UNIVERSITY OF GENOVA

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Keep the planner in the loop: parallel planning
and execution using Large Language Models

by

Alessio Capitanelli

Thesis submitted for the degree of Doctor of Philosophy (36° cycle)

May 2024
Fulvio Mastrogiovanni Supervisor
Paolo Massobrio Head of the PhD program
Thesis Jury:
Antonio Chella, Universita degli Studi di Palermo External examiner
Dimitri Ognibene, Universita degli Studi Milano-Bicocca External examiner
Antonio Sgorbissa, Universita degli Studi di Genova Internal examiner

1)

Department of Informatics, Bioengineering, Robotics and Systems Engineering

Dedicated to Enzo Capitanelli

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,

tables and equations and has fewer than 150 figures.

Alessio Capitanelli
May 2024

Acknowledgements

First and foremost, I would like to say thank you to my parents, Massimo and Ermenia. It
goes without saying that without them I would not be here to write this thesis. Less obviously,
they have been by far the people that have encouraged me the most to undertake a PhD, and,
literally, any other study before. I know for sure that in their mind a good education has
always been the most valuable asset that they could provide me. I agree with them.

Close seconds, I am truly grateful to all the amazing people that share a home with me.
Giorgia, Isadora and Federico, all had to stand my frustration during the last three years, as
well as my enthusiasm in those rare days when something was working. Giorgia in particular
had to bear me more than anyone else. Her loving and unwavering support gave me all the
strength I needed to succeed. Federico, being an amazing researcher in Neuroscience, was
forced to listen to my ideas way too many times. Several of the insights in this thesis would
not be there without us having those discussions.

From now on, in no particular order, there are many other people to whom I would like
to extend my gratitude.

To my fellow researchers in the Engine Room lab, thank you. Mohamad Shaaban
collaborated with me in order to obtain the results presented in Chapter 3 and has shown great
patience when, while I was working on the results presented in Chapter 7 and I occupied
most of the lab’s computational power. Simone Maccio, having started our PhD projects
together, has accompanied me through every step of this journey, and it was great to work
with when we had the chance to collaborate on other research projects. Alessandro Carfi,
as the most senior postdoc in the lab, provided much needed feedback at all stages of this
project.

To Fulvio Mastrogiovanni, Mauro Vallati e Marco Maratea, thank you. Fulvio being
my supervisor does not require much of an explanation. He encouraged me to undertake
this PhD project and has left me great freedom to pivot it in the direction I wanted. I hope
this bet paid out well. Much of the work in Chapter 2 and in Chapter 3, are the results of
the joint effort of the four of us. Both Mauro and Marco provided invaluable expertise and

iv

guidance on all issues regarding symbolic task planning, and Mauro in particular provided
some insightful feedback after the results in Chapter 6 were first made public.

To Teseo and its team, thank you. Teseo is the company that I have been working for the
last six years. Despite me moving to a less technical position over time, the company has not
only funded my PhD studies, but also left me great freedom on the direction that my research
should take and provided me much needed time to work on it.

To Antonio Chella of the University of Palermo and Lucia Passaro of the University of
Pisa, thank you for the time spent reviewing the present manuscript. Your feedback has been
highly appreciated.

For no particular reason, except their friendship during the last few years, thank you

Alessandro and Fosca.

Abstract

Task planning is a popular approach for autonomous agents due to its understandability,
predictability, and ease of deployment. However, it is difficult to scale in real-world, human-
robot cooperation scenarios due to the poor performance scaling in complex planning domains
and when frequent re-planning is needed. Longer planning times can hinder the robot’s
efficiency and adversely affect the interaction’s fluency. Our objective in this PhD project is to
develop novel methods to address this issue and favor keeping task planning in the execution
loop as much as possible. First, we explore the use of traditional planning techniques, and
in particular the use of macros, to optimize total planning and execution time. Macros
are known to reduce planning time, but at the cost of plan optimality and thus execution
time. We provide evidence that by selecting an appropriate level of macro abstraction
and by implementing ad-hoc grounding for said macros, it is possible to reduce average
planning time by 85% with little impact on execution time. Then, we proceed to explore
more innovative approaches based on the latest advancement in generative Al. In particular,
we propose a method, Teriyaki, to bridge the gap between symbolic task planning and
machine learning methods, by training Large Language Models (LLMs), namely GPT-3,
into a neurosymbolic planner compatible with the Planning Domain Definition Language
(PDDL). Potential benefits include better scalability, as LLMs’ response time scales with
the combined length of the input and the output regardless of the symbols involved; and the
ability to generate a plan action-by-action, which in turn enables simultaneous planning and
execution, reducing wait times. In the past year, significant effort has been devoted by the
Al community to evaluate the overall cognitive abilities of LLMs, but success rate has been
limited. Instead, we focus on providing a success rate comparable to traditional planners in
specific planning domains, while improving other real-world metrics. Preliminary results
in two domains selected from those developed in the first part of this project, show that
our method can: (i) solve 95.5% of problems in a test data set of 1000 samples, a result
comparable with that of the baseline heuristic-search planner; (ii) produce plans up to 13.5%
shorter than a traditional planner; (iii) reduce average waiting times for a plan by 61,4% and

its standard deviation by 96.6% through parallel planning and execution.

Table of contents

List of figures
List of tables
1 Introduction

2 The scalability issue: the articulated object example
2.1 What is an architecture for Human-Robot Cooperation?
2.2 Manipulating articulated objects in a HRC scenario
23 Background
2.4 Problem Statement and Reference Scenario
2.5 PLANHRC’s Architecture
2.5.1 InformationFlow
2.5.2 Reasoning in the Ontology and the Cooperation Model
2.5.3 PlanningModels
2.5.4 Relative formulation 0oL
2.5.5 Absolute formulation oL
2.6 Performance of the PLANHRC architecture
2.6.1 SystemDesign
2.6.2 Planning Performance,
2.63 Examples
2.6.4 Discussion

2.7 Weneed a better way toplanintheloop

3 Optimizing total planning and execution time using Macros
3.1 What is the right level of abstraction?
3.2 Macros: definition and usage in task planning

3.3 Updated planning models with macros

ix

xi

Table of contents vii
34 Experimental setup Lo 46
3.4.1 Planning setup and benchmark composition 46

3.4.2 Execution in a simulated environment 47

3.5 Models comparison and discussion 48

4 Beyond heuristic-search planning: Neurosymbolic approaches 5§
4.1 The potential benefits of Neurosymbolic Planning 55
4.2 Language models are (unreliable) few-shot learners 58
4.3 Fine-tuning LLMs to approximate a search heuristic. 60

5 The Teriyaki framework: PDDL planning using LLM 63
5.1 Anintroduction to Teriyaki 63

5.2 PlanningDomains 65

5.3 PDDLversionand planner 66

54 Choiceof the LLM: GPT-3 67

5.5 Dataset generation and composition 67

5.6 Training 70

5.7 Transfer Learning 71

5.8 Invoking the LLM and Plan Streaming 71
5.9 Why streaming? Interleaved planning and execution 72

6 Teriyaki in action: Parallel Planning and Execution 75
6.1 Relation between Token and Planning Accuracy 75
6.2 Transfer Learning 77

6.3 Comparisonof Solvers 78
6.4 Action-by-action Plan Streaming 81

6.5 Limitations 82
6.6 Resultssummary 83

7 Towards Neurosymbolic planning using local LLM 85
7.1 The benefit and challanges of local LLMs 85
7.2 Low Rank Adaptation of Large Language Models 88

7.3 Model selection and training methodology 89
7.4 Resultsand discussion oL 92
74.1 Impactofthe LoRArank 92

7.4.2 Impactofthe BatchSize 94

Table of contents

viii

7.4.3 Impact of the Base Model Size
7.4.4 Increasing dataset and batchsize

8 Conclusions

References

Appendix A Planning domains

A.1 Commondefinitions. e

A.2 m_O action set . .
A.3 m_25_B action set

96
97

101

List of figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10

2.11

2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2

3.3

Two examples of a cable harnessing operation. 6
Two possible representations: absolute and relative. 14
The experimental scenario 15
The information flow in PLANHRC. 16
The planning and execution pipeline. 17
The relative version of RotateClockwisein PDDL. 21
The conditional version of RotateClockwisein PDDL. 24

Means and variances of solution times for different problem instances using
the absolute formulation and Probe 0oL 27
Means and variances of solution times for different problem instances using
the absolute formulation and Madagascar 27
Means and variances of solution times for different problem instances using
the relative formulation and Probe o000 28

Means and variances of solution times for different problem instances using

the relative formulation and Madagascar 28
A sequence of configurations using the absolute formulation with Probe . . 30
A sequence of configurations using the relative formulation with Probe . . . 31
A sequence of configurations fora3 —4 problem 32

The sequence of Figure 2.14 as executed by Baxter without human intervention. 33
A series of manipulation actions executed with the help of a human operator. 34

A series of manipulation actions executed with the help of a human operator. 35

The Tiago robot acting on the articulated object in the simulated environment. 48
The planning times of the Probe planner over 6 domains with different
MACTON-NESS. . .« . v v vt v vt e e e e e e e 49

Execution times of plans generated by by the six planning domains. 52

List of figures X
5.1 A Baxter robot executing actions in two domains involving the manipulation
of an articulated object. 66
5.2 A diagram of Teriyaki fine-tuning process. 67
6.1 Evolution of the token validation accuracy and the planning accuracy as the
number of training examples increases. L. 76
6.2 A diagram of Teriyaki testing process as described in section 6.3. 78
6.3 Comparison of the Teriyaki MACRO and NO-MACRO models’ planning
times against Probe in their respective planning domains. 80
6.4 Comparison of the time it takes Teriyaki-MACRO to generate a single action
against Probe on the MACRO domain. 82
7.1 Evaluation loss evolution with LoRA rank 128, 256 and 512. 93
7.2 Evaluation loss evolution with batch size 16,64, 128. 95
7.3 Evaluation loss evolution for 7B and 13Bmodels. 96
7.4 Evaluation loss evolution for 7B with an extended dataset. 99

List of tables

3.1
3.2
3.3

6.1
6.2

Summary of models that uses macro actions discussed in this Chapter. . . .
Timing performance of the Probe planner over the 6 domains considered.

Average planning times for the 18 plans to be executed.

Summary of the tested models and date of testing
Comparison of Teriyaki models against Probe in their respective domains on
thetestdataset L

Chapter 1
Introduction

Before moving to the industry and later returning to academia as an industrial PhD candidate,
I was a research fellow at the University of Genoa for two years. It was a good time. A
Ph.D. project bounds your body and soul to a single research project, but at the time I had the
privilege and freedom to work on many, and often drastically different, aspects of Robotics
and Al: from machine learning techniques for pallet detection and tracking in warehouse
scenarios, to simultaneous coverage and relay positioning algorithms for swarms of UAVs.
Nevertheless, one project still occupied most of my time as a research fellow: automated
Planning and Reasoning for articulated object manipulation in Human-Robot Cooperation
(HRC) scenarios. That sounds oddly specific (it is), but there was a good reason for it.
During my master’s thesis, I developed an ontology-based hybrid architecture for planning
and robust execution in tabletop scenarios and became passionate about classical AI methods
such as ontologies and high-level symbolic task planning. One of the features of that first
work was the capability to receive desired states, understand when they were unsatisfied, and
plan and act accordingly. This fact made my architecture extremely resilient to unexpected
failures or interventions from humans around the robot: if in the belief system of the robot,
there was the axiom "all blue spheres must be on the left", but signals from the perception
contradicted such prescription, the robot would wake up and hurry to correct the mistake. The
same would happen if the ball slipped from the robot’s hands, or if a malevolent researcher
nearby decided to move the ball while the robot was busy with another task. The robot was
constantly re-planning and adjusting its course of action to satisfy the prescriptions in its
belief system, so that it could later come to rest. It was 2015 and while it was a nice concept
at the time, the tabletop setting was very limited and I could not help to joke that I had built a

generalized version of a Minsky’s useless box.

My work on articulated objects was a direct continuation of that first project. The idea
was to polish and scale the tools and methods that I had developed and tested in the simple
tabletop scenario and bring them closer to the real world. Manipulating an articulated object
was still a toy problem in many ways, but it was a fair approximation of a complex shop-
floor operation, namely cable harnessing. It offered many more interesting Human-Robot
Cooperation opportunities and also presented computational complexities meant to stress
the architecture, especially the underlying heuristic-search planner. This work eventually
resulted in a publication on Robotics and Autonomous Systems Capitanelli et al. (2018) and
now constitutes a large part of the groundwork detailed in Chapter 2, but despite its merits in
terms of ease of understanding and deployment, as well as HRC capabilities, it also shown
that we were reaching the limits of what was achievable with symbolic planning in the loop
when frequent re-planning was necessary.

My passion for symbolic planning was turning into frustration as it became clear that
clever modeling and architectural design can only help us so much in the face of a brutal
combinatorial explosion as planning domains become more complex in the real world. In the
articulated object manipulation scenario, this meant that increasing the number of links of the
object and their allowed angle values, rapidly deteriorated performance. When planning with
Probe, a state-of-the-art PDDL planner, our most complete model would lead to a median
planning time of around 10s to reconfigure a 10-link object while considering only 6 possible
angle states. The variance was even worse.

A few seconds might not sound that awful at first sight, but they are an issue when
frequent re-planning is required, especially when humans are involved in the loop. Hoffman
(2019) defined the concept of fluency in HRC and demonstrated that the delay experienced
by a human immediately after completing an action, as incurred by their teammate, has a
strong correlation with subjective fluency perception. I can confirm that when I was working
with my Baxter robot in 2017 and every interaction I had with the robot caused a 10s pause, I
was not delighted by the experience.

My frustration grew further as I witnessed first-hand the spring of Machine Learning
methods and how the other half of the AI community was tackling problems in computer
vision that, until a couple of years before, were widely considered computationally prohibitive.
At the time, the logical reasoning capabilities of machine learning methods were still limited
and, while I never believed that they would eventually replace all other Al techniques, I
started to mature the conviction that a hybrid approach, merging neural and symbolic Al,
could be highly effective for the kind of problems I was interested in. An Al that can
sequence high-level actions, easy to deploy, explainable, and understandable by humans in

HRC scenarios; but also an Al that is resistant to combinatorial explosion and that could
leverage the power of highly parallel computing. At the time, this was little more than a vague
idea, but as the state of the art progressed, it became increasingly concrete and reasonably
achievable in the span of a Ph.D. project.

Fast forward to 2020, after a couple of years break from research, I decided to start my
Ph.D. As you might have guessed from this lengthy introduction, the main objective of this
project is to keep the high-level planning in the execution loop of a robotic architecture
by building on the groundwork laid down in my previous projects, and in particular in the
domain of articulated object manipulation. This translates into four main scientific questions,
which I will try to answer in this pages: (i) is it possible to still squeeze some performance
in terms of total planning and execution time through clever modeling?; (i1) Can the latest
neurosymbolic Al methods such as Large Language Models be used to emulate heuristic-
search planners while maintaining comparable accuracy levels?; (iii) What performance can
we expect from such a hypothetical neurosymbolic planner and how does it scale?; (iv) Can
we use it to improve the fluency of the interaction in HRC scenarios?

Fortunately, the answers to these questions are mostly positive and can be found on
these pages. We will start in Chapter 2 by better defining the articulated object scenario,
introducing the base planning models that we will use throughout the rest of the thesis, and
highlighting the performance issues that motivated this work. As anticipated, a large part of
this chapter derives from the article "On the manipulation of articulated objects in human-
robot cooperation scenarios” which I published on Robotics and Autonomous Systems
in 2018. In Chapter 3 we propose an extension of the base planning models which use
macros, test it in simulation, discuss the trade-off existing between planning and execution
times, and show that a good choice of macro can be highly beneficial to total planning and
execution time. This work is still unpublished as successive works were prioritized, but it
is important to present to the reader as one of the models developed in it is the basis for
successive advancements. In Chapter 4 we go beyond traditional heuristic-search planners
and introduce the state of the art of Large Language Models and how their logical capabilities
have been assessed so far. In Chapter 5 we introduce Teriyaki, a framework method to
generate PDDL-compliant neurosymbolic planners using LLM, and specifically GPT-3. In
Chapter 6 we analyze the performance of Teriyaki and we highlight how, unlike traditional
heuristic-search planners, it allows to generate a plan action-by-action, enabling simultaneous
planning and execution and improving HRC interaction fluency. Chapters 4, 5, and 6 are
largely based on the article "A Framework for Neurosymbolic Robot Action Planning using

Large Language Models" submitted to Frontiers in Neurobotics in 2023. In Chapter 7, we

explore the possibility of replicating Teriyaki using smaller, local LLM instead of GPT-3.
While in my experience so far local models have proved unable to solve planning problems
consistently, the technology is maturing fast and the interested reader might find these
preliminary results useful to select the right model, size and training hyperparameters before

venturing in this field. Conclusion follows in Chapter 8.

Chapter 2

The scalability issue:

the articulated object example

2.1 What is an architecture for Human-Robot Coopera-
tion?

The Industry 4.0 paradigm is expected to redefine the nature of shop-floor environments,
including the role played by robots in the manufacturing process Heyer (2010a); Kriiger
et al. (2009). One of its main tenets is the increased customer satisfaction via product
personalization and just-in-time delivery. A higher level of flexibility in manufacturing
processes 1s needed to cope with diversified demands, especially in low-automation tasks.
Collaborative robots are regarded as a valuable aid to shop-floor operators, who can supervise
robots’ work and intervene when needed Tsarouchi et al. (2016), whereas robots can be
tasked with difficult or stressful operations.

Human-robot cooperation (HRC) in the shop-floor is a specific form of human-robot
interaction (HRI) with two important specificities. The first is the fact that cooperation is
targeted to a well-defined objective (e.g., an assemblage, a unit test, a cable harnessing
operation), which must be typically achieved in a short amount of time. The second has to do
with the fact that humans need to feel in control Baraglia et al. (2016); Munzer et al. (2017):
human behaviour could be unpredictable in specific cases, with obvious concerns about
safety Denei et al. (2015); Haddadin and Croft (2016), humans may not fully understand
robot goals Chakraborti et al. (2017), and robot actions may not be considered appropriate

for the peculiar cooperation objectives Goodrich and Schultz (2007); Munzer et al. (2017).

2.2 Manipulating articulated objects in a HRC scenario 6

Figure 2.1 Two examples of a cable harnessing operation.

As far as the cooperation process is concerned, two high-level directives must be consid-

ered:

D itis necessary to adopt human-robot cooperation models and the associated robot action
planning techniques to meet cooperation objectives Darvish et al. (2017); Johannsmeier
and Haddadin (2017);

D, robots must be flexible enough to adapt to human actions while (i) fulfilling the overall
cooperation objectives Dautenhahn (2007); Prewett et al. (2010), and (ii) making their

intentions clear to human operators Clair and Matari¢ (2015); Roncone et al. (2017).

These directives lead to three functional requirements for a HRC architecture. Collaborative

robots must be able to:
R recognize the effects of human operator actions Liu and Wang (2017);
R, adapt their behaviour considering human actions and the whole cooperation objectives;

R3 employ planning techniques allowing for an appropriate action re-planning when
needed, e.g., when planned actions cannot be executed for sudden changes in the

environment or inaccurate modeling assumptions Srivastava et al. (2014).

2.2 Manipulating articulated objects in a HRC scenario

Among typical shop-floor tasks, the manipulation of articulated or flexible objects, e.g., cable

harnessing operations, is particularly challenging Henrich and Worn (2000); Jimenez (2012);

2.2 Manipulating articulated objects in a HRC scenario 7

Saadat and Nan (2002); Smith et al. (2012), as can be seen in Figure 2.1. In this example, it
is required to plan the expected cable configurations on the harnessing table in advance, thus
confirming requirement R3. Furthermore, it is necessary to keep a cable firm using more than
two grasping points and to re-route the wiring pattern, which — when done collaboratively
with a robot, for instance to place bundle retainers or junction fixtures — leads to requirements
R; and R, above.

In the literature, the problem of determining the 2D or 3D configuration of articulated or
flexible objects has received much attention in the past few years Nair et al. (2017); Waka-
matsu et al. (2006), whereas the problem of obtaining a target configuration via manipulation
has been explored in motion planning Bodenhagen et al. (2014); Schulman et al. (2016);
Yamakawa et al. (2013). In the context of HRC, perception and manipulation are only part
of the challenges to address. Conceptually, the outcome of such approaches is a continuous
mapping from an initial to a target object’s configuration Ahmadzadeh et al. (2015); Berenson
(2013); Bodenhagen et al. (2014); Miller et al. (2011), subject to simplifying hypotheses
related to object models Elbrechter et al. (2011, 2012); Frank et al. (2010); Howard and
Bekey (1997); Mastrogiovanni et al. (2004). This remark leads to two further requirements.

Collaborative robots must be able to:

R4 adopt a representation to be used by action planners, and segment the whole ma-
nipulation problem in simpler actions, each action leading to a new intermediate

configuration;

Rs represent actions using a formalism allowing for plan executions that are robust with
respect to unexpected events (e.g., the human operator suddenly intervenes), and

modeling errors (e.g., not modelled objects to be removed from the workspace).

In this Chapter, we provide to the reader some background on the human-robot coopera-
tive manipulation of articulated objects Yamakawa et al. (2013), which is necessary to fully
grasp the importance of the performance of the integrated planning module and will be taken

as an example in following chapters. In particular, we will discuss:

* The design and development of two representation and planning models for the specifi-

cation of articulated object configurations and the sequencing of manipulation actions;

* The use of two state-of-the-art PDDL planners, namely Probe Lipovetzky and Geffner
(2011a) and Madagascar Rintanen (2014) as well as the VAL plan validator Fox et al.

(2005), to generate manipulation plans using such models;

2.3 Background 8

* The design and development of a novel reactive/deliberative architecture for HRC,
which we call PLANHRC, allowing human operators to intervene as they wish during
the cooperation process, and implemented on top of the ROSPlan Cashmore et al.
(2015a) and Movelt! Coleman et al. (2014) frameworks;

* A discussion about how robot perception and object representation impact on action
planning and execution in HRC scenarios, which is peculiar for the use case we

consider.

2.3 Background

A number of studies have been conducted to investigate the role and the acceptability of
automated planning techniques in HRC scenarios. Gombolay and colleagues highlight two
factors as important to maximise human satisfaction in HRC Gombolay et al. (2013): (1)
humans should be allowed to choose their own tasks freely, i.e., not assigned by an algorithm,
subject to the fact that the cooperation is successful; (ii) the overall human-robot team’s
performance must be at high standards. These two factors may conflict in case of a lazy or
not focused human operator’s attitude. However, when required to trade-off between them,
humans show a strong preference for team’s performance over their own freedom. This
study well fits with the requirements R, R, and R3 outlined above, and opens up to an idea
of collaborative robots as devices not only able to aid human workers, but also capable of
keeping them in focus and steering the cooperation towards its objectives if deviations occur.

As a follow-up of the work discussed in Gombolay et al. (2013), a study about the actual
amount of control a human operator would like to have when collaborating with a robot has
been reported in Gombolay et al. (2014): human workers tend not to prefer a total control of
the cooperation process, rather they opt for partial control. This is confirmed by the fact that
the overall team’s performance seems higher when the robot determines what actions must
be carried out by the human operator. A key factor for the acceptance of collaborative robots
is finding a sensible — yet efficient — trade-off between performance and human control.

In order to determine such trade-off, one possibility is to encode human operator prefer-
ences in the planning process Gombolay et al. (2015). In a first series of experiments, the use
of human preferences in the planning algorithm led to an overall decrease in performance,
correlated with human subjective perception of robots not in line with the main cooperation
objectives. This suggests that a subjective assessment of the HRC process tends to attribute

major inefficiencies to robots, and confirms that this is a crucial aspect for the applicability

2.3 Background 9

of collaborative robots in industrial scenarios. Many techniques for HRC available in the
literature target these issues only to a partial extent, and in limited contexts. In particular, it is
possible to identify two relevant activity trends that the approach presented here is related to.

Approaches in the first class aim at defining cooperation models, i.e., data structures
modeling the task to be jointly carried out, and algorithms operating on such data structures
for the cooperation process to unfold, while keeping flexibility and human preferences into
account Cirillo et al. (2010); Darvish et al. (2017); Johannsmeier and Haddadin (2017);
Roncone et al. (2017); Sebastiani et al. (2017); Tsarouchi et al. (2016); Wilcox et al. (2012).

A probabilistic planner is used in Cirillo et al. (2010) to sequence available partial
plans, which include indications about human preferred actions. Once determined, the
sequence of partial plans cannot be changed, therefore no flexibility for the human is allowed.
Such a limitation is partially overcome by the approach described in Wilcox et al. (2012),
where an algorithm to adapt on-line both the action sequence and the number of action
parameters is described. This is achieved using a temporal formulation making use of
preferences among actions, and using optimization techniques to identify the sequence best
coping with preferences and constraints. The algorithm weighs more plan optimality (in
terms of a reduced number of actions, or the time to complete the plan), and uses human
preferences as soft constraints. The approach by Tsarouchi and colleagues Tsarouchi et al.
(2016) assumes that a human and a robot co-worker operate in different workspaces. The
focus is on allocating tasks to the human or to the robot depending on their preferences,
suitability and availability, and the cooperation model is represented using an AND/OR graph
Sanderson et al. (1988). Although human preferences are taken into account, task allocation
is a priori fixed and cannot be changed at run-time. A similar approach is considered in
Johannsmeier and Haddadin (2017), where the assumption about the separate workspaces
is relaxed. Hierarchical Task Models (HTMs) are used in Roncone et al. (2017), where the
robot is given control on task allocation and execution is modelled using Partially Observable
Markov Decision Processes (POMDPs). However, the focus of this approach is on robot
communication actions to enhance frust in the human counterpart and to share a mutual
understanding about the cooperation objectives. A similar approach is adopted in Sebastiani
etal. (2017), where HTMs are substituted by Hierarchical Agent-based Task Planners and
POMDPs are replaced by Petri Network Plans. However, differently from the approach in
Roncone et al. (2017), the work by Sebastiani and colleagues support on-line changes during
plan execution. Finally, the work by Darvish and colleagues represents cooperation models
using AND/OR graphs, and allows for a switch among different cooperation sequences at

runtime Darvish et al. (2017), therefore allowing humans to redefine the sequence of tasks

2.3 Background 10

among a predefined set of choices. The human operator does not have to explicitly signal the
switch to the robot, whereas the robot adapts to the new cooperation context reactively.

The second class includes techniques focused on understanding, anticipating or learning
human behaviors on-line Agostini et al. (2011); Caccavale and Finzi (2017); Karpas et al.
(2015); Koppula et al. (2013); Kwon and Suh (2014); Liu and Fisac (2015).

The work by Agostini and colleagues adopts classical planning approaches to determine
an appropriate sequence of actions, given a model of the cooperation defined as a domain and
a specific problem to solve Agostini et al. (2011). At runtime, the system ranks a predefined
series of cause-effect events, e.g., observing their frequency as outcomes of human activities,
and updates the cooperation model accordingly. Markov Decision Processes (MDPs) are
used in Koppula et al. (2013) to model the cooperation. In particular, the human and the robot
are part of a Markov decision game, and must cooperatively conclude the game, i.e., carrying
out the cooperation process. Human actions are detected on-line, which influences robot’s
behaviour at run-time. A similar approach, which takes into account temporal constraints
among tasks, is discussed in Karpas et al. (2015). Statistical techniques to recognise human
actions and to adapt an already available plan accordingly are presented in Liu and Fisac
(2015). Human deviations from the plan are detected. When this happens, re-planning
(including task allocation) occurs to achieve the cooperation objectives. While the approaches
discussed so far are quite conservative as far as robot’s autonomy in the cooperation process
is concerned, the work discussed in Kwon and Suh (2014) exploits Bayesian networks to
predict the occurrence and the timing of human actions. Such a prediction is used to perform
preparatory actions before an event even occurs. While the overall system’s performance
is greatly improved, humans tend to be confused by the seemingly anticipative robot’s
behaviour. Hierarchical Task Networks are used in Caccavale and Finzi (2017) to embed
communication actions in the cooperation process. When specific deviations from the plan
are detected, such communication actions enforce the adherence to the plan.

From this analysis of the literature, the PLANHRC architecture presented here differs in

the following aspects:

* While the majority of cooperation models described in the literature do not allow
human operators to decide what actions to carry out, or they do so only to a very
limited extent, PLANHRC foresees a cooperation process informed by optimality in the
planning process (therefore adhering to the first findings of Gombolay and colleagues),
but allows humans to intervene freely, up to the limit situation where all the plan is
executed by the human operator as he or she wishes (i.e., humans are given partial or

total control);

2.4 Problem Statement and Reference Scenario 11

* In PLANHRC the robot does not have to explicitly recognise human operator actions,
as it is prescribed by approaches in the literature, but it focuses on their effects in
the planning model, and treats any perturbation as violations with respect to the
normal plan unfolding.In particular, PLANHRC takes inspiration from the findings in
Gombolay et al. (2014, 2015, 2013) to devise a cooperation model and an interaction

model with the human operator with the following characteristics:

— similarly to the work in Agostini et al. (2011), the robot plans an appropriate,
optimal, sequence of actions to determine relevant intermediate configurations
for an articulated object (considered as a simplified model for a flexible object
like a cable), in order to determine a final target configuration, therefore coping

with requirement Ry;

— during plan execution, the robot always monitors the outcome of each action, and
compares it with the target configuration to achieve, therefore limiting the burden
on the human side Gombolay et al. (2014);

— normally, humans can supervise robot actions: when a robot action is not suc-
cessful, or a plan cannot be found, humans can intervene on the robot’s behalf
performing their preferred action sequence Gombolay et al. (2015), therefore

meeting Ry and R;;

— at any time, a human operator can intervene (e.g., performing an action the robot
was tasked with, or changing the articulated object’s configuration), and the
robot adapts to the new situation, in accordance with Gombolay et al. (2015) and

requirements R3 and Rs.

2.4 Problem Statement and Reference Scenario

The problem that PLANHRC solves is three-fold:

* Given a target articulated object’s configuration, determining a plan to attain such
configuration as an ordered set of actions:

a={aiy,...,a,...,aN;<}, (2.1)

where each action g; involves one or more manipulation operations to be executed by a

dual-arm robot;

2.4 Problem Statement and Reference Scenario 12

* Designing a planning and execution architecture for the manipulation of articulated ob-
jects, which is efficient and flexible in terms of perceptual features, their representation

and action planning;

* Seamlessly integrating human actions in the loop, allowing the robot to adapt to novel,

not planned beforehand, object’s configurations on-line.
In order to provide PLANHRC with such a features, we pose a number of assumptions:

A articulated objects (Figure 2.2) are characterised by an inertial behaviour, i.e., rotating
one link causes the movement of all upstream or downstream links, depending on the

rotation joint;

A, the effects of gravity on the articulated object’s configurations are not considered, and

the object is located on a table during all operations;

A3z we do not assume any specific grasping or manipulation strategies to obtain a target
object’s configuration starting from another configuration; however, we do consider
when an action a; cannot be completed because of unexpected events or modeling

omissions;

A4 perception of articulated objects is affected by noise, but the symbol grounding problem,
1.e., the association between perceptual features and the corresponding symbols in the

robot’s knowledge representation system Harnad (1990), is assumed to be given.

As anticipated above, we need to represent articulated object’s configurations. We define

an articulated object as a 2-ple

a= (%, 7) (2.2)
where . is the ordered set of its |L| links, i.e.,

L={l1,.. =< (2.3)

and ¢ is the ordered set of its |/ joints, i.e.,

I =0 djse =<} (2.4)

Each link /; € .Z is characterized by two parameters, namely a length A; and an orientation
0,. We allow only for a limited number of possible orientations. This induces an ordered set

O of |O| allowed orientation values, i.e.,

2.4 Problem Statement and Reference Scenario 13

0 ={o1,...,0/0);<} (2.5)

such that an orientation 6; can assume values in O. Given a link /;, we define two sets,
namely up(l;) and down(l;), such that the former is made of upstream links, i.e., from /; to
lj—1, whereas the latter includes downstream links from /. to /).

Orientations can be expressed with respect to an absolute, possibly robot-centred refer-
ence frame, or — less intuitively — relative to each other, for instance 6;, can represent the
rotation with respect to 6;, ,. At a first glance, the absolute representation seems preferable
because it leads to the direct perception of links and their orientations with respect to a
robot-centred reference frame, whereas the set of absolute orientations constitute the overall
object’s configuration. When a sequence of manipulation actions are planned, changing one
absolute orientation requires — in principle — the propagation of such change upstream or
downstream the object via joint connections, which (hypothesis Hj) is expected to increase
the computational burden on the reasoner and (H;) may lead to suboptimal or redundant
action sequences, because the propagation may jeopardise the effects of previous actions
in the plan, or to sequences which cannot be fully understood by the human operator. On
the contrary, the less intuitive relative approach assumes the direct perception of the relative
orientations between pairwise links, and thus the overall object’s configuration is made up of
incremental rotations. In this case, (H3) computation is expected to be less demanding, since
there is no need to propagate one change in orientation to upstream or downstream links, and
therefore (H,) actions on different links fend to be planned sequentially. This has obvious
advantages since it leads to shorter plans (on average), which could be further shortened
by combining together action sub-sequences (e.g., two subsequent reorientations of 45 deg
consolidated as one 90 deg single action), and to easy-to-understand plans.

If an articulated object is represented using absolute orientations (Figure 2.2 on the top),

then its configuration is a |L|-ple:

Covapsolure = (07 6.0) 2.6)

where it is intended that the generic element 6;" is expressed with respect to an absolute
reference frame. Otherwise, if relative angles are used (Figure 2.2 on the bottom), then the
configuration must be augmented with an initial virtual link [y in order to define a reference

frame, and therefore:

Cg(x,relalive = (eé,virtuah elr’) elrv ceey e‘rL|) . 2.7)

2.4 Problem Statement and Reference Scenario 14

Figure 2.2 Two possible representations: absolute (top) and relative (bottom).

In principle, while the relative representation could model an object’s configuration with
one joint less compared to the absolute representation, the resulting configuration would
not be unique (indeed there were infinitely many), since the object would maintain pairwise
relative orientations between its links even when rotated as a whole. Therefore, an initial
virtual reference link is added to the chain.

In order to comply with assumption A,, we set up an experimental scenario where a
Baxter dual-arm manipulator operates on articulated objects located on a table in front of it
(Figure 2.3). Rotation operations occur only around axes centred on the object’s joints and
perpendicular to the table where the object is located. We have crafted a wooden articulated
object made up of |L| =5 15.5 cm long links, connected by |J| = 4 joints. Links are 3
cm thick. The object can be easily manipulated by the Baxter’s standard grippers, which
complies with assumption A3. To this aim, we adopt the Movelt! framework. The robot is
equipped with an RGB-D device located on top of its head pointing downward to the table.
Only RGB information is used. QR tags are fixed to each object’s link, which is aimed at
meeting assumption A4. Each QR code provides a 6D link pose, which directly maps to an
absolute link orientation 6,". Finally, if relative orientations are employed, we compute them

by performing an algebraic sum between the two absolute poses of two consequent links:

61 =6y — 6| (2.8)

2.5 PLANHRC’s Architecture 15

Figure 2.3 The experimental scenario: a Baxter dual-arm manipulator operating on an
articulated object.

A human can supervise robot operations and intervene when necessary from the other side of
the table!.

2.5 PLANHRC’s Architecture

2.5.1 Information Flow

PLANHRC is organised as a number of parallel loops orchestrating the behaviour of different
modules (Figure 2.4). Assuming that an articulated object & is located on the table in front
of the robot, we want to modify its current configuration c{, to obtain a goal configuration
c%,, which can be expressed using (2.6) or (2.7).

The goal configuration c§, is encoded as assertional knowledge in an OWL-based Ontol-

ogy module Krotzsch et al. (2013). When this happens, the Perception module is activated,

'A video is available at https://www.youtube . com/watch?v=dMdzCB5SFBMI.

https://www.youtube.com/watch?v=dMdzCB5FBMI

2.5 PLANHRC’s Architecture 16

C; /\ (PI o; Scl Sg)‘f =\
_,/, Planning

RGB image Ontology

...... -------_—--- Execution

Figure 2.4 The information flow in PLANHRC.

and the Baxter’s camera acquires an image of the workspace?, which is fed to the Scene
Analysis module. A perceived configuration c}, (i.e., the current configuration c¢,) is extracted
from the image, and a representation of it stored in the Ontology module. Both ¢, and c§, are
represented using conjunctions of class instances, which model such predicates as Connected,
to indicate whether two links are connected by a Joint, or HasOrientation, to define angle
orientations. If ¢, and c§, are different then a planning process occurs. In order to determine
such a difference, we assume the availability of a logic operator ¥ that, given an element
in the ontology, returns its description in OWL formalism. If the description of ¢, is not
subsumed by the description of c§,, i.e., it does not hold that 2(c$,) C 2(c%,), the Planner
module is activated, which requires the definition of relevant predicates &1, ..., & p|, and

possible action types 4, ..., %,..., 44| in the form:

oy = (pre(tj),ef f~ (o)), ef [T (<)), (2.9)

where pre(.a7;) is the set of preconditions (in the form of predicates) for the action to be
executable, ef f~ (42%]) is the set of negative effects, i.e., predicates becoming false after
action execution and ef f*(.<7;) is the set of positive effects, i.e., predicates becoming true
after execution. For certain domains, it is useful to extend (2.9) to allow for additional

positive or negative effects, i.e., predicates becoming true or false in case certain additional

2The Perception module acquires images continuously, but for the sake of simplicity we treat each acquisition
as if it were synchronous with action execution.

2.5 PLANHRC’s Architecture 17

true

Figure 2.5 The planning and execution pipeline.

conditions hold. A conditional action can be modelled as:

i = (pre(t)).eff(;).ef f " (<)), prea(). ef fa (j),ef fo (), (2.10)

where pre(<;), ef f~(aj) and eff*(</;) are defined as before, pre,(<7;) is the set of
additional preconditions, whereas ef f, (<7j) and ef f," (o7;) are the sets of additional effects
subject to the validity of predicates in pre,(.27;). Furthermore, the Planner requires a suitable
description of the current state s¢ (including a description of cg) and the goal state s&
(including ¢%), described using an appropriate set of ground predicates p1,..., p|p|- This
information, encoded partly in the terminological section and partly in the assertional section
of the Ontology module, is translated in a format the Planner module can use, namely the
Planning Domain Definition Language (PDDL) McDermott (1998).

A plan, as formally described in (2.1), is an ordered sequence of N actions whose
execution changes the current state from s to s8 through a set of intermediate states. In a
plan, each action corresponds to one or more scripted robot behaviors. For example, rotating
a link /; 1 requires the robot to (i) keep the upstream link /; steady with its left gripper,
and (i1) rotate /; 1 of a certain amount with the right gripper. Such sequence shall not be
encoded in the planning process, thereby reducing planning cost, but demanded to an action
execution module. If a plan is found, each action is encoded in the ontology, along with all
the expected intermediate states s© = s{,s5,...,s¢ = s%,, |, which result from actions. The
Execution module executes action by action activating the proper modules in the architecture,
e.g., such behaviors as motion planning, motion execution, obstacle avoidance or grasping.

Each action a; in a plan is assumed to transform a state s§ into a state sj +1» such that:

S = (sG\eff~(aj)) UeffT(ay). 2.11)

2.5 PLANHRC’s Architecture 18

If a; has additional conditions, then (2.11) is modified as:

Sipr=(si\ (eff (aj)UC (prea(a;)))) U (eff T (a;)UC (prea(a;))), (2.12)

where conditions C~ and C™ return the sets eff,, (a;) and ef f.f (a;), respectively, if the con-
ditions in pre,(a;) hold, and @ otherwise. Before the action is executed, the Ontology module
activates Perception to acquire a new image. Again, this induces a new perceived, current
configuration cg,. Every time this happens, two situations can happen: if ¢, corresponds to a
current perceived state s whose description is subsumed by the description of a state 5_6}71
possibly generated applying an action a;_; or as a consequence of human intervention, i.e.,
2(s°) E Z(s_,), then the execution continues with action a; until a state is reached which
is subsumed by Z(s8); otherwise, a new planning process occurs, considering the current
state s¢ as a new initial state and keeping the previous goal state s5.

A few remarks can be made. When an action a; is executed, the expected intermediate
state s¢ is treated as a set of normative ground predicates, i.e., it defines the normal, expected

state fi)r aj to be feasible. Whether s is obtained as a result of a previous action, or with
the help of the human operator is not relevant for a;. On the contrary, deviations from it
are treated as violations and therefore the system tries to re-plan in order to reach a state
compatible with s¢ starting from the current state. As discussed above, violations can be of

two kinds:

* Human interventions (i.e., object manipulations on robot’s behalf) may lead to a current
state s° not compatible with the expected intermediate state 5%, and therefore the robot

should adapt by re-planning;

* A robot may not be able to complete action a;, e.g., due to a cluttered workspace
Srivastava et al. (2014) or the obstructing presence of the human operator Haddadin
and Croft (2016).

In the second case, if such an event were detected, the robot would re-plan starting from
the current state, and possibly ask for the human operator’s help to achieve a workable
object’s configuration. As a consequence, PLANHRC implements a policy according to
which the overall system’s performance is ensured by the use of state-of-the-art planning
techniques, but it allows at any time the human operator to intervene and forces the robot to
adapt its plan accordingly.

Figure 2.5 shows a graphical model of the information flow from the perspective of the

planning process.

2.5 PLANHRC’s Architecture 19

2.5.2 Reasoning in the Ontology and the Cooperation Model

In PLANHRC, the Ontology module is used both off-line and on-line for different purposes”.

The off-line use is related to modeling the domain of articulated objects manipulation, in
terms of types, predicates, operators, states, problems and plans. The on-line use serves two
purposes: on the one hand, to represent relevant object’s configurations, such as the current
¢¢, and the goal ¢, configurations, as well as specific actions to perform using classes and
relationships defined in the ontology; on the other hand, to apply such reasoning techniques
as instance checking to the representation, e.g., to determine whether an action a; assumes
an expected planning state s? which is compatible with the perceived current state s¢, as
described in Figure 2.5.

As anticipated in Section 2.4, and in accordance with the findings in Gombolay et al.
(2014, 2015, 2013), the human-robot cooperation model implemented in PLANHRC foresees
that:

1. The robot determines a plan maximizing some performance indicator in terms of

number of actions and/or time-to-completion;
2. The robot executes and monitors each action in the plan;
3. During normal work flow, the human operator supervises robot actions;

4. The human operator can intervene to cope with robot’s failures in action planning or

execution, or to perform tasks asynchronously and in parallel to robot activities.

The model unfolding is based on monitoring the state transitions in (2.11) and (2.12) and
their failures. Independently of the presence of conditional effects in an action a;, two cases
are possible after the action is submitted to the Execution module: it cannot be executed (or
it is executed only in part) or it is carried out successfully.

The first case originates from motion planning or execution issues, €.g., because of a
cluttered workspace Srivastava et al. (2014) or to prevent any harm to the human operator
Darvish et al. (2017); Denei et al. (2015); Haddadin and Croft (2016). If motion issues
occur, PLANHRC does not generate a state compatible with sj. +1- However, this does not
necessarily mean that the current state s is still compatible with the previous assessed state

5%, 1.e., Z(s°) C Z(s%) may not hold, because the robot may have completed only part

3A more detailed description of the ontology is present in Appendix 1, whereas the full OWL ontology
is available at https://github.com/EMAROLab/0WL-ROSPlan/tree/master/rosplan_knowledge_
base/.

https://github.com/EMAROLab/OWL-ROSPlan/tree/master/rosplan_knowledge_base/
https://github.com/EMAROLab/OWL-ROSPlan/tree/master/rosplan_knowledge_base/

2.5 PLANHRC’s Architecture 20

of the action. In this case, a new current state s¢ is acquired. If there is an intermediate
expected state s¢ comparable with s, then execution resumes from action a;1; otherwise, it
is necessary to invoke again the Planner module using s¢ and s8, and obtain a new plan.

In the second case, action a; is considered to be successful from the point of view of

motion execution. Still, the outcome may or may not be compatible with the expected

1
s°. However, although Z(s°) C Z(s¢,) does not hold, it may happen that s° could be

state s e.g., due to not modelled effects. This state is observable as the current state
appropriate for the next action a1 to occur. In particular, for a;; to be executable, it must
hold that 2(s) C Z(pre(aj+1)). We treat the set of predicates in pre(a;;1) as normative
conditions for a1, regardless whether the expected state sj 41 1s generated as the outcome
of the previous action a;. If Z(s) C 9 (pre(aj;1)) does not hold, we must check whether
there is any intermediate expected state s¢ comparable with s°: if it is the case, execution
resumes from action a; |; otherwise, re-planning is necessary.

In summary, human intervention is strictly necessary when a plan cannot be found.
However, any human action is implicitly considered every time the current state does not
comply with normative predicates. In other words, human intervention is always expected,
and in real-world conditions, it might be extremely frequent, so much so to trigger a re-
planning every single iteration of the architecture loop. In such conditions, even small delays
introduced by the planning module can deteriorate performance and compound to significant

wait times for the human operator.

2.5.3 Planning Models

As anticipated in Section 2.4, orientations can be expressed using an absolute or relative
reference frame. These two possibilities lead to two planning models, which are characterized
by different properties as far as (i) obtained plan, (ii) computational load of the planning
process, and (iii) ease of execution for the robot, are concerned.

For the sake of description, we present the relative formulation first, and then the abso-
lute one. The relative formulation employs the : STRIPS subset of PDDL, extended with
requalities and :negative-preconditions, whereas the absolute version requires also
the use of : conditional-effects. Notably, the problem we are interested in induces a sort
of granularity discretization of angular orientations, hence there is no practical necessity for
continuous or hybrid planning models Fox and Long (2006). Therefore, PDDL constitutes

an appropriate level of abstraction®.

“Examples of planning domains and problems can be found at ?.

2.5 PLANHRC’s Architecture 21

(raction RotateClockwise
:parameters (7?11 712 - Link
7j1 - Joint 7ol 702 - Orientation)
:precondition (and
(Connected 7j1 711)
(Connected 7j1 712)
(not (= 711 712))
(HasOrientation 7ol 7j1)
(OrientationOrd 7ol 702))
reffect (and
(not (HasOrientation 7ol 7j1))
(HasOrientation 702 7j1))

Figure 2.6 The relative version of RotateClockwise in PDDL.

As discussed when introducing assumption A, our model assumes inertial behaviour,
i.e., rotating one link affects the orientation of upstream or downstream links as well. Given

a link [; to rotate (clockwise or anticlockwise), two rotation actions are possible:

1. If link /;_y is kept still and /; is rotated (clockwise or anticlockwise), then all links in

down(l;) rotate (clockwise or anticlockwise) and are displaced as well;

2. If link /4 is kept still, all links in up(l;) are rotated (clockwise or anticlockwise) and

displaced.

Each rotation action (either clockwise or anticlockwise) changing an angle 0; referring to
a relative orientation does not affect any other orientations of links in up(l;) or down(l;),
since all of them are relative to each other, and therefore the planning process is computation-
ally less demanding. However, since actions are expected to be based on link orientations
grounded with respect to a robot-centred reference frame, i.e., absolute in terms of pairwise
link orientations, a conversion must be performed, which may be greatly affected by percep-
tual noise, therefore leading to inaccurate or even inconsistent representations. In the absolute
formulation, qu is considered absolute, and therefore it can be associated directly with robot
actions. Unfortunately, this means that each action changing 65 does affect numerically all
other orientations of links in up(l;) or down(l;) in the representation, which must be kept

track of using conditional effects in the planning domain.

2.5 PLANHRC’s Architecture 22

2.5.4 Relative formulation

As described in Section 2.4, an articulated object o is represented using two ordered sets of

links and joints. We use a Connected predicate modeled as described in

Connected C Predicaten
dargl.Joint [=jargll] (2.13)
darg2.Link M =jarg?2.

to describe the sequence of links in terms of binary relationships each one involving a link
[; and a joint j;; 1, which induces a pairwise connection between two links, namely /; and
lj1+1, since they share the same joint j; . The orientation of a link /; is associated with the
corresponding joint j; and corresponds to an angle 6%, which ranges between 0 and 359 deg,

using the predicate HasOrientation as specified in

HasOrientation T Predicaten
dargl.Joint M =jarglrl (2.149)
dJarg2.Orientation M =jarg2,

This formulation assumes that link orientations are expressed incrementally relative to each
other, and it implies that the robot’s perception system is expected to provide the Ontology
module with the set of relative link orientations as primitive information. If absolute link
orientations are not available, the object’s configuration 6 gpsoruse can be computed applying
forward kinematics formulas using relative orientations and link lengths. If noise affects
the perception of link orientations, as it typically does, the reconstruction of the object’s
configuration may differ from the real one, and this worsens with link lengths. However, this
model significantly simplifies the planning model’s complexity: from a planner’s perspective,
the modification of any link orientations does not impact on other relative joint angles, and
therefore rotation actions can be sequenced in any order the planner deems fit.

Angles are specified using constants, and are ordered using the predicate OrientationOrd

as described by

2.5 PLANHRC’s Architecture 23

OrientationOrd C Predicaten
Jargl.Orientation M =jarglm (2.15)
darg2.Orientation N =jarg2.

The difference between constant values is the granularity of the resolution associated with
modelled orientations. For example, if 30 and 45 are used as constants representing, re-
spectively, a 30 and a 45 deg angle, then a predicate (OrientationOrd 30 45) is used to
encode the fact that 30 precedes 45 in the orientation granularity, and corresponds to the

description in

argl(ord_30_45,30),

(2.16)
arg2(ord_30_45,45),

Independently of what part of the articulated object is rotated, the domain model includes
two actions, namely RotateClockwise (Figure 2.6) and RotateAntiClockwise. In the
definition of RotateClockwise, 7?11 and 7?12 represent any two links /; and [, 7j1is
the joint j;;1 connecting them, whereas 701 and 702 are the current and the obtained link
orientations, respectively. If 7j1 connected two different links 711 and 712, the angle
701 of 711 associated with 7j1 would be increased of a certain step (depending on the
next orientation value) therefore leading to 702. A similar description can be provided for
RotateAntiClockwise.

A problem is defined by specifying the initial and final states. The former includes
the topology of the articulated object in terms of Connected predicates, and its initial
configuration using HasOrientation predicates; the latter describes its goal configuration

using relevant HasOrientation predicates.

2.5.5 Absolute formulation

The absolute formulation differs from the relative one in that link orientations are expressed
with respect to a unique, typically robot-centred, reference frame. If a rotation action modifies
a given link orientation 6¢, all orientations of links in up(l;) or down(l;) must be consistently
updated as well, i.e., it is necessary to propagate such change upstream or downstream. Such
a representation increases the complexity of the planning task but it is more robust to errors:

perceiving independent link orientations induces an upper bound on the error associated with

2.5 PLANHRC’s Architecture 24

(raction RotateClockwise
:parameters (7?11 712 - Link
7j1 - Joint 7ol 702 - Orientation)
:precondition (and
(Connected 7j1 711)
(Connected 7j1 712)
(not (= 711 712))
(HasOrientation 7ol 7j1)
(OrientationOrd 7ol 702))
reffect
(and
(not (HasOrientation 7ol 7j1))
(OrientationOrd 702 7j1)
(forall (7j2 - Joint 703 704 - Orientation)
(when (and
(Affected ?7j2 711 7j1)
(not (= ?7j2 7j1))
(HasOrientation 703 7j2)
(OrientationOrd 703 704))
(and
(not (HasOrientation 703 7j2))
(HasOrientation 704 7j2)))

Figure 2.7 The conditional version of RotateClockwise in PDDL.

their inner angle. The Connected, HasOrientation and OrientationOrd predicates are
the same as in the relative formulation, subject to the different semantics associated with link
orientations. However, with respect to the relative formulation, the effects of the actions differ.
In particular, the model assumes that we can represent which joints are affected when a link
is rotated around one of the corresponding joints. This is done using the Affected predicate,
i.e., a ternary predicate (Affected 7j2 711 7j1), where 711 is the rotated link, ?7j1 is
the joint around which 711 rotates, and ?j2 is a joint affected by this rotation. Therefore,
if 7j2 were affected, the angle of the corresponding link would be modified as well in the
conditional statement and, as such, it would affect other joints via the corresponding links.
For each couple 711, ?j1, the list of joints affected by the corresponding movement should

be provided under the form of multiple Affected predicates. With reference to the action

2.6 Performance of the PLANHRC architecture 25

described in Figure 2.7, as in the previous case, the joint ?j1, located between 711 and 712, is
increased by a quantity defined by a specific granularity, according to the OrientationOrd
predicate. If rotating 7?12 around 7j1 affects 7j2, the latter is updated, as well as all other
joints upstream or downstream. This is encoded by the forall part of the PDDL encoding.
Following the semantics of the language, the forall statement requires the planner to update
the state of all joints ?j2 that are affected by the performed action — checked conditions
are specified via the when statement. The HasOrientation predicate of identified affected
joints is then updated accordingly. A similar definition for RotateAntiClockwise can be
easily given.

In terms of problem definition, beside Connected and HasOrientation predicates, it is
necessary to include the list of appropriately defined Affected predicates.

It is noteworthy that the two action definitions, namely RotateClockwise and
RotateAntiClockwise, are functionally equivalent. Furthermore, any problem we target
here could be solved — in principle — with just one action, as long as discretized angles were
ring-connected. We decided to introduce two different actions for two reasons: on the one
hand, it is rare that joints can rotate freely for 360 deg or more; on the other hand, this model
leads to shorter plans (on average) in terms of number of actions and cleaner, more natural

executions, at the expense of a slightly longer planning time.

2.6 Performance of the PLANHRC architecture

2.6.1 System Design

PLANHRC has been implemented integrating existing modules and novel ad hoc solutions.
The experiments reported here have been carried out using a dual-arm Baxter manipulator.
The Perception and Scene Analysis modules are custom nodes developed using the Robot
Operating System (ROS) framework. They integrate the Alvar tracker library to read QR
codes 7. Different solutions are equally legitimate, and the use of QR codes is not a
fundamental feature of the proposed framework. Images are collected using the standard
RGB camera of a Kinect device, which is mounted on the Baxter’s head and points downward
to capture what happens on a table in front of the robot. The Ontology and Planning modules
have been implemented on top of ROSPlan Cashmore et al. (2015a). A custom ontology

describing the domain of articulated object manipulation has been developed and validated.

Shttp://wiki.ros.org/ar_track_alvar

http://wiki.ros.org/ar_track_alvar

2.6 Performance of the PLANHRC architecture 26

Ontology management is done using the ARMOR framework ®, which has been integrated
with ROSPlan. Two existing planners have been interfaced with the system and evaluated,
namely Probe Lipovetzky and Geffner (2011a) and Madagascar Rintanen (2014). In principle,
any existing PDDL-based planner with the features discussed above could be used. The
two planners have been selected on the basis of their performance in the agile track of the
2014 International Planning Competition, as well as following a computational assessment of
their performance Capitanelli et al. (2017). The Execution module and the various activated
behaviors have been implemented using the well-known Movelt! framework.

On-line, the architecture runs on a 8 x Intel Core 17-4790 CPU 3.60 GHz processors
workstation, with 8 GB of RAM, running a Linux Ubuntu 14.04.5 LTS operating system.
Off-line performance tests about the planning process have been carried out on a workstation
equipped with 2.5 GHz Intel Core 2 Quad processor, 4 GB of RAM, running a Linux 2.6.32
kernel operating system.

Problem formulations, as well as all generated instances, including domain, problems

and plans, are freely available ’.

2.6.2 Planning Performance

Tests with synthetic problem instances have been performed to stress the two planning
formulations. For the tests, we varied the number of links |L| from 4 to 20 and the number of
allowed orientations |O| a link can take from 4 (i.e., with a resolution of 90 deg) to 12 (i.e.,
with a resolution of 30 deg). As outlined above, such a resolution has a different meaning
depending on whether we employ the absolute or relative formulations.

Figures 2.8 to 2.11 represent means and variances, in seconds, for different problem
instances, for all the combinations of formulation and planner. Problem instances are labelled
as x —y, where x < |L| defines the number of links and y < |O| specifies the orientation
resolution. For each instance, planners have been executed 10 times to take into account the
randomness associated with the employed heuristics. A 300 sec upper bound to the solution
time has been set. If a planner is unable to find a solution before such time limit is reached, it
is stopped. Figures only contain data related to problems solved within the time limit.

As it can be seen in Figure 2.8, when we use the absolute formulation and Probe, 73.5%
of the instances are solved, i.e., 125 out of 170. It is possible to observe that problem
instances with up to x < 10 and y < 4 are solved in roughly less than 1 sec, with a relatively

small variance. When the number of links increase, planning time significantly increases

®https://github.com/EMAROLab/ARMOR
"https://github.com/EMAROLab/paco_actions

https://github.com/EMAROLab/ARMOR
https://github.com/EMAROLab/paco_actions

2.6 Performance of the PLANHRC architecture 27

100 | - .

Runtime

f 4

1 T

Y NIE S TS TS TSP IO 2 I 4

W o o 5 AP P Y TR RS
Instances

0.01

Figure 2.8 Means and variances of solution times for different problem instances using the
absolute formulation and Probe: on the x-axis, the first value indicates the number of links,
the second the number of allowed orientations. Runtime is reported in seconds.

100 ¢]

10_—]

Runtime
]
i

L I]
01 r E ; T 1
= -
001 1 I I |q) I I I I |b9 |b |@
R R R R A AL SR AN
Instances

Figure 2.9 Means and variances of solution times for different problem instances using the
absolute formulation and Madagascar: on the x-axis, the first value indicates the number of
links, the second the number of allowed orientations. Runtime is reported in seconds.

2.6 Performance of the PLANHRC architecture 28

0.16 T T T T T T T T T T T T T T T T T

0.14 + 4

0.12 i

0.1 4

Runtime

0.08 4
T
0.06 4

0.04 { I l T i

mml—_______l T]

I N N T R R At A AT
W o 0 o AT & o W Y RS IR Y Y
Instanc
Figure 2.10 Means and variances of solution times for different problem instances using the
relative formulation and Probe: on the x-axis, the first value indicates the number of links,
the second the number of allowed orientations. Runtime is reported in seconds.

0.1 T T T T T T T T T T T T T T T T T

0.09 - 4
0.08 - 8
0.07 T .

0.06 - l 4
0.05 4

0.04 | 1

0.03 | 1 1 .

0.01 L 1 -
SRe s??

Runtime

/

¥4
In
Figure 2.11 Means and variances of solution times for different problem instances using the

relative formulation and Madagascar: on the x-axis, the first value indicates the number of
links, the second the number of allowed orientations. Runtime is reported in seconds.

2.6 Performance of the PLANHRC architecture 29

as well, and thus the variance. In the same situation, as depicted in Figure 2.9, Madagascar
shows a more unpredictable behaviour: for small problem instances, it can quickly find a
solution, and with a small temporal variance; however, the employed heuristics may cause
large variances in specific cases, e.g., the instance labelled 8 — 4. It is worthy to note that
larger instances are rarely solved and, in general, the number of solved instances is lower
when compared to Probe, i.e., only 53.5% (91 out of 170). As it will be also showed in the
next Section, these results seem to confirm hypothesis Hy, i.e., the more intuitive absolute
formulation leads to more complex reasoning processes. This is due to the fact that planners
need to propagate the effects of each action to upstream or downstream links, which can be
done only by employing a complex formulation involving conditional effects.

If we consider the relative formulation, then both Probe (Figure 2.10) and Madagascar
(Figure 2.11) are very efficient, with Madagascar outperforming Probe to a small extent.
Both planners are capable of solving all the instances (170 out of 170) in less that 0.2 sec,
and exhibit a very good scalability, as well as a very limited variance. These results support

hypothesis Hs, i.e., the reduced planning effort is reflected by the simpler formulation.

2.6.3 Examples

In this Section, we provide examples of plans generated by Probe and Madagascar using the
two formulations introduced above. Furthermore, we show and discuss what happens in a
number of human-robot cooperation use cases.

In order to discuss how the different planners deal with the absolute and the relative
formulation, we focus the discussion on a specific instance with 3 links and 3 joints. Figure
2.12 shows two possible solutions, obtained respectively using Probe (first two rows) and
Madagascar (last two rows), when the absolute formulation is adopted. In each solution,
the top-leftmost configuration is the initial one, whereas the bottom-rightmost configuration
is final one. It can be observed that both plans are characterized by a number of seem-
ingly unnecessary actions, since the planners must continuously maintain the representation
consistency. The plan obtained using Madagascar (on the bottom) also loops over two
configurations, which is probably due to the employed heuristics. This example seems to
confirm H», i.e., the absolute approach leads to suboptimal plans, or plans which may not
easily understood by human co-workers.

Figure 2.13 shows how Probe (top) and Madagascar (bottom) solve the same problem
when a relative formulation is adopted. Both planners generate solutions that are shorter than

those obtained using the absolute formulation, and no seemingly unnecessary actions are

2.6 Performance of the PLANHRC architecture 30

Figure 2.12 A sequence of configurations for a 3 — 3 problem, using the absolute formulation
with Probe (first two rows, from left to right and top to bottom) and Madagascar (second two
rows, from left to right and top to bottom).

planned. In the plan generated by Madagascar, it is possible to observe that actions involving
the same link tend to be performed sequentially, i.e., H4 seems to be verified. This holds for
other solutions as well.

As anticipated above, PLANHRC has been deployed on a dual-arm Baxter manipulator
to enable the robot to autonomously manipulate articulated objects. The Baxter operates
on a 3-link articulated object, assuming that the angle resolution is 90 deg, i.e., a 3 —4
problem according to the definition introduced above. Figure 2.14 shows a sequence of

configurations, including the initial one in the top-leftmost position, and the goal one in

2.6 Performance of the PLANHRC architecture 31

Figure 2.13 A sequence of configurations for a 3 — 3 problem, using the relative formulation
with Probe (first row, from left to right) and Madagascar (second row, from left to right).

the bottom-rightmost position, from left to right and top to bottom, whereas Figure 2.15
shows the corresponding relevant instants during the execution of the plan by the robot. It is
worth noting that, each time a RotateClockwise or RotateAntiClockwise action is executed,

the actual robot behaviour is made up of three steps:

1. Firmly grasp the link associated with the interested joint that must be kept still;
2. Grasp the link that must be rotated;

3. Perform a rotation of the proper amount.

In PLANHRC, this can be done indifferently by the left or right robot arms, according to a
simple heuristics related to which arm is closer to the link to operate on. Grasping actions in
Figure 2.14 are indicated with grasping signs close to the interested link, plus an R sign to
indicate that the action is performed with the right arm, or L otherwise. We decided not to
model grasping actions at the planning level for two reasons: on the one hand, they would
have increased the burden of the planning process; on the other hand, each rotation must be
preceded by a grasping operation, and therefore this sequence can be easily serialized in the
execution phase.

Figure 2.16 and Figure 2.17 show two examples of plans where human intervention
occurs to successfully accomplish the whole cooperation process. In the figures, the two
sequences must be analysed from top to bottom and left to right.

In Figure 2.16, it is possible to see that the human operator performs an action while the

robot is executing a rotation action on other links (top-right and mid-left snapshot). The

2.6 Performance of the PLANHRC architecture 32

Figure 2.14 A sequence of configurations for a 3 —4 problem, from left to right and top to
bottom, as seen from the robot’s perspective.

action performed by the human operator leads to a situation compatible with the object’s
target configuration. As a consequence, the final configuration is reached in snapshot mid-
centre. Afterwards, the operator modifies again the status of the first link (mid-right snapshot),
thereby leading to a configuration not compatible with the goal one. As a consequence, the
robot intervenes to restore it (bottom-centre and bottom-right snapshots). This sequence
demonstrates two important features of PLANHRC: first, the freedom human operators have
in performing actions asynchronously with robot actions; second, the robot capabilities in
keeping the cooperation on track coping with possible human mistakes.

Figure 2.17 shows an example where a human operator helps the robot complete an action,
which was not performed in its entirety. The robot starts executing a plan (top-left and
top-centre snapshots). However, a rotation action is not completed, leading the object’s

configuration to a state not compatible with the expected one (mid-right snapshot). Then,

2.6 Performance of the PLANHRC architecture 33

Figure 2.15 The sequence of Figure 2.14 as executed by Baxter without human intervention.

the human operator intervenes with an action aimed at completing the intended rotation and,
at the same time, performing an additional rotation on the last link in the chain (mid-right
snapshot). From that moment on, the robot autonomously completes the plan. This sequence
shows how a plan can be successfully recovered by human intervention, and the fact that the

robot can seamlessly continue plan execution.

2.6.4 Discussion

On the basis of the requirements outlined above and the experimental analysis carried out to
evaluate the whole PLANHRC architecture, it is possible to make a few interesting remarks,
perform a comparison with other approaches in the literature, and draw some conclusions.
In particular, the discussion that follows is focused on three aspects, namely planning
performance, the generation of natural sequences of manipulation actions and the resulting

cooperation process according to which human operators interact with the robot.

2.6 Performance of the PLANHRC architecture 34

Figure 2.16 A series of manipulation actions executed with the help of a human operator.

Planning performance

The absolute and the relative formulations are characterized by different performance results.

When using the absolute formulation, both Probe and Madagascar are capable of solving
problem instances with a limited number of links and orientations in less than 1 s, which
is a reasonable upper bound for the reasoning time of a collaborative robot interacting
with a human operator, with Probe outperforming Madagascar on bigger problem instances.
With around 10 links, the time required to obtain a plan (if it exists) significantly increases,
due to the large number of possible orientations, with solution times up to an average of
100 s and beyond. When using Probe, solution times for the same problem instance have
a certain variance, which is almost uniform for different numbers of links and possible
orientations. If Madagascar is used, such variance generally decreases, but sometimes it may
become significantly large, as shown for example in the problem instance 8 — 4. By carefully
analyzing cases where Madagascar shows significantly high runtimes, we observed that the
planner finds problem instances where subsequent connected joints need to be rotated in
opposite ways (e.g., the angle of one joint has to be decreased, while the angle of the other

joint has to be increased) particularly challenging to solve. In that cases, the planner keeps

2.6 Performance of the PLANHRC architecture 35

Figure 2.17 Another series of manipulation actions executed with the help of a human
operator.

looping between a very small number of configurations, trying to fix the orientation of a
joint at a time, ignoring the effect of such actions on the rest of the articulated object. As
far as human-robot cooperation processes are concerned, if an absolute formalization were
used, then Probe would represent the best trade-off between complexity and solution times.
In principle, Madagascar would be a better choice for problems with a reduced number of
links and possible orientations, but the occasional presence of large variances in solution
times would seriously jeopardize the human-robot cooperation process. The two planners
behave differently when using a relative formulation. Both Probe and Madagascar prove
capable of solving large problem instances (i.e., with up to 20 links and up to 12 possible
orientations) in less than 0.2 s. Solution times increase also in this case, but the very low
time scale makes such trend relevant only to a limited extent. Differently from the case
with the absolute formulation, Probe behaves quite deterministically, and the same holds for
Madagascar. When dealing with human-robot cooperation, both planners are suitable to be

used if a relative formulation is adopted, with a slight preference for Probe.

2.6 Performance of the PLANHRC architecture 36

The relative formulation proves to be essential when the robot must deal with the directive
D, discussed in the Introduction, and in particular to allow for a fast action re-planning when
needed, as required by R3.

Differently from those approaches encoding human operator preferences in the planning
model, typically using heuristics Gombolay et al. (2015), when adopting a relative formu-
lation PLANHRC tends to find minimum-length plans (in terms of number of actions), i.e.,
the plan as devised by the robot is efficient. As a matter of fact, interventions of human
operators are treated by PLANHRC as perturbations with respect to the execution of the
efficient plan. However, sometimes these perturbations may be helpful (i.e., the human
operator helps the robot perform an action), whereas in other cases they constitute detours
with respect to the original plan, which is tolerated because such detours express human
operator preferences. Differently from the approaches presented in Cirillo et al. (2010);
Roncone et al. (2017); Wilcox et al. (2012), PLANHRC does not model human preferences
in the planning models, but accommodates for them on-line. Only to a limited extent, the
approach presented in Darvish et al. (2017) goes in the direction pursued by PLANHRC.
The use of AND/OR graphs to model a limited number of alternative cooperation models
allows human operators to select on the fly which one they want to follow. However, the
AND/OR graph encodes models which have been a priori defined, and this is different from
the approach of PLANHRC where (i) there is no need for such an encoding, and (ii) in

principle, the cooperation is not limited to a given number of alternatives.

Natural action sequences

In general, the two formulations lead to qualitatively different plans, i.e., plans with different
actions.

Independently of the employed planner, the absolute formulation originates plans longer
than those obtained using the relative formulation. In the absolute case, the solution may
contain apparently unnecessary actions, as well as repeated sequences of actions. This is
due to the fact that when working on orientations of links located downstream in the chain,
such orientations may be later modified as a side-effect when the algorithm operates on links
upstream, therefore requiring reworking on downstream links. Such plans are the result
of certain planner heuristics. However, they are often unnatural for humans to understand,
which is of the utmost importance in human-robot cooperation processes.

Plans obtained starting from the relative formulation are shorter and — in a generic
sense — more understandable by humans. Since the representation of orientations is relative

for pairwise links, the planner does not need to modify orientations of downstream links

2.6 Performance of the PLANHRC architecture 37

multiple times, and solutions tend to include sequences of actions operating on the same link.
This makes plans easy to follow, irrespectively whether they are generated using Probe or
Madagascar.

Thus, as far as naturalness is concerned, the relative formulation must be preferred over
the absolute formulation. Shorter and easy-to-understand plans are supposed to strengthen a
human operator’s ability to supervise robot actions in compliance with directive D, and to
intervene when required, as prescribed by requirement Rs. However, it is noteworthy that
PLANHRC has not been tested in real-world conditions yet. As a consequence, there are
still to-be-validated hypotheses requiring us to conduct a specifically designed study, also
related to the role of context-aware planning in human-robot cooperation Mastrogiovanni
et al. (2013).

According to the studies discussed in Gombolay et al. (2014, 2013), human operators
tend to prefer a partial control on the cooperation process, with the aim of maximising the
overall human-robot team’s performance. The approach pursued by PLANHRC goes in this
direction in that it enables the robot to generate an efficient plan, but it allows humans to
intervene when required. If compared to those approaches explicitly or implicitly encoding
human preferences in the cooperation process Cirillo et al. (2010); Darvish et al. (2017);
Johannsmeier and Haddadin (2017); Roncone et al. (2017); Wilcox et al. (2012), PLANHRC
does not offer any formal guarantee about the naturalness of the generated plan, that is to say
in terms of an easy understanding of the sequence of basic manipulation actions by human
operators. However, when a relative formulation is adopted, the planner tends to produce
natural, easy-to-understand plans without prior knowledge being encoded in the system,

which is a clear advantage should the system be extended to other use cases.

The cooperation process

In absence of errors related to action execution, once a plan is available PLANHRC should
be able to carry it out in its entirety. This is in agreement with directive D discussed in the
Introduction. However, when either one action is not executed successfully or it has been
carried out only partially, a human operator can intervene to obtain an object configuration
that the robot can operate upon. These two facts support requirement R».

As described above, before any action is executed, the robot checks whether a number
of expected normative predicates hold in the current planning state. Implicitly, this means
that any error in action execution or human intervention is synchronously assessed before
the next planned action can start. Obviously enough, this represents a limiting factor for

PLANHRC, and originates from the focus on planning sequences of states to be reached

2.7 We need a better way to plan in the loop 38

rather than actions. A more flexible reactive system may make use of human actions to
determine causes of faults on the fly, instead of being limited in assessing their outcomes at
discrete intervals. However, it also enforces the fact that humans are in control at any time:
the robot simply waits for human intervention to finish and then plans a course of actions
from that moment on.

This approach makes PLANHRC different from a number of human-robot cooperation
frameworks described in the literature Agostini et al. (2011); Caccavale and Finzi (2017);
Karpas et al. (2015); Koppula et al. (2013); Kwon and Suh (2014); Liu and Fisac (2015).
While in Agostini et al. (2011) a predefined set of possible cause-effect events are considered,
PLANHRC consider each predicate in the ontology as normative information that must be
validated on-line, independently of the cause that may have generated a norm violation.
PLANHRC does not explicitly detect human operator actions Koppula et al. (2013); Kwon
and Suh (2014); Liu and Fisac (2015), and therefore it is not able to perform action-dependent
behaviour, but only state-dependent behaviour. In virtue of this, PLANHRC may be employed
to perform anticipative behaviors like done in Liu and Fisac (2015), where a Bayesian network
is employed to that aim, but using only the current cooperation state (i.e., adopting a sort of
Markov assumption). It is noteworthy that PLANHRC explicitly does not consider temporal
aspects in planning execution. Whilst — in principle — temporal PDDL-based planners may be
used to generate plans adhering with well defined temporal constraints, at run time PLANHRC
may support the use of temporal-based constraints validation as done, for instance, in Karpas
et al. (2015).

2.7 We need a better way to plan in the loop

This Chapter describes a state-of-the-art a hybrid reactive/deliberative architecture for col-
laborative robots in industrial scenarios, and it shows a use case where a human and a robot

collaboratively manipulate articulated objects. In particular:

* It shows how two different representation and planning models for articulated objects
impact on planning performance and plan quality, in terms of number of actions and

simplicity of the plan;

It demonstrates the feasibility of an approach to human-robot cooperation where
actions by human operators are automatically managed in virtue of their effects as
perceived by the robot.

2.7 We need a better way to plan in the loop 39

The developed architecture is evaluated on the basis of a number of functional and non
functional requirements: the possibility for the system to implicitly recognize the effects of
human actions, the robot’s capabilities in adapting to those actions, and a fast (re-)planning
process when needed, just to name the most important ones.

From the evaluation, one result is clear. Plan-HRC presents some highly desirable
characteristics in the context of Human-Robot cooperation, such as allowing the human
operator to lead the interaction and act when and as he sees fit, while simultaneously striving
towards an efficient execution. Nevertheless, re-planning is a very frequent occurrence,
potentially happening as often as every single cycle of the architecture loop, in the limit case
where the robot and the human act as two agents of a turn-based process. Hence, PLANHRC’s
efficiency and the quality of the cooperation itself, depends strongly on the time needed to
re-plan.

In the work presented in this pages, a solution was found in the relative formulation of
the model, that while not as intuitive as the absolute one, lead to acceptable performance
and even more understandable final plans compared to the alternative. This fact proves that
a clever formulation can be a powerful tool in order to maintain planning time in check:
we will discuss this approach further in the next Chapter. Despite that, not all problem
might have a simple formulation, or simply the number of objects needed to plan upon in
a real-world scenario might be so big that a planner could struggle even with an otherwise
relatively simple formulation. After all, traditional heuristic-search based planners have
always been more suitable for offline use, and the extreme online re-planning requirements of
the PLANHRC architecture might be an unfair benchmark to judge them. For these reasons,
in Chapters 4 to 6 we will explore a radically different way to generate PDDL-compliant
plans using Large Language Models (LLM) and show how this method can help us overcome
some of the limitations we observed here.

It must also be noted that, while the absolute problem formulation has shown poor
performance in these experiments, it also proved to be an extremely challenging benchmark
for traditional heuristic-search based planners. Coincidentally, the same holds true, albeit for
different reasons, also for LLM. For this reason, we will discuss and expand this formulation

further in the next Chapters.

Chapter 3

Optimizing total planning

and execution time using Macros

3.1 What is the right level of abstraction?

As we have discussed in the previous Chapter, many Al techniques used in Robotics and
Ambient Intelligence for symbolic reasoning and task planning have historically suffered
from the well-known combinatorial explosion issue: that means that as the number of symbols
and relationships among them increase, the computation time increases as well, in a dramatic
way. This phenomenon heavily limits the application of symbolic Al techniques in the real
world, as it is often impossible to keep such Al model in a loop unless the problem at hand is
very simple.

At the moment, there is no real solution to this problem, even though a number of practical
workarounds can be implemented to alleviate the issue. In literature, a traditional workaround
to this problem is to increase the level of abstraction of the model, in order to reduce the num-
ber of symbols that must be considered by the solver. This approach is common in automatic
planning, and, especially in PDDL-based planning, it is usually implemented through the use
of macros. Macros are actions that an agent can perform that are composed as a sequence
of multiple, elementary actions. Albeit macros can reduce planning time significantly, the
resulting plan may be suboptimal at execution time compared to a plan using exclusively
elementary actions, as every time the planner selects a macro, there is a chance that the
macro involves the execution of an otherwise unnecessary elementary action. Of course, such
downside can be reduced, but not completely eliminated, by defining macros intelligently,
that is by bundling together actions that are usually executed in sequence anyways. This

task usually falls into the designers’ hands and heavily depends on their intuition, albeit in

3.1 What is the right level of abstraction? 42

literature some approaches have been proposed to generate macros automatically according
to several heuristics.

The literature on macros heavily focuses on their effect on planning performance, but
little work has been done to assess their true impact on real world performance in robotic
applications. First of all, considering how fast planning times can grow in complex planning
domains, in many cases the occasional execution of an unnecessary action might be a cost
worth paying for consistently lower planning times. Secondly, during their execution, macros
are usually decomposed back into their primitive elementary actions for them to be executed
in sequence. Yet, it is also possible to ground macros to their own specific implementations
instead of decomposing them again into their original constituent actions. In this way,
additional optimizations are possible that can mitigate the occasional unnecessary action.

Let us take as an example the manipulation of articulated objects discussed in the
previous Chapter and imagine that we want to rotate clockwise a link of our object by 180
degrees. If our arbitrary elementary actions are 90 degrees rotations, we can thus define
a macro constituted by two successive clockwise rotations. We now have two options
at execution time: either execute the two original 90 degrees rotation; or execute a new
procedure especially designed to ground the macro, and that performs a 180 degrees rotation.
Intuitively, this new procedure can save time over executing the two elementary actions’ by
the simple fact that the robot could plan a single smooth path and possibly avoid releasing
and grasping the link again in between the two actions.

The combination of this two factors should lead us to question the common knowledge
that macros are only a workaround for faster planning times that is detrimental to execution.
Instead, in this Chapter we hypothesize that certain level of abstraction through macros can
have a largely positive effect on total planning and execution time.

Hence, the major contribution of the work presented in this Chapter, is to provide, to the
best of our knowledge, a first-of-its-kind analysis of PDDL macros impact on both planning
and execution time in a robotics use case, taking as reference scenario the manipulation of an
articulated object.

In order to prove our hypothesis, we extended the absolute formulation domain introduced
in Section 2.5.5 and define five additional planning domains, each characterized by an
increasing level of abstraction. At lower levels, few macros are introduced and they coexist
with some of the original elementary actions. Vice versa, at higher levels all actions are
macros. We then compared the original model and the five additional models including
macros both in term of planning and execution time. Execution time has been measured in a

simulation environment making sure that each macro has its own optimized implementation.

3.2 Macros: definition and usage in task planning 43

Results on our reference planning scenario show that with an adequate choice of macros it is
possible to reduce average planning time by 85% and its variance by 99% without a major
impact on execution efficiency. Indeed, even execution time can be reduced, albeit slightly,
by up to 17%.

The limitations of the approach discussed in these pages is that it is obviously dependent
on the domain taken into consideration, the macros’ definition and the implementation of the
software modules that ground said macros. Despite that, our results prove that in scenarios
where planning time is critical, such as when high level planning is a component of a larger
robotic architecture that must adapt to unforeseen events and human intervention, macro

optimization is a powerful tool that not necessarily jeopardize execution times.

3.2 Macros: definition and usage in task planning

The manipulation of articulated objects plays an important role in real-world robot tasks,
both in home and industrial environments (Heyer, 2010a). In Chapter 2, much attention has
been paid to the development of approaches and algorithms for generating the sequence of
movements a robot has to perform in order to manipulate an articulated object, therefore
we will keep this Section short and focus instead on macros and their use in this specific
operational scenario.

The manipulation of an articulated object in a 2D workspace involves the possibility
of performing actions like rotating one of its link with respect to one another around their
shared joint, with some constraints in robot actions execution to enforce their feasibility.
Macros are actions that an agent can perform that are composed as a sequence of multiple,
elementary actions. Therefore, we can efficiently exploit macro actions in order to generate
more compact and effective plans. Macros can be considered as sequences of elementary
actions that, on an application viewpoint, would be useful to be performed in such a sequence,
and be considered as a single action. The concept of macro is as old as STRIP based planning
(Fikes et al., 1972), but given that the definition of a set of macro is arbitrary, there has been a
significant research efforts over the years to generate macros automatically according to some
beneficial heuristic. In particular, macros can be defined through knowledge automatically
learned offline from both the domain taken into consideration and the planner to be used
to solve it (Gerevini et al., 2011), but online (Chrpa et al., 2015) and domain-independent
(Chrpa and Vallati, 2019) approaches have been proposed too. Most of these works focus
on learning macros for general planning domains, but there are a few examples that take

specifically into consideration domains employed in robotics, and in particular for mobile

3.3 Updated planning models with macros 44

Table 3.1 Summary of models that uses macro actions discussed in this Chapter.

| Model | Description |

m_0 No use of macros
m_25 25% macro

m_25_B | Alternative 25% macro
m_50 50% macro

m_50_B | Alternative 25% macro
m_75 75% macro

robots (Hofmann et al., 2017). Surprisingly, macros have already been successfully employed
in automated planning for articulated objects’ manipulation (Bertolucci et al., 2021), but only
in systems based on the Answer Set Programming (ASP) framework (Lifschitz, 2019). In
this Chapter, we will discuss a similar approach based on PDDL instead, in order to extend
the models defined in the previous Chapter and maintain compatibility with a wide range of
PDDL-based tools in robotics.

The lack of focus on robotics applications in the literature on macros is part of the reason
why most of these work focus mainly on their effect on planning time, and are instead less
interested in their effects on execution time and quality. Nevertheless, insights about the right
level of abstraction to adopt while keeping into consideration execution, would not only be
useful in robotics applications, but could be themselves useful to improve existing automated

macro-generation systems with heuristics which are more aware of the real world.

3.3 Updated planning models with macros

In this Section we will broadly describe five additional planning models for the manipulation
of articulated objects using macros. Table 3.1 summarizes the models taken into consideration
in this Chapter.

A sixth model is included in the Table, m_0, which represents our baseline model without
any use macros. This model corresponds to the absolute formulation model outlined in
Section 2.5.5, with a small modification. Whereas before we have considered that the robot
can keep a link still and rotate the other, or vice versa, causing effects to propagate both
upstream or downstream accordingly, we will now enforce only downstream propagation.
This is achieved by introducing a new predicate, 1ink-before, that models the order of the

links, and updating the rotation actions preconditions accordingly. In practical terms, the

3.3 Updated planning models with macros 45

robot can keep the first link still and rotate the second, but not the opposite. This modification
mitigates the issues discussed in Section 2.6.4, making the behavior of the conditional model
more intelligible to the human operator and thus simplifying the qualitative analysis of the
resulting plans.

All successive models employ the same definitions of object types and predicates, and
only differ in the action set which is made available to the planner to solve problems on
that given domain. As a consequence, problem instances are intercompatible among the
proposed domains, which in turn allows a simpler and fairer comparison of their performance.
In the naming convention for the models, numbers ranging from 0O to 75 represent a rough
percentage of how much the the model relies on macros, which we will refer to as macro-
ness. Hence, the base model is called m_0 as it does not employ macros at all, while
m_75 represents our most abstraction-aggressive model. It must be noted that m_75 already
uses exclusively macro, but we assigned this name to it to reflect the fact that the macros
employed are relatively close to the elementary actions and that an higher level of abstraction
is theoretically possible. A hypothetical m_100 would obviously not make sense, as it would
imply an action that literally solves the problem. For similar reasons, we did not include in
our comparison any model with a macro-ness level above m_75, as we believe that at that
point the use of macros would make the solution of the relative problem instances trivial.

Obviously, in our macro models we only allow macros composed of a combination
of actions defined in m_0, which are considered as elementary action and are indeed very
close to basic physical activities, such as grasp, release move and rotate. As the level of
macro-ness increases, there are several arbitrary ways to define macros as a sequence of the
aforementioned elementary actions. Based on the physicality of the operative scenario taken

into consideration, two obvious candidates can be proposed:

1. Type A macros can be defined as a sequence of heterogeneous elementary actions
that collectively achieve an evident sub-goal and possibly free up robot resources for

successive actions e.g., a grasp-rotate or grasp-rotate-release action;

2. Type B macros can be defined as a repetition of a single action that must be often
repeated multiple times in order to achieve a specific sub-goal, but do not guarantee
that the sub-goal is achieved, neither free up resources for successive actions, as they
assume that the elementary action might need to be repeated additional times in order

to achieve the desired sub-goal, e.g., a rotate-rotate-rotate action.

The first approach is clearly more conservative, as it presents a limited risk of performing

unnecessary elementary actions. This is especially true in domain like m_25 where macros

3.4 Experimental setup 46

and elementary actions coexist, thus the planner can easily choose between using a macro
like grasp-rotate-release when a single joint angle increment is required, or using
elementary actions for larger increments. Nevertheless, occasional inefficiencies can still
occur, for example when a link is released before continuing to act on the same joint, causing
two unnecessary actions, a release and a grasp.

Conversely, the second approach can intuitively provide large time savings by consoli-
dating rotations of the same joint together, but at a high risk of overshooting, thus forcing
the planner to correct the joint configuration with one or more elementary rotations in the
opposite direction. In this case there is an obvious trade-off between how many elementary
actions are grouped together and the expected statistical cost of a mistake; in simpler terms, if
a macro is defined as two consecutive rotation, the worst case scenario is that an elementary
action must be spent to correct the eventual mistake; if it is defined by three rotations, the
worst case 1S two actions; and so on.

In our naming convention, models which include a B in their name include macros of the
Type B, while the other models exclusively include macros of Type A. Domains m_0 and

m_25_B are integrally reported for reference in Appendix A.

3.4 Experimental setup

As we have discussed at the beginning of this Chapter, our intention is to analyze the
performance of the models in Table 3.1 both in therms of planning and execution times.
Instead of integrating the whole pipeline in an architecture like planHRC, we have decided to
keep these two evaluations separated. Nevertheless, great attention has been dedicated to
ensure that such evaluations are realistic and compliant with the manipulation of an articulated

object in a real-world HRC scenario. Details are provided in the next two subsections.

3.4.1 Planning setup and benchmark composition

In order to test the planning performance of the models in Table 3.1, we developed a custom,
highly configurable software to generate random problem instances. In order to obtain
problem instances that are reasonably easy to solve but that are also representative of a
real-world articulated object manipulation scenario, including the limitations of the robotic

platform of choice, the following settings have been adopted:

* The object to be manipulated is composed of 4 links;

3.4 Experimental setup 47

» Angle resolution has been set to 24, thus the minimum angle rotation is 15 degrees;

* A joint angle configuration can only range between 0 and -90 degrees (rotate towards

the robot) in order to be compliant with the robot allowed workspace;

» All problems start with the object straight, i.e., with all joint angle configurations
set to 0 degrees, this is meant to represent a realistic scenario where a single initial,

unprocessed object, must be customized in an Industry 4.0 flexible production scenario.

All problem instances were solved by the Probe planner, which ran on an Ubuntu 20.04.4
Windows Linux Subsystem (WSL) environment, deployed on a machine equipped with an
8-core Ryzen 3700X 3600 Mhz CPU and 16GB @3600 Mhz RAM. We recorded planning
times as reported by the planner itself together with each generated plan. As customary, for
each candidate model we also measured minimum and maximum planning times, standard
deviation of the planning time, and the average number of steps (i.e., actions) used to solve
the problem.

As an additional metric, for each model we also marked as failures every time the planner
failed to generate the plan in less than 1s. A low number of failures for a given candidate
model, can be used an additional metric to measure the fluency allowed by the model in HRC
scenarios where frequent replanning is required, as per Hoffman (2019), who show that the
delay experienced by a human immediately after completing an action, as incurred by their

teammate, has a strong correlation with subjective fluency perception.

3.4.2 Execution in a simulated environment

For our assessment, we generated three additional random problem instances. We have used
each of the 6 planning domains that we are considering to plan against these three problems.
The planning step has been repeated 10 times and the results have been averaged to account
for the stochastic nature of the heuristic implemented by the planner.

As the planner is not optimal and implements a stochastic heuristic, we checked whether
for each problem-domain pair we have obtained the same plan over the aforementioned 10
planning attempts. Whenever this was not the case, the first result from the planner was
selected for execution, as this is what would happen in the real world.

Experiments to assess and compare the execution time performance have been carried
out on the Tiago! robotic platform in a simulated environment, which was deployed on a
Ubuntu 20.04.5 LTS machine running ROS Noetic, Movelt and the Gazebo simulator. As

'https://pal-robotics.com/robots/tiago/

https://pal-robotics.com/robots/tiago/

3.5 Models comparison and discussion 48

Figure 3.1 The Tiago robot acting on the articulated object in the simulated environment.

we are only interested in measuring the execution time of the plan, there is no complex
architecture to control the robot. Instead, a simple parser reads the actions in the plans and
triggers the execution of a corresponding motion control routine. Everything is executed in
open loop and perception is not considered. Again, in order to make sure that the results are
not influenced by any stochastic process, we repeated the simulation multiple times, even
though, in this case, we obtained essentially the same results in every run. Figure 3.1 depicts

our experimental setup.

3.5 Models comparison and discussion

Figure 3.2 and Table 3.2 report the results of our analysis on planning times. Let us start
by discussing the boxplots in Figure 3.2, and in particular the first four: m_0, m_25, m_50
and m_75. Unsurprisingly, the use of macros leads to a reduction of both median planning
times and the variance of planning times, albeit we can observe a diminishing return as we
increase the level of macron-ness of the model, as the median planning time of m_50 and

m_75 is essentially the same.

3.5 Models comparison and discussion 49

12

10

seconds

2 ! puny — — — ———

m 0 m 25 m 50 m 75 m 25 B m 50 B

Figure 3.2 The planning times of the Probe planner over the 6 domains presented in Table
3.1 and 100 randomly generated problem instances.

Results for m_25_B and m_50_B are more interesting. We remember to the reader that
models labeled with a B use Type B macros as defined in Section 3.4.1, which is a more
aggressive choice of macros. Indeed, despite the limited number of macros included in its
action set, m_25_B results being our overall top performer. It has a slightly higher median
planning time compared to m_75 and is essentially on par with m_50, but it has such a small
variance that it is clearly the best choice from a planning performance point of view.

On the contrary, m_50_B not only presents much worse performance despite having a
higher degree of macro-ness, but it is our overall worse performer among all the domains
that include macros. By qualitatively observing the plans produced by m_50_B, we could
confirm that the issue lies in the large number of unnecessary actions induced by the macros.
In particular, this model includes the macro increase_angle_first_child_45, which
corresponds to three consecutive rotations of the same link. We observe that the planner
aggressively uses this macro, but often overshoots and then wastes two actions to fix the error.
Interestingly, the same macro is included also in m_25_B, but this model also includes some
elementary actions that provide an alternative choice to the planner. The planner cleverly

takes advantage of this possibility and thus avoids wasteful actions.

3.5 Models comparison and discussion 50

Table 3.2 Timing performance of the Probe planner over the 6 domains considered.

| Domain | avg_steps | t_min | t_max [t_avg | o | fails % |
m_0 20.787 0.167 | 53.071 | 4.928 | 48.578 68
m_25 13.270 0.186 | 24.436 | 2.354 | 14.989 45
m_50 15.100 0.082 | 25.949 | 1.684 | 11.634 39
m_75 15.860 0.074 | 43.050 | 1.436 | 20.230 31
m_25_B | 8.930 0.201 | 3.524 | 0.735 | 0.367 14
m_50_B | 13.404 0.164 | 18.068 | 2.725 | 11.371 50

The main takeaway of these first results is that a certain degree of macro-ness is usually
highly beneficial, but higher levels can lead to a sudden and catastrophic loss of performance.
Another important aspect is that the quality of the macro has higher impact than their number.

Considering also the diminishing returns of higher levels of macro-ness, it seems that the

best course of action is to:

* Include macros of Type B whenever possible;
¢ Limit the use of macros to a few essential ones;

* Combine the use of macros with elementary actions, in order to limit the chance of the

planner being forced to select a wasteful macro.

We can have a more in depth look at the timing performance of the 6 domains considered
in the Chapter in Table 3.2. Again, m_25_B is superior in all metrics except minimum
planning time, where its outperformed by m_75. In the Table we can also observe why
m_25_B might be the preferable choice in HRC scenarios: while using this planning domain,
Probe exceeded our self-imposed limit of 1s on planning time only 14% of the times, which
is less than half than the second best contender, m_75. Even better, the worse planning time
for m_25_B is about 3.5s, with the second best m_50_B reaching about 18s. While 3.5s is
almost 4 times higher than our self-imposed limit of 1s on planning times, it is still very
acceptable in the context of HRC.

Let us now consider the results of our experiments at execution time. As discussed in the
previous Section, we have selected three problems to be solved by probe using all 6 domains
taken into consideration. Table 3.3 reports the average planning time over 10 attempts. We

immediately observe that from a planning point of view, the first problem is particularly

3.5 Models comparison and discussion 51

Table 3.3 Average planning times for the 18 plans to be executed. We compare each of the 6
domains considered in this chapter over 3 sample problem instances.

| Problem |[m 0 |m 25 |m 50 |m_ 75 |m_25_B | m_50_B |
1 20.693 [2.719 [0.789 | 0.516 [0.737 [0.665
2 0.530 [0.527 [0.211 [0.165 [0.599 | 0.410
3 0.678 | 0.604 | 0.214 | 0.187 [0.628 | 0.374

challenging, especially for our baseline model m_0. In contrast, the other two problems are
relatively easy to solve for Probe regardless of the choice of domain.

Figure 3.3 shows the execution time of the plans generated from the three test problem
instances by the six domains taken into consideration. In the first problem, we observe
execution times growing with the increasing level of macro-ness, as expected. Nevertheless,
m_25 performs just as well as m_0, and m_25_B only adds 2s. Interestingly, 2s is roughly
the difference between m_25 and m_25_B planning times, resulting in a very similar total
planning and execution time. On the other side, we observe a sharp rise in execution times at
m_50 and above levels, which all result in very similar plans and an execution time about
25% longer than m_0, m_25 and m_25_B.

Problem 2 highlights the situation that we initially hypothesized, where optimizations
in the execution routines that ground the macro actions, actually more than compensate
the loss of time due to a suboptimal plan, compared to to the one generated with m_0.
As a consequence, the execution time of the problem obtained by m_25_B and m_25 are
respectively 17% and 6% shorter than the m_0 execution time. Again, we observe that higher
level of macro-ness are instead highly detrimental, with m_50_B taking about 90% more time
than m_25_B.

Finally, problem 3 well represents the not-so-rare possibility, that the macros actually
do not introduce any unnecessary actions compared to the baseline plan generated with m_0,
thus all models exactly take the same time.

Overall, the results presented so far confirm our hypothesis that macros are ultimately
beneficial to total planning and execution time. As expected from a planning point of view,
models employing macros tend to lead to a significant reduction in planning times and their
variance, which ultimately support shorter waiting times and improved fluency in the context
of a HRC robotics architecture. More importantly, we have shown that the use of macro does
not always imply an abrupt decrease in execution time performance, at least at lower levels

of macro-ness. A careful choice of macro and ad-hoc implementations for the functions that

3.5 Models comparison and discussion 52

120 S -

100
80 81 81
60
40
20
0
m_O m_25 m_25_B m_50_B

180

' 158

160 154 o
140

120 B —

100
94

100 S —83

80 S o

60 - - .

40 —

20 . .

0

m_0 m_25 m_25_B m_S0 m_50_B

120
100
80
60
40
20

0

m_25_| B m_50_| B

Figure 3.3 Execution times of plans generated by by the six planning domains taken into
consideration for the 3 test problems. Planning times are expressed in seconds.

ground said macros, hugely limits the negative effect of macros, and can even lead to shorter
execution times in a few cases, albeit by a small margin.

Obviously, the main limitation of our work is that it is highly dependent on our choice
of operative scenario, planning domains definitions, and implementation of actions in the
execution stack. Hence, while we identified a clear best performer in the m_25_B domain in
terms of both planning and execution performance, such result cannot be straightforwardly

generalized. Nevertheless, our results highlight a more general trade-off between planning

3.5 Models comparison and discussion 53

and execution times. Let us take as an example m_75 which is our second top performer in
terms of average planning times. This model leads to longer execution times with respect to
our baseline domain m_0 by more than what it can save in planning times. Yet, there are HRC
applications where fluency is more important than efficiency, thus a significant reduction in

planning times and their variance might be well worth an increase in execution times.

Chapter 4

Beyond heuristic-search planning:

Neurosymbolic approaches

4.1 The potential benefits of Neurosymbolic Planning

As we have seen in Chapter 2, we are witnessing the emergence of scenarios where robots
are expected to operate with an increased autonomy, versatility, and robustness, especially in
tasks to be carried out jointly, or in close coordination with humans. In fact, in human-robot
collaboration tasks, humans could act as simple beneficiaries of robot behaviors, or they
could act as teammates, actually partaking in robot actions as they unfold. This state of
affairs not only holds in assistive and service robotics, but is becoming particularly relevant
in settings inspired by the Industry 4.0 paradigm, which is believed to profoundly shape
the nature of next-generation manufacturing operations (Heyer, 2010b). These scenarios
require robots to exhibit quite dynamic and reliable capabilities in sustaining a purposeful
collaboration with human operators: while robots may be characterized by a continuum
range in autonomy, also depending on the specific operation at hand, human operators may
supervise robot actions and intervene if and when necessary. Therefore, robots must not
only operate reliably in line with the interaction with human operators, but also to face
unforeseen events very likely to happen when the work to be done is poorly structured, and
human loosely predictable behavior is involved (Darvish et al., 2018). This paradigm shift
requires robots to validate or re-plan their future actions continuously, ideally to predict or at
least to react to changing conditions or the outcomes of unforeseen human behavior. As a
consequence, it turns out that planning performance is of critical importance to ensure both

an efficient robot operation and an effective human-robot collaboration.

4.1 The potential benefits of Neurosymbolic Planning 56

In scenarios characterized by such requirements, conventional, symbolic task planners
have limitations that hinder their efficacy. In current practice, they use search heuristics to
explore the range of possible states that the modeled environment can assume until they
find a sequence of actions in-between states leading to a state compatible with the desired
goal situation. As a result, they tend to exhibit planning times’ combinatorial explosion as
the number of symbols (representing classes of entities, instances, modeled fragments of
reality as predicates, or actions, and their combinations) involved in the planning process
increases. As we have shown in Chapter 2, this phenomenon makes frequent re-planning
extremely costly in terms of needed planning time, specifically considering the fact that a
plan synthesized by a symbolic task planner is an atomic entity, that is, it is either generated
in its entirety, or it is not available. Although approaches for hierarchical task planning have
been proposed in the literature, whereby high-level (generic) plans may be created quickly,
and low-level (specific) sub-plans can be generated in chunks, the basic issue remains, and
it is also necessary to carefully engineer which part of the plan could be synthesized at the
high-level, and which part (in terms of actions actually executable by a robot) should be
made available in sub-plans (Darvish et al., 2021; Mastrogiovanni et al., 2004; Murali et al.,
2020).

When human operators and robots collaborate on a task, they can achieve a high standard
of coordination, leading to a synchronized blending of their actions with precise and efficient
timing (Carfi et al., 2019). This feature is referred to as fluency as per Hoffman (2019), and it
has been demonstrated that the delay experienced by a human immediately after completing
an action, as incurred by their teammate, has a strong correlation with subjective fluency
perception. Obviously enough, the aforementioned combinatorial explosion of planning times
negatively affects the quality of human-robot collaboration, and specifically its fluency. It
has been argued that fluency in human-robot collaboration could be improved by introducing
intuitive communication channels able to make clear which action a robot will carry out next
Macci6 et al. (2022). In fact, that works while the cooperation unfolds, whereas in case of
re-planning it would be necessary to put the collaboration process on hold.

In the next Chapter, we introduce a framework, which we call Teriyakil, to train and
invoke Large Language Models (LLMs) (Hatcher and Yu, 2018) to behave as task planners.
LLMs such as OpenAI’s GPT-3 (Brown et al., 2020) are characterized by the possibility of:

* Linearly scaling in computational complexity with the total length of prompt and

completion;

ITeriyaki: https://github.com/alessiocpt/teriyaki

https://github.com/alessiocpt/teriyaki

4.1 The potential benefits of Neurosymbolic Planning 57

* Generating partial results while iteratively predicting the next set of symbols in a

sequence.

We argue that these two features could be leveraged to design a task planner with a reduced
run-time complexity, and capable of making the next action available ahead of full plan
synthesis, which would allow a robot using such planner to begin action execution before the
entire plan is generated, in a full iterative fashion. If the robot architecture allowed it, this
may unlock concurrent plan generation and execution. Moreover, if such a model could be
trained to receive input and return output using the Planning Domain Definition Language
(PDDL) (Aeronautiques et al., 1998), it would maintain full compatibility with existing
software frameworks for symbolic task planning such as ROSPlan (Cashmore et al., 2015b).

We refer to Teriyaki as neurosymbolic planning, as it combines neural network based
learning as substrate with symbolic knowledge representation and reasoning as logic (Garcez
and Lamb, 2020). Unlike traditional symbolic task planners, our approach is domain-
dependent and requires training, but it is trivial to generate large data sets for training on a
given domain using traditional task planners.

To summarize, the main contributions of this work, which constitutes the core of this

Thesis, are the following:

* We designed, developed, and released to the community Teriyaki, a framework to train

and use GPT-3 to solve PDDL-compatible problems for a given domain;

* Compared to similar methods in literature, Teriyaki has been tested on plans 80%

longer and including conditional effects;

* We demonstrate that LLMs can outperform non-optimal planners in terms of plan
length;

* We propose to exploit LLMs capability to stream the output plan as it is being generated,
for simultaneous planning and execution, leading to a significantly shorter waiting

time for execution to begin in real-world human-robot collaboration scenarios.

Despite the positive results, we want to highlight that solvers generated with Teriyaki
should not be considered at the moment as a complete alternative to traditional, symbolic
planners. Instead, we recommend considering them as a proof-of-concept of the planning
capabilities of LLMs and their possible applications as the technology matures, especially

regarding to human-robot collaboration scenarios.

4.2 Language models are (unreliable) few-shot learners 58

In this Chapter, we will lay down some necessary groundwork on Large Language Models
and how their logical reasoning capabilities have been assessed so far in the literature. In
particular, we will discuss the limitations of most of the approaches in the literature and

justify why instead we decided to base Teriyaki on a completely different assumption.

4.2 Language models are (unreliable) few-shot learners
Neurosymbolic approaches foresee that:

* Their knowledge is encoded in vector-based representations supporting neural networks

which maximize an efficient learning from data;

* Discrete symbols become available as a result of querying and extracting knowledge
from the trained network (Garcez and Lamb, 2020).

For a long time, it has been theorized that such approaches may provide an alternative to
the problem of combinatorial explosion in reasoning by leveraging the reasoning mechanisms
encoded in the learning process. However, it is only recently that they started to gain
traction, mainly for Natural Language Processing (Dale, 2021). Most notably, GPT-3 and its
successors GPT-3.5 and GPT-4, are famous LLMs released by the company OpenAl? that
achieved astonishing results in generating human-level complex text in the form of structured
sentences (Brown et al., 2020). Other popular models are LLama 2 (Touvron et al., 2023),
LaMDA (Thoppilan et al., 2022), PALM (Chowdhery et al., 2022), Megatron-Turing NLG
(Smith et al., 2022) or BLOOM (Scao et al., 2022). A few of the most notable applications
of these models are text summary generation and completion, sentiment analysis, and, of
particular interest to our application, code generation (Chen et al., 2021).

LLMs are one of the most promising applications of Deep Generative Models (Oussidi
and Elhassouny, 2018), that is, a category of unsupervised Deep Learning algorithms capable
of capturing the probabilistic distribution that can underlie the generation of a class of data.
Once estimated, it is possible to generate synthetic data compatible with such probabilistic
distribution. LLMs in particular are capable of estimating the probability of a sentence
represented as the product of each discrete symbol’s probability given the symbols preceding
it. For instance, given a few words as a prompt, they can easily suggest the most likely way
to complete the sentence. Usually, such symbols are referred to as fokens and represent short

sequences of characters.

ZWeb: https://openai.com/blog/gpt-3-apps

4.2 Language models are (unreliable) few-shot learners 59

Common ways to implement LLLMs are Recurrent Neural Networks (Mikolov et al.,
2011), Long Short-Term Memory (LSTM) networks (Sundermeyer et al., 2012) and, most
recently, Transformers (Vaswani et al., 2017), of which GPT models are the most notable
example. Transformers are models based on an encoder-decoder architecture, and adopt a
self-attention mechanism that allow them to weigh each part of the input data differently.
While in the current state of affairs there are no guarantees about the long-term logical
coherence of the answers given by a Transformer-based architecture, especially for long
sequences of symbols, such models exhibit surprising capabilities in generating plausible
and coherent lists of instructions, from cooking recipes to functioning code.

Since their popularization, most research works have tried to assess the extent of LLMs’
general logical capabilities, especially in zero-shot to few-shot attempts. The seminal paper
from Brown et al. Brown et al. (2020), "Language Models are Few-Shot Learners", defines
zero-shot learning as the case when questions implying a certain level of logic capabilities
are posed directly to the model, whereas one-shot and few-shot approaches provide a very
limited amount of examples to the model as part of the request. In all such cases, the model
is just prompted, without further training with specific examples, a procedure now commonly
referred to as fine-tuning.

The results obtained by Brown et al. are certainly impressive, and sparked a vast amount
of research trying to assess how far reaching the zero-shot, or even few-shot, reasoning
capabilities of LLMs really are. Unfortunately, in the specific case of planning, the results
of the following studies were mixed. On one side, it is impressive in absolute terms that a
neural network can respond in natural language to a logical question it has not been trained
specifically for, and get the answer right even 40% of times, as it hints at a glimpse of
intelligence beyond what we would expect from simple luck or parroting humans. On the
other side, such a low accuracy makes these tools unsuitable for many real-world applications,
especially in robotics, where precision and reliability is essential.

For example, the work by Valmeekam et al. (2022) proposes a benchmark for LLM-based
planning and reasoning in a few-shot scenario. The authors employed PDDL, but only to
automatically generate, in natural language, several logical problems never seen before by
the model, and compared the performance of popular LLMs under several metrics. The
best performer could solve only 25 out of 500 problems, that is, 5%. Better results were
obtained by Wang et al. (2023) using few-shot learning and grammar prompting. In this
approach, GPT-3.5 and GPT-4 are used to predict a specialized grammar given a test input,
and then generate the output according to the rules of the grammar itself. Among others,

the authors tested inputs in PDDL format extracted from popular but rather simple PDDL

4.3 Fine-tuning LLMs to approximate a search heuristic 60

domains. While the benefits of grammar prompting are evident, in absolute terms they
obtained mixed results depending on the domain, with success rates ranging from 40% to
100%. LLM-Planner (Song et al., 2023) is another few-shot method based on GPT-3 and
designed specifically for embodied reasoning, that is, techniques aimed at being used in
agents dealing with real-world, physical environments. This approach uses near-natural
language and is characterized by a dynamic re-planning mechanism grounded on what an
agent could observe in the environment at each step. High-level planning accuracy in a variety
of tasks ranges from 26% to 51%. Similar approaches are discussed also by Logeswaran et al.
(2022) and Wake et al. (2023). Singh et al. (2023) proposed instead Progprompt, a method
that exploits the strong performance of GPT-3 in code generation by prompting the model
to generate executable Python code to solve a given problem. Silver et al. (2023) further
improved on this concept by proposing a method for generalized planning in PDDL domains
by also including an automated debugging mechanism.

As perfectly stated by Huang et al. (2022), the main issue with almost all these approaches
is that plans produced naively by LLMs cannot map precisely to admissible actions, thus
most of them attempt to increase their success rate in achieving the desired goal state by
clever prompting approaches. Silver et al. (2022) face similar challenges while trying to
solve actual PDDL problems, maintaining the PDDL format both in input and output. As
an alternative solution, they propose to use the good-but-imperfect LLM-generated output
to support a traditional (that is, based on heuristic search), PDDL-based planner. While
this approach mitigates most of the issues described before, especially regarding mapping
admissible actions precisely, and often provides planning time improvements above 10%
compared to traditional planning, the ability to generate a plan action-by-action is lost.
As we will discuss further in the next Chapters, at the moment this is the key advantage
of Neurosymbolic planning compared to traditional planning, especially in HRC scenario.
The approach in Silver et al. (2022) should then be considered more as an optimization of

traditional planning rather than a paradigm shift towards Neurosymbolic planning.

4.3 Fine-tuning LLMs to approximate a search heuristic

From the literature that we have analyzed in the previous Section, it appears that, at least
with currently available LLMs, it is not possible to solve task planning problems reliably, that
is, with a success rate comparable to that of traditional, PDDL-based planners, with clever
prompting only. We are then left with only another option that received much less attention

in literature: fine-tuning. Such an approach involves the further training of a base model

4.3 Fine-tuning LLMs to approximate a search heuristic 61

with specific examples, namely problem-plan pairs, related to the planning domain at hand.
Plansformer is an approach of this kind proposed by Pallagani et al. (2023). The authors
trained five different models by fine-tuning CodeT5 (Wang et al., 2021), a LLLM specialized
in code generation, to solve just as many simple, well-known, PDDL-based domains such as
the Tower of Hanoi, where Plansformer reached 97% valid plans. The fine-tuning dataset has
been generated by solving 18000 randomly generated problems with the Fast-Downward
planner (Helmert, 2006), and then translating both problems and plans into a more compact
form. PDDL-based problems are augmented by listing the actions in the domain to explicitly
teach the model about their preconditions and effects.

A possible interpretation of these results is that there are obvious similarities between the
capability of LLMs to learn the probability of a symbol following the preceding ones, and
the search heuristics that power traditional PDDL-based planners. Hence, we are not just
extracting knowledge from the model and exploiting its general reasoning capabilities, but
rather we are training the model to approximate the search heuristic of the planner generating
the dataset.

Teriyaki, that was developed in parallel with Plansformer, takes a similar approach with a

few key differences:

* We assume that LLLMs are capable of handling unaltered PDDL-based problem and
plan descriptions, which in turn makes the model easier to use in software architectures

for robots;

* With the aim of reducing the length of the prompt, which is one of the main LLMs’
constraints, we instead exclude some information, on the assumption that the model
can learn it and, for example, no explicit knowledge of the action preconditions and

effects is given to Teriyaki during fine-tuning;

e Itis trained on a dataset of non-optimal plans, which allowed us to observe that LLMs
are capable of outperforming the traditional planner they are trained upon in terms of

average plan length in selected domains;

* We propose to use Teriyaki to stream plans as they are generated, that is, action-by-
action, to enable simultaneous planning and execution in robot tasks, specifically in

human-robot collaboration.

Chapter 5

The Teriyaki framework:
PDDL planning using LLM

5.1 An introduction to Teriyaki

In Chapter 4, we have briefly introduced Teriyaki, a framework to generate Neurosymbolic
planners based on LLMs, designed to overcome the biggest shortcomings of traditional plan-
ners in robotic architectures that require frequent re-planning, especially in HRC scenarios.
In this Chapter we will describe in detail the design of Teriyaki and the resulting training
process.

Teriyaki, being based on Neural Networks, requires to be trained on problem instances
belonging to the planning domain which it will later be called to solve. Referring back to
Chapters 2 and 3, we have first trained, and later evaluated and tested the model, on two
planning domains for the collaborative manipulation of articulated objects by human operators
and robots. A challenging task that has been widely discussed in literature (Bertolucci et al.,
2021, 2019; Capitanelli et al., 2018). The planning domains selected for this evaluation
employs an absolute formulation, as defined in Section 2.5.5, because of the challenges it

poses on the planning process:

* For symbolic task planners, because the manipulation of an articulated object based
on said formulation scales very poorly with the number of its links, joints, and the
allowed angle configurations, thus constituting an ideal benchmark to verify potential

scalability benefits of the proposed alternative method;

* For LLMs, since the domains include conditional effects, that is, an action could

imply modifying the state of the representation in ways that are not immediately

5.1 An introduction to Teriyaki 64

apparent from the arguments of the action itself, for example, if a link were rotated
around a joint, all downward links in the chain should be also implicitly rotated with
respect to an absolute reference frame. We hypothesize that conditional effect will
significantly challenge the capability of the LLM to maintain the long-term coherence
of its output. Demonstrating that LLM could not only generate PDDL plans, but also

support conditional planning, is by itself a contribution to the state-of-the-art.

The training process, which is detailed in the following Sections of this Chapter, has
been performed on a large data set of 9000 problem-plan pairs generated automatically and
solved by an existing, state-of-the-art, traditional, symbolic, PDDL-based planner, namely
Probe (Lipovetzky and Geffner, 2011b). The resulting models have been rigorously tested
on 1000 pairs not previously used for training, and evaluated in terms of planning accuracy,
plan length, and planning times. The details of the evaluation process are presented in
Chapter 6. During training, data related to validation and planning accuracy, defined as
the percentage of plans that can be formally proved to be correct, have been collected to
investigate their evolution with the growing number of training samples and to assess whether
transfer learning between similar planning domains is possible. Results show near identical
planning accuracy between Probe and the solvers generated with Teriyaki. However, Teriyaki
outperforms Probe in terms of shorter plan length by up to 13.5% in one of the domains.
Regarding planning times, it is noteworthy that an objective comparison is not possible due
to the different computing architectures on which the two planners run, that is, Teriyaki is
based on a proprietary cloud-based service, namely GPT-3, whose response time was not
guaranteed nor predictable during test sessions, whereas Probe can run on a fully accessible
and controlled workstation. In fact, in the current experimental architecture, Probe remains
faster in generating a complete plan, that is, in a situation where we require Teriyaki to
synthesize a full PDDL-compatible plan end-to-end. However, when the planner as a module
is integrated into a robot architecture, the use of Probe forces us to adopt a pure sense-plan-act
approach, that is, the plan must be synthesized in its entirety before its first action can be
executed, whereas Teriyaki generates and makes available for execution the first action as it
is produced. In our experiments, this reduces the overall waiting time by 61.4% on average,
as it exploits simultaneous planning and execution. Finally, we also experimentally observe
that Teriyaki solvers scale with the input and output length rather than with the problem and
domain complexity, hinting that there might exist more complex domains where Teriyaki

could outperform Probe, an in general a traditional symbolic planner.

5.2 Planning Domains 65

5.2 Planning Domains

Figure 5.1 shows a Baxter robot executing a plan from the two domains, and a possible
interaction with a human. In our work, and with the aim of challenging both the chosen,
traditional, PDDL-based planner as well as Teriyaki, we have selected two PDDL domains,
which we refer to from now on as MACRO and NO-MACRO. These domains correspond
respectively to the m_25_B and m_0 domains outlined in Section 3.1 and provided in Appendix
A. Both domains employs the absolute formulation defined in Section 2.5.5, that is, actions
can have implicit effects on joint angles not directly affected by the outcomes of the action
itself. If managed by a traditional, symbolic action planner, this requires propagating the
(conditional) effects of each action to modify the value of state variables not directly affected
by the effects. Likewise, we argue that in the case of LLMs like GPT-3, conditional effects
could stress the model because it should be harder to maintain coherence in the plans given
the generative process.

Regarding the MACRO domain, this model makes available to the planners some addi-
tional macro actions. As we have discussed in Chapter 3, Macros are ordered, compound ac-
tions that bundle together a number of basic actions, for example, a grasp-rotate-release
action instead of three atomic ones, that is grasp, rotate, and release. Their use is an
effective way to reduce the planning time in traditional action planners at the cost of accepting
less optimal plans. In fact, the use of macros could lead a planner to enforce the use of an
actions sequence, that is, a given macro, at the cost of introducing possibly spurious actions.
For example, if the goal state assumed the articulated object to be in a given configuration, but
with the robot gripper still maintaining its hold on the object, the planner could prefer using a
macro grasp-rotate-release followed by another grasp action (partially compensating
the effects of the macro) instead of two atomic actions grasp and rotate. Macros are also
supposed to facilitate the generative process of GPT-3 since the use of macros is expected to
shorten the resulting plan significantly.

More specifically, the reason why we chose exactly this domain for comparison is that
it was the top performer in the comparison presented in Section 3.5, and yet it presents
only minimal differences with the NO-MACRO domain, limited exclusively to its action
set. Most interestingly, the MACRO domain leads to plans which are, on average, about
half the length of those produced by the NO-MACRO domain. Since the two domains are
fundamentally similar but lead to plans of different lengths, they are ideal candidates to test

how Teriyaki-based solvers scale with the cumulative input and output length.

5.3 PDDL version and planner 66

Figure 5.1 A Baxter robot executing actions in two domains involving the manipulation of
an articulated object. A human can act on an articulated object’s joint at any time, forcing
the robot to re-plan.

5.3 PDDL version and planner

As both domains taken into consideration here used conditional effects, we used PDDL 2.1
and a compatible PDDL-based planner, namely Probe (Lipovetzky and Geffner, 2011b), one
of the planners used in (Capitanelli et al., 2018) and that we already discussed in Chapter 2.
It must be noted that the choice of Probe has an impact on the quality of the results, and in

5.4 Choice of the LLM: GPT-3 67

Problem
preprocessing
Problem

generator 9.000
PDDL Probe
PDDL problems planner
domain

Figure 5.2 A diagram of Teriyaki fine-tuning process. Blocks in yellow represent custom
code developed for data generation and processing as described in section 5.4.

JSONL

8.000 training dataset
OpenAl
876 fine-tuning API planner
JSONL

validation dataset

the future, an optimal planner might be used instead, like in the Plansformer (Pallagani et al.,
2023).

5.4 Choice of the LLM: GPT-3

As we anticipated, in this work we leverage GPT-3, a closed-source model and commercial
product that at the time of this writing can only be accessed as a cloud-based service through
OpenAI’s API. Our results are not limited to the specific features of GPT-3 and could in
theory be replicated with any available LLM. In practice, since our first experiments with
GPT-3, we have tested several smaller models that can be run locally, such as LLama 2 7B,
13B, and 30B, and none of them could reliably solve problems in the two selected domains.
We will discuss this subject further in Chapter 7. Forced to employ a commercial model as a
service, we decided to opt for GPT-3 due to its size and speed compared to its more recent

versions.

5.5 Dataset generation and composition

In the case of GPT-3, the training can be performed by providing a structured file where each
line is a prompt-completion pair. We assumed that the GPT-3 model can implicitly learn by
example the rules usually defined in a PDDL domain file, such as the allowed (modeled)
actions, and their respective preconditions and effects. Hence, we conducted training sessions
using only problem-plan pairs, whereas we use the problem as a prompt and the plan as
completion. We remark here that only part of the PDDL problem is used as a prompt. As we
have discussed in Chapter 2 and can be observed in Figure 2.7, many of the predicates are

actually static, that is, they are used to encode general properties of the problem, such as the

5.5 Dataset generation and composition 68

relative order of joint angle configurations, an example being: a joint at 45 deg can be rotated
clockwise to 60 deg, and counter-clockwise to 30 deg in 15 deg increments. These predicates
remain the same in all problems and are never modified by action effects. Therefore, we
assume that the model can learn them from the implicit information encoded in the plans, in
the same way as the domain. We thus removed them from the prompt to reduce its length, as
prompt length has an impact on response time and the total prompt plus completion length of
each query cannot exceed 2048 tokens, or circa 8000 characters, for the selected model.

It must be noted that such optimization in terms of prompt length, is not only beneficial
to performance, as planning times depends on the cumulative input and output length, but
it is necessary as the NO-MACRO domain average total input and output length barely fits
in the maximum length allowed by the model. Newer models such as GPT-3.5 Turbo and
GPT-4 allows much longer sequences of tokens to be processed and might not require such
processing, but nevertheless may benefit from such optimization when possible.

At the time the experiments were performed, OpenAl’s documentation suggested using
the largest and most powerful version of the model, called davinci, for a conditional gener-
ation, that is, generating original text based on input. For this use case, the documentation
recommends training the model using at least 500 training samples and aiming for 8000.
One of the advantages of Teriyaki is that we can easily generate large training datasets using
randomly generated problems and a PDDL-based action planner. Therefore, using the same
custom generator introduced in Section 3.4.1, we generated 9000 problems, out of which
8000 were reserved for training and 1000 for validation. It must be noted that out of the
9000 planning attempts performed by the planner 124 failed, so the validation set has been
reduced to 876 samples. Finally, we added another 1000 unique problem-plan pairs as a test
set, in this case, we ensured that all the chosen samples could be solved by Probe.

The next step requires validating the completeness of the plans generated by Probe to
ensure that we train our model only on correct data. To do so we use the widely known VAL
validation suite (Howey et al., 2004), which requires plans to be formatted in the International
Planning Competition (IPC) standard!. As Probe does not return plans compliant with this
standard, we developed custom code to reformat the plan files to be compatible with VAL.
This is also necessary to ensure that Teriyaki will be trained on IPC-compatible standard
plans, and will thus later reply to our queries in the same way, allowing us to easily benchmark
its planning accuracy. Running VAL over the dataset resulted in all plans passing the test,

meaning that they reached the desired goal state, even though it must be reminded that Probe

'Web: https://ipc2023.github.io/

5.5 Dataset generation and composition 69

previously failed to generate a plan at all for 124 /9000 problems, that is, about 1.37% of the
total.

Finally, we compiled the training and validation datasets in jsonl format. Each line of a
dataset file is composed of a prompt, that is, the problem, and a completion, that is, the plan.
We added to the end of each prompt and completion the respective termination sequences,
namely \n\n###\n\n and END. As the name suggests, the termination sequences signal to
the network the end of the message. This is especially important for the completion as the
termination sequence can then be used as a stopping condition when querying the model. A
sample line is provided in Listing 5.1, edited for the sake of brevity and clarity. The whole

data generation and dataset preparation process is outlined in Figure 5.2.

{"prompt":

"(:init (angle_joint angle315 jointl)
(angle_joint angle300 joint2)
(angle_joint angle285 joint3)
(in-centre joint2)

(free gleft) (free gright))

(:goal (and

(angle_joint angle0 jointl)
(angle_joint angle300 joint2)
(angle_joint angle285 joint3)))

\n\n###\n\n",

"completion":

" 0.00100: (link-to-central-grasp ...)
0.00300: (increase_angle_first_child_45 ...)
0.00500: (release-1links ...)

0.00700: (link-to-central-grasp ...)
0.00900: (decrease_angle_first_child_45 ...)
END"}

Listing 5.1 An example of training sample.

5.6 Training 70

5.6 Training

As far as the training process is concerned, we decided to run a complete 8000-sample
training on the MACRO domain, since plans in its dataset are shorter on average, and
therefore supposedly easier to be learned by GPT-3. We call this model Teriyaki-MACRO.
When we train a LLM to perform action planning, the cost function rewards linguistic
coherence rather than planning accuracy. This means that we are hypothesizing linguistic
coherence as a proxy for logical coherence, and therefore we must assume that validation
accuracy during the training process differs from the planning accuracy of the resulting

model, whereas the planning accuracy is defined as the percentage of plans that are

* Formally correct;

» Able to reach the desired goal state, or a state compatible with it.

By “formally correct” we mean that each action’s arguments are consistent both with the
specifications given in the planning domain and the state of the modeled reality when that
action is carried out, that is, the action preconditions are not violated. To be able to measure
how planning accuracy increases with the size of the provided training set, we decided to
perform the training process in steps. At each step, we provided samples to double the total
size of the training set. Starting from the minimum amount of 500 samples, we then trained
the system with 1000, 2000, 4000, and 8000 total samples, and saved a snapshot of the
trained model at each step.

As anticipated above, the base model chosen for the training process is GPT-3 and
specifically text-davinci-002. Regarding the hyper-parameters, the number of training
epochs was set to 2, while the batch size and the learning rate multiplier were left to
their default values. The batch size defaults to 0.2% of the number of examples in the
training set, while the default learning rate is automatically determined in a range from
0.05 to 0.2 depending on the final batch size. We also highlight that since the model was
effectively fine-tuned five times, the learning rate was reset to the default value at the
beginning of each session, with an effect similar to gradient descent with warm restarts
(Loshchilov and Hutter, 2016). We did provide the optional validation set and enabled
the compute_classification_metrics options to obtain training statistics for further
analysis. The total training cost for this procedure on a single planning domain at the time of
training (01/12/2022) was around 2508$.

5.7 Transfer Learning 71

5.7 Transfer Learning

For the NO-MACRO domain, we used the same methodology, but we decided to generate two
candidate models. The first model is trained starting from the text-davinci-002 model as
before, whereas the second is trained starting from the MACRO model obtained previously.
We call these models Teriyaki-NO-MACRO (davinci) and Teriyaki-NO-MACRO (MACRO).
The hypothesis is that as domains share many concepts and the MACRO model has already
been primed for them, the second candidate should reach a higher planning accuracy with a
smaller amount of training samples.

Results shown in Section 6.2 confirmed this hypothesis, so we interrupted training
when Teriyaki-NO-MACRO (MACRO) reached comparable results to its parent model and
discarded entirely Teriyaki-NO-MACRO (davinci). Regarding the training dataset, the only
difference with the example provided in Listing 5.1 is that the prompt part is preceded by the
\n--NO-MACRO tag. This tag was introduced to test whether the model could be used to solve
problems for both the MACRO and the NO-MACRO domains, by simply adding the tag in
our queries to the system. Unfortunately, the NO-MACRO models loses the ability to solve
problems in the MACRO domain, suggesting that to generate models that can solve multiple

domains, training should be performed including examples from all the domains of interest.

5.8 Invoking the LLM and Plan Streaming

After the training phase, it is possible to query the model through an API call by providing
as a prompt the PDDL predicates describing the initial and goal states for the robot and the
articulated object, as one would do with a traditional, symbolic PDDL-compatible action
planner. Several parameters can be configured, and below is a list of those that can impact

the overall quality of the resulting plan.

* temperature is the most important as it controls how deterministic the reply (and
therefore the plan) will be. Keeping it at 0 corresponds to an argmax operation on the
next token probability and ensures that we always get the most likely result. While in
a regular text generation some level of creativity is desirable, we strongly recommend
keeping it at O for plan generation, especially when robot actions are planned in the

context of a human-robot collaboration scenario.

* presence_penalty and frequency_penalty can assume values between —2 and

2, and can be used to reward or penalize repetitions in the generated text. We have

5.9 Why streaming? Interleaved planning and execution 72

observed that setting the former to 2 seems to improve planning accuracy by 1 —2%
and vice versa, but at the moment we have not investigated enough this effect, so we

decided to set the default value to O for both in our tests.

* stop can be used to set a string as a stopping condition, meaning that when that string
is generated by the model, the generation immediately terminates. Coherently with our

training dataset, we set this value to END.

* max_tokens controls the maximum response length, thus we recommend setting it as
high as possible to minimize the chance of a plan being truncated. Since each model
has a maximum total prompt/completion length, and the worst-case prompt length
depends on the planning domain at hand, this value should be assessed case by case.

In our case, 1900 appears to be the highest value for robust operation.

To stream the plan we set the parameter stream to true. In this way, the model starts
returning tokens as soon as they are available, instead of waiting for the full sequence of
tokens to be generated. This has no impact on the time needed to receive the full answer, but

it does reduce significantly the time needed to receive the first token.

5.9 Why streaming? Interleaved planning and execution

A careful reader might argue that it is also possible to act on the stopping condition in order
to get only the first action of a plan. That would be possible by setting stop to \n instead of
END. In this way it would be possible to get an action to execute, observe the results (possibly
including also external perturbations as it happen in the planHRC architecture described in
Section 2.5), and then submit a new query to the LLM. We call this process Interleaved
Planning and Execution (IPE).

The objection is valid and we partially explored it, but we would recommend streaming
as superior alternative in general. The obvious inefficiency introduced by IPE is that at each
query we are asking the LLM to process again our prompt, whereas with streaming the
prompt is processed only once. As we have seen the length of the prompt has an impact on
planning time performance, and that is without considering other unforeseeable factor such
as queuing time to the cloud service that provides the LLM, which also compounds with
each call. Moreover, processing the prompt multiple times does not only have a negative
impact on performance, but also on cost, as the pricing structure of cloud LLMs is usually

pay per use computed on the number of processed tokens. In this regard, an architecture that

5.9 Why streaming? Interleaved planning and execution 73

supports streaming is strictly better, as we are always free to monitor execution and, in case a
re-planning is needed, close the streaming and submit an updated request. With IPE we are
forced instead to perform this operation for every action, regardless of whether the plan is
unfolding as expected or not.

The less obvious reason to avoid IPE, is that in the naive implementation proposed here, it
is susceptible to the Sussman Anomaly (Sussman, 1973). To understand why Plan Streaming
is not affected by this issue, but IPE is, we provide the following possible interpretation. The
transformer architecture on which most modern LLM are built is a recurrent network. At
each iteration, the LLM guesses the next token based on the list of previous tokens, not just
in the initial prompt, but also those previously generated. As such, the LLM has knowledge
of previous actions and, being trained on plans that are not affected by the anomaly, it has
learned how to correctly sequence actions avoiding getting stuck in a loop. When we use
IPE, the knowledge of previous actions is lost, hence the LLLM just picks the most probable
next action based on the current state. This often results in loops where the robot infinitely
re-centers the objects back and forth between two link.

Considering that IPE is anyways less efficient, and that trying to work around the Anomaly
would make this approach even more complex, we have not tried to propose a solution to this

problem yet. Nevertheless, we decided to include this note about IPE for two reasons:

* The first is the fact that the Anomaly appears in IPE might be trivial, but the fact that
it does not appear when we ask the LLLM to generate a full plan is not. We should
appreciate that the LLM has learned from the heuristic search planner to converge
towards a given goal and that, for it to happen, the context of previous actions is

fundamental.

* There might be cases where IPE could be useful in the future, for example with smaller
models which might lose logical coherence after a few actions in complex planning
domains. In this case, assuming one could work around the Anomaly, IPE could be

used to enforce long-term coherence at an architectural level.

Chapter 6

Teriyaki in action:

Parallel Planning and Execution

6.1 Relation between Token and Planning Accuracy

In Section 5.6, we pointed out that we use linguistic coherence as a proxy for logical
coherence. Figure 6.1 compares the evolution of the validation token accuracy and the
planning accuracy for the MACRO model, against the number of examples used to train
the model itself. On the one hand, the validation token accuracy measures the accuracy at
predicting the next token, that is, approximately the next 4 characters of the response, in our
case coinciding with the plan, on the validation set. On the other hand, we define validation
planning accuracy as the percentage of plans in the 876-sample validation set that are both
formally correct and reach the desired goal state, that is, which one passes the VAL validation
utility test. For the former, data are retrieved from the classification metrics reported by
GPT-3 itself after training, where this information is available every 8 training steps. For
the latter, we used the snapshots of the model taken after training with 500, 1000, 2000,
4000, and 8000 examples. Such snapshots are used to plan against all 876 problems in the
validation set in the conditions described in Section 5.8. VAL is run on the obtained plans
and finally, the validation planning accuracy can be computed. In Figure 6.1, the evolution
of planning accuracy is represented by the orange bars to highlight the fact that the value
is measured at each snapshot. It must also be noted that the parameter elapsed_examples
does not correspond to the number of unique examples in the training set, but it is scaled by
a factor of 2 because we used two epochs for training, thus each example was used twice.
In Figure 6.1 the orange bars report the validation accuracy of the Teriyaki-MACRO

model. It can be observed that GPT-3 reaches a very high validation token accuracy after the

6.1 Relation between Token and Planning Accuracy 76
1.0 A N I A A AR A i A ATV VAR RS A VA
0.8

W Validation token accuracy

0.2 B Probe baseline
Teriyaki-MACRO
Teriyaki-NO-MACRO (davinci)
Teriyaki-NO-MACRO (MACRO)

o
@

accuracy

e
'S

0.0

1000 2000 4000 8000 16000
elapsed_examples

Figure 6.1 Evolution of the token validation accuracy and the planning accuracy as the
number of training examples increases. The blue line represents the evolution of the validation
token accuracy during learning as reported by GPT-3 classification metrics. The bars represent
the planning accuracy of the Teriyaki-MACRO, Teriyaki-NO-MACRO (davinci) and Teriyaki-
NO-MACRO (MACRO) models. The red line represents our baseline, that is, the percentage
of plans solved by Probe.

first 500 samples, as expected by a model well-known for its few-shot learning capabilities.
Nevertheless, planning accuracy rises at a much slower pace. Like in the few-shot methods
discussed in Section 4.2, the LLM cannot yet map precisely to admissible actions and
even a single mistaken token could break a plan that would be otherwise linguistically
coherent. A very common mistake in plans generated by the model trained with only
500 samples is that the model ignored the conditional effects of actions. As we correctly
hypothesized, conditional effects can be quite problematic as they imply propagating their
effects downstream in the plan to keep the overall semantic coherence of the plan. In this
case, actions are correct and reasonably parameterized but they do not meet the necessary
preconditions as they ignore that a given joint is in a state different from the one expected by
the model, due to the indirect effects of a previously planned action. Eventually, the model

reaches a very high 95% planning accuracy on the validation set after training over 8000

6.2 Transfer Learning 77

unique samples. Despite this, the model does not seem to overfit to the problems used for
training, as shown by the results on the test set presented in Section 6.3.

Results of validation planning accuracy are strikingly similar to those obtained by the
Plansformer, yet they have been achieved with a training set of 8000 instead of 18000, and
2 training epochs instead of 3. This could point to GPT-3 having stronger performance
in this task than CodeT5, but the phenomenon requires further investigation to be clearly
ascertained.

During this experiment, we also measured the number of planning attempts that failed
because of their excessive length. While this number was always small compared with the
validation set size, the number of failures decreased from 24 in the first training step, down
to 1 in the final model, further suggesting that the model becomes better at generating shorter

plans and avoiding unnecessary actions.

6.2 Transfer Learning

As previously discussed in Section 5.7, the Teriyaki solver for the NO-MACRO planning
domain has been chosen starting from two base candidates, namely Teriyaki-NO-MACRO
(davinci) and Teriyaki-NO-MACRO (MACRO). As we trained the two models, we kept track
of the planning accuracy as described in Section 5.7. The light pink and dark pink bars in
Figure 6.1 report results in planning accuracy for the Teriyaki-NO-MACRO (davinci) and
Teriyaki-NO-MACRO (MACRO) models, respectively. After 1000 samples, the Teriyaki-
NO-MACRO (davinci) model reached a planning accuracy of 32.5%, while Teriyaki-NO-
MACRO (MACRO) reached 95.2%. Because of this result, we immediately dropped the
former model, while we further trained the latter using 2000 samples. At this stage the
Teriyaki-NO-MACRO model reached a validation planning accuracy of 98.8%, exceeding
the 95% validation planning accuracy achieved by the MACRO model after 8000 samples.
Because of this result, we decided not to proceed with further training.

It is noteworthy that the Teriyaki-NO-MACRO (davinci) model still reached a higher
validation planning accuracy at 1000 samples than Teriyaki-MACRO. This result might
suggest that against our initial assumption, the NO-MACRO model is easier to learn for
GPT-3 than the MACRO one. The phenomenon must be explored more in-depth, but it could
be related to the number and quality of the actions in the planning domain. From these
considerations, from now on when we simply refer to Teriyaki-NO-MACRO we actually
mean Teriyaki-NO-MACRO (MACRO).

6.3 Comparison of Solvers 78

)

Teriyaki } _/AL
planner validator

PDDL L » Problem | | 4499 —

domain Ll PDDL
problems)

Probe
planner

N——

Figure 6.2 A diagram of Teriyaki testing process as described in section 6.3.

6.3 Comparison of Solvers

We tested the performance of both Teriyaki-MACRO and Teriyaki-NO-MACRO models in
terms of planning accuracy, plan length, and planning times on a test set of 1000 problem-
plan pairs not previously used for training and validation, and we compared the results to the
performance of the traditional action planner Probe. The process is summarized in Figure
6.2.

Before proceeding, we want to remark that, due to the significantly different computing
workflows used to run Teriyaki and Probe (basically, a cloud-based architecture accessed via
proprietary APIs and software installed on a local machine, respectivelly), a fair comparison
between them in terms of planning time is not possible. Therefore, results about planning
times in this Section are only meant at providing a baseline for future work and to show
how planning times scale differently for each Teriyaki planner in the two different planning
domains taken into consideration in this work.

Probe ran on an Ubuntu 20.04.4 Windows Linux Subsystem (WSL) environment, de-
ployed on a machine equipped with an 8-core Ryzen 3700X 3600 Mhz CPU and 16GB @3600
Mhz RAM. We recorded planning times as reported by the planner itself together with each
generated plan. As far as planning accuracy is concerned, all plans generated were valid, but
we considered the instances in which the planner failed to generate a plan as failures.

Regarding Teriyaki models, we prompted them using the settings described in Section 5.8,
then verified the validity of the obtained plans using the same VAL validation tool employed
at the data set generation phase. As the OpenAl API does not provide a method to log the
exact execution time of a call, planning times of Teriyaki solvers have been measured by
recording the time it took each API call to return a response to the client application. For
this reason, it must be noted that it is impossible to discern how long each call has been

queued by the cloud application before execution. We assessed that the effect of queuing is

6.3 Comparison of Solvers 79

Table 6.1 Summary of the tested models and date of testing

Model | Base model | Testdate | Start | Finish |

Teriyaki-MACRO davinci 18/02/2023 | 11:17:56 | 13:47:41
Teriyaki-NO-MACRO | MACRO | 19/02/2023 | 17:22:24 | 21:25:58

Table 6.2 Comparison of Teriyaki models against Probe in their respective domains on the
test dataset

| Solver | Domain | Acc. | steps | t_max | t_avg | t_std |
Teriyaki-MACRO MACRO 95.5 | 10953 | 54.32 | 8.99 | 4.77
Probe MACRO 98.6 | 11.111 | 36.71 2.11 3.47
Teriyaki-NO-MACRO | NO-MACRO | 94.0 | 19.158 | 54.71 | 14.61 | 7.16
Probe NO-MACRO | 98.6 | 22.137 | 43.77 | 2.79 | 3.30

not negligible as running tests after the official release of ChatGPT, another popular GPT-3
derived product by OpenAl, led to longer planning times than previously recorded, possibly
due to the increased traffic to the servers. In order to partly mitigate this effect, the tests
presented here were performed during the weekend, preferably in the morning CET time. In
Table 6.1 we also include the date and the starting and finishing time of each test session for
reference.

For all solvers and models, plan length has been computed simply as the number of
actions in the plan.

Table 6.2 compares the Teriyaki-MACRO and Teriyaki-NO-MACRO models against
Probe in the respective domains, in terms of accuracy (in percentage), average plan length,
maximum and average planning times, as well as the standard deviation of the planning times
(in seconds).

As anticipated, Probe is faster than the trained Teriyaki solvers to generate plans end-
to-end, in a traditional sense-plan-act workflow. Yet, Teriyaki solvers still offer decent
performance. Despite being trained on plans generated by Probe, Teriyaki models are
capable of solving problems that Probe failed to process, and even generate shorter plans.
The difference in plan length is only 1.5% for the Teriyaki-MACRO, but it raises to 13.5%
for Teriyaki-NO-MACRO, which in general leads to plans almost twice as long. This seems

to suggest that the training procedure rewards shorter completions and that the effect might

6.3 Comparison of Solvers 80

30

25

20

seconds

10

-—

0 [—

Probe/Macro Probe/No Macro Teriyaki-MACRO Teriyaki-NO-MACRO

Figure 6.3 Comparison of the Teriyaki MACRO and NO-MACRO models’ planning times
against Probe in their respective planning domains.

be stronger the longer the supposed completion gets. Nevertheless, this phenomenon requires
a more systematic investigation.

Figure 6.3 allows for a better assessment of the timing performance of the proposed
models, and it compares them to those generated by Probe. It can be observed that Teriyaki
models do actually scale with the combined length of the input and the output, as hypothesized.
Planning times of the Teriyaki-NO-MACRO model are approximately twice of the Teriyaki-
MACRO model, as expected considering that the plans of the former are approximately twice
longer than those of the latter. Box plots in the Figure associated with Teriyaki models have
a very distinct shape when compared to those of Probe on both domains, which hints at an
almost Gaussian distribution of planning times. This is coherent with the fact that the plans,

which are generated from randomly initialized problems, can assume any length.

A note on Probe results

A careful reader will notice that the Probe’s timing results reported in Section 6.3 and in
Section 3.5 differs significantly despite being carried out on the same hardware and on the
same models (MACRO/m_25_B and NO-MACRO/m_0). In particular, average plan length

6.4 Action-by-action Plan Streaming 81

and planning time increased by about 6,5% and 76,5% respectively, albeit median planning
time remained similar.

The cause of these apparently discording results is the composition of the respective test
datasets on which the timing performance have been computed. As outlined in Section 3.4,
the results in Section 3.5 have been obtained from a test dataset of 100 problem instances that
mimicked realistic conditions in the cable routing scenario, i.e., (i) in all problem instances
the object was initialized straight; (ii) joint angle configurations could range from 270 to
360 degrees; and, (iii) each joint had to be rotated by at least 15 degrees to reach the desired
goal configuration. In other words, there were no trivial problem instances that could be
solved by just one or two actions. On the contrary, training, validation and test dataset for
Teriyaki have been generated randomly and without said limitations, thus they include many
problem leading to extremely short plans. This was obviously intended, as Teriyaki-generated
planner should not overfit to a specific subclass of problems and ensure reliable operations
in all possible problem instances. This is particularly important as we plan to integrate
Neurosymbolic planners in architectures like planHRC, where the planner might be invoked
at any time, even to solve trivial problems, in order to respond to unforeseen events or human

interactions.

6.4 Action-by-action Plan Streaming

One of the major strengths of neurosymbolic action planning using LLMs is that the plan
can be streamed as it is being generated. If properly leveraged, this feature can support
action-by-action generation instead of adopting an end-to-end approach. In many applications
involving the use of robots with a required flexible behavior, and especially when frequent
re-planning is expected due to changing conditions, simultaneous planning and execution
by means of concurrent (sets of) processes could greatly reduce the waiting time for a plan
to be available, and therefore executed. As we have previously pointed out, this may nicely
correlate with a perceived interaction fluency in human-robot collaboration.

To test the performance of Teriyaki in this regard, we set the Teriyaki-MACRO model to
plan against our test dataset until it generated 1000 actions. Figure 6.4 compares Teriyaki-
MACRO single action timings against Probe timings to generate 1000 whole plans. Not
only do we observe that wait times are reduced by 61.2% on average, but also the response
time standard deviation is reduced from 3.47 to just 0.15. This corresponds to a 95.6%
decrease and makes Teriyaki much more predictable than the traditional heuristic-search

solver. The result of the variance could be extremely important for applications that require a

6.5 Limitations 82

seconds
N

1 T %

Probe Teriyaki-MACRO (single action)

Figure 6.4 Comparison of the time it takes Teriyaki-MACRO to generate a single action
against Probe on the MACRO domain.

decision to be taken withing a predetermined time frame. It also supports nicely our claim
that Teriyaki solvers are ideal for HRC applications, as it should make the robotic agent

much more predictable and consistent in the eyes of the operator.

6.5 Limitations

We previously pointed out that, although our results are quite promising in so far as they
unlock the possibility of simultaneous planning and execution, the data-driven synthesis of a
solver cannot be considered a complete alternative to traditional action planning at this stage.
As a matter of fact, a symbolic action planner is needed to obtain the problem-pair data used

for training the models. Herewith, we mention three main current limitations.

1. The first drawback in the current implementation is that planning times are slower than
the baseline symbolic planner Probe, at least using GPT-3 as base LLLM to implement

the overall architecture.

2. The second is related to the need to consider planning domains small enough to fit into
the 2048 tokens context characterizing GPT-3.

6.6 Results summary 83

3. The third concerns advanced capabilities exhibited by some PDDL-compatible plan-
ners.While we included conditional planning among the features supported by Teriyaki,
other relevant capabilities such as numerical and temporal planning have not been
considered. Their inclusion could prove challenging due to difficulties of LLMs in

generating mathematically accurate results.

In spite of these limitations, it is noteworthy that there are a number of LLMs and
Transformer-based learning architectures that are being made available at the writing of this
Thesis. In view of the favorable performance scaling discussed in this Chapter, we consider
LLM-based neurosymbolic planning as a promising approach worth considering for future

investigation.

6.6 Results summary

In this Chapter we introduced Teriyaki, a framework to generate neurosymbolic, PDDL-
compliant planners based on GPT-3, that is, a Transformer-based Large Language Model
architecture recently made available worldwide. In its current implementation, Teriyaki relies
on a pragmatic and inexpensive procedure for the generation of a training dataset, which is
based on the use of an existing action planner able to generate plans on the basis of randomly
defined inputs. Training can leverage high-performance computing machinery in the cloud,
and the resulting model can be deployed to any software architecture for robots adopting
standard PDDL-compatible syntax and interfaces.

The major contribution of this work is the empirical evidence that this approach can be a
viable solution for action planning. In particular, we showed that: (i) planning accuracy is
on par with that of a traditional, state-of-the-art, PDDL-compliant planner, (ii) the average
plan length is up to 13.5% shorter, (ii1) it is possible to better use Teriyaki in scenarios
where robots must re-plan frequently, and in particular due to its ability to generate plans
action-by-action, thus reducing average waiting time for a plan by 61.2%, with standard
deviation by 95.6%.

Overall, these results hints at a scenario in which the approach can fairly scale up in
terms of the number of potentially supported planning domains, even though this remains
one of the points to further investigate, and where fluency in human-robot interactions can

greatly benefit of the increased reaction times of the robot action planning capabilities.

Chapter 7

Towards Neurosymbolic planning
using local LLM

7.1 The benefit and challanges of local LL.Ms

In the previous three Chapters we have described Teriyaki as a framework to generate
neurosymbolic planners by fine-tuning GPT-3. While GPT-3 has been an amazing tool to
validate the feasibility of our proposed method, and its performance has proven competitive

with similar approaches in literature, it does suffer from a number of practical limitations:

1. Only in the cloud. As discussed in Section 6.3, the cloud nature of GPT-3 posed
significant challenges when we tried to benchmark the planning times of Teriyaki
solvers. Such issues could be even worse in all real-world applications that might

require the service to always be available and/or respect specific timing requirements.

2. Platform control. Being a cloud-exclusive service, users have no control over the
GPT-3 lifecycle. Indeed, the version of GPT-3 used as a base model for Teriyaki will
be retired by OpenAl in Q1 2024. This will make our models inaccessible and force us
to run a new fine-tuning on a different model which might also be retired later on.

3. Cost. While not expensive in absolute terms, the pay per token pricing policy of
OpenAl might limit the economic sustainability of certain projects, both in academia

and in the industry, and in particular its usage by students.

4. Closed source. GPT-3 is a closed source model and as such it is incompatible with
any future research on the topic that might benefit from modifications to the network

architecture.

7.1 The benefit and challanges of local LLMs 86

For all these reasons, it would be highly beneficial to any future work on the subject, to
first replicate the Teriyaki results on a local LLM. In this way, future research effort could
benefit from complete control over the platform and unlimited availability, and new exciting
research scenarios could open, where, for example, the LLM can run locally alongside other
components of the control architecture.

In recent years, a number of local LLM have been made available with different usage
licenses to the public, such as the aforementioned LLama 2 (Touvron et al., 2023) and a
plethora of derivative models fine-tuned for specific use cases. Compared to OpenAl’s models
like GPT-3, local LLLM are usually smaller, in the sense that their network is characterized
by a significantly reduced number of parameters in order to fit on consumer or professional
workstation hardware. This limitation poses another interesting scientific question: do we
really need an LLM as large as GPT-3 to apply a framework like Teriyaki, or working
neurosymbolic planners can also be generated by fine-tuning smaller models?

In Section 6.1, we highlighted that, when training an LLM to solve a logical problem,
we are using linguistic coherence as a proxy for logical coherence. Undoubtedly, a LLM as
large as GPT-3 needs billions of parameter to encode the grammar, syntax and vocabulary
of dozens of languages and even programming languages, as well as store a large corpus
of knowledge that has acquired from the data in the training set. We can hypothesize that,
when we fine-tuned GPT-3 in order to approximate the heuristic of the Probe planner, only
a small part of those parameters is significantly updated. Hence, a smaller model might be
sufficient to replicate the results we obtained with GPT-3. Indeed, this question has already
partially proven by Pallagani et al. (2023) with their Plansformer based on CodeT35, albeit on
simpler problems and at the cost of a much more extensive training. For reference, GPT-3,
which has now been surpassed in size by far larger models, counts 175 billion parameters,
while CodeT?5 is much smaller, counting only 220 million parameter. Another added benefit
of a smaller model is that, on the same hardware, it would run faster. Again, the work by
Pallagani et al. (2023) has shown timing performance better than their reference planner
FastDownward (Helmert, 2006), unlike Teriyaki that in this regard has lost against Probe.
As usual in this field, fair comparisons between models are difficult and not particularly
meaningful, but the takeaway of this result is that smaller models might be preferable in
many logical reasoning applications of LLM, whenever possible.

Nevertheless, despite the relatively small size of CodeT?5, it must also be noted that The
Plansformer runs on server grade hardware, namely, 9 (Dual P-100) and 44 (Dual V100)
nodes (albeit it must also be noted that training was performed on a single GPU node).

Such configuration is far from what is commonly understood as a local LLM model, and is

7.1 The benefit and challanges of local LLMs 87

achievable only by setting up an High-Performance Computing facility or, more commonly,
by renting the machines in the cloud. This solution can solve the limitations 2 and 4 that we
listed at the beginning of this Section, but leaves our first complaint unanswered and may
actually be more costly than using a service like GPT-3 on-demand, especially when the ease
of setup is taken into consideration. In other words, while using smaller LLM models has
been proven feasible, we are still far from them being an efficient or practical alternative to
OpenAl’s solutions, and more research is needed towards that end.

For this reason, in this Chapter we will explore a different approach. Based again on the
assumption that a reduced number of parameters might be sufficient for the kind of logical
reasoning that has been demonstrated by solutions like Teriyaki and the Plansformer, we
will attempt to fine-tune a LLM through a particular fine-tuning technique called Low-Rank
Adaptation (LoRA) (Hu et al., 2021), which should allow us to to fine-tune a compact
LLM on a local workstation. LoRA leverages low-rank matrix factorization to reduce the
model’s parameter space, allowing a much more efficient fine-tuning process. In other
words, LoRA allows to update only a subset of highly meaningful parameter during the
fine-tuning process, instead of the whole network. When used to fine-tune a model on a
specific task, LORA often results in only a minimal loss of answers’ quality compared to a
regular fine-tuning process. Preliminary results confirm the feasibility of the approach from
a training performance point view, but the resulting models have failed so far to correctly
solve any of the problems on Teriyaki’s test set, as they tend to lose logical coherence after
the first few actions. Nevertheless, training metrics have shown a token validation loss of
about 0.3 in our best candidate model, against the 0.2 achieved by Teriyaki when it started
to manifest robust planning performance. This result hints to the fact that a much larger
training dataset might be needed to compensate for the smaller model being employed and
the reduced number parameters being fine-tuned, and it is coherent with the differences in
training performances that we observed between Teriyaki and the Plansformer, despite the
different fine-tuning methodology. Hence, the main contribution of this Chapter is to inform
the reader on the challenges imposed by smaller LLM and provide preliminary guidelines
and insights about their fine-tuning process for Neurosymbolic planning.

In the next Sections, we will provide some background about LoRA, describe our
approach in terms of models used and experimental setup, and provide a comparative analysis
of the training performance over different model candidates, characterized by different base

models’ size and choice of training hyperparameters.

7.2 Low Rank Adaptation of Large Language Models 88

7.2 Low Rank Adaptation of Large Language Models

Low Rank Adaptation (LoRA) is an innovative fine-tuning method primarily applied in large
language models (Hu et al., 2021). It addresses the issue of substantial computational require-
ment for standard fine-tuning by LoRA identifying, isolating and subsequently adjusting a
low-rank subset of the model parameters, while keeping the rest unchanged.
Mathematically, given a pre-trained model parameter 6y, LoORA modifies it by A, where
A=UDVT with UDVT being the singular value decomposition (SVD) of A. Here, the rank
of A is restricted to be less than or equal to a small number & (i.e., LORA Rank). Then, the

fine-tuned model parameters 0 can be presented as:

60 =06y+aA

where « is a scaling factor to prevent overfitting and help the model stay close to the initial
state.

Low Rank Adaptation (LoRA) is thus an efficient strategy for fine-tuning large language
models which focuses on reducing the number of trainable parameters and GPU memory
requirements, thereby allowing for fine-tuning tasks even with less powerful hardware. LoRA
proposes a unique method wherein the majority of pretrained model weights are frozen,
while low-rank decomposition matrices are allowed to be trainable. This not only simplifies
the scalability of large language models, but also helps skim down the GPU memory need by
roughly a factor of three. Therefore, LORA can cut down the number of trainable parameters
by a factor of 10,000 as compared to GPT-3 175B.

The efficacy of LoRA is evident in its performance results that are on par with, if not better
than, traditional fine-tuning models. Furthermore, it exhibits faster training throughput and
does not incur additional inference latency as compared to other adapter methods. Combining
LoRA with existing prefix-based approaches has demonstrated improved performance and
higher model quality.

Large-scale pretraining on general domain data coupled with adaptation to specific tasks
is viable with LoRA. This efficient adaptation strategy maintains high model quality while
allowing for rapid task-switching and sharing of model parameters. Despite the reduced
computational resources, LORA makes it more tenable to comprehend the transformation of
features learned during pre-training for downstream tasks.

The fine-tuning of large language models may be resource-intense concerning storage
and hardware. Yet, it outperforms few-shot learning on GPT-3. LoRA is a promising solution

to this challenge, presenting the potential for more principled ways to select weight matrices.

7.3 Model selection and training methodology 89

In practical use, key hyperparameters when fine-tuning with LoRAs include:

* Batch size: The total number of training examples used in a single iteration. The

choice of batch size influences both training dynamics and computational efficiency.

* Micro batch size: Refers to the number of training examples that are processed
simultaneously on the GPU. This parameter must be carefully balanced to maximize

utilization of computational resources while avoiding out-of-memory errors.

* LoRA Rank (k): The maximum rank of the low-rank component A in the model. A

higher rank allows more flexibility in adaptations but has a higher computational cost.

* LoRA Alpha: The scaling factor applied to A, determining how much modification it
can impose during fine-tuning. This helps balance task-specific adaptation with the
ability to retain the original pre-trained model’s knowledge.

* Dropout: Dropout is a regularization technique which randomly sets a proportion
of input units to 0 at each update during training time to prevent overfitting. This

parameter controls the chance of an input unit to be set to 0.

* Cutoff length: The maximum sequence length during the back-propagation process.
Keeping sequences below this length helps manage the computational requirements of

LoRA, making it feasible to perform fine-tuning even on less resourceful hardware.

7.3 Model selection and training methodology

In order to fine-tune LLMs with LoRAs and test whether it is possible to achieve adequate
planning performances with on-site workstations, we set up a local training and inference
environment. Hardware-wise, the environment was deployed on an Intel Core 19-11900 2.50
GHz, 64Gb RAM machine mounting an A6000 NVidia GPU with 48GB of VRAM.

The software stack was based on the popular Text Generation Webui utility', which
automatically sets up a CUDA-accelerated PyTorch environment, and provides convenient
OpenAl standard-compliant APIs and a graphical interface to interact with the models. The
utility also provides streamlined access to open source models by allowing to download
models from the HuggingFace platform 2 and by providing reasonable default configurations

for each model.

Thttps://github.com/oobabooga/text-generation-webui
Zhttps://huggingface.co

7.3 Model selection and training methodology 90

At the time the experiments were carried out, the most powerful family of local models
was the LLama 2 family by Meta®, which includes models with 7, 13, 30 and 70 billions
of parameters. While a plethora of models derived from Llama 2 were available at the
time of testing, which could outperform LLama 2 in specific benchmarks, we decided to
focus on the models that were relatively close to the original Llama 2 models, as none of
the more specialized models available appeared as it could offer an actual benefit to our
application. On the contrary, we feared that excessive fine-tuning to beat specific benchmarks
could be detrimental to our specific task. For this reason, we eventually opted for Llama
2 family models provided by Nous Research*. For context, Llama 2 was pretrained on 2
trillion tokens of data from publicly available sources. Nous Research versions were fine
tuned with additional publicly available instruction datasets, as well as over one million
new human-annotated examples. At the time of testing, Nous Research version of Llama 2
models were widely considered by the community the best performing all-round models, and
were available with all models’ sizes variants, i.e., 7, 13, 30 and 70 billions of parameters.

It must be noted that 7B and 13B models can be loaded in their native form in the 48GB
VRAM of our A6000 GPU, while at the time of testing the 30B and 70B could not. For this
reason, 30B and 70B models had to loaded with a parameters’ precision reduced from 16 to
8 bit which usually leads to a modest loss in accuracy. For the sake of simplicity, we have
thus decided to load all models with 8 bit precision. All models have been loaded with the
Transformers model loader and default settings.

For the training stage, we decided to employ the same dataset used to train Teriyaki and
described in Section 5.5. On one side, our local training environment requires the dataset
to be provided in JSON format instead of JSONL; on the other, our local environment is
much more flexible and allows to specify in details how the prompt and completion should
be formatted. Hence, we first defined a custom, planning specific, dataset format template,

and then used a custom software to translate the Teriyaki dataset into the new format.

3https://ai.meta.com/llama/
“https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b

7.3 Model selection and training methodology

"problem,plan":
"PDDL planning

Problem:
%problem

Hi#
Plan:
%plan’%END"

Listing 7.1 The proposed custom planning format.

{"problem":

"(angle_joint angle270 jointl)
(angle_joint angle285 joint2)
(angle_joint angle330 joint3)
(in-centre joint3)\n(free gleft)
(free gright))

(:goal

(and

(angle_joint angle315 jointl)
(angle_joint angle285 joint2)
(angle_joint angle0 joint3)

)

",

"plan":

"0.00100: (link-to-central-grasp ...)
0.00300: (increase_angle_first_child_45 ...)
0.00500: (release-1links ..)

0.01700: (increase_angle_first_child ...)\n\n"},

Listing 7.2 An example of a training sample in the new JSON format.

7.4 Results and discussion 92

Listing 7.1 shows our format template. In practice, requests to the model will have to
be provided according to this template, substituting %problemy and %planj, respectively
with the prompt and completion as defined in Section 5.5. Note that now there is no need
anymore to add a stopping condition to the problem/prompt and plan/completion as this can
be specified in the template (i.e., ### and END).

Accordingly, our dataset will be a JSON file with a list of problem/plan pairs which will
be automatically substituted in the template that we have specified. A training sample as

defined in the new format is provided in Listing 7.2.

7.4 Results and discussion

As preciously anticipated, the method outlined in the previous section failed to generate
planners capable of solving plans with the reliability demonstrated by Teriyaki in Chapter
6. Nevertheless, the training metrics collected during our experiments highlight some
interesting phenomena and can provide some guidance to the readers in the choice of training
hyperparameters, if they are interested in pursuing this line of research. In particular, we
believe it is interesting to discuss the impact of the LoRA rank, batch size, and model size
on training performance. We will conclude this Section with our currently best performing

model and a discussion on the possible way forward.

7.4.1 Impact of the LoRA rank

In section 7.2, we have seen the importance of the rank of a LoRA, as it determines how many
of the parameters of the initial model will be allowed to be updated during the fine-tuning
process. At the beginning of this chapter, we have hypothesized that only a small part of
the model parameters need to be significantly updated in order to learn to simulate a search
heuristic. Nevertheless, two questions arise: firstly, whether the maximum rank allowed
by our experimental setup, i.e., 1024, is sufficient for fine tuning Teriyaki-like solvers; and,
secondly, if so, whether we can go even lower and what impact it might have on the model’s
performance. For reference, a rank between 64 and 128 is usually used to teach the model
a specific writing style, whereas a rank between 128 and 256 is used to teach a new skill.
Ranks between 512 and 1024 are used rarely, and only in particular scenarios where fine
details are important. For this reason we decided to test ranks from 128 and up, but we soon

noticed that exceeding 512 lead only to negligible improvements.

7.4 Results and discussion 93

09
038
07

0.6

0.5

0.4

03

02

01
0.09

0.08
0.07

0.05

0.04

a 5 10 15 20 25 30

Run -t

Value Step Relative

kimchi-7b-r128/runs/Aug07_17-35-45_DESKTOP-ED509FU 0.0662 35 2.969 hr

® kimchi-7b-r256/runs/Aug08_12-59-16_DESKTOP-ED509FU 0.0615 35 2074 hr
® kimchi-7b-r512/runs/Jan15_10-49-10_DESKTOP-ED509FU 0.0624 35 2238 hr

Figure 7.1 Evaluation loss evolution with LoRA rank 128, 256 and 512 while fine-tuning
NousResearch LLama 2 7B with the Teriyaki dataset. Evaluation loss is plotted against
training steps, where each training step corresponds to 400 training samples. Hence, the
graph shows the evolution of the evaluation loss over almost 2 full epochs.

Figure 7.1 compares the token evaluation loss evolution with LoRA rank 128, 256 and
512. The base model being fine-tuned is NousResearch LLama 2 7B. The LoRA alpha has
been always left to its recommended value, i.e. twice the LoRA rank. Learning rate is set for
all three sessions to the default 3e — 4 and controlled by a linear scheduler. LoRA dropout is
also set to the default value 0.05. Batch size is set to 400 and micro batch size to 4.

Overall, we can observe that against our initial hypothesis, LORA rank does not have
a very strong impact over the capability of the model to learn this specific skill. We do
observe a perceivable improvement between rank 128 and 256, as expected considering the
complexity of the skill that we are trying to teach. Increasing the rank further to 512 leads to
near identical performance, and actually a very slight decrease, albeit within the margin of
error. This result is surprising considering that a rank above 256 and up to 1024 is usually

be beneficial in scenarios that require attention to fine details, which is definitely true for

7.4 Results and discussion 94

planning. As we have already seen in Chapter 4, precisely mapping admissible actions is one
of the biggest challenges when exploiting LLMs for task planning.

As a training step involves processing a full batch of training samples, and given that
batch size is set to 400, the graph in Figure 7.1 shows the resulting token evaluation loss after
14.000 samples, or almost 2 full epochs over the Teriyaki dataset. This enables us to compare
these results with Figure 6.1, which similarly shows token evaluation loss evolution while
fine-tuning GPT-3 for 2 epochs. The capability of GPT-3 to learn from the given dataset is
massively superior: the model quickly reaches a token evaluation loss value around 0.02,
and while it oscillates around this value over thousands of training samples, we see planning
accuracy slowly rising as well. Conversely, these models based on NousResearch LLama 2
7B reach at best 0.0615. While for typical LLM task related to NLP this is an outstanding
result for such a small model, the value appears to be insufficient for planning tasks. On
the positive side, after 14.000 samples token evaluation loss still appears to be decreasing,

hinting that a larger dataset might allow to overcome the model shortcomings.

7.4.2 Impact of the Batch Size

In this Section we will discuss the impact of batch size on training performance. In Section
5.6 we have seen that OpenAl’s fine-tuning API automatically sets batch size to 0.2% of
the training dataset. Teriyaki training dataset is composed of 8.000 training sample, thus
resulting in a batch size of 16. Nevertheless, the reader might have noticed that in the previous
Section batch size was set to 400. This steep increase is motivated by the recent trend to use
increasingly large batch sizes both for LLM training and fine-tuning. For reference, LLama
2 was trained with a batch size of 4M tokens while fine-tuning is usually performed with a
batch size of 64. The reason for this trend is that a large batch size reduces the fine-tuning
noise, albeit at the cost of a significantly higher memory consumption.

Figure 7.2 shows the evolution of token evaluation loss against training steps when batch
size is set to 16, 64 and 128. Again, the base model being fine-tuned is NousResearch LLama
2 7B. LoRA rank is set to 512 for all three models. Indeed, rank 512 performed as well as 256
in the comparison presented in previous section, but we opted for 512 to reduce the risk of the
LoRA rank bottlenecking our subsequent benchmarks. All other training hyperparameters
are left unchanged compared to the example in the previous Section. For a fairer comparison,
all three models have been fine-tuned with 12.800 training samples (i.e., roughly 1.5 epoch
over the Teriyaki dataset), but since batch size influences the number of training steps, the

final number of steps appears different between the three fine-tuning runs being compared.

7.4 Results and discussion 95

{
006 \

Runt Value Step Relative
@ kimchi-7b512+bs128/runs/Aug1?_17-03-08_DESKTOP-EDS09FU 0.0569 100 6.436 hr
Kimehi-7b-1512-bs16/runs/Jan21_14-30-33_DESKTOP-EDS09FU 0.0408 800 7.223hr
[] kimchi-7b-r512-bs64/runs/Aug18_09-37-52_DESKTOP-ED509FU 0.0541 200 4.895 hr

Figure 7.2 Evaluation loss evolution with batch size 16, 64, 128 while fine-tuning Nous-
Research LLama 2 7B with the Teriyaki dataset. Rank size is set to 512. Evaluation loss is
plotted against training steps, which depend on the batch size. For a fairer comparison, all
three models have been fine-tuned with 12.800 training samples (i.e., roughly 1.5 epochs
over the Teriyaki dataset), corresponding respectively to 800, 200 and 100 training steps.

The first aspect that we notice is that a batch size of 16, which supposedly corresponds to
the value that OpenAI’s system has automatically selected during Teriyaki planners’ fine-
tuning, is the best performer of the three. This result is slightly unexpected given the general
consensus that a larger batch size is usually beneficial and it is often common practice to
set the batch size as high as allowed by the limitations of the hardware used for fine-tuning.
To further corroborate this result, we observe that also batch size 64 performs significantly
better than batch size 128. A possible interpretation of this result that we propose is that,
while a higher batch size might reduce noise in the fine-tuning process, it might also make
it harder to learn fine details in the dataset. As our dataset requires extreme precision both
in sequencing actions and in assigning them the correct parameters, an excessive batch size
value might be detrimental. This phenomenon requires further investigation and might have
different explanations, but, if confirmed, it might be of interest to the wider LLM community

in any fine-tuning aimed at precision sensitive applications.

7.4 Results and discussion 96

0.09

0.08

0.07

0.06

0.05

0.04

0 100 200 300 400

Run value Step Relative
® kimchi-13b-r512-bs128/runs/Aug15_19-08-22_DESKTOP-ED509FU 0.0395 250 1.189 day
® kimehi-13b-r512-bs64/runs/Aug21_12-48-21_DESKTOP-ED509FU 0.036 500 23.58 hr
® kimchi-7b-r512-bs64/runs/Aug18_09-37-52_DESKTOP-ED509FU 0.0356 500 13.32hr

Figure 7.3 Evaluation loss evolution while fine-tuning NousResearch LLama 2 7B and 13B
with the Teriyaki dataset. Batch size is set to 64 for both models, but an additional fine-tuning
run for the 13B models with batch size set to 128 is included in the comparison. Rank size is
set to 512 for all models. Evaluation loss is plotted against training steps, which depend on
the batch size. For a fairer comparison, all three models have been fine-tuned with 32.000
training samples (i.e., 4 epochs over the Teriyaki dataset), thus the run with batch size 128
has half the final number of training steps.

7.4.3 Impact of the Base Model Size

So far, we have only considered the smallest of the base models at our disposals, i.e.,
NousResearch LLama 2 7B. Considering the difficulties that we have experienced so far in
obtaining reliable planning performance, it is natural to ask ourselves whether increasing
again the base model size could be helpful. Figure 7.3 compares the evolution of token
evaluation loss against training steps for both NousResearch LLama 2 7B and 13B. As in the
previous Section, we have set LoRA rank to 512 to avoid any possible bottlenecking without
negatively impacting performance. Similarly, we used for both models a batch size of 64, but
we also included a fine-tuning run for the 13B model with batch size 128, in order to verify

whether, for a larger model, a larger batch size might be beneficial. In this experiment we

7.4 Results and discussion 97

also decided to increase our training epochs to 4, resulting in 32.000 training samples, or 500
training steps for the runs with batch size set to 54, and 250 for the run with batch size set to
128. All other training hyperparameters are left unchanged compared to the examples in the
previous Sections.

At a glance, it appears evident that the 7B and 13B models perform equally well, thus sug-
gesting that adopting a larger model is not a viable strategy to improve planning performance.
On the positive side, this result partially supports our hypothesis that only a small portion of
the model parameters are truly important for task planning, albeit it must be remembered that
we are fine-tuning with LoRA and that with a fully fledged fine-tuning some improvements
might be possible. This is definitely an aspect that requires further investigation in the future.

So far we have not paid attention to fine-tuning time. In this experiment, as expected,
there is a large difference between the 13B and 7B models training time, with the former
taking about twice as much time to complete compared to the latter. Considering the near
identical performance, the 7B model is the obvious choice in terms of practicality. This result
further suggests that smaller models are an ideal candidate for task planning applications of
LLM, at least in the sense that we have adopted in Section 4.3.

Finally, it is also interesting to note that the fine-tuning run of the 13B model using batch
size 128 is our worse performer of the three. This result further supports our hypothesis in the
previous Section that an unnecessarily big batch size might be detrimental while fine-tuning

a model for tasks that require a high level of precision and attention to fine-details..

7.4.4 Increasing dataset and batch size

In the previous three Sections we have presented a number of possible optimizations to better
learn to solve task planning problem instances with a local LLM. In particular, we have
observed that significant performance improvements are achievable by adequate choice of
LoRA rank and batch size, which allowed us to reduce token validation loss by more than
30%. We have also observed that despite the significant size of our training dataset and
having increased the number of epochs from 2, as used in Chapter 5, to 4, did not cause
any significant overfitting. On the contrary, the graphs presented clearly show that the token
evaluation loss is still decreasing at the end of each fine-tuning session, albeit slowly.

For this reason, we include one last experiment where we fine-tuned NousResearch
LLama 2 7B with LoRA rank 512, batch size 64 and number of epochs 4, with an extended
dataset. For this purpose, we employed the same methodology discussed in Section 5.5 to

generate a training and validation dataset composed of 20.000 and 2.000 samples respectively,

7.4 Results and discussion 98

which we refer to as Teriyaki-XL dataset. Figure 7.4 shows the result. In this configuration,
we achieve a very reasonable token validation loss value, i.e., 0.0324, which is within
reach of our target 0.02 and about 50% lower that what we obtained in our first, naive,
experiments. It is interesting to note that also in this experiment the token validation loss
is still decreasing at the end of the fine-tuning run, suggesting that an even bigger dataset
and an even larger number of epochs could be beneficial. Initially the scientific community
feared rapid overfitting with the increasing number of epochs, especially when fine-tuning for
conditional generation tasks. This is the reason why GPT-3 recommended to use 2 epochs for
conditional generation, and why we adopted the same value to fine-tune Teriyaki planners, as
described in Section 5.6. Nevertheless, today up to 6 or even 8 epochs are being regularly
used without significant issues.

On the negative side, it must be noted that the Teriyaki-XL dataset now exceeds the
dataset used by the Plansformer by 2.000 samples, and yet it is still insufficient to reach
reliable planning performance. While it must be noted that the planning domain that we are
taking into consideration is much more complex, for example, for the presence of conditional
effects, this result should let us consider whether fully fine-tuning a smaller model like
CodeTS5 is ultimately more convenient than fine-tuning with LoRA a base model like LLama
7B, despite the eventual technical difficulties due to the necessity of high-performance
computing infrastructure. This aspect surely requires a more in-depth investigation in future
work on the topic.

A possible inspiration for future research directions and for a strategy to overcome
the difficulties that we have outlined so far, comes exactly from the Plansformer and the
most recent advancements in the state of the art. One difference between the Plansformer
and Teriyaki that we have discussed before is that the former’s dataset has been generated
using an optimal planner. At first sight this difference might look inconsequential to the
purpose of generating correct plans, and to only have an effect on the quality of the plans
generated. Nevertheless, the work of Gunasekar et al. (2023) on Phi-1 has shown that dataset
quality has an outstanding impact on LLM performance, causing a major shift of focus in
the community from LLM architectures to datasets composition. For reference, Phi-1 is a
small, 1B parameters model that is trained exclusively on textbook quality text, and which
has been shown to outperform models several times larger in terms of number of parameters.
By extending this concept to or task planning scenario, we can hypothesize that optimal plans
have higher quality compared to non-optimal ones, as they are shorter and more consistent
among themselves in the way the actions are sequenced. This is similar to the concept that

textbooks are, in general, more concise and precise on a given topic than what can be scraped

7.4 Results and discussion 99

0.055

0.045

0.035

\\—_

o 100 200 300 400 500 600 700 800 900 1.000 1.100 1.200

Figure 7.4 Evaluation loss evolution while fine-tuning NousResearch LLama 2 7B with an
extended dataset. Batch size is set to 64, while Rank size is set to 512. Evaluation loss is
plotted against training steps, which depend on the batch size, hence here 80.000 training
samples (i.e., 4 epochs over the Teriyaki-XL dataset), appear as 1250 training steps. The
final token validation loss value is 0.0324.

by random websites and users’ conversations from the internet. In future work we will try
to repeat the last experiment presented in this section with a dataset composed of optimal
plans. If our hypothesis is correct, we might finally be able to replicate the performance
of Teriyaki with relatively affordable, local hardware, and shed a new light on LLM task

planning capabilities.

Chapter 8
Conclusions

We have finally arrived to final chapter of this thesis. In the first Chapter, we have set
on a journey to keep the planner in the loop, that is, recognize the value of symbolic
task planning as a powerful, easy to deploy, humanly intelligible tool; and overcome the
traditional issues that limits its use in the real world, especially when planning must happen
online as part of a larger planning and execution architecture. In Chapter 2 we discussed
an architecture, P1anHRC, that heavily highlights such limitations. As the name suggests,
PlanHRC is designed to support long-term autonomy, robust operation and human-robot
cooperation in the operative scenario of the manipulation of articulated objects. In this
Chapter we delved with great detail into the description of the planning models that can
be used to describe the problem of articulated object manipulation, and stressed how their
performance is crucial not only to robust operation, but also to ensure a fruitful and pleasant
cooperation with humans through improved fluency.

Aware of the limitations of said models, we entered Chapter 3, where we proposed a first,
novel solution to this problem, albeit based on the traditional tools of symbolic planning, i.e.,
the use of macros as a tool to reduce planning times. The novelty of our approach in Chapter
3 is to not only focus on planning times, but also analyze the impact of macros on execution
times in the real world. By providing ad-hoc execution routines to ground macros, we have
shown that is is possible to obtain outstanding reductions in planning times without hurting
significantly execution times, despite the risk for macro to introduce spurious, unnecessary
elementary actions into the final plan.

In Chapter 4, we have started to completely re-imagine what symbolic planning could be.
We made an hypothesis that recent advancements in Large Language Models could be used
to bridge the gap between traditional symbolic Al a the latest generation of machine learning-

based methods. In particular, we referred to this new class of solvers as Neurosymbolic

102

Planners, and delved into the state of the art of LLM applications to logical reasoning and
planning. The result of this analysis was that a large part of the scientific community is
focusing on the general one- or few-shots capabilities of LLM to answer to logical problems,
resulting in philosophically exciting but unreliable results. Instead, we have decided to use
LLMs as a tool to approximate the search heuristic of a traditional planner by fine-tuning it
on a large dataset of problem-plan pairs.

In Chapter 5 we have introduced Teriyaki, a method to generate Neurosymbolic planners
by fine-tuning GPT-3. We have shown how to generate an adequate dataset and provided
extensive details on the fine-tuning process and choice of training hyperparameters. Chapter
6 follows by presenting our results: Teriyaki-based Neurosymbolic planners are capable
of reliably (> 95%) generating plans for the specific domains for which they are trained.
Most importantly, we are the first to our knowledge to apply a similar technique to a
challenging planning domain with real-world, robotic applications. In such context, while our
Neurosymbolic planners are still slower than their traditional counterpart, we have proposed
a novel operation mode, i.e., simultaneous planning and execution, which is enabled by the
unique characteristics of Neurosymbolic planners, and which can reduce by more than 60%
waiting times for a plan.

In Chapter 7, we have hypothesized that a much smaller mode model compared to GPT-3
could be sufficient to implement Teriyaki-like Neurosymolic planners, and explored the
possibility to bring Neurosymbolic planners to local hardware through the use of local
models and LoRA fine-tuning. Such advancement not only is of great scientific interest, but
would also make Neurosymbolic planners much more accessible to a wider audience. While
at the moment planners based on local LLMs failed to achieve the same reliability shown by
the models in Chapter 5, our preliminary results suggest that this goal is achievable, albeit at
the cost of a precise optimization of the training hyperparameters and a much larger training
dataset. The Chapter also proposes some directions for future work, in particular regarding
the quality of the dataset used to train the models.

Looking back at this journey, we believe that this thesis is a confident step forward
towards infusing new life in the field of symbolic task planning, in particular in real world,
robotic applications that require the planner to be constantly in the planning and execution
loop of a robotic software architecture. Referring back at our initial example of the P1anHRC
architecture, the combination of the models proposed in Chapter 3 with the simultaneous
planning and execution capabilities demonstrated in Chapter 6, can provide a significant
improvement in waiting times for a plan, whether the robot is just starting to act, or a re-

planning is required, to address an unforeseen event or accommodate for human interventions.

103

In particular, simultaneous planning and execution can be a real game changer considering
that traditional planners can only return a plan once a solution, from initial to goal state, has
been identified.

We are still far from the day that Neurosymbolic planners can be a complete alternative
to traditional heuristic search planners. Nevertheless, we hope that the results described in
this thesis prove without a doubt that this is a new line of research which deserves to be
explored in greater depth. In particular, we hope to have convinced the reader that a deeper
collaboration between the two communities of cognitivist and emergent Al scientists, could
be highly beneficial in unlocking the full potential of LLM for logic reasoning and planning
capabilities, especially in robotics applications.

Regarding the shortcoming of Neurosymbolic systems that we have seen in this pages,
we are confident that many of them will be naturally addressed as an increasing number
of foundation models are being made available to the public, each providing stronger text
generation and logical reasoning capabilities. In this regard, and considering our experiences
in Chapter 7, we believe that some of the most interesting advancement will not come from
models like a hypothetical GPT-5, but rather by its smaller siblings and the truly outstanding

community of research and engineers that is flourishing around them.

References

Aeronautiques, C., Howe, A., Knoblock, C., McDermott, 1. D., Ram, A., Veloso, M., Weld,
D., SRI, D. W,, Barrett, A., Christianson, D., et al. (1998). Pddll the planning domain
definition language. Technical Report, Tech. Rep.

Agostini, A., Torras, C., and Worgotter, F. (2011). Integrating task planning and interac-
tive learning for robots to work in human environments. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI-11), Barcellona, Spain.

Ahmadzadeh, S., Paikan, A., Mastrogiovanni, F., Natale, L., Kormushev, P., and Caldwell,
D. (2015). Learning symbolic representations of actions from human demonstrations.

In Proceedings of the 2015 IEEE International Conference on Robotics and Automation
(ICRA 2015), Seattle, WA, USA.

Baraglia, J., Cakmak, M., Nagai, Y., Rao, R., and Asada, M. (2016). Initiative in robot
assistance during collaborative task execution. In Proceedings of the 2016 ACM/IEEE
International Conference on Human-Robot Interaction (HRI 2016), Christchurch, New
Zealand.

Berenson, D. (2013). Manipulation of deformable objects without modelling and simulating
deformation. In Proceedings of the 2013 IEEE-RSJ International Conference on Intelligent
Robots and Systems (IROS 2013), Tokyo, Japan.

Bertolucci, R., Capitanelli, A., Dodaro, C., Leone, N., Maratea, M., Mastrogiovanni, F., and
Vallati, M. (2021). Manipulation of articulated objects using dual-arm robots via answer
set programming. Theory and Practice of Logic Programming, 21(3):372-401.

Bertolucci, R., Capitanelli, A., Maratea, M., Mastrogiovanni, F., and Vallati, M. (2019). Au-
tomated planning encodings for the manipulation of articulated objects in 3d with gravity.
In AI* IA 2019-Advances in Artificial Intelligence: XVIIIth International Conference of
the Italian Association for Artificial Intelligence, Rende, Italy, November 19-22, 2019,
Proceedings 18, pages 135-150. Springer.

Bodenhagen, L., Fugl, A., Jordt, A., Willatzen, M., Andersen, K., Olsen, M., Koch, R.,
Petersen, H., and Kruger, N. (2014). An adaptable robot vision system performing

manipulation actions with flexible objects. IEEE Transactions on Automation Science and
Engineering, 11(3):749-765.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901.

References 106

Caccavale, R. and Finzi, A. (2017). Flexible task execution and attentional regulations in

human-robot interaction. /EEE Transactions on Cognitive and Developmental Systems,
9(1):68-79.

Capitanelli, A., Maratea, M., Mastrogiovanni, F., and Vallati, M. (2017). Automated planning
techniques for robot manipulation tasks involving articulated objects. In Proceedings of
the 2017 Conference of the Italian Association for Artificial Intelligence (AIxIA 2017),
Bari, Italy.

Capitanelli, A., Maratea, M., Mastrogiovanni, F., and Vallati, M. (2018). On the manipulation
of articulated objects in human-robot cooperation scenarios. Robotics and Autonomous
Systems, 109:139-155.

Carfi, A., Foglino, E., Bruno, B., and Mastrogiovanni, F. (2019). A multi-sensor dataset for
human-human handover. Data in Brief, 22:119-117.

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras,
N., Hurtos, N., and Carreras, M. (2015a). ROSPlan: planning in the Robot Operating
System. In Proceedings of the 2015 International Conference on Automated Planning and
Scheduling (ICAPS 2015), Jerusalem, Israel.

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, N.,
Hurtos, N., and Carreras, M. (2015b). Rosplan: Planning in the robot operating system.
In Proceedings of the international conference on automated planning and scheduling,
volume 25, pages 333-341.

Chakraborti, T., Kambhampati, S., Scheutz, M., and Zhang, Y. (2017). Al challenges in
human-robot cognitive teaming. arXiv preprint arXiv:1707.04775.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda,
Y., Joseph, N., Brockman, G., et al. (2021). Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H. W., Sutton, C., Gehrmann, S., et al. (2022). Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311.

Chrpa, L. and Vallati, M. (2019). Improving domain-independent planning via critical
section macro-operators. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7546-7553.

Chrpa, L., Vallati, M., and McCluskey, T. L. (2015). On the online generation of effective
macro-operators. AAAI Press.

Cirillo, M., Karlsson, L., and Saffiotti, A. (2010). Human-aware task planning. ACM
Transactions on Intelligent Systems and Technology, 1(2):1-26.

Clair, A. and Matari¢, M. (2015). How robot verbal feedback can improve team performance
in human-robot as collaborations. In Proceedings of the 2015 ACM/IEEE International
Conference on Human-Robot Interaction (HRI 2015), Portland, USA.

References 107

Coleman, D., Sucan, 1., Chitta, S., and Correll, N. (2014). Reducing the barrier to entry of
complex robotic software: a moveit! case study. arXiv preprint arXiv:1404.3785.

Dale, R. (2021). Gpt-3: What’s it good for? Natural Language Engineering, 27(1):113—-118.

Darvish, K., Simetti, E., Mastrogiovanni, F., and Casalino, G. (2021). A hierarchical
architecture for human-robot cooperation processes. IEEE Transactions on Robotics,
37(2):567-586.

Darvish, K., Wanderlingh, F., Bruno, B., Simetti, E., Mastrogiovanni, F., and Casalino, G.
(2017). Flexible human-robot cooperation models for assisted shop-floor tasks. arXiv
preprint arXiv:1707.02591.

Darvish, K., Wanderlingh, F., Bruno, B., Simetti, E., Mastrogiovanni, F., and Casalino, G.
(2018). Flexible human-robot cooperation models for assisted shop-floor tasks. Mecha-
tronics, 51:97-115.

Dautenhahn, K. (2007). Socially intelligent robots: dimensions of human-robot interaction.
Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences,
362(1480):679-704.

Denei, S., Mastrogiovanni, F., and Cannata, G. (2015). Towards the creation of tactile maps
for robots and their use in robot contact motion control. Robotics and Autonomous Systems,
63(3):293-308.

Elbrechter, C., Haschke, R., and Ritter, H. (2011). Bi-manual robotic paper manipulation
based on real-time marker tracking and physical modelling. In Proceedings of the 2011
IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS 2012), San
Francisco, CA, USA.

Elbrechter, C., Haschke, R., and Ritter, H. (2012). Folding paper with anthropomorphic robot
hands using real-time physics-based modeling. In Proceedings of the 2012 IEEE-RAS
International Conference on Humanoid Robotics (HUMANOIDS 2012), Osaka, Japan.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972). Learning and executing generalized robot
plans. Artificial intelligence, 3:251-288.

Fox, M., Howey, R., and Long, D. (2005). Validating plans in the context of processes
and exogenous events. In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI 2005), Pittsburgh, Pennsylvania, USA.

Fox, M. and Long, D. (2006). Modelling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research, 27:235-297.

Frank, B., Schmedding, R., Stachniss, C., Teschner, M., and Burgard, W. (2010). Learning
the elasticity parameters of deformable objects with a manipulation robot. In Proceedings
of the 2010 IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS
2010), Taipei, Taiwan.

Garcez, A. d. and Lamb, L. C. (2020). Neurosymbolic ai: the 3rd wave. arXiv preprint
arXiv:2012.05876.

References 108

Gerevini, A. E., Saetti, A., and Vallati, M. (2011). Exploiting macro-actions and predicting
plan length in planning as satisfiability. In Congress of the Italian Association for Artificial
Intelligence, pages 189-200. Springer.

Gombolay, M., Gutierrez, R., Starla, G., and Shah, J. (2014). Decision making, author-
ity, team efficiency and human worker satisfaction in mixed human-robot teams. In
Proceedings of Robotics: Science and Systems X (RSS 2014), Berkeley, USA.

Gombolay, M., Huang, C., and Shah, J. (2015). Coordination of human-robot teaming with
human task preferences. In Proceedings of the 2015 AAAI Fall Symposium Series, Palo
Alto, CA, USA.

Gombolay, M., Wilcox, R., and Shah, J. (2013). Fast scheduling of multi-robot teams with
temporospatial constraints. In Proceedings of Robotics: Science and Systems IX (RSS
2013), Berlin, Germany.

Goodrich, M. and Schultz, A. (2007). Human-robot interaction: a survey. Foundations and
Trends in Human-Computer Interaction, 1(3):203-275.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T., Del Giorno, A., Gopi, S., Javaheripi,
M., Kauffmann, P., de Rosa, G., Saarikivi, O., et al. (2023). Textbooks are all you need.
arXiv preprint arXiv:2306.11644.

Haddadin, S. and Croft, E. (2016). Physical human-robot interaction. In B. Siciliano and O.
Khatib (Eds.) Springer Handbook of Robotics. Springer International Publishing.

Harnad, S. (1990). The symbol grounding problem. Physica D, 42:335-346.

Hatcher, W. G. and Yu, W. (2018). A survey of deep learning: Platforms, applications and
emerging research trends. IEEE Access, 6:24411-24432.

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research, 26:191-246.

Henrich, D. and Worn, H. (2000). Robot manipulation of deformable objects. Advanced
Manufacturing. Springer-Verlag, London, Berlin, Heidelberg.

Heyer, C. (2010a). Human-robot interaction and future industrial robotics applications. In
Proceedings of the 2010 IEEE-RSJ International Conference on Intelligent Robots and
Systems (IROS 2010), Taipei, Taiwan.

Heyer, C. (2010b). Human-robot interaction and future industrial robotics applications. In
2010 ieee/rsj international conference on intelligent robots and systems, pages 4749—4754.
IEEE.

Hoffman, G. (2019). Evaluating fluency in human-robot collaboration. /IEEE Transactions
on Human-Machine Systems, 49(3):209-218.

Hofmann, T., Niemueller, T., and Lakemeyer, G. (2017). Initial results on generating macro
actions from a plan database for planning on autonomous mobile robots. In Proceedings

of the International Conference on Automated Planning and Scheduling, volume 27, pages
498-503.

References 109

Howard, A. and Bekey, G. (1997). Recursive learning for deformable object manipulation.
In Proceedings of the 1997 International Conference on Advanced Robotics (ICAR 1997),
Monterey, CA, USA.

Howey, R., Long, D., and Fox, M. (2004). Val: Automatic plan validation, continuous effects
and mixed initiative planning using pddl. In /6th IEEE International Conference on Tools
with Artificial Intelligence, pages 294-301. IEEE.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021).
Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, 1. (2022). Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In International
Conference on Machine Learning, pages 9118-9147. PMLR.

Jimenez, P. (2012). Survey on model-based manipulation planning of deformable objects.
Robotics and Computer-Integrated Manufacturing, 28(2):154—163.

Johannsmeier, L. and Haddadin, S. (2017). A hierarchical human-robot interaction-planning
framework for task allocation in collaborative industrial assembly processes. IEEE
Robotics and Automation Letters, 2(1):21-48.

Karpas, E., Levine, S., Yu, P., and Williams, B. (2015). Robust execution of plans for
human-robot teams. In Proceedings of the 2015 International Conference on Automated
Planning and Scheduling (ICAPS 2015), Jerusalem, Israel.

Koppula, H., Jain, A., and Saxena, A. (2013). Anticipatory planning for human-robot teams.
In Proceedings of Robotics: Science and Systems IX (RSS 2013), Berlin, Germany.

Krotzsch, M., Simancik, F., and Horrocks, 1. (2013). A description logic primer.
arXiv:1201.4089v3.

Kriiger, J., Lien, T., and Verl, A. (2009). Cooperation of humans and machines in the
assembly lines. CIRP Annals - Manufacturing Technology, 58(2):628-646.

Kwon, W. and Suh, 1. (2014). Planning of proactive behaviours for human-robot cooperative
tasks under uncertainty. Knowledge-based Systems, 72:81-95.

Lifschitz, V. (2019). Answer set programming. Springer Heidelberg.

Lipovetzky, N. and Geffner, H. (2011a). Searching for plans with carefully designed probes.
In Proceedings of the 2011 International Conference on Automated Planning and Schedul-
ing (ICAPS 2011), Freiburg, Germany.

Lipovetzky, N. and Geffner, H. (2011b). Searching for plans with carefully designed probes.
In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 21, pages 154-161.

Liu, C. and Fisac, J. (2015). Goal inference improves objective and perceived performance
in human-robot collaboration. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2015), Istanbul, Turkey.

References 110

Liu, H. and Wang, L. (2017). Gesture recognition for human-robot collaboration: a review.
International Journal of Industrial Ergonomics, - in press.

Logeswaran, L., Fu, Y., Lee, M., and Lee, H. (2022). Few-shot subgoal planning with
language models. arXiv preprint arXiv:2205.14288.

Loshchilov, I. and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983.

Maccio, S., Carfi, A., and Mastrogiovanni, F. (2022). A system for hierarchical planning
in service mobile robotics. In 2022 IEEE International Conference on Robotics and
Automation.

Mastrogiovanni, F., Paikan, A., and Sgorbissa, A. (2013). Semantic-aware real-time schedul-
ing in robotics. IEEE Transactions on Robotics, 29(1):118-135.

Mastrogiovanni, F., Sgorbissa, A., and Zaccaria, R. (2004). A system for hierarchical
planning in service mobile robotics. In Proceedings of the 8th Conference on Intelligent
Autonomous Systems (IAS-8), Amsterdam, The Netherlands.

McDermott, D. (1998). PDDL — the Planning Domain Definition Language. Technical report,
Yale.

Mikolov, T., Kombrink, S., Burget, L., Cernockjl, J., and Khudanpur, S. (2011). Extensions
of recurrent neural network language model. In 2011 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 5528-5531. IEEE.

Miller, S., van den Berg, J., Fritz, M., Darrell, T., Goldberg, K., and Abbeel, P. (2011). A
geometric approach to robotic laundry folding. International Journal of Robotic Research,
31(2):249-267.

Munzer, T., Mollard, Y., and Lopes, M. (2017). Impact of robot initiative on human-robot
collaboration. In Proceedings of the 2017 ACM/IEEE International Conference on Human-
Robot Interaction (HRI 2017), Vienna, Austria.

Murali, P. K., Darvish, K., and Mastrogiovanni, F. (2020). Deployment and evaluation of
a flexible human-robot collaboration model based on and/or graphs in a manufacturing
environment. Intelligent Service Robotics, 13:439—-457.

Nair, A., Chen, D., Agraval, P, Isola, P., Abbeel, P., Malik, J., and Levine, S. (2017).
Combining self-supervised learning and imitation for vision-based rope manipulation.

In Proceedings of the 2017 IEEE International Conference on Robotics and Automation
(ICRA 2017), Singapore.

Oussidi, A. and Elhassouny, A. (2018). Deep generative models: Survey. In 2018 In-
ternational conference on intelligent systems and computer vision (ISCV), pages 1-8.
IEEE.

Pallagani, V., Muppasani, B., Srivastava, B., Rossi, F., Horesh, L., Murugesan, K., Loreggia,
A., Fabiano, F., Joseph, R., Kethepalli, Y., et al. (2023). Plansformer tool: Demonstrating
generation of symbolic plans using transformers. In IJCAI, volume 2023, pages 7158-7162.
International Joint Conferences on Artificial Intelligence.

References 111

Prewett, M., Johnson, R., Saboe, K., Elliott, L., and Coovert, M. (2010). Managing workload
in human-robot interaction: a review of empirical studies. Computers in Human Behaviour,
26(5):840-856.

Rintanen, J. (2014). Madagascar: scalable planning with SAT. In Proceedings of the 2014
International Planning Competition (IPC 2014), Portsmouth, NH, USA.

Roncone, A., Mangin, O., and Scassellati, B. (2017). Transparent role assignment and task
allocation in human robot collaboration. In Proceedings of the 2017 IEEE International
Conference on Robotics and Automation (ICRA 2017), Singapore.

Saadat, M. and Nan, P. (2002). Industrial applications of automatic manipulation of flexible
materials. Industrial Robot: an International Journal, 29(5):434-442.

Sanderson, A. C., Peshkin, M. A., and de Mello, L. S. H. (1988). Task planning for robotic
manipulation in space applications. IEEE Transactions on Aerospace and Electronic
Systems, 24(5):619-629.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ili¢, S., Hesslow, D., Castagné, R., Luccioni, A. S.,
Yvon, F.,, Gallé, M., et al. (2022). Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100.

Schulman, J., Ho, J., Lee, C., and Abbeel, P. (2016). Learning from demonstrations through
the use of non-rigid registration. In M. Inaba and P. Corke (Eds.) Robotics Research,
volume 114 of Springer Tracts in Advanced Robotics. Springer International Publishing,
Lausanne, Switzerland.

Sebastiani, E., Lallement, R., Alami, R., and Iocchi, L. (2017). Dealing with on-line
human-robot negotiations in hierarchical agent-based task planner. In Proceedings of the
2017 International Conference on Automated Planning and Scheduling (ICAPS 2017),
Pittsburgh, USA.

Silver, T., Dan, S., Srinivas, K., Tenenbaum, J. B., Kaelbling, L. P., and Katz, M. (2023).
Generalized planning in pddl domains with pretrained large language models. arXiv
preprint arXiv:2305.11014.

Silver, T., Hariprasad, V., Shuttleworth, R. S., Kumar, N., Lozano-Pérez, T., and Kaelbling,
L. P. (2022). Pddl planning with pretrained large language models. In NeurlPS 2022
Foundation Models for Decision Making Workshop.

Singh, 1., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D., Thomason,
J., and Garg, A. (2023). Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 11523-11530. IEEE.

Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D., and
Kragic, D. (2012). Dual arm manipulation: a survey. Robotics and Autonomous Systems,
60(10):1340-1353.

References 112

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari, S., Casper, J., Liu, Z.,
Prabhumoye, S., Zerveas, G., Korthikanti, V., et al. (2022). Using deepspeed and megatron
to train megatron-turing nlg 530b, a large-scale generative language model. arXiv preprint
arXiv:2201.11990.

Song, C. H., Wu, J., Washington, C., Sadler, B. M., Chao, W.-L., and Su, Y. (2023). Llm-
planner: Few-shot grounded planning for embodied agents with large language models.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
2998-3009.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., and Abbeel, P. (2014). Combined
task and motion planning through an extensible planner-independent interface layer. In
Proceedings of the 2014 IEEE International Conference on Robotics and Automation
(ICRA 2014), Hong Kong, China.

Sundermeyer, M., Schliiter, R., and Ney, H. (2012). Lstm neural networks for language
modeling. In Thirteenth annual conference of the international speech communication
association.

Sussman, G. J. (1973). A computational model of skill acquisition.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A.,
Bos, T., Baker, L., Du, Y., et al. (2022). Lamda: Language models for dialog applications.
arXiv preprint arXiv:2201.08239.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,
S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288.

Tsarouchi, P., Matthaiakis, A., Makris, S., and Chryssolouris, G. (2016). Human-robot
interaction review and challenges on task planning and programming. International
Journal of Computer Integrated Manufacturing, 29(8):916-931.

Valmeekam, K., Olmo, A., Sreedharan, S., and Kambhampati, S. (2022). Large language
models still can’t plan (a benchmark for llms on planning and reasoning about change).
arXiv preprint arXiv:2206.10498.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, 1. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Wakamatsu, H., Arai, E., and Hirai, S. (2006). Knotting and unknotting manipulation of
deformable linear objects. International Journal of Robotic Research, 25(4):371-395.

Wake, N., Kanehira, A., Sasabuchi, K., Takamatsu, J., and Ikeuchi, K. (2023). Chatgpt
empowered long-step robot control in various environments: A case application. arXiv
preprint arXiv:2304.03893.

Wang, B., Wang, Z., Wang, X., Cao, Y., Saurous, R. A., and Kim, Y. (2023). Grammar
prompting for domain-specific language generation with large language models. arXiv
preprint arXiv:2305.19234.

References 113

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. (2021). Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859.

Wilcox, R., Nikolaidis, S., and Shah, J. (2012). Optimisation of temporal dynamics for
adaptive human-robot interaction in assembly manufacturing. In Proceedings of Robotics:
Science and Systems VIII (RSS 2012), Sydney, Australia.

Yamakawa, Y., Namiki, A., and Ishikawa, M. (2013). Dynamic high-speed knotting of a rope
by a manipulator. International Journal of Advanced Robotic Systems, 10:1-12.

Appendix A

Planning domains

A.1 Common definitions

(define (domain joint_bar)

(:requirements :strips :equality :typing :adl :conditional-effects)
(:types link joint angle gripper)

(:predicates
(connected ?7j - joint 7?1 - link)
(angle-before 7a - angle 7al - angle)
(angle_joint 7a - angle 7j - joint)
(link-before 7?1 - link 711 - link)
(grasp 7g - gripper 71 - link)
(in-hand 7?1 - link)
(in-centre ?7j - joint)
(free 7g - gripper)
(affected 7j -joint 71 - link ?jl - joint)

A.2 m_0 action set

(:action move-link-to-central
:parameters (?linkl - link 7jointl 7joint2 - joint ?g2 - gripper)
:precondition (and
(in-centre 7joint1)
(connected 7joint2 ?7link1)
(free 7g2)
(not (in-hand 7link1)))

A.2 m_0 action set 116

reffect (and
(not (in-centre 7jointl))

(in-centre 7joint2)

(raction take-links-to-move
:parameters (?linkl ?link2 - link ?joint - joint ?g2 ?gl - gripper)
:precondition (and
(in-centre ?7joint)
(free 7g2)
(free 7gl)
(not (in-hand 71link1))
(not (in-hand 71ink2))
(not (= 7gl 7g2))
(connected 7joint 71link1)
(connected 7joint 71ink2)
(not (= 7linkl ?71ink2))
)
reffect (and
(not (free 7g2))
(not (free 7gl))
(in-hand ?71ink1)
(in-hand ?71ink2)
(grasp 7g2 71link2)
(grasp ?gl ?7link1))

(:action increase_angle_first_child
:parameters (?linkl ?link2 - link 7joint - joint
7al 7a2 - angle 7g2 7gl - gripper)

:precondition (and

(link-before 71ink2 ?1inkl)

(in-centre 7joint)

(grasp 7g2 71link2)

(in-hand ?71ink1)

(in-hand ?71ink2)

(grasp 7gl 71link1)

(connected 7joint ?1link1)

(connected 7joint ?1ink2)

(not (= 71linkl 71ink2))

A.2 m_0 action set

117

(angle_joint 7al 7joint)

(angle-before 7al 7a2)

)
:effect
(and
(not (angle_joint 7al 7joint))
(angle_joint 7a2 7joint)
(forall (?7js - joint 7a3 7a4 - angle)
(when (and (affected 7js ?7linkl ?7joint)
(not (= 7js 7joint))
(angle_joint 7a3 7js)
(angle-before 7a3 7a4))
(and
(not (angle_joint 7a3 7js))
(angle_joint 7a4 7js)
)
)
)
)

(:action decrease_angle_first_child
:parameters (7linkl ?1ink2 - link 7joint - joint
7al 7a2 - angle 7g2 7gl - gripper)

:precondition (and

(link-before 71ink2 ?1link1)

(in-centre 7joint)

(grasp 7g2 71ink2)

(in-hand ?1link1)

(in-hand ?71ink2)

(grasp 7gl 7link1)

(connected ?7joint ?7linkl)

(connected 7joint ?71ink2)

(not (= 7linkl ?71ink2))

(angle_joint 7al 7joint)

(angle-before 7a2 7al)

)
:effect

(and

(not (angle_joint 7al 7joint))
(angle_joint 7a2 7joint)

(forall (?7js - joint 7a3 7a4 - angle)

A.2 m_0 action set 118

(when (and (affected 7js ?7linkl 7joint)
(not (= 7js ?7joint))
(angle_joint 7a3 7js)
(angle-before 7a4 7a3))
(and
(not (angle_joint 7a3 7js))

(angle_joint 7a4 7js)

(raction release-links
:parameters (?linkl ?71link2 - link 7joint - joint ?g2 7gl - gripper)
:precondition (and
(grasp 7g2 71ink2)
(in-hand ?71link1)
(in-hand ?71ink2)
(grasp 7gl 7link1)
(connected ?7joint ?7linkl)
(connected 7joint ?71ink2)
(not (= 7linkl ?1ink2))
)
reffect (and
(free 7g2)
(free 7gl)
(not (in-hand 7link1))
(not (in-hand 71ink2))
(not (grasp 7g2 ?71ink2))
(not (grasp 7gl 7link1)))
)

A.3 m_25_B action set 119

A.3 m_25_B action set

(:action take-links-to-move
:parameters (7linkl 71ink2 - link ?7joint - joint 7g2 ?gl - gripper)
:precondition (and
(in-centre 7joint)
(free 7g2)
(free 7gl)
(not (in-hand 71link1))
(not (in-hand 71ink2))
(not (= 7gl 7g2))
(connected 7joint ?71link1)
(connected 7joint ?71ink2)
(not (= 7linkl ?71ink2))
)
reffect (and
(not (free 7g2))
(not (free 7gl))
(in-hand ?71link1)
(in-hand ?71ink2)
(grasp 7g2 71ink2)
(grasp ?gl 71link1))

(:action increase_angle_first_child
:parameters (71linkl 71ink2 - link ?7joint - joint 7al 7a2 - angle 7g2 7gl - gripper)
:precondition (and
(link-before 71ink2 ?1linkl)
(in-centre 7joint)
(grasp 7g2 71link2)
(in-hand ?1ink1)
(in-hand ?71ink2)
(grasp 7gl 7linkl)
(connected 7joint ?link1)
(connected 7joint 71ink2)
(not (= 7linkl ?1ink2))
(angle_joint 7al 7joint)
(angle-before 7al 7a2)
)
:effect
(and
(not (angle_joint 7al ?7joint))

(angle_joint 7a2 7joint)

A.3 m_25_B action set 120

(forall (?js - joint 7a3 7a4 - angle)
(when (and (affected 7js ?linkl 7joint)
(not (= 7js 7joint))
(angle_joint 7a3 7js)
(angle-before 7a3 7a4))
(and
(not (angle_joint 7a3 7js))

(angle_joint 7a4 7js)

(:action decrease_angle_first_child
:parameters (7linkl ?1ink2 - link 7joint - joint 7al 7a2 - angle 7g2 7gl - gripper)
:precondition (and
(link-before ?1ink2 ?1inkl)
(in-centre 7joint)
(grasp 7g2 71ink2)
(in-hand ?link1)
(in-hand ?71ink2)
(grasp 7gl 7link1)
(connected 7joint ?1link1)
(connected ?7joint 71link2)
(not (= 71linkl 71ink2))
(angle_joint 7al 7joint)
(angle-before 7a2 7al)
)
:effect
(and
(not (angle_joint 7al 7joint))
(angle_joint 7a2 7joint)
(forall (?js - joint 7a3 7a4 - angle)
(when (and (affected 7js ?linkl 7joint)
(not (= 7js 7joint))
(angle_joint 7a3 7js)
(angle-before 7a4 7a3))
(and
(not (angle_joint 7a3 7js))
(angle_joint 7a4 7js)

A.3 m_25_B action set 121

(:action release-links
:parameters (?linkl ?link2 - link ?joint - joint ?g2 ?gl - gripper)
:precondition (and
(grasp 7g2 71ink2)
(in-hand ?1link1)
(in-hand ?71ink2)
(grasp 7gl 7linkl)
(connected 7joint ?link1)
(connected ?7joint 71link2)
(not (= ?7linkl ?1ink2))
)
reffect (and
(free 7g2)
(free 7gl)
(not (in-hand 71link1))
(not (in-hand 71ink2))
(not (grasp 7g2 71ink2))
(not (grasp 7gl 7link1)))

(:action link-to-central-grasp
:parameters (7linkl 71ink2 - link 7jointl 7joint2 - joint ?g2 ?gl - gripper)
:precondition (and
(in-centre 7jointl)
(connected ?7joint2 7link1)
(connected ?7joint2 71link2)
(not (= ?7linkl ?71ink2))
(free 7g2)
(free 7gl)
(not (= 7gl 7g2))
(not (in-hand 71link1))
(not (in-hand 71ink2))
)
reffect (and
(not (in-centre 7jointl))
(not (free 7g2))

A.3 m_25_B action set 122

(not (free 7gl))
(in-centre 7joint2)
(grasp 7g2 71link2)
(grasp 7gl 7link1)
(in-hand ?1link1)
(in-hand ?71ink2))

(raction increase_angle_first_child_45
:parameters (?linkl ?1link2 - link 7joint - joint 7al 7a2 7a3 7a4 - angle 7g2 7gl - gripper)
:precondition (and
(link-before 71link2 7linkl)
(in-centre 7joint)
(grasp 7g2 71link2)
(in-hand ?71ink1)
(in-hand ?71ink2)
(grasp 7gl 7link1)
(connected 7joint ?1link1)
(connected 7joint ?1ink2)
(not (= 71linkl 71ink2))
(angle_joint 7al 7joint)
(angle-before 7al 7a2)
(angle-before 7a2 7a3)
(angle-before 7a3 7a4)
)
:effect
(and
(not (angle_joint 7al 7joint))
(angle_joint 7a4 7joint)
(forall (?7js - joint 7ab 7a6 7a7 7a8 - angle)
(when (and (affected 7js ?7linkl ?7joint)
(not (= 7js 7joint))
(angle_joint 7ab 7js)
(angle-before 7ab 7a6)
(angle-before 7a6 7a7)
(angle-before 7a7 7a8))
(and
(not (angle_joint 7ab 7js))

(angle_joint 7a8 7js)

A.3 m_25_B action set 123

(raction decrease_angle_first_child_45
:parameters (7linkl 71ink2 - link 7joint - joint 7al 7a2 7a3 7a4d - angle 7g2 7gl - gripper)
:precondition (and
(link-before ?1ink2 ?1inkl)
(in-centre 7joint)
(grasp 7g2 71ink2)
(in-hand ?link1)
(in-hand ?71ink2)
(grasp 7gl 7link1)
(connected 7joint ?1link1)
(connected ?7joint 71link2)
(not (= 71linkl 71ink2))
(angle_joint 7al 7joint)
(angle-before 7a2 7al)
(angle-before 7a3 7a2)
(angle-before 7a4 7a3)
)
:effect
(and
(not (angle_joint 7al 7joint))
(angle_joint 7a4 7joint)
(forall (?7js - joint 7ab 7a6 7a7 7a8 - angle)
(when (and (affected 7js 7linkl 7joint)
(not (= 7js ?7joint))
(angle_joint 7ab 7js)
(angle-before 7a8 7a7)
(angle-before 7a7 7a6)
(angle-before 7a6 7ab))
(and
(not (angle_joint 7ab 7js))

(angle_joint 7a8 7js)

	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 The scalability issue: the articulated object example
	2.1 What is an architecture for Human-Robot Cooperation?
	2.2 Manipulating articulated objects in a HRC scenario
	2.3 Background
	2.4 Problem Statement and Reference Scenario
	2.5 planHRC's Architecture
	2.5.1 Information Flow
	2.5.2 Reasoning in the Ontology and the Cooperation Model
	2.5.3 Planning Models
	2.5.4 Relative formulation
	2.5.5 Absolute formulation

	2.6 Performance of the planHRC architecture
	2.6.1 System Design
	2.6.2 Planning Performance
	2.6.3 Examples
	2.6.4 Discussion

	2.7 We need a better way to plan in the loop

	3 Optimizing total planning and execution time using Macros
	3.1 What is the right level of abstraction?
	3.2 Macros: definition and usage in task planning
	3.3 Updated planning models with macros
	3.4 Experimental setup
	3.4.1 Planning setup and benchmark composition
	3.4.2 Execution in a simulated environment

	3.5 Models comparison and discussion

	4 Beyond heuristic-search planning: Neurosymbolic approaches
	4.1 The potential benefits of Neurosymbolic Planning
	4.2 Language models are (unreliable) few-shot learners
	4.3 Fine-tuning LLMs to approximate a search heuristic

	5 The Teriyaki framework: PDDL planning using LLM
	5.1 An introduction to Teriyaki
	5.2 Planning Domains
	5.3 PDDL version and planner
	5.4 Choice of the LLM: GPT-3
	5.5 Dataset generation and composition
	5.6 Training
	5.7 Transfer Learning
	5.8 Invoking the LLM and Plan Streaming
	5.9 Why streaming? Interleaved planning and execution

	6 Teriyaki in action: Parallel Planning and Execution
	6.1 Relation between Token and Planning Accuracy
	6.2 Transfer Learning
	6.3 Comparison of Solvers
	6.4 Action-by-action Plan Streaming
	6.5 Limitations
	6.6 Results summary

	7 Towards Neurosymbolic planning using local LLM
	7.1 The benefit and challanges of local LLMs
	7.2 Low Rank Adaptation of Large Language Models
	7.3 Model selection and training methodology
	7.4 Results and discussion
	7.4.1 Impact of the LoRA rank
	7.4.2 Impact of the Batch Size
	7.4.3 Impact of the Base Model Size
	7.4.4 Increasing dataset and batch size

	8 Conclusions
	References
	Appendix A Planning domains
	A.1 Common definitions
	A.2 m_0 action set
	A.3 m_25_B action set

