation of a particular

piece of equipment. They are often used to complement capitation methods.
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2.2 Public Healthcare financing system

Budgeting under this method, a generally prospective budget is fixed for a provider

unit (usually a hospital). The budget is meant to cover all expenses over a defined

period (usually one year). Under certain limiting conditions (e.g. with respect to

unexpected changes in the caseload), the provider can maintain possible profits, but

must also shoulder potential losses. Budgets are usually renegotiated annually.

Morbidity risk as well as variance in treatment costs are borne to a large extent by the

provider, and the cost of the scheme is fairly predictable in the long run. The potential

for manipulating the mechanism is limited to the renegotiation process. Quality control

mechanisms are necessary under budgeting systems to ensure minimum standards of

quality.

Salary is usually paid for a certain period of time and a certain number of working

hours. The income of a salaried provider, therefore, does not depend on the volume or

structure of services provided, or the number of patients treated in a given period of

time. To a large extent, it does not even directly depend on the quality of treatment.

The provider is paid for supplying labour. The employer is responsible for demanding

services, i.e. for ensuring that the provider is employed during working hours. The

employer might also decide on treatment patterns and intensity, as well as on the

technology employed.

In fact, employers normally do not have the means to control the provider’s behaviour

completely. Providers, like all professionals, have room for discretion with respect

to the services they supply, following their own preferences and judgement. Salaried

providers normally do not have financial incentives to treat more than a minimum

number of patients, or to achieve more than a minimum standard of quality. However,

the employer might influence the provider’s behaviour through a system of evaluation

and promotion, or by o↵ering bonus payments. Ethics and professional reputation

might also be variables that figure prominently in the provider’s behaviour. As a

result, the influence of the salary payment system on quality is ambiguous. Table1 2.4

shows the incentive e↵ects generally attributed to the various systems discussed above,

with respect to several variables of crucial importance for the modeller. Providers are

1Refers to first-level direct e↵ects. ++ is a strong incentive to increase activity, + is an incentive

to increase activity, 0 is neutral incentive or not applicable, � is an incentive to decrease activity, ��
is a strong incentive to decrease activity, and ? is inconclusive incentive e↵ect.
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2.2 Public Healthcare financing system

assumed to attempt to achieve maximum (or target) income. No hypothesis is made

with respect to non-financial behavioural incentives.

Under a fee-for-service mechanism, there is an incentive for providers to maximize total

services and to prefer services with a high profit margin. Under the case payment and

daily charge methods, providers will normally attempt to maximize the number of

paid units (cases or days of stay), and to avoid costly treatment. The e↵ect of these

methods on the quality of care is ambiguous, as e�cient early treatment or secondary

preventive measures might be substituted for long-term treatment in the case of daily

charge payments.

Bonus payments are generally used to spur certain activities. The size of the e↵ect of

bonus payments is di�cult to identify as they vary based on the purpose for which the

bonus is paid.

Under the budget and salary payment methods, there is no first-level direct incentive

for providers to increase quantities or the intensity of care. Rather, the opposite is

true. Long-term strategic considerations, however, might result in certain incentives

to increase the number of patients for competitive reasons. The number of cases or

patients is often used to demonstrate the demand for the services of the facility or of

an individual provider.

According to the healthcare characteristics describe above, is clear that the use of

decision support systems represent a critical aspect in healthcare financing system.

In order to face with complex dynamic system that change constantly, optimization

models managing the complexity of the problem are required. Health system has several

crucial characteristics that make fundamental the optimization of available resources.

Considering that provider units are financed by budget allocation and that there is a

week relationship between the amount of resources allocated and the volume and the

quality of service delivered, is reasonable to assume that optimizing the consumption

process is a proper strategy to provide a better service.
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2.2 Public Healthcare financing system

Total expenditure

on health as % of

GDP

General government

expenditure on

health as % of

total expenditure

2005 2014 2005 2014

Australia 8.45% 9.42% 66.97% 67.04%

Brazil 8.27% 8.32% 41.51% 46.04%

Canada 9.57% 10.45% 70.24% 70.93%

Germany 10.52% 11.30% 76.13% 76.99%

India 4.28% 4.69% 26.49% 30.04%

Israel 7.44% 7.81% 59.29% 60.85%

Italy 8.71% 9.25% 76.31% 75.61%

Japan 8.18% 10.23% 81.37% 83.59%

Norway 8.89% 9.72% 83.54% 85.49%

Russian Federation 5.21% 7.07% 61.98% 52.20%

Saudi Arabia 3.42% 4.68% 72.49% 74.52%

Sierra Leone 12.25% 11.09% 21.85% 16.99%

Spain 8.12% 9.03% 72.37% 70.88%

Switzerland 10.86% 11.66% 59.46% 66.00%

Turkey 5.45% 5.41% 67.84% 77.45%

United States of America 15.15% 17.14% 44.36% 48.30%

Private government

expenditure on

health as % of

total expenditure

Per capita total

expenditure on

health (PPP int.$)

2005 2014 2005 2014

Australia 33.03% 32.96% 3031 4357

Brazil 58.49% 53.96% 899 1318

Canada 29.76% 29.07% 3469 4641

Germany 23.87% 23.01% 3384 5182

India 73.51% 69.96% 123 267

Israel 38.73% 39.15% 1829 2599

Italy 23.69% 24.39% 2587 3239

Japan 18.63% 16.41% 2491 3727

Norway 16.46% 14.51% 4317 6347

Russian Federation 38.02% 47.80% 616 1836

Saudi Arabia 27.51% 25.48% 1181 2466

Sierra Leone 78.15% 83.01% 128 224

Spain 27.63% 29.12% 2229 2966

Switzerland 40.54% 34.00% 4027 6468

Turkey 32.16% 22.55% 625 1036

United States of America 55.64% 51.70% 6741 9403

Table 2.1: Health expenditure as a share of GDP and per capita GDP in 16 countries [1].
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2.2 Public Healthcare financing system

2005 2014

Australia 23.60% 25.36%

Brazil 35.53% 49.70%

Canada 42.26% 43.40%

Germany 38.12% 38.80%

India 1.19% 2.54%

Israel 16.36% 26.42%

Italy 3.67% 3.71%

Japan 13.16% 14.79%

Norway 8.22% 8.12%

Russian Federation 8.24% 3.50%

Saudi Arabia 11.84% 22.32%

Sierra Leone 0.59% 0.24%

Spain 18.93% 15.07%

Switzerland 22.16% 25.75%

Turkey nan nan

United States of America 63.56% 64.20%

Table 2.2: Private Insurance as % of Private Health Expenditure [1]

Payment mechanism Definition of unit Paying the

Hospital Health center Individual provider unit

Fee for service schedule Single act X X X
Case payment

Patient cases, according to X X X
a fee schedule

Daily charge Patient day X
Flat rate allowance For certain investments X X X
Capitation

All potential service for one X X X
person during a defined period

Salary A period of work (month) X
Budget

All service provided in a given X X
period

Table 2.3: Pure payment methods and their application.

Payment mechanism Quality services Structurel composition of service provided

Number of Number of Number of acts Cost-boosting

patients billable units · per units substitutions of high-profit

of care · per patients for low profit services

·per period

Fee-for-service + ++ ++ ++

Case payment 0 ++ � +

Per diem fee + ++ � �
Flat rate ? 0 ? 0

Capitation ++ 0 � ��
Salary � � �� +

Budget � 0 �� ��

Table 2.4: Incentive structure of payment mechanisms. The incentive e↵ects generally

attributed to the various system with respect to several variable of crucial importance.
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3

A generic framework for

healthcare planning and control

This Chapter introduces a generic framework for healthcare planning. This framework,

encompassing 4 hierarchical levels of control and four managerial areas, is used to iden-

tify external and internal environmental characteristics a↵ecting the organization of

healthcare systems.

The provision of healthcare services is perhaps one of the largest and most complex

industries worldwide. As one of the essential necessities to sustain life, it faces the con-

sequences of increasing demand in times of limited financial resources and competing

social needs. Providing the appropriate medical care involves decision making in terms

of planning and management of healthcare resources.

We describe a framework for healthcare planning and control that integrates all man-

agerial areas involved in healthcare delivery operations and all hierarchical levels of

control. It is applicable broadly, to an individual department , an entire healthcare

organization, and to a complete supply chain of cure and care providers. The frame-

work can be used to identify and position various types of managerial problems, to

demarcate the scope of organization interventions, and to facilitate a dialogue between

clinical sta↵ and managers.

Healthcare planning and control lags far behind with respect to other fields in which

planning and control procedure are applied [13]. Common reasons stated in the litera-

ture include:
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• healthcare organizations are professional organizations which often lack coopera-

tion between, or commitment from, involved part. These groups have their own,

sometimes conflicting and objectives [14], [15].

• Due to the state of information systems in healthcare, crucial information re-

quired for planning and control is often not available [16] . Although DRG and

electronic health record systems have spurred the need for financial and clinical

information management systems, these systems tend to be poorly integrated

with operational information systems. This lack of integration is impeding the

advance of integrated planning and control in healthcare, both organization-wide

and between organizations [17], [18].

• Since large healthcare providers such as hospitals generally consist of autonomously

managed departments, managers tend not to look beyond the border of their de-

partment , and planning and control is fragmented [19], [18].

• The Hippocratic Oath taken by doctors forces them to focus on the patient at

hand, whereas planning and control addresses the entire patient population, both

within and beyond the scope of an individual doctor [20], [21].

• While healthcare managers are generally dedicated to provide the best possible

service, they lack the knowledge and training to make the best use of the available

resources [16].

• As healthcare managers often feel that investing in better administration diverts

funds from direct patient care [16], managerial functions are often ill defined, over

looked, poorly addressed, or functionally dispersed.

The proposed framework serves as a tool to structure and break down all functions

of healthcare planing and control. In addition, it can be used to identify planning

and control problems an to demarcate the scope of organization interventions. It

is applicable broadly, from an individual hospital department to an entire hospital,

or to complete supply chain of care providers. The framework facilitates a dialogue

between clinical sta↵ and managers to design the planning and control mechanisms.

These mechanisms are necessary to translate the organizations objectives into e↵ective

and e�cient healthcare delivery processes. It covers all managerial areas involved in
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3.1 Managerial Areas

healthcare delivery operations and all levels of control, to ensure completeness and

coherence of responsibilities for every managerial area.

According to [13] we propose a four-by-four generic framework for healthcare planing

and control which spans four hierarchical levels of control, and four managerial areas.

3.1 Managerial Areas

Most existing framework in the literature focus on the managerial area [19], [18], [22].

In the proposed framework is included the following managerial areas for the healthcare

planning and control:

Medical planning The role of engineers/ process planners in manufacturing is per-

formed by clinicians in healthcare. We refer to healthcare version of technological plan-

ning as medical planning. Medical planning comprises decision making by clinicians

regarding for example medical protocols, treatments, diagnoses, and triage. It also com-

prises development of new medical treatments by clinicians. The more complex and

unpredictable the healthcare processes, the more autonomy is required for clinicians.

For example, activities in acute care are necessarily planned by clinicians, whereas in

elective care (e.g. ambulatory surgery), standardized and predictable activities can be

planned cent rally by management.

Resource capacity planning Resource capacity planning addresses the dimension-

ing, planning, scheduling, monitoring, and control of renewable resources. These in-

clude equipment and facilities (e.g. MRI s, physical therapy equipment , bed linen,

sterile instruments, operating theatres, rehabilitation rooms) , as well as sta↵.

Materials planning Materials planning addresses the acquisition, storage, distri-

bution and retrieval of all consumable resources/materials, such as suture materials,

prostheses, blood, bandages, food, etc. Materials planning typically encompasses func-

tions like warehouse design, inventory management and purchasing.

Financial planning Financial planning addresses how an organization should man-

age its costs and revenues to achieve its objectives under current and future organi-

zational and economic circumstances. Since healthcare spending has been increasing
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3.2 Hierarchical decomposition

steadily [2], market mechanisms are being introduced in many countries as an incentive

to encourage cost e�cient healthcare delivery [23]. An example is the introduction of

DRG, which enables the comparison of care products and their prices. As healthcare

systems di↵er per country, so does financial planning in healthcare organizations. As

financial planning heavily influences the way the processes are organized and managed,

we include this managerial area in our framework. For example, Wachtel and Dexter

[24] argue that in the US, the tactical allocation of temporary expansions in operating

theatre capacity should be based on the contribution margin of the involved surgical

specialities. This criterion is not likely to be used in countries with a non-competitive

healthcare system, such as the UK or the Netherlands. Financial planning in health-

care concerns functions such as investment planning, contracting (with e.g. healthcare

insurers) , budget and cost allocation, accounting, cost price calculation, and billing.

3.2 Hierarchical decomposition

Decision making disaggregates as time progresses and information gradually becomes

available. We build upon the classical hierarchical decomposition often used in manu-

facturing planning and control, which discerns strategic, tactical, and operational levels

of control [25]. We extend this decomposition by discerning between o✏ine and online

on the operational level. This distinction reflects the di↵erence between in advance

decision making and reactive decision making. We explain the resulting four hierar-

chical levels below, where the tactical level is explained last. The tactical level is often

considered less tangible than the strategic and operational levels.

In this first stage we do not explicitly give the decision horizon length for any of the

hierarchical planning levels, since these depend on the specific characteristics of the

application. An emergency department for example inherently has shorter planning

horizons than a long-stay ward in a nursing home.

Strategical level Strategic planning addresses structural decision making. These

decisions are the bricks and mortar of an organization [26]. It involves defining the

organization mission, and the decision making to translate this mission into the design,

dimensioning, and development of the healthcare delivery process. Inherently, strategic

planning has a long planning horizon and is based on highly aggregated information
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3.2 Hierarchical decomposition

and forecasts. Examples of strategic planning are resource capacity expansions, devel-

oping and/ or implementing new medical protocols, forming a purchasing consortium,

a merger of nursing homes, and contracting with health insurers.

O✏ine operational level Operational planning (both o✏ine and online) involves

the short-term decision making related to the execution of the healthcare delivery pro-

cess. There is low flexibility on this planning level, since many decisions on higher levels

have demarcated the scope for the operational level decision making. The adjective of-

fline reflects that this planning level concerns the in advance planning of operations.

It comprises the detailed coordination of the activities regarding current (elective) de-

mand. Examples of o✏ine operational planning are: treatment selection, appointment

scheduling, nurse rostering, inventory replenishment ordering, and billing.

Online operational level The stochastic nature of healthcare processes demands

for reactive decision making. Online operational planning involves control mechanisms

that deal with monitoring the process and reacting to unforeseen or unanticipated

events. Examples of online planning functions are: triaging, add- on scheduling of

emergencies, replenishing depleted inventories, rush ordering surgery instrument ster-

ilization, handling billing complications.

Tactical level In between the strategic level, which sets the stage (regarding e.g.

location and size), and the operational level, which addresses the execution of the

processes, lies the tactical planning level. We explain tactical planning in relation to

strategic and operational planning.

While strategic planning addresses structural decision making, tactical planning ad-

dresses the organization of the operations/execution of the healthcare delivery process.

In this way, it is similar to operational planning, however, decisions are made on a longer

planning horizon. The length of this intermediate planning horizon lies somewhere be-

tween the strategic planning horizon and operational planning horizon. Following the

concept of hierarchical planning, intermediate, tactical planning has more flexibility

than operational planning, is less detailed, and has less demand certainty. Conversely,

the opposite is true when compared to strategic planning. For example, while capacity
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3.3 Framework for health planning and control

is fixed in operational planning, temporary capacity expansions like overtime or hir-

ing sta↵ are possible in tactical planning. Also, while demand is largely known in

operational planning, it has to be (partly) forecasted for tactical planning, based on

(seasonal) demand, waiting list information, and the downstream demand in care path-

ways of patients currently under treatment. Due to this demand uncertainty, tactical

planning is less detailed than operational planning. Examples of tactical functions are

admission planning, block planning, treatment select ion, supplier select ion and budget

allocation.

3.3 Framework for health planning and control

Integrating the four managerial areas and the four hierarchical levels of control shapes

a four-by- four positioning framework for healthcare planning and control. While the

dimensions of the framework are generic, the content depends on the application at

hand. The framework can be applied anywhere from the department level ( for exam-

ple to an operating theatre department) to organization-wide, or to a complete supply

chain of care providers. Depending on the context, the content of the framework may

be very di↵erent. Above scheme shows the content of a general framework that can be

applied to a general hospital as a whole.

Medical planning
Resource

capacity planning
Materials planning Financial planning

Strategic
Research, development

of medical protocols

Case mix planning,

capacity dimensioning,

workforce planning

Supply chain and

warehouse design

Investment plans,

contracting with

insurance companies

Tactical
Treatment selection,

protocol selection

Block planning,

sta�ng, admis-

sion planning

Supplier selec-

tion, tendering
Budget and

cost allocation

O✏ine

operational

Diagnosis and plan-

ning of an indi-

vidual treatment

Appointment

scheduling, work-

force scheduling

Materials purchasing,

determing order sizes

DRG billing, cash

flow analysis

Online

operational

Triage, diagnos-

ing emergencies

and complications

Monitoring, emer-

gency coordination

Rush ordering,

inventory replenishing

Billing complica-

tions and changes

The content of the framework should be accommodated to the context of the applica-
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3.3 Framework for health planning and control

tion. We discern the external and the internal environment characteristic.

The way healthcare organizations are organized is perhaps influenced by its external

environment. For example a STEEPLED analysis (an extension of PESTEL [27]) can

be done to identify external factors that influence healthcare planning and control, now

or in the future. STEEPLED is an abbreviation for the following external environment

factors:

• Social factors e.g. education, social mobility, and religious attitudes.

• Technology e.g. medical innovation and transport infrastructure.

• Economic factors e.g. change in health finance system.

• Environmental factors e.g.ecological and recycling.

• Political factors e.g. change of government policy and privatization.

• Legislation e.g. business regulations and quality regulations.

• Ethical factors e.g. business ethics, confidentiality, and safety

• Demographics e.g. graying population, life expectancy, and obesity.

These factors largely explain the di↵erences amongst countries in the management ap-

proach of healthcare organization.

The internal environment characteristics are scoped by the boundaries of the orga-

nization. This involves all characteristics that a↵ect planning and control regarding for

example patient demand (e.g. variability complexity arrival intensity, medical urgency,

recurrence), organizational culture and structure.

Hospital length of stay (LoS) is considered to be a reliable and valid proxy for

measuring the consumption of hospital resources [28]. The average length of stay in

hospitals (ALoS) is often used as an indicator of e�ciency [2]. All other things being

equal, a shorter stay will reduce the cost per discharge and shift care from inpatient to

less expensive post-acute settings. The ALoS refers to the average number of days that

patients spend in hospital. It is generally measured by dividing the total number of

days stayed by all inpatients during a year by the number of admissions or discharges.

Day cases are excluded. The indicator is presented both for all acute care cases and

for childbirth without complications. Another characteristics that e↵ect the healthcare
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3.3 Framework for health planning and control

2013

Average length of stay Discharge number

Australia 6.5 17240

Brazil nan nan

Canada 7.5 8438

Germany 7.6 25224

India nan nan

Israel 5.3 16118

Italy 6.8 12377

Japan 17.2 nan

Norway 5.5 16924

Russian Federation nan nan

Saudi Arabia nan nan

Sierra Leone nan nan

Spain 6.0 9947

Switzerland 5.9 nan

Turkey 3.8 16074

United States of America 5.4 nan

Table 3.1: Yearly average length of stay for acute care patients and discharge number

measured per 100000 inhabitants [2].

planning and control are the hospital discharge and the hospital admission. Hospital

discharge is defined as the release of a patient who has stayed at least one night in

hospital. It includes deaths in hospital following inpatient care. Same-day discharges

are usually excluded [2]. Similarly hospital admission is defined as the number of cases

of a specified disease or condition admitted to hospitals, related to the population of a

given geographical area. In order to provide information on the e�ciency of hospital

departments and give operational guidelines for medical sta↵ hospital discharge rate

(DR) and hospital admission rate (AR) are also introduced [29]. Discharge rate

is defined as the number of discharge divided by the maximum number of discharge

recorded in the department. Similarly admission rate is defined. The distribution of

discharge rate supplies the probability that a given number of patients is discharged in

one day; likewise the admission rate provides the probability that a given number of

patients is admitted in one day.
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3.4 Operational modelling of hospital resources

3.4 Operational modelling of hospital resources

Healthcare costs continue to grow faster than the economy, and the health share of the

Gross Domestic Product has maintained its upward trend. Policymakers are among

those who are increasingly concerned with the growing burden of medical care expenses

to governments, consumers, and insurers. Hospital costs are often the focus of this con-

cern, because they constitute the largest single component of healthcare spending [30].

Therefore once introduced a generic framework for the healthcare planning and control,

hospital resource consumption are analysed.

The internal dynamic of a hospital represent a complex non-linear structure. To plan

and manage the day-today running of a hospital requires a thorough understanding of

the system together with detailed information for decision-making. An appreciation of

the dynamics governing a hospital system, and the flow of patients through it, point to-

wards the need for sophisticated capacity models reflecting the complexity, uncertainty,

variability and limited resources. Within the proposed framework, necessarily detailed

hospital capacity models incorporate time-dependent demand profiles and meaningful

statistical distributions that capture the inherent variability in a number of patient

factors, such as lengths of stay and operation times.

3.4.1 Hospital dynamics and modelling approaches

A common current practice is to plan and manage hospital capacities through a simple

deterministic approach using average patient flows, average needs, average length-of-

stay, average duration of surgical operations etc. Patient flows, patient needs, and util-

isation of hospital capacities involve complexity, uncertainty, variability, constraints,

and scarce resources. Mathematically speaking, a hospital corresponds to a complex

stochastic system so that the common deterministic approach for planning and man-

aging the system can be expected to be inadequate [31].

The dynamics governing a hospital, and the flow of patients through it, means that

the necessary models should reflect the complexity, uncertainty, variability and lim-

ited resources. Examples of these conditions, themselves visibly evident within the

participating hospitals, are listed below [32]:
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3.4 Operational modelling of hospital resources

Complexity Rules governing patient admissions into hospital, e.g., keep some beds

free for emergency patients only; elective patients may only be deferred so many times

before increasing their priority.

Patient-flows through the hospital, e.g., when there is no available bed, we try to admit

the patient into another suitable, and available, hospital bed albeit on a di↵erent ward;

intensive care patients may be discharged early to high dependency care if, and only

if, various complex criteria are satisfied.

Constraints imposed by other hospital services, e.g., patients cannot go to theatre if

there is no available inpatient bed for them in the first place; operations themselves are

subject to theatre space and surgeons hours.

Uncertainty Demand is likely to be a function of time, e.g., elective (planned) patient

arrivals can be controlled and are often therefore highly correlated with the month of

the year, day of the week, and hour of the day; planned scheduled admissions to hospital

though must also account for emergency patients who arrive at random, often in quick

succession, and who must be admitted with the minimum of delay.

Variability Patient LoS varies enormously between and within di↵erent hospital spe-

cialties. For example, Paediatric care length of stay is frequently biased towards shorter

LoS, but occasionally a child might stay a very long time, which can cause a dispropor-

tionate blocking e↵ect. LoS for Geriatric care, however, can be expected to show very

di↵erent characteristics from that of Paediatric care. Here LoS is much longer and the

blocking e↵ect can be extreme when elderly patients stay for months rather than days

and become so called bed-blockers.

Limited resources Hospitals must treat increasing number of patients through di-

minishing bed numbers. There is a need to e�ciently and e↵ectively plan and manage

all hospital resources with particular emphasis on inpatient beds, operating theatres,

hospital workforce, and expensive critical care resources. Furthermore, the partici-

pating hospitals requested models to aid with both the planning and management of

resources. Appropriate detailed models that can evaluate a variety of scenarios could

be powerful tools for good planning and management decisions.
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3.5 Identification of managerial deficiencies

Planning tools Capacity planning in hospitals is largely a strategic decision. For

example the total number of beds in a new hospital and the number of beds in various

specialities are very major concerns; here the planning horizon could be about 10 years.

Planning tools should allow hospital sta↵ to examine in detail the likely capacities re-

quired over time, for example the annual hospital business planning cycle each financial

year. They should enable the user to identify the likely consequences of changes in num-

bers, and distribution across the hospital, of beds, theatres and workforce.

Planning for services across a region, e.g., the number and location of outpatient clinics

to serve the populations needs; the number and distribution of critical care beds in a

geographical region.

Management tools Management of available capacities could be from day to day

or over longer periods such as winter months and summer months. An example would

be a planned transfer of surgical beds to elderly medical patients in winter.

Management tools should allow the user to examine resources in detail over smaller

time intervals in order to maximise their utilisation and provide a more e�cient use

healthcare resources. For example, the consequences of changing daily arrival patterns

for elective patients and re-scheduling of nurses.

All of these features point towards a need for sophisticated hospital capacity models.

There is considerable scope for Operational Research models to be widely used for this

purpose. Indeed, since the early 80s was created and utilized di↵erent approaches for

a wide range of scenarios in hospital resource modelling. Within bed modelling alone,

a number of operational approaches have been utilised, including queueing models [33]

and [34], integer programming [35], forecasting [36] and simulation [37], [38], and [39].

A similar array of operational methods have been used in operating theatre modelling

[40] and [41] and workforce planning [42], [43], [44], [45], and [46].

3.5 Identification of managerial deficiencies

Once the content of the framework has been established for a given application, further

analysis of this content may identify managerial problems. In the remainder of this

section, we discuss examples of four kinds of typical problems.
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3.5 Identification of managerial deficiencies

Deficient or lacking planning functions Overlooked or poorly addressed man-

agerial functions can be encountered on all levels of control [16], but are often found

on the tactical level of control [18]. In fact, to many, tactical planning is less tangible

than operational planning and even strategic planning. Inundated with operational

problems, managers are inclined to solve problems at hand ( i.e., on the operational

level) . We refer to this phenomenon as the real-time hype of managers. A claim for

more capacity is the universal panacea for many healthcare managers. It is, however,

often overlooked that instead of such drastic strategic measures, tactically allocating

and organizing the available resources may be more e↵ective and cheaper. Consider

for example a master schedule or block plan, which is the tactical allocation of blocks

of resource time (e.g. operating theatres, or CTscanners) to specialties and patient

categories during a week. Such a block plan should be periodically revised to react on

variat ions in supply and demand. However, in practice, it is more often a result of

historical development than of analytical considerations [47].

Inappropriate planning approaches There are many logistical paradigms, such

as Just-In-Time (JIT), Kanban, Lean, Total Quality Management (TQM), and Six

Sigma, all of which have reported success stories. As these paradigms are most ly

developed for indust ry, they generally cannot be simply copied to healthcare without

impunity. The tendency to uncritically embrace a solution concept , developed for

a rather specific manufacturing environment , as the panacea for a variety of other

problems in totally di↵erent environments has led to many disappointments [48]. The

structure provided by the framework helps to identify whether a planning approach is

suitable for a planning function in a particular organizational environment. Planning

approaches are only suitable if they fit the internal and external characteristics of the

involved application. They have to be adapted to the characteristics that are unique

for healthcare delivery [49], such as:

1. patient participation in the service process

2. simultaneity of product ion and consumption

3. perishable capacity

4. intangibility of healthcare outputs
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3.5 Identification of managerial deficiencies

5. heterogeneity

Lack of coherence between planning functions The e↵ectiveness and e�ciency

of healthcare delivery is not only determined by how the various planning functions

are addressed; this is also determined by how they interact. As healthcare providers

such as hospitals are typically formed as a cluster of autonomous departments, plan-

ning is also often functionally dispersed. The framework structures planning functions,

and provides insight in their horizontal (cross-management ) and vertical (hierarchi-

cal) interactions. Horizontal interact ion between managerial areas in the framework

provides that required medical information and protocols, and all involved resources

and materials, are brought together to enable both e↵ective and e�cient healthcare

delivery. Downward vertical interact ion concerns concretizing higher level objectives

and decisions on a shorter planning horizon.

Planning functions that have conflicting objectives As argued, the framework

structures planning functions and their horizontal and vertical interact ions. The frame-

work can thus identify conflicting objectives between planning functions. For example,

minimal-invasive surgery generally results in significant reduced length of stay in wards

and improved quality of care, but results in higher costs and increased capacity con-

sumption for the operating theatre department. These departments are often managed

autonomously and independently, which leads to sub-optimal decision making from

both the patient’s and the hospital’s point of view.

41

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



4

Mathematical framework

This Chapter provides an overview of the main mathematical theories used in subse-

quent chapters. These include stochastic di↵erential equations, real option analysis,

option pricing and Poisson processes.

A model is a simplified representation of a complex system designed to focus in on

a specific question. In general, modelling techniques used in health are adaptations

from other fields such as telecommunications and tra�c engineering. In health service

planning, modelling techniques derived from queuing theory can be used to forecast

the e↵ects of changes on access to services and to calculate the required capacity of ser-

vices given assumptions about patterns of demand and levels of utilisation; techniques

derived from the physics of gravitation may be used to estimate catchment areas of

new facilities; models utilising network analysis may be used to study patients travel

requirements to services, models based on Markov chains can be used to assess patients

progress though treatment and also in economic assessments. Other modelling tech-

niques are used for optimize the resource consumption. They can also help to identify

where there may be problems or ine�ciency, identify priorities and focus e↵orts.

In this thesis is proposed the use of di↵erent mathematical model in order to optimize

and describe the healthcare resource consumption. In particular the usage of financial

model is proposed. In this chapter we introduce the mathematical concepts required

to describe the operational models proposed.
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4.1 Stochastic Di↵erential Equations

4.1 Stochastic Di↵erential Equations

Let b(x, t) = (bi(x, t)) and �(x, t) = (�ij(x, t)) where 1  i  m and 1  j  d be

measurable functions defined on Rm ⇥ [0, T ] and Rm and M(m, d) value receptively.

Definition 4.1.1. The process (⌦,F, {F}t2[0,T ]

, {X}t2[0,T ]

, (Bt)t,P) is solution of the

stochastic di↵erential equation

(

dXt = b(t,Xt) + �(t,Xt)dBt

Xu = X
0

2 Rm
(1.1)

if

(i) (⌦,F, {F}t, (Bt)t,P) is a standard d-dimensional Brownian process

(ii) for all t 2 [u, T ]

Xt = X
0

+

Z t

u
b(s,Xs)dt+

Z t

u
�(s,Xs)dBs. (1.2)

We call � di↵usion and b drift.

Definition 4.1.2. The stochastic di↵erential Equation (1.1) has strong solution if for

all standard Brownian motions (⌦,F, {F}t, (Bt)t,P) there exists a process X such that

(⌦,F, {F}t, {X}t, (Bt)t,P) is a solution of (1.1).

Definition 4.1.3. There is uniqueness in law for the solution of (1.1) if, given two

solutions X i = ( ⌦i,Fi, {Fi}t, {X i}t, (Bi
t)t,P

i), i = 1, 2, X1 and X2 have the same law.

Definition 4.1.4. There is uniqueness of the trajectories for the (1.1) if, given two so-

lution (⌦i,Fi, {Fi}t, {X i}t, (Bi
t)t,P

i), i = 1, 2, (that are defined on the same probability

space and on the same Brownian motion), then P(X1

t = X2

t for all t 2 [u, T ]) = 1.

Example 4.1.5. Consider a 1-dimensional equation

(

dXt = b(t,Xt) + �(t,Xt)dBt

X
0

= x > 0
(1.3)

where the drift b and the di↵usion � are linear. Dividing by Xt and using the Ito’

formula to calculate the stochastic di↵erential of log(Xt) we obtain

d(log(Xt)) =
dXt

Xt
� 1

2X2

t

dhXit (1.4)
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4.1 Stochastic Di↵erential Equations

remembering that dhXit = �2X2

t dt, it holds

d(log(Xt)) = (b� �2

2
)dt+ �dBt. (1.5)

So

Xt = xe(b�
�

2

2 )t+�B
t . (1.6)

This process is called a geometric Brownian motion (GBM) and it is used to

describe the evolution of paths that are always positive.

We say that b and � satisfy Hypothesis (A) if they are (t, x)-measurable and if

exist L > 0 and M > 0 such that for all x, y 2 Rm, t 2 [0, T ]

|b(t, x)|  M(1 + |x|) �(t, x)|  M(1 + |x|) (1.7)

|b(t, x)� b(t, y)|  L|x� y| |�(t, x)� �(t, y)|  L|x� y| (1.8)

Theorem 4.1.6. ([50]) If b and � are (t, x)-measurable and satisfy Hypothesis (A) and

X 2 ⇤2([0, T ]) is solution, for t  T , of Xt = SXt

Xt = (SX)t = ⌘ +

Z t

u
b(s,Xs)dt+

Z t

u
�(s,Xs)dBs. (1.9)

then

E
h

sup
utT

|Xt|2
i

 C(M,T )(1 + E|⌘|2). (1.10)

In particular if ⌘ 2 L2 then X 2 M2([0, T ]).

Theorem 4.1.7 (Existence and uniqueness theorem). Let u  0 and ⌘ be random

variables Fu-measurable, Rm-valued into L2. If b and � satisfies Hypothesis (A) then

exist Xt 2 M([u, T ]) such that

Xt = ⌘ +

Z t

u
b(s,Xs)dt+

Z t

u
�(s,Xs)dBs. (1.11)

Moreover if exist another solution X̃t for (1.11) then

P(Xt = X̃t for all t 2 [u, T ]) = 1. (1.12)

Furthermore it can be proven that exits a process that satisfies (1.11) if b and � are

not uniformly Lipschitz continuous in the variable x (Condition 1.8).
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4.1 Stochastic Di↵erential Equations

Theorem 4.1.8 (Uniqueness in law). Let Bi = ( ⌦i,Fi, {Fi
t}t, {Bi

t}t, (Bi
t)t,P

i), i = 1, 2,

standard Brownian motion d-dimensional, ⌘i, i = 1, 2 random variables m-dimensional

in L2(⌦i,F
i
u),P

i having the same law. Suppose that b and � verify Hypothesis (A) and

Xi are the solutions of

Xi(t) = ⌘i +

Z t

u
b(s,Xi(s))dt+

Z t

u
�(s,Xi(s))dBi

s. (1.13)

Then the processes (Xi, Bi), i = 1, 2 have the same law.

Now we analyse how the solution depends on the initial data ⌘. From now we

consider that ⌘ is Fu -measurable and square integrable.

Proposition 4.1.9. If X is solution of (1.1) and apply the Hypothesis (A), for all

t 2 [0, T ],

E
h

sup
ust

|Xs � ⌘|2
i

 c(T,M)(t� u)(1 + E|⌘|2) (1.14)

Proposition 4.1.10. In the Hypothesis (A) if Xi, i = 1, 2 is solution of

(

dXi(t) = b(t,Xi(t)) + �(t,Xi(t))dBt

Xi(u) = ⌘i
(1.15)

then for t 2 [0, T ]

E
h

sup
ust

|X
1

(s)�X
2

(s)|2
i

 3E(|⌘
1

� ⌘
2

|2)ec(L,T )(t�u) (1.16)

4.1.1 Markovs’s Properties

In this section we call Xx,s
t the solution of

8

<

:

dXt = b(t,Xt) + �(t,Xt)dBt

Xs = x
(1.17)

we suppose that Xx,s
t is continuous for x, s, t, t  s. If � is the borelian set of Rm,

x 2 Rm t  s we say that

p(s, t, x,�) = P(Xx,s
t 2 �). (1.18)

Proposition 4.1.11. In Hypothesis (A), p is a transition function and (⌦i,F, {Ft}t,
(Xx,s

t )t,P) is a Markov’s process whit initial time s and initial law �t associate to

transition function p.

45

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



4.1 Stochastic Di↵erential Equations

4.1.1.1 Feynman-Kac Formula

Feynman-Kac formula [51], [52], named after Richard Feynman and Mark Kac, es-

tablishes a link between parabolic partial di↵erential equations (PDEs) and stochastic

processes. It o↵ers a method of solving certain PDEs by simulating random paths of a

stochastic process. Conversely, an important class of expectations of random processes

can be computed by deterministic methods.

Consider two real functions � and f , continuous and define respectively on Rm and

Rm ⇥ [0, T ]. We also consider two hypothesis

|�(x)|  M(1 + |x|), |f(x, t)|  M(1 + |x|) (x, t) 2 Rm ⇥ [0, T ]. (1.19)

Also define the di↵erential operator Lt on Rm ⇥ [0, T ] as

Lt =
1

2

m
X

i,j=1

aij(x, t)
@2

@xi@xj
+

m
X

i=1

bi(x, t)
@

@xi
(1.20)

when a = ��T .

Theorem 4.1.12. Suppose that

i) b and � satisfy Hypothesis (A), exists � > 0 such that ha(x, t)z, zi � �|z|2 for all

(x, t), 2 Rm ⇥ [0, T ], z 2 Rm.

ii) � : Rm ! R is continuous and satisfies (1.19).

iii) function f and c, define on Rm ⇥ [0, T ], are locally Lipschitz continuous; c has a

lower bound, f satisfies (1.19).

Then there exists a function u, continuous on Rm ⇥ [0, T ] and C2,1(Rm ⇥ [0, T [) that is

solution of

(

Ltu+ @u
@t � cu = f on Rm ⇥ [0, T [

u(x, T ) = �(x).
(1.21)

Moreover it holds

u(x, t) = Ex,t
h

�(XT )e
�

R
T

t

c(s,X
s

)ds
i

� Ex,t
h

Z T

t
f(Xs, s)e

�
R
s

t

c(v,X
v

)dsds
i

. (1.22)

u is the only solution that has polynomial increase.
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4.1 Stochastic Di↵erential Equations

4.1.2 A�ne Models

A�ne term structure models have gained significant attention in literature, mainly due

to their analytical tractability and statistical flexibility. They find large application in

quantitative finance and in many other contexts for their versatility also because they

have explicit formulas easy to calculate.

The class of A�ne Models was introduced by Du�e and Kan the core is the frame-

work of Du�e and Kan [53]. Based on mathematical structure developed in finance,

where they have found growing interest due to their computational tractability, we use

these models in a completely new content. Let D ⇢ Rd be the closure of a (possibly

unbounded) starshaped open set and we consider functions µ : D ! Rd, � : D ! Rd⇥d,

respectively continuous and measurable, such that x 2 D 7! �(x)�>(x) is continuous.

Let the uncertainty be generated by a d-dimensional Brownian process B, defined on

a filtered probability space (⌦,F, {Ft}t�0

,P).

Then, for every x 2 D, consider the stochastic di↵erential equation:

dXt = µ(Xt)dt+ �(Xt)dBt, X
0

= x. (1.23)

A solution X of (1.23) is a�ne if the Ft-conditional characteristic function of XT is

exponential a�ne in Xt, for all 0  t  T . That is, there exist C- and Cd-valued

functions �(t, i⇠) and  (t, i⇠), respectively, with jointly continuous t-derivatives such

that

E
h

eih⇠,XT

i
�

�

�

Ft

i

= e�(T�t,i⇠)+h (T�t,i⇠)Y
t

i, (1.24)

for all ⇠ 2 Rd, t 2 [0, T ]. We observe that the real part of �(T � t, i⇠)+ h (T � t, i⇠)Xti
has to be negative, as the conditional characteristic function is bounded. The set D

is called the state space of X. When X is a�ne, the matrix �(x)�>(x) and µ(x) are

a�ne in x:

�(x)�>(x) = A+
d
X

i=1

xiBi, µ(x) = ↵+
d
X

i=1

xi�i, (1.25)

where A, Bi are d⇥ d real matrices and ↵,� i 2 Rd, for i = 1, . . . , d.

Model parameters cannot be chosen arbitrarily; as discussed in [54]; there are admis-

sibility restrictions required for the existence of the process Xt. The authors prove

the existence, for each value of d, of d+ 1 disjoint admissible regions of the parameter
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4.1 Stochastic Di↵erential Equations

space. In each of these families di↵erent restrictions are imposed on the parameters.

Moreover, a�ne models do not have a unique representation, that is, there exist di↵er-

ent choices of the model parameters that generate identical behaviour of the process.

The functions � and  = ( 
1

, . . . , d) solve the system of Riccati equations

8

<

:

@t�(t,⌘ ) =
1

2

hA (t,⌘ ), (t,⌘ )i+ h↵, (t,⌘ )i

@t i(t,⌘ ) =
1

2

hBi (t,⌘ ), (t,⌘ )i+ h�i, (t,⌘ )i, i = 1, . . . , d,
(1.26)

with the initial conditions �(0, ⌘) = 0 and  (0, ⌘) = ⌘, for all ⌘ 2 iRd. The existence

and uniqueness for the system (1.26) can also be established.

Theorem 4.1.13. (in [55])

i) For every ⌘ 2 Cd, there exists a unique solution (�(·, ⌘), (·, ⌘)) of the Riccati

Equations (1.26), defined in t 2 [0, T (⌘)), for some T (⌘) 2 (0,+1]. Moreover

T (0) = +1.

ii) The domain D = {(t,⌘ ) 2 R
+

⇥ Cd : t < T (⌘)} is open in R
+

⇥ Cd and, for all

⌘ 2 Cd either T (⌘) = +1 or limt"T (⌘) | (t,⌘ )| = +1, respectively.

iii) For all t 2 R
+

, the t-section D(t) =
�

⌘ 2 Cd | (t,⌘ ) 2 D
 

, is an open neighbour-

hood of 0 in Cd. Moreover D(t
1

) ◆ D(t
2

) for 0  t
1

 t
2

.

iv) � and  are analytic functions on D.

As a function of t, the characteristic function of an Rd-valued a�ne process Y solves

a generalized Riccati equation as it is shown in [56]. The following result provides an

applicable condition to establish the existence of exponential moments of Y .

Theorem 4.1.14. (in [55]) Let ⌘ 2 Rd and s > 0. Suppose that �(·, ⌘) 2 C1([0, s];R),

 (·, ⌘) = ( 
1

(·, ⌘), . . . , d(·, ⌘)) 2 C1([0, s];Rd) satisfy the System (1.26) with the initial

datum (0, ⌘). Then the solution process X of (1.23) satisfies

E
h

eh⌘,Xs

i�
�Ft

i

= e�(s�t,⌘)+h (s�t,⌘),X
t

i, 8 0  t  s. (1.27)

Although there are several di↵erent ways to define a�ne models, we shall use the

following definition. The dynamics of the state vector X is a�ne with

�(x) =
q

Id + diag(hx,� 1i, . . . , hx,� di). (1.28)
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4.2 Real option analysis

for vectors �i 2 Rd, i = 1, . . . , d. Note that the requirement that � is diagonal does not

result in a loss of generality. An application of an invertible linear transformation to

the state process allows to reduce the di↵usion coe�cient to the form (1.28). In fact,

this changes the form of the stochastic di↵erential Equation (1.23). The relation with

the matrices A and Bi, i = 1, . . . , d in (1.25) is the following:

A = Id (identity matrix) Bi = diag(�1i , . . . , �
d
i ), i = 1, . . . , d. (1.29)

4.2 Real option analysis

A key responsibility of hospital executives is to make important decisions concerning

budgeting, investment and resource allocation decisions. They have to decide which

medical technologies to invest in and how to balance these investments with other

projects, such as building construction or information technology. These decisions must

be made in the context of ever changing healthcare policies, insurance reimbursements,

patient demand, and competition with other hospitals.

The uncertainties at the hospital level and market place should be explicitly addressed

and accounted for in executive decision-making processes. Furthermore, past decisions

a↵ect the range of decisions that can be taken in the future. For example, renting

compared to buying medical equipment can result in di↵erent sets of possible future

actions. In the same way discharge policies strongly influence the admission number.

The possibility to take an action in the future is called an option. Options give ex-

ecutives flexibility to respond to future events and manage risk. The flexibility of

adjusting ones plan of action has value that should be accounted for in the analysis.

Real Options Analysis (ROA) is a mathematical approach that calculates the value

of options associated with a decision. ROA determines optimal investment scope and

timing taking future decisions and flexibility into account. ROA originated from op-

tions theory, which determines the value of financial options that give option holders

the right to buy or sell stocks at a previously set price.

4.2.1 Literature review and real option basics

The beginning of options theory starts with the works of [57] and [58] on the pricing of

financial options and the development of closed-form solutions for the value of call and
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4.2 Real option analysis

put options. Scholes and Merton received the 1997 Nobel Prize in Economics for their

contributions. Alternatives to closed form solutions are partial di↵erential equation

models, simulations, or portfolio optimization techniques [59].

The holder of a call option has the right, but not the obligation, to buy the underlying

asset of the option, often a stock, within a specified period at a given price, called the

strike price. Similarly, a put option allows the selling of the underlying asset at the strike

price [60]. The parallels between financial options and real options were first discussed

by [61]. He called them growth options, which later became known as real options.

Early literature on real options focused on determining the value of one specific type of

option at a time, such as the option to delay or modify the operating scale of a project

([62], [63], [64]). Later research focused on combining these options to model more

complex options such as duopoly settings [65] or compound options [66]. Financial

and real options share common terminology and concepts but also have di↵erences

[67]. In financial options, the value of the underlying asset (e.g., a company stock) is

its market price, while in real options it is the investments value, which is typically

regarded as the Net Present Value (NPV) of future cash flows. The strike price in

financial options is the price for which the underlying asset can be bought or sold when

the option is exercised. In real options, the strike price is the additional investment

required to exercise the option, such as expanding or abandoning an investment or

project. The expiration time of a financial option is the point in time when the right to

exercise the option ends, which is similar to real options, where the right or possibility

to take actions ceases to exist. For both financial and real options, risk-free rates are

used for discounting. Dividends paid by a financial option correspond in real options

to cash inflows and outflows of the project. Uncertainties regarding the future value of

the underlying asset (financial option) or project (real option) are measured through

volatility in both cases. A major di↵erence between real and financial options is that

management decisions can a↵ect the real options value, while a financial options value

cannot be influenced in that way.

Real options can be regarded as an extension and improvement over NPV analysis. The

NPV is the discounted sum of future cash flows. ROA is a more comprehensive approach

as ROA takes into account that future decisions are not static and predetermined, but

are made in response to future events that are only known as uncertain variables in

the present [68]. NPV does not account for managerial flexibility in responding to
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4.2 Real option analysis

new information. As uncertainties evolve over time, the optimal action depends on

the actual values of the uncertain variables. Consequently, the option of delaying,

expanding or abandoning a project at some point after the initial decision has a value

that NPV does not capture because it is based on averages and static decisions.

ROA has been applied to a variety of applications in numerous industries [69]. However,

only a few papers discuss the application of ROA to healthcare problems. Furthermore,

all of these journal papers fall into one of two categories:

1. Mathematical papers that contribute to theory and merely use healthcare as

motivation or background

2. Conceptual papers that discuss applications of ROA to healthcare, but do not

provide mathematical analyses

Papers in both of these categories fail to address the needs of practitioners and aca-

demics who seek a mathematically accessible and real-world focused guide for applying

ROA.

An example of a theoretical contribution is the work by [70], in which the authors anal-

ysed the e↵ect of various contract variations on the investment decisions of a profit-

maximizing hospital. The healthcare system was modeled as a production process,

where the inputs of medical care and technology led to patient recovery, subject to

uncertainties based on personal characteristics. [71] adapted the classical real options

model to include characteristics of the healthcare sector and study the e↵ect of de-

creasing drug prices. A ROA model to compare health plans by health maintenance

organizations (HMOs) was developed and tested by [72]. These authors showed how

the option to receive coverage for out-of-network care increased in value with the sever-

ity of health problems. [73] and [74] explored the combination of real options with the

analytical hierarchy process (AHP) to incorporate intangible values and game theory

to capture competition.

Conceptual papers include the work by [60], who discussed the application of real op-

tions to support an investment decision for a hospitals new imaging department. Based

on input from stakeholders and analysis of internal and external influence factors, a

portfolio of options (e.g., expand, delay, abandon, or contract) with varying market

and technological uncertainty was determined for the di↵erent investment options. [75]

used the real options framework to illustrate that the value of investments by hospitals

51

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



4.2 Real option analysis

can be increased if options are included in contracts that allow for more decision flexi-

bility in the future.

The real options framework has also been applied to medical decision-making. [76]

illustrated how watchful waiting benefits patients since delaying a treatment, such as

a surgery, allows for better clinical decisions once more information becomes available

and uncertainties are reduced. Watchful waiting was also discussed in a managed care

setting by [77].

We identified only one paper that bridged the gap between theory and practice and

addressed the need of hospital executives and analysts who want to apply ROA. [78]

showed how ROA can e↵ectively support the decision to invest in either a stationary

or mobile lithotripter. While the NPV analysis favored a stationary device, ROA led

to a di↵erent result. A mobile lithotripter includes the option to rent out the device

to other medical institutions, so the hospital can respond more flexibly to changing

patient volume. The value of this option makes the mobile device the favored decision

alternative.

The value of real options stems from the fact that when investing in risky assets, we can

learn from observing what happens in the real world and adapting our behaviour to in-

crease our potential upside from the investment and to decrease the possible downside.

In the real options framework, we use updated knowledge or information to expand

opportunities while reducing danger. In the context of a risky investment (patient hos-

pitalization can be interpreter as a risky investment), there are three potential actions

that can be taken based upon this updated knowledge. The first is that you build

on good fortune to increase your possible profits; this is the option to expand. For

instance, a market test that suggests that consumers are far more receptive to a new

product than you expected them to be could be used as a basis for expanding the scale

of the project and speeding its delivery to the market. The second is to scale down or

even abandon an investment when the information you receive contains bad news; this

is the option to abandon and can allow you to cut your losses. The third is to hold

o↵ on making further investments, if the information you receive suggests ambivalence

about future prospects; this is the option to delay or wait. You are, in a sense, buying

time for the investment, hoping that product and market developments will make it

attractive in the future.

The value of learning is greatest, when you and only you have access to that learning
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4.2 Real option analysis

and can act on it. After all, the expected value of knowledge that is public, where any-

one can act on that knowledge, will be close to zero. We will term this third condition

exclusivity and use it to scrutinize when real options have the most value.

4.2.2 The Option to Delay an Investment

Investments are typically analysed based upon their expected cash flows and discount

rates at the time of the analysis; the net present value computed on that basis is a

measure of its value and acceptability at that time. The rule that emerges is a simple

one: negative net present value investments destroy value and should not be accepted.

Expected cash flows and discount rates change over time, however, and so does the net

present value. Thus, a project that has a negative net present value now may have

a positive net present value in the future. In a competitive environment, in which

individual firms have no special advantages over their competitors in taking projects,

this may not seem significant. In an environment in which a project can be taken by

only one firm (because of legal restrictions or other barriers to entry to competitors),

however, the changes in the projects value over time give it the characteristics of a call

option.

We assume that a project requires an initial up-front investment of X, and that the

present value of expected cash inflows computed right now is V . The net present value

of this project is the di↵erence between the two:

NPV = V �X (2.30)

Now assume that the firm has exclusive rights to this project for the next n years,

and that the present value of the cash inflows may change over that time, because of

changes in either the cash flows or the discount rate. Thus, the project may have a

negative net present value right now, but it may still be a good project if the firm waits.

Defining V again as the present value of the cash flows, the firms decision rule on this

project can be summarized as follows:

• V > X Take the project: Project has a positive present value

• V < X Do not take the project: Project has negative net present value
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4.2 Real option analysis

If the firm does not invest in the project, it incurs no additional cash flows, though

it will lose what it originally invested in the project. Note that this payo↵ diagram

is that of a call option, the underlying asset is the investment, the strike price of the

option is the initial outlay needed to initiate the investment; and the life of the option

is the period for which the firm has rights to the investment. The present value of the

cash flows on this project and the expected variance in this present value represent the

value and variance of the underlying asset.

4.2.3 The Option to Expand

In some cases, a firm will take an investment because doing so allows it either to make

other investments or to enter other markets in the future. In such cases, it can be

argued that the initial investment provides the firm with an option to expand, and the

firm should therefore be willing to pay a price for such an option. Consequently, a firm

may be willing to lose money on the first investment because it perceives the option to

expand as having a large enough value to compensate for the initial loss. To examine

this option, assume that the present value of the expected cash flows from entering the

new market or taking the new project is V , and the total investment needed to enter

this market or take this project is X. Further, assume that the firm has a fixed time

horizon, at the end of which it has to make the final decision on whether or not to

take advantage of this opportunity. Finally, assume that the firm cannot move forward

on this opportunity if it does not take the initial investment. At the expiration of the

fixed time horizon, the firm will enter the new market or take the new investment if

the present value of the expected cash flows at that point in time exceeds the cost of

entering the market.

4.2.4 The Option to Abandon an Investment

The final option to consider here is the option to abandon a project when its cash flows

do not measure up to expectations. The option pricing approach provides a general

way of estimating and building in the value of abandonment into investment analysis.

To illustrate, assume that V is the remaining value on a project if it continues to the

end of its life, and L is the liquidation or abandonment value for the same project at

the same point in time. If the project has a life of n years, the value of continuing the

project can be compared to the liquidation (abandonment) value. If the value from

54

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



4.2 Real option analysis

continuing is higher, the project should be continued; if the value of abandonment is

higher, the holder of the abandonment option could consider abandoning the project.

Payo↵ from owning an abandonment option is

• 0 if V > L

• L� V if V  L

Unlike the prior two cases, the option to abandon takes on the characteristics of a put

option.

4.2.5 Valuing an Real Option

We need the value of the underlying asset, the variance in that value, the time to

expiration on the option, the strike price, the riskless rate and the equivalent of the

dividend yield (cost of delay). Actually estimating these inputs for a real option to

delay can be di�cult, however.

Value Of The Underlying Asset In this case, the underlying asset is the invest-

ment itself. The current value of this asset is the present value of expected cash flows

from initiating the project now, not including the up-front investment, which can be

obtained by doing a standard capital budgeting analysis. There is likely to be a sub-

stantial amount of error in the cash flow estimates and the present value, however.

Rather than being viewed as a problem, this uncertainty should be viewed as the rea-

son why the project delay option has value. If the expected cash flows on the project

were known with certainty and were not expected to change, there would be no need

to adopt an option pricing framework, since there would be no value to the option.

Variance in the value of the assets The present value of the expected cashflows

that measures the value of the asset will change over time, partly because the potential

market size for the product may be unknown, and partly because technological shifts

can change the cost structure and profitability of the product. The variance in the

present value of cash flows from the project can be estimated in one of three ways.

1. If similar projects have been introduced in the past, the variance in the cash

flows from those projects can be used as an estimate. This may be the way that
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4.2 Real option analysis

a consumer product company like Gillette might estimate the variance associated

with introducing a new blade for its razors.

2. Probabilities can be assigned to various market scenarios, cash flows estimated

under each scenario and the variance estimated across present values. Alterna-

tively, the probability distributions can be estimated for each of the inputs into

the project analysis - the size of the market, the market share and the profit mar-

gin, for instance - and simulations used to estimate the variance in the present

values that emerge.

3. The variance in the market value of publicly traded firms involved in the same

business (as the project being considered) can be used as an estimate of the

variance. Thus, the average variance in firm value of firms involved in the software

business can be used as the variance in present value of a software project.

The value of the option is largely derived from the variance in cash flows - the higher

the variance, the higher the value of the project delay option. Thus, the value of an

option to delay a project in a stable business will be less than the value of a similar

option in an environment where technology, competition and markets are all changing

rapidly.

Exercise Price On Option A project delay option is exercised when the firm owning

the rights to the project decides to invest in it. The cost of making this investment is

the exercise price of the option. The underlying assumption is that this cost remains

constant (in present value dollars) and that any uncertainty associated with the product

is reflected in the present value of cash flows on the product.

Expiration Of The Option And The Riskless Rate The project delay option

expires when the rights to the project lapse; investments made after the project rights

expire are assumed to deliver a net present value of zero as competition drives returns

down to the required rate. The riskless rate to use in pricing the option should be the

rate that corresponds to the expiration of the option. While this input can be estimated

easily when firms have the explicit right to a project (through a license or a patent, for

instance), it becomes far more di�cult to obtain when firms only have a competitive

advantage to take a project.
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4.3 Option pricing

Cost of Delay (Dividend Yield) There is a cost to delaying taking a project,

once the net present value turns positive. Since the project rights expire after a fixed

period, and excess profits (which are the source of positive present value) are assumed

to disappear after that time as new competitors emerge, each year of delay translates

into one less year of value-creating cash flows. If the cash flows are evenly distributed

over time, and the exclusive rights last n years, the cost of delay can be written as:

Annual cost of delay =
1

n
(2.31)

Thus, if the project rights are for 20 years, the annual cost of delay works out to 5% a

year. Note, though, that this cost of delay rises each year , to 1

19

in year 2, 1

18

in year

3 and so on, making the cost of delaying exercise larger over time.

4.3 Option pricing

Di↵usion processes are used (also) as a model of random phenomena. Among these,

a particularly telling example in daily life is given by financial market. In this and

the following sections we will see the models to evaluate derivatives. We denote St

the value at time t of a financial instrument and we try to model the evolution of

this amount with a di↵usion process. In order to choice the drift and the di↵usion

coe�cient there are two considerations to make. First, it is the amount that must

always be positive; therefore St > 0 for all t > 0. Moreover the increases are always

considered in a multiplicative; an increase of p% between time s and t means that
S
t

S
s

= 1 + p
100

. Therefore we model the logarithm of the price

dSt

St
= b(St, t)dt+ �(St, t)dBt (3.32)

where b are vector fields and � are matrix fields limited and locally Lipschitz. The

process ⇣t = log(St) is solution of

d⇣t =
�

b(St, t)� 1

2

�(St, t)
�

dt+ �(St, t)dBt =
=
�

b(e⇣t , t)� 1

2

�(e⇣t , t)2
�

dt+ �(e⇣t , t)dBt
(3.33)

The assumptions on of b and � ensure that the process ⇣ is defined for all t > 0,

therefore if S
0

> 0 then St > 0 for all t � 0. If b and � are constants and Ss = x, the

solution of 3.33 is a geometric Brownian motion

Sx,s
t = xe

�

b��

2

2

�

(t�s)+�(B
t

�B
s

). (3.34)
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One option is what is called derivative: an option to purchase (call) is an agreement

that gives an investor the right, but not the obligation, to buy a given instrument

(underlying) at a specified price K (strike price) within a specific time T (maturity).

Therefore, if at time T the underlying price is higher than the strike price K, the option

holder will exercise its right and buy the instrument at price K. Otherwise he can buy

the instrument on the market at a lower price. This type of contract guarantees the

buyer to be able to buy the instrument at price not greater than K. There are options

to sell (put) that guarantee the right to sell at time T at a price not less than K.

Above are described examples of so-called European options. There are other types

of derivatives, with other rules, such as American options. An American option is

an option that can be exercised anytime during its life. American options allow option

holders to exercise the option at any time prior to and including its maturity date.

Option seller is exposed to a risk: if at time T the underlying price is greater than the

exercise price K, the seller would be forced to buy on the market the instrument and

sell it at price K. Therefore if ST is the price at time T , the option seller has a loss of
�

ST �K
�

+

(where + indicates the positive part). The loss is ST �K if ST > K and is

equal to 0 if ST < K.

4.3.1 Hedging strategy

A portfolio is a set of assets. Consider a market composed by securities S
0

, S
1

, . . . , Sm;

suppose that S
0

follows the equation

dS
0

(t) = rtS0

(t)dt (3.35)

where (rt)t is a random process. If S
0

(s) = x, then

S
0

(t) = xe
R
t

s

r
u

du. (3.36)

S
0

typically corresponds to an investment of the kind of treasury bills or a deposit in a

bank account. S
0

is the risk free title, even if its evolution is still uncertain. The (rt)t

process represents the instantaneous interest rate. Other securities follow the equation

dSi(t)

Si(t)
= bi(S(t), t)dt+

m
X

j=1

�ij(S(t), t)dBj(t) (3.37)

where S(t) =
�

S
1

(t), . . . , Sm(t)
�

.

We say that Hypothesis (B) are satisfied if

58

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



4.3 Option pricing

i) B =
�

⌦,F, (Ft)t, (Bt)t,P
�

is a m-dimensional Brownian motion with natural and

complete filtration (St)t.

ii) b and � are limited and locally Lipschitz. Moreover if a = ��⇤, the matrix field

a is uniformly elliptic; therefore exists � > 0 such that ha(x, t)z, zi > �|z|2 for all

(x, t) 2 Rm ⇥ R+, z 2 Rm.

iii) The process (rt)t) is limited and progressively measurable with respect to the

natural and complete filtration (St)t of B.

The portfolio process is

Vt =
m
X

i=0

Hi(t)Si(t). (3.38)

Vt is the value at time t of the amount invested in assets S
0

, . . . , Sm. H
0

(t), . . . , Hm(t)

are the amounts invested in each portfolio assets. Assuming that H
0

(t), . . . , Hm(t) are

real, it is possible to buy non integer quantities of assets. Moreover these amounts

change over time and is possible to reallocate resources on portfolio assets.

Definition 4.3.1. A portfolio is called self-financing if H
0

2 ⇤1

B([0,+1[), HiSi 2
⇤2

B([0,+1[) and

dVt =
m
X

i=0

Hi(t)dSi(t). (3.39)

Equivalently calling Ui(t) = Hi(t)Si(t) equation 3.39 becomes

dVT = riU0

(t)dt+
m
X

i=1

Ui(t)bi(S(t), t)dt+
m
X

j=1

Ui(t)�ij(S(t), t)dBj(t) (3.40)

and replacing U
0

(t) = Vt �
Pm

i=1

Ui(t),

dVt = rtVtdt+
m
X

i=1

Ui(t)
�

bi(S(t), t))� rt
�

dt+
m
X

j=1

Ui(t)�ij(S(t), t)dBj(t). (3.41)

In order to evaluate the price of an european option we consider a market composed by

S
0

and S
1

. We also assume that the dynamics of S
0

and S
1

are described by equations

3.35 and 3.37 where m = 1. Let T be the maturity time and s  T the initial time. An

european option with time to maturity T is a random variable � 0 ST -measurable,

where  = (ST �K)+ if we consider a call option with exercise price K. The hedging

portfolio is a feasible self-financing portfolio such that VT =  . Portfolio VT is also
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4.3 Option pricing

called replicating portfolio. If V is an hedging portfolio and Vs = v, then is possible

to invest an amount v and receiving at time T the amount  . Therefore the price of

the option  issued at time s is the smallest value v such that exist a portfolio V that

replicates  and Vs = v. The annualized portfolio (Ṽt)t = Rs,t(Vt)t is a supermatigale

with respect to the risk neutral measure Q and

EQ
h

Rs,T |Ss
i

= EQ
h

ṼT |Ss
i

 Ṽs = Vs (3.42)

therefore

vmin
.
= EQ

h

 ̃|Ss
i

(3.43)

where  ̃ = Rs,T .

Theorem 4.3.2. If Hypothesis (B) are satisfied, let  be an european option such that

E[ q] < +1 for some q > 1. Then for each hedging portfolio V of  we have Vs � vmin

where vmin is defined in equation 3.43. Moreover exist an hedging portfolio V such that

Vs = vmin.

Therefore if S
1

(s) = x, the call option price at time s

EQ
h

Rs,T

�

Sx,s
1

(T )�K
�

+|Ss
i

. (3.44)

Moreover if we assume that (rt)t is a deterministic function and given that the random

variable Sx,s
1

(T ) and Ss are independent the price is

Rs,TEQ
h

�

Sx,s
1

(T )�K
�

+

i

. (3.45)

4.3.2 Arbitrage approach

In this section is proposed a pricing approach based on the arbitrage definition. An

arbitrage is a financial operation that:

• do not require any capital investment

• the profit probability is > 0 and the loss probability is equal to 0.

In other words, an arbitrage opportunity is a zero-cost strategy which has nonnegative

pay-o↵ in all states of nature and strictly positive pay-o↵ in at least one state.
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4.3 Option pricing

Definition 4.3.3. A financial market composed by assets S
0

, S
1

, . . . admits no arbi-

trage opportunity if all admittable and self-financing portfolios V such that Vs = 0,

VT � 0, s  T is respected VT = 0.

Proposition 4.3.4. A market composed by assets S
0

, S
1

, . . . that satisfy equations 3.35

and 3.37 admits no arbitrage.

We consider a market composed by three assets S
0

, S
1

, and C(S
1

(t), t) and we

assume that C is regular enough. Consider the portfolio

Vt = H
0

(t)S
0

(t) +H
1

(t)S
1

(t) + C(S
1

(t), t), (3.46)

composed by an option and by variable amount of risk-free assets S
0

(t) and assets S
1

(t).

According to Ito’s formula

dC(S
1

(t), t) =
⇣

L̄+
@

@t

⌘

C(S
1

(t), t)dt+
@C

@x
(S

1

(t), t)�(S
1

(t), t)S
1

(t)dBt (3.47)

where

L̄t =
1

2
�2(x, t)x2

@2

@x2
+ b

1

(x, t)x
@

@x
. (3.48)

Assuming that portfolio 3.46 is self-financing so

dVt = H
0

(t)dS
0

(t) +H
1

(t)dS
1

(t) + dC(S
1

(t), t) (3.49)

and considering 3.41

dVt = rVtdt +
h⇣

L̄t +
@
@t � r

⌘

C(S
1

(t), t) +H
1

(t)S
1

(t)
�

b
1

(S
1

(t), t)� r
�

i

dt+

+
h

@C
@x (S1

(t), t) +H
1

(t)
i

�(S
1

(t), t)S
1

(t)dBt.
(3.50)

Choosing

H
1

(t) =
@C

@x
(S

1

(t), t) (3.51)

the coe�cient of dBt is equal to 0 and portfolio V has the di↵erential

dVt =
h

rVt

⇣

L̄t +
@
@t � r

⌘

C(S
1

(t), t)� @C
@x (S1

(t), t)S
1

(t)(b
1

(S
1

(t), t)� r)
i

dt =

= rVtdt+
⇣

L̄t +
@
@t � r

⌘

C(S
1

(t), t)dt

(3.52)

where

Lt =
1

2
�2(x, t)x2

@2

@x2
+ rx

@

@x
. (3.53)
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In order to avoid arbitrage opportunity for all t
⇣

L̄t +
@

@t
� r
⌘

C(S
1

(t), t) = 0, (3.54)

in order that S
1

(t) assumes any value > 0 with positive probability, it needs to be
⇣

L̄t +
@

@t
� r
⌘

C(x, t) = 0, (3.55)

for all x 2 R, t  T . Moreover must hold the condition C(x, T ) = �(x) where �(x) =

(x�K)+. If � has a polynomial growth, according to Feynman-Kac formula

C(x, t) = EQ
h

e�r(T�s)�(Sx,t
1

(T ))
i

(3.56)

is solution of the problem 3.55 with final condition C(x, T ) = �(x). Moreover 3.56 is

the only solution with a polynomial growth. With respect to Q, S
1

is solution of 3.57.

Black-Scholes formula In order to evaluate the option price we need to evaluate the

expected value EQ
⇥

 ̃
⇤

where  ̃ = ṼT . Generally the law of the random variable  ̃ with

respect Q is not known, therefore simulation method and partial derivatives method are

needed. Explicit formula for call and put options are obtained in the Black-Scholes

model if the following hypothesis are satisfied

i) Volatility � is constant, �(x, t) ⌘ �

ii) Risk free is constant, rt ⌘ r

iii) Drift b satisfies Hypothesis (B).

If we consider an european buying option,  =
�

ST � K
�

+

. In Black-Scholes model,

with respect to Q, the asset
�

S
1

(t)
�

t
follows equation

dS
1

(t)

S
1

(t)
= rdt�dB̃t (3.57)

hence with the initial condition S
1

(s) = x

Sx,s
1

(t) = xe

�

r��

2

2

�

(t�s)+�
�

˜B
t

� ˜B
s

�

. (3.58)

Let C(x, s) be the option price sells at time s with the initial condition S
1

(s) = x.

Then, calling Z the random variable N(0, 1),

C(x, s) = er(T�s)EQ
h

�

Sx,s
1

(T )�K
�

+

i

=

= er(T�s)E
h

�

xe(r�
�

2

2 )(T�s)+�
p
T�sZ �K

�

+

i

.
(3.59)
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4.4 Poisson process

The expected value is equal to

er(T�s) 1p
2⇡

Z

+1

�1

⇣

xe(r�
�

2

2 )(T�s)+�
p
T�sz �K

⌘

+

e�
z

2

2 dz. (3.60)

It is easy to find that the integral is equal to 0 when z  ⇣s where

⇣s =

�

log(Kx )� (r � �2

2

)(T � s)
�

�
p
T � s

. (3.61)

Calling with � the cumulative distribution of the random variable N(0, 1),

�(x) =
1p
2⇡

Z x

�1
e�

z

2

2 dz =
1p
2⇡

Z

+1

�x
e�

z

2

2 dz. (3.62)

Then

C(x, s) = e�r(T�s)
p
2⇡

R

+1
⇣
s

�

xe(r�
�

2

2 )(T�s)+�
p
T�sz �K

�

e�
z

2

2 dz =

= xp
2⇡

R

+1
⇣
s

e
1
2 (z��

p
T�s)2dz �Ke�r(T�s)�(�⇣s)

= xp
2⇡

R

+1
⇣
s

��
p
T�s

e�
z

2

2 dz �Ke�r(T�s)�(�⇣s)
= x�(�⇣s + �

p
T � s)�Ke�r(T�s) (�⇣s).

(3.63)

Therefore the Black-Scholes formula is

C(x, s) = x�
�

�⇣s + �
p
T � s

�

�Ke�r(T�s)�(�⇣s). (3.64)

4.4 Poisson process

A Poisson process is a simple and widely used stochastic process for modeling the times

at which arrivals enter a system. It is in many ways the continuous-time version of the

Bernoulli process. For the Bernoulli process, the arrivals can occur only at positive

integer multiples of some given increment size (often taken to be 1). For the Poisson

process, arrivals may occur at arbitrary positive times, and the probability of an arrival

at any particular instant is 0. This means that there is no very clean way of describing

a Poisson process in terms of the probability of an arrival at any given instant. It is

more convenient to define a Poisson process in terms of the sequence of interarrival

times, X
1

, X
2

, . . . which are defined to be independent and identically distributed.
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4.4 Poisson process

Arrival process An arrival process is a sequence of increasing random variable,

0 < S
1

< S
2

< . . . , where Si < Si+1

means that Si+1

is a positive random variable,

i.e., a random variable X such that FX(0) = 0. The random variables S
1

, S2, . . . are

called arrival epochs and represent the times at which some repeating phenomenon

occurs. Note that the process starts at time 0 and that multiple arrivals can not occur

simultaneously (the phenomenon of bulk arrivals can be handled by the simple extension

of associating a positive integer random variable to each arrival). We will sometimes

permit simultaneous arrivals or arrivals at time 0 as events of zero probability, but

these can be ignored. In order to fully specify the process by the sequence S
1

, S
2

, . . . of

random variables, it is necessary to specify the joint distribution of the subsequences

S
1

, . . . , Sn for all n > 1.

Although we refer to these processes as arrival processes, they could equally well model

departures from a system, or any other sequence of incidents. Although it is quite

common, especially in the simulation field, to refer to incidents or arrivals as events, we

shall avoid that here. The n� th arrival epoch Sn is a random variable and {Sn  t},
for example, is an event. This would make it confusing to refer to the nth arrival itself

as an event.

Any arrival process can also be specified by two alternative stochastic processes. The

first alternative is the sequence of interarrival times, X
1

, X
2

, . . . These are positive

random variables defined in terms of the arrival epochs by X
1

= S
1

and Xi = Si�Si�1

for i > 1. Similarly, given the Xi, the arrival epochs Si are specified as

Sn =
n
X

i=1

Xi. (4.65)

Thus the joint distribution of X
1

, . . . , Xn for all n > 1is su�cient (in principle) to

specify the arrival process. Since the interarrival times are independent and identically

distributed in most cases of interest, it is usually much easier to specify the joint

distribution of the Xi than of the Si.

The second alternative for specifying an arrival process is the counting process N(t),

where for each t > 0, the random variable N(t) is the number of arrivals up to and

including time t. The counting process {N(t); t > 0}, is an uncountably infinite family

of random variable {N(t); t > 0} where N(t), for each t > 0, is the number of arrivals in

the interval (0, t]. Whether the end points are included in these intervals is sometimes
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4.4 Poisson process

important, and we use parentheses to represent intervals without end points and square

brackets to represent inclusion of the end point. Thus (a, b) denotes the interval {t :
a < t < b}, and (a, b] denotes {t : a < t  b}. The counting random variables N(t)

for each t > 0 are then defined as the number of arrivals in the interval (0, t]. N(0)

is defined to be 0 with probability 1, which means, as before, that we are considering

only arrivals at strictly positive times.

The counting process {N(t); t > 0} for any arrival process has the properties that

N(⌧) � N(t) for all ⌧ � t > 0 (i.e., N(⌧) � N(t) is a nonnegative random variable).

For any given integer n � 1 and time t > 0, the n�th arrival epoch, Sn, and the

counting random variable, N(t), are related by

{Sn  t} = {N(t) � n} (4.66)

To see this, note that {Sn  t} is the event that the n-th arrival occurs by time t.

This event implies that N(t), the number of arrivals by time t, must be at least n;

i.e., it implies the event {N(t) � n}. Similarly, {N(t) � n} implies {Sn  t}, yielding
the equality in 4.66. An alternate form, which is occasionally more transparent, comes

from taking the complement of both sides of 4.66, getting

{Sn > t} = {N(t) < n} (4.67)

For example, the event {S
1

> t} means that the first arrival occurs after t, which means

{N(t) < 1} (i.e., {N(t) = 0}). These relations will be used constantly in going back

and forth between arrival epochs and counting random variables. In principle, 4.66 or

4.67 can be used to specify joint distribution functions of arrival epochs in terms of joint

distribution functions of counting variables and vice versa, so either characterization

can be used to specify an arrival process. In summary, then, an arrival process can be

specified by the joint distributions of the arrival epochs, the interarrival intervals, or

the counting random variables. In principle, specifying any one of these specifies the

others also.

Definition 4.4.1. A renewal process is an arrival process for which the sequence of

inter-arrival times is a sequence of independent identically distributed random variables.

Definition 4.4.2. A Poisson process is a renewal process in which the interarrival

intervals have an exponential distribution function; i.e., for some real � > 0, each Xi

has the density

fX = �e��x, x � 0 (4.68)
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4.4 Poisson process

The parameter � is called the rate of the process. For any interval of size t, �t is

the expected number of arrivals in that interval. Thus � is called the arrival rate of

the process.

4.4.1 Doubly stochastic Poisson process

A doubly stochastic Poisson process can be viewed as a two step randomization proce-

dure. A process � is used to generate another process N by acting as its intensity. This

means that N is a Poisson process conditional on �. The Cox process setup provides

us with a very useful framework for modelling hospital bed occupancy time. Many

alternative definitions of a doubly stochastic Poisson process can be given. We will

o↵er the one adopted by Bremaud [79].

Definition 4.4.3. Let (⌦,F,P) be a probability space with information structure F.

The information structure F is the filtration, i.e. F = {Ft, t 2 [0, T ]}. Let � be a

non-negative process, such that �t is Ft-measurable, for t � 0 and assume that

Z t

0

�sds < 1, P almost surely (no explosions) (4.69)

A process N = {Nt}t�0

is called a F-doubly stochastic Poisson process with intensity �

if N is F-adapted and for all 0  t
1

 t
2

, u 2 R, it holds

E
n

eiu(Nt2�N
t1 )

�

�

�

Ft2

o

= exp

(

(eiu � 1)

Z t2

t1

�sds

)

. (4.70)

P[Nt2 �Nt1 = k|�s; t1  s  t
2

] =
e�

R
t2
t1
�
s

ds
⇣

R t2
t1
�s ds

⌘k

k!
, (4.71)

Hence, the law of iterated expectations gives us the following relation:

P[Nt2 �Nt1 = k] = E[1{N
t2�N

t1=k}]

= E
h

E[1{N
t2�N

t1=k}|Ft2 ]
i

= E

2

6

4

e�
R
t2
t1
�
s

ds
⇣

R t2
t1
�sds

⌘k

k!

3

7

5

.

(4.72)

66

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



4.4 Poisson process

Now consider the aggregated process Xt =
R t
0

�sds, then by (4.72), choosing t
2

= T

and t
1

= 0, we deduce the following representation for the density function of NT , for

T � 0:

P[NT = k] = E[fk(XT )], (4.73)

with

fk(x) =
e�xxk

k!
, 8 x 2 R, k � 0. (4.74)

Thus, it is easy to note that the problem of finding the distribution of NT , the point

process, is equivalent to the problem of finding the distribution of the aggregated pro-

cess. In particular we can state the following results based on the Feynman-Kac formula

(1.21)

Theorem 4.4.4. Let T > 0 and assume that the stochastic intensity is �t = c(Yt, t),

t � 0, where c : [0, T ] ⇥ Rm ! [0,1). Let the process Y be F-adapted and Rm-valued

which satisfies the stochastic di↵erential equation with initial condition y 2 Rm

dY y,t
s = b(s, Y y,t

s )dt+ �(s, Y y,t
s )dBs, s � t Y y,t

t = y, (4.75)

B being an m-dimensional Brownian motion on the probability space (⌦,F,P). If the

coe�cient functions b, � and c satisfy the hypotheses of Theorem 4.1.12, then for every

↵ > 0, the function

u↵(y, t) = E
h

e�↵
R
T

t

c(Y y,t

s

) ds
i

, (4.76)

is the unique C2,1(Rm ⇥ [0, T )) function, continuous on Rm ⇥ [0, T ], which satisfies the

final value problem

8

>

<

>

:

Ltu↵ + @u
↵

@t � c(y, t)u = 0, on Rm ⇥ [0, T ),

u↵(y, T ) = 1.

(4.77)

Lt being the di↵erential operator defined in (1.20). Moreover, for all k � 0 and y 2 Rm,

it holds

P[NT = k] =
(�1)k

k!

dk

d↵k |↵=1

u↵(y, 0). (4.78)

On the basis of equation (4.78), we are able to compute the density function of

the point process N . Unfortunately, the partial di↵erential equation in (4.77) does not

always admit a closed-form solution. This is available only in few special situations.
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4.4 Poisson process

This, together with their flexibility, is the reason for the success of using a�ne models.

In an a�ne model, if the function c is an a�ne function with respect to Y , then the

function u↵ can be found by solving a system of ordinary di↵erential equations. The

following result describes this property.

Theorem 4.4.5. Let T > 0 and assume that �t = c(Yt), t � 0, where c : Rm ! R is

an a�ne function. Suppose that the process Y is also a�ne, then, for every ↵ > 0,

there exist functions z↵ 2 C1([0, T ];R), w↵ = (w
1,↵, w2,↵, . . . , wm,↵) 2 C1([0, T ] Rm)

such that

u↵(y, t) = exp (z↵(t) + hw↵(t), yi) (4.79)

h·, ·i being the standard scalar product on Rm. The functions z↵, w↵ satisfies a system

of ordinary di↵erential equations of Riccati type.

We present an example of a�ne structure for the intensity process � which allows

a closed-form expression for the probability in (4.73)

Example 4.4.6. Let � be the process satisfying the following stochastic di↵erential

equation:

d�t = k(✓ � �t)dt+ �
p

�tdBt, �
0

> 0. (4.80)

where B is a 1-dimensional Brownian motion and suppose that c(y) = y, for all y 2 R.

Hence � = Y . The parameters k,✓ and � are all positive and satisfy Feller’s [80]

condition 2k✓ � �2. This condition ensures the positivity of the process �, whose state

space becomes the interval [0,+1). This model exhibits mean reversion of the intensity,

causing the intensity to be pulled downward when it is above the long run average

intensity and be pulled upward when it is below the long run average intensity. The

coe�cient k is the speed of this mean reversion, ✓ is the long run average intensity

and � is called volatility.

Model (4.80) was developed in [81], [82] and has been extensively applied in financial

mathematics to describe the term structure of interest rates.

The random variable �t, conditioning with respect to �s, is distributed as a chi-square.

By Theorem 4.4.5, a closed form solution for the function u↵ can be derived:

u↵(�, t) = A↵(T � t; k, ✓,� )e�B
↵

(T�t;k,✓,�)�, (4.81)
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4.4 Poisson process

for any t 2 [0, T ], � > 0. Here the function A↵ and B↵ have the following expressions.

If ↵ = 1, it holds

A
1

(T � t; k, ✓,� ) = exp(z
1

(t)) =

"

2�e(k+�)(T�t)/2

(� + k)(e�(T�t) � 1) + 2�

#

2k✓/�2

, (4.82)

B
1

(T � t; k, ✓,� ) = �w
1

(t) =
2(e�(T�t) � 1)

(� + k)(e�(T�t) � 1) + 2�
, (4.83)

with � =
p
k2 + 2�2. For the general case, it su�ces to replace the coe�cients k, ✓,�

respectively with k↵ = k, ✓↵ = ✓↵ and �↵ =
p
↵�, that is

A↵(T � t; k, ✓,� ) = A
1

(T � t; k,↵✓,
p
↵�), (4.84)

and

B↵(T � t; k, ✓,� ) = B
1

(T � t;↵✓,
p
↵�). (4.85)

Thus, the density function of NT can be easily computed using Equation (4.78) in

Theorem 4.4.4.
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5

Statistical data analysis

This Chapter introduces a statistical model to describe the length of stay of hospital

patients. The proposed model overcomes some of the limitations of previous models

by using a Phase-Type Gamma distribution which is able to capture the data charac-

teristics in a more accurate way. The model is tested on a case study based on the

Campus Bio-Medico hospital database. The purpose is to demonstrate how statistical

techniques can be applied to describe healthcare proxies. According to the framework

presented in Chapter 3, we propose some tools that support the decision support system

for resource capacity planning. The aim is to provide guidance for the tactical and

operational level. The tactical planning addresses the organization of the operation

and the execution of the healthcare delivery process. The operation planning involves

the short term decision making related to the execution of the healthcare delivery pro-

cess. Length of stay, discharge rate, and admission rate are reliable and valid proxies

for the resource consumption. Therefore a statistical analysis of these proxies provides

strong indication for the decision process.

It is well recognized that statistical analysis of healthcare resource use and cost data

poses a number of di�culties. These non-negative data often exhibit substantial posi-

tive skewness, can have heavy tails and are often multimodal. The traditional approach

for handling such non-normal data in medical statistics has been to use non-parametric

methods, such as rank order statistics.
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5.1 Phase-type distributions

5.1 Phase-type distributions

Phase-type (PH) distributions constitute a very versatile class of distributions. They

have been used in a wide range of stochastic modelling applications in areas as diverse as

telecommunications, finance, biostatistics, queueing theory, drug kinetics, and survival

analysis. Their use in modelling systems in the healthcare industry, however, has so far

been limited. There have been a number of papers written on the application of PH

distributions in the healthcare literature, but as we shall see, the number of areas where

they have been used is rather limited. Before describing PH distribution we have to

briefly introduce the function of a matrix definition, the exponential distribution,

and the continuous-time Markov chains (by way of an example).

5.1.1 Function of a matrix

Given a matrix n ⇥ n matrix T with real entries and a scalar function g : R ! R, we

are interested in definition of g(T ) which specifies g(T ) to be a matrix of the same

dimensions of T .

It is a standard result that the matrix T can be expressed in the Jordan canonical

form:

Z

�1

TZ = diag(J
1

, J
2

, . . . , Jp), (1.1)

Jk = Jk(�k) =

2

6

6

6

6

4

�k 1

�k
. . .
. . . 1

�k

3

7

7

7

7

5

2 Cm
k

⇥m
k (1.2)

where Z is nonsingular and m
1

+m
2

+ · · ·+mp = n. The Jordan matrix J is unique up

to the ordering of the blocks Ji, but the transforming matrix Z is not unique. Denote

by �
1

, . . . ,�s the distinct eigenvalues of T and let ni be the order of the largest Jordan

block in which �i appears, which is called the index of �i. We need the following ter-

minology.

Definition 5.1.1. s The function g is said to be defined on the spectrum of A if the

values

Djg(�i), j = 0, . . . , ni � 1, i = 1, . . . s (1.3)
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5.1 Phase-type distributions

exist. These are called the values of the function g on the spectrum of A. Here Djg

denotes the jth derivative of g.

In most cases of practical interest g is given by a formula. However, the following defi-

nition of g(A) requires only the values of g on the spectrum of A; it does not require

any other information about g. It is only when we need to make statements about

global properties (such as the continuity) that we will need to assume more about g.

Definition 5.1.2. (Jordan canonical form). Let g be defined on the spectrum of

A 2 Cn⇥n and let A have the Jordan decomposition form (1.1). Then

g(A) = Zg(J)Z�1 = Zdiag(g(Jk))Z
�1, (1.4)

where

g(Jk) =

2

6

6

6

6

6

4

g(�k) Dg(�k) · · · Dm

k

�1g(�
k

)

(m
k

�1)!

g(�k)
. . .

...
. . . Dg(�k)

g(�k)

3

7

7

7

7

7

5

(1.5)

we observe that the definition yields a matrix g(A) that can be shown to be indepen-

dent of the particular Jordan canonical form that is used. Second, note that if A is

diagonalizable, then the Jordan canonical form reduces to an eigenvalue decomposition

A = ZDZ

�1, with D = diag(�i) and the columns of Z are the eigenvectors of A.

Hence Definition 2 yields

g(A) = Zg(D)Z�1 = Zdiag(g(�i))Z
�1. (1.6)

Therefore for diagonalizable matrices g(A) has the same eigenvectors as A and its

eigenvalues are obtained by applying g to those of A.

Finally, we remark that the equation (1.5) can be proved by applying Taylor series

considerations.

5.1.2 Exponential distribution

The exponential distribution is ubiquitous in stochastic modelling, mainly because of

its simplicity and ability to model random lengths of time reasonably well. For exam-

ple, it has been used to model the length of stay in a hospital bed, or the time between
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5.1 Phase-type distributions

presentations to an emergency department.

A continuous non-negative random variable T is distributed according to an exponen-

tial distribution with parameter � > 0, if its distribution (or cumulative distribution)

function, defined for t � 0, is given by

F (t) = P(T  t) = 1� e��t. (1.7)

The density (or probability density) function of T defined for t � 0, is given by

f(t) = �e��t. (1.8)

The expected value of T , or its mean, is E(T ) = 1

� , and its variance is V(T ) = 1

�2
.

The simplicity in using the exponential distribution in stochastic modelling is not only

due to its formulation in terms of a single parameter � , but also because of the so

called memoryless property. That is, for, t, s � 0, P(T > s + t|T > t) = P(T > s).

The memoryless property enables simple expressions for many performance measures

of stochastic models that use the exponential distribution to be given. We also remark

here that the exponential distribution is the only continuous distribution that exhibits

the memoryless property.

5.1.3 Markov chains

Figure 5.1 shows the state transition diagram for a finite-state continuous time Markov

chain. The Markov chain consists of four states labelled 0, 1, 2, and 3. States 1, 2, and

3 are called transient states, and state 0 an absorbing state. A state is transient if once

it has been reached, the probability of returning to it is less than one, and a state is

absorbing if once it has been reached the process stops. We choose any of states, 0, 1, 2

and 3 according to the probabilities 1

10

, 1
2

, 3

10

and 1

5

respectively. The probability of

being instantaneously absorbed, that is 1

10

, is known as the point mass at zero.

Suppose that state 1 has been chosen. We spend an exponentially distributed

length of time with parameter � = 12 there. This parameter can be interpreted as the

(average) rate of movement out of state 1. Once we have completed this time we move

to either state 0 or state 2 with (average) rates 8 and 4, respectively. Alternatively, we

move from state 1 to state 0 with probability 8

12

= 2

3

, or to state 2 with probability
4

12

= 1

3

. If we chose state 0 we stop, but if we chose state 2 we spend an exponentially

distributed length of time with � = 10 there, and so on until absorption. The various
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5.1 Phase-type distributions

Figure 5.1: Example of Markov chain - State transition diagram of a 4-state

continuous-time Markov chain with one absorbing state
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5.1 Phase-type distributions

rates have been chosen so that absorption occurs with probability one.

In order to describe the Markov chain we need three descriptors:

1. A state space

S = {0, 1, 2, 3}. (1.9)

2. An initial state probability distribution

(↵
0

,↵) =

✓

1

10

1

3

2

5

1

6

◆

(1.10)

which governs the selection of the initial state, ↵
0

being the point mass at zero

being the point mass at zero.

3. An infinitesimal generator

Q =

2

6

6

4

0 0 0 0
4 �12 8 0
0 5 �10 5
2 4 0 �6

3

7

7

5

which governs the transitions between states.

The rows (labelled 0, 1, 2 and 3) of Q correspond to the state we move from, and the

columns (labelled 0, 1, 2 and 3) correspond to the state we move to. The zero-th row

consists of all zeros because once we have reached state 0 (absorption) we stay there.

The remaining diagonal entries are negative and the o↵ diagonal entries non-negative,

with all row sums equal to zero. The absorption rates from states 1, 2 and 3 are 4, 0

and 2, respectively. The distribution of time from start to finish (absorption), in the

Markov chain, is said to have a PH distribution. Consider a continuous-time Markov

chain on a finite state space S = {0, 1, 2, ..., p} where state 0 is absorbing. Let the

initial state probability distribution be

(↵
0

,↵) = (↵
0

,↵
1

, ...,↵p), with
p
X

i=0

↵i = 1, (1.11)

and the infinitesimal generator be Q. The random variable that is defined as the time

to absorption, is said to have a (continuous) PH distribution.

The infinitesimal generator for the Markov chain can be written in block-matrix form

as

Q =



0 0
t T

�

.
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5.1 Phase-type distributions

Here, 0 is a 1 ⇥ p vector of zeros. The vector t = (t
10,t20,...,tp0)

0 (the prime denoting

transpose) where, for i = 1, 2, ..., p, ti0 � 0 with at least one of the ti0 positive, is the

absorption rate from state i. The p⇥p matrix T = [tij ] is such that, for i, j = 1, 2, ..., p,

with i 6= j

tij � 0 (1.12)

and

tii = �
p
X

j=0,j 6=i

tij (1.13)

that is, t = Te where e is a p ⇥ 1 vector of ones. The PH distribution is said to have

a representation (↵,T) of order p. The matrix T is referred to as a PH generator.

The point mass at zero ↵
0

is completely determined by ↵ and therefore does not need

to appear in the expression for the representation. Typically representations are not

unique and at least one representation of minimal order must exist. Such a representa-

tion is known as a minimal representation, and the order of the PH distribution itself is

defined to be the order of any of its minimal representations. To ensure absorption in a

finite time with probability one, we require that every non-absorbing state is transient.

This statement is equivalent to T being invertible.

An additional requirement on the PH representation (↵,T) is that there are no su-

perfluous phases. That is, each phase in the Markov chain defined by ↵ and T has

a positive probability of being visited before absorption. If this is the case, then we

say that the PH representation is irreducible. If the representation is reducible, we can

form an irreducible representation by simply deleting those states that are superfluous.

A PH distribution with representation (↵,T) has distribution function, defined for

t � 0, given by

F (t) =

(

↵
0

t = 0

1� h↵, exp (Tt)ei t � 0

with respect to t gives the corresponding density function, defined for t > 0,

f(t) = �h↵, exp (Tt)Tei. (1.14)

Now we will give some examples PH distribution.
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5.1 Phase-type distributions

Exponential distribution The minimal representation of an exponential distribu-

tion is

↵ = (1) (1.15)

T = (��). (1.16)

Generalized Erlang distribution The order p generalized Erlang distribution can

be described using a state transition diagram that has p states in series, see the state

diagram below
?

?

y

1
�1����! 2

�2����! · · · �
p�1����! p

�
p

?

?

y

It is easy to see, without loss of generality, that the states can be ordered so that the

rates 0 < �
1

 �
2

 ...  �p. The representation for the generalized Erlang distribution

corresponding to the state transition diagram is

↵ = (1 0 ... 0)

T =

0

B

B

B

B

B

B

@

��
1

�
1

0 · · · 0
0 ��

2

�
2

· · · 0

0 0 ��
3

. . . 0
...

...
. . .

. . . 0
0 0 0 · · ·� �p

1

C

C

C

C

C

C

A

The density function for an Erlang distribution of order p, defined for t > 0 is given by

f(t) =
�ptp�1e��t

p!
(1.17)

Hyper-exponential distribution The order p hyper-exponential distribution can

be described using a state transition diagram with p states in parallel, see below

↵1

?

?

y

↵2

?

?

y

↵
p

?

?

y

1 2 · · · p

�1

?

?

y

�2

?

?

y

�
p

?

?

y
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5.1 Phase-type distributions

Clearly, without loss of generality, the states can be ordered so that the rates 0 < �
1

<

�
2

< ... < �p . The corresponding representation is

↵ = (↵
1

↵
2

...↵ p)

T =

0

B

B

B

@

��
1

0 · · · 0
0 ��

2

· · · 0
...

. . .
. . . 0

0 0 · · ·� �p

1

C

C

C

A

with density function, defined for t > 0, given by

f(t) =
p
X

i=1

↵i�ie
�
i

t (1.18)

where, for i = 1, 2, ..., p, ↵i > 0 and
Pp

i=1

↵i = 1

Coxian distribution The order p Coxian distribution has the following state tran-

sition diagram
↵1

?

?

y

↵2

?

?

y

↵
p

?

?

y

1
�1����! 2

�2����! · · · �
p�1����! p

�
p

?

?

y

These distributions have representations of the form

↵ = (↵
1

↵
2

...↵ p)

T =

0

B

B

B

B

B

B

@

��
1

�
1

0 · · · 0
0 ��

2

�
2

· · · 0

0 0 ��
3

. . . 0
...

...
. . .

. . . 0
0 0 0 · · ·� �p

1

C

C

C

C

C

C

A

Although it is not obvious, in this case, without loss of generality, the states can be

ordered so that the rates 0 < �
1

 �
2

 ...  �p [83].

Unicyclic distribution The order p unicyclic distribution has representations of the

form

↵ = (↵
1

↵
2

...↵ p)
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T =

0

B

B

B

B

B

B

B

B

@

��
1

�
1

0 · · · 0
0 ��

2

�
2

· · · 0

0 0 ��
3

. . . 0
...

...
. . .

. . . 0
0 0 · · ·� �p�1

�p�1

µ
1

µ
2

· · · µp�1

��p

1

C

C

C

C

C

C

C

C

A

where for i = 1, 2..., p � 1, µi � 0, 0 < �
1

 �
2

 ...  �p and �p >
Pp�1

i=1

µi. It was

conjectured in [84] that every PH distribution of order p has a unicyclic representation

of the same order, however, [85] showed that this is not, in general, the case.

5.1.4 Tail analysis

In order to evaluate the tail of the probability distribution and to provide an opera-

tional guideline in bed planning, we propose two indices, inspired by the theory of risk

measures [86], [87], and [88], the value-at-risk (VaR) and the expected shortfall

(ESh) related to the LoS probability distribution.

In its most general form, the VaR measures the potential loss in value of a risky asset

or portfolio over a defined period for a given confidence interval. While VaR can be

used by any entity to measure its risk exposure, it is used most often by commercial

and investment banks to capture the potential loss in value of their traded portfolios

from adverse market movements over a specified period; this can then be compared

to their available capital and cash reserves to ensure that the losses can be covered

without putting the firms at risk. Taking a closer look at VaR:

• To estimate the probability of the loss, with a confidence interval, we need to

define the probability distributions of individual risks, the correlation across these

risks and the e↵ect of such risks on value. In fact, simulations are widely used to

measure the value-at-risk for asset portfolio.

• The focus in value-at-risk is clearly on downside risk and potential losses.

• There are three key elements of VaR, a specified level of loss in value, a fixed

time period over which risk is assessed and a confidence interval. The VaR can

be specified for an individual asset, a portfolio of assets or for an entire firm.
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5.2 A new model for the length of stay of hospital patients

Given a confidence level ↵ 2 (0, 1), the VaR of a portfolio at ↵ over the period t is given

by the smallest number k 2 R such that the probability of a loss over a time interval t

greater than k is ↵. In the same way

V aRt(↵) = F�1

t+1

(↵) = inf{k;Ft+1

(k) � ↵} (1.19)

where Ft is the cumulative distribution function of k. In our framework the risky asset

is represented by the hospitalization cost of a patients. Thus, if the VaR associated

to the LoS distribution is $ 2 days, 95% confidence level, the probability of having a

discharge in 2 days is grater than 95%. Understanding that VaR and quantiles are

fundamentally related provides a key insight into computing VaR. The V aR(↵) is q↵

where q↵ is the ↵-quantile of the portfolio. In most cases ↵ is chosen to be some small

quantile 5% or 10%.

The expected shortfall combines aspects of the VaR methodology with more infor-

mation about the distribution of returns in the tail. Expected shortfall is defined as

the expected value of the portfolio loss given a VaR exceedance has occurred

ESh↵(t) = E
⇥

k|k � F�1(↵)
⇤

. (1.20)

5.2 A new model for the length of stay of hospital patients

In this section is introduced an innovative approach to draw the hospital length of stay

(LoS) distribution.

Hospital LoS is considered to be a reliable and valid proxy for measuring the con-

sumption of hospital resources [28]. However average LoS can be misleading since the

underlying distribution is not symmetric. Therefore model based on the average LoS

can not describe the underlying distribution of patients [89], [12].

We also show how well know models [90] should be improved in order to capture some

statistical features observed in real situations. More specifically the application of a

generalization of the phase-type distributions is demonstrated [91]. Our case study is

based on a data set originated from the University Polyclinic Campus Bio-Medico and

it is shows that standard models are not adequate to describe the flow patients. To

overcome such limit we propose a generalization which is based on a few number of

parameters and supplies a phenomenological interpretation of data. Furthermore to
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5.2 A new model for the length of stay of hospital patients

a↵ord an operational guideline for planning and management of hospital beds we pro-

pose a method to evaluate the forecasting ability. Precisely we reword some measures

used in financial risk management like the Value at Risk and Expected Shortfall [86],

[87], [88] in order to show the goodness of the model.

In next section a short description of Campus Bio-Medico hospital and some related

statistics are summarized. The proceeding section follows with a description of phase-

type distributions and the description of our generalization.

5.2.1 Data

The data set analysed originates from the Campus Bio-Medico hospital database and

concerns patients of di↵erent departments. This hospital is a medium size structure

within the context of Italian health care system. Moreover this hospital o↵ers a high

quality service compared to the national health system.

This work focuses on the flow of patients within four departments: General Surgery,

Geriatrics, Clinical Medicine and Endoscopy. Those departments have highest number

of hospitalizations within Campus Bio-Medico hospital. All of the Length of Stay

(LoS) and occupancy statistics refer to patients that were hospitalized from January

2007 to December 2011. The basic descriptive statistics of the patients LoS for each

department are reported in Table 5.1. The values of skewness and kurtosis show a

no. patients (N ) Mean

Clinical Medicine 3890 6.45

Endoscopy 3620 3.80

General Surgery 8787 6.04

Geriatrics 3934 8.86

Variance Skewness Kurtosis

27.34 1.87 6.72

25.32 1.49 5.68

19.14 2.08 8.77

8.69 3.38 17.71

Table 5.1: Descriptive statistics of LoS. The mean value reppresents the average number

number of days spent in each department.

strong di↵erence between the distributions of each department. The density function

of the departments are asymmetric, they can only take positive values, and leptokurtic,
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5.2 A new model for the length of stay of hospital patients

execute acute peak around the mean and have fatter tails. The long gradual tail to

the right of the distribution is given by a very small number of patients that stay in

hospital for a considerable amount of time. Furthermore Endoscopy department exhibit

strongly di↵erences form other departments; kurtosis is bigger and the average time

spent is smaller. In Section 5.2.4 is shown that the proposed model achieves good result

for all departments.

We remark the importance of longer stay patients, in fact although the majority of

patients is discharged after a short period, beds are mostly occupied by patients that

stay for a longer period. Moreover Campus Bio-Medico hospital does not have the

emergency department.

5.2.2 Model

In order to describe the empirical distribution it is used a generalization of phase-type

distribution (PH distribution). PH distribution is a very versatile class of distributions.

Introduced by Neuts in [92], phase-type distributions are defined via a continuous time

homogeneous Markov chain X(t) on a finite state space {0, 1, ...n}, n � 0, see [93].

The state 0 is absorbing and Markov chain is assumed to be irreducible. Then the

random variable representing the first hitting time of 0 is

⌧ = inf

⇢

t � 0 : X(t) = 0

�

, (2.21)

which is finite almost everywhere, and its distribution is called a phase-type distribu-

tion. Let the initial state probability distribution be ↵ 2 Rn such that

n
X

i=1

↵i = 1, ↵i � 0 8i = 1, 2, . . . n. (2.22)

Let T = [�ij ] for i, j = 1, 2, . . . , n be a n ⇥ n real matrix such that for i 6= j, �ij � 0,

satisfying

�ii  �
n
X

j=0, j 6=i

�ij. (2.23)

The PH distribution is said to have a representation (↵,T ) of order n if the probability

density function of ⌧ is as follows [83], [94]:

ph(t) = �↵eT t
Te, t > 0. (2.24)
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5.2 A new model for the length of stay of hospital patients

where e is a n ⇥ 1 vector of ones. When T is diagonal, the density function (2.24) is

called an hyperexponential distribution.

In this work we shall consider an extension of (2.24). Given the density function

�(t; k,✓ ) of a Gamma distribution with parameters k, ✓ and a diagonal matrix T =

�diag(�
1

,�
2

, . . . ,�
n

), with �i � 0 for i = 1, 2, . . . n, we define

f(t) =
n
X

i=1

↵i�i�(t�i; k,✓ ), for t > 0, (2.25)

that is

f(t) =
✓k

�(k)

n
X

i=1

↵i�
k
i t

k�1e�✓�it. (2.26)

In the rest of the chapter we refer to 2.25 as the density function of phase-type Gamma

distribution (PHGamma).

Remark We observe that equation (2.25) may be generalized by using the following

form:

h(t) =
n
X

i=1

↵ig(t�i)�i (2.27)

where g is a given density function. In the case where g is analytic on R, then for any

matrix T , g(T t) is well define and h takes the following form:

h(t) = �↵g(T t)Te. (2.28)

which is a generalized version of (2.24). In general, a function g : R ! R is a probability

density function of a continuous random variable if

• g is a non-negative Lebesgue-integrable function;

•
R

+1
�1 g(x) dx = 1.

Then we have the following result

Proposition 5.2.1. Let g be a probability density function. For every ↵
1

,↵
2

, . . . ,↵n �
0 with ↵

1

+ ↵
2

+ · · ·+ ↵n = 1, and �
1

,�
2

, . . . ,�n > 0, the function

h(⌧) =
n
X

i=1

↵ig(��i⌧)�i (2.29)

is a probability density function.
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5.2 A new model for the length of stay of hospital patients

Proof. It su�ces to prove that
R

+1
�1 h(⌧) d⌧ = 1. In fact, we have

Z

+1

�1
h(⌧)d⌧ =

n
X

i=1

↵i

Z

+1

�1
g(�⌧�i)�id⌧. (2.30)

For any integral, in the sum, we apply the change of variable ⌧ = �s/�i. Thus

n
X

i=1

↵i

Z

+1

�1
g(�⌧�i)�id⌧ =

n
X

i=1

↵i

Z

+1

�1
g(s)ds =

n
X

i=1

↵i = 1. (2.31)

In the same way it is possible to evaluate the mean and the variance of a random

variable distributed according to a PHGamma density function:

E[X] =
k

✓

n
X

i=1

↵i

�i
, (2.32)

E[(X � E[X])2] =
(k2 + k)

✓2

n
X

i=1

↵i

�2i
�
✓

k

✓

n
X

i=1

↵i

�i

◆

2

, (2.33)

E[eXt] =
n
X

i=1

↵i

✓

1� 1

✓

t

�i

◆�k

. (2.34)

Here the moment generating function is well defined on the interval t < ✓min(�
1

,�
2

, . . . ,�n).

The density function 2.25 provides a useful tool to describe LoS data; the standard

PH-distribution can not describe leptokurtic densities; furthermore the use of the

PHGamma distribution allows to reach the peak and fit the fat tail of the data. More-

over, like for the Hyperexponential distribution, the PHGamma can be described using

the following state transition diagram with n states in parallel:

↵1

?

?

y

↵2

?

?

y

↵
n

?

?

y

µ
1

µ
2

· · · µn
?

?

y

?

?

y

?

?

y

where the average time spent µi in each state is evaluated by

µi =
1

�i

k

✓
. (2.35)
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5.2 A new model for the length of stay of hospital patients

5.2.3 Optimization method

According to [95], [96], and [97] maximum log-likelihood estimation is used in order to fit

the parameters of LoS distributions. The number N (j) of patients for each department

are reported in Table 5.1, where j represents j-th department. The log-likelihood

objective function is given by

argmax
⇥2D

N(j)
X

i=1

log(f(ti;⇥)), (2.36)

where f(·;⇥) is the density function of the considered model depending on the set of

parameters described by a vector ⇥.

The optimization routine is implemented in the MATLAB framework using existing

algorithm based on the interior-point method. Parameters calibration starts from a

Halton quasi-random sequence of 10⇥ n initial points [98], [99]. A Halton sequence is

a deterministic sequence of numbers that provides well-spaced combinations from an

interval and provides negative correlation between simulated probability for individuals.

This negative correlation reduces the variance in the log-likelihood function, hence it is

a suitable method for the selection of the parameters estimation process starting point.

A sequential procedure is adopted whereby increasing numbers of phases n are tried

starting with n = 1 until little improvements in the fit of the data can be obtained

by adding a new phase. The number of the phases that allows the best compromise

between model complexity and goodness of the fit is chosen. In Table 5.2 are reported

the values of the objective function related to the PHGamma model. The analysis

of the data shows that the use of models with more than 3 states provide negligible

improvements in the performance. Hence we fix the number of the phases to 3.

5.2.4 Estimation Results

The PHGamma distribution provides a very versatile tool to describe a wide class of

density functions. Using a few parameters is possible to describe distributions that

exhibit di↵erent characteristics. The performance of the model are compared with

di↵erent phase-type distributions. It is chosen the Coxian distribution that is already

used in modelling hospital LoS [90], [96]. To underline the di↵erence of using a Gamma

density function instead of using an Exponential density function, the Hyperexponential

distribution is used, see [100]. Moreover in order to complete the analysis, the Unicyclic
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5.2 A new model for the length of stay of hospital patients

n = 1 n = 2 n = 3

Clinical Medicine -2.6299 -2.5866 -2.5785

Endoscopy -2.0857 -1.9074 -1.8708

General Surgery -2.7100 -2.5973 -2.5659

Geriatrics -2.8736 -2.8603 -2.8484

n = 4 n = 5 n = 6

Clinical Medicine -2.5731 -2.5700 -2.5576

Endoscopy -1.8420 -1.7731 -1.6907

General Surgery -2.5655 -2.5484 -2.5113

Geriatrics -2.8464 -2.8422 -2.8353

Table 5.2: Objective log-likelihood function values for each department of Campus Bio-

Medico LoS distribution estimation.

distribution is also used, see [101], [85]. In Figures 5.2 and 5.3, a three-states model

is estimated for each distribution. In order to obtain the LoS data it is considered

the di↵erence between the discharge and the admission date. Data analysis of Table
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Figure 5.2: LoS estimated density functions of Campus Bio-Medico General

Surgery department - Comparison between 3-states phase-type distributions

5.1 shows that the most of patients stay in hospital less then 15 days; in this interval

PHGamma model perform a better fit of the distribution. Longer stay patients are

very rare therefore is di�cult to estimated the probability distribution. Moreover all

the models exhibit same tail behaviour. Therefore, in next section, we introduce a new
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5.2 A new model for the length of stay of hospital patients

cumulative measure to adequately evaluate the tail performance of models.

The results show that the proposed model provides a better fit of the data for all the

departments. PHGamma distributions can describe data that have di↵erent behaviours:

Figure 5.2 shows how the model can fit a density function that has 2 di↵erent peaks,

instead Figure 5.3 shows a case in which to data that exhibit a unique high peak. To
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Figure 5.3: LoS estimated density functions of Campus Bio-Medico Endoscopy

department - Comparison between 3-states phase-type distributions

evaluate the performance of those models, we also use the following four discrepancy

measures: the average prediction error (APE), the average absolute error (AAE), the

root mean-square error (RMSE), and the average relative prediction error (ARPE). Let

F be the cumulative density function and tk for k = 1, 2, . . . ,K the evaluation time.

Then the four error estimators are defined as follows:

AAE =
PK

k=1

|F (t
k

)� ˆF (t
k

)|
K

APE =
PK

k=1

|F (t
k

)� ˆF (t
k

)|
F (t

k

)

ARPE = 1

K

PK
k=1

|F (t
k

)� ˆF (t
k

)|
F (t

k

)

RMSE =
q

PK
k=1

(F (t
k

)� ˆF (t
k

))

2

K

(2.37)

These measures are shown in Table 5.12. In particular we observe that the PHGamma

distribution achieves the smallest errors for all these indicators, at least one order of

magnitude better then the other models.

The PHGamma n-phases model requires the estimations of 2⇥ n+ 2 parameters that
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5.2 A new model for the length of stay of hospital patients

PHGamma

AAE APE ARPE RMSE

General Surgery 0.0020 0.0855 0.0028 0.0027

Geriatrics 0.0039 0.4032 0.0134 0.0054

Clinical Medicine 0.0031 1.3340 0.0445 0.0037

Endoscopy 0.0052 0.6688 0.0223 0.0064

Coxian

AAE APE ARPE RMSE

General Surgery 0.0164 2.6441 0.0881 0.0287

Geriatrics 0.0185 2.7924 0.0931 0.0251

Clinical Medicine 0.0120 10.0621 0.3354 0.0168

Endoscopy 0.0183 10.9755 0.3659 0.0361

Unicyclic

AAE APE ARPE RMSE

General Surgery 0.0157 2.5602 0.0853 0.0274

Geriatrics 0.0184 2.8347 0.0945 0.0251

Clinical Medicine 0.0111 9.8163 0.3272 0.0157

Endoscopy 0.0177 10.9211 0.3640 0.0352

Hyperexponential

AAE APE ARPE RMSE

General Surgery 0.0892 6.7190 0.2240 0.0909

Geriatrics 0.1121 23.3102 0.7770 0.1175

Clinical Medicine 0.1032 38.1336 1.2711 0.1071

Endoscopy 0.1418 20.0347 0.6678 0.1455

Table 5.3: Summary of four discrepancy measures for the fitting of department LoS

distribution of Campus Bio-Medico.

are reported in Table 5.5. The value of the moments, calculated using the moment

generating function, are reported in Table 5.6. The di↵erence between the real value,

reported in Table 5.1 and the estimated is negligible hence the density estimated supply

a correct estimation of the first moments. Furthermore the use of this model provides

a good description of the empirical probability density and it supplies the following

interpretation: an admitted patient has ↵i probability to stay µi days in average.

Considering parameters reported in Table 5.5, the following diagram describes the
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5.2 A new model for the length of stay of hospital patients

PHGamma Coxian Unicyclic Hyperexponential

General Surgery -2.5659 -2.6558 -2.6498 -2.7987

Geriatrics -2.8484 -2.8794 -2.8794 -3.1812

Clinical Medicine -2.5785 -2.6156 -2.6129 -2.8645

Endoscopy -1.8708 -2.0528 -2.0456 -2.3360

Table 5.4: Objective log-likelihood function values of 3-states models

↵1 ↵2 ↵3 �1 �2 �3 k ✓

General Surgery 0.1267 0.3247 0.5487 0.9097 1.9450 5.5350 8.3690 0.5614

Geriatrics 0.2037 0.7458 0.0505 0.7945 1.6841 5.3533 7.4938 0.5996

Clinical Medicine 0.1218 0.5876 0.2906 1.1484 2.7095 5.6575 8.3797 0.4861

Endoscopy 0.0695 0.2543 0.6761 1.3972 3.3472 6.8216 12.7696 0.7549

Table 5.5: Estimated parameters of 3-states PHGamma distributions for each department

of Campus Bio-Medico.

department of Clinical Medicine:

12,18%

?

?

y

58,76%

?

?

y

29.06%

?

?

y

15.01 6.36 3.04
?

?

y

?

?

y
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?

y

5.2.5 Forecasting ability

Longer stay patients are important, in fact although the majority of patients is dis-

charged after a short period, beds are mostly occupied by patients that stay for a longer

period. Proposed models have same distribution tail behaviour therefore we introduce

cumulative measure to underline the di↵erences. In order to provide an operational

guideline in bed planning, it is important to estimate the probability that a patient is

discharged before a given time.

Inspired by the theory of risk measures [86], [87], and [88], we propose two indices based

on the notion of value-at-risk and the expected shortfall related to the LoS probability

distribution. Precisely, given a confidence level � 2 (0, 1), since ⌧ is assumed to have a

continuous distribution function, we can consider the following amounts:

P (⌧ > VLoS�(⌧)) = �, (2.38)
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5.2 A new model for the length of stay of hospital patients

Mean Variance Skewness Kurtosis

General Surgery 6.04 27.38 1.91 7.24

Geriatrics 8,86 25.55 1.57 6.50

Clinical Medicine 6.45 18.73 1.99 8.35

Endoscopy 3.80 8.01 2.70 18.83

Table 5.6: Estimated moments of 3-states PHGamma distributions for each department

of Campus Bio-Medico.

and

ELoS� (⌧) =
1

�

Z

1

1��
VLoS

b

(⌧) db = E [⌧ |⌧ > VLoS�(⌧)] . (2.39)

Thus equation (2.38) implicitly defines VLoS�(⌧) as the smallest time t such that the

probability of a demission is greater than �. In other words VLoS
0.05(⌧) is the threshold

value of ⌧ such that leaves on its left side the 95% of the probability associated with

the probability distribution of ⌧ . Therefore is proposed a procedure such that, starting

from a calibration data set, it estimates the model parameters and it provides a forecast

of future data. We consider a calibration data set consisting of 2000 patients ordered by

time and the VLoS�(⌧) is evaluated for each model, for � = 0.05 and � = 0.03. Then

a new sample is taken where the oldest 20 elements are replaced by a new data set.

On this updated sample the VLoS�(⌧) is evaluated using the empirical distribution.

These values are compared with the values previously estimated using the model. The

updated data set becomes the calibration data set and the procedure is repeated twenty

times using as the starting point for the calibration the previously estimated param-

eters (for the first step of this procedure a Halton quasi random sequence of 10 ⇥ n

initial points is used). In Figure 5.4 is reported the result of VLoS estimation for the

General Surgery department. This figure shows that, using PHGamma distribution, a

better estimation of VLoS is achieved; in fact this approach allows to describe better

than other models the tail of the density. The di↵erence between the real values and

those estimated by the PHGamma is less than 1 day, hence the estimation of VLoS is

validated.

The same procedure, used for the VLoS, is also adopted to evaluate the ELoS. In

Figure 5.5 the estimation of ELoS for the Clinical Medicine department is showed. Us-

ing the PHGamma distribution is also provided a good estimation of this risk measure

since the di↵erent between the values is negligible. We remark that the empirical VLoS
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5.3 Tor Vergata case of study
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Figure 5.4: VLoS analysis of Campus Bio-Medico General Surgery department

- Comparison between 3-states phase-type distributions

and ELoS represented in Figure 5.4 and 5.5 are computed on data sets where newest

hospitalizations are not used for the calibration of the models and for the calculation

of the corresponding theoretical VLoS (2.38) and ELoS (2.39) associated. The station-

ary behaviour over a time window of the theoretical VLoS and ELoS, based on the

PHGamma model, shows the ability of such model to forecast the higher LoS which

yields a relevant consumption of resources for the hospital. Conversely, other models

exhibit a poor performance underestimating or overestimating this crucial amount.

5.3 Tor Vergata case of study

In this section is demonstrated how standard density function can not describe the Tor

Vergata cardioligy department LoS distribution. In order to capture all the statistical

features observed in real situations the use of PHGamma is proposed [29].

Also an analysis of the discharge rate (DR) and the admission rate (AR). Those proxies

provide information on the e�ciency of departments and give operational guidelines

for medical sta↵ is performed. In fact the distribution of discharge rate supplies the

probability that a given number of patients is discharged in one day; likewise the

admission rate provides the probability that a given number of patients is admitted in

one day.
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5.3 Tor Vergata case of study
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Figure 5.5: ELoS analysis of Campus Bio-Medico Clinical Medicine department

- Comparison between 3-states phase-type distributions

5.3.1 Data

Tor Vergata Hospital is a big size structure within the context of Italian healthcare

system. Moreover this hospital o↵ers a high quality service compared to the national

health system. This work focuses on the flow of patients within the department of

Cardiology. All the data are related to a period of 5 years going from 1st January 2008

to 16th May 2013. There have been considered 11510 admissions.

The basic descriptive statistics of the patients LoS are reported in Table 5.7. The values

Mean Variance Skewness Kurtosis N

LoS 3.33 4.86 3.46 24.40 11510

Table 5.7: LoS descriptive statistics of Tor Vergata Cardiology department

show that the LoS density function is asymmetric, it can only take positive values, and

it exhibits a leptokurtic form (execute acute peak around the mean and have fatter

tails). The long gradual tail to the right of the distribution is given by a very small

number of patients that stay in hospital for a considerable amount of time.

We remark the importance of longer stay patients, in fact although the majority of

patients is discharged after a short period, beds are mostly occupied by patients that

stay for a longer period.
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5.3 Tor Vergata case of study

The discharge rate is the probability that in one day are discharged n patients; it

is estimated from real data as the number of day in which are discharge n patients

divided by the total number of considered days. Likewise the admission rate is defined

as the number of days in which are admitted n patients divided by the total number

of considered days. In Table 5.8 are reported the main characteristics of the admission

rate and the discharge rate.

Mean Variance Skewness Kurtosis Max

Admission 5.83 6.62 0.06 2.59 14

Discharge 5.83 6.96 0.17 2.93 16

Table 5.8: Tor Vergata Cardiology department statistics of admission and discharge rate.

5.3.2 AR/DR model

To evaluate the discharge and the admission distributions it is used an approach based

on single factor model [102]. In general this model is used in financial mathematics

to estimate credit risk of a portfolio asset [103]. The basic idea behind this model

consists into creating an analogy between the default of a financial institution and

discharge of a patient. The aim is to come up with a simple and closed-form formula

for the distribution function of the discharge rate. Deriving a closed form solution

requires making a set of simplifying assumptions. We will progressively introduce these

assumptions and their implications for the model.

To derive the DR and the AR, knowing the individual probabilities of the patients is

not enough; we also need to know their correlation structure. We assume that each

patient status is describe by a random variable. Therefore we introduce the real value

random variable X
1

, ..., XN , where N is the number of inpatients defined on the same

probability space (⌦,F,P), which drive the patients discharge/admission probabilities.

We also assume that the correlation coe�cient of each pair of random variables Xn and

Xm is ⇢n,m. The correlation coe�cient ⇢n,m between each pair of random variables Xn

and Xm is the same for any two patients:

corr(Xn, Xm) = ⇢n,m = ⇢. (3.40)
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5.3 Tor Vergata case of study

There exists a source of uncertainty a↵ecting all patients. Moreover, the random vari-

ables X
1

, ..., XN are described by (3.41)

Xn =
p
⇢Y +

p

1� ⇢"n, (3.41)

for all n = 1, ..., N where Y,"
1

, ..., "N are independent random variables on (⌦,F,P).

We can interpret (3.41) as follows: each random variable Xn represents the disease

state of patient, whose realization determines if the patient n is discharged. In fact,

if the disease state is less than a threshold value K the patient is discharged. Xn can

be expressed as the sum of two factors: one common or systematic factor Y and an

idiosyncratic factor "n that are i.i.d. and defined on the same probability space. Y

a↵ects all patients in the same way and has density function f with mean E[Y ] = 0 and

variance V[Y ] = �2, the idiosyncratic factors are independent across patients and have

a common density function g such E["n] = 0 and V["n] = ⌫2. The covariance between

Xn and Xm is

cov(Xn, Xm) = E
h

XnXm

i

= E
h

(
p
⇢Y +

p

1� ⇢"n)(
p
⇢Y +

p

1� ⇢"m)
i

= ⇢�2 + (1� ⇢)⌫2�n,m

(3.42)

where �n,m is the Kronecker delta.

Conditioning on the factor Y , the discharge probability of each patient, denoted by

p(Y ), is easily computable:

p(Y ) = P[Xn < K|Y ]

= P
hp

⇢Y +
p

1� ⇢"n < K|Y
i

= P


"n <
K �p

⇢Y
p
1� ⇢

|Y
�

= G

✓

K �p
⇢Y

p
1� ⇢

◆

(3.43)

where G is the cumulative density function related to g. Hence the random variables

X
1

, ..., XN are conditionally independent given the random systematic factor Y .

Consider, for each patient n, the random variable Ln takes value 0 if the patient n

has not discharged from the department under consideration and is 1 otherwise. Then

define L(N) as the number of discharged patients:

L(N) =
N
X

n=1

1X
n

<K
n

. (3.44)
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5.3 Tor Vergata case of study

In general N cannot be considered as deterministic. Actually, the number of patient

hospitalized in each department is modelled as a discrete random variable Np with

probability mass function h. We also assume that Np is defined on probability space

(⌦,F,P) ans is independent of "n and Y .

In our empirical study, the maximum number of patients that can be received in the

department Nmax is estimated from historical data and is reported in Table 5.8. There-

fore the density function of L(Np) is formulated in light of the fact that P(L = m|Np =

n, Y = y) is binomial distributed with parameters n and p(Y ), This the probability

that L = m is given by

P(L = m) =
N

max

X

n=m

h(n)P(L = m|Np = n)

=
N

max

X

n=m

h(n)

Z

+1

�1
P(L = m|Np = n, Y = y)f(y)dy

=
N

max

X

n=m

h(n)

Z

+1

�1

✓

n

m

◆

p(y)n[1� p(y)]n�mf(y)dy

(3.45)

In a future work in preparation we will consider the dependence between the e�ciency

of the department and the number of patients.

5.3.3 Optimization method

According to [95], [96], and [97] maximum log-likelihood estimation is used in order to

fit the parameters of LoS distributions. The patients number N is reported in Table

5.7 The log-likelihood objective function is given by

LogL(⇥) = argmax
⇥2D

N
X

i=1

log(f(ti;⇥)), (3.46)

where f(·;⇥) is the density function of the considered model depending on the set of

parameters described by a vector ⇥.

The optimization routine is implemented in the MATLAB involvement using existing

algorithm based on the interior-point method. Parameters calibration starts from a

Halton quasi-random sequence of 10⇥ n initial points [98], [99]. In order to choose the

optimal PHGamma, a sequential procedure is adopted whereby increasing numbers of

phases n are tried starting with n = 1 until little improvements in the fit of the data
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5.3 Tor Vergata case of study

can be obtained by adding a new phase. The number of the phases that allows the best

compromise between model complexity and goodness of the fit is chosen. In Table 5.9

are reported the values of the objective function related to the PHGamma model. The

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

LogL(⇥) -1.9038 -1.8026 -1.7698 -1.7605 -1.6528 -1.5607 -1.5210

Table 5.9: Log-likelihood function values obtaind in LoS density estimation using a n-

states PHGamma model on Tor Vergata Cardiology department.

analysis of the data shows that the use of a model with more than 3 states a negligible

in the performance. Hence we fix the number of the phases to 3.

5.3.4 Estimation Results

5.3.4.1 LoS model

The PHGamma distribution provides a very versatile tool to describe a wide class of

density functions. Using a few parameters is possible to describe distributions that

exhibit di↵erent characteristics. The performance of the model are compared with

di↵erent standard density. In Figure 5.6 Normal, Lognormal, Weibull, Gamma and
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Figure 5.6: LoS estimated density functions of Tor Vergata Cardiology depart-

ment - Comparison between 3-states PHGamma and standard distributions.

3-states PHGamma is estimated. The results show that the proposed model provides
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5.3 Tor Vergata case of study

a better fit of the data. In Table 5.10 are reported the parameters estimated. In order

↵1 ↵2 ↵3 �1 �2 �3 k ✓

0.0161 0.2538 0.7302 0.9794 2.8180 6.1106 9.5710 0.6430

Table 5.10: 3-states PHGamma estimated parameters of Tor Vergata Cardiology depart-

ment LoS distribution.

to take measure of the goodness of the fit in Table 5.11 are reported the log-likelihood

function for each model. 3-states PHGamma model performs the biggest log-likelihood

value. To evaluate the performance of those models, we also use four discrepancy

Lognormal Normal Weibull Gamma PHGamma

LogL(⇥) �1.8082 �2.3131 �2.0131 �1.9038 �1.7698

Table 5.11: Tor Vergata Cardiology department log-likelihood function value of LoS

estimation for each model.

measures introduced in 2.37. These measures are shown in Table 5.12. In particular

we observe that the PHGamma distribution achieves the smallest errors for all these

measures.

Lognormal Normal Weibull Gamma PHGamma

AAE 0.0050 0.1286 0.0385 0.0077 0.0039

APE 1.4761 10.3361 5.6001 2.4620 0.4702

ARPE 0.0224 0.1566 0.0849 0.0373 0.0071

RMSE 0.0120 0.1325 0.0441 0.0196 0.0051

Table 5.12: Summary of four discrepancy measures of Tor Vergata Cardiology department

LoS distribution.

Forecast ability In order to provide an operational guideline in bed planning, it is

important to estimate the probability that a patient is discharged before a given time.

To validate the performance of the model and its stability over time is used the following

procedure: we consider a calibration data set consisting of 1000 patients ordered by

time to estimate the parameters of the model. Then a new sample is taken where the

oldest 100 elements are replaced by new data. On this updated sample the empirical

distribution is evaluated and is compared with the density previously estimated using
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5.3 Tor Vergata case of study

the PHGamma model. The updated data set becomes the calibration data set and the

procedure is repeated hundred times using as the starting point for the calibration the

previously estimated parameters (for the first step of this procedure a Halton quasi

random sequence of 10 ⇥ n initial points is used). There have been considered more

then 11000 di↵erent admissions from April 3rd 2008 to April 30th 2013. To evaluate the

stability of the model it is considered the time analysis of the parameters. In Figure

5.7 is shown the time trend of estimated parameters that exhibit a regular pattern with

a limited variation.

In order to evaluate the model performances in each scenario has been considered the

following error estimator

" =

P

k tk[fr(tk)� fe(tk)]
P

k tkfr(tk)
(3.47)

where fr is the real distribution and fe is the estimated distribution. In the first plot

of Figure 5.8 is reported the time trend of the error. Each scenario has 1000 patients

and covers an average period of 17 days with a use of 3500 bed days in average. The

error value, that is bounded in the range ±3%, shows that the model has an average

bed days error estimation lower then 15. In the second plot is reported the absolute

error for the bed days and patients. The bed days error formula is

|"b| =
P

k tk|fr(tk)� fe(tk)|
P

k tkfr(tk)
(3.48)

and patient LoS formula is

|"l| = APE =

P

k |fr(tk)� fe(tk)|
P

k fr(tk)
(3.49)

These indicators evaluate the distance between the distributions and show underesti-

mation and overestimation of bed days consumption and patient LoS in each scenario.

In particular, the plot shows that an average error of 17% in the bed days evalua-

tion consumption is made, and an average error of 10% for the patients LoS realized.

The absolute error allows to highlight errors of overestimation and underestimation in

contrast of using the error based on the simple di↵erence that takes into account the

cumulative consumption of resources.
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Figure 5.7: Parameters time trends of Tor Vergata Cardiology department -

Forecast ability analysis, y-axes represent the estimated value parameters.
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Figure 5.8: Error time trends of Tor Vergata Cardiology department - Forecast

ability analysis, in first plot is reporter the estimated density fitting error. In second plot

are reported the time trend analysis of error metrics reported in 3.48 (point-mark) and

3.49 (x-mark).
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5.3 Tor Vergata case of study

5.3.4.2 AR/DR model

An important proxies to evaluate the e�ciency of a department are the admission

rate and the discharge rate. Furthermore using the single factor model is provided a

phenomenological interpretation. In our empirical study we shall consider the following

models for the distribution densities involved in 3.45:
8

>

>

>

<

>

>

>

:

f(t) = 1

�
p
2⇡
e�

t

2

2�2

g(t) = 1

⌫
p
2⇡
e�

t

2

2⌫2

h(t) = z(t|µ,⇠)
⇠ e�z(t|µ,⇠), z(t|µ,⇠ ) = e

t�µ

⇠

(3.50)

Here the density h is selected according with a separated estimation procedure where

we observe that the number of patients in the department is well described by the

extreme value distribution, see Figure 5.9.
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Figure 5.9: Number of patients estimated density function of Tor Vergata

Cardiology department - Inpatients data analysis

The estimated parameters of the model are reported in Table 5.13 In Figures 5.10 and

5.11 are reported the probability functions estimated. The proposed model provide

a good description of the empirical distribution.
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Figure 5.10: Discharge rate estimated density function of Tor Vergata Cardi-

ology department - Inpatients data analysis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

no. patients

 

 
Real
Estimated

Figure 5.11: Admission rate estimated density function of Tor Vergata Cardi-

ology department - Inpatients data analysis
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5.4 Summary

K ⇢ ⌫ µ ⇠ �

AR 1.0813 0.8233 22.3929 11.6209 1.3980 4.5974

DR �0.0386 0.9861 29.7045 12.9137 1.9190 1.1737

Table 5.13: Estimated parameters for admission rate and discharge rate of Tor Vergata

Cardiology department.

5.4 Summary

In this chapter we investigated a new type of PH distribution, we gave a brief overview

of some properties and we presented a particular application to hospital LoS data. The

generalization proposed uses a few number of parameters and it supplies a phenomeno-

logical interpretation of data. We introduced measures, used in financial risk modelling,

in order to provide an operational guideline for planning and managing hospital beds.

We also introduced a new approach (single factor model) in order to describe the ad-

mission rate and the discharge rate of the department.

The following conclusions can be drawn:

1. PHGamma distribution provides a good fit of the real data in fact it performs

the smallest discrepancy measures (AAE, APE, ARPE, and RMSE).

2. The moment generating function of PHGamma is known in closed-form and the

log-likelihood estimation supplies a good estimation of the first four observed

moments.

3. The forecast ability is validated using the introduced risk measures (VLoS, ELoS).

Di↵erently from other models proposed in the dedicated literature [90], [100], and

[101], the PHGamma model estimation error is less than one day.

4. The single factor model provides a good description of the admission rate and the

discharge rate and supplies an adequate representation of the hospital operations

department.

5. The stability of the estimated parameters is shown using a sequential procedure

based on the analysis of some error indicators
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6

Hospital resources optimization

This Chapter introduces some quality indicators as a tool to evaluate health systems

performance and quality. A dynamic stochastic optimization model is then proposed to

optimize hospital bed occupancy. Three di↵erent models to describe patient discharge

probabilities are also proposed and then used to evaluate the optimal policies.

The costs associated with the healthcare system have risen dramatically in recent years,

and the increased public scrutiny to which the system has been subjected has been ac-

companied by increased attention from operations researchers and systems engineers

[104]. Research in this area has touched on nearly all aspects of the healthcare system,

with particular emphasis being given to problems in hospital operations management

[13], [32].

In recent decades di↵erent numeric indicators and methods have been used to qualify

structured index that express health service components quality performance. The first

step of this work is the definition of a model of the system under examination in order

to define its measurable constituent entities (dimensions). Among the common mea-

sured clinical parameters, a robust metrics, characterizing the constituent entities and

the best opportunity tools for the characterization of the results, have been identified.

The last step is multi-modal analysis of the results. Using this approach is provided

an application in the evolution of the cardiological intensive care unit (ICU) of San

Camillo hospital. Particularly, the attention is focused on the evolving of the medical

team.

Moreover we provide also a methodological approach to optimize the hospital resource

allocation based on stochastic dynamic programming. Results shows that the optimal
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6.1 Evaluation of indices for the measurement of quality in health systems

policy proposed performs better than an empirical policy. Empirical discharge fre-

quency models are also provided.

In this chapter are introduced some methods to support the decision process for the

department resource capacity planning and financial planning. The approaches

mainly focus on the tactical level and operational level; using quality indicators

to evaluate the health service performance provide decision process insight for tactical

level while the use of a stochastic dynamic approach contributes to online and the of-

fline operational planning procedures. Moreover the analysis of some measured clinical

parameters produce indications for the medical planning process.

6.1 Evaluation of indices for the measurement of quality

in health systems

In recent decades the term quality has been introduced in to the common language as

an essential part of clinical management. The intents of quality approach in healthcare

are mainly focused towards the identification of needs, and the evaluation of the ser-

vice through measurements and indices suitable to assess the performance of the system

[105], [106]. As in all sectors the use of suitable quality metrics is crucial. Then must

be defined tools to evaluate and combine indices to have structured methodologies that

expresses a global evaluation of the quality performance [107].

Quality indicators can be classified in several di↵erent ways, in addition they can be

compared and analyzed using di↵erent approaches. Some indicators can take contri-

butions from assessed classifications, or more indicators can be used simultaneously

according to the rules of data stratification [108]. Indicators can describe events and

rates of service’s utilization by the population [109]. Higher rates of several indicators

may be interpreted as e�ciency in functioning, whereas an indicator such as the death

rate, which is usually referred to specific clinical situations, may serve to assess the risk

of death after medical intervention. A widespread approach relies on the definition and

use of benchmarks, which allows a comparison between indicators related to homoge-

neous systems and processes [110]. Indicators can be divided into sub-groups to analyse

the system, even through simplified models o↵er the possibility to identify the areas

of the health system in a conceptual framework that link these areas to correlating

indicators for an overall analysis. The goal is a first characterization of the individual
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6.1 Evaluation of indices for the measurement of quality in health systems

components and the successive study of inter-relationship between them to improve the

outcome in the individual patient. For this the model proposed by [111] integrated by

[112] is widely accepted and proposed in many studies [105] for the characterization

and the measure of the quality in healthcare.

An accepted fact in managing metrics for quality is to put in evidence that, in any pro-

cess, there is a background noise due to cumulative e↵ects of many small, essentially

unavoidable causes i.e stable system changes. Thus the estimation of useful indicators

requires a phase of analysis in which statistical techniques can be deployed. Between

more common approaches to evaluate systems dynamic of Statistical Quality Control

(SQC) it is useful to detect the occurrence of assignable causes of process shift. There-

fore causes of improvement can be assigned and high-lighted with the final aim of

monitoring improvement causes/actions. Key concepts of SQC include the idea of a

rational sub process analysis and the use of tools such as histograms, run charts, con-

trol chart signals, etc. The tools of SQC helps to create an environment in which the

stakeholders of each area seek continuous improvement for their activities. Elsewhere

SQC techniques are applied to predicting activities [113] and to understanding whether

there are changes in the care and in the management of altered, patient outcome [114]

in this clinical field. An example of the application of statistical methods to health

service to quantify new paradigms and procedures in health service is provided [115].

Some practical issues in the implementation of SQC applied to evaluate the ICU of a

cardiac surgery department, are shown. The final aim is to provide a methodology in

order to study how change in healthcare alters patient outcome [114], [116].

6.1.1 Quality measurements in health systems

As stated quality measurements in healthcare need the identification of indicators that

allow an objective assessment of the service under examination. This is particularly rele-

vant for new developments in domains, including those concerning diagnostic/treatment

procedures, inter-operability, and the use of new medical devices [117]. Besides quality

metrics it is necessary to synthesize data in a conceptual model contemplated for global

quality assessment and health system monitoring [112]. The conceptual system, here

considered to measure the quality of the health system, is derived from the measurement

approach proposed by Donabedian and widely accepted in the literature [118]. The ap-

proach by Donabedian combines several issues, related to the organizational structure,

105

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



6.1 Evaluation of indices for the measurement of quality in health systems

processes, and outcomes, in a comprehensive clinical model. In particular, the health

system is split into four conceptual components: mission, structural capacity, processes

and outcomes, all interacting with the macro context [106], [110], [112], [119]. From

this division in di↵erent areas the evaluation of reference indicators and/or parameters,

is a technique widely used in healthcare. As a mater of fact the conceptual system

here adopted simplifies this approach by considering the simplest model derived from

the classical process approach and performance improvement of ISO 9000 standard and

highlights as indicators of quality a set of parameters related to the structure, process

and outcomes [105], [108]. The structure (organizational data) is characterized by

Figure 6.1: Schematic of a model of ICU department - Quality indicators a set of

parameters related to the structure, process, and outcomes are highlighted [105]

the features of the hospital, operators’ skills, the characteristics of equipment and hu-

man resources, and so on. The process consists in the encounter between healthcare

physicians and patients (professional quality). It starts from reservation and admission,

through anamnesis, screening planning and execution, diagnosis, therapy and admin-

istration of drugs. Elsewhere [108] the indicators characterizing the process can be

widely recognized clinical standards and are extracted from clinical data. The clinical

outcomes (professional quality) are according to the type of clinical service. They give

information on the state of health of the patient during and after treatment by the

health service including the results such as: mortality, morbidity, perception and satis-

faction of the patients at discharge, quality of life after treatment [120]. The evaluation

can be performed on each dimension (structure, process and outcome), using di↵erent

methods of measurement based on as many di↵erent indicators .
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6.1 Evaluation of indices for the measurement of quality in health systems

Controlling and improving quality has become an important business strategy for

healthcare providers and control chart is one of the primary techniques to be adopted.

This charts plots the average of measurements of a quality characteristic in samples

taken from the process versus time. The charts highlight where and when the process

fails in order to recognize unusual sources of variability present. When unusual sources

of variability are present, sample average will plot outside the control limits. This is a

signal that some investigation of the process should be made and corrective action to

remove these variability must be taken [115].

Another hospital quality evaluation is the study of internal dynamics of a hospital

which represent a complex non-linear structure. The planning and managing of these

resources requires a good understanding of the hospital system, therefore an advanced

data analysis is proposed. Hospital length of stay of in-patients has been employed

as a proxy for measuring the consumption of hospital resources. Simple averages are

widely used to describe LoS but parameters can be incorporated in models of resource

utilization and patient flow. Thus a model that forecasts the LoS starting from the

EuroSCORE (ES), an index of health status of the admitted patients, is proposed. Fur-

thermore in order to explore the complex relationship between bed occupancy and ES

values and optimize resource utilization, a model to describe the discharge frequency

is used.

6.1.2 Data analysis

Quality measurement in health care is the process of using data to evaluate the perfor-

mance of health plans and health care providers against recognized quality standards.

Quality measures can take many forms, and these measures evaluate care across the

full range of health care settings, from doctors o�ces to imaging facilities to hospital

systems. We discuss each of these measures below. However, it is important to note

that no single type of measure can give a complete picture of the quality of care that

is provided and received. Rather, each type of measure addresses a key component of

care. Hundreds of di↵erent quality measures are used in health care. These measures

generally fall into three broad categories:

1. Structure measures evaluate the infrastructure of health care settings, such

as hospitals or doctor o�ces, and whether those health care settings are able
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6.1 Evaluation of indices for the measurement of quality in health systems

to deliver care. These measures include sta�ng of facilities and the capabilities

of these sta↵, the policy environment in which care is delivered, and the avail-

ability of resources within an institution. Structure measures are often used by

insurance companies and regulators to determine whether a provider has cer-

tain capacities needed to deliver high quality care, such as whether a hospital

has a system in place to order prescription drugs electronically. These measures

are also commonly used in the certification or accreditation of health plans and

providers. Two key reasons for using structure measures are that characteristics

of health care settings can significantly a↵ect the quality of care, and care set-

tings that meet certain standards have an advantage when it comes to providing

high-quality care.

Although structure measures provide essential information about a providers

capacity, it is important to note the limitations of these measures. In partic-

ular, structure measures provide just one piece of the full picture of care. For

example, the fact that a hospital has the ability to perform certain functions does

not capture whether or not these functions actually occur, nor does it capture

whether those functions improve patient health.

2. Process measures are used to determine the extent to which providers con-

sistently give patients specific services that are consistent with recommended

guidelines for care. These measures are generally linked to procedures or treat-

ments that are known to improve health status or prevent future complications

or health conditions.

Process measures are useful in that they give providers clear, actionable feedback

and a straightforward way to improve their performance. However, overreliance

on process measures to track performance and administer provider incentives can

be problematic, for several reasons.

• Process measures are not available for many key areas of care, such as

whether the care provided was appropriate, or whether a provider coordi-

nated treatment for patients with physical and mental illnesses, for example.

• Process measures that do exist tend to focus on preventive care and the

management of chronic conditions, which may distract from other important
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6.1 Evaluation of indices for the measurement of quality in health systems

quality areas that are more di�cult to measure. Areas where measuring

quality is harder include teamwork and organizational culture.

• Process measures may also not capture the true quality of the care provided.

For example, a measure that looks at what percentage of patients who smoke

received smoking cessation advice will yield the same results whether the

advice provided was a brief admonition to quit or a conversation with the

patient about barriers he or she faces when trying to quit and the availability

of smoking cessation supports.

3. Outcome measures evaluate patients health as a result of the care they have

received. More specifically, these measures look at the e↵ects, either intended or

unintended, that care has had on patients health, health status, and function.

They also assess whether or not the goals of care have been accomplished. Out-

come measures are where the rubber meets the road: Patients are interested in

surviving illness and improving their health, not the clinical processes that sup-

port these outcomes.

Outcome measures frequently include traditional measures of survival (mortal-

ity), incidence of disease (morbidity), and health-related quality of life issues.

And while these measures often incorporate patient-reported information on how

satisfied patients are with the health care services theyve received, these mea-

sures do not assess the full extent of the patient experience. Although outcome

measures are important to patients and providers, their usefulness is limited by

the fact that developing outcome measures that are truly meaningful can be quite

hard. Key challenges to developing meaningful outcome measures include:

• Measuring outcomes often requires detailed information that is available only

in medical records, and this information is di�cult and expensive to obtain.

• Gathering enough data to provide useful information about a particular

outcome can also be a challenge.

• Although social determinants of health (such as access to safe housing, social

support, and economic opportunity) can have a profound impact on health

outcomes, there is little agreement on whether or not providers can be held

accountable for the confounding e↵ects of social determinants.
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6.1 Evaluation of indices for the measurement of quality in health systems

• Di↵erences in patient population can make certain outcomes more di�cult

to achieve. For example, ensuring that a certain percentage of a provider

diabetic patients have controlled blood sugar levels may be more di�cult

for a provider with a patient population that is sicker or that has multiple

chronic conditions.

Following we apply this framework to the data of the unit of Anesthesiology and Rean-

imation intensive care unit of San Camillo-Forlanini Hospital in Rome which is part of

the Department of Cardioscience. The team of the Unit was formed in 1999, and even

started to systematically collect some important data about patients admitted. The

data analyzed refer only to the patients coming from the Cardiac Surgery Unit. In par-

ticular, the database consists of 11,770 patients (records) collected from 1999 to 2012,

and the corresponding entries were: Name, Intervention Date, Age, Pathology, Sex,

Urgency, Intervention, Ejection Fraction, Pulmonary Hypertension, Diabetes, Obesity,

Chronic Obstructive Bronchopathy, Chronic Kidney Failure, Liver Failure, Neuropa-

thy, Reintervention, Extracorporeal Circulation Time, Orotracheal Intubation Time,

Length of Stay in Intensive Care Unit, ES, Post-Operative Complications, Exitus (dead

patient).

Structure The Unit counts up to 12 beds, and the team is made up of one head

physician, 19 sta↵ physician, one head nurse, and 36 sta↵ nurses. The activity of

the Unit is aimed at supporting the whole Department (Cardiac Surgery Unit and

the Vascular Surgical Unit). In addition to the well-established transplant activity,

the Cardiac Surgery Unit ordinarily performs coronary artery bypass graft surgery

(CABG), beating, replacements and repair of the aortic and mitral heart valve (Valv),

surgical treatment of heart failure (AO), reconstructive surgery of the aortic root and

of ascending aorta, and surgery interesting aortic arch. While, Vascular Surgical Unit

ordinarily performs thoracic and abdominal surgical interventions for peripheral arterial

occlusive disease, for carotid artery disease, for the lower limbs varicose veins disease,

and also performs video-laparoscopic procedures, angioplasty and carotid artery stents,

angioplasty and peripheral stent, and aortic endoprosthesis. As stated, the data refer

only to cardiac surgery.
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6.1 Evaluation of indices for the measurement of quality in health systems

Process The first process indicator considered is the number of interventions, in gen-

eral and divided into di↵erent surgeries. Figure 6.2 shows the trend of the number of

interventions in each of the above considered categories. The yearly average number
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Figure 6.2: Number of patients for di↵erent intervention in San Camillo ICU

- Process indicator

of interventions is 838. If the percentage of isolated CABG interventions every year is

considered, it can be observed that it becomes less and less (passing from the 48% on

average of the first seven years, to the 40% of the last seven). This is a logical conse-

quence of the fact that the Cardiac Surgery Unit is trying to treat this kind of patient

not with a surgical approach, but with stenting applications, reducing the admissions

to the Reanimation Unit.

The second indicator analyzed was the use of mechanical supports for cardiocircula-

tory function assistance divided by di↵erent types. There are various types of device,

considers the main one used:

• Mechanical Assistance

> VAD (Ventricular Assist Device)

> BIVAD (BIVentricular Assist Device, and Artificial Heart)

• LEVITRONIX (Magnetic Centrifugal Pump)
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6.1 Evaluation of indices for the measurement of quality in health systems

• ECMO (Extra Corporeal Membrane Oxygenation)

• IABP (Intra Aortic Balloon Pump).

Figure 6.3 shows the number of devices used every year, and Figure 6.4 shows the

trends for each type of device (note that the variable Mechanical Assistance includes

VAD and BIVAD). In line with technological development both Figures show an

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

10

20

30

40

50

60

70

80

90

100

Year

N
u

m
b

e
r 

o
f 

d
e
v
ic

e

Figure 6.3: Overall number of device used each year in San Camillo ICU -

Process indicator

increase in the use of the mechanical support.

The third indicator is the length of stay (LoS): the term Length of Stay indicates the

measure (generally days) of the duration of a stay in a department. The importance of

LoS as an indicator in the ICU process is twofold [28]: first of all, it gives the measure

of the e�ciency of the process and it is used as the measure of costs of the ICU and of

the global hospital (the ICU while using between 5% and 10% of the beds can consume

up to 20% of hospital budgets). Secondly, the LoS can be used as an indirect indicator

of the quality of care [121]. Figure 6.5 shows the yearly average LoS, in general and

in di↵erent types of patients. The reference solid line (Y = 3.02) is the average of all

admitted patients (aggregated from 1999 to 2012) and the dashed line shows the trend

of average LoS for di↵erent types of patients. In Table 6.1 the values of the averages

for each type of patients aggregated from 1999 to 2012 are reported.
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6.1 Evaluation of indices for the measurement of quality in health systems
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Figure 6.4: Time trends of devices number in San Camillo ICU - Process indicator
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Figure 6.5: Yearly average LoS for di↵erent type of patients in San Camillo

ICU - Process indicator
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6.1 Evaluation of indices for the measurement of quality in health systems

Average LoS

Total CABG AO Valv CABG+Other

3.02 2.08 3.78 2.76 4.48

Table 6.1: Average LoS for each type of patients in the ICU of San Camillo.

Among process indicators patient risk parameters are also included that describe the

clinical condition of the population admitted into the ICU. The reason for this choice is

that these parameters give a description of those which are the inputs to the activities

that represent processes. The risk parameters analyzed are:

• Age of patients

• ES of patients.

Table 6.2 shows the percentage of patients being part of the represented age range. The

< 50 50� 60 60� 70 70� 80 > 80

11.22% 17.70% 33.39% 32.86% 4.83%

Table 6.2: Percentage of patients being part of the represented age range in the ICU of

San Camillo.

majority of patients admitted in ICU were more than 60 years old (about 70% of the

whole population). Instead, in Figure 6.6 the percentages of patients are represented

in every considered age range, divided in every year. The most important thing to

observe is the increase of the percentage of patients > 80 years, from an average of

3.2% in the first seven years to 6.5% in the last seven, thus showing the fact that the

Unit has faced a remarkable changing of the population due to the increased age of the

population and the capacity of clinical sta↵ to face more critical patients.

The last indicator considered in this section is EuroSCORE (ES). EuroSCORE (Eu-

ropean System for Cardiac Operative Risk Evaluation) is a risk indicator for patients

undergoing cardiac surgery, which has been widely used since it was introduced in 1999.

For simplifying the use of the system and promoting the evaluation of the risk even in a

time where information technologies were not so important, the ES was first published

and largely clinically accepted as an additive system in which it was given to each risk

factor a weight or a number of points that, when combined, provided an estimate of

the expected percentage mortality for a patient undergoing a cardiosurgery procedure.
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6.1 Evaluation of indices for the measurement of quality in health systems
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Figure 6.6: Percentages of patients in every considered age range recorded in

San Camillo ICU - Process indicator
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6.1 Evaluation of indices for the measurement of quality in health systems

However, because of its addictive nature, the additive ES underestimates the risk in

some groups of patients. At the same time, there has been an exponential growth in the

availability of information technologies for the cardiac and surgical units of hospitals,

which explains why the use of a risk model based on the equation complete logistics

was gradually established [122]. Analysis included concerns only logistic ES. Approxi-

mating ES values to integer numbers, Figure 6.7 represents the number of patients per

every specific logistic ES value. Figure 6.7 shows that the majority of patients (about
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Figure 6.7: Number of patients for every specific logistic ES values in San

Camillo ICU - Process indicator

75% of the whole population) falls into the first six ranges of ES.

Outcome The outcome indicators analyzed are the exitus and the complications of

the patients. Starting from the first one, Figure 6.8 shows the yearly mortality rate for

two cluster of patients based on the di↵erent types of intervention:

• No distinction between di↵erent types of intervention (Total)

• Patients with isolated CABG intervention (CABG)

Patients with isolated CABG intervention were considered, because it was well ac-

cepted as proxy of common cardiac surgery performance indicator. Figure 6.8 shows a

decreasing trend of the mortality rate: the average mortality rate considering the whole
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6.1 Evaluation of indices for the measurement of quality in health systems

population is 5.2%, while the other one considering only patients with CABG interven-

tion is 2.2%. Analogue analysis of the mortality rate has been done considering only
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Figure 6.8: Yearly analysis of mortality rate for CABG intervention in San

Camillo ICU - Outcome indicator

patients with LoS< 30 days, because this kind of indicator allowed making a compar-

ison between the ICU here considered and some other national or foreign ICUs. Data

shows that the overall average mortality rate is 4.02%, instead, patients with LoS< 30

and with only isolated CABG intervention have an average mortality rate, of 1.90%.

The analysis of the most important critical care quality indicators makes it necessary

All LoS < 30

CABG 2.2% 1.9%

Other surgery 5.2% 4.2%

Table 6.3: Comparison of CABG and other surgery mortality rate in the ICU of San

Camillo.

to discuss the these results. In particular a comparison between the expected mortality

rate (following only the logistic ES) and the real mortality rate should be done. Ac-

cording to clinical practice it was necessary to exclude, in this type of analysis, very

critical groups of patients that are not involved in the ES calculation: these patients

present specific interventions (VAD, BIVAD, Levitronix, ECMO, Biopump, Artificial
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6.1 Evaluation of indices for the measurement of quality in health systems

Heart, Transplantation) or a very long Length of Stay (LoS> 30 days). First of all, in

Table 6.4 the global di↵erence between the real and the expected mortality is analyzed

considering the whole population of patients. The observed mortality is lower than the

Mortality rate

Expected [ES] 4.94%

Observed 3.80%

Table 6.4: Real and expected mortality rate of ICU of San Camillo.

expected of 1.14% suggesting the fact that the Unit has very successful performances.

Secondly, in Table 6.5 the di↵erence between the expected and observed mortality rate

was analysed, but now considering di↵erent ranges of ES in order to check the unit’s

performances in homogeneous groups of patients as much as possible. The Table shows

ES Range

Expected [ES] 2.12% 4.91% 8.32% 18.94%

Observed 1.20% 3.76% 7.81% 14.85%

Table 6.5: Real and expected mortality for di↵erent ES in ICU of San Camillo.

that the Unit mortality rate is better than the expected one in each range, and the

unit’s performances are good. Lastly, in Figure 6.9 the di↵erence between the mortality

rates is analyzed considering the observed mortality rate values for each unit of logistic

ES (the real ES values of patients were approximated to the numeric unit in order to

have 1%, 2%, 3%, etc.). The Figure 6.9 shows that the performances of the unit are

better than the expected until the group of patients with logistic ES 12%. After this

value, the curve of the observed mortality fluctuates around the ideal curve. This is

probably because the number of patients falling into these groups is too small to have

a significance, and it is therefore di�cult to explain the corresponding results.

The second outcome indicator concerns clinical complications of patients (i.e. bleeding,

redo, and general neurological episode). In Table 6.6 is shown the number of patients

having a complication (including isolated exitus).

6.1.3 Statistical Quality Control in Intensive Care Unit

Another analysis of exitus has been made using the instruments of SQC, in particular

the Control Chart which are usually used to study the stability of a process. Even
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6.1 Evaluation of indices for the measurement of quality in health systems
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Figure 6.9: Logistic ES forecast ability of observed mortality in San Camillo

ICU - Outcome indicator

With complication Without complication Total

Number 9379 2391 11770

Percentage 79.7% 20.3%

Table 6.6: Number patients having a complication in ICU of San Camillo.

in the study of health services the SQC techniques are useful to monitor the stability

of performance indicators (as LoS and exitus) but also to evaluate their variability

due to external factors and to process changes (e.g. introduction of new surgical or

clinical protocols) [105], [106], [109], and [108]. It is well know that the Control Chart

is a statistical tool used to distinguish between variations in a process resulting from

common causes and variation resulting from special causes. One goal of using a Control

Chart is to achieve and maintain process stability. Process stability is defined as a

state in which a process has displayed a certain degree of consistency in the past and

is expected to continue to do so in the future. This consistency is characterized by a

stream of data falling within control limits. The most important use of a control chart

is to improve the process.

• Most processes do not operate in a state of statistical control

• Routine and attentive use of control charts will identify assignable causes. If
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6.1 Evaluation of indices for the measurement of quality in health systems

these causes can be eliminated from the process, variability will be reduced and

the process will be improved.

• Control charts will only detect assignable causes. Management, physicians, nurses

and engineering action will usually be necessary to eliminate the assignable causes.

Generally SQC is a largely used method to investigate, by statistical instruments, the

variability of a process. The variability of mortality rates among patients is studied.

P-CHART This attribute control chart is widely used for monitoring a process qual-

ity by the knowledge of the fraction (proportion) of non conformity. This fraction is

defined as the ratio between the number of non conformity compared with the to-

tal number of the population. The analyzed set of patients may have several quality

characteristics that are examined simultaneously. If the patient does not conform to

standard on one or more of the characteristics, it is classified as non conforming. The

characteristic analyzed is the exitus, the patient is non conforming when his exitus is

positive. The statistical principles underlying the control chart for a non conforming

fraction are based on the binomial distribution [115]. Therefore, considering a 3��
interval the Control Limit and the Central Line are given by

Upper Control Limit (UCL) = p
0

+ 3
q

p(1�p)
n

Central Line (CL) = p
0

Upper Control Limit (LCL) = p
0

� 3
q

p(1�p)
n

(1.1)

In the following exitus over the observed years are reported. For each year all the

patients are taken and are computed into the sample fraction of non conforming p̂,

and the statistic of p̂ is plotted in the chart. In this case of study it is assumed that

p
0

= 3.8%. As long p̂ remains within the control limits and the sequence of plotted

points does not exhibit any systematic non random pattern, it is possible to conclude

that the process in control at the level of p. Moreover Figure 6.10 P-chart shows that

the first year represents a statistically out-control process for exitus and successively

the process is established is in-control (excepted for 2009 data). Out-control process

means that a special cause of variation has occurred. The decreasing trend itself is an

indicator of the improvement of the Unit performances since the formation of the team.
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6.1 Evaluation of indices for the measurement of quality in health systems
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Figure 6.10: P Chart of Exitus of San Camillo ICU - Statistical Quality Control

U-CHART In other cases, the measure of quality does not consist in the monitoring

of non-conforming products in output from the process, but in the calculation of the

average number of non-conformities per unit of reference, therefore this attribute control

chart (U-chart) assumes the possibility that each unit may present more than one event

of non-conformity as opposed to the P-Chart. This second approach involves setting up

a control chart based on the average number of nonconformities per inspection unit. If

an x total non conforming are found in a sample of n inspection units, then the average

number of non conformities per inspection unit is:

u =
x

n
(1.2)

x is a Poisson random variable; consequently, the parameters of the control chart for

the average number of non conformities per unit are as follows:

UCL = u
0

+ 3
p

u0
n

CL = u
0

LCL = u
0

� 3
p

u0
n

(1.3)

where ū is the observed average number of non conformities per unit in a preliminary set

of data. In this case the non-conformity is always the exitus, but the unit of reference

is the number of days stay in hospital for all patients every year. In our case of study

u
0

= 1.5%. U-charts 6.11 shows that the exitus are out-control only in the first period
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6.2 Stochastic dynamic programming in hospital resource optimization
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Figure 6.11: U Chart of No. Exitus of San Camillo ICU - Statistical Quality

Control

that the team settled, and successively are not, showing again the improvement of Unit

performance thanks to stabilized team skills.

6.2 Stochastic dynamic programming in hospital resource

optimization

Healthcare decision-makers, especially in areas of hospital management, is rarely for-

tunate enough to have all necessary information made available to them at once. As

a result, their decisions occur sequentially as information becomes available and situ-

ations around them change. This problems can be understood as sequential decision

making processes and can be modelled using stochastic dynamic programming (SDP)

[123]. Stochastic programming is an approach for modelling optimization problems that

involve uncertainty. When the parameters are uncertain, but assumed to lie in some

given set of possible values, one might seek a solution that is feasible for all possible

parameter choices and optimizes a given objective function. Stochastic programming

models take advantage of the fact that probability distributions governing the data are

known or can be estimated. These models apply to settings in which decisions are made

repeatedly in essentially the same circumstances, and the objective is to come up with
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6.2 Stochastic dynamic programming in hospital resource optimization

a decision that will perform well on average [124].

In healthcare resource allocation problem an under-provision of hospital beds leads to

patients in need of hospital care being turned away. When insu�cient medical beds

are provided to meet demand, emergency medical patients spill over into surgical beds;

consequently, waiting lists increase as planned admissions are postponed. On the other

hand, the goal of the hospital is to assign beds in order to provide the best level of ser-

vice possible without wasting resources. We here address this dilemma by minimising

the number of empty beds subject to maintaining the delay probability at a su�ciently

low level [10], [11].

Stochastic model are successfully used in many aspects of healthcare resource optimiza-

tion; appointment scheduling optimization [125], capacity planning [126], [127], nurse

assignment [128], medical care use [129], discharge policies [130], and operating room

schedule [131]. Much research has aimed at maximizing operating room utilization, due

to its high operational cost ([132], [133], [134]). However, [135] showed that, at hospitals

with fixed or nearly fixed annual budgets, allocating operating room time based on uti-

lization can adversely a↵ect the hospital financially, and suggested considering not only

operating room time but also the resulting use of hospital beds. There have recently

been some studies on the impact of surgery schedules on the use of the other resources

in hospitals. For example, [136] developed analytical models and solution heuristics for

building cyclic master surgery schedules to minimize the expected total bed shortage.

[137] presented a multi-objective non-linear optimization model for surgery scheduling,

taking surgical priorities, surgery length, demand for equipment and conflicts in the

schedule into account.

SDP approach is well-positioned to model these types of problems because of the ex-

plicitly sequential nature of the decision policies they produce. Our aim is to reduce

the probability of having a number of patients di↵erent from fixed level over a define

interval of time in the Intensive Care Unit (ICU) department of San Camillo. Intensive

care units are a costly resource [138], [139]. They are oversubscribed and the treat-

ments they o↵er are expensive and labour intensive. Resources within the hospital

are finite; therefore, it is important that intensive care clinicians are aware of how the

costs of an individual unit are incurred and how they relate to its therapeutic activity,

case mix and clinical outcome. The process of cost analysis helps to allocate resources

e�ciently, thereby improving both quality and quantity of ICU provision. An example

123

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



6.2 Stochastic dynamic programming in hospital resource optimization

is the analysis of the discharge strategies in order to optimize the resource consumption

[130].

To control the number of patients in the department physician can not force the dis-

charge rate because it strictly depend on patients health state and on patients number.

In the other hand physician can decide the number of patients that could be admitted.

SDP formulations of this problem generate meaningful insights that lead to high quality

and intuitive heuristic procedures.

In this work a stochastic optimization model is proposed in order to provide operational

guideline in ICU management. To optimize the resource the hospital ward the number

of beds used should be kept under control. Therefore our aim is to present a admis-

sion policy that stabilize the number of the hospital bed used considering a stochastic

perturbation represented by the patient discharges. Considering fixed and a variable

number of target patients di↵erent empirical policies are compared. An innovative

method to describe discharge probability distribution it is also presented.

6.2.1 Data description

The Unit of Anesthesiology and Reanimation of San Camillo-Forlanini Hospital in

Rome is part of the Department of Cardioscience. The team of the Unit has settled in

1999, and even started to collect some important data about patients admitted. The

data analyzed are referred only to the patients coming from Cardiac Surgery Unit,

which accurate studies consider an e�cient intensive care department in the Italian

health care system. In particular, the database is made of 11770 patients (records)

collected from 1999 to 2012, and the corresponding items were: Intervention Date,

length of stay in Intensive Care Unit, and EuroSCORE (ES). The unit counts 12 beds

and the team is made up of one head physician, 19 sta↵ physicians, one head nurse, and

36 sta↵ nurses. The activity of the unit is aimed at supporting the whole department,

especially the Cardiac Surgery Unit and the Vascular Surgical Unit.

According to [28] LoS is considered to be a reliable and valid proxy for measuring

the consumption of hospital resources. We consider ES as a synthetic proxy for the

admission health status of the patient and we assume that exist a relation between

the ES and the LoS. Consider, for example, two patients that have similar treatments.

We expect that the patient with a measure of risk lower - thus risk and complication

less likely - will spend less time in hospital. In fact, ES is a method of predicting the
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6.2 Stochastic dynamic programming in hospital resource optimization

chances of dying during or shortly after undergoing heart surgery [140]. ES is a tool

that was designed for doctors to work out how risky heart operation is. All operations

and other treatments have benefits and risks. It is important to underlying that ES

can only tell about the risks and not the benefits. Although patients exact scores

can only be determined by someone who has access to all the detailed medical history

[141]. In order to investigate this relation between LoS and ES, the patients are
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Figure 6.12: Relation between average LoS and ES of San Camillo ICU - Data

recorded from 1999 to 2012

divided considering the ES and for each cluster is evaluated the average LoS. In Figure

6.12 x-axes represents the value of the ES and y-axes the average LoS, circle marks

represent the average LoS estimated in the cluster, and x marks define the average

LoS estimated using a linear regression. The ES value is recorded when the patient is

admitted, therefore the expected LoS ( ˆLoS) is estimated by the following equation

ˆLoS = �
0

+ �
1

⇥ ES. (2.4)

The coe�cients estimated from the linear regression are �
0

= 1.11 and �
1

= 0.28, and

the Average Absolute Error is 0.2045. The value of AAE suggests that exist a linear

relation between LoS and ES. The ES value is recorded when the patient is admitted

therefore it is possible to estimate the expected LoS. In Table 6.7 are reported the

details of the cluster with more then 200 patients. We observe that for bigger value
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6.2 Stochastic dynamic programming in hospital resource optimization

ES No. patients ¯
LoS

ˆ
LoS�

0 825 2.39 2.10 1.40

1 1216 2.48 2.37 1.54

2 1049 2.76 2.65 2.21

3 1677 2.78 2.92 2.21

4 1624 2.86 3.20 2.38

5 1500 3.25 3.47 3.00

6 1236 3.33 3.75 3.09

7 887 4.25 4.03 4.67

8 586 4.36 4.30 4.73

9 403 4.87 4.58 5.26

10 210 4.91 4.85 5.68

Table 6.7: Clusters details: ¯LoS is the observed average LoS, ˆLoS is the estimated average

LoS by the linear model, and � is the standard deviations of the LoS values in each cluster

of San Camillo ICU.

of ES - riskier patients - standard deviations of the LoS increase. This behaviour can

be explained considering that the ES is a proxy of the admission health status. If a

patients has bigger ES he has a lower health status therefore his hospitalization will be

more long and uncertain [142].

Hospital ward is a system characterized by a finite number of resources, number of bed

is limited therefore if new patient requires urgent treatment is reasonable to expect

that less severe patients are discharged or transferred to other departments. Hence,

we assume that the average LoS also depends on the number of patient hospitalized

in the department. The physician, knowing the health status of his patients, can

decide to admit a new patient even if the department is almost full. He will expect a

discharge, after a short period, of the pre hospitalized patients. In order to validate

this assumption, for each patient are counted the average number of patients that stay

with him during the hospitalization. Considering a patient P that stay in hospital for

5 days. During his hospitalization in the department he is treated with other patients.

For example the number of patients is reported in Table 6.8

Day 1 2 3 4 5

Np 5 3 5 3 4

Table 6.8: Number of patients in the department during the hospitalization of patients

P .

126

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



6.2 Stochastic dynamic programming in hospital resource optimization

Given this scenario it is reasonable to assume that patient P in average stay in hospital

with other 3 patients. In this way, we associate each patient hospitalization with a proxy

of the load factor1 of the ward. Then data are clustered considering the average number

of patients and, for each cluster, the average LoS is evaluated. A similar procedure is

performed in order to evaluate the average ES of clusters. First plot of Figure 6.13
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Figure 6.13: Average LoS and ES for di↵erent patient cluster of San Camillo

ICU - Data are clustered considering the average number of patients and, for each cluster,

the average LoS is evaluated

shows the relation between the average number of patients in the department (x-axes)

and the average LoS (y-axes). Data shows that exist a number of patient that leads to

the maximum LoS. As could be expected, an increase of the patient number, leads to an

increase of the LoS. However after this fixed amount the LoS starts to decrease. This

feature can be explained considering that the ward is almost full and the admission

demand forces the physician to discharge early patients. Considering only the number

of patients could be misleading: the number of resources required could depend on the

health status of the patients. In second plot of Figure 6.13 are reported the relation

between the average number of patients in the department (x-axes) and the average

ES (y-axes). When the ward is almost full, the average ES decreases, conversely sicker

patients are treated when in the ward are hospitalized less patients.

1The ratio of actual number of hospitalized patients and the maximum number possible
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6.2 Stochastic dynamic programming in hospital resource optimization

6.2.2 Model

A number of researchers have investigated patient demand and bed capacity planning

at a specific department within a hospital. McClain has developed a stochastic model to

forecast the allocation of non-obstetric patient-days to the obstetric unit and to predict

the e↵ect of such allocations on demand for obstetric beds [143]. Dexter and Macario

have modelled the distribution of patients at an obstetrical unit as a Poisson distribu-

tion and minimized the number of sta↵ed beds subject to remaining below a specified

probability of patient overflow [144]. Harris has developed a simulation model to aid

decision making in the area of operating theatre time tables and the resultant hospital

bed requirements [145]. Furthermore, many authors have created models for the entire

hospital, while capturing the inherent variability in patient arrival and length-of-stay

[12], [146]. They have demonstrated that managing capacities based on simple deter-

ministic spreadsheet calculations typically do not provide the appropriate information,

and result in underestimating true bed requirements. However, they ignore the pa-

tient demand for beds at each department within a hospital, such as emergency rooms,

intensive care units, and acute care units. To calculate the patient demand at each

department, Gorunescu et al. and Harrison have used compartment models, in which a

facility is subdivided into categories of patients with di↵erent transition rates to model

patient flow through wards [10], [147].

Healthcare providers recognize the importance of implementing simulation to support

quality learning outcomes [148]. It has been applied to practically every topic in health-

care, such as space considerations, physiology, crisis management, critical care, and

general surgery [149]. In comparison to analytical models, more procedural details can

be included in a computer simulation model [150]. Linear or nonlinear programming

models, queuing models and Markov chains often rely on closed-form mathematical

solutions [151]. They are more sensitive to the size, complexity and level-of-detail re-

quired by the system under study. Simulation models, on the other hand, are much

less sensitive to these parameters [151]. However, simulation may be more di�cult to

use for several reasons [143]. First, the added complexity of constructing a more real-

istic model requires considerable institution-specific data that may be costly to collect.

Second, computer programming is usually expensive and time-consuming. Third, fore-

casts of parameters used in such models are often subject to significant error, which
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6.2 Stochastic dynamic programming in hospital resource optimization

may negate gains in accuracy achieved through simulation. Sinreich and Marmor in-

corporate three principles to minimize the short-comings of simulation, and to increase

managements involvement and confidence in their model [151]:

1. The simulation tool has to be general and flexible enough to model di↵erent

possible hospital settings.

2. The simulation tool has to be intuitive and simple to use. This way, managers,

hospital engineers, and other nonprofessional simulation modelers can run the

simulation tool with very little e↵ort.

3. The simulation tool has to include reasonable default values for many of the

system parameters. This will reduce the need for comprehensive, costly, and

time-consuming time and motion studies, which are usually among the first steps

taken when building any simulation model.

Sinreich and Marmor satisfy the first principle by testing their model against five hos-

pital data sets. They address the second principle by designing a user-friendly interface

that mirrors a unified patient process chart, which managers are familiar with. To

comply with the third principle, default values are used in the simulation and can be

easily accessed through the models interface. In this thesis, our approach follows these

three principles closely to o↵set the di�culties of developing simulation models.

One of the most promising techniques for multiple objective decision analysis is Goal

Programming. Goal Programming is a powerful tool which draws upon the highly

developed and tested techniques of Linear Programming, but provides a simultane-

ous solution to a complex system of competing objectives [152]. Goal Programming

can handle decision problems having a single goal with multiple sub goals. In Goal

Programming, instead of attempting to maximize or minimize the objective function

directly as in the Linear Programming, the deviations between goals and what can

be achieved within the given set of constraints are minimized. Three steps of goal

programming model include define the decision variables, define the goals, define the

deviational variables [153].

A linear program is an optimization problem where we want to minimize a linear func-

tion subject to some linear constraints. In a dynamic program, we want to make a

series of decisions in such a way as to maximize some function. The key is that the set
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6.2 Stochastic dynamic programming in hospital resource optimization

of decisions available to us at any given time depends on what we have already decided

to do previously. The key di↵erence between the two is that in dynamic programming

assumes a continuous decision process over the time, whereas in linear programming

all the decisions are taken are taken up front. Stochastic dynamic programming is a

methodology for sequential decision making over periods which was originally used in

the 1940s by Richard Bellman to describe the process of solving problems where one

needs to find the best decisions one after another [154]. At each decision epoch, a

decision maker observes the state of a system and chooses an action, and then gets an

immediate reward and moves to a new state according to the probability distribution

determined by the action choice. Because of the dynamical structure of the problem,

this process continues, but now the system may be in a di↵erent state and there may

be a di↵erent set of actions. The value of each state at a given time can be found by

working backwards, using a recursive relationship called the Bellman equation. Bell-

man equation is useful because it reduces the choice of a sequence of decision rules to

a sequence of choices for the control variable. There are di↵erent algorithms to solve

stochastic dynamic programming problems suitability of which depend on the planning

horizon. Dynamic stochastic programming models take advantage of the fact that the

probability distribution governing the data are known in explicit form or can be esti-

mated [123]. In our framework the number of discharge is the random parameters that

influences the state variable. In order to describe the number of discharge probability

distribution we propose 3 di↵erent model.

Binomial model The number of patients in the department is given by the number

of new patients admitted and on the number of patients discharged. Considering the

number of patient hospitalized and the external demand, we assume that the physician

decides the patient admission number [155]. Since the number of discharge can not

be settled exactly because depends on the health status of the patients hospitalized.

We also assume that it is possible to describe the probability density function of the

discharge number uk�1

given the hospitalized number of patient nk. In Table 6.9 are

reported the average number of discharge µ
(n)
u and the standard deviation �

(n)
u with

respect to the number of patients hospitalized. We describe the conditional distribution

of the discharge number uk using a binomial model. In the rest of the define we define all

the random variable on the same probability space (⌦,F,P) with F �-algebra on ⌦ and
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6.2 Stochastic dynamic programming in hospital resource optimization

nk�1 No. days µ
(n)
u �

(n)
u

1 193 0.30 0.46

2 405 0.86 0.78

3 658 1.39 0.95

4 795 1.77 1.20

5 974 2.19 1.37

6 836 2.72 1.47

7 605 3.21 1.60

8 336 3.55 1.61

9 168 3.84 1.65

10 64 4.67 1.52

Table 6.9: Average number of discharge µ
(n)
u , deviation standard �

(n)
u , and number of

patient in each cluster of San Camillo ICU.

P probability measure. The binomial distribution is the discrete probability distribution

of the number of successes in a sequence of n independent Bernoulli experiments, each

of which yields success with probability pb 2 [0, 1]. In our framework, we consider

the patient discharge process as a Bernoulli experiment. Hence the probability mass

function is given by

P[uk = u|nk�1

= n] =

✓

n

u

◆

pub (1� pb)
n�u, (2.5)

where the probability parameter of the conditional distribution are estimated using

the Minimum Mean Squared Error (MMSE) method and the binomial number of trial

are equal to the number of hospitalized patients. In Table 6.10 the main results of

the estimation are reported, the small values of AAE prove that the Binomial model

provides a good description of the empirical frequency.

Conditional Binomial model The previous approach assumes that the number of

discharge patient depends on the number of hospitalization without take in considera-

tion the health status of patients. Each patient has a unique medical history and react

di↵erently to the treatment, it is impossible to quantify uniquely the health status after

the same operation. Even if we consider patients with the same ES we can not exactly

forecast which will be the health status [156]. Hence we have to introduce a proxy

of the health status that provides some information on the probability distribution of

the discharge number. When a patient is admitted, using his ES value, we evaluate
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6.2 Stochastic dynamic programming in hospital resource optimization

nk�1 = n p
(n)
b AAE

1 0.30 0.00 ⇥10�3

2 0.40 20.16 ⇥10�3

3 0.49 16.77 ⇥10�3

4 0.47 29.08 ⇥10�3

5 0.48 27.75 ⇥10�3

6 0.50 22.24 ⇥10�3

7 0.50 20.73 ⇥10�3

8 0.48 17.30 ⇥10�3

9 0.46 26.64 ⇥10�3

10 0.47 26.60 ⇥10�3

Table 6.10: Discharge distribution parameters and estimated AAE using a binomial

probability mass function to fit the data of San Camillo ICU.

the expected LoS through 2.4. Let vi,k be the expected LoS of patients i at time k.

After 1 day of hospitalization, if the patient has not been discharged his expected LoS

decreases by 1, therefore we can write:

vi,k+1

= vi,k � 1 (2.6)

If department is occupied mainly by patients that has lower expected LoS we expect an

increase in the number of discharges. The number value vi,k represents the remaining

expected LoS of patient i at time k, nevertheless during some hospitalization, the value

vi,k could be less then zero. It means that, given the linear model 2.4, the patient

should be already discharged.

Let A defined as

Ak =
n
k

X

j=1

1v
j,k

<0

(2.7)

where 1 stands for the indicator function. The value of Ak counts the number of patients

that we expect to discharge and depends on nk. Assuming that patients health status

are independent, then we describe the probability distribution of Ak conditional to nk

using a Binomial model. Hence conditional probability mass function is

P[Ak = a|nk = n] =

✓

n

a

◆

paA(1� pA)
n�a. (2.8)

For each value of nk probability parameters of the distribution are estimated using the

MMSE method and the binomial number of trial are equal to the number of hospitalized
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6.2 Stochastic dynamic programming in hospital resource optimization

nk = n pA AAE

1 0.46 0.00 ⇥10�3

2 0.28 6.08 ⇥10�3

3 0.26 4.98 ⇥10�3

4 0.28 5.93 ⇥10�3

5 0.29 4.86 ⇥10�3

6 0.27 6.97 ⇥10�3

7 0.28 4.08 ⇥10�3

8 0.29 8.55 ⇥10�3

9 0.27 7.99 ⇥10�3

10 0.24 15.26 ⇥10�3

Table 6.11: A probability distribution parameters and estimated AAE using binomial

probability mass function.

patients. In Table 6.11 the parameters of the binomial distribution and the AAE are

reported. In Figure 6.14 the empirical and estimated distribution of Ak for nk = 6 are

reported. AAE values in Table 6.11 and plots in Figure 6.14 show that Binomial model

provides a good description of the empirical distribution. Once we have described the

probability distribution of A we characterize discharge frequency using the value of

A. Number of patients that has an expected LoS less or equal to zero, could be an

observable proxy of the discharge number. In this case, we assume that the value of

Ak will provide information on the discharge number of patient at time k. We cluster

the data considering the value of A at time k � 1, and for each cluster, we evaluate

the average number of discharges. Table 6.12 reports the average number of discharges

Ak�1 No. days µ
(A)
u �

(A)
u

0 1175 2.00 1.54

1 1767 2.20 1.61

2 1211 2.26 1.60

3 589 2.47 1.69

4 230 2.69 1.60

5 66 3.27 1.65

Table 6.12: Average number of discharge µ
(A)
u , deviation standard �(A)

u , and number of

day in each cluster.

(µ(A)

u ) and standard deviation (�(A)

u ) conditional to A. For each cluster we model the

empirical distribution of uk using a weighted average of a Binomial distribution and a
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Figure 6.14: Ak density function of San Camillo ICU for nk = 6 - Dashed lines with

x markers reppresent the observed frequencies, solid lines with circle markers reppresent

the estiamted distributions.

Negative Binomial distribution. We set the Binomial number of trials as the maximum

number of patients that have been hospitalized in the department (nmax = 13) and the

negative binomial number of failures as the maximum value of A recorded (Amax = 5).

The estimation of parameters is performed using the MMSE method. In Table 6.13

Ak�1 w pb pn AAE

0 0.83 0.18 0.97 4.86 ⇥10�3

1 0.75 0.22 0.91 2.59 ⇥10�3

2 0.80 0.21 0.92 5.38 ⇥10�3

3 0.72 0.24 0.84 4.34 ⇥10�3

4 0.82 0.24 0.82 11.69 ⇥10�3

5 0.94 0.28 0.88 22.67 ⇥10�3

Table 6.13: Discharge distribution parameters and estimated AAE using a binomial and

a negative binomial weighted average probability density function.

pb is the binomial success probability, pn is the negative binomial success probability,

nb is binomial number of success, and nn is the negative binomial number of failure.

Data show that, even considering clusters with more patients, the discrepancy indicator

AAE is reduced.
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6.2 Stochastic dynamic programming in hospital resource optimization

The Poisson model It is widely acknowledged that the number of operations, other

procedure and diagnostic tests, vary from day to day. Hospital ward works 24/7 but

there are peaks and troughs in activity throughout the week. Discharges as other pro-

cedure may vary during the week [157]. In Table 6.14 the average and the standard

deviation values of the number of admission are reported, number of discharge, and

number of patients by day of week. Values show that the average number of discharges

depends strongly on the day of the week. According to the previously approach, dis-

No. Admissions No. Discharges No. Patients

µ � µ � µ �

Mon 3.11 1.53 1.77 1.33 5.09 2.07

Tue 2.98 1.36 2.82 1.59 5.25 2.05

Wed 3.10 1.40 2.91 1.44 5.44 2.12

Thu 2.84 1.36 3.04 1.54 5.25 2.15

Fri 2.95 1.44 2.78 1.46 5.42 2.21

Sat 0.43 0.63 1.55 1.33 4.30 1.96

Sun 0.11 0.37 0.65 0.91 3.76 1.93

Table 6.14: Average and standard deviation values of number of admissions, number of

discharges, and number of patients by day of week. Data are estimated in the San Camillo

ICU.

charge number depends on the number of patients hospitalized. We also assume that

the discharge number depends by day of week. Hence we describe the conditional

distribution of uk using a Poisson model:

P[uk = u|nk�1

= n] =
�k(n)ue��k(n)

u!
(2.9)

where �k(n) is the cluster’s average number of discharge. In Table 6.15 the average

number of discharge (�) estimated are reported. It is reasonable to assume that the

increase in the number of patients corresponds to an increase of the average number of

discharge. If the ward occupancy rate raises, in order to control the number of patients,

the discharge probability raises too. Data endorse that exists a linear relationship

between nk�1

and �k. Hence the following linear model is assumed:

�k(nk�1

) = m(k)⇥ nk�1

+ q(k) (2.10)

where m(k) = m(k + 7) and q(k) = q(k + 7). In Table 6.16 are reported the parame-

ters and the estimated AAE between the observed average and the estimated average
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6.2 Stochastic dynamic programming in hospital resource optimization

nk�1 Mon Tue Wed Thu Fri Sat Sun

1 1.46 1.24 1.31 2.05 1.78 1.08 0.59

2 1.08 1.71 2.06 2.36 2.27 1.17 0.56

3 1.37 2.12 2.49 2.56 2.34 1.55 0.63

4 1.38 2.68 2.55 2.83 2.28 1.72 0.80

5 2.01 2.92 3.02 2.96 2.66 1.69 0.52

6 1.87 3.23 2.97 3.30 3.03 1.48 0.82

7 2.26 3.19 3.38 3.43 3.11 1.50 0.66

8 1.96 3.21 3.30 3.35 3.27 2.04 0.82

9 2.13 3.73 3.42 3.90 3.77 1.83 0.80

10 1.83 3.00 3.71 4.46 3.50 2.00 0.63

Table 6.15: Average number of discharge �k for each cluster in the San Camillo ICU.

number of discharges. In Figure 6.15 are reported the values of �k estimated from the

Mon Tue Wed Thu Fri Sat Sun

m 0.10 0.23 0.23 0.23 0.20 0.09 0.01

q 1.20 1.46 1.56 1.84 1.69 1.12 0.72

AAE 0.20 0.29 0.18 0.09 0.12 0.15 0.18

Table 6.16: �k linear model parameters estimated and AAE for the San Camillo ICU.

linear model 2.10. In Table 6.17 the AAE of the Poisson probability mass function

fitting obtained through the linear model are reported. Value show that the proposed

approach provides a good description of the empirical frequencies.

6.2.3 Stochastic dynamic optimization of bed occupancy

The hospital system that we considered can result in a patient being turned away be-

cause all beds are occupied; such a patient may not receive the necessary care. On the

other hand, the goal of the hospital is to assign beds in order to provide the best level

of service possible. We here address this dilemma by minimizing the number of empty

beds subject to maintaining the delay probability at a su�ciently low level. The most

common goal in the above setting is to find a policy that specifies the action to take

in each time in order to reduce the cost. A key idea is that an optimization over time

can often be regarded as optimization in stages. We trade o↵ our desire to obtain the

lowest possible cost at the present stage against the implication this would have for the

cost at future stages. Therefore the best policy minimizes the sum of the cost incurred
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Figure 6.15: Poisson model estimated �k of San Camillo ICU - Discharge proba-

bility model.

at the current stage and the least total cost that can be incurred from all subsequent

stages, consequent on this decision.

A dynamic programming approach over a finite time horizon allows to fine this policy.

This control theory accounts for the fact that a dynamic system may evolve stochasti-

cally and that key variables may be unknown or imperfectly observed. Our model has

two principal features:

• An underlying discrete dynamic system

• A cost function that is additive over the time

The underlying discrete dynamic system describes the number of patients that are

hospitalized in the department at time k. The evolution of nk, the system’s state, under

the influence of decision made at discrete instances of time is give by the equation

nk+1

= nk + ek � uk+1

(2.11)

where nk is the number of patients hospitalized, ek is the number of parameters ad-

mitted, and uk is the discharges number. In our model we consider the discharges

number as a random parameter that influence the system’s state. According to the

results obtain in Section 6.2.2 we assume that the conditional distribution of uk, with
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6.2 Stochastic dynamic programming in hospital resource optimization

nk�1 Mon Tue Wed Thu Fri Sat Sun

1 0.03 0.05 0.05 0.03 0.04 0.04 0.00

2 0.03 0.02 0.03 0.03 0.02 0.02 0.01

3 0.03 0.02 0.02 0.02 0.02 0.01 0.02

4 0.01 0.03 0.03 0.01 0.02 0.01 0.01

5 0.02 0.02 0.03 0.02 0.02 0.02 0.01

6 0.01 0.03 0.03 0.03 0.03 0.01 0.02

7 0.02 0.02 0.03 0.03 0.04 0.02 0.01

8 0.03 0.04 0.04 0.05 0.03 0.04 0.01

9 0.03 0.03 0.04 0.03 0.04 0.09 0.02

10 0.04 0.06 0.04 0.07 0.04 0.13 0.00

Table 6.17: AAE of the Poisson probability mass function fitting on San Camillo ICU

data.

respect to nk�1

, is binomial with the estimated parameters of Table 6.10. We also

assume that, in order to plan the activities of the department, is possible to control the

number of patients that are admitted. Therefore ek is the control decision variable to

be selected at time k. In discrete time k takes integer values, say k = 0, 1, . . . ,K. Let

Ek = (e
0

, . . . , ek�1

) denote the partial sequence of control taken over the first k stages.

A ward with all beds assigned can result in a patient being turned away, on the other

hand empty beds produce a waste of resources. We here address this feature trying to

reduce the randomness of the number of beds occupied. We assume that the waste of

resources is described by the monotonically increasing cost function g : R ! R+:

g(nk) = (nk � n̄k)
⌘ (2.12)

where n̄k is the desired number of patients by day of the week and ⌘ is a even positive

integer number. According to results in Table 6.14, the department works during the

week with di↵erent load capacity. The cost is additive in the sense that the cost incurred

at time k accumulates over time. The total cost is therefore given by:

gN (nN ) +
N�1

X

k=0

g(nk) (2.13)

where gN (nN ) is the terminal cost incurred at the end of the process. However, because

the presence of uk the cost is generally a random variable and cannot be meaningfully

optimized. We therefore formulate the problem as an optimization of the expected
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6.2 Stochastic dynamic programming in hospital resource optimization

total cost

E
h

gN (nN ) +
N�1

X

k=0

g(nk, ek, uk)
i

, (2.14)

where the expectation is with respect to the joint distribution of the random variable

involved. The optimization is over the control variable Ek; each control ek is selected

with some knowledge of the current state nk. In general the constraints set will depend

on nk and the time index k. In our case, the state variable represents the number

of patients that are hospitalized at time k, therefore we want ensure that this value

is always positive and less then the ward capacity. Thus the following constraints

conditionally to nk�1

2 [0, nmax] must hold:

⇢

nk  nmax ) ek�1

 nmax � nk�1

+ uk
nk � 0 ) ek�1

� max(0, uk � nk�1

)
(2.15)

Given two probability levels ↵,� 2 (0, 1), knowing the conditional distribution we define

a threshold of uk given nk as:

u↵k
.
= sup

n

ū : P(uk  ū|nk�1

)  ↵
o

(2.16)

hence u↵k is the threshold value such that the probability that the discharge number

falls behind this value is less than ↵. In the same way we define u�k such that

u�k
.
= inf

n

ū : P(uk � ū|nk�1

)  �
o

(2.17)

where u�k is the threshold value such that the probability that the discharge number

exceeds this value is less than �. Considering the Poisson model the cumulative distri-

bution function conditionally to nk�1

is

�
�

bu+ 1c,�k(nk�1

)
�

buc! (2.18)

where buc is the floor function and�( x, y) is the incomplete gamma function defined as

�(x, y) =
R1
y tx�1e�tdt. Therefore our constrain set⇥ k�1

(nk�1

) given nk�1

2 [0, nmax]

becomes
⇢

euk�1

 nmax � nk�1

+ u↵k
elk�1

� u�k � nk�1

(2.19)

where ↵ = 5%, � = 5% and euk�1

is the upper bound at time k and elk�1

is the lower

bound at time k, otherwise⇥ k�1

(nk�1

) = {0}.
Let ⇡ = {µ

0

, ..., µN�1

} be the policy where µk maps states nk into control ek = µk(nk)
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6.2 Stochastic dynamic programming in hospital resource optimization

and such that µk(nk) 2 ⇥k(nk) for all nk, k = 0, . . . , N � 1. Given that the expected

cost of ⇡ starting at n
0

is

J⇡(n0

) = E
h

gN (nN ) +
N�1

X

j=0

g(nj)
i

(2.20)

and the optimal cost function is

J⇤(n
0

) = min
⇡

J⇡(n0

), (2.21)

the optimal policy ⇡⇤ is one the satisfies J⇡⇤(n
0

) = J⇤(n
0

).

6.2.3.1 Stochastic dynamic programming algorithm

The stochastic dynamic programming technique rests on a very simple idea, the prin-

ciple of optimality. The name is due to Bellman, who contributed a great deal to the

popularization of stochastic dynamic programming and to its transformation into a sys-

tematic tool. Roughly, the principle of optimality states the following rather obvious

fact.

Principal of Optimality Let ⇡⇤ = {e⇤
0

, e⇤
1

, . . . , e⇤N�1

} be the optimal policy for the

basic problem, and assume that, when using ⇡⇤, a give state nk occurs at time k with

positive probability. Consider the subproblem where we are at nk at time k and wish

to minimize the cost-to-go form time k to time N :

E
h

gN (nN ) +
N�1

X

j=k

g(nj , ej(nj), uj)
i

(2.22)

Then the truncated policy {e⇤k, e⇤k+1

, . . . , e⇤N�1

} is optimal for this subproblem. The

principle of optimality suggests that an optimal policy can be constructed in piecemeal

fashion, first constructing an optimal policy for the tail subproblem involving the last

stage, then extending the optimal policy to the tail subproblem involving the last two

stages, and continuing in this manner until an optimal policy for the entire problem is

constructed.

Our aim is to reduce the probability of having a number of patients di↵erent from n̄.

To control the number of patients in the department, we can not force the discharge

rate because it strictly depends on patients health status and on patients number. On
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6.2 Stochastic dynamic programming in hospital resource optimization

the other hand, physicians can decide the number of patients that could be admitted.

In order to find the optimal policy, we start with

JN (nN ) = gN (nN ) = 0, (2.23)

and we go backward, by applying the one-step optimization procedure:

for k = N � 1, . . . , 0,

Jk(nk) = mine
k

2⇥
k

(n
k

)

Ek

h

gk(nk) + Jk+1

⇣

gk+1

(nk+1

)
⌘i (2.24)

where Ek is the expected value conditional to nk. J0(n0

), generated at the last step, is

equal to the optimal cost J⇤(n
0

) and also the collection of the policies that minimize

the functional in Equation 2.24, ⇡⇤ = {µ⇤
0

(nk), ..., µ⇤
N�1

(nk)} represents the optimal

policy for the whole minimization problem.

6.2.4 Estimation result

In order to validate our approach we evaluate the stochastic dynamic algorithm in

di↵erent cases. Preliminary we adopt the binomial model fixing the same number of

patients for all days of the week. Afterwards a Poisson model is adopted, changing

the required number of patients as a function of the day of the week. We set the

↵ parameters of the cost function 2.12 equal to 2. Stochastic dynamic programming

results are compared with the current number of beds managed in practice. Medical

practice commonly applied in the department can be described by a linear model.

Therefore as a proxy of the empirical policy, we consider a policy estimated from the

average number of discharges (LP) according to the following relation:

ẽk =
h

n̄k � nk + E[uk+1

|nk]
i

+

(2.25)

where n̄k is the target number of hospitalizations and E[uk+1

|nk] is the conditional

expectation of the discharges number given nk.

We evaluate the stochastic dynamic programming for di↵erent values of n̄ and we

consider 104 simulated scenarios of 28 days (4 weeks) in which the number of discharges

are simulated according to the models proposed. In the case in which the number of

the required patients changes during the day of the week the value of n̄ represents the

weekly average number of patients. The daily number of patients is given by

n̄k =

⇢

bn̄⇥ wkc, if {n̄⇥ wk}  0.5
bn̄⇥ wkc+ 1, if {n̄⇥ wk} > 0.5

(2.26)

141

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



6.2 Stochastic dynamic programming in hospital resource optimization

where w = [1.04 1.06 1.10 1.06 1.09 0.87 0.77]. Vector w is estimated from

historical data. Otherwise if we consider a fixed value during the days of the week

n̄k = n̄. For each scenario the absolute distance between the required number of

patients n̄ and the hospitalized number (nk) is evaluated in the following way:

✏ =
28

X

k=1

|nk � n̄k|. (2.27)

In Tables 6.18 and 6.19 the average absolute distance for the stochastic dynamic pro-

gramming method (SDP ) and for the empirical policy are reported. Values show that,

despite the proposed model is relatively simple, it allows to obtain better results than

using a linear policy. Using the cost function proposed a better management of hospi-

tal bed is obtained. Figure 6.16 shows an example of two scenario in which red line

n̄

4 5 6 7

SDP 23.80 23.31 26.49 29.83

LP 20.68 23.26 26.03 28.40

n̄

8 9 10 11

SDP 33.56 33.48 41.50 41.78

LP 30.10 31.68 33.07 33.90

Table 6.18: Average absolute distance between the number of patients n̄ and the hos-

pitalized number nk. The required number of patients is the same for all the day of the

week, discharges number are simulated using the Binomial model.

describes the evolution of the number of patients based on the application of the empir-

ical policy and the blue line describes the number of patients under the optimal policy.

The first plot in Figure 6.16 shows a scenario obtained by considering a fixed number

patients for all the days, where the Binomial model is applied in order to describe the

discharge frequency. The second plot in Figure 6.16 shows a scenario obtained by con-

sidering a time varying number of patients over the days of the week and the Poisson

model is applied in order to describe the discharge frequency. Both cases consider a

weekly average number of patients equal to 5. In Table 6.20 is reported the optimal

policy estimated considering a weekly average equal to 4, given the periodicity of the

problem in Table 6.20 is reported only the weekly strategy.
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6.3 Summary

n̄

4 5 6 7

SDP 32.33 35.23 36.32 41.02

LP 32.22 37.36 37.99 42.18

n̄

8 9 10 11

SDP 42.05 43.77 45.61 53.18

LP 42.67 43.36 43.96 48.36

Table 6.19: Average absolute distance between the number of patients n̄ and the hospi-

talized number nk. The required number of patients changes daily during the day of the

week, discharges number are simulated using the Poisson model.

6.3 Summary

The conceptual framework proposed allows to analyse di↵erent aspects of public health

system performance.

Distinctive quality indicators and their representation are proposed in order to moni-

toring the health system. The reduction of CABG interventions (passing from 48% to

40%), the increase of mechanical support, and the decrement of the average LoS for

CABG intervention show structural evolution of the department.

The average age of patients treated and the decreasing mortality rate for each type of

intervention confirms the overall structural improvement of the department.

The control chart is an instrument for describing, in a precise manner, exactly what

is meant by statistical control. In many applications, it is used for on-line process

surveillance. The use of two di↵erent Control Charts is proposed. This tool puts in

evidence, that after a starting period in which the team is settled, also in this case,

it is observed an improvement of the performance due to the standardization of the

procedure. The charts show a time trend that could be explained by the evolution of

the department. First year data highlights that the process was out of control and

analysis confirm that the process improves in the following years. The tools allowed a

reasoned characterization of the system.

A linear relation between LoS and ES is investigated and it is proven that for small

value of ES the mortality is better than the expected one. Moreover LoS analysis sug-

gest that the optimal number of hospitalized patient is 5.
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Figure 6.16: Admission policies in San Camillo ICU - Comparison between the

SDP and LP

Hospital management takes place in an increasingly competitive environment and it

is therefore essential to focus on delivering high quality care to patients. The aim of

the hospital bed management is to allocate beds to patients while taking into account

capacity constraints. Therefore is proposed SDP approach to describe the healthcare

resource allocation. In order to evaluate the optimal policy we propose di↵erent model

to describe the discharge frequency of the department. According to the analysis of the

empirical data the Binomial model and the Poisson model are proposed. In particular

we describe the conditional distribution of the empirical discharge frequency given:

• the number of hospitalized patients

• the synthetic proxy that describe the health status of the hospitalized patients

• the number of hospitalized patients and the day of the week

Results show that the models proposed provide a good description on the empirical

data. SDP methodology allows the estimation of the optimal policy in order to control

the average number of patient hospitalized in the department. In this way the hospital

manager could balance the cost of empty beds against the cost of turning patients

away, thus facilitating a good choice of bed provision in order to have a low cost and

high access to service. Results of the empirical policy compared with the results of the
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6.3 Summary

nk�1 Mon Tue Wed Thu Fri Sat Sun

1 4 4 5 5 4 4 3

2 3 3 4 4 3 3 2

3 2 2 3 3 2 2 1

4 1 2 2 2 2 1 0

5 0 1 1 1 1 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0

Table 6.20: SDP policy obtained considering a variable number of patient during the day

of the week. Average number of required patient is equal to 4 and discharge distribution

is described using a Poisson distribution.

optimal policy show that the proposed model contribute to describe the department

management strategy. Moreover the SDP approach provides a methodological tool

that allows to introduce further improvements. In future work the impact of emergency

demand could be investigated in order to understand which is the best strategy to adopt

to face these situations. An evolution during the years of the optimal strategy could be

also analysed in order to find out the impact of the new technology and procedures.
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7

Financial modelling in healthcare

optimization

This Chapter introduces three financial-like models to describe the variable costs asso-

ciated with patient hospitalization: a Nelson-Siegel model; a Black-Scholes model and

a Cox-Ingersoll-Ross model.

In modern societies, the costs of healthcare are increasing year by year. One of the

reasons for this growth is the fact that the population is ageing. Elderly patients (over

70 years of age) have a high incidence of chronic diseases such as hypertension, diabetes

and chronic lung disease. Another factor contributing to increasing costs is the use of

expensive technology such as coronary artery bypass graft (CABG) surgery. The third

party (state, communities, insurance companies and health maintenance organizations)

has taken an active part in controlling hospital costs. The requirement is to cut costs

without diminishing the quality of care. One solution is to increase e�ciency; hospitals

need to plan their operations to use available resources in an optimal fashion.

An approach is to study the relation between admission risk score, Length of Stay

(LoS), and hospitalization costs. Risk score can be used to predict the hospital LoS

and total hospitalization costs [141], [158], [159]. It have been proved that ICU costs

are grater on the first ICU day and by day 2 and become stable after day 3 [159]. It

also been shown that exist a relation between risk score and total cost [158], [141].

According to [141] in Table 7.1 are reported the mean values of cost at di↵erent level of

risk score and LoS. When a patient is admitted the expected cost and LoS depends on

the risk score observed. Data are reported as an example of relation between risk score,
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Risk score LoS Empirical Cost [C] Estimated Cost [Ĉ]

0 8.3 7856 7500

1 8.9 8031 8154

2 9.7 9036 8968

3 10.3 9336 9663

5 10.0 10205 10220

11 11.3 14995 14943

Table 7.1: Mean values of cost for di↵erent level risk scores and LoS.

LoS and cost; it is assumed that this relation can be observed also in other department.

EuroSCORE (ES) is a method of calculating predicted operative mortality for patients

undergoing cardiac surgery, it is assumed that EuroSCORE or its linear transformation

are reliable and valid proxy of risk score.

The analysis is based on the Unit of Anaesthesiology and Reanimation of S. Camillo-

Forlanini Hospital data, a part of the Cardiac Sciences Department. The data analyzed

are referred to the patients receiving cardiac surgery. Particularly, the database con-

siders 11,770 patients (records) who received cardiac surgery from 1999 to 2012 and

the corresponding items were:

• Name, Intervention Date, Age, Pathology, Sex, Urgency, Intervention, Ejection

Fraction, Pulmonary Hypertension, Diabetes, Obesity, Chronic Obstructive Bron-

chopathy, Chronic Kidney Failure, Liver Failure, Neuropathy, Reintervention, Ex-

tracorporeal Circulation Time, Orotracheal Intubation Time, Length of Stay in

Intensive Care Unit, EuroSCORE, Post-Operative Complications, Exitus (dead

patient).

• Two main indicators were considered: 1) ICU Length of Stay (LoS) and 2) Eu-

ropean System for Cardiac Operative Risk Evaluation-ES (EuroSCORE). The

term Length of Stay indicates the measure of the duration (in days) of a stay in

a hospital department. The relevance of LoS as performance indicator of an ICU

is reported elsewhere (Clemente et al. 2014) as it measures the e�ciency and

the quality of the process. As described in (Millard, 1994), the use of the LoS

in analyzing ICU processes is twofold: it is the measure of the e�ciency of the

process, and it is the measure of costs of the ICU and of the global hospital. In

fact, the ICU while using between 5% and 10% of the beds can consume up to
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7.1 Cost function

20% of hospital budgets. Moreover, the LoS can be used as an indirect indicator

of the quality of care. Figure 6.5 shows the average LoS per year, in general

and for di↵erent types of patients. The reference solid line is the average of all

admitted patients (aggregated from 1999 to 2012) and the dashed line shows the

trend of average LoS for di↵erent type of patients. The EuroSCORE is a risk

indicator for patients undergoing cardiac surgery, which was widely used since

it was introduced in 1999. It represents one of the main quality measurement

that allows an objective assessment of the service under examination, predictive

assessment of the safety, e�cacy and quality of health (see Handler at al. 2001).

EuroSCORE gives to each clinical risk factor a weight or a number of points

that, when combined, provide an estimate of the expected percentage mortality

for a patient undergoing cardiac surgery. Even if di↵erent EuroSCORE models

have been proposed, the additive EuroSCORE underestimates the risk in some

groups of patients. At the same time, there has been an exponential growth in the

availability of information technologies for the cardiac and surgical units of hos-

pitals, thats why the use of a risk model based on the equation complete logistics

gradually established. Analysis faced into this paper concerned only with logistic

EuroSCORE (ES in the following), approximating the values to integer numbers.

Figure 6.7 shows the number of patients per every specific logistic EuroSCORE

value: the majority of patients (about 75% of the whole population) falls in the

first six ranges of ES).

7.1 Cost function

Starting from data of Table 7.1 it is provided a methodological approach that allow to

describe the cost function with respect to the ES and the LoS. The aim is to intro-

duce a cost function that describe the empirical data and furnish a phenomenological

interpretation. In according to Nelson-Siegel model [160], used to estimate the term

structure of interest rates from observable data, a method to interpolate healthcare

costs is provided. Nelson-Siegel model is a function-based approach that approximates

empirical data to create yield curves. The model of Nelson and Siegel and its extension

by Svensson [161] are used by central banks and other market participants as a model

for the term structure of interest rates.
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In order to interpolate healthcare data and provide a cost surface, starting from the

couples of data observed, a two variables function is calibrated. It is assumed that the

overall hospitalization costs mainly depend by three factors:

• Admission health state it is evaluated through di↵erent risk model. For exam-

ple several risk indexes have been developed for the prediction of postoperative

mortality and morbidity in coronary bypass surgery. EuroSCORE is one of the

most widely used in Europe [140], [162]. It is calculated by adding the points

assigned to several variables. A minimum value indicates the absence of risk vari-

ables, and therefore should correspond to minimum mortality. The risk indexes

can only give a rough estimate of the risk for an individual patient, they can be

used for planning purposes at the population level. The results of [141] and [158]

demonstrate that there is a close relationship between the preoperative risk scores

and total cost. Admission health state costs should be described using a function

that increases with EuroSCORE and decreases with time, severe patients have

higher costs and the care provided by hospital reduce the impact of initial health

state costs.

• Fixed costs represents all the fix expediencies arising from the standard de-

partment resource consumptions. This cost compressive elements such us bed

occupancy, nurses, mechanical ventilation. It is assumed that this costs are fixed

and do not depend on time and health state.

• Clinical complications represents all the cost arising from the extra activities

that must be provided in order to face complication during the hospitalization of

the patients. Longer hospitalizations have higher probabilities of complication,

however complications are more likely during the first day of hospitalization.

Hence it is assumed that the complication costs are described by a decreasing

function of the time.

Let X and Y be exponential independent random variables of parameters �
3

> 0

and �
4

> 0 defined on the same probability space (⌦,F,P). Specifically X describes

the probability that the admission health state a↵ects the cost and Y describes the

probability that during the hospitalization a complication is found. During the hos-

pitalization the treatments received by the patients reduce the probability that the
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admission health state is reflected on cost and the probability that complication arise.

In order to justify the use of an exponential distribution, for the variable X we consider

the following assumptions:

1. The health state impact on cost is described by a Poisson process. Hence X is

the time between events.

2. The occurrence of one event does not a↵ect the probability that a second event

will occur. That is, events occur independently.

3. The rate at which events occur is constant. The rate cannot be higher in some

intervals and lower in other intervals.

4. Two events cannot occur at exactly the same time.

Regarding assumption 1 is reasonable to assume that the health state cost impact is

described by a Poisson process; patients with the same admission health state can

have di↵erent cost give by the jump of their health evolution. Regarding assumption

4, it is unlikely that two events that change the health state occur at the same time.

Assumption 2 and 3 may be unrealistic but they are needed in order to simplify the

mathematical framework of the problem. The same assumptions can be made for

variable Y .

The cumulative hospitalization cost up to time t, considering an initial EuroSCORE of

ES, can be expressed by

ĉ(ES, t) = ⇣[�
1

t+ �
2

ES1Xt + 1Yt] (1.1)

where 1 stands for the indicator function, �
1

,�
2

� 0, and ⇣ = 10, 000 is a normalizing

factor chose in according to value of Table 7.1. Time is expressed in days. Evaluating

the expected value the cost for a hospitalization up to time t is

Ĉ(ES, t) = E[ĉ(ES, t)] = �
1

LoS + �
2

ES(1� e��3t) + (1� e��4t). (1.2)

Considering the derivative with respect to the time, we obtain the daily expected cost

of hospitalization is

@Ĉ(ES, t)

@t
= �

1

|{z}

fixed cost

+�
2

�
3

ES ⇥ e��3t + �
4

e��4t
| {z }

variable cost

(1.3)
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7.1 Cost function

where �
1

is the fix costs, �
2

�
3

ES ⇥ e��3t is the variable cost depending admission ES,

and �
4

e��4t is the variable cost arising from medical complication that can occur during

the hospitalization.

Starting from observed data, model parameters are estimated through the Minimum

Mean Squared Error method (MMSE). Last column of Table 7.1 shows the cost esti-

mated and in Table 7.2 are reported the parameters of the model. In order to evaluate

�1 �2 �3 �4

10.0014 21.3399 0.0463 32.5151

Table 7.2: Surface cost function estimated parameters.

the performance of this approach, four discrepancy measures are applied: the average

prediction error (APE), the average absolute error (AAE), the root mean-square error

(RMSE), and the average relative prediction error (ARPE). Let C(ESi, LoSi) be the

observed data of Table 7.1 and Ĉ(ESi, LoSi) be the estimated data, the four error

estimators are defined as follows:

APE =
N
X

i=1

|C(ESi, LoSi)� Ĉ(ESi, LoSi)|
C(ESi, LoSi)

, (1.4)

AAE =
N
X

i=1

|C(ESi, LoSi)� Ĉ(ESi, LoSi)|
N

, (1.5)

ARPE =
1

N

N
X

i=1

|C(ESi, LoSi)� Ĉ(ESi, LoSi)|
C(ESi, LoSi)

, (1.6)

RMSE =

v

u

u

t

N
X

i=1

(C(ESi, LoSi)� Ĉ(ESi, LoSi))2

N
. (1.7)

In Table 7.3 are reported the discrepancy measures of the cost function fitting. Values

APE AAE ARPE RMSE

0.11 156.83 0.02 206.64

Table 7.3: Error metrics for cost function fitting. Values are estimated considering data

of Table 7.1.

in Table 7.1 and 7.3 show that the proposed cost model provides a good description of
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7.2 Black-Scholes approach

empirical data. Starting from the observed data, the proposed approach provides an

estimation on the cost for every couple of ES and LoS. Figure 7.1 is estimated a cost

surface that shows the increasing of cost as a function of LoS and EuroSCORE.
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Figure 7.1: Hospitalization costs estimated surface of San Camillo ICU depart-

ment. - Relation between ES, LoS and costs.

7.2 Black-Scholes approach

Real options analysis is a mathematical approach that calculates the value of options

associated with a decision, it determines optimal investment scope and timing taking

future decisions and flexibility into account. It originated from options theory, which

determines the value of financial options that give option holders the right to buy or sell

stocks at a previously set price. The beginning of options theory starts with the works

of [57] and [58] on the pricing of financial options and the development of closed-form

solutions for the value of call and put options. Alternatives to closed form solutions are

partial di↵erential equation models, simulations, or portfolio optimization techniques

[59]. The holder of a call option has the right, but not the obligation, to buy the un-

derlying asset of the option often a stock within a specified period at a given price,

called the strike price. Similarly, a put option allows the selling of the underlying asset

at the strike price [60]. The parallels between financial options and real options were

first discussed by [61]. Early literature on real options focused on determining the

value of one specific type of option at a time, such as the option to delay or modify the
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7.2 Black-Scholes approach

operating scale of a project [62], [63]. Later research focused on using these options to

model more complex settings [65], [66]. In this framework the aim is to fill this gap by

providing a mathematical and accessible model to measure the cost of hospitalization

jointly with a commonly observed health risk indicator, the EuroSCORE. Hence, it is

given also a contribution the real option technique in healthcare. Through a case study,

it is provided clinicians and executives with insights on the advantages of integrating

e↵ectively this quantitative modelling technique into the organizational decision pro-

cess. It is also provided details for hospital analysts concerning with the data required

as input, and the information generated as output.

A key responsibility of hospital executives is to make important decisions concerning

budgeting, investment and resource allocation. Hence it is described the hospitaliza-

tion flexibility as a call option. It is assumed that during the patient hospitalization

physicians have to choose between two di↵erent opportunities; continue to treat the

patient or discharge him. Physicians decide to continue the treatment if it considers

that the benefits exceeded the hospitalization cost. The benefits are greater the more

severe the patients state of health is. The hospitalization value is given by the likely

benefits that the patients health state can obtain, less the cost associated with the

consumption of the bed place. It is assumed that the bed cost is not fixed and depends

on the department situation. An overused department has higher management costs

and has also a higher probability of refuse a new patient.

Calling S the value associated to the investment in patient care and K the bed cost,

the patient stays in hospital since S > K otherwise the patient is discharged. The

overall value of the hospitalization is

(S �K)+ =

⇢

S �K if S � K
0 if S < K

(2.8)

where Equation 2.8 represents the payo↵ of an European Call option. If S is less than

K, the patient is discharged because investing in his care is no longer profitable: the

amount of treatment administered have brought an improvement of the health and

further action would no bring additional benefits. The patient hospitalization could be

represented as an option in which the physician has the right, but not the obligation,

to abandon the investment in the patients care. The underlying value of this option is

a proxy of the health state and the strike price is the cost of the bed. Since that every

day physicians evaluate the patient health state, and decide to discharge or not, it is
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7.2 Black-Scholes approach

assumed that the value of a multi-day stay can be described by adding the single day

option value.

7.2.1 Parameters estimation

The patient hospitalization cost is described using an option approach under the fol-

lowing assumptions:

1. Let LoS and ES be random variables defined on the same probability space

(⌦,F,P). LoS describes the hospitalization time and ES the health state of

the patent. Then exists a function g : R+ ! R+ such that, the underlying

S = g(ES|⇤) is log-normally distributed, where S describes the value associated

to the patient hospitalization (bigger values of S entail a worse health state and

thus further benefits that can be obtained in case of treatment) and ⇤ is the

function parameters.

2. The strike K depends on the number of patient hospitalized according the fol-

lowing formula

K(t) = �
1

n(t) (2.9)

where �
1

> 0 is a parameter and n(t) is the number of patient hospitalized at

time t.

According to Chapter 6, Section 6.2.1, Equation 2.4, exist a linear relation between

LoS and ES. Given that S is a proxy of the health state, all patient at discharge have

the same small value of S, hence considering an initial EuroSCORE of ES, after t days

of hospitalization the expected ES is

ES(t) = max(ES + µt, 1). (2.10)

where µ < 0 is an estimated parameter and the max is applied in order to avoid negative

value for ES. To estimate parameter µ the following objective function is considered

min
µ

N
X

i=1

h

ESD �max(ESi + µLoSi, 1)
i

2

. (2.11)

where N is the number of patient considered, ESi is the admission ES of patient i,

and LoSi is the time spent in ward by patient i. According the previous assumption

154

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



7.2 Black-Scholes approach

the hospitalization cost can be estimated by the Black-Scholes formula (see Chapter 4

Section 4.3, [57])

ĈBS(ES,LoS|⇥) = �
2

LoS
X

t=1

⇧(g(µt+ ES), �
1

n(t), r,� ,
1

365
) (2.12)

where ⇧ is the Black-Scholes price of a Call option, �
2

> 0 is a estimated scale param-

eter, r is the risk free rate, and � is the volatility. In this framework it is assumed that

g(ES, t|⇤) = �
3

+ �
4

ES(t).

Starting from the cost surface estimated, a calibration procedure is performed in order

to estimate the parameters of the pricing model. The following objective function is

considered:

min
⇥

N
ES

X

i=1

LoS
X

k=1

h

Ĉ(ESi, k)� ĈBS(ESi, k|⇥)
i

2

(2.13)

where NES is the number of ES and ⇥ = [�
1

, �
2

, �
3

, �
4

, µ, r,�]. Parameters calibration

starts from a Halton quasi-random sequence of 20 ⇥ 7 initial points [98], [99]. Grid is

generated according the following constraints:
8

<

:

�i � 0 8i 2 [1, 4]
r,�> 0
µ < 0

(2.14)

In Table 7.4 are reported the estimated parameters for the Black-Scholes model. In

�1 �2 �3 �4

2.50 307.45 0.21 3.33

µ r �

-0.78 0.50 0.05

Table 7.4: Black-Scholes cost function estimated parameters.

order to validate the performance of the model, the following metrics are evaluated

APE =
N

ES

X

i=1

LoS
X

k=1

|Ĉ(ESi, k)� ĈBS(ESi, k)|
Ĉ(ESi, k)

, (2.15)

AAE =
N

ES

X

i=1

LoS
X

k=1

|Ĉ(ESi, k)� ĈBS(ESi, k)|
NES ⇥ LoS

, (2.16)

ARPE =
1

NES ⇥ LoS

N
ES

X

i=1

LoS
X

k=1

|Ĉ(ESi, k)� ĈBS(ESi, k)|
Ĉ(ESi, k)

, (2.17)
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7.3 Cox-Ingersoll-Ross approach

RMSE =

v

u

u

t

N
ES

X

i=1

LoS
X

k=1

(Ĉ(ESi, k)� ĈBS(ESi, k))2

NES ⇥ LoS
. (2.18)

In Table 7.5 are reported the error metrics, data show that the BS approach pro-

APE AAE ARPE RMSE

3.03 152.47 0.04 239.61

Table 7.5: Error metrics of Black-Scholes approach. Cost function surface fitting.

vides a good description of empirical costs; however Figure 7.2 points out the model

performance. The model provides a better estimation of the data for shortest hospi-

talizations, for longer stays the average cost is estimated well but the model shows an

overestimation for less sick patients and an underestimation for sicker patients. Overall

the model performances are adequate to analyse the hospitalization costs.

The proposed approach describes data and provides phenomenological interpretation;

through the use of the BS formula it is evaluated the optionality linked to the patients

hospitalization. The aim is to highlight the components that most influence the hospi-

talization costs. Key elements turn out to be the patients health state and the number

of hospitalized patients. Hospital departments are systems characterized by a finite

number of resources, hence allocation policy should maximize the expected return of

each investment. Therefore recovering patients in a nearly full department appears to

be an investment with low expected value. This methodological approach introduces a

new economic evaluation method and allows comparison between di↵erent investments

in order to provide a decision support tool.

7.3 Cox-Ingersoll-Ross approach

Providing the appropriate medical care involves decision-making in terms of planning

and management of healthcare resources. The requirement is to cut costs without di-

minishing the quality of care. One solution is to increase e�ciency; hospital need to

plan their operations to use available resources in optimal fashion. For the past 40

years, practitioners and researchers alike have been grappling with the natural short-

comings associated with the net present value approach to strategic decision making

and capital budgeting. Work by scholars in option pricing theory has evolved into an
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Figure 7.2: Comparison between real hospitalization value and Black-Scholes

estimation. - The continuous lines represent the real costs and the dashed lines represent

the estimated costs.

alternative perspective on strategic capital investments, called real options. Proponents

of real options argue that this is a superior way of approaching decision making and

capital budgeting, compared with other approaches, as it allows for greater strategic

flexibility and encourages exploration, experimentation, and innovation. Within the

healthcare literature, articles on real options have been focused on pricing these op-

tions [60]. Moreover, the real option analysis also has been used to evaluate vaccination

programs. Standard analyses might not capture the full economic value of novel vac-

cination programs because the cost-e↵ectiveness paradigm fails to take into account

the value of active management. Management decisions can be seen as real options, a

term used to refer to the application of option pricing theory to the valuation of invest-

ments in non-financial assets in which much of the value is attributable to flexibility

and learning over time [163]. The uncertainties at the hospital level should be explic-

itly addressed and accounted for in executive decision-making processes. Furthermore,

past decisions a↵ect the range of decisions that can be taken in the future. Therefore

options give executives flexibility to respond to future events and manage costs. The

purpose of our study is to explore the interplay between two crucial drivers used to

evaluate the clinical process, the Length of Stay and the European System for Cardiac

Operative Risk Evaluation (EuroSCORE).
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7.3 Cox-Ingersoll-Ross approach

7.3.1 Model Specification

In order to find the fair cost of patient hospitalization (in an intensive care department),

we analyze the relation between the EuroSCORE and the LoS. We introduce an equi-

librium model in order to derive the value for the premium that a representative patient

pays to have the opportunity to be discharged after a finite time. Standard models can

not capture all the characteristics of a complex quantity as the disease state of a pa-

tient. Moreover the costs associated with the hospitalization of a patient do not depend

linearly on the state of the disease, therefore is not simple, starting from a synthetic

index as the EuroSCORE, to derive an estimate of the whole cost of the hospitalization.

Our main assumption is that it is possible to properly describe the hospitalization of

a patients through his disease state behaviour. Moreover patients disease state can be

improved spending resources such as doctor working hours, hospital beds, and other.

To explain our approach, preliminary we describe a simplified scheme where there are

three economic subjects: a representative patient (P ), the hospital department (H)

that takes care of P , and the healthcare system (HS). The evolution of patient health

is the source of uncertainty in the model. Precisely, the health state refers to the disease

state of the representative patient. When a patient is admitted his initial disease state

is the EuroSCORE and after a given time it assumes two di↵erent values. At di↵erent

values of the health state correspond di↵erent values for the LoS. Actually, the LoS

of a patient strictly depends on the disease state, the higher is the disease state the

bigger is the time the patient will spend in the hospital. Let us consider the following

variables:

• h > 0 is the disease state of P at the time of hospital admission, that may increase

to hu > h, with probability p 2 (0, 1), in the case the patient develops a serious

illness, causing a drop in the health state, which causes the death of the patient

(called the exitus). Otherwise it may decrease to 0 < hd < h, with probability

1� p, when the patient is discharged and the health state is improved.

• K > 0 represents a threshold for the health state. Until the disease state is greater

than K, the patient is considered su�ciently ill to increase the LoS and hence the

hospitalization cost. Clinicians do not discharge the patient if the health (read

disease) state is higher than K.
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7.3 Cox-Ingersoll-Ross approach

• The economic position of patient P , at the time of hospital discharge, can be

identified through the increasing function g : R ! [0,1) of h�K, the di↵erence

between the health state and the clinical threshold.

• The unit cost value for a single healthcare intervention is a↵ected by the health

state of P . Precisely, it is an increasing function of h, Q = Q(h), where Q :

[0,1) ! [0,1).

• The amount of resources invested (at the time of hospital admission) by H to

reduce the disease state of P is proportional to the unit cost value, namely:

� ·Q, for some� > 0.

• B > 0 denotes the amount of money delivered by HS to H for the hospitalization

cost coverage of P , paid after the hospital discharge.

• r > 0 is a compounded interest rate per-period of time.

The initial poor health condition leads to the hospitalization of P , whereas he will be

discharged only if the disease state goes below K. Therefore it is reasonable to suppose

that hd < K < h. This simplified world works under the following actions:

• P pays a premium ⇧ (a part of his income taxes) to HS for the right to receive

the health treatment by H and to own the chance to be discharged after the time

of hospitalization (LoS).

• The hospital management has the obligation to allocate resources of H to improve

the health state of P .

• HS has the opportunity to invest the amount of money that is not delivered to

H in alternative financial assets earning the interest rate r.

At the end of the hospitalization, the financial position of P and HS, jointly with H,

are given by

P :

8

<

:

g(hu �K) with probability p

g(hd �K) with probability 1� p
(3.19)

HS and H :

8

<

:

�� ·Q(hu) +B with probability p

�� ·Q(hd) +B with probability 1� p
(3.20)
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7.3 Cox-Ingersoll-Ross approach

HS and H can choose � and B in order to match the financial position of P :

8

<

:

�� ·Q(hu) +B = g(hu �K)

�� ·Q(hd) +B = g(hd �K).
(3.21)

These equations yield the number of care interventions:

� =
g(hu �K)� g(hd �K)

Q(hd)�Q(hu)
. (3.22)

By assuming the perspective of a rational investor for all three agents [164] and [165],

the system is in equilibrium only if the premium paid by P corresponds to the initial

joint position of HS and H:

⇧ = �� ·Q(h) +
B

1 + r
= �� ·



Q(h)� Q(hd)

1 + r

�

+
g(hd �K)

1 + r
. (3.23)

which can also be written as

⇧ =
1

1 + r
· [p? · g(hu �K) + (1� p?) · g(hd �K, 0)] , (3.24)

where

p? =
Q(h)(1 + r)�Q(hd)

Q(hu)�Q(hd)
. (3.25)

Note that if Q(h)(1+r) < Q(hu), then p? 2 (0, 1). Hence 3.24 represents the discounted

expected value of the random payo↵ of the patient P , that is

⇧ =
1

1 + r
E? [g(hT �K)] , (3.26)

where E?[·] is the expected value of the random variable g(hT � K), where hT is the

health state at the time of discharge T , with two possible outcomes, g(hu � K) with

probability p?, and g(hd�K) with probability 1�p?. We remark that, if the condition

on the unit cost function Q(·) is not satisfied, then the cost of a care is not adequate,

from an economic viewpoint, to the e↵ective health state.

From a financial perspective, Equation 3.26 represents the price of a European-style

contingent claim (option) written on the health state variable hT and it can be also

interpreted as the fair value of the premium paid by the representative patient P for his

hospitalization cost coverage. In next sections we extend model 3.26 to a continuous-

time framework and we propose an estimation method based on a panel of real data.
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7.3 Cox-Ingersoll-Ross approach

7.3.2 State Transition Equations

The evolution of health (h) for the representative patient is described by the state of

disease over time t � 0 and it is the main source of uncertainty in our model. This

is described formally through a complete probability space (⌦,F,P) and a filtration

{Ft : t � 0} of sub-�-algebras of F satisfying the usual conditions [165]. We consider a

one-dimensional Brownian motion {Wt}t�0

adapted to {Ft : t � 0} which describes the

underlying source of randomness. The health state is a predictable stochastic process,

which is, intuitively speaking, a process whose value at any time t depends only on the

information in the underlying filtration {Ft : t � 0} that is available up to, but not

including, time t. Specifically, the following stochastic di↵erential equation governs the

behaviour of the process:

dht = a(ht)dt+ b(ht)dWt, ht = h
0

, (3.27)

where h
0

> 0 is a constant initial parameter. Here the coe�cient function a, b :

[0,1) ! R are assumed to be continuous, b is strictly positive on (0,1), and satisfy

su�cient conditions in order to ensure the existence of a unique strong solution for

3.27 (see Chapter 4, Theorem 4.1.7) {ht, ; t � 0}, for any initial datum h
0

, such that

ht > 0, P almost surely, for any t � 0. These conditions are, for instance, well studied

in a paper of [166]. We observe that the second term in Equation 3.27 captures the

continuous volatility of Brownian motion, the magnitude of the variance being deter-

mined by b(ht). We shall use the EuroSCORE assigned by clinicians to the patient as

a proxy for the initial health state value h
0

.

Let T > 0 be the time of discharge of the representative patient. Thus, we assume the

existence of a deterministic function Q : [0,1)⇥[0, T ] ! [0,1) such that Qt := Q(ht, t)

describes the unit cost value for a single healthcare intervention. In particular we sup-

pose that Q 2 C2,1([0,1) ⇥ [0, T )), with @hQ(h, t) > 0, for all h � 0, t 2 [0, T ). This

choice of modelling Qt implies that the unit cost of intervention is a↵ected by the same

source of randomness as the disease state ht. In the following, the value⇧ t of the

financial position at time t is a deterministic function of ht, namely⇧ t :=⇧( ht, t), for

some smooth enough function⇧ 1.

1A su�cient condition for ⇧ is that it is continuous on [0,1)⇥[0, T ) with two continuous derivatives

with respect to h 2 (0,1) and with a continuous derivative with respect to the time variable t 2 (0, T ).

This allows for the application of Ito’s formula.
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7.3 Cox-Ingersoll-Ross approach

Using equilibrium arguments like those illustrated above, in the continuous-time frame-

work, the following equation must hold:

��t · dQt + rBtdt = d⇧t, (3.28)

for any t 2 (0, T ). Here, Bt stands for the time t value of the amount of money set

aside by healthcare system in order to cover the future cost of hospitalization, which

is capitalized at continuously compounded (constant) interest rate r > 0. Moreover we

have assumed that the amount of care provided to the patient� t does not change in

the small interval of time dt. By applying the well known Ito formula [165] to⇧( ht, t),

and by the equation ��tQt + Bt = ⇧t (in economic equilibrium), we argue that 3.28

is satisfied only if and only if ⇧ solves the partial di↵erential equation

@⇧

@t
(h, t) + L⇧(h, t) = r⇧(h, t) (3.29)

where L stands for the linear di↵erential operator

L =
1

2
b2(h)

@2

@h2
+ µ(h, t)

@

@h
, (3.30)

µ(h, t) := r
Q(h, t)

@hQ(h, t)
� 1

2
b2(h)

@2hQ(h, t)

@hQ(h, t)
� @tQ(h, t)

@hQ(h, t)
, (3.31)

for all h 2 (0,1), t 2 (0, T ), subject to the terminal condition⇧( h, T ) = g(h), for a

given payo↵ function g 2 C([0,1)). By Equation 3.28, we also deduce that the unit

cost value is� t = �(ht, t), where

�(h, t) := � 1

@hQ(h, t)

@⇧

@h
(h, t), (3.32)

for all h > 0, t 2 (0, T ). If 3.29 admits a classical solution, then by the Feynman-Kac

formula, this implies the following probabilistic representation for the solution:

⇧(h, t) = e�r(T�t)E? [g(hT )|ht = h] . (3.33)

According with a consolidated approach in option pricing theory, the conditional ex-

pectation E?
⇥

·
�

�·
⇤

is computed under a probability measure Q equivalent to P. Under

such a measure the dynamics of the health state is the following:

dht = µ(ht, t)dt+ b(ht)dW
?
t , (3.34)
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7.3 Cox-Ingersoll-Ross approach

where W ?
t denotes a Brownian motion on the probability space (⌦,F,Q), with filtration

{Ft : t � 0} and it is defined as

dW ?
t = dWt +

1

b(ht)
[a(ht)� µ(ht, t)] dt. (3.35)

We remark that 3.29 is defined on the spatial domain (0,1), without the need to impose

any condition at h = 0. Moreover the equation may degenerate to a first-order partial

di↵erential equation at this point, hence a specific existence and uniqueness result is

needed. We can establish the following theorem whose proof follows from some reverse

conditions introduced in [166].

Theorem 7.3.1. Let h 7! µ(h, t) � 1

2

(b2)0(h) be continuously di↵erentiable on [0,1),

with bounded derivative, and satisfies

⇥

µ(h.t)� b(h)b0(h)
⇤

|h=0

� 0, (3.36)

for any t 2 [0, T ), with b(0) = 0. If a and g are Lipschitz continuous, then the final

value problem 3.29 has a unique solution ⇧ 2 C([0,1)⇥ [0, T ))\C2,1((0,1)⇥ (0, T )).

From Equation 3.33, we argue that⇧ t corresponds also to the value, at time t < T ,

of a contingent claim (an option) - implicitly owned by the patient - on its health state

h, with payo↵ g. This option is a fair amount, paid by the patient to the healthcare

system, which incorporates both the value for the right to obtain the hospital care and

the right to be discharged at a given time T . Under a financial perspective [164], the

probability measure Q gives a risk-neutral perspective to the relationship between the

patient P and HS. This is a concept heavily used in the pricing of financial derivatives

due to the fundamental theorem of asset pricing [167]. In our framework, the premium

⇧ depends crucially on the uncertainty of the patient health state h. The model

assumes that the healthcare system demands more profit for bearing more uncertainty.

Therefore, today’s price of patient’s claim, which is based on an uncertain health state

realised tomorrow, will generally di↵er from its expected value. The healthcare system

is supposed to be risk-averse and today’s price is below the expectation. To price

the claim, consequently, the calculated expected values need to be adjusted for the risk

preferences. In our equilibrium model there is an alternative way to do this calculation:

instead of first taking the expectation and then adjusting for the risk preferences, we

adjust the probabilities of future outcomes so that they incorporate a risk premium,
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7.3 Cox-Ingersoll-Ross approach

and then take the expectation under this new probability distribution, exactly the

risk-neutral measure Q. From the modelling viewpoint, the health state acts as a

hidden variable which represents an explanatory factor for the relation between LoS

and ES. Precisely we will use the function⇧( h, t) to estimate model parameters on

our dataset with the purpose to establish a satisfactory relationship between these to

reliable indicators used for measuring the e�ciency of the hospital ICU department

taken into account.

7.3.3 Specific Disease Model

In order to compare our approach with real data, we consider the following specification

for disease state dynamics:

dht = (✓ � ht)dt+ �
p

htdWt, (3.37)

with a constant initial value h
0

> 0. The drift term is given by (✓�ht), with ✓, > 0,

whereas the second term captures the continuous volatility of Brownian motion, the

variance parameter being � > 0. Equation 3.37 defines an elastic random walk around

a trend, with a mean reverting characteristic: when ht goes over (respectively: under

✓), the expected variation of ht becomes negative (respectively: positive) and ht tends

to come back to its average long term level ✓ at an adjustment speed . Equation

3.37 refers to the well known a�ne model, the so called CIR model [81] which has

been extensively studied in the financial literature as a model of the term structure of

interest rates. The standard deviation factor, �
p
ht, avoids the possibility of negative

values for health state, for all positive values of ✓ and . An health state of zero is also

precluded if the Feller’s condition is satisfied, namely

2✓ � �2. (3.38)

More generally, when ht is close to zero, the standard deviation also becomes very

small, which dampens the e↵ect of the random shock on the health state. In particular

this feature of the model describes an amplitude of fluctuations that is proportional to

the disease state. The transition density of ht, t > 0, conditional to h
0

, is given by

p(ht|h0) = e�u�v
⇣u

v

⌘q/2
Iq(2

p
uv), (3.39)
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7.3 Cox-Ingersoll-Ross approach

where

c = 2/[�2(1� exp(�t)], q =
2✓

�2
� 1, u = ch

0

e�t, v = cht,

and Iq(·) is the modified Bessel function of the first kind of order q. In our empiri-

cal analysis the terminal condition for the pricing function⇧( h, t) solution to 3.29 is

assumed to have the form of a call option payo↵:

g(h) = max(h�K, 0).

The constant parameter K > 0 represents the threshold described in Section 7.3.1.

Moreover, in the following we will use the notation⇧( h, t;T,⇥) for the pricing function

related to model 3.37.

Thus, we follow an approach often used in a�ne modelling [168] assuming that, under

the measure Q, the health state dynamics 3.34 preserves the same structure as model

3.37. Therefore, we are able to state the following result which allows us to obtain a

quasi-closed formula for the numerical computation of the price function.

As an extension of the (standard) Marcum Q-function, originally appeared in [169],

we introduce the so called Nuttall Q-function, defined in [170], given by the integral

representation

QM,N (↵,� ) :=

Z 1

�
xM exp

✓

�x2 + ↵2

2

◆

IN (↵x)dx. (3.40)

where the order indices are generally reals with values M � 0, N > �1 and ↵, � are

real parameters with ↵ > 0, � � 0. Such a special function is involved in the price

function representation. From the computation point of view, the Nuttal Q-function

can be easily evaluated thanks to available software packages. Moreover, when M +0.5

and N + 0.5 are integers and M � N there exists a closed-form series expansion for

3.40, see Corollary 1 in [171].

Theorem 7.3.2. If Q(h, t) = ertQ(h, t), where Q satisfies the partial di↵erential equa-

tion

@tQ+
1

2
�2h@2hQ+ (✓ � h)@hQ = 0, (3.41)

for all h 2 (0,1), t 2 (0, T ), for some constant parameters  > 0, ✓ > 0, satisfying

Feller’s condition 3.38, then, under the risk-neutral measure the health disease follows

dht = (✓ � ht)dt+ �
p

htdW
?
t . (3.42)
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7.3 Cox-Ingersoll-Ross approach

Moreover, let

⌘ := 2/[�2(1� exp(�(T � t))], ⌫ :=
2✓

�2
� 1,

C(h, T � t) := h�⌫/2 exp

✓

�⌘he�(T�t) +
1

2
(T � t)⌫

◆

,

and

A(h, T � t) :=
p

2⌘h exp

✓

�1

2
(T � t)

◆

,

then, under model 3.37, the price function takes the following form

⇧(h, t;T,⇥) =
CeA

2/2�r(T�t)

2⌫/2⌘2+⌫/2

h

Q⌫+3,⌫(A,
p

2⌘K)�KQ⌫+1,⌫(A,
p

2⌘K)
i

(3.43)

Proof. Equation 3.41 easily implies that the drift coe�cient in 3.31 is

µ(h, t) = (✓ � h), (3.44)

for all h > 0, t 2 (0, T ). Hence, by Girsanov’s Theorem, under the measure Q, ht
satisfies a CIR dynamics with coe�cients , ✓ and �. From the stochastic representation

of the price function 3.33, we can write

⇧(h, t;T,⇥) = e�r(T�t)E? [hT1h
T

>K |ht = h]

�Ke�r(T�t)Q (hT > K|ht = h) , (3.45)

where 1A stands for the indicator function of set A. Thus, from the transition density

of hT , given ht, under the measure Q, we argue:

E? [hT · 1h
T

>K |ht = h] = C

Z 1

K
⇠1+⌫/2e�⌘⇠I⌫(A

p

⇠)d⇠, (3.46)

where, for the sake of simplicity, we have omitted the dependence of C and A on h

and T � t. Therefore, after applying the change of variable ⇠ = ⌧2/(2⌘) in the previous

integral, and by 3.40, we get

E? [hT · 1h
T

>K |ht = h] =
C

2⌫/2⌘2+⌫/2

Z

2⌘K

0

⌧3+⌫e�⌧
2/2I⌫(A⌧)d⌧

=
C

2⌫/2⌘2+⌫2
eA

2/2Q⌫+3,⌫(A,
p

2⌘K). (3.47)

Similarly, we have

Q (hT > K|ht = h) =
C

2⌫/2⌘2+⌫/2
eA

2/2Q⌫+1,⌫(A,
p

2⌘K). (3.48)

By replacing the expectation and the probability in 3.45 with the relations 3.47-3.48,

we prove the 3.43.
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7.3 Cox-Ingersoll-Ross approach

Remark 7.3.3. We observe that a suitable model for the unit cost of care function Q

that satisfies Equation 3.44 is the following exponential a�ne form

Q(h, t) = exp(rt+ u(t) + v(t)h), (3.49)

for some continuously di↵erentiable functions u and v. In order to find these functions,

it su�ces to replace the partial derivatives of Q in 3.44:

u0(t) + v0(t)h+
1

2
�2hv2(t) + (✓ � h)v(t) = 0,

for all h > 0, t 2 (0, T ). We derive the system of ordinary di↵erential equations of

Riccati type:
(

u0(t) = �✓v(t),
v0(t) + 1

2

�2v2(t) = v(t).

By considering the change of variable w(t) = exp(1
2

�2
R t
0

v(s)ds), it is easy to see that

w solves the equation w00(t) = w(t). Therefore, we can integrate both the equations in

the system, to get
8

>

>

<

>

>

:

u(t) = �2✓
�2 log

⇥

R


�

et � 1
�

+ 1
⇤

+ u
0

,

v(t) = 2Ret

�2[R


(et�1)+1]
,

for some costant coe�cients R > 0, u
0

2 R. We remark that, in particular, the function

Q in 3.49 is strictly increasing in h. In order to estimate our model, in the following

section, we refer to the exponential a�ne form.

In order to estimate our model, in the following section, we refer to the exponential

a�ne form for the function Q, where we assume that u
0

= 0.

7.3.3.1 Real parameters estimation

Starting from the ES observation under the real probability measure the parameters

of the model 3.37 are estimated. ES is considered to be the realization of the same

stochastic process with transition density 3.39. Each ES at time t is associated with all

the ES at time t+ 1. In order to estimate the parameters of the density function the

dataset is divided considering the ES recording in time t. For each cluster the empirical

probability distribution is evaluated and, according the Minimum Mean Squared Error

(MMSE) method, the following objective function is considered:

min
⇥

N
X

i=1

N
X

k=1

[p(ht(k)|h0(i),⇥)� f(ht(k)|h0(i))]2 (3.50)
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7.3 Cox-Ingersoll-Ross approach

where ⇥ = [k, ✓,� ] and N is the maximum ES considered. In Table 7.6 the parameters

 ✓ �

2.33 5.46 3.37

Table 7.6: Cox-Ingersoll-Ross real distribution parameters estimation.

of the model are estimated and in Table 7.7 the error metrics are reported.

APE AAE ARPE RMSE

24.48 0.02 0.25 0.02

Table 7.7: Error metrics of Cox-Ingersoll-Ross real parameters estimation.

7.3.4 Parameters estimation

The whole amount of money invested by the healthcare system, at time t, is

�t ·Qt �Bt (3.51)

where� t · Qt describes the cost attributable to the disease state of the patient. This

cost reflects a typical behaviour of resource consumption in a hospital ward. If the

manager decides to allocate resources to improve the health state, he will have a lower

amount of money to invest in alternative assets. Moreover if a patient has a higher

level of disease, he will require more resource than one less sick, even if the hospital

assigns the same amount of resources to both patients (they have the same� t). If

the manager chooses the amount of care� t so that to replicate the premium⇧ t for

each time t, then he realizes a perfect match between the cost of hospitalization and

the amount paid by patient P . Unfortunately, even if the cost of hospitalization is

quantified using the function⇧ , a complete hedging strategy cannot be applied in

practice since clinicians and executives do not operate continuously in time. In fact,

their actions occur at discrete times, implying replication errors that have a negative

impact in the hospital cost management. However this point explains the real situation

where the healthcare system is not able to match perfectly the costs coverage. In order

to validate our approach, we compare the premium ⇧ with the cost surface estimated

1.2. The objective function is

min
⇥

N
ES

X

i=i

LoS
X

k=1

h

Ĉ(ESi, k)�⇧(ESi, 0; k,⇥)
i

2

. (3.52)
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7.3 Cox-Ingersoll-Ross approach

where NES is the number of ES and ⇥ := (K, ̄, ✓̄,� ) 2 (0 + 1)4. The optimization

routine is implemented in the MatLab environment using existing algorithms based

on the interior-point method. The optimization starts from a Halton quasi-random

sequence of 50 initial points [99]. In Table 7.8 are reported the estimated parameters

for the CIR model. The strike parameter K estimated shows that if the patient has a

K ̄ ✓̄ �

7.00 0.02 356.66 7.42

Table 7.8: Cox-Ingersoll-Ross approach cost function parameters estimated.

ES bigger then 7 the patient may decide to exercise the call option. In Table 7.9 are

reported the discrepancy measure for the cost fitting procedure. Values show that the

proposed model provides a good estimation of the cost surface. Moreover in order to

APE AAE ARPE RMSE

3.34 115.90 0.06 147.09

Table 7.9: Error metrics of Cox-Ingersoll-Ross approach. Cost function surface fitting.

validate the proposed approach, the following Average Daily Error (ADE) formula

is considered:

ADE =
1

NES

N
ES

X

i=i

LoS
X

k=1

|Ĉ(ESi, k)�⇧(ESi, 0; k,⇥)|
k

. (3.53)

The ADE of the fitting procedure is 53.32. Figure 7.3 points out that the model

provides a good description of the empirical data, the slope of the curve shows a slight

di↵erence in the input variable dependences. For small LoS the model shows a lower

sensitivity to the EuroSCORE with respect to the empirical cost function estimated

and for higher LoS the sensitivity to the EuroSCORE of the model is higher.

7.3.4.1 Clustering analysis

In order to investigate the properties of the model a clustering analysis is performed.

For each value of ES a di↵erent parameters estimation is executed. In Table 7.10 the

estimated parameters are reported; values show a relation between the parameters and

the value of ES. In particular K and ✓̄ could be described by a linear function of ES. In

Table 7.11 the error metric are reported and the ADE is 0.30. Using a bigger number of
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Figure 7.3: Comparison between real hospitalization value and CIR estimation.

- The continuous lines represent the real costs and the dashed lines represent the estimated

costs.

degree of freedom the proposed approach allows to better describe the empirical costs.

According to value of Table 7.10, Figure 7.4 represents the average value of the process

evaluated for each cluster.

7.4 Summary

It is proposed a new approach in order to describe the variable cost associated to

the patient hospitalization. The framework of the model is described and the main

assumptions are introduced. It is proposed the application of the Black-Scholes formula

to describe the empirical data. It is also proposed the application of an extension of the

Cox-Ingersoll-Ross, a general introduction of the model is provided and the semi-closed

pricing formula is in introduced. The model proposed uses a few number of parameters

and it supplies a phenomenological interpretation of data. We also introduced risk

metrics in order to analysed the fitting error.

The following conclusions can be drawn:

1. The surface cost function presented allows a good description of empirical data.

It is assumed that hospitalization cost arising from three main factors:
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ES K ̄ ✓̄ �

1 1.53 0.10 7.32 1.18

2 2.31 0.09 7.36 0.60

3 3.25 0.09 7.51 0.40

4 4.23 0.09 8.49 0.33

5 5.23 0.08 9.48 0.28

6 6.21 0.08 10.57 0.25

7 7.22 0.08 11.67 0.24

8 8.20 0.08 12.32 0.20

9 9.21 0.07 13.65 0.20

10 10.22 0.07 14.94 0.20

Table 7.10: Clustering analysis estimated parameters of Cox-Ingersoll-Ross model.

APE AAE ARPE RMSE

0.03 0.59 0.00 0.74

Table 7.11: Clustering analysis error metrics of Cox-Ingersoll-Ross approach. Cost func-

tion surface fitting.

• Admission health state

• Fixed costs

• Clinical complication

Furthermore the proposed approaches provide a general framework that can be

applied to di↵erent departments.

2. BS model provides closed pricing formula and supplies a phenomenological inter-

pretation of data. It describes the relation between the treatment of patient, the

bed cost, and the number of patients hospitalized.

3. CIR model provide semi-closed pricing formula and supplies a phenomenological

interpretation of data. It describes the evolution of the disease state during the

hospitalization of the patients. In fact we assume that disease state will to the

average state over time.

4. BS and CIR models provide a good fit of the real data in fact it performs the

smallest discrepancy measures (AAE, APE, ARPE, and RMSE).
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Figure 7.4: CIR average value estimation. - For each cluster the average value is

estimated.

The provided framework used financial mathematical model in healthcare contest pro-

viding a new management method for healthcare optimization resources.
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8

Nonlinear filtering methods

During the Ph.D. studies in addition to research on healthcare issues other topic were

investigated. Particularly according to the Memorandum of Understanding between

the Campus Bio-Medico University and the Financial Guard the Italian tax evasions

phenomena and the Financial Guard law enforcement are analysed [172]. A stochastic

version of Lotka-Volterra model is applied in order to describe the dynamic relation

existing between the prevention activities and the illegal behaviour. The proposed

model aim to provide guidelines to optimize the financial inspection resource consump-

tion. Assuming that the prey represents the positive control and that the predators

represent the control performed by Financial Guard, a forecast of the positive control

number is provided.

In this Chapter describes a model to optimize the consumption of financial inspec-

tion resources for tax evasion by analysing the interaction between prevention/control

activities and illegal behaviours.

8.1 Kalman filter

Nonlinear filtering is a challenging problem of system identification. It has a wide

field of applications, beyond the planar tracking. To cite a few, nonlinear filtering

is applied to electronics [173], robotics [174], navigation [175], geolocalization [176],

aerospace [177, 178], biology [179], medical sciences [180], finance [181], meteorology
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8.1 Kalman filter

[182]. Consider the following system:

xk+1

= Akxk +Bkuk + v(1)

k

yk = Ckxk +Dkuk + v(2)

k ,
(1.1)

where x 2 Rn, u 2 Rp, y 2 Rq and v(1)

k 2 Rn and v(2)

k 2 Rq are the state noise and the

measurement noise.

In order to estimate the state x using the Kalman filter the following hypothesis must

hold:

(i) v(1)

k and v(2)

k are Gaussian with zero mean.

(ii) v(1)

k and v(2)

k are white noise: the samples are independent and have identical

probability distribution. In particular:

E[v(1)

k�j(v
(1)

k )T ] = 0, 8 k, 8 j 6= 0,

E[v(2)

k�j(v
(2)

k )T ] = 0, 8 k, 8 j 6= 0.
(1.2)

(iii) v(1)

k and v(2)

k are mutually uncorrelated. The error covariance matrix is

E[v(1)

k (v(2)

k )T ] = 0, 8 k. (1.3)

Without loss of generality we assume v(1)

k = F̃kN
(1)

k and v(2)

k = G̃kN
(2)

k , where N (1)

k and

N
(2)

k are white standard sequences (succession of Gaussian random variables with zero

mean uncorrelated for each instant of time). It is easy to verify that the assumptions

(i), (ii) and (iii) are satisfied. We can evaluate the state and measurement covariance

matrix for each time k

E[v(1)

k (v(1)

k )T ] = F̃kF̃
T
k = Qk

E[v(2)

k (v(2)

k )T ] = G̃kG̃
T
k = Rk.

(1.4)

Then we can rewrite the system 1.1 in the following way

xk+1

= Akxk +Bkuk + FkNk

yk = Ckxk +Dkuk +GkNk,
(1.5)

where

Nk =

"

N
(1)

k

N
(2)

k

#

, Fk =
⇥

F̃k, 0
⇤

, Gk =
⇥

0, G̃k

⇤

, (1.6)
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8.1 Kalman filter

so that FkNk = F̃kN
(1)

k and GkNk = G̃kN
(2)

k .

Using the principle of superposition, we distinguish stochastic component xs and the

deterministic component xd of 1.5 so that xk = xd
k + xs

k

xd
k+1

= Akx
d
k +Bkuk

xs
k+1

= Akx
s
k + FkNk.

(1.7)

Setting xd
0

= E[x̄
0

], E[xs
0

] = 0 and E[xs
0

(xs
0

)T ] =  
¯

x0 , where x̄
0

is the initial condition

random variable, adding 1.7 we find the state Equation 1.5. In the same way the

stochastic component of the measurement equation can be wrote

yk � Ckx
d
k �Dkuk = ys

k = Ckx
s
k +GkNk. (1.8)

The solution of 1.7 can be calculated recursively. Focusing now on the state variable

xs, we obtain the new equation system

xs
k+1

= Akx
s
k + FkNk

ys
k = Ckx

s
k +GkNk,

(1.9)

for which we apply the minimum variance estimation.

In the following we call the stochastic component of the state and the measurement of

1.9 with x and y.

The minimum variance estimation is the conditional expected value of xk with respect

to {yj}jk. The optimal estimation x̂ at time k is given by

x̂k|k = E[xk|Fy

k ], (1.10)

where F
y

k is the filtration �(yj , j  k).

Calling with x̂k|k�1

= E[xk|Fy

k�1

] the state prediction of xk knowing the measures until

the previous instant. Define the state innovation as

⌫sk = E[xk|Fy

k ]� E[xk|Fy

k�1

]

= x̂k|k � x̂k|k�1

,
(1.11)

and the measurement innovation as

⌫ok = E[yk|Fy

k ]� E[yk|Fy

k�1

]

= yk � ŷk|k�1

.
(1.12)
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8.1 Kalman filter

From the conditional expected value properties, can be proved that the state and

measurement innovations are white sequences with zero mean,

E[⌫sk] = 0, E[⌫ok] = 0. (1.13)

and

E[⌫sk(⌫
s
j )

T ] = 0, E[⌫ok(⌫
o
j )

T ] = 0, 8 j 6= k. (1.14)

Moreover, for all j 6= k

E[⌫sk(⌫
o
j )

T ] = 0. (1.15)

Last step of the Kalman filter is the Equivalence theorem: the filtration generated by

the measurement sequence coincides with the filtration generated by the innovation

measurement sequence. Therefore

F
y

k ⌘ F⌫
o

k (1.16)

then

⌫̂s = E[⌫sk|F
y

k ] = ⌫s = E[⌫sk|F⌫
o

k ]. (1.17)

The optimal estimation of Gaussian vector is linear, then:

⌫s = E[⌫sk|F⌫
o

k ] =
k
X

j=0

K(k, j)⌫oj , (1.18)

where K(k, j) is the Kalman gain matrix.

According to 1.15, K(k, j) is di↵erent from 0 when j = k. Setting K(k, k) = Kk we

find that

nusk = Kk⌫
o
k. (1.19)

Therefore from 1.11, 1.12 and 1.9 we can find x̂k

x̂k = Ak�1

x̂k�1

+Kk[yk � CkAk�1

x̂k|k�1

]. (1.20)

In order to explicit the Kalman gain matrixKk we define the error estimation covariance

matrix and the error prediction covariance matrix

Pk = E[êkêTk ]

Pk|k�1

= E[êk|k�1

êTk|k�1

],
(1.21)
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8.1 Kalman filter

where the estimation error is êk = xk � x̂k and the prediction estimation error is

êk|k�1

= xk � x̂k|k�1

. It can be shown that 1.21 are linked with Kalman gain Kk with

the following relation:

Pk|k�1

= Ak�1

Pk�1

AT
k�1

+Qk�1

Kk = Pk|k�1

CT
k [CkPk|k�1

CT
k +Rk]

�1

Pk = Pk|k�1

[I �KkCk].

(1.22)

In order to find the optimal estimation of x, using 1.22, we can evaluate 1.20. Given

that xk = xd
k + xs

k, we write 1.20 in the following way

x̂k = Ak�1

x̂k�1

+Kk[yk � CkAk�1

x̂k|k�1

�Dkuk]. (1.23)

8.1.1 Non-linear filtering problem

In this section we extend the Kalman filter to non-linear system models to obtain

an approximate filter the Extended Kalman Filter (EKF). In order to do that by

finding an appropriate error system that is linear approximation of a non-linear system,

it o↵ers no guarantees of optimality in a mean squared error sense. However, for many

system, the EKF has proven to be a useful method of obtaining good estimates of the

system state. The non-linear filtering problem requires the recursive estimation of the

state xk 2 Rn of a nonlinear stochastic discrete-time system having the form:

xk+1

= f(xk,uk,v
(1)

k , k), x
0

= x
0

(1.24)

yk = h(xk,uk,v
(2)

k , k), (1.25)

where uk 2 Rp is the deterministic control input, yk 2 Rq is the available measurement

vector, v(1)

k 2 Rr is the state noise sequence, v(2)

k 2 Rs is the measurement error

sequence, and f : Rn⇥Rp⇥Rr ! Rn and h : Rn⇥Rp⇥Rs ! Rq are possibly non-linear

functions. Moreover, the following properties are usually assumed:

(3.a) v(1)

k and v(2)

k are independent zero mean white sequences of random vectors with

the covariance matrices 
v

(1)
k

2 Rn⇥n and 
v

(2)
k

2 Rq⇥q, respectively;

(3.b) the initial state x
0

2 Rn is a random vector with the mean value x̄
0

and covariance

matrix x0 2 Rn⇥n, independent of v(1)

k and v(2)

k .
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8.1 Kalman filter

The estimation is required to be carried out starting from the initial estimate x̄
0

and

using the measurement sequence Yk := {y⌧ , ⌧ = 0, 1, . . . , k}.
From a probabilistic perspective, any statistical estimate of x(k) will be some function

of the conditional density:

P
�

xk|Yk

�

(1.26)

since it represents all the information which the measurement of the random vectors

belonging to Yk has conveyed about the random vector xk. This statistical estimate is

denoted by x̃k. Suppose now that x̃k is given as a fixed function of the random vectors

in Yk. Then x̃k itself is a random vector and its actual value is known whenever the

actual value of Yk is known. In general, the actual value of x̃(k) is di↵erent from the

unknown value of xk [177]. To arrive to a rational way of determining x̃k, it is natural

to define an optimality criterion. This can be done in di↵erent ways. Next, the two

most used approaches are presented. It will be clear that both of them provide the

same theoretical result about the optimal solution. However, it is worth noting that

di↵erent approaches may yield vary di↵erent suboptimal solutions (e.g. EKF).

Minimum Variance Estimate Estimate optimality is usually defined by assigning

a penalty or loss for incorrect estimates. Clearly, the loss should be a positive, nonde-

creasing function of the estimation error ẽk := xk � x̃k. The common choice for such

a function is L(ẽk) = E
⇥

k ẽk k2
⇤

, k · k being the euclidean norm in Rn. This choice

leads up to the so called minimum variance estimate which is the random vector x̂k

that minimizes L(ẽk). It is well known that the minimum variance estimate is the state

conditional expectation, i.e.

x̂k = E [xk|Yk] . (1.27)

Moreover, E [x̂k] = E [xk], i.e. x̂k is unbiased.

It is useful to show that the minimum variance estimate can be also argued by using a

geometrical approach, as done in [183]. Let
�

⌦,F,P
�

be a probability space. For any

given sub �-algebra G of F, denote by L2(G, n) the Hilbert space of the n-dimensional,

G-measurable, random vectors with finite second moment as

L2(G, n) :=

⇢

x : ⌦! Rn,G-measurable,

Z

⌦

k x! k2 dP! < 1
�

, (1.28)
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8.1 Kalman filter

where
R

⌦

· dP! indicates the Lebesgue integral. This Hilbert space is endowed with

the internal product

[x, z] :=

Z

⌦

xT
!z!dP! = E

⇥

xT z
⇤

(1.29)

and the induced norm

k x kL2 :=

s

Z

⌦

xT
!x!dP! =

p

E [k x k2]. (1.30)

Moreover, when G is the �-algebra generated by a random vector y : ⌦ ! Rm, that

is G = �(y), the notation L2(y, n) indicates L2(�(y), n). Finally, if B is a subspace of

L2(F, n), the symbol⇧( x|B) indicates the orthogonal projection of x 2 L2(F, n) onto

B.

From the Hilbert projection theorem [184] follows that the minimum variance estimate

of a random vector x 2 L2(F, n) with respect to a random vector y corresponds to

⇧(x|L2(y, n)). Therefore, by assuming that the state xk has a finite second order

moment, it results that

x̂(k) = E [xk|Yk] =⇧( xk|L2

�

Yk, n
�

. (1.31)

8.1.2 Extended Kalman Filter

The EKF is the classical filter for non-linear systems. Despite it su↵ers from significant

drawbacks, for many time, it has been considered the standard tool of choice for real

tracking applications. Moreover, from a scientific point of view, it is considered as a

first benchmark and its performances represent the bare minimum for any non-linear

filtering method. The idea of EKF is to linearize the system equations (1.36)-(1.25)

around the estimated trajectory. The linearized state equation has the form

xk+1

⇡ f(x̂k|k,uk, 0, k) +Ak

�

xk � x̂k|k
�

+ FkNk

= Akxk + f(x̂k|k,uk, 0, k)�Akx̂k|k
| {z }

u

f

k

+FkNk

= Akxk + uf
k + FkNk (1.32)

where the Jacobian matrices

Ak :=
� @

@x
f(x,uk, 0, k)

�

�

�

�

�

x=

ˆ

x

k|k

, Fk =
� @

@v(1)

f(x̂k|k,uk,v
(1), k)

�

�

�

�

�

v

(1)
=0

, (1.33)
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8.1 Kalman filter

and the artificial input ufk are known at the prediction time, since the state estimate

x̂k|k is available.

The linearized measurement equation is

yk ⇡ h(x̂k|k�1

,uk, 0, k) + Ck)
�

x(k)� x̂k|k�1

�

+GkNk

= Ckxk + f(x̂k|k�1

, uk, 0, k)� Ckx̂k|k�1

| {z }

u

h

k

+GkNk

= Ckxk + uh
k +Gkvk, (1.34)

where the Jacobian matrices

Ck =
� @

@x
h(x,uk, 0, k)

�

�

�

�

�

x=

ˆ

x

k|k�1

, Gk =
� @

@v(2)

h(x̂k|k�1

,uk,v
(2), k)

�

�

�

�

�

v

(2)
=0

, (1.35)

and the artificial input uhk are known at the correction time, since the state prediction

x̂k|k�1

is available. Once system 1.36-1.25 is linearized relation 1.23 is applied. Because

of linearization, the EKF is a suboptimal algorithm, but in practice it has been proved

to work well for many applications. However, the use of EKF has two main well-known

drawbacks: linearization can produce highly unstable filters if the assumptions of local

linearity is violated; the derivations of the Jacobian matrices are non-trivial in most

applications and often lead to significant implementation di�culties [185]. Research

has attempted to adopt modifications to the basic algorithm in order to improve the

performances and avoid critical behaviours. As a consequence, there is no such thing as

the EKF, but rather there are hundreds of varieties of EKFs. In particular, 1) di↵erent

coordinate systems [186, 187], 2) di↵erent factorizations of the covariance matrix, 3)

second order (or higher order) Taylor series corrections to the state vector prediction

and/or the measurement update [183, 188, 189], 4) iteration of the state vector up-

date using measurements [175], 5) di↵erent orders with which to use sequential scalar

valued measurements to update the state vector, 6) tuning process noise [190], 7) quasi-

decoupling, and 8) combinations of all of the above [191]. Sometimes these practical

tricks result in significant improvements, but often they result in no improvement or

they make performance worse.
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

8.1.3 Kalman-Bucy Filter

Let the signal Xt and the observation Yt are defined by Ito linear equations with respect

to independent Wiener process dW (1)

t and dW
(2)

t

dXt = A(t)Xtdt+B(t)dW (1)

t (1.36)

dYt = C(t)Xtdt+D(t)dW (2)

t (1.37)

subject to Gaussian initial condition X
0

and Y
0

independent of dW (1)

t and dW
(2)

t . The

deterministic functions A(t), B(t), C(t), and D(t) are assumed to be bounded and

piece-wise continuous for t � 0. The main assumption here is

inf
t�0

D2(t) � 0 (for some c > 0) (1.38)

The filtering estimates X̂t and the mean square filtering error P (t) are defined by

di↵erential equations (Ito and Riccati)

dX̂t = A(t)X̂tdt+
P (t)C(t)

D2(t)
(dYt �A(t)X̂tdt) (1.39)

dP (t) = 2A(t)P (t) +B(t)� P 2(t)C2(t)

D2(t)
(1.40)

subject to the initial condition:

X̂
0

= E[X
0

] +
cov(X

0

, Y
0

)

cov(Y
0

, Y
0

)
(Y

0

� E[Y
0

]) (1.41)

P (0) = cov(X
0

, X
0

)� cov2(X
0

, Y
0

)

cov(Y
0

, Y
0

)
(1.42)

8.2 GDF case of study: Tax Evasion Dynamics by Fiscal

Inspection Activity

Tax evasion in Italy is a serious issue: between a quarter and half of the Gross domestic

product (GDP) seems to be hidden to the tax authorities Schneider [192]. This is of

crucial importance at a macro economic level to ensure the reliability of o�cial statis-

tics and the e�ciency of national productions. However they do not provide insights to

policy makers that wish to investigate who are tax evaders and to start understanding

the reasons why some taxpayers might consider under-declaring their income.
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

Measuring tax evasion is all but simple: Schneider [193] describes tax evasion measure-

ment as a scientific passion for knowing the unknown. However, tax evasion analysis is

relevant for public policy design and for estimating the bias that tax evasion introduces

in some statistics, both at the macro and at the micro level.

It is possible to divide the study on phenomenon of tax evasion in two macro-interconnected

areas. The first one is related to the methodologies of estimation of tax evasion and is

based on the analysis and processing of datasets obtained from the field. The second

concerns the study of the tax evasion models in relation with social and economic as-

pects. The phenomenon of deterrence, that is particularly important in this article, is

treated separately in a special section.

Bernardi [194] o↵er an overview about the methodologies to estimate the tax evasion.

Each methodology is strictly related to the availability of informations from the field

and to the institutional context.

There are three di↵erent techniques to estimate the tax evasion:

1. Estimation of monetary and underground economy indicators. Starting from

synthetic indicators of the actual size of the real economy we get the amount of

evaded taxes with respect to the tax-detectable.

2. Method of national accounting. The total amount of taxable incomes reported is

compared with the estimation of potential incomes. This is the most used method,

it is particularly reliable and easily adaptable to di↵erent socio-economic contexts.

3. Sampled comparisons between declared and accrued income. It is used a micro-

economic approach based on sampled income surveys, related to income estima-

tion obtained from other sources (i.e. wealth and household consumption).

The 1) and 2), as macro-economic models, do not allow an accurate resolution of the

results. 3) is strictly dependent on control methods and sampled population, and often

provides inconsistent results.

However, any methodology must struggle with the need to calculate an entity that does

not exist in the real world, and so inherently unknowable. An estimation also requires

the comparison of complex, heterogeneous and often numerically inadequate data. It

should also be noted that these methods are generally disconnected from the models

of the decision to evade, which will be described later, and that a correlation between
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

the two fields have often provided inconsistent results.

Quantitative indicators on tax evasion have been produced since the early eighties in

di↵erent countries. In United States the TCPM (Taxpayer Compliance Measurement

program) is calculated by the IRS (Internal Revenue Service) and is estimated at about

17 percent of the total amount of income taxes Andreoni [195]. With similar methods,

similar indicators were obtained in other advanced countries: i.e. in Holland Hessing

[196], Switzerland Pommerehne [197], Canada KPMG [198] and Spain De Juan [199].

The level of tax evasion is higher in less developed countries. The Mediterranean coun-

tries also have the common characteristics of high administrative corruption and an

unconsolidated civic education and this involves in a higher level of tax evasion Bovi

[200]. It is estimated that the level of tax evasion seen in Italy is twice the Organization

for Economic Cooperation and Developmen (OECD) countries average Tanzi [201].

Tax evasion can also be estimated using an indirect approach. Indirect methods es-

timate tax evasion considering it equal to the di↵erence between aggregated macro

indicators (e.g the discrepancy between income and expenditures or the di↵erence be-

tween the actual demand for money and the demand for money estimated in absence of

taxes). Direct methods aim at estimating tax evasion through the use of sample survey

micro-data based on voluntary participation or the results of the auditing activity of

tax authorities. In contrast to indirect methods, direct methods are more suitable to

analyze tax evasion at the micro level and they can point out directions for policy.

Some of these methods have been applied to provide a measure of tax evasion in Italy.

Among those who used indirect methods, Schneider [192] used the currency demand

approach, Zizza [202] also the factorial analysis. Zizza estimates the share of the under-

ground economy (excluding illegal and criminal activities) on GDP for the years 1984-

2000 between a maximum of 17.6% (1991) and a minimum of 14.3% (2000). Schneider’s

estimates include also illegal and criminal activities. According to him the share of the

underground economy on the italian GDP is very high and increasing (from 25.8% in

1994 to 27.8% in 1998), the highest rate among the OECD countries.

Calzaroni [203], Bernasconi [204], Marenzi [205], and Cannari [206] used direct meth-

ods. Calzaroni [203] estimates labor supply and labor demand functions by sectors

using household and firm surveys, respectively, and compares results at the national

and the regional level. The di↵erence between the two is considered to be the number

of the irregular workers. This amount, multiplied for the average sectorial productivity
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estimated for regular workers gives a first measure of the underground economy. The

overall incidence of the underground economy is calculated complementing this amount

with coe�cients correcting for the underestimation of the turnover and the balancing

between aggregated input and output. This methodology relies heavily on the hypothe-

sis that the Survey of (Household Income and Wealth) SHIW data set is representative

of the population and of its subgroups. As Ministry of Finance (MF) data refers to the

population, a measure of tax evasion based on this methodology requires the Bank of

Italy (BI) data to be a good approximation of the population. This requirement must

be verified carefully.

Cannari [206], Bernasconi [204] use total net income by group of taxpayers. However,

the BI data set is quite reliable for the measurement of work income but it is much less

so for other types of income such as capital, estate and building income Cannari [206].

This is due to two main reasons: first, these data are collected at the household level

and they can only be imputed to the individual taxpayer; second, there is a tendency

to misestimate the true value of these incomes, which is probably not voluntary and

however common also to other similar surveys. For these reasons, we suggest here to

focus only on work incomes.

The aim of this study is to analyse the mutual interaction between the tax evasion

and tax assessment, therefore we introduce a dynamic model to explain the inspection

activity related to instrumental controls carried out by Financial Guard. In order to

describe populations that interact, thereby a↵ecting each others growth rates, the ap-

plication of a stochastic version of the famous Lotka-Volterra model is proposed. The

model shows a good ability to determine the irregular control number within one month

with respect to the time series analysed.

8.2.1 Overview on Modelling Tax Evasion

Allingham [207] (A/S Model) in 1972 produced the main tax evasion behavioural model.

The A/S Model describes the tax evasion as a portfolio choice under uncertainty. This

approach provides a correlation between the economic theory of crime Becker [208]

and the theory of insurance choices against risk in an uncertainty context Arrow [209].

The A/S Model presents the choice to evade taxes as a decision of a rational economic

agent who wants to maximize their expected utility given a certain probability of being

subjected to scrutiny: if the agent evades gets a prize. The model is based on only
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two policy-control instruments: the frequency of tax audits and the retributions. The

model also presents the following assumptions:

• Taxpayer is acting rationally

• Taxpayer shows a certain degree of risk aversion

• Taxpayer knows his actual income

• Tax rate is considered to be proportional to income

• Probability of incurring a tax audit is known to the taxpayer.

A large amount of empirical evidence accumulated over years suggests that, compared

to the observed behavior of actual taxpayers, the A/S Model predicts too high levels

of tax evasion. In the context of their model, the observed low evasion activity could

be explained only with unreasonably high Arrow-Pratt-measures of risk aversion. This

argument has been put forward by, among others, Alm [210] as well as by Graetz [211],

Skinner [212] and, for Swiss data, by Pommerehne [213] and Frey [214]. Another prob-

lem of the A/S model is that it provides no correlation with the work done by the

tax authorities. The model is also unable to describe misperceptions by the taxpayer

(i.e. tax rates, tax audit probability) and administration operational constraints (i.e.

frequency of tax audits, etc.). Many papers treat the empirical validation of the model.

The studies about the tax-rates influence in the model o↵er mixed results: Clotfelder

[215] states that there is a strong positive correlation between tax evasion and tax rates;

Feinstein [216] argue just the opposite. Baldry [217] states that there is a close relation

between the e↵ect of the sanction and the frequency of audits and tends to be poorly

received if that frequency is low. The study of audits probability will be explained in

a later section. Moreover in the A/S Model the problem of the agents perfect ratio-

nality rules out any influence related to the socio-economic context, the degree of civic

awareness and the political and administrative classes respectability.

Many works have been developed to extend the A/S model and to overcome its limi-

tations. Bordignon [218] introduces a fairness constraint to a standard portfolio choice

model of tax evasion. Erard [219] have integrated a variable accounting for psycholog-

ical costs. Pommerehne [197] formulate a simulation model in which they assume that

taxpayers follow a tit for tat strategy, so that good taxpayers, who initially not evade for
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moral reasons, start to evade taxes when they recognize that politicians deviate from

the citizen’s preferences. Mittone [220] through experimental economy points out that

the social environment a↵ects significantly the attitudes of taxpayers. Flatters [221] fo-

cus on the degree of corruption of the administration. Engel [222] o↵er a detailed study

that attempts to provide an estimation of taxpayer’s attitude dynamics. The model

considers cases in which individuals choose the fraction of income they report to the

IRS while facing stochastic probabilities of being audited. Under these circumstances,

a rational taxpayer’s current evasion is a decreasing function of prior evasion, since,

if audited and caught for evading this year, the taxpayer may incur penalties for past

evasions. The aggregate behaviour of American taxpayers over the 1947-1993 period is

consistent with the implications of this model.

8.2.2 Deterrence Phenomenon

The audits probability is the most important variable that can a↵ect the deterrence. It

was been shown that its increase reduces the expected return of evasion and increases

the risk premium, leading to a tax evasion decrease. This conclusion is supported

both by empirical that econometric studies Andreoni [195]. The e↵ect of the audits

probability is also influenced by the perception that the taxpayer receives as a result of

changes in the frequency of the audits Keppler [223]. Alm [210] show that the deterrent

e↵ect is low in case of low frequency of audits. Alexander [224] argue that in order to

reduce the risk of detection, a taxpayer can adopt strategies of tax planning, leading to

a smaller deterrence e↵ect.

Role of Financial Guard According to the Italian organizational structure, the

Financial Guard (Guardia di Finanza, short GdF) is an Italian law enforcement agency

under the authority of the Minister of Economy and Finance (MEF) and part of the

Italian armed forces. The Guard is essentially responsible for dealing with financial

crime and smuggling; it has also evolved into Italy’s primary agency for suppressing

the drugs trade, with functions in operational and unannounced control for preventing

and combating all acts which have the e↵ect of fraud and tax evasion. According to

his duties, GDF realizes operational and unannounced controls for: verifying the com-

pliance of trade; verifying the production, storage, movement and use of the property;

detection and removal operations and illicit activities.
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In recent years, the number of fiscal inspection actions that targeted with priority the

control of taxpayers with high fiscal risk was growing. The growing internationalization

of economic activities has created to multinational companies favourable conditions for

fraudulent practices, price manipulation between subsidiaries of the same company

beeing commonly used in order to reduce taxation in the country of production or

destination. These procedures aim mainly to monitor the goods purchased from the

Community in order to reduce the risk of tax evasion and stealing from the correct

declaration of tax liabilities, respectively the risk of not collecting the obligations to

the consolidated state budget. It was extended the collaboration with european tax

administrations, including participation in the realization of multilateral controls to

prevent and combat cross-border fraud, improve and perfect the techniques, methods

and skills of control. From the results obtained by the tax inspection teams, the areas

where fraud is more frequent or large scale are: construction and building materials,

production and sale of food goods, production and marketing of energy products, trans-

portation, wood exploitation and processing, production and sale of tobacco products,

black and gray labor-use, production and recovery of alcohol and alcoholic-beverages.

This project aims to identify and validate statistical indicators, based on the analytical

information available, which are able to provide a strategy for a better and e↵ective use

of resources. Our study aims to introduce a dynamic model to explain the inspection

activity related to instrumental controls carried out by GDF accross all Italian regions.

More specifically, the analysis is based on the historical data of instrumental controls

conducted by GDF during the period of time from 2002 to 2014. The inspections con-

cern with infractions by public and private subjects in the field of tax receipts. They

represent only a part of all activities of GDF however the data set provided represent

a good framework of study for a proto-type model that can be extended in order to

incorporate more sophisticated and demanding financial frauds. In rest of the chapter,

with positive control we refer to an inspection where GDF o�cers have recorded an

infraction.

8.2.3 Dynamic Model

In this section we introduce the the modelling framework needed to describe the

methodological approach proposed Let (⌦,P,F, {Ft}t�0

) be a complete probability

space with filtration {Ft}t�0

satisfying the usual conditions, i.e., it is increasing and
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right continuous while F
0

contains all P-null sets. We propose a continuous time

stochastic Lotka-Volterra type of model for the dynamics of the instrumental controls

conducted by GDF. The model adopts a logistic form for the growth of the positive

controls (prey), so as to take into account intra-specific competition. It can be described

through the following equations:

dxt = [rxt(1� xt)� qxtyt] dt+ ✏xt

⇣

⇢dW
(1)

t +
p

(1� ⇢2)dW (2)

t

⌘

, (2.43)

dyt = (cqxtyt � uyt) dt+ ⌘ytdW
(1)

t , (2.44)

where

- xt and yt represent the number of positive controls and the total number of

controls perfomed by GDF at time t, respectively;

- r > 0 is the specific growth rate of the positive control;

- c is the maximum production rate of the control activities;

- u > 0 is the specific decreasing rate of the control activities;

- q > 0 is a constant parameter representing the e�ciency of the control process.

Moreover deterministic initial values x
0

, y
0

� 0 are assumed. The random errors

driven by W (1), W (2) represent the environmental stochasticity. They are assumed to

be two one-dimensional and independently Weiner processes. The magnitude of these

errors are proportional to the number of controls through the positive parameters ✏ and

⌘, respectively. The environmental stochasticity is essentially related to the economic

context and to the new regulations issued by the Italian government as well as to new

instances introduced by GDF. Hence we allow for a dependence of the random errors

a↵ecting both the types of controls using a correlation coe�cient ⇢ 2 [�1, 1]. The

lumped parameters r, c, u are controls-specific, whereas the behavioral parameter q in

the functional response qxtyt is the crucial and unknown parameter to be be estimated.

This problem has been addressed in a biological framework by Boucher [225]. In the

following we will use the notation ✓ = (r, c, u, q, ✏, ⌘,⇢ ) 2 R6

+

⇥ [�1, 1], to denote the set

of model parameters.

We remark that the deterministic subclass of the Lotka-Volterra model are well-known

and have been extensively investigated in the literature concerning ecological population
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modelling. One particularly interesting subclass describes the facultative mutualism of

two species, where each one enhances the growth of the other, represented through

the deterministic equations. The associated dynamics have been developed by, for

example, Boucher [225], He [226] and Wolin [227]. In order to avoid having a solution

that explodes at a finite time, additional conditions on the model parameters are needed

Mao [228]. Nevertheless, this can be avoided, by introducing a stochastic environmental

noise.

Note that, for a stochastic di↵erential equation to have a unique global solution (i.e.,

no explosion in a finite time) for any given initial value, the coe�cients of Equations

2.43-2.44 are generally required to satisfy both the linear growth condition and the local

Lipschitz condition Revuz [229]. However, the coe�cients of Equations 2.43-2.44 do

not satisfy the linear growth condition, though they are locally Lipschitz continuous,

so the solution may explode at a finite time. In Appendix 12 are reported some general

results of system 2.43-2.44.

Estimation Methods We distinguish between two types of estimation problems.

The first one consists in the estimation of parameter models given time observations

of xt, yt. Following a general approach, we rewrite model equations 2.43-2.43 as a

bivariate stochastic system:

dXt = µ(Xt; ✓)dt+ �(Xt; ✓)dWt, (2.45)

Xt =



xt
yt

�

, Wt =

"

W
(1)

t

W
(2)

t

#

(2.46)

where the drift vector and the di↵usion matrix take the following form:

µ(Xt; ✓) =



rxt(1� xt)� qxtyt
cqxtyt � uyt

�

, �(Xt; ✓) =



"xt⇢ " xt
p

(1� ⇢)2

⌘yt 0

�

. (2.47)

In order to estimate the parameter vector ✓ 2 R6

+

⇥[�1, 1] we use the likelihood function

based on the logarithm of the Radon-Nikodym derivative Wang [230] of the transition

distribution of Xt with respect to the Wiener measure, described as follows:

log J(✓) :=

Z T

0

µ>(Xt; ✓)
⇥

�(Xt; ✓)�
T (Xt; ✓)

⇤�1

dXt+

�1

2

Z T

0

µ>(Xt; ✓)
⇥

�(Xt; ✓)�
T (Xt; ✓)

⇤�1

µ(Xt; ✓)dt.

(2.48)

189

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

The maximum-likelihood estimator is

b✓ = argmax✓
�

log J(✓)
 

, (2.49)

and it provides the maximum likelihood parameters estimation of the model 2.45. In

practice only discretely sampled data are available, namely bXt0 ,
bXt1 , . . . ,

bXt
N

, at times

tk = t
0

+ k�t, k = 0, . . . , N , �t > 0. Hence, the minimum of the discretized minus

log-likelihood � log JN (✓) is used. More precisely,

� log JN (✓) :=�
N
X

k=0

µ>( bXt
k

; ✓)
⇥

�( bXt
k

; ✓)�T ( bXt
k

; ✓)
⇤�1

� bXt
k

+

+
1

2

N
X

k=0

µ>( bXt
k

; ✓)
⇥

�( bXt
k

; ✓)�T ( bXt
k

; ✓)
⇤�1

µ( bXt
k

; ✓)�t.

(2.50)

Of course the discretized version 2.50 of the log-likelihood is based on the application

of the Euler-Maruyama discretization scheme of 2.45

Xt
k+1 = Xt

k

+ µ(Xt
k

, ✓)�t+ �(Xt
k

, ✓)
�

Wt
k+1 �Wt

k

�

. (2.51)

Therefore the likelihood estimator corresponds to

b✓N = argmax✓
�

� log JN (✓)
 

, (2.52)

The accuracy of the estimator is improved as how much more the observations are

numerous nearby, that is as the discretization step� t ! 0. We refer the reader to

Lipster [231] for a detailed and rigorous description of the estimation method described

above.

From a di↵erent perspective, the variable xt in model 2.43-2.44 can be used to describe

both the positive inspections and the number of infractions undetected by GDF o�-

cers. Therefore, the model provides an indirect measure of tax evasion in the reference

context. In this section we present the estimation procedure used in the case the vari-

able xt is unobservable. In this case we use a filtering technique based on a nonlinear

version of the Kalman filter which linearizes about an estimate of the current mean

and covariance Reif [232] and Kalman [177].

The estimation of the state variable xt is obtained by applying an extended Kalman

filter to a discrete approximation of system 2.43-2.44:

x̂t = E
⇥

xt
�

�ys, 0  s  t
⇤

. (2.53)
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Essentially, the Kalman filter is an analytical algorithm that recursively computes the

first two moments of the distribution of the state variable conditional on observations

up to that point. The algorithm consists of a prediction step when the current state

is predicted, based on the last state, and an update step, when the prediction is latest

information. For state space models that are linear in both state and measurement

equations and Gaussian in both state transition and measurement densities, the pre-

dicted and updated densities are also Gaussian such that the algorithm is analytical

and fast to execute.

We introduce a state-space notation for the system. Let us define x
(1)

t = xt, x
(2)

t = yt

and let Yt be the (observable) state-measure process. Therefore we can rewrite system

2.43-2.44 as follows:

dx
(1)

t =
⇥

rx
(1)

t (1� x
(1)

t )� qx
(1)

t x
(2)

t

⇤

dt+ "x
(1)

t

⇥

⇢dW
(1)

t +
p

(1� ⇢2)dW (2)

t

⇤

,

dx
(2)

t =
⇥

cqx
(1)

t x
(2)

t � ux
(2)

t

⇤

dt+ ⌘x
(2)

t dW
(1)

t ,

Yt = x
(2)

t .

(2.54)

Unfortunately, system 2.54 is a↵ected by nonlinearities with multiplicative noise that

avoids the direct application of classical Kalman-based filters. However we can take

advantage from the positivity of the solution established in Corollary 12.0.9 of Appendix

12, by considering the change of variable x̃
(i)
t := log x(i)t , for i = 1, 2. Hence, by the

application of the classical Ito’s formula Revuz [229] we obtain the system

dx̃
(1)

t =
h

r
�

1� "xx̃
(1)
t

�

� q"xx̃
(1)
t � "2

2

i

dt+ "
h

⇢dW
(1)

t +
p

(1� ⇢2) dW (2)

t

i

,

dx̃
(2)

t =
h

cq"xx̃
(1)
t � u� ⌘2

2

i

dt+ ⌘dW
(1)

t ,

eYt = x̃
(2)

t .

(2.55)

We apply the filtering technique to the discretized version of model 2.55

bXk+1

= f( bXk) +QNk,

bYt = h( bXk),
(2.56)

where bXk =
h

x̂
(1)

k , x̂
(2)

k

iT
, e

f( bXk) =

2

4

x̂
(1)

k +
⇣

r
�

1� "xx̂
(1)
k

�

� q"xx̂
(1)
k � "2

2

⌘

�t

x̂
(2)

k +
⇣

cq"xx̂
(1)
k � u� ⌘2

2

⌘

�t

3

5 , h( bXk) = x̂
(2)

k ,

Q =



"⇢
p
�t "

p

(1� ⇢2)�t

⌘
p
�t 0

�

, Nk =

"

N
(1)

k

N
(2)

k

#

.
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In order to apply the EKF, we also need to the Jacobian matrices associated to f( bXk)

and h( bXk), respectively given by:

Jf =

"

1� r"xx̂
(1)
k �t �q"xx̂

(1)
k �t

cq"xx̂
(1)
k �t 1

#

, Jh =
⇥

0 1
⇤

.

where x̂(i)k represents the approximation of x̃(i)t
k

, at time tk = k�t, k = 0, . . . , n�1, n >

1, for i = 1, 2. The random terms {N (i)
k }k, for i = 1, 2, are independent standard normal

variables. Even if the transformation increases the nonlinearity of the drift component,

the noise takes an additive form, independent of the state variables. Given the previous

representation, we can e↵ectively apply an EKF to model 2.56 in order to deduce an

estimate of the trajectory {x̂(1)t
k

}k. Focusing also on the estimation of the interaction

parameters in the model, q and r, we consider the extended state variable assigning

additional components x̂(3)k = q and x̂
(4)

k = r. In this case the structure of model 2.56

does not change. In fact, if the augmented state vector is bXk :=
h

x̂
(1)

k , x̂
(2)

k , x̂
(3)

k , x̂
(4)

k

i>
,

we can define

f( bXk) =

2

6

6

6

6

6

4

x̂
(1)

k +
⇣

x̂
(4)

k

�

1� "xx̂
(1)
k

�

� x̂
(3)

k "xx̂
(1)
k � "2

2

⌘

�t

x̂
(2)

k +
⇣

cx̂
(3)

k "xx̂
(1)
k � u� ⌘2

2

⌘

�t

x̂
(3)

k

x̂
(4)

k

3

7

7

7

7

7

5

, h( bXk) = x̂
(2)

k ,

Q =

2

6

6

4

"⇢
p
�t "

p

(1� ⇢2)�t

⌘
p
�t 0
0 0
0 0

3

7

7

5

, Nk =

"

N
(1)

k

N
(2)

k

#

.

(2.57)

In this case, the Jacobian matrices associated to f( bXk) and h( bXk) take the form

Jf =

2

6

6

6

4

1� x̂
(4)

k "xx̂
(1)
k �t �x̂

(3)

k "xx̂
(1)
k �t �"xx̂

(2)
k �t

�

1� "xx̂
(1)
k

�

�t

cx̂
(3)

k "xx̂
(1)
k �t 1 c"xx̂

(1)
k �t 0

0 0 1 0
0 0 0 1

3

7

7

7

5

(2.58)

Jh =
⇥

0 1 0 0
⇤

(2.59)

Under the structure of model 2.56 it is possible to apply the EKF in order get an

estimation of x̂(1)t and the parameters, conditional to a sample of discrete observations

of eYt. For the sake of clarity, two simulated trajectories are presented in Figure 8.1,
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with parameters: q = 4.092, r = 0.234, c = 0.43, u = 0.2, " = 0.07, ⌘ = 0.05, ⇢ = 0.5,

with initial conditionsx(1)
0

= 0.1, x(2)
0

= 0.02. Each trajectory consists of 700 points,

with� t = 0.1.

Moreover, in order to validate our method, we consider the percentage relative error,

namely:

✏
(i)
k = 100⇥

x̃
(i)
k � x̂

(i)
k

x̃
(i)
k

, (2.60)

for i = 1, 2 and initial condition x̂
(1)

0

= exp(x̃(1)
0

) = 0.018, where x̂k stands for the

estimation of the state variable. The simulation results are presented in subsequent

Figures 8.2-8.3-8.4-8.5-8.6. In the case of the augmented state system 2.57, we use the

same set of parameters with initial condition x̂
(1)

0

= exp(x̃(1)
0

) = 0.018, q̃ = x̃
(3)

0

= 6,

r̃ = x̃
(4)

0

= 3. The simulation results show a substatial agreement with the simulated

trajectories and the selected sample parameters. Since the model contains a large num-

ber of parameter models, we have concentrated our attention mainly on the estimation

of q and r, given their crucial importance in the prey-predator model. Comparison

Figure 8.1: Estimated trajectories through the Lotka-Volterra model - The

trajectories of processes x
(1)
k (blue line), x(2)

k (green line) from model 2.54 (upper figure)

and model 2.55 (below figure)
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

Figure 8.2: Trajectories comparison - Comparison between the simulated trajectories

of x̃(1)
k (blue line) and its estimation x̂

(1)
k (red line) under the model 2.54 (upper figure) and

under model 2.55 (below figure).
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

Figure 8.3: Error evaluation of state variable - Relative error estimation 2.60 for

x
(1)
k under model 2.55.

between the simulated trajectories of x̃(1)k (blue line) and its estimation x̂
(1)

k (red line)

under the augmented state model 2.54 (upper figure) and under the augmented state

model 2.55 (below figure).

8.2.4 Estimation Results

In this study we consider anonymous data of GDF o�cers over all Italian regions and

districts for the specific case of instrumental controls related to tax receipts infractions.

We shall use historical data with daily frequency for a reference period from 2002 to

2014, provided by GDF information systems. Figure 8.7 shows the ratio between the

positive control number and the number of hour used in prevention activities, data

show that exist a big di↵erence between macro-area.

In order to validate model 2.43 the common probability test are adopted to GDF

instrumental control historical data. Table 8.1 reports the estimated parameters and

Figures 8.8 and 8.9 show the Q-Q plot of noises N (1)

k and N
(2)

k . Furthermore in order to

validate the Gaussian distribution noise hypothesis the results of Kolmogorov-Smirnov

test and Jarque-Bera test are provided.
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

Figure 8.4: Trajectories comparison (augmented state model) - Comparison be-

tween the simulated trajectories of x̃(1)
k (blue line) and its estimation x̂

(1)
k (red line) under

the augmented state model 2.54 (upper figure) and under the augmented state model 2.55

(below figure).
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

Figure 8.5: Estimation error for x
(1)
k - Derived from the application of the filtering

technique for the augmented state model.

Figure 8.6: Estimation error for the unknown parameters q and r - Derived from

the application of the filtering technique for the augmented state model.
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

0.05
0.1

0.15
0.2

0.25

Friuli−Venezia G
iuliaValle d’AostaSardegnaLombardiaUmbriaMoliseMarcheTrentinoVenetoToscanaPiemonteAbruzzo

Emilia−RomagnaCalabriaLiguriaBasilicataPugliaLazioSiciliaCampania

Figure 8.7: Regional analysis of the control activities e�ciency - z-axes represent

the ratio between the positive control number and the number of hour used in prevention

activities.

Estimated parameters

q 0.0023 " 0.3261

r 1.6631 ⌘ 0.2200

c 170.8702 ⇢ 0.0000

u 0.2233

Table 8.1: Parameters estimation from the historical time series. Estimation is made on

GDF data.

A Q-Q plot is a plot of the quantiles of the first data set against the quantiles of the

second data set1. If we assume that the noises are Normally distributed, the points

in the Q-Q plot will approximately lie on the diagonal of the plot. Although a Q-Q

plot is based on quantiles, in a standard Q-Q plot it is not possible to determine which

point in the Q-Q plot determines a given quantile but allows to compare the quantile

of two distribution. Figures 8.8 and 8.9 show that noise N
(2)

k is Normally distributed

otherwise N
(1)

k has evident deviations from the Normal distribution.

1Quantile is the fraction (or percent) of points below the given value. That is, the 0.3 (or 30%)

quantile is the point at which 30% percent of the data fall below and 70% fall above that value. If we

consider a continuous distributions with cumulative density function F , ↵�quantile is F (q
↵

) = ↵.
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

Figure 8.8: Noise N
(1)
k probability plot - Q-Q plot

Figure 8.9: Noise N
(2)
k probability plot - Q-Q plot
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8.2 GDF case of study: Tax Evasion Dynamics by Fiscal Inspection
Activity

N
(1)
k N

(2)
k

KS 0.0602 0.0426

JB 139.7487 2.7505

Table 8.2: Kolmogorov-Smirnov (KS) and Jarque-Bera (JB) test results on GDF data.

Goodness-of-fit tests and inspection activity dataset In order to evaluate the

deviation from the Normal distribution fitting test are proposed. The Kolmogorov-

Smirnov (KS) test is a nonparametric test of the equality of continuous, one-dimensional

probability distributions that can be used to compare a sample with a reference prob-

ability distribution, or to compare two samples. The Kolmogorov-Smirnov statistic

quantifies a distance between the empirical distribution function of the sample and the

cumulative distribution function of the reference distribution, or between the empirical

distribution functions of two samples.

Noise vectors N
(1)

k and N
(2)

k are compared with a Normal distribution vector. If the

test result is 1 we reject the hypothesis that data are Normally distributed, otherwise

we can not reject the Normally distributed hypothesis.

Jarque-Bera (JB) test is a goodness-of-fit test of whether sample data have the skewness

and kurtosis matching a normal distribution.The test statistic JB is defined as

JB =
n

6

✓

S2 +
(K � 3)2

4

◆

,

where n is the observation number, S is the skewness, and K is the kurtosis. Table

8.2 reports the test results. Despite the few number of observed data, results show

that the model proposed, in particular for N
(1)

k , describes only partially the dynamic

analysed. We propose the forecast of May 2014 data, in order to obtain the forecast

the model is calibrated using data from 2002 to April 2014. For each regions we apply

the prey-predator model and our observations {ŷt
k

}k, {x̂t
k

}k, are represented by the

time series of total (positive and negative) inspections conducted at time tk = k�t,

and the fraction between the number of positive inspections over the total number of

inspections at time tk, respectively. We perform an ex-post analysis in order to verify

the goodness-of-fit of our model, through an investigation of its ability to predict the

future value of positive inspections, given past observations:

x̂t
k+1 = E[xt

k+1 |xtk , ytk ]. (2.61)
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8.3 Summary

Areas Empirical Empirical positive Estimated positive Positive error estimation

MI 200 66 77 +5.50%

FI 58 15 12 �5.17%

NA 69 46 57 +15.94%

RM 327 209 210 +0.31%

PA 44 12 21 +20.45%

TO 233 168 107 �26.18%

CS 39 10 13 +7.69%

VE 27 5 8 +11.11%

MC 13 1 2 +7.69%

GE 58 34 30 �6.90%

Table 8.3: Model forecast validation. The estimated number of positive controls is com-

pared with the number of irregularities found by GDF in each area.

To this end, we have selected few representative districts inside the macro-regions,

that are di↵erentiated by their demographic dimension, gross domestic product and

the density of economic and business activities. Since we have daily data, we chosen

to set the year as the unit time, hence the discretization step� t is fixed as 1/30. For

each month m, available in the historical time series of inspections, and for each day

d in the month m, we estimated the model for every district using past observations

up to time tdm, which corresponds to end day of month m; then we have computed the

simple average of the conditional expectations 2.61 for the days between tmonth
m and

tmonth
m+1

and we used it as the prediction. Table 8.3 shows the main results obtained

where Empirical represents the overall control number, Empirical positive is the

number of positive number found, Estimated positive is the number of positive

control estimated using the model, and Positive error estimation is the error metric

define in 2.60. In some areas the estimation provide is very close to empirical data.

In Figure 8.10 are reported positive control number time series of the Rome district,

according to this series the model estimates 210 positive controls during May 2014.

The empirical number of positive control recorded in that period is 209.

8.3 Summary

In order to provide guidelines to optimize the financial inspection resource consump-

tion is analysed the mutual interaction between instrumental controls carried out by

201

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



8.3 Summary
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Figure 8.10: Empirical number of positive control time trend - Rome district data

recorded from July 2013 to May 2014

Financial Guard and tax evasion. The positive control number oscillations is described

using a stochastic version of the Lotka-Volterra model where the predators represent

the control performed by Financial Guard. The stochastic dynamic model proposed

shows a good ability to determine the irregular control number within one month with

respect to the time series analysed. Reported results show that the proposed approach

produces a good fit of empirical distribution and provides also a phenomenological

interpretation of the analysed problem.
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9

Volatility model

This Chapter proposes a part of a research project in cooperation with Enel a new

stochastic volatility model for the calibration of option prices is developed [233]. In

order to avoid the estimation of the initial volatility, a weighted average formulation

for the Heston stochastic volatility option price is presented. This approach has been

developed in the literature for the estimation of the distribution of stock price changes

(returns), showing an excellent agreement with real market data. This method is

extended to the calibration of option prices considering a large class of probability dis-

tributions assumed for the initial volatility parameter. The estimation error is shown

to be less than the case of the simple pricing formula. Our results are also validated

with a numerical comparison on observed call prices, between the proposed calibration

method and the classical approach.

Over the last decade stochastic volatility models (SV) have become an industry stan-

dard for option pricing. The most popular stochastic volatility models are, among

others, the models by [234], [235] and [236]. Nowadays several financial institutions

have incorporated them into their front o�ce systems. Also the literature on SV mod-

els is rapidly increasing and demonstrates the ongoing interest in such models ([237];

[238], [239], [240], [241]). We also refer to [242] or [243] for general surveys. More

generally, SV models including Lévy jumps have also been proposed with the aim of

increasing the smile e↵ect in the short end. The drawback of SV models is that the

more realistic dynamics comes at the cost of an additional theoretical complexity and

a greater di�culty in the numerical solution of the pricing problem and model cali-

bration. For instance, a typical calibration of a SV model requires e�cient numerical
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schemes for the solution of a two-dimensional partial di↵erential equation. Moreover,

while returns are readily known from financial time series data, the volatility is not

a tradable asset, so it acts as a hidden stochastic variable. Therefore, pricing under

SV models involves an additional volatility risk term. The purpose of this work is to

present a new approach in the calibration of SV models in order to provide an e�cient

approximation of observed plain vanilla options. We consider the simple stochastic

volatility model proposed by [236]. The choice of such a model is motivated by the fact

that it has a closed-form expression for the characteristic function of its transitional

probability density function from which options can be e�ciently priced; a feature of

the Heston model that has received considerable attention in the literature. The He-

ston model is the most popular one because of its three main features: it does not

allow negative volatilities, it allows the correlation between asset returns and volatility,

and it has a closed-form pricing formula. We follow closely the approach presented by

[244]. Using the Fourier and Laplace transforms, the authors solve the Fokker-Planck

equation for the Heston model exactly and find the joint density function of log-returns

and variance as a function of time, conditional on the initial volatility (v
0

). Thus, they

integrate the joint density function over the initial volatility and obtain the marginal

density function of log-returns, unconditional with respect to the initial variance. The

approximated probability density function, found in [244], provides an excellent agree-

ment with observed historical financial data. The intuition consists in supposing that

the initial volatility is a random variable distributed according to the stationary distri-

bution of the volatility process. This stationary distribution is a Gamma distribution

with coe�cients depending on the Heston model parameters. Our estimation method

extends, with rigorous arguments, this technique to the option pricing problem. We

also derive a representation formula for the price of a call option similar to that of

the celebrated Heston closed-form solution, without increasing the computational com-

plexity required for the evaluation. Furthermore, we prove that, for a large class of

probability distributions assumed for the initial volatility parameter, the estimation

error in the calibration procedure of option prices is less than the case of the simple

pricing formula. Our results are validated with a numerical comparison, on observed

call prices, between the proposed calibration method and the classical approach. It

should be stressed that the Heston model is used only as a specific example to allow

our methodology to be fully developed. Our technique itself is not limited to any
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9.1 Model

particular model and the extension to other models, eventually involving jumps, is a

matter of detail alone and requires no further significant conceptual development. The

theoretical framework needed to show that our pricing formula fullfills a no-arbitrage

principle, is possible even though further research is required. We aim to come back to

this and other related topics in a forthcoming paper.

9.1 Model

Options are usually priced under the risk-neutral measure and incorporate a volatility

premium. Let {W 1

t }t�0

, {W 2

t }t�0

be two independent Brownian motions on the prob-

ability space (⌦,F, {Ft}t�0

,Q), where Q is the risk-neutral probability measure. The

Heston model (1993) assumes risk-neutral dynamics of the form:

dSt = rStdt+ St
p
vtdW

1

t ,

dvt = (✓ � vt)dt+ �
p
vt

⇣

⇢dW 1

t +
p

1� ⇢2dW 2

t

⌘

,
(1.1)

with S
0

, v
0

> 0 and constant parameters r 2 R, , ✓,�> 0, ⇢ 2 [�1, 1]. S is the

stock price, v is the state variable driving volatility, and r > 0 is the risk-free interest

rate. From the theory of Bessel processes [229], we impose the condition 2✓ � �2 to

ensure that the volatility is strictly positive in finite time. One of the reasons for the

popularity of the Heston model is that it provides a closed-form solution for pricing

vanilla options. This is of great benefit in particular when calibrating against market

prices. The call t-time price of the European call with strike K and maturity T is the

expected discounted value under the risk-neutral measure Q, namely:

Ct = e�r⌧EQ
t [(ST �K)+]

= e�r⌧EQ
t [ST S

T

>K ]� e�r⌧KEQ
t [ S

T

>K ], (1.2)

where EQ
t [·] denotes the conditional Q-expected value, given Ft. By analogy with the

Black-Scholes formula, the guessed solution of this European option is of the form

Ct = CH(t, St, Vt), where the deterministic function CH takes the form

CH(t, S, v) = SP
1

(T � t, log(S), v)� e�r(T�t)KP
2

(T � t, log(S), v), (1.3)

for any S, v > 0 and 0  t  T . The function Pj(⌧, x, v), defined for ⌧ > 0, x 2 R,

v > 0, represents the probability (under suitable probability measures on (⌦,FT )) of
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9.1 Model

the call expiring in-the-money, conditional on the value xt = log(St) of the stock and

on the value vt of the volatility at time t. In the Heston model, the expression for these

probabilities are given by

Pj(⌧, x, v) =
1

2
+

1

⇡

Z 1

0

Re

"

e�ı� log(K)fj(�;x, v)

ı�

#

d�, (1.4)

with

fj(�;x, v) = exp(Cj(⌧,�) +Dj(⌧,�)v + ı�x), (1.5)

Dj(⌧,�) =
bj � ⇢�ı�+ dj

�2

⇣ 1� edj⌧

1� gjedj⌧

⌘

, (1.6)

Cj(⌧,�) = rı�⌧ +
a

�2

h

(bj � ⇢�ı�+ dj)⌧ � 2 log
⇣1� gje

d
j

⌧

1� gj

⌘i

, (1.7)

dj =
q

(bj � ⇢�ı�)2 � �2(2ujı�� �2),

gj =
bj � ⇢�ı�+ dj
bj � ⇢�ı�� dj

,

for j = 1, 2. where u
1

= 1

2

, u
2

= �1

2

, a = ✓, b
1

= � ⇢�, b
2

= .

The results obtained in [245] for a general class of pricing problems based on reflecting

di↵usion processes with jumps (including also the Heston model) allow to state that

CH(t, S, v) is the unique viscosity solution, in the sense of [246] of the Dirichlet problem

⇢

LCH(t, S, V ) = 0, (t, s, v) 2 (0, T )⇥ (0,1)2,
CH(T, S, v) = (S �K)+ (s, v) 2 (0,1)2,

(1.8)

where L is the di↵erential operator

L = �r +
@

@t
+ rS

@

@S
+ (✓ � v)

@

@v
+

1

2
S2v

@2

@S2

+
1

2
�2v

@2

@v2
+ ⇢�Sv

@

@S@v
. (1.9)

The results of [247] in (2010) and, more recently, the contribution of [248] (see Theorem

9.2.1) ensure the following properties:

1) CH 2 C(([0, T )⇥ [0,1)2) \ C1,0,1([0, T )⇥ (0,1)⇥ [0,1)).

2) CH 2 C1,2,2([0, T )⇥ (0,1)2).

3) For every t 2 [0, T ), v > 0, the function S 7! CH(t, S, v) is increasing and strictly

convex on (0,1);
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9.2 The calibration problem

4) For every t 2 [0, T ), S > 0, the function v 7! CH(t, S, v) is strictly increasing.

The Fourier pricing setup introduced by [249] generalizes previous works on Fourier

transform methods (see e.g. [250]). In the case of a call option, the price reduces to

the following formula:

C
0

= S
0

�
p

S
0

Ke�rT

⇡

Z

+1

0

Re
h

eıuk'T

⇣

u� ı

2

⌘ i du

u2 + 1

4

. (1.10)

In the Heston model, the expression for the characteristic function under the measure

Q is

'T (u;x, v) = e�ıu(x+rT )f
2

(u;x, v) = exp(C
2

(T, u) +D
2

(T, u)v � ıurT ), (1.11)

for any u 2 (0,1), x 2 R, v > 0. Here the functions C
2

(·, ·) and D
2

(·, ·) are given by

1.6-1.7. Plugging this expression in 1.10, an alternative formula for the price of the

European call option with maturity T and strike K at time t = 0 can be easily derived.

We will use this reduced formula in next sections.

9.2 The calibration problem

The calibration of SV models to synthetic and market option data forms one of the

major theme in the literature. Calibrating methods to market data (either option

prices or implied volatilities) allows to infer the (risk-neutral) market parameters for

the di↵erent models and thus to use these models for pricing and hedging purposes.

The cost of using such models, however, is that the calibration and pricing techniques

that must be employed are usually quite onerous. The choice of a calibrating routine

requires a trade-o↵ between its computational complexity and its accuracy. This leads

to a complication that plagues SV models in general. A common solution is to find

those parameters which produce the correct market prices of vanilla options. This

is called an inverse problem, as we solve for the parameters indirectly through some

implied structure. A well documented and popular method of fitting pricing models to

observed data is to find a set of model parameter values that minimizes the square of

the di↵erences between the empirical values and the corresponding model values. More
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9.2 The calibration problem

specifically, the squared di↵erences between vanilla option market prices and model

theoretical prices are minimized over the parameter space:

inf
⇥

N
X

i=1

wi

⇣

CModel(S
0

,Ki, Ti;⇥ )� CMarket
i (Ki, Ti)

⌘

2

. (2.12)

where ⇥ is the vector of parameter values, CModel(S
0

, Ti,Ki;⇥) and CMarket
i (Ki, Ti)

denote the ith option price from the model and market dataset, respectively, with

strike Ki and maturity Ti, whereas N is the number of options used for calibration. The

coe�cients wi, i = 1, . . . , N , denote suitable weights; their choice will be discussed later.

Note that we could also do this for model and market implied volatilities, however, this

adds to the complexity of the calibration routine ([251] and [252]). The minimization

above is therefore an inverse, ill-posed problem, making the choice of an optimization

algorithm tricky. In general, the objective function (F ) is neither convex nor does it

have any particular structure. This poses some complications:

• Finding the minimum of F is not as simple as finding those parameter values

that make the gradient of F zero. The function might also have many local

minima, making purely gradient based schemes ine↵ective and necessitating a

careful choice of initial calibration parameters.

• Finding a global minimum is di�cult (and very dependent on the optimization

method used). As a result, we have to choose carefully between using a local or a

global optimization routine. Global optimization schemes tend to be less sensitive

to initial parameter estimates than local ones and should handle complicated

objective functions better. They usually take longer to converge to a solution

however.

• Unique solutions to 2.12 need not necessarily exist, in which case only local min-

ima can be found. This has some implications regarding the stationarity of pa-

rameter values which are important in these types of models.

There are several alternative calibration methods that have been experimented. For

instance, the regularization method involves adding a penalty function, p = p(⇥), to

2.12 such that the objective function

N
X

i=1

wi

⇣

CModel(S
0

, Ti,Ki;⇥ )� CMarket
i (Ki, Ti)

⌘

2

+ ↵p(⇥) (2.13)
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9.2 The calibration problem

is convex. The parameter ↵ is a regularization parameter. The underlying idea is to

find an approximation which is as close to the true solution as possible. To achieve this,

the problem is replaced with one which is close to the original, but does not possess

the ill conditioning which the makes the original intractable. For a detailed discussion,

we refer to [253]. When applied to a given set of market prices, these methods yield a

single set of model parameters calibrated to the market but also require the extra step

of determining the regularization parameter ↵, see for instance [254].

Another important consideration is the choice of weights wi, for i = 1, . . . , N . One

possible choice is to set wi = 1/N , for all i = 1, . . . , N , making equation 2.12 a measure

of mean squared errors [252]. Alternatively, we could let wi = |bidi � aski|�1, where

bidi and aski stand for the bid and ask prices of the ith option in the dataset. This

would allow us to place more weight on options which are more liquid in the market.

A third option that has also been suggested is to use the implied volatilities of the

sampled options as weights, a method explored by [254].

9.2.1 Averaging over volatility

In the Heston model there are essentially four (risk-neutral) parameters that need es-

timation:  > 0, ✓ > 0, � > 0 and ⇢ 2 [�1, 1]. Nevertheless, in SV models the

log-returns {xt = log(St)}t�0

are directly known from financial time series, whereas the

volatility is a hidden variable that has to be estimated. Inevitably, such an estimation

is done with some degree of uncertainty, which precludes a clear-cut direct compari-

son between model prices and financial data. In fact, several research contributions

have shown that the implied parameters that produce the correct vanilla option prices

and their time-series estimate counterparts are di↵erent [255]. The common approach

adopted to overcome this estimation problem, is considering the initial volatility v
0

> 0

as an additional parameter in the calibration procedure. An alternative approach can

be perfomed with at-the-money (ATM) implied variance, based on the following result

from [256].

Theorem 9.2.1. (Term structure of the Black-Scholes implied volatility in the Heston

Model)

�2ATM ⇡ 1

T

Z T

0

[(v
0

� ✓0)e�
0 t + ✓]dt = (v

0

� ✓0)
1� e�

0T

0T
+ ✓0, (2.14)
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9.2 The calibration problem

where 0 =  � 1

2

⇢� and ✓0 = ✓/0. The ATM Black-Scholes implied variance in the

Heston model converges (in probability) to v
0

, as T ! 0.

The practical significance of the previous theorem is that, if we assume that the stock

process follows the Heston dynamics, then v
0

should be consistent with the short dated

at-the-money volatility: there is a linear relationship between the initial variance, v
0

,

and the Black-Scholes implied variance returned by the Heston model. This estimation

method has been considered as a satisfactory estimate for the initial variance v
0

, in the

Heston model. An interesting approach has been proposed by [244] in the estimation

of the Heston model on time series of log-returns. Using the Fourier and Laplace

transforms, the authors solve the Fokker-Planck equation exactly and they find the

joint probability density function of log-returns and volatility as a function of time,

conditional on the initial value v
0

of the volatility. Thus, they integrate the joint density

function over the volatility parameter v
0

and obtain a proxy for the unconditional

marginal density function of log-returns. The latter density function is then directly

compared with financial data, with an excellent agreement between the results and

market data (over a 20 year period of time). The Fokker-Planck equation for the

transition density of the volatility admits a stationary solution given by the density of

the gamma distribution, see [80]:

⇧?(v0) =
↵↵

�(↵)

v↵�1

0

✓↵
e�↵v0/✓, (2.15)

where ↵ = 2✓/�2 is the ratio of the average volatility ✓ to the characteristic fluctuation

of variance �2/2 during the relaxation time 1/. In [244], the unconditional density

function of log-returns is approximated by averaging the conditional density function

over v
0

with the weight⇧ ?(v0). However there is neither a reasonable mathematical

explanation nor a financial motivation for the use of such a distribution. We propose

a method of calibration of the Heston model which resume and extend the argument

followed in [244] and, moreover, we give a mathematical and numerical justification of

our approach.

In the following, we will consider the set P of all non-negative Lebesgue-integrable

functions f : R �! R such that f(v) = 0 for any v  0, almost everywhere (a.e.), and
Z 1

0

f(v) dv = 1. (2.16)
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9.2 The calibration problem

Clearly P is a subset of all probability density functions on R. For every f 2 P and any

bounded measurable function ' : (0,1) ! R, let define

Ef ['] :=

Z 1

0

'(v)f(v) dv. (2.17)

Moreover, we shall denote with Mf the (extended) moment generating function of f ,

namely

Mf (z) =

Z 1

0

ezv f(v) dv. (2.18)

Clearly Mf (z) is well defined for all z 2 C, with Re(z)  0, and it coincides with the

generalized Fourier transform of f at �ı z.

Let the actual price of a call option with maturity T and strike K - in the framework

of the Heston model - be denoted as CH(S
0

, v
0

, T,K;⇥), where

⇥ 2 H :=
�

(, ✓,�,⇢ ) 2 R4 : , ✓,�> 0, ⇢ 2 [�1, 1]
 

. (2.19)

Note that H is a convex subspace of R4. In fact

2(�
1

+ (1� �)
2

)(�✓
1

+ (1� �)✓
2

) �

� �2(2
1

✓
1

) + (1� �)2(2
2

✓
2

) + 2�(1� �)(
1

✓
2

+ 
2

✓
1

)

� �2�2
1

+ (1� �)2�2
2

+ 2�(1� �)
p

(2
1

✓
1

)(2
2

✓
2

)

� �2�2
1

+ (1� �)2�2
2

+ 2�(1� �)�
1

�
2

= (��
1

+ (1� �)�
2

)2 (2.20)

and, obviously, �⇢
1

+(1��)⇢
2

2 [�1, 1], for any (ki, ✓i,�i, ⇢i) 2 H, i = 1, 2, 0  �  1.

By averaging over volatility, we mean the option price functional given by

CH
f (S

0

, T,K;⇥) := Ef

⇥

CH(0, S
0

, ·, T,K;⇥ )
⇤

, (2.21)

for every S
0

> 0, T > 0, K > 0,⇥ 2 H, f 2 P.

We observe that if f is replaced with the Dirac delta function �(v � v
0

) centered at

v
0

> 0, then 2.21 reduces to CH(S
0

, v
0

, T,K;⇥). Thus, the case of a constant initial

volatility can be loosely seen as a special case of considering v
0

as a random variable

distributed according with the density f 2 P. We wonder if the use of 2.21 as an

approximating call price for the Heston model, under a suitable probability density

function f , can lead to an improvement of the calibration results of the model against

the observed option prices. Let CM
i = CMarket

i (Ki, Ti), i = 1, . . . , N be a basket of
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9.2 The calibration problem

call prices, all written on the same underlying asset with price S
0

, at time t = 0. Let

{wi � 0, for i = 1, . . . , N} be a set of given weights. For the calibration purpose, we

consider two objective functionals J : H ⇥ (0,1) ! [0,1) and J 0 : H ⇥ P ! [0,1),

defined as follows:

J(⇥, v
0

) :=
N
X

i=1

wi |CM
i � CH(0, S

0

, v
0

, Ti,Ki;⇥ )|2, (2.22)

J 0(⇥, f) :=
N
X

i=1

wi |CM
i � CH

f (S
0

, Ti,Ki;⇥ )|2. (2.23)

Let P0 be a non-empty subset of P, then define I, I 0 be the infimum of J over H⇥(0,1)

and the infimum of J 0 over H ⇥ P0, respectively. The following result states that if P0

includes a sequence of densities weakly converging to the Dirac delta centered at an

arbitrary v
0

> 0, then the calibration obtained through the averaged call price 2.21

improves the calibration result.

Theorem 9.2.2. For every f 2 P, the integral in 2.21 is bounded. If P0 ✓ P is such

that for every v
0

> 0, there exists a sequence {fn}n ✓ P0 satisfying

lim
n!1

Z

R
fn(v)g(v) dv = g(v

0

), (2.24)

for all bounded, continuous functions g : R ! R, then I 0  I. Furthermore

inf
f2P0

CH
f (S

0

, T,K;⇥ )< CH(0, S
0

, v
0

, T,K;⇥ )< sup
f2P0

CH
f (S

0

, T,K;⇥ ) (2.25)

for any ⇥ 2 H, S
0

, v
0

> 0, T, K > 0.

Remark 9.2.3. We remark that 2.24 is equivalent to the weak convergence of {fn}n
to �(·� v

0

). The chain of inequalities 2.25 shows that the averaged price 2.21 yields a

wider range of prices than the standard Heston model, when v
0

varies within a bounded

interval, and this holds in practice. In fact, if the observed market prices belong to the

no-arbitrage range, that is

(S
0

�Ke�rT )+ < CM
i < S

0

, 8 i = 1, . . . , N, (2.26)

then, for every⇥ 2 H, there exist two numbers 0 < v(⇥)  v(⇥) such that

CH(0, S
0

, v(⇥), Ti,Ki;⇥) = CM
i := min

1jN
CM
j , (2.27)

CH(0, S
0

, v(⇥), Ti,Ki;⇥) = C
M
i := max

1iN
CM
i . (2.28)
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9.2 The calibration problem

Therefore, by the strict monotonicity of CH as a function of v, it is easy to see that

I = inf
(⇥,v0)2⇥(0,1)

J(⇥, v
0

) = inf
(⇥,v0)2K

J(⇥, v
0

), (2.29)

where

K = {(⇥, v
0

) 2 H ⇥ (0,1) : v
0

2 [v(⇥), v(⇥)]} . (2.30)

Therefore, for every fixed ⇥, the optimal initial volatility belongs to a bounded interval.

Before we give the proof of Theorem 9.2.2, we first formulate an example for the

set P0 which satisfies the assumption of Theorem 9.2.2. In light of the conjecture of

[244] that consider the stationary solution 2.15 as a prior distribution for v
0

, we put

our attention on the subset G ⇢ P of the probability density functions associated with

the Gamma distribution:

G =

⇢

g↵,� 2 P : g↵,�(x) =
�↵

�(↵)
x↵�1e��x1x>0

, ↵,� >0

�

. (2.31)

We have the following result.

Remark 9.2.4. For every ↵,�> 0 and z 2 C, with Re(z) < �, the moment generating

function of g↵,� 2 G is given by

M↵,�(z) =

Z 1

0

ezv
�↵

�(↵)
v↵�1e��v dv =

✓

1� 1

�
z

◆�↵
. (2.32)

The set G satisfies condition 2.24 in Theorem 9.2.2.

Let v
0

> 0 and gn 2 G such that gn = g↵
n

,�
n

, with ↵n = n �n = n/v
0

. The characteristic

function of gn is

�n(t) =

✓

1� ıt

�n

◆�↵
n

=

✓

1� ıtv̄

n

◆�n

, (2.33)

for all t 2 R. gn converges weakly to �(·� v
0

), since �n(t) ! eıtv0 , for any t 2 R, where

�(t) =

Z

R
eıtx�(x� v

0

)dx = eıtv0 , (2.34)

which is the characteristic function associated to the delta function, centered at v
0

.

Remark 9.2.5. Although our analysis is focused on the Gamma distribution, we ob-

serve that di↵erent types of probability distributions satisfy condition 2.24. In partic-

ular we mention the Inverse Gaussian distribution (IG) with density function

IG↵,�(x) =
h ↵

2⇡x3

i

1/2
· exp

✓

�↵(x� �)2

2�2x

◆

, (2.35)
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9.2 The calibration problem

for x > 0, where � > 0 is the mean and ↵ > 0 is the shape parameter. Then it is

easy to see that IG↵
n

,v0 converges weakly to �(· � v
0

), for any sequence ↵n ! 1.

In particular, the Inverse Gaussian and Gamma distributions are special cases of the

generalized Inverse Gaussian distribution (GIG) having density function

GIGa,b,p(x) =
(a/b)p/2

2Kp(
p
ab)

xp�1 · exp


�1

2

✓

ax+
b

x

◆�

, (2.36)

for x > 0, with parameters a, b > 0, p 2 R. Here Kp denotes the modified Bessel

function of the second kind. This is the Gamma distribution if a = 2� and b ! 0,

p = ↵; it is the Inverse Gaussian if a = ↵/�2, b = ↵ and p = �1/2. Another suitable

distribution is a scaled version of noncentral-�2 distribution. In fact, as documented

in several papers, the distribution of the Heston volatility vT , conditional on vt, for

t < T , is distributed according to such a distribution with parameters derived from the

Heston model, see for example [257].

Proof. - Theorem 9.2.2. The function u(t, S, v) = S is a super-solution of 1.8, since

Lu = 0 and u(T, S, v) = S > (S � K)+. Thus by the comparison principle for 1.8,

proved in [245], it holds CH(0, S
0

, v
0

, T,K;⇥ ) S
0

, for every S
0

> 0, v
0

> 0, K, T > 0,

⇥ 2 H. This yields

0  CH
f (S

0

, T,K;⇥) =

Z 1

0

CH(0, S
0

, v, T,K;⇥ )f(v) dv  S
0

< 1, (2.37)

for any f 2 P.

The Jensen’s inequality implies

|CM
i � CH

f (S
0

, T,K;⇥ )|2 = |Ef [C
M
i � CH(0, S

0

, ·, Ti,Ki;⇥)]|2

 Ef

⇥

|CM
i � CH(0, S

0

, ·, Ti,Ki;⇥ )|2
⇤

, (2.38)

for every f 2 P. Summing over i = 1, . . . , N , we get

J 0(⇥, f)  Ef [J(⇥, ·)] 8 f 2 P0. (2.39)

Let v
0

> 0 and {fn}n ⇢ P0, satisfying 2.24. Writing inequality 2.39 for fn, leads to

I 0  J 0(⇥, fn)  Ef
n

[J(⇥, ·)] =
Z

R
J(⇥, v)fn(v)dv. (2.40)

By 2.37, the function v 7! J(⇥, v) is bounded, for any⇥ 2 H. Hence, we can take the

limit on the right-hand side as n ! 1 to obtain

I 0  J(⇥, v
0

), (2.41)
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9.2 The calibration problem

for any arbitrary ⇥ and v
0

> 0, and taking the infimum over (⇥, v
0

) 2 H ⇥ (0,1).

This proves the inequality I 0  I.

We prove the inequality for the supremum in 2.25, the other relations can be obtained

with similar arguments. Let v̄ > v
0

> 0, and {fn}n ⇢ P0 be a sequence of density

functions associated to v̄. Let g 2 C1(R) be such that 0  g(v)  1, everywhere,

g(v) = 0, for |v| � 1, g(v) = 1 for |v|  1/2. Define g"(v) = g
�

v�v̄
"

�

, for every " > 0.

Since v 7! CH(0, S
0

, v, T,K;⇥) is strictly increasing, for every 0 < " < v̄ � v
0

, we can

write

CH
f
n

(S
0

, T,K;⇥ ) �
Z v̄+"

v̄�"
CH(0, S

0

, v, T,K;⇥ )fn(v) dv

� CH(0, S
0

, v̄ � ", T,K;⇥ )

Z 1

0

g"(v)fn(v) dv. (2.42)

Taking the limit as n ! 1, we get

sup
f2P0

CH
f (S

0

, T,K;⇥ )� CH(0, S
0

, v̄ � ", T,K;⇥ )> CH(0, S
0

, v
0

, T,K;⇥ ), (2.43)

for any S
0

> 0, v
0

> 0, T, K > 0,⇥ 2 H.

Following Theorem 9.2.2 the calibration procedure using the average call price 2.21,

under the Gamma distribution set G, consists in minimizing the functional

IG(↵,�,⇥) :=
N
X

i=1

!i|CM
i � Eg

↵,�

[CH(0, S
0

, ·, Ti,Ki;⇥)]|2 (2.44)

over (↵,�,⇥) 2 (0,1)2 ⇥H. Thus, the calibration is achieved by adding to the set of

parameters H two real parameters that describe the distribution of the initial volatility

v
0

. We also observe that the averaged call price 2.21 is strictly increasing with respect

to the scale parameter � = 1/�. In fact, by the regularity properties of the Heston call

price it holds:

@

@�
Eg

↵,�

[CH(0, S
0

, ·, T,K;⇥)]

=
@

@�

Z 1

0

CH (S
0

, �w, T,K;⇥ )
1

�(↵)
w↵�1e�w dw

=

Z 1

0

@CH

@v
(S

0

, �w, T,K;⇥ )
1

�(↵)
w↵�1e�w dw > 0. (2.45)

Hence we can conjecture that the scale parameter represents an estimate of the ”true”

volatility in the Heston model.
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9.3 Average call price formula

9.3 Average call price formula

In this section we derive a closed-form formula for the averaged call price 2.21, given a

probability density function⇧ 2 P.

C
⇧

(S
0

, T,K;⇥) =

Z

+1

0

CH(S
0

, v, T,K;⇥)⇧(v) dv. (3.46)

We will state a result that yields a simplified form, reducing the expression of the

price above to a single integration. This will be of great convenience for numerical

computation purposes.

Theorem 9.3.1. (Average Call Price) If ⇧ 2 P satisfies E
⇧

[v] < 1, then the

following relation holds true:

C
⇧

(S
0

, T,K;⇥) = S
0

Q
1

(S
0

, T,K;⇥ )� e�rTKQ
2

(S
0

, T,K;⇥ ), (3.47)

where

Qj =
1

2
+

1

⇡

Z 1

0

Re
heCj

(T,�)+ı� log(

S0
K

)M
⇧

�

Dj(T,�)
�

ı�

i

d�, (3.48)

for j = 1, 2, S
0

, T, K > 0, r > 0, ⇥ 2 H, with ⇢ 2 (�1, 1), M
⇧

being the moment

generating function 2.18 related to ⇧.

Remark 9.3.2. If ⇧ is the pdf associated to the Gamma distribution with parameters

(↵,� ), the integrand in 3.48 reduces to

Qj =
1

2
+

1

⇡

Z 1

0

Re

"

eCj

(T,�)+ı� log(

S0
K

)

ı�
�

1� �Dj(T,�)
�↵

#

d�. (3.49)

In the cases of the Inverse Gaussian distribution (IG) and the Generalized Inverse

Guassian distribution (GIG), we can also find an explicit expression for Qj which are

based on the moment generating function of these distributions, respectively given by:

MIG(z) = exp

"

↵

�

 

1�
r

1� 2�2z

↵

!#

, (3.50)

MGIG(z) =

✓

a

a� 2z

◆p/2 Kp(
p

b(a� 2ız))

Kp(
p
ab)

, (3.51)

where Kp is a modified Bessel function of the second kind.

216

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



9.3 Average call price formula

In order to prove the previous result, we need some technical results, which state some

crucial properties for the coe�cients in the Heston formula 1.6-1.7. For our knowledge,

the inequality in Lemma 9.3.3 is not proved in the literature, hence we will give a

detailed proof of such a result. Proposition 9.3.4 provides useful information about the

asymptotic behavior of the coe�cients Cj(�, T ) an Dj(�, T ), as �! 1 and as �! 0+.

The proof can be found in [258] - Propositions 3.1, 3.2, 3.3. See also [259].

Lemma 9.3.3. For any �,, ✓,�> 0, ⇢ 2 (�1, 1), ⌧ > 0 we have that

Re(Dj(⌧,�)) < 0, (3.52)

for j = 1, 2.

Let us introduce the notation for the integrands in the Heston model 1.4-1.5:

pj(�, log(S0

), v) = Re

"

e�ı� log(K)fj(�; log(S0

), v)

ı�

#

j = 1, 2, (3.53)

then we can state the following asymptotics.

Proposition 9.3.4. Assuming that , ✓,� , S
0

, K, T > 0 and ⇢ 2 (�1, 1), then the

following asymptotics hold:

lim
�!1

Cj(T,�)

�
= �✓

�
T
⇣

p

1� ⇢2 + ı⇢
⌘

+ ırT, (3.54)

lim
�!1

Dj(T,�)

�
= �

p

1� ⇢2 + ı⇢

�
, (3.55)

lim
�!0

+
pj(�, log(S0

), v) = log(S
0

/K) + Im(@�Cj(T, 0)) + Im(@�Dj(T, 0))v, (3.56)

where

Im(@�Cj(T, 0)) = rT + a
e�b

j

T + bjT � 1

2b2j
(3.57)

Im(@�Dj(T, 0)) = (�1)j · e
�b

j

T � 1

2bj
, (3.58)

for j = 1, 2, provided that b
1

=  � ⇢� 6= 0, otherwise, we obtain Im(@�Cj(0, T )) =

aT 2/4 and Im(@�Dj(0, T )) =
T
2

for j = 1, 2.
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9.3 Average call price formula

Proof. - Theorem 9.3.1. According to Heston model 1.2,

Pj =
1

2
+

1

⇡

Z 1

0

pj(�, log(S0

), v) d�, j = 1, 2. (3.59)

Therefore it su�ces to prove the equation Qj =
1

2

+ 1

⇡ I, where

I =

Z 1

0

Z 1

0

pj(�, log(S0

), v)⇧(v) d� dv. (3.60)

Let’s first verify the convergence of I. To this end, Proposition 9.3.4-3.54 yields

Re(Cj(T,�)) < �c�, (3.61)

as � > ⌘, with ⌘ > 0 chosen large enough, where c = ✓T
p

1� ⇢2/(2�) > 0. Moreover,

it is easy to see that Im(Dj(T,�)) ! 0, as � ! 0+. Therefore, by Proposition 9.3.4-

3.56, setting v = 0, there exists " > 0 such that

|pj(�, log(S0

), 0)|  2| log(S
0

/K)|+ 2|Im(@�Cj(0, T ))|, (3.62)

|Im(Dj(T,�))|  dj�, (3.63)

for every 0 < � < ", for a constant coe�cient dj depending only on the coe�cient in

Proposition 9.3.4-3.57.

Now it su�ces to show that the integrals I1 and I
0

, defined below, are bounded. They

represent respectively the integral on (�, v) 2 (⌘,1) ⇥ (0,1) and the integral over

(�, v) 2 (0, ")⇥ (0,1). Let us consider them separately:

I1 =
Z 1

0



Z 1

⌘
⇧(v)

1

�
eRe(C

j

)+Re(D
j

)v

�

�

�

�

sin

✓

Im(Cj) + Im(Dj)v + � log
S
0

K

◆

�

�

�

�

d�

�

dv


Z 1

0

"

⇧(v)

Z 1

0

eRe(C
j

)

�
eRe(D

j

)v d�

#

dv 
Z 1

⌘

eRe(C
j

(T,�))

�
d�< 1.

(3.64)

Here we have omitted the dependence of Cj and Dj on (T,�), and we have used

Lemma 9.3.3 in the last inequality. Still using Lemma 9.3.3 and inequality | sin(x)| 
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9.3 Average call price formula

| sin(y)|+ |x� y|, for any pair of real numbers x,2 y, we get

I
0

=
Z 1

0

⇧(v)



Z "

0

1

�
eRe(C

j

)+Re(D
j

)v
�

�

�

sin

✓

Im(Cj) + Im(Dj)v + � log
S
0

K

◆

�

�

�

d�

�

dv


Z 1

0

⇧(v)



Z "

0

1

�
eRe(C

j

)



�

�

�

sin

✓

Im(Cj) + � log
S
0

K

◆

�

�

�

+ |Im(Dj)|v
�

d�

�

dv


Z "

0

|pj(�, log(S0

), 0)
�

�

�

d�+ dj"E
⇧

[v] . (3.65)

Hence, I
0

is bounded under the assumption E
⇧

[v] < 1 and by 3.62. So we are allowed

to change the order of integration in 3.60:

I =

Z 1

0

"

Z 1

0

Re
he�ı� log(K)fj(�; log(S0

), v)

ı�

i

⇧(v)dv

#

d�

=

Z 1

0

"

Re
h

Z 1

0

e�ı� log(K)fj(�; log(S0

), v)

ı�
⇧(v)

i

dv

#

d�

=

Z 1

0

Re
heı� log

S0
K

+C
j

(T,�)

ı�

Z 1

0

eDj

(T,�)v ⇧(v)dv
i

d�

=

Z 1

0

Re

"

eı� log

S0
K

+C
j

(T,�)

ı�
M

⇧

(Dj(T,�))

#

d�. (3.66)

We remark that Re(Dj(T,�)) < 0 implies that M
⇧

�

Dj(T,�)) is well defined for all

T > 0, � > 0. Note also that the switch between the integral and the real is allowed

since
�

�

�

�

�

e�ı� log(K)fj(�; log(S0

), v)

ı
⇧(v)

�

�

�

�

�

= eRe(C
j

(T,�))+Re(D
j

(T,�))v⇧(v)

< eRe(C
j

(T,�))⇧(v), (3.67)

and, given that Re(Cj(T,�)) does not depend on v, this function is integrable with

respect to v 2 (0,1), for every �.

Proof. - Lemma 9.3.3. As is well known (see [236]), ⌧ 7! Dj(⌧,�) solves, for every

� > 0, a Riccati type equation:

@Dj

@⌧
(⌧,�) = Aj(�)�Bj(�)Dj(⌧,�) +RD2

j (⌧,�), (3.68)
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9.3 Average call price formula

and Dj(0,�) = 0, where

Aj(�) = ıuj�� 1

2
�2 (3.69)

Bj(�) = bj � ⇢��ı (3.70)

R =
1

2
�2. (3.71)

Thus, the function w(⌧,�) = exp
�

�R
R ⌧
0

Dj(t,� )dt
�

solves the second order di↵erential

equation

@2⌧w(⌧,�) +Bj(�)@⌧w(⌧,�) +RAj(�)w(⌧,�) = 0. (3.72)

In the sequel we shall use the notation w0 to denote the partial derivative @⌧w(⌧,�).

and w̄(⌧,�) for the conjugate of w(⌧,�). Computing the real part of Dj leads to

Re(Dj) = � 1

R
Re

✓

w0w̄

|w|2

◆

= � 1

R

w0
RwR + w0

IwI

|w|2 , (3.73)

where w = wR + ıwI and w0 = w0
R + ıw0

I . Let ⇠(⌧,�) = |w(⌧,�)|2, then of course we

can write ⇠0 = w0w̄+ww̄0 and Re(Dj) = �⇠0/(2R⇠). Moreover, by using equation 3.72,

we find

⇠00 = �Bjw
0w̄ �AjRww̄ + 2w0w̄0 � w(B̄jw̄

0 + ĀjRw̄)

= �Re(Bj)(w
0w̄ + ww̄0)� ıIm(Bj)(w

0w̄ � ww̄0)� 2RRe(Aj)⇠

+2w0w̄0 = �Re(Bj)⇠
0 + 2Re(ıww̄0)Im(Bj)� 2RRe(Aj)⇠ +

+2w0w̄0 = �bj⇠
0 � 2Re(ıww̄0)�⇢�+

1

2
�2�2⇠ + 2w0w̄0, (3.74)

and, by the definition of w, we argue that

Re(ıww̄0) = �R Im(Dj)|w|2 = �R Im(Dj) ⇠, (3.75)

|w0|2 = R2⇠|Dj |2. (3.76)

By these relations, we deduce that ⇠ solves the Cauchy problem:
8

>

<

>

:

⇠00(⌧) + bj⇠
0(⌧,�)� �(⌧,�)⇠(⌧,�) = 0,

⇠0(0,�) = 0,

⇠(0,�) = 1,

(3.77)

where �(⌧,�) = (1/2)�2�2 + 2[R2|Dj(⌧,�)|2 + R�⇢� Im(Dj(⌧,�))]. In order to prove

that Re(Dj(⌧,�)) < 0, it su�ces to show that ⌧ 2 (0,1) 7! ⇠(⌧,�) is strictly increasing.

Assume that this is not true, by way of contradiction. Suppose that there exists ⌧ 0 > 0

such that ⇠0(⌧ 0) < 0. Since Dj(0,�) = 0, 3.77 yields

⇠00(0,�) =
1

2
�2�2 + 2�(0) =

1

2
�2�2 > 0, (3.78)
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9.3 Average call price formula

for all � > 0; hence, by the continuity of ⇠0 and ⇠00 as functions of ⌧ , the supremum

⌧
0

= sup {⌧ 2 (0, ⌧ 0] : ⇠0(⌧,�) � 0}, (3.79)

is well defined, since the related set is non-empty, and ⌧
0

< ⌧ 0, ⇠0(⌧
0

,�) = 0. We show

that ⇠00(⌧
0

,�) > 0. From the di↵erential equation 3.77 and Re(Dj(⌧0,�)) = 0, this is

equivalent to state the inequality

�2 + 2⇢�A+A2 > 0, (3.80)

where A = �Im(Dj(⌧0,�)). If A = 0 the last inequality reduces to �2 > 0, that is

obviously true. Otherwise, if A 6= 0, since |⇢| < 1, we get

�2 + 2⇢�A+A2 > �2 � 2|A|�+A2 = (�� |A|)2 � 0. (3.81)

Thus ⇠0(⌧,�) is positive in a right neighborhood of ⌧
0

. This is in contradiction with

the definition of ⌧
0

and we have proved that ⇠0(⌧,�) > 0 for every ⌧, �> 0, implying

inequality 3.52.

The assertion of Lemma 9.3.3 is still valid if D
2

(⌧,�) is replaced by D
2

(⌧,� � ı/2).

In fact, the coe�cient  � ⇢�/2 substitutes b
2

= , without compromising the proof.

The asymptotic behavior established in Proposition 9.3.4 holds true for C
2

(⌧, u� ı/2),

as u ! 1 ([259]). This remark is relevant in the context of the Lewis approach 1.10,

where we can obtain a reduced form expression for the averaged call price which involves

only single integration.

Theorem 9.3.5. (Lewis Average Call Price) If ⇧ 2 P satisfies E
⇧

[v] < 1, then

the following relation holds true:

C
⇧

(S
0

, T,K;⇥) = S
0

�
p
S
0

Ke�rT

⇡

Z

+1

0

F (u) du

u2 + 1

4

, (3.82)

where

F (u) = eC2(T,u�ı/2)+ıu log(S0/K)� rT

2 M
⇧

(D
2

(T, u� ı/2)) . (3.83)

for every S
0

, T, K > 0, r > 0, ⇥ 2 H, with ⇢ 2 (�1, 1).

Proof. By Lewis call price 1.10, we can write

C
⇧

(S
0

, T,K,⇥) = S
0

�
p

S
0

Ke�rT

⇡
I, (3.84)
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9.3 Average call price formula

where

I =

Z

+1

0

"

Z

+1

0

1

u2 + 1

4

Re
h

eıuk�T (u� ı/2)
i

⇧(v)du

#

dv. (3.85)

The convergence of the integral I can be obtained by the same argument used in the

proof of Theorem 9.3.1. Thus, we can change the integration order:

I =

Z

+1

0

1

u2 + 1

4



Z

+1

0

Re
h

eC2(T,u� ı

2 )+D2(T,u� ı

2 )v+ıu(k�rT )� rT

2

i

⇧(v)dv

�

du

=

Z

+1

0

1

u2 + 1

4



Re
h

eC2(T,u� ı

2 )+ıu(k�rT )� rT

2

Z

+1

0

eD2(T,u� ı

2 )v⇧(v)
i

dv

�

du

=

Z

+1

0

1

u2 + 1

4

Re
h

eC2(T,u� ı

2 )+ıu log(S0/K)� rT

2 M
⇧

�

D
2

(T, u� ı/2)
�

i

du. (3.86)

We remark that Lemma 9.3.3 allows the change of order between the integration with

respect to v and the real part, and it implies that M
⇧

�

D
2

(T, u � ı
2

)
�

< 1 in the

expression above. Clearly 3.86 proves the equation 3.82.

9.3.1 Calibration to option prices

The general approach to the calibration of parametric models, such as the Heston model,

is to apply a least-square type procedure either in price or implied volatility. Unfortu-

nately, this kind of approach will in general be very sensitive to the choice of the initial

point, which will often in practice drive the selection of the local minima the algorithm

will converge to. The various explicit formulas come into play to receive a pertaining

initial point. Estimates for the volatility parameter v
0

, with the structural parameters

= {, ✓,⇢ ,� } will be needed. The calibration procedure consists in the minimization of

the functional in 2.12, where CModel is the Heston call price CH(S
0

, v
0

, T,K;⇥) in the

standard case or, otherwise the weighted average call price C
⇧

(S
0

, T,K;⇥) 9.3.1-9.3.5,

for a given probability distribution density⇧ 2 P. In this second case, the density is

chosen according to a parameterized family of density functions related to a probabil-

ity distribution, implying that the set of parameters includes also the parameters of

such a distribution. By the results of Section 9.2.1, we have compared the standard

method which considers v
0

as an additional parameter and our approach under three

distributions: the Gamma (GAM), the Inverse Gaussian (IG) and the Generalized In-

verse Gaussian (GIG), for which the integrands appearing in 9.3.1 are explicitly known
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9.4 Estimation results

thanks to the relations 3.49, 3.50 and 3.51. From a numerical point of view, the calcula-

tion of the option price is made somewhat complicated by the fact that the integrands

have oscillatory nature. However, the integration can be done in a reasonably simple

fashion by the aid of Gauss-Lobatto quadrature. This integration method is capable

of handling a wide range of functional forms. Since the Gauss-Lobatto algorithm is

designed to operate on a closed bounded interval, we have used a transformation of the

original integral boundaries (0,1) to the finite interval [0, 1], as presented in Kahl and

Jackel (2005). In order to evaluate the performance of those methods, we have used

three discrepancy measures documented in several works in the literature: the average

prediction error (APE), the root mean-square error (RMSE) and the average relative

prediction error (ARPE). They are defined as follows:

APE =
N
X

n=1

|CModel
i � CMarket

i |
PN

n=1

CMarket
i

(3.87)

ARPE =
1

N

N
X

i=1

|CModel
i � CMarket

i |
CMarket
i

(3.88)

RMSE =

v

u

u

t

N
X

i=1

|CModel
i � CMarket

i |2
N

, (3.89)

where CModel
i = CH(S

0

, v
0

, Ti,Ki;⇥) under the simple Heston model (H) and CModel
i

= C
⇧

(S
0

, Ti,Ki;⇥) under the average price method denoted WAPH in the following.

Ti and Ki denote respectively the maturity and the strike price of the ith option, all

written on a stock with current price S
0

. The admissible parameter set for the Heston

model has been specified in 2.19. The coe�cients wi are chosen as described in Section

9.2. In fact, the use of the bid-ask spread (ask price minus the bid price) of the market

price is suitable since it assigns a greater weight to options where the spread is small,

and less weight to options with a larger spread.

9.4 Estimation results

Our empirical analysis is conducted on a dataset of option prices on the Standard and

Poor’s 500 Index, which represents the main capitalization-weighted index of 500 stocks

in the US market. The index is designed to measure performance of the broad domestic
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9.4 Estimation results

economy through changes in the aggregate market value of 500 stocks representing all

major industries. We have considered a first set of market composed by prices from

September 1, 2010 to September 30, 2010 and a second set of market composed by

prices from September 1, 2015 to September 30, 2015. It is considered only call options

that verify standard no-arbitrage bounds. Moreover we test the model on call options,

with the constraint on the moneyness 0.9 < M < 1.1, where M is the moneyness

defined by K
S0
. Overall, we have considered 8, 315 call prices divided into 21 trading

dates and 9 expiry dates for the 2010’s set and 1, 091 call prices divided into 21 trading

dates and 7 expiry dates for the 2015’s set. For each of the considered models we

have calibrated everyday the corresponding parameters (that are 5 in the H case, 6 in

both cases of WAPH with GAM and with IG, 7 in the case of WAPH with GIG). The

results of the estimation are summarized in Table 9.2 and in Table 9.3. Precisely, the

averages of daily error measures and the parameters for all methods are reported. For

what concerns all the error measures, the averaged call price under the GIG distribution

seems to perform better in the considered period, while for what concerns the case with

the Gamma distribution (GAM) and the Inverse Gaussian distribution (IG) we observe

a substantial equality of the performance of these approaches. In fact, as observed in

Remark 9.2.5, the GIG case includes the GAM and the IG as special cases. The Heston

model does not perform badly, but it is systematically beaten by the weighted average

price model, especially for what concerns the RMSE criterion.

APE RMSE ARPE

Heston 2.1905 0.5182 3.5480

WAPH-GAM 1.2878 0.2145 2.3781

WAPH-IG 1.1230 0.4167 2.5181

WAPH-GIG 1.3400 0.1104 1.0824

Table 9.1: Averages of the daily error measures APE, RMSE and ARPE for the di↵erent

pricing methods on 2010 S&P option price database.

In order to better analysed the models performance we estimate the implied Black

and Scholes volatility and for each trading days. Every trading day is associated with

the standard deviation of the implied volatility (��) and the results of the parameters

estimation are clustered considering di↵erent level standard deviation. In Table 9.5

are reported cluster average RMSE, results show that the GIG model error does not
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9.4 Estimation results

APE RMSE ARPE

Heston 4.5448 3.4457 0.0844

WAPH-GAM 3.9909 3.4239 0.1908

WAPH-IG 4.0201 3.1184 0.0923

WAPH-GIG 3.7336 2.9810 0.0700

Table 9.2: Averages of the daily error measures APE, RMSE and ARPE for the di↵erent

pricing methods on 2015 S&P option price database.

k ✓ � ⇢ v 0

Heston 0.0252 4.4944 0.4599 -0.6062 0.0024

k ✓ � ⇢ ↵ (shape) � (rate)

GAM 0.1178 0.9404 0.4567 -0.6057 0.0016 2.7953

k ✓ � ⇢ ↵ (shape) � (mean)

IG 0.1053 0.8843 0.5103 -0.6342 0.0023 0.0082

k ✓ � ⇢ a b (mean) p

GIG 0.0145 1.2084 0.4432 -0.6401 5.4502 0.0001 0.0027

Table 9.3: Averages of the daily estimated parameters under the considered pricing

methods for the 2010 S&P option price database.

depend on the standard deviation of the implied volatility and the conclusion that can

be drawn is that clusters with more variability are better described by GIG model.

A natural extension of the Heston model is to include jumps in the stock price process

and in the volatility process. Intuitively, it makes sense that jump in the stock price

process should trigger a correlated jump in the volatility process in that sudden, large

movements in the stock price would cause increased market anxiety around that stock.

In our formulation of the jump stochastic volatility model (SVJJ) we have the following

risk-neutral dynamics:

dSt = (r � �µJ)Stdt+ St
p
vtdW

1

t + JStdNt,

dvt = (✓ � vt)dt+ �
p
vt

⇣

⇢dW 1

t +
p

1� ⇢2dW 2

t

⌘

+ ZdNt.
(4.90)

Nt represents a Poisson process under the risk neutral measure, with jump intensity �.

The jump terms in the model are defined as follows:

Z ⇠ Exponential(µV )
(1 + J)Z ⇠ Log-normal(µS + ⇢JZ,�

2

S)
(4.91)

where

µJ =
eµS

+

�

2
S

2

1� ⇢JµV
� 1 (4.92)
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9.4 Estimation results

k ✓ � ⇢ v 0

Heston 6.5140 0.0919 0.4732 -0.9999 0.0471

k ✓ � ⇢ ↵ (shape) � (rate)

GAM 4.3786 0.0282 0.4770 -0.9999 0.0100 4.3888

k ✓ � ⇢ ↵ (shape) � (mean)

IG 0.1505 0.2313 0.3483 0.8742 0.0067 0.0124

k ✓ � ⇢ a b (mean) p

GIG 4.4033 0.0233 0.2754 -0.8743 2.7055 0.0675 101.0082

Table 9.4: Averages of the daily estimated parameters under the considered pricing

methods for the 2015 S&P option price database.

Heston WAPH-GIG

1.5% < ��  2.0% 3.9526 2.5608

2.0% < ��  2.5% 4.6239 2.1010

2.5% < ��  3.0% 4.1979 1.8574

3.0% < ��  3.5% 5.5774 3.1035

3.5% < ��  4.0% 6.4538 2.7909

4.0% < ��  4.5% 7.8989 3.0723

Table 9.5: Average RMSE for di↵erent standard deviation cluster.

In Table 9.6 are reported the estimated parameters of the WAPH-GIG model and the

SVJJ model. Table 9.7 shows that the WAPH-GIG and SVJJ provide same results.

This empirical analysis shows that our approach is quite promising and represents

k ✓ � ⇢ a b (mean) p

WAPH-GIG 2.9894 0.0242 0.3796 -0.8499 1.5416 0.0348 15.8841

k ✓ � ⇢ v0

SVJJ 4.9689 0.0352 0.5913 -0.9999 0.0580

� µS �S ⇢J µV

0.0254 -0.8516 1.4978 -0.0440 39.9852

Table 9.6: Pricing models estimated parameters on September 1, 2015 database.

APE RMSE ARPE

WAPH-GIG 2.5048 2.9857 0.0491

SVJJ 2.3049 3.0306 0.0452

Table 9.7: Error measures APE, RMSE and ARPE for the di↵erent pricing models on

September 1, 2015.
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9.5 Summary

an improvement over the Heston model, while retaining the same degree of analytical

tractability.

9.5 Summary

The model of [236] is a mathematical tool still widely used as a basis for the valuation of

financial derivatives. In this work, we have described a new method for the calibration

of the Heston model in order to improve the e↵ectiveness of such model. Our method

overcomes the problem of the non-observability of the initial volatility and it is inspired

by a previous work of [244] for the estimation of the historical probability density

function. We have formulated a generalization of this insight in a rigorous way in order

to reduce the estimation error of the parameters in the calibration of option prices.

Thus, we have established some theoretical results that allow to derive a new pricing

relation. For future research directions, we aim to investigate the theoretical foundation

of our approach with the purpose to prove that the weighted average option price can

be interpreted as a no-arbitrage price.
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10

Conclusion

Part I

The increase of the life expectancy and the increment of technology usage in the health-

care sector required an increase in resource consumption. Financing is a critical element

determining the quantity, distribution, and quality of health service. Funding for re-

current operating and log-term development costs for health services may come from

di↵erent primary sources:

1. Public source of financing

2. Private sources of financing

3. External financing.

Therefore it is possible to categorize the various types of healthcare systems along the

main characteristics of their financing dimension because one type of financing will

generally dominate a national system. Given the general finite resources allocated in

the health system and the endless demand, there is a need to e�ciently and e↵ectively

plan and manage all resources with particular emphasis on hospitals. Hospitals are the

key element of many health systems, they provide a wide kind of service to a large

number of patients. Hospitals are characterized by complex and variable dynamics,

therefore in order to optimize the resource allocation process a framework is applied

for healthcare planing and control that breaks down all functions of the hospital system.

The main reliable and valid proxies for measuring the consumption of hospital resources

are analysed:
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1. A new PH distribution is introduced to describe hospital length of stay distri-

bution

2. The single factor model is applied in order to describe the discharge rate and

the admission rate.

Furthermore in order to better evaluate the service provided, the quality approach is

implemented. The intents are mainly focused towards the identification of need through

measurements and indices suitable to assess the performance. The reduction of inter-

ventions, the increase of mechanical support, and the decrement of the average LoS

are some of evaluated indices. Also the control charts are used for on-line process

surveillance. This tool puts in evidence a time trend that could be explained by the

evolution of the department.

The analyses carried out draw attention to the optimization of resources in order to

improve the service provided. The aim of the hospital bed management is to allocate

beds to patients while taking into account capacity constraints. A stochastic dy-

namic programming approach allows the evaluation of the optimal bed allocation

policy. In this way the hospital manager could balance the cost of empty beds against

the cost of turning patients away, thus facilitating a good choice of bed provision in

order to have a low cost and a high access to service. The models allow to analyze

some aspects of biomedical resources consumption. Developing the approach based

on dynamic programming is possible to establish a methodology that supports the

decision-making process. Hence feasible extensions are:

• Consider a more generic model for the hospital discharge probability

• Use a cost function that take into account when a patient is rejected

• Modelling the emergency patients flow

In order to describe the variable cost associated to patient hospitalization a new ap-

proach is provided. Starting from the Real Option Approach the cost are described

and a phenomenological interpretation is given. In according to Nelson-Siegel model a

cost function is estimated and the result are compared with value obtained from option

approach.
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Part II

In addition to research on healthcare issues, other topics were investigated. Particu-

larly according to the Memorandum of Understanding between the Campus Bio-Medico

University and the Financial Guard, the Italian tax evasions phenomena and the Finan-

cial Guard law enforcement are analysed. A stochastic version of Lotka-Volterra

model is applied in order to describe the dynamic relation existing between the pre-

vention activities and the illegal behaviour. The proposed approach produces a good

fit of empirical distribution and provides also a phenomenological interpretation of the

analysed problem.

As part of a research project in cooperation with Enel a new stochastic volatility

model is proposed. In order to avoid the estimation of the initial volatility, a weighted

average formulation for the Heston stochastic volatility option price is presented. This

approach has been developed in the literature for the estimation of the distribution of

stock price changes (returns), showing an excellent agreement with real market data.

This method is extended to the calibration of option prices considering a large class of

probability distributions assumed for the initial volatility parameter. The estimation

error is shown to be less than the case of the simple pricing formula. Results are also

validated with a numerical comparison on observed call prices, between the proposed

calibration method and the classical approach.
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11

Appendix A

11.1 Probability Space, Random Variables

A probability space is a triple (⌦,F,P) where

• ⌦ is a sample space;

• F is a �-algebra of ⌦;

• P is the physical probability measure.

The simple space is the set of all possible outcome of an experiment. The �-algebra F

on ⌦ is a family F of subsets of ⌦ with the following properties:

1. ; 2 F

2. E 2 F ) Ec 2 F

3. A
1

, A2, ... 2 F ) A :=
S1

i=1

Ai 2 F

The pair (⌦;F) is called a measurable space. A probability measure P on a measurable

space (⌦;F) is a function P : F ! [0; 1] such that

1. 0  P(A)  1

2. P(⌦) = 1
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11.1 Probability Space, Random Variables

3. For any sequence of events A
1

,A
2

... that are mutually exclusive, that is, events

for which Ai
T

Aj = ; when i 6= j (where ; is the null set),

P
✓ 1
[

i=1

Ai

◆

=
1
X

i=1

P(Ai) (1.1)

If F contains all subsets of ⌦ the probability space is complete. The subsets F of⌦

which belong to F are called F �measurablesets. In a probability context these sets

are called events and we use the interpretation

P(F ) = the probability that the event F occurs (1.2)

In particular, if P(F ) = 1 we say that F occurs with probability 1, or almost surely.

Given any family U of subsets of ⌦ there is a smallest �-algebra HU containing U,

namely

HU =
\

{H;H �-algebra of⌦ , U ⇢ H} (1.3)

We call HU the �-algebra generated by U.

If U is the collection of all open subsets of a topological space ⌦ (e.g. ⌦= Rn ),

then B = HU is called the Borel �-algebra on ⌦ and the elements B 2 B are called

Borel sets. B contains all open sets, all closed sets, all countable unions of closed sets,

all countable intersections of such countable unions etc.

If (⌦,F,P) is a given probability space, then a function Y : ⌦ ! Rn is called F-

measurable if

Y �1(U) := {! 2 ⌦; Y (!) 2 U} 2 F (1.4)

for all open sets U 2 Rn, (or, equivalently, for all Borel sets U ⇢ Rn). If X : ⌦ ! Rn

is any function, then the �-algebra HX generated by X is the smallest �-algebra on⌦

containing all the sets

X�1(U); U ⇢ Rnopen (1.5)

It is not hard to show that

HX = {X�1(B); B 2 B} (1.6)

where B is the Borel �-algebra on Rn. Clearly, X will then be HX-measurable and

HX is the smallest �-algebra with this property. The following result is useful. It is a

special case of a result sometimes called the Doob-Dynkin lemma.
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11.1 Probability Space, Random Variables

Lemma 11.1.1. If X, Y : ⌦! Rn are two given functions, then Y is HX-measurable

if and only if there exists a Borel measurable function g : Rn ! Rn such that

Y = g(X) (1.7)

In the following we let (⌦,F,P) denote a given complete probability space. A

random variable X is an F-measurable function X : ⌦! Rn. Every random variable

induces a probability measure µX on (R)n, defined by

µX(B) = P(X�1(B)) (1.8)

µX is called the distribution of X. If
R

⌦

|X(!)|dP(!) < 1 then the number

E[X] :=

Z

⌦

X(!)dP(X) =

Z

Rn

xdµX(x) (1.9)

is called the expectation of X. More generally, if f : Rn ! R is Borel measurable and
R

⌦

|X(!)|dP(!) < 1 then we have

E[f(X)] :=

Z

⌦

f(X(!))dP(X) =

Z

Rn

f(x)dµX(x) (1.10)

Definition 11.1.2. A sequence {X
1

, X
2

, ...} of random variables is said to converge

in distribution, or converge weakly, or converge in law to a random variable X if

lim
n!1

Fn(x) = F (x) (1.11)

for every number x 2 R at which F is continuous. Here Fn and F are the cumulative

distribution functions of random variables Xn and X correspondingly. Convergence in

distribution may be denoted as Xn!dX

Definition 11.1.3. Let {Xn} be a sequence of random variables, and let X be a random

variables. Then {Xn} is said to converge in probability to X if for every ✏ > 0,

lim
n!1

P(|Xn �X| > ✏) = 0. (1.12)

We write Xn�!Pr to indicate convergence in probability. Thus, the Weak Law says

that 1

n

Pn
i=1

Xi converges in probability to µ, provided {Xi} is a sequence of i.i.d. ran-

dom variables with expectation µ.

Let X
1

, ..., Xn be a random sample of size n that is, a sequence of independent and

identically distributed random variables drawn from distributions of expected values
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11.1 Probability Space, Random Variables

given by µ and finite variances given by �2. Suppose we are interested in the sample

average

Sn :=
1

n

n
X

i=1

Xi (1.13)

of these random variables. By the law of large numbers, the sample averages converge

in probability and almost surely to the expected value µ as n tends to infinity. The

classical central limit theorem describes the size and the distributional form of the

stochastic fluctuations around the deterministic number µ during this convergence.

More precisely, it states that as n gets larger, the distribution of the di↵erence between

the sample average Sn and its limit µ, when blown up by the factor
p
n (that is

p
n(Sn � µ), approximates the normal distribution with mean 0 and variance �2. For

large enough n, the distribution of Sn is close to the normal distribution with mean µ

and variance 1

n2 . The usefulness of the theorem is that the distribution of
p
n(Sn � µ)

approaches normality regardless of the shape of the distribution of the individual Xi’s.

Formally, the theorem can be stated as follows

Theorem 11.1.4. Suppose {Xi}i 2 B is a sequence of i.i.d. random variables with

E[Xi] = µ and V[Xi] = �2 < 1. Then as n approaches infinity, the random variables
p
n(Sn � µ) converge in distribution to a normal N(0,�2):

p
n
⇣⇣ 1

n

n
X

i=1

Xi

⌘

� µ
⌘

d!N(0,�2) (1.14)

The mathematical model for independence is the following:

Definition 11.1.5. Two subsets A, B 2 F are called independent if

P(A \B) = P(A) · P(B) (1.15)

A collection A = {Hi; i 2 I} of families Hi of measurable sets is independent if

P(Hi1 \ · · · \Hi
k

) = P(Hi1) · · ·P(Hi
k

) (1.16)

for all choices of Hi1 2 Hi1 · · ·Hi
k

2 Hi
k

, with di↵erent indices i
1

, ..., ik. A collection

of random variables {Xi; i 2 I} is independent if the collection of generated �-algebras

HX
i

is independent.

If two random variables X,Y : ⌦! R are independent then

E[XY ] = E[X]E[X] (1.17)

provided that E[|X|] < 1 and E[|Y |] < 1.
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11.1 Probability Space, Random Variables

Definition 11.1.6. Let (⌦,F,P) a probability space, then L2(⌦,F,P) is the space of

random variable X : ( ⌦,F) ! R such that

E[X2] < +1 (1.18)

Definition 11.1.7. A stochastic process is a parametrized collection of random vari-

ables

{Xt}t2T (1.19)

defined on a probability space (⌦,F,P) and assuming values in Rn.

The parameter space T is usually the haline [0,1), but it may also be an interval

[a, b], the non-negative integers and even subsets of Rn for n � 1. Note that for each

t 2 T xed we have a random variable

! ! Xt(!); ! 2 ⌦. (1.20)

On the other hand, fixing ! 2 ⌦ we can consider the function

t ! Xt(!); t 2 T. (1.21)

which is called a path of Xt.

It may be useful for the intuition to think of t as time and each ! as an individual

particle or experiment. With this picture Xt(!) would represent the position (or result)

at time t of the particle (experiment) !. Sometimes it is convenient to write X(t,! )

instead of Xt(!). Thus we may also regard the process as a function of two variables

(t,! ) ! X(t,! ) (1.22)

from T⇥⌦ into Rn . This is often a natural point of view in stochastic analysis, because

(as we shall see) there it is crucial to have X(t,! ) jointly measurable in (t,! ).

Finally we note that we may identify each ! with the function t ! Xt(!) from T into

Rn. Thus we may regard ⌦ as a subset of the space ⌦̃ = (Rn)T of all functions from

T into Rn. Then the �-algebra F will contain the �-algebra B generated by sets of the

form

{!; !(t
1

) 2 F
1

, · · · ,!(tk) 2 Fk}, Fi ⇢ RnBorel sets (1.23)

(B is the same as the Borel �-algebra on ⌦̃ if T = [0,1) and ⌦̃ is given the product

topology). Therefore one may also adopt the point of view that a stochastic process is

235

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



11.1 Probability Space, Random Variables

a probability measure P on the measurable space ((Rn)T ,B). The (finite dimensional)

distributions of the process X = {Xt}t2T are the measures µt1,...t
k

defined on Rnk, k =

1, 2, ... by

µt1,...t
k

(F
1

⇥ · · ·⇥ Fk) = P[Xt1 2 F
1

, · · · , Xt
k

2 Fk] ti 2 T. (1.24)

Here F
1

, · · · , Fk denote Borel sets in Rn.

The family of all finite-dimensional distributions determine many (but not all) impor-

tant properties of the process X.

Conversely, given a family ⌫t1,...,t
k

; k 2 N, ti 2 T of probability measures on Rnk it is

important to be able to construct a stochastic process Y = {Yt}t2T having ⌫t1,...,t
k

as

its finite-dimensional distributions. One of Kolmogorovs famous theorems states that

this can be done provided ⌫t1,...,t
k

satisfies two natural consistency conditions:

Theorem 11.1.8 (Kolmogorovs extension theorem). For all t
1

, ..., tk 2 T, k 2 N let

⌫t1,...,t
k

be the probability measures on Rnk such that

⌫t
�(1),...,t�(k)

(F
1

⇥ · · ·⇥ Fk) = ⌫t1,...,t
k

(F��1
(1)

⇥ · · ·⇥ F��1
(k)) (1.25)

for all permutations � on {1, 2, ..., k} and

⌫t1,...,t
k

(F
1

⇥ · · ·⇥ Fk) = ⌫t1,...,t
k

,t
k+1,...,tk+m

(F
1

⇥ · · ·⇥ Fk ⇥ Rn ⇥ · · ·⇥ Rn) (1.26)

for all m 2 N where the set on the right hand side has a total of k +m factors.

Then there exists a probability space (⌦,F,P)and a stochastic process {Xt} on ⌦, Xt :

⌦! Rn, such that

⌫t1,...,t
k

(F
1

⇥ · · ·⇥ Fk) = P[Xt1 2 F
1

, · · · , Xt
k

2 Fk], (1.27)

for all ti 2 T, n 2 N and all Borel sets Fi.

11.1.1 Brownian Motion

In 1828 the Scottish botanist Robert Brown observed that pollen grains suspended in

liquid performed an irregular motion. The motion was later explained by the random

collisions with the molecules of the liquid. To describe the motion mathematically it is

natural to use the concept of a stochastic process Bt(!), interpreted as the position at

time t of the pollen grain !. We will generalize slightly and consider an n-dimensional

analog.
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11.1 Probability Space, Random Variables

To construct {Bt}t0 it su�ces, by the Kolmogorov extension theorem, to specify a

family {⌫t1,...,t
k

} of probability measures satisfying 1.25 and 1.26. These measures will

be chosen so that they agree with our observations of the pollen grain behaviour:

Fix x 2 Rn and define

p(t, x, y) = (2⇡t)
n

2 · e
|x�y|2

2t for y 2 Rn t > 0. (1.28)

If 0  t
1

 t
2

 · · · tk define a measure ⌫t1,...,t
k

on Rnk by

⌫t1,...,t
k

(F
1

⇥ · · ·⇥ Fk) =
Z

F1⇥···⇥F
k

p(t
1

, x, x
1

)p(t
2

� t
1

, x
1

, x
2

) · · · p(tk � tk�1

, xk�1

, xk)dx1 · · · dxk (1.29)

where we use the notation dy = dy
1

· · · dyk for Lebesgue measure and the convention

that p(0, x, y)dy = �x(y), the unit point mass at x. Extend this definition to all finite

sequences of ti’s by using 1.25. Since
R

Rn

p(t, x, y)dy = 1 for all t � 0, 1.26 holds, so by

Kolmogorovs theorem there exists a probability space (⌦,F,P) and a stochastic process

{Bt}t0 on ⌦ such that the nite-dimensional distributions of Bt are given by 1.29, i.e.

Px(Bt1 2 F
1

, · · · , Bt
k

2 Fk) =
Z

F1⇥···⇥F
k

p(t
1

, x, x
1

)p(t
2

� t
1

, x
1

, x
2

) · · · p(tk � tk�1

, xk�1

, xk)dx1 · · · dxk (1.30)

Definition 11.1.9. Such a process is called (a version of) Brownian motion starting

at x (observe that Px(B
0

= x) = 1).

The Brownian motion thus defined is not unique, i.e. there exist several quadruples

(Bt,⌦,F,P) such that 1.30 holds. However, for our purposes this is not important,

we may simply choose any version to work with. As we shall soon see, the paths

of a Brownian motion are (or, more correctly, can be chosen to be) continuous, a.s.

Therefore we may identify (a.a.) ! 2 ⌦ with a continuous function t ! Bt(!) from

[0,1) into Rn. Thus we may adopt the point of view that Brownian motion is just

the space C([0,1),Rn) equipped with certain probability measures Px (given by 1.29

and 1.30 above).This version is called the canonical Brownian motion. Besides having

the advantage of being intuitive, this point of view is useful for the further analysis of

measures on C([0,1),Rn), since this space is Polish (i.e. a complete separable metric

space). We state some basic properties of Brownian motion:

237

Tesi di dottorato in Ingegneria biomedica, di Luca Pontecorvi, 
discussa presso l’Università Campus Bio-Medico di Roma in data 03/04/2017. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



11.1 Probability Space, Random Variables

1. Bt is a Gaussian process, i.e. for all 0  t
1

 · · ·  tk the random variable

Z = (Bt1 , · · · , Bt
k

) 2 Rnk has a (multi)normal distribution. This means that there

exists a vector M 2 Rnk and a non-negative definite matrix C = [cjm] 2 Rnk⇥nk

(the set of all nk ⇥ nk-matrices with real entries) such that

Ex



exp

✓

i

nk
X

j=1

ujZj

◆�

= exp

✓

�1

2

X

j,m

ujcjmum + i
X

j

ujMj

◆

(1.31)

for all u = (u
1

, ..., unk) 2 Rnk , where i =
p
�1 is the imaginary unit and Ex

denotes expectation with respect to mathbbP x. Moreover, if 1.31 holds then

M = Ex[Z] is the mean value of Z (1.32)

and

cjm = Ex[(Zj �Mj)(Zm �Mm)] is the covariance matrix of Z. (1.33)

To see that 1.31 holds for Z = (Bt1 , ..., Btk) we calculate its left hand side explic-

itly by using 1.30 and obtain 1.31 with

M = Ex[Z] = (x, x, ..., x) 2 Rnk (1.34)

and

A =

2

6

6

6

4

t
1

In t
1

In · · · t
1

In
t
1

In t
2

In · · · t
2

In
...

...
...

t
1

In t
2

In · · · tkIn

3

7

7

7

5

. (1.35)

Hence

Ex[Bt] = x for all t � 0 (1.36)

and

Ex[(Bt � x)2] = nt

Ex[(Bt � x)(Bs � x)] = nmin(s, t). (1.37)

Moreover

Ex[(Bt �Bs)
2] = n(t� s) if t � s, (1.38)
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11.1 Probability Space, Random Variables

since

Ex[(Bt �Bs)
2] = Ex[(Bt � x)2 � 2(Bt � x)(Bs � x) + (Bs � x)2]

= n(t� 2s+ s) = n(t� s), when t � s
(1.39)

2. Bt has independent increments, i.e.

Bt1 , Bt2 �Bt1 , ..., Bt
k

�Bt
k�1 (1.40)

are independent for all 0  t
1

 · · ·  tk. To prove this we use the fact that

normal random variables are independent if they are uncorrelated. So it is enough

to prove that

Ex[(Bt
i

�Bt
i�1)(Bt

j

�Bt
j�1)] = 0 when ti < tj (1.41)

which follows from the form of C:

Ex[Bt
i

Bt
j

�Bt
i

Bt
j�1 �Bt

i�1Bt
j

+Bt
i�1Bt

j�1 ] =

n(ti � ti�1

� ti + ti�1

) = 0. (1.42)

From this we deduce that BsBt is independent of Ft if s > t.

3. Brownian motion has a continuous version. To prove that we need the following

important concept:

Definition 11.1.10. Suppose that {Xt} and {Yt} are stochastic processes on

(⌦,F,P). Then we say that {Xt} is a version of (or a modification of) {Yt} if

P({!; Xt(!) = Yt(!)}) = 1 for all t. (1.43)

Note that if {Xt} is a version of {Yt} , then {Xt} and{Yt} have the same finite-

dimensional distributions. Thus from the point of view that a stochastic process

is a probability law on (Rn)[0,1) two such processes are the same, but nevertheless

their path properties may be di↵erent.

The continuity question of Brownian motion can be answered by using another

famous theorem of Kolmogorov:
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11.1 Probability Space, Random Variables

Theorem 11.1.11 (Kolmogorovs continuity theorem). Suppose that the process

X = {Xt}t�0

satisfies the following condition: For all T > 0 there exist positive

constants ↵,�, D such that

E[|Xt �Xs|↵]  D · |t� s|1+� ; 0  s t  T. (1.44)

Then there exists a continuous version of X.

For Brownian motion Bt it is not hard to prove that

E[|Bt �Bs|4] = n(n+ 2)|t� s|2. (1.45)

So Brownian motion satises Kolmogorovs condition 1.44 with ↵ = 4, D = n(n+2)

and � = 1, and therefore it has a continuous version. From now on we will assume

that Bt is such a continuous version.

Finally we note that if Bt = (B(1)

t , ..., B
(n)
t ) is n-dimensional Brownian motion, then

the 1-dimensional processes {B(j)
t }t�0

, 1  j  n are independent.

Definition 11.1.12. Denote ⇤p
B([↵,� ]) the equivalence class space of real process

X = ( ⌦,F, (Ft)↵t� , (Xt)↵t� ,P) progressively measurable such that

P
⇣

Z �

↵
|Xs|pds < +1

⌘

= 1. (1.46)

Definition 11.1.13. Mp
B([↵,� ]) is the equivalence class space of real process progres-

sively measurable such that

E


Z �

↵
|Xs|ds

�

< +1 (1.47)

11.1.2 Exchangeability

In probability theory, the random variables X
1

, ..., XN are said to be exchangeable

(or permutable or symmetric) if their joint distribution F (x
1

, ..., xN ) is symmetric; that

is, if F is invariant under permutation of its arguments, so that

F (z
1

, ..., zN ) = F (x
1

, ...xN ) (1.48)

whenever z
1

, ..., zN is a permutation of x
1

, ..., xN [260] [261].

Exchangeable random variables are identically distributed, and iid variables are ex-

changeable. Now suppose that X
1

, ..., XN are iid given an unknown parameter ✓ that
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11.2 Ito Integrals

indexes their joint distribution. Such variables will not be unconditionally independent

when ✓ is a random variable, but will be exchangeable. Consider, for example, the case

in which X
1

, ..., XN have a joint density. The unconditional density of X
1

, ..., XN will

be

f(x
1

, ..., xN ) =

Z

✓
f(x

1

, ..., xN |✓)dF (✓) =

Z

✓

Y

i

f(xi|✓)dF (✓) (1.49)

Exchangeability of X
1

, ..., XN follows from the identity of the marginal densities in the

product. However, given that these densities depend on ✓, the integral and product

cannot be interchanged, so that f(x
1

, ..., xN ) 6=
Q

i f(xi) We thus have that a mixture

of iid sequences is an exchangeable sequence, but not iid except in trivial cases.

11.2 Ito Integrals

11.2.1 Construction of the Ito Integral

We now turn to the question of finding a reasonable mathematical interpretation of the

noise term in the equation 2.50

dX

dt
= b(t,Xt) + �(t,Xt) · noise (2.50)

where b and � are some given functions. Let us first concentrate on the case when

the noise is 1-dimensional. It is reasonable to look for some stochastic process Wt to

represent the noise term, so that

dX

dt
= b(t,Xt) + �(t,Xt) ·Wt (2.51)

Based on many situations, for example in engineering, one is led to assume that Wt

has, at least approximately, these properties:

1. t
1

6= t
2

) Wt1 and Wt2 are independent.

2. {Wt} is stationary.

3. E[Wt] = 0 for all t.

However, it turns out there does not exist any reasonable stochastic process satisfying

(1.) and (2.): Such a Wt cannot have continuous paths. If we require E[Wt2 ] = 1

then the function (t,! ) ! Wt(!) cannot even be measurable, with respect to the �-

algebra B⇥ F, where B is the Borel �-algebra on [0,1). Nevertheless it is possible to
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11.2 Ito Integrals

represent Wt as a generalized stochastic process called the white noise process. That

the process is generalized means that it can be constructed as a probability measure

on the space S0 of tempered distributions on [0,1), and not as a probability measure

on the much smaller space R[0,1) , like an ordinary process can. We will avoid this

kind of construction and rather try to rewrite equation 2.51 in a form that suggests a

replacement of Wt by a proper stochastic process. Let 0 = t
0

< t
1

< · · · < tm = t and

consider a discrete version of 2.51:

Xk+1

�Xk = b(tk, Xk)�tk + �(tk, Xk)Wk�tk (2.52)

where

Xj = X(tj), Wk = Wt
k

, �tk = tk+1

� tk. (2.53)

We abandon the Wk-notation and replace Wk�tk by� Vk = Vt
k+1 �Vt

k

, where {Vt}t�0

is some suitable stochastic process. The assumptions (1.), (2.) and (3.) on Wt suggest

that Vt should have stationary independent increments with mean 0. It turns out that

the only such process with continuous paths is the Brownian motion Bt. Thus we put

Vt = Bt and obtain from 2.52

Xk = X
0

+
k�1

X

j=0

b(tj , Xj)�tj +
k�1

X

j=0

�(tj , Xj)�Bj . (2.54)

It possible to prove that the limit of the right hand side of 2.54 exists when� tj ! 0.

Then by applying the usual integration notation we should obtain

Xt = X
0

+

Z t

0

b(ts, Xs)ds+

Z t

0

�(ts, Xs)dBs (2.55)

and we would adopt as a convention that 2.51 really means that Xt = Xt(!) is a

stochastic process satisfying 2.55. Suppose 0  S < T and f(t,! ) is given so we want

to define
Z T

S
f(t,! )dBt(!) (2.56)

Definition 11.2.1. Let V = V(S, T ) be the class of functions

f(t,! ) : [0,1)⇥ ⌦! R (2.57)

such that

(i) (t,! ) ! f(t,! ) is B⇥F-measurable, where B denotes the Borel �-algebra on [0,1).
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11.2 Ito Integrals

(ii) f(t,! ) is Ft-adapted.

(iii) E[
R T
S f(t,! )dt] < 1.

Definition 11.2.2 (The Ito integral). Let f 2 V(S, T ). Then the Ito integral of f

(from S to T ) is defined by

Z T

S
f(t,! )dBt(!) = lim

n!1

Z T

S
�n(t,! )dBt(!) (2.58)

limit in L2(P ), where {�n} is a sequence of elementary functions such that

E
h

Z T

S
f(t,! )� �n(t,! )dt

i

! 0 as n ! 1. (2.59)

It can be proven that such a sequence {�n} satisfying 2.59 exists. Moreover, the

limit in 2.58 exists and does not depend on the actual choice of {�n}, as long as 2.59

holds [50].

11.2.2 Some properties of the Ito integral

First we observe the following:

Theorem 11.2.3. Let f, g 2 V(0, T ) and let 0  S < U < T . Then

(i)
R T
S fdBt =

R U
S fdBt +

R T
U fdBt for a.a. !

(ii)
R T
S (cf + g)dBt = c ·

R T
S fdBt +

R T
S gdBt c constant for a.a. !

(iii) E[
R T
S fdBt] = 0

(iv)
R T
S fdBt is Ft-measurable.

An important property of the Ito integral is that it is a martingale.

Definition 11.2.4 (Martingale). A filtration (on (⌦,F)) is a family M = {Mt}t�0

of �-algebras Mt ⇢ F such that

0  s < t ) Ms ⇢ Mt (2.60)

An n-dimensional stochastic process {Mt}t�0

on (⌦,F,P) is called a martingale with

respect to a filtration {Mt}t�0

and with respect to P if

(i) {Mt} is {Mt}-measurable for all t
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11.3 The Ito Formula

(ii) E[|Mt|] < 1 for all t

(iii) E[Ms|Mt] = Mt for all s � t

Here the expectation in (ii) and the conditional expectation in (iii) is taken with respect

to P = P0 .

Let f(t,! ) 2 V(0, T ) for all T . Then

Mt(!) =

Z t

0

f(s,! )dBs (2.61)

is a martingale with respect to a filtration Ft and

P
h

sup
0tT

|Mt| � �
i

 1

�2
· E


Z T

0

f(s,! )2ds

�

; �, T > 0 (2.62)

for demonstration see [262].

11.3 The Ito Formula

Definition 11.3.1 (Ito Process). Let Bt be 1-dimensional Brownian motion on

(⌦,F,P). A (1-dimensional) Ito process (or stochastic integral) is a stochastic pro-

cess Xt on (⌦,F,P) of the form

Xt = X
0

+

Z t

0

u(s,! )ds+

Z t

0

v(s,! )dBs (3.63)

where v 2 WH so that

P


Z t

0

v(s,! )2ds < 1
�

= 1 for all t � 0 (3.64)

we also assume that u is Ht-adapted (where Ht is increasing family of �-algebras such

that Bt is a martingale with respect to Ht) and

P


Z t

0

|u(s,! )|ds < 1
�

= 1 for all t � 0 (3.65)

If Xt is an Ito process of the form 3.63 the equation 3.63 is sometimes written in

the shorter di↵erential form

dXt = udt+ vdBt (3.66)
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11.3 The Ito Formula

Theorem 11.3.2 (The 1-dimensional Ito formula). Let Xt be an Ito process given

by

dXt = udt+ vdBt. (3.67)

Let g(t, x) 2 C2([0,1)⇥ R) (i.e. g is twice continuously di↵erentiable on [0,1)⇥ R).

Then

Yt = g(t,Xt) (3.68)

is again an Ito process, and

dYt =
@g

@t
(t,Xt)dt+

@g

@x
(t,Xt)dXt +

1

2

@2g

@x2
(t,Xt)(dXt)

2 (3.69)

where (dXt)2 = (dXt)(dXt) is computed according to the rules

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt (3.70)

11.3.1 The Multi-dimensional Ito Formula

We now turn to the situation in higher dimensions. LetB(t,! ) = (B
1

(t,! ), ..., Bm(t,! ))

denote m-dimensional Brownian motion. If each of the processes ui(t,! ) and vij(t,! )

is an Ito process (1  i  n, 1  j  m) then we can form the following n Ito processes

8

>

<

>

:

dX
1

= u
1

dt+ v
11

dB
1

+ · · ·+ v
1mdBm

...
dXn = undt+ vn1dB1

+ · · ·+ vnmdBm

(3.71)

Or, in matrix notation simply

dXt = udt+ vdBt, (3.72)

where

Xt =

0

B

@

X
1

(t)
...

Xn(t)

1

C

A

, u =

0

B

@

u
1

...
un

1

C

A

, v =

0

B

@

u
11

· · · u
1m

...
...

un1 · · · unm

1

C

A

, dB(t) =

0

B

@

dB
1

(t)
...

dBn(t)

1

C

A

(3.73)

Such a process X(t) is called an n-dimensional Ito process (or just an Ito process).

Theorem 11.3.3 (The general Ito formula). Let

dX(t) = udt+ vdB(t) (3.74)
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11.3 The Ito Formula

be an n-dimensional Ito process as above. Let g(t, x) = (g
1

(t, x), ..., gp(t, x)) be a C2

map from [0,1)⇥ Rn into Rp . Then the process

Y (t,! ) = g(t,X(t)) (3.75)

is again an Ito process, whose component number k, Yk , is given by

dYk =
@gk
@t

(t,X)dt+
X

i

@gk
@xi

(t,X)dXi +
1

2

X

i,j

@2gk
@xi@xj

(t,X)dXidXj (3.76)
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12

Appendix B

In the following section are provided some general results of system (2.43)-(2.44) of

Chapter 8.

Let µ(x) =
�

µi(x)
�

1in
and �(x) =

�

�ij(x)
�

1in,1jm
be measurable functions de-

fined on D ✓ Rn with values on Rn and Rn timesm. Let also Wt be a m�dimensional

Winer process defined on (⌦,F, (Ft)t�0

,P). We consider the following system of di↵er-

ential stochastic equations

dXt = µ(Xt)dt+ �(Xt)dWt. (0.1)

The following Kolmogorov operator is associated with the system

Lg(x) =
n
X

i=1

@x
i

g(x)µi(x) +
1

2

n
X

i,j=1

qij(x)@x
i

,x
j

g(x)

=hrg(x), µ(x)i+ 1

2
Tr
⇥

q(x)r2g(x)
⇤

, x 2 Rn

(0.2)

where g : D ✓ Rn ! R, with g 2 C2(D) e q(x) = �(x)�T (x) and @x
i

is the partial

derivative with respect to xi.

Definition 12.0.4. Let the Lyapunov generalized function of (0.1) be the function

V : D ✓ Rn ! R that satisfies the following condition:

(i) V (x) � 0, 8 x 2 D, e {x 2 D : V (x) = 0} is limited.

(ii) 9 ⇣ > 0 : LV (x)  ⇣
�

1 + V (x)
�

, 8 x 2 D.

(iii) lim
x!b

x

V (x) = +1, 8 bx 2 @D, e limkxk!+1 V (x) = +1, 8 x 2 D
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Where @D is the frontier of D.

Theorem 12.0.5. Consider the di↵erential stochastic equations system (2.43). Let

D = [0,+1]⇥ [0,+1] and (x̃, ỹ) = ( u
cq ,

r
q �

ru
cq2

) the equilibrium point of the determin-

istic model associated to (2.43) (where " = ⌘ = 0).

The function V (x, y) : D ⇢ R2 ! R

V (x, y) = V
1

(x) + kV
2

(y) (0.3)

where k 2 (0, 1c ] and

V
1

(x) = x� x̃� x̃ log
x

x̃

V
2

(y) = y � ỹ � ỹ log
y

ỹ

is a Lyapunov generalized function of the system (2.43).

Proof. In order to prove that (0.3) is a Lyapunov generalized function of the system

(2.43), the properties of Definition 12.0.4 must hold. Given that (x̃, ỹ) is the absolute

minimum in which V (x̃, ỹ) = 0, therefore (i) e la (iii) are verified.

Property (ii) has to be verified. Given that

rV (x, y) =

 

1� x̃
x

k
�

1� ỹ
y

�

!

, r2V (x, y) =

 

x̃
x2 0

0 k ỹ
y2

!

,

µ(x, y) =

 

rx(1� x)� qxy

cqxy � uy

!

,

�(x, y) =

 

"x⇢ "x
p

1� ⇢2

⌘y 0

!

,

q(x, y) = �(x, y)�T (x, y) =

 

"2x2 "⌘⇢xy

"⌘⇢xy⌘ 2y2

!

,

using the Kolmogorov operator (0.2) on V

LV (x, y) = rx� rx̃+ "2x̃
2

� rx2 + k⌘2ỹ
2

� kuy+

+kuỹ � qxy + qx̃y + rxx̃+ ckqxy � ckqxỹ.
(0.4)

Increasing equation 0.4)

LV (x, y)  rx+
"2x̃

2
+

k⌘2ỹ

2
+ kuỹ + qx̃y + rxx̃+ qxy(ck � 1)

 xr(1 + x̃) + yqx̃+
"2x̃

2
+

k⌘2ỹ

2
+ kuỹ

= Ax+By + C,

(0.5)
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where

A = r(1 + x̃), B = qx̃, C =
"2x̃

2
+

k⌘2ỹ

2
+ kuỹ.

Then we need that the following relations hold:

9A
1

> 0, C
1

> 0 : x  A
1

V
1

(x) + C
1

, 8 x > 0, (0.6)

9B
2

> 0, C
2

> 0 : x  B
2

V
2

(y) + C
2

, 8 y > 0, (0.7)

where A
1

, C
1

, B
2

e C
2

have to be defined.

Choosing f(x) = A
1

V
1

(x)� x, we find the constants imposing that

f(x) = A
1

✓

x� x̃� x̃ log
x

x̃

◆

� x � �C1. (0.8)

Therefore we find the minimum x̄ setting the value of the derivative of f(x) equal to

0:

ḟ(x) =
A

1

�

x� x̃)� x

x
= 0 ) x̄ =

x̃A
1

A
1

� 1
. (0.9)

Replacing x̄ in (0.8)

f(x) = A
1

✓

x̃A
1

A
1

� 1
� x̃� x̃ log

A
1

A
1

� 1

◆

� x̃A
1

A
1

� 1
� �C1, (0.10)

hence choosing

C
1

= x̃A
1

log
A

1

A
1

� 1
, A

1

> 1 (0.11)

it is satisfied equation (0.6).

Setting

A
1

= 2, C
1

= 2x̃ log 2.

In the same way constants B
2

e C
2

are found equal to

B
2

= 2, C
2

= 2ỹ log 2.

Considering (0.6) and (0.7), equation (0.5) becomes:

LV (x, y)  Ax+By + C

 A
�

A
1

V
1

(x) + C
1

�

+B
�

B
2

V
2

(y) + C
2

�

+ C

= ĀV
1

(x) + B̄V
2

(y) + C̄

 ⇣
�

1 + V
1

(x) + kV
2

(y)
| {z }

V (x,y)

�

,

(0.12)
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and choosing

Ā = AA
1

, B̄ = BB
2

,

C̄ = AC
1

+BC
2

+ C,

⇣ = max
n

Ā,
B̄

k
, C̄
o

.

(0.13)

Hence property (ii) of Definition (12.0.4) and Theorem (12.0.5) are proved.

Given the generalized Lyapunov function, it is proved the existence and uniqueness

of the solution of system (2.43). Recalling the following relation

Lemma 12.0.6. [50] (Gronwall). Let u, v be real non-negative function defined on

[↵,� ], where u is integrable and v measurable and limited; let c 2 R+ and assuming

that

v(t)  c+

Z t

↵
u(s)v(s)ds, 8 t 2 [↵,� ]. (0.14)

Then, 8 t 2 [↵,� ], we have:

v(t)  c " x
R
t

↵

u(s)ds. (0.15)

Let T > 0, µ : D ⇢ Rn ! Rn, � : D ⇢ Rn ! Rn⇥m continuous function. Assuming

the following hypothesis:

(a) (� in D is globally Lipschitz) 9 L� > 0 such that 8 x
1

,x
2

2 D, then:

k�(x
1

)� �(x
2

)k  L� kx1

� x
2

k .

(b) (µ is locally Lipschitz) 8 D0 ⇢ D limited, exists L0
µ > 0 such that 8 x

1

,x
2

2 D0,

then:

kµ(x
1

)� µ(x
2

)k  L0
µ kx1

� x
2

k .

(c) Exists a generalized Lyapunov function of system (0.1) associated with µ e �.

Theorem 12.0.7. Let x
0

2 D an W standard m-dimensional Wiener process. Accord-

ing to hypothesis (a), (b), (c) the di↵erential stochastic equation
8

<

:

dXt = µ(Xt)dt+ �(Xt)dWt, 0  t  T

X
0

= x
0

(0.16)

has unique solution Xt(!) defined on (⌦,F,P), adapted to the filtration {Ft}t2[0,T ]

, such

that

P(Xt(!) 2 D, 8 t 2 [0, T ]) = 1 (0.17)
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Remark 12.0.8. With unique solution we mean that if X(1)

t , X
(2)

t satisfy (0.16), then

P(X(1)

t = X
(2)

t , 8 t 2 [0, T ]) = 1. (0.18)

Corollary 12.0.9. The solution of system (2.43) exists and is unique with strictly

positive trajectories for all time.

Proof. Let D = [0,+1]⇥ [0,+1]. All the hypothesis of Theorem 12.0.7 are satisfied:

the coe�cients µ and � satisfies hypothesis (a) and (b), and Theorem 12.0.4 guarantees

the existence of the generalized Lyapunov function and therefore also (c) is satisfied.

Proof. (Theorem 12.0.7)

Assuming that X
(1)

t and X
(2)

t satisfies the system of di↵erential stochastic equation

(0.16) and satisfies also (0.18). For all z � 0, defined the set

Dz = {x 2 D : V (x)  z}. (0.19)

According to Definition (12.0.4) of V , Dz is limited set.

In such limited set, according to hypothesis (b), µ has a Lipschitz constant called

Lµ(z).

Given that V � 0, we set

zt = max
n

V
�

X
(1)

t

�

, V
�

X
(2)

t

�

o

. (0.20)

Since V (X(i)
t )  zt, with i = 1, 2, process X(1) e X(2) take values in the limited set Dz

where µ is Lipschitz. We introduce the process

�t = e�
R
t

0 ⇠sds
�

�

�

X
(1)

t �X
(2)

t

�

�

�

2

, (0.21)

where

⇠t = L� + 2Lµ(zt). (0.22)

⇠t is a positive process adapted to the filtration {Ft}t2[0,T ]

, in fact

Lµ(z) = sup

⇢

kµ(x)� µ(x0)k
kx� x0k : x,x0 2 Dz,x 6= x0

�

(0.23)

is a measurable function of z, X(1)

t and X
(2)

t are Ft-measurable and V is continuous.

⇠s weights squared the norm and e�
R
t

0 ⇠sds > 0, proving that, for all t, E[�t] = 0, we

prove that the solution is unique, in fact given that the functions are measurable

P

 

\

t

{! 2 ⌦ : X(1)

t (!) = X
(2)

t (!)}
!

= 1.
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Considering the stochastic di↵erential� t:

d�t = d

✓

e�
R
t

0 ⇠sds
�

�

�

X
(1)

t �X
(2)

t

�

�

�

2

◆

= d

✓

�

�

�

X
(1)

t �X
(2)

t

�

�

�

2

◆

e�
R
t

0 ⇠sds � ⇠te
�

R
t

0 ⇠sds
�

�

�

X
(1)

t �X
(2)

t

�

�

�

2

dt.

(0.24)

Set

f
�

X
(1)

t , X
(2)

t

�

=
�

�

�

X
(1)

t �X
(2)

t

�

�

�

2

,

then

rf = 2

 

X
(1)

t �X
(2)

t

�
⇣

X
(1)

t �X
(2)

t

⌘

!

2 R2n, r2f = 2

 

In �In

�In In

!

2 R2n⇥2n.

Considering the aggregated di↵erential stochastic equation

d

 

X
(1)

t

X
(2)

t

!

= µ̄
�

X
(1)

t , X
(2)

t

�

dt+ �̄
�

X
(1)

t , X
(2)

t

�

dWt, (0.25)

where

µ̄
�

X
(1)

t , X
(2)

t

�

=

"

µ
�

X
(1)

t

�

µ
�

X
(2)

t

�

#

2 R2n, �̄
�

X
(1)

t , X
(2)

t

�

=

"

�
�

X
(1)

t

�

�
�

X
(2)

t

�

#

2 R2n⇥2n,

Furthermore,

1

2
�̄Tr2f �̄ =

h

�
�

X
(1)

t

�

,�
�

X
(2)

t

�

i

"

In �In

�In In

#"

�
�

X
(1)

t

�

�
�

X
(2)

t

�

#

=
⇣

�
�

X
(1)

t

�

� �
�

X
(2)

t

�

⌘T ⇣

�
�

X
(1)

t

�

� �
�

X
(2)

t

�

⌘

.

(0.26)

Using (0.26), we evaluate the stochastic di↵erential Yt =
�

�

�

X
(1)

t �X
(2)

t

�

�

�

2

and applying

the Ito’s formula:

dYt =

⇢

2h
⇣

X
(1)

t �X
(2)

t

⌘

,
⇣

µ
�

X
(1)

t

�

� µ
�

X
(2)

t

�

⌘

i+

+ Tr



⇣

�
�

X
(1)

t

�

� �
�

X
(2)

t

�

⌘T ⇣

�
�

X
(1)

t

�

� �
�

X
(2)

t

�

⌘

��

dt+

+ 2
⇣

X
(1)

t �X
(2)

t

⌘T ⇣

�
�

X
(1)

t

�

� �
�

X
(2)

t

�

⌘

dWt.

(0.27)
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By placing (0.27) in (0.24) and considering the expected value� t, we have:

E
h

e�
R
t

0 ⇠sds Yt

i

=

Z t

0

E

"

e�
R
s

0 ⇠rdr

✓

�⇠sYs + 2h
⇣

X(1)

s �X(2)

s

⌘

,
⇣

µ
�

X(1)

s

�

� µ
�

X(2)

s

�

⌘

i+

+ Tr



⇣

�
�

X(1)

s

�

� �
�

X(2)

s

�

⌘T⇣

�
�

X(1)

s

�

� �
�

X(2)

s

�

⌘

�◆

#

ds,

(0.28)

using the following relation for the stochastic integral

E


Z t

0

e�
R
t

0 ⇠sds
⇣

X(1)

s �X(2)

s

⌘T ⇣

�
�

X(1)

s

�

� �
�

X(2)

s

�

⌘

dWs

�

= 0.

From hypothesis (a), the following inequality holds

Tr



⇣

�
�

X(1)

s

�

� �
�

X(2)

s

�

⌘T⇣

�
�

X(1)

s

�

� �
�

X(2)

s

�

⌘

�

 L�

�

�

�

X(1)

s �X(2)

s

�

�

�

2

= L�Ys,

from which we can increase (0.28), obtaining

E
h

e�
R
t

0 ⇠sds Yt

i




Z t

0

E

"

e�
R
s

0 ⇠rdr

✓

Ys
�

L� � ⇠s
�

+ 2h
⇣

X(1)

s �X(2)

s

⌘

,
⇣

µ
�

X(1)

s

�

� µ
�

X(2)

s

�

⌘

i
◆

#

ds.

(0.29)

Considering Dz, moreover

h
⇣

X(1)

s �X(2)

s

⌘

,
⇣

µ
�

X(1)

s

�

� µ
�

X(2)

s

�

⌘

i  Lµ(zs)
�

�

�

X(1)

s �X(2)

s

�

�

�

2

= Lµ(zs)Ys. (0.30)

From (0.30) and using the process definition of ⇠s given in (0.22), Equation (0.29)

becomes

E
h

e�
R
t

0 ⇠sds Yt

i


Z t

0

E

"

e�
R
s

0 ⇠rdr

✓

Ys
�

L� + 2Lµ(zs)� ⇠s
�

◆

#

ds = 0, (0.31)

from which the thesis is demonstrated.

Now we have to prove that the solution exists, from the definition of Dz we find Dz ⇢
D

2z ⇢ D. It is possible to define the function '(z) : Rn ! R, with '(z) 2 C1(Rn) and

0  '(z)  1 such that

'(z)(x) =

8

<

:

1 x 2 Dz

0 x /2 D
2z,

(0.32)
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Since µ(z) = '(z)µ and �(z) = '(z)�, a new di↵erential stochastic equation system is

defined

dX
(z)
t = µ(z)(X(z)

t )dt+ �(z)(X(z)
t )dWt, 0  t  T

X
0

= x
0

,
(0.33)

where X
(z)
t is the stochastic process that solve (0.33).

The coe�cient µ(z) is globally Lipschitz with constant

Lµ(2z) + sup
Rn

kr'(z)k sup
D2z

kµk.

Therefore Equation (0.33) satisfy hypothesis of Theorem 12.0.7. We have to prove now

that z ! 1, X(z)
t ! Xt, is solution of system (0.16).

We define

⌧z = inf{t > 0 : X(z)
t /2 Dz}, (0.34)

that is the exit time from Dz di X(z).

Since the process X(z) is adapted to filtration {Ft}t2[0,T ]

, ⌧z is the stopping time.

Let t 2 [0, T ], then 8 t < ⌧z, X
(z)
t 2 Dz ⇢ D.

Considering the generalized Lyapunov function, and considering also (0.2), using the

Ito’s formula to V
�

X
(z)
t

�

:

dV
�

X
(z)
t

�

= LzV
�

X
(z)
t

�

dt+rTV
�

X
(z)
t

�

�(z)
�

X
(z)
t

�

dWt. (0.35)

Calling LzV the operator

LzV = hrV (x), µ(z)(x)i+ 1

2
Tr
⇥

�(z)(x)�(z)Tr2V (x)
⇤

,

we find that Lz = L on Dz.

Therefore for 0  s  t ^ ⌧z we have X
(z)
s 2 Dz ⇢ D and V

�

X
(z)
t^⌧

z

�

becomes

V
�

X
(z)
t^⌧

z

�

= V (x
0

) +

Z t^⌧
z

0

LV
�

X(z)
s

�

ds+

Z t^⌧
z

0

rTV
�

X(z)
s

�

�
�

X(z)
s

�

dWs. (0.36)

Considering the expected value of the above equation

E
h

V
�

X
(z)
t^⌧

z

�

i

= V (x
0

) + E


Z t^⌧
z

0

LV
�

X(z)
s

�

ds

�

, (0.37)

since that the expected value of the stochastic integral is null

E


Z t^⌧
z

0

rTV
�

X(z)
s

�

�
�

X(z)
s

�

dWs

�

= 0. (0.38)
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Using property (ii) of the generalized Lyapunov function we find

E
h

V
�

X
(z)
t^⌧

z

�

i

� V (x
0

) = E


Z t^⌧
z

0

LV
�

X(z)
s

�

ds

�

 ⇣ E


Z t^⌧
z

0

⇣

1 + V
�

X
(z)
s^⌧

z

�

⌘

ds

�

 ⇣T + ⇣

Z t

0

E
h

V
�

X
(z)
s^⌧

z

�

i

ds,

(0.39)

that satisfies the hypothesis of (0.14). Therefore we can applies Gronwall Lemma to

(0.39) finding

E
h

V
�

X
(z)
t^⌧

z

�

i

 e⇣T (V (x
0

) + ⇣T ) . (0.40)

The above relation shows that E
h

V
�

X
(z)
t^⌧

z

�

i

is less than finite amount independent

form z.

Hence we find the probability of ⌧z  t:

P(⌧z  t) = E [�⌧
z

t]

= E

"

V
�

X
(z)
t^⌧

z

�

z
�⌧

z

t

#

 1

z
E
h

V
�

X
(z)
t^⌧

z

�

i

 e⇣T (V (x
0

) + ⇣T )

z
,

(0.41)

where we use (0.40) and the V
�

X
(z)
t^⌧

z

�

= V
�

X
(z)
⌧
z

�

= z for ⌧z  t

Therefore for z ! 1, ⌧z ! 1 in probability and exists a subsequence zn ! 1 strictly

increasing such that ⌧z
n

! 1 almost certainly [50]. The process X(z)
t is bounded in D.

We call

H
(n)
t = X

(z
n

)

t^⌧
z

n

, e ⌧ 0n = ⌧z
n

.

Then, 8n > m,

H
(n)
t = x

0

+

Z t^⌧ 0
n

0

µ
�

H(n)
s (s)

�

ds+

Z t^⌧ 0
n

0

�
�

H(n)
s (s)

�

dWs, (0.42)

and

H
(m)

t = x
0

+

Z t^⌧ 0
m

0

µ
�

H(m)

s (s)
�

ds+

Z t^⌧ 0
m

0

�
�

H(m)

s (s)
�

dWs. (0.43)

Moreover, in Dz
m

,

µ(z
n

) = µ(z
m

), e �(zn) = �(zm).
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For all 0  t  ⌧ 0m, X(z
n

)

t = X
(z

m

)

t almost certainly. Given that ⌧ 0m  ⌧ 0n, H
(n)
t = H

(m)

t ,

for all 0  t  ⌧ 0m, we have almost certainly

H
(n)
t = x

0

+

Z t^⌧ 0
m

0

µ
�

H(n)
s (s)

�

ds+

Z t^⌧ 0
n

t^⌧ 0
m

µ
�

H(n)
s (s)

�

ds+

+

Z t^⌧ 0
m

0

�
�

H(n)
s (s)

�

dWs +

Z t^⌧ 0
n

t^⌧ 0
m

�
�

H(n)
s (s)

�

dWs.

(0.44)

Evaluating H
(n)
t �H

(m)

t , from (0.44) and from (0.43), we find

H
(n)
t �H

(m)

t =

Z t^⌧ 0
n

t^⌧ 0
m

µ
�

H(n)
s (s)

�

ds+

Z t^⌧ 0
n

t^⌧ 0
m

�
�

H(n)
s (s)

�

dWs. (0.45)

Let A = {! 2 ⌦ : ⌧ 0n(!) ! 1}, P(A) = 1, from what previously said, P(A) = 1. Let

! 2 A, e t 2 [0, T ], then

9 n̄ : 8 n > m > n̄, segue che ⌧ 0n � ⌧ 0m > t.

Whereby 8 n > m > n̄,

H
(n)
t (!) = H

(m)

t (!). (0.46)

Then exists Xt(!) 2 Rn such that

lim
n!1

H
(n)
t (!) = Xt(!), (0.47)

it is easy to see that Xt(!) is a stochastic process adapted to filtration (Ft)t2[0,T ]

.

Moreover 8 ! 2 A and t 2 [0, T ], for n ! 1, we have V (Xt(!))  zn. So Xt(!) 2 D,

and according to property (iii) of Definition 12.0.4, follows (0.17).

We prove that Xt(!) satisfies the di↵erential stochastic equation (0.16). Recalling

(0.42)

H
(n)
t = x

0

+

Z t^⌧ 0
n

0

µ
�

H(n)
s (s)

�

ds+

Z t^⌧ 0
n

0

�
�

H(n)
s (s)

�

dWs.

Given t 2 [0, T ] e ! 2 A, H(n)
t (!) = Xt(!) for all n > n̄(!) (so ⌧n > t) and H

(n)
s (!) =

Xs(!) for all s < t e n > n̄, we find that Xt(!) verifies (0.16).

The above result reveals the crucial role that an environmental noise plays in the dy-

namics. Even a small amount of stochastic noise allows to suppress the deterministic

explosion. We also observe that our model is substantially di↵erent from the stochastic

Lotka-Volterra model studied in Mao [263], [228] which has been derived by stochasti-

cally perturbing the parameter in the deterministic version.
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