
UNIVERSITÀ DEGLI STUDI DI CATANIA

Dipartimento di Ingegneria Elettrica, Elettronica ed
Informatica

Dottorato di Ricerca in Ingegneria dei Sistemi,

Energetica, Informatica e delle Telecomunicazioni

XXXIV Ciclo

Communication-aware management of SLAs for
Cloud-Native Applications

On the road to AIOps. Smart orchestration strategies in
Cloud and Edge computing.

Ing. Alessandro Di Stefano

Coordinatore
Chiar.mo Prof. Paolo Arena

Tutor
Chiar.mo Prof. Antonella Di Stefano

Abstract

Today, IT Operations teams have to face up with managing massive

amounts of data generated by advanced distributed systems, workloads

difficult to predict in time, security threats. They need to handle more

incidents than ever before with strict service-level agreements (SLAs).

Most of the current state-of-the-art techniques to handle SLAs for Cloud-

Native applications are based mostly on severe human efforts.

Downtime can get expensive: companies can lose millions dollars per

outage with a longer mean time to recovery due to the complexity of

human debugging on complex distributed systems. In the landscape of

hybrid clouds, multi-tenant environments, and Edge computing archi-

tecture, organizations need multiple strategies to get the desired quality

of service. Capacity planning, resource utilization, storage management,

anomaly detection, threat detection are just a few aspects that engi-

neering teams should take into account to guarantee SLAs and sites

reliability.

3

AIOps can empower software and service engineers to effectively build

and operate cloud-native applications at scale with artificial intelligence

(AI) and machine learning (ML) techniques.

This thesis explores the multitude of issues that constitute the land-

scape of cloud-native applications in Cloud and Edge computing scenar-

ios.

The focus will be twofold: proposing containers allocation strate-

gies where communication quality is considered first-citizen parameter,

and opening a window in the novel field of AIOps by providing models,

case studies, and strategies to perform smart orchestration of run-time

workloads in PaaS clouds.

Contents

I Preliminaries 11

1 Introduction 13
1.1 Service-level Agreements 14
1.2 Microservices and future internet issues 15
1.3 From DevOps to AIOps 16
1.4 Contributions and organization 19
1.5 Acknowledgements . 21

2 Research Context 23
2.1 Computing architectures 23

2.1.1 Containerization 26
2.1.2 Server-less computing 27
2.1.3 An eternal return context 27

2.2 Orchestrators . 29
2.3 Container resource allocation 30

2.3.1 Approaches to network isolation 35
2.4 Edge-Cloud offloading . 36
2.5 Towards AIOps . 38

II Scheduling containers in cloud and edge computing 43

3 Introduction 45

Contents 5

4 Communication-intensive applications in PaaS clouds 51
4.1 Allocation Issues in Clouds 53

4.1.1 Application models 57
4.1.2 Definition of Isolation Index 58
4.1.3 Closeness: notion and formal definition 62

4.2 Mapping strategies . 64
4.2.1 Set of Components 65
4.2.2 Simple Workflow 66
4.2.3 Timed Workflow 67

4.3 IQP Formulation . 71
4.4 A case study: impact of closeness and isolation on the

performance of a 3-tier application 74
4.4.1 Application, workload and performance indexes . . 75
4.4.2 Performance in the “private environment“ 78
4.4.3 Performance in the “shared environment” 81

4.5 Performance evaluation 84
4.5.1 Generation of applications and cluster graphs . . . 85
4.5.2 Numerical results 88

4.6 Conclusion . 90

5 MORA: Multiple Option Resource Allocation on Edge
Computing environments 93
5.1 Architecture . 97

5.1.1 An existing implementation of Edge Computing . . 97
5.1.2 Proposed architecture 99
5.1.3 Edge Master workflow 100

5.2 Optimal resource allocation 101
5.3 MORA . 103

5.3.1 MORA Algorithm 106
5.3.2 Properties of MORA 108

5.4 Numerical results . 112
5.4.1 Results on synthetic scenarios 113
5.4.2 Results on real traces 120

5.5 Conclusion . 124

Contents 6

III Towards AIOps: Ananke as an orchestration frame-
work and decision support system 127

6 Introduction 129

7 Towards AIOps: Ananke 135
7.1 Data Model . 137

7.1.1 Cluster Model . 137
7.1.2 Deep dive into micro-services monitoring 138
7.1.3 Application & Performance Model 144
7.1.4 Putting it all together 145

7.2 Architecture and workflow 148
7.3 Conclusion . 151

8 Predicting peek events through Facebook Prophet and
Scale-out CNAs 153
8.1 Data Back-filling on Prometheus 155
8.2 Enabling data-analysis on Ananke and Prometheus 159
8.3 Case study . 161
8.4 Conclusion . 165

9 NAPA: to scale or not to scale 167
9.1 Replication management in Kubernetes 169
9.2 Horizontal auto-scaling . 170
9.3 Flannel . 171
9.4 Network-aware scaling or network adaptiveness 172

9.4.1 NAPA: Network-Aware Pod Autoscaler 174
9.4.2 Extension to multiple applications and implemen-

tation . 180
9.5 Architecture and workflow 181

9.5.1 Pods and cluster monitoring 182
9.5.2 Defining the SLOs 186
9.5.3 NAPA Operator 187

9.6 Numerical results . 191
9.6.1 Number of correct actions 192
9.6.2 Number of SLA violations 194

Contents 7

9.7 Conclusion . 195

IV Conclusions and Future Work 197

10 Final considerations 199

11 The Red Hat experience: future directions 205

List of Figures

2.1 Bare metal to Serverless architecture road 24

3.1 Cloud and Edge computing 47

4.1 A simple reference scenario 52
4.2 Information about application A 67
4.3 Three tier application graph 75
4.4 TDTs distribution in different deployment cases (“private”

environment) . 79
4.5 TDTs distribution in different deployment cases (“shared”

environment) . 80
4.6 Numerical results from simulation environments 84

5.1 Netflix architecture for OCAs CDN 97
5.2 Overview of the proposed architecture. SPs run part of

their service in their premises or in remote Clouds, which
we denote as Headquarters. 99

5.3 Example of set of options of a SP i. The options connected
by the line constitute the ordered list of LP-extremes. . . 105

5.4 Time to compute solutions for ILP, MORA and Naive
strategies . 115

5.5 Benefits of multiple options. 116
5.6 Effect of containerization. 117
5.7 Effects of load. 118

List of Figures 9

5.8 Distribution of resources and utility between 50 SPs. The
x and y scale of the right plot are the total available RAM
and CPUs. 120

5.9 Utility while varying the number of SPs and the number
of options provided using Alibaba Traces 122

5.10 Relative utility while varying the number of SPs and the
number of options provided using Google Traces 123

5.11 Utility and Best jump efficiency by time 124

7.1 Reference scenario . 136
7.2 Example of CNA . 138
7.3 Example sequence diagram of an action performed in a

CNA . 140
7.4 Example of graph Gτ in eq. (7.3) for a cluster of 8 workers

and 2 applications. Only 1 instance of 1 path per appli-
cation is reported: path n of A1 at instance t1 ∈ Tτ and
path n of A2 at instance t2 ∈ Tτ 143

7.5 Ananke architecture with focus on white-box monitoring . 148

8.1 Prometheus Back-filler . 156
8.2 Architecture of the Prometheus AIOps framework 159
8.3 Prediction of the next day traffic peek as scale-out trigger 162

9.1 RL Pipeline . 174
9.2 Modified Canberra 1D distance d(p, q), with fixed q > 0,

for p ≥ 0 . 178
9.3 Ananke architecture . 181
9.4 Number of actions that reduced the risk factor 191
9.5 Number of SLAs violations for different test scenarios . . . 191

List of Tables

4.1 Summary of notation . 54
4.2 Network fluctuation . 75
4.3 Deployment configurations with their normalized isolation

index . 78
4.4 Performance of the “private” environment 81
4.5 Performance of the “shared” environment 81
4.6 Default values for simulations 86

5.1 Summary of the notation. 94
5.2 Default values of the reference scenario evaluated 114

7.1 Reconstruction keys and example of Vertex/Edge prop-
erty keys . 139

8.1 Comparing promtool and go-prometheus-backfiller on a
10GB MySql database . 158

8.2 Test parameters of back-filler for the Alibaba Cluster Trace
v2018 . 158

8.3 1 minutes sampled Wordpress dataset description 161
8.4 1 hour (re)sampled Wordpress dataset description 162
8.5 RMSEs comparison between ARIMA, SARIMA, VARMA 163

Part I

Preliminaries

Chapter 1

Introduction

Cloud Computing is the set of heterogeneous technologies that essentially
provide hardware resources on-demand to run software by employing a
pay-as-you-go business model.

Three main categories of clouds can be initially identified in the mar-
ket:

• Infrastructure as a Service (IaaS): providers rent hardware resources
(storage, virtualization, networking) to be managed by the cus-
tomers IT teams;

• Platform as a Service (PaaS): services hosted by the Cloud Providers
that enable a more fine-grained sharing of resources between cus-
tomers asking for the execution of their workloads; users of this
kind of clouds is in charge of developing software on the stack pro-
vided by the provider.

• Software as a Service (SaaS): services that directly consist of business-
oriented software that is rent in form of license agreements for cus-

Chapter 1. Introduction 14

tomers that do not interact directly with the development of these
services;

Another taxonomy distinguishes execution environments from the
point of view of the customers in: (i) public (shared among different
customers), (ii) private (the cloud environment itself is hosted by hard-
ware in the behalf of the user company business itself), (iii) multi-cloud
(involving one or more public clouds that interact each other), and (iv)
hybrid cloud for which the user company of the cloud environment is
spread across one (or more) public cloud(s) and one (or more) private
data-centers.

Resource management in the Cloud must match the expectations of
at least two stakeholders: the Cloud Provider and the Customer.

Customers are users of the Cloud and have the objective to execute
their workloads with a given efficiency that allows them to provide ser-
vices for their end-users: faults, outages, and slow-downs in a cloud does
not let the companies to provide good Quality of Service or Experience
for their end-users.

On the other hand, inadequate management of the customer’s work-
loads can lead to waste of resources for the cloud providers, wrong ex-
ploitation of resources and non-optimal cost-benefit ratio.

1.1 Service-level Agreements

Today, the interactions between the Cloud service providers and the
customers are based on service-level agreements (SLAs).

An SLA consists of business-related predicates for key performance
indicators related to the technical requirements designed by the product
engineers: the service-level objectives (SLOs).

Chapter 1. Introduction 15

To transform these technical parameters driving applications into
SLOs is a big challenge that spawns over the whole life-cycle of the
applications [14,15].

The shift to infrastructure-as-a-code (IaaC) is one of the method-
ologies that enabled optimization of guarantees for SLAs. It required
drastic changes on data-centers architectures: the main research contri-
butions that enabled IaaC (and similar *aaC patterns) can be traced to
Software-Defined Networking [16, 17] (SDN), Network Function Virtu-
alization [18–20] (NFV), evolution of intra-datacenter networking with
spine and leaf architectures [21], and finally, the implementation of or-
chestrators as Kubernetes and support decision systems to automatically
handle operations on applications’ life-cycle [15, 22], given the related
SLOs [23].

New questions about what level of knowledge has to be shared be-
tween customers and Cloud providers have also arisen in recent years
together with the study of adaptive schedulers and admission control
systems [24].

1.2 Microservices and future internet issues

There is a new breed of technologies that are becoming mainstream in
current infrastructures. Fog/Edge computing aims to partially move ser-
vices from core cloud data centers into the Edge of the network [25,26].
Consequently, network operators become active stakeholders in deliver-
ing not only communication services but also application services to the
end-users.

Stake-holders that can be traced in the path of service delivery for
end-users can be identified as (i) network providers (NP), (ii) resource
providers (RP), and (iii) application providers (AP); collaboration be-

Chapter 1. Introduction 16

tween application providers and resource providers has to be taken into
account together with collaboration between APs and NPs.

In this field, recent trends in software such as microservices foster the
utilization of smaller deployment units and enable challenges for more in-
novative management of applications life-cycle. However, the increasing
of the number of components also increased operations complexity.

The complexity of the resulting IT environment and services makes
service orchestration a central task to coordinate and schedule operations
on a myriad of distributed service components. Orchestration becomes
even more challenging when different technologies are involved, requiring
hybrid solutions that coordinate service provisioning and management,
taking into account each technology’s requirements and particularities.

1.3 From DevOps to AIOps

DevOps methodologies are based on automation, integration, monitor-
ing and collaborations by exploiting continuous integration and deploy-
ment [27–29].

They are essential to guarantee release consistency and reduce the
time to market deadlines.

DevOps tends to improve deployment and quality of software releases
being evaluated through key performance indicators (KPIs) of the soft-
ware life-cycle such as (i) deployment frequency, (ii) deployment time,
(iii) change failure rate, (iv) time to detection, (v) availability, (vi) SLA
compliance indices.

Those measures and the DevOps methodologies themselves are essen-
tial for the delivery and integration phases of the applications’ life-cycle.

Beyond implementing new features that lead to the deployment of
changes, run-time issues have to be assessed. Recent trends in the in-
dustry brought the academic research environment to explore autonomic

Chapter 1. Introduction 17

computing and automated orchestration of services to optimize the job
of IT teams and minimize downtimes of applications.

In 2019, Gartner [30] came out with the AIOps keyword to invite re-
searchers to combine DevOps methodologies with Big Data and Artificial
Intelligence techniques to assess these issues.

DevOps speeds development by giving development teams more power
to provision and reconfigure infrastructure, but IT still has to manage
that infrastructure.

There is no widely accepted definition for AIOps yet. In [31], the
authors define AIOps as techniques to empower software and service
engineers to efficiently build, deploy and maintain services by using ar-
tificial intelligence algorithms.

New challenges for AIOps research spread from Security and Anomaly
detection to new ways for optimal scheduling of tasks to people in IT
Teams to solve detected problems in IT environments.

AIOps employs the use of big data platforms to aggregate siloed
IT operations data in one place. This data can include (i) historical
performance and event data, (ii) streaming real-time operations events,
(iii) system logs and metrics, (iv) network data, and (v) incident-related
data for ticketing and reporting.

The objectives lay in:

• Collect and aggregate the huge and ever-increasing volumes of data
generated by multiple IT infrastructure components, applications,
and performance-monitoring tools;

• Intelligent processing of “signals” out of the “noise” to identify sig-
nificant events and patterns related to system performance and
availability issues;

Chapter 1. Introduction 18

• Diagnose root causes and report them to IT for rapid response and
remediation—or, in some cases, automatically resolve these issues
without human intervention;

• Implementation of machine learning algorithms that can identify
patterns, learning from past remediation measures, e.g., previous
scripts executed, and automatically remedy the problem, thus re-
ducing the need for manual intervention;

• Finally, modeling of SLOs as a code and automatic control of ap-
plication life-cycle, e.g., auto-scaling, to guarantee SLAs;

By replacing multiple manual IT operations tools with a single, in-
telligent, and automated IT operations platform, AIOps enables IT op-
erations teams to respond proactively to outages with a lot less effort.

It bridges the gap between an increasingly diverse, dynamic, and
difficult-to-monitor IT landscape, on the one hand, and user expectations
for little or no interruption in application performance and availability,
on the other.

Some of the benefits AIOps methodologies are in the following, con-
cerning two real scenarios that are leveraging this early technology:

• faster mean time to repair (MTTR): By cutting noise and corre-
lating operations data from multiple IT environments, AIOps can
identify root causes and propose solutions faster and more accu-
rately than humanly possible. For example, Nextel was able to
use AIOps to reduce incident response times from 30 minutes to
less than 5 minutes by monitor 25k network devices and exploiting
predictive operations management [32];

• move from reactive to proactive and predictive management: AIOps
can provide predictive alerts that let IT teams address potential

Chapter 1. Introduction 19

problems before they lead to security issues or outages. After the
COVID-19 outbreak, while Siemens workers started working re-
motely, they empowered their cyber-security solutions by gathering
data from hardware devices such as laptops and PCs and analyzing
those data to reveal potential threats.

1.4 Contributions and organization

The main contributions of this thesis led to two phases of the life-cycle
of micro-services applications in Cloud environments: (i) initial, offline,
placement of containers in a cluster with the emphasis of optimizing net-
working parameters in the scenarios of PaaS clouds and Edge Computing,
and (ii) management, at run time, of the applications in generic hosting
environments through graph-based monitoring, prediction of events (is-
sues and anomalies), and autonomic strategies to take actions for keeping
service-level indicators (SLIs) in the SLOs ranges defined by the appli-
cations’ service-level agreements.

The thesis is organized into four parts. The purpose of part I is to
describe the boundaries of the research area that has driven this Ph.D.
course through a technological and academic research context at chap-
ter 2. Part II will explore the work done in the above-cited field of
the offline-placement and cloud-edge offloading strategies: chapter 4 de-
scribes a cloud-native scheduling approach for pods in PaaS based on
Kubernetes when customer and resource providers share their knowledge
to the aim of optimizing their QoS; chapter 5 presents MORA, a strategy
for Cloud-Edge offloading based on the concept of service elasticity for
container-based applications.

Part III will focus specifically on the field of AIOps for PaaS scenar-
ios: it is being proposed an architecture, Ananke, in chapter 7, to enable
modeling and processing of applications performance metrics through

Chapter 1. Introduction 20

multi-layer graphs. In the other chapters, Ananke represents the base ar-
chitecture and model for case studies and strategies aiming to a clever or-
chestration of cloud-native applications. Chatper 8 proposes a framework
for data analysis of monitoring data through Prometheus in Ananke. It
also exposes the case study of an events classification strategy based on
the Facebook Prophet [33] machine learning model, leading to an hori-
zontal pod auto-scaler for Kubernetes. Chapter 9 continues proposing an
improved strategy based on reinforcement-learning to not only scale pods
deployed in a Kubernetes cluster but also execute actions to adapt the
network configuration of the SDN connecting pods and physical hosts.

The last part of the thesis draws the line for research trends and
future work in this field with a focus on the AIOps methodologies that
the IT world expects to deploy in 30% of infrastructure by 2023 [30].

Chapter 1. Introduction 21

1.5 Acknowledgements

This work results from a training course in which you choose to place
yourself personally at stake. It is the expression of a fruitful human and
scientific experience from meeting many people and unique places. Many
dear people have been close to me on this journey. Each of them devoted
precious time to me, discussing and finding answers to my questions and
ideas, sharing their ones. I sincerely thank my tutor, Prof. Antonella
Di Stefano, for allowing me to get in touch with the world of research.
Her tenacity, accompanied by his usual positivity, supported me even in
the most challenging moments. Also, I express my gratitude for giving
me part of his experience in cloud computing and distributed systems.
Thanks especially for spending part of her time reading and discussing
the drafts of the thesis work and other projects carried out during the
Ph.D.

Special acknowledgement is for Giovanni Morana, that during these
years has not been a simple guide and collaborator but also a friend,
always available and ready to give me advice. An affectionate thanks go
to Daniele Zito and Giovanni Cammarata who followed my path during
my bachelor’s degree. Thanks to Andrea Araldo from the Télécom Sud-
Paris, Ben Steer and friends of the Queen Mary University of London,
for turning on me more in the research world. I would never have been
able to finish this job if I did not get the support of my girlfriend, Luna
Raimondo. She followed me with love and patience in every moment of
this thesis, celebrating the non-birthdays and talking to me about Cloud,
Server, anything but her interest. Encouraging me even in the hardest
moments. Her warmth and her subtle irony have facilitated my path.
During the COVID-19 lockdown, the constant presence of Billy, a stray
dog, and his grit and affectionate friendship consolidated from food and
salami has always been valid support.

Chapter 1. Introduction 22

Chapter 2

Research Context

« What, if some day or night a demon were to steal after you into your
loneliest loneliness and say to you: “This life as you now live it and have
lived it, you will have to live once more and innumerable times more; and
there will be nothing new in it, but every pain and every joy and every thought
and sigh and everything unutterably small or great in your life will have to
return to you, all in the same succession and sequence” »

Friedrich Nietzsche

2.1 Computing architectures

Today, IT Operations teams have to face up with the management of
massive amounts of data generated by advanced distributed systems.
They need to handle more incidents than ever before with strict service-
level agreements (SLAs). Most of the current state-of-the-art techniques
to handle SLAs for Cloud-Native applications are based on naive al-
gorithms (e.g., to schedule containers in Kubernetes cluster) or human
efforts. Moreover, many companies use ten or more tools for IT perfor-
mance monitoring, and downtime can get expensive when companies lose
million dollars per outage with a longer mean time to recovery due to the

Chapter 2. Research Context 24

Physical Hardware Physical Hardware Physical Hardware

Host Operating System

Hypervisor Controller

Function

Host Operating SystemHost Operating System

Container engine Serverless runtime

Function Function

Function Function Function

VM

Virtual
Hardware

Guest OS

AppApp

VM

Virtual
Hardware

Guest OS

AppApp

Container

App
Process
(PID 1)

Container

App
Process
(PID 1)

Container

App
Process
(PID 1)

Figure 2.1: Bare metal to Serverless architecture road

complexity of human debugging on heavy systems analytics reports. On
hybrid multi-cloud, multi-tenant environment organizations need even
more strategies to get the desired quality of service, and this is impor-
tant especially now that Edge/Fog computing architecture is arising in
the 5G landscape. Capacity planning, resource utilization, storage man-
agement, anomaly detection, threat detection are just a few requirements
that drive engineering teams to guarantee SLAs and sites reliability.

AIOps gives a prominent chance to empower software and service
engineers to effectively build and operate cloud-native applications with
artificial intelligence (AI) and machine learning (ML) techniques.

This thesis explores the multiple paradigms that constitute the land-
scape of cloud-native applications in Cloud and Edge computing scenar-
ios. The focus will be twofold: solving containers allocation problems
with communication quality being considered first-citizen and opening
a window in the novel field of AIOps by providing models, case studies,

Chapter 2. Research Context 25

and strategies to perform clever orchestration of run-time workloads in
PaaS clouds.

The concept of virtualization has its origins in the mainframe days
in the late 1960s and early 1970s when early computer engineering in-
dustries invested in developing robust time-sharing solutions.

Time-sharing aims to share usage of computing resources among a
large group of users. The objective is to increase the efficiency of both
the users and the expensive computer resources they share. This model
represented a breakthrough in computer technology: it became possible
to use a computer without owning one.

Similar reasons drove virtualization for industry-standard computing
in the late 1990s: the capacity in a single server is so large that it is
almost impossible for most workloads to use it effectively. The best
way to improve resource utilization, and at the same time, simplify data
center management is through virtualization.

Data centers today use virtualization techniques to make abstrac-
tion of the physical hardware, create large aggregated pools of logical
resources consisting of CPUs, memory, disks, file storage, applications,
networking, and offer those resources to users or customers in the form
of agile, scalable, consolidated virtual machines. Even though the tech-
nology and use cases have evolved, the core meaning of virtualization
remains the same: to enable a computing environment to run multiple
independent systems simultaneously.

The essential component in the virtualization stack is called hypervi-
sor, or Virtual Machine Monitor (VMM).Type 1 hypervisors, in particu-
lar, create a virtual platform on the host server, on top of which multiple
guest operating systems run, sharing the same resources.

During the last 30 years, several hypervisors have been built to handle
the growth of the servers’ hardware resources in the data centers through

Chapter 2. Research Context 26

the exploitation of multi-tenant architectures: VMware ESXi [34] and
XEN Hypervisor [35] are just a few type 1 VMMs.

Virtualization allowed the explosion of the Cloud business model en-
abling large companies to own resources in over-provisioning and rent
them together with intelligent solutions to guarantee multiple levels of
quality of service, as stated in service-level agreements (SLA) built better
to handle the gap between business agreements and technical orchestra-
tion of resources within one or more data centers.

2.1.1 Containerization

The history of containers technology is old; it can be traced back to the
Unix chroot command and, later, to the FreeBSD jail(s). When Linux
emerged as the dominant, free operating system, the technology enabling
containers became widely used thanks to its underlying facilities: names-
paces is a feature that allows partitioning of virtual kernel resources such
as PIDs tables, user IDs, network names, and inter-process communica-
tion (IPC); cgroups is a more recent feature providing resource limit-
ing, prioritization, accounting and, advanced control of checkpointing,
freezing, and restarting processes (beneficial for VMs snapshotting and
migration).

cgroups and namespaces are the building blocks for LXC, the oper-
ating system-level virtualization method to run multiple isolated Linux
systems on a host by only using one Kernel and with no hierarchical
hardware-level abstraction as in VMMs.

Many containers can be stored on a physical host with bulkier VMs.
The only limitation is that we must use the host’s kernel to access

the existing hardware components.
Docker is today an advanced technology that is widespread to reduce

gaps between the development and the production environments so that

Chapter 2. Research Context 27

some deployment issues related to this gap can be avoided during the
life-cycle of the application./

The advantages of a container-based cloud environment include fine-
grained resource sharing and the consequent economic saving.

2.1.2 Server-less computing

Today’s trends bring us the execution model known as Serverless com-
puting : in this model, the cloud provider allocates resources on-demand,
taking care of the server on behalf of their customer. In the serverless
paradigm, developers of serverless applications do not handle capacity
planning, configuration, and management of neither VMs nor containers.

Vendors of those services offer computing facilities to handle the code
from the developer under the function-as-a-service pattern.

Fig. 2.1 summarize the architectural evolution from bare metal to
server-less computing exposing how the IT research went from the design
of several layers of virtualization abstractions to reduce them in order to
achieve resource sharing and exploitation better.

2.1.3 An eternal return context

As Nietzsche discussed human life, computer engineering is also affected
by the “Eternal return” principle: last years are affected by the return to
historical patterns for IT environments. With the arising of Cloud and
Edge computing, the distance between user terminals device and the ac-
tual hardware that executes jobs is going back to be higher, sometimes
remembering mainframes times: Edge computing is enabling offload-
ing of compute-intensive jobs from end-user devices for several reasons
like increasing energy-saving; Amazon WorkSpaces [36] is a cloud-native
persistent desktop virtualization solution that lets users access data, ap-
plications, and resources “as they go”: advantages lay from increasing

Chapter 2. Research Context 28

agility and optimization of costs to a better management of the envi-
ronmental pollution. Users will not need to renew their hardware time
by time: they will use only the resources they need to rent them from
cloud providers. A Key and straightforward use case is 3D design and
rendering: spikes of resources requirements can be assessed by vertical
scaling of those persistent desktop virtual machines, while most of the
time, when resources required are back to normal, others can use them.

Finally, to keep in topic with the -as-a-service computing architec-
tures, bare metal as a service is being offered by now from multiple cloud
service providers like AWS and Google. Despite historically offered so-
lutions seem to return in trends, new challenges arise:

• User experience given by solutions based both on Edge Computing
and Cloud-Native persistent desktops are too affected by network
latencies;

• The distribution of workloads across multiple clouds and Edge net-
works make it important to assess properly security strategies in
several scenarios;

• Despite serverless computing seem to maximize resource utiliza-
tion and to minimize infrastructure configuration, functions ini-
tialization times become key performance indicators that enable
new objectives for scheduling strategies;

• Locality awareness has ever been important both in the design
of the data-centers hardware infrastructure and in the design of
components of applications; impact of the network become even too
challenging when employing solutions like memory-as-a-service [18,
37,38]

Chapter 2. Research Context 29

• multi-cloud and Edge computing environments need to handle repli-
cation and consistency strategies at the business layer, especially
for stateful applications;

2.2 Orchestrators

The outlined trends indicate that container clustering is a solution for
production environments. Kubernetes is an open-source cluster manager
for Docker containers by Google, derived from Borg [39]. It outperformed
Docker Swarm (the base tool integrated with the Docker core), with
features such as auto-replication and auto-placement.

Mesos [40] is another promising open-source cluster manager. It is
based on a distributed two-level scheduling architecture. At the lower
layer, a Mesos master collects information on the free resources offered
by the slaves and proposes, through the Dominant Resource Fairness
(DRF) [41], the list of these available resources to the application-specific
scheduling frameworks, allowing them to accept the resources and map
the application components.

Mesos improves the use of the resources grouped on clustered slaves.
Any Linux program can be run on a Mesos framework, characterized by
an ad-hoc scheduling policy.

While Mesos is thought for generic use by exploiting its two-level
scheduler for a multitude kinds of applications, Kubernetes seems to
be the de-facto standard being provided by commercial cloud vendors.
Without lack of generality, this thesis makes use of the abstractions
typical of Kubernetes environments to the end of being synthetic when
discussing patterns that have been integrated into the most important
technologies driving the current landscape of cloud-native solutions.

Chapter 2. Research Context 30

2.3 Container resource allocation

Generally, resource allocation consists in the assignment of the available
resources in very different scenarios: e.g., economics, human resources,
delivery services and, last but not least, computing, networking and dis-
tributed systems.

This section explores resource allocation in the field of containers
that have to be scheduled in multiple hosts environments.

Note that, usually, the software responsible for allocation of resources
and placement of tasks in a distributed environment is referred as sched-
uler.

Works in literature use strategies able to work online, that is schedule
tasks in the system and then re-adapt them at runtime, either using an
event-based algorithm [42] or a time-based one [43]. Others only rely
on offline scheduling, letting the work of guaranteeing run-time quality
of service to other components as the current Kubernetes and Mesos
schedulers [44, 45].

Finally, objectives can be wide and different across the available
schedulers algorithms: challenges arise when one wants to take into ac-
count multiple real-world issues related to the SLAs of applications being
deployed in a distributed system.

Problems in these scenarios easily turn into NP-completeness: for this
reason, a huge gap is observed between proposed solutions in literature,
and the ones employed in production systems like Kubernetes.

The container re-balancing mechanism in [42] proposes a resource-
aware placement scheme to boost the performance of a heterogeneous
cluster through proactive-optimization based on rapid live migrations,
preparing the system for future workloads, especially on busy clusters,
and minimizing the interference with the main scheduler. The authors
of [46] propose a way to improve the standard scheduler for Docker

Chapter 2. Research Context 31

Swarm (Spread) based on the Ant Colony Optimization algorithm with
a focus on resource balancing spreading the containers of a cluster by
guaranteeing fair usage of resources on hosts.

In [43], the authors explore the problem of how effectively manage
CPU utilization when many containers share a single set of resources.
They work on Docker introducing a strategy based on time-slicing: with
their mechanism, only a single container with all its threads and processes
is scheduled at any time on shared resources thus minimizing the effects
of oversubscribing the resources.

Complexity of the scheduler also arises when considering heteroge-
neous clusters. DRAPS [47] is an approach for scheduling on hetero-
geneous Docker clusters to pursue balancing of resources like CPU and
RAM: the authors propose both an offline placement strategy and an
algorithm to migrate containers whenever the monitoring system detects
new bottlenecks on the worker nodes.

The authors in [46] and [47] add components to the Docker archi-
tecture but also significantly need to modify the orchestrator they refer
to (Docker SwarmKit) in order to achieve the improvements requested,
due to the monolithic design of Docker. Mesos and Kubernetes allow
to overcome the effort due to the maintainance of forks of the orches-
trators, respectively, through a two-level scheduling architecture and the
operator pattern.

An interesting contribution exploiting Mesos is in Electron [48]. It
is a framework aiming to reduce power peaks and energy consumption
for the slave nodes in heterogeneous clusters. The authors adopt the
standard strategies first-fit and bin-packing [49] together with external
tools for power capping as RAPL [50] and a custom algorithm, Extrema,
to provide software and dynamic power capping on slave nodes.

Chapter 2. Research Context 32

However, this solution focuses exclusively on enabling the power cap-
ping on the cluster nodes while avoiding to affect the execution time
strongly. Electron objectives are neither to optimize resources utilization
nor to provide guaratees for SLAs between providers and customers.

Most of the schedulers presented till now can be considered general
purpose. However, quality of service requirements can vary based on the
kind of applications being orchestrated.

The work presented in [51] proposes a container orchestrator dedi-
cated to scalable data analytics frameworks. The aim is to improve the
execution time of jobs of different data analysis frameworks on shared
clusters. The paper focuses on the closeness between the containers,
in terms of network hops and on the data locality, in order to put the
processing containers close to the input data sources because of the re-
quirements for data analytics frameworks. In particular, this work takes
into account Hadoop/YARN and Apache Flink.

This work could have been integrated with the design pattern lever-
aged by Mesos which hosts multiple frameworks running concurrently
on resources offered by the low-level scheduler based on DRF, letting
them to accept or drop those offers in their second level scheduling sys-
tem. However, the high-level frameworks should be taken into account
as reported in [52].

In [53] the authors propose a job scheduling strategy for containers
based on linear programming model where the objective function takes
into account the container image transition costs from the image registry
to the container host, the energy cost of the container hosts and the
workload network transition costs from the end-clients to the container
hosts. They compare their strategy with a binpacking [54] scheduler and
a random scheduler. The modeling through linear programming is a well-

Chapter 2. Research Context 33

known way to better focus the requirements and objectives to consider
while designing a new scheduling strategy.

However, an important focus, in the context of placement of con-
tainers, should also be given on the time needed to find a solution for a
specific problem to reach its objective. While describing guidelines for
rapidly scaling video application on Amazon EKS clusters [55], just as an
example, authors show how spikes in traffic can led to scale pods in their
cluster over 100%, so that in a 1-minute window the number of pods
arise from 42 to 117. Orchestrators should have ability to appropriately
allocate resources in a timely-manner.

Game theory is used in [56] to allocate resources between tasks sub-
mitted by customers. Recent literature exists on cache allocation, in
which the NO allocates memory to third party SPs to minimize band-
width consumption [57] or QoS and fairness [58] (CPU is ignored). Au-
thors of [59] assume users send a sequence of tasks and each can run
under different configurations, requiring a combination of different re-
source types. They assume users want to run as many tasks as possible
and their utility is number of tasks run.

The Fuzzy Inference System (FIS) in [60] addresses to dynamically
predict the most proper node where the given containers will be deployed.
The most proper node is chosen as the least busy one. The authors con-
sider different resource usage parameters taken by the /proc file-system
in the cluster’s hosts and they use the collected information as the input
of a FIS for which the output is a numerical value that represents the
degree at which the node is busy. Moreover, they consider different FIS
according to the specific container type (e.g. CPU-intensive, memory-
intensive, etc..). Then the numeric values (output of the FIS) of each
node is used to determine the best suitable node to deploy a container.

Chapter 2. Research Context 34

In [61] the authors design and evaluate DeepRM, a simple multi-
resource cluster scheduler. They consider an online setting where jobs
arrive dynamically and cannot be preempted once scheduled. Their ob-
jective function goes through the optimization of the completion time of
the scheduled jobs employing a standard policy gradient reinforcement
learning algorithm. However in the work, the authors consider a single
large pool of resources, ignoring machine fragmentation effects.

As for the information to support the allocation decision, most work
is based on a “monitor-and-decide” approach [60–62], but it is becom-
ing common to also use detailed information on the workloads by the
users [60].

Actually, providing both performance isolation and acceptable lev-
els of QoS for cloud applications remains a challenge, especially in the
case of network sensitive workloads. Statically partitioning resources
and dedicating them to any service increments the costs of cloud provi-
sion and may create a big degree of under-utilization. Current solutions
outside of academia are mostly implemented exploiting the concepts of
resources constraints (“limits” and “requests” in Kuberentes [63]) with
the aid of schedulers based on “filter, score and sort” strategies, e.g., the
Kubernetes scheduler [64].

The network resources deserve a separate discussion. In many cases
the overall QoS of distributed applications is affected by network per-
formance interferences. They occur when containers do not get the re-
quired amount of bandwidth due to excessive network bandwidth usage
by others. Generally, PaaS orchestrators give no guarantee for network
performance. This makes most of the workflows deployed on the cloud
susceptible to the high variability and unpredictability of the network
performance [18,65].

Chapter 2. Research Context 35

The main techniques for the network performance isolation provi-
sioning are based on the flow control of the amount of data exchanged
among the communicating entities.

2.3.1 Approaches to network isolation

Approaches to network isolation proposed in literature are spread across
each layer of the OSI stack.

One of the first approaches was Quantized Congestion Notification,
QCN [66], a Layer 2 congestion management algorithm developed for
the IEEE 802.1Qa standard [67], to provide end-to-end congestion man-
agement in switched Ethernet. Afterwards, the same authors propose
AF-QCN [68], an algorithm that adds a programmable bandwidth par-
titioning component based on AFD to the QCN Congestion Point mech-
anism. However, both the solutions (QCN and AF-ACN) refer to the
layer 2 of the stack and require modifications of the network stack for
each communication entity.

A similar approach, at the transport layer, is the focus of Seawall [17].
It is a system for network performance isolation in clouds. Using ad-
hoc TCP tunnels among communicating VMs, it grants the ability to
control the data flow and, as a consequence, force a fair allocation of the
network capacities among co-hosted VMs. An important characteristic
is its robustness against malicious users who deploy VMs for generating
noise workload. However, Seawall offers no performance predictability
and it also requires modifications over the stack of OS guest.

On the other hand, NBWGuard [69], is a design for network band-
width management on Kubernetes. It lets Kubernetes manage network
bandwidth as a resource (like CPU or memory capacity) while still using
plugins for realizing the network specification desired by users.

Chapter 2. Research Context 36

2.4 Edge-Cloud offloading

Since literature on Edge Computing (EC) is vast, this work just focuses
on work concerning resource allocation.

This field hasn’t yet been investigated in depth.

This thesis will describe contribution in next chapters on the scenar-
ios of Metro Edge Cloud and Mobile Edge Computing [26, 70], in which
there are computation nodes concentrated in small data-centers located
into the Network Operator Central Office (CO) or co-located in the base
station.

EC is complementary to Cloud, i.e., the usual assumption is that
a part of service computation is peformed at the Edge and the rest on
the Cloud and similarly a part of the required data seats at the Edge
and the rest on the Cloud. In a sense, the Edge-Cloud infrastructure
is hierarchical [25, 71, 72], where Edge resources are the leaves, and the
upper nodes are Cloud clusters. In [25] the decision of how much capacity
must be provisioned across the levels of the hierarchy. In the following,
a few challenges arisen from the deployment of 5G networks and Edge
Computing facilities.

Multi-Tenant Resource Allocation Resource allocation among third
party tenants is currently done in Cloud computing via pricing. How-
ever, we can consider infinite resource in the Cloud, so that they can be
granted as long as the tenant is willing to pay.

At the Edge, instead, resources are limited and the NO, which owns
them, want to allocate them in order to increase its own utility. Al-
location of finite resources among different service providers (tenants),
which compete for their consumption, has not vastly been explored in
the context of EC. Some examples of this kind of problems can be found

Chapter 2. Research Context 37

in [57] and [58], where resource is mono-dimensional (storage), and the
utility is the bandwidth reduction, QoS and fairness.

Resource Provisioning There is agreement that Edge and Cloud
computing form a unique pool of resources, organized, hierarchically, and
services can use both simultaneously. In this context, there is vast liter-
ature in resource provisioning, which regards the decision of how much
resource should be deployed at the Edge nodes or at the Cloud [25,73].

Network Slicing Network slicing consists in creating virtual network
slices on top of a physical network infrastructure, whose owner has to
allocate resources among slices. In this context, resources are mainly
mono-dimensional (bandwidth [74]), with some exception ([56, 75] con-
sider also CPU).

Service Adaptability Some work assumes that services can run un-
der different configuration, thus adapting to the resources provided. Ser-
vices span from Federated Machine Learning [76] to video streaming [77].
Other work [59,78] assumes that multiple configurations result in differ-
ent multi-dimensional resource usage and different QoE. However, most
of this work, considers one only tenant.

Resource allocation for container-based EC The micro-service ar-
chitecture is particularly suitable for resource allocation, as services can
adapt to the resources available by launching/destroying the containers
hosting micro-services [43,53,60].

Chapter 2. Research Context 38

2.5 Towards AIOps

In a way, AIOps can be considered a new framework on which academics
and engineers should capitalize the effort achieved during the last 20
years studying and actuating strategies to optimise workloads deployed
in Clouds, Fog and Edge computing.

AIOps is expected to be production-grade for 80% of companies
by 2024 [30]. It will consist on multiple achievements going from au-
tonomous service support ticketing system to better strategies employed
in orchestrators of PaaS environments on which Cloud-native applica-
tions (CNAs) are first citizens and complete knowledge of the system
is given by -as-a-code patterns. In this section and in the whole thesis,
the focus on AIOps will be related to the orchestration of CNAs and to
autonomous strategies for guaranteeing SLAs.

Cloud-native applications CNAs are essentially applications resilient
to cloud outages, and which can scale on a fine-granular basis. They are
built as a network of independent services communicating over standard-
ized interfaces. Works in literature go from software design principles [79]
to strategies to guarantee SLAs in scenarios like Biomedical [80] and
5G [3, 4], exploring a vast set of optimization properties as energy [81],
network-latency [1], cost [82]. . .

Methodologies to model CNAs can involve graph theory [83], sand-
boxing [84], queueing theory [85], or n-gram dictionaries by log pars-
ing [86]; objectives go towards micro-services capacity [84], costs [84],
processing time [85] etc. . .

Monitoring As anticipated, most work in literature is based on a
“monitor-and-decide” approach. Monitoring can be distinguished into
black-box and white-box, based on the knowledge of the monitor about

Chapter 2. Research Context 39

the applications. Different works involve passive monitoring for net-
works [87] and cloud services [88] or evaluate active-passive monitor dif-
ferences [89]. Moreover, companies like Splunk [90] and Sysdig [91], are
actively working to provide AIOps-oriented monitoring for CNAs.

SLAs, CNAs orchestration and AIOps Objectives of optimization
in the cloud go towards micro-services capacity [84] planning, costs [84],
processing time [85], auto-scaling [92].

SLAs and QoS are strictly related through the SLIs and the SLOs
defined in these agreements. SLOs stipulate performance goals for cloud
applications, microservices, and infrastructure: as a consequence, the
monitoring of CNAs and their underlying infrastructure is crucial to (i)
execute the proper task in-time when anomalies occur, and (ii) produce
highly detailed reports in case of complex disputes due to service unavail-
ability or damages to the application providers or the resource providers.

In [14,93], authors aim to cover the gap between the lower-level met-
rics obtained by monitoring systems with the high-level SLOs stated
in the SLAs, and provide a taxonomy of the most valuable SLOs for
cloud applications to compare them in terms of workloads and perfor-
mance goals. Other works tend to find systematic strategies to allow an
efficient design of SLAs both from a business and IT engineering perspec-
tive, through tools [94, 95], decision support strategies [15] to minimise
penalty payments through statistical models, or analytical strategies to
model [96] SLAs as ontologies that provide facilities to capture semantics
of those agreements and avoidance of interoperability issues.

Autonomous scaling of CNAs In the context of Cloud computing
and AIOps, auto-scaling mechanisms are the most frequently used solu-
tions to satisfy QoS properties and SLAs guarantees assuring an efficient
use of resources at low cost for both the resource providers and customers.

Chapter 2. Research Context 40

Different research contributions explore the elasticity of CNAs in Clouds
and provide different strategies to achieve efficient scaling of resources
just in time to minimise number of violation of the SLAs; however, the
challenges in this field are broad and the gap between research proposals
and the available production-grade strategies is still very large. This field
is explored from different perspectives: authors of [9,97] leverage strate-
gies based on time-series forecasting, respectively, using ARIMA mod-
els and Facebook Prophet [33]. Others solutions are related to efficient
task allocation leveraging deep reinforcement learning [98] or multi-cloud
containers placement with reinforcement learning strategies to choose be-
tween vertical or horizontal scaling [99]. More recently, on the 5G and
Edge Computing facilities, authors explore auto-scaling of virtual net-
work functions (NFV) both in the case of multi-domain and multi-tenant
Edge environments [100], and in the case of Cloud-edge offloading, by
exploiting the concepts of service elasticity [3, 4].

Even though most of the solution to achieve spikes in resource usage
is based on horizontal scaling, the main contribution of [62] is to present
the ability of ElasticDocker to power the vertical elasticity of Docker
containers in a way based on the IBM MAPE-K principles.

ElasticDocker is able to scale up and down Docker containers when
the application workload changes with an approach based on modifica-
tion of resource limits directly in the Linux control groups associated to
the Docker containers. By using capabilities of CRI-U [101], this strat-
egy also provides live migration of the containers whenever the required
resources start overloading their host. In our work there are no ways
to achieve at the vertical scalability, which could be unpractical in the
resource-constrained scenario of Edge Computing.

Network adaptiveness strategies Software Defined Networks (SDN)
are widely employed today in production environments spanning from

Chapter 2. Research Context 41

SDWANs of network operators [16], to inter-datacenter wide area net-
works, as Google’s B4 [102], up to internal networks in platform as a
service deployments [37]. Along with the rapid development of networks
and clouds, new operational scenarios emerge: low latency challenges
arise in the fields of games, virtual reality and automotive engineer-
ing [103]. Authors of [104] explore strategies to provide high-quality
networks for mobile clients of Virtual Reality environments. In scenar-
ios like Video Content delivery services, authors of Pensieve [105] employ
neural networks and reinforcement learning to design ABR video stream-
ing algorithms that adapt to a wide range of environments with the aim
of maximising quality of experience for users. The authors, in [106–108],
propose an algorithm, Alienated Ant Colony Optimization, to handle,
at a lower-level, routing rules of SDNs aiming to optimise throughput,
latencies and energy, through a vendor-agnostic orchestrator, jFlowlight.

Given the impact of network on modern, distributed, CNAs [37], re-
search challenges in the field of network optimization arise day by day,
especially while the level of hierarchy has started, reducing as antici-
pated in the previous chapter, with a focus that passed from VMs, to
containers, up to functions. In those scenarios, strategies optimising net-
work isolation in terms of security and network routing as in [106–108]
to handle steady impact of network issues, but especially spikes in traffic
that can lead to violations of SLOs. As from Covid-19 outbreak, interest
of academia is also turning back to the management, e.g., previoinionig
and re-provinoing, of resources during disruptive events.

Chapter 2. Research Context 42

Part II

Scheduling containers in
cloud and edge computing

Chapter 3

Introduction

« Alice was beginning to get very tired of sitting by her sister on the bank,
and of having nothing to do: once or twice she had peeped into the book her
sister was reading, but it had no pictures or conversations in it, “and what
is the use of a book,” thought Alice, “without pictures or conversations?” »

Lewis Carrol

An effective mapping between services and resources is a critical is-
sue in cloud environments [109, 110]. The current implementations of
platform-as-a-service, PaaS (e.g., Openshift [111]) offer basic QoS-aware
functionalities to guarantee a certain degree of performance for hosted
applications. In this part, two complementary works are described on
the field of the placement of containers in two different scenarios:

• generic applications in heterogeneous PaaS clouds with network
optimization objective;

• applications leveraging service elasticity to optimise the utility a
network operator can obtain, providing computing at the Edge for
service providers.

Chapter 3. Introduction 46

Communication-aware placement of containers in PaaS. In the
environment of containerized applications, it is possible to select for each
container the resource requests and limits [63], in terms of the number
of CPU shares, the amount of main memory, the number of IOPS, the
bandwidth [1, 17], the quantity of storage. . .

This approach represents the one mainly adopted in real-world sce-
narios (Amazon [112], RackSpace [113], Azure [114], Google Cloud [115]),
and suffers of three main issues:

1. the impossibility to guarantee performance isolation when several
virtual machines (VMs) are running on the same multi-core ma-
chine, and when multiple containers run within the same VM [116];

2. the impossibility for the applications’ architects to precisely eval-
uate the performance of the interacting distributed components,
deployed as containers on different VMs;

3. The difficulty to relate the performance of any application to the
hardware resources allocated for its components at run-time: hosts
are agnostic about the tasks they are executing.

To tackle the first issue, the providers should enact deployment strate-
gies to reduce concurrency on the same resources (e.g., minimizing the
number of components sharing the same computing and networking re-
sources). Cooperation between customers and providers is needed to
overcome the other two issues: providers will be able to deploy applica-
tions effectively only when customers provide an adequate description of
them [1,5] (in terms of the number of components, relationships among
them, etc.).

Chapter 4 presents a strategy that combines (i) the exploitation
of the inherent flexibility of virtualization and containerization, and

Chapter 3. Introduction 47

Figure 3.1: Cloud and Edge computing

(ii) the availability of information about the structure of an applica-
tion; this information is formalized into two specific parameters: the
closeness among the hosts of the application similar to what was intro-
duced in [117], and the isolation index, proposed to measure the degree of
mutual influence among components of a cloud-native application. The
approach aims to minimize both the mutual interference between the ap-
plications and the number of costly run-time adaptation procedures (e.g.,
micro-services migration); it represents an effective deployment strategy
that enhances the predictability of applications behavior and reduces
the number of run-time adaptation procedures to meet the Service-Level
Agreements (SLAs) for applications.

Cloud-Edge offloading and location-aware placement of con-
tainers at the Edge. Under the arising paradigm of Edge Computing
(EC), computational capabilities, e.g., memory and processing elements,
are deployed directly in the access networks, close to the users. It en-
ables low latency applications, reduces the traffic going out from the
access networks, and improves user experience. EC, from this point of

Chapter 3. Introduction 48

view, is complementary to Cloud [25]. The usual assumption is that
some service computation is performed at the Edge and the rest on the
Cloud. Similarly, a part of the required data seats at the Edge and the
rest on the Cloud.

In the Cloud, resources are usually assumed elastic, i.e., they are
always available, as long the third-party Service Provider (SP) is willing
to pay. On the contrary, contention emerges in the Edge between SPs
sharing limited resources, and the problem arises of how to allocate them
between SPs.

Most of the work [56,61,71,72] models Cloud and Edge resources un-
der a task-oriented viewpoint. , i.e., as in the grid computing era, where
jobs are composed by tasks that consume resources and terminate. By
adopting a service-oriented viewpoint, the problem of allocating contain-
ers in the edge to make computation closer to the end-user is similar to
the well-known problem of leveraging multi-cloud architecture and fed-
eration of clouds to put services closer to the location on which they are
requested, as in the usual multiple regions or multiple availability zones
scenarios.

However, in the case of Edge computing, other requirements arise:

• Networks cannot be considered safe and several networking con-
straints have to be addressed;

• Interests of the stake-holders are different: a service provider would
improve the quality of experience for its end-users, while the net-
work provider wants to reduce the amount of inter-domain traffic
paid to make the users able to reach requested services;

• The etherogeneity of network providers facilities does not allow
yet an actual implementation that is open directly to the service
providers.

Chapter 3. Introduction 49

In chapter 5, a Network Operator (NO), owning limited computa-
tional resources in its Edge network, must decide how to distribute them
to different Service Providers (SPs). The goal of the NO is to maximize
its utility, which can represent bandwidth, operational cost saving, or
improved experience for its users [57,77].

The two works are complementary since the first one focuses on the
communication that happens internally to a cluster of machines hosting
containers, while the latter is related to the maximization of the utility
that a network operator can obtain by allocating service providers’ ap-
plication in its network. In a way, combining the two works means to
exploit optimal internal network configurations (chap. 4) with minimal
inter-domain traffic. Whether the scenarios lay both in cloud/edge of-
floading setups or in multi-cloud environments, they open the way for a
cloud of network optimized workflows.

Chapter 3. Introduction 50

Chapter 4

Communication-intensive
applications in PaaS clouds

Let’s consider a set of physical machines (PMs) hosting different VMs
and sharing multiple kinds of communication channels.

The performance of these communication channels depends on the
geographical location of such PMs: e.g., the ones hosted on the same
rack can communicate over a 10GbE channel through only one L2 switch;
instead, machines of different racks can communicate over a shared 1GbE
link.

Each VM encompasses a set of resources, typically: (i) a given num-
ber of cores; (ii) a specific amount of main memory; (iii) one or more
virtual communication channels.

The whole set of VMs managed by the same orchestrator will be
referred to as system.

Hereinafter, they will be considered Cloud-native applications con-
sisting of containerized micro-services. For their deployment we refer to
the abstraction layers provided by Kubernetes [118] and Redhat Open-

Chapter 4. Communication-intensive applications in PaaS clouds 52

Application 1 Application 2

 Cluster 2

Physical Machine

Worker

Worker

Worker

 Cluster 1

Physical Machine

Worker

Worker

Worker

Physical Machine

Worker

Worker

Worker

1. Intra-pod 4. Inter-cluster

3. Inter-worker

2. Intra-worker

3. Inter-w
orker

Figure 4.1: A simple reference scenario

shift [111] that are real-word examples of orchestrators to manage PaaS
solutions. In this scenario, each micro-service can run in a pod (the
atomic deployment unit in Kubernetes consisting of a set of one or more,
strictly coupled, containers) and each pod can run on only one VM,
henceforth called worker, at a time.

Figure 4.1 shows a cloud system consisting of nine VMs hosted on
three PMs belonging to two clusters. Two applications are also shown
as consisting of multiple pods deployed into the workers.

In this scenario, four types of communication modes can be consid-
ered:

1. Intra-pod: containers running into the same pod share the same
network channels. This work ignores this kind of communication
because our atomic unit of deployment is the Pod itself.

Chapter 4. Communication-intensive applications in PaaS clouds 53

2. Intra-worker communication: Pods hosted on the same worker
will communicate over the virtual communication channels of the
worker itself.

3. Inter-worker communication: pods deployed on different workers
communicate over an overlay network. This overlay network can
either be virtual, if the workers are located into the same physical
machine, or physical, when the workers are hosted into different
machines.

4. Inter-cluster communication: when workers belong to different clus-
ters, their communication performance depend on the underlying
network which generally consists of heterogeneous channels, e.g.,
in terms of different bandwidth and latency.

The following sections will introduce two parameters to represent the
communication between micro-services of an application (the isolation
index) and the communication between all the workers (the closeness).
These two parameters will be combined into another one, the flow index.
Maximizing the flow index will lead to guarantee a better QoS.

4.1 Allocation Issues in Clouds

For cloud-native applications, a key issue is the careful arrangement of a
large number of micro-services over a huge pool of heterogeneous shared
resources and effectively executing them in parallel.

The orchestrators should allocate the adequate amount of the re-
sources they manage to the pods and apply suitable scheduling policies
to guarantee adequate application performance.

T
able

4.1:
Sum

m
ary

of
notation

G
en

eral
n
otation

A
G

eneric
cloud-native

application
G
A

G
raph

of
the

application
A

V
A

Set
of

com
ponents

of
the

application
A

E
A

Set
of

com
m

unication
links

(edges)
of

the
application

A

w
A

A
djacency

m
atrix

representing
com

m
unication

rates
of

the
application

A

r
A

M
atrix

representing
resources

required
by

com
ponents

of
A

(V
ertex

labels)
M

Set
of

w
orkers

M
A

Set
of

w
orkers

available
to

deploy
com

poents
of

A

m
∈
M

G
eneric

w
orker

H
N

um
ber

of
w

orkers
used

to
deploy

A
V
m

h

A
⊆
V
A

P
artition

ofV
A

consisting
of

allcom
ponents

hosted
on

w
orker

m
h
∈
M

A
⊆
M

κ
m
,n

=
1/

d
m
,n

C
loseness

betw
een

w
orkers

pair(m
,n)

∈
M

2

W
m
,n

Sum
of

allthe
w

eights
of

links
betw

een
com

ponents
hosted

on
w

orkers
m

and
n

IQ
P

/M
IP

form
u
lation

X
A

num
ber

of
com

ponents
for

the
generic

application
A

w
Aj,k

elem
ent

of
adjacency

m
atrix

w
A

representing
com

m
unication

rate
betw

een
com

ponents(j,k)
∈
E
A
⊆
V
2A

r
Aj,l

the
am

ount
of

resource
lrequired

by
the

com
ponent

j
∈
V
A

(elem
ent

of
r
A)

M
num

ber
of

w
orkers

(∣M
∣)

L
num

ber
of

resource
types

(e.g.:
R

A
M

,C
P

U
,Storage...)

c
m
,l

A
m

ount
of

resource
type

l
available

on
w

orker
m

∈
M

Chapter 4. Communication-intensive applications in PaaS clouds 55

The focus is on devising flexible strategies for managing these re-
sources and optimizing their utilization. This often implies maximizing
resource sharing between the hosted components.

Admittedly, the interference, which often affects the use of the shared
resources, could hinder the performance isolation among the pods, mak-
ing the orchestrator unable to accurately predict the behaviour of an ap-
plication and guarantee the desired QoS. However, reasonable prediction
capabilities should still be possible under the following two conditions:

• The number of pods running in parallel on the same worker have to
be as few as possible in order to lessen the interference effect; a large
number of pods running on the same worker could adversely affect
the performance of hosted applications due to the competition for
the underlying physical resources, e.g., memory interference effect
or shared I/O operation on the same disk [119].

• Communication between pods hosted on different workers should
be minimal; when pods hosted by workers belonging to different
PMs interact, their performance strongly depends on external fac-
tors (e.g., network delay, bandwidth decrease, network fault, etc)
out of the direct control of the orchestrator.

The first of the above conditions can be easily satisfied by limiting
the maximum number of pods which can be hosted on the same worker;
this avoids (or at least strongly reduces) resources interference. Many
orchestrators, like Openshift, are able to setup proper policy rules to
limit the maximum number of pods running in a worker.

Satisfying the second condition is, instead, more difficult. As stated
before, many cloud applications consist of several collaborative distributed
components, exchanging messages in order to coordinate their behaviour
and reach a common goal. The lack of direct control over the communica-
tion channels among the physical resources on which these micro-services

Chapter 4. Communication-intensive applications in PaaS clouds 56

run makes their performance unpredictable, especially for Communication-
Intensive Applications [120].

The greater the traffic on the shared network, the greater the de-
gree of uncertainty introduced in the performance of applications (see
Section 4.2 for more details).

Performance isolation for a set of cooperating micro-services could be
obtained by using private communication channels, i.e., channels accessi-
ble exclusively by these micro-services. This solution, however, strongly
limits the resource exploitation: reserving a portion of the network re-
sources only to a small subset of the applications adversely affects the
performance of the entire system. Different solutions are being proposed
in literature to optimally overcome this issue in Cloud [69,121].

The combined use of multi-core together with virtualization technolo-
gies gives rise to a class of high-speed, low-latency, reliable and robust
communication channels among the cores and, as a consequence, among
the processes (i.e. containers in pods) running in the same worker. As
the authors will analyse in more detail below, the performance of an
application may be better assessed and controlled by:

• properly driving both the internal (among pods on the same worker)
and external (among workers on different PMs) physical commu-
nication channels;

• deploying the pods that generate most of the communication traffic
either on the same worker, whenever possible, or on workers close
to each other, in order to limit external interferences.

The following sections will show how suitable deployment strategies
may be based on performance isolation and closeness.

Chapter 4. Communication-intensive applications in PaaS clouds 57

4.1.1 Application models

In this work, a generic cloud-native application A is represented by a
weighted and vertex-labeled graph, called Application Graph in the fol-
lowing:

GA = (VA, EA, wA, rA) (4.1)

where:

• VA is the set of nodes representing the pods of the application A;

• EA is the set of edges representing the communication relationships
between interacting pods;

• wA is the adjacency matrix: each element wi,j denotes the com-
munication load in terms of rate of information to be exchanged
between pods i and j of the application A. These weights can be
either time-varying or constant ;

• rA is a matrix which comprises the resources requirements of an
applications’ pods: given a resource type l (e.g., memory), r

i,l
A

represents the amount of resource l required by pod i of application
A. This matrix represents the labels of the graph vertices.

Given the functional requirements defined above, non functional re-
quirements of the application A, i.e., the service-level objectives (SLOs)
stated in a SLA [122], can be represented, without loss of generality, as
a set SLOA of < entity, predicate > pairs, where entity can be ei-
ther a vertex or edge in GA and predicate is a required property: e.g.,
replicas = 3, response_time ≤ 300ms in 90% of the requests;

The ability to enact effective resource allocation and reservation poli-
cies for an application A depends on the knowledge (and the accuracy of

Chapter 4. Communication-intensive applications in PaaS clouds 58

the information) modeled with the application graph GA and the predi-
cates in SLOA.

However, in real-world scenarios, information about GA may lack of
completeness and accuracy. As it will be shown in sec 4.2, the more the
information about the graph, the more effective the mapping strategy of
components onto workers.

4.1.2 Definition of Isolation Index

To deploy an application A, an orchestrator has to schedule each pod
of A on a worker endowed with the appropriate amount of resources.
Letting M denote the set of workers managed by the orchestrator and
A the set of autonomous applications that it has to deploy.

The orchestrator has to map the pods of all the applications according
to a function:

map ∶ ⋃
A∈A

VA × Time → M (4.2)

The mapping, for any application A ∈ A, can be represented as the
restriction:

map∣A ∶ VA × Time → MA ⊆ M (4.3)

under the resource requirements defined by the matrix rA and the
non-functional requirements SLOA. In eq. (4.3), MA denotes the set of
all workers available at any time to deploy pods of A.

For each pod v ∈ VA, map∣A(v, t) is the worker where v is deployed
at time t;

Indeed, any worker m ∈ MA can simultaneously host none, one, or
more than one, pods (whether belonging to A or another, even someone
else’s, application).

Chapter 4. Communication-intensive applications in PaaS clouds 59

The restriction map∣A is surjective and, thus, right-invertible. We
will denote as hosted_on∣A ∶ MA × Time → VA the inverse image of
map∣A:

hosted_on∣A(m, t) = {v ∈ VA ∣ map∣A(v, t) = m} (4.4)

Clearly, hosted_on∣A(m, t) is the set of pods hosted on m ∈ MA

under mapping map∣A at time t. hosted_on∣A(m, t) can be the empty
set, a singleton or a set with multiple pods.

Now, the mapping process defined for application A by a given map∣A(⋅, t)
induces, at any time t, a partition of the set VA of the application
podsinto H ≤ ∣MA∣ disjoint sets Vm1

A , . . . ,VmH

A such that each Vmh

A

consists of all and only/exactly those components of VA hosted on the
same worker mh, i.e., at time t, Vmh

A = hosted_on∣A(mh, t).
Formally, this partition is defined, at time t, as:

PartA(t) = {hosted_on∣A(m, t) ≠ ∅ ∣ m ∈ MA} (4.5)

We will call any set Vm
A a components cluster, or simply a c-cluster, to

highlight the fact that the components forming it get "clustered" within
the same worker.

Recalling application A is represented by a graph GA, any partition
defined by (4.5) induces H sub-graphs Gm1

A , . . . ,GmH

A of GA, where, for
each m ∈ MA, Gm

A = (Vm
A , Em

A , w
m
A , r

m
A).

Intuitively, Gm
A is obtained from GA, building Vm

A by deleting nodes
placed outside the worker m, and Em

A by pruning edges leading out of
Vm
A : Em

A is referred to as private for the worker m, in that it collects
communication links between the pods within the same worker m.

In general, the ratio between the total amount of information ex-
changed within a c-cluster and the total amount of information ex-

Chapter 4. Communication-intensive applications in PaaS clouds 60

changed among pods of the application measures the isolation of that
c-cluster. This is the normalized isolation index, and can be computed
based on the application graph adjacency matrix, recalling that edge
weights represent the interaction load between the pods of the applica-
tion. Based on the work in [1, 5], a formal definition of the normalized
isolation index is given in the following:

Definition 1. Let us consider an application A defined by the graph GA

as in eq. (4.1), a set of workers MA and a mapping function map∣A.
The normalized isolation index of A at any time t is the ratio:

niiA =

∑
m∈MA

∑
(i,j)∈Em

A

w
m
i,j

∑
(i,j)∈EA

wi,j

(4.6)

In (4.6), the numerator represents the weight of all interactions be-
tween the pods of the application running on the same worker, i.e. the
rate of information flowing between pods through private channels; the
denominator represents the total weight of all interactions between any
pair of pods of the entire application A.

nii may vary over time and lies in the interval [0,1]. It is 1 when all
the edges are private, which means that the overall communication takes
place within a worker and never between workers. It is 0 when all the
edges are not private, which means that the overall communication takes
place between different workers and never between pods on the same
worker. Maximizing nii, as defined in Def. 1 means grouping highly-
coupled pods within the same worker insofar as possible.

An effective mapping for a single application should maximise the
rate of information flowing across private channels, i.e., exchanged within
a c-cluster. However, given a set of applications managed by a cloud

Chapter 4. Communication-intensive applications in PaaS clouds 61

orchestrator, the weights of the internal communication for each one may
be strongly differentiated (and thus incomparable) not only in terms of
inter-operability patterns and technologies but especially for the amount
of information exchanged. Normalization as in def. 1 hides this workload
heterogeneity.

As an example, let us consider a set of two applications, A1 and A2,
with a network load completely different; e.g., a 1Mbps throughput for
application A1 vs 1Gbps for application A2. In this case, maximizing
the isolation index as defined in Def. 1 for each application can lead
to inadequate allocations of the network channels. Let us suppose to
allocate applications according to the mapping a, such that nii

a
A2

<

nii
a
A1

.

Def. 1 had not allowed the mapping a to compare the actual degree of
communication load of the applications; an orchestrator should prefer to
use a better mapping, b, deploying A1 and A2 so that niibA1

< nii
a
A2

< nii
b
A2

≤ 1.

Mapping b cannot be implemented by an approach that maximizes
either the normalized isolation index of all applications or the sum of
them.

Looking forward to the orchestration of different applications fea-
tured by heterogeneous network loads, the following non-normalized ver-
sion of the isolation index parameter can be adopted:

Definition 2. Let us consider an application A defined by the graph GA

as in eq. (4.1), a set of workers MA and a mapping function map∣A.
The isolation index of A at any time t is given by:

iiA = ∑
m∈MA

∑
(i,j)∈Em

A

w
m
i,j (4.7)

Chapter 4. Communication-intensive applications in PaaS clouds 62

Based on this non normalized definition, two new approaches can
be taken into account: maximizing either (i) each isolation index of the
given applications or (ii) the sum of them.

In the first case, the scheduling will improve the network QoS for the
single hosted application.

In the second case, the orchestrator looks for optimizing the overall
network resource utilization (e.g., saving energy or bandwidth or improv-
ing quality of the overall physical communication channels among all the
involved workers).

In the next sections, this work will mainly focus on this second ap-
proach.

4.1.3 Closeness: notion and formal definition

In the previous section, the basis for efficient application deployment
boils down to the placement of pods on the workers in such a way to
minimize the ensuing communication costs.

Furthermore, when the communication flow among workers is ele-
vated, their placement should be as close to each other as possible. This
requirement can be conveyed through the notion of distance, or its con-
verse closeness, among workers, that makes it possible to evaluate a
network-oriented placement of Communication intensive applications.

The distance is viewed here as an abstraction of such physical quanti-
ties as latency, response time, bandwidth and the like. There is no need
to provide any detail beyond the fact that distances are non-negative
real numbers.

Actually, hosting a group of pods on the same worker can be consid-
ered a first level of clustering, the most effective one; anyway intra-worker
communication is more effective than inter-worker communication, even
when the latter takes place within a data-center, high-speed, LAN. How-

Chapter 4. Communication-intensive applications in PaaS clouds 63

ever, the cost of inter-worker communication, even in the scope of a single
cloud provider, may vary by several orders of magnitude depending on
inter-worker distance; For instance, the AWS infrastructure is strongly
sensitive to the way physical machines are spread through availability
zones, whether or not they belong to the same AWS Region. The im-
pact of distance on performance is even stronger when the workers host-
ing micro-services based applications are scattered among different cloud
providers [123]. Therefore, taking into account the notion of worker dis-
tance, can reduce the network cost even more than just placing pods
optimizing the isolation index.

Given dm,n, the distance between two workers m,n ∈ M, its inverse,
the closeness κm,n is:

κm,n =
1

dm,n
(4.8)

Endowed with a measure of how close workers are, any application
described by the graph GA of equation (4.1) must be placed accordingly.

Whatever the deployment strategy, modeled by the (4.2), the infor-
mation flow between workers can be computed by adding up individual
flows of edges between pods belonging to different workers m ∈ M, for
all applications A ∈ A.

Consider two workers m,n ∈ M. Wm,n(t) is a measure of the amount
of information flowing between the two workers:

Wm,n(t) = ∑
u∈hosted_on(m,t)

∑
v∈hosted_on(n,t)

wu,v (4.9)

where hosted_on(⋅, ⋅) is the inverse image of map in (4.2). The
higher Wm,n, the more coupled m and n are.

Chapter 4. Communication-intensive applications in PaaS clouds 64

Note that Wm,m reduces to the inner sum in equations (4.6) and (4.7)
and still represents the amount of private communication between com-
ponents hosted on the same worker.

Leveraging the use of both the concepts of isolation index and close-
ness allows to define the Flow Index.

Definition 3. Let us consider a set of workers, M. The flow index of
M at any time t is given by:

ϕ = ∑
m,n∈M

κm,n ⋅Wm,n(t) (4.10)

where:

• κm,n is the closeness between workers m and n;

• Wm,n(t) at time t, is the total flow between workers m and n as
in (4.9).

If m = n, as already stated above, κm,n = 1: this equation becomes
identical to the isolation index defined in (4.7). Otherwise, κm,n ≪ 1.

Maximizing (4.10) amounts to ensure that (i) the highly-coupled pods
are placed either on the same worker or on workers as close is possible
to each other, and (ii) that workers close to each other are those that
communicate more intensely.

4.2 Mapping strategies

The effectiveness of a mapping strategy can be strongly enhanced by the
available information on the application graph GA. Based the thorough-
ness of this knowledge, three different application model are considered:

1. Set of Components : only the set VA of the pods of the application
is known; no information is available about its graph;

Chapter 4. Communication-intensive applications in PaaS clouds 65

2. Simple workflow : the structure (i.e., edges EA) of the graph GA is
fixed and the values of weights wA are constant in time;

3. Timed workflow : GA can be time-variant.

These three different models provide increasing levels of knowledge
about communication of pods within the application, and enable the
adoption of suitable strategies for mapping the cloud-native application
onto available resources.

The mapping strategy should also depend on the QoS profile of the
application: when the application provider requires a strictly guaran-
teed SLA, the application has to be deployed and executed accordingly.
Otherwise, if the SLA can be satisfied with “Best Effort” strategies, the
application can be deployed and executed by simply trying to optimize
the overall utilization of the managed resources. It is recalled here that
the focus of this work points out an optimal strategy to achieve the sec-
ond case: improving the QoS whenever the applications do not require
QoS-guaranteed deployments.

4.2.1 Set of Components

In this case the only information available is the list of the pods of the
application (and, optionally, their SLOs): no information about commu-
nication interactions is given. Under these conditions, it is not possible
to optimize, a priori, the mapping; in order to maximize the flow index,
a run-time, adaptive solution has to be chosen. To this aim, monitoring
the podsof an application (as in [124]) allows to assess the communication
load (e.g., in terms of frequency and quantity of exchanged messages) and
reveal recurring communication patterns. The experience of a commu-
nication pattern solicit the system to migrate the involved pods in order
to place them as close as possible maximizing ϕ: the pods will only be

Chapter 4. Communication-intensive applications in PaaS clouds 66

actually migrated if the cost of the migration process is negligible respect
to the utility in terms of communication load.

4.2.2 Simple Workflow

In this case, the submitted application is equipped with static informa-
tion about interaction among its pods. This knowledge improves the
placement of the pods on the available workers. If all the pods can be
hosted on a single worker of the available pool, the mapping process will
simply consist in identifying the best one. Instead, if the number of pods
and their requirements are so that no single worker is adequate to host
all of them, the mapping strategy becomes non-trivial.

As known in literature, mapping is a well-known, NP-complete prob-
lem, which makes searching for the optimal solution a highly time-
consuming process [117, 125, 126]: heuristics are available either to op-
timize the placement of communication intensive applications within a
Cloud [117], or to reduce the communication load over wide area Edge-
Cloud networks [3, 4].

Moreover, the cloud is highly dynamic: creating, terminating and
scaling up and down of applications imply that the chosen mapping con-
figuration is optimal only for a limited time window. To mitigate this
problem, it is necessary to either implement an admission control policy
limiting the number of running applications, or reduce the number of
physical resources allocated to the application. The first solution limits
the system throughput, the last one impacts on the application per-
formance. An effective solution can derive from the knowledge of the
evolution of the communication among the workers: it can optimize the
resource exploitation without affecting neither the application perfor-
mance nor the system throughput.

Chapter 4. Communication-intensive applications in PaaS clouds 67

Section 4.3 will refer to this case to provide an optimal strategy based
on the IQP formulation according to section 4.1.

4.2.3 Timed Workflow

Time-independent sub-graphs

t

A

B

C

D

Start Time End TimeEnd(B)End(A)

t1 t2 t3

Time workflow

A B C D

Pipelined application (4 components)

A B C D

Figure 4.2: Information about application A

Chapter 4. Communication-intensive applications in PaaS clouds 68

Listing 4.1 Time workflow yaml description for application A

1 # Time based description of a 4 components ,
2 # pipelined , application
3
4 timeDescription:
5 - id: t1
6 components:
7 - A
8 - B
9 transaction:

10 event: End(A)
11 - id: t2
12 components:
13 - B
14 - C
15 transaction:
16 event: End(B)
17 - id: t3
18 components:
19 - C
20 - D

In some cases, application providers can provide a better descrip-
tion of their applications by introducing the temporal dimension on the
elements of the wA and rA matrices (sec. 4.1.1).

In practice the workflow of these kind of applications can be traced
back to discrete series of simple workflows, under the hypothesis that
the system goes through steady states for the overall time (the epochs
in [6]). Any simple workflow of the series will be valid for a time interval.
The relevant weights, wA could be approximated with the average value
observed in the past histories or could be forecast based on other con-
siderations of the expected behaviour of the application. Thus, within
each epoch, edge weights have to be assumed to be constant (although
they could actually slowly fluctuate).

Chapter 4. Communication-intensive applications in PaaS clouds 69

This is a necessary condition to make the knowledge of GA worth-
while for the application deployment Following this time splitting and
exploiting the model in [6], a timed workflow can be partitioned into a
sequence of n time-independent sub-graphs GA(t).

In particular, the time in which an application runs, is split into a
sequence of n time windows (t0, t1, . . . , tn).

The application providers should specify a list of pods running at
the same time and the transition event(s), i.e., the event or the group
of events, that cause a transition from a time window to the next one.

As a consequence, the workflow of application A (represented by GA)
can be viewed as the sequential execution of the n sub-applications A(t),
for t ∈ (t0, t1, . . . , tn).

Figure 4.2 shows the graph of a simple pipelined application, its time-
based decomposition in sub-graphs, and the related yaml description into
Listing 4.1. Different sub-graphs related to different epochs can exploit
the same set of physical resources, at different times.

Since different time-independent applications Ai can be deployed on
the same physical resources and, as a consequence, on the same com-
munication channel(s), the probability of using the same channel, at a
different time, for different communication, increases thus also the prob-
ability to render (near-)optimal ϕ.

The mapping process, in this case, consists of using, for each sub-
graph, GAi

, the same procedure described in the second scenario. The
reduction of needed resources, for each time window, has a great impact
on the performance related to the deployment of the application, be-
cause it increases the probability of finding close resources and reduces
communication latency.

Chapter 4. Communication-intensive applications in PaaS clouds 70

Even if this approach can be applied to many type of applications, it
provides an effective improvement for long-running applications such us
scientific workflow or big data-oriented analyses.

Chapter 4. Communication-intensive applications in PaaS clouds 71

4.3 IQP Formulation

This section formulates, in an integer quadratic programming algorithm,
the map(⋅, ⋅) function of eq. (4.2) optimizing the communication for a
set of simple workflow applications.

Given N applications to be deployed on the Cloud system, the prob-
lem of maximizing ϕ can be represented by a multiple quadratic multi-
dimensional Knapsack Problem (KP) [127].

“Multi-dimensional” are the constraints on the different types of in-
volved resources.

“Multiple” is the availability of a number of workers on which the
orchestrator can deploy pods of the applications.

Finally, “Quadratic” because it is necessary to consider the weights
of communication between pairs of components.

This problem is known to be NP-complete; different solutions have
been proposed in literature to solve it through relaxed heuristics such
as [128,129] for quadratic-KP, [130] for multi-dimensional-KP and [131]
for multiple quadratic-KP.

The following IQP model does not represent a totally fair solution,
from the point of view of the applications, but aims to meet the objectives
of Cloud providers: e.g., minimizing energy and inter-rack bandwidth
consumption, etc.

Let us denote:

• X
A the number of pods for the generic application A;

• M = ∣M∣ the number of available workers;

• L the number of resource types taken into account (e.g. RAM,
CPU, . . .);

Chapter 4. Communication-intensive applications in PaaS clouds 72

• w
A
j,k the weight of communication between pods j and k, the generic

element of the adjacency matrix wA of the application A;

• r
A
j,l the amount of the resource type l required by the pods j of the

application A, the generic element of matrix rA;

• cm,l the amount of available resource of type l in the worker m;

• κm,n the closeness between workers m and n as in eq. (4.8).

The allocation issues of section 4.1 can be resumed in the following
multiple quadratic multi-dimensional KP:

max
N

∑
A=1

M

∑
m=1

M

∑
n=1

κm,n ⋅
X

A

∑
j=1

X
A

∑
k=1

x
A
j,m ⋅ x

A
k,n ⋅ w

A
j,k (4.11)

subject to:

M

∑
m=1

x
A
j,m = 1

A = 1 . . . N

j = 1 . . . X
A (4.12)

N

∑
A=1

X
A

∑
j=1

r
A
j,l ⋅ x

A
j,m ≤ cm,l

m = 1 . . . N

l = 1 . . . L
(4.13)

Equation (4.11) represents the objective function of the problem: the
maximization of the overall flow index of the Cloud system.

x
A
j,m represents the binary decision variable: it is 1 if the pod j of

the application A is placed on the worker m, otherwise it is 0. Con-
straints (4.12) guarantee that any pod of each application is deployed
exactly once; Constraints (4.13) assure that the requirements of a group
of pods deployed on the same machine do not exceed the available re-
sources on the specified machine.

Chapter 4. Communication-intensive applications in PaaS clouds 73

Following seminal works [127, 132–134], an auxiliary variable z
A,j,k
m,n

can be exploited to get a linearized version of the presented IQP ((4.11)-
(4.13)):

max
N

∑
A=1

M

∑
m=1

M

∑
n=1

κm,n ⋅
X

A

∑
j=1

X
A

∑
k=1

z
A,j,k
m,n ⋅ w

A
j,k (4.14)

subject to:

(4.12) − (4.13)

z
A,j,k
m,n ≤ x

A
j,m

A = 1 . . . N

j, k = 1 . . . X
A

m,n = 1 . . .M
(4.15)

z
A,j,k
m,n ≤ x

A
k,n

A = 1 . . . N

j, k = 1 . . . X
A

m,n = 1 . . .M
(4.16)

x
A
j,m + x

A
k,n ≤ 1 + z

A,j,k
m,n

A = 1 . . . N

j, k = 1 . . . X
A

m,n = 1 . . .M
(4.17)

z
A,j,k
m,n ≥ 0

A = 1 . . . N

j, k = 1 . . . X
A

m,n = 1 . . .M
(4.18)

Constraints (4.15) assure that, given a pod j for the application A,
any z

A,j,k
m,n can be less or equal to 1 only when m is the worker hosting j.

The same happens on constraints (4.16) just for the pod k if hosted on
worker n. Constraints (4.18) assure that z

A,j,k
m,n are non-negative values.

Chapter 4. Communication-intensive applications in PaaS clouds 74

Thus, if the pod j and the pod k are not hosted, respectively, on the
workers m and n, the auxiliary variable is constrained to be 0; otherwise,
it belongs to]0, 1]. Finally, constraints (4.17) guarantee that the auxil-
iary variable can only lay in {0, 1}. Therefore, zA,j,k

m,n is 1 only if, given
the application A, pod j is hosted on worker m and pod j is hosted on
worker n.

The IQP (4.11)-(4.13) has been reduced into a Mixed Integer Pro-
gramming model (MIP).

4.4 A case study: impact of closeness and isola-
tion on the performance of a 3-tier applica-
tion

As discussed in the previous sections, the performance of a distributed
application strongly depends on its underlying network’s performance,
especially when the communication between its microservices is inten-
sive. A straightforward example is given in Table 4.2 that shows the
result of the same test, namely a single-value read in a database, rele-
vant to 3 different real-world scenarios. Column Network indicates the
selected scenario; The column Range of values gives the execution time
difference between the longest and the shortest read over 1000 runs.

The table shows a wide range of possible read times, spanning from
a low-latency, stable LAN (local AMZ, i.e. Amazon) to a markedly un-
reliable WAN. In the stable LAN the range of values for the execution
times among all the reads is less than 0.2 ms (approximately, the read
times are uniformly distributed between 0.435 ms and 0.634 ms) and the
standard deviation is 0.046 ms. The unreliable WAN, however, is char-
acterised by high fluctuations where the execution time of the slowest

Chapter 4. Communication-intensive applications in PaaS clouds 75

GET
request

1

5

7
Api Gw

2

4

Spring
Controller

3

 MongoDB

0

6

Figure 4.3: Three tier application graph

read (91.02 ms) can be about 180 times greater than the fastest one (0.5
ms).

Table 4.2: Network fluctuation
Network Range of values Std.

Local AMZ 0.199ms 0.046ms
Campus MAN 67.430ms 361.959ms
Campus/WAN/AMZ 90.557ms 300.321ms

The experimental results discussed in the following sections will demon-
strate how the performance of a distributed application is related to
the way its micro-services are deployed and not only to the low level
structural parameters of the network, such as throughput, bandwidth,
latency, error rate and jitter, of the surrounding network. In particular,
it will be shown how the performance of a real test-bed for cloud-native
applications depends on the isolation index and closeness among its
micro-services.

4.4.1 Application, workload and performance indexes

The test-bed is based on a simple 3-tier application consisting of a Video
API platform on which users can either publish their videos or retrieve

Chapter 4. Communication-intensive applications in PaaS clouds 76

them to be viewed through a generic web video-client. The application is
modelled as shown in Figure 4.3 and consists of (i) an nginx API-Gateway
(c1, presentation tier) which acts as the first receiver of an end-user
request, (ii) a Java/Spring controller, (iii) a MongoDB database, and
(iv) 2 persistent volumes hosted in a GlusterFS storage cluster to provide
database files and video files.

The path of the request is also depicted in Fig. 4.3: a GET request
reaches the API Gateway (0) and is forwarded to the Controller (1) that
retrieve, with 2 queries to the MongoDB database (2, 3), the information
about the requested video. Then, the controller replies (4, 5) to the user
with a HTTP 302 Status and a location header to redirect itself to the
actual video URI. This final video URI reaches the API Gateway (6)
which returns the file saved in the videofiles persistent volume acting as
a web-server (7).

By taking into consideration that the client (i.e., our load test-set)
is able to follow HTTP redirects, the measurement at step (7) is limited
to the first byte of the videofile.

The application is deployed on an ad-hoc OpenShift cluster consisting
of 8 workers hosted at the University of Catania. Each worker is equipped
with a virtualized 8-core CPU and 32GB of memory. Links between
physical machines hosting the workers consist of a 1Gbps dedicated LAN.

A customized version of Hey [135] was utilized as a load generator
running on a dedicated host, external to the Openshift Cluster which
hosts the application, but within the same network. Deployment of dif-
ferent environment configurations has been executed by exploiting An-
sible playbooks.

This allows for the measurement of the request execution time (called
hereinafter TDT, transaction delivery time) thus avoiding fluctuations

Chapter 4. Communication-intensive applications in PaaS clouds 77

typical of a WAN or similar network infrastructure configuration, as
depicted in Table 4.2.

Each execution of Hey runs for 600s, simulating a load of 100 con-
current requests without leveraging Keep-Alive connections.

Each test evaluates the average TDT and its standard deviation. The
average TDT is considered as a generic index of the network speed : the
lower the value, the better the performance. The standard deviation
can be instead used in the assessment of the predictability of network
performance: the lower its value, the lower the performance variability,
a key aspect to take into account when satisfying an SLA.

Moreover, for each test set carried out, the TDT probability mass
function is graphed out, fig. 4.4, 4.5.

In the following, 4 different deployment configurations are considered
for the components c1, c2, c3:

• case A: the three components are hosted on different workers

• case B: the Spring Controller (c2) and the API Gateway (c1) are
hosted on the same worker, while MongoDB (c3) is hosted on a
different one;

• case C: the API Gateway (c1) is hosted on a machine, while Mon-
goDB (c3) and the Spring Controller (c2) are clustered together on
a different worker;

• case D: each component is hosted on the same worker.

Table 4.3 shows the values of the normalized isolation index according
to equation (4.6). Closeness is constant if two micro-services are hosted
on different workers, because they are hosted on a unique virtual LAN
of the same cluster; thus, for the sake of simplicity, the closeness can be
elided.

Chapter 4. Communication-intensive applications in PaaS clouds 78

Table 4.3: Deployment configurations with their normalized isolation
index

Deployment configuration niiA

Case A 0
Case B 0.3
Case C 0.7
Case D 1

These deployment configurations will be investigated simulating two
different scenarios: (i) the “private environment” where the application
runs alone, and (ii) the “shared environment” where other applications
coexist with it. The performance evaluation of these two different sce-
narios 1s going to be discussed in the next two subsections.

4.4.2 Performance in the “private environment“

Figure 4.4 shows, for each deployment configuration, the average value,
the standard deviation and the histogram of the probability mass func-
tion of TDT.

The average and the standard deviation are also summarized in Ta-
ble 4.4, which compares cases A, B, C vs. the optimal mapping of case
D.

Generally speaking, it is clear that as the isolation index and close-
ness decrease, the average execution time of the transaction increases
while also exhibiting a higher standard deviation. The underlying key
principle of the proposed approach is that “architectural quality” boosts
performance.

Case A has the lowest isolation index and closeness, where the average
and the standard deviation of TDT show a nearly five-fold (456%) and
two-fold (96%) increase, respectively.

Chapter 4. Communication-intensive applications in PaaS clouds 79

(A) (B)

(C) (D)

Figure 4.4: TDTs distribution in different deployment cases (“private”
environment)

Chapter 4. Communication-intensive applications in PaaS clouds 80

(A) (B)

(C) (D)

Figure 4.5: TDTs distribution in different deployment cases (“shared”
environment)

Chapter 4. Communication-intensive applications in PaaS clouds 81

Table 4.4: Performance of the “private” environment
Configuration avg std

Case D (optimal) 12.91ms (100.00%) 1.69ms (100%)
C vs. D (% incr.) 13.89ms (107.59%) 1.94ms (114.79%)
B vs. D (% incr.) 17.62ms (136.48%) 2.05ms (121.30%)
A vs. D (% incr.) 17.94ms (138.96%) 2.12ms (125.44%)

Table 4.5: Performance of the “shared” environment
Configuration avg std

Case D (optimal) 14.55ms (100.00%) 20.10ms (100%)
C vs. D (% incr.) 17.66ms (121.37%) 24.39ms (121.34%)
B vs. D (% incr.) 26.76ms (183.92%) 71.43ms (355.37%)
A vs. D (% incr.) 29.82ms (204.95%) 111.22 (553.33%)

Cases B and C show how placing the more coupled components to-
gether results in an performance increase of 126% compared to when
less coupled micro-services are placed together (as with the database and
the API gateway).

These experiments confirm the advantages of inter-worker isolation
and the placement of highly coupled pods close together - as confirmed
by the fact that, as these parameters worsen, the average TDT times
increase.

Furthermore, standard deviation increases too, meaning a larger fluc-
tuation around the average performance is observed, with obvious, ad-
verse, implications affecting QoS/SLAs.

4.4.3 Performance in the “shared environment”

In the second experiment, the network of workers is stressed in order
to simulate other communication-intensive applications running concur-

Chapter 4. Communication-intensive applications in PaaS clouds 82

rently with the monitored one. Stressing traffic was injected into the
communication links through D-ITG [136]: it is configured as a Daemon-
Set in the worker nodes so that each worker intensively communicates
with each other. The inter-departure time between packets is taken from
a Poisson distribution with mean 100ms while the packet size is constant
and set to 10KB.

Figure 4.5 depicts the resulting probability mass function for TDT
in any of the deployment configurations.

Average TDT and standard deviation, for deployment configurations
A, B, C, are shown, relative to D, in Table 4.5.

Considerations alike to the “private” scenario of Section 4.4.2 apply
also to this “shared” scenario: as the isolation index (or FlowIndex)
degrades, from case D to A, so do performance metrics. Moreover, with
respect to the “private” scenario, the presence of competing applications
seems to adversely impact performance further in all cases A, B, C (vs.
D), and increasingly so, as architectural quality (isolation and closeness)
worsens from case D to A. This is easily observed in Table 4.5 which
shows, as already done for the “private” environment, the TDT average
and standard deviation compared to the best (shared) case.

On the other hand, the reference application make use of the overlay
network links depending on the deployment configuration

When application links are shared with the ones of the D-ITG “simu-
lated” applications, communication interference arises and performance
are adversely affected. In case D (isolation index 1, see Table 4.3) the
micro-services are on the same worker and do not use links between
workers; accordingly, the slight performance degradation observed in Ta-
ble 4.5 is only due to the additional computing load given by the network
stack kernel jobs of the underlying operative system due to the simulated
applications running concurrently in the cluster.

Chapter 4. Communication-intensive applications in PaaS clouds 83

In case C (isolation index 0.7, see Table 4.3), the API Gateway is
hosted on a worker while the database and the controller are grouped
together in another one. The two coupled pods (database and controller)
leverage the use of internal communication rather than the shared one.

Communication between the API Gateway and the Controller, though
certainly affected by the interference between the applications, is rela-
tively rare compared to the one between the controller and the database;
accordingly, both shared and private performance degradation increases
slightly: 121.37% and 107.59%, respectively.

Degradation increases in cases B, where the highly coupled pods com-
pete for the shared links with the other applications, and in case A where
all the pods communicate over shared links. These two cases show the
most measurable degradation: the average values increase by 183.92%

in case B and 204.95% in case A.

It is interesting to note what happened for both case C and case
B, where the presence of other applications have influenced the average
value, increasing it of 121.37% and 183.92% respectively.

However, the normalized increase of standard deviation is almost the
same for case C in both "private and "shared" scenarios (114.79% vs 121.34%),
while for case B there is an important increment of 355.37% which in-
crease till to 553.33% for case A. This increment highlights how strongly
the flow index affects the communication quality in terms of fluctuation
and, as a consequence, how strongly it affect the performance of a Cloud-
native application, both in the case of strict QoS requirements and in a
"Best-effort" scenario.

This confirms that applying a strategy which takes into account the
indices introduced in this paper, can greatly improve the overall QoS of
the hosted services.

Chapter 4. Communication-intensive applications in PaaS clouds 84

Figure 4.6: Numerical results from simulation environments

4.5 Performance evaluation

The aim of this section is to evaluate, through simulation, how a deploy-
ment based on the maximization of isolation and closeness parameters
improves the performance of cloud native applications. In particular, the
strategy proposed in section 6, based on its IQP formulation using IBM
Cplex, is compared with the standard scheduling strategy of Kubernetes.

Chapter 4. Communication-intensive applications in PaaS clouds 85

The Kubernetes strategy considers a queue of pods to place in the
cluster. Kubernetes schedules the pods in the queue through the pattern
filter, sort, and prioritize [64].

For each pod:

1. a filter selects from the available workers, those that are able to
run this pod;

2. a priority-based algorithm associates to any worker a weighted av-
erage of scores according to different score plugins ;

3. the scheduler sorts the set of workers by their score and assigns the
pod to the first worker of the ordered queue.

Two of the official Kubernetes score plugins [137] utilized in the sim-
ulations are the following:

• Least Allocated: it compares the required resources of the pod with
the available resources in the worker giving a greater score to the
worker with the greatest available/requested ratio;

• Balanced Allocation: favors nodes with balanced resource usage
rate. For each node and resource type, it calculates the variance
of the requested/available ratio;

The simulation software consist of a graph generator to produce dif-
ferent pods placement scenarios and two handlers which implement (i) a
Kubernetes scheduler and, (ii) the optimal IQP as in section 4.3 exploit-
ing the CPlex API.

4.5.1 Generation of applications and cluster graphs

Generation of the graphs for both the applications and workers is ran-
domized.

Chapter 4. Communication-intensive applications in PaaS clouds 86

Table 4.6: Default values for simulations
Number of workers 32
Number of applications 32
Number of workers clusters 2
Containers per application 10
Weight distribution (inter-pod communication) 0.5-1.0
Link 0.8
Max path length 5
Available RAM per worker 32GB
Available CPUs per worker 16

For the campaign of simulations the graphs, both of the applications
and of workers are generated through the Erdőos-Rényi method [138].

Table 4.6 lists the default values that the generator uses to configure
the Cloud system.

The overlay network of workers available for the placement consists
of a fully-connected graph of homogeneous workers belonging to the clus-
ters of the cloud system (two by default). As previously described, the
applications to be orchestrated consist of a set of weighted graphs, where
the nodes are the pods and edges are the links between them, weighted
by the communication workload. The pods are generated with a given
random probability while the weights of the links got a uniform random
distribution.

Finally, the required resources are also randomly generated and are
kept consistent with the available resources in the system so that any
simulated scenario is actually feasible. In this way, the consistency of
the results is guaranteed when varying the input parameters of the sim-
ulations.

Three campaigns of simulations are reported in the following:

Chapter 4. Communication-intensive applications in PaaS clouds 87

• varying the number of workers, while keeping constant the total
amount of available resources;

• varying the number of clusters;

• varying distribution ranges of inter-pods communication.

For any application placement, the average and the standard devi-
ation of the execution time for each generated request are calculated.
These requests are generated as random, self-avoiding walks in the ap-
plication’s graph with a maximum number of steps equal to 5 (a reason-
able communication path length for micro-services architecture, as for
instance, with different MVC-based components that have a broker for
asynchronous messaging).

The execution time of every request is given by the sum of times
needed to to traverse each link from a node to the next one in the random
walk modeling the request. Execution times are generated following the
distributions revealed by the real test-bed in sec. 4.4.

The specific distribution taken into account to calculate the stochas-
tic execution time is chosen by looking at the final status of the links,
which are: internal, if the two vertices-pods are hosted in the same
worker; private, if the link is spread across two workers, and is used only
by that specific pod’s pair; finally, shared if the link is spread across two
workers and shared with other pods’ links.

Each execution time in the sum is weighted by a factor which sim-
ulates the closeness between workers: as in Table 4.2, the closeness for
workers belonging to the same cluster is a few orders of magnitude higher
than that of workers belonging to different clusters.

To reduce the noise in the results, the requests are submitted 10k
times.

Chapter 4. Communication-intensive applications in PaaS clouds 88

4.5.2 Numerical results

The simulation results are grouped in Fig. 4.6.

Resource fragmentation

The first two charts report the execution times and their standard devi-
ation while varying the number of workers. The diagrams show how the
solution provided by the proposed strategy usually performs better than
the Kubernetes one in any case. In the scenarios of 16 and 32 workers,
both IQP and Kubernetes are able to deploy most of the applications
with a normalized isolation index 1, because the available resources are
not too fragmented. Execution times given by IQP, on average, are 13%

(16% in the 32 worker scenarios) lower.

Moreover, while the fragmentation of resources becomes higher, the
proposed strategy ever performs better than Kubernetes: with 64 work-
ers (resources halved on each worker with respect to the 32 workers
scenario), there is an improvement of 30% in the average execution time.

Looking at the standard deviations, the impact of using a network-
aware strategy based on the performance indices described in this paper
can afford a big improvement of the quality of service given to the ap-
plications. The higher the fragmentation of the resources, the higher
the standard deviation given by the schedulers, but IQP got a 30% to
60% lower standard deviation than the Kubernetes scheduler, so assuring
lower network fluctuations.

Network fragmentation

The second campaign compares the proposed strategy with Kubernetes
as the number of clusters varies.

Chapter 4. Communication-intensive applications in PaaS clouds 89

Having a link traversing a different clusters can afford to strong degra-
dation of execution time due to the underlying physical network charac-
teristics.

The average response time measured when using Kubernetes sched-
uler is greater than the one reported by the IQP solutions: applications
deployed with the Kubernetes strategy reported a 15% higher average
response time than the IQP. As in the previous simulation the proposed
strategy provides a lower lower standard deviation, going from 59% (2
clusters) to 41% (16 clusters) than the Kubernetes one. What emerges
from the performance analysis is that a strategy based on the flow index
represent strong improvements in environments like Multi-cloud, edge,
and fog computing, where the underlying networks cannot be controlled
by all the stakeholders (i.e., network operators, application providers,
. . .) and are fragmented and variable rather than the ones available, for
example, in a Spine-Leaf based cloud data-center.

Varying distribution of weight

As said before, the proposed approach fits well in the orchestration of
Communication-Intensive applications.

The last campaign of simulation compares the performance of the
two schedulers while varying the parameters of the uniform distribution
exploited for the communication links weights.

The results confirm how the proposed strategy is mainly useful for
communication intensive applications: choosing a weight distribution
taken in the range [0.1, 0.3[, the performances reported by Kubernetes
and IQP are pretty similar, especially in terms of average response time.

Getting over the threshold of the distribution range [0.5, 0.7[, the
proposed strategy reports a pretty constant standard deviation, while

Chapter 4. Communication-intensive applications in PaaS clouds 90

Kubernetes increases it till to 230% than the network-aware strategy
when the weight is chosen in the range [0.7, 1].

This is an important finding of the proposed approach. The lower the
standard deviation, the higher the statistical predictability of execution
times: the proposed strategy is able to get more predictable response
times and, as a consequence, to improve the QoS of applications, espe-
cially in the case of Communication-Intensive applications, giving better
warranties on SLAs.

4.6 Conclusion

This chapter introduced a set of mapping strategies to improve the QoS
management of communication intensive applications in PaaS clouds.
Relying on the flexibility provided by the containerization architecture
and on the knowledge of the application’s structure, a set of best prac-
tices aims to make the performance of cloud workflows predictable by
minimizing both the mutual interferences between the workflows and
the number of costly run-time adaptation procedures.

To do that, the proposed strategies take into account two specific
parameters, i.e., the closeness among workers hosting components and
the isolation index, an important parameter introduced for measuring
the degree of mutual influence among micro-services.

The effectiveness of the proposed approach has been evaluated by
means of a simulation campaign aimed to show how the isolation index
and closeness parameters influence the performance of workflows running
in PaaS cloud environments.

In particular, these simulations have demonstrated that the combined
use of isolation index and closeness parameters in mapping strategies
allows the cloud provider to reduce the interference among workflows,

Chapter 4. Communication-intensive applications in PaaS clouds 91

to increase the average communication speed-up and, as a consequence,
improving both the QoS management and resources utilization.

The next chapter, will focus on a similar approach focused to the
field of cloud-edge offloading, and therefore the allocation of partial ap-
plications on edge cluster by the use of the service elasticity principle.

Chapter 4. Communication-intensive applications in PaaS clouds 92

Chapter 5

MORA: Multiple Option
Resource Allocation on Edge
Computing environments

While the approach presented in the previous chapter focuses on the
exploitation of service providers’ information about the workflow of their
applications, the aim here is to focus on how the service providers’ can
interact with network operators to deploy a part of their services to the
Edge. The considerations that will be presented are materialized into
a polynomial time algorithm - MORA - and an architecture to enable
allocation of containers in the Edge and the offloading of services between
edge and cloud.

As anticipated, despite the scenarios seem different, the work of the
previous chapter and MORA are strictly related.

In particular, both need interaction between the resource providers
(i.e., Cloud providers, or network operators in the following); the strat-
egy of previous chapter can also be applied on smaller networks like Fog

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 94

Table 5.1: Summary of the notation.
Parameters

M Number of nodes
N Number of service providers
J
i Number of options by SP i

Z
i,j Number of containers for option j of SP i

cl,m Amount of resource l in node m

w
i,j
l,z

Amount of resource l required by the container z of option j by
SP i

u
i,j Utility given by choosing option j of SP i

Decision variables
x
i,j Binary variable, 1 if the option j by SP i is chosen, 0 otherwise

y
i,j
z,m

Binary variable, 1 if the container z of option j by SP i runs on
node m, 0 otherwise

and Edge computing facilities to improve internal communication perfor-
mance and, therefore, enhancing the requirements for a very low-latency
network at the Edge.

The core of MORA is that (i) it exploits service elasticity, i.e., the
fact that services can adapt to the resources allocated by the NO and
rely on a remote Cloud for the excess of computation, (ii) it is suitable
for micro-services architecture, which decomposes a single service in a
set of components, which MORA places in the different computational
nodes of the Edge and (iii) it copes with multi-dimensional resources,
e.g., memory and CPUs.

Let’s consider the case of a Network Operator (NO) owning an Edge
Computing infrastructure, composed of m = 1, . . . ,M nodes. These
cluster nodes may be servers installed on a Central Office or machines
installed in a base station. They are virtualized through a hypervisor
and exploit linux kernel capabilities like cgroups and namespaces in order
to separate run environments of the services, in containers, so that third

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 95

party Service Providers (SPs) can concurrently run their services there.
In short, resource accounting and execution environment can be based
on solutions like Kubernetes and OpenShift. Each node has a limited
amount of each resource type. Resources are of type l = 1, . . . , L. In the
numerical results it will be L = 2, with resource types being RAM and
CPU. Each node m has a capacity cl,m, which is the amount of resource
of type l available. N service providers compete (i = 1, . . . , N) to use the
resources available at the edge to run their containerized applications.
A one-to-one mapping between service and service provider is assumed
as if each service provider can run at most one application on the Edge:
actually, this doesn’t lack of generality, since a SP could declare itself
multiple-time as multiple service providers. Similar to [139], in this work
it is considered that there is no unique way to run a service at the edge.
Each service is decomposed in a set of micro-services, each hosted in a
container. Moreover, each service i can run in multiple possible config-
uration options j = 1, . . . , J

i. Each configuration option j of service i

requires concurrently running a set of containers z = 1, . . . , Z
i,j . Each

SP i declares the possible configurations under which it is capable to run
and the NO decides (i) which configuration option to accept and (ii) for
all the containers belonging to that option, which node they should run
to.

These decisions are based on utility and resource consumption.

Ideally, the NO would like to choose for each SP the option that
provides the largest utility. Unfortunately, this is in general not possible,
due to the scarcity of resources available in the Edge nodes. Indeed,
each container consumes resources. Each Edge node can host different
containers, from different SPs. Obviously, the sum of resource type l

consumed by the containers running in a certain node m cannot exceed
its capacity cl,m, for any resource type l = 1, . . . , L. Therefore, the NO

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 96

must optimally choose one option per SP, or a null one, i.e., choosing to
not serve that SP. The NO must resolve a trade off between utility and
resource consumption; at the same time, it has to optimally place the
containers of the chosen options in the available Edge nodes.

If abundant resources are available, a service can be configured in
order to exploit them all, thus almost completely running at the edge. If
less resources are available, the service may configure itself so to adapt to
those and to move some of the computation and data to remote servers
or cloud computing infrastructures.

The multiple configurations in which a Service Provider (SP) can
run its service at the edge denotes its capability to adapt to different
amounts of available resources.

Each configuration results in a certain utility u
i,z for the Network Op-

erator (NO), that in the simplest case represents bandwidth saving [57],
which is the objective considered for the numerical results. Utility can
in general be cost savings [77], QoS or fairness [58], elaboration time
savings [56], depending on the application and the information available.
As commonly done in the literature [58, 77, 140], this work is based on
the assumption that the resources needed for the configurations and the
other characteristics of the configurations are known at the moment of
taking the resource allocation decision. This can easily be achieved, by
the use of frameworks as Tosca [141] or OpenSLO [23], in line with today
containerized environments. For example, in Kubernates it is possible to
define memory, CPU and bandwidth limits when Deployment files are
submitted.

Note that the utility is defined per-option, not per-container. The
rationale is that running containers individually is not useful at all. For
instance, to provide an on-line gaming service, we might need a container
for authenticating users, another for retrieving video frames and another

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 97

Playback
Application

Steering
ServiceOCA

Edge

Cloud

OCA

Edge

OCA

Edge
1

2
3

4

Figure 5.1: Netflix architecture for OCAs CDN

to transcode them. They might all be needed together. Running the
authentication server alone, may be senseless. Either the containers of
an option run all or no one. Therefore, utility comes from the concurrent
run of all the containers of a configuration option, and not from any single
container. Since the different sets of containers that can collectively
provide a service depend on the service itself, it is in the business of the
SP to declare the possible configuration options.

5.1 Architecture

This section will present an architecture that can enable what is being
proposes. In order to start depicting the architecture into an existing
and practical technology, a briefly outline of successful solution widely
adopted by Netflix is hereinafter described.

5.1.1 An existing implementation of Edge Computing

Netflix is one of the largest content providers. It deploys its own hard-
ware appliances, called Open Connect Appliances (OCAs) [142], into
Internet access networks. OCAs store a part of the content catalog and
can serve directly a fraction of local users’ requests, without generating
inter-domain traffic. For this reason, NOs often accept to install this
hardware in their premises. Requests are processed as in Fig. 5.1: (1) A

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 98

user requests a video. (2) A micro-service in the Cloud selects the files
to be sent to the user. (3) The steering service determines the OCAs
closest to the user based on its IP address and generates a list of URLs
pointing to the OCAs. (4) The user client uses the URLs list to play the
video.

This generates a utility to the NO, in terms of inter-domain traffic
saving. The limit of this solution is its limited permeability : it is unfea-
sible in terms of cost and physical space to install hardware appliances
to the very edge of the network, i.e., in many base stations, central of-
fices, access points, etc. Moreover, it is infeasible that hundreds of SPs,
like Youtube, Netflix, gaming providers, IoT providers, etc., will each
install physical boxes into thousands of access networks: installing and
maintaining such physical infrastructure would have an enormous cost
for both SPs and NOs. Moreover, there is no physical space to host
many physical boxes in the network locations at the Edge. However, the
case of the OCA shows that both SPs and NOs have interest in EC, to
run services at the Edge. These limits can be overcome if appliances
are virtualized, as it is already done in Cloud environments. To make
EC feasible, this work proposes to let the NO owns the computational
resources and to virtualize them, in order to allocate them to third party
SPs, acting as tenants. Each SP can then behave individually similarly
to Fig. 5.1. The NO allocates slices of resources to several third party
SPs. The SP can then use its assigned slice as it were a dedicated hard-
ware. Memory encryption technologies [143] can guarantee that data
and processing remain inaccessible to the NO, even if they run in its
premises. Note that, while big players may continue to use their hard-
ware appliances, a virtualized solution owned by the NO is probably the
only way small or medium SPs can reach the Edge of the network.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 99

Figure 5.2: Overview of the proposed architecture. SPs run part of
their service in their premises or in remote Clouds, which we denote as
Headquarters.

5.1.2 Proposed architecture

The components of the proposed architecture are (Fig. 5.2):

• Edge slave nodes : owned by the NO, they run the SPs’ containers.

• Edge Master : a process controlled by the NO, responsible for
(i) monitoring resource usage (e.g. using fine grained monitor-
ing functions available in containerized environments like Kuber-
netes [144]); (ii) collecting the different deployment options from
SPs; (iii) deciding the options to be deployed; (iv) informing the

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 100

SPs about the authorized options and receiving back the contain-
ers descriptors (e.g. Dockerfile or Pods YAML); (v) running the
containers in the Edge slaves. The optimization strategy of § 5.2
runs in the edge master.

• SP Scheduler : each SP has its own scheduler; First, it declares the
set of possible configuration options to the Edge Master, specifying
resource requirements and utility. After the Edge Master selects
one of these options, the SP Scheduler forwards to the Edge Master
the relative containers descriptor files to deploy its application at
the Edge;

• SP Load balancer : each SP has its own load balancer; it intercepts
user requests as in [145] and, based on the amount of requests
served by the Edge it decides to forward the request to a remote
Cloud or to handle it within the Edge [71].

5.1.3 Edge Master workflow

The Edge Master is the core component of the proposed architecture.
Periodically, it performs the following operations.

1. It monitors the available resources and receives the set of options
from the SPs schedulers; it is given as a list containing, for each
option, the relevant amount of utility estimated and information
on the resource requirements for each container;

2. It executes the placement algorithm to select the best option for
each SP according to the collected information in point (1). The
decision is sent to the SPs schedulers;

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 101

3. It receives the (chosen) option descriptors files (e.g. Dockerfiles,
Smarm configurations files, Kubernetes YAML. . .) for the autho-
rized options and runs these containers in the slaves nodes;

4. Finally, it communicates to SPs’ load balancers the addressing data
to reach the Edge internal containers. Based on the occupied re-
sources the load balancers redirect the user requests to the Edge
resources or to the Cloud.

5.2 Optimal resource allocation

The NO aims to maximize its overall utility, i.e., the sum of the utilities
coming from all the selected options. In order to do so, the NO must
concurrently take two decisions

• Option selection : the NO must select at most one configuration
option per SP.

• Container placement : the NO must deploy each container of the
selected options to one of the available nodes

The following is an Integer Linear Programming (ILP) formulation
of the problem. The decision variables modeling the Option selection
are x

i,j , which is 1 if the j-th option of the SP i is chosen. Container
placement is instead represented by the decision variables y

i,j
z,m, which is

1 if the z-th container of the j-th option of SP i is placed on node m.

The mathematical notation is summarised in table 5.1.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 102

max
N

∑
i=1

Ni

∑
j=1

u
i,j

⋅ x
i,j (5.1)

s.t.,
M

∑
m=1

y
i,j
z,m = x

i,j

i = 1 . . . N

j = 1 . . . J
i

z = 1 . . . Z
i,j (5.2)

N

∑
i=1

J
i

∑
j=1

Z
i,j

∑
z=1

y
i,j
z,m ⋅ w

i,j
l,z ≤ cl,m

l = 1 . . . 2

m = 1 . . .M
(5.3)

J
i

∑
j=1

x
i,j

≤ 1 i = 1 . . . N (5.4)

x
i,j
, y

i,j
z,m ∈ {0, 1}

i = 1 . . . N

j = 1 . . . J
i

z = 1 . . . Z
i,j

m = 1 . . .M

(5.5)

The objective is to maximize the utility (5.1), setting the binary
variables x

i,j . Equations (5.2) guarantee that each container z of the
chosen option j by the SP i (xi,j = 1) is deployed (∃m ∈ {1 . . .M} ∶

y
i,j
z,m = 1). Constraints (5.3) guarantee that the sum of the requirements

for the set of containers deployed on a node m for each resource l is less
than the total amount of available resources in node m so that these
containers can actually run on the node. Finally, the constraints (5.4)
guarantee that a service provider can deploy at most one option in the
Edge cluster.

If we have one only option per SP and a unique dimension, e.g. mem-
ory, the problem is similar to a Set-union Knapsack problem [146] and
it has been solved via Dynamic Programming or via bio-inspired algo-
rithms like bee-colony optimization [147]. If we have a single node, we
can just consider, for each option, the total memory and the total CPU

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 103

needed by all the containers composing the option. We can thus forget
about the different containers and in this case we have a Multiple-Choice
Multi-Dimensional Knapsack Problem (MCMDKP) [148], like in [78], al-
though the authors do not clearly state it. Considering just one option
per SP and one node, the problem reduces to a multi-dimensional knap-
sack problem (l-KP), which is a challenging problem. Methods based
on the Lagrangian dual exist but difficult to apply in practice (Sec.9.2
of [149]). Moreover, Fully Polynomial Time Approximation Schemes
cannot exist unless P=NP (Sec.9.4.1 of [149]), which motivates the sev-
eral greedy-type heuristics proposed in the literature (Sec.9.5 of [149]).
However, they cannot be directly used in our problem, which is more
complicated than l-KP, since we need to cope with multiple options,
nodes and containers.

Proposition 1. Problem P is NP-hard.

Proof. As already anticipated, P reduces to a Knapsack Problem with
L = 1,M = 1, J

i
= 1, i = 1, . . . , N and Z

i,j
= 1, i = 1, . . . , N ; j =

1, . . . , J
i, which is NP-hard.

The problem is complex, and there is no possibility to construct
Fully Polynomial Time Approximation Schemes, as §9.4.1 of [149] shows
that they cannot exist (unless P=NP), already for the simpler case of
M = 1, Z

i,j
= 1 and J

i
= 1, i = 1, . . . , N , which is known as l-KP.

5.3 MORA

The MORA heuristic uses aggregate values for the resource requirements
and availability, in order to neglect, at a first stage, the complexity rep-
resented by the fact that resources available are scattered across different

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 104

nodes, resource required are split in different container requirements and
requirements are multi-dimensional.

To this aim, the overall resource requirements of an option j of a SP
i is defined as

w
i,j
l =

Z
i,j

∑
z=1

w
i,j
l,z . (5.6)

A parameter hl ≥ 0, called “relevance value”, is introduced with a
role similar to the relevance values in §9.5.1 of [149].

Finally, the generalized resource utilization of an option j of a SP i

is being defined as:

w
i,j

=

L

∑
l=1

hl ⋅ w
i,j
l (5.7)

To ease computation, MORA heuristic algorithm does not consider all
the possible options, but it first removes the dominated options and
then LP-dominated options, defined as follows, which do not provide
significant utility gain with respect to the resources they require.

The following definitions are needed to deep dive into the concepts
of options dominance, efficiency and options jump, i.e., comparing the
utility of options when choosing the ones that maximize utility. Finally,
LP-dominance is defined for the scenario in this work.

Definition 4. For any SP i, an option j is dominated by another option
j
′
≠ j iff (i) u

i,j
′

> u
i,j and w

i,j
′

≤ w
i,j or (ii) u

i,j
′

≥ u
i,j and w

i,j
′

< w
i,j.

An option is dominated, if it is dominated by some other option.

Definition 5. For a service provider i = 1, . . . , N , the efficiency of a
jump j → j

′, where w
i,j

′

> w
i,j is:

e
i,j→j

′

=
u
i,j

′

− u
i,j

wi,j ′ − wi,j
(5.8)

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 105

wij

u
ij

1

2

6

9

3
5

6

8

7
10

11

Figure 5.3: Example of set of options of a SP i. The options connected
by the line constitute the ordered list of LP-extremes.

Definition 6. A non dominated option j of a SP i is LP-dominated, if
there exist other non dominated options j ′, j ′′ such that ui,j

′

< u
i,j

< u
i,j

′′

,
w

i,j
′

< w
i,j

< w
i,j

′′

and e
i,j

′
→j

′′

≥ e
i,j

′
→j The option j is an LP-extreme

if it is neither dominated nor LP-dominated.

The names “LP-dominance” and “LP-extremes” come from the fact
that the concept is related to the LP-relaxation of the Mutliple Choice
Knaspack Problem, but this is not relevant for the scope of this proposal.
Fig. 5.3 illustrates the concept of LP-extremes, similarly to Fig. 11.1
of [149]. Now, sorting the LP-extreme options produces the list defined
as follows:

Definition 7. For each SP i, we denote with j
i the list of its LP-extreme

options. We denote with j
i[k] the option at its k-th position. This list

is ordered in increasing values of wi,j, such that wi,j
i[k]

≤ w
i,j

i[k+1]. In
the first position of such list we add a fictitious “null” option, such that
w

i,j
i[0]

= u
i,j

i[0]
≜ 0.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 106

Proposition 2. For any SP i, the list ji of LP-extremes can be computed
in O(∣J i∣ ⋅Ri), where R

i is the number of LP-extremes.

Proof. Ch. 11 of [149] shows that LP-extremes correspond to the convex
hull of the set of options j = 1, . . . , J

i. To compute the convex hull we
use [150], which has the complexity above.

5.3.1 MORA Algorithm

The Multiple Option Resource Allocation (MORA) algorithm is shown
in Algorithm 5.1. It takes as input the set of parameters of the ILP (5.9)-
(5.4) describing the scenario plus a configuration parameter hl for l =

1, . . . , L. The algorithm returns a solution, i.e. values for any decision
variable. The algorithm solves two decision problems that the NO must
solve: (i) Option selection : which option (or configuration) per SP must
be accepted (variables yi,jz,m) and (ii) Container placement : in which Edge
nodes we should place the containers of the selected options (variables
y
i,j
z,m). The pseudo code of Alg. 5.1 is mainly devoted to option selection

and calls Alg. 5.2 for the container placement.

Option selection

MORA is iterative. In each iteration, each SP i has a current position k
i,

which corresponds to the option j
i[ki]. Each SP i has also a jump effi-

ciency E
i (line 6), which denotes the efficiency achieved when advancing

its position, i.e., the utility gain obtained going from option j
i[ki] to

j
i[ki + 1] divided by the additional generalized resource utilized. Ob-

serve that u
i,j

i[k]
< u

i,j
i[k+1] and w

i,j
i[k]

< w
i,j

i[k+1] by construction,
and thus E

i
> 0.

Then, in each iteration t, the algorithm selects a SP and it checks
whether it can change its current option j

i[ki] to j
i[ki + 1]. Let’s say

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 107

that service provider i performs a jump j
i[ki] → j

i[ki + 1]. As one can
expect, the algorithm select the SP whose jump efficiency is the highest
(line 12). Let’s call this SP the jumping SP of iteration t, as it is the one
that changes option (the options of the other SPs remain unchanged).

The algorithm, then, tries to place the containers of the jumping SP
i
∗ (line 13). If it succeed, it advances its current option, thus allowing
i
∗ to jump from j

i
∗

[ki
∗

] to j
i
∗

[ki
∗

+ 1] (line 15). Otherwise, it removes

the option j
i
∗

[ki
∗

+ 1] that cannot be allocated. The algorithm updates
the jump efficiency of i∗.

The algorithm terminates when the lists j
i of all the SPs have been

visited (line 10).

Container placement

The placement operations are described in Alg. 5.2. The algorithm works
by constructing a tentative placement ŷ

i,j
z,m,∀i, j, z,m. If it is able to

construct a feasible tentative placement, i.e., it is able to place all the
above-mentioned containers in the available nodes without violating the
resource constraints, it updates the actual placement y

i,j
z,m accordingly

(Line 21). Otherwise, it ignores the tentative placement and we leave
the actual placement unchanged.

The tentative placement is practically identical to the actual place-
ment (Line 1), except for the containers of the jumping SP i

∗. Since
the objective is to place the containers of the new option j

∗ of SP i
∗, it

first reset all its previously selected options (Line 2). Then, it iterates
through the containers of option j

∗ of SP i
∗, and it tries to place them

one by one. In order to place a container z, a first check is to select
the candidate nodes M(z) whose residual capacity is enough to host it
(Line 7) and the algorithm choses one of them (Line 10).

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 108

Similarly to Sec.III.C of [151], this choice is based on the product of
residual capacities, but we use argmax while [151] chooses argmin.

To summarize, at each iteration the algorithm takes a hierarchical
decision: it first selects an option of a service provider, based on the
best jump concept. Then, it tries to place the composing containers in
the available nodes. Note that the operations within each iteration does
not correspond to any change to the actual resource allocation. The
algorithm is always executed until the terminating condition, and only
after that the result is taken to decide the actual resource allocation.

5.3.2 Properties of MORA

In this section, properties of MORA in terms of time complexity are
discussed together with an upper bound of the problem and a discussion
about the impact of the algorithm parameters hl.

Computational Complexity

Proposition 3. The time complexity of MORA is O(N2
JRZML)),

where J is the maximum amount of options per SP and Z is the max-
imum number of containers per option and R the maximum number of
LP-extremes per SP.

Upper bound

Knowing the upper bound of P is important, since we can compare it
with the utility provided by the MORA heuristic and verify how far it is
from the optimum. Moreover, MORA is anytime, i.e., if one terminates
it at any iteration, it returns a valid allocation. The distance from the
upper bound can guide in the decision whether to continue the iterations
or not, which can potentially save computation time. In order to do so,
fix any values for hl, l = 1, . . . , L, compute w

i,j as in (5.7) and ctot ≜

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 109

Algorithm 5.1 MORA algorithm.
Input: u

i,j
, w

i,j
l,z , cm,l, hl.

Output: x
i,j
, y

i,j
z,m, upper bound û.

// Initialization
1: Set x

i,j ∶= y
i,j
l,m ∶= 0 for all l,m and all options i, j

2: for all SP i ∶= 1, . . . , N do
3: Compute w

i,j
, j = 1, . . . , J

i, as in (5.7).
4: Compute the ordered list j

i of options of SP i as in Def. 7.
5: Initialize the current position k

i ∶= 0 on such list.
6: Compute

E
i
∶= {e

i,j
i[ki]→j

i[ki+1] if ki + 1 ≠ end of the list
−∞ otherwise

7: end for
// Main loop

8: for Iteration t ∶= 0, 1, . . . do
9: if E

i
= −∞ for i ∶= 1, . . . , N then

10: break // We arrived at the end of all lists j
i.

11: else
12: i

∗ ∶= argmaxi E
i // Jumping SP

13: success := placeContainers(i∗, ji[ki] + 1) // see Alg. 5.2
14: if success = True then
15: k

i
∗

∶= k
i
∗

+ 1 // Advance current option
16: else
17: Remove the k

i
∗

+ 1-th element of the list j
i
∗

.
// Note that, now the option that was in the
// k

i
∗

+ 2-th position (if any), now goes to the
// k

i
∗

+ 1-th position.
18: end if
19: Update

E
i
∗

∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e
i
∗
,j

i
∗
[ki

∗
]→j

i
∗
[ki

∗
+1] if ki

∗

+ 1 ≠ end of the list
−∞ otherwise

20: end if
21: end for

//Translate to ILP notation
Set x

i,j ∶= 1 for j = j
i[ki] if ki > 0, for any SP i.

22: return x
i,j , yi,jz,m.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 110

Algorithm 5.2 Container placement algorithm.
Input: i

∗
, j

∗

Output: boolean success.
1: ŷ

i,j
z,m ∶= y

i,j
l,m,∀z, j, l,m

// Release the containers of the current option of i∗:
2: ŷ

i
∗
,j

z,m ∶= 0,∀j, z,m
// Compute the residual capacity given by the tentative placement:

3: ĉl,m ∶= cl,m −∑N
i=1 ∑J

i

j=1 ∑Z
i,j

z=1 ŷ
i,j
l,m ⋅ wl,z

4: success := True
5: for all z ∶= 1, ...Z

i
∗
,j

∗

do
6: // See which nodes can host container z:
7: M(z) ∶= {m ∈ {1, . . . ,M}∣wi

∗
,j

∗

l,z < ĉm,l, l = 1, . . . , L}
8: if M(z) ≠ ∅ then
9: // Select one of those nodes:

10: m(z) ∶= argmaxm∈M(z) ∏L
l=1 ĉl,m

11: ŷ
i
∗
,j

∗

z,m(z) ∶= 1 // Assign the container to the selected node

12: ĉl,m ∶= ĉl,m − w
i
∗
,j

∗

l,z // Update the residual capacity
13: else
14: // It is not possible to place container z,

// and thus the entire option
15: success := False
16: break
17: end if
18: end for
19: if success = True then
20: // The tentative placement is accepted as actual placement
21: y

i
∗
,j

∗

z,m ∶= ŷ
i
∗
,j

∗

z,m ,∀z,m
22: end if

// Else, we leave the actual placement unchanged
23: return success

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 111

∑M
m=1∑L

l=1 hl ⋅ cl,m and resort to a problem known in the literature as
Multiple Choice Knapsack Problem (MCKP):

max
N

∑
i=1

Ni

∑
j=1

u
i,j

⋅ x
i,j (MCKP) (5.9)

subject to

N

∑
i=1

J
i

∑
j=1

x
i,j

⋅ w
i,j

≤ ctot;
J

i

∑
j=1

x
i,j

≤ 1; x
i,j

∈ {0, 1}
l = 1 . . . L

i = 1 . . . N

j = 1 . . . J
i

(5.10)

Since a solution that satisfies (5.2)-(5.4) also satisfies (5.10), the optimal
solution of MCKP is an upper bound to the optimal solution of P. An
upper bound of the original problem P can be obtained by using the
algorithm from Dyer and Zemel (Fig. 11.5 of [149]) that computes in
linear time the optimal solution of the LP-relaxation of MCKP.

Proposition 4. An upper bound û of the original problem P can be
found in O(∑N

i=1 J
i).

Impact of the relevance values

The relevance values hl, l = 1, . . . , L are algorithm parameters that change
the placement results. Indeed, changing hl, the values of wi,j change for
all js (see (5.7)) and thus the list j

i changes as well. This value serves
to weight resource types among them. If, for example, a certain resource
type l, say memory, is scarce in the Edge, the algorithm should tend not
to select options that consume a lot of resource l. This can be achieved
by setting a high value of hl. By doing this, an option i, j that con-
sumes a lot of l-resource would have a high w

i,j , and thus would have
less chances to be in the LP-extremes list j

i (it would tend to be on the
right of Fig. 5.3). Moreover, jumping from another option j

′ to j would

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 112

likely result in a low efficiency e
i,j

′
→j and Alg. 5.1 would prefer other

jumps. Observe also that different values of hl would result in different
upper bounds û. In this way, one can compute different upper bounds
and just consider the minimum value.

5.4 Numerical results

MORA has been simulated to show how enabling service elasticity by
allowing multiple configuration options to SPs notably improves the util-
ity of the Edge. Simulations of MORAof have been run to compare the
performance of MORA, computed with the ILP (§ 5.2), with a naive
allocation, which consists in randomly option selection and container
placement. The code of the ILP in glpk and the python code to orches-
trate the simulation are available as open-source [10], together with the
scripts to reproduce the results presented here. The simulations run in
a Intel Xeon CPU E5-4610 @ 2.30 GHz with 256GB RAM, the results
are averaged across 20 runs and 95% percentiles are reported. Finally,
MORA has been simulated by using publicly available traces from Google
and Alibaba clusters. While the former simulations allow to study the
sensitivity of MORA to selected parameters, real-traces allow to assess
performance in real-world cases.

MORA is compared to the optimal solution (computed via (5.1)-
(5.4) using GLPK) and to a Naive strategy. The latter iterates over the
available SPs and for each one chooses a random option to be deployed.
It then tries to deploy each container of the chosen option in the first node
that fits the requirements of the container itself. Whenever the first SP
cannot be placed in the Edge cluster the naive algorithm stops. The bad
performance that will be shown for Naive demonstrates that is important
to select the “right” option per SP and the “right” node per container.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 113

In all plots, all the parameters are kept at their default values (Tab. 5.2)
and vary only the parameter(s) explicitly specified. In what follows,
the computation time (§5.4.1), the utility achieved and the resources left
unused after the allocation (§5.4.1-5.4.1) are evaluated. Other simulation
show how resources are distributed among SPs (§5.4.1). In the real traces
results, it is being shown the achieved utility varies with number of SPs
(§5.4.2). Since MORA is an anytime algorithm, simulations report how
the utility evolves during its iterations (§5.4.2).

All results on synthetic scenarios are averaged across 20 runs and
95% confidence intervals are reported, which may not be visible when
they are too small. They are calculated on a Intel Xeon CPU E5-4610
v2 @ 2.30GHz with 256GB RAM. The model of the ILP in glpk and the
python code of MORA are available as open-source on GitHub [10].

5.4.1 Results on synthetic scenarios

In this scenario, the Edge [70] consists of M identical Intel Xeon nodes
with 4 sockets and 4 cores and hyper-threading enabled. Therefore,
each node is represented as 16 cores hyper-threaded. 32GB RAM are
allocated to each of them. For each scenario, N SPs, each declaring
the same number J of configuration options. Each configuration option
is described in terms of the required Z containers. The memory and
the processing required by a container z of the j-th option of service i

are drawn from uniform random distributions with mean w̄l, with l =

{RAM,CPU}. They are expressed as dimensionless values for CPUs
while the memory is expressed in GB. A fractional value of CPU is
to be interpreted as fraction of CPU time. For each scenario, the two
values w̄RAM and w̄CPU are calculated as follows. First, a load factor K

is chosen, and then w̄l computed as

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 114

w̄l ⋅ Z ⋅N = K ⋅ cl,tot; l = {CPU,RAM} (5.11)
where cl,tot = ∑M

m=1 cl,m is the total amount of resource of type l

available at the edge. In other words, on average services request K times
the available resources. The default values are reported in Table 5.2.

In all the following plots, only a subset of parameters vary and the
others are kept at their default value.

Table 5.2: Default values of the reference scenario evaluated
Number of SPs N 50

Number of nodes M 8
Number of options J 5

Number of containers Z 8
Load factor K 1.8

As in [78,139], the utility associated to each option is a random vari-
able in these synthetic scenarios (it will instead be a real value directly
taken from the traces in the Alibaba case). Moreover, it is considered
that there is a concave relation between the resources used and the util-
ity, which results in a diminishing return. This is a common assumption
in the literature [57, 58]: the more resources are used by a SP configu-
ration, the larger one should expect the utility to be, but the additional
utility tends to decrease with the resources. Using the notation (5.6)
for w

i,j
CPU, w

i,j
RAM, the utility is the following function of the required re-

sources:

u
i,j

= α
i,j

⋅ (w
i,j
CPU

cCPU,tot
)

1

β
i,j
CPU

+ (1 − α
i,j) ⋅ (w

i,j
RAM

cRAM,tot
)

1

β
i,j
RAM

(5.12)

where α
i,j
, β

i,j
CPU, β

i,j
RAM are sampled, for each option, from random uni-

form distributions between 0 and 1 for αi,j and between 1 and 5 for βi,j
CPU

and β
i,j
RAM. Since these parameters are random variable, (5.12) “loosely”

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 115

1 2 4 8
Number of options per service providers

0

5

10

15

T
im

e
el

ap
se

d
(s

)

MORA Naive Optimal

1 2 4 8 16
Number of nodes

0
100
200
300
400
500
600

T
im

e
el

ap
se

d
(s

)

1 2 4 8 16
Number of containers per option

0
250
500
750

1000
1250
1500

T
im

e
el

ap
se

d
(s

)

0.5 1.0 1.5 1.8 2.0 3.0
K

0
100
200
300
400
500
600

T
im

e
el

ap
se

d
(s

)

Figure 5.4: Time to compute solutions for ILP, MORA and Naive strate-
gies

show monotonicity and concavity, but is not exactly a monotone and
concave function. Infact, (i) in realistic scenarios this relation may not
be as “clean” as assuming a perfectly increasing and concave function;
(ii) in this way the performance of MORA is tested against pessimistic
and ‘unclean” situations. Note that this construction follows the assump-
tions usually adopted in the literature [57, 58, 78, 139]. Real traces will
not need these.

Note that, for all feasible options, u
i,z

∈ [0, 1]. Since a feasible
solution selects at most one option per SP, one can be sure that umax

≔ N

is an upper bound to u
tot. The overall normalized utility is defined as

u = u
tot/umax (5.13). By slight abuse of terminology, in what follows

let’s refer to “utility” as to indicate the overall normalized utility.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 116

1 2 4 8
Number of options per service providers

0
10
20
30
40
50

U
ti

lit
y

(%
)

Optimal MORA Naive

1 2 4 8
Number of options per service providers

0
5

10
15
20
25
30

A
va

ila
b

le
re

so
u

rc
es

(%
)

CPU (Optimal)

RAM (Optimal)

CPU (MORA)

RAM (MORA)

CPU (Naive)

RAM (Naive)

Figure 5.5: Benefits of multiple options.

Time efficiency

Fig. 5.4 shows that the computation of the Optimum from the ILP is too
slow for the allocation frequency envisaged in practical deployments, as
discussed in chapter 3. On the contrary, MORA remains within 0.05s,
as the Naive policy, while also achieving almost optimal utility, as next
sections will show..

Benefits of multiple options

Fig. 5.5 shows that utility increases with the number of options per SP.
Note that the classic assumption corresponds to the first point of the plot,
SP=1. While varying the number of options from 1 to 8 the utility has

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 117

1 2 4 8 16
Number of containers per option

0
10
20
30
40
50

U
ti

lit
y

(%
)

Optimal MORA Naive

1 2 4 8 16
Number of containers per option

0
5

10
15
20
25
30

A
va

ila
b

le
re

so
u

rc
es

(%
)

CPU (Optimal)

RAM (Optimal)

CPU (MORA)

RAM (MORA)

CPU (Naive)

RAM (Naive)

Figure 5.6: Effect of containerization.

a gain almost equal to 60%, which would be lost with classic approaches
and which instead we can grasp by exploiting service elasticity. This is
equivalent to virtually increase the available resources, by just using them
better. Observe also that MORA uses resources as the optimum, while
Naive, despite providing poor utility, uses ~3.3 times more resources than
optimal/MORA).

The more you containerize, the better the utility

Fig. 5.6, reports for MORA a 11% increase of utility when providing a
service through a set of micro-services [152] running on different con-

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 118

0.5 1.0 1.5 1.8 2.0 3.0
K

0
10
20
30
40
50

U
ti

lit
y

(%
)

Optimal MORA Naive

0.5 1.0 1.5 1.8 2.0 3.0
K

0
20
40
60
80

100

A
va

ila
b

le
re

so
u

rc
es

(%
)

CPU (Optimal)

RAM (Optimal)

CPU (MORA)

RAM (MORA)

CPU (Naive)

RAM (Naive)

Figure 5.7: Effects of load.

tainers instead of a single one. Indeed, keeping the same overall resource
requirements, “smaller” containers are easier to place into Edge nodes.

Effects of load (Fig. 5.7)

Increasing the load K (5.11) means increasing the amount of resource
contention among SPs. Recall that K = 0.5 denotes requests with over-
all resource requirements that are half of the available resources. In this
case, the highest utility-option of each SP is likely to be satisfied. For
K ≤ 2, the more the K, the more utility, from 28% to 40%. This is
expected since (i) increasing the K, we are increasing the resource re-
quirements of each option and (ii) the utility of each option is randomly

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 119

generated as an increasing function (5.12) of the resources. However, if
the load factor increases more than 2 the utility starts to decrease both
for the ILP and MORA and equals the naive policy. Further investiga-
tion is required to explain this behavior in our future work. Hypoth-
esis are: (i) there is a concave relation between resources and utilities
(see (5.12)), which reflects in the diminishing returns observed when in-
creasing K, and the the resources utilized; (ii) as resources demanded by
the containers become larger as K increases, it is more difficult to place
them, which is confirmed by the fact that the overall resources used with
K = 2 and K = 3 remain unchanged. From these results, at least in
these scenarios, it is observed that after a certain load threshold, the
network operator should increase the Edge resources in order to main-
tain utility levels. As expected, the bottom figure shows that the NO
needs to consume more resources to satisfy higher loads.

Distribution of resources and utility among SPs

Also if this work mainly considers that utility benefits NO, in reality it
also benefits SPs. Therefore, it is important to check if resource alloca-
tion is fair. Fig. 5.8 reports the result from one run with 50 SPs. On
the left, the points along each line represent the utility of the different
options declared by one SP. The “◆” is the option chosen by MORA.
Note that MORA only selects options for 11 SPs, and thus the others do
not get any resources since their contribution to the overall utility would
not be remarkable. In the right plot, the points are the requirements of
the options of the 11 SPs chosen to be deployed in the Edge. From the
plot, MORA allocates a similar amount of resources to the selected SPs,
which does not necessarily reflect in equality of utilities selected.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 120

0.1 0.2 0.3 0.4 0.5 0.6
Utility

0

10

20

30

40

50
S

er
vi

ce
p

ro
vi

d
er

ID

Available option

Chosen option

0 50 100 150 200 250
CPUs

0

50

100

150

200

250

R
A

M
(G

b
)

Chosen option

Figure 5.8: Distribution of resources and utility between 50 SPs. The x
and y scale of the right plot are the total available RAM and CPUs.

5.4.2 Results on real traces

MORA has been tested against Google [153] and Alibaba [154] cluster
traces. In these simulated 8 nodes are available, as in table 5.2.

Google traces includes a list of jobs, each composed by a set of tasks.
It is considered the requested RAM and CPU associated to each task
when the correspondent at time of job’s submission. These values are
expressed as a fraction of the available resources. To represent a SP i,
the simulator randomly selects J jobs and interprets each as an option
i, j. Each task composing that job is mapped to a container z. (5.12) is
used to compute the utility of each option, since no network information
or other utility parameter is available on these traces.

Alibaba traces include a list of applications, each comprised of several
containers sharing the same application index. An Alibaba application,

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 121

in the simulation, is mapped to an option. As in the Google case, each
SP is randomly selected with a set of random options (Alibaba applica-
tions). In Alibaba traces, RAM requirements are expressed as percentage
of RAM available in one node while CPU requirements are expressed as
percentage of usage of one single core. Each machine in Alibaba clus-
ter has 96 cores. The nodes in the simulations are set to reflect these
requirements.

The trace also reports the bandwidth associated to a container. Dif-
ferently from all other simulations, the bandwidth of each option is calcu-
lated as the sum of the bandwidth of the containers of the corresponding
application. This represents the value of utility for this scenario. The ra-
tionale is to assume that a SP generates a certain traffic toward users. If
the algorithm selects a certain option of a SP, the correspondent band-
width is served locally at the edge and only the remaining part must
be served by the Cloud, an assumption common in the literature [71].
Therefore, the value of the utility indicates the bandwidth saving in this
case.

Effects of number of SPs

Fig. 5.10 and 5.9 confirm what was observed in the synthetic scenario.
Both in the Google and the Alibaba case the utility increase when ex-
ploiting service elasticity increasing the number of options per SP. We
also vary the number of SPs considered, which result in an increase in the
load, which we quantify with K̄CPU and K̄RAM, reported in the figure
and calculated as:

K̄l = W̄ l ⋅N ⋅ Z̄/
M

∑
m=1

cl,m

where W̄ l is the average requirement of resource l through all the contain-
ers and Z̄ is the average number of containers per option, l is {RAM,CPU}.
In the Alibaba figure, as expected, the more SPs join the Edge, the more

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 122

Figure 5.9: Utility while varying the number of SPs and the number of
options provided using Alibaba Traces

the utility (bandwidth saving) is achievable . In the Google figure is re-
ported the normalized utility (5.13) (the total utility can be obtained by
multiplying it by N). Observe that the values of load KCPU and KRAM

are very different. And different are also the Google, Alibaba and syn-
thetic scenarios. However, the benefits of service elasticity consistently
show themselves.

MORA as anytime algorithm

By using Alibaba traces and assuming 8 nodes and 20 SPs, it is being
shown in Fig. 5.11 the utility of the solution computed at every iteration

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 123

Figure 5.10: Relative utility while varying the number of SPs and the
number of options provided using Google Traces

t. By construction, the efficiency E
i of the best jump (bottom plot)

is decreasing with t. This ensures that most of the utility is already
achieved in the first iterations (top plot) and allows us to prematurely
stop the algorithm if the time available to compute the allocation is
scarce, still having a good solution at hands. The upper bound to the
optimal solution (§5.3.2) reported in the figure also confirms that we are
already close to the optimum in the first iterations. By exploiting the
fact the monotonicity of Ei we can also easily calculate, at any iteration
t, the Expected utility, i.e., the utility that can be achieved at most if the
algorithm continues until the end instead of interrupting at t.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 124

0 10 20 30 40
Iteration

0

200

400

U
ti

lit
y

Utility

Expected utility

Upperbound utility

0 10 20 30 40
Iteration

0

20

40

B
es

t
ju

m
p

effi
ci

en
cy

Figure 5.11: Utility and Best jump efficiency by time

5.5 Conclusion

This chapter presented MORA, a strategy for resource allocation for
Edge Computing (EC), where tenants are third party Service Providers
(SPs). The novelty of this work is that it exploits service elasticity:
by allowing SPs to declare the different configurations (aka options) in
which they can run, it is shown that the Network Operator (NO) owning
EC resources can greatly increase utility. Relying on service elasticity is
crucial in resource-constrained environments as EC.

A future work will be devoted to scenarios where jobs arrive in dif-
ferent times, exploiting a time-batched and online implementation of
MORA.

Finally, as anticipated in the introduction of this part, these two
works can be considered a way to open a window on the importance of

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 125

communication optimization for networks of containers, both in cloud,
multi-cloud and edge/cloud scenarios. Future work will be devoted to
the evaluation of the strategy in chapter 4 as the internal, network-
aware, scheduler for a set of clusters, with a focus on the inter-cluster
communication performance by exploiting characteristics of MORA. Last
but not least, future work will explore the possibility to enable edge
roaming capabilities to optimise how requests, e.g., in a locality, are
routed through multiple dislocated set of nodes at the edge up to the
local nodes exposing elastic services, as in this chapter, and the cloud.

Chapter 5. MORA: Multiple Option Resource Allocation on Edge
Computing environments 126

Part III

Towards AIOps: Ananke as
an orchestration framework
and decision support system

Chapter 6

Introduction

« So my aim here is not to teach the method that everyone must follow for
the right conduct of his reason, but only to show in what way I have tried to
conduct mine. »

René Descartes

DevOps philosophy aims to reduce the gap between Developers and
Operations teams, enabling automation, integration, monitoring, and
collaboration by exploiting continuous integration and deployment [27,
29, 155, 156]. DevOps is essential to guarantee release consistency and
time-to-market deadlines. Netflix declared [157] to perform around 90

deployments per day, which go into production in a time window of 16
minutes after a commit in their version control system.

In [158], the authors report that companies, adopting DevOps, per-
form 46 times more frequent code deployment, 440 times faster Change
Lead Time and 170 times faster Mean Time to Recovery.

Currently, different companies and researchers adopt DevOps on dif-
ferent scenarios like Internet of Things [159], Cloud-applications [160],
Streaming services [161], leveraging different architectures [159, 162],
tools [118,163–169] and/or methodologies [156,162,170].

Chapter 6. Introduction 130

There is a need to improve collaboration between resource providers
and Application providers [1, 5].

In 2019 [30], Gartner came out with the “AIOps” keyword, inviting
companies and researchers to combine DevOps methodologies and re-
quirements with BigData, Artificial Intelligence (AI), Machine Learning
(ML), and Deep Learning.

There is no widely accepted definition for AIOps yet. In [31], the
authors define AIOps as techniques to empower software and service
engineers to efficiently build, deploy and maintain services using artifi-
cial intelligence techniques. Challenges for AIOps research goes towards
reducing operational cost [82], improving productivity, customer satis-
faction [3, 4].

However, as stated in [31], AIOps solutions in real-world scenarios
are still challenging: there is a need for covering the gap in innovation
methodologies leveraging highly-skilled engineers and researchers from
different fields.

Traditional monitoring strategies and their produced data are not
usually compatible with deep learning techniques (e.g., supervised learn-
ing based on labeled data is not straightforward with available data from
current standard platforms).

Monitoring and modeling Cloud-Native Applications (CNAs), get-
ting high-quality data become a key to sort together real-world appli-
cations performance metrics and optimization strategies involving Big
Data and AI/ML.

In analogy with control theory, monitoring capability of a CNA can
be considered as the complex systems “observability” property while opti-
mizing and supporting operations lay in the field of “controllability”. We
need to evaluate errors and accuracy through a monitoring system (the

Chapter 6. Introduction 131

observer) to guarantee controllability. Typically, however, this modifies
the system itself, and we need to minimize system-observer interference.

Analogously, distributed systems require (i) a monitor which mini-
mally interferes within the observed CNAs, and (ii) controllers to min-
imize errors and drive orchestrators through decision support, anomaly
detection, etc.

The behavior of these distributed applications are strictly related (i)
to the Quality of Service (QoS) (mainly the performance, availability,
and robustness) of their components, which are often microservices, (ii)
to the way they are deployed, (iii) the hardware resource needed to run
them adequately, and (iv) to the network connecting them.

Each SLO of an SLA may involve different SLIs which specify differ-
ent units and scales depending on the application scenario.

The SLAs define the performance requirements that the applications
have to satisfy while running in terms of delivery times, throughput, fault
tolerance, and high-availability. Beyond the impact on performance of
the applications, violating SLAs will cause a business and economical
dispute between a resource provider and a customer. During the appli-
cation runtime, fluctuations in its behavior may arise from an unexpected
or excessive workload, hardware failures, or networking issues, affecting
- sometimes for a prolonged time - its ability to perform the application
tasks with the appropriate level of quality and thus compromising the
SLA requirements.

When this happens, a set of corrective operations must be carried out
to bring the application back to the desired state: who decides which
operations must be selected, how and when to execute them, charac-
terize the type of control system of the application. Today’s research
focuses on supporting human operator decisions through AI-driven, au-

Chapter 6. Introduction 132

tonomous, control systems, directly integrated with the applications or
their execution environment.

In this part, Ananke is presented as a model and architecture to
both monitor CNAs and analyze those time-series data, modeled as a
time-varying multi-layer network [171,172].

Chapter 7 will focus on the tracing model and the Ananke architec-
ture that will be used from now on to present the strategies for assessing
AIOps strategies that aim to optimize the orchestration of cloud-native
applications.

By means of providing both white-box (fine-grained) and black-box
monitoring, the architecture of Ananke exploits Prometheus instances for
time-based metrics and Open Tracing based SPOUTs on pulling specific
metrics as provided by the application providers and as an input for the
Raphtory graph processing system [2,173].

Chapter 8 deep dive into the black-box monitoring capabilities of
Ananke, providing design and implementation of the tools that enable
interaction between data collected from the cluster and applications
through the Ananke Prometheus instances, and the AIOps analysers
that will perform decision support and control of the cluster. In par-
ticular, it reports the design and implementation of (i) a Prometheus
Backfilling library to bulk import metrics from legacy monitoring sys-
tems, and (ii) a Python library that interact with Prometheus using data
structures and third-party tools typical of ML/DL pipelines (i.e., Pandas
DataFrames, Tensorflow, . . .), and publishes results of the analysis over
generic network channels where actuators of the system can subscribe in
order to smart orchestrate the system.

Finally, chapter 9 presents NAPA, a strategy that applies a rein-
forcement learning (RL) approach taking into account the trends of the
hardware resources utilization, and the risk of not fulfilling the SLAs.

Chapter 6. Introduction 133

In particular, an RL agent is added to the pipeline given by the
FBProphet-based forecasting in chapter 8 and, thus, to choose an action
that minimise the risk of violating the SLA.

When the risk to violate SLAs becomes high for a given applica-
tion, the proposed approach can efficiently decide whether to scale-out
the micro-services deploying new replicas or to execute an adaptive al-
gorithm that supplies an autonomic dynamic routing leading to better
exploitation of the Flannel-based software-defined network consisting of
both the micro-services, and the inter-workers network.

Chapter 6. Introduction 134

Chapter 7

Towards AIOps: Ananke

«The best and safest method of philosophizing seems to be, first to enquire
diligently into the properties of things, and to establish these properties by
experiment, and then to proceed more slowly to hypothesis for the explanation
of them.»

Isaac Newton

As already discussed in previous chapters, micro-service architecture
enables smarter management of applications life-cycle. However, the
increasing of the number of components also increases complexity, espe-
cially on operations like migration and horizontal scaling. Operations
in micro-services based applications can get complex and should involve
parameters and properties like connection throughput, resources usage,
robustness or consistency and reliability. To perform this kind of op-
erations and optimization strategies in micro-services applications, this
chapter exposes the work done on defining Ananke, a framework con-
sisting of a time-varying multi-layer graph-based model and architecture
to profile micro-services and their interactions in a platform-as-a-service
environment. The aim is to provide support and facilities for optimiza-
tion strategies that a Cloud Provider can exploit to guarantee quality

Chapter 7. Towards AIOps: Ananke 136

Monitoring	Data	on	Application	Providers	Realm

Cluster	Monitoring	Data

Operate
OpenShift
Masters Feedback	

Loop

Ananke

D
ep
lo
y

OpenShift
Workers

Micro-services `

Application	Providers

Figure 7.1: Reference scenario

of service and service-level agreements. Next chapters will make use of
this model to present strategies for the auto-scaling of micro-services
and the reconfiguration of underlying network in an adaptive algorithm
exploiting reinforcement learning.

Let’s consider a Resource Provider (RP) owning a cluster of hetero-
geneous virtual machines (VMs) logically partitioned into Mw workers
and a different set of masters, responsible for the orchestration. Finally,
a set of VMs is responsible for monitoring. This cluster, depicted in
Fig. 7.1, is located within a single Data Center and is based on Red Hat
OpenShift [111]. The RP’s resources are shared among its customers,
the application providers (AP), which ask to deploy their workloads as
usual through the RP tools.

Despite the RP’s ability to configure its facilities and monitoring clus-
ter metrics considering APs’ workloads as black-boxes, it is challenging
to deep dive into those workloads and monitor service-level indicators in
order to guarantee SLAs.

Chapter 7. Towards AIOps: Ananke 137

Ananke is being proposed as a collector of both Cluster metrics and
internal monitoring of single applications and micro-services.

Like similar systems, e.g., Amazon CloudWatch [174], Ananke re-
quires that the APs configure their code to communicate with the moni-
tor; however, in the case of Ananke, the collected metrics are for the use
of the RP itself, and data model has to be consistent across applications.

Ananke also has to consider the security issues derived from knowl-
edge sharing between the RP and the APs, and it has to avoid any
possible leak of information between different administrative domains.

In the following, objects abstractions typical of Kubernetes (K8S)
and OpenShift orchestration dialect are being used to be synthetic (i.e.,
Pods, Services, . . .). Although OpenShift is the orchestrator to which
Ananke refers, this choice does not represent a limit in the generality of
the proposed approach.

7.1 Data Model

7.1.1 Cluster Model

We start by defining the cluster in which the applications run. In par-
ticular, worker nodes can be considered a fully connected graph. In the
following, U = R ∪ A∗ represents the universal set of both real numbers
and strings of alphabet A (e.g., ASCII). Moreover, cartesian products
have to be considered flattened (page 80 of [175]).

Definition 8. Given an RP Cluster C with Mw workers, we define the multi-
label fully-connected network associated with C, at a specific time τ ∈ N, as:

GC,τ (Mw,M
2
w, P

w
τ (w, kw), P l

τ(v, w, kl)) (7.1)

where:

• Mw is the set of vertices;

Chapter 7. Towards AIOps: Ananke 138

Web	UI
Mobile
APP
...

API
GW

Customers
��

Orders
��

Products
��

Banking
��

Aggregator
��

DB

DB

DB

DB

DB

Data
Compression
CronJob

Msg
broker

Figure 7.2: Example of CNA

• P
w
τ ∶Mw × Kw → U is a function that maps a key in the set Kw, for

a given vertex w ∈ Mw, to the value of the property (e.g., CPU/Mem
usage);

• P
l
τ ∶M

2
w ×Kl → U is a function that maps a key from the set Kl, for the

given edge between vertices v ≠ w ∈ Mw, to the value of the property
(e.g., network bandwidth).

In table 7.1, examples of keys for the sets Kw and Kl.

7.1.2 Deep dive into micro-services monitoring

As shown in fig. 7.2, a micro-services-based CNA can be considered as
a set of de-coupled units that interact with each other through either
synchronous protocols such as HTTP/REST and RPC or asynchronous

Chapter 7. Towards AIOps: Ananke 139

Table 7.1: Reconstruction keys and example of Vertex/Edge property
keys

Graph reconstruction keys Description

X-Request-ID → t
Unique ID for a given request

type instance
X-Root-ID → R ∈ VA,r Root of a path

X-Caller → (v, w) ∈ EA,r

It is the micro-services that
sent the request to the

current service

X-Service-Name → (v,w) ∈ EA,r

The name of the
micro-services in which the

request arrives

X-Req-Type → r ∈ RA

A unique identificator of a
request type (e.g. method +

endpoint on a HTTP
micro-services.)

micro-services vertex
properties (Kv)

micro-services edge
properties (Ke)

Start/End time Bytes tx
Response status (e.g. 200 OK,

Query Error) Bytes rx

Type of action (e.g. HTTP GET,
SQL SELECT...) Bandwidth tx

Executor (e.g. IP/MAC) Bandwidth rx
Worker vertex properties

(Kw)
Worker edge properties

(Kl)
CPU Usage Bytes tx
RAM Usage Bytes rx
Load factor Bandwidth tx
Hostname Bandwidth rx

protocols via message brokers. Typically, each service is associated with
its database. In a CNA, the API Gateway is the actual entry point for

Chapter 7. Towards AIOps: Ananke 140

productsLst

API	GW Orders Products Banking	 CustomersEnd-user

														GET	/authorized

POST	/orders
forward

Return	true

getProducts()

POST	/transaction

UpdateOrdersHistory()

Transaction	succeed

Order	
confirmedOrder	

confirmed

Figure 7.3: Example sequence diagram of an action performed in a CNA

external clients; it is usually the component that begins the chain of calls
to be performed due to a client request. We call this chain a path.

However, other specific micro-services of a CNA deployment can trig-
ger actions and initiate a path within the application architecture.

In the example CNA in Fig. 7.2, a micro-services, “CronJob for
DataCompression”, can initiate a path involving different interactions
with other micro-services. Another micro-services in the example is the
“Aggregator micro-services” , which points out how interactions within a
CNA can be arbitrarily complex and give deeper chains. Fig. 7.2 gives
a deployment view; it is static in the sense that no quantitative infor-
mation can precisely be provided for any kind of interaction between
micro-services. For example, a POST request to an endpoint in a REST
API usually involves one or more updates into databases, while a GET
can involve one or more reads ; these two request types can be performed
by the same micro-services, but they may have different performances
(e.g., response/processing times) and different occurrence during the ap-
plication life-cycle. An example of an interaction between micro-services
is reported in the sequence diagram of Fig. 7.3. Here, the kind of infor-

Chapter 7. Towards AIOps: Ananke 141

mation is deeply related to the single request type (i.e., HTTP POST
/orders to the API Gateway).

While Fig. 7.2 reports the deployment view, consisting of all the
micro-services that interact within the CNA during the whole life-cycle
of the application, the sequence diagram in Fig. 7.3 exposes just a sub-
set of the micro-services, the ones which interact during a given activity.
However, it also reports the evolution in time of the performed action,
the chain, but it is still static: no run-time information is provided.

Ananke aims to join information from both those two views in a
dynamic one, which involves information by the run-time environment.

Moreover, replicas have to be considered: considering micro-services
like K8S services is useful to redact them from the graph model; each
micro-services of the same service (a replica Pod) is an executor uniquely
identified in the virtual network, but the most important information
can be aggregated into a unique service abstraction. Wherever needed,
we can still retrieve replica-specific information through properties like
“executor IP/MAC”.

To proceed, t ∈ N is the unique identifier of a request instance (e.g., a
specific call to the request type “POST /orders” to the API Gateway). In
particular, t is paired to the field “X-Request-Id” of the data retrieved by
the applications’ monitors, as reported in table 7.1. t is also considered
unique among all the applications and all their request types.

In the upper part of Fig. 7.4, an example of the graph that defines
paths. Looking at the left path (example of a path for application 1),
vertices v∗ represent the micro-services involved in the specific action.
In this case, v6 is annotated as the root vertex, the one who receives
the trigger to initiate the action. Then, the edges represent the inter-
actions between micro-services, and the “documents” P

∗ are the lists of
properties related to the edge or to the vertex (we report just two of

Chapter 7. Towards AIOps: Ananke 142

these lists, for clearness). Note that the graphical representation of path
reports just a “snapshot” of the specific instance (t1 for application 1, t2
for application 2).

Definition 9. Let us consider an application A consisting of a set of micro-
services MA. Given a request type r and one of its instances, identified by t,
we define the path pA,r,t as the multi-label directed rooted graph

pA,r,t(VA,r, EA,r, RA,r, P
v
A,r,t(v, kv), P e

A,r,t(v, w, ke)) (7.2)

where:

• VA,r ⊆ MA is the set of vertices representing the micro-services involved
in r;

• EA,r is the set of edges (tuples in VA,r) which represent the interaction
between micro-services for r; they are directed from the caller micro-
services to the receiver one;

• RA,r ∈ VA,r is the root of the graph: the micro-services which triggers
interactions;

• P
v
A,r,t∶VA,r ×Kv → U is a function that maps a key in the set Kv, for a

given vertex v ∈ VA,r, to the value of the property (e.g. response time);

• P
e
A,r,t∶ EA,r × Ke → U is a function that maps a key in the set Ke, for

a given edge (v, w) ∈ EA,r, v ≠ w, the value of the property (e.g. rx/tx
bytes);

The first section of Table 7.1 reports the mapping between data re-
trieved in the monitor time-series and the entities of the above defined
graph, while the second part reports examples of the sets Kv and Ke.

Chapter 7. Towards AIOps: Ananke 143

=� ,��1

�6

�1

�5

�4

�3

�2

=� ,��2

�7

�8

�11

�10

�1

�5

�4

�3

�2

�6 �7 �11�10

�8 �9

�1

�6

�2

�5

�3

�7

�4

�8

C
lu
st
er
	la
ye
r	(
-1
)	

	la
ye
r	(
0)

�
�

pa
th
	la
ye
r	(
n)

Application	1 Application	2

�
�

�
�

�
�

�
� �

�

�
∗

Properties:	as	an	example,	
just	a	few	are	reported

Figure 7.4: Example of graph Gτ in eq. (7.3) for a cluster of 8 workers
and 2 applications. Only 1 instance of 1 path per application is reported:
path n of A1 at instance t1 ∈ Tτ and path n of A2 at instance t2 ∈ Tτ .

Chapter 7. Towards AIOps: Ananke 144

7.1.3 Application & Performance Model

As defined in section 7.1.2, each action that can be performed either
from an external source (e.g., end-user) or from an internal trigger (e.g.,
CronJob) creates a path that can be formally described as the graph in
def. 9.

Therefore, we can consider an application as a “set” of paths, a mul-
tiplex network [172].

In particular, let’s call:

• RA, the set of request types for application A;

• VA = ⋃
r∈RA∪{0}

VA,r × {r}, the set of vertices associated with their request

type: a tuple (v, r), where v is a micro-services, r is a request type that
identifies a path; the (v, 0) tuple is used to represent an auxiliary layer,
an edge-less graph with all the micro-services.

• P
v
A,t∶RA ×VA ×Kv → U is a function that returns the value of property

kv ∈ Kv associated with request type r ∈ RA for vertex v ∈ VA,r of path
pA,r,t. Which is P

v
A,t(r, v, kv) = P

v
A,r,t(v, kv);

• P
e
A,t∶RA × EA ×Ke → U is a function that returns the value of property

ke ∈ Ke associated with the request type r ∈ RA for edge (v, w) ∈ EA,r

of path pA,r,t. Which is P
e
A,t(r, v, w, ke) = P

e
A,r,t(v, w, ke).

By exploiting the defined graphs and entities, information on a single
path pA,r,t can be obtained. In particular, a super-path is referred as all
the instances of a request type, i.e., pA,r,∗; considering a super-path is
useful to get information about the performance of a given request type.
Therefore, to get information about the whole application, it is needed
to aggregate information from all the super-paths of the application, i.e.,
pA,∗,∗. Finally, information from the application, i.e., pA,∗,∗, have to
be paired with information from the cluster GC,τ , by mapping micro-
services graph to the cluster graph, to know in which worker a micro-

Chapter 7. Towards AIOps: Ananke 145

services is deployed, and each instance t of a path to the actual time τ .
Formalization of this relationship is given in the following.

7.1.4 Putting it all together

Let’s define A the set of applications hosted by an RP. By using def. 8
and 9, a multi-layer network can be built. Different graphs, as already
shown, are involved: the application graphs (pA,∗,∗∀A), the cluster
graph (GC,τ∀τ), and their associated properties. In the multi-layer net-
work, one layer (identified with −1 in the next) is associated with the
cluster and an auxiliary layer (identified by 0) is used to represent the
the edge-less graph of all the vertices, i.e., micro-services, of any appli-
cation A ∈ A. The abstraction provided by layer 0 is useful considering
inter-layer edges between a micro-services v and all the workers w in
which orchestrator deploys replicas of v.

Let us assume that all the micro-services are neither scaled nor mi-
grated in a ϵ-neighborhood of τ .

We can define those inter-layer edges at time τ as a set Em,τ of
4-tuples. In particular, given a replica of a micro-services v hosted on
worker w, the inter-layer edge is represented as a 4-tuple (v, w, 0,−1).

As an example, look again at fig. 7.4: the whole figure represents
the multi-layer network at time τ . The bottom layer (-1) is the layer
of fully-connected cluster network from def. 8; the dashed edges from
w∗ vertices to the v∗ vertices in the micro-services layer are the inter-
layer edges just defined above. Finally, the upper layer is just one of
the paths layers. That figure still represents the snapshot of the time-
varying multi-layer network at time τ but should include all the paths
that “lived” (executed) in the ϵ-neighborhood of τ .

Chapter 7. Towards AIOps: Ananke 146

In fact, t is a unique identifier to differentiate single instances of paths
in Def. 9, while in Def. 8, τ is the actual time to get the time-series of
cluster performances.

Now, as already introduced, an instance t of a request type r, the
path pA,r,t, executes at a specific time, and t must be paired to the actual
time τ to get a complete view of applications’ performances.

To associate t and τ , the properties StartTime and EndTime of paths
can be exploited, deriving the set of paths that executed in the given
ϵ-neighborhood of τ . The following definition resumes all the considera-
tions of this section:

Definition 10. Let us consider a cluster C and a set of applications A. Let
τ ∈ N be a specific time. Let T ∗ be the set of all t. Let Tτ be:

Tτ = {t ∈ T
∗
∶ ∣P v

A,t(r, v, startTime) − τ ∣ < ϵ ∨

∣P v
A,t(r, v, endTime) − τ ∣ < ϵ, v = RA,r ∀A ∈ A,∀r ∈ RA}

Tτ is the set of all requests instances that were running in the ϵ-neighborhood
of τ . The graph GC,τ in (7.1) represents the cluster. Each application A ∈ A
is represented by all the paths associated with its request types ∀t ∈ T .

We define the multi-label rooted multi-layer network associated with the
whole system (C,A) at time τ ∈ N as:

Gτ(L,V, Eτ , Pτ(v, w, l,m, k, t), R(A, r)) (7.3)

where:

• L = {−1, 0} ∪ ⋃
A∈A

RA is the set of layers, −1 is the cluster layer, 0 is

the layer of the applications micro-services;

• V is the set of vertices of both cluster and applications:

V = Mw × {−1} ∪ ⋃
A∈A

VA (7.4)

Chapter 7. Towards AIOps: Ananke 147

• Eτ is the set of edges:

M2
w × {−1}2 ∪ Em,τ ∪ ⋃

A∈A
r∈RA

EA,r × {r}2
(7.5)

• Pτ ∶ Eτ×(⋃
i∈{v,e,w,l}

Ki)×(T ∪{0}) → U is a function which maps the value

of property key k for edge (v, w, l,m) ∈ Eτ between vertices v ≠ w ∈ V
with v in layer l and w in layer m. If v = w and l = m, Pτ(⋅) returns
the value of property k for vertex v. If t = 0, it returns a property of the
−1-th layer (the worker data at actual time τ).

Pτ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
v
A,t(r, v, k) k ∈ Kv,

v = w ∈ V \Mw,

r ∶= l = m ∈ L \ {−1, 0}
A ∶= a ∈ A∣r ∈ RA

P
e
A,t(r, v, w, k) k ∈ Ke, v ≠ w,

r ∶= l = m ∈ L \ {−1, 0}
A ∶= a ∈ A∣r ∈ RA

P
w
τ (w, k) k ∈ Kw

l = m = −1, t = 0

v = w ∈ Mw

P
l
τ(v, w, k) k ∈ Kl

l = m = −1, t = 0

v ≠ w ∈ Mw

P
m
τ (v, w, l,m, k) l = 0,m = −1, k ∈ Kw

(7.6)

with P
m
τ representing the value of a property key in Kw ∪Kl, for

the given micro-services replica v hosted on worker w;

• R∶A× (⋃
A∈A

RA) → Vτ returns the root vertex RA,r of path pA,r,t.

Chapter 7. Towards AIOps: Ananke 148

With no lack of generality, applications considered till now do not
interact with external services.

7.2 Architecture and workflow

Scrape

Apache Kafka Cluster

Cloud-Native
 Application

Micro-
Services

API
GW

OpenTracing

Msg
Brokers

Consistency
Management

Configurator

Scrape cluster
metrics

SPOUT
Cluster

Subscriber

DBMSs
Users Deploy

OpenShift
Sub-Systems

Decision Support
Feedback Loop

Streaming
Analysers

Static
Analysers

Raphtory
Cluster

Black-box
analyser

Prometheus

Pods/Cluster
monitoring

Figure 7.5: Ananke architecture with focus on white-box monitoring

The data model defined in the previous section allow to build a fine-
grained view of applications’ performance, their internal interactions,
and the relationship with the workers on which orchestrator deploys
applications’ micro-services. By monitoring, collecting and processing
these data in a time-varying multi-layer network, Ananke can identify
anomalies, automatically fix run-time issues, or optimize resource allo-
cation, QoS. In Fig. 7.5 the software architecture to exploit this data
model and consequent analyses and actuators. Ananke components are

Chapter 7. Towards AIOps: Ananke 149

also based in the micro-services pattern, which can be described in three
main classes: (i) monitor & collect, (ii) storage & processing middleware,
(iii) analysers and actuators. As in Fig. 7.5, the components associated
with monitoring and collection of time-series data lay in the border be-
tween running applications (with their associated namespaces/projects
in K8S/OpenShift abstractions) of APs and the RP monitoring layer.

Ananke relies on OpenTracing APIs [176] and a graph processor for
the white-boxing monitoring, while Prometheus is responsible of the
time-based black-box monitoring of the cluster and the hosted appli-
cations.

A library is able to provide facilities to configure code quickly through
decorators.

The kind of metrics exchanged by the micro-services is the ones pro-
vided, for example, in Table 7.1.

Those metrics are scraped by a cluster of SPOUTs. The SPOUT is
a Python micro-services: it is a stateless component that relies on the
“Configurator” for consistency, partitioning, and reliability configuration.

Any SPOUT is in charge of a sub-set of the system (C,A). SPOUTs,
iteratively, (i) get last data from the monitors, (ii) adapt them to the
entities defined in the previous section, and (iii) publish these entities
through Kafka to the streaming graph processing system.

Raphtory [2, 173] is a distributed temporal graph management sys-
tem. It is able to maintain the full graph history in memory, providing:
eventual consistency, snapshots-based persistence and fault-tolerance. It
is configured as a subscriber of the Kafka Queue, and enables analysers to
perform both analyses on the most up-to-date version of the graph, and
temporal analysis throughout its full history. Analysers, finally, imple-
ment the Orchestrator APIs: their analyses, therefore, close the feedback

Chapter 7. Towards AIOps: Ananke 150

loop: they enable controlling the orchestration. Ananke is currently a
work-in-progress publicly available as a Free Software on GitHub [13].

Chapter 7. Towards AIOps: Ananke 151

7.3 Conclusion

This chapter presented Ananke, a framework for monitoring and op-
erating on micro-services-based applications. The proposed approach
is based on a time-varying multi-layer modeling of the micro-services,
applications, and resource capabilities. Even if Ananke focuses on a sce-
nario based on cloud-native and micro-services-based applications, this
framework can also be adapted to a vast set of different environments,
as for instance, function-as-a-service and metal-as-a-service.

The next chapters will make use of the data model here proposed to
build case studies that explore the field of smart orchestration for cloud-
native applications by the use of AI/ML tools and strategies in compli-
ance with the paradigm defined by Gartner under the term AIOps.

Chapter 7. Towards AIOps: Ananke 152

Chapter 8

Predicting peek events
through Facebook Prophet
and Scale-out CNAs

«It is not enough to possess a good mind; the most important thing is to
apply it correctly.»

René Descartes

In previous chapter, a white-box monitoring approach is mainly con-
sidered, in which the APs have to configure their code leveraging a library
that is able to communicate with the Ananke’s monitoring tools.

This chapter extends the Ananke framework, providing a black-box
monitoring and decision supporting framework based on Prometheus
and, as a case study an auto-scaling strategy based on the prediction
of traffic peeks for a web application exploiting the Facebook Prophet
model.

Based on the Ananke monitoring model, it investigates design issues
and strategies required to enable integration between clusters and appli-

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 154

cations managed by Ananke and their metrics stored in the Prometheus
Monitoring system. Algorithms for anomaly detection and forecasting
of time series have been introduced in the proposed AIOps Prometheus
Framework for the system analysis and orchestration of applications.

In particular, as in 7.1, for a given RP Cluster C with Mw workers,
and an application A, the multi-label fully-connected network associated
with C and the multi-label fully connected network associated with A,
at a specific time τ ∈ N, are:

GC,τ(Mw,M
2
w, P

w
τ (w, kw), P l

τ(v, w, kl)) (8.1)

GA,τ (VA,V
2
A, P

A
τ (w, kw), P l

τ(v, w, kl)) (8.2)

where:

• Mw is the set of workers VMs;

• VA is the set of pods;

• P
w
τ ∶Mw × Kw → U is a function that maps a key in the set Kw,

for a given vertex w ∈ Mw, to the value of the property (e.g.,
CPU/Mem usage);

• P
l
τ ∶M

2
w × Kl → U is a function that maps a key from the set Kl,

for the given edge between vertices v ≠ w ∈ Mw, to the value of
the property (e.g., network bandwidth).

• P
A
τ ∶VA×KA → U is a function that maps a key in the set KA, for a

given vertex V ∈ VA, to the value of the property (e.g., CPU/Mem
usage for the specific pod);

• P
l
τ ∶V

2
A×Kl → U is a function that maps a key from the set Kl, for

the given edge between vertices v ≠ w ∈ VA, to the value of the
property (e.g., network usage of a pod).

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 155

Different useful black-box monitoring information can be obtained
either exploiting features of the underlying layers of the OS stack or by
facilities on the main components of the applications (e.g., api gateways
logs).

As in fig. 7.5, the components associated with monitoring and collec-
tion of time-series data lay in the edge between running applications (and
their associated namespaces/projects in K8S/OpenShift abstractions) of
APs and the RP monitoring layer.

This chapter will focus on the approach for data collection and anal-
ysis of the black-box time-series stored in the Prometheus instances of
Ananke.

Finally, it will provide a case study that aims to predict peek events
in a cluster to decide, before the actual peeks occur, either to scale out
the related pods or not.

8.1 Data Back-filling on Prometheus

When migrating an application to a cluster managed by Ananke, the
application providers and the resource provider may need to ingest his-
torical data previously collected by the previous monitoring system in
order to allow, as an example, faster training of the analysers. Till now,
Prometheus does not allow an efficient way to back-fill metrics from other
systems: users’ and developers’ issues asking for this feature are open
on the public Prometheus repository since 2015 [177]. Only recently,
the Prometheus team developers are beginning to implement ways to
bulk import historical data: they provide a command line tool to import
historical data that are already available in OpenMetrics format [178].
Historical data, however, may come from a different monitoring system,
and converting them into OpenMetrics is not so trivial.

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 156

Legacy Metrics
Data Model

Channel
Consumer

BST

4. Insert 5. In-memory
TSDB storage
(in-order read)

Memory
Appender

6. Persisting
on disk

TSDB
Storage

Legacy System
Connector

2. Deserialize
as raw structs

3. Send to
channel

Channel

U
se

r c
od

e

Historical
dataset

1. Read Data

Prometheus
instance

G
o

Pr
om

et
he

us
 b

ac
k

fil
le

r l
ib

ra
ry

Migration

Figure 8.1: Prometheus Back-filler

The solution proposed is a Go library to adapt data from another sys-
tem and directly store them in TSDB. It is available on GitHub as a Free
Software [11]. It allows to define the suitable connectors to a legacy mon-
itoring system (e.g., based on MySql, Parquet/Csv files, HTTP APIs...)
and the models representing the metrics to convert into TSDB format.
Then, by using data structures of the Prometheus SDK and Go reflec-
tion, it will adapt the metrics from the old system and save them into a
folder as TSDB blocks that Prometheus can easily read.

The Go Prometheus Backfiller library is based on a queue-based
producer-consumer algorithm, with the consumer that (i) receives chun-
ked data from the old system adapter streamed in a Go channel and,
(ii) inserts them in a Binary Search Tree (BST); To not slow down in-
sertion in the sorted tree (Avg: O[log(n)], Worst case: O(n)), after
reaching a threshold of maximum elements per tree, a separate thread,

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 157

traverses the BST in-order and store the data in a TSDB appender. Af-
ter reaching a maxPerAppender threshold depending on the available
memory, the data is persisted on disk.

The way adapters are implemented is based on reflection, so that
the developer just have to define (i) a data model as a struct with tags
reporting the information for each metric to store (labels, metric name
and metric type), (ii) the connector to the old monitoring system (e.g., a
MySql Database), and (iii) a Go Routine that produces data (e.g., rows
from a table) to be sent as slice of instances of the original data model
in the Go channel (e.g., list of rows).

Finally, based on the characteristic of the available historical data
and the available resources (CPU and Memory), the user can define the
duration of a TSDB Block, the maximum number of chunks to store
in the tree, the maximum number of metrics to keep in memory before
actually storing them in the disk. This gives the user a very simple way
to tune the back-filler and to perform the migration of data fastly.

As shown in Table 8.1, the Go Prometheus Backfiller demonstrated
an improvement of 838% in average rapidity when performing 10 Giga-
bytes back-filling of Gauges stored in a MySql database, and made a
better use of the available memory (16 GB vs 50 GB) on a LXC con-
tainer hosted in a 2x Intel Xeon E5-2630 v4 @ 2.20 GHz server with 64
GB reserved memory and 20 reserved cores:

Another test was made by importing the Alibaba cluster trace from
43GB of pre-processed parquet files on a Core i7-5860K with lower re-
sources than the first test: the results are shown in table 8.2. In this case,
the producer Go routine is implemented to send in the channel at most
2000 chunks groups of 5 metrics with the same timestamp per-iteration.
The code for this test is available as an example in the go-prometheus-
backfiller repository.

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 158

Table 8.1: Comparing promtool and go-prometheus-backfiller on a 10GB
MySql database
Data-set size 10 GB
Block duration 15 days
Max items per appender 100M metrics
Max chunks per BST 1k
Tables per second (go-prometheus-backfiller) 5.87 Tables/s
Tables per second (promtool + OpenMetrics conversion) 0.7 Tables/s
Memory (go-prometheus-backfiller) 50 GB
Memory (promtool) 16 GB

Table 8.2: Test parameters of back-filler for the Alibaba Cluster Trace
v2018

Data-set size 43GB
Block duration 8 days
Max items per appender 100M metrics
Max chunks per BST 1k
Tables per second (go-prometheus-backfiller) 157.02 Chunks/s
Memory (promtool) 8GB

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 159

Prometheus
instance

Pr
om

et
he

us
 A

IO
ps

 F
ra

m
ew

or
k

2. Adapts

PromQL
connector

3. Creates
Aggregator

FactoryTSDB
Storage

1. Queries

Pandas
DataFrames

ARIMAHelper

TensorFlowHelper

FBProphetHelper

External Channel
(e.g., Kafka)

BasePublisher

4. Analyse

5. Publish
to actuators

Figure 8.2: Architecture of the Prometheus AIOps framework

8.2 Enabling data-analysis on Ananke and Prometheus

Once the metrics are migrated from the old monitoring system, Prometheus
will continue polling micro-services to collect new metrics.

Prometheus is already able to execute analysis on the available met-
rics and users can set recording rules and alerts to perform basic anomaly
detection for the monitored applications.

Prometheus time series and its data analysis tools are useful in order
to either visualise or operate on data by applying basic analytic oper-
ations (i.e., integration, linear regression, holt winters analysis): these
operations are helpful for a user that wants to implement his AI-based
algorithm for forecasting or anomaly detection purposes.

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 160

Most of the tools for data analysis and time-series forecasting are
implemented in Python with the aid of libraries like Pandas, TensorFlow,
StatTools, SciKit Learn, etc. . .

Usually, operators and researchers need to implement connectors to
their data providers in order to build the in-memory DataFrames and
models and run their algorithms. In production-grade environments,
algorithms would be implemented as micro-services jobs that instruct
the orchestrators to perform decisions support.

To this purpose, a second Python library is proposed: Prometheus
AIOps Framework. It aims to support communication between Prometheus
and the tools to perform analysis in Ananke.

The Prometheus AIOps Framework software architecture is depicted
in fig. 8.2 and consist of the following modules:

• the connector module is responsible for the communication with
the Prometheus APIs by providing a proxy for PromQL queries
extending the official Prometheus API Client library: raw range
queries, labels/metrics discovery, resampled and/or (on-prometheus)
pre-processed time-series querying;

• the aggregator module is an adapter that convert any of the query
results in ready-to-go Pandas DataFrames;

• the time-series helpers module implements basic operations on the
DataFrames got from the aggregator to prepare data for usual
strategies as ARIMA-flavoured models, Facebook Prophet [33] and
RNNs/LSTM;

• the publisher module provides base facilities as classes to be ex-
tended: its purpose is allowing the publication of the analysis re-
sults over the network (e.g., Kafka messages in the case of Ananke)

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 161

Table 8.3: 1 minutes sampled Wordpress dataset description
Metric Mean Std Min Max
http_requests_20x 0.70 4.46 0 321
http_requests_30x 0.18 1.99 0 160
http_requests_40x 0.05 0.79 0 110
http_requests_50x 0.01 0.08 0 11
unique_conns 0.30 0.82 0 38
http_requests_GET 0.73 4.83 0 293
http_requests_POST 0.18 1.62 0 321

so that the orchestrator can decide the kind of operation to perform
in the cluster;

• for debug and development purposes, the debug module enable
integration with the IntelliJ remote debugging and scientific mode
tools and with Jupyter.

The library also provides a Base Docker image ready to be used as
a job for continuous feedback pipelines. With these facilities, a user
can implement an Ananke analyser micro-service job that interact with
Prometheus running the algorithms that finally push their results as
commands for the PaaS cluster orchestrator.

8.3 Case study

Based on the architecture depicted in the previous section, this section
shows, as a case study, the analysis of the traffic for a Nginx web server
configured to be the edge proxy of a WordPress Blog. Forecast of the
next day traffic (i.e., unique connections) is performed considering a
high increase of it as an anomaly that has to trigger the scale-out of the
systems at a specific time before the actual traffic peek occur.

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 162

15 16 17 18 19 20 21 22
Day (Oct. 2020)

0

10

20

30

40

50

U
ni

qu
e

co
nn

ec
tio

ns

Prediction Train set Test set Scale out (2) OK (2)

10

12

14

16

18

20

Fo
rw

ar
d

di
ff

er
en

ce
 (

2)

Figure 8.3: Prediction of the next day traffic peek as scale-out trigger

Table 8.4: 1 hour (re)sampled Wordpress dataset description
Metric Mean Std Min Max
http_requests_20x 42.18 88.05 0 2402
http_requests_30x 10.76 26.37 0 493
http_requests_40x 2.70 10.06 0 235
http_requests_50x 0.29 1.65 0 39
unique_conns 17.84 15.95 0 222
http_requests_GET 43.89 74.68 0 859
http_requests_POST 10.55 50.24 0 2373

Available data is stored in a generic nginx access log from October
2020 to March 2021.

Each row of the raw log represents a single request: data are imported
the metrics into Prometheus as 1-minutes gauges samples providing map,
filter and reduce functions to the Back-filling library presented in sec. 8.1.
All data sample reports the cumulative sum describing the number of
GET/POST requests and 20x/30x/40x/50x responses in the given time-
window; moreover, for each minute, the unique connections are obtained

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 163

Table 8.5: RMSEs comparison between ARIMA, SARIMA, VARMA
Model RMSE % vs Prophet
ARIMA 11.25 129%
SARIMA 18.72 215%
VARMA 12.70 146%
Prophet 8.69 -

exploiting a filter based on the IPs from the “X-Forwarded-For ” HTTP
header available in the log to calculate the counter of unique connections.

The Prometheus AIOps Framework of sec. 8.2 is used to query Prometheus
and to get chunks of the metrics on sequential time windows resampled
with a window size of 30 minutes, 1 hour, and 2 hours. Tables 8.3, 8.4
report the statistical description of the metrics with 1 minute and 1
hour sample rate. We compare the performance of ARIMA, SARIMA,
VARMA [179] and Facebook Prophet [33] models to predict peek events
in the unique connections to the end of informing the orchestrator and
require a scale-out of the related micro-services in time before a peek
actually occurs.

Orders for the ARIMA, SARIMA and VARMA models are chosen
for each sequential training set automatically by using the auto_arima
facility from the Python library pmdarima.

Seasonality of SARIMA was set to 24 hours as the WordPress is
mainly visited by users on the same time-zone. VARMA was used to test
multi-variate forecasting with unique connections and http_requests_GET
as features. Finally, Prophet is used with yearly seasonality disabled, and
keeping just the weekly and daily seasonality enabled. In fact, a weekly
seasonality seems reasonable for the kind of monitored application (e.g.,
readers of a blog could increase in non-working days).

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 164

We evaluate the models with their root mean squared error by using
168 samples for training (1 week hourly data) and 24 samples for vali-
dation (1 day ahead hourly prediction): as shown in table 8.5, RMSE
for Prophet was the smallest: ARIMA and SARIMA performed, respec-
tively, more than 1X and 2X RMSE with respect to the Prophet one.

Then, the output of Prophet forecast is employed to predict peek
events and, when they arise, require the scale out of the micro-service.

In particular, these 24 samples are the input of a binary classifier
that looks at the second finite forward discrete difference of the forecast
and compare it with a threshold ϵ. To not scale twice or more times in
the same time window also when scaling is not needed, we only scale if
the second forward difference is greater than a threshold ϵ, and the first
forward difference is less than ϵ.

Formally, given the forecast f(t):

Tscale_out = {t∣∆2[f](t) ≥ ϵ ∧∆1[f](t) < ϵ} (8.3)

Fig. 8.3 shows the results of the prediction of a future day for the first
week of the dataset: test data is represented by the green line while the
orange line was used as training for the model. The red carets represent
the events as classified by eq. 8.3.

The knowledge given by the set Tscale_out allows an agent to scale
out the system in advance: the orchestrator can be set, as an example,
to scale the micro-service (i.e., its ReplicaSet) 1 hour (or 30 minutes)
before the peek is expected; moreover, the agent can run cross validation
of the trend a few time slots before the scaling job is triggered so that
false positives events could be detected.

When the traffic, finally, decreases, scale-in of the system can be
triggered by already known horizontal auto-scalers looking at the cur-

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 165

rent resource usage of the system, i.e., horizontal pod auto-scaler in
Kubernetes.

8.4 Conclusion

This chapter presented the design and implementation of the facilities
to migrate old monitoring systems data of a cloud-native application
to Prometheus instances of the Ananke framework and to enable in-
tegration of the time-series stored in Prometheus with standard tools
usually available in the Pythonic fauna of AI libraries for data analysis.
These facilities are available as Free Software in a Golang library (the
Prometheus back-filler) and a Python library (the Prometheus AIOps
Framework). Real executions of the back-filler show how it can easily
allow bulk-import of time-series data from any format into TSDB and
how it performs with respect to the current available official promtool in
Prometheus.

The Prometheus AIOps Middleware is finally used to model the traf-
fic of a WordPress application and predict the triggers to scale the system
before the peeks actually occur. Initial results are shown to demonstrate
how the Facebook Prophet model combined with a binary classifier can
predict those peeks efficiently to perform scaling of the cluster.

The next chapter will continue this work by employing a deeper AI
pipeline that will make use of a reinforcement learning agent.

It will decide whether scale out or reconfiguration of the underlying
network should be performed when SLIs are predicted to violate the SLA
between a customer and their provider.

Chapter 8. Predicting peek events through Facebook Prophet and
Scale-out CNAs 166

Chapter 9

NAPA: to scale or not to
scale

«Day by day, what you choose, what you think and what you do is who you
become.»

Heraclitus

The work done in previous chapter allowed getting (i) the model
and architecture to enable fine-grained monitoring and orchestration of
micro-service based applications, Ananke, and (ii) the framework to
ingest black-box monitoring data and analysing them. This chapter
presents NAPA, Network Adaptiveness Pod Auto-scaler.

It is based in the black-box monitoring tools of Ananke, depicted in
the previous chapter.

With respect to the previous case study in 8.3, NAPA is proposed as
a generalized strategy that leverages a reinforcement learning agent to
support decisions of an orchestrator when SLOs are predicted to be vio-
lated, deciding whether the best action to perform is either to scale-out a

Chapter 9. NAPA: to scale or not to scale 168

deployment Kubernetes object or re-configure the underlying network for
better handling the network traffic with the already allocated resources.

As Ananke relies on OpenTracing APIs [176] to define monitored met-
rics data structures, in this work the OpenSLO initiative [23] is employed
for the definition of service-level objectives through Kubernetes Custom
Resource Definitions (CRDs). Finally, the workers network is considered
to be software-defined and based on Flannel [180]. jFlowlight [106–108],
and the A4SDN algorithm are employed to properly set up network rules
and optimise inter-pod and inter-worker communication.

In order to allow handling of the SLOs with OpenSLO, a modification
to the graphs in eq. (8.1) and (8.2) has to be considered to add predicates
into the Ananke’s data model.

In particular, a set PA for the definition of the predicates stated in
SLAs is added:

GC,t(Mw,M
2
w, P

w
τ (w, kw), P l

τ(v, w, kl)) (9.1)

GA,t(VA,V
2
A, P

A
τ (w, kw), P l

τ(v, w, kl)) (9.2)

where:

• Mw is the set of workers VMs;

• VA is the set of micro-services (i.e., Deployments, Statefulset, . . .);

• P
w
t ∶Mw × Kw → U is a function that maps a key in the set Kw,

for a given vertex w ∈ Mw, to the value of the property (e.g.,
CPU/Mem usage);

• P
l
t ∣M∶M2

w × Kl → U is a function that maps a key from the set
Kl, for the given edge between vertices v ≠ w ∈ Mw, to the value
of the property (e.g., network bandwidth).

Chapter 9. NAPA: to scale or not to scale 169

• P
A
t ∶VA×KA → U is a function that maps a key in the set KA, for a

given vertex V ∈ VA, to the value of the property (e.g., CPU/Mem
usage for the specific pod);

• P
l
t ∣A∶V2

A ×Kl → U is a function that maps a key from the set Kl,
for the given edge between vertices v ≠ w ∈ VA, to the value of the
property (e.g., network usage of a pod);

• PA is a set of 4-tuples representing the SLOs. Each 4-tuple consists
of (i) a node v ∈ VA (ii) an operator in the set {≤,≥}, (iii) a key
k ∈ Kl ∪ Kw ∪ KA, and (iv) a target value depending on the kind
of metric to which the predicate refers.

9.1 Replication management in Kubernetes

Kubernetes simplifies the deployment, management, and execution of
containers on distributed computing resources.

In K8S, users define resources by leveraging a declarative approach
that emphasizes one of the most important features offered to deploy ap-
plications as a code: separation of concerns for resources allocation and
management, based on the label-selectors pairing in a master-worker
architecture. The master with its services is in charge of preserving, at
run-time, the desired state of the cluster by managing resources deployed
at the workers. A worker node is a physical or virtual machine that offers
its computational capability for executing pods in a distributed manner.
Pods are the smallest deployment unit in K8S consisting of one or more
containers deployed at the same worker, and sharing the same names-
pace; this means that containers running on the same pod communicate
with each other either through the loopback network interface or over
inter-process communication channels.

Chapter 9. NAPA: to scale or not to scale 170

For each container, requests and limits identify respectively resources
to be allocated for a given pod during the placement, and the limit
of resources after which a pod can be evicted from the worker (and
rescheduled by kube-scheduler). In the lower-level system, limits and
requests lay to define cgroups properties related to the containers.

Resource requirements, in this chapter, will be considered as the sum
of requirements by resource type for each container of a given pod.

K8S can run multiple replicas of a pod according to the ReplicaSet
capability. It ensures that a fixed number of pods are up and running
for a given higher-level owner object. Deployments, as an example, are
higher-lever abstractions that encapsulate different historical versions of
ReplicaSets for the same kind of pods in order to allow definition of
update policies (i.e., Rolling Updates, Recreate, etc. . .).

9.2 Horizontal auto-scaling

K8S provides basic auto-scaling facilities for pods by the HorizontalPo-
dAutoscaler (HPA) capability.

This basic functionality consists of a scaler that uses current resource
usage to trigger scale-out or scale-in of a ReplicaSet when one or more
threshold based conditions are satisfied.

Thresholds can be defined for each default resource by defining a type
as Utilization (percentage) or AverageValue (according to the measure
unit of the resource).

Default available resources are CPU and Memory, but custom (appli-
cation specific) definition of resources is also possible, enabling the use
of the punctual Value target type.

The scaling policy of the auto scalers can be configured to define
stabilization windows, percentage of pods to scale and selection policy

Chapter 9. NAPA: to scale or not to scale 171

to force the HPA controller to decide how many pods to schedule (or
destroy) by iteration [181].

In particular, the HPA controller calculates the desired number of
replicas at time t as in the following:

rt = ⌈rt−1 ⋅
SLI

SLItarget
⌉ (9.3)

Finally, when conditions for scaling are met Kubernetes HPA can be
configured to either scaling by a fixed number of pods or by a percentage
of pods. A stabilization time window is exploited to wait for load to be
balanced across new replicas.

9.3 Flannel

Differently from the default SDN containers network driver, Flannel
does not employ two SDNs to route traffic between containers in dif-
ferent hosts: as a consequences, it allows for fine-grained management
of the data-path between hosted pods and workers, avoiding double en-
capsulation of packets whenever the workers network itself is also an
SDN.Flannel provides a layer 3 IPv4 network between multiple nodes in
a cluster.

With Flannel, each worker within the cluster runs a daemon, flan-
neld, that is responsible for (i) allocating a unique subnet on each host,
(ii) distributing IP addresses in the host-specific subnet to the contain-
ers, and (iii) mapping routes for inter-container communication, even
if on different hosts. The daemon publish information about pods-host
networking to the etcd store so to distribute routing knowledge to the
other hosts’ daemon instances. Inter-worker communication is backed by
the host-gw 1 flannel mode based on direct layer-2 connectivity, which

1https://github.com/flannel-io/flannel/blob/master/Documentation/backends.md

Chapter 9. NAPA: to scale or not to scale 172

makes it compatible with the spine and leaf employed in the scenario of
the proposed work.

9.4 Network-aware scaling or network adaptive-
ness

Kubernetes designers continuously improve HPA objects.
The description given in the previous section is based on the v2beta2

Open API specification available since Kubernetes v1.18.
HPA configuration can be tricky and can also be unable to intercept

scaling issues just in time when peek events occur. As a consequence,
the service provider can violate SLOs stated in the SLAs during these
events.

The work exposed in the previous chapter, compared the performance
of ARIMA, SARIMA, VARMA [179] and Facebook Prophet [33] algo-
rithms to predict peek events from unique connections metrics of a micro-
service to the end of scale-out automatically the related micro-services
in time before a peek actually occurs.

The models have been evaluated with their root mean squared error
(RMSE) by using 168 samples for training (1 week hourly data) and
24 samples for validation (1 day ahead hourly prediction): RMSE for
Prophet was the smallest. ARIMA and SARIMA performed, respec-
tively, more than 1x and 2x RMSE with respect to the Prophet one.

Then, the output of the Prophet forecast has been used to predict
peek events through a binary differential classifier.

These peeks of traffic lead scale out of the micro-service.
However, in the HPA object and in Kubernetes in general, there is no

way to use network-aware metrics to control an application: the default
scheduler does not involve any network-aware parameter when deciding

Chapter 9. NAPA: to scale or not to scale 173

which of the workers has to host a pod and, in order to make use of
network policies within an HPA, a user should define custom resources
and application-specific metrics.

The last versions of Kubernetes APIs implements NetworkAware-
Policies that can only suggest the scheduler how to place pods in the
workers or, conversely, set mandatory Affinity/Anti-Affinity rules to re-
schedule pods after their first deployment to a suitable (policy enabled)
worker [44].

Scaling out stateless micro-service is considered today a de-facto stan-
dard: however, there can be environments for which scaling pods can be
more expensive than the actual performance gain the application would
get in the state at which HPA triggers the scale-out operation.

As an example, let’s suppose to have a pod that needs a lot of memo-
ry/CPU resource to boot up: a custom network-aware HPA would scale-
out the ReplicaSets when network traffic to the Pod arises to a non-
acceptable level with respect to its SLA (e.g., for which the throughput
starts to decrease, or the response time becomes too high). Scaling the
pod would lead to a distribution of the load that can fix the issue and
make the system back to the desired state as defined in a SLA.

However, the pod would just require additional network resources,
more bandwidth or another packets queue with a good reservation pol-
icy to guarantee QoS. In such a case, scaling out the ReplicaSet led to
waste of resources (needed for the boot-up and the background threads)
and could have been avoided if an operator would adapt the lower-level
software-defined network to improve communication performance of the
pod or the underlying worker.

It can be the example of a Java Spring application that make use
of a network persistent volume remotely hosted in another worker: in
a spine and leaf architecture, reconfiguration of the routes or just the

Chapter 9. NAPA: to scale or not to scale 174

Figure 9.1: RL Pipeline

reservation of one more communication channel for that only worker
(and pod) would fix just in time traffic peeks issues like huge remote I/O
operations in a GlusterFS volume.

This work proposes a reinforcement learning strategy which combines
a time series forecasting model together with current metrics of the mon-
itored application as the state space for a Q-Learning [182] agent aiming
to minimise risk of violating SLOs stated in the SLA of a given applica-
tion.

9.4.1 NAPA: Network-Aware Pod Autoscaler

Fig. 9.1, basically exposes this machine-learning pipeline. NAPA will
consider the micro-services of a single application A and will extend the
strategy to multiple applications sharing the same environment at the
last.

Chapter 9. NAPA: to scale or not to scale 175

Reinforcement Learning (RL) collects trial-and-error steps by which
an agent can learn how to make good decisions through a sequence of
interactions with the environment.

At any decision step t, the agent determines the system state s(t)
using a subset of the metrics coming from P

w
τ , P

l
τ , P

A
τ , P

l,A
τ in def. 8,

calculates the immediate cost c(t) by the means of the SLOs defined
through the 4-tuples PA, and updates the expected long-term cost (i.e.,
Q-function Q(s, a)).

Actions of the agent for any micro-service v ∈ VA lay in the set
A = {NOP,ScaleOut,AdaptNet}, where NOP is the null operation (no
perturbation is needed to optimise the cluster state), ScaleOut adds R

replicas of the pod to the ReplicaSet and AdaptNet trigger reconfigura-
tion of the network QoS for the hosting worker in the leaf-spine network
up to the Pod virtual interface.

Exploration vs Exploitation

One of the main challenges is to find a good trade-off between the ex-
ploration and exploitation phases. To minimise the obtained cost, a RL
agent must prefer actions that it have shown to be effective in the past
(exploitation). However, to discover such actions, it has to explore new
actions (exploration).

Here, the simple ϵ − greedy policy for which a threshold ϵ is used
to decide, at each iteration, if make use of exploitation (i.e., trigger a
random action with probability 1 − ϵ) or executes the action with the
lowest long-term cost (exploitation):

a(t) = argmin
a′∈A

Q(st, a′) (9.4)

Chapter 9. NAPA: to scale or not to scale 176

Long-term cost

The proposed strategy aims to minimise the Q-Value on each iteration
of the agent life cycle.

As a consequence, at the end of each interaction, the long-term cost
is calculated by:

Qt+1(st, a) ← (1−α) ⋅Qt(st, a) +

α ⋅ [ct(st, a) + γmin
a′∈A

Qt(st+1, a′)]
(9.5)

where:

• α is the learning rate;

• γ is the discount factor;

• ct represents the risk factor at time t (when the action is executed);

• st+1 is the next state (after the execution of the action a).

Immediate cost (risk factor)

Derived from the set PA, a generic SLO SLO
A
i for a micro-service v ∈ VA

can be described as the predicate SLI
A
i ⋛ SLI

A,target
i .

In a generic SLA, we can partition its SLOs in n
A
≥ - for any SLI

A
i ≥

SLI
A,target
i , and n

A
≤ - for any SLI

A
i ≤ SLI

A,target
i - predicates.

As previously anticipated, PA is the set of SLOs related to application
A. It’s trivial to say that cardinality of PA is ∣PA∣ = n≤ + n≥.

NAPA has to allow decision making based on the risk of violating
one or more SLOs. Violating an SLO means to get, at a specific time,
SLIs that do not respect the predicates in PA.

Chapter 9. NAPA: to scale or not to scale 177

All the ∣PA∣ SLOs identify a surface in a ∣PA∣-dimension space S.
For a given time t, the SLIs of the application defines a vector s ∈ S:
violating SLA means the state of the application (its SLIs) identify a
point outside the surface defined by PA.

Therefore, in the risk factor calculation, a term exploiting the notion
of distance between target SLIs and observed values has to be introduced:
to this aim, a modified version of the Canberra distance [183, 184], that
ranges in [-1,1[, has been exploited:

d(p, q) = 1

n ⋅W
⋅

n

∑
i=1

wi ⋅
pi − qi
pi + qi

(9.6)

where wi are weights and W is the sum of all the weights. The
notion of distance is actually misused since the one in eq. (9.6) is non-
symmetric, can be negative and do not satisfy the triangle inequality.
However, it represents an index depicting the risk of violating the SLA,
assuming SLIs and SLOs thresholds are always non-negative. In fact, in
the 1-dimensional case, d(p, q) would lead to a value in [−1, 1[, with 1

being the asymptote and −1 when p ≡ 0, see fig. 9.2.

With eq. (9.6), the normalized risk of violating the SLA is defined
as:

cSLA(s,PA) =
1

∣PA∣ ⋅W
[

n
A
≤

∑
j=1

w
A
j ⋅

SLI
A
j − SLI

A,target
j

SLIAj − SLI
A,target
j

+

1+nA
≤ +nA

≥

∑
j=1+nA

≤

w
A
j ⋅

SLI
A,target
j − SLI

A
j

SLI
A,target
j + SLIAj

]

(9.7)

Finally, a term for the resources booking and another one that allow to
avoid unfeasible actions should be introduced. Given L resource types
(e.g., CPU, memory, storage. . .), let’s define:

Chapter 9. NAPA: to scale or not to scale 178

Figure 9.2: Modified Canberra 1D distance d(p, q), with fixed q > 0, for
p ≥ 0

1. C∶PA
t → RL the L-dimensional vector representing the limits of

resources of the application A (i.e., the limits of the application
multiplied by the number of replicas);

2. U l∶P
A
t → RL the L-dimensional vector representing the resources

occupied by the application A (i.e., the sum of utilized resources
by each pod of the application);

3. Cnet(P l
t ∣A) the capacity of the network for the application;

4. Unet(P l
t ∣M) the utilized network.

Chapter 9. NAPA: to scale or not to scale 179

We define a piecewise function for the resource booking as:

cres(s, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a = NOP

d(U ,C) if a = ScaleOut ∧

d(U ,C) > 0

d(Unet, Cnet) if a = AdaptNet∧

d(Unet, Cnet) > 0

(9.8)

Given eq. (9.7) and eq. (9.8), the total immediate cost considered is
the following:

ct(s, a) =h1 ⋅ cSLA(s,P) +

h2 ⋅ cSLA(spred,P) +

h3 ⋅ cres(s, a)
(9.9)

where h1, h2, h3 are weights and spred in the second term comes from the
output of the FBProphet prediction.

The action chosen by the agent can eventually be unfeasible (e.g., the
available resources in the cluster are not enough to host a new replica
for a given v ∈ VA). Despite placement is generally a NP-Complete
problem [4], especially in the case of a cluster consisting of multiple
heterogeneous workers, in this scenario, an action would lead either to
the deployment of a new replica for a given application or to the network
re-configuration: feasibility in both cases can be verified more easily as
the Kubernetes scheduler already does when deciding for the placement
of a pod in the scheduler queue: just check whether the filter step of kube-
scheduler produces an empty set of workers by looking at the available
resources and at the required resources. In this way, unschedulable pods
will never be submitted to the kube-scheduler facilities.

Chapter 9. NAPA: to scale or not to scale 180

If an unfeasible action is chosen, the agent changes the action to the
NOP one.

9.4.2 Extension to multiple applications and implemen-
tation

Since a Kubernetes cluster is usually exploited as a shared environment
for multiple customers or applications, the agent has to leverage more
actions than the 3 ones described previously. In particular, let’s consider
a set of applications N consisting of a set of pods C.

Extension to the case of multiple applications to handle leads to
the definition of a dynamic environment both in terms of actions and
states [185,186].

In particular, the dimension of the space of states would increase
or decrease, respectively, in the case of the arrival of a new application
or the deletion of an old one. The space of states will depend on the
SLOs required by the SLAs of each application.The calculation of the
immediate cost as in eq. (9.9) can be obtained still using the modified
canberra distance, as before, but across all the running applications’
SLOs.

The actions space is more straightforward: we can redefine the set of
actions A by:

A = {NOP} ∪ ⋃
A∈C

{ScaleOutA, AdaptNetA}

A general pseudocode of the algorithm that enables NAPA is reported
in alg. 9.1.

Note that the states of the cluster have to be in a form such that
they can work as an index for the Q matrix.

Chapter 9. NAPA: to scale or not to scale 181

In order to allow this kind of indexing, states that lay in a continuous
space (i.e., metrics in the realm of real numbers R) are passed through
a quantization step, as exposed in line 5 of algorithm 9.1.

9.5 Architecture and workflow

Cloud-Native
 Application

Micro-
Services

API
GW

Msg
Brokers

OpenSLO
Custom Resources

DBMSs
Users Deploy

OpenShift
Sub-Systems

Decision Support
Feedback Loop

NAPA
Operator

Prometheus

Pods/Cluster
monitoring

Figure 9.3: Ananke architecture

Fig. 9.3 highlights the Ananke’s distributed architecture which is
spread between edge and cloud clusters, with a specific focus to the
NAPA workflow requirements.

Here, the main different components relate to (i) the OpenSLO CRDs,
and (ii) the NAPA operator responsible for processing the time series of
applications’ behaviour, and the execution of the agent that enables the
decision support feedback loop. It represents an online analyser in the
general architecture from fig. 7.5.

Chapter 9. NAPA: to scale or not to scale 182

The elements needed by the architecture to run this approach are:

• monitoring facilities to expose SLIs related to the pods;

• a standard way to define the SLOs;

• a job executing the ML pipeline depicted in the previous section;

• finally, the control loop controller.

9.5.1 Pods and cluster monitoring

Monitoring of the whole system has to consider (i) workers resource
utilization (CPU, memory, network. . .), (ii) general pods resource uti-
lization by replicas and, finally, (iii) application-specific key performance
metrics like average response time, end-to-end latency, throughput, etc. . . ,
according to the SLOs required.

Both OpenShift and vanilla Kubernetes offer ways to continuously
monitor workers and hosted pods. One of the most used enabling tech-
nologies is Prometheus [187]: it comes out of the box with the free ver-
sion of OpenShift - OKD - and well fits the first two requirements of the
monitoring capabilities neeeded by the herein proposed strategy.

The third requirement, application-specific metrics, can currently be
achieved in different ways: Google Kubernetes Engine make use of anno-
tations on the K8S objects definitions; differently, OpenShift make use
of the the Custom Resource Definition (CRD) ServiceMonitor to define
targets for the managed prometheus instances.

Both these solutions are compliant with the architecture of Ananke
and can be exploited by the NAPA facilities.

Finally, when migrating an application to a cluster managed by
Ananke and NAPA has to be trained, the application providers and the
resource provider may need to ingest historical data previously collected

Chapter 9. NAPA: to scale or not to scale 183

by the previous monitoring system in order to allow, as an example,
faster training of the analysers.

The back-filler from the previous chapter can be exploited for this
case.

With facilities from previous chapters and considerations above, a
user can implement an Ananke analyser micro-service job that interact
with Prometheus, running the algorithms of the NAPA agent, and finally
letting the controller able to orchestrate the cluster through the operator
pattern and the cluster’s infrastructure-as-a-code APIs.

Chapter 9. NAPA: to scale or not to scale 184

Algorithm 9.1 Action selection function

1 s_prv , s_cur : Tuple
2 Q: Matrix [len (S ta t e s)] [len (Act ions)]
3 l a s t_ac t i on : Action
4 while True :
5 s_cur = quant i ze (get_current_state ())
6 i f not s_prv : # i n i t i a l i z a t i o n phase
7 init ia l izeQwithRandomValues ()
8 else :
9 # Updates Q matrix on next i t e r a t i o n

10 # a f t e r ac t i on execu t i on
11 Q[s_prv] [l a s t_ac t i on] = (1 − a l f a) ∗ \
12 Q[s_prv] [l a s t_ac t i on] + a l f a ∗ \
13 (co s t (s_prv , a c t i on) + gamma ∗ \
14 get_min_cost (s_cur))
15 i f (1 − ep s i l o n) < randomFloat () :
16 # exp l o r a t i on
17 la s t_act i on = randomAction ()
18 else :
19 # ex p l o i t a t i o n
20 la s t_act i on = get_min_cost_action (s_cur)
21 i f not c h e c k_ f e a s i b i l i t y (l a s t_ac t i on) :
22 l a s t_act i on = NOP
23 execute (l a s t_ac t i on)
24 # Save prev ious s t a t e
25 s_prv = s_cur
26 # Wait f o r a s t a b i l i z a t i o n window
27 # be f o r e t a k ing a new ac t i on and
28 # update the Q matrix
29 s l e e p (T)

Chapter 9. NAPA: to scale or not to scale 185

Listing 9.2 Service monitoring in GKE

1 apiVersion: v1
2 kind: Service
3 metadata:
4 annotations:
5 prometheus.io/scrape: ’true’
6 prometheus.io/path: ’/metrics ’
7 # ...

Listing 9.3 ServiceMonitor CRD on OpenShift

1 apiVersion: monitoring.coreos.com/v1
2 kind: ServiceMonitor
3 metadata:
4 labels:
5 k8s -app: prometheus -example -monitor
6 name: prometheus -example -monitor
7 namespace: ns1
8 spec:
9 endpoints:

10 - interval: 30s
11 port: web
12 scheme: http
13 selector:
14 matchLabels:
15 app: prometheus -example -app

Chapter 9. NAPA: to scale or not to scale 186

9.5.2 Defining the SLOs

SLOs of a given pod managed by its ReplicaSet or Deployment, need to
be discoverable by the system level services running NAPA. Kubernetes
and its APIs are designed to allow extensions of the system following best
practices and patterns typical of the software engineering applied to the
field of operations management: separation of concerns, encapsulation
of operational knowledge, decoupling. In order to provide encapsulation
of operational knowledge and to have vendor-agnostic design of NAPA,
the list of SLOs that the RP has to guarantee for a given pod, have been
defined based on the OpenSLO initiative’s proposal.

OpenSLO [23] is a service level objective language based on YAML.
It allows for definition of targets specification that comes from an SLA
in a declarative way.OpenSLO is designed to be implementation neutral
so that SLOs can be shared in well-defined formats between multiple
environment, e.g., on heterogeneous multi-cloud.

OpenSLO defines a vendor-agnostic interface description language to
define and track SLOs, compliant with the Kubernetes OpenAPI speci-
fication and flexible enough to be extended in other platforms.

The specifications provide two main kind of Object Types: SLO and
Service.

A SLO represents a single SLO, with the given indicator and data
source configuration, timing information and, finally, the objective itself.
Data source can be described providing the name of the service that
provides the observed metric (i.e., Prometheus) and the query to get
the values for the objectives functions. Listing 9.4 reports specification
of a partial OpenSLO custom resource that represents the minimum
knowledge information to provide for NAPA.

A service represents a group of SLOs object. Binding of the SLOs
is done through the service key of each object: therefore, the Service

Chapter 9. NAPA: to scale or not to scale 187

object of the openslo API group has to be specified only once together
with the definition of the related deployment. Binding of the Service
to the observed object can be achieved with the standard label-selector
pattern.

CRDs defined to enable encapsulation of SLOs knowledge for the
cluster has to be handled by the proper controllers: the operator pattern
can be useful to implement both the ML pipeline job, and the privileged
pods to handle the control loop, i.e., the orchestration of Kubernetes
resources, and the workers networking configuration.

9.5.3 NAPA Operator

A Kubernetes operator is an application-specific controller that extends
the functionality of the Kubernetes APIs to create, configure, and man-
age instances of complex applications on behalf of a Kubernetes user.

K8S internal controllers implement control loops that repeatedly com-
pare the desired state of the cluster to its current state. If the cluster’s
current state doesn’t match the desired state, then the controller takes
actions to fix the problem.

An operator can use custom resources (CR) to manage applications
and their components. By using the CRD defined in the previous sections
by the OpenSLO, the Kubernetes cluster get high-level configuration
and settings for the managed applications. The Kubernetes operator
translates the high-level directives into the low level actions, based on
the logic embedded within the operator’s logic.

We add the NAPA CRD to the ones provided by OpenSLO as the
initial point of access that NAPA has to use to control either the scaling
of applications, or the configuration of underlying network. The NAPA
CRD, defined in listing 9.6, is to allow separation of concerns between

Chapter 9. NAPA: to scale or not to scale 188

OpenSLO objects that could also be used by other operators in the
cluster.

By the use of the NAPA CRD the operator has to:

• Get the NAPA CRDs;

• Get all the related SLOs needed as a state of the application;

• Implements the connectors to the horizontal scaling APIs of Ku-
bernetes, and the interfaces to communicate with a privileged Dae-
monSet running on the workers to communicate decisions about
configuration of the network executed through standard tools as
kernel system-calls, iptables/tc APIs. . .

• Periodically, the operator has to update the state of the whole clus-
ter and their applications by using the SLIs related to the enabled
SLOs and the low-level metrics of the cluster itself; Then, the op-
erator executes the algorithm in section 9.4 to decide the action
that minimises the long-term cost of the cluster.

Chapter 9. NAPA: to scale or not to scale 189

Listing 9.4 Definition of an SLO in OpenSLO

1 apiVersion: openslo/v1alpha
2 kind: SLO
3 metadata:
4 name: string
5 displayName: string # optional
6 spec:
7 description: string # optional
8 service: [service name] # name of the service to

associate this SLO with
9 indicator: # represents the Service Level Indicator

(SLI)
10 thresholdMetric: # represents the metric used to

inform the Service Level Object in the
objectives stanza

11 source: string # data source for the metric
12 queryType: string # a name for the type of query

to run on the data source
13 query: string # the query to run to return the

metric
14 objectives:
15 - displayName: string # optional
16 op: lte | gte | lt | gt # conditional operator

used to compare the SLI against the value.
Only needed when using a thresholdMetric

17 target: numeric # budget target for given
objective of the SLO

Chapter 9. NAPA: to scale or not to scale 190

Listing 9.5 OpenSLO Service: grouping SLOs

1 apiVersion: openslo/v1alpha
2 kind: Service
3 metadata:
4 name: string
5 displayName: string
6 spec:
7 description: string
8 selector:
9 matchLabels:

10 app: monitored -deployment

Listing 9.6 NAPA custom resource definition

1 apiVersion: napa/v1alpha
2 kind: AgentSubscription
3 metadata:
4 name: string
5 displayName: string
6 spec:
7 description: string
8 openSLOService: string # name of the openslo/

v1alpha1 service object

Chapter 9. NAPA: to scale or not to scale 191

Figure 9.4: Number of actions that
reduced the risk factor

Figure 9.5: Number of SLAs viola-
tions for different test scenarios

9.6 Numerical results

Based on the algorithm presented in section 9.4, numerical simulations
are presented to validate the proposed approach. In particular, the effi-
cacy of NAPA is evaluated by the mean of a simulated environment in
which multiple applications compete each other to gain resources in their
execution environment, using a homogeneous space of states between the
different applications.

Three kind of execution workloads running in the cluster are consid-
ered:

• computing-intensive applications for which an increase in the load (e.g.,
in terms of number of requests) implies the growing of CPU and
memory usage; it is the case of micro-services that implement scien-
tific jobs that involve big computation to complete their tasks [188];

• network-intensive applications for which network communication
plays an important role to get their tasks completed, like dis-
tributed graph processing systems [2] or storage intensive appli-
cations based on distributed network attached volumes [189]

Chapter 9. NAPA: to scale or not to scale 192

• a mixed environment consisting of 50% compute-intensive applica-
tions and 50% network-intensive applications.

The requests for these kinds of applications are considered indepen-
dent events so that one can model them by using the Poisson distri-
bution. For each simulation, 1000 iterations are executed and for each
one of them, the number of correct decisions and the number of SLAs
violation are evaluated.

These behavior are compared with the following four different agents/-
controllers:

• Random agent: it chooses a random action from the set A for each
iteration;

• Scale-out agent: it chooses between scale-out and the NOP action
based on the risk of violating the SLA;

• Network re-configuration agent: it chooses between the network
re-configuration and the NOP action based on the risk of violating
the SLA;

• NAPA: the reinforcement learning agent proposed in this paper.

1000 iterations is because in simulations, with the learning rate pa-
rameter of the NAPA operator set to α = 0.2, it got around 250 iterations
to be trained enough to have consistent decisions.

The execution environment consists of homogeneous machines that
can run at most 110 pods, as default in K8S.

9.6.1 Number of correct actions

Fig. 9.4 shows the normalized number of correct actions that each agent
performed in the workloads defined above, i.e., the actions that result

Chapter 9. NAPA: to scale or not to scale 193

in the reduction of the immediate risk factor. As it will be confirmed
by the number of SLAs violations discussed in the next section, these
results well expose as executing an action reducing the immediate risk
does not automatically lead to the avoidance of SLAs violations.

In fact, reducing the immediate risk should not be considered the
objective of a good SLA-aware operator. Objective is to avoid SLAs
violations and reducing more times the risk factor of an application can,
in the other side, leads to the violation of the SLAs for others applications
interfering with the “optimised” one.

This is going to be confirmed in the following by looking at the results
from fig. 9.5.

As expected, all the agents report better decisions than the random
one, for the network-intensive and mixed workloads. Only the compute-
intensive workload seems to be better handled, in terms of actions re-
ducing the immediate risk factor, by the scale-out agent with respect to
NAPA.

Network-intensive applications get ∼1.1x more reductions of the risk
factor by the network re-configuration agent with respect to the scale-out
agent, while computing-intensive workloads get ∼1.5x more reductions
by the scale-out agent with respect to the network re-configuration agent.
One can argue that these two agents expose better handling of the only
network-intensive workloads for an agent managing the trade-off between
the scale-out and the network re-configuration actions. NAPA, appar-
ently, gives ∼0.84x good decisions in the case of compute-intensive work-
loads, and ∼1.05 in the case of network-intensive, respectively compared
to the scale-out and to the network re-configuration agent. Instead, in
the mixed scenarios NAPA gains around 1.3x better decisions with re-
spect to both the other two agents.

Chapter 9. NAPA: to scale or not to scale 194

9.6.2 Number of SLA violations

Fig. 9.5 reports the number of SLAs violations normalized to the number
of iterations performed by the agents in the three different scenarios
depicted above.

As expected, the random action agent, reports a number of normal-
ized SLA violations due to the actions chosen in the range between ∼55%

and ∼60%, while the network-reconfiguration and the scale-out agents
seem to expose a dual-like behavior for the cases of compute-intensive
and network-intensive applications.

In particular, network-intensive applications are better handled by
the network re-configuration agent than by the scale-out one, as well as
the compute-intensive applications are better handled by the scale-out
agent.

This was expected: the network reconfiguration agent directly affects
network key parameters such as delay, jitter, packet error rate, and its
effect is amplified in particular for network-intensive applications. In
the same way, compute-intensive applications will have benefits from
the increase of CPU/Memory resources allocation given by the scale-out
operation.

In the homogeneous scenarios, the performance of the NAPA agent
are ∼184% better than those of the network re-configuration agent, while
they are slightly better (∼105%) in the computing-intensive scenario.
Similarly, in the network-intensive scenario, NAPA performs ∼240% bet-
ter than the scale-out agent, and ∼142% better than the network re-
configuration agent. These results confirm statements of the previous
sections about the impact of network on modern distributed CNAs.

Finally, the mixed scenario reports, for NAPA, around 157% less SLA
violations with respect to the scale-out agent, and 141% with respect to
the network re-configuration one, confirming how NAPA is able to handle

Chapter 9. NAPA: to scale or not to scale 195

the optimisation of SLAs guarantees on scenarios of heterogeneous CNAs
deployed on SDN-enabled clouds.

9.7 Conclusion

This chapter presented NAPA, an SLA-aware strategy for micro-service
applications deployed on clouds that employ software-defined architec-
tures for both the micro-services virtual network and the physical hosts
communication.

This strategy aims to optimise both the network and the number of
micro-services replicas executing in the cluster at runtime.

Novelty of NAPA is to combine (i) the forecasting techniques based
on the Facebook Prophet model able to predict not only the behavior
of time-series related to the cluster status, but also events such as peeks
in requests per seconds, network traffic, resource consumptions. . . , and
(ii) a Q-Learning agent that keeps estimation of the long term risk of
violating SLOs stated in the SLAs of the hosted applications in order to
perform the optimal decision and ask the cluster orchestrator to execute
an action reducing this long-term risk.

Numerical simulations showed how NAPA is able to conduct a bet-
ter management of the whole, cooperating, system, compared to naive
agents that executes random actions or just one of them based on metrics
thresholds typical of clouds environments.

Chapter 9. NAPA: to scale or not to scale 196

Part IV

Conclusions and Future Work

Chapter 10

Final considerations

Fog/edge computing, function as a service, and programmable infras-
tructures, like software-defined networking or network function virtual-
ization, are the enabling technologies of future internet and IT infras-
tructures.

These technologies are changing the characteristics and capabilities
of the underlying computational substrate where services run.

As a consequence, the nature of the services that can be run on them
changes too (smaller codebases, more fragmented state, service elasticity,
. . .).

These changes bring new requirements for service orchestrators, which
need to evolve to support new scenarios where close interaction between
service and infrastructure becomes essential to deliver a guaranteed level
of QoS and QoE.

The extension of the Cloud to the Edge of the network through Fog
Computing can significantly impact the reliability and latencies of de-
ployed applications.

Unfortunately, the existing deployment and optimization methods
pay little attention to developing and identifying complete models for

Chapter 10. Final considerations 200

such systems, which may cause significant inaccuracies between simu-
lated and physical run-time parameters. Existing models account for
neither the inter-dependence nor the co-location of application compo-
nents which causes extra communication and processing delays.

This thesis addressed these issues by carrying out experiments in both
cloud and edge systems with various scales and applications in part II. In
particular, two works have been presented to address (1) the placement of
containers within a heterogeneous PaaS where communication-intensive
applications run (chap. 4), and (2) the placement of containers to enable
Cloud-Edge offloading for applications leveraging the service elasticity
model (chap. 5).

Taking into account networking aspects in the decision support strate-
gies proposed, led to exploit graph theory, and increased the complexity
of the consequent allocation algorithms. In particular, the one presented
in chap. 4 leveraged a quadratic integer programming model to consider
inter-dependence between pods to allocate, while in chap. 5 the focus is
on maximizing the utility for network operator, e.g., the inter-domain
bandwidth savings.

As introduced previously, traditional Ops, both manual and auto-
matic, consume many human resources and cannot match the rapid
growth of data. AIOps emphasizes continuous learning from massive
data automatically through machine learning algorithms, constantly im-
proving and summarizing rules, and automatically making various deci-
sions. solution is being researched. The novelty of this thesis has been to
provide introductory formalizations and considerations on this new field
of research that is continuously spawning from academic research to the
R&D departments of the most important IT companies.

The second part of this thesis began by presenting a new reference
model, Ananke, with data-driven parameter formulations and represen-

Chapter 10. Final considerations 201

tations by exploiting graph theory, time-series analysis, and architecture
for monitoring and tracing of communication among a cloud-native ap-
plication consisting of micro-services deployed as containers.

Ananke aims to enable AIOps for future research. It is thought to
be as close as possible to problems that can arise when implementing it
for production-grade solutions.

Ops data is a typical nonlinear and non-stationary time-series data.
Time series forecasting is the key to realize industrial intelligence. It
plays a vital role in extensive applications such as information system
operations, resource allocation, equipment maintenance, and AIOps.

Time series forecasting helps to grasp the future operating conditions
of equipment in advance and then allocate various resources in advance
or prepare counter-actions for some emergencies in advance.

Chapter 8.1 helps to understand the effect of migration of workflows
and CNAs on these kinds of AIOps frameworks. The reference scenario
has always been based on the K8S orchestrator, with any of the flavors
currently dominating the market.

Chapter 8.1 also presented a baseline auto-scaler based on the Prophet
model to forecast the amount of traffic that would lead to the event of
violating SLOs, which has been continued in the following chap. 9.

It represented the synthesis of all the considerations involved in the
previous works from a different perspective: deciding which action to
take at run-time in order to reduce the risk of violating SLOs.

Future work will be devoted to:

• the extension of Ananke to better fit requirements for analysis
through AI/ML tools and strategies.

• the extensions required to consider federated clouds in different
data-centers.

Chapter 10. Final considerations 202

• strategies that will take into account the dynamic environment
exploited to handle multiple applications in chap 9 and manage
the interference between them a two-level strategy inspired to the
Mesos [40] scheduler, to account the trade-off between competition
and cooperation leveraging multiple reinforcement-learning agents;

• the implementation of the proposed strategies and heuristics by
the use of Kubernetes operators to explore their behavior on real
workflows.

The last point also opens the discussion about the validation of re-
searchers’ work in the field of distributed and cloud computing. All the
works in this thesis have been validated through (1) synthetic scenarios,
(2) real traces from Alibaba Cloud [154] and Google Borg [153], and (3)
real testbeds.

Validation, in these cases, is harder to accomplish, not only for the
arguable complexity of the proposed strategies but also, and especially,
for the lack of (1) good simulation tools and (2) the lack of real traces
from production environments part of the scenarios being considered in
those works.

Simulators like CloudSIM [190] are already available, but most of the
time, they are not able to reproduce scenarios like the ones presented
here. They also are harder to maintain and update. When writing, the
last commit on the official CloudSIM repository goes back to June 2019,
underlining how this simulator could lack the required models to exe-
cute a simulation of the novel environments that are arising. Instead,
big companies should consider producing real traces to test against the
academic environment’s proposed algorithms. Companies and IT aca-
demic folks should rely more on each other. The academic journals are
full of clever strategies that could optimize the efficiency of clouds. Effi-
ciency can span from QoS and SLAs management up to cost and energy

Chapter 10. Final considerations 203

savings. This last is strictly related to environmental issues that IT has
to face up, especially now that politicians, not for pleasure, are finally
interested in climate change problems.

At the same time, strategies involved in the de-facto standard or-
chestrators are too simple and far away to reach the goals achieved on
academic papers.

The closeness between companies and academies will help to reduce
this gap as well as the DevOps philosophy reduced the gap between
companies’ internal teams and customers.

Chapter 10. Final considerations 204

Chapter 11

The Red Hat experience:
future directions

«Talk is cheap. Show me the code.»

Linus Torvalds

One of the author’s targets during the Ph.D. program has been to
live an experience in a company working in the field of containers or-
chestration.

Despite the difficulties given by these years due to COVID-19, during
the last three months of the Ph.D. program, the author pursued a remote
experience at Red Hat in the Quality Engineering (QE) team in charge
of OpenShift.

This experience has a twofold meaning for the author. From a scien-
tific point of view, it allows being in touch with industrial issues related
to the themes of this thesis and the work pursued during the past three
years, giving the author a 360-degree view of the cloud landscape. It
is especially true since Red Hat is a leader in the market of PaaS not
only for enabling solutions provided by public cloud providers but also

Chapter 11. The Red Hat experience: future directions 206

for their private and hybrid cloud solutions: they can only be possible
by leveraging solutions based on the Open Source philosophy.

The Open Source philosophy brings to the second meaning for the
author, involved with the Free Software communities in Catania since
high-school days: the GNU/Linux User Group, the FreakNet MediaLab,
the MusIF (“Museo dell’Informatica Funzionante”).

Research and science should be open and available for all people, also
when people refuse it: it is trivial to think about Nicolaus Copernicus,
Galileo Galilei, or, looking at today, the NoVax controversy. Fortunately,
many other people today trust science, with some criticizing companies
and asking not to protect vaccines by patents, making them open source
essentially. One of the main reasons that brought the author to the
academy lay in having the chance to give a small contribution to science,
with a high interest in distributing and sharing knowledge with the world,
and having some of those contributions be implemented for production-
grade use, eventually.

In three only months, having the possibility to both learn and give a
strong contribution from a research point of view is harder.

At the time of writing, most of the work is being done to assure main
features of OpenShift (Core, SDN, Storage, Observability, . . .) can be
provided on ARM64 clusters.

Having support on AWS is essential to run ARM software on these
clusters, but it is more important to have it running on workers at the
Edge of the Network.

Edge devices deployed out in the field pose very different operational,
environmental, and business challenges from those of cloud computing.

A project is currently being designed and implemented publicly: Mi-
croShift. It is a research project that is exploring how OpenShift can be
optimized for small form factor and edge computing, by allowing:

Chapter 11. The Red Hat experience: future directions 207

• frugal use of system resources (CPU, memory, network, storage,
etc.);

• toleration of severe networking constraints;

• integration with edge-optimized operative systems, i.e., Fedora IoT
and RHEL for Edge;

• self-healing to update and roll-back safely and seamlessly;

• integration with classic OpenShift and their APIs.

Finally, having the possibility to work with a large number of people
around the world, with an extensive code base, and thousands of auto-
nomic jobs running during each day in the continuous integration and
delivery pipelines bring to another challenge in the field of the AIOps.

Continuous Integration (CI) involves running automated builds and
tests of software before it is merged into a production codebase. Data
produced by the large builds and tests of OpenShift are difficult to parse
if someone is trying to figure out why a build is failing or why a particular
set of tests is not passing.

OpenShift, Kubernetes, and a few other platforms have their CI data
public and Open Source. It is real-world production operations data, a
rarity for public data sets in this field, as anticipated in the previous
chapter.

It represents a starting point and a first initial area of investigation
for the AIOps community to tackle, together with the implementation
and research about strategies discussed in this thesis.

Future work, in this field, should cultivate open-source AIOps projects
by developing, integrating, and operating AI methodologies for CI, lever-
aging the open data available.

Chapter 11. The Red Hat experience: future directions 208

These data represent a rich source of information for automated triag-
ing and root cause analysis. Unfortunately, they can be very noisy, i.e.,
two logs of the same type but from two different sources may be different
enough that traditional comparison methods are insufficient to capture
this similarity. De-noising log data, exploiting models like Ananke, and
exploiting Machine Learning models will need further investigation and
will be crucial to improve the efficiency of CI/CD pipelines for AIOps-
enabled companies.

Bibliography

[1] A. Di Stefano, A. Di Stefano, G. Morana, and D. Zito, “Coope4m: A de-
ployment framework for communication-intensive applications on mesos,”
in 2018 IEEE 27th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE). IEEE, June
2018, pp. 36–41.

[2] B. Steer, A. Di Stefano, R. Clegg, and F. Cuadrado, “Building distributed
temporal graphs from event streams,” Proceedings of the VLDB Endow-
ment, vol. 11, no. 8, 2018.

[3] A. Araldo, A. Di Stefano, and A. Di Stefano, “EdgeMORE: improving
resource allocation with multiple options from tenants",” in IEEE Con-
sumer Communications & Networking Conference (CCNC), Las Vegas,
USA, January 2020.

[4] ——, “Resource allocation for edge computing with multiple tenant con-
figurations,” in Proceedings of the 35th ACM/SIGAPP Symposium on
Applied Computing, ser. SAC ’20, 2020.

[5] A. Di Stefano, A. Di Stefano, and G. Morana, “Scheduling
communication-intensive applications on mesos,” International Journal
of Grid and Utility Computing (IJGUC), vol. 11, no. 1, pp. 103–114,
2020. [Online]. Available: https://doi.org/10.1504/IJGUC.2020.103974

[6] ——, “Ananke: A framework for cloud-native applications smart orches-
tration,” in 2020 IEEE 29th International Conference on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE), 2020,
pp. 82–87.

[7] ——, “Napa: A q-learning strategy for communication optimisation and
auto-scaling of micro-services on sdn-enabled clouds,” IEEE TNSM Spe-
cial Issue on Smart Management of Future Softwarized Networks - Sub-
mitted, 2021.

[8] ——, “Improving qos through network isolation in paas,” Future Gener-
ation Computer Systems - Submitted, 2021.

https://doi.org/10.1504/IJGUC.2020.103974

Bibliography 210

[9] A. Di Stefano, A. Di Stefano, G. Morana, and D. Zito, “Prometheus
and aiops for the orchestration of cloud-native applications in ananke,”
in 2020 IEEE 29th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 2021.

[10] A. Di Stefano. EdgeMORE: repository. [Online]. Available: https:
//github.com/aleskandro/cloud-edge-offloading

[11] ——. A prometheus backfilling library. [Online]. Available: https:
//github.com/aleskandro/go-prometheus-backfiller

[12] ——. MORA: repository, real test-bed. [Online]. Available: https:
//github.com/mora-resource-allocation-edge-cloud

[13] Ananke repository. [Online]. Available: https://github.com/aleskandro/
cloud-native-multiplex-monitor

[14] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low level
metrics to high level slas - lom2his framework: Bridging the gap between
monitored metrics and sla parameters in cloud environments,” in 2010
International Conference on High Performance Computing Simulation,
2010, pp. 48–54.

[15] F. Schulz, “Decision support for business-related design of service level
agreements,” in 2011 IEEE 2nd International Conference on Software
Engineering and Service Science, 2011, pp. 35–38.

[16] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area
network (sd-wan): Architecture, advances and opportunities,” in 2019
28th International Conference on Computer Communication and Net-
works (ICCCN). IEEE, 2019, pp. 1–9.

[17] A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall:
Performance isolation for cloud datacenter networks,” in Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 1–1.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1863103.1863104

[18] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 4, pp. 242–253, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2043164.2018465

[19] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, “Survey of performance acceler-
ation techniques for network function virtualization,” Proceedings of the
IEEE, vol. 107, no. 4, pp. 746–764, 2019.

https://github.com/aleskandro/cloud-edge-offloading
https://github.com/aleskandro/cloud-edge-offloading
https://github.com/aleskandro/go-prometheus-backfiller
https://github.com/aleskandro/go-prometheus-backfiller
https://github.com/mora-resource-allocation-edge-cloud
https://github.com/mora-resource-allocation-edge-cloud
https://github.com/aleskandro/cloud-native-multiplex-monitor
https://github.com/aleskandro/cloud-native-multiplex-monitor
http://dl.acm.org/citation.cfm?id=1863103.1863104
http://doi.acm.org/10.1145/2043164.2018465

Bibliography 211

[20] H. Hawilo, M. Jammal, and A. Shami, “Network function virtualization-
aware orchestrator for service function chaining placement in the cloud,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp.
643–655, 2019.

[21] R. Cardona, “Logical components of a vxlan bgp evpn spine-and-leaf
architecture,” in The Fast-Track Guide to VXLAN BGP EVPN Fabrics.
Springer, 2021, pp. 27–65.

[22] B. A. Alrashed and W. Hussain, “Managing sla violation in the cloud
using fuzzy re-schdneg decision model,” in 2020 15th IEEE Conference
on Industrial Electronics and Applications (ICIEA). IEEE, 2020, pp.
136–141.

[23] Openslo initiative. [Online]. Available: https://openslo.com/

[24] F. Motavaselalhagh, F. S. Esfahani, and H. R. Arabnia, “Knowledge-
based adaptable scheduler for saas providers in cloud computing,”
Human-centric Computing and Information Sciences, vol. 5, no. 1, pp.
1–19, 2015.

[25] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM, 2016.

[26] K. Dolui and S. K. Datta, “Comparison of edge computing implementa-
tions: Fog computing, cloudlet and mobile edge computing,” 2017 Global
Internet of Things Summit (GIoTS), pp. 1–6, 2017.

[27] A. Schäfer, M. Reichenbach, and D. Fey, Continuous Integration and
Automation for Devops, 09 2013, vol. 170, pp. 345–358.

[28] P. Agrawal and N. Rawat, “Devops, a new approach to cloud development
testing,” in 2019 International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), vol. 1, Sep. 2019, pp. 1–4.

[29] G. B. Ghantous and A. Gill, “Devops: Concepts, practices, tools, benefits
and challenges,” in PACIS, 2017.

[30] (2019, Feb) Everything you need to know about aiops. [Online]. Available:
https://www.moogsoft.com/resources/aiops/guide/everything-aiops/

[31] Y. Dang, Q. Lin, and P. Huang, “Aiops: real-world challenges and re-
search innovations,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2019, pp. 4–5.

[32] Nextel: Bringing aiops to network operations. [Online]. Available:
https://www.ibm.com/case-studies/nextel-networkops-video

https://openslo.com/
https://www.moogsoft.com/resources/aiops/guide/everything-aiops/
https://www.ibm.com/case-studies/nextel-networkops-video

Bibliography 212

[33] S. J. Taylor and B. Letham, “Forecasting at scale,” PeerJ Preprints,
vol. 5, p. e3190v2, Sep. 2017. [Online]. Available: https://doi.org/10.
7287/peerj.preprints.3190v2

[34] Esxi. [Online]. Available: https://www.vmware.com/it/products/
esxi-and-esx.html

[35] Xen hypervisor. [Online]. Available: https://xenproject.org/

[36] Cloud native persistent desktop virtualization on aws. [Online]. Available:
https://aws.amazon.com/workspaces

[37] A. Busch and M. Kammerer, “Network performance influences
of software-defined networks on micro-service architectures,” in
Proceedings of the ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 153–163. [Online]. Available:
https://doi.org/10.1145/3427921.3450236

[38] L. M. Vaquero, F. Cuadrado, Y. Elkhatib, J. Bernal-Bernabe, S. N.
Srirama, and M. F. Zhani, “Research challenges in nextgen service
orchestration,” Future Generation Computer Systems, vol. 90, pp. 20–
38, 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X18303157

[39] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
Proceedings of the European Conference on Computer Systems (EuroSys),
Bordeaux, France, 2015.

[40] Apache mesos. [Online]. Available: http://mesos.apache.org/

[41] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 323–336. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1972457.1972490

[42] P. U-Chupala, Y. Watashiba, K. Ichikawa, S. Date, and H. Iida, “Con-
tainer rebalancing: Towards proactive linux containers placement opti-
mization in a data center,” in 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, July 2017, pp. 788–
795.

[43] J. Monsalve, A. Landwehr, and M. Taufer, “Dynamic cpu resource allo-
cation in containerized cloud environments,” in 2015 IEEE Int. Conf. on
Cluster Computing, Sep. 2015, pp. 535–536.

https://doi.org/10.7287/peerj.preprints.3190v2
https://doi.org/10.7287/peerj.preprints.3190v2
https://www.vmware.com/it/products/esxi-and-esx.html
https://www.vmware.com/it/products/esxi-and-esx.html
https://xenproject.org/
https://aws.amazon.com/workspaces
https://doi.org/10.1145/3427921.3450236
https://www.sciencedirect.com/science/article/pii/S0167739X18303157
https://www.sciencedirect.com/science/article/pii/S0167739X18303157
http://mesos.apache.org/
http://dl.acm.org/citation.cfm?id=1972457.1972490

Bibliography 213

[44] Kubernetes - scheduling. [Online]. Available: https://kubernetes.io/
docs/concepts/scheduling-eviction/assign-pod-node/

[45] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 295–308.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972488

[46] C. Kaewkasi and K. Chuenmuneewong, “Improvement of container
scheduling for docker using ant colony optimization,” in 2017 9th In-
ternational Conference on Knowledge and Smart Technology (KST), Feb
2017, pp. 254–259.

[47] Y. Mao, J. Oak, A. Pompili, D. Beer, T. Han, and P. Hu, “Draps: Dy-
namic and resource-aware placement scheme for docker containers in a
heterogeneous cluster,” in 2017 IEEE 36th International Performance
Computing and Communications Conference (IPCCC), Dec 2017, pp.
1–8.

[48] R. DelValle, P. Kaushik, A. Jain, J. Hartog, and M. Govindaraju, “Elec-
tron: Towards efficient resource management on heterogeneous clusters
with apache mesos,” in 2017 IEEE 10th International Conference on
Cloud Computing (CLOUD), June 2017, pp. 262–269.

[49] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin
packing problem,” Operations Research, vol. 48, no. 2, pp. 256–267,
2000. [Online]. Available: https://pubsonline.informs.org/doi/abs/10.
1287/opre.48.2.256.12386

[50] Rapl. [Online]. Available: https://01.org/blogs/2014/
running-average-power-limit-%E2%80%93-rapl

[51] T. Renner, L. Thamsen, and O. Kao, “Network-aware resource manage-
ment for scalable data analytics frameworks,” in 2015 IEEE International
Conference on Big Data (Big Data), Oct 2015, pp. 2793–2800.

[52] P. Saha, A. Beltre, and M. Govindaraju, “Exploring the fairness and re-
source distribution in an apache mesos environment,” in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), July 2018, pp.
434–441.

[53] D. Zhang et al., “Container oriented job scheduling using linear program-
ming model,” in ICIM, 2017.

[54] Bin-Packing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
426–441.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
http://dl.acm.org/citation.cfm?id=1972457.1972488
https://pubsonline.informs.org/doi/abs/10.1287/opre.48.2.256.12386
https://pubsonline.informs.org/doi/abs/10.1287/opre.48.2.256.12386
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl

Bibliography 214

[55] Hosting rapidly scaling video applications on amazon eks
clusters. [Online]. Available: https://aws.amazon.com/blogs/apn/
hosting-rapidly-scaling-video-applications-on-amazon-eks-clusters/

[56] Josilo and Dan, “Wireless and computing resource allocation for selfish
computation offloading in edge computing,” in IEEE INFOCOM, 2019.

[57] A. Araldo, G. Dán, and D. Rossi, “Caching encrypted content via stochas-
tic cache partitioning,” IEEE/ACM Transactions on Networking, vol. 26,
no. 1, pp. 548–561, Feb 2018.

[58] W. Chu et al., “Joint cache resource allocation and request routing for
in-network caching services,” Comp. Net., vol. 131, pp. 1–14, 2018.

[59] D. Zarchy et al., “Capturing resource tradeoffs in fair multi-resource al-
location,” in IEEE INFOCOM, 2015.

[60] Y. Tao, X. Wang, X. Xu, and Y. Chen, “Dynamic resource allocation
algorithm for container-based service computing,” in IEEE Int. Symp.
on Autonomous Decentralized System (ISADS), March 2017.

[61] H. Mao et al., “Resource management with deep reinforcement learning,”
in ACM Hotnet Workshop. ACM, 2016.

[62] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic ver-
tical elasticity of docker containers with elasticdocker,” in 2017 IEEE
10th Int. Conf. on Cloud Computing (CLOUD), June 2017, pp. 472–479.

[63] Managing resources for containers. [Online]. Avail-
able: https://kubernetes.io/docs/concepts/configuration/
manage-resources-containers/

[64] Openshift default scheduler. [Online]. Available:
https://docs.openshift.com/container-platform/3.6/admin_guide/
scheduling/scheduler.html#admin-guide-scheduler

[65] J. C. Mogul and L. Popa, “What we talk about when we talk
about cloud network performance,” SIGCOMM Comput. Commun.
Rev., vol. 42, no. 5, pp. 44–48, Sep. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2378956.2378964

[66] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan,
B. Prabhakar, and M. Seaman, “Data center transport mechanisms: Con-
gestion control theory and ieee standardization,” in 2008 46th Annual
Allerton Conference on Communication, Control, and Computing, Sep.
2008, pp. 1270–1277.

[67] 802.1qau – congestion notification. [Online]. Available: https://1.ieee802.
org/dcb/802-1qau/

https://aws.amazon.com/blogs/apn/hosting-rapidly-scaling-video-applications-on-amazon-eks-clusters/
https://aws.amazon.com/blogs/apn/hosting-rapidly-scaling-video-applications-on-amazon-eks-clusters/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://docs.openshift.com/container-platform/3.6/admin_guide/scheduling/scheduler.html#admin-guide-scheduler
https://docs.openshift.com/container-platform/3.6/admin_guide/scheduling/scheduler.html#admin-guide-scheduler
http://doi.acm.org/10.1145/2378956.2378964
https://1.ieee802.org/dcb/802-1qau/
https://1.ieee802.org/dcb/802-1qau/

Bibliography 215

[68] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar, “Af-
qcn: Approximate fairness with quantized congestion notification for
multi-tenanted data centers,” in 2010 18th IEEE Symposium on High
Performance Interconnects, Aug 2010, pp. 58–65.

[69] C. Xu, K. Rajamani, and W. Felter, “Nbwguard: Realizing network
qos for kubernetes,” in Proceedings of the 19th International Middleware
Conference Industry, ser. Middleware ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 32–38. [Online].
Available: https://doi.org/10.1145/3284028.3284033

[70] B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental Testbed
for Edge Computing in Fiber-Wireless Broadband Access Networks,”
IEEE Commun. Mag., vol. 56, no. 8, pp. 160–167, 2018.

[71] M. Enguehard, G. Carofiglio, and D. Rossi, “A popularity-based approach
for effective cloud offload in fog deployments,” in ITC, 2018.

[72] S. Maheshwari et al., “Scalability and performance evaluation of edge
cloud systems for latency constrained applications,” in 2018 IEEE/ACM
Symp. on Edge Computing (SEC), Oct 2018, pp. 286–299.

[73] F. Bronzino et al., “Lightweight , General Inference of Streaming Video
Quality from Encrypted Traffic,” 2019.

[74] P. Caballero, A. Banchs, G. De Veciana, and X. Costa-Perez, “Network
Slicing Games: Enabling Customization in Multi-Tenant Mobile Net-
works,” IEEE/ACM Trans. Net., vol. 27, no. 2, pp. 662–675, 2019.

[75] B. Xiang, J. Elias, F. Martignon, and E. D. Nitto, “Joint Network Slicing
and Mobile Edge Computing in 5G Networks,” in IEEE ICC, 2019.

[76] S. Wang et al., “Adaptive Federated Learning in Resource Constrained
Edge Computing Systems,” IEEE JSAC, vol. 37, no. 6, 2019.

[77] Y. Jin, Y. Wen, and C. Westphal, “Optimal Transcoding and Caching for
Adaptive Streaming in Media Cloud,” IEEE Trans. Circ. and Sys. Video
Tech., vol. 25, no. 12, pp. 1914–1925, 2015.

[78] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen, “A
scalable solution to the multi-resource QoS problem,” in IEEE Real Time
Systems Symp., 1999.

[79] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
computing patterns: fundamentals to design, build, and manage cloud
applications. Springer, 2014.

[80] M. T. Krieger, O. Torreno, O. Trelles, and D. Kranzlmüller, “Building an
open source cloud environment with auto-scaling resources for executing
bioinformatics and biomedical workflows,” Future Generation Computer
Systems, vol. 67, pp. 329 – 340, 2017.

https://doi.org/10.1145/3284028.3284033

Bibliography 216

[81] A. Carrega and M. Repetto, “Energy-aware consolidation scheme for
data center cloud applications,” in 2017 29th International Teletraffic
Congress (ITC 29), vol. 2. IEEE, 2017, pp. 24–29.

[82] N. D. Keny and A. Kak, “Adaotive containerization for microservices
in distributed cloud systems,” in IEEE Consumer Communications &
Networking Conference (CCNC), Las Vegas, USA, January 2020.

[83] P. Leitner, J. Cito, and E. Stöckli, “Modelling and managing deployment
costs of microservice-based cloud applications,” in Proceedings of the 9th
International Conference on Utility and Cloud Computing, 2016, pp. 165–
174.

[84] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for cloud
microservice applications,” in Proceedings of the 2019 ACM/SPEC Inter-
national Conference on Performance Engineering, 2019, pp. 25–32.

[85] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance modeling
and workflow scheduling of microservice-based applications in clouds,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 9,
pp. 2114–2129, 2019.

[86] H. Dai, H. Li, W. Shang, T.-H. Chen, and C.-S. Chen, “Logram: Efficient
log parsing using n-gram dictionaries,” 2020.

[87] C. Kan and P. Guingo, “Passive network monitoring system,” Jan. 27
2009, uS Patent 7,483,379.

[88] T. Tung, F. Badruddoja, and J. C. Kang, “Cloud service monitoring
system,” Dec. 17 2013, uS Patent 8,612,599.

[89] P. N. Nedeltchev, A. S. Akhter, and C. M. Pignataro, “Active and passive
dataplane performance monitoring of service function chaining,” Apr. 7
2016, uS Patent App. 14/504,076.

[90] Splunk. [Online]. Available: https://splunk.com

[91] Sysdig. [Online]. Available: https://sysdig.com

[92] M. Catillo, M. Rak, and U. Villano, “Auto-scaling in the cloud: Cur-
rent status and perspectives,” in Advances on P2P, Parallel, Grid, Cloud
and Internet Computing, L. Barolli, P. Hellinckx, and J. Natwichai, Eds.
Cham: Springer International Publishing, 2020, pp. 616–625.

[93] J. Ding, R. Cao, I. Saravanan, N. Morris, and C. Stewart, “Characterizing
service level objectives for cloud services: Realities and myths,” in 2019
IEEE International Conference on Autonomic Computing (ICAC), 2019,
pp. 200–206.

https://splunk.com
https://sysdig.com

Bibliography 217

[94] M. Palacios, J. Garcia Fanjul, and J. Tuya, “Design and implementation
of a tool to test service level agreements,” IEEE Latin America Transac-
tions, vol. 12, no. 2, pp. 256–261, 2014.

[95] S. K. Garg, S. Versteeg, and R. Buyya, “Smicloud: A framework for com-
paring and ranking cloud services,” in 2011 Fourth IEEE International
Conference on Utility and Cloud Computing, 2011, pp. 210–218.

[96] J. M. García, P. Fernández, C. Pedrinaci, M. Resinas, J. Cardoso, and
A. Ruiz-Cortés, “Modeling service level agreements with linked usdl
agreement,” IEEE Transactions on Services Computing, vol. 10, no. 1,
pp. 52–65, 2017.

[97] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in 2011 IEEE 4th In-
ternational Conference on Cloud Computing, 2011, pp. 500–507.

[98] D. B. Noureddine, A. Gharbi, and S. B. Ahmed, “Multi-agent deep rein-
forcement learning for task allocation in dynamic environment.” in IC-
SOFT, 2017, pp. 17–26.

[99] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, vol. 159, pp. 161–174, 2020.

[100] T. Subramanya and R. Riggio, “Centralized and federated learning for
predictive vnf autoscaling in multi-domain 5g networks and beyond,”
IEEE Transactions on Network and Service Management, vol. 18, no. 1,
pp. 63–78, 2021.

[101] Checkpoint/restore in linux userspace. [Online]. Available: https:
//www.criu.org/

[102] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, C. Bhagat,
S. Jain, J. Kaimal, S. Liang, K. Mendelev et al., “B4 and after: man-
aging hierarchy, partitioning, and asymmetry for availability and scale
in google’s software-defined wan,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
74–87.

[103] X. Zuo, M. Wang, T. Xiao, and X. Wang, “Low-latency networking:
Architecture, techniques, and opportunities,” IEEE Internet Computing,
vol. 22, no. 5, pp. 56–63, 2018.

[104] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion: Engi-
neering high-quality immersive virtual reality on today’s mobile devices,”
IEEE Transactions on Mobile Computing, vol. 19, no. 7, pp. 1586–1602,
2019.

https://www.criu.org/
https://www.criu.org/

Bibliography 218

[105] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming
with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, 2017, pp. 197–210.

[106] G. Cammarata, A. Di Stefano, G. Morana, and D. Zito, “Evaluating
the performance of a4sdn on various network topologies,” in 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2016, pp. 801–808.

[107] A. Di Stefano, G. Cammarata, G. Morana, and D. Zito, “A4sdn - adaptive
alienated ant algorithm for software-defined networking,” in 2015 10th
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2015, pp. 344–350.

[108] G. Cammarata, A. Di Stefano, G. Morana, and D. Zito, “Energy-aware
routing in a4sdn,” in Conference on Complex, Intelligent, and Software
Intensive Systems. Springer, 2017, pp. 577–588.

[109] X. Liu, C. Wang, B. B. Zhou, J. Chen, T. Yang, and A. Y. Zomaya,
“Priority-based consolidation of parallel workloads in the cloud,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 9, pp.
1874–1883, Sep. 2013.

[110] H. Khazaei, J. Misic, and V. B. Misic, “A fine-grained performance
model of cloud computing centers,” IEEE Transactions on Parallel &
Distributed Systems, vol. 24, no. 11, pp. 2138–2147, nov 2013.

[111] Redhat openshift. [Online]. Available: https://openshift.org

[112] Amazon aws. [Online]. Available: https://aws.amazon.com/

[113] Rackspace. [Online]. Available: https://www.rackspace.com/

[114] Microsoft azure. [Online]. Available: https://azure.microsoft.com/en-us/

[115] Google cloud platform. [Online]. Available: https://clod.google.com

[116] R. Krebs, C. Momm, and S. Kounev, “Metrics and techniques for
quantifying performance isolation in cloud environments,” Science of
Computer Programming, vol. 90, pp. 116 – 134, 2014, special Issue
on Component-Based Software Engineering and Software Architecture.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167642313001962

[117] P. Fan, J. Wang, Z. Zheng, and M. R. Lyu, “Toward optimal deploy-
ment of communication-intensive cloud applications,” in 2011 IEEE 4th
International Conference on Cloud Computing, July 2011, pp. 460–467.

[118] Kubernetes. [Online]. Available: https://kubernetes.io

https://openshift.org
https://aws.amazon.com/
https://www.rackspace.com/
https://azure.microsoft.com/en-us/
https://clod.google.com
http://www.sciencedirect.com/science/article/pii/S0167642313001962
http://www.sciencedirect.com/science/article/pii/S0167642313001962
https://kubernetes.io

Bibliography 219

[119] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
performance interference of i/o workload in virtualized cloud environ-
ments,” in 2010 IEEE 3rd International Conference on Cloud Computing,
July 2010, pp. 51–58.

[120] A. D. Stefano, G. Morana, and D. Zito, “Improving the allocation of
communication-intensive applications in clouds using time-related infor-
mation,” in 2012 11th International Symposium on Parallel and Dis-
tributed Computing, June 2012, pp. 71–78.

[121] B. Varghese and R. Buyya, “Next generation cloud computing:
New trends and research directions,” Future Generation Computer
Systems, vol. 79, pp. 849 – 861, 2018. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167739X17302224

[122] B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara, and S. Thorne,
The Site Reliability Workbook: Practical Ways to Implement SRE, 1st ed.
O’Reilly Media, Inc., 2018.

[123] C. Guerrero, I. Lera, and C. Juiz, “Resource optimization of container
orchestration: a case study in multi-cloud microservices-based applica-
tions,” The Journal of Supercomputing, vol. 74, no. 7, pp. 2956–2983,
2018.

[124] A. D. Stefano, G. Morana, and D. Zito, “Ucms: User-side cloud manage-
ment system,” in 2013 IEEE International Conference on Communica-
tions Workshops (ICC), June 2013, pp. 1372–1377.

[125] U. Elsner, “Graph partitioning – a survey,” 1997.

[126] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: applications in vlsi domain,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pp. 69–79,
March 1999.

[127] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer,
2004.

[128] D. Bienstock, “Computational study of a family of mixed-integer
quadratic programming problems,” in Integer Programming and Combi-
natorial Optimization, E. Balas and J. Clausen, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 80–94.

[129] B. A. Julstrom, “Greedy, genetic, and greedy genetic algorithms for
the quadratic knapsack problem,” in Proceedings of the 7th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’05.
New York, NY, USA: ACM, 2005, pp. 607–614. [Online]. Available:
http://doi.acm.org/10.1145/1068009.1068111

http://www.sciencedirect.com/science/article/pii/S0167739X17302224
http://www.sciencedirect.com/science/article/pii/S0167739X17302224
http://doi.acm.org/10.1145/1068009.1068111

Bibliography 220

[130] P. Chu and J. Beasley, “A genetic algorithm for the multidimensional
knapsack problem,” Journal of Heuristics, vol. 4, no. 1, pp. 63–86, Jun
1998. [Online]. Available: https://doi.org/10.1023/A:1009642405419

[131] A. Hiley and B. A. Julstrom, “The quadratic multiple knapsack problem
and three heuristic approaches to it,” in Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’06.
New York, NY, USA: ACM, 2006, pp. 547–552. [Online]. Available:
http://doi.acm.org/10.1145/1143997.1144096

[132] E. Balas, S. Ceria, and G. Cornuéjols, “A lift-and-project cutting
plane algorithm for mixed 0–1 programs,” Mathematical Programming,
vol. 58, no. 1, pp. 295–324, Jan 1993. [Online]. Available: https:
//doi.org/10.1007/BF01581273

[133] E. Balas and J. B. Mazzola, “Nonlinear 0–1 programming: I. linearization
techniques,” Mathematical Programming, vol. 30, no. 1, pp. 1–21, Sep
1984. [Online]. Available: https://doi.org/10.1007/BF02591796

[134] F. Glover and E. Woolsey, “Converting the 0-1 polynomial programming
problem to a 0-1 linear program,” Operations Research, vol. 22, no. 1, pp.
180–182, 1974. [Online]. Available: http://www.jstor.org/stable/169227

[135] Hey http load generator. [Online]. Available: https://github.com/rakyll/
hey

[136] D-itg, distributed internet traffic generator. [Online]. Available:
http://www.grid.unina.it/software/ITG/

[137] Priorities in kubernetes official source code. [Online]. Avail-
able: https://github.com/kubernetes/kubernetes/blob/master/pkg/
scheduler/framework/plugins/noderesources/balanced_allocation.go

[138] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in -,
2010.

[139] S. Ghosh, R. Rajkumar, J. Hansen, and J. Lehoczky, “Scalable resource
allocation for multi-processor QoS optimization,” in IEEE ICDCS, 2003.

[140] S. Josilo and G. Dan, “Selfish Decentralized Computation Offloading for
Mobile Cloud Computing in Dense Wireless Networks,” IEEE Trans.
Mobile Comput., vol. 1233, no. c, 2018.

[141] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “Tosca: portable
automated deployment and management of cloud applications,” in Ad-
vanced Web Services. Springer, 2014, pp. 527–549.

[142] Openconnect service by netflix. [Online]. Available: https://openconnect.
netflix.com/en/

https://doi.org/10.1023/A:1009642405419
http://doi.acm.org/10.1145/1143997.1144096
https://doi.org/10.1007/BF01581273
https://doi.org/10.1007/BF01581273
https://doi.org/10.1007/BF02591796
http://www.jstor.org/stable/169227
https://github.com/rakyll/hey
https://github.com/rakyll/hey
http://www.grid.unina.it/software/ITG/
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/framework/plugins/noderesources/balanced_allocation.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/framework/plugins/noderesources/balanced_allocation.go
https://openconnect.netflix.com/en/
https://openconnect.netflix.com/en/

Bibliography 221

[143] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al., “{SCONE}:
Secure linux containers with intel {SGX},” in 12th {USENIX} Symp. on
Operating Systems Design and Implementation ({OSDI} 16), 2016, pp.
689–703.

[144] Resource usage monitoring on kubernetes. [Online]. Avail-
able: https://kubernetes.io/docs/tasks/debug-application-cluster/
resource-usage-monitoring/

[145] J. Liang et al., “When https meets cdn: A case of authentication in
delegated service,” in IEEE Symp. on Security and Privacy, May 2014.

[146] A. Arulselvan, “A note on the set union knapsack problem,” Discrete
Applied Mathematics, vol. 169, pp. 214 – 218, 2014.

[147] Y. He, H. Xie, T.-L. Wong, and X. Wang, “A novel binary artificial bee
colony algorithm for the set-union knapsack problem,” Future Generation
Computer Systems, vol. 78, pp. 77 – 86, 2018.

[148] M. M. Akbar, M. S. Rahman, M. Kaykobad, E. Manning, and G. Shoja,
“Solving the multidimensional multiple-choice knapsack problem by con-
structing convex hulls,” Computers & Operations Research, vol. 33, no. 5,
pp. 1259 – 1273, 2006.

[149] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, 1st ed.
Springer, 2004.

[150] D. G. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algo-
rithm?” SIAM J. on Comp., vol. 15, no. 1, pp. 287–299, 1986.

[151] Y. Song, C. Zhang, and Y. Fang, “Multiple multidimensional knapsack
problem and its applications in cognitive radio networks,” in MILCOM
2008 - 2008 IEEE Military Comm. Conf., Nov 2008, pp. 1–7.

[152] C. Pahl and B. Lee, “Containers and Clusters for Edge Cloud Architec-
tures - a Technology Review,” in IEEE FiCloud2, 2015.

[153] Google borg cluster usage traces. [Online]. Available: https://github.
com/google/cluster-data

[154] Alibaba cluster trace program. [Online]. Available: https://github.com/
alibaba/clusterdata

[155] M. Virmani, “Understanding devops bridging the gap from continuous
integration to continuous delivery,” in (INTECH 2015), May 2015.

[156] D. N. et al., “A software architecture framework for quality-aware
devops,” in Proceedings of the 2nd International Workshop on Quality-
Aware DevOps, ser. QUDOS 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 12–17.

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata

Bibliography 222

[157] Netflix earnings, devops and profitability. [Online]. Available: https:
//www.onpage.com/netflix-earnings-devops-profitability/

[158] J. Humble and G. Kim, Accelerate: The science of lean software and
devops: Building and scaling high performing technology organizations.
IT Revolution, 2018.

[159] G. B. Ghantous and A. Q. Gill, “Devops reference architecture for multi-
cloud iot applications,” in 2018 IEEE 20th Conference on Business In-
formatics (CBI), vol. 1. IEEE, 2018, pp. 158–167.

[160] J. Wettinger, V. Andrikopoulos, and F. Leymann, “Automated capturing
and systematic usage of devops knowledge for cloud applications,” in 2015
IEEE International Conference on Cloud Engineering, March 2015, pp.
60–65.

[161] C. Watson, “Netflix raas: Reliability as a service.” Santa Clara, CA:
USENIX Association, Mar. 2015.

[162] A. Jula, E. Sundararajan, and Z. Othman, “Cloud computing service
composition: A systematic literature review,” Expert Systems with Ap-
plications, vol. 41, no. 8, pp. 3809 – 3824, 2014.

[163] F. Ahmadighohandizi and K. Systä, “Icdo: Integrated cloud-based devel-
opment tool for devops,” in SPLST, 2015.

[164] J. Wettinger, U. Breitenbücher, O. Kopp, and F. Leymann, “Streamlining
devops automation for cloud applications using tosca as standardized
metamodel,” Future Generation Computer Systems, vol. 56, pp. 317 –
332, 2016.

[165] Jenkins. [Online]. Available: https://jenkins.io

[166] Gitlab. [Online]. Available: https://gitlab.com

[167] Docker. [Online]. Available: https://www.docker.com

[168] Ansible. [Online]. Available: https://www.ansible.com

[169] Terraform. [Online]. Available: https://terraform.io

[170] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “An exploratory study of
devops extending the dimensions of devops with practices,” 2016.

[171] V. Latora, V. Nicosia, and G. Russo, "Complex Networks: Principles,
Methods and Applications", Sept. 2017.

[172] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, “Multilayer networks,” Journal of Complex
Networks, vol. 2, no. 3, pp. 203–271, 07 2014. [Online]. Available:
https://doi.org/10.1093/comnet/cnu016

https://www.onpage.com/netflix-earnings-devops-profitability/
https://www.onpage.com/netflix-earnings-devops-profitability/
https://jenkins.io
https://gitlab.com
https://www.docker.com
https://www.ansible.com
https://terraform.io
https://doi.org/10.1093/comnet/cnu016

Bibliography 223

[173] B. Steer, F. Cuadrado, and R. Clegg, “Raphtory: Streaming
analysis of distributed temporal graphs,” Future Generation Computer
Systems, vol. 102, pp. 453 – 464, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X19301621

[174] Cloudwatch. [Online]. Available: https://aws.amazon.com/cloudwatch/

[175] W. Conradie, V. Goranko, and C. Robinson, Logic and Discrete Mathe-
matics : a Concise Introduction, Solutions Manual, 2015.

[176] The opentracing project. [Online]. Available: https://opentracing.io/

[177] promtool: Add data importers for the most requested formats. [Online].
Available: https://github.com/prometheus/prometheus/issues/7119

[178] Prometheus storage and bulk-import from openmetrics format.
[Online]. Available: https://prometheus.io/docs/prometheus/latest/
storage/#backfilling-from-openmetrics-format

[179] G. E. Box and Jenkins, Time series analysis: forecasting and control.
San Francisco: Holden-Day, 1970.

[180] Flannel sdn. [Online]. Available: https://github.com/flannel-io/flannel

[181] Kuberentes - horizontal pod autoscaler. [Online]. Available: https:
//kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

[182] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[183] G. N. Lance and W. T. Williams, “Computer Programs for
Hierarchical Polythetic Classification (“Similarity Analyses”),” The
Computer Journal, vol. 9, no. 1, pp. 60–64, 05 1966. [Online]. Available:
https://doi.org/10.1093/comjnl/9.1.60

[184] S. M. Emran and N. Ye, “Robustness of chi-square and canberra distance
metrics for computer intrusion detection,” Quality and Reliability
Engineering International, vol. 18, no. 1, pp. 19–28, 2002. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.441

[185] S.-Y. Chen, Y. Yu, Q. Da, J. Tan, H.-K. Huang, and H.-H.
Tang, “Stabilizing reinforcement learning in dynamic environment with
application to online recommendation,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1187–1196. [Online]. Available:
https://doi.org/10.1145/3219819.3220122

[186] M. Pieters and M. A. Wiering, “Q-learning with experience replay in a dy-
namic environment,” in 2016 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2016, pp. 1–8.

http://www.sciencedirect.com/science/article/pii/S0167739X19301621
https://aws.amazon.com/cloudwatch/
https://opentracing.io/
https://github.com/prometheus/prometheus/issues/7119
https://prometheus.io/docs/prometheus/latest/storage/#backfilling-from-openmetrics-format
https://prometheus.io/docs/prometheus/latest/storage/#backfilling-from-openmetrics-format
https://github.com/flannel-io/flannel
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://doi.org/10.1093/comjnl/9.1.60
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.441
https://doi.org/10.1145/3219819.3220122

Bibliography 224

[187] Prometheus. [Online]. Available: https://prometheus.io

[188] V. Kolici, A. Herrero, F. Xhafa, and L. Barolli, “A study on the per-
formance of oracle grid engine for computing intensive applications,” in
2014 International Conference on Intelligent Networking and Collabora-
tive Systems, 2014, pp. 282–288.

[189] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-
tributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010, pp. 1–10.

[190] Cloudsim: A framework for modeling and simulation of cloud
computing infrastructures and services. [Online]. Available: https:
//github.com/Cloudslab/cloudsim

https://prometheus.io
https://github.com/Cloudslab/cloudsim
https://github.com/Cloudslab/cloudsim

	I Preliminaries
	Introduction
	Service-level Agreements
	Microservices and future internet issues
	From DevOps to AIOps
	Contributions and organization
	Acknowledgements

	Research Context
	Computing architectures
	Containerization
	Server-less computing
	An eternal return context

	Orchestrators
	Container resource allocation
	Approaches to network isolation

	Edge-Cloud offloading
	Towards AIOps

	II Scheduling containers in cloud and edge computing
	Introduction
	Communication-intensive applications in PaaS clouds
	Allocation Issues in Clouds
	Application models
	Definition of Isolation Index
	Closeness: notion and formal definition

	Mapping strategies
	Set of Components
	Simple Workflow
	Timed Workflow

	IQP Formulation
	A case study: impact of closeness and isolation on the performance of a 3-tier application
	Application, workload and performance indexes
	Performance in the ``private environment``
	Performance in the ``shared environment''

	Performance evaluation
	Generation of applications and cluster graphs
	Numerical results

	Conclusion

	MORA: Multiple Option Resource Allocation on Edge Computing environments
	Architecture
	An existing implementation of Edge Computing
	Proposed architecture
	Edge Master workflow

	Optimal resource allocation
	MORA
	MORA Algorithm
	Properties of MORA

	Numerical results
	Results on synthetic scenarios
	Results on real traces

	Conclusion

	III Towards AIOps: Ananke as an orchestration framework and decision support system
	Introduction
	Towards AIOps: Ananke
	Data Model
	Cluster Model
	Deep dive into micro-services monitoring
	Application & Performance Model
	Putting it all together

	Architecture and workflow
	Conclusion

	Predicting peek events through Facebook Prophet and Scale-out CNAs
	Data Back-filling on Prometheus
	Enabling data-analysis on Ananke and Prometheus
	Case study
	Conclusion

	NAPA: to scale or not to scale
	Replication management in Kubernetes
	Horizontal auto-scaling
	Flannel
	Network-aware scaling or network adaptiveness
	NAPA: Network-Aware Pod Autoscaler
	Extension to multiple applications and implementation

	Architecture and workflow
	Pods and cluster monitoring
	Defining the SLOs
	NAPA Operator

	Numerical results
	Number of correct actions
	Number of SLA violations

	Conclusion

	IV Conclusions and Future Work
	Final considerations
	The Red Hat experience: future directions

