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Abstract

The rise of the intelligent information world presents significant challenges for the telecom-

munication industry in meeting the service-level requirements of future applications and

incorporating societal and behavioral awareness into the Internet of Things (IoT) objects.

Social Digital Twins (SDTs), or Digital Twins augmented with social capabilities, have the

potential to revolutionize digital transformation and meet the connectivity, computing, and

storage needs of IoT devices in dynamic Fifth-Generation (5G) and Beyond Fifth-Generation

(B5G) networks.

This research focuses on enabling dynamic social-aware B5G networking. The main con-

tributions of this work include(i) the design of a reference architecture for the orchestration

of SDTs at the network edge to accelerate the service discovery procedure across the Social

Internet of Things (SIoT); (ii) a methodology to evaluate the highly dynamic system per-

formance considering jointly communication and computing resources; (iii) a set of practical

conclusions and outcomes helpful in designing future digital twin-enabled B5G networks.

Specifically, we propose an orchestration for SDTs and an SIoT-Edge framework aligned

with the Multi-access Edge Computing (MEC) architecture ratified by the European

Telecommunications Standards Institute (ETSI). We formulate the optimal placement of

SDTs as a Quadratic Assignment Problem (QAP) and propose a graph-based approximation

scheme considering the different types of IoT devices, their social features, mobility patterns,

and the limited computing resources of edge servers. We also study the appropriate intervals

for re-optimizing the SDT deployment at the network edge. The results demonstrate that

accounting for social features in SDT placement offers considerable improvements in the

SIoT browsing procedure. Moreover, recent advancements in wireless communications, edge

computing, and intelligent device technologies are expected to promote the growth of SIoT

with pervasive sensing and computing capabilities, ensuring seamless connections among

SIoT objects.

We then offer a performance evaluation methodology for eXtended Reality (XR) services

in edge-assisted wireless networks and propose fluid approximations to characterize the XR

content evolution. The approach captures the time and space dynamics of the content distri-

bution process during its transient phase, including time-varying loads, which are affected by

arrival, transition, and departure processes. We examine the effects of XR user mobility on

both communication and computing patterns. The results demonstrate that communication

and computing planes are the key barriers to meeting the requirement for real-time trans-

missions. Furthermore, due to the trend toward immersive, interactive, and contextualized

experiences, new use cases affect user mobility patterns and, therefore, system performance.
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Index terms: Beyond Fifth-Generation, Social Internet of Things, Digital Twining,

Wireless Networks, Edge Computing.



Sommario

L’emergere del nuovo mondo dell’informazione intelligente crea sfide senza precedenti

per l’industria delle telecomunicazioni per soddisfare i requisiti di servizio stringenti delle

applicazioni future e gestire l’esigenza di incorporare una nuova consapevolezza sociale e

comportamentale negli oggetti della Internet of Things (IoT). I Social Digital Twins (SDTs),

ovvero Digital Twins potenziati con capacità sociali, sembrano essere il fattore chiave per

consentire la trasformazione digitale e soddisfare i requisiti di connettività, elaborazione e

archiviazione dei dispositivi IoT in reti di quinta generazione (5G) e evoluzioni future (B5G).

Questo lavoro di ricerca è finalizzato alla progettazione di soluzioni di networking per

il supporto dei SDT nel contesto beyond 5G. I principali contributi della tesi includono:

(i) progettazione di un’architettura di riferimento e di soluzioni per l’orchestrazione dei SDT

alla periferia (edge) della rete finalizzate ad accelerare la procedura di scoperta dei servizi

attraverso il paradigma di Social Internet of Things (SIoT); (ii) un insieme di metodologie

per valutare le prestazioni delle soluzioni progettate che tengano conto sia delle risorse di

comunicazione che di calcolo; (iii) una serie di conclusioni pratiche e risultati utili per la

progettazione della futura evoluzione della rete 5G basata sull’uso esteso del concetto di

digital twin.

Nello specifico, si propone un’orchestrazione per i SDTs e un framework SIoT-Edge

allineato con l’architettura MEC standardizzata dall’European Telecommunications Stan-

dards Institute (ETSI). Si formula il posizionamento ottimale di SDTs come QAP e si pro-

pone uno schema di approssimazione basato su grafi considerando i diversi tipi di dispositivi

IoT, le loro caratteristiche sociali, i modelli di mobilità e le limitate risorse di calcolo dei

server perimetrali. Inoltre, si esplorano gli intervalli di ri-ottimizzazione per la distribuzione

dei SDT all’edge della rete. I risultati dimostrano che tenere conto delle caratteristiche sociali

nel posizionamento SDT possa offrire notevoli miglioramenti nella procedura di navigazione

SIoT. Inoltre, i recenti progressi nelle comunicazioni wireless, nell’edge computing e nelle

tecnologie dei dispositivi intelligenti promuoveranno la crescita di SIoT con capacità di ril-

evamento e calcolo pervasive, garantendo connessioni senza soluzione di continuità tra gli

oggetti SIoT.

Si offre una metodologia di valutazione delle prestazioni per i servizi XR nelle reti wire-

less edge assistite e si propone un’approssimazione fluida per caratterizzare l’evoluzione del

contenuto XR. L’approccio cattura le dinamiche temporali e spaziali del processo di dis-

tribuzione dei contenuti nella sua fase transitoria, che include carichi variabili nel tempo,

cioè carichi che sono una funzione del tempo e dipendono dai processi di arrivo, transizione

e partenza. Si indaga gli impatti della mobilità degli utenti XR dal punto di vista della

comunicazione e dell’informatica. I risultati dimostrano che sia i piani di comunicazione che
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quelli informatici sono le principali barriere per soddisfare il requisito della trasmissione in

tempo reale dei servizi XR. Inoltre, a causa della tendenza verso esperienze immersive, in-

terattive e contestualizzate, i nuovi casi d’uso influenzano la mobilità degli utenti e, quindi,

le prestazioni del sistema.

Parole chiave: Reti di quinta generazione ed evoluzioni future, Social Internet of Things,

Digital Twining, Reti Wireless, Edge Computing.
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Introduction

This Chapter introduces the motivation of this research and its aims, defines central research

objectives, and summarizes the contributions. The Chapter also covers the structure of the

thesis.

1.1 Motivation

The Internet of Things (IoT) refers to a network of connected devices that exchange data

over the Internet. One of the earliest examples of the IoT was a Coca-Cola machine at

Carnegie Mellon University [6, 7]. The IoT had then evolved into a system operating with

numerous technologies, i.e., the Internet, wireless communication, micro-electromechanical,

and embedded systems [8]. As smartphones became an essential communication device, they

also became a part of the IoT. In October 2021, vehicles also joined the IoT when May

Mobility initiated a pilot program to test its autonomous driving software.

To date, smart environments employ a wide range of IoT devices resulting in a significant

increase in mobile data traffic and the global rollout of the Fifth-Generation (5G) system.

This global rollout of the 5G system opens up significant opportunities for IoT applications

that share data with devices with minimal processing and storage capabilities. According to

the most recent study by Strategy Analytics, the number of internet-connected devices is

projected to reach 50 billion by the end of 2030, while 59% of IoT data processing will occur

at the edge by 2025 [9].

The advancement of the IoT has led to the integration of social networking principles,

known as the Social Internet of Things (SIoT) paradigm, to connect individuals and devices

on a global scale and facilitate the exchange of information between heterogeneous IoT ob-

jects, taking into account both physical and social behavior and providing several benefits.

First, the SIoT facilitates service discovery utilizing social network techniques. Second, it

enables the interchange of information linked with or created by devices on a social basis,

including novel group-based communication methods such as sociocast [10]. Then, it guar-

antees scalability via social collaboration between nodes. An additional benefit is the ability

to establish social connections between devices that use different technologies, which facili-
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tates interoperability across various IoT platforms. Finally, SIoT may exploit the degree of

interaction between objects to offer secure connections between devices that have a social

relationship.

As the number of IoT devices and social connections continues to grow, digital twinning

becomes increasingly essential in processes such as service discovery. The introduction of so-

called Social Digital Twins (SDTs) at the edge [1,2], utilized to expose the resource/services

on behalf of the physical objects and keep track of the social relationships dynamically estab-

lished among their physical replicas, may facilitate their discovery by traversing the social

network graph. In this scenario, placement of SDTs at the edge might be adopted to make

social network browsing faster and more efficient. To the best of our knowledge, there is no

work so far addressing this problem, mainly due to challenges posed by the social capabilities

of the IoT devices. Since most IoT devices are resource-constrained, creating and managing

social interactions would further complicate their design. Hence, an efficient operation of

an IoT network, which is even less likely when the social component is considered, is only

possible with the adoption of edge computing [11].

In the future, 5G and Beyond Fifth-Generation (B5G) applications and services will

likely require high-speed connectivity to meet demands for sufficient bandwidth and data

rates, dynamic mobility, resilience, and other requirements [12]. There will be a need to pro-

vide connectivity with extremely low end-to-end latency and high reliability, for example,

for immersive services [13, 14]. However, some services can already meet ever-increasing ex-

pectations, thereby drawing the contours of new use cases. With the rapid development of

mobile and display technologies, the use of eXtended Reality (XR) has brought revolutionary

improvements. Still, full XR adoption remains hindered for various reasons, e.g., hardware

and source device computing costs, low resolution and visual quality, and usability of devices

due to mobility [15].

The emergence of problems related to user mobility in IoT is linked to usage-specific

movements [5] (one may observe different mobility patterns of users involved in message writ-

ing and audio recording while walking) [5]. Even though most studies consider the specifics

inherent to the conventional mobile phone application user, primarily due to the unavailabil-

ity of affordable head-worn devices that provide a satisfactory level of user experience, we are

observing a paradigm shift from smartphones to wearable devices [16]. Head-worn devices

are becoming integral to future systems and potentially may lead to the implementation of

B5G use cases. In this regard, a significant concern is understanding the user context based

on behavior analysis and the real-time response in the on-premises environment, i.e., seam-

less network connections, bandwidth availability, data transfer and application execution

requirements, and data migration management. As applications impact movement, there is

a need for a profound transformation in communication and computing patterns.
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1.2 Objectives and Methodology

In the following, the research objectives (ROx) are formulated to address the identified

challenges and research gaps to support Dynamic Social-Aware Networking Beyond 5G. We

divide the challenges and research gaps into two sets when considering dynamic (i) social-

and (ii) behavior-aware interactions in edge-aided IoT.

The proliferation of always-connected SIoT systems, devices, and sensors for digital au-

tomation in 5G and B5G networks demands low latency and high reliability and resilience. To

meet these requirements, new orchestration policies and practical methodologies are needed

for the optimal deployment of SDTs at the network edge to ensure timely and efficient service

discovery. Past research does not cover the placement of Digital Twins (DTs), augmented

with a social dimension, at the network edge. Moreover, unpredictable SIoT device move-

ment might cause a non-negligible deviation from the optimal deployment of SDTs at the

network edge, requiring their re-deployment. However, current literature only considers con-

stant re-deployment intervals. This might lead to the following situations: (i) the system’s

time-averaged behavior may deviate from the optimum due to unexpected SIoT device mobil-

ity; (ii) the system’s time-averaged behavior may trigger irrational network resource usage,

e.g., when the devices are static, i.e., during nighttime.

To bridge these gaps and accelerate service discovery procedure across SIoT, we:

• RO1. Propose a framework for SDT placement at the network edge.

• RO2. Propose orchestration policies for SDTs at the network edge under

mobility conditions.

• RO3. Explore SIoT networks from the perspective of IoT object motion and

propose orchestration policies for SDTs at the network edge under heteroge-

neous mobility conditions.

The second set of research challenges and gaps centers around behavior-aware interactions

in edge-aided IoT when considering ubiquitous contextualized experiences. The technology

evolves along with ever-increasing proliferation, interest in, and demand for new applications

and services, e.g., emerging XR services that submerge users into a virtual universe. This

unlocks XR’s freedom of mobility and interaction and triggers a new stage of XR technol-

ogy adoption, bringing new challenging and technical problems to be addressed, such as

dynamicity in content distribution evolution.

Current literature on XR systems primarily focuses on their steady-state operation. How-

ever, due to XR interaction freedom, state-of-the-art solutions may not be efficient in real-

world applications. The challenge is to develop methods that can account for the dynamic

and non-stationary nature of immersive reality interactions and provide network planners

with a means to evaluate system performance. Furthermore, immersive interactions can dis-

tract users from the physical world, alter their behavior and motion, and thereby impact the

operation of communication networks.

To bridge these gaps, we:
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• RO4. Propose a practical methodology for evaluating the performance of

dynamic XR systems, with a focus on the computing plane.

• RO5. Propose a practical methodology for evaluating the performance of

highly dynamic XR systems with periodic arrival rates, with a focus on the

communication and computing plane.

• RO6. Explore XR communication networks from the perspective of user in-

teraction patterns, highlight the entailed challenges, and propose an assess-

ment methodology for XR services.

To address the challenges and research gaps formulated above, a general research ap-

proach was adopted in this work. It consists of several stages defined as follows.

• Study state-of-the-art technologies and research methods. This stage aims at

acquiring knowledge of the system of interest necessary to develop the frameworks and

their subsequent cross-validation.

• Use case analysis and problem statement. Focusing on the challenging use cases

and solutions available in the literature, different research gaps are identified at this stage

and translated into a subset of problems.

• Solution design. Indicated challenges and problems are investigated to formulate solu-

tions for further testing and verification.

• Model definition. Each identified problem is addressed in the model design that pro-

vides relevant and illustrative Key Performance Indicators (KPI) for assessing and val-

idating the proposed solutions. The solutions are evaluated and validated via advanced

simulators.

• Evaluation. At this stage, the obtained results are evaluated and discussed to highlight

the root cause of the addressed problem.

1.3 Contributions

1.3.1 Research Outputs

The detailed contributions and relevant publications are organized in 6 blocks (3 per each

set of research challenges and gaps), each corresponding to a research objective from the

list presented in Section 1.2. Contributions C1, C2, and C3 focus on dynamic social-aware

interactions in edge-aided IoT and are included in Chapter 2, while Chapter 3 contains

contributions C4, C5, and C6, focusing on dynamic behavior-aware interactions in edge-

aided IoT.

C1. SDT placement framework.

The detailed contributions are summarized as follows:

• The design of a framework for the static Social-aware Closest Edge Placement (SoCEP)

of DTs;
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• The formulation of the SDT placement by accounting for the limited computing resources

of edge servers, social relationships among IoT devices, and constraints on the latency in

the connectivity between a physical device and the corresponding DT and in the inter-DT

connectivity;

• The evaluation of the performance of the SoCEP against a baseline solution under dif-

ferent settings in terms of storage constraints on edge servers and latency demands.

These contributions have been included in the publication:

Chukhno, O., Chukhno, N., Araniti, G., Campolo, C., Iera, A. and Molinaro, A., 2020.

Optimal placement of social digital twins in edge IoT networks. Sensors, 20(21), p.6181.

C2. Orchestration for SDTs under mobility.

The detailed contributions are summarized as follows:

• The design of an SIoT-edge framework, named enhanced Social-aware Closest Edge

Placement (eSoCEP) ratified as a functionality of the European Telecommunications

Standards Institute (ETSI) Mobile Edge (ME) orchestrator;

• The formulation of the optimal placement of SDTs by accounting for different types of

IoT devices, their social features, mobility patterns, and the limited computing resources

of edge servers;

• The design of an approximation scheme to find near-optimal solutions and the application

of approximation techniques;

• The evaluation of the performance of the proposed algorithm against the formulated

optimal solution and benchmark schemes;

• The analysis of the time-dependent behavior of the SIoT-edge system under conditions

of device mobility and the time interval duration selection.

These contributions have been included in the publication:

Chukhno, O., Chukhno, N., Araniti, G., Campolo, C., Iera, A. and Molinaro, A.,

2022. Placement of Social Digital Twins at the Edge for Beyond 5G IoT Networks.

IEEE Internet of Things Journal (Early Access).

C3. Assessment methodology and orchestration for SDTs under mobility.

The detailed contributions are summarized as follows:

• The review of device motion patterns that might depend on the time, the device type,

space, and the scenario;

• The design of social-aware orchestration comprising Network Function Virtualization

(NFV), Software-Defined Networking (SDN), edge/fog and cloud computing, Deep

Learning (DL)-based user activity prediction, and sensing and tracking technologies;

• The evaluation of the performance of the proposed orchestration;

• The analysis of the re-optimization time interval concerning the impact on the service

discovery latency for traditional system design and co-design of localization, sensing, and

Artificial Intelligence (AI)-driven communication and computation.
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These contributions have been included in the publication:

Chukhno, O., Chukhno, N., Araniti, G., Campolo, C., Iera, A. and Molinaro, A., 2023.

Social-Aware Orchestration in 5G+/6G-IoT Ecosystems. (Ready for submission).

C4. XR System performance evaluation methodology.

The detailed contributions are summarized as follows:

• The practical methodology to characterize XR content evolution in dynamic networks as

continuous fluids considering the computing plane;

• The evaluation of the performance of the proposed methodology based on a fluid approx-

imation;

• The assessment of the XR system characteristics under different network settings;

• The practical conclusions for designing XR networks considering the computing plane.

These contributions have been included in the publication:

Chukhno, O., Galinina, O., Andreev, S., Molinaro, A. and Iera, A., 2023. Content

Distribution Dynamics of Edge-Aided Immersive Reality Services. (Ready for submis-

sion).

C5. Joint communication and computing performance evaluation methodol-

ogy for XR system.

The detailed contributions are summarized as follows:

• The practical methodology to evaluate joint communication and computing system per-

formance with periodic arrival rates;

• The characterization of the content evolution by capturing the time and space dynamics

of the content distribution process;

• The validation of the proposed methodology performance based on a fluid approximation

through Monte-Carlo simulations;

• The system performance assessment under different network settings;

• The practical conclusions for designing XR wireless communication networks considering

joint communication and compute with periodic arrival processes.

These contributions have been included in the publication:

Chukhno, O., Galinina, O., Andreev, S., Molinaro, A. and Iera, A., 2023. Content

Distribution Dynamics of Edge-Aided Immersive Reality Services. (Ready for submis-

sion).

C6. Joint user behavior, communication, and computing assessment method-

ology for XR system.

The detailed contributions are summarized as follows:

• The analysis of user behavior patterns that confirms use case-dependent changes in gait

characteristics, such as direction, velocity, stride length, step width, and stance time;
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• The sources of evidence of the user motion impact on the network operation;

• The case study for mobile XR that characterizes the system performance with respect

to user motion, communication, and computing;

• The results confirm the uniqueness of XR applications in terms of user behavior patterns,

which demands for the development of innovative application-centric algorithms, proto-

cols, and mechanisms to support a high-performance connection in response to stringent

XR requirements.

These contributions have been included in the publication:

Chukhno, O., Galinina, O., Andreev, S., Molinaro, A. and Iera, A., 2022. Interplay of

User Behavior, Communication, and Computing in Immersive Reality 6G Applications.

IEEE Communications Magazine, 60(12), 28-34.

1.3.2 Publications

The list of the author’s publications produced during the Ph.D. period includes 5 articles

related to the subject of the thesis and mentioned in Chapter 2 and Chapter 3.

Articles related to the subject of the thesis are:

1. Chukhno, O., Chukhno, N., Araniti, G., Campolo, C., Iera, A. and Molinaro, A., 2020.

Optimal placement of social digital twins in edge IoT networks. Sensors, 20(21), p.6181.

2. Chukhno, O., Chukhno, N., Araniti, G., Campolo, C., Iera, A. and Molinaro, A.,

2022. Placement of Social Digital Twins at the Edge for Beyond 5G IoT Networks.

IEEE Internet of Things Journal (Early Access).

3. Chukhno, O., Galinina, O., Andreev, S., Molinaro, A. and Iera, A., 2022. Interplay of

User Behavior, Communication, and Computing in Immersive Reality 6G Applications.

IEEE Communications Magazin, 60(12), 28-34.

4. Chukhno, O., Chukhno, N., Araniti, G., Campolo, C., Iera, A. and Molinaro, A., 2023.

Social-Aware Orchestration in 5G+/6G-IoT Ecosystems. (Ready for submission).

5. Chukhno, O., Galinina, O., Andreev, S., Molinaro, A. and Iera, A., 2023. Content

Distribution Dynamics of Edge-Aided Immersive Reality Services. (Ready for submis-

sion).

1.4 Thesis Outline

The thesis is organized into 4 Chapters, their content is briefly described below.

• Chapter 1 contains the motivation, objectives, contributions, and structure of this work.

• Chapter 2 focuses on dynamic social-aware interactions in edge-aided IoT.

• Chapter 3 focuses on dynamic behavior-aware interactions in edge-aided IoT.

• Chapter 4 includes the summary of research outcomes and the discussion of future

research.

The final part of the thesis includes the bibliography.
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Dynamic Social-Aware Interactions in

Edge-Aided IoT

This chapter focuses on dynamic social-aware interactions in edge-aided IoT.

In Section 2.1, we propose an SDT placement framework. We address the optimal DT

placement problem at the network edge to reduce the latency between physical devices and the

corresponding DTs and among DTs of friend devices to ensure efficient data exchange and

accelerate the service discovery across the SIoT network. Specifically, we present a framework

for the SoCEP of DTs based on edge computing and SIoT for a static IoT object deployment

scenario.

In Section 2.2, we propose an orchestration for SDTs. We present the design of an SIoT-

edge framework that is aligned with the Multi-access Edge Computing (MEC) architecture

standardized by the ETSI. We formulate the optimal placement of SDTs considering the dif-

ferent types of IoT devices, their social features, mobility patterns, and the limited computing

resources of edge servers. We propose an approximation scheme for finding near-optimal

solutions.

In Section 2.3, we present an assessment methodology and propose orchestration policies.

We investigate time-, device-, space-, and scenario-depending network re-optimization inter-

vals and their enablers for the deployment of SDTs at the network edge. We offer a review

of device motion patterns that might depend on the time (e.g., morning, day, evening, or

night hours), the device type (e.g., static sensors, cars, wearable devices, etc.), space (i.e.,

environment), and the scenario (e.g., critical situation or everyday routine actions). We of-

fer social-aware orchestration comprising NFV, SDN, edge/fog and cloud computing, deep

learning-based user activity prediction, and sensing/tracking technologies.
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2.1 Social Digital Twin Placement Framework

Smart environments comprise numerous IoT objects, including personal and measuring de-

vices, sensors, and actuators. Such a remarkable rise in connected devices has led to a sig-

nificant increase in mobile data traffic [17], contributing to the advent of the 5G and B5G

systems. This creates tremendous development prospects for IoT applications leveraging the

opportunity of exchanging data with every item while requiring minimal storage and com-

puting resources. According to the recent forecast in [18], the number of IoT connections will

reach 24 billion by the end of 2025.

The SIoT paradigm [19, 20] has gained ground in recent literature as a valuable tool to

integrate humans and machines into one global social network. The integration of social net-

working concepts with the IoT provides several advantages. First, SIoT facilitates effective

service discovery based on typical social network techniques. Second, it enables the exchange

on a social basis of information associated with/generated by devices [10,21]. Third, it guar-

antees scalability through social collaboration among nodes. Then, SIoT allows establishing

social relationships between objects that use different technologies; this allows device inter-

operability across different IoT platforms. Finally, SIoT can leverage the degree of interaction

between objects to guarantee trusted connections between friend devices [22].

However, IoT devices are typically resource-constrained; creating and managing social re-

lationships would provide additional design challenges. Widespread usage of IoT, even more,

when the social dimension is considered, is unlikely without adopting the concept of cloud

computing. Indeed, the cloud may augment resource-constrained IoT devices by providing

extra computation, storage, and context-awareness capabilities. In particular, the DT [23,24]

concept has gained momentum as a concrete means to implement such a vision by bridging

the physical world with the digital one. Physical objects are augmented with a digital foot-

print hosted in the remote cloud and, thus, enabled to perceive the environment better and

understand their role in the context in which they are immersed.

Unlike the existing literature [25–27], we align the DT concept with the edge computing

paradigm [16], among the most influential technical developments that dominate the IoT

industry in 2020 [28]. Edge computing [29–31] aims to localize processing resources closer

to end-devices rather than a centralized cloud computing environment. Since data do not

traverse over a network to the cloud to be processed, the network load and the data latency

are significantly reduced.

As the further step related to the state-of-the-art development [32,33], we consider DTs

of physical objects augmented with social capabilities, i.e., SDTs. The concept of Social Vir-

tual Entity (SVE) can be traced back to early research, such as in in [34, 35], where the

notion of SVE had been preliminarily introduced. However, hosting applications and SDTs

presents several issues, particularly at the edge. Some of these challenges are inherited from

the literature on deploying virtualized applications at the edge [36–38]. Other challenges are

specifically unique to the SIoT environment. First, the available edge servers colocated with
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Access Points (APs) or/and Base Stations (BSs) have unequal distribution of the limited

network edge resources. Next, it may be necessary to ensure low-latency communication be-

tween the physical and virtual counterparts to achieve the DT objectives. This is especially

true when considering interactive applications. Finally, SDTs may also need to be intercon-

nected given the quick navigation of the social network of IoT devices whenever the resources

or capabilities of friend devices must be discovered and/or chained.

In such a context, we aim to offer the following contributions:

• we propose a placement framework for SDTs, SoCEP;

• we formulate the placement problem by accounting for the limited edge server computing

resources, social relationships among IoT devices, and latency constraints;

• we apply a linear relaxation for the formulated optimization problem;

• we assess the performance of the proposed framework under different settings.

The rest of this section is structured as follows. The motivation behind the investigated

topic and an overview of background materials are presented in Subsection 2.1.1. The pro-

posed SIoT-edge framework is outlined in Subsection 2.1.2, whereas the problem formulation

for SDT placement is characterized in Subsection 2.1.3. In Subsection 2.1.4, simulation ex-

periments are presented. Discussions are drawn in Subsection 2.1.5.

2.1.1 Motivation

As most IoT objects are resource-hungry, the gap between required and locally accessible

resources increases. In this context, cloud computing is a valuable solution to the problem.

However, specific IoT applications require short response times (e.g., automation control in

an intelligent factory [39]), while others generate massive amounts of data that must be

analyzed (e.g., Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), and

XR [40]). In contrast, some may demand security guarantees (e.g., surveillance in a public

place [41]). Cloud computing cannot meet these requirements and cannot support these types

of IoT applications. Edge computing can address the challenges mentioned above by hosting

storage and processing resources and applications closer to end users [42].

In recent years, there has been considerable interest in edge computing for IoT [43, 44],

also fueled by the ETSI activities, which refer to such a paradigm as MEC [31, 45]. A large

body of literature addresses computation offloading [46,47] in view of allowing IoT devices to

speed up data processing, thus reducing energy consumption. In [48], the problem of selecting

the appropriate offloading routes for IoT services has been addressed. The optimization of

the response time of IoT applications has been done in [49,50], where computation offloading

methods improve latency experienced by users.

Further, edge computing offers new opportunities in the field of IoT that would not be

possible by leveraging traditional cloud-based systems. For instance, DTs, which have already

been shifted from concept to reality [33], can be effectively implemented at the edge. The

idea of DTs was first introduced in [51] and later formalized in [25], where the main elements
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of the DT concept are identified, namely, a real space (physical objects), a virtual space

(virtual objects), and the link for the data flow between real and virtual domains. Virtual

objects deliver the semantic description of the related physical objects and their resources

and capabilities, which are abstracted into attributes. This abstraction allows performing an

effective search of the capabilities/resources needed for creating and composing IoT services

at the application layer [34].

The virtualization layer has evolved into a vital element of many reference IoT plat-

forms [52, 53] and commercial implementations [34], and the interest in it has been further

sparked by the emerging DTs concept [54]. However, the communication processes between a

physical object and its virtual counterpart and among different DTs are still open issues that

attract growing interest [33]. Another challenge is the placement of such virtual counterparts

at the edge in a way to accommodate the distributed and limited nature of computing and

storage resources of edge servers.

A growing body of literature has investigated the possibilities of edge networks to sat-

isfactorily meet the latency constraints on pairing a physical device and its DT [35, 55]. A

cost-aware cloudlet placement strategy accounting for the cost of deploying edge servers and

the end-to-end latency between physical objects and their avatars is proposed in [38]. In [56],

the placement problem is considered as a generalized assignment problem to reduce latency.

Further related works focus on the virtual machine replica placement problem [57, 58], the

service entity problem [37,59], and the joint service placement [60,61] with additional focuses

on, e.g., request routing/scheduling [36,62].

In the past years, the concept of using elements of social networks in IoT has attracted

unprecedented attention from the research community [63–67]. The synergy of social network-

ing and IoT paradigms can offer several benefits and allow the devices to create relationships

autonomously. The “social network of intelligent objects” paradigm has been proposed in [19].

SIoT aims to simplify the navigability of a network of billions of devices and enhance their

trustworthiness. Social relationships can be created, for instance, between objects belonging

to the same owner, between fixed devices located in the same place, between objects carried

by people who frequently meet, and between objects of the same model, vendor, and produc-

tion batch. SIoT supports many novel applications and services for the IoT in a more robust

and productive [68] way by facilitating the interaction between physical objects through the

digital world. In particular, the exploitation of social network principles in the IoT domain

has proven to foster resource visibility, enhance device and service discovery, and enable

practical object reputation assessment, service composition, and source crowding [69,70].

Researchers have followed various approaches to design an SIoT architecture and im-

plement a platform for constructing the SIoT service environment and the virtualization of

applications [68, 71]. In [72], a technique for the implementation of a Virtual Entity (VE)

(the virtual equivalent of the physical object [34]) is addressed. In [73], a cloud-based social

IoT solution, wherein each physical device has a virtual counterpart, is developed. The plat-

form has four major features, i.e., social agents, Platform as a Service model, reusability, and
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cloud storage. An analogous approach is presented in [74], where virtual objects of physical

devices hosted at the edge are enabled to browse the social network of devices.

Indeed, IoT applications may be developed to use data and resources provided by friend

devices. Some applications, for instance, may need to push (query) data to (from) categories

of friends [35]. Additionally, a composite service may be constructed through the chain of

resources (e.g., cached data) provided by the SDTs of friend devices. In these particular

circumstances endowed by social flavor, the discovery of resources/capabilities of friend de-

vices over the social network may be promoted by the existence of a social counterpart at

the edge, which exposes them on behalf of the physical objects. Therefore, applications that

may need to fast browse the social network by visiting SDTs of friend devices could benefit

from finding SDTs of friends either in the same or nearest edge servers. This would lead to

latency reduction and a decrease in the amount of data traversing the edge infrastructure.

Table 2.1: DT placement solutions.

Ref. Social fea-

tures

Optimization function Device-

DT

delay

con-

straint

Edge

capacity

con-

straints

Device

hetero-

geneity

Edge

hetero-

geneity

Solution

[38] No Sum of cloudlet cost and

device-DT latency

No Yes No Yes Lagrangian

heuristic

algorithm

[75] No Sum of DT initialization

(device-DT delay) and syn-

chronization delay

Yes Yes Yes Yes
Deep Rein-

forcement

Learn-

ing (DRL)-

based algo-

rithm

[37] Twitter so-

cial graph

Sum of activation, place-

ment, proximity (device-DT

delay), and colocation cost

No No Yes Yes Iterative so-

lution of a

series of min-

imum graph

cuts

[76] No Sum of computing and com-

munication delay (device-

DT latency)

No No Yes Yes Distributed

approxima-

tion scheme

[77] No Sum of access, switching and

communication (device-DT)

delay

No Yes Yes Yes Iteration-

based algo-

rithm

The problem of service placement, both in general and in the specific case of DTs, has

been discussed in the scientific literature, and numerous solutions have appeared. Table 2.1

summarizes the main features of the closest works that address the (social) digital twin

placement problem. Past literature does not cover the complete convergence of virtualiza-
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tion and socialization capabilities of future IoT devices and applications by accounting for

heterogeneous and resource-limited edge computing environments.

To fill the identified gap, we offer a framework for the social-aware placement of DTs at

the network edge. We address the placement problem by taking into account the common

proximity-driven approach for pairing physical objects and the corresponding virtual coun-

terparts [38]. We target to minimize the latency experienced between edge servers hosting

DTs, for which the corresponding physical devices have a social relationship. This is intended

to guarantee that SIoT devices can quickly communicate and discover services querying their

social relationship network on the virtualization layer hosting DTs.

2.1.2 System Model

This subsection introduces the reference system model and summarizes our modeling as-

sumptions. Table 2.2 gathers the basic notations used throughout this Chapter.

Table 2.2: Notations related to Chapter 2.

Notation Description

N IoT devices

M Edge servers

GP = (VP , EP ) Graph of IoT devices

pij Data exchange intensiveness between IoT devices i, j ∈ VP

Γ Edge server capacity

aCPUk

Central Processing Unit (CPU) capability of edge server k ∈ VS

aDk Disk capability of edge server k ∈ VS

aRAMk Memory capability of edge server k ∈ VS

CPUi CPU requirement to execute the SDT of physical IoT device i ∈ VP

Di Disk requirement to execute the SDT of physical IoT device i ∈ VP

RAMi Memory requirement to execute the SDT of physical IoT device i ∈ VP

GS(VS , ES) Weighted undirected graph of edge servers

Lik Latency between device i ∈ VP and its SDT placed at edge server k ∈ VS

Lkl Latency between edge servers k, l ∈ VS

dik Physical distance between IoT device i ∈ VP and edge server k ∈ VS

dkl Physical distance between SDTs deployed at edge servers k, l ∈ VS

xik Binary variable taking the value 1 if SDT of device i ∈ VP is mapped to edge

server k ∈ VS

Lmaxi Maximum latency between physical device i ∈ VP and its SDT deployed at at

edge server k ∈ VS

THRCPU CPU utilization threshold value

THRD Disk storage utilization threshold value

THRRAM

Random Access Memory (RAM) utilization threshold value

We assume the reference layered IoT architecture [52, 53]. The bottom layer accommo-

dates physical IoT devices that belong to the real world, such as wearables, smartphones,
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sensors, and actuators, etc.). Here, 5G infrastructure provides the options to connect these

IoT devices.

The virtualization layer represents the top layer, wherein the digital replicas of phys-

ical objects, i.e., the SDTs, are deployed. Similar to DTs, SDTs augment the physical

devices with computing capabilities and storage. Specifically, it allows caching and pre-

filtering/aggregation of raw data transmitted by the associated IoT object before feeding

IoT applications that process them. Alongside the semantic description of the associated

physical object, the SDT stores information about all the social connections and “friends”

created by the associated physical object [19]. More precisely, the SDT holds metadata de-

scribing the type of friend devices and the SIoT relationship type for each friend device.

An IoT device willing to query friend devices to discover services and/or push data to

them read information about friendship stored in the SDT. Once such information has been

collected, the SDT can interact with its peers on behalf of the physical IoT object. Then,

SDTs of all (a subset of) friend devices can be contacted one by one, according to what we

refer to in this thesis as friend browsing. It is assumed that SDTs are deployed as virtualized

applications, for instance, as containers [78, 79], and instantiated at the network edge (i.e.,

in edge servers).

We assume that N IoT devices are located within the coverage area of M wireless access

points (e.g., BSs, APs). At a given time instant, IoT device i is considered to be connected

to a single BS/APs, namely, to the closest one [80].

The corresponding devices build relationships according to the SIoT paradigm. The re-

sultant social network is represented by a social-based graph GP = (VP , EP ). The set of

vertices in the graph GP , i.e., VP , corresponds to the IoT objects connected by links in set

EP . The probability pij , reflects the existence of the social connections between IoT devices i

and j.

We assume an edge infrastructure composed of M edge servers associated with each

wireless BS/AP [80]. Since SDTs can store data and perform some processing, they have

CPU and storage requirements that must be considered when deploying them on an edge

server, which typically has a finite amount of resources. We define the parameter Γ , Γ ≥ 1,

limiting the number of SDTs hosted on an edge server.

The edge network is represented by graph GS = (VS , ES), where VS is a finite set of edge

servers, whereas ES is a set of links between the edge servers. We consider that the number

of IoT objects is higher than the number of edge servers, |VP | = N > |VS | = M , which does

not limit the generality of the presentation.

The latency between each pair of edge servers k, l is given by Lkl. By analogy with [37,38],

Lkl is estimated to be proportional to the distance between edge servers k and l. We denote

as Lik the latency between device i and its SDT located at edge server k. For Lik, we

disregard the delay over the radio interface and consider the latency between a BS that

covers the IoT device and an edge server that hosts the corresponding SDT [49]. Therefore,

Lik and Lkl are estimated as in [81]:
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Lik = ϵdik, (2.1)

Lkl = ϵdkl, (2.2)

where ϵ is the distance to latency mapping coefficient, dik is the physical distance between

the BS that serves device i and edge server k, whereas dkl is the distance between edge

servers k and l.

2.1.3 Mathematical Characterization

We aim to place SDTs at edge servers so that a cost function, which is expressed as a

combination of latency of connections between physical objects and their virtual counterparts

and latency between SDTs of physical objects linked by social relationships, is minimized

while meeting a set of constraints on communication latency and capabilities of edge servers

(see Fig. 2.1, where the SDTs of two friend IoT devices, i and j, are placed at edge server k

and l, respectively).

To model the problem of SDTs placement on the given set of edge servers, we introduce

a decision variable, xik ∈ {0, 1}, which indicates whether the SDTs of device i is assigned to

edge server k. The binary variable xik is equal to 1, if the SDTs of device i is deployed at

edge server k, and xik = 0 otherwise. The variable pij is represented as:

pij =

 1, if device i has a social relationship with device j according to SIoT

0, otherwise.
(2.3)

The problem can be formulated as follows:

min
x

∑
i∈VP

∑
k∈VS

xikLik +
∑
i∈VP

∑
k∈VS

∑
j∈VP

∑
l∈VS

xikxjlpijLkl, (2.4)

subject to ∑
k∈VS

xik = 1, ∀ i ∈ VP , (2.5)

∑
i∈VP

xik ≤ Γ, ∀ k ∈ VS , (2.6)

Lik ≤ Lmax, ∀ i ∈ VP , ∀ k ∈ VS , (2.7)

xik, xjl ∈ {0, 1}, ∀ i, j ∈ VP , ∀ k, l ∈ VS . (2.8)

Constraint (2.5) holds the condition that the SDT of device i ∈ VP can be assigned to

one edge server only. Constraint (2.6) means that the maximum number of SDTs that can be

deployed at an edge server k ∈ VS is limited by Γ . Constraint (2.7) includes a limitation on

the latency between the physical device and the edge server hosting the corresponding SDT,

which is upper bounded by Lmax. Constraint (2.8) reminds that we conveniently model the

placement problem through binary variables.

Lemma 1. SDT placement problem is NP-hard.
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Fig. 2.1: Cost function [1].

Proof. We prove that the SDT placement problem is NP-hard by reducing it from the

Quadratic Assignment Problem (QAP), well known to be NP-hard [82].

Quadratic Assignment Problem: QAP handles the problem of assigning a set of facilities

to a set of locations, with the cost determined by the distance and flow between the facilities

and the cost of installing a facility at a location. The optimization goal is to allocate each

facility to a location while lowering the overall cost. Assuming that n is the number of

facilities and locations, N = {1, 2, ..., n}, the facilities’ placement is given by the bijection

N → N , i.e., a facility can be assigned to one location, and a location can accommodate one

facility only.

Social-aware Closest Edge Placement problem: SoCEP is the relaxed form of QAP, in

which the objectivity and surjectivity requirements for mapping the set of facilities (SDTs)

to the set of placement sites (edge servers) are omitted. We consider the problem of allocating

SDTs with the cost being a function of the latency Lkl between edge servers and the existence

of social links pij between the IoT objects (see Fig. 2.1) and the placement cost associated

with SDTs of IoT objects being deployed at edge servers. In our model, N SDTs are assigned

to M edge servers such that SDTs corresponding to friend IoT devices are deployed closer

with the maximum possible proximity between SDTs and their IoT object while allowing

some flexibility for selecting/not selecting edge servers. More precisely, compared to QAP,

pij can be correlated with the flow between a couple of facilities, Lkl can be associated with

the distance between a couple of locations, and Lik can be closely related to the cost of

placing facilities at locations.

This is a formulation of the quadratic assignment problem, which is NP-hard.

Due to the quadratic form, one may infer that there is nonlinearity in the cost function

in (2.4). To remove the nonlinearity, we perform the linearization of the objective function

by introducing a new binary variable, yikjl, that equals 1 if SDTs of devices i and j are

deployed at edge servers k and l, correspondingly [83,84], i.e.,
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yikjl =

 1, if xik = 1 and xjl = 1,

0, otherwise.
(2.9)

We also denote the cost contributions related to the latency between the SDTs of IoT

objects i and j deployed at edge server k and l, correspondingly, as Cikjl, by substituting

pijLkl.

Then, the cost function is given by:

min
x,y

∑
i∈VP

∑
k∈VS

xikLik +
∑
i∈VP

∑
k∈VS

∑
j∈VP

∑
l∈VS

yikjlCikjl, (2.10)

by satisfying the following constraints:∑
k∈VS

xik = 1, ∀ i ∈ VP , (2.11)

∑
i∈VP

xik ≤ Γ, ∀ k ∈ VS , (2.12)

∑
l∈VS

yikjl = xik, ∀ k ∈ VS , ∀ i, j ∈ VP , (2.13)

∑
k∈VS

yikjl = xjl, ∀ l ∈ VS , ∀ i, j ∈ VP , (2.14)

Lik ≤ Lmax, ∀ i ∈ VP , ∀ k ∈ VS , (2.15)

xik, xjl, yikjl ∈ {0, 1}, ∀ i, j ∈ VP , ∀ k, l ∈ VS . (2.16)

Constraints (2.13) and (2.14) make it possible to account for mutual social relationships

between two SDTs. SDTs of friend devices i and j may only be allocated at the respective

edge servers k and l if the associated binary variables xik and xjl are equal to 1. Con-

straint (2.15) restricts the latency between the physical device and the edge server hosting

the matching SDT and is applied between the physical device and the edge server. Con-

straint (2.16) ensures that xik, xjl, yikjl are binary variables.

2.1.4 Performance Evaluation

In this subsection, we evaluate the performance of the proposed framework. We start by

describing the simulation environment, which utilizes the input parameters collected in Ta-

ble 2.3. We then test our model through computer simulations by using the IBM ILOG

CPLEX Optimization Studio 12.10.0 software suite [85, 86] on an Intel(R) Xeon(R) CPU

E5− 2620 v4 at 2.10 GHz with 19.7 GB RAM.

Simulation Settings

The simulation scenario, as shown in Fig. 2.2 (black squares represent the IoT objects in the

considered area, whereas the links reflect social connections between a couple of IoT objects),

corresponds to the city center of Santander, Spain. The settings we employed, in terms of

area of interest and object’s metadata, are detailed in [87]. We limit our analysis to a region
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Table 2.3: System parameters related to Section 2.1.

Parameter Value

Number of IoT devices, N 150

Number of edge servers, M 9

Capacity of an edge server, Γ var

Maximum latency between a device and an edge server, Lmax var

Distance to latency mapping coefficient, ϵ 3.33 ms/km [81]

Fig. 2.2: Scenario of interest [1].

of 4 km × 4 km (including uninhabited zones). We assume the deployment of M = 9 base

stations. Each BS is deployed at the center of the area and has a coverage of 1 km2. An edge

server is paired with each BS. There are N = 150 static IoT devices inside the area (which

corresponds to public devices from the SIoT dataset (http://www.social-iot.org)).

From the dataset provided in [87], we extract information about physical IoT devices

(IDs, types, coordinates, and adjacency matrix with the social relationships). In this case,

value pij indicates the presence of a social relationship between a couple of devices (2.3).

In this simulation, the set of social relationships is represented by R ∈ {POR} [19], where

Parental Object Relationship (POR) denotes the relationship among objects belonging to the

same manufacturing batch [19]. The average number of social relationships per IoT device

is 80.

Similar to [37, 38], the latency Lik between device i and edge server k, as well as the

latency Lkl between edge serves k and l are estimated to be proportional to the distance

between them. More precisely, Lik = ϵdik and Lkl = ϵdkl, where ϵ is the distance to latency

mapping coefficient, dik and dkl are physical distances between device i and edge server k

and between edge servers k, l, respectively.

http://www.social-iot.org/index.php?p=downloads
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In addition, the following assumptions apply to our study: (i) when the edge server

k that hosts the SDT is colocated to the same BS which its corresponding device, i, is

connected to, then dik = 0, Lik = 0; and (ii) when two SDTs are placed at the same

edge server (i.e., dkl = 0, ∀k = l), then Lkl = 0. The first assumption is commonly seen in

the literature [49] and permits omitting the delay experienced over the radio interface. The

second one disregards intra-edge server latency.

We evaluate the performance of the proposed model against a baseline approach, i.e.,

Closest Edge Placement (CEP), according to which digital counterparts of IoT objects are

deployed at the closest edge server, ignoring social components. Therefore, the CEP opti-

mization problem can be written as

min
x

∑
i∈VP

∑
k∈VS

xikLik, (2.17)

while satisfying the same constraints as per the SoCEP optimization problem.

The following metrics are determined for assessment purposes:

• Average latency among SDTs of friend IoT devices is the average latency between each

pair of edge servers hosting SDTs whose corresponding physical devices are friends.

• Average latency for friends browsing contains the latency between an IoT object and

the edge server hosting the associated SDT and the latency for browsing, one-by-one, all

friend devices’ SDTs hosted in the edge infrastructure.

Performance Analysis

In this subsection, we assess the performance of the proposed SDT placement framework,

SoCEP, against the benchmark approach, CEP, when varying the maximum latency, Lmax,

Fig. 2.3: Latency among SDTs of friend IoT devices, Γ = 20 [1].
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Fig. 2.4: Latency among SDTs of friend IoT devices, Γ = 40 [1].

Fig. 2.5: Latency among SDTs of friend IoT devices, Lmax = 5 ms [1].

in the range 0 − 14 ms and the edge server’s capacity, Γ , in the range 20 − 60. One can

see that the proposed in this Chapter solution highly outperforms the benchmark solution

with gains up to 35.1% and 56.7% for Lmax = 14 ms (as shown in Fig. 2.3 and Fig. 2.4,

correspondingly) and up to 20.6% and 55.7% for Γ = 60 (as shown, respectively, in Fig. 2.5

and Fig. 2.6).

In Fig. 2.7 and Fig. 2.8, we examine the proposal’s effectiveness in providing low latency

in browsing the friends by the SDTs. The results indicate that the proposal is faster than
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Fig. 2.6: Latency among SDTs of friend IoT devices, Lmax = 7 ms [1].

Fig. 2.7: Latency for friend browsing, Γ = 40 [1].

the CEP browsing approach. When the maximum latency Lmax reaches 10 ms and Γ = 40,

delay values are more than halved. This observation is essential since it demonstrates that

accounting for social features in SDT placement enables one to enhance the browsing process

considerably.

We solve the problem optimally by using a branch-and-bound algorithm, a variation

of the exhaustive search approach that considers an acceptable solution set. In general,

the computing complexity of such accurate methods is exponential. The problem difficulty
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Fig. 2.8: Latency for friend browsing, Lmax = 7 ms [1].

increases in proportion to the problem size. Furthermore, we point out that the problem size

and constraints impact the computational complexity. From Table 2.4, one may deduce that

the relaxation on the maximum latency, Lmax, slows down the process of finding optimal

solutions. This trend can be explained by the rise in the number of acceptable placement

alternatives for hosting SDTs at the edge.

For less stringent latency limitations, the provided computation time values become

acceptable. As a result, the next step (see Section 2.2) is to construct an efficient (in terms

of computing time) heuristic algorithm that can address the problem in large networks while

focusing on the SoCEP objectives with minimal compromise in solution optimality.

Table 2.4: Computation time.

Lmax 3ms 3.5ms 4ms 4.5ms 5ms 5.5ms 6ms 6.5ms >7ms

Time 1.6 s 3.7 s 5.8 s 7.1 s 46.8 s 1534.4 s 2601.5 s 2718.4 s 4380.9 s

2.1.5 Discussions

In this section, we presented a solution for DT placement at the edge, which accounts for

proximity requirements and relationships among IoT devices established according to the

SIoT paradigm. We have formulated the proposal as an optimization problem and obtained

promising results. Indeed, the proposal can contribute to making the SIoT more viable by

reducing browsing procedure times.

some devices may require the quicker engagement of certain SDTs compared to others.

As a result, the type and number of social links in the social graph may be used to construct
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the cost function by weighing the latency contributions between SDTs of friend devices. Fur-

thermore, more intelligent placement solutions that take into account network deployment

features, IoT device types, and mobility patterns are of particular importance to our research

contributions. In the next section (Section 2.2), we address these issues by offering a place-

ment framework and orchestration policies for the dynamic SDTs.
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2.2 Social Digital Twin Orchestration Under Mobility

By 2050, there will be 24 billion linked devices [88], indicating that almost every thing

around us, such as wearable gadgets, mobile phones, robots, electric meters, automobiles,

and streetlights, will be connected to the Internet. Such devices will allow end-users to

experience a broad range of novel applications, such as AR/XR and autonomous assisted

navigation [89], which require high throughput, low latency, high reliability, and ubiquitous

availability.

Despite the fact that 5G networks are being deployed in several countries, the require-

ments of most of the aforementioned applications are still poorly met, pushing the researchers

to focus on B5G solutions by 2030. DTs appear to be the game-changer needed to enable the

digital transformation and meet the constantly growing connectivity, computing, and storage

demands of massively deployed heterogeneous IoT devices in 5G and beyond network use

cases [90].

Connectivity between physical and virtual counterparts, i.e., DTs, is an open issue at-

tracting considerable interest, especially in guaranteeing real-time data transfer [91]. To this

aim, there is a broad consensus on placing DTs at the network edge to ensure low-latency

interactions with their physical counterparts located in proximity [35,38]. However, the deci-

sion about the placement of DTs has to account for the limited and heterogeneous resources

at edge servers. Such a decision becomes even more complicated when considering mobile

devices in the physical realm that constantly trigger DT migrations among edge servers to

ensure proximity to the physical devices. Recent works have addressed these issues; for in-

stance, DRL and an algorithm based on iteratively solving a series of minimum graph cuts

have been leveraged, respectively, in [75] and in [37], to approximate the optimal placement

solution.

Another feature, which adds constraints to the placement policy, is the possibility for

physical devices to establish mutual social relationships, e.g., according to the SIoT paradigm,

which has gained tremendous popularity in recent years in the IoT research arena [10, 19].

A social network of devices is created by establishing and maintaining different types of

Relationships, such as Co-Location, Ownership, and Parental, among others [19]. Indeed,

IoT applications can be conceived to leverage data and services provided by “friend” devices.

Their discovery may be facilitated with the presence of SDTs at the edge, used to expose the

mentioned resource/services on behalf of the physical devices and keep track of the dynamic

social relationships among their physical counterparts. Consequently, placement of SDTs

might also be implemented to make social network browsing quicker and more effective.

In light of the aforementioned, it is evident that the dynamic placement of DTs with so-

cial features at the edge is a hard decision to be taken when both user-centric and operator-

centric demands need to be simultaneously met. In Section 2.1, the issue has been addressed

by formulating an initial optimization problem under basic conditions and without consider-

ing SDTs mobility, as the main objective was to provide a proof-of-concept of the introduced



26 2 Dynamic Social-Aware Interactions in Edge-Aided IoT

paradigm. In this section, we offer extended research that provides the contributions sum-

marized below:

• we offer an SIoT-edge framework, wherein the proposed placement of SDT strategy,

named eSoCEP, is a functionality of the ETSI ME orchestrator;

• we formulate the optimal placement of SDTs as a QAP that extends the preliminary

formulation in Section 2.1.1 by taking into account different types of IoT devices, their

social capabilities, mobility patterns, and the limited computing resources of edge servers;

• we propose an approximation approach to find near-optimal solutions;

• we evaluate the performance of proposals against benchmark solutions;

• we analyze the SIoT-edge system under device mobility settings and define the selection

of the time interval duration between consecutive runs of the SDT deployment policy.

The rest of this section is organized as follows. In Subsection 2.2.1, the SIoT-edge frame-

work is introduced. In Subsection 2.2.2, the optimization problem is formulated, whereas in

Subsection 2.2.3, an approximation algorithm and relaxation techniques for the SDT place-

ment are described. Simulation results are reported in Subsection 2.2.4. The main findings

and conclusions of the study are summarized in Subsection 2.2.5.

2.2.1 Orchestration

This subsection presents a general overview of the proposed SIoT-edge framework for the

dynamic placement of the SDTs. The reference architecture consists of a real-world layer

and a virtualization layer (see Fig. 2.9).

The real-world layer represents the physical world that accommodates IoT objects in-

terconnected through facilities. Social relationships among objects are assumed and set up

according to the SIoT paradigm [19]. The virtualization layer is responsible for hosting the

SDTs, digital representations of real devices [92]. They provide the distinctive capabilities of

a digital counterpart, such as caching and aggregation of the raw data supplied by IoT devices

before processing by IoT applications. In addition, the SDT retains information defining the

device type and the SIoT links that have been formed.

SDTs are installed as a virtualized ME application (through containers) and deployed in

edge servers. According to the ETSI MEC architecture, the latter, defined as ME hosts, may

be connected with BSs/APs [93]. To align our proposal with the ETSI MEC architecture [93],

the SIoT-edge framework components, as shown in Fig. 2.10, are considered.

The ME orchestrator in the ETSI MEC architecture has visibility of the edge network’s

capabilities, which is composed of several ME hosts, and determines the most suitable ME

hosts for instantiating the applications (i.e., ME apps) based on application requirements,

available resources, and mobility conditions. The orchestrator initiates the migration opera-

tion if a virtualized application has to be migrated.

The ME orchestrator determines the ME hosts where each SDT should be placed in the

envisioned architecture (see the corresponding functional module in Fig. 2.10). Furthermore,
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Fig. 2.9: Reference architecture [2].

Fig. 2.10: The SIoT-edge framework [2].

the ME orchestrator may communicate with an external SIoT server to receive information

about the existing social connections created by any given physical device to select the

most suitable placement for its SDT. The SIoT server, in particular, may keep track of the

profiles, relationships, and actions of SIoT devices. The device’s position information may

also be controlled and updated in the profile on the SIoT server.

2.2.2 Mathematical Characterization

In addition to the assumptions of the system model introduced in Section 2.1, the system is

assumed to operate according to discrete timing based on a sequence of time slots t∈T =

{0, ..., T} with the duration of τ (in minutes), introduced to capture the mobility features
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Fig. 2.11: SDT (a) placement and (b) migration [2].

and offer dynamic decisions. The assumption is quite common in the literature [38, 76, 94].

The Illustration of SDT placement and migration in case device i can move and change the

connectivity point is presented in Fig. 2.11.

We assume heterogeneity among edge servers, i.e., an edge server k has a finite amount

of CPU, disk, and RAM resources, denoted as aCPUk, aDk, and aRAMk, respectively [95].

Such servers are in charge of hosting SDTs, which are, in turn, associated with IoT devices.

SDTs can store data and perform processing, having specific CPU, disk, and RAM demands.

The latter ones are indicated for SDT i as CPUi(t), Di(t), and RAMi(t).

The probability pij(t), 0 ≤ pij(t) ≤ 1, reflects the intensiveness of the data exchange

between IoT devices i and j, and is associated with the SIoT links. It is straightforward to

assume that the pij(t) value is strongly correlated with the specific type of social relationship

established between the two physical devices [96]. An IoT device linked by an Ownership

Object Relationship (OOR) may need to frequently share data about the owner’s smart

home/car as well as her habits, preferences, and health status. This would not be the case

for POR. In case more than one relationship is established between two devices, the maximum

pij(t) value is utilized.

We formulate the optimal SDT placement problem by targeting the following main ob-

jectives:

• to jointly minimize the latency between each IoT device and its relevant SDT placed at

an edge server and the latency between friend SDTs, while accounting for the relationship

existing between the corresponding physical devices, and, hence, for the intensiveness of

the expected data exchange;

• to ensure that delay bounds on the interactions between IoT devices and their SDTs are

met whenever requested;
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• to guarantee effective utilization of the available resources for heterogeneous SDT de-

mands.

We define the objective function as a cost to be minimized, given the sum of two latency

contributions. The first component includes the latency experienced between a physical de-

vice and the corresponding SDT and is given by:

C1(t) =
∑
i∈VP

∑
k∈VS

xik(t)Lik(t), (2.18)

where xik(t) is the SDT placement decision variable and is equal to 1 if the SDT of device i

is placed at edge server k at time slot t, otherwise xik(t) = 0, i.e.,

xik(t) ∈ {0, 1}, ∀ i ∈ VP , ∀ k ∈ VS , ∀ t ∈ T . (2.19)

The second component of the objective function includes the latency among SDTs of

friend devices at time slot t, i.e., the time required to communicate and discover services

querying the friends on the virtualization layer, and is as follows:

C2(t) =
∑
i∈VP

∑
k∈VS

∑
j∈VP

∑
l∈VS

xik(t)xjl(t)pij(t)Lkl(t), (2.20)

where xjl(t) is the SDT placement decision variable, xjl(t) ∈ {0, 1}.

Hence, we define the total cost at time slot t as

C(t) = C1(t) + C2(t). (2.21)

Allocation Constraint is responsible for the placement of SDTs without replication. Since

each SDT is allocated only on one edge server, we have the following constraint for SDT

placement decision xik(t): ∑
k∈VS

xik(t) = 1, ∀ i ∈ VP , ∀ t ∈ T . (2.22)

Latency Constraint is compliant with the idea of meeting the proximity constraint for

the SDT of a given physical device and preserves a limitation on the latency between IoT

device i and its SDT deployed at edge server k, which is upper bounded by Lmaxi , i.e.,

Lik(t) ≤ Lmaxi , ∀ i ∈ VP , ∀ k ∈ VS , ∀ t ∈ T . (2.23)

Resource Utilization Constraints guarantee efficient resource utilization while preventing

the overload of a given edge server k. The constraints ensure SDT placement according

to edge server resource availability and guarantee that the capacity constraint (i.e., CPU,

THRCPU , disk storage, THRD, and RAM, THRRAM , utilization) for each edge server at

time slot t is not violated when multiple IoT devices simultaneously share the computing

resources to host the corresponding SDT at edge servers, ∀ k ∈ VS , ∀ t ∈ T :∑
i∈VP

xik(t)CPUi(t)

aCPUk
≤THRCPU , (2.24)

∑
i∈VP

xik(t)Di(t)

aDk
≤THRD, (2.25)

∑
i∈VP

xik(t)RAMi(t)

aRAMk
≤THRRAM . (2.26)
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The SDT placement problem can further be formulated as follows:

minC(t) (2.27)

s.t. (2.19), (2.22), (2.23), (2.24), (2.25), (2.26).

In each time slot t, an optimal placement can be obtained when solving (2.27) with the

exhaustive search.

Lemma 2. Optimal SDT placement in the dynamic large-scale SIoT-edge environment

problem is NP-hard.

Proof. We conducted the proof in Section 2.1.1 via a polynomial-time reduction from the

quadratic assignment problem, which is known to be NP-hard [82].

We aim to remove the nonlinearity of function (2.27), specifically (2.20), and perform

the linearization of the objective function. When elaborating C2(t), we first denote the cost

contributions related to the latency between the SDTs of IoT devices i and j placed at

edge servers k and l at time slot t, respectively, as Cikjl(t), by replacing pij(t)Lkl(t). We

reformulate (2.20) as follows [97]:∑
i∈VP

∑
k∈VS

∑
j∈VP

∑
l∈VS

xik(t)xjl(t)Cikjl(t)

=
∑
i∈VP

∑
k∈VS

xik(t)
∑
j∈VP

∑
l∈VS

xjl(t)Cikjl(t). (2.28)

We then define xik(t)
∑

j∈VP

∑
l∈VS

xjl(t)Cikjl(t) by introducing Fik(t) and express the

minimization of CL(t):

minCL(t) = C1(t) +
∑
i∈VP

∑
k∈VS

Fik(t), (2.29)

s.t.

fik(t)xik(t)+
∑
j∈VP

∑
l∈VS

xjl(t)Cikjl(t)−Fik(t)≤fik(t), (2.30)

Fik(t) ≥ 0, ∀ i ∈ VP , ∀ k ∈ VS , ∀ t ∈ T , (2.31)

where fik(t) is given by

fjl(t) =
∑
j∈VP

∑
l∈VS

Cikjl(t). (2.32)

2.2.3 Graph-Based Heuristic

In real situations, computing the optimal policy solution for SDT deployment is complex.

Indeed, the problem is NP-hard. The exhaustive search technique may yield a design for

a small network but has no practical use for large networks. In this subsection, we aim to

develop a simpler-to-compute approximation solution for the SDT placement problem that

achieves near-optimal performance. To simplify the original problem, the method conducts

a relaxing transformation, from which a graph-based heuristic is constructed.
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Algorithm 1: Graph-based Heuristic

1 Input: GP (t) = GP (VP (t), EP (t)); GS(t) = GS(VS(t), ES(t));

2 Output: VP (t)→ VS(t);

3 find sets of connected components GP ′(t) = GP (VP ′(t)), |GP ′(t)| = n such that

VP ′(t) ⊆ VP (t), EP ′(t) ⊆ EP (t),

∀u, v ∈ VP ′(t) ∃ (u, v),

∀u ∈ VP ′(t), w /∈ VP ′(t) ∄ (u,w);

4 MAXW ← 0;

5 while GP ′(t) ̸= ∅ do

6 for m = 1 : |GP ′(t)| do

7 find W (t,m) =
∑

i,j∈GP ′ (t,m) pij(t);

8 if MAXW < W (t,m) then

9 MAXW ←W (t,m);

10 GP ′
max

(t)← GP ′(t,m);

11 end

12 end

13 find spanning subgraph T (GP ′
max

(t)) such that

VP (T ) = VP (GP ′
max

(t))∧EP (T ) ⊆ EP (GP ′
max

(t)), |EP (T )| = [VP (GP ′
max

(t))|−1;

14 GP ′(t)← GP ′(t) \GP ′
max

(t);

15 find optimal mapping Π(t) = {π(t) : VP (T )→ VS};

16 end

17 return VP (t)→ VS(t).

Due to its practical and theoretical relevance and complexity, the QAP has drawn the

attention of researchers all over the globe. The QAP is one of the most challenging combina-

torial optimization problems. However, to the best of our knowledge, there is no theoretical

evidence for convergence of quality and computing time, particularly for large-scale dimen-

sion issues. In this work, we concentrate on reaching a short enough execution time while

guaranteeing a decent approximation of the optimal solution.

We provide an approximation approach based on a graph-theoretic solution for the SDT

placement problem. Algorithm 1 presents the pseudocode of the graph-based heuristic exe-

cuted for each time slot t ∈ T .

The formulation of the approximation solution in terms of graph theory is as follows.

Let GP (t) be a weighted connected graph, VP (t) be the set of vertices of graph GP (t)

corresponding to the SDTs, and EP (t) be the set of links of the graph GP (t) defining the

connections between the SDTs allocated at edge servers. Let VS(t) be a finite set of positions

intended for assigning vertices of the graph GS(t) corresponding to the set of edge servers.

Algorithm 1 begins with the definition of a connected component GP ′(t) of graph GP (t),

i.e., identification of individual connectivity components (line 3). It allows defining the num-
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ber of strongly connected components in which a path from each vertex to another vertex

exists. The algorithm considers each component separately (lines 5-16), starting from the

strongest one between vertices of a component (lines 6-12).

Then, Algorithm 1 finds an approximating spanning subgraph or, in other words, a

spanning tree (line 13). In the field of graph theory, a spanning tree T of an undirected

graph GP ′(t) is a subgraph that is a tree, which includes all of the vertices of GP ′(t) with a

minimum possible number of links. If all of the links of GP ′(t) are links of a spanning tree

T of GP ′(t), then GP ′(t) is a tree and is identical to T . The advantages of spanning tree

usage and, therefore, problem simplification are the following. First, constructing a spanning

tree takes a polynomial time when using well-known algorithms. Second, the problem of tree

placement can be solved relatively quickly.

We then perform mapping Π(t) (line 15) by placing the vertices of graph GP (t), assuming

that vertex i ∈ VP (t) is allocated in the position π(i) ∈ VS(t), such that any vertex of

VS(t) can either accommodate vertices of VP (t) or accommodate no vertices. The set of all

mappings of set VP (t) into set VS(t) is given by

Π(t) = {π(t) : VP (t)→ VS(t)}. (2.33)

We specify the following parameters. First, the distance Lik(t) between vertex i ∈ VP (t)

and position k ∈ VS(t), defined in terms of the latency of the connectivity between physical

device i and its SDT placed at edge server k. We refer to as distance Lik(t) the cost of

placing vertex i ∈ VP (t) in position k ∈ VS(t). We then define the weight of the edge pij(t)

associated with the probability of data exchanging between IoT devices; the distance Lkl

between positions k, l ∈ VS(t), defined in terms of the latency of the connectivity between

edge server k and edge server l. The cost of communication between vertices i, j ∈ VP (t)

placed in positions k, l ∈ VS(t) corresponds to Cikjl(t) = pij(t)Lkl(t).

As we aim to allocate the vertices of graph GP (t) in positions VS(t) by minimizing the

total cost of placing the vertices VP (t) to positions VS(t), the problem is formulated in terms

of mappings as follows:

min
π(t)∈Π(t)

{
∑

i∈VP (t)

L(i, π(i)) +
∑

i∈VP (t)

∑
j∈VP (t)

C(i, j, π(i), π(j))}. (2.34)

Algorithm 1 defines the most suitable positions to host vertices of the spanning tree

(T ) to minimize the cost of the spanning tree’s vertices assigned to the set of positions

GS(t) (2.34). The Algorithm finishes when all vertices of GP (t) are mapped onto positions

that belong to GS(t) by meeting constraints (2.19), (2.22)-(2.26).

Complexity Analysis: The computational complexity of Algorithm 1 is provided by

O(n) ·O(n) = O(n2),

where n is the complexity due to the while cycle across all |Gp(t)| = n vertices of graph

GP (t) in the worst case when the number of connected components of graph GP (t) equals

to the number of graph vertices (lines 5-16). For the second component, which is included
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in the while cycle, n represents the complexity to search for the biggest connected compo-

nent in terms of the number of communications between vertices (lines 6-12). Since initially

|Gp′(t)| = n and at each iteration one of the elements is deleted, this inner loop is executed

n times first, then n− 1, n− 2, and so on until at the last iteration, the inner loop runs only

once. The complexity of the sum 1+2+ ...+(n− 1)+n is challenging to be precisely deter-

mined (lines 6-12). Instead, we determine an upper limit for it, which is O(n). This means

that every time inner loop runs exactly n times. The complexity of lines 13-16 is O(1), but

it executes within while cycle, hence O(n · 1) = O(n), which does not affect the complexity

of the first component. Consequently, the maximum number of operations is in O(n2).

Differently, the optimal SDT placement problem in the dynamic large-scale SIoT-edge

scenario has been stated to be an NP-hard QAP. The NP-hard problems are solvable, but not

in polynomial time; that is, no solutions produce a result in O(nk) for any constant k ≥ 2.

In addition, QAP is one of the most difficult combinatorial optimization problems [98].

While theoretical, algorithmic, and technical advancements have resulted in considerable

improvements in the sizes of solvable problems for many well-known NP-hard problems,

QAP has remained a class that defies efforts to solve it except for extremely small sizes [98].

The QAP general form necessitates the inclusion of O(n4) cost terms for C2(t) [99]. The

minimum number of operations for the dynamic, large-scale SIoT-edge environment issue is

thus O(n4).

Therefore, the proposed heuristic guarantees a theoretical complexity substantially less

than the formulation of the optimal problem.

2.2.4 Performance Evaluation

This subsection aims to assess the performance of the proposed SDT placement optimiza-

tion strategy. First, we detail the simulation campaign, including the scenario, parameters,

benchmark schemes, and measures of interest. Then, using a simulator tool based on the

IBM ILOG CPLEX Optimization Studio 12.10.0 and Matlab R2021b software, we compare

the results achieved through the optimal and approximation solutions, i.e., the graph-based

and benchmark placement schemes. Simulation parameters are reported in the remainder of

the subsection and are gathered in Table 2.5.

Simulation Settings

Similarly to [87], we consider the city center of Santander (Spain), which has an area of

4 km x 4 km. We assume the hexagonal grid cellular layout, in agreement with the Third

Generation Partnership Project (3GPP) specifications [100], with M = 8 BSs. An edge server

is associated with each BS, in agreement with the ETSI documents [80].

We evaluate the proposal based on a realistic object behavior taken from the large dataset

generated in [87] that tracks device interactions based on real IoT objects and the Small

World In Motion (SWIM) mobility model [101]. SWIM is based on a simple intuition about
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Table 2.5: System parameters related to Section 2.2.

Area of interest Area: Santander, Spain [87]

Size: 4000m x 4000m [87]

Users Number: 50 (100)

Mobility pattern: SWIM [87,101]

IoT Devices Smartphones: 6% (12%), Cars: 15% (14%), Tablets: 12% (11%), Smart Fitness:

20% (24%), Smartwatches: 29% (25%), PCs (static): 1% (6%), Printers (static):

10% (2%), Home Sensors (static): 7% (6%)

Total number: 113 (328) [87]

Social network Probability of data exchange:

1 (OOR), 0.1 (C-LOR), 0.1 (SOR), 0.1 (POR)

*: 1 (OOR), 1 (C-LOR), 0.1 (SOR), 0.1 (POR)

Base stations Cell layout: 3GPP hexagonal grid [100]

Number of BSs: 8 [100]

Cell area radius: 450 m [100]

Intersite distance: 1350 m [100]

Edge servers Deployment: Co-location with BSs [80]

Number: Equal to number of BSs [80]

Distance: Geographical distance [37,38]

Latency: Proportional to the distance (with ϵ 3.33 ms/km [81])

CPU capability: 24000 MIPS [102]

Disk capability: 2 TB [102]

RAM capability: 24 GB [102]

Resource utilisation

constraints

CPU utilization threshold: 0.6 [103]

Disk utilization threshold: 0.9 [103]

RAM utilization threshold: 0.9 [103]

Disk Disk demands: Uniformly distributed in [10, 50] GB [95]

CPU demands /

RAM demands

High-CPU medium instance: 2000 MIPS/0.85 GB [104]

Extra large instance: 2500 MIPS/3.75 GB [104]

Small instance: 1000 MIPS/1.7 GB [104]

Micro instance: 500 MIPS/613 MB [104]

IoT devices-SDTs Distance: Geographical distance [37,38]

Latency: Proportional to the distance with ϵ 3.33 ms/km [81]

Proximity con-

straint

Physical device-SDT maximum latency: Uniformly distributed in [1, 10] ms [105]

human mobility, i.e., people often go to places close to their homes and the most popular

places. We consider two device density settings (i.e., portions of the dataset), namely, 50 and

100 users with N = 113 and N = 328 heterogeneous IoT devices, respectively, spanning from

static devices to consumer devices carried by users moving in the selected area of interest

(see Table 2.5 for the percentages of each type of IoT devices).

In edge facilities, an SDT is coupled with each IoT object and implemented as a con-

tainer [78]. To account for the heterogeneity of IoT devices without sacrificing generality, we

correlate SDTs with four types of containers (based on the respective device types) according

to CPU requirements [102–104], as shown in Table 2.5. For instance, cars with autonomous

navigation assistance and smartphones may demand a powerful CPU for their SDTs. In con-

trast, smartwatches, sensors, tablets, intelligent fitness devices, and printers may be linked

with small and micro instances, respectively. The maximum latency between a physical de-
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vice and its SDT is uniformly distributed within the interval [1, 10] ms [105]. The latency is

calculated according to the geographical distance between any two entities deployed in the

reference region [37,38,81].

Social relationships are associated with each device in the dataset. For the extracted 113

devices, the percentage of established relationships corresponds to 50%, 21%, 15%, and 14%,

for OOR, Co-Location Object Relationship (C-LOR), Social Object Relationship (SOR),

and POR, respectively. For the 328 devices setup, the percentage of established relationships

is as follows: 60% OOR, 8% C-LOR, 1% SOR, and 31% POR.

Unlike all the settings mentioned above, there are no specific clues about how to set the

parameter pij(t). Hence, without loss of generality, we consider a set of representative values

throughout the simulation campaign to understand their impact on the SDT placement

strategy compared to solutions oblivious to the social relationship information (see in the

following). In particular, we fix pij(t) = 0.1 for SOR and POR. The logic for these numbers

is that IoT devices with intermittent interaction (i.e., linked by a SOR) or belonging to

the same brand or product batch (i.e., tied by a POR) are not expected to exchange large

amounts of data frequently, but rather only in response to certain situations. For instance,

POR-connected devices may seldom share software updates. Data transfers between objects

of the same owner, i.e., those linked by an OOR, may be frequent and substantial, for

example, to synchronize personal/health data or monitor the smart home. Hence, we set for

OOR pij(t) = 1, and we vary it to be 0.1 and 1 for those devices tied by a C-LOR. However,

the strategy is flexible enough to accommodate other settings.

The entire simulation covers a time-lapse of 5 hours. Within this period, we first simulate

time slots, t, of duration equal to τ = 5 minutes [76]. Then, we vary this setting up to 30

minutes in steps of 5 minutes. We determine the best time slot duration based on the analysis

of simulation results. During each time slot t, we assume that the SDT placement does not

change [76,94].

We compare the optimal solution (labeled in the curves as eSoCEP with the following

approximation solutions and placement strategies:

• Approximation techniques:

– Proposed graph-based heuristic, as per Algorithm 1, labeled in the curves as eSoCEP

Heuristic [2].

– Local Branching (LB) [106], labeled in the curves as LB.

– Relaxation Induced Neighborhood Search (RINS) [107], labeled in the curves as

RINS.

• Placement strategies:

– SoCEP, labeled in the curves as SoCEP, which takes into account proximity and

social requirements. We also simulate the graph-based heuristic for SoCEP, labeled

in the curves as SoCEP Heuristic [1].
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– CEP, labeled in the curves as CEP, according to which SDTs paired with physical

devices are always placed at the nearest edge server by neglecting social features

[37,38,75,108].

– Static Placement, labeled in the curves as No Migration, is a strategy according

to which SDTs are initially placed at the nearest edge server and keep the same

placement throughout the whole simulation duration without migration possibili-

ties [47, 76].

For a fair comparison, a dynamic placement is also triggered at every time slot for both

SoCEP and CEP.

We evaluate the performance of proposed and benchmark solutions by leveraging the

following metrics:

• Average latency between IoT devices and their SDTs.

• Average latency among friend SDTs.

• Total number of migrated SDTs.

Performance Analysis

The first set of results aims to validate the effectiveness and efficiency of the proposed

eSoCEP heuristic (for both N = 113 and N = 328: average number of friend IoT devices

f = 4 for N = 113 and f = 5 for N = 328) when compared to the optimal solution, the

considered relaxation techniques, and the benchmark solutions for time interval duration

τ = 5 min [76], probability of data exchange pij(t) = 1 for OOR and pij(t) = 0.1 for C-LOR,

SOR, and POR. As shown in Fig. 2.12, eSoCEP and eSoCEP Heuristic preserve close values

for all considered metrics and under all device density settings. This is especially true for

the latency among friend SDTs, for which values are significantly lower compared to the

CEP and No Migration benchmarks. Instead, the device-SDT latency, although higher for

the eSoCEP Heuristic compared to the optimal solution, is in any case bounded by the

proximity constraint.

Furthermore, we examine the average latency among friend SDTs per relationship cate-

gory, as illustrated in Fig. 2.13 and Fig. 2.14 (time interval duration τ = 5 min [76], prob-

ability of data exchange pij(t) = 1 for OOR and pij(t) = 0.1 for C-LOR, SOR, and POR).

The optimal eSoCEP solution guarantees zero latency among OOR friends for N = 113 and

the lowest values for N = 328. This means that SDTs of friend devices are co-located in the

same edge server, in alignment with the targeted objectives, well captured by the parameter

pij(t) = 1. Higher latency values are measured for the other types of relationships. In partic-

ular, the highest latency values are experienced among POR friends in the case of N = 113

IoT objects because devices establishing such a type of relationship are more likely spread

throughout the topology.
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Fig. 2.12: Latency between an SDT and a device and among friend SDTs [2].

Fig. 2.13: Latency among friend SDTs per relationship type, N = 113 [2].

Next, we evaluate the computational complexity. To this end, Fig. 2.15 shows execu-

tion time as a function of the number of devices. We examine placement strategies with

simulations on an Intel (R) Xeon(R) CPU E5− 2620 v4 at 2.10 GHz with 19.7 GB RAM.

We start by comparing eSoCEP and SoCEP heuristics with the optimal solver. In

eSoCEP, the introduction of stricter constraints on latency and resource usage as well as a

linearization of the optimization function, which allows for faster optimal solution search,

leads to a significant reduction in complexity. Contrary to eSoCEP, the SoCEP strategy fails
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Fig. 2.14: Latency among friend SDTs per relationship type, N = 328 [2].

Fig. 2.15: Computational time [2].

to scale as the number of devices and the average number of friends increase. Moreover, we

note that LB and RINS (dashed lines) applied to the eSoCEP solution respectively decrease

the running time on average by 7.5% and 11.5% compared to eSoCEP for the average number

of friend IoT devices, f , equal to 4, and by 8.8% and 11.3% for f = 7.

From the results in Fig. 2.15, it further emerges that the eSoCEP heuristic outperforms

all the considered placement strategies and approximation solutions. It offers, on average,

43.3% and 46.9% reduction in the running time compared to the optimal solution for f = 4
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Fig. 2.16: Latency among friend SDTs [2].

and f = 7, respectively. For N = 328, such reduction is up to nearly 94%. Here, approxi-

mated spanning sub-graph usage is beneficial for the following reasons. First, generating a

spanning subgraph in polynomial time is feasible when applying well-known methods. Sec-

ond, the problem of tree location may be rapidly resolved. Regardless of f , the eSoCEP

heuristic maintains a low enough computing time. Such an observation on the scalability

of the suggested heuristic with the number of friends is especially relevant, given that IoT

devices are expected to form numerous relationships. Interestingly, the eSoCEP heuristic,

which represents a more advanced SDT placement technique, requires the same calculation

time as the simplest CEP method, whose exact results are shown in the following.

We have analyzed the results of the dynamic placement strategies when fixing the time

slot to 5 minutes, similarly to [76]. Fig. 2.16 reports the average latency contributions for

different time interval duration, τ , for the average number of friend IoT devices f=4, prob-

ability of data exchange pij(t) = 1 for OOR and pij(t) = 0.1 for C-LOR, SOR, and POR,

N = 113.

SoCEP and eSoCEP outperform other schemes in terms of latency among friend SDTs

(Fig. 2.16), indicating their capacity to account for social connection needs, as specified

by the formulated problem. Although close to 4 ms delay values are measured for the No

Migration policy, they are omitted from Fig. 2.17 to reduce redundancy.

From Fig. 2.17 (average number of friend IoT devices f=4, τ=20 minutes, probability of

data exchange pij(t) = 1 for OOR and pij(t) = 0.1 for C-LOR, SOR, and POR, N = 113),

interestingly, the proposed eSoCEP solution is more efficient than SoCEP. It can be observed

that it always triggers fewer migration events compared to SoCEP. As a consequence, the

overhead incurred by migration procedures is lower, i.e., a lower amount of data is exchanged
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Fig. 2.17: The number of migration events [2].

over backhaul links interconnecting the edge servers acting as the source and destination of

migrating SDTs. It can be further noted that, unlike latency metrics, the total number of

migration events is vulnerable to the time slot settings, t. Such a finding suggests further

investigating the results for a specific τ value, i.e., 20 minutes, which allows achieving a

trade-off between the number of migration events and the latency metrics.

2.2.5 Discussions

In this section, we developed a framework for the dynamic placement of DTs associated with

physical IoT devices establishing social relationships.

The proposed placement strategy considers the social characteristics of IoT devices, their

motion patterns, and the limited computational capabilities of edge servers. A QAP has been

developed to optimize SDT placement. We designed a heuristic to handle the complexity

of the optimization problem. The numerical results revealed that the proposed graph-based

heuristic preserves polynomial time complexity while maintaining results close to the optimal

solution.

The proposed placement, eSoCEP, achieves the goal of assuring the lowest latency among

SDTs of friend devices that are more likely to share data, such as those linked by OOR,

while ensuring adequate proximity between physical devices and their counterparts. Lower

latency among SDTs has two benefits: (i) it reduces network strain when SDTs exchange

data because packets transit fewer connections, and (ii) it ensures rapid interactions among

them, which is critical for service discovery methods that include traversing the social graph.

The eSoCEP heuristic is demonstrated to be efficient in terms of computation time when

compared to the benchmark solutions, with its execution even quicker than the most com-
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mon placement technique, CEP, which is myopic in terms of the need to assure closeness

among SDTs of friend devices. Furthermore, the eSoCEP heuristic is faster and more effi-

cient in terms of placement decisions than the heuristic for our previous approach, SoCEP.

In comparison with SoCEP, eSoCEP has fewer migrations. Hence, a lower communication

footprint is incurred since data must be exchanged from the source to the target edge server

whenever a migration is triggered to match a new placement decision.

However, when the latency limitations for communication between physical IoT devices

and their digital counterparts are not met, the placement selection can be dynamically ad-

justed. In this case, the difficulty of executing real-time DT replacement is connected not only

to the requirement to rerun the optimization model but also to the movement of the SDT from

one edge server to another (see, e.g., [109]). How to enable smooth migration among edge

servers is still an open problem in the literature. These concerns are addressed in the next

section (Section 2.3).



42 2 Dynamic Social-Aware Interactions in Edge-Aided IoT

2.3 Social-Aware Digital Twin Orchestration Under

Heterogeneous Mobility

The deficiencies of the 5G mobile system as a platform for SIoT applications are currently

driving research efforts toward B5G wireless networks [110, 111]. Such systems are envi-

sioned to revolutionize next-generation applications and services by ensuring intelligent and

autonomous operations. Moreover, recent progress in wireless communications, edge comput-

ing, and intelligent technologies are likely to fuel the growth of SIoT with pervasive sensing

and computing capabilities [112]. This will ensure seamless connections and autonomous

management among SIoT objects without human interaction, potentially changing indus-

tries and providing major societal advantages [113].

The constantly growing heterogeneity, fuelled by an avalanche of more intelligent and

capable SIoT devices, necessitates an order-of-magnitude improvement in energy efficiency

without sacrificing communication quality. The level of support provided by the operator

infrastructure affects resource utilization efficiency. To this end, user-centric and network-

centric techniques have been proposed to efficiently control user connectivity and improve

performance. The former relies on end-user decisions by improving connectivity patterns.

The latter entails a central coordinating unit to make decisions based on system-wide data

collected in a timely manner across the network. However, one of the crucial considerations

in both approaches is the re-optimization frequency [114]. It is related to the periodicity with

which the associated computing protocols might be run on the network infrastructure side,

as well as the actual device latency and user experience [115].

As for user-centric approaches, the higher the frequency of re-optimization, the closer

the system’s time-averaged performance will remain to the optimal state values [116–118].

However, due to prohibitive signaling and computation overheads, the re-optimization fre-

quency cannot be arbitrarily high in network-centric schemes. Moreover, in practice, the

re-optimization periods are fixed so that the resulting decisions are left intact for the re-

optimization interval. The constant re-optimization interval might lead to the following sit-

uations: (i) the system’s time-averaged behavior may deviate from the optimum due to

unexpected SIoT device mobility depending on the device type, time, space, and situation;

(ii) the system’s time-averaged behavior may trigger wasteful network resource usage, e.g.,

when the devices are static, i.e., during nighttime.

In this section, differently from recent academic and industry efforts, we study time-,

device-, space-, and scenario-depending network re-optimization intervals and their enablers

for optimal deployment of SDTs at the network edge proposed in Section 2.2 (as illustrated

in Fig. 2.18).

Specifically, we present the following contributions:

• we offer a review of device motion patterns that might depend on the time, the device

type, space, and the scenario;
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Fig. 2.18: Convergence of IoT device motion pattern and SDT reallocation on the

edge [3].

• we propose a design of social-aware orchestration comprising NFV, SDN, edge/fog and

cloud computing, DL-based user activity prediction, and sensing and tracking technolo-

gies;

• we evaluate the performance of the proposed orchestration;

• we analyze the re-optimization time interval concerning the impact on the service dis-

covery latency for traditional system design and co-design of localization, sensing, and

AI-driven communication and computation.

The rest of this section is structured as follows. In Subsection 2.3.1, a review of de-

vice motion patterns that might depend on the time (e.g., morning, day, evening, or night

hours), the device type (e.g., static sensor, cars, and wearable devices), space (i.e., environ-

ment), and the scenario (e.g., critical situation or everyday routine actions) is offered. In

Subsection 2.3.2, a social-aware orchestration comprising NFV, SDN, edge/fog and cloud

computing, DL-based user activity prediction, and sensing and tracking technologies. In

Subsection 2.3.3, a simulation campaign on the re-optimization time interval concerning the

impact on the service discovery latency for traditional system design and co-design of local-

ization, sensing, and AI-driven communication and computation is performed. Discussions

are drawn in Subsection 2.3.4.

2.3.1 Mobility Behaviour in Beyond-5G SIoT Environment

SIoT involves interconnected heterogeneous mobile devices with movements depending on

time, device type, space, and situation.
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Time-Dependent Mobility

Time is one phenomenon that affects SIoT device motion. Recent literature has been rich

in daily pattern examination. In [119], the days and hours with the highest level of mo-

tion activity have been analyzed. More specifically, there exist peak hours (i.e., 7 am–9 am,

12pm–1pm, and 4pm–6pm) and non-peak hours (i.e., 10 am–11 am). In [120], the morning

and evening peaks begin from 7 am and 5 pm and end at 8 am and 6pm.

Moreover, the motion patterns vary within the days of the week [121, 122]. The busiest

days are usually weekdays. In contrast to weekday trends, weekend pedestrian traffic displays

a consistent and progressive increase throughout the day, peaking in the early afternoon

and gradually decreasing in the evening. In addition to a deviation between weekdays and

weekends, each day has its peculiarity. For example, Friday evening hours are usually more

active than other weekdays [119]. Furthermore, the night activity is more frequent during

the night on weekends and Fridays than during Monday-Thursday time intervals [119,120].

Furthermore, the user motion patterns correlate with population growth. According to

the estimates in [119], the average annual growth rate of detections has been around 3.69%

with over 500 million devices identified by 2030. Research in this field indicated that other

factors, such as engagement with a specific device or application [5], environment (e.g., a

city with a specific regime) [119,120], or even a situation, may also influence user motion.

Device-Dependent Mobility

The next phenomenon that triggers deviations in mobility patterns is the device type, i.e.,

bicycles, trains, cars, sensors, or people with wearable devices, AR, VR, XR, holographic

glasses, and smartphones. This area is rich in research experiments and studies.

We first introduce the investigations for bicycle patterns [121] and compare them to

daily pedestrian motion. The first peak hours for bicycle activities correspond to typical

workplace start times and are often between 8 am and 10 am, whereas pedestrian activity

initiates one hour earlier. Around 2 pm, a second peak initiates (during people’s lunch breaks)

and terminates at 4pm in comparison with 12pm–1 pm, and 4pm–6 pm time intervals of

the boosted activity of pedestrians. Finally, at around 7pm, the evening peak hours begin

(typical end time of most workdays).

The weekend pattern differs from weekdays because it does not include the early morn-

ing peaks. Instead, 8 am is the least active hour. The activity continuously increases until

2pm, right before lunchtime, when it declines. After that, the activity rises again, follow-

ing a pattern similar to that seen during working days with peaks at 4pm and 8pm, but

the difference is less obvious than on working days [121]. Even though the bicycle activity

during the weekdays is somewhat close to pedestrian behavior, the weekend motion differs

significantly. Moreover, the speeds and paths taken to reach certain destinations vary, and

are specific to each device.
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Another set of investigations has been concentrated on analyzing XR glasses or Head-

Mounted Displays (HMDs) compared to mobile phone motion patterns. The findings are

consistent across research communities, demonstrating that XR usage results in diverse

movement patterns compared to mobile phone usage due to unique content presentation

and navigation experience [123]. More specifically, wearing an HMD causes movements with

shorter stride lengths, longer stance time, and higher speed variability. Furthermore, walking

of users engaged in message writing and audio recording, for example, is distinct in mobile

phone applications. Typing a message on a tiny phone screen necessitates much concentration

due to mobility restrictions, but voicemails can be received and transmitted without limita-

tion. Moreover, when walking with a cell phone while dual-tasking, walking pace changes are

substantially lower than when walking alone. Variations in single- and dual-task phases, on

the other hand, modestly lower head-up walking, validating XR stability and multitasking

sustainability [5].

Space-Dependent Mobility

Depending on the location, mobility patterns differ and have diverse degrees of unpredictabil-

ity [121, 122]. Although human movements and activities fluctuate over time and across

sites, there is a pattern of geographical dependence in the observed activity and information

flow [124].

As an example of motion that is dependent on location, the study of bicycle traffic [121]

found that the average patterns of activity at individual bicycle stations (local activity

cycles) differ from the global patterns presented in Section 2.3.1. The peaks of activities

near a university are between 8 am and 1 pm, which is typical for an institution that offers

morning classes or workplaces. However, the second peak in the afternoon begins at 3pm

and ends at 4 pm. This could be due to people leaving the institution for lunch or a shift

change between morning and afternoon classes. Finally, after 8pm, there is a spike in the

activity, most likely due to the popular nearby area of bars and restaurants. Moreover, the

weekend activity patterns begin later than during the weekdays.

Another site that has been investigated in [121] is next to a hospital and office buildings.

The increase in activity in such locations is at around 8 am, which is more likely to be caused

by a steady work schedule in businesses or hospitals than fluctuating start times of university

courses. Typical residential districts, where people leave in the morning and return later in the

afternoon or evening, exhibit the opposite behavior compared to the above-mentioned sites.

Furthermore, places next to malls on weekends show a unique bimodal distribution, possibly

due to the attraction of afternoon visitors [121]. These studies only cover a small portion of

the research on mobility that is dependent on location. Still, one may see the complexity of

the motion behavior considering heterogeneous SIoT devices in various environments.
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Situation-Dependent Mobility

Finally, we analyze situations different from everyday life, i.e., emergency scenarios. There

might appear unexpected but situation-triggered peaks in activity [125]. On the other hand,

it may result in complete cessation of movement (such as during a lockdown). Despite the

apparent necessity for such research, few works can be found in the literature due to a lack

of data on spatiotemporal movement patterns during catastrophes, disasters, or other rare

events [124].

In summary, device mobility is an aspect of SIoT systems that depends on various factors

such as time, device type, space, and situation, not to mention other features, i.e., age of

users and family status [126], which are out of the scope of our work. However, these behavior

patterns are expected to affect service discovery procedures, depending on the SDT placement

at the network edge, and introduce new challenges, especially in systems that rely heavily on

large amounts of data, i.e., SIoT systems.

2.3.2 Social-Aware Orchestration

We overview social-aware service discovery and the framework for SDT placement at the

network edge. We propose an advanced orchestration in B5G-IoT ecosystems that can address

the above-mentioned mobility issues.

Service discovery involves discovering the objects that offer services relevant to the users.

When objects submit a request to find nearby objects/services, the request is matched with

the available objects/services that exist in their exact or nearby location and match their

preferences and interaction history. The requester receives a list of all applicable objects/ser-

vices that fulfill their quality of service level [127,128].

The following classification of discovery systems is based on the physical features of the

SIoT objects and their surrounding environment:

• Location-based service discovery establishes a spatial social structure among objects.

• Time-based service discovery identifies services by constructing a temporal social struc-

ture among objects.

• Spatiotemporal-based service discovery finds services by constructing a spatiotemporal

social structure among objects.

• Event-based service discovery uncovers services by building social relationships between

objects based on real-world occurrences.

Therefore, applications and services might leverage data and resources provided by the

social network of IoT objects when services use data from particular categories of friend

objects. To this end, the SIoT builds social structures between IoT objects and people that

intend to deliver services as follows. Parental object relationships are utilized when a software

patch might need to be delivered to devices or sensors of the same brand or model. In the

case of person-level service, certain data might reach all other devices belonging to the same
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Fig. 2.19: Framework for SIoT communications [3].

user linked by an OOR. Devices that are currently in the same area frequently and visit

the same location may be marketed with business services linked by C-LOR and Co-Work

Object Relationship (C-WOR), respectively. SOR covers composite services that can be

created using the resources given by the resource chain [129].

Existing Orchestration

We offer a short overview of the SIoT communication framework [2] (partially presented in

Section 2.2) that ensures effective service discovery and comprises the real-world and the

virtualization layers (see Fig. 2.19). The real-world layer accommodates SIoT devices that

can be either connected via D2D and/or with other remote entities, either through a gateway

node (e.g., a smartphone) or directly through the 5G/B5G Radio Access Network (RAN)

facilities. The virtualization layer is in charge of hosting the SDTs, which provide storage

and computing capabilities to physical devices.

The SDT stores information on all the social links created by the corresponding phys-

ical device according to the SIoT paradigm [19]. Specifically, the SDT holds information

specifying the friend device type and SIoT relationship. They are installed as virtualized ap-

plications, i.e., containers, on edge servers (ME hosts), which are associated with BSs/APs.

The RAN may encompass both 3GPP and non-3GPP access.

The ME orchestrator is aware of the resources and capabilities of the edge network,

which comprises multiple ME hosts, and determines the most appropriate ME hosts for

instantiating applications based on requirements (e.g., latency, processing requirements),

available resources, and mobility conditions. In addition, an SDN controller may organize the

backhaul links interconnecting BSs/APs and, therefore, ME hosts. In the architecture, it is

responsible for determining the ME hosts where each SDT should be installed. Furthermore,
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Fig. 2.20: Localization, sensing, learning, communication, decision making, process,

and control loop [3].

the ME orchestrator may interface with the SIoT server to receive information about the

social links between devices to determine the optimal placement of SDTs.

Proposed Orchestration

Because user mobility is one of the inherent features of massive wireless networks, the small

range of microwave, Millimeter Wave (mmWave), or even Terahertz (THz) networks/cells

may cause handovers and switching among edge servers to ensure fast and reliable oper-

ation. However, relying solely on frequent switching of edge servers and handovers is not

efficient from a network standpoint, as it results in the wastage of many resources without

any improvement in service delivery. Therefore, seamless and well-orchestrated integration

should be incorporated in B5G systems, especially when considering high dynamic and dense

deployment scenarios, power- and battery-constrained devices, and communication require-

ments, among others, to maintain optimum system state (i.e., optimal deployment of SDTs

at the network edge).

To this end, the orchestration must incorporate Machine Learning (ML) and AI, such as

DL-based user activity prediction, along with sensing and tracking technologies that will be

employed to learn about the static and dynamic system components as presented in Fig. 2.20.

High-level localization and sensing can be obtained from low-level raw measurements, e.g.,

Channel State Information (CSI), Received Signal Strength Indicator (RSSI), between peers

via Device-to-Device (D2D) communications [130], and from local area networks, such as

Wi-Fi. Moreover, D2D links can facilitate localization and sensing through cooperative po-

sitioning [131]. First, peers can exchange necessary data, such as common physical layer

estimates and position information, to increase positioning accuracy. Alternatively, with the
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implementation of D2D communications, peers inherently receive signals from one another

that provide additional signal observations and may be used for location estimation.

The information about SIoT object location obtained through the localization and sens-

ing techniques is further sent to the AI-based learning component. At this stage, motion

information predictions for all devices are obtained for a given time interval. The outputs of

the learning model might be time-, device-, space-, and scenario-dependent physical motion

predictions, which are sent to ME hosts. Then, at the communication component, contexts

shape the actions and form conditions for objects to comprehend their actions to allow data

transmission prediction, which also depends on the object latency requirements. The deci-

sion on the SDT re-deployment is then taken based on the data transmission predictions

for all SIoT devices over the time period for which motion has been predicted. This ensures

an intelligent SDT re-deployment since the data is analyzed about all devices in the system

and over a particular time, avoiding triggering redundant reallocations of SDTs. Intelligent

storage and distributed processing capabilities enable the fusion of sensor data for detecting

trends and deviations, helping make decisions on edge server switching and handover. At the

final stage, re-deployment is triggered and controlled.

As a component of the social-aware orchestration (see Section 2.3.2), the localization,

sensing, learning, communication, decision making, process, and control loop is anticipated

to guarantee an optimum system state with reconfigurable re-optimization frequency and

intelligent network resource consumption.

2.3.3 Performance Evaluation

Our analysis of IoT device/user motion reveals that mobility patterns differ among heteroge-

neous devices, locations, situations, and over time, holding diverse degrees of unpredictabil-

ity. This can result in either an inability to meet user-specific requirements or inefficient

use of network resources. To characterize the impact of IoT device motion on the user- and

network-centric parameters and validate the novel orchestration for optimal SDT placement

and efficient reallocation, we evaluate the performance in terms of service discovery delay

and re-optimization frequency. The simulation campaign is based on Section 2.2. However,

to make this section self-contained, we outline the scenario of interest and simulation pa-

rameters gathered in Table 2.6. We then offer selected numerical results in the following.

Simulation Settings

We study Santander (4 km x 4 km) city center and assume a 3GPP-compliant hexagonal grid

with 8 BSs, each co-located with an edge server. We assess the concept using realistic object

behavior [87] that records device interactions based on actual IoT objects and the SWIM

mobility model. We assess settings with 100 users and 328 heterogeneous static and dynamic

IoT devices. Each IoT device has an SDT implemented as a container at the edge. We asso-

ciate SDTs with four kinds of containers according to CPU demands. Cars with autonomous
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navigation and cellphones may need high-CPU SDTs, but smartwatches, sensors, tablets,

smart fitness gadgets, and printers may demand small or micro instances. The maximum

delay between a physical device and its SDT is within 1 − 10 ms. The simulation covers a

5-hour time-lapse. Within this period, according to the proposed framework, re-optimization

for the placement of SDTs triggers on-demand, whereas, for benchmark schemes, we set re-

optimizations every 1, 5, 10, 15, 20, 25, and 30 minutes. We assess the service discovery

latency for the device setting (see “all” devices) as well as specific categories of devices (see

results for “smartphones”, “cars”, and “smartwatches”).

Table 2.6: System parameters related to Section 2.3.

Area of interest Santander, Spain (4 km x 4 km)

Number of Users 100

Number IoT Devices 328

Cell layout 3GPP hexagonal grid, 8 BSs with cell area radius: of 450 m and intersite

distance of 1350 m

Edge servers Co-located with BSs

CPU, DISK, and RAM capability 24000 MIPS, 2 TB, and 24 GB

Disk demands Uniformly distributed in [10, 50] GB

CPU and RAM demands 2000 MIPS, 0.85 GB; 2500 MIPS, 3.75 GB; 1000 MIPS, 1.7 GB;

500 MIPS, 613 MB

Latency requirement Uniformly distributed in [1, 10] ms

Performance Analysis

In Fig. 2.21, one may observe that the proposed architecture improves average service dis-

covery time by up to 1ms, which is critical for delay-sensitive applications. We note that

average service discovery latency includes the delay associated with the connection between

an IoT device and the edge server hosting the corresponding SDT and the delay needed

to reach the SDTs of friend devices one by one. Given re-optimization statistics, the esti-

mated overall latency reduction when employing the proposed method compared to average

re-optimization values is 9%. Moreover, the difference between the median, which separates

the higher half from the lower half of the data, and the proposed novel orchestration is up to

10.5%. Furthermore, the proposed solution demonstrated an improvement of 13% in latency

compared to results obtained using various re-optimization intervals.

The overall re-optimization has been triggered 58 times utilizing the proposal (in com-

parison with 300, 60, 30, 20, 15, 12, and 10 times). The average number of migrated SDTs is

6.2, whereas every 1, 5, 10, 15, 20, 25, and 30 minute re-optimizations trigger on average 3.1,

5.4, 8.1, 9.8, 10.4, 13.5, and 11.8 migration events, respectively. The total number of migrated

SDTs within 5-hour time-lapse corresponds to 360 when utilizing the novel orchestration and

930, 324, 243, 196, 156, 162, 118 for fixed optimization intervals.
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Fig. 2.21: Service discovery latency assessment [3].

As per our additional results, we extend the simulation to the 24-hour time-lapse and

assess the re-optimization frequency for the proposed orchestration and benchmark solutions.

For 113 IoT devices, ranging from stationary equipment to mobile consumer devices carried

by mobile users in the region of interest (i.e., smartphones 6%, cars 15%, tablets 12%,

smart fitness devices 20%, smartwatches 29%, personal computers 1%, printers 10%, and

home sensors 7%), the reallocation of SDTs according to the novel orchestration has been

triggered 159 times. This frequency is lower than the re-optimizations that occur every 1

and 5 minutes.

2.3.4 Discussions

The proliferation of advanced IoT devices and sensors is expected to bring unpredictability

to device mobility, which might significantly affect system performance, demanding frequent

network re-optimizations. On the contrary, repeated re-deployment of SDTs might be in-

effective when the situation is almost static, such as during nighttime hours, resulting in

wasted network resources. We investigated the required network re-optimization intervals to

bridge this gap for effective SDT deployment at the network edge. We provided an overview

of device motion patterns that may vary based on time, device type, location, and scenario.

We then analyzed service discovery in SIoT systems and provided novel orchestration that

consists of NFV, SDN, edge/fog and cloud computing, learning-based user activity predic-

tion, and sensing and tracking technologies. Finally, we launched a simulation campaign on

the re-optimization time interval comparing conventional system design with the proposed

co-design of location, sensing, and AI-driven communication and computation. The results
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confirmed the effectiveness of the proposed novel orchestration from both user and network

perspectives.

We emphasize that the orchestration is intended to provide connectivity with extremely

low end-to-end latency, high reliability, and adaptability to current or future networks. This

includes immersive services such as XR, which is rapidly evolving towards likely mass adop-

tion, bringing new challenges and technical problems. In the literature, XR systems are an-

alyzed in steady-state operating conditions [132, 133]. However, due to recent findings in

XR interaction freedom, state-of-the-art solutions may have limited applicability to practical

implementations. The challenge is to address dynamicity and non-stationarity inherent to

immersive reality behavior. In the next Chapter (Chapter 3), we address this gap and pro-

vide system designers with a tool for evaluating the XR system components considering both

communication and computing perspectives.



3

Dynamic Behavior-Aware Interactions in

Edge-Aided IoT

This chapter focuses on dynamic behavior-aware interactions in edge-aided IoT.

In Section 3.1, we focus on a performance evaluation methodology for XR services in edge-

assisted networks. We offer a fluid approximation to characterize the XR content evolution

in dynamic networks. The proposed approach captures the time and space dynamics of the

content distribution process in its transient phase considering the computing plane.

In Section 3.2, we focus on a joint communication and computing performance evalua-

tion methodology for XR services in edge-assisted wireless highly directional networks. The

methodology is based on a fluid approximation and is particularly effective for the analysis

of non-stationary processes with periodic arrival rates. We note that, in these two sections,

we focus on the processes that tend to be in that transient phase and occur in the transition

between various steady-state conditions.

In Section 3.3, we focus on assessment methodology for XR systems. We investigate

the impacts of XR user mobility from the perspective of communication and computing. We

provide a review of mobility patterns in XR and a comprehensive simulation study of the

effect of interaction-dependent gait patterns on latency and resource utilization. The sources

of evidence on the impact of user movements on network operations are then provided. We

propose a case study for mobile XR that characterizes the system performance in terms of

user mobility, communication, and processing.



54 3 Dynamic Behavior-Aware Interactions in Edge-Aided IoT

3.1 Computing Performance Evaluation Methodology

XR, including AR/VR/MR, is unquestionably a widely discussed topic in the field of ad-

vanced audio-visual experiences [134, 135]. XR is a rendered representation of a supplied

audio and visual scene designed to simulate real-world sensory inputs in a lifelike manner for

the observer while a user moves within the constraints set by the program and the equip-

ment [136].

XR experiences may be categorized into Three Degrees of Freedom (3DoF) XR services

and Six Degrees of Freedom (6DoF) XR services based on the perceived experience. 3DoF

supports rotational user movement along the x, y, and z- axes, where (0, 0, 0) represents the

center of the user’s head, enabling the user to look around from a single fixed viewing point.

6DoF allows for movement and rotation within a 3D environment, enabling the user to freely

navigate an XR scene [137].

According to [138, 139], there are the following XR device technological specification-

based phases: fair-experience and comfortable-experience phases. Combined with versatile

video coding and light field rendering, the development of content and terminals yields an

ideal XR experience. The full-view transmission solution requires high network capacity to

support XR video services. Each phase involves advancements in XR device technology,

primarily in terms of hardware development. We can determine the service requirements for

each phase based on these specifications (see Table 3.1).

As the upper bound for actual XR requirements, i.e., data rate and communication

latency, we can relate to the limitations of human vision. Human eyes are capable of seeing

dots as small as 0.3 arc-minutes per degree, which can be translated to around 200 unique

dots per degree. Human eyes can mechanically shift across 150 degrees horizontally and 90

degrees vertically, requiring a region of 540 million pixels for full view. Adding the ability to

turn and rotate the body, the visual field can be expanded to 360 degrees horizontally and

approximately 270 degrees vertically. It would require a region of 3.888 billion pixels for full

view.

In this case, a static image requires up to 540 million/3.888 billion pixels. Multiple static

pictures are flashed in series for motion video. The human eye is capable of sensing motion

at a much faster rate, with some estimates reaching up to 200 frames per second. To avoid

motion blur and confusion, high-speed immersive experiences require at least 60 frames per

second and, in some cases, up to 120 frames per second. Moreover, other characteristics of

the human eye exceed current display technologies. The human eye is capable of perceiving

a contrast ratio of up to nearly 1 million brightness levels, requiring up to 8 bytes per pixel

to fully encode the perceptible color gamut for each screen.

Therefore, the upper limit corresponds to 15.2 Terabytes of data per second with 540

million pixels at 8 bytes per pixel at 120 frames per second. However, no digital system or

network in the foreseeable future can handle that kind of throughput. Fortunately, there is

significant redundancy in visual data that allows a great deal of compression depending on
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Table 3.1: XR network requirements.

Requirement Fair Experience Comfortable

Experience

Ideal Experience Human Visual

Perception

Commercial

application time

2018 2019-2020 2023-2025 -

Content full-view

resolution

4K 8K 12K

24K

-

Video full-view

resolution

(1080x1200x2) (1920x1920x2) (3840x3840x2)

(7680x7680x2)

(150x200x90x200)

(360x200x270x200)

Field-of-View 90◦-110◦ 120◦ 120◦-140◦ -

Color depth 8 8 10-12 8

Coding Standard H.264/H.265 H.265 H.265/H.266 -

Frame rate 50-90 90 120-200 120

Bit Rate 5.6 Gbps 15.93 Gbps 212.34 Gbps (12K)

849.35 Gbps (24K)

15.2 Tbps

11.1 Tbps

Bit Rate (20:1) 0.28 Gbps 0.8 Gbps 10.62 Gbps (12K)

42.47 Gbps (24K)

77.76 Gbps

559.9 Gbps

Bit Rate (300:1) 0.02 Gbps 0.05 Gbps 0.71 Gbps (12K)

2.83 Gbps (24K)

5.18 Gbps

37.32 Gbps

Network RTT 20 ms 15 ms 8 ms 8 ms

Packet loss rate 10−5 10−5 10−6 10−6

*Bit rate = 3 x Color depth x Full-view x Frame Rate / Compression ratio

the complexity of the images. Even with a high compression ratio of 300 : 1, which would

require powerful computers to encode and decode the compressed video, the data rate would

still be 5.18 GB per second. Current commercial 3D displays are not capable of providing

such high resolution.

However, XR is rapidly evolving toward likely mass adoption. To address dynamicity and

non-stationarity inherent to immersive reality behavior and assist network planning engineers

with a means to evaluate XR system performance, we offer the following contributions:

• we offer a practical methodology to characterize XR content evolution in dynamic net-

works as a continuous fluid considering the computing plane;

• we evaluate the performance of the proposed methodology based on a fluid approxima-

tion;

• we assess the XR system characteristics under different network settings;

• we offer practical conclusions for designing XR networks considering computing plane.

The rest of this section is structured as follows. The motivation behind the investigated

topic is presented in Subsection 3.1.1. The system model is outlined in Subsection 3.1.2,

whereas the proposed methodology is characterized in Subsection 3.1.3. In Subsection 3.1.4,

an evaluation campaign is offered. Discussions are drawn in Subsection 3.1.5.

3.1.1 Motivation

In the literature, XR systems are usually analyzed in steady-state operating conditions [132,

133]. However, due to the recent findings in the context of XR interaction [5], state-of-the-
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art modeling solutions may have limited applicability to practical implementations. The

challenge is, thus, to address the modeling of dynamicity and non-stationarity [140] aspects

inherent to operational behavior of modern immersive reality systems under conditions of

periodic arrival processes [141] to provide network planning and optimization engineers with

an effective means to evaluate XR system performance.

To examine time and space dynamics and capture the system effects in its transient

phase, the actual discrete number of users interested in the contents may be substituted

with the equivalent continuous fluid. Specifically, in [142], the fluid approximation is used to

model the evolution of calling/noncalling vehicles along a highway, whereas in [143] and [144],

the number of users retrieving the content and those who already have received the content

are considered as fluids. In [145], the volume of traffic in wireless sensor networks is modeled

using a macroscopic fluid dynamic model.

However, naturally, XR has a unique set of characteristics, i.e., novel form factors that

pose stringent requirements on the power consumption and heat dissipation of user devices

(since devices are worn on the body). Therefore, computations cannot be executed on the

XR HMDs or glasses, thus requiring task offloading to an edge server [146, 147]. To this

end, the computing plane must be considered when analyzing XR content evolution. In this

section, we close this gap and address dynamicity and non-stationarity of XR systems.

We offer a practical methodology to characterize XR content evolution in dynamic net-

works as a continuous fluid. Specifically, we model the non-static XR behavior with a de-

parture rate that strictly depends on the computing characteristics of edge nodes. We then

apply our methodology to assess the system characteristics under different network settings.

3.1.2 System Model

This section outlines the reference scenario and the system model assumptions on user dy-

namics and content distribution.

We consider an outdoor environment where multiple users engage in an XR interactive

experience through HMDs. As XR devices have limited computing performance due to the

constraints on size, power consumption, and heat dissipation, we assume that an HMD acts

as a thin client and receives the personalized video stream from a proximate edge computing

server.

Assumption 1. User State: A user is associated with one of the two states: (i) active in

the processing (computing) phase if awaiting and downloading the generated XR 360 video

from the server, or (ii) idle, otherwise.

Assumption 2. User Motion: We consider a one-way motion around the semi-infinite

pedestrian zone. For example, users may move from one site to another or follow a straight

route along the street. We note that the studied one-way formulation can easily be gener-

alized to the case of two-way traffic. The pedestrian zone is divided into K sub-zones (as
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Fig. 3.1: System illustration.

illustrated in Fig. 3.1), i.e., k ∈ K = {1, ...,K}. Both active and idle users move forward

within pedestrian zone k with a constant speed v.

Assumption 3. System Dynamics: We consider the following source of arrivals of active

and idle users into the system:

(i) zone 1: external active communicating/idle users with specified deterministic intensity λ;

(ii) zone k: active computing / idle users from zone k−1 arriving with the constant rate β;

(iii) zone k: transition from idle to active computing due to the initiated transmission with

the constant rate µa;

(iv) zone k: transition from active computing to idle due to the completed content processing

at the edge node.

Active users become idle only after processing the required content at the edge, i.e., after

passing through the processing (computing) state. In turn, idle users switch to the active

communicating state based on the content demand, and thus, the rate µa is constant.

Assumption 4. Processing (Computing) State: The BS/AP that serves zone k is associated

with an edge node, where multiple Virtual Machines (VMs) are utilized to implement parallel

processing of the content. To consider the input/output interference among VMs of the same

node, we introduce the degradation factor d [148], so that the individual share of available

resources in the case of Nac
k (t) users in the zone k is estimated as[

Nac
k (t)(1 + d)(N

ac
k

(t)−1)
]−1

. (3.1)

If Bc is the constant size of the downloaded content and Rc
0 is the total capacity of

elaboration that the edge server has, then the actual transition rate from their state of

active user in the processing phase (i.e., the processing of their content is ongoing) to that

of idle (i.e., the processing of their content has been completed), can be determined as

Cc(t)= 1

N
ac
k

(t)(1+d)
(N

ac
k

(t)−1)
· Cc

0 , (3.2)

where Cc
0=Rc

0/Bc.

For the sake of analytical tractability, we approximate (3.2) as
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Cc(t) = 1
N

ac
k

(t)(N
ac
k

(t)+α)
· Cc

0 , (3.3)

where α is a fitting parameter.

3.1.3 Mathematical Characterization

In this subsection, we outline the proposed methodology to assess the performance of a highly

dynamic XR system. We employ the method of fluid approximation, which allows replacing

integer-valued processes with deterministic real-valued ones and is particularly suited for the

analysis of non-stationary processes.

We denote the total number of idle and active users in the processing states in the zone k

at time t as Nd
k (t) and Nac

k (t), respectively, and consider them as non-negative real numbers.

Furthermore, let Cac+
k (t)/Cac−

k (t) denote the number of active computing users that

arrive to/depart from zone k during time interval (0, t]. Similarly, Cd+
k (t)/Cd−

k (t) represent

the respective number of idle users arriving to/departing from zone k during time (0, t]. We

note that for the sake of clarity, we further omit index (t).

The evolution of active and idle users in zone k is governed by a system of coupled

Ordinary Differential Equations (ODEs) for xk ≥ 0, 0 < t <∞, k ∈ K, as follows:
dN

ac
k

dt
≡ Cac+

k − Cac−
k ,

dNd
k

dt
≡ Cd+

k − Cd−
k ,

(3.4)

where

Cac+
1 (t) = λ+ µaN

d
1(t) and Cac−

1 (t) =
Cc

0

(Nac
1 (t) + α)

+ βNac
1 (t),

Cd+
1 (t)= λ+

Cc
0

(Nac
1 (t) + α)

andCd−
1 (t)=µaN

d
1 (t)+βNd

1 (t),

Cac+
k (t) = µaN

d
k(t) + βNac

k−1(t) and Cac−
k (t) =

Cc
0

(Nac
k (t) + α)

+ βNac
k (t),

Cd+
k (t)=

Cc
0

(Nac
k (t) + α)

+ βNd
k−1(t) andCd−

k (t)=µaN
d
k (t)+βNd

k (t).

We assume that the content requests start at time instant t = 0. The number of active

users during the computing phase and idle users, Nac
k and Nd

k , can be obtained by solving

the Cauchy problem (3.5):



dNac
1 /dt = λ+ µaN

d
1 −

Cc
0

(N
ac
1 +α)

− βNac
1 ,

dNd
1 /dt = λ+

Cc
0

(N
ac
1 +α)

− µaN
d
1 − βNd

1 ,

dNac
k /dt = µaN

d
k + βNac

k−1 −
Cc

0

(N
ac
k

+α)
− βNac

k ,

dNd
k/dt =

Cc
0

(N
ac
k

+α)
+ βNd

k−1 − µaN
d
k − βNd

k ,

under initial conditions: Nac
1 |t=0 = 0, Nd

1

∣∣
t=0

= M1, N
ac
k |t=0

= 0, Nd
k

∣∣
t=0

= Mk.

(3.5)
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We address the system (3.5) by substituting Nk = Nat
k + Nac

k + Nd
k and obtain the

following: dN1/dt = 2λ− βN1,

dNk/dt = βNk−1 − βNk.
(3.6)

By solving the first differential equation of (3.6), we obtain the number of users in

zone 1 as

N1 = C1e
−βt + 2λ

β
, (3.7)

where C1 = 2λ
β

.

By induction, we further obtain Nk:

Nk =

k∑
n=1

(βt)k−ne−βt

k − n!
Cn +

2λ

β
. (3.8)

Nac
k (t) and Nd

k (t) can be found by using the following expressions:

Nac
k (t) = Cacke

−βt +
2λ

β
, (3.9)

Nd
k (t) = Cke

−βt − Cacke
−βt, (3.10)

where Cack can be obtained by solving (3.5) for any zone k by substituting (3.9)-(3.10). This

technical task, however, is out of the scope of this work.

In summary, in this section, we offered a practical methodology based on a fluid ap-

proximation to characterize the non-static process of the XR content evolution. We derived

(3.8) to express the number of users Nk(t), ∀k ∈ (0, ∞), t ∈ (0, ∞), whereas the number

of active users during the processing phase and the number of idle ones can be obtained

from (3.9)-(3.10).

3.1.4 Performance Evaluation

This section compiles selected numerical results of the performance evaluation of a dynamic

XR system. The simulation scenario is modeled after a large social/public XR event, e.g., a

concert or an outdoor exhibition, where user devices offload extensive computations to the

edge. We study the time and space dynamics of the XR content distribution process captured

by the deterministic fluid model (A) and Monte Carlo simulations (S). The simulation data

agree with analytical results for all considered metrics of interest.

Simulation Settings

In simulations, the transition rate is defined as per (3.2), whereas when applying the ana-

lytical model, we employ the approximation of (3.2) provided in (3.3) with α = 0.12. We

examine the XR system performance in terms of the number of users for two scenarios re-

spectively characterized by (i) Bt = 100Mb, Bc = 150Mb, Rt
0 = 196Mbps, Rc

0 = 150Mbps

and (ii) Bt = 160Mb, Bc = 350Mb, Rt
0 = 150Mbps, Rc

0 = 150Mbps [149, 150]. Table 3.2

summarizes the main parameters [149,151–154].



60 3 Dynamic Behavior-Aware Interactions in Edge-Aided IoT

Table 3.2: Simulation parameters related to Section 3.1.

Parameter Value

Area 200m x 50m [151]

Carrier frequency, fc 28GHz [152]

Number of BSs 1 BS per zone [153]

Number of edge servers 1 server per zone [153]

User velocity 1.55 m/s [154]

Downloaded content size, Bc 150, 350Mb [149]

Edge node total capacity of elaboration, Rc
0 150, 150Mbps [149]

Fitting parameter, α 0.12

Transformation rate, µa 0.6−1 1/s

Arrival rate, λ 0.5−1 1/s

Performance Analysis

In Fig. 3.2 and Fig. 3.3, we observe that the number of active users involved in the processing

phase increases. As a result, the processing speed decreases, which causes rising delays. One

may also observe that at time instant t = 221s, users start to arrive at sub-zone 2, leading to

a gradual system unloading and a decrease in the number of users involved in the processing

phase in sub-zone 1.

We then consider the case of relatively heavy edge processing loads (please refer to Fig. 3.4

and Fig. 3.5). Differently from the previous setting, the number of active users drastically

increases. As a result, the bottleneck occurs during the processing phase.

Fig. 3.2: Performance assessment (number of users, zone 1): Bc = 150Mb, Rc
0 =

150Mbps.
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Fig. 3.3: Performance assessment (number of users, zone 2): Bc = 150Mb, Rc
0 =

150Mbps.

Fig. 3.4: Performance assessment (number of users, zone 1): Bc = 350Mb, Rc
0 =

150Mbps.

The main finding is that the computation procedure for processing XR video appears to

be very demanding in terms of computational resources. System designers may recourse to

both parallel and distributed computing to reduce the computation time for video processing

at the edge server.
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Fig. 3.5: Performance assessment (number of users, zone 2): Bc = 350Mb, Rc
0 =

150Mbps.

In this section, we assessed the effectiveness of the fluid approximation that captures the

time and space dynamics of the XR content distribution process in its transient phase con-

sidering the computing plane. We evaluated the XR system performance for different system

settings. We are confident that our proposed methodology and practical conclusions have

the potential to drive system designers to design computing immersive experience systems

effectively.

3.1.5 Discussions

In this section, we provided a methodology for characterizing the evolution of immersive real-

ity content in dynamic networks. The methodology considers the time and spatial dynamics

of the content distribution process during the computing plane. However, for designing XR

communication networks, it is vital to consider the communications component together with

the computing one. To this end, in the next section (Section 3.2), we focus on the content

distribution for XR services in edge-assisted wireless highly directional networks.
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3.2 Joint Communication and Computing Performance

Evaluation Methodology

B5G wireless networks are expected to substantially differ from the current systems in terms

of applications and services, interactions, and even devices, especially when comparing im-

mersion in different realities. As the consumer interest in various immersive applications

grows explosively, the XR technology rapidly evolves, offering more affordable, compact, and

powerful hardware coupled with rapid developments in software and connectivity. Recently,

XR freedom of mobility and interaction has been unlocked by introducing a 60GHz HTC

VIVE Wireless Adapter, which allows removing cables in a one-room environment, and later,

a 5GHz Oculus Air Link that utilizes available Wi-Fi connectivity [155], thereby shifting to

a new era of XR experience with the complete freedom of interaction.

As we mentioned in the previous section, by design, XR has a unique set of features, i.e.,

new form factors leading to strict requirements on user equipment power consumption and

heat dissipation. Therefore, computations (i.e., content elaborations) cannot be executed on

the XR HMDs or glasses, thus requiring task offloading to an edge server over a wireless

network. To this end, both communication and computing planes must be considered when

analyzing XR content evolution. In this section, we close this gap and address dynamicity

and non-stationarity of XR systems as follows:

• we offer a practical methodology based on a fluid approximation to characterize the XR

content evolution in dynamic wireless networks by capturing the time and space dynam-

ics of the content distribution process considering both communication and computing

planes;

• we evaluate the performance of the proposed methodology based on a fluid approxima-

tion;

• we assess the XR system characteristics under different network settings;

• we provide practical conclusions for designing XR wireless communication networks con-

sidering both communication and computing planes.

The rest of this section is organized as follows. In Subsection 3.2.1, we offer a practi-

cal methodology to characterize XR content evolution in dynamic wireless networks as a

continuous fluid. Specifically, we model the non-static XR behavior with a periodic arrival

process and assume a departure rate that strictly depends on the communication charac-

teristics of the 5G New Radio (NR) access technology. Simulation results are reported in

Subsection 3.2.2. The main conclusions of the study are summarized in Subsection 3.2.3.

3.2.1 Mathematical Characterization

In addition to the assumptions on the system model introduced in Subsection 3.1.2, in this

section, we consider both communication and computing planes.
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Fig. 3.6: Joint communication and computing system [4].

As XR devices have limited computing performance due to the constraints on size, power

consumption, and heat dissipation, we assume that an HMD acts as a thin client and receives

the personalized video stream from a proximate edge computing server over wireless (e.g.,

mmWave) connection.

A user is associated with one of the three states: (i) active in the communication phase

while sending the location and motion information to the server, (ii) active in the processing

phase if awaiting and downloading the generated XR 360 video from the server, or (iii) idle,

otherwise (see Fig. 3.6).

We consider the following source of arrivals of active and idle users into the system:

(i) zone 1: external active communicating/idle users;

(ii) zone k: active communicating / active computing / idle users from zone k−1 arriving

with the constant rate β;

(iii) zone k: transition from idle to active communication due to the initiated transmission

with the constant rate µa;

(iv) zone k: transition from active communication to active computing due to completed

transmission;

(v) zone k: transition from active computing to idle due to the completed content processing

at the edge node.

We assume a periodic external arrival rate with phase shift w
a/d
0 and angular frequency

wa/d for active/idle users. We limit the maximum and minimum values of the external

arrival rate by λ
a/d
1 and λ

a/d
2 , respectively, and, hence, the external arrival rate for actively

communicating and idle users at time t may be expressed as:

λa(t) = sin(wat+ wa
o )(λ

a
1 − λa

2)/2 + (λa
1 + λa

2)/2, (3.11)

λd(t) = sin(wdt+ wd
o)(λ

d
1 − λd

2)/2 + (λd
1 + λd

2)/2. (3.12)

Active users become idle only after completing the uplink transmission and processing the

required content at the edge, i.e., after passing through both communication (transmission)
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and processing (computing) states. In turn, idle users switch to the active communicating

state based on the content demand, and thus, the rate µa is constant.

Each zone k is served by a BS or AP that provides wireless connectivity to the users

within coverage. We assume resources at BS/AP, which are equally shared in time and/or

frequency among Nat
k (t) active users.

Furthermore, we assume that Bt is the constant uplink packet size and Rt
0 is the total

uplink capacity. In the case of Nat
k (t) participants, we may estimate the transition rate of

users from their status of active in the communication phase (i.e., transmitting) to that of

active in the processing phase (i.e., the processing of their content is ongoing), as

Ct(t) = 1

N
at
k

(t)
· Ct

0, (3.13)

where Ct
0 = Rt

0/Bt, whereas Bt is the constant size of the uplink packet.

We employ the method of fluid approximation, which allows replacing integer-valued

processes with deterministic real-valued ones and is particularly suited for the analysis of

non-stationary processes.

We denote the total number of idle and active users in the communication and processing

states in the zone k at time t as Nd
k (t), N

at
k (t), and Nac

k (t), respectively, and consider them

as non-negative real numbers.

Furthermore, let Cat+
k (t)/Cat−

k (t) and Cac+
k (t)/Cac−

k (t) denote the number of active

communicating and computing users that arrive to/depart from zone k during time interval

(0, t]. Similarly, Cd+
k (t)/Cd−

k (t) represent the respective number of idle users arriving to/de-

parting from zone k during time (0, t]. We note that for the sake of clarity, we further omit

index (t).

Table 3.3: Expressions for arriving/departing flows in (3.14).

Cat+
1 = λa + µaN

d
1 Cat−

1 = Ct
0 + βNat

1

Cac+
1 = Ct

0 Cac−
1 =

Cc
0

(N
ac
1 +α)

+ βNac
1

Cd+
1 =λd+

Cc
0

(N
ac
1 +α)

Cd−
1 =µaN

d
1 +βNd

1

Cat+
k =µaN

d
k +βNat

k−1 Cat−
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The evolution of active and idle users in zone k is governed by a system of coupled ODEs

for xk ≥ 0, 0 < t <∞, k ∈ K, as follows:



66 3 Dynamic Behavior-Aware Interactions in Edge-Aided IoT

dN
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k ,

dNd
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k ,

(3.14)

where variables C
d/a+/−
k are gathered in Table 3.3.

We assume that the content requests start at time instant t = 0. The number of active

users during communication and computing phases and idle users, Nat
k , Nac

k , and Nd
k can

be obtained by solving the Cauchy problem (3.15):
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under initial conditions: Nat
1 |t=0 = 0, Nac

1 |t=0 = 0, Nd
1

∣∣
t=0

= M1,

Nat
k |t=0

= 0, Nac
k |t=0

= 0, Nd
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(3.15)

We address the system (3.15) by substituting Nk = Nat
k + Nac

k + Nd
k and obtain the

following: 
dN1/dt = sin(wat+ wa
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dNk/dt = βNk−1 − βNk.

(3.16)

By solving the first differential equation of (3.16), we obtain the number of users in

zone 1 as

N1 = C1e
−βt +H, (3.17)

where constant C1 is determined by initial conditions; H and C1 are given by expres-

sions (3.18) and (3.19), correspondingly.
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(3.19)

Furthermore, using (3.17), we may obtain the total number Nk for k = i + 4m, where

i = 1, 2, 3, 4 and m ≥ 0 as follows:
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(3.20)

where parameters Z0, Z
a
1/2, Z
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Knowing the expressions for the total number of users, Nk, we may obtain Nat
k (t), Nac

k (t),

and Nd
k (t) separately as

Nat
k = Catke

−βt +H, (3.22)

Nac
k = Cacke

−βt +H, (3.23)

Nd
k = Cke

−βt − Catke
−βt − Cacke

−βt −H, (3.24)

where Catk and Cack can be obtained for any zone k by substituting (3.22)-(3.24) into the

initial conditions of (3.15). This technical task, however, is out of the scope of this work.

In summary, in this section, we offered a fluid approximation method to characterize

the non-stationary process of the XR content evolution with periodic user arrivals. We de-

rived (3.20) to express the total number of users, whereas the number of idle and active users

in the communication and processing states can be obtained by (3.22)-(3.24).

3.2.2 Performance Evaluation

This subsection compiles the results of a performance evaluation campaign of the XR system.

The simulation scenario is modeled after a large social/public event, such as a concert hall or

an outdoor set of exhibitions, when large crowds move from one XR immersive site to another.

We provide numerical results for the time and space dynamics captured by the deterministic

fluid model (A) and obtained through Monte Carlo (S) simulations. The simulation data

agree with analytical results for all considered metrics of interest.

Simulation Settings

During simulations, the transition rate is defined as per (3.2), whereas when applying the

analytical model, we employ the approximation of (3.2) provided in (3.3) with α = 0.12.

We examine the XR system performance in terms of the number of users, transmission

rate1/processing speed2, and latency for two scenarios respectively characterized by (i)

Bt = 100Mb, Bc = 150Mb, Rt
0 = 196Mbps, Rc

0 = 150Mbps and (ii) Bt = 160Mb,

1 Measured as Rt
0/(N

at
k (t)).

2 Measured as Rc
0/(N

ac
k (t)(Nac

k (t) + α)).
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Bc = 350Mb, Rt
0 = 150Mbps, Rc

0 = 150Mbps [149, 150]. Table 3.4 summarizes the major

parameters [149,151–154].

Table 3.4: Simulation parameters related to Section 3.2.

Parameter Value

Area 200m x 50m [151]

Carrier frequency, fc 28GHz [152]

Number of BSs 1 BS per zone [153]

Number of edge servers 1 server per zone [153]

User velocity 1.55 m/s [154]

Uplink packet size, Bt 100, 160Mb [149]

Downloaded content size, Bc 150, 350Mb [149]

Total uplink capacity, Rt
0 196, 150Mbps [150]

Edge node total capacity of elaboration, Rc
0 150, 150Mbps [149]

Fitting parameter, α 0.12

Transformation rate, µa 0.6−1 1/s

Phase constants, wa
o , w

d
o π, π/4

Angular frequencies, wa, wd π/32, π/16

Maximum altitudes, λa
1 , λ

d
1 2, 1

Min altitudes, λa
2 , λ

d
2 0, 0

Fig. 3.7: Performance assessment (number of users): Bt = 100Mb, Bc = 150Mb,

Rt
0 = 196Mbps, Rc

0 = 150Mbps [4].
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Fig. 3.8: Performance assessment (actual transmission rate/processing speed): Bt =

100Mb, Bc = 150Mb, Rt
0 = 196Mbps, Rc

0 = 150Mbps [4].

Fig. 3.9: Performance assessment (latency): Bt = 100Mb, Bc = 150Mb, Rt
0 =

196Mbps, Rc
0 = 150Mbps [4].

Performance Analysis

In Fig. 3.7, Fig. 3.8, and Fig. 3.9, we observe that the number of active users involved

in the communication and processing phases increases with a repetitive trend triggered by

the periodic arrival rate function. As a result, the uplink transmission rate and processing

speed decrease, which causes rising delays. The primary traffic bottleneck appears to be the
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Fig. 3.10: Performance assessment (number of users): Bt = 160Mb, Bc = 350Mb,

Rt
0 = 150Mbps, Rc

0 = 150Mbps [4].

processing phase at the edge servers. At time instant t = 221s, no more content requests

arrive at the system, leading to a gradual system unloading and a decrease in the number of

users involved in the processing phase.

The key discovery is that the computation process for processing XR video is highly

demanding in terms of computational resources. To address this issue, system designers can

resort to using both parallel and distributed computing approaches to reduce the computa-

tion time for video processing at the edge server.

In Fig. 3.10, Fig. 3.11, and Fig. 3.12, differently from the previous setting, the uplink

data rate drastically decreases. As a result, the number of active users involved in the com-

munication and processing phases is comparable, and the bottleneck occurs during both the

communication and processing phases.

The main finding is that both communication and computing planes are the key barriers

to meeting the requirement for real-time transmission of spatial information from XR and

video content processing. A B5G cellular network with multi-RAT multi-connectivity func-

tionalities might be a promising candidate for supporting such XR-aided system operations.

In this section, we assessed the effectiveness of the fluid approximation that captures

the time and space dynamics of the XR content distribution process in its transient phase

considering the communication and computing planes. We evaluated the XR system perfor-

mance for different system settings and identified the service bottleneck. We believe that our

proposed method and practical conclusions have the potential to inspire system designers to

create mobile communication and computing systems that deliver an immersive experience

effectively.
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Fig. 3.11: Performance assessment (actual transmission rate/processing speed): Bt =

160Mb, Bc = 350Mb, Rt
0 = 150Mbps, Rc

0 = 150Mbps [4].

Fig. 3.12: Performance assessment (latency): Bt = 160Mb, Bc = 350Mb, Rt
0 =

150Mbps, Rc
0 = 150Mbps [4].

3.2.3 Discussions

In this section, we provided the methodology to characterize the immersive reality content

evolution in dynamic wireless networks with non-stationary arrival processes, i.e., a periodic

arrival rate function. The approach captures the temporal and spatial dynamics of the content

distribution process while taking into account both communication and computing planes.
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We evaluated our analytical tool by testing it in different network configurations. As a result,

we presented system designers with a way to evaluate the XR system components as well

as provided immersive reality system characterizations that have significant implications for

their businesses. The proposed tool may also serve as a valuable instrument for developing

practical operational schemes and promoting ongoing standardization efforts.

However, as immersive interactions distract users from the real world and modify their

behavior and motion, which, in turn, may affect the network operations, communication pat-

terns need a profound transformation, which is investigated in the next section (Section 3.3).
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3.3 Joint Behavior, Communication, and Computing

Assessment Methodology

Mobile XR offers unique “anywhere anytime” interactive experiences such as real-time col-

laboration, training, and gaming, enabled by the ability to navigate virtual space through

physical movement [156]. Unlike traditional interfaces such as mobile phones or tablets, XR

submerges the users into a virtual world, enabling immediacy to complete immersion in dif-

ferent realities and distracting them from the surrounding environment [157]. While the XR

users can freely navigate around the area (e.g., a room or a pedestrian way) and circumvent

obstacles, such mobility might be affected by the patterns of use [158] and unique immersive

interactions [159–161].

Compared to traditional user behavior, using an HMD leads to shorter stride lengths,

longer stance times, and increased speed variability [159, 162, 163]. In addition, due to the

unique characteristics of XR content presentation and navigation, HMD wearers’ motion

patterns may vary significantly from those of mobile phone users. In typical mobile phone

applications, for instance, the walking patterns of people engaged in message writing and

audio recording are distinct [123]. Typing a message on a small phone screen requires intense

concentration and severely limits mobility, but voicemails may be received and transmitted

with fewer restrictions. Due to the improvements in user perception, this significant difference

in motion pattern may no longer define XR encounters.

The provided examples demonstrate that the XR uniqueness is derived not only from

the stringent application requirements, such as high peak data rate and low latency for

a fully immersive experience with a sense of reality but also from the interaction models

and motion patterns, which may impact network performance. It is anticipated that XR

applications would be adaptable and dynamic, necessitating a real-time reaction dependent

on communication and computation capabilities. In addition, since the mobility of an XR

user is likewise highly dependent on service provisioning, the output of such a system is

redirected to interaction and movement dependence, so establishing a feedback loop. The

convergence of communication, processing, and use/motion patterns (see Fig. 3.13) is the

next stage in developing advanced XR services and future communications in general.

By bridging the current research gap of investigating communication networks from the

perspective of user interaction patterns, this section uncovers the basic characteristics of XR

user behavior and mobility and identifies the associated communication and computation

challenges. First, we provide an assessment of user behavior patterns that verifies use case-

dependent changes in gait characteristics, including direction, velocity, stride length, step

width, and stance duration. In addition, we present the proof sources on the influence of

user movements on network operation. Finally, we propose a case study for mobile XR that

characterizes system performance in terms of user mobility, communication, and computa-

tion. We quantify the resulting interaction using system-level simulations and compare XR
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Fig. 3.13: Motion, communication, computing, and usage pattern loop [5].

with conventional mobile broadband services to determine the impact of use patterns on

wireless communications performance.

3.3.1 Application-Dependent Mobility

Mobility patterns are designed to accurately imitate user motion in various scenarios by

providing a realistic representation of real-world situations. Community-adopted mobility

models allow for assessing the impact of multiple parameters, such as speed, direction, dis-

tance, cadence (defined as the number of steps per minute), stride length, and stance time, on

the operation of communication systems. This subsection discusses XR-driven user behavior

patterns collected by the research communities from various fields outside communications

engineering, such as psychology, neuroscience, and intelligent transportation.

Multisensory immersion is one of the most influential elements of user behavior. Recent

literature is filled with reports of walking experiments in XR. Variations in gait charac-

teristics, which represent motion instability, have been intensively studied ever since the

groundbreaking work in [158], which has been supported by recent studies in [162]. In the

virtual world, individuals walk with wider step widths, shorter step lengths, and more velocity

variability. These differences have also been evaluated in immersive XR vs. walking in the

real world: the average walking speed reduces by 46%, cadence and stride length decrease

by 14% and 33%, respectively. Simultaneously, the stride width and stance duration rise by

18% and 7%, respectively [159].

Gait instability and variability are but one example of a phenomenon caused by sub-

merging into immersive XR. Another one is a different adaptation in physical and virtual

environments and related changes in circumvention – the process of avoiding obstacles and

barriers by steering the body in another direction. Such behavior, being a fundamental part

of daily routine, causes different adaptations in physical and virtual environments. When

employing immersive applications, avoiding collisions and seeking appropriate clearance for
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all parts of the human body need more cautious trajectory and speed adjustments, resulting in

a more “conservative” circumvention strategy [158,162]. Experiments on locomotor behavior

in the virtual environment have shown slight but discernible variations in paths, more signif-

icant maximum deviation, higher obstacle clearance, and slower speeds compared to walking

through obstacles in the real world.

Circumvention strategies have also been examined in real and virtual environments, with

other pedestrians being obstacles. In this case, circumvention patterns become role-dependent

by dividing opposing users into passing and bypassing. Subjects who engage in immersive ex-

periences have been found to have lower walking speeds and increased distances from potential

interferences [162]. However, as the number of repeated tests in the same environment grows,

this disparity narrows, but users still prefer more “conservative” circumvention strategies for

avoiding both stationary (items) and moving (other pedestrians) obstacles. The collision

avoidance tendencies in actual and virtual worlds are nearly equivalent.

Another series of experiments have been focused on multitasking, which is described

in neuropsychology as executing many tasks concurrently (typically two, which is referred

to as dual-task activity), and comparing multi-task and single-task performance. Speaking,

texting, and calculating impact overall walking performance by affecting pace, cadence, and

gait pattern [164]. The gait, in turn, affects multitasking efficiency. Paced motion reduces

user performance while doing dual-task. It makes walking more complicated, particularly

when the displayed material limits the visibility of surrounding items essential for active

dynamic locomotion [165].

Much research has focused on comparing the influence of mobile phones and XR wear-

ables (such as HMDs) on gait variability. The findings are similar across several study groups

and demonstrate that head-up tasks (those utilizing HMDs) decrease walking performance

less than head-down activities (those involving mobile phones) [123]. The walking pace drops

considerably for dual-task vs. single-task activity while using a mobile phone. The difference

in head-up walking between single- and dual-task operations is negligible, supporting XR

stability and multitasking resilience.

Equipment variety is another critical component that characterizes user motion. The

gait pattern, in particular, is susceptible to both hardware and software [162]. This fact was

discovered by testing XR wearables from various manufacturers, generations, and models.

The findings revealed a relation between user motion and the equipment model, influencing

walking metrics such as speeds (minimum, maximum, and average) and trajectories. Different

degrees of equipment usability (measured by temperature, texture, tightness, weight, size,

and shape) and perceived comfort in the virtual world (depends on image resolution, colors,

time perception, and degree of realism) cause the variety in user behavior patterns.

In summary, application type significantly influences user motion. Compared to tradi-

tional mobile phone usage, engagement in XR applications results in broader and shorter

steps and increased pedestrian pace fluctuation. Variations in gait characteristics arise from

the physical limits of the user equipment, the difference between the virtual and real worlds,
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and the unique immersive experience. Moreover, dual- and multi-task activities had a lesser

impact on the mobility of XR users than mobile phone usage, demonstrating the uniqueness

of immersive services. These unconventional behaviors of XR users may substantially affect

radio communications.

3.3.2 Mobility-Dependent Communication

On-the-go connectivity presents significant issues, particularly for data-intensive systems

such as immersive XR, which process large amounts of data. In this regard, we examine

enabling management and optimization strategies for mobility support in the context of

XR usage in the approaching B5G era. The future B5G technologies are expected to sup-

port seamless operation of extreme performance through advanced wireless access solutions,

allowing “anywhere anytime” communications [166].

Today, many network operators already utilize microwave (µWave) radio systems op-

erating in the 4.1–7.125 GHz band for basic coverage, which is expected to carry most of

the traditional cellular traffic. However, unlike the Extremely High Frequency (EHF) bands,

such as mmWave and THz, µWave systems are unable to meet the demand for multi-gigabit-

per-second throughput and low latency communication in dynamic networks. To support

high data rate services, network operators are expected to deploy both lower frequency and

mmWave or even THz technologies [167,168].

Integration of µWave/mmWave combines extreme transmission data rates with the re-

liability of legacy µWave channels. Specifically, µWave band can be utilized for lighter XR

traffic, i.e., location information, whereas higher frequency bands are dedicated to heavier

video streaming. However, user mobility challenges resource allocation in such multi-Radio

Access Technology (RAT) scenarios since the backhaul network requires more frequent traffic

re-routing [169]. In addition, high-frequency channels are prone to severe fluctuations and

involve more complex beam management and Medium Access Control (MAC) protocols in

general.

Multi-cell connectivity allows devices to ensure reliable data transmission by maintaining

several signal paths from/to different BSs [170,171]. The BS and users continuously monitor

potential wireless links via dynamic beam tracking and beam refinement, which results in

significant overhead in the case of the EHF band [172]. Moreover, high user mobility causes

rapid load changes at each BS due to the smaller cell size in highly directional networks [4].

The network may benefit from accurate positioning and sensing information; however, this

information is collected using the same radio resources, which may significantly raise the

network overhead.

In addition, the specific position of a mobile XR device on the body necessitates further

research evaluating motion and rotation patterns. For instance, the relative mobility of body

components, such as the head or hands, might sometimes result in signal losses due to beam

misalignment and/or obstruction of mmWave networks [173, 174]. Additionally, the height
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at which the user holds the device affects blockage conditions, particularly in settings with

a high user density [175, 176]. Since the XR wearable is connected to the user’s head, it is

anticipated that it will be less susceptible to blockage and, thus, less influenced by channel

quality deterioration than smartphones held at chest level. This effect may lead to the need

for new service provisioning models mindful of the diversity of use cases and corresponding

behavior patterns.

In summary, efficient B5G wireless access for XR relies on different technologies and

techniques, such as multi-RAT and multi-cell connectivity, integrated backhaul, localization

and sensing, advanced beam-tracking and beam-training procedures, which are significantly

affected by the user motion patterns. Reliable XR connectivity requires novel scheduling, re-

source, and mobility management protocols along with coordination and control algorithms

that jointly account for and are flexible to be adjusted to the specific use cases. The discus-

sion above concludes that traditional communication techniques might not be sufficient for

immersive XR applications, demanding, inter alia, the development of novel tailor-made AI

and ML tools that efficiently adapt to diverse and dynamic conditions.

3.3.3 Communication-Dependent Computing

XR may demand resource-constrained edge nodes to do intense computation (e.g., Three

Dimensional (3D) rendering and analyzing user movements or camera feed). From this view-

point, we address advanced computing approaches in the context of applications that initiate

specific motion patterns. In addition, several XR services frequently request information, such

as background sceneries, which require vast amounts of storage space and therefore pose a

problem to typical edge cache management. This might impair data replication [177], neces-

sitating extra processing and storage expenses for constant synchronization between digital

copies, allowing real-time interaction and reliable communication between the digital domain

and physical systems.

Furthermore, supporting seamless low-latency connectivity (i.e., 5ms) with high data

rates poses challenges in both the communication and computation domains, mainly due to

user mobility. On the communication level, user mobility causes handovers. Consequently,

virtualized representations of users and their data follow the user’s route from one edge

node to another [178]. As a result, proactive provisioning is critical for effective resource

management under low latency constraints [179]. Compared to reactive techniques or data

replication, sophisticated proactive solutions have various benefits, including precise syn-

chronization with back-end storage and rapid access to an on-demand state, which aids in

maintaining application performance.

Pre-loading computational jobs or data onto the target edge server is only one component

of efficient proactiveness, which is highly dependent on user mobility and needs precise

motion predictions [180]. Significant inaccuracy in this context may result in content re-

generation and, as a result, an increase in latency, which XR applications cannot tolerate. The
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association between XR users and edge servers is another essential component that benefits

from predicting user location and mobility. Since the EHF band signal is susceptible to

obstruction, multi-connectivity may improve data rates and mobility resilience. In this case,

effective prediction of user orientation and mobility patterns in the immersive environment

is crucial for the proactive association of users with BSs and edge servers.

Load balancing is further complicated by frequent radio handovers and migration of

computing jobs/results when moving out of the edge server coverage. The network optimizes

migration techniques using relevant information on nodes’ capacity and current load. For

instance, computations may be performed on the previously served edge node such that the

results are sent to the moving user via a new server in close proximity. The computations

may also migrate to an adjacent server or be sent to a network server with more processing

capability [181].

In summary, user mobility, application type, and a vast volume of produced data demand

increased network architecture flexibility, new application-specific configuration choices that

provide dynamic adaptation, and consistent cross-application performance. Therefore, the

design of novel advanced algorithms for configurable and reliable coordination of computa-

tions and communications becomes of paramount importance. To offer a truly immersive XR

experience, the network requires further enhancements in virtualization, digitalization, cloud-

ification, and device/network programmability. Notably, advanced AI solutions that predict

motion and anomalies in network operation may help significantly improve the convergence

of communication and compute functionalities.

3.3.4 Performance Evaluation

Our analysis of trends reveals that XR applications provide distinct usage patterns that influ-

ence user movements and, therefore, communication and computing capabilities. Regardless

of usage trends, the research community relies on current pedestrian mobility models despite

extensive work on B5G systems. We evaluate the communication and computation perfor-

mance of mobile XR in terms of (i) total delay, the sum of communication and computing

delays, and (ii) resource utilization, the ratio of utilized resource blocks to available resource

blocks. Below we summarize the considered scenario of interest, simulation settings, and

selected simulation results. The key system parameters are listed in Table 3.5.

Simulation Settings

We assume a user terminal with 4K resolution and a content provider that renders 8K

video [182] and focus on two types of services, termed weak interaction and strong interaction.

Weak-interaction applications include various audiovisual services, such as video and live

broadcasts. In such cases, users have limited or no interactions with the surroundings, i.e.,

they may not trigger physical exchanges, but they may choose their viewing point and

location. Since users do not move their heads often when information is displayed, freedom
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is unavoidably constrained. Weak-interaction services tolerate the end-to-end/motion-to-

photon latency of around 30ms and content quality of 30 fps [182].

Table 3.5: System parameters related to Section 3.3.

Area of interest Area: Street Canyon, 50m x 200m

Pedestrians Number: 20 – 60

Mobility: Social force model [183]

Speed: 3 km/h (baseline)

Height: Normal distribution (µ=1.65, σ=0.08m)

Behavior models Mobile phone / XR wearable usage

1. Single-task mode

2. Dual-task mode

Devices Category: Mobile phone / HMD

Number: Number of users

Traffic Uplink motion information data rate: 150 kbps

Downlink frame size: 0.425Gb (150 : 1 rate)

Weak-interaction/strong-

interaction

Quality of experience: 8K with 30/90 fps

Period between the requests 33/11ms

Typical Round-Trip Time (RTT) requirement: 30/10ms

Edge servers Deployment: Servers are co-located with BSs

Edge processing Frame rendering time: 16.9ms

Degradation factor Input/Output (I/O) interference: d =

0.02

Number of VMs on an edge server: 50

mmWave radio Frequency: 28GHz

Bandwidth: 400MHz

Signal degradation with human blockage: 15 dB

Resource block size: 1.44 MHz

µWave radio Frequency: 3.5GHz

Bandwidth: 100MHz

Signal degradation with human blockage: 4 dB

Resource block size: 0.72 MHz

Propagation Model: 3GPP Urban Microcell (UMi) Street Canyon

Building blockage: Line-of-Sight (LoS), Non-Line-of-Sight

(NLoS)

Blockage: Blocked, nBlocked

BSs Deployment: Strauss process (c=0.9, δ=200m)

Transmit power: 33 dBm

Height: 10m

Multi-connectivity degree: 2, 4, 6, 8, 10

Handover delay: [2 − 10]ms

Devices Transmit power: 10 dBm

Mobile phone / HMD height: Normal distribution (µ= 1.50 /

1.65, σ=0.08m)

In strong-interaction immersive scenarios such as virtual gaming arcades or XR social me-

dia, users interact with the virtual space and respond in real-time. The resolution is greatly

enhanced, increasing the required bandwidth, while the end-to-end latency requirement ap-
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proaches 10 ms. To provide a truly immersive experience, such services demand higher frame

rates (90 fps) compared to the weak-interaction scenarios [182].

In the given settings, user devices communicate with multiple BSs, each co-located with

an edge computing server, via a dual mmWave/µWave radio interface. We assume the 3GPP

channel model in an UMi environment [184] for both the mmWave band at 28GHz and the

µWave band at 3.5GHz. The BSs are located across the tracking area according to the Strauss

process with the inhibition coefficient of 0.9 and the inhibition distance of 200m [185]. Devices

can transition to the BS providing the best Signal-to-Interference-plus-Noise Ratio (SINR)

ratio with a handover delay of 2− 10ms [186,187].

We examine a system in which users send tracking data, such as user location, to the

selected BS in the uplink channel and then to a back-end server utilized for precise syn-

chronization and instant access to an on-demand state. The edge node renders video frames,

which are then delivered back to the user through the serving BS. Different uplink and

downlink communication bands in XR may be used for more efficient transmissions [188].

The End-to-End (E2E) delay (excluding encoding/decoding) includes the uplink trans-

mission over µWave links, processing, migration, and downlink mmWave transmission laten-

cies. The processing delay is calculated based on the measurements from Huawei 5G network

XR test with edge/cloud services [189], while communication latencies depend on channel

conditions. We also assume the implementation of virtual machines for parallel computing

of multiple tasks at the same edge server with the degradation factor of 0.02, which defines

computation-service rate reduction when multiplexed with other VMs due to I/O interfer-

ence.

The period between requests is 33ms and 11ms for weak- and strong-interaction sce-

narios, respectively [182]. The uncompressed video frame size that has to be downloaded is

63.7Gb (i.e., 8K resolution, 8-bit color depth). We utilize 150 : 1 compression rate that re-

duces the bandwidth and bit rate requirements, thereby decreasing the interaction latency.

The uplink channel supports data rates of 150 kbps for transmitting the motion informa-

tion [188].

We employ pedestrian flow modeling to simulate real-world user behavior in various

application settings. The simulation is based on a model of human behavior based on social

forces [183]. The model replicates realistic crowd dynamics as seen in applications such as

collective XR and virtual gaming. We run simulations under various density situations (i.e.,

20 − 60 users in the area).

We experiment with pedestrian movement by considering the diversity in speed, stance

duration, step length, head direction, and the presence of obstacles that define human behav-

ior in XR and mobile phone applications. As a baseline model, we simulate user movement in

single- and dual-task modes by modeling the motion of a pedestrian walking at 3 km/h [123].

In a single-task setting, XR user motion changes in speed (− 46%), step length (− 33%),

stance time (+7%), and distance from an interferer or obstacle (+3%) compared to baseline

setup [159, 162]. Regarding users with mobile phones, the difference in speed, step length,
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stance time, and distance from an interferer is − 25%, − 20%, 0%, +2%, respectively. In

a dual-task mode, XR leads to the difference of − 70% in speed, − 65% in step length,

+20% in stance time, +7% in the distance from an interferer, compared to the baseline

model. For mobile phone services, the corresponding variations in parameters are given by

− 80%, − 69%, +27%, and +5%. We also model the variability in the mobility of the user

equipment (located on the head or hand) by reducing the range and the frequency of motion

for dual-task activities with respect to the single-task regime [164].

To illustrate the above claims, we provide the results in terms of speed, distance, and

acceleration, see Fig. 3.14, Fig.3.15, and Fig. 3.16 for four motion/use models, i.e., the human

motion with mobile phone and single-task mode, XR wearable and single-task mode, mobile

phone and dual-task mode, XR wearable and dual-task mode.

Performance Analysis

The application type, particularly XR, has been linked to user response in terms of gait

patterns. In reality, interaction patterns have a considerable influence on user mobility, which

impacts – on the communication level – multi-connectivity and handover and – on the

computing level – job migration. This subsection evaluates the convergence of usage, motion,

communication, and computing patterns by quantifying the differences between XR and

conventional mobile broadband applications in terms of the E2E delay (as shown in Fig. 3.17

and Fig. 3.18) and resource utilization (Fig. 3.19) subject to user density, service quality,

and BS deployment settings.

We begin our analysis by examining the E2E latency for four mobility models linked with

mobile phone and XR use under single- and dual-task conditions. First, Fig. 3.17 reports the

Fig. 3.14: Speed for four user behavior models.
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Fig. 3.15: Acceleration for four user behavior models.

Fig. 3.16: Distance for four user behavior models.

latency for weak-interaction (30 fps) and strong-interaction (90 fps) services under low (20

users) and high (60 users) density. Under single-task and dual-task situations, the system-

level performance of XR and mobile phone applications changes significantly. The observed

gap is caused by distinct motion patterns that affect connection and different channel condi-

tions that depend on factors such as equipment height. The difference becomes more visible

when service quality improves, i.e., in the case of strong-interaction services, which cause

heavier system demand, and in the case of high user density, due to both load and blockage.
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Fig. 3.17: E2E delay assessment [5].

Fig. 3.18: RTT and edge processing delay assessment, 10 BSs [5].
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Fig. 3.19: Resource utilization assessment [5].

Furthermore, in Fig. 3.17, we observe the impact of the multi-connectivity degree (the num-

ber of available BSs) on the system latency. The gap between XR and phone applications

is substantially lower for higher degrees of multi-connectivity than for 2-4. The reason for

these findings is that multi-connectivity guarantees a better processing environment as the

number of available BSs, servers, and VM rises regardless of application type. In particular,

significant discrepancies between XR and mobile phone use cases occur in systems with the

multi-connectivity degree of 2; if 10 BSs are deployed in the area, these gaps decrease to

11% and 9% for single- and dual-task modes, respectively.

We evaluate communication- and computing-related delay separately to better under-

stand the influence of user movements on communication and processing patterns. The dif-

ference between the mobile phone and XR models in Fig. 3.18 preserves the same trend as in

Fig. 3.17. In the case of increased user density and strong-interaction mode, RTT variations

between the mobile phone and XR approach 2 ms and 3 ms, respectively, for single-task and

dual-task modes. For lower density, however, mobile phone and XR-driven communication

delays exhibit similar trends. In contrast, the differences in edge processing latency between

mobile phone and XR models are observable under any density and service quality condi-

tions, reaching up to 10 ms (single-task) and 17 ms (dual-task). Different body blockage

patterns cause this phenomenon, which leads to more frequent beam switching for mobile

phones as user density increases. In this case, blockage impacts the frequency of handovers

and job migrations.
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As per our additional results, we study the impact of multi-connectivity on communica-

tion and computation performance. The BS density affects communication and computation

functionalities differently in terms of delay. As the number of BS alternatives available to

customers increases, the average SINR rises, and the transmission latency decreases, ap-

proaching the same values regardless of application type. However, handovers create more

frequent job migrations, increasing the overall edge processing time as the multi-connectivity

degree increases. Furthermore, we performed additional simulation experiments to evaluate

the effect of motion parameters on the performance. The key variables influencing system-

level outcomes are the distance from interferers, XR/phone height, head direction/hand

position, and changes in terminal location induced by head or arm movements.

Furthermore, Fig. 3.19 depicts the effect of the application on radio resource utiliza-

tion for downlink transmission. To that end, we assume the 28 GHz mmWave carrier fre-

quency and the corresponding NR numerology mu = 3 with a physical resource block size

of 1.44MHz. Since downlink transmission delays dominate RTT in systems such as XR, the

increase in resource deviations reflects the variations in RTT delay, which also increase with

BS densification. The distances between the BS and the users decrease as the number of BS

options increases. The SINR increases in this situation, boosting the resource usage ratio.

However, the downlink transmission of the processed video frames significantly contributes

to system load, acting as a second bottleneck (after computing resources) in XR systems.

As one may notice, the communication resources of 2 BSs are utilized at total capacity for

strong-interaction services at any user density. For 30 fps and multi-connectivity of degree

2, the difference between XR and mobile phone use cases is 21% and 7% in single- and dual-

task modes, respectively; for 90 fps and 10 BS setup, it is less noticeable but remains at the

level of 1% and 0.7%. The observations in Fig. 3.19 related to the need for high degrees of

multi-connectivity are confirmed in Fig. 3.17. We may infer that BS densification is essential

to fulfill the demand for high-quality XR services and assure low-latency communication in

future wireless networks, which are projected to offer high-quality XR services under high

user density.

As per our additional results, these conclusions also maintain for different mobility mod-

els, e.g., the Lévy walk process. Since we consider such applications as collective XR and

virtual games, we focused on crowd dynamics. Recent research studies in psychology, neu-

roscience, and intelligent transportation have demonstrated that individuals anticipate the

movements of their neighbors to find their routes in dynamic pedestrian flow [190–192].

This path-seeking behavior causes pedestrians to deviate from their intended course, that

is, the direct path to their destination. The results in [192] have confirmed that vertical

pedestrian motions are governed by a superdiffusive dynamic (Lévy walk) process. It has

also been demonstrated that the path-seeking behavior is performed when using a scale-free

movement strategy known as a Lévy walk, which may assist the transition to group-level

behavior.
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Fig. 3.20: E2E delay assessment, 60 users, 90 fps.

Fig. 3.21: Resource utilization assessment, 60 users, 90 fps.

We have conducted additional simulations with the Lévy walk process, a specific type of

random walk in which the walker makes a few long steps and a large number of short steps,

resulting in a power-law distribution of step lengths [190, 193–196]. In Fig. 3.20, Fig. 3.21,

Fig. 3.22, and Fig. 3.23, we provide an E2E delay and resource utilization assessment for

weak- (30 fps) and strong- (90 fps) interaction services. Specifically, delay deviation between
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Fig. 3.22: E2E delay assessment, 60 users, 30 fps.

Fig. 3.23: Resource utilization assessment, 60 users, 30 fps.

mobile phone and XR usage reaches 32% and 17% for weak-interaction services in single- and

dual-task modes, respectively, and 62% and 12% for strong-interaction services. The devia-

tions in resource utilization between models reach up to 30% and 23% for weak-interaction

services in single- and dual-task modes, respectively, and 15% and 12% for strong-interaction

services.
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In conclusion, our research proved that application usage patterns influence user behavior

models and communication and computing performance. Mobile XR is distinctive not just

in terms of system requirements but also in terms of interaction, mobility, computing, and

communication patterns. The development of efficient architectures and algorithms for the

network edge, as well as the design of innovative protocols and coordination and control

methods for the radio network, are essential for more flexible, configurable, reliable, and

robust computations and communications.

3.3.5 Discussions

With a trend toward immersive interactive and contextualized experiences, new use cases

may be identified that require not only low-latency and high-bandwidth connectivity but also

influence user mobility and, therefore, system performance. This interaction also operates

in reverse. The engagement and user gait patterns may differ depending on the quality of

service provisioning. Consequently, there is a feedback loop that includes patterns of use,

mobility, communication, and computing. However, the research community has not paid

enough attention to this significant influence.

To address this gap, we examined XR-driven motion patterns, reviewed relevant infor-

mation, and performed comprehensive simulation research on the influence of XR usage on

communication and computing performance. Our system-level analyses indicated that the

usage of untethered XR had a specific influence on motion models and, more broadly, ser-

vice provisioning. We envision collecting real-world mobility pattern datasets and applying

advanced methods of data analysis to refine the employed dependencies and identify other

factors that affect system performance. This study intends to motivate the research commu-

nity to reconsider the standard mobility patterns and service models currently in use and

move toward algorithms, architectures, and service provisioning methods that accurately

capture user motion based on patterns of use.



4

Conclusions

We conclude this thesis with a summary of the main research contributions and conclusions.

We then present future research avenues.

4.1 Summary

In this thesis, to support dynamic social-aware networking in 5G and B5G, we provided

(i) the design of a reference architecture for the orchestration of SDTs at the network edge

to accelerate the service discovery procedure across the SIoT; (ii) a set of methodologies

to evaluate the highly dynamic system performance considering jointly communication and

computing resources; (iii) a set of practical observations and outcomes helpful in designing

future digital twin-enabled B5G networks.

The study of this thesis has led to the following conclusions:

• Accounting for social features in SDT placement offers considerable improvements to the

SIoT browsing procedure.

• Lower latency among SDTs has two benefits: (i) it reduces network load when SDTs

exchange data because packets traverse fewer links, and (ii) it ensures rapid interactions

among SDTs, which is critical for service discovery procedures that include traversing

the social graph.

• Recent advancements in wireless communications, edge computing, and smart device

technologies are expected to promote the growth of SIoT with pervasive sensing and

computing capabilities. This will ensure seamless connections and autonomous manage-

ment among SIoT objects without human interaction, potentially changing industries

and providing significant societal benefits.

• Both communication and computing planes are the key barriers to meeting the require-

ment for real-time transmission of spatial information from XR and video content pro-

cessing.

• New use cases affect user mobility and, therefore, system performance due to the trend to-

ward immersive, interactive, and contextualized experiences. This interaction also works
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in reverse. Interaction and user gait patterns may vary depending on the quality of service

provisioning.

• There is a need to revisit the typical mobility patterns and service models being used by

the research community and move toward algorithms, architectures, and service provi-

sioning techniques that accurately capture user movements based on usage patterns.
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4.2 Future Research and Challenges

In this section, we discuss future research avenues and critical issues in digital twinning and

XR systems modeling.

4.2.1 Digital Twins from Networking and Modeling Perspectives

Despite the enormous promise of DTs, their development and implementation in real-world

applications remain challenging. Specifically, although the concept is currently being utilized

in various fields, numerous obstacles should be overcome before DT can be identical to their

physical counterparts. This subsection briefly discusses the key networking-related challenges

in DT research and their potential application.

DT-assisted Content Caching.

In the context of DT-enabled content caching, several unresolved issues and technical

challenges require further research. One of the critical challenges is incentivizing intelligent

devices, such as objects in the ecosystem, to create edge caching clouds [197]. Additionally,

there is a need for further study on composition update and service maintenance of cache

cloud in the case of complex scenarios with dynamic traffic and non-stationary object topol-

ogy. The issue becomes even more acute if the system contains objects of different types.

Functional Dimension.

Completely functional DTs should, by definition, accurately replicate the physical ecosys-

tem in its temporal, geographical, and operational aspects at all granularities. This implies

that a digital counterpart should include all parameters of the physical system. As a result,

an entirely effective DT implementation requires modeling the physical ecosystem with the

vast number of state types as well as gathering and processing an enormous amount of data.

However, existing methodologies and computational tools may not be able to handle this

dimensionality problem [198]) in DT implementation. To overcome this issue, the functional

digital replica of a corresponding physical system may be divided into multiple DTs, each

representing a subclass of the characteristics and states of the biological ecosystem in specific

temporal and geographical zones. Another solution might be to employ modern high-speed

CPUs and more advanced big-data analysis techniques.

Security.

The use of DTs raises significant security concerns. Since a DT serves as a duplicate of a

physical system, it is necessary to protect both the biological system and its DTs, as well as

the links they create (i.e., communication links between physical and virtual environments).

DTs, which are used to communicate with third-party programs and applications, are more

vulnerable to external threats than the physical system making their security more fragile.

Any security breach affecting the DTs also affects the physical systems. However, since the

DT and the physical system are physically separated, identification of a security breach of a

DT may be delayed. Additionally, DTs may influence and/or control their physical systems;
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therefore, keeping DTs safe from hackers and intruders is crucial to ensure the continued

operation of a physical system. Therefore, there is a need for improved transparency and

interpretability of decisions based on DTs, since most physical assets for which DTs may be

utilized need a high degree of safety and security [198,199].

Optimal Resource Management.

A DT should continuously monitor the real-time state of the physical system and update

the system’s features accordingly. Network resources such as communication, processing,

and caching should be supported to construct and sustain DT. Creating and maintaining

the DT with the appropriate quality requires joint heterogeneous resource management – a

complex problem for large networks – to identify the required volume of the network resource

as well as resource deployment and allocation. Additionally, various applications may have

different requirements for promptness and similarity and diverse information derived from

the system states. This leads to the need for optimization with multiple objectives, which

may be contradictory to one another. Also, coordinating the application requirements in

the network resource allocations is a challenging problem, given the limited availability of

network resources [198].

Real-Time Communication, Data Management, and Model Update. A real-

time two-way connection between the actual physical system and its DT is crucial for DT

technology to achieve complete physical realism. However, maintaining it is hindered by such

obstacles as spatio-temporal resolution of sensor data, significant communication latency,

large data volume, high data generation rate, great variety and significant trustworthiness

of data, fast archival retrieval, and online data processing. Additionally, the models need

to change in perfect agreement to ensure backward compatibility when the physical asset

changes over time, which requires interpretable and physically consistent models. Finally, the

DT should be displayed to the user in a form that seamlessly integrates with the physical

asset and is straightforward to use [199].

4.2.2 Immersive Reality from Networking and Modeling Perspectives

This subsection highlights essential research directions and challenges in networks and devices

with heterogeneous capabilities in immersive experience applications.

User Behavioral Data and Social XR. The tendency for users to shift their attention

from one screen to another is becoming increasingly common due to the development of many

screen technologies. To address this, creative solutions built on users’ social interactions and

behavioral data should be considered. The screen chaos issues are interconnected and can be

resolved with the same solution, which is an immersive experience that requires a data-driven

architecture gathering in one location all of the relevant information that the user observes.

However, such integration is not currently possible due to the lack of a shared platform.

Moreover, these experiences are supposed to occur all in the exact location as virtual reality

demands. For example, when receiving a call while playing a game or watching a movie, the
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game or movie should automatically pause so the users need not worry about halting the

game or movie to accept the call. In this scenario, big data and machine learning techniques

will be essential in providing consumers with an immersive experience, given that a common

data-driven platform is being used [200].

Context Information and Analytics.

It has already been suggested that context information can help optimize complex immer-

sive experience networks. Note that in-device and in-network side data are typically referred

to as context information [200]. The recent acquisition of Apple of AI startup Emotient, a

company that uses advanced computer vision to identify people’s emotions in the context of

immersive experience, suggests that context information will play an ever-more-important

role in driving the success of XR. The user’s emotional state and other behavioral factors

need to be considered to enhance their connected and immersive experiences. This involves

anticipating and addressing user disengagement by dynamically changing the delivered con-

text to better align with user preferences, emotional states, and viewing points. To this aim,

AI tools can infer from user context information and respond accordingly.

Large-Scale XR Systems.

Another area of intense interest is exploring large-scale XR networks that are charac-

terized mainly by dynamicity. Such systems contain many different viewpoints and types of

information and hence, may utilize a high level of redundancy and collective intelligence to

enable the interconnected immersive experience [200].

Computing Level.

This refers to the location and level at which the in-device (i.e., headset) and in-network

processing should be decoupled. Depending on the bandwidth-latency-cost-reliability trade-

offs, computation for less powerful low-end devices may be offloaded to the network. In

contrast, computing for more complex high-end devices might be performed locally, which

is, however, limited by the heat dissipation problem.

Localization and Tracking Accuracy.

A completely immersive XR experience requires accurate localization and tracking tech-

niques, including the locations of objects, tracking of human eyes (also known as gaze track-

ing) [201], gesture recognition, change in velocity, and many more.

Green XR.

The aim is to reduce power consumption in terms of storage, computing, and communi-

cation for specific users in an immersive experience. Since power consumption reduction does

not take place in the virtual world, the idea of charging the equipment should vanish with

the introduction of green interconnected XR, or at the very least, be limited. As a result,

intelligent methods for wireless power transfer and charging, as well as energy harvesting,

appear promising for XR equipment [200].

Privacy.

Privacy is a major concern as the users contribute and have access to a wide variety of

content and viewpoints from billions of items and users. There is a need for intelligent systems
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that automatically protect privacy without placing a burden on individuals to adjust their

privacy settings. Novel concepts like “collective privacy” may be promising to explore [202].

Harnessing Quantum.

Quantum computing has the potential to perform certain computations far more quickly

than any classical computer could ever hope to achieve. Utilizing quantumness in XR could

(i) create a bridge between the virtual and real worlds, where the traditional concept of lo-

cality is no longer relevant; (ii) hahdle objects in lower dimensions by utilizing entanglement

and superposition in place of serial or even parallel processing [200].

Interoperability.

Virtual media- and information-rich environments have helped different construction

stakeholders understand and visualize the design effectively. However, there is still a need

to streamline the workflow of architecture and construction. To address this, many software

providers, including Unity, have recently attempted to bridge this gap by using middleware.

These advancements are still in the early stages and need further refinement and devel-

opment. Additionally, the transfer of Building Information Modeling (BIM) models and

associated meta-data into the Unity game engine to offer an immersive experience has be-

come more straightforward with the release of Unity Reflect. However, creating interactivity

remains a challenging task and requires customized algorithms.
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The rise of the intelligent information world presents significant challenges for the telecommunication industry in meeting the service-level 
requirements of future applications and incorporating societal and behavioral awareness into the Internet of Things (IoT) objects. Social Digital 
Twins (SDTs), or Digital Twins augmented with social capabilities, have the potential to revolutionize digital transformation and meet the 
connectivity, computing, and storage needs of IoT devices in dynamic Fifth-Generation (5G) and Beyond Fifth-Generation (B5G) networks.

This research focuses on enabling dynamic social-aware B5G networking. The main contributions of this work include (i) the design of a 
reference architecture for the orchestration of SDTs at the network edge to accelerate the service discovery procedure across the Social Internet of 
Things (SIoT); (ii) a methodology to evaluate the highly dynamic system performance considering jointly communication and computing 
resources; (iii) a set of practical conclusions and outcomes helpful in designing future digital twin-enabled B5G networks.

Specifically, we propose an orchestration for SDTs and an SIoT-edge framework aligned with the Multi-access Edge Computing (MEC) 
architecture ratified by the European Telecommunications Standards Institute (ETSI). We formulate the optimal placement of SDTs as a Quadratic 
Assignment Problem (QAP) and propose a graph-based approximation scheme considering the different types of IoT devices, their social features, 
mobility patterns, and the limited computing resources of edge servers. We also study the appropriate intervals for re-optimizing the SDT 
deployment at the network edge. The results demonstrate that accounting for social features in SDT placement offers considerable improvements 
in the SIoT browsing procedure. Moreover, recent advancements in wireless communications, edge computing, and intelligent device technologies 
are expected to promote the growth of SIoT with pervasive sensing and computing capabilities, ensuring seamless connections among SIoT 
objects.

We then offer a performance evaluation methodology for eXtended Reality (XR) services in edge-assisted wireless networks and propose a fluid 
approximation to characterize the XR content evolution. The approach captures the time and space dynamics of the content distribution process 
during its transient phase, including time-varying loads, which are influenced by arrival, transition, and departure processes. We examine the 
effects of XR user mobility on both communication and computing. The results demonstrate that both communication and computing planes are 
the key barriers to meeting the requirement for real-time transmissions. Furthermore, due to the trend toward immersive, interactive, and 
contextualized experiences, new use cases affect user mobility and, therefore, system performance.
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