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General Introduction

This thesis concludes my XXXII PhD course of Bioengineering and Bio-
science at Universita Campus Bio-Medico di Roma, under the supervision of
Professor Marco Papi. The initial research program originates from personal
research interests concerning mathematical modeling of collective dynamics,
both from numerical and analytical point of views. A first approach to the
topic is due to the master’s degree thesis on Mathematics, with supervisor
Roberto Natalini, Head of Istituto per Le Applicazioni del Calcolo “Mauro
Picone”, CNR, Rome. Moreover, the interdisciplinary nature of this PhD
Course, bringing together mathematicians, engineers with different knowl-
edge and biologists, allowed me to give a contribution in other research
areas. In particular, collective motions of agents, regardless of their nature,
has been linked to consensus problems and dynamics on network. In this
sense, the thesis collects two different yet complementary approaches to ad-
dress the above research directions. This classification loosely reflects Parts
I and II of the thesis, respectively.

Synopsis of the thesis

The thesis as a whole focuses on the study and mathematical modeling
of collective dynamics arising in different contexts. The results we present
follow a preliminary in-depth study of the literature, carried out during the
three-years term of the PhD course. When reporting multiple references, we
choose to cite, among the large amount of papers collected, those that have
played a major role on our researches.

The work is organized in two parts, that are structured to be read in-
dependently. Both parts start with a brief introduction, and discussion and
future works conclude the topic of each chapter. Since Part I and Part
IT use concepts from different fields, the notation we employ is consistent
within each part. In particular, the terminology hybrid has two different
connotations.

In the first part, we study a distinct type of systems of differential equa-
tions, arising from mathematical models that combine discrete and contin-
uum approaches, known as hybrid or discrete-continuum models. In the last
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years, these kind of models has gained particular interest, among others, in
biological phenomena involving cell-cell interactions and cell-matrix inter-
actions, specifically chemotactic ones. The terminology hybrid thus refers
to the presence of different scales within the same model: while cells are
treated as discrete units, the chemotactic signal influencing their dynamics
is represented as a continuum.

Part I of the thesis is devoted to analytical results concerning existence and
uniqueness of the solution of coupled hybrid systems. From a mathemati-
cal point of view, the general structure of the investigated models combines
second order ordinary differential equations, which model inter-individual
interactions, with partial differential equations describing the evolution of
the signal further influencing the dynamics. The fact that the great variety
of applications does not correspond to a relevant literature concerning theo-
retical fundaments is shared by experts of these kind of modeling. Moreover,
there are at least two main aspects that differentiate our results compared
to the few available in the current state of the art concerning this class of
coupled systems. First, the solution to the chemotaxis equation is a path-
dependent function : for every time ¢, in order to evaluate the solution at
that time, it is necessary to know the entire trajectory of the agents up to
time t. Second, the coupling is achieved through the gradient of the solution
of the parabolic equation, evaluated, at each time step, in the position of
each agent.

With regard to the second order structure of coupled hybrid systems, we
propose an overview of the literature concerning the basic inter-individual
mechanical interactions arising in collective phenomena. Within this frame-
work, we present the first step of a current joint collaboration with Emiliano
Cristiani (Istituto per le Applicazioni del Calcolo-CNR), aiming at develop-
ing hybrid models with applications to crowds and flocks [H].

For the rest of Part I, we shall deal with hybrid systems, both with analyt-
ical and numerical purposes.

We start proposing well-posedness theorems for the solution in RY assuming,
in particular, the source term in the parabolic equation describing chemo-
taxis and the initial data continuous functions, with particular growth con-
ditions [A].

We extend the previous study investigating the case of a source term with
less regularity properties [C]. Finally, we further generalize the structure of
hybrid models, assuming in particular initial data in the Lebesgue space
L?(RY) jand source term in Lipj.(RY*"; L2(RN)) [D].

The analytical approach is linked to a more applied and numerical ori-
ented work [B]. In this study we consider a hybrid model, adapting to those
phenomena involving alignment and chemotaxis mechanisms. The evolution
in time of the exogenous chemical signal is modeled by a parabolic equation
with constant coefficient and initial null concentration. From the analytic
point of view, we prove existence and uniqueness of the solution. With re-
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spect to the previous researches, the focus is on the asymptotic behavior of
the system. In particular, we present the results obtained on a linearised
version of the investigated system. Theoretical findings are compared with
numerical simulations, based on finite difference schemes, concerning the
behavior of the full nonlinear system.

Part II of the thesis introduces a different approach to collective dynam-
ics of agents, as a result of a joint work with the Research Unit of Automation
of Universita Campus Bio-Medico di Roma. The collaboration started with
a published book chapter focused on robustness and control of distributed
systems [F]. In order to provide evidence of the robustness of distributed bi-
ological systems, we considered a case study describing chemotaxis processes
for a colony of E. Coli bacteria. Afterwards, distributed systems of agents
have been investigated in a decision-making perspective. The research in
this area has led to two contributions. In a first study, we find effective
distributed algorithms to solve the Sparse Analytic Hierarchy Process prob-
lem, where a set of networked agents (e.g., wireless sensors, mobile robots
or IoT devices) needs to be ranked based on their utility/importance [E],
using information on the relative utility of pairs of agents (e.g., agent i is
twice as important as agent 7).

Specifically, we provide a numerical comparison of the performances of four
methods over networks with different characteristics.

In a second contribution, we consider a scenario where a set of agents, in-
terconnected by a network topology, aim at computing an estimate of their
own utility, based on pairwise relative information having hybrid nature, i.e.,
combining information regarding the ratio of the utilities with information
regarding the difference in utility of selected pairs of agents. Specifically,
we developed a distributed algorithm that lets each agent asymptotically
compute a utility value [G]. The novelty with respect to previous work in
literature relies in the fact that different types of information are considered
within the same scenario. For that reason, in Part II the terminology hybrid
refers to the framework of the investigated problem, which is characterized
by the coexistence of informations with different nature.
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Introduction

In the first part of this thesis, we study a particular type of systems
of differential equations, arising from mathematical models that simultane-
ously combine discrete and continuum approaches. In recent years, these
kinds of models have been mainly adopted to describe phenomena concern-
ing living systems, such as cell aggregates ([1], [2], [3], [4], [5]) or crowds (
[6], [7]. For an updated survey of recent results in the mathematical mod-
eling and control of crowd, at the various level of modeling, see also [§]).
These are regarded as collections of agents presenting two fundamental as-
pects: a proper behavior, and the ability to sense and actively interact with
other individuals and the surrounding environment. When modeling collec-
tive phenomena, the choice of the scale of observation represents one of the
first point to address. The majority of mathematical models in the litera-
ture treats agents aggregates either as a continuum or as a discrete set of
individuals.

Discrete, continuous and hybrid approaches

Discrete models operate at the scale of individuals (9], [10], [11], [12]).
For example, in the biomedical field, each cell is treated as a unit of finite
volume, which is able to move, divide and die individually according to bio-
logical observations. Agents have been modelled with simple points, spheres
and ellipsoids, both with fixed volume and size, or more complex evolving
deformable structures ([13],[14]). A discrete approach allows to easily model
mechanical interactions with other cells and with the surrounding matrix,
and to incorporate details concerning individual cells (e.g. size, metabolic
state). The possibility to model agents in fine details leads to the draw-
back of a large computational cost, which rapidly increases with the number
of agents considered. Thus, discrete models are suitable for a microscopic
description of phenomena when the number of agents is relatively limited.

Since a same problem can be modelled at different scales depending on
the aspects of interest, the choice of the approach to adopt is often not
unique. Sometimes the distinction among different approaches is not ex-
tremely defined, other times it is quite obvious. In fact, to model regions
in which mechanical and rheological properties are of primary interest, it

17
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is completely unnecessary to focus on the cell scale. Aiming at a global
description of the agents interactions, continuum models better fulfil the re-
quirements ([15],[16]). From a macroscopic point of view, the units’ aggre-
gate is described through its spatial mass density, and continuum equations
are used to model cell-cell and cell-matrix interactions. On the one hand,
continuous models are easier to be computationally analyzed, and do not
present limitations in the number of agents involved. On the other hand,
they suffer from the fact that generally the averaging over space realized in
continuum formalisms cannot fully account for the diversity of cellular and
sub-cellular dynamical features.

Advantages and disadvantages of the two categories seem to be complemen-
tary. The emergent hybrid approaches, in which some of the variables of
the model are continuous and other are discrete, gain the advantages offered
by both, providing a link between macro and microscale descriptions [17].
In the literature, there is no a commonly agreed definition for the class of
hybrid models. In [1], authors investigate the effects of individual-based
cell interactions in the different stages of tumor growth, presenting a model
defined by a system of coupled non-linear partial differential equations.

As already mentioned, modelling certain cell processes with a pure con-
tinuum approach would be challenging. The authors classify their model
as hybrid, since they discretize the reaction-diffusion model using finite-
difference methods in order to focus on the individual cell level. In par-
ticular, they consider a random-walk model, assuming that the coefficients
arising from the discretization process correspond to the probabilities for
cells to move or remaining at their current location. Authors refer to this
kind of procedure as hybrid discrete-continuum. This technique has been
used in other works related to cancer growth [18], and also in the context
of angiogenesis [19] and retinal vasculature development [20]. Other hybrid
models are the so called interfacing hybrid models [21], in which the spa-
tial domain is partitioned in few time-dependent domains, and the cells are
described by discrete variable in a portion of the spatial domain, or by con-
tinuous variables in the rest of domain (see for instance [22] or 23] about
cancer cells invasion).

A further generalization has been developed on the basis of measure-
theoretic approaches ([24], [25]). The basic idea is that a same constituent
can be described, in the whole domain, in a unique framework in which
microscopic and macroscopic points of view coexist (6], [26]). These models,
first applied to crowd dynamics, allow a balance between micro- and macro-
contribution through a combination of singular and absolutely continuous
measures with respect to the Lebesgue measure of the space. In this way,
one can suitably focalize the granularity of individuals (interaction with a
single) and the macroscopic description of crowd flow (interaction with the
mass). A first attempt to apply this framework in a biological context, about
the cell behavior, can be found in [27].

Morts. Mewe.
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In our work, we focus on a hybrid differential system which generalizes
the mathematical setting of the models presented in [2] and [3]. In those
papers, cells are treated as a set of localized agents whereas chemical con-
centrations are described through the spatial distribution of their concen-
trations. In the above mentioned works, authors focus on the construction
of the models and provide some numerical simulations able to reproduce the
related biological phenomena. To this end, only a numerical approximation
of the solution of the system occurring in the mathematical model has been
proposed.

From a mathematical point of view, these models share some common
features. The dynamic of the cells is driven by second-order ODEs, whereas
the evolution in time of the chemical signals is described by reaction-diffusion
equations. The dynamics of agents are not only influenced by mechanical in-
teractions, but also by chemotazis, which leads the agents from regions with
low concentration to the ones at an higher level. The main contribution in
our model consists in the coupling through the gradient of the concentration
of the chemoattractant. In particular, the solution to the chemotaxis equa-
tion (see Equation (2) below) is a path-dependent function: for every time
t, in order to evaluate the solution at that time, it is necessary to know the
entire trajectory of the agents up to time ¢. In the investigated system, the
coupling is achieved through the gradient of the solution of the parabolic
equation, evaluated, at each time step, in the position of each agent. We
stress the realism of this assumption, since it is known that some living or-
ganisms [28] are able to construct local approximations to gradients. This
kind of dependence requires further regularity for the chemotaxis solution
in order to achieve a uniqueness result.

To the best of our knowledge, these features differentiate our formula-
tion from those available in the current state of the art concerning analytical
results for coupled systems. We point out that, while applications of hybrid
models are increasingly frequent, the literature concerning well-posedness
(existence and uniqueness) of the solution of the resulting differential sys-
tems is still lacking. In [29], authors investigate an initial value problem
for systems characterized by the coupling of conservation laws and ordinary
differential equations through boundary conditions. From an analytic point
of view, the particular structure of model in [29] has been investigated in
some previous works ([30], [31], [32]).

Hybrid models: the general structure

We consider a group of n interacting agents in RY. The dynamic of
each agent ¢ = 1,...,n is expressed by the following second-order differential
equation:

%(t) = Fi (£,X(6), X(0), Vf (xi(8), X)), (1)

Merts. Mewe.
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where X(t) = [x1(t), ..., xn(t)], X() = [X1(t), ..., X (t)] € RVN*™ are the col-
lections of position and velocity of each agents, at each time ¢, and f models
a signal influencing the dynamics (e.g. the concentration of a chemoattrac-
tant as in [3], [2]). The notation f = f(x,t;X) aims to emphasize the
dependence on the whole trajectory of all agents till time ¢, that will be
clear in the next section (see equation (3.5))) .

In the proposed model, f is the solution of the Cauchy problem

Lf(z,t;X) = g(z,X()), (z,t) € RN x (0,T) )
f(2,0,X) = p(x) z € RV,

where L is the following differential operator:

N N
L= aijx,t)}; +> bi(z,6)0; + c(x,t) — 0. (3)
i,j=1 i

=1

Moreover we investigate a different variation of ([}, in which V f(x;(t),¢; X)
is replaced by the average over a ball centered in x;(¢) and having radius 6 >
0. The introduction of an average gradient in [2] and [3] aims at modeling
the fact that, in biological system, a cell feels the presence of chemical signals
not only in its center, but also in the region surrounding it.

For the case of a non-local concentration, we generalize the above structure
of hybrid models —, considering systems of the following coupled hybrid
form

x;(t) = F; <t, X(t), Vu (z,t) h(:z:,:ri(t))dm> te(0,7),

RN

uy = div (a(z, u, Vu)) + b(x, u) + g(z, X(¢)) in RN x (0,7), )

:131(0) = ;0 € RN,

u(-,0) = ug € L>(RN),

It is worth pointing out that the set of assumptions we will consider for
problem generalizes the previous for —, and cover the particular
structure of our inspiring models [2], [3].

Another crucial investigated aspect concerns the asymptotic behavior of the
solution. In a more applied and numerical oriented paper [33], we presented a
simplified model of system —. Finally, in a more applied perspective, we
present a novel hybrid model, inspired by collective motions of cells occurring
in different biological phenomena, such as wound healing and morphogenesis
processes. We consider an alignment and chemotaxis mechanism, whose
evolution in time is modeled by a parabolic equation, with term of source

Mot Mee.
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and degradation. The basic structure is given by the following system:

Xi = Vi,
0= 236 (= xyl) (v = v0) + V),

O f = DAf + gx —nf,

f(,0;X) = 0.

where (3, 7, §, D, n are positive constants, and ¢ is the influence function,
modeling alignment interactions among agents and depending on the rela-
tive distances.

Plan of Part I

In Chapter [1| we provide an overview of the literature concerning second
order agent-based models. In particular, we performe numerical simulations
of these models, based on finite difference schemes. Moreover, we present the
first step of a current joint collaboration with Emiliano Cristiani (Istituto
per le Applicazioni del Calcolo-CNR). The model we propose aims at repro-
ducing flocking behaviors typically displayed by starlings, with a particular
focus on turning phenomena. On the basis of comprehensive researches in
the literature of the field, we developed a novel agent-based second-order
model with delay. Numerical simulations show that the model is able to
reproduce the investigated behaviour .

Chapters 2] are devoted to analytical results concerning wellposedeness
of hybrid systems. With a step-by-step perspective, in Chapter [2| focus on
the solution of — assuming, in particular, g and ¢ continuous functions.
In Chapter [3| we extend the obtained results to the case of g with less regu-
larity properties. This study is motivated by the fact that in our inspiring
models (2], |3]), the source term is modeled by a discontinuous function,
able to differentiate regions from which the signal arises from the others.
In Chapter [4] we prove global existence and uniqueness results for the gen-
eral form of hybrid systems in @ In particular, we assume ¢ € L2(RV)
and g € Lipie(RV*™; L2(RY)). In this Chapter we shall introduce a dif-
ferent technique, based on a preliminary study concerning well-posedness of
pseudo-parabolic approximating problems, in order to prove existence and
uniqueness of the solution.

In Chapter [5] we present the result of a joint collaboration with Roberto Na-
talini (Istituto per le Applicazioni del Calcolo-CNR) and other coauthors.
The aim is to combine analytical and numerical approaches in order to study
the asymptotic behavior of the solution of . From the analytic point of
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view we prove existence and uniqueness of the solution. Then, the asymp-
totic behavior of a linearised version of the system is investigated. We prove
that the migrating aggregate exponentially converges to a state in which all
the particles have a same position with zero velocity. Theoretical results are
compared to numerical simulations performed on the full nonlinear system.
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Chapter 1

A microscopic model for
collective motions of birds
with turning

In this chapter ['| we present a microscopic model for collective behaviors
specifically conceived for modeling flocks of birds and swarms. In particular,
the aim is to model turning scenarios, due to sudden direction changes in the
motion of the group as a whole. With respect to flocking, the mechanisms
regulating turning events are rarely investigated by the present literature.
We first present a brief overview of mathematical models related to collec-
tive motions, in order to highlights the basic interactions that need to be
taken into account when dealing with flocks. Then, we focus on a novel mi-
croscopic model for flocking and turning phenomena. Numerical simulations
show that the introduced model is able to reproduce the desired behavior.

1.1 Collective motions: modeling background

Collective motions of agents can be regarded as a multidisciplinary area
of study, on the borderline of several scientific disciplines. The main feature
of collective behaviour is that the individual unit’s action is strongly dom-
inated by the influence of other units, so that its motion turns out to be
very different from how it would be if it was alone. Everyone could think at
those fascinating sceneries typically displayed by a flock of birds, or a school
of fish, but collective motions concern also bacteria colonies, amoebae, cells,
insects, mammals and humans (|34], [35], [36], [37], [38]).

Many reasons of aggregations in a given system have been proposed. In
the biological field, coordinated motion of cells results in making a biological

!This chapter is based on joint work with E. Cristiani, M. Papi
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process more efficient. In particular, a large variety of models of the litera-
ture focus on the process of cell invasions and biological processes related to
tumor growth ([1], [L1], [18], [39], [40]). In a different context, mathematical
modeling of crowd dynamics gives advantages to better forecast the behav-
ior of pedestrian flows (6], [8], [26], [41], |42]). Regardless of the nature of
the agents and the field of application, mathematical research on collective
motions aims at modeling those phenomena in which individual units inter-
act in simple or more complex ways, which turn out to be combination of
simpler interactions.

In this section we present an overview of the literature, in order to high-
light the basic interactions which need to be taken into account when mod-
eling collective behaviors. Moreover, we present numerical simulations of
the described models, which are performed using finite difference schemes
for ordinary differential equations.

1.2 Alignment Models

Standard Vicsek Model

Perhaps the first widely-known flocking model was introduced in [43], in
order to establish a quantitative interpretation of the behavior of flocks in the
presence of perturbations. What we are going to present here is the so called
“Standard Vicsek Model” (SVM), which is discrete with respect to time.
According to SVM, the single organisms move with a fixed absolute velocity
v, and assume the average direction of others within a given distance R.
Therefore equations for the position x; and velocity v; of particle i are

vi(t + 1) = vod(t) + perturbation,
Xi(t + 1) = Xi(t) + Vi(t + 1)

(1.1)

(vi(t))r
(v (t)) Rl
sense of the flocking organisms belonging to a circle of radius R surrounding
particle 1.

The notation (v;(t))r denotes averaging of the velocities in that region,
and by definition d(¢) is a unit vector, pointing in the average direction of
motion. We refer to the presence of noise with general perturbation, as it can
be explained in various way. In SVM it means adding a random angle to the
one corresponding to the average direction of motion in the neighborhood of
i. In other words, the final direction of particle ¢ is obtained after rotating
the average direction of the neighbors with a random angle.

SVM is the starting point for the model we are now going to introduce,
pointing out differences and similarities between them.

with d(t) := , having labeled with j the neighbors of 7, in the
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Cucker-Smale Model

Originally presented for a flocks of birds, the model [10] can be extended

to all those phenomena in which single units reach a sort of consesus: in
case of birds, a common direction. For example, opinion formation dynamic
can be regarded as a collective behavior problem involving an alignment
process. This is the approach, for example, of |44]: the law describing the
evolution in time of the opinion of each agent is similar to the law prescribed
by Cucker and Smale for the velocities.
Let us consider a flock of n birds, labeled with i = 1,...,n, moving in R3.
At each instant of their motion, every bird adjusts its velocity by adding to
it a weighted average of the differences between its velocity and those of the
others in the flock.

Vit +h) =vi(t) + b ai;(vi(t) — vi(t)), (1.2)
Jj=1

foreveryt e Nandi=1,...,n.

The weights a;; quantify the ability of bird ¢ to communicate with j,
that is the way birds influence each other. A reasonable assumption could
be that a;; depends on the distance between ¢ and j:

aij = n(jx; — x;[°) (1.3)
Here n : R™ — RT is a non increasing function, called influence function.
The prototype influence function chosen by Cucker-Smale is given by:
n:RtY — Rt
aq
(a2 +y)o’

where o, aq, ay are fixed positive constants.

Y

Letting h tend to zero, we obtain the equations of flocking: the dy-
namic of each agent ¢ = 1,...,n at a certain time instant ¢ in the interval of
observation (0,7 is given by

xi(t) = vi(t),

. (1.4)
Vi) = Y ag(vy(t) = vi(t),
j=1

where x;(t),v;(t) € R3, are the position and velocity of i-th bird. We will
refer to this system simply with CS.

There are two main differences between these two models. First of all,
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while in SVM interactions are restricted to a region surrounding a given par-
ticle, in CS every flocking organism influences all the others. Furthermore,
CS does not consider perturbation, but only an alignment effect.

System is the original formulation given by Cucker and Smale, but
more often with “Cucker-Smale model” we refer to the following modifica-
tion, which contain a normalization pre-factor 1/n [45):

n N (1.5
_1 L o (v;(t) — vi(t)). )
" (o2 + Bal®) — x,(0)F)

The Cucker-Smale paper [10] is widely known to have established an
analytical exact result on the convergence to the same velocity in a group
of interacting agents through an alignment effect.

Consider system with initial condition x;(0) = x;0, vi(0) = vo.

The main convergence result proved in [10] has been improved in [46], us-
ing an explicit Lyapunov functional approach. First, as in this last reference,
we can give the definition of time-asymptotic flocking as follows:

Definition 1. Let xcy = %Z?:l x; and Vo = %Z?:l v; position and
velocity of the centre of mass. System (1.5) has a time-asymptotic flocking
if and only if (xi,v;), i =1,...,n, satisfy the two conditions:

1. the velocity fluctuations go to zero time-asymptotically (velocity align-
ment):

n

i D vilt) = veu(®)]” = 0; (1.6)

i=1
2. the position fluctuations are uniformly bounded in time t (forming a
group):

n

sup Z xi(t) — xem(t)|* < +oo. (1.7)
0<t<+o0 =

Notice that the square root of the quantities under the limit and supre-
mum operations in f is proportional to the standard deviations of
v;(t) and x;(t) around the centre of mass system. In [10] and [46] authors
proved that for o € [0,1/2] a global unconditional flocking of system
occurs, as stated in Definition [1} regardless of initial configurations, whereas
for o € (1/2,+00) there is conditional flocking, that is only some parameters
and initial data lead to a flocking state, but in general the dispersion of the
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flock may occur.

1.2.1 Numerical simulations

In this section we present numerical simulations of the model in ,
based on finite differences scheme in a two dimensional domain. In par-
ticular, varying the value of o € [0,00), we verify the analytical results
concerning unconditional and conditional flocking.

We consider the interval of observation [0, 7] divided into M > 0 subin-
tervals: if At is the time step, we denote by t, the k — th temporal step,
ie. ty = kAt for any kK = 0,..., M. Finally, with xf” and vf we denote
respectively the approximations of position and velocity of agent ¢ at time
t. Putting in implicit the term depending on the velocities, the scheme for

system (|1.5)) reads:

k
Xz‘H — Xf _
AW
(1.8)
k41
Vit vk 1 Zn: aq (VEHL Ty,
At n i (g + |xF — x?|2)‘7 J !
The second equation in (|1.8)) can be rewritten as
n n k+1
LA > W AR A b,
n o a2+|x —xk|) ’ n (ag + [xf —xk[2)e "
(1.9)

Thus, for a flock of cardinality n, at each time step we solve a system
of n equations to find the unknown velocities VF*1 .= (Vlf'H, ey VEFLD)  We
observe the simmetry property of the coefficient matrix, denoted with B,
with entries:

14 At En: a1 iz
. n (ag + |xi — x(]?)° R
B(i,j) = I=1 Ui (1.10)
At aq p . .
- = ifi #£j.

n (a2 + [x; — x;[?)

The proposed implicit method requires to solve a linear system at each
time step, and gains from the fact there there is no need to impose restric-
tion on the time step At in order to guarantee stability. This represent an
advantage, since the time interval [0, 7] could be even very wide, virtually
infinite. In that case, the possibility to choose the time step relatively large
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plays an essential role in order to reduce the number of iterations, the cost,

and the accumulated errors.

Test 1

In this test we consider a group of n = 20 agents, initially located in
Xq, as in Figure a).We set the parameters a; = 0.5, g = 1, At = 0.1,
T =20,0=04. As o € [0, %], we observe the time-asymptotic behavior,
regardless of the initial configurations of positions and velocities. In par-
ticular, at each time step, we evaluate the velocity fluctuation around the
centre of mass, and observe that it reduces as time increases.

t=0velocity fluctuations=0.074561

t=10velocity fluctuationse5.3926¢-06

(d)

Figure 1.1: Numerical simulation of Cucker-Smale model with ¢ in the range

of unconditional flocking.
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Test 2

In this test we consider a group of n = 20 agents, initially located in
X, as in Figure (a). We set the parameters as in Test 1, apart from o
and T, which are now 0 =1, T = 50. As o > %, we remember that time-
asymptotic behavior of the group is ensured only under certain conditions
for the initial velocities and positions. In this simulation, parameters are
chosen to simulate the dispersion of the group, as initial velocities do not
satisfy the necessary condition for flocking.

04 05 06 07 o8 9 1 0 01 02 03 04 05 06 07 o8

() (d)

Figure 1.2: Numerical simulation of Cucker-Smale model with ¢ in the
range of conditional flocking.

1.3 Attraction-repulsion models

The model proposed by Cucker and Smale in [10] takes into account
only an alignment mechanism of the individuals by adjusting their relative

Merts. Mewe.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

30

velocities with all the others, in order to move in the same direction, and the
strength of this process depends on the mutual distance. Other important
models in the literature investigate systems in which units do not follow any
kind of explicit alignment rule. Attraction-repulsion models are useful to
describe the social tendency of units to produce grouping (attraction/cohe-
sion), avoiding collision with other members and crowding (repulsion/sepa-
ration). Among the great variety of attraction-repulsion models, the model
in [47] is well-known to reproduce the so called milling formation:

1 (1.11)

vi(t) = (a = Blvi(t)]?)vi(t) — - > Vi Uxi(t) = x;(2)])
i

for i = 1,...,n, where o, > 0, and U : R — R is a given potential
modelling short-range repulsion and long-range attraction. In [47] the form
of function U is given by

U(z) = k(jz]), k(r) = —Cae ™4 + Cre In,

where 4, lr > 0 represent the attractive and repulsive potential ranges, and
Ca, Cg their respective amplitudes. We can distinguish two components:

e the self-propelled component, due to the presence of a self-propulsive
force, av;, and a friction force, which also depend on the Euclidean
norm of v;.

e the component relating to the potential. For agent i, this term is
sum of an attractive component and a repulsive one, characterized
by the intensities C'4, Cr, which dacay exponetially as a function of
the distance between 7 and every other j in the group. The positive
constant 4, g denote the range within which attraction and repulsion
forces are perceived by the agents .

Consider the quantities C' = C,./Cy, and | = [, /1,. If
C>1and [ <1, (1.12)

the repulsion prevails on the attractive component, and its range [, is shorter
than [,. Thus we expect that particles relativity far attract each others,
keeping the cohesion of the group, but also avoid collision in case they tend
to become too close. In other words, particles tend to form mills, vortices
with velocity of center of mass equal to zero, similar to concentric rings. In
that configuration, all agents rotate in the same way, and their velocities

tend to the asymptotic value |v;|? = 3-
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In our simulation we set C,. = 1, C, = 0.5, [, = 0.5, [, = 3, thus
condition is satisfied, and we follow the dynamic of in the
time interval [0, 100], using At = 0.05. Figure shows numerical results
obtained for n = 300 agents. Numerical simulations performed for a smaller
group of agents (data not shown here), highlight the fact that the vortex
size decreases as a function of particle number.

=40 - =100

(c) (d)

Figure 1.3: Numerical simulation of D’Orsogna model for a group of n =
300 agents.

Moits. Mee:



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

32

1.4 Zone models

A model combining alignment, attraction and repulsion effects is called
three zone model. One of the first simulations was carried in [48]. Based on
the observational and empirical investigation of fish behavior in schooling
phenomenon, it distinguishes three fundamental regions of influence.

The repulsion zone is characterized by the tendency of moving apart

from another individual in near proximity, in order to avoid physical col-
lision or being of mutual obstacle. An agent moving out from this region
finds itself in the alignment or orientation zone, where it tries to identify
the possible direction of the group and to align with it. Finally, when the
individual is too far apart from the group, it will try to reach the others
which are located in the attraction zone.
Many behavioral models stand on Aoki’s model, which is consider to be a
proper base for further considerations. In [49], authors distinguish between
predators and prey, and focus on predators’ behavior. Using a three-zone
model, the region surrounding predator is divided in prey, chase and search-
ing area.

In [34] authors propose a model based on the three interaction zones,
modelled as spheres, centered on the individual, with radius R,,R,,Rq, 0 <
R, < R, < R,. This model also takes into account the fact that the
perception zone of an individual is limited, introducing the concept of cone
of vision. For example, the visual field of a bird or fish, is defined by an
angle a: a = 360° correspond to an individual which can respond to others
in any direction within the behavioral zones. For all the others values of
a, the cone with interior angle (360 — «) defines a blind area within which
neighbors are undetectable. Varying the width of the perception zones and
some parameters of the model, the simulations exhibit various basic type
of collective motion: swarm, with little or no parallel orientation; milling,
with individuals that rotate around an empty core; dynamic parallel group,
where the individual are aligned but can move throughout the group, causing
fluctuation in density and group form, and highly parallel group (Figure
. In [50], the concept of field of vision is enhanced by the introduction
of sensitivity zones. Clearly, the behavioral rules prescribed in the model
do not concern the blind region. Within the cone of vision, each agent
has its own zones of interaction, different in size and shape. Authors show
that simply changing, for example, the sensitivity angles for attraction and
repulsion forces, we obtain cluster, line and V-like formations.

1.4.1 Metric and topological distance

All models seen in our brief review adopt a metric concept of distance,
assuming that the motion of every unit is influenced by those mates within
a fixed range of interaction. This hypothesis seems to be natural, but it
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Figure 1.4: The collective behaviour exhibited by the model in [34] : (A)
swarm with little orientation; (B) milling formations, in which individuals
rotate around an empty core; (C) dynamic parallel group; (D) highly parallel
group (source [34]).

presents several drawbacks. For example, how to explain those typical sce-
narios in which flocks abruptly contract, expand and even split, before re-
forming as a whole? In a metric context, one would expect cohesion to be
lost when the mutual distances become larger than the range of interaction,
thus the density changes, typical of animal aggregations, is not well repro-
duced. To cope with this problem, an alternative definition of distance is
been introduced, referred as “topological distance”: the relevant quantity
is how many agents separate two members of the flock, and not how close
or how far they are. It follows that each individual interacts with a fixed
number of mates, and that the aggregation can be dense or sparse, change
shape and fluctuate, but interactions do not vanish and cohesion under per-
turbation is kept.

Recent studies conducted for flock of birds [51] support the topological ap-
proach. Analyzing several independent flocking events recorded between
December 2005 and February 2006 in Rome, they observed that each bird
changes its position influenced by a range of six, seven neighbors. Moreover,
they compared numerical results of Vicsek Model simulations, with the ones
obtained replacing the metric interaction with the topological seen above.
Using the strictly metric interaction, a flock exposed to a perturbation repro-
ducing the attack of a predator tends to split into many small components,
which are of course more vulnerable, while the topological modification bet-
ter preserve the cohesion of the group.
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In [50] authors show that, choosing a suitably restricted angle of vision, to-
gether with a topological interaction, it is possible to reproduce the main
structure of animal group (e.g. clusters, lines and V-like structures). The
model is an agent-based zone model, including only the superposition of
attraction and repulsion effect, without alignment. In particular, the choice
of a linear attraction and a repulsion term proportional to the inverse of
the distance between agents, are similar to those described in the previous
subsection. A development of the three zone model, combining multiscale
and both topological and metric approaches, can be found in [52]. It de-
scribes the dynamics of a large group of agents influenced by a small number
of external agents. This scenario is typically displayed in nature, when the
presence of external agents such as predators or leaders modify the internal
dynamics of a group (flock of birds, school of fishes, herd of sheep). The
proposed model, endowed of both metric and topological interactions, con-
siders different level of descriptions, from the microscopic to a kinetic one,
obtained through a mean-field limit, and finally to a macroscopic system
through a hydrodynamic limit.

In the following section we present a novel model, aiming at reproducing
turning phenomena in flock of birds, which includes the three basic interac-
tions above seen, and adopts a topological concept of distance. Our approach
is neither exhaustive nor definitive, since it represents the starting point of
an ongoing work. However, numerical results obtained in the first step of
our researches have been able to reproduce the investigated phenomena.

1.5 A novel mathematical model for turning

Before presenting our model, we clarify the reasons of the assumptions
that will be made, mainly justified by the nature of starlings. We consider
a flock of n units. Since males and females are similar in size and weight,
we assume that the birds have all the same mass. Each member of the flock
is represented by a dimensionless point having unit mass, corresponding to
its position x;(¢) € R"V. Hence, in our second-order model, the terminology
force and acceleration have to be considered as synonyms.

The dynamic of a generic agent ¢ is described by a second-order particle
model with time delay § > 0, in the form

%;(t) = A (X(t — 6), V(¢ — ), (1.13)

where X(-), V(-) denote the collection of positions and velocities of all the
agents. At each time ¢t > ¢, the algorithm updates the values of the accelera-
tion of the agents, which is a function of positions and velocities. Integrating
the above equation we get the general expressions for velocity and position,
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namely

x;(t + dt) = x;(t) + %;(t)dt, (1.14)

Xi(t + dt) = Xi(t) + Xl(t + dt)dt. (115)

In the general form, the acceleration is thus a function of the velocities
and positions of all birds at a previous instant of the motion. The introduc-
tion of a delay parameter §, modeling the natural delay of living systems in
the response to external stimuli, allow to control the speed at which infor-
mation spreads through the flock.

In order to model turning scenarios, we define leader an agent that during
the motion randomly decides to change its direction, and follower any other
agent. Our main assumption, which particularly fits reality, is that each
member of the group is potentially a leader. In accordance with the biologi-
cal and mathematical literature, we reject the idea of a hierarchical structure
within the flock. Moreover, the reasons why a bird suddenly decides to move
in a different direction with respect to the rest of its group are not clear.
On the contrary, a large number of studies agree that a leader-bird trigger
a new phase of consensus within the group, moving in a different direction,
for a short period of time [34],]51],[53].

In order to reproduce this feature, we introduce the term persistency to de-
note the period of time, or number of time steps in numerical simulations,
in which a bird is a leader and moves in a fixed direction. Behavioral studies
of the literature [54] state that, when a bird stops being a leader, it cannot
be immediately one again. We will refer to negative persistency in order to
denote the period of time in which a bird cannot become a leader. Clearly,
assuming a null negative persistency, we are also able to consider the case
in which a leader bird stop moving in a direction and immediately become
again a leader, eventually choosing another direction.

The function A; = A; (X(t),V(¢)) includes different types of interac-

tions: some are common to every agent of the flock, others are characteristic
of leaders or followers.

According to the empirical value in [55], a bird flies at a characteristic
speed between 10 and 12 km/h. We model this aspect introducing a force
that limits the velocity of each agent to be close to the characteristic one.
Namely, we define

Acha(t) = oeha (sc’w - ]vi(t)|) vi(t), (1.16)

where S is the characteristic speed, C°*® a positive constant.

We consider only topological interactions, meaning that the dynamics of
each agent 7 are influenced by a fixed number M of mates, which are the
nearest ones [55]. In the following N (i, M) denotes the set of the M —nearest
neighbors of agent 7. In greater details, we model the attitude of each agent

Mot Mewe
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to be close to the rest of the group avoiding collisions with attraction and
repulsion term, respectively. We model these two kinds of interactions with
the following expressions:

N i(t) — xi(1)
A?tt t) = Catt elxz(t) X](t)l:){j(—’ ]_]_7
m=c > DR
ki () —x; (t) — xi(t)
A;ep 1) = —Crep e | (¢) Xg(t)|xj(—, 1.18
o= 3 @ o Y

with C%, C"¢P positive fixed constants. We observe that attraction-repulsion
contributions are function of the distances among the agents. In particu-
lar, attraction force grows with the distance, whereas the repulsion one
decreases. In fact, when two agents are close, the attraction is low and col-
lisions have to be avoided. On the contrary, agents do not need to repel
themselves when they are at a long distance, and cohesion is kept due to
a high level of attraction. In order to follow the flock direction, the model
includes a topological alignment term: each agent tends to align to the
M nearest agents, always avoiding collisions with them and keeping close
enough. We choose the Cucker-Smale model form, defining

Cali

AL (2) Y (vilt) = vilt)). (1.19)

JEN(i,M)

In order to model the turning phase of a flock, we define the turning
contribution. In our model, a bird i is picked randomly within the flock, and
a random turning velocity vi*" is assigned to it. The associated contribution
is expressed as

Al () = O (Vi vi(8)) (1.20)

with C*" > 0.

The consensus is reached if the leader is followed by its neighbors, head-
ing them in the new chosen direction. Birds finding in the proximity of the
border of the flock are more likely to success [56], [57]. In fact, leaders in
denser areas of the flock would have to avoid many other members of the
group to change direction. On the contrary, birds not too far from the bor-
der can easily find their way out.

We can summarize the model with the following system. Firstly, we
introduce the variable

1 if 7 is a leader at time ¢,
si(t) = (1.21)
0 if 7 is not a leader at time ¢.

Medts. Heye.
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For any time ¢, the dynamic of each agent ¢ = 1,...,n is modeled by the
following equation

%i(t) = Ahe(t — &) + A% (t — 8) + A]P(t — 0)
(1.22)
it — 6) AT (E) + (1 — sit — 0)) AL (t — 0),

where & > 0 denotes the delay parameter.

1.6 Numerical simulation

In this section we present some numerical simulations of the model in
, based on finite difference schemes. The aim is to validate, from a
qualitative perspective, the model introduced. To this end, the values used
for the parameters have to been consider dimensionless. In an ongoing work,
concerning the three-dimensional domain, the availability of data arising
from empirical observations, will allow us to estimate their values.

Figure shows four different time steps of a preliminary test, which
neglects the characteristic velocity (S = 0, C®** = () and the delay
(6 = 0) . We consider a flock of 200 agent, randomly displaced in a circle
of radius 0.1. We assume that each bird finding on the border at the initial
time, becomes a leader with infinity persistence, and moves with a prescribed
horizontal direction. We observe that the inner part of the flock decide to
move on the left or on the right depending on the position of each agent
with respect to the nearest leaders.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

38

fl o4 .

LY )

(a) (b)
e
T oA
A T D R I
DE N \"‘l,,', ~) ‘?. &,5; .
EEENVE TR - 2 SO TR 5™
R AT M T . o.‘"
LR S

(c) (d)

Figure 1.5: Numerical simulation of (|1.22) for a flock of 200 agents (pink
dots). We impose leaders (blu dots) only at the border, with infinite persis-
tence and fixed direction.

We now focus on the model , without imposing additional con-
ditions on leaders birds or on the directions. Clearly, the videos obtained
merging the frames of the different time steps have a greater visual impres-
sion. For the next numerical tests we present some significant frames, which
supports our conclusions.

We discretize with classic Explicit Euler finite difference scheme.
We consider the interval of observation [0,7] divided into M > 0 subin-
tervals: if At is the time step, we denote by t, the k — th temporal step,
ie. tp = kAt for any k = 0, ..., M. Finally, xf and vf denote respectively
the approximations of position and velocity of agent ¢ at time ¢, and Af_‘s
the sum of the different contributions to the acceleration above mentioned,

Monts. Mo
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evaluated at time ¢ — 6. The scheme reads:

x - x} k
—_— = V. N
At ‘
k+1 Lk
Vi TVi _ ks
At ’

In order to implement the leadership status, we provide each agent with
a counter, initialized with null value. At each time step, the counter is
decremented. When its value reaches the negative persistence one, the agent
can become a leader. A random variable in (0,1] is extracted: if its value
is greater than a leadership threshold parameter (in our simulations equal
to 0.002), the agent remains in the follower status, otherwise it becomes a
leader. The introduction of the leadership threshold allows to increase or
decrease the number of leader within the flock.

In Figure a) we consider a flock of 500 agents, randomly displaced
in the square domain [0, 6] x [0,6]. Leader birds are marked as blue dots,
whereas followers are red. According to the model, each bird ¢ can randomly
become leader. In this case, our numerical implementation provides for the
assignment of a random direction v’

The simulation shows the deformation of the flock in the time interval
[0,1000]. We observe that cohesion within the flock is kept: the leaders
model the shape of the flock, but their influence is not strong enough to
split the group.

On the contrary, the scenario envisaged in Figure shows an original
flock of 200 agents, randomly displaced in the square domain [0, 10] x [0, 10],
dividing into two/three other groups. This comes as a result of using a
greater value for the parameter regulating turning forces, characteristic of
leaders. The simulation also outlines a typical behavior displayed by star-
lings: during the motion, new leader birds in a group, moving in the direction
of another group, can merge again the two part. This is what happens in
the couple of Figure ¢)-(d), and Figure [1.7)(e)-(£).

In particular, during the motion, new leader birds in a group moving in
the direction of another group, can merge again the two part.

Mot e



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

40
‘. AR AT ¢ . 2,
L’ $ - - .‘*,‘ )
AT s M
> e (Y < e A N e .{J'.
-, 'v. :. L3 .:‘,-\.0 o’*\
G A : BT o
- L% '54;"4:."- X ,:.
e S «\l'\"é s 00 P;?!"
AT ’ ,}'c D ) -\g'
VRYFRL AR
"‘?J_:Jr,' v
ey
4 4
€ .
L] .
4 4 4 [ 4 1 e 3 + - - 4 b ‘ - L
ne18 n=15)
(a) (b)
o L]
4 4
s ’.
O
o 0 -":'-’-. 4
o A
Sa bR
2 l"fa’,..' [
ARLANT
- : wim .,,’ll:-st‘.ﬁ. ‘;:".3;".\7
,',:\"5 oo in d et 1N
4 4 :..'-{.!qu,'“ ' ':"-' Yo
ot'f oy P 4 oA
G bl
[ e '-(.""05‘ :
b2 Bn
0 10 ':}a."
4 o - 0 2 4 « L s e - 9 . (3 L)
n—tes; e85
(c) (d)

Figure 1.6: Numerical simulation of (1.22)) for a flock of n = 500 agents.
We fix the following dimensionless values for the parameters: T = 900,
At =107%, C¥ = 0.5, O™ = 2, C = 3, Ot = 1.

1.7 Discussion and future perspective

In this chapter we propose an overview of the literature concerning collec-
tive motions of agents, in order to highlights the basic interactions occurring
in collective dynamics. Moreover, we present a first step of our studies, with
application to flocking of birds. The model aims at reproducing those par-
ticular scenarios displayed by flock of birds, named as turning phenomena,
in which a flock moving as a whole abruptly changes its flight direction,
following the one chosen by one or few agents. Taking into account the
literature concerning behavioral aspects of flocks, the model relies on three

Morts. Mewe:
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()

Figure 1.7: Numerical simulation of ([1.22) for a flock of n = 200 agents.
We fix the following dimensionless values for the parameters: T = 3000,
At =1073, C* = 0.5, C™ =2, C% = 1.5, C™"™ = 3.5.

main assumptions. Firstly, we replace the classic concept of metric distance
with the topological one [51]: the relevant quantity is how many agents sep-
arate two members of the flock, and not how close or how far they are. It
follows that each individual interacts with a fixed number of mates. The

Mot Mee:
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second assumption concerns the fact that there is not a hierarchical struc-
ture in a flock, and each member is potentially a leader, meaning that it can
decide to suddenly change direction and leave the consensus state. As in
the real phenomena, in our numerical simulation we observe that if a leader
bird find itself in crowded region of the flock, it is not able to trigger the
turning phase. On the contrary, birds finding in the proximity of the border
when become leaders, have better chances to success. Finally, the model
accounts for the natural delay in the response to external stimuli, thanks to
the presence of a delay parameter.

The first stage of our study is thus an agent-based model. We are work-
ing in order to create a multiscale model, as stated in the Introduction.
Moreover, the different parameters of the model will be estimated in the
three-dimensional version, using data coming from empirical observations.
Future perspective also involve the possibility to model the fact that the
turning phase is not triggered by agents within the flock, but by an ex-
ogenous signal, that spreads through the entire group and influences the
dynamics. The class of coupled hybrid models, representing the core of Part
I of the thesis, particularly fits to this last scenario.
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Chapter 2

Existence and uniqueness of
solutions for coupled hybrid
systems

In this chapter we propose well-posedness results for the solution of hy-
brid systems — under specific assumptions. In particular, we investigate
the case in which the source term and initial data of the parabolic equation
are modeled by continuous functions. Using a fixed-point argumentation,
we first present an existence and uniqueness result of the solution, locally
in time. By a principle of continuation of the solution, the result is then
extended to a global one.

2.1 Problem statement

We consider the following system of differential equations

{ %(0) = vilt), O<t<T.

Vi(t) = Fi(t,X(t), V(1), V[ (xi(t), £ X)),
with initial data x;(0) = X, vi(0) = vo; € RV, i=1,...,n. Here
F;:[0,T] x RVXm x RN*m 5 RN 5 RV,
and f = f(x,t; X) is the solution to the Cauchy Problem in Q = RN x [0, T'|

{ Lf(x,t;X) = g(x,X(t)), (z,t) € RN x (0,7), (2.2)

f(2,0,X) = (), z eRY,

with
o:RYN — R, g:RVxRY" R

43
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continuous functions, and L the following differential parabolic-type opera-

tor:
N
L= a;;(x,1)0? +bet8+c(xt) dy. (2.3)
i,j=1 i=1

We denote X(t) := [x1(t),...,xn(t)], V(1) := [vi(t), ..., vn(t)] € RV*" and
F :=[F,...,F,]. In particular, we denote X(0) = X and V(0) = V.
When referring to vectors in RY, we use the bold notation to distinguish
component ¢ of X and V, namely x; and v;, from a general vector of the
N —dimensional space. The complete list of notation introduced can be
found in the Glossary chapter. We use the notation f = f(z,¢; X) in order
to highlight the fact that, for every ¢ € [0,T], f depends on the previous
states X(s), with s € [0,].
Moreover we denote g(x, X (t)) with gx(z,t).

We shall consider the following standing assumptions:

H1) For every i = 1,...,n, F; is a continuous function, satisfying the fol-
lowing condition: 3Lr > 0 such that VK C RNX" compact, EIL}( >0
such that

Fi(t, X, V,w) — Fi(t, 5(,\7‘,@)‘ < LK <’X — f(] n ‘V - \7))

+Lg |W — V/‘\/| ,
L (2.4)
for any X,X,V,V € K, w,w c RV tc[0,7T)].

H2) The coefficients a; j, b;, ¢, are bounded Hélder continuous function in
Q, with coefficient o € (0,1) with respect to x and «/2 with respect
to t.

H3) L is uniformly parabolic in 2, meaning that there exist ug, 1 > 0 such
that, for every ¢ € RY it holds

N

po lé* < Z J@, 068 <m e V) e  (25)

Moreover, there exists a constant 0 < C' < \o/4T, with Ao < po/p3
(See [58] and also Appendix for more details) such that:

H4)
(@) — (@] < Hesp [Cmax (o, 7P)] [ 7, (26)

Mots.  Mewe.
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for any =, € RY, for some constant H > 0.

H5) For every R > 0, there exists a constant Hr > 0 such that
gz, X)—g(7, 5{)] < Hpexp [Cmax (|22, [72)] {\x _Fe ]X - X‘}

for any z, 7 € RV, X, X € Bp.

In the following we shall make use of the following amount £(6, v) := e~%(6/v)?
for every 6 > 0, v > 0 that is easy to check that corresponds to the global
maximum of the function y € [0, 00) +— y%e™"Y.

Remark 1. If Assumption H5) holds true, for every X = X (t) RV*"_valued
continuous function on [0, T], we define gx (z,t) := g(z,X(t)), which has the
following properties: let R = sup,c(o 7y |X(t)[, then, for every M > 0,

l9x (2, 1) — gx (T, )| < Hp ple — 7|7, (2.7)

for any x, Z € RY such that |z, [2] < M, ¢t € [0,T], where Hp ), =
Hp exp[C M?], that is gx is locally Holder continuous in x with exponent «,
uniformly with respect to ¢.

Moreover, let C' < C" < A\g/4T, then, from H5), we obtain

lgx (,£)] < 1g(0,0)| + HzeC* (j2]* + R)
< lgx(0,0)[e”1* - Hpe®' " (Jafe (€=l 4 ReCloF)
< [lgx (0,0)| + Hp(¢(a/2,C" = C) + R)] e"1#I*, (2.8)

Similarly, such an upper bound is satisfied by the function ¢, thanks to
the Assumption H4) . These properties, satisfied by ¢ and gx, in light of
Theorem 12 (page 25) in [58], allow to establish that f (-,-; X) : RV x[0,T] —
R defined by

t
Pt 0 e~ [ [ Tati (e rdgar

" (2.9)
is the unique solution to the Cauchy problem associated to X, meaning
in particular that f is continuous on RY x [0, T], 0, f,0; f ,0;,;  are continuous
on RN x (0,T). Here the function I' is a fundamental solution of Lu = 0
(See [58] and Appendix for the details).
Later on, we will use estimates concerning I' and its derivatives:

f(fﬂ,t;X)Z/

RN

Mots.  Mewe.
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for every A < A (see assumption H3)) there exists a constant Cr such that

1 _Ajle—gl?
‘F (x7t;§77-)‘ < CFWQ 4(t—7) , (210)
— T 2
1 _ Ajle—g)?
VI (2, ;€. 7)| < Crﬁe 1= (2.11)
— T 2
9 1 _Ajlz—gl?
‘V r ($7 t; 67 7_)‘ < CFWQ 4(t—7) , (212)
— T 2
Ag Jz—|?
|:E—3:'|a/2 -1

VT (2,;¢,7) = VI (2, 8;¢,7)| < Cp (2.13)

e
(t - 7_)1/2+a/4 (t _ T)N/2

for any z,2/, 6 e RN, 0<7<t<T. forany 2,6 c RN, 0<7<t<T.

For (2.10)-(2.11) the reader is referred to [59], Theorem 4.5, whereas for
(2.12) and (2.13) to [60]. We observe that in [60], inequality is proved
for a hypoelliptic differential operator. However, such estimate is clearly
satisfied by the uniformly parabolic operator L defined in . An essential
ingredient for subsequent results is the estimation of the first and second-
order derivatives of f(x,t; X) with respect to z, in terms of the supremum of
X over [0,T]. The inequalities in Proposition |2/ improve the usual estimates
available for the solution of the Cauchy problem , thanks to the local
Holder continuity of the data. Here we get a precise estimate of the constants
for such bounds.

Proposition 2. Let the assumptions H2)-H5) be satisfied. Then, for every
0<wvg<XN/4A—CT,zcRYN 0<t<T,XecC(0,T|;RV*"), i, j =
1,..., N, the following inequalities hold true:

H 2«
s < ket (o 2P e
t 2 a—+1
H 2 a
Sf(x,t; < Ke ’ — + —t2Hx |, 2.15
0 X)| < Keltl (=
=3«

where Cr is obtained from inequalities - for \§ = Ao — 4o, Hx
stands for the constant in H5), for R = ||X||s 1, H the one in Hj), and

Ko aN2Crl(a/2, 1) . C?T

, = 49
No/2 — 20T )N/ Ao/4—CT

C. (2.16)

Proof. Proposition

Mot Mee
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We focus on (2.14)). First we recall that the Fundamental solution I satisfies

/ D(z, ;¢ 7)d€ = 1, (2.17)
RN
for any z € RN, 0 < 7 < t < T. Therefore, we have
0=0, [ Twtgnde= [ T e (2.18)
RN RN
— 92 : _ 2 :
0=02 /R (o6 ) /R 9T, 16, ) (2.19)

Let X € C([0,T);RY¥*") and set R = || X|lcor- Then, the representa-
tion formula (3.5) implies, for every z € RN, ¢ € (0,T], the inequality
|0i f (z,t; X)| < G1 + G2, where

. (2.20)

Grim| [ ATt 0@~ plo) [ OT( 16,008
RN RN

Gy = ‘/Ot . Ol (x,t;€,7)gx (&, 7)dE — /Otgx(az,T) /RN aif(x,t;ﬁ,T)dde‘.

(2.21)

By the inequalities in H4)-Hb5), since C' < A\g/4T, we choose A\ € (4TC, \o)
and we set 19 = (Ao — A\j)/4. Therefore from (2.11)), for 0 < t < T, we get

* 2
Gr< iy [ e HER OO geag
t 2 JRN
< CFH t% / e—()\8/4—015)|u|2+20\/2(z,u)+20|a:|2 ]u\o‘du
= o
< CFH5(0/27V0)15‘1;1/ o~ (A5/4=Cttvo ) |ul*+20VH(z,u)+2C|? g,
RN

2
— 4 Cvix 2
uy/Ao/4—Ct ro/i-Ci +2Cz| du

ozt Ctlal -
SCFHK(C«/Q,VO)tzleAO/zL—Ct/ e
RN

(2.22)

_ C[‘HE(O&/ZI/()) e(,\O/CTQth"'QC)WP (E)N/Z '
2% [No/4 — N/ 2

Here we have applied the changes of variable ¢ = x + v/tu and v/2 =

uy/Ao/4—Ct —\/% and we have used the well known relation

Jrn e 2lV%lgy = [27]N/2. Since t € [Ao/4 —Ct]~! is an increasing function,

Medts. Meye.
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we finally obtain the estimate

CFHE(()[/Q,I/Q) e(>\0/c427—TCT+20>‘x|2 <I)N/2
2% [No/4 — CT)V/? 2

IN

(2.23)

By similar arguments applied to G, using H5) (with X = }A() and replacing
t with ¢t — 7 in the integral over RY, we can write

G, < CFHFK(Q/Q,I/())Q?(AO/CAL%_Fgc)‘xP (I>N/2 /t 1 dr
[No/4 — CT)N/? 2 0 (t—7)"
2CI‘H§€(O£/2,V0) 6(}\0/04%4,20)‘:”2 <7T)N/2 taTH

(@ +1) /4 — CTN? 2

2
Inequalities (2.23) and (2.24) yield (2.14). We observe that the proof of
inequality (2.15]) follows through similar passages using the estimate for the

second-order derivatives of the fundamental solution in (2.12) together with
(2.19), hence we omit the details.

. (2.24)

O]

2.2 Existence and Uniqueness of a local solution

Using a fixed point argument, we prove the local existence and unique-
ness of the solution of —. We state more clearly that, by solu-
tion of —, we refer to the couple Y = (X,V), where X,V €
C ([0, T);RN*™) 0 CY ((0,T); RV*"), and f € C*! (RN x (0,T)), satisfy-
ing , is expressed as in .

Theorem 3. Local Exiscence and Uniqueness.
Under hypotheses H1)-H5), system (2.1)-(2.2) has a unique solution on
[0,T], where T € (0,T] depends on Xo, Vo, a, n, N, R.

Proof. Theorem [3
Let R>0and 0< T <T.

In the following we denote Cj := m[a}i] |F(1,X0, Vp,0)|. We consider the
T€(0,T

mapping ¥ defined as follows

Mot Mewe.
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t
o1 —|—/ vi(r)dr
0
¢
Ton, —i—/ v (1) dr
¥ (X, V) (1) = 0

Vo1 —i—/o Fy (1, X(7),V(7),Vf (x1(7), 7; X)) dr

t
Vot [ B (1. X(1). V(7). V1 (7). 730) dr
0
(2.25)
for any (X, V) € Eg, t € [0,T], where E := C ([0,T]; Br(Xo) x Br(V0)),
and f is the function in ([3.5)).
Due to (2.4) and (2.14), we have that ¥ (X, V) is continuous at ¢ = 0, thus

¥ (X,V) e C([0,T);RV*™ x RV*m)

We observe that a fixed point of W, (K, V) € Eg, is a solution to —.
We shall define suitable conditions on 7', in order to guarantee ¥ : K —>
ERr, and the fact that ¥ is a contraction operator. Since Egr, endowed
with the uniform norm, is clearly a Banach space, the result follows from
fixed-point theorem (]61], Theorem 1, p.534).

|05 (X, V) (t) —x0j| ST (R+[Vo|) Vtel[0,T],j=1,...,n.
Thus
\Ifl (X,V) (t) — X01
: <nT (R+|Vo|). (2.26)
W, (X, V) (t) — xon

Hence [¥; (X, V) (t),..., ¥, (X,V)(t)] € Br(Xo) for any t € [0,7] if we
impose the condition:

— R
T<—«+—
~ n(R+[Vol)

Let us consider the component | € {n+1,...,2n}.

. (2.27)
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Recalling and , we obtain in particular that
t
(Wi (X, V) (1) = voy S/O |5 (7, X(7), V(7), Vf(x;(7), 7: X)) | dT
t
< [ 1B (X (), V(7). V7 5(7),7X0) = Fy(r, Xa, Vo O)
0
+|F;(1,Xo, Vo,0)|dr

t
<LERT+ [ Lr|V165(). 7:30] + |F(r: Ko, Vo, 0)dr
0

— t H 2 .
< 2LRRT +/ LV NEK e (X +R?) <1_a o 1721Hx>
0 T 2

+|Fj(7, X0, Vo,0)|dr < T (2LER + C)

2

a+1 Jroz+10¢+3

4 LV NEK er(1Xol+R?) (QHTM—1 2Hx 2 Tﬂ+3>,

(2.28)

Thus
U1 (X, V) — vy

: <nT (2LER + Cp)
Yo (X7 V) — Von

2H _att 2H 2 __atl
+nLpVNEKer (Xl +7%) (222 7o | 22X TT 2 ). (2.29)
a+1 a+la+3

— — —atl
From ([2.27)) follows, in particular, that 7' < 1, thus T' < T ? since o €

(0,1). Hence it sufficies to impose T' < T}, where T1 = T} (Xo, Vo, a,n, N, R)
is defined as

_2
a+1
R R
(R VA | e e ) (1 it |

Ti := min

a+1 a+3

(2.30)
to ensure that the range of ¥ is a subset of E.
We now show that it is possible to determine a condition on 7" such that ¥

is a contraction operator. Let (X, V) and (X,\?) € E.

Mot Mewe:



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,
discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,

a condizione che ne venga citata la fonte.

2.2 Existence and Uniqueness of a local solution 51

Clearly it holds

¥ V)0 -0 (X V) 0] < [ () - wy(ldr
(2.31)
<TIV - Vilor <T||x V)~ (X V)||_ -

We now focus on the remaining components. From the Lipschitz condition

(2.4), it follows that, for j = 1,...,n:

‘\pnﬂ (X, V) (t) — ¥,y (5(‘7) (t)‘ <

< LR /Ot X(7) = X(7)| + [V(r) = V(r)| ar

t _ (2.32)
+LF/0 ‘Vf(xj(T)aT; X)) = Vf(x(r),T; X))‘dT <

< BT (11X = Koz + IV = Vllr) + Le (B + 1),
where I 1 fg are the integrals
t
Bri= [ 19505(0). 7 X)) = V(LX) dr, (233)

t
b= [ [V, 7X0) - Vi XD |an (23)
0
We observe that, by the mean value theorem and (2.15) , it holds

IVf(x(7),7:X)) = Vf(X;(7),7: X))| <

N
< 10 (x5(7), 7 X)) — 0if (%;(7), 71 X))| <
i=1

- (2.35)
<D D 0 X)] (1x5(m) = %5()]) <

=1 m=1

x |2 H 2H -~
< N2KemPl <Tla/2 + ;(7‘0‘/2> (I (1) — %;(7)]).,

where x*;; belongs to the segment connecting x;(7) to X;(7) thus, in par-

Mets- Uleue.
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ticular, x*;; € Bgr (Xo). From the parallelogram inequality we get |x*ij|2 <
2 (|Xo|* + R?) . We finally achieve the following estimate for I;:

iy < N2Eer(Xol+r2) (2Hpoer2 o 2Hx  gj2n HX - XH
o ala/2+1) :
) (2.36
We now focus on I. Since f is a solution of 1} we observe that n(&,7) :=

f&mX) = f&, )A() satisfies the following Cauchy problem:

{ Ly(&, ) = g(&,X(1)) — g(&, X (7)) (€,7) € RN x (0, T),

n(£.0) =0 ¢ RV (2:37)

t

I5 can thus be rewritten as Io = / \Vn(z(T),7)|dr.
0

From (2.11) and H5) we have

wate =] [ [ IrE & Hale X)) - o€ Ko

Al
>
S
=
QL
Iy
QL
\]

<af /RN _Tl EX(r) - g

AG -8

ngHR// R dgar X - XH
0 JRN (7-_?)7

(1—7) 2

1 |y‘ +C’£+VT Ty‘ N ~
_C'FHR/ / e (r—7)% dyd?HX—XH
]RN

(2.38)
where, in the last equality, we have performed the change of variable

_ —E+¢
VT =T

Since ‘§+ VT —?y‘z <2 |§|2 +2 |y|2, we rewrite the exponential term in
*

(2.39)

_ A * _
2.38). We require T' < %, implying that 7 := (%0 — 2C’T) > (. Recalling

the expression of I (¥), and its exact value (see Appendix for details), we
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get:

T 1 _ ~
Ve, r)| < CrHpelt / / L ePayar|[x - %||
0o JRN (1 —7)2 0o, T

201¢? m\ M2 <
— CrHge2CklP 7 (T HX—XH N
Y 0o, T

(240)
By l) with |¢]* = |:L‘j(7')]2 < 2|X|* + 2R?, the estimate of I immedi-
ately follows:

~

X-X

(2.41)

N/2
I < CFHR€20(|XOI2+R2) (ﬂ> T%
o Y

|
From (2.32)), (2.36) and (2.41) we get the following inequality

’\Iln—kj (X, V) (£) = Wi (X’ {/) (t)’ =

R 2 Xo|*+R?) (2H70/2 9Hyx mra/2+1
< (2LET + LpN2 KXol 12) (2002 4 oty /251

2, p2y (V22 X
+ LFC’FHReQC(‘X()' +R?) (’Y) TQ) H(X’V) B (X’V)H

0T’
(2.42)

for any (X,V), (ﬁ,V) €EE, j=1,...n,tel0,T]

From ([2.31)) and (2.42) we conclude that

[y - e (X V)],
(2.43)
< v2n [max (2L, 1) T+ 5] || (X, V) - (X,\?)HM,

where

S =8 (Xo, Vo,c,n, N, R, T) i= (2LET + LpN2Ke (%ol + 7722

> (2.44)

Finally, a sufficient condition on T such that VU is a contraction operator is
given by

[N

—_ 2 2 i N/27
2 (H + HxT) + LpCr Hpe20 (Kol +72) <7) T

T < min{Ty, T»}, (2.45)
where T} is defined in (2.30), and Ty = T, (X, Vo, @, n, N, R) is such that

Morts. Mewe.
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*

A
T < % and S (Xo, Vo,a,n, N, R,T») < 1. We observe that such a choice

of Ty can be obtained since S is an increasing continuous function of 7', and
S(Xo,Vo,a,n,N, R, 0) =0.

Hence, thesis follows from fixed-point theorem ([61], Theorem 1, p. 534),
which ensures the existence and uniqueness of a fixed point for ¥ over the
interval [O,ﬂ.

O]

Remark 2. Let us consider the case of ¢ = 0. From Proposition [2| we
deduce that
Wi

2V N o
(V1 (0,6 X)| < X KT (2.46)
@
Therefore Assumption H1) can be weakened, requiring only the local Lips-

chitz continuity of F; with respect to all the arguments. Actually |V f (z,t; X)]
is bounded on Bgr X [O,ﬂ X Eg, for any R > 0.

2.3 The case of a non-local concentration

In the previous sections we established an existence result for a local
solution to systems in the form (2.1)-(2.2). Under the same assumptions,
we consider a variant of system ([2.1), given by

Xz(t) :Vi(t), 0<t<T

vi(t) =F; <t,X(t),V(t),]i( . V(£ X) d§>’ (2.47)

where f satisfies ([2.2)). The main difference between ([2.1)) and ([2.47) lies in
the fact that Vf (x;(t),t; X) is replaced by the average over a ball centered

in x;(t) and having radius 6 > 0. A local existence result is stated in the
following theorem.

Theorem 4. Under hypotheses H1)-H5), the system (2.47) has a unique
solution on [0,T], where T € (0,T) depends on Xo, Vo, a, n, N, R.

Proof.  Theorem[]]
We consider the operator defined in (2.25), replacing V f (x; (7),7; X) with

][ V(€73 X) de.
Bs(xi(7))

We shall sketch the proof of the result looking back to the proof of Theorem
analyzing only the main points affected by such a change.

Mot Mee.
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The mapping defined in (2.25)) for (2.1)) can be rewritten likewise for (2.47),

t
X01 +/ V1(7') dr
0

¢
xon-l—/ v (7)dr
0

t
Vo1 +/ F T,X(T),V(T),][ V& X)de | dr
0 Bs(z1(1))

t
vou't [ By (r,Xv),V(r), f o vrenxa ) dr
0 Bs(zn(T))

(2.48)
for any (X, V) € Eg, t € 0, T], where E := C ([0, T; Bx(Xo) x BE(VO)),
foraﬁxedﬁ>0,0<f§T.

Let (X,V) and (X,V) € Ep. Clearly (2.31) still remains true. We now

focus on the component [ € {n + 1,...,2n}. From the Lipschitz condition

(2.4), it follows that

‘\I/n—‘rj (X, V) () = ¥ny;j <X V) (t)‘

gﬁ[ﬂmﬂ_ﬁﬁwwvm—Vuwh

t
e [ VrEemx)de- Vi (&7 X) de | ar
0 |/ Bsx;(n) Bs(%;(r))
< LET (IX = Xl 7+ IV = Vil 7) + Li (51 + ),
(2.49)
where Ji, Jo are the integrals
t
Jy = / f V(€7 X) dé - V(€7 X) de|dr, (2.50)
0 |/ Bsx; () Bs (3, (7))
t A~
Jo ;:/ ][ V(€ X)dE — v (5,T;X) de| dr. (2.51)
0 |/ Bs(x;(r)) Bs(%, (7))
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Since |Bs(x;(7))| = |Bs(%X;(7))|, we obtain:

][ V(67 X) de — V(67 X) de

Bs(x;(t)) Bs(%;(t))

< / V(6,7 X) de — V(67 X) de
~ Bs(xi ()] |/ Bs(x;(r) Bs(%; (7))

1 ~
< SNCy /Ba IVf(§—xi(r),7:X) = Vf(§—%5(r),7; X)| dE,

(2.52)
where Cx denotes the volume of By ¢ RV.

The estimate follows as in ([2.36)), since from (2.35) we get:

=y [t/ H 2H .
J1 < N2 [0+ Xol*+12) /0 <T1—a/2 + aXTa/2> Pes(r) = (mldr

=2y [ 2H ~ 2Hx ~ -
< N2K (5 HXol* +R?) <Ta/2 y =X T“/2+1> IX = X]| . 7

a a—+2
(2.53)
Recalling the estimates of I5 in the previous section, we observe that

t
no=|
0

t ~
< /0 m Bé(&j(T))’Vf(f,T;X)—Vf (&7 X) | agar

t 1
< meo (/&W V&l df) "

dr

f o VienX) - Vi (6nX) i
Bs(%;(7))

(2.54)
where 7 has been introduced in (2.37). From we get
2 gy (m\NV2 [ S
s <am e (5 x|,
Yy 0 00,T
(2.55)
L - Nj2 R
< CrH-~ o2C(Xo*+R>+62) (T T3 HX _ XH ‘
— R+6 ﬁ 00 f

From ({2.53)) and (2.55) we deduce a sufficient condition, of the same form
as w, that T has to satisfy in order to ensure that ¥ is a contraction
operator. As done in , we can easily show an analogous relation for
T in order to guarantee that the range of ¥ is a subset of Ex. In fact, we

Mot Mewe.
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observe that the replacement of the gradient term with the average results in

a slight modification of the exponential factor of 1) that is e™(Xol*+R?)

is replaced by o (1Xo*+R?+67) -

2.4 Existence of global solution result

In this section we present a global existence and uniqueness result for —
using a principle of continuation of solutions. Strengthening the growth
conditions on functions g and ¢, we shall prove that bounded solutions can
be continued. For the sake of completeness, an analogous result will be also

shown for the variant ([2.47)-(2.2).

In light of the previous section,ket assume that there exists a local solution
Y = Y(t) to (2.1)-(2.2) in [0,T], with T < T. We replace the previous
hypotheses H1) and H4) with the following assumptions:

H6) For every i =1,....,n
F; o [0,T] x RVXm x RN*m 5 RN 5 RV (2.56)
is globally Lipschitz continuous, with Lipschitz constant L.

H7) g: RN x RV*" 5 R, »: RY — R are assumed to be a continuous
functions, satisfying:

lg(z, X)| < M1+ || + |X]),  o(@)] < M1 +[z])  (2.57)

for any z € RV, X € C([O,T] ;RNX”), with T < T.

Theorem 5. Global existence and uniqueness of the solution
Under assumptions H6)-H7), the local solution Y is a global solution.

In order to prove Theorem |5, we shall use the following result:

Lemma 6. Let X € C ([O,ﬂ ;RNX"), with T <T.
Under assumption H7), the following estimate holds true:

IVf(x,t;X)| < K (1;?' +K2+/Ot<1+’f/|£((7)|)dr>, (2.58)

for any x € RN, t € (O,ﬂ, where K1 = K1(Cr, N, M, \j),
Ky = K3(N, X5, T), Ay < Ao, Cr as in (2.11).

Moreover we adopt the following Gronwall-type inequality:

Medts. Meye.
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Lemma 7. Let h € C([0,T]), w € L' ([0,7]), v € L'([0,T] x [0,T7]) be
non-negative functions, such that

h(t) < o+ /O w(F)h(r)dr + /O /0 " (s, )h(s)dsdr V€ [0,T], (2.59)

Then the following inequality holds true:

ht) < o exp[/ot <w(7')+/OTU(s,T)ds) dT} vte[0,T].  (2.60)

We posticipate the proof of the technical Lemmas, focusing first on the
main result of this section:

Proof of Theorem [5

To establish the result, we structure the proof in two steps. In the first we
shall prove that a solution Y (t) of — on an interval [0, T) remains
bounded. In the second, we will prove that Y (¢) can be extended to [0, 77,
showing that there exists the lim . T Y (t). Thesis follows applying Theo-

rem 3| starting at ¢t =T

Reciltlei]r)lglg we get that for every i =1,...,n
W) =it [ RGXOLVELV GmX) (26
thus
i) = voil < 1A (0, X0, V), V5 ), 7)) dr
t
<tCo+ Lp /0 X(r) — Xo| dr (2.62)

t t
+LF/0 ]V(T)—Vo|dT+LF/O IV f (x(7), 73 X)) dr-
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From (2.58)), we get

t
V(t) - Vo| < nTCo+ nLF/ X (r) — Xo| dr
0

F14[X(7)]
o VT

+nLpK, (/ / L+ X(r Jr—s |_+S‘X( )|dsd7'> .

t
—i—an/ V(1) — Voldr + nLrpK; < dr + K2T>
0

(2.63)
Integrating (2.1])1, we get
t
X(t) = Xo + Vot + / |V (1) — Vol dr. (2.64)
0

By equations (2.64) and (2.63) we obtain that
[Y () = Yol < [X(#) = Xo| +[V(t) = Vo| < |Vo| T+

t t
/ ‘Y(T) — Y0| dr +nTCy + nLF\/i/ |Y(7-) _ Y0’ dr
0 0

+nlrpK; ((1 + [Xo|) 2VT + /Ot [Y(r) — Yo|

d KT
NG ”2)

TX(r) - X
+nLpK; (( +2(Xo|) 3VT +// Mdaaﬁ‘

’T—S
TX(s) - X
[ [ )
T—S

< |Vo| T +nTCo+ nLpK; (1 + [Xo|) 2VT + nLpK; (1+ 2|Xo|) 242

t
+nLFK1K2T+(1+nLF\/§)/ Y (7) — Yo|dr + nLrK-
0

Y(1)-Y "IY(r)-Y T1Y(s)—Y
</| °‘d+//’ O‘dd+//’ O‘dd7>.
VT — 5 VT — 5
(2.65)
Denoting with o = « (Xg, Vo, Lp, K1, Ko, N,n,T) the quantity |Vo|T +

nTCo+nLpK; (14 |Xo|) 2T + nLpK; (14 2[Xo|) $VT? + nLpK1 KT,

Merts.  Mewe.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

60

we rewrite

’Y(t) — Yo’ < a+ (1 —|—7”LLF\/§) /Ot |Y(’7’) — Y0|d7'

Y(r)-Y
+nLFK1/ |°’d7+nLFK1/ 1Y (1) — Yo| 2/7dr

VT
T1Y(s) =Y
+nLpK, / / ¥(s) = Yol ;4
T—S
t t Y -Y
+(1+TZLF\/§)/ |Y(T)—Y0‘dT+7’LLFK1/ MdT
0 0 \/’7—

t T Y -Y

(2.66)
Finally, we observe that ([2.66]) can be rewritten as

h()<a+/ d7+// 5, 7)h(s)dsdr, (2.67)

with h(t) = |Y(t) —Yo| € C(0,T), and w,v € L' ([0,7]) defined by
w(t) =1+ nLpv2+ L2 4 onLpKiVA,

Vit
nLrk: Tt
v(t,T)i=¢ Jt—T (2.68)
0 T>1

Thus, by Lemma |7} we reach the conclusion

t T
Y(t) — Yo| < exp [/ <w(7) —i—/ v(s,7)ds> dT:| =B (2.69)
0 0
where we denote with B the following constant:

B :B(nvaaLF7M7OFa)\(>§>N7T)::
2
=a exp |(1+nLpv2) T+ 2VTnLrK; + BanK1T3/2]

N5 <1+ T>
(A2 3
Step 2:

In order to prove the existence of a limit for [Y(¢)|, as ¢t goes to T, we
consider {t,} a monotonic increasing sequence, with lim; ,7{t,}, and show

=a exp (1+nLF\/§)T+2\/TnLFCpM

(2.70)
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that Y (¢,,) is a Cauchy sequence.

Let 0 < t,, <t<t,<T. From follows, in particular, that |X(t)| <
B+ |Xo|, [V(t)| < B+ |Vy, for any t € [0,T]. This allow us to retrace the
computation of Step 1, estimating |Xg|, |[Vo| with 2B, and obtaining that

Y0~ Yt < A1) + D) [Y () = Y(t)] dr
(2.71)

i /t,i /t; v(s,7) [Y(s) = Y (tm)] dsdr,

A(t) = A(B,LF,N,n,t) = 2Bt + n(CO + LFKlKQ)t
(2.72)
+nLpKi (1+2B)2vt+nLpK; (1+4B) 3V13.

By Lemma [7] and (2.69) we get that

Y (tn) = Y(tm)| < A(tn — tm)exp [ft': (w(T) + [ v(s,T)ds) dT}

= Aty — 1) g.
(2.73)

From (2.72|) we observe that A(t, — t,,) — 0 as n,m — oo.
Thus {Y(¢,)} is a Cauchy sequence, and admits a limit valute as t — T~
O

In the following we present the proof of the previous Lemma [6] and

Proof of Lemma|6,

From (3.5) we get the following expression

t
Vf(z,t;X) = . VT (z,t;&,0) go(f)df—/o . VT (z,t;€,7) gx (&, 7)dédT

= GNI - a;?
(2.74)

where

N N t
Gi= [ V(2,600 0()de, Cr= / VT (2, 1:€,7) gx (€, 7)dédr.
- 0 R (2.75)

Monts. Mewe.
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We now focus on Gy. In particular, from (IQ.llb and d2.57l) we obtain

—~ 1 AQ Jg—x|?
Gi| < [ Crgme™ M+ e <
RN t 2

1 G G
<OrM— | e FMPau+ |m|)—|—C’pM/ e 3 uldu  (2.76)
t JrN RN

1 AS AS
::(jrﬂf;7§]b <io> (1—%|$’)%—(jrﬂ4ji <i)>,

where, in the last inequality, Iy(.), I1(.) are defined in (6.12)), (6.13).
A§ AS
Replacing Iy <40) and Iy <40> with their exact value (see Appendix for

computation), we obtain the following estimate for G :

- NaF (1+z)) [(4\ 7 wy2r's
‘(;1‘j§ (7FA4- ~ —_— + = "
poF Vi 2 e
el Ny (14 |z]) Vo wymEa
=oLur
(p)F VI () R wa
N
_ OFMQan (1+|z|) n 2 wnT | _ e <(1+ |z|) +I~(2>
(/\5)% Vit A WN+1 Vit ’
(2.77)
2Nﬁf¥ ~ 2 WNT
where K| := CrM ——-, and K> := . As already noted in the
00)F R

proof of Proposition 1, the estimate of 67; follows by similar computation.
For the sake of simplicity, we omit details and state that

= P14 2] + X(7)| =
Go| < K d KT ). 2.78
[ 1(/0 vier 77 2) (2.78)

Thesis follows from d2.77l) and (|2.78|), denoting with K3 the constant Ko+
K>T.

O

Proof of Lemmal[7, N
Let us define h(t) := sup h(s). Clearly, h(t) > h(t), for any ¢t € [0,7]. For
0<s<t

any fixed t< T, inequality 1D implies that

ht) < a+ /0 w(F)h(r)dr + /0 h(7) /O " (s, T)dsdr (2.79)

Medts.  Meye.
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for any t < t. Hence, in particular,

h(t) <a+ /0 w(r)h(r)dr + /0 h(r) /0 TU(S,T)deT. (2.80)

We conclude that
. t T .
h(t) <a +/ <w(7) +/ U(S,T)dS) h(r)dr Vt<T. (2.81)
0 0

Applying Gronwall inequality to (2.81), we obtain

h(t) < h(t) < a exp [ /0 t <w(7) + /0 Tv(sm)ds) dr] VE<T. (282)

This concludes the proof.
O

Under the same assumptions for the global existence of solutions to system

(2.1)-(2.2)), we state an analogous result for system ([2.47)-(2.2]), previously
introduced as a modification of (2.1)) and already investigated for a local

result in Theorem [l

Theorem 8. Let Y = Y(t) local solution to 42.47)- n [O,f], with
T<T.
Under assumptions H6)-H7), Y is a global solution.

Proof Theorem

We present only a sketch of the proof, which follows the same line of rea-
soning of proof of Theorem [5. In particular, we point out the steps in which
the replacement of the gradient term in with the average over a ball
involves modifications. Integrating (2.47)2, we obtain that

t
[vi(t) — ol S/ F; (T,X(T)aV(T)v][ Vit X) d§> dr
. 0 Bs(xi(t))
§tCo+LF/ 1X(7) — Xo|dr
0
t t
V() — V| d X)) d¢| d
Ly /0 V(r) — Voldr + Ly /0 ]{96(Xi(t))vf(€7t, ) de| dr.
(2.83)

The above Lemma [6] recalling that £ € Bs(x;(t)), leads to

VI X)) <K (W+K2+/OT<1+5+‘§%+ \X(T)I>d3>'
(2.84)

Monts. Mewe.
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Hence we get

t
|V(7f) — V0| <nTCy+ nLF/ ‘X(T) — X0| dr
0

t t
+TLLF/ |V(7') —V0|dT+nLFK1 </ 1+(SJFDC(T)’dT-i-I(QT)
0 0 ﬁ
I CEL LR
T—S

(2.85)
We note that the previous upper-bound for |V (¢) — V| can be obtained
from (2.63), simply replacing |X(7)| with |X(7)| + 6. Hence the proof of
Theorem [5] can be repeated for system ([2.47)), observing that 1 + |Xq| will
be replaced by 1+ + |Xpl, and 1+ 2 |Xg| by 1+ 6 + 2 |Xp|, in and
thus in the definition of constant . We observe that modifications occur
only in Step 1 of the proof, whereas Step 2 follows as for Theorem O

2.5 Discussion

In this chapter we presented a first step toward a theoretic character-
ization of emergent coupled systems of differential equations. These kind
of systems are widely involved in modelling of collective motions of agents
interacting with each other and with the surrounding. The coexistence of
distinct mathematical formalisms represents the main feature of hybrid ap-
proaches, in which the dynamics of the agents are modeled by second-order
ODEs, while reaction-diffusion equations are used to model the evolution
in time of a signal influencing them. We proved existence and uniqueness
results for the solution, assuming continuous source term and initial data in
the parabolic equation. In the next chapter, we extend the obtained result

to the case of a discontinuous source term, in line with the modeling choice
in [3] and [2].
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Chapter 3

Existence results for hybrid
systems under exogenous
information with
discontinuous source term

In Chapter [2| we presented analytical results concerning the existence
and uniqueness of solution for systems of differential equations in the form
of —. In particular, the source term in the parabolic diffusion equa-
tion is assumed to be modeled by a continuous function g. The present
literature exhibits models with discontinuous source term, in order to differ-
entiate regions from which a signal arises from the others. For that reason,
in the following chapter we investigate — focusing on the case of a
source term with less regularity properties, covering the structure of models
in [2] and [3].

3.1 Problem statement
For the sake of simplicity, we here recall the structure of the investigated

system and the working assumptions we will consider in this chapter. The
dynamics of n agents is modeled by system (2.1)), which reads

{ x;(t) = vi(t), 0<t<T,
Vi(t) =F (X, V),V (), X)), i=1,..n,

with initial data x;(0) = xo;, v;(0) = vo; € RY, for any i = 1,...,n. Here
F; - [0,T] x RVX" 5 RVN*7 o RN RV

65
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satisfies H6), and f = f(x,t; X) solves the Cauchy problem ((3.1)

(3.1)

{ Lf(x,t;X) = g(z,X(t)), (z,t) € RN x (0,T),
f(z,0; X) 0, z e RY,

where

H8) L is the uniformly parabolic-type operator in (2.3 satisfying H2) and
H3). Moreover, we assume that the coefficients a;; assume weak

derivative with respect to = in L}, ().

The functions F;, i = 1,...,n, specify inter-individual interactions be-
tween the agents, whereas the function f describes the information which
affects the behavior of agents. In particular, the source term in equation
, given by the (possibly discontinuous) function g, accounts for both
exogenous features coming from the surrounding environment (thanks to the
dependence on x) and self-production of information related to the agents,
through the state X(t).

As in the previous chapter, we shall use the notation f(z,¢; X) in order
to highlight the fact that, for every ¢ € [0,T], f depends on the previous
position of agents X(s), for s € [0,t], and we assume f(x,0;X) = 0 in order
to fit the scenario of [2] and [3]. Possibile extension to more general initial
data ¢ follows simply replacing with (2.9).

Let us focus on the structure of the source term g : RN x RVx?
R. We consider g a measurable real-valued locally bounded function on
R" x RN*" satisfying the following assumptions:

G1) g (=, X)[ < M (1 + ||+ |X]),
for any z € RN, X € RV*", for some constant M > 0.
G2) For every K C RY compact, and ¢ € C (RN ) satisfying
/ [Y(x)g (2, X)|dz < oo, for any X € K™, there exists K/ D K,
RN

compact, such that

W(2)g (z,X1) — (2)g (2, X2) dz| < |X; — KXoVl (X1 - Xa)),

RN
(3.2)
for any X1, X9e € K", where 1/5 " denotes the modulus of continuity of
the function ¢ on K’.

As already stated in the introduction, the case of g discontinuous is of in-
terest for this kind of model. In fact, both in [2] and [3], we find that g is
defined as the sum of characteristic fklnctions over circular domains mod-

eling the cells, that is ¢ (z, X(t)) = ZXBB(Xi(t)) (), where § > 0 denotes
i=1

Mots.  Mewe!
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their radius and x; (¢) the center coordinates at time ¢ . It is immediate to
prove that G1) is satisfied by that choice of g.

We show that G2) holds true for such a case. It suffices to verify the con-
dition for g (z,X) = Xps(x,) (¥), for some fixed j € {1,...,n}. Namely, for
every K C RV compact, let ¢ as in G2), and K’ = K + Bj;. Denoting with
|Bs| the measure of Bs C RY, it holds:

1/1( T)X B (x; (1) () — Y (T)XBs(x; (1)) () dx

- (3.3)

ox V(x5 +2)xB;s (2) — V(X +2)xB; (2) dz

< |Bs| v (1% = %50) < [Bs| v (|X ~X])

for any X,X € K" . Finally we also observe that, if 1 is a Lipschitz
continuous function with Lipschitz constant Ly, (3.2)) clearly reduces to

Y(x)g (x,X1) —P(x)g (v, X2) dx

RN

< Lyl|Xi—Xo|.  (34)

Hence we stress that our working assumptions cover the particular mod-
eling choice of function g presented in 2] and [3].

3.2 Strong solutions for approximating problems

In Chapter [2| we have obtained existence and uniqueness results for the
solution of the system in the form — where ¢ is a continuous func-
tion, satisfying H5).

Under assumptions H5),H6),H8),we have proved that system (2.1)-(2.2)
admits a unique solution Y = (X, V), locally in time. In particular, X,V €
C ([0,T]; RM*")nC ((0,T);RV*"), with T < T, and f (-, -; X)
€ C%!1 (RN x (0,T)) is the unique classical solution of .

As stated in [58], Theorem 12, f (-, -; X) can be expressed in terms of the
fundamental solution I' associated to Lu = 0, precisely:

f(z,t;X) / /RN x,t;:€,7) gx (&, 7)dEdT. (3.5)

Moreover, if ¢ satisfies the growth G1) the solution Y is proved to be global
in time. In particular, we refer the reader to Theorem 7 (p. 188) in [62] for
the details. Therefore, the existence and uniqueness results obtained for the
continuous case, ensure the well-posedness of the following approximating
problems:

Mot Mee:
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Let us consider {ex}ren, with g € (0,1), an infinitesimal sequence as
k — o0, let { gk} keN denotes a z-mollifier sequence approximating the dis-
continuous function g, namely

¢ (2,X) 1= pe 4 g (- X) = / e (2 — €) g (6.X) d,
RN

for any z € RV, X € RV*" where {¢., }een 1 the usual mollifier sequence:

1 T .
e, (x) = 6—Ng0 (gk), with

k
1
cexp| ——— lz| <1,
p(z) = < 1_|x‘2> (3.6)

0 |z| > 1,

and ¢ chosen in order to satisfy / o(z)dr = 1. In order to simplify the
RN

notation, in the following we omit the subscript k£ when writing €5, and ¢, .
We observe that g* satisfies A4) and G1) for any k € N. In fact, applying
G1) to the function g, we obtain the inequality

@] <0t [[ oG- der X [ o lem9det (14 1a)

[ ato-0d| <2014 1l + x),

(3.7)
for any z € RV, X € RN*". Moreover, since g" (-, X) belongs to C* (R¥)
for any X € R¥X" by assumption G2) and lj follows that ¢g* satisfies
A4). Therefore from Theorem 4 (p. 184) in [62], for each k, there exists a
unique global solution Y* = (Xk, Vk) of

xk(t) =vF@Et), 0<t<T,
V) =Fi (6XE0), VR0, 978 (<0, 6XE)), ¥i=1,m,

(3.8)
with x¥(0) = xp;, v¥(0) = vo;, and f* is the unique classical solution to
Lfk = g;“(k, on RY x (0,7T], with f* (;L’,O;Xk) = 0. Moreover f* can be
also expressed as in (3.5)). For the sake of convenience, we recall here the
following estimate, proved in [62] (Lemma 5, p. 184), that will be used in
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the following sections:

Vr* (2 6:X8) | < 4 <1 T/}gm‘ M /ot <1 : |ﬂi’/¥fk(7)|) dT)(?lg)

for all z € RV, t € (0, 7], where K1, Ko > 0 are constants independent of k.

3.3 Global existence of weak solutions

Classical results of the literature , see for instance [58], [63], [64], do not
cover the considered setting for the parabolic equation. In this section, using
the results concerning the approximating problems in , we prove our
main contribution, namely the existence of a weak solution for system —
(2.2). We preliminary clarify the notion of weak solution to , which is
suitable for the particular coupling of the investigated system, in presence
of a possibly discontinuous source term.

Let X : [0,T] — R¥*" we recall that f (-,-;X) denotes the solution of
associated to X, meaning that the source term corresponds to gx.

Definition 9. For every X € C ([O,T};RNX"), f (-, X) solves the Cauchy
problem if and only if

i) f (-, X) is continuous;
it) for every t € [0,T], f (-, t;X) € C* (RY);

w) for every p € C} (), satisfies the equation

T T
| L ferXapensar+ [ ] el

T
[ e

T T
_/0 /RN;]@- (aip) (gaT)ajf(faT;X)dngZ/o /RN gx (&, 7)p(€, T)dEdr.
(3.10)

In the following Definition we specify the concept of solution to sys-
tem (2.1)-(2.2)), taking into account the fact that the source term gx may
be discontinuous as in the reference model considered in 2] and [3].

Mot Mee.
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Definition 10. For every Yo = (Xo, Vo) € R2V*%) by a solution to prob-
lem - we mean a couple Y = (X, V) € C! ([O,T];RQ(NX")) such

that Y (0) = Yo, Y is a solution of and f (-,-;X) solves in the
sense of Definition [9.

We can now formulate our main result as follow:

Theorem 11. Under Assumptions H6),H8),G1),G2), system —
admits a solution Y = (X, V), where the function f(-,-;X) is given by

t
FatX) == [ rasenenign @)

satisfying | (2, :X)| < Ly (1+ lo] + Xl sorr ), and [V (2, X)| < Ly (1 + |al

+ ||X||OO7T), for any x € RN, t € [0, T), for some constant Ly > 0.

In order to prove our result, we introduce the following set: for every
R >0, 6 >0, we define

Qs r = {(z1,22,8,X1,X2) : |z1], 22| < R,Xy,X2 € C([0,T];Bgr),
€ (0,7, |1 — 2] < 6,||X1 — Kol < 5}.
(3.12)

Moreover, we shall use the following technical Lemma concerning the
behavior of

t
¥ = /O RN VI (xla L 57 7—) Pe*g (‘5? X1 (T))_VF (w27 l; ‘Sa T) g (57 X2 (T)) dfd’l’,

(3.13)
with e € (0,1), (z1,22,t,X1,X2) € Qs p. We rewrite X° as ¥° = X + X5 +
>3, where:

t
Zi = Ei (1'17t7 X17X2) = / N vr (:L‘lat; 677—) Pe*x g (ga XI(T)) dng—‘_
0 JR

t
_ / [P0, t56,7) 9 g (6 Xalr)) dedr
0 (3.14)

t
X5 = X5 (z1,t, Xy) := / . VT (21,66, 7) e * g (£, Xo(7)) dédT+
0 JR

t
_ / VT @ 67) 9 (6 X (7)) dédr,
0 (3.15)

Ments. Mewe.
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t
23 = 23 (xla:EZata XQ) ::/ /N [VF (xht;gaT) - Vr (:E27t;€77—)]
0 JR

9 (&, X2 (7)) dédr.
(3.16)

Lemma 12. Under assumptions H8) and G1)-G2), for every R > 0, it
holds:
i) sup |X] (z1,t,X1,X2)| =0 asd— 0.

5,R
e€(0,1)

ii) sup | X5 (21, t, X2)| < oo, where the supremum is taken for e € (0,1), t €
[0,7], |z1] < R, HXQHOO’T < R and, for every Xq € C ([O,T] ;RNX”), te
(0,77, lim sup X§ (z1,t,X2) = 0.

e—0 [z1|<R
i)
sup ’23 (.%'1, xg,t,Xzﬂ < 035%, (3.17)

Qs R

where C3 > 0 depends on M,Cr, o, T, X\, R.

Proof. Lemma[12

Let 6, R > 0, (x1,x9,t,X1,X2) € Q(;,R.
i) We observe that X§ can be rewritten as

L[ a0 Xi ) =0 Xe ()] | VG167 s, (6 =) dedr

RN

- /0 /]RN l9(y, X1 (7)) = 9 (y, Xo (7))] dy (VT), (21, t; 9, 7) dr,

where (VI'), denotes the convolution of VI' (z1,t;-,7) with ¢, as a function
of & Let ¢ € (0,T). For the properties of I, VI' is uniformly continuous in
the compact set

Ker:={(z,6;57) ||zl <R [{| <R+ 1Lt =7 2>¢,t,7€[0,T]}.

In the following we shall denote with 1/11:2 *“ the modulus of continuity of VI
over K. g.

In order to study the behavior of the mollifier (VI'), with respect to y
variable, we observe that, for any ¢ < 1, since [pn ¢e (§) d€ = 1, it holds:

(VD) (2, t;91,7) — (VD) (2,592, 7)| < v (jyn —2]),  (3.18)

for any z,y12 € Br, t —7 > c¢. Then we decompose X7 as X1, + X1, where

Monts. Mee.
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(t—c)vo
i [ [ X 0) =~ Xe ()T, (o i) dy dr

S [ Xa () - g (X (7)) (VD). oty 7) dy
(t—c) RN

t—c)V0

Firstly,
. (t—c)vo "n
DHEN DS

From (3.18) and G2) with ¢(¢) = (0;T). (1,4, 7), £ € RY there exists
R’ > R, dependent only on R and ¢, such that

dr.

/ 199X (1) — g (5, Xa (1)) (BT, (1, t:y,7) dy

[ 0% 1) = (0. X (D] @1, (o157

(3.19)
<y (X () = X)) V X1 (7) = Xal(7)]
Therefore
il < (" (1K1 = Xallaoir ) VIXa = Xollr ) (E= ) VO, (320)

Let us consider 315. From ({3.7)), we obtain

t
5] < / / VT (21, £:6,7) (00 # 9 (€.X1 (7)) — e # g (€, Xo (7)) dédr
(t—c)vo JRN

t
<an [ CVO/RN VT (21,56, 7)| (1 + |¢] + R) dgdr.

(3.21)
Using (2.11), we compute an upper bound for the integral in (3.21):
o= A0 lz =g
|S15] < 4M C’r47t(1+|£|+R)d£dT
(t—c)VO T2

IU|
=4MCr (1+ R) / / dudr
\/0 RN t — T

‘u t—T—Xl‘dudT

+4MCF /
(t—c)v0 JRN \/t—Tt
dr

< AMCr (14 2R) Iy < ! > /(t_c)vo = +AMCEly (Z) (t—(t—c)VO),
(3.22)

Mot Mee:
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From ({3.20)), (3.22)) we finally have

551 < N (A7 (0) v 6) T + 8MCr (14 2R) Io () Ve + aMCrly (3
(3.23)
where I;>. denotes the indicator function of [¢,T'] C [0,T]. Since c is arbi-

trary, we get the assertion lim sup |X] (z1,t, X1, Xz2)| = 0.
§,R
€€(0,1)

ii) By (2.11), (3.7) and G1), with usual arguments we have

5] < c// A L (e .9 (6, Xal(r)) — g (€, Xo(r)| dedr
RN —7' 2
§3MCF/Ot N \/;107“ <1+2R+\u|\/>)dud7‘

<2VTCr [3M (1+2R) I () +3MvTh (%f)]
(3.24)

Therefore, we deduce that X5 is uniformly bounded. To prove the second
part of the assertion, we estimate X5 with the sum of two contributions,
|X5] < Xg, + Xof, where, for a fixed v > 2R,

ooz \2
S, = SMCp / / C A Cr (L[l + [Xa(r)]) dedr,
|>l/ (t—7) =
\3«“1 fl
5% = Cr / / o o % g (6 Xa(r)) — g (€, Xa(r)| dédr.
lEl<v (t —7) 2
(3.25)
Since |z1| < R < g, and ||Xs|[,, 7 < R, we obtain
t 3Mdudr A0 1,12
[Sau| < /% A (1 fan + VE= U] + 1Kol 1)
0 t—rT |x1+ t77u|>1/ ‘ } T
t M X
g/ 5 e lul’® (1+23+ﬁyuy> dudr
0 VE=T Jju>z—tal
t M D
S/ ; e~ Tl (1+2R+ \/Tyu|) dudr.
0 VE=T Jju>54—
(3.26)

We observe that, for any fixed 7 < ¢, the inner integral tends to zero as
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v — 00. Moreover

3M 3
/ L (1 YOR+ \/T\u|) dudr
VE—T lul>5A—=

< (avemn () +vrn (2)),

which is an integrable function with respect to 7 € (0,t¢). From Lebesgue’s
dominated convergence theorem, we obtain

(3.27)

lim sup X5, (z1,t, X2) =0. (3.28)

V—00 |$1|<R

Let now focus on 5.
We recall that, for every h € Lj5. (RY), ||z x h — | La(By) tends to zero for

e — 0, for any g € [1,00), R > 0 (see [61]). Thus, let 1 < p < N be
N+1 N
fixed, we define 6 := T+ 3 < 1. Applying Holder inequality, we get
p

1
. t C 2D |z €Ip
EQ’VZ/c)(FNl[/a et df] (e * 9 = 9) (X2 (7))l Lacs,) dT-
<v

N+1
t—7) 2
(3.29)
With a change of variable, we rewrite the integral

1 1
& ey —€]2 P * P
/ 67%) ‘ ltjr‘ pdé‘ = / e—%|u|2pdu (t _ 7-)%
|€l<v ’xl—i— t—'ru‘<1/
1 N
A*
< [/ 6_40“|2pdu} Tt—7) = ( 4f> (t—7)% .

(3.30)
Hence we obtain the inequality
N
t P
Cr 47
up %2, < [ 2T e+ 9 - 9) (X ()l 7
|z1|<R 0 (t — ’7’)0 ( Aop) : Le(Bv)
(3.31)

where p and ¢ are conjugate exponents.

Furthermore, Cp (£ —7) 7 ||(¢s * g — g) (Xa (7 I pacp,) converges to 0 as
e — 0, for any 7 < t, and, by G1) and ( ., it is bounded from above
by

3M (1 + v+ |Xa(7)])
Cr

(t—7)°

, which is integrable over (0,t¢). From Lebesgue’s
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dominated convergence theorem, we conclude that sup|,,|<r X2; (21, ¢, X2) —
0 as € = 0, for any v > 2R. Thus we can write

lim sup ‘25 (x17t7X2)| < sup 221/ (.Tl,t,XQ), (332)

e2014 <R lz1|<R

which converges to zero as v — oo, for any [[X2|| 7 < R, t € (0,T).

iti) From (2.13) and G1), recalling the expressions in (6.12), (6.13)) we

get

A e =€

t 5 -0
xr1 — T2|2 €
|23|§2M0p/ | ia/ =
0 (t—7)2 4 JRN (t—7)7

o () (1+ a1+ Xal Lo ) + VT ()

(1+ 11+ 11Xall e ) dedr

g2McF|x1—x2|‘5/ — dr < 362,
0 (t—r)2ta
2—«a

MCYT +
with Cs = Cy (M, Cr, a, T, X, R) — % (1o (%) (1 +2R) +VTT ()]
Therefore sup |X3 (21, z2,t, X2)| — 0 as 6 — 0. This complete the proof.

5,R
L]

The following Lemma [13| provides some regularity properties of the function
in (3.11), that will be used to prove Theorem [11]

Lemma 13. Under assumptions H8),G1),G2), the following properties con-
cerning the function expressed in (3.11) hold true:

1. For every X € C([O,T];RNX"), r €RYN, ¢ty €[0,T] we get

lim [f (2,6 X) — f (,10; X)| = 0. (3.33)
t—to
For every R > 0,
sup  |f (z,6;X) — f (zo, t; X)| < CT7R\/H.I' — x|, (3.34)

[IXloo, 7 <R

with Cr g a suitable positive constant, for any t € [0,T], |z, |zo| < R,
and
| (2, X)| < Ly (1 4[] + [IX]]) £. (3.35)

2. For every t € [0,T], X € C ([0, T];RN*™), f(-,t;X) € C' (RY) and

t
Vi@tX) =~ [ [ Vr@nenmxendn (330
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In particular Vf(-,t;X) is a locally Holder continuous function with
exponent /2 with respect to x, uniformly with respect to t € [0,T].
Moreover Vf (-, X) € C (RY x [0,T]) and

IVf (2,6, X)] < Ly (1+ || + || X]]) VE. (3.37)
3. For every X € C ([O,T];RNX"), R>0

lim sup (| £ (2,6:X) = f (2.6X) | + |V (@,6X) = O (2,6:X)|) =0
k—o0 |z|<R
te(0,17]

where f* is the unique classical solution to Lf* = g%, f* (-,0;X) = 0.

4. For every R > 0, it holds:

lim sup | f (z,t;X1) — f (2, t; X2)|+| VS (2,8, X1) — Vf (z,t; X2)| = 0.
5~>OQ6’R
(3.38)

Proof. Lemma[13:

1. We preliminary extimate the following integrals:

to
Ty, 1) - / / (2,1:€,7) |gx (€, 7)| dédr, (3.39)

Jootat)yi= [ [ VP @nenlx @nlder, (40
t1 R
for to > t1,t € [O,T].
Using ([2.10), G1) and the change of variable y = %, we have
t C A Jz—¢f?
2 e T4 -
o< [Cf S or M (e Xl ) dedr
— 7- 2

to AX
<cedt [ [ R (1 fal 4 Iyl VE+ XL ) dudr
RN 7

< CrM {(1 + x|+ HXHOQT) I @f) s (1) \/i] (ts —t1).
(3.41)
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In a similar way we extimate Jy, 4, (x,t), using (2.11) instead of (2.10)
|2

A
_ 2o |z—¢

t2 Cre 4 -1
Jt1 t2 €, t / / 1; N+1 M (1 + |£| + ”XHOO,T) dng
— 7'

2

< 20r M [(1 + | + HXHOO,T) I (AO) 41 (AO) ﬂ] Viz =t

4 4
(3.42)
Let ze RN, X € C ([0, T]; RN ) Without loss of generality, we prove
the assertion for ¢y € (0,7], and we consider the case of ¢ € (0,t).
Let ¢ € (0,t), we estimate |f (z,t; X) — f (z, to; X)|

/ /RN (z,8:€,7) — I (2, t0; &, 7)| lgx (€, 7)| d€dr
to
+/t /RNT(%to;&ﬂ lgx (€, 7)| dedr
t—c
/ /RN (z,6;&,7) =T (2, t0; €, 7)| lgx (§, 7)| d€dT + I;—c p (2, 1)

t—c
o (2 t0) / /RN (2,4:6,7) — T (2, 10; £, 7)) lgx (€, 7)]| dedr+

+ (CFM [<1+ 2| + ||X||00T) Io <A4> +1 <Z°> \/%D 2¢ +to — 1]

(3.43)
We conclude that
limsup, - |f (,;X) — f (2, t0: X)|

t—c
1 déd
< 1msup/ /RN (x,t;&,7) =T (2, t0:€,7)| |gx (&, 7)| dédT

+ <CpM [(1 + 2]+ HXHOO,T) I <A4°> +1 @)) \/QD 2.
(3.44)

Since t — 7 > ¢, by the above mentioned uniform continuity property
of I and -) we can take the limit as ¢ tends to ¢, , through the

Mt e
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integral, to get

limsup, - |f (,;X) — f (2, t0: X)|

< <C’FM {(1 + | + HXHOO’T> Io <A40> + I (ZO) \/FOD 2.
(3.45)

The relation (3.33) follows since c is arbitrary.
Let t € [0,T], X € C ([0, T];RY), 2,29 € RV then we write:

|f (2, t;X) — f (w0, t; X)|

t
S/O /RN T (z,t;6,7) — T (20, ; €, 7)| lgx (&, 7)| dédr

t t
S/(; /I‘%N/O ’VF($O+)\($—$0),t;§,7')|d)\|x_x0’|gX (f,T)‘dde

< Crrl|r — 20| V1,
(3.46)

where Crp = CrM [(1+2R) Iy % + I <%> \/T} In order to
prove (3.35), we observe that from ([3.41) it follows

(6 X)| < Ly (1 + 2] + [[X]loo 1) £, (3.47)

where L7 denotes the quantity Cr M (Il <%) VT + I (%))

2. For every i = 1,...,n, let us consider x € RV ¢t ¢ (0,7], X €
C ([O,T] RV ), h # 0. Denoting with e; the vectors of the standard
basis of RY for any i = 1, ...,n, we get

. . — . t
f(x+he@,t,?;) ftX) / O (x,t:€,7) gx (€, 7) dedr
0 JRN

t 1
- ‘—/0 /RN/O Ol (x 4+ he;, t;€,7) gx (&, 7) dNdEdT

t
+ [ ] o @te ) ox (6 dsar

1 t
2 46 T1) = O (2, ¢, , .
g/O/O/RNIa (x4 hXe;, t;€,7) — O (xt§7')||gx(57-)|df;17;;\
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By using Lemma i11) in the last inequality, taking the limit for
h — 0, we argue that the right-hand term in ([3.48) goes to zero.
Hence

Vf(x,t;X)=— /Ot o VT (z,t;&,7) gx (&, 7)dEdT. (3.49)

In order to prove that Vf(-,;X) € C (RY x [0,T]) we retrace the
steps of the proof of point 1). Let 2 € RV, X ¢ C([O,T];RN),
replacing f with Vf in , by the uniform continuity property of
VI for t — 7 > ¢ > 0, we get the inequality

limsuptﬁtof \Vf(z,t;X) = Vf(x,to; X)]

A§ A§
< <2(JFM [(1 + 2| + HX||OO,T> Iy <4°> + 1 (40> \/%D 4y/c.
(3.50)
By Lemma i11) we get the Holder continuity property of V f(-, t; X)
with respect to x, uniformly with respect to t € [0,7]. Inequality

(3.37) immediately follows using (3.40) for Jo¢(z,t), with computa-
tions similar to the ones performed to prove (3.35).

3. By (3.15]), we obtain
VI (0, 5X) = VF (2,6 X)| = 155 (2,6, X)) (3.51)

and the result follows from Lemma |12 4i). Analogous estimate can be
obtained for ’fk (x,t;X) — f (z,t; X)|, replacing VI" with I', and using
(2.10) instead of (2.11)), in the proof of Lemma [12] ii).

4. Since X7* (x,2,t,X) = Vf* (2,4, X1) — V¥ (z,t; X2), Lemma 12| 4)
yields

lim sup
6—0 Qs R
k

VI (X)) — VIF (a, ¢ X2)‘ —0. (3.52)

With similar arguments, using (2.10) instead of (2.11) one can prove
an analogous result for f*:

lim sup
6—0 Qs R

k

5 (2, X0) — % (2,1 X2)‘ —o. (3.53)

Combining (3.52), (3.53) and point 3), we deduce (3.38).
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Combining the previous results, we finally prove the existence theorem:
Proof. Theorem [11]:

Let {Y*} ey = (X’“,Vk) be the solution of . First, we recall that
‘Yk| < B+|Yo|, for any k € N, where B is a positive constant independent
of k (see Theorem 4 in [62]). We now prove the equicontinuity property of
the sequence {Y*}icn. From immediately follows the equicontinuity
of the first n components of the sequence {Yk}keN = (Xk,Vk), since for
every t,t' € [0,T]

xF(t) —xF ()| < (B+|Vo|) |t — ¢

: Vi=1,..,n.  (3.54)

For the remaining components, we observe that, from (3.8))2 and (3.9), it
holds:

IV (1) — vk ()] = ‘/tt B, (7. X4 (7). VE), O * (xk (7). 7. X))

t
< / [F: (7, X0, Vo, 0)| + V2L [Y* (7) = Yo| + L |V £ (xF (7), 7, X*) | dr
t/
t
< G yt—t’\+LF\/§/ Y*(7) = Yo| dr
t/

+/t/t s (1 + \\}/(; ™l , ot /Or 1+ | X" (TT)|_+S\Xk (s)|d3> o
(3.55)

where Co = sup.¢ (o7 |Fi (7, Xo, Vo, 0)]. Since K1 and K3 in (3.9) are inde-
pendent of the index k, we get

vE () = vE(t)] < (Co+Lrv2B+ LpKiK)) |t —t/|
+2Lp K1 [1+ (|Xo| + B)] /|t — '] (3.56)
+LpK; (14 2B+ 2[Xo|) 2VT |t — t/].

By 1} and 1) the equicontinuity of the sequence {Y*},ey is proved.
Hence, Ascoli-Arzela theorem implies the existence of a subsequence, still

denoted as {Y"}cn, which converges to Y = (X, V) € C ([0, 7] ;RQ(NX”)),
such that ||X]| ‘OO’T, V]| ‘OO’T < B+ Y.

Clearly, f* (-, “ Xk) satisfies equation , being the unique classical so-
lution of Lf (-, = Xk) = g;“(k. We now prove that the function in is a
solution of 1) associated to X, in the sense of Deﬁnition@ From Lemma,
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f (X)), as in , satisfies i), 1) and 4ii) of Deﬁnition@ Therefore,
it suffices to prove that it satisfies also equation (3.10). We observe that
Lemma points 2. and 3., imply

lim sup ‘ka' (:U,t; Xk) —Vf (m,t;i))%—‘fk (x,t; Xk) —f (a:,t;i)‘ =0,
k—o00 |z|<R
te[0,T)

(3.57)

hence f (-, -;K) satisfies 1} since the test functions have compact sup-

port. From (3.8); immediately follows that, as k — oo,
t
X (1) = X (1) = Xo + / V(r)dr,  vteoT]. (3.58)
0
By (3.8)2, for every i = 1,...,n, it holds:

w(t)—vio—/OF (r.X(7), V(7),Vf (& (r), 7 X(7))) dr

< 9 (0= vE O]+ | [ B (R XL VLV (o () X))

—F; (T,X(T),V(T),Vf (E(T) ,T;X(T))) dT} < V2LpT HYk _?Hoo,T

t
0

t
SﬁLFTHY’“—YHooT—kLF/ 55t (xk (7). X X drt
’ 0

LF/ ’2% , T, X>‘dT—|—LF/t‘23 (xf (1),%; (T)T,X)’dﬂ
(3.59)

where X.7%, ¥5F, X3 are defined in ([3.14)-(3.16)), with 5 € (0,1) an infinites-
imal sequence as k — oc.

Let us consider R = |Yo| + B, and ¢ = HXk _XHooT‘ Since 6 — 0 as
k — oo, from Lemma i), we get

/ ]sz 7, Xk X ) dr <T sup

Qs,.R
66(071)

t
as k — co. Moreover, / ‘2;" (xi€ (1) ,T,X) ‘ dr — 0 as k — oo.
%3¢ ( (7)., X)’ < sup |35 (z,7,X)|, and Lemmaiz’) en-

|e|<R

v fE (xf (T),T;Xk) —/O T (@(5), 71 €, 5) g5 (€, 5) dedr| dr

25 (xb (7), 7. X5 X )]—>o

In fact,
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sures that the function

T sup ‘E;’“ (JU,T,X)‘
lz|[<R

is uniformly bounded with respect to k and it converges to zero as k — oo,
pointwise in (0,¢), for ¢ € (0,7)]. Finally, from Lemma [12] iii), we obtain

/t ‘23 (xf (1),v; (1) T, X) ‘ dr <T sup |3 (xi€ (1),%; (1) T, X)) < TC’35§,
0

Qs,.r

which converges to zero as k — oo.

Thus, by (3.59)), taking the limit for k¥ — oo, we argue that
t
V(t) = Vo + / F, (r,X(r),V(r),V/ (z (), 7 X(r)) dr  (3.60)
0

for any t € (0, T]. We conclude that Y := (X, ?), solves the coupled system

(2.1)-(2.2)) in the sense of Definition 10 .
O

3.3.1 Some regularity properties

In the following Theorem we investigate further regularity properties of
the function defined in , which we have already proved to solve ([2.2)
in the sense of Definition Here, we shall make use of an additional
hypothesis concerning the structure of the source term g, together with the
previous assumptions G1) and G2).

Precisely, under a suitable assumption on the support of the function g(-, X(+)),
it is possible to identify a region, in RY, where the function f(-,-;X) is
smooth enough and it is also possibile to deduce some estimates on its deriva-
tives, despite the possible presence of discontinuities of the source term.

Let X € C’([O,T];]RNX”), for every fixed » > 0, h > 0, we define the
following sets:

rX .= U {x cRY . TEif(lfT] |z —x;(7)] < r} , (3.61)

QF, = {z eRY : dist (,T%) > h}. (3.62)

Clearly Qi(’T is an open set in RY. Roughly speaking, I'X represents the
region of points whose distance from at least one of the trajectories, enclosed
in X, is less or equal to . On the other hand, the set fo’r includes all the
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points that are quite far from the trajectories, the distance being greater
than a. Thus, we can establish the following result.

Theorem 14. Assume HS8) and let f = f (x,t;X) be the solution of (IS’.ZI)
with g satisfying G1)-G2). Suppose that, for some r > 0, the support of
(z,t) — gx (z,t) is a subset of

(L:LjﬂgﬂeRNx@Tﬂg—xmwgr} (3.63)
i=1
Then, for every a > 0, hold:
i)
f5X) € L2 ([0, T W (X)) - (3.64)
with the inequalities:

105 f (1 X)Joo,r < M|TE[ (1 + 2| X] oo,z +7) X

_ 3.65
(A N1 R (3.65)
A2 T\T T )0
107, (ot X) oo < M|TX| (1 + 2| X ][0 +7) X
x (3.66)

(4
Agh?

ii) f(,3X) € W2 (0%, x (0,T)) and

N k2
Te\o Ty )

foranyi,7=1,...,N.

HatfHLOO(Qif,Tx(O,T)) < lelloo + (14 2[| X |00, + 1) M‘Ffﬂ X

X

N-1 N
4\ 2 (N-1 4 \2 (N
i () () e () 1 (7))

+M (1 +2{|X||oc,r + 1) (3.67)

Here T'(+) is the Gamma function, ve(a, x) = f;o u*le "du being the upper
incomplete Gamma, Fi(‘ stands for the N-dimensional Lebesque measure
of TX and ||c|lso, ||blloo, llalloo denote the supremum norm of the functions

c, (Zl b?)l/2 and (Z” a%-))l/Q, respectively.

Remark 15. We emphasize that the modeling form of g, presented in [2]
and [3], falls within the assumptions of Theorem

Monts. Mewe.
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Remark 16. The bounds for the z-partial derivatives of f(-,-;X) yield a
precise information on the decay rate as t — 0T, for any fixed h > 0. In fact
it is well known that (o, \jh?/4t) ~ (\5h? /4t) LemAih?/4t a5t — 07,
fora =N/2ora=(N—-1)/2.

Proof. Theorem [14:
i) In the following 8;7 denotes the p-order partial derivative with respect

to x;, for p =0, 1. Let h > 0 and ¢ € C§° (thr), with compact support

A, C Q?fr. Thus, by 1) 1 , G1) and the assumption that the support
of gx is a subset of Q,, for every € RV, ¢ € (0,T), it holds:

O f (,t;X) diplx)da
RN

< [ [ [ e senoxn o) dsirds

<M1 +2||X||m,T+r>/ dsdr/

74T (2, 15,7 L)

J

Agyt Aw
_Abmi?
e T 4(t—1)
<M1 +2r|xuoo,T+r>/ dsdT/ e e+ €l dn
Ag,t Atp_f (t — 7')

(3.68)
where A4 ; denotes the intersection between the support of gx and RN x (0,1).
Here, in order to get the second inequality, we have applied the integration
by parts and, in the last passage, we have changed the variable setting
n =x —§. We observe that, if n € A, — &, for some £ € Ay, since Ay C Q,,
then |n| = |z — &| > dist(z,I'X) > h. Therefore, we obtain the inequality

AGInl?

e 4(t T)
[ L et + 9lanicis
A«p_g t — T

Agh2
t T A(t—T)
< X[ fy < N+p‘?ﬂ el
t—7)

N —
S| (k) ¢ [ e
= r /\ShQ A6h2 SO Ll

4t

N+p—1 * 1.2
5 N4+p—1 Mh
10X () e (L el

(3.69)

4t
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where, in the first equality, we have applied the change of variable 4v =
Agh?(t — )71, Thus, using 1|3.69) in 4|3.68) we get

N+p—1

< M(142||X|lwr +7) |TX] (A%h) )

’Ye 2 M l 7£ 11'

Hence f(-,t;X) € W2 (Q,?f) (see [65]), and (3.65), (3.66) follow from
(3.70) for p = 0, p = 1, respectively.

i1) In light of inequalities -, it suffices to prove the existence
of the weak derivative with respect to ¢ of f(-,-; X) and the inequality .
Let p be a smooth test function with compact support in Q?fm x (0,T), since
f(+,+;X) satisfies condition iv)-Definition [9, we have:

O f (2,1:X) dyp(w)de

RN

\/ o TETXET )dsir| </ / )l p(&,7)ldgdr

/ / D[V F(€.7:X)] |ple, 7 dédr

Jr‘/ /fowzj:a” £,7) f & X)p (f,T)dde‘

+M (1 + 2[[X][oc,r + 1) [lpl| 11 (3.71)

where in order to get the last term, we have applied G1) and the fact that
Ay C Q. Here the L'-norm refers to the domain Qz(r x (0,T). Thus, by

1nequahtles -, we can write:

T
‘/0 /QX f(f,r;X)atp(ﬁ,T)dédT) < lellsollpllzr + (1 + 2| X||oor +7) X

x[ﬁubnoonZﬂ(A*hZ) I [ (5 NN e macar
+n||ar|ooM|rX|(A*h2) [ o555 e )\dng]

+M (142X + 7)ol < llellocllollpr + (1 + 20X loo + 1) ML %

[\ﬂlblloo (Ah)Nr<N;1) +nllall (A;)Nr@)] ol

+ (1 4+ 2||X||o,r + 1) M||p|| 1 (3.72)

Monts. Mo
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This proves the point i) together with inequality (3.67).

3.4 Discussion

In this chapter we presented an existence theorem for the solutions of hy-
brid systems of differential equations, which generalizes the results obtained
in Chapter [2| In particular, our working assumptions allow to deal with the
form of the functions considered in [2] and [3] to model the source term of the
diffusion equation. We observe that the particular structure, together with
the set of chosen assumption, do not allow to establish uniqueness property
of the solution. We emphasize that the particular choice of a discontinuous
source term is not covered by the classical results of the literature. From
these premises, we cannot expect to have classical solutions for the specific
problem. Therefore, the main contribution of this work relies on the ex-
istence of weak solutions for coupled hybrid systems, in the sense of our
given definitions. With a step by step approach, the setting we introduce in
Chapter [4|is the higher level of generalization presented in this thesis, and
it represents the starting point of ongoing and future works.
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Chapter 4

On a coupled system of
nonlinear differential
equations with a non-local
concentration and L? initial
data

We present || existence and uniqueness results for the solution of hybrid
systems which, in particular, represent a further generalization of the mod-
els previously investigated. With a step by step approach, we here consider
the case of g € Lipio.(RV*™; L2(RY)). The equation modeling chemotaxis is
given in a divergence form, and initial data belonging to L? are considered.
The results are obtained using a different technique, based on a preliminary
study concerning well-posedness of pseudo-parabolic approximation prob-
lems, and a passage to the limit.

4.1 Problem statement and results

In this chapter we investigate, from an analytical view point, a particular
coupled system of nonlinear differential equations. The considered structure
takes inspiration from the hybrid form of models in [2], [3], and generalizes
the ones previously investigated in this thesis. In particular, as in the in-
spiring papers of the literature, the coupling between ordinary and partial
differential equations is realized in a non-local form.

!This chapter is based on joint work with F. Smarrazzo, M. Porzio, M.Papi

87
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Let consider the following hybrid system:

,

x;(t) = F; <t,X(t), Vu (z,t) h(x,xdt))dw) te(0,7),

RN
up = div (a(z,u, Vu)) + b(z,u) + g(z, X(1)) in RY x (0,7),

Xi(O) = X;0 € RN,

u(+,0) = up € LA(RY),

(4.1)
forany i =1, ...,n.
In the following we denote X(t) = [x1(t),...,x,(t)] € RV>*" x;(t) € RV,
With respect to the previous chapters, we use a different notation u, for the
function modeling the signal, in order to highlight the fact the the model
is investigated only on a theoretical basis, and w is not necessarily a chem-
ical concentration. In the same way, x; denotes the variable modeling the
dynamic of agent i, e.g. position, velocity. In our setting, we assume:

A1) For every i = 1,...,n, the function F; : [0,T] x RN*" x RN — RN
belongs to the space C ([0,7] x RV*" x RV;RY), and there exists
Lr > 0 such that for every i =1, ...,n it holds

F, (t,X,z)—Fi(t,f(,z)’ < Lp <‘X—f(’+|z—2\), (4.2)

for any X, X e RV*" 7z, 2 e RV, t € [0,T].

A2) i) The function a : RV x R x RV — RY belongs to the space
C (]RN x R x RN: RN ), and there exists L, > 0 such that

a(e,u6)—a(eaé)| <L (lu-al+[-¢), @3

for any u,u € R, &, f € RV, and for all z € RY. Moreover, with-
out loss of generality, in the following we assume a(z,0,0) = 0
for any « € RV.

ii) For every &;,& € RY, there holds

[a ($7u7£1) - a(:v,u,fg)] ’ [§1 - 52] >0, (4'4)

for all x € RN and u € R.

iii) There exists ap > 0 such that

a(z,u,€) € > agl¢f (4.5)
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4.1 Problem statement and results 89

for all z € RN, u € R, £ € RV,

A3) The function b(z,u) € C (RY x R;R), and there exists L, > 0 such
that

for all z € RY and u, & € R. Moreover, without loss of generality, in
the following we assume b(x,0) = 0 for any 2 € RY.

Ad4) g € Lipjo, (RV*™ L2 (RY)).
Hence, for every R > 0 there exists LgR) > 0 such that

g (- X1) = g (-, X2) [ 2y < LY X1 = Xof (4.7)
for any X;,Xs € RV*" |X | < R, |Xo| <R .

A5) h € Lipy,, (RY; L* (RY)).
Hence for every R > 0 there exists LgR) > 0 such that

I (x1) = b ()l ey < Ly B = xo (4.8)
for any x1,x2 € RV, |x1| < R, |x2| < R .
A6) There exist Cy,Cy > 0 such that
15 (%) |y < O (14 x)?  forall xeRY,  (49)

g (X)) 2eny < Cg (1+ X)) for all X e RN (4.10)
where 61,05 € [0,1] satisfy 6; + 62 < 1.

In the next sections, we prove global existence and uniqueness of the
solution to (4.1) under the above assumptions. Firstly, we state clearly the
definition of solution to problem (4.1)) .

Definition 17. For every ug € L? (RN), Xy € RNX" by o solution to
problem in (0,Tp), with 0 < Ty < T, we mean any pair (X, u),
with w € C ([0, Tp); L* (RN)) N L2 ((0,Tp); HY(RY)), X = (x1,...,%xpn) €
W2 ((0,Tp); RV*™) such that

i) X (0) = Xo, u(-,0) =up a.e. inRYN;

ii) for any i =1,--- ,n, equality (4.1)1 is satisfied a.e. in (0,T);

Merts. Mewe.
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iii) for any p € C ([0, Tp); LA2(RN))NL2 ((0,Tp); HY(RYN)), with p, € L*(Qry),
there holds

/ {ups — a(z,u, Vu)Vp + b(z,u)p + g(z, X(t))p} dedt = —/ p(x,0)ug(x) dx
QT RN

(4.11)
We denote Qr, := RN x (0,Tp).

The main results of our study are the following theorems concerning the
existence and uniqueness of the strong solution to problem (4.1)).

Theorem 18. Let assumptions A1)-A6) be satisfied. Then, for every (Xo,up) €
RV>™ . HY(RN), problem admits a global solution in [0,T].

In order to prove uniqueness, we replace assumption A2) — i) with the
stronger condition

A2) —iv) There exists By > 0 such that, for every &1, & € RY, there holds

[a (x7u7€1) - a($au7§2)] ’ [51 - 52] > Bo ’51 - {2’ . (412)

Observe that (4.12) and the assumption a(z,0,0) = 0 (see A2)-i))
plainly give A2)-iii) (with ag = o).

In Theorem below we shall denote by A2)" the set of assumptions
A2)-i) and A2)-iv).

Theorem 19. Let assumptions A1), A2)', A3)-A6) be satisfied. Then, for
every (Xo,ug) € RN*" x HYRY), problem has at most one solution.

In this chapter, the proof of existence will rely on a pseudoparabolic
approximation of the parabolic equation in (see [66], [67], [68], [69]).

In Section 4.2, we prove well-posedness of the approximating problems.
In particular, we present some a priori estimates on the approximating solu-
tions . The results previously obtained are combined in Section [4.3] devoted
to the proof of global existence and uniqueness of the solution to (4.1]).

4.2 Approximating Problems

For every € > 0, let us consider the problem
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%x;(t) = F; (t,X(t), Vu (z,t) h(m,xi(t))daf) te(0,7),

RN
uy — eAuy = div (a(z, u, Vu)) + bz, u) + g(z,X(t)) in RN x (0,7),

x;(0) = xio € RV,

u(-,0) = up € HY(RYN),

(4.13)
fori=1,...,n.

In the sequel, besides hypothesis A1), A2)-i) and A3), we shall always
assume that

A4)" g € Lip (RM*™; L2 (RN)) n L (RV*"; L2 (RY)).
Hence there exists L, > 0 such that

g (- X1) = g (- Xo)ll Loy < Ly [X1 = Xo (4.14)
for any X, Xy € RV*"?,
A5) h e Lip (RY; L2 (RY)) N L> (RY; L? (RY)).
Hence there exists Ly > 0 such that
A Cox) = h (s xo)ll 2@y < In X1 = x2 (4.15)
for any x1,xs € R,

Definition 20. For every ug € H* (RN), Xo € RVX" by q solution to prob-
lem in (0,T) we mean any pair (u, X), withu € C* ([O,T]; H? (RN)),
(X1, ..., Xp) = X € C* ([0, T}; RN™) such that

i) X (0) = Xo, u(-,0) = up a.e. in RV;
i) x; is a classical solution of (4.13)1, for anyi=1,...,n;
iii) for everyt € [0,T] and p € H'(RY) there holds

/]RN ug(t)p+eVu () Vpta (z,u(t), Vu(t)) Vp—b(x,u(t)) p—g (x, X(t)) pdz = 0.
(4.16)

Remark 21. For any solution (u,X) of problem (4.13), assumptions A4)’
and A5)’ ensure that the mappings t — ¢ (-, X(¢)) and t — h (-, x;(t)) belong
to the space C ([0, T]; L*(RY)) (here i =1,--- ,n).

Mot Mee.
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The following theorem states well-posedness results for (4.13):

Theorem 22. Let assumptions Al), A2)-i), A3), and A4)'-A5)" be satisfied.
Then, for every (ug, Xo) € H* (RN) X RN*" problem 44.13) admits a unique
solution in [0,T].

Before proving the theorem, we consider an equivalent abstract formu-
lation of system (4.13). Let introduce the mapping

L:[0,T) x RN*m 5 HY (RY) — RV*™ 5 {1 (RY)

(4.17)
(t, X,u) — L(t,X,u) := (Xjﬂ)
(X = (x1,--+ ,Xp), with x; € RY for every i = 1,--- ,n), defined as follows:
L£1) X = (X1, ..., X,), where
x; = F; <t, X, Vuh(zx,x;) dx) Vi=1,..,n; (4.18)
RN

£2) uwec H! (RN ) is the unique weak solution of problem
— eAT+7T = div (a(z,u, Vu)) + b (z,u) + g (z,X) in RY. (4.19)

We observe that the existence and uniqueness of w follows from A2)-i),
A3), and A4)’ which guarantee, respectively, |a (-, u, Vu)| € L2(RV),
b(-,u) € LA2RY), and ¢ (-, X) € L2RY) for any u € H'(RY) and
X € RN,

Thus the approximating problem (4.13) can be rewritten in the equiva-
lent form

y(t) = LG, y(t))  yey,
(4.20)
y(O) = (Xo,UU) cyY

where we have set
Y =RV x HYRY), y=Xu)eY. (4.21)

The following Lemmas [23| and [25| ensure the existence and uniqueness of
a local solution (X, u) of (4.20).

Lemma 23. LetY be the Banach space in (4.21)), and let £ : [0,T]xY — Y
be the mapping defined in (4.17). Then £ € C([0,T] x Y;Y).

Proof. Lemma
Let t, =t € [0,T], X = (X1 ks, Xp ) = X = (X1, ,Xp) in RN*7 and

Moats.  Mewe.
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up — u in HY(R") as k — oo. Set
(X/ﬁ,ﬂk) =L (tka X, uk) ) (Xv a) =L (ta X, u) . (422)

We shall prove that X;, — X in RV*" and @, — @ in H*(RY).
Since h € C (RY; L?(RY)), whence h(-,x;5) — h(-,x;) in L*(RY) as
k — oo, for every ¢ = 1,...,n we have

Vuy h(z,x; 1) de — Vuh(z,x;)dz,
RN RN

and

Xik = F; <tk,Xk,/ Vug h(w,xi,k) dx>—>xi = F; <t,X, Vuh(a?,xi) dx),
RN

RN

as F; is continuous.

In order to prove that W, — @ in H'(RY), we observe that @, u €
H'(RY) are the unique weak solutions in RV of

— eAuy, +uy = div (a (-, uk, Vug)) +b (-, ug) + 9 (, Xk) (4.23)

and
—cAu+u=div(a(-,u,Vu))+b(-,u)+g9(-,X). (4.24)

By assumptions A2)-i), A3), and A4) we get, respectively,

a(-,ug, Vug) »a(-,u,Vu) in [Lz(RN)]N (4.25)
b(-up) = b(,u) in  L*RY) (4.26)
g(Xp) = g(,X) in L*RY) (4.27)

Then, by standard results on elliptic equations, it follows that up — @ in
H'(RM).
O

Lemma 24. There exists L1 > 0 such that for any (X1,u1), (Xo,u2) €Y,
i1 — || g1 gy < Ln <\X1 = Xo| + |Jur — U2HH1(RN)) : (4.28)

where Ty € HY(RY) is the solution of with u = w1 and X = Xy, and
Ty € HY(RYN) is the solution of (|4.19) with u = ug and X = Xa.

Proof. Lemma|24
First, we observe that (u; —uz) € H' (RY) is the weak solution in RV of

Mot Mee:
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the equation

—eA (ﬂl — HQ) + (ﬂl — ﬂg) = div (a (-,ul, Vul) — a(-,ug, VUQ))
+b (" ul) —b ('7u2) +9g (" Xl) -9 ('7 XQ) :
(4.29)
Choosing as test function p = u; — us, it follows that

s/ ]V(ul—u2)|2dx+/ (u, —u)* da

RN RN

< La [ (= el |V = ) |V (31— )|
R

+Ly /RN |u1 — ug| [ty — 2| dx + ||g(-, X1) — g(-7X2)HL2(RN)||ﬂ1 _ ﬂ2HL2(RN)

< (La + Ly + Lg) { lur = uall sy + X1 = Kol 71 = Tall s vy

(4.30)
with Ly, Ly, Ly as in A2)-i), A3) and A4)’. Then the conclusion immediately
follows from (4.30]), with a suitable choice of a constant L;. O

Lemma 25. For every R > 0, there exists Lr > 0 such that, for any
(X1,u1), (Xo,uz) € Y, with ||u1||H1(RN),Hu2”H1(RN) < R, and for every
t € [0,T] it holds

F; (tXl,

Vuy h(x,x1;) dx) - F; (t, Xg,/ Vug h(z,x2;) dw) ’
RN RN

< Lp (!X1 — Xo| + [lur - U2HH1(RN)>

(4.31)
foranyi=1,...,n.

Proof. Lemma[25
Let X; = (le, ...,Xjn) € RN¥X" (j =1,2). Then, by Al) it holds

F; <t,X1,/ Vuy h(z,x1;) dx) — F; <t, XQ,/ Vug h(z,x9;) d:c>‘
RN RN

< I~/Fi (\Xl — Xo| —i—/ |Vuy h(x,x1;) — Vug h(z,x9;)| dac) .
RN

(4.32)

Ments.  Mewe:



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

4.2 Approximating Problems 95

Since [lu1]| g1y < R, the thesis follows observing that
/ |Vuy h(x,x1;) — Vug h(z,x9;)| dx
RN

< R||h (- x15) — b (-, x2) HL2(RN) + [Jur — U2HH1(RN) HhHLOO(RN;LQ(RN))

< RLp [x1i — x2i| + [|h]] poo mv; 22y [ — wall g gy,
(4.33)
Here, use of assumption A5)" has been made. Ul

Proof. Theorem [22
By Lemmas we get that for every (Xo,up) € Y, there exists a unique
local solution (X, u) of (4.20), thus of the equivalent problem (4.13)),

X e CH ([0, Ts; RY*™) . we ¢t ([0, T); H (RY)) (4.34)

for some T5 € (0,7). We now show that (X, u) can be continued in [0, 71,
being the unique solution of . To this end, we prove the existence of
a positive constant independent of T, which is an upper-bound for |X(7)]
and [[u(-, 7)|| g1 (gay, for any 0 <7 <T5.

From (4.13); and A1) we get, for all ¢ € (0,75),

%600 < 1 (1+ X+ fy [V, )] (e, x:(6)) | d)
< G (14 X1+ (fos Va0 ) ™ (Joo ot an) )

< Cy (141X @)+ [ul, )| e))
(4.35)
with C3 > 0 independent of Tj.
Here we have also used that h € L>®(RY; L2(R")); see A5)’. Integrating the
above estimate over [0, 7], with 0 < 7 < Ts we obtain

X ()| < Cy (1 +/ ||U(',t)HH1(RN)dt+/ |X ()] dt) . (4.36)
0 0
By Gronwall inequality it follows
X)) < G (14 [ It Dllde)  vre@m) @)
0

where C5 = C5 17 > 0 can be made independent of Ts5. We now focus on an
estimate of |[u(-, 7)|| g1 (). For every t € (0,T5), choosing p = u(t) as test
function in (4.16), by assumptions A2)-i), A3) and A4)’ it holds

Monts.  Mewe:
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/ (e Vg (2, 6) 2+ |ug(z, )2 dx)

RN

< /RN la(z, u(w.t), Vule, )] [Vue(e, £)] de
+/RN (|b(x, u(t)] + |g(z, X(¢))]) ue(z, t)] dx

<L, /RN (Ju(z, t)| + |Vu(z,t)|) [Vug(z, t)| do + Ly /]RN lu(x, t)] |ue(x, t)| dz

1
2 2
+HgHLoo(RN><n;L2(RN)) </RN (ut(x,t)) dm)

1
[ St i)
2 JrN

+Ch [1 + / <u2(x,t) + yvu(x,t)ﬁ) da:] :
RN
(4.38)
2
with C ¢ := % + L + HgHiw(RNXn;LQ(RN)). Then we conclude that

e, )l g vy < Coe (Il D)l vy +1) - (4.39)

Integrating the above inequality in [0, 7] and using the Gronwall’s inequality,
we get that there exists C3. > 0 independent of Tj, such that for all 7 €
[0, T5) there holds

ey )l g3 vy < Cse (4.40)
Combining (4.40), (4.37) and (4.35) gives, for some Cy. > 0 indepenedent
of T5,

X()| < Coer |K(7)| € Cuc
for all 7 € [0,T5). Therefore the conclusion immediately follows. O

4.2.1 A priori estimates

In the following we suppose assumptions A1)-A6) to be satisfied. In
particular, from Al) and A3) it follows that there exists Cr > 0 C, > 0 and
Cp > 0 such that

[Fi (6, X,2)] <Cp(1+ X[ +|2])  Vi=1,..n, (4.41)

Merts. Mewe.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

4.2 Approximating Problems 97
la(z,u,z)| < Cy (Jx|+ |u]) Vi=1,..,n, (4.42)
b (z, u)| < Cy |ul (4.43)

for any X € RV*" z 2 ¢ RV, w € R and t € [0, T].

For every j € N, we consider the function I; € C2° (R) with supp(l;) C
[—j7 — 1,7 + 1], such that

0<li(s) <1, li(s)=1 VseR:|s| <. (4.44)

Let X € RVX" % ¢ RY. We define the sequences {g’ (-,X)}jen and
{17 (-,%)}jen by setting

¢ (,X) =1 (|X])g (-, X) a.e. in RV (4.45)
(%) =1 (X)) h(-%)  ae in RV, (4.46)
Clearly, there holds

¢ =g i Cc(RY" L2 (RY)), (4.47)
W —h  in Cle(RY; L2(RY)). (4.48)

By A4)-A5) and the very definition of {¢g/} and {h7}, for every j € N
there exist C, C} > 0 such that

ngHLOO(]RNX";LZ(RN) < 037 (4.49)
157 || oo v 2 vy < s, (4.50)
whereas by assumption A6) and we get
197 X | o, < Co (141X, (451)
1177 (%) oy < Cn (141217 (4.52)

for any X € RV*" % ¢ RNV,

Let ug € L>(RY) and Xy € RV*", In Lemmas below, we present
some a priori estimates on the solution (XJ , uJ) of the approximating prob-

Mot Mee.
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lem

xI(t) = F; <t,Xj (t), . vVl (x,t) W (z, %! (t))dx> te(0,T),

ul — 5]-Au{ = div (a(z, v/, V!)) + b(z,w’) + ¢/ (z,X?(t)) in Q,

xJ(0) = xj0 € RV,

(]

W(,0) = uj € H'(RY),

\

(4.53)
for i =1,...,n. Here
g; — 07", (4.54)
and the sequence {u{]} C HY(RY) is chosen so that
u) = up in LARY), (4.55)
¢a¢vuﬂ-+o in L*(RY) (4.56)

as j — oo (such a sequence can be constructed by a convolution of uy with
a sequence of standard mollifiers).

Notice that the existence of a unique solution to problem (4.53) follows
from Theorem since for every j the functions ¢ and h’ satisfy assump-
tions A4)" and A5)’, respectively.

Lemma 26. There exist C,Co > 0 independent of j, such that for every
€ (0,T] there holds

i) if0<6 <1

sup }Xj(T)‘ <y
J

T , 9 ST=a7)
1+(/’WWﬂJWmmMﬁ . (4.57)
0

(4

2
. . T . 2(1-67)
E?pHgJC;X%T»HL%RN)SCE 1+—<A HvuahtﬂﬁgmNyh) ;
(4.58)

i) if 01 =1

1
2

| & </ V4 (1) H%Q(RN)dt)
sup |X7(1)| < Cy |1+e 0 ,  (4.59)
J

Medts. Meye.
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Sllpng ("Xj<7_))HL2(RN) S Cgu (460)
J
with Cy > 0 defined in .
Proof. Lemma |26

For every 7 € (0, 7], integrating equation (4.53); in (0,7) and using (4.41)
gives

Xj(T)‘ < \Xi(0)|+CFT+CF/ |Xj(t)‘dt
0

l . o (4.61)
+Cr [V (0 a9 (- 0)) g

for all i = 1,--- ,n. By (4.52), considering the sum over i = 1,...,n, it
follows

1+ [XI(7)] gc[1+/T(1+\X1(t)\)dt+
T o o, (4.62)
/0 IV (-, t) |2y (14X (8)]) ldt],

for some C' > 0 independent of j.

i) Let 0 < 6, < 1, 7 € (0,7] (whence 0 < 2 < 1; see assumption
A6)). Using a non linear generalized form of Gronwall inequality (|70],
Theorem 21, p.11), we obtain

L4 x| < {0 elmer

1
1-6q

+(1 — 91)/ C||Vu (-,t) HLQ(RN)e“—el)C(T—t)dt}
0

(4.63)
Since 7 € (0,7, we finally get

1
. . T , (=)
X (7)] §0{1+/0 ||V (',t)|L2(RN)dt} '

T ) By
S Cl 1 + / HV’U,J (,t) HLZ(RN)dt 5
0

with C'; > 0 independent of j.

(4.64)

In order to prove (4.58)), it suffices to combine (4.57) and (4.51).

Monts. Mewe,
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ii) Let #; = 1. In this case reduces to
1+|Xi(r)] <C [1 +/ (14 |X(¢)|) dt+
. o ' (4.65)
9 ) gy (14 0]

and (4.60) follows from the Gronwall’s inequality (e.g., see [70] Theo-
rem 21). Moreover, in this case assumption A6) implies 2 = 0, hence
estimate immediately follows from (4.51). This concludes the

proof.
O
Lemma 27. There exists C3 > 0 such that, for every j € N,
147 || oo (0,72 ) + 1|V | Nl 22q) < Cas (4.66)
Iz wlllz2 () + llej [Vull | z2(g) < Cs - (4.67)

Remark 28. The estimates obtained in (4.57)-(4.60) and ensure the

existence of C4 > 0, independent of j € N and ¢ € (0,7, such that

sup || X7|| oo o,5mvsny < Ci, (4.68)
J

sup ng (-,Xj(t))HLQ(RN) < Cy forall tel0,T]. (4.69)
j

In particular, combining (4.66) and (4.69) with assumptions A2)-i) and A3),
it follows that {div (a(-,w’, Vu?))} is bounded in L? ((0,7); H~'(R")) and
{b(-,u7)} is bounded in L> (O,T; L2(RN)), whence (see (4.53)2, (4.67) and
[@.69))

{ul} is bounded in L? (0,7; HH(RY)) . (4.70)

Proof. Lemma |27
We rewrite the pseudoparabolic equation in (4.53), choosing u/ as test func-
tion in its weak fromulation. For every 7 € (0, 7], we get

;/RN {(Uj(’?'))2 + ¢ ‘Vuj(r)f} dx — ;/RN {<u6)2+€j ’Vu%‘z} dx
+//Ta($,uj,Vuj)~Vujd:L‘dt: //QT b(m,uj)ujd:ndt—i—//ng (:L',Xj(t)) w dzdt

< Cb//T (uj)zdxdt+§//T (¢’ (ﬂc,Xj(t)))Qdmdt%—;C//T (w?)? dadt,

(4.71)

Mot Mewe.
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for a suitable constant C' > 0 which will be chosen below; observe that in
the last inequality, we have used (4.43) and the Holder inequality. Let focus
on the case of 0 < 6; < 1. Estimating the integral

/]RN {(uf))2 + Ej]Vu6|2} dx

with the constant C (see - ([4.56)), by A2)-iii), A6) (in particular,
recall that 6; + 62 < 1) and ( we get

%/R {(uj(T
I
Il

Co

+ L
C

IN
/-\
[

d:cdt—i-c/ cs
2 0

0o 2
e e
0
02
t . 9 (1-01)
(cr+ vt (1 [ 190 9) o) ] at
0

<cb+—>// ) daat + T3 {QT—i—/ / Ve (s )HLZ(RN)det]
< (cb+ 7) // dwdt—|—2TCCg+CCz // ‘Vu
(4.72)

Choosing C' = scar we get that CC2T = %, hence the above inequality
2

IN

))2 +ej ‘Vuj(r)‘g}da:—i—ao -/QT ‘Vuj ’
(

)
)

j)2 e [
u’ ) dxdt + CC5
0

[N~}
g~

gives
1/ {@m) +e [Vl (n)[*} do+ 52 [ |Vl | dedt
2 Jry 2 Jo.
(4.73)
< Ty 1+ ff, (w)* dodt] ,

where C is a positive constante independent of j. By Gronwall inequality,
there exists Cy > 0 such that

||W[] oo (0,712 @) < Ca- (4.74)

Combining (4.73) and (4.74) (the former with 7 = T"), we conclude that

sup// ‘Vuj‘z < Cs. (4.75)
J Q

Then 1' follows with C3 = max{Cs, C3}.
We leave the proof of the easier case ;7 = 1, which follows using
instead of (4.58)) in the above computations.

Merts. Mewe.
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The proof of (4.67) relies on similar steps. The key factor is to choose
the test function p = ¢;ju] in the weak formulation of the pseudoparabolic

equation in (4.53), using the a priori estimates (4.66) and (4.69) (we omit
the details). N

Lemma 29. There exists Cs > 0 such that, for every j € N,
T .. )2
/ (Xﬂ(t)’ dt < Cs. (4.76)
0

Proof. Lemma[29
From the first equation in (4.53)), (4.41), (4.68) and assumption A6)), we
get, for every i =1,...,n

< C% (1 + | X7 (t)| +/RN |V (z,t)| ‘hj (m,x{(t))‘dw)Z

2
LQ(RN))

. , 2
<Ct (1 + Ca+ Ch (14 [XI(0)])" ||V ('7t)HL2(RN)>

<C% (1 + Cy + || Vad (-, t)] ’LQ(RN) th ("Xg(t)> ‘

; 2
S C (1 + HV’U/J (.’t)HLQ(RN)) 9
(4.77)
for a suitable C' > 0 independent of j and ¢ € (0,7). Thus,

T, . 2 .
/ ’xg(t)’ dtSCT—i—C[/ V! (x,t)|? dedt
0 Q

and the conclusion follows combining the above inequality and (4.66). [
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4.3 Global Existence and Uniqueness

4.3.1 Letting ¢ — 0

Throughout this subsection we shall always assume that assumptions
A1)-A6) are satisfied.

For every j € N, let (uj,Xj ) be the solution to problem 1) in the
sense of Definition 201

By the a priori estimates ({.66)-(4.70) and (4.76) we deduce the following

convergence results.

Proposition 30. (i) There existsu € C ([O, T); L? (]RN))OL2 (07 T;H! (RN)),
with uy € L? (O,T; H1 (]RN)), such that possibly up to a subsequence (not
relabeled) it holds

1) W —uin L2(Q), and w/ — u a.e. in Q;
2) Vul = Vu in [L2(Q)]";

3) ejul — 0 in L*(Q);
4) & Vul =0 in [2(Q]" .

(ii) There exists X € WhH? (O,T;RNX”) such that possibly up to a subse-
quence (not relabeled) it holds

5) XJ = X in C ([0,T]; RV*™),

6) X/ — X in L% (0,T;RV*").

Remark 31. Recalling the definition of the approximating sequences {g’}

and {h/} in (4.45)-(4.46), together with the continuity properties of g and h
in assumptions A4) and A5), from 5) it follows that for all ¢ € (0,7") there

holds
7) gj ('7Xj(t)) — g(aX(t)) in L° (RN)a
8) h (,xf(t)> — h (-, x;(t)) in L? (RN), foranyi=1,...,n,

as j — o0o. Since by (4.68)—(4.69) and assumption A6) we have

(0,7)
up [ (0) | sy < L+ IR i) < a1+ 1)

(4.79)
by the dominated convergence theorem we get

Monts. Mo
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T
9) lim ng ('7Xj(t)) -9 ('7X(t))HZI),2(RN) dt =0,

dt =0
L2(RN)

10) lim Tth ( J'()) h, Xz(t))‘

for any p € [1l,00) and i =1,--- ,n.

Proof of Proposition [30.
Claims 2)-6) immediately follow from the a priori estimates (4.66)-(4.70) and

(4.76). By (4.66), (4.70) and classical compactness arguments [71] possibly
up to a subsequence (not relabeled) we have

w —u in L*(Q), (4.80)

w —u in L20,T; L% (RY)), (4.81)

for some u € C ([0, T]; L? (RN)) NL*(0,T; H' (RN)), with distributional
derivative u; € L? (0, T;H! (RN )) Observe that without loss of generality,
by standard diagonal arguments, we may assume that v/ — u a.e. in Q.
Then, it only remains to prove that

W —u in L3(Q). (4.82)

For every p € N, let p, € C®°(RY) N L®(RY) be chosen so that p,(z) = 0
if |z < p, pp(z) = 1if |2] > 2p, 0 < pp(x) < 1 for all z € RY, and
11V ppl[| Loo vy < C, for some C' > 0 independent of p. Choosing v (z,t) =
pa(x)ud (x,t) as test function in the weak formulation of the pseudoparabolic

equation in (4.53) gives, for every 7 € (0,77,

1

Q/RN (u](:v,T)) p?,(a:) dx — Q/N(ué)Qp?,d:v
&j

4= \Vuj(:c T)\ x)dr — = |Vu0|
2 RN

+2<€j/ Vu{ -Vpp ujpp dzxdt + // a(z,uw, V') - Vu? pf, dzxdt
<2// a(z,u!, Vul )| |V, pp ]uﬂda:dt—i—// (z,u”) Hu]|p dxdt

// (z, X7 (t))] |u7|p dxdt < 2/ la(z, u!, Vud)| |V p,| pp |1?| dadt

+ (C’b + ;) //QT (u’)? pﬁ dxdt + //Q(gj(ac,Xj(t)))2 pf, dxdt

Monts. Maye.
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(here we have used (4.43)). Then, from the Gronwall’s inequality, for all
7 € (0,T] we have

/ (uj(a;,r))sz(x) dz < C {/ (u%)zpf)dx

RN RN

+€j/ Vuh|? o} dfv—26j// Vol - Vp,ul p, dedt
RN Q

+//Q [la(z, !, V)| [Vl pp 17| + (g7 (2, X7 (£)))? p2] dacdt}

for some C; > 0 independent of both j and p.

In view of (4.80)—(4.81), (4.55)—(4.56), and point 4) in Proposition
Remark and since we may assume |a(z,u/, Vu/)| = F in L?*(Q) for
some nonnegative F' € L?(QQ), integrating the above inequality in (0,7") and
letting j — oo, we get

limsup// (uj)sz dzdt < Cy {/ ugpy da + // (g(z, X(t)))? p5 dadt
Q RN Q

Jj—o0

+ F|Vpp|pp|u|da:dt}
{(z,t)€Q: p<|z|<2p}

(here we have used that Vp, has compact support in RY). Since the func-
tions in the right-hand side of the previous inequality belong to L?(R™) and
L*(Q), by the very definition of the function p, we have

lim sup (lim sup // (uj)Qp]?J d:cdt) =0. (4.83)
p—+00 Jj—o0 Q

Then, it is enough to observe that

limsup ||u/ — ullr2(gy < lim // (! —u)?(1 — pfo) dxdt
; J]—00 Q

j—00
+ lim sup // (w/ — u)QpI% dxdt = limsup // (v — u)2p127 dzdt
Jj—r00 Q j—roo Q

(notice that fo(uj —u)?(1—p3) dzdt — 0 by ([£.81), as the function ¢(z) =
(p2(x)—1) has compact support in RY), and the convergence in (4.82) easily
follows from the above inequality, (4.83]) and the condition v € L?(Q). O

Remark 32. (i) Observe that (4.42) and (4.66) ensure the existence of

Merts. Mewe.
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z =€ [LQ(Q)]N such that
a (-,uj, Vuj) —z in [L2 (Q)]N . (4.84)
Moreover, by and the convergences in Proposition 1), it holds
b(,w') = b(,u) in L*(Q). (4.85)

(ii) In view of (4.54)—(4.56), and the convergences in Proposition [30] and
in Remark [31] letting j — oo in the weak formulation of the pseudoparabolic

equations in (4.53) we get

//Q ugy dzdt — //Q {z- Vo —b(x,u)p — g(x, X(t))p} dudt
- /IRN Wz T)gle, T) dv / uo(2)p(x,0) dx (4.86)

RN

for all ¢ € C([0,T]; L2(R™)) N L2(0,T; HY(RY)), such that ¢, € L?(Q).
The following proposition states the relationship between u and z.

Proposition 33. Let u and z be the limiting functions in Proposition
and (14.84 ), respectively. Then, for a.e. (x,t) € Qr, it holds

z(z,t) = a(x,u(z,t), Vu(z,t)). (4.87)
Proof. Proposition |33
Let p € C} (RY) and ¢ € CH(Q), ¥ > 0. Choosing (v — p) ¢ as test

function in the weak formulation of the pseudoparabolic equation in (4.53)),
we get

// a(:c,uj,Vuj) -V(uj —p)wdxdt
Q

=== Jf, Vol V[ =) o] datt [] (ot V08) V0 (= )

-1-//th(uj;p)2dmdt+//Qb(x,uj) (uj—p)d)d:rdt

+//Qg (X7 (1)) (w = p) v dadt.

(4.88)
Focusing on the first integral in the right-hand side of the above equality,

Medts.  Heye.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

4.3 Global Existence and Uniqueness 107

we observe that

. J. j_ = e J . J_
sj//QVut V (v — p) ¥] dudt 6]//QVut Vi (v — p) dadt

—Ej// R dxdt—ej/ YVl - Vi dudt.
2 J]q Q

(4.89)
We now pass to the limit as j — oo in (4.88)-(4.89).
lim // a (a:, u?, Vuj) -V (uj — p) Ydxdt
J—0 Q
//Z Vi (u—p d$dt—|—//w ddt
(4.90)

+//Qb(ﬂf,u)(“—f))¢ d“’”dtJr//Qg(f»X(t))(U—p)z/}dxdt
// p) Y dxdt;

here we have formally used the test function ¢ = (u — p)¥ in the equation
= div(z) + b(-,u) + g(-, X) in L?(0,T; H-Y(RY)) (see (4.86)).

On the other hand,

// a(a:,uj,Vuj)-V(uj —p)w dxdt
Q

= //Q [a (a:,uj,Vuj) —a(q:,uj,Vp)] v/ (uj —p) o ddt
(4.91)

// x,u’ ,Vp) -V (uj — p) ¢ dadt

since A2) —ii) holds true. Hence, by the convergences in Proposition [30[ we
have

jlggo//ga (:B,uj, Vuj)-V (uj — p) W dxdt > //Q a(x,u,Vp)-V(u—p) 1(#4dxc§t.
.92

Monts.  Mewe:
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Since 1) is an arbitrary function, by (4.90) and (4.92) it follows that

[a(z, u(z, 1), Vp(z)) — 2(z, )] - [Vu(z,t) = Vp(z)] <0 (4.93)

for any (x,t) € Q\Np, for some null set Ny C @ (observe that the choice of
Ny can be made independent of p by standard separability arguments).
Let (Z,t) € Q\Np be fixed. Then by the arbitrariness of p in ([£.93) it

can be easily seen that
(a (2,0 (2.7) 1) — 2 (2,7)] - [Vu (7,7) — 1] <0 (4.94)

for all I € RY. Choosing | = Vu (E, f) —1v (with v € R, v # 0) and
dividing ([4.94) by 7 # 0, in the limit as 7 — 07 and 7 — 0~ we get

[a (f, u (E, t),Vu (T, f)) —z (f, f)] v=0 (4.95)

(here we have also used the continuity of the mapping & — a(z,u,§)). Then
(4.87) follows from the arbitrariness of v. O

4.3.2 Proof of Theorem [18 and Theorem [19]

We can finally prove our main results, stated in Theorem[18 and Theorem
In the former, we shall use the following Proposition [34] which refers to
convergence properties of the terms in the ordinary differential equations in

il

Proposition 34. Let {(X7,u’)} be the subsequence given in Proposition @
Then, possibly up to a subsequence (not relabelled for simplicity), for a.e.
t € (0,T) it holds

i) YVl (1) = Vu (-, t) in [L2 (RY)]Y,
ii) V! (z,t) B (x, x{(t))da: — Vu (z,t) h(z,x;(t))dz,
RN RN
foralli=1,--- n.
Proof. Proposition [34 The convergence in i) is a direct consequence of 7)
and claim 8) in Remark
In order to prove i), we follow the same line of reasoning of Proposition
Let us consider the function u/v(t), with ¢» € C} (0,T), ¢ > 0 as test

function in the pseudoparabolic equation of (4.53). Arguing as in (4.90),
and using (4.87), we get

lim //a(x,uj,Vuj)~Vujwdxdt:// a(x,u,Vu) - Vuipdedt. (4.96)
Q Q

j—o0

Mot Mee.
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For simplicity of notations, we define
Bj(x,t) = [a (:r:,uj, Vuj) —a (:c,uj, Vu)] -V (uj - u) . (4.97)

Clearly Bj(z,t) > 0 a.e. in @ (see assumption A2)-ii)). From Proposition

(4.84), (4.87) and (4.96) we get

lim //Q B, (, 1) (t) dadt = . (4.98)

Jj—00

Since 1) is an arbitrary nonnegative function, there exists a subset N C
(0,T), of zero Lebesgue measure, such that

Bi(-t) =0 in L' (RY) (4.99)

for any t € (0,T)\N.

Let t € (0,7)\N be fixed. Observe that without loss of generality we
may assume that u(-,t) € H'(RY), and (possibly up to a subsequence, again
not relabeled) u’(-,t) — wu(-,t) in L2(R") for any such ¢ (see Proposition

1)) . From the definition of 3, and using , for a.e. x € RN

it holds
a (z,uw (z,t), Vil (2,1)) - V! (2, t)

< Bj(w, 1) + Ca (o (2, 6)| + [V (2,1)]) [Vu(a, 1)

+C, (‘uj(x,t)’ + \Vu(x,t)D ‘Vuj(x,t)‘ (4.100)

+C, (’uj(:v,t)’ -+ |Vu(:E,t)|) |Vu(z,t)
< ,Bj(a,’,t) +C4 (‘uj(x,t)’2 + |VU(aj,t)’2) + % }Vuj(%t)’Q 7

where in the last inequality we applied Young inequality with suitable con-
stants. Moreover, by A2) — i) it follows that

a (z,u (z,1), Vil (z,1)) - V! (2,t) > ag |Vuj(ac, t)|2 . (4.101)
Combining (4.100)—(4.101) plainly gives
ag

(V! ()% da
2 RN

< Oy [/RNﬁj(x,t)dH/RN\vu(;c,t)|2d$+/RN(uj(x,t))2dx] ,

Moits. Maye.
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whence (see (4.66) and (4.99))

2 Vi (@, )P de < G, (4.102)
2 RN
for some C; > 0 depending on the choice of ¢ € (0,7') \ V. Then the weak
convergence 4
will easily follow from (4.102), since u?(-,t) — u(-,t) in L?(RY). O

Proof of Theorem

Let us check that the pair (X, u) given by Proposition is a solution of
problem in (0,7"). Clearly, the regularity requirements of Deﬁnition
and the equality X(0) = X, are satisfied (concerning the latter, recall that
X7(0) = X for all j and X7 — X in C([0, T]; RV*™)). The weak formulation
[4.11) — whence the equality u(-,0) = ug a.e. in RY — immediately follows
combining (4.86) and (4.87). Finally, in view of (4.53)1, claims 5) and 6) in
Proposition 30| and Proposition [34] by standard arguments we get, for every
i=1,---,n,

F, (XJ Vil (z, -)hj(x,xg(.))dm) =X ~X; in [L20,T)V,
RN
and

F; <-,Xj, Vuj(x,-)hj(x,xg(-)) da:) —F; in [L2(0,T)]N,

RN

where
Fi(t) =F; (t,X(t),/RN Vu(z,t) h(z,x;(t)) dx) (a.e.t € (0,7))

(here we have also used assumption Al). From the above convergences, it
follows that equality (4.1); holds for a.e. t € (0,7"). This concludes the
proof. O

Proof of Theorem [19.
Let (X1, u1) and (Xg,u2) be two solutions to (4.1)).
For every i = 1,...,n, and for a.e. t € (0,T), by Al) we get

Xuu(t) = Xai(t)] < L, (X1 () = Xa(t)

+ Vui(z,t)h (z,x1;(t)) de — Vug(z,t)h (z,x2;(t)) dx

RN RN
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Since A5) holds true, and X, X € C([0,T]; RY*™), the above integral can
be estimated as follows:

. Vui(z,t)h (z,x1;(t)) de — Vua(z,t)h (x,x2;(t)) dz

< [[Vui(t) = Vua(0)[| 2@y [1h (5 x1i(O)]] L2 vy
+IVu2 ()] 2@y [ (5 x24(8) = b (%24 ()| L2 vy

< G [[Vun(t) — Fua®)ll 2oy + L V(8 |2y X (8) — Xa()]

(4.104)

for a suitable choice of C; > 0 and Lj, > 0 depending on the norms || X1|| o,

|IX2||oo- Hence, using (4.104) in (4.103) and integrating over (0,7), with
€ (0,T], we obtain

X1(r) — Xa(r)] < s [ a0 - X0 at

+/0 Vi (t) = Vua(O)|| 2@y + V(O] 2y [Xa(t) = Xa(t))| dt}

<0 [ﬁ ( [ i) - Xa(o? dt)m 7 ( //Q IV - Vs dmdt)l/Q
- <//Q |V |* dxdt>1/2 (/OT X1 (1) — Xao(t) dt) 1/2]

(4.105)
whence,
|X(7) = Xo(7)[?
(4.106)
< 03 [/ |X1 X2 dt+ ﬂ IV’UJ V’LL2| d$dt:| s
for some C3 > 0 also depending on ||[Vuz|||z2(q)
Since u1 — uo satisfies in the weak sense the parabolic equation
O (u1 — ug) = div (a(x, u1, Vur) — a(z, ug, Vug))
(4.107)

+b(z,ur) — bz, u2) + g (x, X1(t)) — g (x, Xa(t)) ,

choosing p(z,t) = uy(x,t) —uz(x,t) as test function and integrating in Q, =

Morts. Mewe:
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RN x (0,7), we obtain
2

// a(z,u1, Vua) — a(z, uz, Vua)] - V (u1 — u2) dzdt
L Bl o) ] o

// (@, X1(t) — g (2, X2(t))] [ur — ue] dwdt

< La// |lur — u2| [Vur — Vug| dzdt + Lb// |lup — ug|2 dxdt

1

T 1 T
by [ LX) = XaOF dtt 5 [ (®) = wa®) v
0 0

E/RN( 1(7) — ua(7 dx+// a(z,u1, Vui) — a(z,u1, Vuz)] - V (u1 — u2) dzdt

(4.108)

In the last inequality we have used assumptions A2)—i), A3) and A4),the
latter with a suitable choice of Ly, > 0 depending on the norms || X ||,

| X2|loo- From (4.108) we obtain

1
2

2 dt

(Lb+ )// w1 — ug|? dxdt+—/ X, (£)

\ul—uz| dxdt + — // |[Vu, — Vu2| dzxdt

where [y is the constant in (4.12).
Finally, recalling A2) — iv) we get that, for every 7 € (0,71,

;/RN (ui(1) — UZ(T))2 dr + 620//7 IVup — Vu2|2 dedt

< U X1 (1) — Xo(1)[? dt+// lun — uo|? dadt] .
0 Q-

By (4.110)) and Gronwall inequality, we conclude that

t
Jua(t) = wa®) vy < Cs [ Xa(s) = Xa(o)] ds,
0

for any t € (0,7]. By (4.111) and (4.110) we obtain

// |Vuy — Vug|* dadt < 06/ X1 (t) — Xo(t)|* dt
- 0

,/RN( 1(7) —ua(r da:—l—// a(z,u1, Vur) — a(z,ur, Vua)] - V (u1 — u2) dadt

(4.109)

(4.110)

(4.111)

(4.112)
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for any 7 € (0,7]. Using (4.112]) in (4.106) it follows that X;(¢) = Xa(t) for
all ¢t € [0,T]. Then, inequality (4.111) implies that u; = u; a.e. in Q. This
concludes the proof.

g

4.4 Discussion

In this chapter we presented well-posedeness results for a coupled system
of nonlinear differential equations. The coupling is realized in a non-local
form, and L? initial data are considered for the parabolic equation. The
strategy adopted in order to prove our results relies on a preliminary study
of the pseudo-parabolic approximating problem, and several a priori esti-
mates of the different quantities in object. The study here presented has to
be regarded as the starting point of a more general on-going work, which
takes in consideration L7 initial data, with o € [1,2]. Further perspectives
include the case of a bounded domain  C RN as the spatial domain of the
investigated system.
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Chapter 5

A hybrid model for collective
motions under alignment and
chemotaxis

In this chapter we propose and study a hybrid mathematical model of
collective motion under alignment and chemotaxis effect. In particular,
the alignment term has the form of Cucker-Smale [10], seen in Chapter
whereas the chemotaxis equation is based on classic Keller-Segel model
[72]. The proposed model is then studied both from an analytical and a nu-
merical point of view. From the analytic point of view we prove, globally in
time, existence and uniqueness of the solution. With respect to the previous
Chapters, we also investigate the asymptotic behaviour of the solution. A
comparison between the analytical findings and numerical results concludes
our study.

5.1 Chemotaxis: the Keller-Segel model

It is well known that the movement of living species is influenced by
the environment they live in. In general, the reaction of an organism to an
external stimulus is called tazis. Different types of taxis can be mentioned,
for instance phototaxis refers to the response to variation in light intensity,
aerotazis if the variation concerns oxygen concentration. In this chapter we
are interested in chemotaris: the influence of chemical substances on the
movement of mobile species. In particular, if the organism is driven away
from the source of chemical signal, we have negative chemotaxis and the
chemical substance is called chemorepellent. On the contrary, we have pos-
itive chemotaxis when the chemical factor, which is now a chemoattractant,
tends to attract the organism. In multicellular organisms, chemotaxis of
cell populations plays a crucial role throughout the life cycle. Starting from
embryogenesis, it takes part in organizing cell positioning, for example dur-

115
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ing gastrulation [11]and patterning of the nervous system. In the adult, it
directs the migration of immune cells to sites of inflammation [73], and the
same mechanisms occur in cancer growth, allowing cancerous cells to move
and develop faster than healthy ones [74].

Before presenting our model, we introduce the mathematical modelling
of chemotaxis, exploring the most classical model to describe collective mo-
tion of cell, proposed by Keller and Segel [72], [75].

Keller-Segel Model

The most famous model of partial differential equations was proposed in 1970
by the mathematicians Evelyn F. Keller and Lee A. Segel. They followed
a macroscopic approach, where the behavior of a population in considered
as a whole, despite of a microscopic one, which focuses on the irregular
movements of a single member. Their model was elaborated to describe
the aggregation behavior of living organism like Amebae Dictyostelium Dis-
coideum. The hallmark of these eukariotes is their tendence to aggregate
under food restrictions. Once food resources are over, they emit a chemical
signal, called cyclic Adenosine Monophosphate (cAMP), which attracts the
other amoebae. After the aggregation process, they differentiate to form a
multicellular organism, where individuals maintain their integrity, and move
on slime toward light. The original techniques used to understand the be-
havior of Dictyostelium, are currently being used to understand phenomena
in other domains of science, such as in the study of angiogenesis and athero-
genesis.
Consider a cell population ¢(x,t) and a chemoattractant u(x,t). In the orig-
inal form of Keller-Segel model, authors distinguish between different types
of chemical substances, and the model was given by a system of four equa-
tions. Further semplifications allowed the problem to be reduced to the two
equations we present.

In the following we derive the chemotaxis equation following the ap-
proach in [76]. Many further approaches, like stochastic and discrete meth-
ods, have been, as it is reviewed in [77].

We consider a cell population ¢(z, t) and a chemoattractant u(z,t) which
give Let V be an arbitrary fixed region in R, The principle of mass conser-
vation states that the change of mass in V is equal to the rate of flow J of
material across OV, plus the material created in V:

8/c(ac,t)dv:—/ Jc‘nds—i—/chv,
ot Jy v 1%

6/u(m,t)dv:—/ J“~nds+/Q“dv
at Jv ov v

where n is the outward unit normal to V and Q°/* represents the source of
material, depending possibly on ¢/u, x and t. Using the divergence theorem,

Moits.  Meuc:
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5.1 Chemotaxis: the Keller-Segel model 117
we have
0
% VI Qdv =0, (5.1)
v Ot
0
I V.3 Qudy =0 (5.2)
v Ot

Since the equations have to hold for arbitrary V', then the integrand
must vanish, giving the continuity equation

da a a B
a%—V-J =Q a=cu

To characterize the flux and growth terms, authors made the following
assumptions for the concentration of the chemical substance u and the den-
sity of cell population c. For equation , they assumed the total number
of amoebae to remain relatively fixed, thus Q¢ = 0. A reasonable form for
the flux term J° is

J¢=-D.Ve+ D, Vu

which captures two important aspects of the movement of the species. The
term —D.Vc with D, > 0 says that the organisms avoid increasing concen-
trations of their own kind of species. The second term D, Vu with D, > 0,
illustrates the positive chemotaxis phenomenon, and can be interpreted as
the movement of individuals from low to higher concentrations of u. For
equation , J" is supposed to follow the classic Fick’s law J* = —DVu,
with D constant diffusion coefficient.

Finally, Keller and Segel assume Q" in the linear form Q“(c,u) = kic— kau,
where ki, ko > 0. With these two terms, they take into account a sponta-
neous production of chemoattractant proportional to the number of cells,
and a molecular exponential degradation if the chemotactic signal is not
produced by the cells. Then the Keller Segel model can be written as:

% =V . (D:Vec— D,Vu),
&Z (5.3)
En = DAu+ kic — kou.

In literature there exist several variations of ([5.3|), which differ in assump-
tions based on additional biological realism. Among these, we remember the
so called Minimal Keller-Segel Model

Merts. Mewe.
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% =V (MVC - X(Q U)V’LL),

t (5.4)
Ou =Au+c—u

ot

where x is called chemotactic sensitivity function and p mobility coefficient.
Typically, y is assumed to be linear in the species ¢, in keeping with the
notion that the flux of a species should be proportional to its density. We
write

x(c,u) = exo(u).

As already said, positive or negative chemotaxis can occur, and here the
coefficient x¢ distinguishes between the two situations: if xo > 0, we are in
presence of a chemoattractor, whereas if xo < 0 the chemical signal behaves
as a chemoinhibitor. We observe that, in case of xg = 0, 1 reduces to a
pure diffusion equation, and chemotaxis is not taken into account.

Parameter p is the analog of the diffusion coefficient for nonliving species
and, in general, it can depend on space, density of the living specie consid-
ered ¢, concentration of the chemical signal u, or a combination of these
variables. Whether it is constant or not, typically it is g > 0.

5.2 The basic mathematical model

Let consider a group of n particles. We assume that the force acting on
each particle is given by an alignment term, proportional to the differences
of velocity with the other particles and weighed on the distances, and by
a chemotactic attraction towards higher concentration of a chemical signal
f(z,t), produced by the particles themselves. Typically, this last force is
proportional to the gradient of the concentration V f (see [78] for biological
backgrounds, and |76, [79] for some mathematical references). In our hybrid
description, while particles are considered discrete entities, endowed of a
radius R describing their circular shape, the signal f is supposed to be
continuous and its rate of change in time is equal to a diffusion term, a
source term depending on the position of each particle, and a degradation
term.

To summarize our hypotheses, we write the following system:

Xj = Vi,
W=l L)+
i = e 2\T\Vi i i)
n — (1+ |X1R2J| ) (55)
| Ouf = DAf+9x —nf,

Mients. Meue.
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5.2 The basic mathematical model 119

where 3, o, v, D and n are positive constants.
Initial data are given by initial position and velocity for each particle:

X(0) = Xo, V(0) = Vo,
with X = (x1,...,Xn5), V= (V1,...,Vy), and by the initial concentration
of signal, that we assume

f(x,0) == fo =0. (5.6)
We note that equation 3 can be analytically solved making the classical
exponential transformation:
f=eu,
with u(z,t) solution of
Owu = DAu + e"gx,
and u(x,0) = fy. Denoting with

1 ||

[(x,t) = Wef 1Dt

the fundamental solution of the heat equation on R, the unique solution

of (5.5)3 (see [58] and Appendix for details) can be written as
t
fz,t) = (T(x,t) * fo)e ™ + e"t/ D(z,t —7) % (" gx (z,7)) dr
0

t
= / e M=) / Nz —2z,t—7)gx (T, 7) dzdT, (5.7)
0 n

where * is the convolution operation in the variable x, and fy = 0 for our
initial condition .

In the following, for analytical and numerical simplicity, we will discuss
the case of n particles in R?. Moreover, analytical results in RY have already
been discussed in the previous chapters.

For the source term gx in the chemical signal equation, we assume

gx(z,t) =&Y o (jo1 — zpl) ¢ (lra — 2j0)) , (5.8)
j=1

where £ > 0, = (x1,22), X; = (xj1,%;2) is the position of j—th cell, and
¢ : R = R is a nonnegative bounded function, ¢ € C! ([~R,R]). This
function is intended to take into account for the production of chemical
signal due to each cell.

Mot Mee.
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First, if z = (x1,22) and & = (%1, Z2), from (5.7)) and (5.8)) we can thus

write

Flar, st 52/4“_TD/¢ =Tt =) (@ — 2 (7)) di

/Rgf)(ﬂfg — Zo,t — T) © (EQ — l‘jg(T)) d{fg dT, (59)

where, for the sake of notational simplicity, we denote with ¢ : Rx (0,7] —
R the function given by

22
¢ (x,t) :=e 4Dt

Equation (5.9) can be rewritten in a more compact way, introducing
W:E— CRx(0,7]),

with F := {¢ € C(R): [ip(z)| < Ceh*® with C > 0,h < ﬁ} defined by

W () (1) = /R @gﬁ(w—y,t)w(y) dy. (5.10)

We observe that (5.10) is the unique classical solution to the parabolic
Cauchy problem, given by

AW () (x,t) = DLW (V) (x,1), (x,t) € R x(0,T],
W () (z,0) = ().
Hence, can be rewritten as
Feraat 52/ A7) (W () (1 — 1 (1), — 7)

W(p) (x2 — xjo(7),t — 7)) dT.

(5.11)

Before computing the chemotactic gradient Vf = (01f,d2f), we observe
that for any ¢ € E, (z,t) € R x (0,77, it follows

0,7 (1 /W(—g;m—y,o)mmy
/ B
N, ).
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Thus

OLf (w1, m2,t) =€) / e (W(P) (21 — wju (7)), t = 7)
j=1"9
W(QO) (.%'2 — .I'jQ(T),t — 7')) dT,
Ouf(ar,a2.6) =€) [ e (W(e) (o1 — (7)ot = 7)
=170
W(¢') (zg — zjo(r),t — 7)) dr.  (5.12)

Finally, substituting (5.12)) into (5.5 we can summarize, fori =1,...,n,
the following system:

B 1
i1 = — —ve (V1 — vin)
n ; (1+ gzl

+Zl/0 K(t — 7') (W(QO/) (:Eﬂ(t) — :Ejl(T),t — 7')
. W) (wia(t) — xjo(7),t — 7)) dr,
1')2'2 = gz ( ! )U(’Ujg —'UiQ) (5.13)
j=1

14 Pl
N 2/0 K(t—7) (W(g) (xa(t) — 21 (7),t — 7)

W(¢') (zia(t) — zj2(7),t — 7)) dr,

Tl = Vi,

Tio = V;2,
with

K(t —7) :=~€e 1T, (5.14)

5.3 Local existence and uniqueness of the solution

5.3.1 Preliminary results

In this section, using a fixed point argumentation, we prove for ({5.13)
the local existence and uniqueness of solutions. In the next section, the
result will be extended to a global result in time. For analogous results in
the general case of R, the reader is referred to Chapters

First, let y = (v1,...,Vpn,X1,...,X,) the solution vector. We rewrite
in a compact form. To this end, let introduce the following vectors

q:= (q1,92),

Mosts. Meye.
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with
n
1
q1,i1 = é ‘x . | o.('l)]l — ’Uil), (515)
"= (1 + S )
n
1
q1,i2 = s P (vj2 — vi2), (5.16)
s (1 + g )
q2,i1 ‘= Vi1, (5.17)
92,2 = Vi2, (5.18)
and
P := (P1,P2),
with

pri = Z W) (za(t) — w1 (1),t — ) W(p) (wia(t) — wjo(7), t —7),
’ (5.19)

priz = Y W(p) (@in(t) — zju(r),t = 7) W () (wia(t) — wja(7), t — 7),
j=1

(5.20)
P21 = P22 = 0.

With the introduced notations, system (5.13]) can be written as
t
§=aly)+ [ K(t-rplt -y (0).y(n)dr,
0
with K(t — 7) given in (5.14). Integrating from 0 to ¢ we have
t t s
y=vo+ [ avrar+ [ [ K(s=p(s - my(s)y(r)) drds,
0 0o Jo

with yg = y(0). Then, interchanging the order of integration in the second
integral, we have

Y =yo+ /0 [q<y<7>>+ [ K= pts — oy (s).y(r)) ds| dr. - (5.21)

or

¥ =Yo+ /0 [a(y(r)) + h(t, 7, y(r))] dr, (5.22)

Medts. Heye.
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with
h(t, 7 y(r /Ks—T (s — 7, y(s), y(r)) ds.

For a discussion of such type of equations see, for example, [80, [81], and also
(82 183].

Now, let a,b > 0. We consider the set

S=A{(t,71,8,y):0<7<s<t<a,ly(t)—yo| <b}.
Since q(y) is continuous on S, we can define

My = max|q(y)|- (5.23)

Then we prove that K(s — 7)p(s — 7,y(s),y(7)) is L' (,t) with respect
to the variable s, in order to prove that h(t,7,y(7)) is continuous in S. It
is enough to demonstrate the integrability around s = 7. From ([5.19) and

(5.10) it follows

p1in(s — Z W(e ) (zi1(s) —zj1(7), s —7)

W(p) (wia(s) — xja2(7), 8 = 7)

(@i ()= (-1

4D(s—T)
= )dy
Z/ VArD(s — T) ()i

e 4D(s—T)

)dga.
R 47 D(s— 1) #(§2)di2

Considering the change of variables

ri1(s) —zj1(7) =1 Tio(s) —xj2(7) — G2
4(s J— T)D - 4(s ]— T)D =2 (524

recalling that [ e dz = /T, it follows

1 " 22 —22
prats = ry@O ¥ < 23 e an [ i lellg |19l
j=1

=n H(pHLI(R) HSD/HLl(R)
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The same holds for py ;2 in (5.20)), so we can write

[p(s — 7, y(s), y(7))] < \/n (2 (2l ey ||sof||L1<R))2) (5.25)

=V 2”3 HSOHLl(R) HSOIHLl(R)a (527)
and

K (s = )| [p(s — 7,5(), ()] < 7€ V203 || oy 19| o ey -
(5.28)

Now K(s — 7)p(s — 7,y(s),y(7)) is continuous in y and, from ([5.28), it is
L(7,t) with respect to the variable s, so h(t,7,y(7)) is continuous in S,
and we can define

My = max |h(t,7,y(1))]. (5.29)

5.3.2 Local existence and uniqueness

To prove local existence and uniqueness, we want to obtain a Lipschitz
condition in S for the functions q and p with respect to the variable y.
First, because of q is C' on S, the Jacobian matrix [0q/dy] is bounded on
S uniformly in 7, so q satisfies the Lipschitz condition

la(y1) —a(y2)| < Li|y1 — yal, (5.30)

with L; positive constant and (¢, 7,s,y1), (t,7,8,y2) € S.

To obtain a Lipschitz condition in S for p with respect to y, we prelim-
inary observe that, for any ¢ € E, (x,t),(2',t) € R x (0,T], by definition
(5.10) immediately follows

W () (x,8)] < W”“(“‘”/e—%z — (1] 11 @y- (5.31)
V)

Moreover, using the mean value theorem, and the estimate of the derivative
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of function I' [58], we obtain
W (@) (2,t) = W () (2/,1)] < /R D (@ =y t) =T (2" —y,t)| [ ()] dy

x—a lul?
§||¢HL1(R)‘ : ‘/Re V4Dt du

& — o]

<2V D7 |[Y]| 1 gy VA

(5.32)

Let now focus on the component p;;; of p. We observe that, for any
(t,7,5,y1), (t,7,5,y2) € S, denoting with X, X2 the variables belonging
respectively to y1 and y2, we obtain

Ip1i1(s — 7, ¥1(8), y1(7)) — pri1(s — 7,y2(8), ya(7))|

<> |We) (2 () = 2 ()5 = 1) W) () (5) = 23 (7). 5 = 7)
=1
—W(e') (a:g) (s) — a:ﬁ) (1),s — T) W () <a:g) (s) — a:g) (1),8 — T)’

= an (’W(SOI) (xg) (s) — 1‘511) (1), — 7')’ ‘W(@) (xg) (s) — xg) (1),s — T)
j=1
W) (25 () = 2F (7)s = ) |+ W) (2 (5) = 23 (7),5 = 7))
}—W(@') (:cff) (s) — :L'ﬁ) (1),s — 7') +W(e) (mﬁ) (s) — :cﬁ)(T), s — 7') D
. 2\/D7WH(PHL1(R)H(PIHL1(]R)

<> T (|5 ) =2 (9] + |3 (1) = 23 ()
+[of (5) =2l ()] + 217 (1) 2l (7)]) (5.33)

The same can be done for p; 2, so p satisfies the following condition in y
on S:

P(s — 7,¥1(5), ¥1(7)) — P(s — 7, y2(s),y2(7))|

Loy (ly1(s) — y2(s)| + |yi(7) —y2(7)]), (5.34)

<
s—T

with Lo a suitable positive constant that incorporates previous constants,
and (Ta S, y1)7 (Tv S, Y2) €S.

Now, we fix

b 1
T = mi 5.35
min a’M1—|—M2’L1—|—2L2M]’ ( )

Mosts. Meye.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

126

with L, Lo Lipschitz constants in (5.30), (5.34),M1, Ma given by ([5.23)),
(-29), and

_ [TTIEG)
M._/O N (5.36)

Then we prove the following

Theorem 35. Equation (5.22) has a unique solution on [0,T], where T is
defined in (5.35)).

Proof. Theorem [35:
We consider the functional space

B={yeC’(0,T)): |ly = yollco < b},

where
lly —2llco == sup |y(t) —z(t)],
0<t<T
and we define the functional A : B — B as
¢
AW)®=vo+ [ aky(r)) + hit.my(7)] dr

To see that A : B — B notice that y continuous implies A(y) continuous,
because q and h are continuous, and that

|A(y) — yollco = sup [A(y)(t) — yol
0<t<T

< sup /0 (lay(m)| + (¢, 7,y(7))]) dr

0<t<T
< (Ml + MQ)T < b7

where we have used (5.23)), (5.29) and, in the last inequality, (5.35). To see
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that A is a contraction mapping, notice that if y; and ys € B then

A1) ~ Al2)llco = sup ALy (D) - Aly2)(0)

< sup /0 (la(y1(r) — aly2(7))|

0<t<T

¢
+ / (K (s =)l [p(s = 7, y1(s), y1(7)) = p(s = 7, y2(s), y2(7))|) ds dr

SEm €3 SUD /[L1 y1(7) = yalr |+L2/ = [K(s = 7)|
(Iy1(s) = ya(s)| + [y1(7) = y2(r)|)] ds dr

t t
< LT 91 = Valleo + 2Lz |1 = yal o sup / / K (s — )]
<rJo Jr

t—T1
= (L1T+2L2 sup / / d2d7> ly1 — y2llco
0<t<T
+oo
<L1T+2L2/ / dsz> ly1 = y2llco

= (L1 +2LoM)T |ly1 — y2llco -

dsdr

1
Vs—T

From ([5.35) the constant (L1 + 2LoM)T € (0,1). The Banach-Caccioppoli
fixed-point theorem completes the proof. O

5.4 Global existence of the solution

To obtain global existence for we will use a principle of continua-
tion of solutions. We will prove that bounded solutions can be continued to
t = +00. The following general result, adapted to equation , provides
a condition for the continuation of solutions.

Proposition 36. Let y(t) be a solution of (5.21) on an interval [0,T), if
there is a constant P with |y —yo| < P on [0,T), then there is a T > T
such that y(t) can be continued to [0,T].

Proof. Proposition [36:
We show that lim;_,7— y(¢) exists, so we can apply Theorem [35| starting at
t =T, and this completes the proof.

Let ¢, be a monotonic increasing sequence with limit 7', and let

U={(t,1,5y):0<7<s<t<T, |y —yo| <P}.

We prove that {y(t,)} is a Cauchy sequence. If t,, > t,, from (5.21) we
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have

/ (s—=7)p(s—7,y(s),y(7)) ds| dr

[ )+ " k(s - 7)P(s — 7, y(5),y(7)) ds] dr

K(s—1)p(s—71,y(s),y(7))ds| dr

K(s—71)p(s—1,y(s),y(7))dsdr

/ / (s = 7)p(s — 7,y(5),y(7))| dsdr

tm tm tm
+¢;L[ Hﬂsﬂp@ﬂySLYUDM%dT+A;IMYW»hh

In the last inequality the third integral tends to zero as n, m — 400, because
q is bounded on U and t,,,t, — T. Also the first two integrals converge to
zero as n,m — 400, because of ([5.28). The proof is completed. ]

+-qu@v»m

Now, from Proposition we obtain the following
Theorem 37. Equation (5.22) has a unique global solution for all t > 0.

Proof. Theorem[37:
First, equations ([5.15)—(5.18) imply

lquit] < 28lyl, gl < 26yl
lq2,i1| <1yl a2i2| < lyl,

so that

lal < V2N (452 + 1)yl
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Then (5:21), (5:25) yield
t
iy] < Iyol + v/2n(@F £ 1) /0 y (7)) dr
E YK (s — 1)
NowS / //’ dsd
+ V203 ol gy €] 1 gy o) T sor T
t
~ lyol + V2@ + 1) [ Iy (r)]dr
0
EET IR ()
+v2n3 %) o' // dzdr
el iy 1] | 21y o /o NZ
t
g\mWW/ ly ()] dr
0
K ()]
+v2n3 %) o' // dzdr
el iy 19| o1y o /o Jz
t
= Ivol+ V2P 1) [ 1y(o)ldr+ V2 gl 191 ey

where we have set z = s — 7, and M is given by (5.36)).
Now, for each 0 <t < T,

t
¥1 < (Iyol + MV203 Il 1y ||| oy T) + V20482 + 1) /0 ly(r)ldr,

so that

12 (1ol + MV el 19y ) V7

by the Gronwall’s inequality. Since the solution remains bounded, for Propo-
sition [36] it can be continued to all [0, +00). O

5.5 Asymptotic properties on the linearised sys-
tem

In this section we prove some asymptotic properties on the linearised
form of system . To simplify some computations and the following
numerical simulations, here we consider the case in which the source term
in the chemical signal equation is given by a characteristic function on a ball
of radius R centered on each particle, as in [2], [3], where R represents the
cell radius. Namely, we assume

gx =&Y XBx;r) With €>0, R >0, (5.37)
j=1

Monts. Meye.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,
discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.
130

and

[ 1, if zeB(xj,R):={z:]|lz—xj|| <R};
XB(x;,R) _{ 0, otherwise. (5.38)

With similar computations to those of the previous section, from ,

(5.37), we get

_ (#1=71)2+ (w9 —79)?

n(t—7)e 1G=—m)D
f(z1,22,1) 52/ // - Il —1)D dz dzo dr.
XJ T

(5.39)

Performing the change of variables y = Zo — j2(7), we express the
chemotactic gradient V f = (91 f, 02f), obtaining

+R (zo—wjo(1)—F2)?
81f(x1,$2, 52/ 47_‘_ t— T D/ 4t-m)D

e I(—7)D —e 4(t—7)D dZo d,

(5.40)

and similarly we can proceed for 0y f (1, z2,1).

Hence, substituting (5.40) into (5.5); we can summarize, fori =1,...,n,
the following system:
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/ n
B 1
vp == Z oo (Vi1 — vit)
n J=1 ( + le_xj‘ )

2
t n TR (mip(®)—zjo(r)—&2)> _(zil(t)*zjl("')* RL%)
_/ C(t_T)Z/ e I(—7)D e I—7)D
0 —-R

j=1
(e <t)—zj1<f)+\/@)2

—e =)D diy dr.

By 1
2 EZ = 5 (Vj2 — vi2)
=1 (1)

2
/t z": +R (wp(®)—zj1 () —#1)> (112(’5)*%’2(7)* RQ*i%)
_ C(t _ 7-) / e 4(t—7)D e 4(t—7)D
0

j=1""1
(zi2(t)*zj2(7)+\/m)2
_ei 4(t—7)D d,fl d7'7

Ty = v,

Tio = V;2,
(5.41)

with
yEe )

Ct=7 = =D 5.42
(t—7) y (5.42)

We are interested in the equilibrium points that satisfy the condition:
vi(t) =0, Vi & X;(t) = Xeq = constant, Vi. (5.43)

Equation (5.43) means that all particles are in a same position for all times.
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Now, to make a first-order approximation of (5.41), we consider the
following Taylor expansions around points (5.43):

1
F1 (Xj — X, 'Ujl — ’Uﬂ) = 3 (Ujl — Uﬂ) (544)
(1 |xj_x2| )
+
=vj1 — v1; + p1(X; — X4, V51 — vi1), (5.45)
 (@ig()—wjo(r)—9)?
Fy (t - T, 1177;2(15) — xjg(’]'), :i‘Q) =e 4(t=7)D (5.46)
72
:6_4(’5_27)D + pQ(t - T, xig(t) — ij(T), .’2'2), (547)
(m(t)—zjm)i\/@f
F3 (t - T, .CCil(t) - .%'jl(’l'), 1‘2) =e 4(@t-7)D (5.48)
R? 32 R? 332 R2 — 72
- e 2 ) o
—=e 47D e 47D 20— D (zi1(t) — zj1(7))
+p3(t - T, xil(t) — le(T), .fg), (549)

where the functions p; and p3 contain the nonlinear terms, while py contains
the linear and the nonlinear terms. Similarly we can treat equation (5.41))o.

From (5.44)—(5.49), we linearise equation ({5.41); in the form
3 n +R @3 R% 32
v = 23w () — va (1)) - / s / ¢TI WD /R~ 7

j=1 0

> (@i (t) =z (1) + za(t) — 2j1(7)) dig dr
7j=1

C(t — G- T>D +R /7
B Z Ujl ’Z),Ll )) —A ( tT_eT / — fL'% d$2

> (@a(t) —zj(r) dr

3 \

j=1
—fZ(W)—m(t))—/ Clt=m) Y (wal) —zu(r) d
J=1 0 7=1

with
Rr2
TR2C(t — 1) 1D
2(t—7)D

Clt—r1):= (5.50)
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Similarly it can be done for Vj. Finally, we obtain

=23 @l =) - [ Ct-1) Y walt) - oa(r) dr
j=1 0 j=1

e =2 Y (walt) —val) = [ C =13 @alt) —aa(r) dr.
=1 =1

Tyl = Ui,

Tia = V.

(5.51)

We are interested to establish the following time-asymptotic convergence

property of (5.51):

Theorem 38. Let

XCM(t) = ﬁ Xi<t>, (552)
im1

veu(t) == % vi(t), (5.53)
im1

position and velocity of the centre of mass of the system of n particles, of the
same mass, satisfying (5.51)). For t — 400, the following properties hold:

i) the velocity and position of all particles converge to the same values.
This position is their centre of mass (5.52));

ii) the velocity of the centre of mass (5.53)), tends to zero.

Remark 39. Theorem ensures a condition of time-asymptotic flocking
such as stated in Definition [I| Moreover, we have also the stronger condition
that all particles converge asymptotically to their centre of mass and the
velocity of the centre of mass decays to zero.

Next propositions and lemmas will lead to the proof of Theorem at
the end of the section. First, it is convenient to introduce the centre of
mass system, in which equations become a nonautonomous system
of ordinary differential equation, decoupled with respect to the i-th particle
and with respect to the two components of each position and velocity vector.
Then the equation of the centre of mass can be studied apart.

Starting from (5.52)—(5.53)) we define the new variables
X; 1= X; — XCM, (5.54)
V= Vi — VCM. (5.55)
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In variables ([5.54)—(5.55)) the equilibrium condition (5.43|) becomes
()_(iu‘_’i) = (0,0), Vi = 1,...,TL, (556)

moreover the following identities hold:

> % =0, (5.57)
i=1
d vi=o. (5.58)
=1
If VCM = ('UCMLUCMQ) and XCM = (:ECMl,l‘CMQ), fl“OHl 1) we have
oM = Zvil = ZZ(Ujl(t) —v;1(t))
i=1 =1 j=1
1 n n
- — Ct— i1(t) — d
L] G- walt) —wp(r) dr
i=1 j=1
18 <&
=—= t) — nva (t
2o (8) = mwia ()
1 [t -
-= t— i (t) — d
A C(t—7)Y_ (nza(t) — nzow (1)) dr

_ %g(n%cm(t) — n2uean ()

= /O 'Ot — 1) (nZresn(t) — Pz () dr
_ /0 'Ot = 7) (nacan (8) — nacann (7)) d (5.59)
where we have used definitions f. The same holds for vapmo:
VoM = — /Ot C(t —7) (nwema(t) — nzome (7)) dr. (5.60)

In the variables (X;, V;), taking into account ([5.59))—(5.60)), equations (5.51)1 3

become

Medts. Heue.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

5.5 Asymptotic properties on the linearised system 135

Uil = —0cm + iZ(Uﬂ(t) — (1))

- /Ot Ct—r) Z (@i (t) — Zj1(7) + zem (t) — zewn (7)) dr
j=1
_B (5 5
= E Z’Ujl(t) — szl(t)
j=1 Jj=1

t n
— / C(t —7)(nzin(t) = Y _ Zj1(7) + nwen (t) — nawenn (1)
0 =
—nzowmi (t) + nxemi (7)) dr
t
= —5@1(15) —-n (/ C_'(t - 7') dT) .fil(t),
0
where we have used 7, and

i1 = —ZTcoM1 + Uil +veMm1 = Uil.

Similarly for ;5 and Z;o.
Finally, we can write the following system:

vi1 = —PBoa(t) — g()za(t),

1?1'2 = —Buin(t) — g(t)Ts(t),
Ti1 = Vi,

(5.61)
Tio = Uja,

where we denote for simplicity

g(t) == n/o C(t—r)dr. (5.62)

Now we will prove the uniform asymptotic stability of equilibrium
providing a suitable Lyapunov function for system . For simplicity,
system can be written, for each particle and for each component, as
a planar system in the variable y = (V, X):

{ V=—pV—g(t)X,

Y_v (5.63)

with g(¢) given in (5.62)).
In relation to (5.63) we prove the following two propositions.

Proposition 40. Fized a t > 0, the system (5.63), admits a Lyapunov
function U(t,y) with the properties:

Mot Mee:
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ko ly|> <U(t,y) < ki |y[*; (5.64)

: oU U . OU . )
Ul(t,y) En + aVVJr 8XX < —k3lyl|"; (5.65)

for all t > t, where k1, ko, and ks are positive constants.

Proof. Proposition[{0: Let t > 0, we define the Lyapunov function

Ut,V,X) = (V2 + XV + g(t) X?)(t),

where
_g@®)
Y(t)=e ¢, (5.66)
t +oo
g:=infg(t)=n [ Clt—7)dr, G:=s pg(t):n/ C(t—7)dr,
t>t 0 t>t 0
(5.67)
1 :=infe = eii, ) =supt =e L, (5.68)
I 2 t>1
_9@®)
= . e 9
1 = sup || = sup g, (5.69)
t>1 1> 9

- 2
k := min [w, g, 726Q§ — ] ) (5.70)
YooY 2990 + (Y + BY)?

Similar functional can be found in [84]. In the following equations we con-
sider the inequalities:

XAV AV
R T

Then, because of g(t) is an increasing function, v (¢) is nonincreasing, so

) <0, (5.71)
and finally
. . _e) g _at)
Vg +yg=—e Tt
Lo [ gt _
=ge ¢ <1_g;)> <0, Vt>t. (5.72)
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To prove the second inequality in a) we consider
X2+ V2 —
T Y)Y

- [<1+§> VZ4 <g+§> X2}¢§k1 lyl?,
k1 := max [(1—1—5) ¥, (9"‘];) 14 :

To prove the remain inequality in 1. we consider

Ut,V,X) < <V2 +k

where

—X2 2
ULV, X) 2 V2 + g X? - kw%v

_ ki kv
v e-) e (o)

(0 gy
>gm VIS + XI55 2 Ryl
where
ko := min i ﬂ
2 .= 927 9 .
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To prove point 2. we consider the following inequalities:
Ut,V,X)=)(VE+kXV + gX?)
+ 9 [2V(=BV — gX) + kVZ + kX (—BV — gX) + §X* + 29X V]
= (4~ 280+ k) V24 (ki — Bk0) XV + (g + 94 — kgv) X
<EmEm (~28¢ + k) V2 + (W . ,Bk;zp> XV — kg X2
< (289 + k) V2 + (K[9| + BRv) [X||V] - kg X3

< (<286 + k) V2 + (k) + BkD) |X||V| - kg X

— _ 2
_ kg |V|(¢+Bw)
= (- k) V- 2= | |X| - ———~
(=269 + kv) 5 |1 70
— ~\2
v, HE)
2 + 291
k(T4 00)
_l’_
< | 289 kY + I
299 2

kg
SED — <5W2 + 2X2> < —kslyl?,

where

k3 := min [&b, k:g;/}] .

This completes the proof. O

Starting from Proposition [40] we can state the following

Proposition 41. The equilibrium point (V,X) = (0,0) of the linearised
system ((5.63) is globally uniformly asymptotically stable with exponential
rate of convergence.

Proof. Proposition [41: Inequalities (5.65) and (5.64) imply that U satisfies
the differential inequality

U< —@U, Vi >t
k1

By the Gronwall’s inequality,

U(t,y (1) < U (Ly (B) e ta/F)0=0,

Moits. Meye.
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Then, using again (5.64), we have

1/2
v < (TEX) T <

s _ 1/2
. (m ly ()] ek(’“/'“)(t a) _ <k‘1>1/2 (D) e~ (ka/ @R D)
2

(U(t y (£)) e~ hs/R)t= D) 2

ko

ko

Hence the conditions for the uniform asymptotic stability are satisfied with
exponential convergence. The proof is completed. O

Remark 42. Returning to system (5.61)), Proposition can be applied for
each particle and for each component of the position and velocity vectors.
Recalling transformations ((5.54)—([5.55)), this proves the first part of Theorem
138

Now, to prove the second part of Theorem we investigate equa-
tion for the motion of the centre of mass. Taking into account that
Xomi = Voui, it assumes the form of a Volterra Integro-Differential Equa-
tions (VIDESs) of the type

ot) = — /0 Cet— ) / ' o(s)dsdr. (5.73)

with
_c3
e—CQ’lLe m

2 Y

c1, co and c3 being positive constants that arise from and -
The same holds for equation (|5 .

While existence and uniqueness of the solution of follow from
classic techniques, here we want to study its asymptotic properties, which
give the asymptotic behaviour of the centre of mass. By Dirichlet formula,

equation (5.73) becomes
t s
= —/ / c(t — 1)drov(s)ds,
0 Jo

(5.74)

or equivalently
t t
_ / K(t, s)o(s)ds, K(t,s) = / cwydu.  (5.75)
0 t—s

The analytic form of the kernel K is not known. Observing that lim u?c(u) =
U—00

Mogts. Meye.
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0, we can write K(t,s) = F(t) — a4+ a — F(t — s), where

Flt) = /0 e(u)du, (5.76)

and

t—o00

a = ale, e, c3) = /000 c(u)du = lim F(t). (5.77)

With this notation equation (5.75) can be written in the form (VIDEs) of
the type [85, eq. (9.9)], i.e.

o) = (1) + /0 B(t — s)v(s)ds, (5.78)

with
F(t) = —(F(t) — ) /0 o(s)ds, (5.79)

and
B(t) = F(t) — a. (5.80)

Our aim now is to apply the theorem by Miller and Grossman in [85, Th.
9.2], that we report here adapted to a scalar equation of the type ([5.78).

Theorem 43 (Miller and Grossman). Assume that, in equation (5.78),
the kernel B is in L'(0,00). Then v(t) — 0 whenever f(t) — 0 if and only

if

w(z)=2z— = B(u)e ™ *"du # 0, Re(z) > 0. (5.81)
0

The following results are then the fundamental premise for applying
Theorem K3l

Lemma 44. The function B(t), defined in (5.80) with F(t) given in (5.76),
satisfies (5.81).

Proof. Lemma[{4):
For z = 0, we have w(0) = 0+°o B(u)du < 0, since F(t) < o. When z # 0,
according to the elementary properties of the Laplace transform, we get

() = —/+°°<>—Wd Leo Lo
wliz)=2z ZO clu)e u Z—ZSOZ,

with ¢(z) = 22 — 0+°° c(u)e”*"du + «. Then, with z = x + iy, we have
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o(2) = ¢(x,y) = a(z,y) +ib(x,y), with
+o00
a(z,y) = 2=yt +a— / c(u)e " cos(yu)du
0
400
b(z,y) = 2xy +/ c(u)e” " sin(yu)du.
0

Consider the case > 0, y > 0. Let p > 0 be an arbitrary constant, denote

by T = % and § = %, and define
Ss e =2 22 2_1 oo —/PEu ~
a(z,y) = —y“ + c(u)e cos (y/pyu)du
P PJo

) . ~ (5.82)
b(z,y) =22y + , /0 c(u)e ™ VP¥ sin (/pyu)du

Then a(z,y) = 0 < a(Z,§) = 0 and b(z,y) = 0 < b(Z,§) = 0. Taking
into account that

“+oo
/ c(u)e” " cos (yu)du| < a, Yz >0, y € R,
0

and

+oo
/ c(u)e™sin (yu)du| < o, Yz >0, y € R,
0

we deduce that o
P <alzg) <it -5 +2-,
p

(%
b(j7g) > 2572? - Ea

and hence a(%,7) > 0 for 0 < § < &, and a(%,9) < 0 for § > , /2% +2%,

(e}

whereas 5(@,@) > 0 for y > 27 This assures that @ and b may vanish
simultaneously only in a region of the g plane which, by choosing p properly,
can be made small and included in a square having side of length 1. An
example of this region R4 has been drawn in Figure for specific values
of o and p. Finally, by plotting a(Z,§) and b(Z,§) for 0 < & < 1,0 < § < 1,
we can verify that it definitely results that they never vanish at the same
time. Hence, also a(z,y) and b(z,y) are never both zero at a point (z,y)
and is true.

The case x > 0, y < 0 can be treated analogously, since a(z,y) =
a(x,—y) and b(z,y) = —b(z, —y). O

Lemma 45. Assume that, in equation (5.78)),
i) there exists M > 0 and cq < co such that |v(u)| < Me®“?,
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Yo rrvey ey

Figure 5.1: R4 : vanishing region for @ and b defined in (5.82), bounded by

the curves y = \/@’ Yy = 2;;& and § = I.

24

where co is one of the positive constants appearing in the definition of kernel

B by (5.74), (5.76) and (5.80), then limy,— 1o |v(u)| = 0.

Proof. Lemma[{5: B
In the assumptions 7), the function f in (5.79) satisfies

F(0] < (0 - PE) (e - 1),

By the de 'Hospital rule,

1
: _ cat — : caqt
t—lg‘rnoo(a F(t))e Cyq tii-lgéo c(t)e ’

Then by recalling the expression (5.74) of ¢(t), the hypothesis ¢4 < co and

(B.77), we get )
lim f(t) =0. (5.83)

t—+00

By analogous considerations it can be shown that limy_, | o (F(t) — a)t? = 0,

so that

B(t) e L". (5.84)
Lemma together with ([5.83)) and (5.84) assure that all the assumptions
of |85, Th. 9.2] are accomplished, so that lim; 4~ v(t) = 0. O

Remark 46. Lemma [45( requires that the solution of is bounded by
an increasing exponential function. So, the class of functions involved in
this result is quite large and assures that any bounded solution of equation
, and thus of , vanishes at infinity. Nevertheless we want to
prove that this is true for any solution of .
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The following result, which generalizes Lemma considerably relaxes
the hypotheses on the function v(t).

Lemma 47. Assume that, in equation (5.78),
IMy >0 and n € N: |u(t)| < Moe™™". (5.85)
Then limy_, 4 v(t) = 0.

Proof. Lemmal{7:
If we multiply both sides of equation (5.78) by e~ ("9 and add and sub-
tract the quantity (n — i)cpe™ "=ty (1), we obtain

e_(n_i)CQti)(t) —(n— i)c2e—(n—i)cztv(t) — e—(n—i)cztf(t)

. t . .
— (n — i)ege” M7ty (1) 4 / B(t — s)e~(niealt=s) g =(n=i)easy ().
0

Denoting by v;(t) = e~("=De2ty(t), Bi(t) = e~ (=)' B(t) and
filt) = eI f(n), (5.86)

this reads

0i(t) = fi(t) — (n — 1)cavi(t) + /0 Bi(t — s)vi(s)ds. (5.87)

Now we want to prove that, for i = 0,...,n— 1, equation ([5.87) satisfies the
hypotheses of [85, Th. 9.2]. First of all we note that B; € L'[0, +00), for all
1=0,...,n— 1. Consider

+o0
z4 (n—1i)eg — / Bi(u)e **du, (5.88)
0

which, setting ( = z + (n — i)ca, becomes

+oo
¢ — B(u)e “du. (5.89)
0
In Lemma [44] ve have proved that the expression in (5.89) is nonzero for all
Re(¢) > 0, hence also (5.88) is nonzero for all Re(z) > 0.
Now consider f;(t). For i =1, from (5.85) and (5.86),

’fl(t” < (Oé — F(t)) (onenczt _ 1) 6_(n_1)02t.

ncy

According to the proof of Lemma it is easy to see that
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lim (o — F(t))em2te= =Dt — fim (a — F(t))e = 0.

t——+o0 t——+o0

Then, lim; 1 f1(t) = 0 and, in view of |85, Th. 9.2], we have lim;_, y o0 v1(t) =
0. This in turn implies that

M, > 0: |u(t)] < Myem—bezt, (5.90)

Now consider ¢+ = 2, and assume that holds. By analogous consid-
erations on fy(t) we obtain that IMy > 0 : [v(t)| < Mae™2e2t, Proceed-
ing further for ¢ = 3, 4,...,n — 1, we obtain that IM,,_; > 0 : |u(t)| <
M,,_1e?t, thus satisfying the hypotheses of Lemma with M = M,,_1 and
Cq4 = C2. O

Proposition 48. For any triple of positive constants c1, co and cs, the

solution v(t) of equation (5.73) satisfies limy_,4o0 v(t) = 0.

Proof. Proposition [{8
By integrating both sides of the VIDE in (5.75) we obtain the Volterra
€3

integral equation
t
—/ A(t, s)v(s)ds
0

with A(t, s) f [T, c(u)dudr. Observe that, since ¢z~ < Cg%, it holds

that c(u) < 42612 e, Therefore, for 9(t) = e~ 2t (t), the following inequal-
¢3¢

ity holds.

4
6(8)] < e~ u(0)] + / 2(1-9) / / A1 o gur|i(s)|ds,

hence,

~ 461
t) < +
|U( )| |v( )’ 630362

t
| atsyits)as
0

where A(t,s) = e722t(e25 — 1)(e®2! — e°2%) < 1. So, by Gronwall inequality
(see e.g. 86, pg. 79])

and the result follows from Lemma 471 O

Remark 49. Proposition holds for both components Von, Vome with

equations (5.59), (5.60)

We can now prove our main result of this section:
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Proof. Theorem [38:

The results immediatelly follows combining the previous results. In greater
details, First, Proposition [41{ and Remark |42 prove point 7), the proof of i)
rely on Proposition 48] and Remark 49 . O

5.6 Numerical simulations

In this section we present some numerical simulations, performed in order
to show the dynamical behaviour of the model introduced in Section [5.2
Finally, we compare the obtained results with the analytical ones presented
in Section Firstly, we consider the following dimensionless quantities:

tt =1 == = = —
777 X R’ f fmaX7 IB ,’7’

* L IYfrnaX * L D 5* — 5
Ren?” Ry’ fmax’

where fhax is the maximum concentration of signal f. With these defini-
tions, system (5.5 can be written as

4 n
. B 1
v, = EZ 2 J(Vj—Vi)‘i"YVf(Xi)»
= (4 b xP)
o, (5.91)
Oif = DAF+EY XBxs1) — I
\ J:1

where we have dropped, for simplicity, the asterisks for the nondimensional
quantities. Notice that, due to the choice of R as characteristic length, the
dimensionless particle ray turns out to be a unit value.

5.6.1 Numerical method

The numerical approximation scheme used here employs a 2D finite dif-
ference method on a spatial domain € := [a, b] X [c, d].

The computation grid for our problem consists of points (z,,,y;) where
Ty = mAx, m =0,..., N, and y; = [Ay, | =0, ..., N,. The same is done for
the period of observation [0,7]: choosing the time step At, it follows that
the generic k — th temporal step is given by tip = kAt, k=0, ..., Nt.

For the parabolic equation 3, we perform the classical exponential
transformation in order to eliminate the stiff term —f. In greater details,
we write f = e tu, where u solves
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Owu = DAu + et Z XB(x;,1)- (5.92)
j=1

At each time step, the solution of ([5.91)3 will be approximated at nodes
of the obtained grid: we denote the approximation of u((z,y),t) at point

(@, y1), tx) with uk

We now discuss the discretization for the Laplace operator, using a five-
point scheme. The second order partial derivates can be approximated with
a second order accuracy. Defining

k
Uy 1 = 2y g+ Uy g
Uz (T, Y1) the) = D2 B 2 AT;L m )
i o 5.93
2,k . U i—1 — 2um,l + U, 141 ( )
“yy((l’ma yl) ) ‘D - A2 ’
y
we approximate Au((xm,,y;),tx) as
Au((Tm,yr), te) ~ (D2uF + D2uk)
k k
Y 2“ml + “m+1l Upp -1~ 2uml +uk, 41
N h? * h2
z Y
(5.94)

Since this model at this stage does not require to reproduce a particular
experimental setting, from a numerical point of view it was natural for us to
choose periodic boundary conditions to avoid to introduce artificial bound-
ary conditions that would affect the solution.

With the notation used in (5.93), we write

k+1 k
Uy — Uy D D
e e Az e = > (ijuk'|r1 + DZuk'H) + 5 (Diuk + DZuk>
(5.95)

A A
(k+1) thXBx ) ok thXBx )

7j=1
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With simple calculation, it can be rewritten

DAt DAt k+1 DAt k+1 DAt k+1 DAt k+1 DAt k+1
1+ A% + A% um,lizAg m—1,0 — 2A2 m+1l QAQ ml 1 2A2 ml+1:
DAt  DAt\ , DAt DAt DAt DAt
1- A2 - TZ Ugp 1 Eumfl,l mumﬂ,z + Eum,lﬂ + 2A2 g Um, i1t
+3 L Ate (’““)Atgsz(xk py + Ate"mgsz(xk -
j=1
(5.96)
The numerical scheme for ([5.91); 2 reads:
k+1 k
At v’
Vit — _b Z kel k1
v; i = (V o+l _ Vv + )
o\ i 5.97
n = (1 + |X ;c|2> ( )
+’ny§ (lefk) .
We now focus on (5.97)2. It can be rewritten as
n k+1
B 1 yhH B VJ
LAY — At Z A bt — b =

Vlf -|-’ny1_¢ (melfk) .

Finally, let us deepen the structure of the term FXk ( myl fk). Finite
difference method ( returns the values of function u and thus of I,
reminding the exponentlal transformation, only at the points of our compu-
tational grid. Using a central difference scheme, we discretize the gradient
at those points. Namely we write

Frh =TI fra —1E
k. m+1,1 m—1,0 JIm,l+1 m,l—1
Vi f" = ( A , oAy . (5.99)

Our problem requires the value V f(X;), for all i = 1,...,n. The difficulty
is that the position x; is identified by a general point in the domain, which
could not belong to our computational grid. For that reason we use an inter-
polation of values V,, ; f* concerning the grid points nearest to Xk denoted
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with in_g (Vm,l fk) In particular, we choose the following expression:

4 VfE(x7
FX? (Vm,lfk> = W’ (5.100)

where x7, j =1, ..., 4 denote the four points of the grid which are nearest to

X% and d the value of the distance, namely d/ = ‘Xf — xJ ‘
We summarize the numerical scheme for ((5.91) in the following system

(kL ok

X X, k
ZTtl = vk
k1 n
vi ) _B Z 1 (karl _ vl;+1)
At = (1 + [xF —xb 2) ’ ' (5.101)

Ty Pk (Vi f*),

k  _ —tg,k
\ fm,l =€ kum,l’
k . . .
where Uy, 1S obtained solving 1}

5.6.2 Numerical tests

In the following numerical tests we consider a spatial domain Q =
[0,50] x [0,50] with periodic boundary conditions, and we choose a suitable
time interval of observation [0,7]. For the initial data we fix f(z,0) = 0
and, for i = 1,...,n, X;(0) = X;p, V;(0) = Vjo. In particular X;o is chosen
as a random vector, such that all the particles at ¢ = 0 are contained in a
suitable initial region, fixed in the domain. Then V;o = (V;g cos 6;, Vjo sin 6;)
are chosen with Vjp random numbers in [0, V max), and 6; random numbers
in [0,27]. Let us now describe some meaningful tests.

Test 1

In this test we set the parameters o = 0.5, 3 =5, v = 2 x 10?2, D =
2 x 102, £ = 0.5, Vo,max = 3, and we consider n = 10 particles located in
Xy as in Figure (a). The time interval of observation is [0,500]. Spatial
and temporal discretizations are given respectively by Az = Ay = 0.25 and
At =101

Figure shows four time steps of the numerical simulation. Here and
in the next tests for each time step we plot, on the left the chemoattractant
concentration f(x,t), while on the right the positions and the velocities of
the particles in the spatial domain. The red square at ¢ = 0 is the region in
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which the initial positions are taken. The red marker indicates the centre of
mass of the system, and the blue arrows are the velocity vectors. We observe
an initial stage in which the particles tend to move somewhat aligned about
until ¢ = 5 (Figure (b)), then they begin to converge to their centre of
mass about at t = 30 (Figure (c)), finally all particles stop in a same
position (Figure (d)).

In Figure (a) is shown the spatial fluctuation around the centre of
mass system

Fix () =Y pai(t) = xom(t),
=1

as a function of the time. In Figure (b) is shown the velocity fluctuation
around the centre of mass

Fly(t) = > _|vi(t) — vem(®)*.
=1

For t > 61 Flx(t) and Fly(t) are less than 107!°. Notice that the square
root of Flx(t) and Fly(t) is proportional to the standard deviations of x;(t)
and v;(t) with respect to the position and velocity of the centre of mass.
Figure[5.3](c) displays the norm of the velocity of the centre of mass [vewm (2)]
versus time. For ¢ > 52 this velocity is less than 7.8 x 1072, The oscillating
pattern, shown here and in the next tests, can be attributed to the numerical
error, as it is confirmed using finer meshes for the discretization.

Test 2

In this simulation we fix the parameters as in Test 1, and we double the
number of the interacting agents, considering N = 20 cells as in Figure [5.4
(a). The time interval of observation is [0, 500].

In Figure [5.4] we can observe four different time steps of the numerical
simulation showing the aggregation of the initial group and the convergence
to zero of its velocity.

In Figures [5.5] (a)-(b) we plot, the quantities Fix(t) and Fly (). Here,
for t > 34 we have values less than 1070, In Figure (c) we show
the quantity ||[Vom(t)|| versus time, with values smaller than 8.39 x 1072
for ¢ > 28. Comparing the results of this test with those of Test 1 we
can state that, with the same parameters, an increasing number of cells
enhances the rate of convergence due to the greater amount of the expressed
chemoattractant.

Test 3

In this test we consider a case in which, for the pure Cucker-Smale model
(1.5), i.e. v = 0 in our model, the flocking behaviour does not occur. We fix
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the other parameters 0 = 0.8, 3 =5, D =2 x 102, £ = 0.5, Vo,max = 3, and
X as in Figure (a). The time interval of observation is [0, 15]. Spatial
and temporal discretizations are as in Test 1. Clearly in this case equations
172 and 3 are decoupled. Since o > 1/2, and taking into account
the initial data, according to the results in [87], the flocking of the system
is not guaranteed.

Figure [5.6| shows our numerical simulation at three time steps. We can
observe, in fact, a dispersion of the initial group of particles.

In the next test we will show that, adding the chemotactic effect, we can
recover the time-asymptotic convergence of the migrating group.

Test 4

Inspired by the mathematical model proposed in [3] for the zebrafish
lateral line development, we consider a simulation in which two kinds of
cells are involved: the leaders that produce the chemotactic signal and the
followers that do not produce any signal, both subjected to the alignment
effect and to the attraction of the chemical gradient.

For the numerical simulation set ¢ = 0.5, 8 = 5, v = 1.5 x 10?2, D =
2x 102, € = 3, Vomax = 0.3, and X as in Figure (a). We consider a time
interval of observation [0,500]. Spatial and temporal discretizations are as
in Test 1.

Figure shows four time steps of our simulation. A single leader cell
is marked in green colour, while the other follower cells are in red colour.
Here the centre of mass is marked in blue. We observe, about at ¢ = 15,
that cells begin to be attracted toward the chemoattractant source (Figure
(b)). In the next time steps the cells tend to converge in the centre of
mass and then they stop (Figure (c)—(d)).

In Figures (a)—(b) are shown the spatial and velocity fluctuations,
Flx(t) and Fly(t), around the centre of mass system. For ¢t > 131 these
quantities are less than 10719, Figure (c) displays the quantity || Vom(t)]]-
For ¢t > 328 we have values smaller than 5.3 x 1072.

Test 5

In this test we simulate the system only under the chemotactic effect,
neglecting the alignment term, that is we set 8 = 0. The other parameters
are v = 10%, D = 2 x 10?%, £ = 1.5, and the initial data Vg max = 0.8, Xo as
in Figure (a). The time interval of observation is [0,4000]. Spatial and
temporal discretizations are fixed as in Test 1.

In Figure 5.9 we plot four time steps. Although the initial group aggre-
gates, we do not observe, in our time of observation, a convergence of the
particles, rather they show an oscillating behaviour around their centre of
mass.
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In Figures (a)—(b) we plot respectively Fix(t) and Fly (t). In this
case, the spatial and velocity fluctuations around the centre of mass remain
bounded but do not converge to zero. In particular, in the time interval
of observation, we have Flx(t) > 0.88 and, if we consider a trend line, its
slope seems to decreases monotonically approaching to zero. For example,
in relation to Figure (a), the slope of the linear fit on the values of
Flx(t), computed on the time intervals [0,800] and [3200,4000], changes
from —1.46 x 107! to —1.84 x 10~*. Moreover, we remark that in previous
simulations, containing the alignment effect, on time intervals much smaller
than this test we have obtained values of Flx(t) less than 10719,

In Figure (c) is shown |vem(t)| as a function of time. For ¢ > 254
we have values smaller than 3.79 x 1072, Performing the same numerical
test with the finer discretization Az = Ay = 1.25 and At = 107°, we find
that, for t > 120, |vcp(t)] is smaller than 1.41 x 1072, see Figure (d).
From this we can deduce that the velocity of the centre of mass goes to zero.

Our numerical results suggest that our model, in absence of alignment
and with the only chemotactic effect, is unable to reproduce stationary pat-
terns.

5.7 Discussion

In this chapter we have proposed simplified version of the models in
[2] and [3]. The model can be regarded as an extension of the Cucker-
Smale model, coupling alignment and chemotaxis effects, and introducing a
hybrid description. Differently from the previous chapters, we have studied
our model by both an analytical and a numerical point of view. From the
analytical point of view, we have proved local and global existence and
uniqueness of the solution to the nonlinear system (see [62] and Chapter
for an extension to a more general framework). The novelty rely on the
study of the asymptotic behaviour of the linearised system. We have proved
the asymptotic convergence of the particles in their centre of mass with
same velocity. Then, the velocity of the centre of mass is proved to go time-
asymptotically to zero. From a numerical point of view this property has
been tested on the full nonlinear system, finding a complete concordance
with the analytical results.
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Figure 5.2: Test 1. Simulation with parameters o = 0.5, 8 = 5, v = 2x 102,
D =2x10% ¢ = 0.5, Vomax = 3, and X randomly taken in the red square
shown in the top panel. The chemoattractant concentration f(z,t) is on
the left, while on the right there is the positions and the velocities of the
particles. The red marker marks the centre of mass of the system, and the

blue arrows are the velocity vectors.
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Figure 5.3: Test 1. Functions Flx(t), Fly(t) and |vem(t)| versus time
(x-axis shows only a part of the time domain), as defined in Section
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Figure 5.4: Test 2. Numerical simulation in a spatial domain Q = [0, 50] x
[0, 50] with periodic boundary conditions, and in the time interval [0, 500].
The parameters values are N = 20, 0 = 0.5, 3 =5, 7 = 2x10%, D = 2x 102,
€ =0.5, Vomax = 3, and Xy randomly taken in the red square shown in (a).
Spatial and temporal discretizations are respectively Az = Ay = 0.25 and
At = 107%. The four plots are respectively at time steps ¢ = 0, 10, 20, 500.

Monts. Mee.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

5.7 Discussion 155

1200

800

[0}

=]

=]
T

I

[S)

=]
T

Spatial fluctuations around the CM system

2001

100 150 200 250 300 350 400 450 500
a) Time

N @ N
o o o
i i i

Velocity fluctuations around the CM system
S
i

0 50 100 150
b) Time
15
s |
)
(0]
£
k]
2
3
o
<
0.5F B
N R R R A O T R T T TR T
0 i | i ! ! ! i i i
0 20 40 60 80 100 120 140 160 180 200
Time
c)

Figure 5.5: Test 2. (a)—(b) Spatial and velocity fluctuations around the
centre of mass system Flx(t) and Fly(t) (x-axis shows only a part of the
time domain). For ¢ > 34 we have values less than 107!°. (c) Norm of
the velocity of the centre of mass |von(t)| versus time (only a part of the
time interval is shown on the x-axis). For ¢ > 28 this velocity is less than
8.39 x 1072
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Figure 5.6: Test 3. Numerical simulation in a spatial domain Q = [0, 50] x
[0,50] with periodic boundary conditions, and in the time interval [0, 15].
The parameters values are 0 = 0.8, § = 5, v = 0, D = 2 x 10?, ¢ =
0.5, Vomax = 3, and X randomly taken in the red square shown in (a).
Spatial and temporal discretizations are respectively Az = Ay = 0.25 and
At = 107%. In this case the motion equations and the chemoattractant
equation are decoupled and for the particles we simulate the pure Cucker-
Smale model . Taken into account the parameters values and the initial
data the flocking behaviour is not ensured by results in [87]. In fact, from
the three plots, taken respectively at time steps ¢t = 0,5, 15, we can observe
a dispersion of the initial group.
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Figure 5.7: Test 4. Numerical simulation in a spatial domain © = [0, 50] x
[0,50] with periodic boundary conditions, and in the time interval [0, 500].
The parameters values are Az = Ay = 0.25, At = 107%, ¢ = 0.5, 3 = 5,
v =15x10% D =2 x 10%, ¢ = 3, Vo,max = 0.3, and X randomly taken
in the red square shown in (a). The green cell marks a leader cell (), that
produce the chemical signal, while the other red cells are the followers (e),
that do not produce any signal and follow the chemoattractant gradient.
The four plots are respectively at time steps t = 0,15,40,500. On the left
there is the chemoattractant concentration, while on the right the positions
and the velocities of the particles.
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Figure 5.8: Test 4. (a)-(b) Spatial and velocity fluctuations, Flx(t) and
Fly(t), around the centre of mass system (only a part of the time domain
is shown on the x-axis). For t > 131 Flx(t) and Fly(t) are less than 10710,
(c) Velocity of the centre of mass |[vem(t)| as a function of the time. For
t > 328 we have values smaller than 5.3 x 10~2.

Mosts. Meye.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

5.7 Discussion 159

o * @ %
D i ACAR
“ o R

-

Figure 5.9: Test 5. Numerical simulation in a spatial domain © = [0, 50] x
[0, 50] with periodic boundary conditions, and in the time interval [0,4000]
(plots on the right shown only a part of the spatial domain). Spatial and
temporal discretizations are respectively Az = Ay = 0.25 and At = 1074,
In this test only the chemotactic force is considered, neglecting the alignment
effect (3 = 0). For the other values we fix v = 102, D = 2 x 102, £ = 1.5,
Vo,max = 0.8, and X randomly taken in the red square shown in (a). The
plots taken at time steps ¢ = 0, 10, 2000, 4000 display the aggregation of the
initial group of particles. In this case the convergence is not observed, but
an oscillating behaviour around their centre of mass is shown.
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Figure 5.10: Test 5. (a)-(b) Spatial and velocity fluctuations, Flx(t) and
Fly(t), around the centre of mass system versus time (only a part of the
time domain is shown on the x-axis). In this case Fix(t) and Fly(t) remain
bounded but do not converge to zero. In particular we have Fly(t) > 0.88
and, if we consider a trend line, its slope seems to decrease monotonically.
In particular in the time intervals [0,800] and [3200, 4000], the slope of the
fit line changes from —1.46 x 107! to —1.84 x 10™*. (c) Velocity of the centre
of mass ||[Vem(t)|| versus time, using a spatial and a temporal discretization
given by Az = Ay = 2.5 and At = 10~* (x-axis shows a part of the time
interval). For ¢ > 254 this quantity is smaller than 3.79 x 1072, (d) With a
finer mesh, Az = Ay = 0.125 and At = 107°, we obtain smaller values: for
t > 120 we have values less than 1.41 x 1072,
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Chapter 6

Conclusions and Future
Perspective

The purpose of Part I is to introduce the reader to the emerging class
of what we call coupled hybrid models. With a step by step approach, the
previous chapters investigate well-posedeness properties and the asymptotic
behavior of the solutions to systems generally expressed as in —. After
a preliminary chapter, in which we give a brief overview of seminal second-
order models of the literature, we present part of an ongoing work, consisting
in a novel second-order model with delay. The aim is to couple the actual
discrete-particle model with a continuum one, describing the evolution in
time of an exogenous information, which influence the dynamics. For the
rest of this Part, we focus on the coupled structure in -. From a mod-
eling point of view, the idea to treat the agents as discrete entities, and
the exogenous signal, regardless of its nature, as a continuum, combines the
advantages of individual-based models with continuous ones. The particular
structure has been already adopted by other work of the literature, which
only have modeling and numerical purposes. For that reasons, our work has
to be considered as a first step towards a more detailed analytical charac-
terization. Since the literature concerning analytical findings is still lacking,
there are several future perspective in this field we are going to address. In
particular, one of the future work directions concerns another critical issue,
that is the shortcoming of a detailed technique to estimate the parameters
occurring in a model.

Suppose to introduce a set of real parameters in a suitable domain D €
R?, denoted with § = (61, ..., 6)), in the reaction-diffusion equation. It means
to assume a;; = ag;(;6), by = bi(;0), ¢ = ¢(.;0) in equation (3), and f =
f(;;0) as the solution to (3)), once assigned initial conditions. Recalling
that f influences the dynamics expressed in , the introduction of the
parameters affects the solution X = X(+;#). The introduction of parameters

161
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leads to the following modifications of equations —:

%,(10) = F, <t,X(t; 0),X(t;0), Vf (x(t;0), t; X(t; 0),0) ,9) . (6.1)
{ LOf(x,t;X(t;0)) = g(z,X(t;0)) (z,t) € RN x (0,T), (6.2)
f(z,0;X) = p(x) z e RN, ’
where
N N
L? = Z a; j(x,t; 9)8& + Z bi(z,t;0)0; + c(x,t;0) — 0. (6.3)
ij=1 i=1

Given a set of observable data, {zf(t): ¢ = 1,...,n, t € I } where I is a
discrete set of times, I C (0,7), (e.g. the set of positions of n cells recorded
at different time steps of an experiment), the issue to address is to find the
optimal values of the parameters for which a considered model fits reality,
meaning that the model is able to reproduce the observed behavior.

Mathematically, this can be regarded as a least squares problem, aiming at

n
finding 6,,¢ € D arising from (32{7 Zl ; |2i(+;0) — 25 (t)|> + €(0), where €(6)
i=
is a suitable penalization term, and z;(-;6) is the solution to model —
(6.2). Standard numerical procedures used to solve the above optimization
problem require the computation of the derivative w;; := 0Oy, x; (-;0) for
k =1,...,p. By differentiating and with respect to 0, k=1, ..., p,
we obtain that u;; is solution, at least formally, to a problem of the same
form of —. For that reason, we argue that the obtained analytical
results can be extended to investigate the dependence of the solution on the
parameters.

Another extension of our researches concern the possibility to give an-
alytical foundations to the case in which the N—dimensional domain is re-
placed by a bounded domain, and to consider the coupling with different
advection-diffusion equations could be considered in the coupling with the
dynamics equations.
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Appendix Part I

Fundamental solution and Cauchy problem

Let consider the Cauchy problem

g(z,t) (z,t) € Q:=RN x (0,7],

Lf(z,t)
{ F(@,0) = ola). v ERY, (64
where L is the operator
N N
L= a0+ bi(z,0)0; +c(z,t) — 0. (6.5)
i,j=1 i=1

Let L uniformly parabolic in €2, i.e. the matrix (a;;(z,t)) is positive definite
and there exist positive constants Ag, A; such that for any & € R

Nl <) ai (e, )&é < M [¢f V(z,t) € Q.
i,j=1

Moreover let a; ;, b;, ¢ bounded Holder continuous function in €2, with coef-
ficient v € (0, 1) with respect to  and «/2 with respect to t.
Let g(x,t), p(x) be continuous functions respectively in Q and R, satisfying

lg(z,1)] < C"*F ) Jp(a)| < Ol (6.6)

Ao

4T

Finally, let assume g locally Hélder continuous with exponent o in € RY,
uniformly with respect to t. Then the function

with h positive constant satisfying h <

t
fat) = [ ranene@d- [ [ reuengenaar ©0
is a solution of (6.4))-(6.5)).

I'(x,t;¢,7) is a fundamental solution of Lf = 0,and it is a continuous func-
tion of (x,t), uniformly with respect to (¢,7) if t — 7 > constant > 0,
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and it is a continuous function of (&, 7), uniformly with respect to (x,t) if
t — 7 > constant. Hence T (x,t;£,7) is a continuous function of (z,t¢; &, 7).
Moreover also the first and second derivative with respect to space, and the
derivative with respect to time of I" are continuous functions of (z,t;&,7),
Wherex,feRNandO§T<t§T.

Computation of a possible upper bound for )\, in
Chapter 2.

Let A be a symmetric matrix satisfying

po €7 < (A€, &) < i €] vEeRN (6.8)

where pg, 41 are positive constants.
Defining n = A¢ € RY, 1} can be rewritten as

po |[A™ ) < (n, A7M) < A (6.9)

We choose W = {wq, ..., wx} an orthonormal basis of eigenvectors of A, and
rewrite 7 as a linear combination, with coefficients cy,...,cy € R,namely

n= ch-wi. Denoting with 6;, i = 1,..., N, the eigenvalues of A, we thus

i=1
obtain:
N
=25
N
Since |n|* = Zc?, we have
2 Y 2
Alp| =A™t > — 1
|A7y|" = (471, A Zf r?MQQZC> 5 [n*. (6.10)
— P

By , we get the following lower bound:

(n, A™'n) > o | A1 |? > Z(% nf>. (6.11)

We performed the algebraic computation above in order to show the relation
between Ao and g, ¢1 in H3), following the approach in [58]. Let A be the
matrix having entries A;; = a;;(x,t), where a;; are the coefficients intro-
duced in : we note that, since L is of parabolic-type, A is symmetric,
and corresponds to condition . Hence, from equation (6.11), we
get an upper bound for the parameter .
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Computation of Iy(v), L(7)-
Let v be a positive constant.
We define Iy (), I () the integrals
)= [ e, (6.12)
RN
I(y) = / e |y] dy. (6.13)
RN
With the changes of variable given by v := 1/2vy and then u := %7 we
rewrite:
21 1 2 m\V?
Io(v) == — g :/ e dv = / “du =~ :
0(7) /RNe y=[ ¢ ™ = o [, de= 0
(6.14)

For the second, we convert it in polar coordinates and perform the change
of variable given by ¢t = vh?, obtaining

L (y):= /RN el ly|dy = /0 e ™ WNwydh

%0 T v 1 N+1\ /1\ 7 w
()T e (5 ()7 3
0 0l 2 v 2 o 2

N+1 N+1
— (1) 2?2 wn2m 2
0l 2 wN41’

N
2

recalling that I'.(N/2)wy = 27
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Glossary Part I

Throughout Part I, we will identify each element of RV*™ with the column
vector of RV™ obtained putting in column the n columns one after another.
Moreover, we will refer to Br(P) and Bg as subsets of RN*" or RV de-
pending on the context. In the following we denote  C R open.
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Br(P)
Br

|+ oo, 7
wN

A%

ATL

A =[aj...aq]
Vf (.’L‘o,t)
X

o

O
(fVg)(z)
CF (O, RP)

Ck1(Q x [0, T);RP)

1 fllzr(e) p # o0
WhP(Q) p>1

WPaeo(Q = O x (0,T))

Liploc(Q)
H(Q)
H71(Q)
e (U;RP)

LP(0,T;9) p > 1

Closed ball of R?, with center P € RP radius R
Closed ball of RP, with center O € R?, radius R
supjo,7) | - |

Surface area of the (N-1)-dimensional sphere, in RY
Euclidean norm of V € RP

A x .. x A, for any A C RN

A e R with a; € R" i =1, ..., n column vector
Gradient of f = f(x,t), with respect to x variable
for any f such that f(-,¢) is differentiable at x
Derivative with respect to ¢ of function X

for any X : [0,7] — RP

Partial derivative operator with respect to

x; variable of order a > 1. We denote (911 = 0;
Partial derivative operator with respect to ¢ variable
Maximum value between f(z) and g(x)

Class of C* functions f : Q — RP,

k = 0 is the class of continuos functions.

We denote C0 = C

Class of functions f: Q x [0,T] — RP, p > 2,

Q Cc RY open, C* in Q and C! in [0,T]

( / Iflpdu> Up

Sobolev space of functions f € LP(Q)

with DYf € LP(QQ), |a] <k

Sobolev space of functions f € L>(£2) with

Df € L*(Q), |a| <p, 8/ f € L=(2), |8] <4

Locally Lipschitz functions

WLQ(Q)

The dual space to H}(Q) = W&’Z(Q)

Space of infinitely differentiable functions ¢ : U — RP,
with compact support in U

Strongly measurable functions f : [0,7] — Q with

T 1/p
[ fllze(o,m0) = (/0 If(t)!pdt) < 00

Meats Mew
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Introduction

In Part II of this thesis, the research area of collective dynamics is ap-
proached with a different point of view. This comes as a result of an ongoing
collaboration with the Research Unit of Automation of Universita Campus
Bio-Medico di Roma. The aim of our studies is to investigate distributed
systems of interacting agents over networks, in a decision making perspec-
tive.

In the following we present a well-established technique in this field, that
represents the starting point of our researches in the next two chapters.

Sparse Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) [8§] is an effective decision-making
technique aimed at ranking a set of alternatives based on their utility or im-
portance. This task is typically done by resorting to relative preference
information, i.e., by considering the ratio of the utilities. Such ratios are
typically perturbed or affected by subjective biases or errors, and do not
represent a perfectly transitive ordering, thus calling for approximated solu-
tions. In its standard formulation, the AHP problem requires knowledge on
the ratio of the utilities of each pair of alternatives; however, in the literature
several results have been provided in order to handle incomplete information
[89. 1901 (911, 192].

The AHP problem appears of particular interest in a distributed decision-
making context; in particular we are interested to the scenario envisaged in
[92], where a set of networked agents need to rank themselves in a distributed
manned, based on the knowledge of perturbed ratios of utilities with respect
to their neighbors. An example, in this sense, is a network of mobile agents,
each provided with different equipment or tools in order to perform their
tasks; agent i, by comparing its equipment with the one of a neighboring
agent j, is able to assess its relative priority; by composing such a local
information, the agents are able to rank themselves and compute an absolute
priority.

Notice that, in the literature, typical distributed ranking approaches aim
at developing a ranking based on the topological structure of the network
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(see, among other methodologies, the pagerank problem [93]). Conversely,
the ranking achieved within the AHP approach has no relation with the
topological structure, but is the result of the composition of the relative
importance information involving the nodes and their neighbors.

We point out that the standard approach to solve the AHP problem,
the so-called eigenvector method, has been often regarded as an arbitrary
or questionable choice for approximating the unknown utilities (see for in-
stance the debate in [94) [95]); the main reason for such a criticism is that
the ranking obtained via the eigenvector method might be reversed when
additional alternatives are considered. Moreover, the procedure developed
in [92], although effective, has nontrivial computational requirements. To
the best of our knowledge, no other approach has been provided in the lit-
erature in the distributed case.

The research in this area has led, for the time being, to two contributions,
that will be presented in the two chapters of Part II.

In Chapter [7| we investigate the possibility of solving the distributed
AHP problem in three alternative ways which are based on different ap-
proaches with respect to the eigenvector method, and require less computa-
tional resources with respect to the approach in [92]. Specifically, the pro-
posed methods are inspired to well known algorithms in the literature, i.e.,
Metropolis-Hastings Markov chains [96], Heat-Bath Markov chains [97] and
formation control [98]. In the end, we identify strengths and weak points of
such methodologies, evaluating their performance on an experimental basis.

In Chapter 8] we consider a scenario where a set of agents, interconnected
by a network topology, aim at computing an estimate of their own utility,
based on pairwise relative information having hybrid nature. In greater
detail, the agents are able to measure the difference between their value
and the value of some of their neighbors, or have an estimate of the ratio
between their value and the value of the remaining neighbors. This setting
finds application in problems where estimations provided by humans have to
be merged with sensor measurements: the human is able to give qualitative
informations, whereas the sensors represent those agents giving quantitative
informations. We observe that this coupled scenario, in which different
kind of information are considered, represents the novelty with respect to
previous work in literature, where the two types of information are treated
separately. In this sense, also in Part II we will use the terminology hybrid:
here, it highlights the possibility to deal with different kind of information
within the same model, whereas in Part I it concerns the presence of different
scales at which a phenomena is simultaneously observed.
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Chapter 7

Distributed Methodologies
to Solve Sparse Analytic
Hierarchy Process Problem

In this chapter we present distributed algorithms to solve the Sparse An-
alytic Hierarchy Process (SAHP) problem, where a set of networked agents
(e.g., wireless sensors, mobile robots or IoT devices) need to be ranked
based on their utility /importance. Recently, the Sparse Figenvector Method
proved its effectiveness in tackling this problem. However, such a method
has several drawbacks, such as demanding computation/communication re-
quirements and lack of control on the magnitude of the computed estimate.
With the aim to mitigate such issues, we inspect the possibility to resort to
a suite of different methodologies, each inspired to well known algorithms
in the literature. Strength points and drawbacks of the proposed methods
are highlighted by numerical comparisons.

7.1 Problem Statement

In the Introduction to Part II, we gave an overview of SAHP. We now
formalize the graph structure that underlines this kind of problem. For a
detailed description of the basic concepts and notations here adopted, the
reader is referred to the Appendix of Part II.

Let us consider a set of n agents, interconnected by an undirected and
connected graph G = {V, E'}, and suppose that each agent is characterized
by an unknown utility or relevance w; > 0. Suppose further that each agent,
identified with the a vertex of the graph v;, is provided with just relative
information regarding the ratios between its utility w; and the utility w;
of each of its neighbors v; € N; over G. In particular, let us assume that
each ratio is perturbed by a multiplicative error or bias €;; > 0; in other
words, for each neighbor v; € Nj, the i-th agent v; knows just S;; = %Ji_eij.

173
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In particular, as implicitly done in [92], we assume that there is no vector
f € R™ such that ¢;; = f;/f; for all (v;,v;) € E; in other terms, the
perturbations €;; represent a distortion of the utilities and there is no obvious
way to compute a vector w that satisfies w;/w; = €;;w;/w; for all links
(Uz‘, Uj) € FE.

Let S be the n x n matrix collecting the overall information available to
the agents; we assume that, for all (v;,v;) € E, it holds Sj; = Si;l, ie., we
assume that €;; = ei_jl. Such an assumption is common practice in the AHP
literature [88]199] [100]. The aim of each agent v; is to compute an estimate
w; for its utility w;. Note that, since the agents are provided with ratios
of utilities, we assume that such utilities are defined up to a multiplicative
scaling factor that is the same for all the agents. In the following, we denote
by w € R™ and w € R™ the stack of all w; and w;, respectively.

7.2 Sparse Eigenvector Method

The Sparse Eigenvector Method (SEM), developed in [92], is an effective
distributed methodology to solve the AHP problem in the case of a matrix
S having the structure of a connected and undirected graph G = {V, E}.
The main idea behind the approach is that, in the nominal case where all
perturbations €;; = 1, the dominant eigenvector of matrix D718 (we recall
that D is a diagonal matrix having the degree d; of the i-th node at its -th
diagonal entry) is indeed the desired utility vector w, while the dominant
eigenvalue associated to it is equal to one, i.e., it holds D~'Sw = w.

As demonstrated in [92], the dominant eigenvalue of D~1S is equal to
one if and only if the perturbations are not present, while it is in general
different from one. Following the path of the traditional eigenvector method
for the complete information case [88], the algorithm in [92] aims at letting
the agents compute the dominant eigenvector of D~1S, and specifically each
agent aims at computing the corresponding component of the eigenvector.
This is done by implementing a power iteration |[L01], which corresponds to
a distributed algorithm given the sparse nature of matrix D~1S. However,
since in general the dominant eigenvalue of D~1S is not equal to one, a
naive power iteration (i.e., without normalization) would either converge to
zero or diverge; in order to address this challenge, the algorithm in [92] aims
at letting the agents compute also an estimate of the dominant eigenvalue
of D™1S, which is used as a normalizing factor in the power iteration. In
more detail, the agents have knowledge on an upper bound § of the graph
diameter § and execute a max-consensus procedure which is reinitialized at
time steps that are multiple of §, in order to reach an agreement on the
estimate of the dominant eigenvalue as of § steps earlier.

The pseudocode of the algorithm developed in [92] is given in Algorithm
Specifically, Algorithm [l is initialized with an estimate h;(0) = 1 for
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Algorithm 1 Sparse Eigenvector Method. The pseudocode represents the
point of view of the i-th agent.

procedure SEM (5)
> Initial Condition
w;(0) = random positive real number
i(0) = £;(0) = hs(0) =1
> Synchronous Itcratlon

@ik +1) = - (k Z Sijw;(k

yi(k+1) wl(k Z Sijw;(k

yi(k), if mod(k 5)
Li(k+1) = . eﬁaux{vi}{ej(k)}, otherwise.
¢;(k), if mod(k,d) =0,

hi(k), otherwise.

hi(k+1) = {

end procedure

the dominant eigenvalue that is the same for all agents; moreover, each
agent relies on w;(k) in order to compute a quantity y;(k) that tends to the
dominant eigenvalue of D™1S as k approaches infinity. While doing so, the
agents execute several max-consensus procedures, which are re-initialized
every 5 steps, so that every time a max-consensus procedure terminates at
a given time instant k, they compute an updated h; that is the same for
all agents and corresponds to the greatest among the values y;(k — g) over
all agents i. By repeatedly doing so, the agent i is able to compute the
i-th component of a finite and nonzero vector in the span of the dominant
eigenvector of D™1S, as well as the dominant eigenvalue of D™1S.

7.2.1 Discussion

We point out that Algorithm[I], although effective, has several drawbacks:
(1) the agents need to know a global parameter such as an upper bound 5
of the network diameter ¢ (e.g., computing it via the approach in [102]); (2)
each agent needs to let four state variables evolve in parallel, relying at each
step on the state variables of their neighbors; (3) the agents need to run
a max-consensus iteration in parallel with the main iteration, and such a
max-consensus procedure has to be reinitialized at prescribed time instants;
(4) no guarantee on the magnitude of w is given, and the agents might
need to further interact to calculate a normalization of the result. However,
the main advantage of Algorithm [1] is that, by computing the dominant
eigenvalue of D15, the agents become aware of valuable meta-information
regarding the degree of inconsistency of the available data.
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7.3 Metropolis-Hastings Method

In this section we inspect the possibility to resort to a Metropolis-Hastings
(MH) Markov chains [96, [103] to solve the AHP problem in a distributed
way. We point out that Metropolis-Hastings Markov chains are quite a pop-
ular tool in the literature to sample from a known discrete distribution (or,
at least, a distribution for which probability ratios are known). However,
to the best of our knowledge, the adoption of such a tool in order to rank a
set of alternatives based on perturbed ratios can be regarded as an original
contribution of this paper.

Let an n x n matrix M having the same structure as the graph G, such
that, for all 7,5 € {1,...,n} it holds

d%min{l,did‘jji}, if (v;,v;) € E
Mij = 91 & S pen, min {1, 580 1 if i = j, (7.1)
0 otherwise.

It can be easily noted that, by construction, it holds M;; € [0, 1] and M1,, =
1,; hence, matrix M is the transition probability matrix of a Markov chain
in the form

pk+1) = MTp(k). (7.2)

The standard Metropolis-Hastings algorithm corresponds to the above Markov
chain, in the special case when all terms S;; = w;/wj, i.e., when no pertur-
bation is considered. In such a special case, assuming that G is undirected
and connected and that all w; > 0, as shown in [96| [L03], the Markov chain
in Eq. is aperiodic and has w as its limiting distribution.

Note that if the initial condition p(0) of the Markov chain is a probabil-
ity distribution vector, then at each time k the state p(k) is a probability
distribution vector. Conversely, as noted in Remark [64] when p(0) is not a
probability distribution vector but it has nonnegative entries and nonzero
sum, the state converges to a vector in the span of the limiting distribution
vector having sum of the entries equal to the sum of the entries of p(0). This
means that, differently from the SEM approach, if the agents select random
positive initial conditions, there is a guarantee that the sum of the entries
of the estimated utilities will remain constant during the execution of the
algorithm. Moreover, since the algorithm exhibits asymptotic convergence,
if a normalized vector with sum equal to one is required, it is more con-
venient to let the agents cooperate in order to select an initial distribution
beforehand, rather than performing normalization after the execution of the
asymptotic algorithm is truncated. In order to do this, the agents need to
execute an initialization phase where w(0) is constructed. Among other
possible choices, a feasible approach is to elect a leader via max-consensus
or other techniques (see [104] and references therein for recent works on this
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topic) and then select w;(0) = 1 if node v; is the leader and w;(0) = 0
otherwise.

Algorithm 2 Distributed Metropolis-Hastings Algorithm. The pseudocode
represents the point of view of the i-th agent.

procedure MH(6~, a, normalize)
> Initialization
send d; to all neighbors;
receive d; from each neighbor v; € Nj;
> Choose initial condition w(0)
if normalize then

elect a leader, e.g., via max-consensus(d)
select w;(0) = 1 if ¢ leader w;(0) = 0, otherwise
else
| w;(0) = random positive real number
end
> Synchronous Iteration
Wi(k+1) = (aMi; + 1 — a)i(k) + o Y My, (k)
JEN;
end procedure

Let us now discuss the proposed algorithm when perturbations are present;
the pseudocode is reported in Algorithm 2l As said above, the algorithm ei-
ther requires the agents to choose an initial condition w;(0) that corresponds
to a distribution vector w(0) or a positive random number.

Moreover, in order to compute the entries M;; according to Eq. , the
agents need to know the degree d; of their neighbors v; € Nj. Let o € (0,1)
be a parameter known to all agents and let us consider the stacked dynamics
of all the agents, i.e., w(k + 1) = (aM” + (1 — a))w(k). As discussed
in Remark the dynamic matrix of the above discrete-time system is a
convex combination of M1 and the identity matrix, hence (aMT+(1—a)I) is
aperiodic. Moreover, since the graph G is connected for hypothesis, it follows
that (aM™ 4 (1 — a)I) is irreducible. Therefore, the proposed dynamics
corresponds to a Markov chain having a limiting distribution, which is given
by the dominant left eigenvector of M.

7.3.1 Discussion

The approach discussed in this section has several advantages with re-
spect to Algorithm (1) except for an initialization in order to select a
starting distribution, the algorithm requires less memory and communica-
tion among the agents and a less complex interaction, since only a standard
discrete-time linear iteration is executed; (2) the vector computed is intrin-
sically normalized (provided that the initial state is a distribution) or, in
any case, the sum of the entries of the estimated utilities is constant over
time. However, the main drawback of this approach is that the parameter
«, which is used to guarantee the existence of a limiting distribution, has
to be known to all agents; moreover, if a distribution is required, the agents
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need to know a global parameter (e.g., the network diameter, in order to
execute a leader election procedure).

7.4 Heat-Bath Method

The Heat-Bath (HB) method, similarly to the Metropolis-Hastings ap-
proach, is yet another popular way to design a Markov chain that has a
desired limiting distribution (see among others [97, [105]). Note that the
adoption of a Heat-Bath Markov chain for the distributed ranking can be
regarded as an original contribution of this paper.

Let an n X n matrix ) having the same structure as the graph G, such
that, for all 4,5 € {1,...,n} it holds

%Sij’ lf (’Uu?)j) GE
Qij = 1_72h6/\/¢ ﬁa if i =7, (7.3)
0 otherwise,

where v is a global parameter known to all agents and such that v <
1/max;—1 . nd;. It can be easily noted that, by construction, it holds
Qi; €10,7] €[0,1] and Q1,, = 1,; hence, matrix @ is the transition proba-
bility matrix of a Markov chain. Moreover, we observe that it holds

ZQZ] ’YZ +S max{d}z max{d}Sl

JEN; JEN;

hence, we have that, for alli € {1,...,n} it holds Q;; > 1 — d;/ max{d;} > 0.
Therefore, as discussed in Remark the Heat-Bath Markov chain, in the
general case, is intrinsically aperiodic and since G is connected we conclude
that such a dynamics always reaches a limiting distribution. As a conse-
quence, differently from the Metropolis-Hastings case, there is no need to
implement convex combinations with the identity matrix. We point out
that, in the nominal case where all terms ¢;; = 1, the Heat-Bath Markov
chain is knoerl to have w as its dominant left eigenvector [97, [105]; there-
fore, when no perturbation is present, the Heat-Bath Markov chain has a
limiting distribution that corresponds to w.

The pseudocode of the proposed Heat-Bath algorithm is reported in
Algorithm [3| Similarly to the MH algorithm, if an estimated utility vector
having sum of the entries equal to one is required, a feasible path is to
resort to leader election; otherwise, if the agents select random positive
initial condition then the sum of the entries is preserved as discussed in

LThis is a consequence of the fact that the Heat-Bath Markov chain satisfies the detailed
balance w;Qs; = w;Qj; for all (vi,v;) € E; the interested reader is referred to [97, [105] for
further information.
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Algorithm 3 Distributed Heat-Bath Algorithm. The pseudocode repre-
sents the point of view of the i-th agent.

procedure HB(v, g, normalize)
> Initialization
> Choose initial condition w(0)
if normalize then
elect a leader, e.g., via max-consensus(3)
select w; (0) = 1 if ¢ leader w;(0) = 0, otherwise
else
| w;(0) = random positive real number
end
> Synchronous Iteration
wik+1)= > Quuw;(k)
JEN;U{i}
end procedure

Remark [64]

7.4.1 Discussion

Similarly to the MH algorithm, the Heat-Bath approach has several ben-
efits with respect to the eigenvector method, i.e., lower memory and com-
munication requirements. Moreover, differently from MH, there is no need
to force aperiodicity and the agents need not to know the degrees of their
neighbors. However, just like MH, in case there is a need to select an ini-
tial condition, the agents must be aware of a global parameter such as the
diameter.

7.5 Sparse Logarithmic Least Squares Method

In this section we develop an algorithm, namely Sparse Logarithmic Least
Squares (SLLS) Method that extends the Logarithmic Least Squares (LLS)
Method developed in [99, [100] for the complete information case; such an
algorithm is based on Fax and Murray’s formation control algorithm [98|
106]. Specifically, within the SLLSM algorithm, the agents aim at finding a
logarithmic least squares approximation w of the vector w that is the stack
of the utilities w;. In other words, the problem corresponds to finding the
vector w such that

n n 2
w = argmin Z Z (ln(S,;j) —In <qz>> ; (7.4)
a€RY =1 jen; 4

notice that, since the above function is convex, such a vector always exists.
We now provide a theorem that is the basis for the extension of the LLSM
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method to a sparse information Contex

Theorem 50. Let us consider a set of n agents, interconnected by an undi-
rected and connected graph G = {V,E}, and let S be the n x n matriz
collecting the overall information available to the agents. Let us define
si = > ien;, In(Siy) and let s be the stack of all s;. Moreover, let r* € R”
be the vector that satisfies Lr* = s, where L is the laplacian matrixz corre-
sponding to the graph G. It holds w = exp(r*), where by exp(r*) we mean
the component-wise exponentiation with base equal to e of the vector r*.

Proof. Theorem Let r; = In(q;); Eq. (7.4]) can be rearranged as

w = exp | argmin Z Z (In(Si;) — i +75)° =
reR™ | iTT jeN; (7.5)

— exp (argmin /(1) ).

reR”

According to Eq. ([7.5)), y* is the solution of a convex and unconstrained
minimization problem. Therefore the vector 7* that minimizes f(r) is such

that 5

f(r) —0, Vi=1,...,n,

ari r=r*
which corresponds to Z?e N (rf —717) = s, for all i = 1,...,n. Stacking
the above equation for all agents i we get Lr* = s. This completes our
proof. O

We point out that, since the Laplacian matrix L is singular by definition,
the vector 7* can not be computed by matrix inversion. A possible way to
compute r* is thus to resort to an asymptotic algorithm, whose pseudocode
is reported in Algorithm [4]

Algorithm 4 Sparse Logarithmic Least Squares Method. The pseudocode
represents the point of view of the i-th agent.
procedure SLLSM (6)
> Initialization
r;(0) = random positive real number
w;(0) = exp (r;(0))
S; = Z;LGNI ln(S, )
> Synchronous Iteration
ri(k+1) =ri(k) +0 > (rj(k) —ri(k)) + 0s;
JEN;

wi(k+1) =exp (ri(k+1))
end procedure

2We point out that some of the ideas of this theorem are similar to the results in
[98, [106]; the theorem is given with a proof for the sake of self-containedness and clarity.
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Remark 51. We point out that Algorithm 4 and, in particular, the dynam-
ics chosen for 7;(k), amounts to a discrete-time version of the continuous time
formation control algorithm developed by Fax and Murray [98, [106], which
has the form 7(t) = —Lr(t) + s; over connected undirected graphs, such a
continuous time equation is known to converge to a vector r* that satis-
fies Lr* = s. Let us consider a discrete-time setting and let us write down
the stack of the dynamics for all the agents within Algorithm [4] which is
r(k+1) = (I —0L)r(k)+ 6s. The above dynamics is indeed a discrete-time
average consensus dynamics (plus a constant exogenous input that does not
affect stability); such a dynamics is known to converge asymptotically [106]
over connected undirected graphs if the parameter 6, which can be regarded
as a sampling time, satisfies 6 < 1/ max;—; ., d;.

7.5.1 Discussion

We notice that Algorithm |4] has several advantages with respect to Al-
gorithm (1) instead of approximating the unknown utilities with the
dominant eigenvector of D~1S, a procedure that has raised some criticism
in the literature, the solution computed by Algorithm [4] represents a clear
log-quadratic minimization of the error between the perturbed ratios S;;
and the ratios w;/w;; (2) the algorithm requires less memory and com-
munication among the agents and a less complex interaction, since only a
standard discrete-time average consensus iteration (with an exogenous con-
stant input) is executed. We point out that Algorithm being essentially an
asymptotic average-consensus algorithm, can be the base for several exten-
sions, such as distributed stopping criteria [107, [L0§], finite-time [109} [110]
or asynchronous implementations [111]. However, Algorithm [4] has some
drawbacks: (1) there is no control on the norm of the estimate, which might
need to undergo normalization; (2) each agent needs to known the same
global parameter 6.
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7.6 Experimental Comparison

In this section we analyze in an experimental way the performances of the
four methodologies discussed in this paper, considering random networks of
different typologies with n = 50 nodes. In more detail, we consider a Watts-
Strogatz small-world network with 3 links per node and rewiring probability
30%, a Barabéasi-Albert scale free network with 3 preferential attachments
per node, a random geometric network (i.e., a network where the nodes are
generated at random in the unit square and are connected if their Euclidean
distance is less than a radius p) with p = 0.3 and an Erdés-Renyi random
network model with connection probability 30%. In order to evaluate the
performance of the four methodologies, we consider log-normal perturba-
tion terms ¢;; = exp(¢ij), where ¢;; = N(0,0?) is sampled from a Gaussian
distribution with zero mean and standard deviation o; we consider different
values of o € [0, 1] and for each choice of o we show the results over m = 50
random networks. Note that we select random terms ¢;; for i < j, while we
set ¢j; = —¢;j, in order to obtain €;; = ei_jl.

In Figures 1-4 we show, plotted against the standard deviation of the
terms ¢;;, the Kendall correlation coefficient 7 between the ranking ob-
tained via the nominal utility vector and the one obtained based on the
approximation w computed via the different algorithms. According to the
figures, as the perturbation magnitude grows, the Sparse AHP methodol-
ogy exhibits a comparatively large degree of shuffling with respect to the
nominal ranking; conversely, the other methodologies have remarkably bet-
ter results, especially for large perturbation. We point out that the MH,
HB and SLLS methodologies have comparable results, although the SLLS
approach has slightly better correlation with the nominal ranking than the
other approaches, especially for large perturbations.
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Figure 7.1: Kendall correlation coefficient between the nominal and per-
turbed ranking, plotted against the standard deviation of the log-normal
perturbations in the case of Small-World networks with n = 50 nodes, 3
links per node and rewiring probability equal to 30%. Results are the aver-
age over m = 50 runs.
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Figure 7.2: Kendall correlation coefficient between the nominal and per-
turbed ranking, plotted against the standard deviation of the log-normal
perturbations in the case of Scale-Free networks with n = 50 nodes and 3
preferential attachments per node. Results are the average over m = 50
runs.

7.7 Conclusions and Future Work

In this chapter we provided three different methodologies to solve the
Sparse Analytic Hierarchy Process problem in a distributed way, based on
popular algorithms in the literature such has Metropolis-Hastings Markov
chains, Heat-Bath Markov chains and formation control. Future work will
be aimed at providing a formal characterization of the performance of such
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Figure 7.3: Kendall correlation coefficient between the nominal and per-
turbed ranking, plotted against the standard deviation of the log-normal
perturbations in the case of Random Geometric networks with n = 50 nodes
and p = 0.3. Results are the average over m = 50 runs.
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Figure 7.4: Kendall correlation coefficient between the nominal and per-
turbed ranking, plotted against the standard deviation of the log-normal
perturbations in the case of Erdés-Renyi networks with n = 50 nodes and
connection probability equal to 30%. Results are the average over m = 50
runs.

algorithms as a function of the perturbations, as well as to identify topolog-
ical conditions that can be used to select the most appropriate methodology
depending on the structure of the network. We highlight the fact that the
methods here presented focuses on information expressed only as ratio. In
the following chapter we present a novel methodology, which is able to deal
with different kind of relative informations, e.g. ratios and differences of the
utility.
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Chapter 8

Distributed Utility
Estimation with
Heterogeneous Relative
Information

In this chapter we consider a scenario where a set of agents, intercon-
nected by a network topology, aim at computing an estimate of their own
utility, importance or value, based on pairwise relative information, hav-
ing heterogeneous nature. In greater detail, the agents are able to measure
the difference between their value and the value of some their neighbors,
or have an estimate of the ratio between their value and the value the re-
maining neighbors. This setting may find application in problems involving
information provided by heterogeneous sensors (e.g., differences and ratios),
as well as in scenarios where estimations provided by humans have to be
merged with sensor measurements. Specifically, we develop a distributed
algorithm that lets each agent asymptotically compute a utility value. To
this end, we first characterize the task at hand in terms of a least-squares
minimum problem, providing a necessary and sufficient condition for the
existence of a unique global minimum, and then we show that the proposed
algorithm asymptotically converges to a global minimum. Numerical anal-
yses corroborate the theoretical findings.

8.1 Introduction

In Chapter [7] we presented three different methods to solve the Sparse
Analytic Hierarchy Process. In particular, the agents aim at ranking their
utility knowing their relative, eventually perturbed, importance with respect

to their neighbors. In this chapter we enhance the previous scenario, dealing

185
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with information of heterogeneous nature.

In recent years, a large body of scientific literature has been aimed at
endowing networked agents with the ability to distributedly compute ab-
solute information based on relative measurements. A relevant example
in this sense is Sensor Network Localization, where networked sensors aim
at computing their location based on relative information such as bear-
ings [112} [113], distances [114], presence within the sensing range [115], or
combinations of distance and presence information [116, [117]. Other exam-
ples include Formation Control and Distributed Analytic Hierarchy Process.
Within Formation Control problems [98, [106, [118, [119], networked mobile
agents aim at occupying locations that satisfy prescribed relative positions
(e.g., in a least-squares sense as done in [98] [106] or exactly, under the as-
sumption that the network is rigid, as done in [118]). Conversely, within
distributed Analytic Hierarchy Process algorithms, the nodes in the net-
work aim at computing their own utility or importance value based on the
knowledge of perturbed utility ratios |89, 90, [92] [120].

To the best of our knowledge, current approaches in the literature op-
erate based on homogeneous information. However, there are situations
where one can improve the quality of the estimate by mixing heterogeneous
pieces of information. For instance, consider a scenario where humans and
machines cooperate; in this case, while sensors might be able to provide mea-
surements of the difference between two quantities, while humans might be
able to provide ratio information, e.g., assessing how many times one light
or sound source is brighter or louder than another (see for instance [121]).
Another example is the fusion of the information provided by sensors of
heterogeneous nature, e.g., some able to measure distances [114], some able
to measure ratios, such as signal strength ratios [122] or hop-count ratios
[123]. To overcome some of the limitations of previous works, in this paper
we consider a hybrid scenario where networked agents aim at computing
their own utility, position or importance, based on heterogeneous pairwise
relative information. Specifically, each agent knows: (i) an estimate of the
differences between its utility and the utility of some of its neighbors; (ii)
an estimate of the utility ratio with respect to the remaining neighbors.
Based on such heterogeneous relative information, the agents cooperate in
order to compute the absolute utility of each agent. To this end, we first
define a least-squares minimization problem, by characterizing its global
minima and providing a necessary and sufficient condition for the existence
of a unique global minimum. Then, we develop a synchronous continuous-
time distributed algorithm and we show that its dynamics converges to a
global minimum, discussing the conditions guaranteeing that such a problem
admits a unique or several global minima. We point out that the proposed
problem setting is a mixture of the formation control approach, where agents
are equipped with sensors able to measure relative positions, and the case
where just ratios are considered. However, due to the presence of informa-
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tion of heterogeneous nature, there is no straightforward way to apply either
of the above methodologies, thus calling for a different approach. Indeed, we
point out that a simple replacement of the ratios by their logarithm, with
the aim to resort to an approach able to handle just distances, would not be
an effective choice. In fact, there would be the need to introduce additional
variables and constraints (i.e., constraints in the form z; = log(z;)), which
would need to be carefully handled. However, this represents an interesting
direction that we leave for future research.

8.2 Problem Statement

In the following section we shall make use of basic notions and defini-

tions concerning graph theory. For a detailed description see the Appendix
section of Part II.
Let us consider a bidirectional strongly connected graph G = {V, E} with
n nodes, where each node v; € V' represents an agent and each link (v;, v;)
captures the existence of a communication channel from agent v; to agent v;.
Each agent v; € V has the task to compute a value f; > 0 (e.g., its utility,
position or importance), based on relative information with respect to its
neighboring agents; we assume that such an information has an heteroge-
neous nature, as discussed next. In the following, we refer to the i-th value
fi simply as utility. In more detail, for each agent v; the in-neighborhood
N over G is partitioned into two mutually exclusiv sets D" and RI",
ie., D"ORM = @ and /" = D" JR. The set D" contains the in-
neighbors of ¢ for which relative information on the difference of the values
is available; in other words, for all v; € Dﬁ” the agent v; knows the value
d;; for the difference f; — f;. The set 7?,2” contains the in-neighbors of
i for which relative ratios are available; in other words, for all v; € R;’"
the agent v; knows the value r;; > 0 for the ratio f;/f;. Note that, for
simplicity, we assume that v; € D" whenever v; € D;” and v; € Rin
whenever v; € R;” Moreover, for each available difference d;; it holds
dj;i = —d,;, while for each available ratio r;; it holds rj; = 1/r;;. Note that
we can express E as B = E?|JE", where E¢ = {(v;,v;) € E|v; € D;”} and
E" = {(v;,v;) € Ev; € R;”}, clearly, it holds B E" = §.

In this paper we provide a distributed algorithm to let each agent asymp-
totically estimate its utility. To this end, we first formulate a least-squares
optimization problem; then, we prove that our distributed algorithm asymp-
totically converges to a global optimal solution of the least-squares optimiza-
tion problem.

!Note that the proposed approach can be easily extended to the case where the graph
is a multigraph with at most two links connecting any pair of nodes, i.e., a node v; may
belong to both sets. In this way it would be possible to handle situations where both
difference and ratio information is provided for the same link.
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8.3 Optimization Problem

In this section we consider the problem of finding an x* € R™ that
satisfies all the distance and ratio constraints in an optimal least-squares
sense. To this end, we consider a function g : R™ — R defined as

g(x) = % Y (wi—a—dy)?

(vi,’llj)GEd
1 Tji T 2 (®.1)
+ = < 2 Ty — Y 1’j> .
2 (Z;eE br 147y

In order to solve the problem at hand in this paper, we look for a global mini-
mum x* of g(), i.e., we aim at finding * that satisfies g(x*) = mingecrn {g(x)}.
It is immediate to recognize that g(x) > 0 for all € R™ and that g(x) =0

if and only if for all (v;,v;) € E¢ it holds z;—x; = d;; and for all (v;,v;) € E"

it holds z;/x; = 74j; hence, in order to solve the problem at hand in this
paper, we seek a global minimum «* for g(-).

Let us now characterize the structure of the optimal solutions of the
above problem. By straightforward computations, and since by assumption
je Df" whenever ¢ € D;-" and j € R;" whenever ¢ € 73;-", it follows that the
first order partial derivative of g(-) with respect to x; is given by

8;55) = > (@i—z)— ) dy

jeDin jeDin

T Tji Tij
T; — xi].
+.Z 1+Tji <1+Tji ! 1+T'ij ]>
JER

(8.2)

Again, by simple computations, it can be shown that the n x n Hessian
matrix H(-) associated to g(-) is such that

r2

D[ + Zjengn W’ ifi=j

H(;c) = 62g(m) =1 if Vi € Zm (8 3)
K B Or. 1 ; in )
0x;0x; Sl (F= Ewomy if v; € R;
0, otherwise.

Let us now collect some observations about g(-) and H(-).

Remark 52. We point out that, since H is positive semidefinite, the func-
tion g(-) is convexEl (see, for instance [124], Chapter 2). Finally, we notice
that for ¢ # j it holds H;; # 0 if and only if (v;,v;) € E; hence, H € Ag.

2The positive semidefiniteness of H implies convexity but not strict convexity, i.e., g(-)
might have multiple global minima.
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Remark 53. Since g(-) is convex, any of its global minima x* satisfies

9g(x) .
=0, Vie{l,... .
81:1‘ T=x* ’ ! { ’ ’n}
Stacking Eq. (8.2) for all ¢ € {1,...,n}, setting §; = Zjepgn dij, 6 =
[61,...,0,)7 and evaluating at = x*, we conclude that the global min-

ima x* of ¢(-) satisfy Hx* = §. Therefore, we observe that g(-) has a unique
global minimum x* = H~1§ if and only if rank(H) = n. Otherwise, it holds
rank(H) = m < n and the set of global minima of g(-) is a subspace of R"
with dimension equal to n — m.

8.4 Existence of a Unique Global Minimum

In this section, we provide a necessary and sufficient condition that guar-
antees the existence of the unique global optimal solution to the minimiza-
tion problem. To this end, let us now provide a necessary and sufficient
condition for a vector & € R™ to belong to the kernel of the Hessian matrix
H of g(+).

Proposition 54. Let G = {V,E4|JE"} be a connected bidirectional graph
with n nodes, where E4 and E" reflect, respectively, the difference and ratio
information available; moreover, let g(-) be defined as in Eq . A wvector
x € R" satisfies Hx = 0,,, where H is the Hessian matriz associated to g(-),
if and only if it holds

Yo+ D M:0. (8.4)

)2
(vi,v5)€ B4 (vi,v;)€ET (14 rij)

Proof. Proposition[54 To establish the result we notice that, being H sym-
metric, it holds Hx = 0,, if and only if 7 Hx = 0. Moreover, we have
that H = H' + H"”, where H' and H” are symmetric matrices having en-
tries given by

D), ifi=
H; =< -1 if v; € DI (8.5)
0, otherwise.

and

r2

Yjerin e 1=
1 ) )
i =\ ~mmgamy  Hwer” (8.6)
0, otherwise.
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In other words, we have that Hx = 0,, if and only if it holds

e'He =x"Hz+x"H'x = 0. (8.7)
We observe that
n
el H'zx = le Z (x; —xj) = (zi — ;)% (8.8)
=1 jepin (vi,v5)€ B4
and that
T n r2.. 1
' H'x = Z; " — zi |-
; ZjGZR:% L+ra)2" (L) (L 4mj0)
At this point, we notice that, by some algebra, it holds
T 1711 (zi — rijxj)Q
x H'x = Z W (8.9)
(vi,vj)GET t
The proof follows. ]

We now show that rank(H) > n — 1.

Lemma 55. Let G = {V,E4|JE"} be a connected bidirectional graph with
n nodes, where E% and E" reflect, respectively, the difference and ratio infor-
mation available; moreover, let g(-) be defined as in Eq . The Hessian
matriz H associated to g(-) is such that rank(H) > n — 1.

Proof. Lemma [55 Let € R" \ {0, } be such that Hx = 0,. By Propo-
sition x satisfies Eq. . Therefore, it must hold x; —x; = 0, for all
(vi,v5) € E? and x; — rijr; = 0, for all (v;,v;) € E". The above conditions
can be rearranged as x;/z; = 1, for all (v;,v;) € E? and =;/x; = 1y, for
all (vi,v;) € E". In other words, for each link (v;,v;) € E, the ratio of
the entries x; and x; of the vector £ must be equal to a given w;;, where
w;; = ri; for links corresponding to ratio information and w;; = 1 for links
corresponding to difference information. Let W € Ag be the n x n matrix
collecting such ratios, i.e., W;; = w;; if (vj,v;) € E4|J E" and W;; = 0, oth-
erwise. In [92], the authors demonstrate that, when a matrix W collecting
sparse ratio information has the same structure as a connected bidirectional
graph, a necessary and sufficient condition for the existence of a vector x
such that W;; = z;/x; for all W;; # 0 is that the product of the entries Wj;
along any cycle of the graph is equal to one; otherwise, no solution exists.
When such a condition is satisfied, we observe that the ratios z;/z; are de-
fined up to a scaling factor. Hence, the kernel of H has dimension one and
rank(H) =n — 1. In the latter case, no solution exists (other than the triv-
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ial one) and therefore the kernel of H coincides with {0, } and rank(H) = n.
The proof is complete. O

As a consequence of Lemma we can state a necessary and sufficient
condition for rank(H) to be equal to n.

Proposition 56. Let H be the Hessian matriz associated to g(-) and let
us assign a weight wi; = 1 to all (vi,v;) € E¢ and a weight w;; = 145
to all (vi,v;) € E". It holds rank(H) =n if and only if there is a cycle
c={(v1,v2), ..., (Vm,v1)} over G = {V, E1|J E"} such that H(vi,vj)ec wij # 1.

Proof. Proposition [56 By Lemma it holds rank(H) = n — 1 if and only
if all cycles over G satisfy H(vi’vj)ec w;j = 1, otherwise rank(H) = n. The
proof follows. 0

8.5 Proposed Algorithm

If all the information can be collected and processed in a centralized
way then, as noted in Remark [52] a solution to the problem at hand in this
paper is to find x* that satisfies Hax* = . In several situations it might be
impossible to solve the problem by means of a centralized supervisory entity;
in those cases, each agent aims at computing its own utility in a distributed
way. Specifically, based on the information regarding its neighbors, each
agent 7 aims at computing a value zj such that, overall, the vector z*
satisfies all difference and ratio constraints in a least-squares sense; in other
words, the agents aim at computing a vector &* that is a global minimum
for g(-). Within the proposed algorithm, each agent i executes the following
continuous-time and synchronous update algorithm

i(t) =a Y (zj— )

jeDin
8.10
+az - " g ) +ady (&10
S L \1 473 Tl v
JER;

where o« > 0 and §; = ZjeD’f" dij-
Let us now show that the proposed distributed algorithm asymptotically
converges to a global minimunﬂ x* for g(-).

Theorem 57. Let us consider a connected bidirectional graph

G = {V,E*JE"} with n nodes, where E% and E" reflect, respectively, the
difference and ratio information available to the agents. Let the agents
execute the synchronous update rule in FEq. , with initial condition

3 As discussed in the previous section, the solution is unique if and only if the condition
in Proposition is satisfied.
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2;(0) > 0 and a > 0. It holds lim;_,o 2;(t) = z}, where x* = [23,...,2}]T
is a global minimum for g(-).

Proof. Theorem[57 Stacking Eq. (8.10) for all the agents and setting @(t) =
[z1(t),...,2,(t)]F and & = [61,...,5,]7, we get

x(t) = —aHz(t) + ad. (8.11)

As noted in Remark we have that H is positive semidefinite and by
Lemma [55]it holds rank(—aH) > n—1. Hence, matrix —«H is stable in the
continuous-time sense and the system @(t) = —aHx(t) converges to an equi-
librium point. We point out that the presence of the constant input ad does
not affect stability; hence, also the dynamics in Eq. converges to an
equilibrium point .4, which satisfies 0,, = —aHx., + ad, that is, Hx., = 9.
Therefore, using the same reasoning as in Remark we conclude that the
equilibrium reached corresponds to a global minimum of g(-). The proof is
complete. ]

Remark 58. The parameter a can be used to arbitrarily increase the speed
of convergence of the proposed algorithm, e.g., by letting each agent choose
the same « > 1. However, to select a specific (e.g., instance-dependent)
value of «, some form of distributed coordination or agreement (e.g., dis-
tributed consensus [106]) is required before the execution of the proposed
algorithm.

We now characterize the structure of the particular global minimum of
g(+) computed by the proposed algorithm.

Theorem 59. Let us consider a connected bidirectional graph

G = {V,E*JE"} with n nodes, where E% and E" reflect, respectively, the
difference and ratio information available to the agents. Let the agents
execute the synchronous update rule in Eq. , with initial condition
x;(0) > 0 and o > 0. Without loss of generality, let \; be the i-th smallest
eigenvalue of the Hessian matriz H of g(-) and let z; be the corresponding
eigenvector such that the set {zi1,...,z,} represents an orthonormal basis
for H. The state of the agents asymptotically converges to

(27 (0)) 21+ 30p 5 (2] 0) 21, if A =0,
Leq = (8.12)
>ic )\% (216) 2, otherwise.

Proof. Theorem [59

As noted in Remark [52] and Lemma [55] the Hessian matrix H is symmetric
and it has at most one eigenvalue equal to zero, while all other eigenvalues
are positive. Hence, we diagonalize H by writing H = ZAZ ™!, where A is a
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diagonal n x n matrix with A;; = A\; and Z = [21,..., 2z,]; since {z1,...,2,}
represents an orthonormal basis, we have that it holds Z—! = Z7. The state
of the agents at time ¢ is given by x(t) = e~ *"tx(0) + f(f e~ H=7)q§dr and
can be rearranged as

t
x(t) = Ze_aAtZ_lm(O) + aZe_aAtZ_l/ ZeN 7-18dr
0

Let us define n = Z716, so that it holds n; = le6 for all ¢ € {1,...,n}.
Notice that Hx.; = d; hence, when A\; = 0 it holds 7; = le6 = leHmeq =0.
Since e* is diagonal and Z—' = Z7 it holds

t
x(t) = Ze *MZ712(0) + aZeaAtZl/ Zzie‘””de
0 =1

n t
= Ze MZ7715(0) + o Z Ze_aAtZ_lzml-/ N dr.
i=1 0

Let e; be the i-th vector in the canonical base in R"; since Z71 = ZT, we
have that

Zefa/\tzflzi — Zefa/\tei — Zefa)\itei — efa)\itZei — efa)\itzi;

hence, it holds
n t
x(t) = Ze “MZ712(0) + a Z me_o"\"tzi/ N dr.
i=1 0

At this point we notice that, when \; = 0, it holds n; = 0; hence,

n n _ —a\t
2(t) = 30N (L (0) 2+ 3 (210) =
i=2 ¢

=1

and therefore lim;_,o () = @¢q, where x., corresponds to the first case in
Eq. (8.12). Conversely, when \; > 0, we have that

n n _ —aMt
2(t) = 30N (L(0) =+ 3 (210) S
i=1 ¢

=1

and therefore lim; o () = @y, where this time x., corresponds to the
second case in Eq. (8.12). This completes our proof. ]

Remark 60. Notice that, when A\; = 0 the set of global minima of g(-)
correspond to a subspace of R™ of dimension equal to one. Conversely,
when A; > 0 the problem admits a unique global minimum. In particular,

Mosts. Meye.



Tesi di dottorato in Bioingegneria e bioscienze, di Marta Menci,

discussa presso I'Universita Campus Bio-Medico di Roma in data 12/03/2020.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,
a condizione che ne venga citata la fonte.

194

as shown in Eq. , in the first case the solutions coincide with an affine
space of the eigenspace spanned by z; (the particular value computed by
the agents depends on the initial condition x(0) and on the complete sets
of eigenvalues and eigenvectors of H), while in the latter case the solution
is unique, and it depends on all the eigenvalues and eigenvectors of H but
is independent on the initial condition.

Remark 61. Note that, although Eq. provides a closed-form solution
for the global minima of g(-), its structure depends on the entire set of
eigenvalues and eigenvectors of H; a distributed algorithm to compute such
information has a remarkably higher computational burden for the agents
(e.g., see [125]) with respect to the proposed algorithm, thus justifying the
adoption of our approach in a distributed computing scenario.

8.6 Simulation Results

In this section we provide numerical evidence to corroborate the theo-

retical findings. Let us take into account two small scale instances such that
g(x*) = 0, i.e., such that the available information is perfectly consistent.
Specifically, we consider two graphs with |V| =5 nodes and |E| = 12 edges
(i.e., six pairs of bidirectional edges); the graphs and the available differ-
ences/ratios are reported, respectively, in Figure and Figure [8.1(c)
Let us now discuss the first example. Note that the information associ-
ated to the example in Figure satisfies the necessary and sufficient
condition in Proposition , hence it can be shown that g(-) has a unique
global minimum at * = )" | )\% (ziT(s) z; = [1,2,2,8,1]7, thus numerically
corroborating Eq. . Figure shows the evolution of the proposed
distributed algorithm when a = 1; it can be noted that the state z;(¢) of
each agent v; effectively converges to z;.
Let us now discuss the example in Figure Figure |8.1(d)| shows that,
for x(0) = [0.5768,0.0259,0.4465,0.6463,0.5212]T, the state of the agents
converges to an &, corresponding to the first case in Eq. , numerically
validating Eq. . It can be easily shown that for any ¢ € R the vector
z*()=[1+¢62+¢6,84¢44¢/2,1+¢/8" is a global minimum, since it
holds g(x*(e)) = 0 ; note that, as demonstrated in Theorem [59| the partic-
ular value of € associated to the asymptotic solution found depends on the
initial condition x(0).
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300
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zi(e)=1+c¢ zi(e) =4+¢/2 t [s]

(c) (d)

Figure 8.1: Examples with |V| = 5 nodes and | F| = 12 edges (i.e., six pairs of
bidirectional edges). In panel the condition in Proposition is satis-
fied and there is a unique global minimum for ¢(-). In panelthe condi-
tion in Proposition[56]is violated and there are several global minima for g(-)
(we show them as a function of the parameter €). Panels [8.1(b)| and |8.1(d)|
show the evolution of the proposed algorithm for o = 1, considering the
instance in panels|8.1(a)| and |8.1(c)| respectively.

In order to assess the effect of perturbations on the available information,
and to compare with standard formation control and AHP approaches, in
Figurewe consider a graph where |V| = 100 nodes are sampled uniformly
at random in the unit square [0,1]? and a pair of nodes v;,vj is connected
by an edge provided that their Euclidean distance is smaller than p = 0.2;
the resulting graph, reported in Figure has |E| = 1038 links, i.e.
519 distinct pairs. Moreover, we consider a scenario where the utility of

the i-th agent is z} = n(iil) (so that, overall, it holds 11x* = 1) and we
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partition the links of E into the sets E? (black solid lines in Figure
and E" (blue dotted lines in Figure [8.2(a)), which correspond to difference
and ratio information, respectively. Specifically, in order to guarantee that
the problem can be solved based on just differences or ratios, we first cal-
culate two edge-disjoint spanning trees over G and we assign their links to
E4 and E7, respectively; then, we randomly partition the remaining links
in E, assigning them to the sets F¢ and E" with equal probability; as a
result we obtain |E?| = 554 (277 distinct pairs) and |E"| = 484 (242 distinct
pairs). In order to evaluate the effectiveness of the proposed methodology,
we consider multiplicative errors affecting the available ratios and additive
perturbations affecting the available differences. In more detail, we consider
ratios affected by log-normal random perturbations, as typically done in the
AHP literature [100], i.e., we set ;5 = exp(N (0, 0))z] /2], where N'(0,0) is a
normal random number with zero average and standard deviation o. Then,
we select random additive perturbations for the difference information which
are comparable to the magnitude of the multiplicative ones. To this end,
we observe that if @7 /z} = ri;e?, then z} — 27 = (rije” — 1)z} = z7e” — a7;
therefore, if we seek for a perturbation v such that z7 —aj = d;; +~v we
have that v = z7e” — x7 — d;; = 7 (e” — 1). For the above reason, we set
dij = i —; + N(0,2}(e” — 1)). In Figure we compare the results
achieved by considering only difference information via formation control
(blue dashed line), only ratios via the AHP approach in [100] (green dotted
line) and the performance of the proposed algorithm when we consider both
differences and ratios (red solid lines); for all curves we show the results
in terms of average and standard deviation over M = 100 runs with the
same choice of o. Specifically, we plot against ¢ the Kendall’s Tau Distance
[126] 7 between the nominal and perturbed ranking of the agents; such a
distance is such that 7 € [0, 1], where 7 = 0 means that the ranking is the
same and 7 = 1 means that the rankings are in reverse order. As shown by
Figure the proposed approach is remarkably more robust to the per-
turbations; for instance, 7 < 0.01 for ¢ < 0.1, while using only differences
or ratios we get 7 =~ 0.07 and 7 = 0.04, respectively. The difference in the
result of the three approaches widens as o grows, and for ¢ = 0.3 we have
that the proposed approach yields 7 ~ 0.07, while the cases of using only
differences and ratios yield 7 =~ 0.31 and 7 ~ 0.13, respectively.

8.7 Conclusions and Future Work

In this paper we develop a novel distributed decision making technique
that endows a network of agents with the capability to compute a quan-
tity that represents their own utility or importance, based on the knowledge
of pairwise relative information of heterogeneous nature, i.e., the differences
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Figure 8.2: (a) graph considered in the simulation. (b) comparison of the
proposed approach (red line) with formation control (blue dashed line) and
AHP (green dotted line) for growing perturbations.

and ratios of the utilities of a node with respect to its neighbors. Specifically,
we frame the problem in terms of a least-squares minimization problem and
we characterize the structure of the global minima of such problem, provid-
ing a necessary and sufficient condition that guarantees the existence of a
unique solution. Moreover, we develop a distributed continuous-time algo-
rithm that lets the agents asymptotically find a global minimum. Future
work will follow four main directions: (i) extending the framework to di-
rected graphs; (ii) introducing constraints in the formulation; (iii) including
in the framework different typologies of nonlinear functions describing the
relative information available; (iv) extending the approach to wireless sen-
sor network localization, considering a scenario where some sensors are able
to measure distances while other sensors are able to estimate of the ratio
between their distance from pairs of neighbors.
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Appendix Part 11

We recall some basic notions and definitions relating to the topics of
Chapters [7] and

Kendall’s Correlation Index

Let a € R™ and let b € R” be a permutation of the elements in a. Given
two pairs of values (a;,b;) and (aj,b;), we say they are concordant if both
a; > aj and b; > b; or if both a; < a; and b; < b;; similarly the pairs are
discordant if a; > a; and b; < b; or if a; < aj and b; > b;. If a; = a;
or b; = b; the pairs are neither concordant nor discordant. The Kendall’s

correlation index [126] 7 is defined as 7 = %, where C and P are the

sets of concordant and discordant pairs (a;, b;) and (aj,b;), respectively. We
point out that 7 can be regarded as the degree of shuffling of b with respect
to a; in fact, for 7 equal to one the two vectors are identical, while for
7 = —1 b is in reverse order with respect to a and for 7 = 0 the two vectors
are independent.

Graph theory and Markov Chains Definitions

Let G = {V, E} be a graph with n nodes V = {v1,...,v,} and e edges
E C VxV, where (v;,v;) € E captures the existence of a link from node v; to
node vj. A graph is said to be undirected if (v;,v;) € E whenever (v;,v;) € E,
and is said to be directed otherwise. In the following we will consider only
undirected graphs. A graph is connected if for each pair of nodes v;, v; there
is a path over G that connects them. Let the neighborhood N; of a node v;
be the set of nodes v; that are connected to v; via an edge (v;,v;) in E. The
degree d; of a node v; is the number of its incoming edgesEl, ie., d; = [NV
The adjacency matriz A of a graph G = {V, E} with n nodes is the n x n
matrix such that A;; = 1 if (v;,v;) € E and A;; = 0 otherwise; moreover,
the n X n degree matrix D is an n X n diagonal matrix such that Dy = d;,
for all i € {1,...,n}. The n x n Laplacian matriz of G is L = D — A;

4Over undirected graphs, for each node v; the number of its incoming and outgoing
edges coincide.

199
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since, by construction, the rows of L sum to zero, it can be noted that L is
singular. The diameter § of a graph G is the length of the longest among
the minimum paths between any pair of nodes. We say an n X n matrix
W has the same structure as a graph G = {V, E'} with n nodes if A;; = 0
implies W;; = 0. It can be shown that, in the case of undirected graphs, the
fact W is irreducible corresponds to the fact that W has the same structure
as a connected graph G.

Markov Chains

Let a graph G = {V, E} with n nodes; a (time-homogeneous) Markov
chain 127, [128] is a dynamic system in the form p(k + 1) = H'p(k), where
p(0) € R™ is a probability distribution, i.e., it has just nonnegative entries
and satisfies 15]9(0) = 1, and the transition probability matriz H is such
that H;; € [0,1] for all 4,5 € {1,...,n} and H1, = 1,. The notation 1,
denotes a vector with n components, each equal to 1 A Markov chain is
said to be irreducible if H is irreducible, i.e., if H has the same structure
as a connected graph G. For each state variable i, the associated period
is h = ged{n € Np | (H™);; > 0}, where gcd is the greatest common divisor.
From the definition, it follows that a sufficient condition for the period of
the i-th variable to be h = 1 is that H;; > 0. A Markov chain is said to be
aperiodic if all the state variables have period equal to one.

Remark 62. Note that, if the Markov chain is irreducible, then all the states
have the same period (see, for instance [127, [128] and references therein).
Therefore, a sufficient aperiodicity condition is that matrix H has at least
one nonzero diagonal entry.

Remark 63. If a Markov chain is irreducible but not aperiodic, and H
has a vector f as its left dominant eigenvector, i.e., H f = f, it can be
easily noted that for any « € (0,1) the matrix H* = aH + (1 — «)I is ape-
riodic and it holds (H*)Tf =aHTf+(1—a)f =af +(1—a)f = f, ie.,
H* has the same left dominant eigenvector as the original matrix H.

A Markov chain is said to have a limiting distribution po if, for all prob-
ability distributions p(0) it holds limg_,o (H)*p(0) = pss. Note that, in
general, a Markov chain might not have a limiting distribution; a neces-
sary and sufficient condition for its existence is that the Markov chain is
irreducible and aperiodic.

The following remark shows that, in the general case when the initial
condition is not a probability distribution vector, any Markov chain is sum-
preserving.

Remark 64. Let us consider a Markov chain with transition probability
matrix H, a vector p(0) € R"™ with non-negative entries and such that
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1I'p(0) ¢ {0,1}, and a vector p’(0) = p(0)/1Xp(0). Moreover, let p(k) and
P (k) be the state of the Markov chain when the initial condition is p(0) and
p'(0), respectively. At each time step k it holds

p(k) = (M")fp(0) = (17p(0)) (MT)*p'(0) = (17p(0)) p'(k),

and since p/(k) is a distribution for all times k, it follows that 17p(k) =
17p(0), Vk=0,1,....

A consequence of the above remark is that, if a Markov chain has a limit-
ing distribution p, then in the general case where p(0) is not a distribution
vector the state asymptotically converges to a vector poo = (17p(0))poo, i-e.,
to a vector in the span of the limiting distribution ps, with 179, = 17p(0).
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