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Abstract  

Advanced metering infrastructures are enabling the collection of large 
amounts of building-related data that are leading to a profound transformation of 
the energy management paradigm in buildings and energy grids. Building-related 
data are full of hidden knowledge that can enable significant energy savings when 
a proper knowledge discovery process is performed. To this purpose advanced 
Energy Management and Information Systems (EMIS) based on the application of 
powerful and novel data analytics techniques can be employed. The focus of this 
dissertation is on the specific segment of EMIS technologies called Decision 
Support Systems (DSS). DSS include Energy Information Systems (EIS) and 
Fault Detection and Diagnostic (FDD) systems and can be classified as enabling 
tools in the building energy management process. Differently from advanced 
control systems, DSS provide feedbacks to human users (e.g., energy manager, 
building owner, energy service company) assisting them in improving building 
performance during operation. The installation of such systems is characterized by 
a low investment cost and a high energy saving potential making them strategic 
technologies in the building sector. However, their penetration in the market is 
still not satisfactory. 

In this dissertation four advanced and innovative data analytics based DSS 
tools (three EIS tools and one FDD tool) at both meter and system level are 
proposed with the aim of overcoming three main barriers that today thwart the full 
exploitation of such systems: (i) low level of user engagement, (ii) inadequate 
detail of the analysis and information provided, (iii) insufficient level of 
interpretability of the results obtained. For each scale of the analysis considered a 
novel methodological framework is employed for addressing the main tasks 
typically required to advanced EIS and FDD systems. 

At system level, an EIS tool for the improvement of HVAC scheduling is 
developed for a town hall building. The tool can effectively reschedule the HVAC 
system leveraging on the analysis of building occupancy data. The results 
obtained for the considered case study show that the tool could lead to a potential 
monthly reduction of the electricity use for HVAC (space heating, space cooling, 
ventilation and air treatments) that ranges from 12.2% to 15.4% while the average 
energy saving for the whole analyzed period (4 months) amounts to 14%. 

At whole building level, an EIS tool for the automatic detection of anomalous 
energy trends is developed for a town hall and a university campus. The results 
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obtained for the two case studies demonstrated that the developed tool can predict 
the typical patterns of building energy consumption during specific periods of the 
day with an accuracy well over 80%. As a result of the high accuracy in 
identifying a typical/normal energy behavior, it is possible to achieve a strong 
anomaly detection capability of the tool when these patterns are violated over time 
during building operation. 

At building portfolio level, an EIS tool for the identification of typical energy 
use patterns and the classification of energy customers is developed for a stock of 
114 industrial buildings. The developed tool is capable to automatically extract 
from the building portfolio database, 5 groups of typical load profiles and estimate 
for a new unknown customer its membership to one of them. The tool is based on 
an evolutionary decision tree and achieves a classification accuracy of about 75% 
(6% higher than a reference classifier based on recursive partitioning decision 
tree). 

At system component level, an FDD tool for the automatic detection and 
diagnosis of faults in HVAC systems with a focus on Air Handling Unit (AHU) 
components is introduced. The tool is developed on the ASHRAE-RP 1312 public 
dataset and it is capable of detecting up to 11 typical faults (related to valves, fans 
and dampers) in AHUs during the cooling mode with an overall accuracy of 90%. 

All the developed tools leveraged on time series analytics and automated rule 
extraction techniques with the aim of maximizing the amount of information 
extracted from building data while maintaining a high level of feedback 
interpretability. The results obtained demonstrated the added value of data 
analytics in the process of building energy management and its effectiveness in 
extracting hidden, useful and actionable knowledge at different scales of analysis.  

Findings and outcomes of the present research study are discussed providing a 
robust reasoning about the optimal design of data analytics processes according to 
specific mining purposes. Eventually, a wide overview on the lessons learned 
throughout this research study is proposed for clearly outlining the future 
application opportunities, and barriers of data analytics technologies in the energy 
and building sector.  

 
 
 
 
 
 

 



ix 
 

 
 
 
 

 

 

 

  



x 
 

Contents 

1 Introduction ...................................................................................................... 1 

1.1 Motivations of the research ................................................................ 3 
1.2 Research outline ................................................................................. 6 
1.3 Research questions ............................................................................. 9 
1.4 Objectives of the thesis and novelty ................................................. 10 
1.5 Organization of the thesis ................................................................. 11 

2 Literature review ............................................................................................ 13 

2.1 Knowledge extraction process for building related data .................. 15 

2.1.1 Data pre-processing ...................................................................... 16 
2.1.2 Data segmentation ........................................................................ 22 
2.1.3 Knowledge discovery process ...................................................... 24 
2.1.4 Knowledge exploitation ............................................................... 37 

2.2 Research context: applications of data analytics technologies for 
building energy management............................................................ 38 

2.2.1 Prediction of building energy consumption ................................. 40 
2.2.2 Load profiling in buildings........................................................... 43 
2.2.3 Fault detection and diagnosis ....................................................... 51 
2.2.4 Benchmarking analysis ................................................................ 54 
2.2.5 Characterisation of occupant behaviour ....................................... 57 

2.3 Discussion of the literature review ................................................... 61 

3 DSS applications at meter-level: development of advanced Energy 
Information Systems (EIS) tools .................................................................... 63 

3.1 Advanced Energy Information Systems (EIS) ................................. 64 
3.2 Development of an EIS tool for scheduling improvements at building 

system level ...................................................................................... 66 

3.2.1 Motivations and novelty of the proposed approach ..................... 66 
3.2.2 Case study used for developing the EIS tool at building system 

level .............................................................................................. 67 
3.2.3 Implemented methodology for HVAC schedule optimisation 

exploiting occupancy data ........................................................... 71 



xi 
 

3.2.4 Results obtained from HVAC schedule optimisation analysis .... 74 
3.2.5 Impact assessment of HVAC scheduling optimisation ................ 86 
3.2.6 Discussion .................................................................................... 89 

3.3 Development of an EIS tool for the automatic detection of 
anomalous energy trends at whole building level ............................ 91 

3.3.1 Motivation and novelty of the proposed approach ....................... 91 
3.3.2 Case studies used for developing the EIS tool at whole building 

level .............................................................................................. 93 
3.3.3 Implemented methodology for the automatic detection of 

anomalous trends in building energy consumption time series ... 96 
3.3.4 Results obtained from load profile characterization analysis ...... 99 
3.3.5 Discussion .................................................................................. 110 

3.4 Development of EIS tool for the identification of typical energy use 
patterns and the classification of energy customers at building 
portfolio level ................................................................................. 113 

3.4.1 Motivations and novelty of the proposed approach ................... 114 
3.4.2 Case study used for developing the EIS tool at building portfolio 

level ............................................................................................ 116 
3.4.3 Implemented methodology for the identification of typical energy 

use patterns and for the classification of energy customers ....... 118 
3.4.4 Results obtained from typical energy use pattern recognition and 

customer classification analysis ................................................. 122 
3.4.5 Discussion .................................................................................. 134 

4 DSS application at system-level: development of a fault detection and 
diagnostic (FDD) tool ................................................................................... 136 

4.1 Development of FDD tool for the detection and diagnosis of faults at 
system level .................................................................................... 137 

4.1.1 Motivations and novelty of the proposed approach ................... 138 
4.1.2 Case study used for developing the FDD tool at system level ... 142 
4.1.3 Implemented methodology for the detection and diagnosis of 

faults in AHU ............................................................................. 145 
4.1.4 Results obtained from fault detection and diagnosis analysis .... 153 
4.1.5 Discussion .................................................................................. 166 

5 Conclusions .................................................................................................. 169 
References ............................................................................................................ 176 



xii 
 

Appendix A .......................................................................................................... 192 
Appendix B .......................................................................................................... 193 
Appendix C .......................................................................................................... 195 

 
  



xiii 
 

List of Tables 

Table 1 - Table of breakpoints for alphabet size A = 3, 4, 5 calculated from a 
standard Gaussian distribution ........................................................................ 19 

Table 2 - sub-zone capacity label [14] ................................................................... 80 
Table 3 - Final optimised HVAC occupancy-based schedule obtained through the 

constrained occupant displacement process [14] ............................................ 86 
Table 4 - Case study 1 - Summary of the variables [2] ......................................... 95 
Table 5 - Case study 2 - Summary of the variables [2] ......................................... 96 
Table 6 - Sub-daily time windows for case study 1 and case study 2 [2] ............ 102 
Table 7 – Breakpoints of each symbol for case study 1 and case study 2 [2] ..... 103 
Table 8 - Summary of the variables used for the classification process for each 

time window [2] ............................................................................................ 105 
Table 9 - Decision rules for case study 1 [2] ....................................................... 107 
Table 10 - Decision rules for case study 2 [2] ..................................................... 107 
Table 11 - Input variables for both “baseline” and “proposed” classifiers [10] .. 127 
Table 12 - Configurations of variation operator probabilities (globally optimal 

decision tree) [10] ......................................................................................... 128 
Table 13 - Decision rules extracted from globally optimal classifier [10] .......... 131 
Table 14 - Decision rules extracted from recursive partitioning classifier [10] .. 131 
Table 15 - Overall misclassification errors of recursive partitioning and globally 

optimal decision tree for the training and testing dataset [10] ...................... 132 
Table 16 - Tags and descriptions of faults ........................................................... 143 
Table 17 - List of variables considered in the analysis ........................................ 144 
Table 18 - Occurrence frequency of each event included in the antecedent and 

consequent item sets ..................................................................................... 159 
Table 19 - Decision rules for the estimation of the symbolic discrete-value of 

cooling coil valve position ............................................................................ 162 
Table 20 - Precision and recall for classification tree of fault diagnosis during 

non-transient period ...................................................................................... 165 



 

 

List of Figures 

Fig. 1 - Building-related data classified according to different categories of 
influencing factors (adapted from [1]) .............................................................. 2 

Fig. 2 - EMIS tool classification according to detail of data, detail of analysis and 
feedback type .................................................................................................... 3 

Fig. 3 - Outline of the applications investigated in the thesis with the reference of 
the scale of analysis and the feedback scheme assumed .................................. 7 

Fig. 4 - Framework of the knowledge discovery process on building energy data 
and organization of Chapter 2 (adapted from [1]) .......................................... 15 

Fig. 5 - Punctual outliers identified through box plot analysis in a time series of 3 
years length ..................................................................................................... 16 

Fig. 6 - Three different daily load profiles in their original form (a), scaled 
through max normalization (b), and trough min-max normalization ............. 17 

Fig. 7 - SAX transformation of a three-day length time series (W=4, A=3) [21] . 20 
Fig. 8 - Comparison between two load profiles with different shapes encoded with 

the same symbolic string ................................................................................ 21 
Fig. 9 - Comparison between domain expert based and pattern recognition-based 

segmentation of daily load profiles of a building ........................................... 23 
Fig. 10 - Classification of the main supervised and unsupervised data analytics 

techniques ....................................................................................................... 24 
Fig. 11 - Example of decision tree representation [22] .......................................... 27 
Fig. 12 - Comparison between three dendrograms of hierarchical clustering 

algorithms assuming different linkage methods (i.e., single, complete and 
average method) .............................................................................................. 32 

Fig. 13 - Conceptual framework behind the use of open loop EMIS .................... 38 
Fig. 14 - Use of prediction models for the measurement and verification of energy 

saving .............................................................................................................. 41 
Fig. 15 - Generation of the database of Customers’ patterns (i.e., normalized load 

profiles) ........................................................................................................... 47 
Fig. 16 - Conceptual framework of the customers’ classification process ............ 49 
Fig. 17 - Main conceptual steps behind occupancy diversity reduction in buildings

 ........................................................................................................................ 60 
Fig. 18 - Advanced EIS tools developed at different scales and organization of 

Chapter 4 ......................................................................................................... 65 
Fig. 19 - Zaanstad Town Hall: picture and geometric model [14] ........................ 68 



xv 
 

Fig. 20 - Hourly measured number of occupants in the whole building and in 
single thermal zones [14] ................................................................................ 69 

Fig. 21 - Hourly measured number of occupants in sub-zone C1(a) and sub-zone 
D0 (b) [14] ...................................................................................................... 70 

Fig. 22 - Maximum number of occupants vs. design capacity [14] ....................... 70 
Fig. 23 - Occupancy pattern analysis and reconfiguration framework (adapted 

from [14]) ........................................................................................................ 72 
Fig. 24 - Energy performance assessment (adapted from [14]) ............................. 74 
Fig. 25 - Typical occupancy patterns of sub-zone D0 [14] ................................... 75 
Fig. 26 - Occupancy profile sub-zone C1 (cluster 3) [14] ..................................... 76 
Fig. 27 - Classification of the occupancy patterns of sub-zone D0 [14] ............... 77 
Fig. 28 - Capacity labels of the sub-zones [14] ..................................................... 79 
Fig. 29 - Process of reconfiguration of thermal zones through occupant 

displacement (adapted from [14]) ................................................................... 82 
Fig. 30 - HVAC schedule optimisation through constrained occupant 

displacement ................................................................................................... 84 
Fig. 31 - Monitored hourly electricity consumption of zone G-H during the first 

week of April 2016 [14] ................................................................................. 88 
Fig. 32 - Comparison between the monitored and predicted electricity 

consumption values on a monthly basis for the whole office part (a), and by 
considering the office zone for the whole analysed period (b) [14] ............... 88 

Fig. 33 - Comparison between the electricity use for HVAC before (baseline) and 
after the implementation of the strategy, on a monthly basis for the whole 
office part (a), and considering the office zone for the whole analysed period 
(b) [14] ............................................................................................................ 89 

Fig. 34 - Carpet plot visualisation of the total electrical demand for Case study 1 
(a) and Case study 2 (b) [2] ............................................................................ 94 

Fig. 35 - Framework for advanced characterisation of building energy 
consumption time series and anomalous trend detection (adapted from [2]) . 97 

Fig. 36 - Identification of sub-daily time windows by means of the CART 
algorithm for Case study 1 [2] ...................................................................... 100 

Fig. 37 - Identification of sub-daily time windows by means of the CART 
algorithm for Case study 2 [2] ...................................................................... 100 

Fig. 38 - Optimal size of the regression tree for Case study 1 (a) and Case study 2 
(b) [2] ............................................................................................................ 101 

Fig. 39 - Identification of Adaptive breakpoints through the aSAX algorithm for 
case study 1 (a) and case study 2 (b) [2] ....................................................... 102 



xvi 
 

Fig. 40 - Symbolic transformation for a sequence of twenty time windows (i.e., 
four days) for case study 1 [2] ...................................................................... 103 

Fig. 41 - Carpet plot visualization of the SAX symbols for Case study 1 (a) and 
Case study 2 (b) [2] ....................................................................................... 104 

Fig. 42 - Occurrence frequency of each symbol in each time window for case 
study 1 [2] ..................................................................................................... 104 

Fig. 43 - Occurrence frequency of each symbol in each time window for case 
study 2 [2] ..................................................................................................... 105 

Fig. 44 - Classification tree developed for period 3 (07:00 – 13:59) for Case study 
1 [2] ............................................................................................................... 106 

Fig. 45 - Anomalous patterns related to the building heating/cooling system 
operations for Case study 1 [2] ..................................................................... 108 

Fig. 46 - Anomalous patterns related to the building heating/cooling system 
operations for Case study 2 [2] ..................................................................... 110 

Fig. 47 - Number of customers for each category (adapted from [10]) ............... 116 
Fig. 48 - Example of raw data structure [10] ....................................................... 117 
Fig. 49 - Box plots of the average electrical power demand in the three time slots 

related to different Italian electrical energy tariffs (F1, F2, F3) for the 
buildings in the same category [10] .............................................................. 117 

Fig. 50 - General methodological framework of the analysis [10] ...................... 118 
Fig. 51 - Methodological process for the rescaling of the Normalized Monthly 

Reference Load Profiles (NMRLPs) [10] ..................................................... 121 
Fig. 52 - Percentage of valid and excluded load profiles after pre-processing 

analysis (a) valid and excluded daily load profiles grouped by month for a 
randomly selected customer (b) [10] ............................................................ 123 

Fig. 53 - Identification of optimal value ρ* with the corresponding number of 
clusters for the initialization of “Follow the Leader” algorithm [10] ........... 124 

Fig. 54 - Clusters of load profiles identified through the “Follow The Leader” 
algorithm [10] ............................................................................................... 124 

Fig. 55 - Scatter plot of the number of customers (x-axis) versus the number of 
NMRLPs (y-axis) grouped in each cluster [10] ............................................ 125 

Fig. 56 - Misclassification rates for 18 configurations of iteration number and 
variation operator probabilities (globally optimal decision tree) [10] .......... 129 

Fig. 57 - Misclassification rates for populations with size of 25, 50, 100, 250 and 
500 trees respectively (globally optimal decision tree) [10] ........................ 129 

Fig. 58 - Globally optimal decision tree [10] ....................................................... 130 
Fig. 59 - Recursive partitioning decision tree [10] .............................................. 130 



xvii 
 

Fig. 60 - Linear correlations between actual and rescaled estimated energy profiles 
for each customer of the testing set [10] ....................................................... 133 

Fig. 61 - Actual load profiles of the working days (grey lines), actual average load 
profiles (red lines) and rescaled load profiles (blue lines) of a randomly 
selected customer from the testing set (a) carpet plot of actual load profiles 
together with the carpet plot reconstructed on monthly basis through the 
rescaled estimated load profiles (b) [10] ...................................................... 133 

Fig. 62 - Graphical representation of co-occurrence and implication between 
discrete values and events among multiple time series ................................ 139 

Fig. 63 - Scheme of the AHU analysed (refer to Table 17 for variable encoding)
 ...................................................................................................................... 143 

Fig. 64 - General framework of the analysis ....................................................... 145 
Fig. 65 - Example of aSAX transformation for a numerical variable .................. 146 
Fig. 66 - Identification of the transient period ..................................................... 147 
Fig. 67 - Procedure for the construction of the database of transactions ............. 148 
Fig. 68 - Analytics module for the non-transient period ...................................... 151 
Fig. 69 - Structure of the database used for developing the classification tree of 

fault diagnosis ............................................................................................... 152 
Fig. 70 - Distributions and breakpoint identification for some variables ............ 154 
Fig. 71 - Distribution of the time lags for rule 1077 (a) and rule 15268 (b) – (refer 

to Table (b) in Appendix B for the description of the rules) ........................ 156 
Fig. 72 - Characterization of the presence or the violation of the extracted rules for 

the testing days (refer to Table 16 for the encoding of faults) ...................... 157 
Fig. 73 - Visualization of an extracted temporal association rule (refer to Table 17 

for variable encoding) ................................................................................... 160 
Fig. 74 - Decision tree for the estimation of the symbolic discrete-values of the 

cooling coil valve position ............................................................................ 161 
Fig. 75 - Classification tree for the fault diagnosis during the non-transient period

 ...................................................................................................................... 163 

 





 

1 
 

1 Introduction 

The increasing spread of Information and Communication Technologies 
(ICT) is currently leading to a profound transformation of the energy management 
paradigm in buildings and energy grids [1]. The building energy management 
represents a fundamental task for effectively enhancing energy efficiency and 
reducing the mismatch between the actual and expected energy performance that 
is often related to incorrect occupant behaviour or equipment and control system 
malfunctions [2]. Building energy efficiency is a growing policy priority for many 
countries around the world, as governments seek to reduce wasteful energy 
consumption for supporting strategic environmental, economic and social goals. 
The International Energy Agency (IEA) has estimated that in terms of primary 
energy consumption, buildings represent roughly 40% [3–5]. 

In this context, Advanced Metering Infrastructures (AMI) are enabling the 
collection of large amounts of building-related data that can bring significant 
benefits in characterising actual performance of buildings and spot valuable 
energy saving opportunities. Pervasive building AMI can generate millions of 
measurements annually and stakeholders of building portfolios may have to 
handle overwhelming amounts of data which continue to increase over time [6,7]. 
However, the current utilization of such large amount of data in buildings is still 
limited. The reason behind is twofold. Firstly, building data are heterogeneous, 
often dispersed, with different resolutions, mostly asynchronous and are stored in 
raw or processed formats [6,8]. Appropriate, data management systems become 
then necessary to store and prepare large volumes of building related-data. 
Secondly, the use of conventional techniques based on domain expertise, physical 
principles and basic statistics are not always effective in extracting knowledge 
from massive and complex databases [1]. As a consequence, also the building 
sector is experiencing artificial intelligence momentum, and more and more 
building management systems are exploiting advanced analytics techniques (i.e., 
machine learning and data mining techniques) for gaining robust insight into 
building energy performance patterns and enabling the development of ready-to-
implement energy conservation measures [9–11].  

However, while data management issues are related to the solely information 
technology application field, the fully exploitation of data analytics in building 
energy management intrinsically involves a knowledge gap between building 
physics and data science [1].  

De facto, gaining insight into building related datasets cannot be achieved by 
exclusively using advanced techniques but also requires specific domain expertise 
for extracting, managing and interpreting non-trivial knowledge.  

Each building dataset has its own characteristics that significantly contribute 
to determine the quantity and quality of knowledge that can be potentially 
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extracted through data analytics techniques. In the case of building-related data, 
some of the most important attributes are listed below according to [1]: 

 Spatial scale of interest (e.g., group of buildings, single building, 
representative building space or energy system); 

 Energy services (Heating, cooling, domestic hot water, ventilation, 
lighting, electrical appliances) 

 Data features (e.g., minimum, maximum, mean) 

 Measurement accuracy (sensor tolerance) 

 Sampling frequency (i.e., annual, monthly, daily, hourly, sub-hourly) 

 Monitoring period length (e.g., year, season, month) 

 Data source (e.g., sensors, web platform, simulation) 

Regardless the type of application, adequate and good quality data are always 
the cornerstone of effective analysis capable to pinpoint operation issues in 
buildings energy management and then identify strategic energy saving 
opportunities [1]. Fig. 1 shows the main groups of variables related to building 
data that usually are considered during analysis (i.e., climatic data, physical 
parameters, operational data, user related data and time variables).  
 

 

Fig. 1 - Building-related data classified according to different categories of influencing factors (adapted from 
[1]) 

Clearly, due to its heterogeneity, the knowledge to extract and exploit is 
complex, legitimating the use of term “big data” in the application field of 
building automation and energy management [1].  

The process of knowledge discovery, on one hand is supported by the 
growing availability of advanced data analytics techniques and on the other hand   
is thwarted by the large range of possible applications that involve users, owners 
and operators at different levels and can be applied at different scales (form single 
building component to district of buildings). In this context, the fully exploitation 
of data analytics techniques and their combination still remain challenging to be 
generalised.  
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 This dissertation aims at proving that the heterogeneity in scale of 
application, the resolution and data size need the development of proper 
methodological processes based on advanced data analytics techniques. The main 
objective is to automatically extract and transfer useful knowledge in the robust 
way as possible and to translate it into ready-to-implement energy saving 
strategies in buildings and energy systems. 

1.1 Motivations of the research  

Building-related data are full of hidden knowledge that can enable significant 
energy savings when the proper discovery process is performed. In the current 
paradigm of smart buildings, the building owners, and managers can leverage on 
more and more sophisticated data analytics-based software, capable to inform and 
assist them in improving building performance during operation. However, such 
solutions are valuable if large amount of data is available. This condition is 
becoming a standard in buildings where modern Building Automation Systems 
(BAS) monitor hundreds of points with high spatial and temporal detail. BASs are 
used for controlling building systems and can also provide simple threshold-based 
alarms when measured data are out of range. However, their analytical 
capabilities are not enough developed for supporting users in gaining insight into 
measured data.  

 

Fig. 2 - EMIS tool classification according to detail of data, detail of analysis and feedback type  

To this purpose Energy Management and Information Systems (EMIS) can be 
employed. EMIS belong to the rapidly evolving family of tools that monitor, 
analyse, and control building energy use and system performance [12]. Fig. 2 
reports a classification of EMIS tools that consider the detail of data, the detail of 
analysis and the type of feedback provided.   

According to [12], a first classification of EMIS tools can be formulated 
considering if their functionalities are enabled at meter or system level (Fig. 2). 
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The main difference between meter-level and system-level EMIS consists in the 
level of data considered in the analysis. The first category of EMIS considers data 
measurements at a high level (e.g., total energy consumption of a building/system) 
while system-level EMIS are focused on more detailed data (e.g., component 
level) related to the operation of specific systems (Fig. 2). For example, meter-
level EMIS do not typically provide information as specific as, “cooling coil valve 
of air conditioning system is stuck”.  

Another kind of classification can be made considering how much advanced 
are the analyses performed (Fig. 2). While utility bill analysis and BAS are 
considered basic tools for controlling building systems and providing information 
about building performance, this dissertation is focused on EMIS tools that 
leverage on advanced data analytics-based technologies. A description of 
advanced EMIS tools is provided in [12] and reported in the following (also see 
Fig. 2): 

Advanced Energy Information Systems (EIS): Advanced EIS are tools 
focused on meter-level monitored data (e.g., hourly or sub-hourly energy 
consumption data at whole building level) that are not usually integrated with 
BAS data. Such tools typically include predictive modeling and pattern 
recognition analysis for performing tasks such as energy consumption forecasting, 
anomaly detection, advanced benchmarking, load profiling and schedule 
optimisation of building energy systems. 

Fault Detection and Diagnostic (FDD) systems: FDD tools automatically 
detect unpermitted deviation of at least one characteristic property of a system 
from its acceptable, usual, standard condition. Faults are abnormal system states 
whose identification and diagnosis can lead to significant energy savings. Even 
though FDD tools exploit BAS data, the feedback that are able to provide is much 
more detailed and effective than BAS (information about duration, occurrence and 
impact of faults).   

Automated System Optimization (ASO): ASO software analyses BAS data 
and modifies the control settings for achieving an optimised energy performance 
of building systems. Differently from EIS and FDD systems, the functionalities of 
ASO tools are based on a two-way communication paradigm with the BAS 
making them advanced control solution.  

Conversely, EIS and FDD systems can be classified as enabling tools, also 
called Decision Support Systems (DSS), whose feedback is provided to a human 
user (e.g., energy manager, building owner, energy service company). In this 
perspective, while EIS and FDD are powerful tools, they need to be integrated in a 
robust verification process to achieve the desired impact. In [12] are reported the 
findings of an implementation campaign of EMIS tools in 96 buildings. It has 
been demonstrated that DSS users (implementing FDD and/or EIS systems) 
achieved a median energy saving after two years of implementation of about 9% 
and 4% respectively. However, users that dedicated adequate staff time and effort 
in exploiting DSS output (i.e., suggested as best practice) achieved better results 
even beyond 20% of energy saving.   



5 
 

 
Determining the cost-effectiveness of DSS is then not straightforward given 

that their installation does not directly produce savings [12]. Rather, savings or 
improvement in energy management are achieved by acting on the basis of 
information these technologies provide. Their effectiveness can be then 
considered strictly related to three main factors: (i) the level of user engagement, 
(ii) the detail of the analysis and information provided, (iii) the level of 
interpretability of the results obtained. The optimal configuration of such aspects 
can lead to a significant impact on system/building/portfolio energy management 
and act as enabler for the spread of DSS technologies. In fact, even though the use 
of DSS represents an asset for the optimal management of energy, the penetration 
of such technologies in buildings is still not satisfactory. According to [12] the 
main reasons are related to the following aspects: 

 Software specification and selection 
 Users are not clear on which analytics tool features they need. 
 Lack of clarity on differences between available analytics tools. 

 Software installation and configuration 
 Integration problems with existing metering infrastructure and 

difficulty bringing all the data into a single centralized database.  
 Data quality problems. 
 Inadequate metering infrastructure. 

 Analytics process effectiveness 
 Users are overwhelmed by data instead of being informed with 

actionable insights.  
 Difficulty in spotting measures/opportunities in the data. 
 Difficulty in finding root causes of anomalous/faulty operations.  
 Absence of a verification process. 

 Commissioning process 
 Difficulty in maintaining persistence of savings. 
 Waste of energy due to operation in manual mode of systems. 

In this context, this dissertation intends to give a contribution in improving the 
effectiveness of analytics tools that can be embedded in DSS. To this purpose, 
relevant applications at different scales are investigated focusing on aspects 
related to the maximization of knowledge discovered from monitored data, its 
interpretability, and the way it is transferred to the final user. To this purpose, 
novel data analytics-based methodologies are developed supporting two different 
feedback schemes, i.e. una tantum feedback and real/quasi real time feedback: 

 Una tantum feedback: The results of the analysis performed by the DSS 
tool are provided to the user as static information such as the 
identification of energy saving opportunities (e.g. scheduling 
improvement of building systems) and reference performance patterns in 
energy consumption (e.g., benchmarking at building portfolio scale).  
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 Real time/quasi real time feedback: The knowledge extraction process of 
DSS tool is based on continuous analysis of the monitored data and the 
final user is involved in exploiting the obtained results in real time/quasi 
real time. In this case the DSS tool could provide several scheduled or 
event-based feedbacks to the user during the day.  

Real/quasi real time feedback can enable a better understanding of the current 
building/system energy behaviour during operation most of all making it possible 
to identify poor performance and quickly alarm or suggest solutions. However, 
feedbacks that are too much frequently sent to the user, transmitted in not 
engaging way and with a high rate of false alarms could negatively affect the 
credibility of DSS tools based on real time data analytics.  

For this reason, rationalise the number of feedbacks sent to the user, improve 
the visualization of the results obtained are essential aspects to be taken into 
account. Therefore, despite DSS tools represent valuable solutions for achieving 
significant improvement of building performance, their fully exploitation still 
needs a great research effort especially for what feedback interpretability is 
concerned.  

Nowadays, the rapidly evolving sector of artificial intelligence offers a wealth 
of new and effective algorithms that in major part are being used also in the 
building sector. Most of them are open sourced and well documented. In this 
context, developers can better focus on the application of the algorithms and their 
combination in robust methodological frameworks of the analysis rather than 
coding the algorithms themselves [13]. This is extremely desirable for DSS tools, 
for which the human-in-the-loop paradigm imposes quality constraints (e.g., 
simplicity in understanding, commissioning and using the tool) not easy to be 
respected.  

Due to these challenging research opportunities, DSS tools based on 
advanced data analytics processes (i.e., advanced EIS, FDD tools) are investigated 
throughout this research study.  

1.2 Research outline 

In order to demonstrate the potential associated to DSS, four main applications 
related to the implementation of EIS and FDD tools are proposed for different 
testbeds. Fig. 3 shows the applications investigated, with the reference of the scale 
of analysis and the feedback scheme assumed. Compared to FDD tools, EISs have 
a wider range of application in terms of objectives to be pursued and scales of 
analysis (i.e., system level, whole building level, building portfolio level).  
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Fig. 3 - Outline of the applications investigated in the thesis with the reference of the scale of analysis and the 
feedback scheme assumed 

For each scale considered an EIS tool was conceived and tested. In particular, 
novel methodological frameworks of analysis were developed for addressing the 
following main tasks typically required to advanced EISs (Fig. 2): 

 HVAC scheduling improvements at building system level [14]. The 
improvement of HVAC schedules is one of the most effective way for 
reducing energy waste in building during daily operation. HVAC are 
responsible of a significant part of the whole building energy 
consumption and often are operated with fixed schedules that poorly fit 
the actual occupancy of the building. In that perspective, an EIS tool 
capable of exploiting measured occupancy data, allows energy managers 
to properly manage HVAC systems and significantly reduce energy 
consumption of their buildings. The development of this EIS tool is 
discussed in section 3.2. 

 Identification of energy consumption reduction opportunities 
through the detection of anomalous energy trends at whole building 
level [2]. Anomaly detection in buildings is often related to FDD analysis 
conducted at system component level where the scale of analysis is small 
(e.g., air handling unit components). However, in most of real cases, just 
few and aggregate variables related to the total energy consumption of 
the building are monitored and collected. Improving the building energy 
performance by analysing aggregate data is challenging, especially if 
several factors such as occupants' behavior, comfort levels, operation 
schedules of systems generate the existence of different energy 
consumption patterns not always easily inferable. In this context, an EIS 
tool capable to automatically detect anomalous energy trends in building 
energy consumption allows energy managers to be promptly informed 
when the building is not behaving as expected and to avoid inefficient 
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energy management procedures. The development of this EIS tool is 
discussed in section 3.3. 

 Identification of typical energy use patterns and customer 
classification at portfolio level [10]. An important functionality that an 
EIS tool should have is related to its ability of performing analyses at a 
scale higher than the single building. This opportunity is extremely 
valuable for users that usually need to manage more than one building 
simultaneously (e.g., municipalities, demand response aggregators). At 
this scale of analysis the identification of typical energy use patterns in 
large building portfolios can reveal knowledge about specific group of 
buildings that, as a reference, can be useful for designing targeted 
financial demand response programs, externally benchmarking energy 
performance of buildings and classifying energy customers. The 
development of this EIS tool is discussed in section 3.4.  

Regarding the DSS applications at system level, an innovative procedure is 
developed for addressing the following main task: 

 Fault detection and diagnosis in HVAC systems with a focus on Air 
Handling Unit (AHU) components (component level) [22]. The optimal 
management of heating ventilation and air conditioning systems, is a 
crucial task, considering that such systems account up to 50% of the 
energy demand in buildings [131]. However, Air Handling Units 
(AHUs), that are an essential part of HVAC systems, are often 
inappropriately managed negatively impacting on building energy 
consumption and on the control of the indoor environment conditions. In 
this context a robust and novel FDD tool, capable of detecting and 
diagnosing the main faults of fans, dampers, and valves in AHUs, is 
proposed in this research study. The development of this FDD tool is 
discussed in section 4.1. 

All the developed tools leveraged on time series analytics frameworks based on 
the coupling of data mining and machine learning algorithms with the aim of 
maximizing the amount of information extracted from building monitored data 
while maintaining a high level of result interpretability.  

To this purpose, the developed data-driven methodological frameworks 
leveraged on the application of automatic rule extraction techniques. Such 
techniques (e.g., association rules, decision trees) aim at extracting from large 
amounts of data, inference rules in form of IF-THEN implications that are able to 
effectively describe all the relations that exist between the variables included in 
the same dataset. In this way the results of the analysis can be translated in a set of 
interpretable decision rules that can be easily embedded in DSS, helping 
managers, owners or service companies in increasing awareness about the 
measured energy performance of their buildings/systems and achieve demanding 
energy management targets during daily operation. 
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1.3 Research questions 

As stated in the previous section all the methodological frameworks of 
analysis, included in the developed DSS tools, are based on time series analytics 
and automatic rule extraction techniques. Knowledge extracted from building-
related time series (e.g., load and occupancy profiles) contains information on 
how and when building energy use changes during the day for various end uses 
such as appliances, lighting, ventilation, heating and cooling [15,16] respect to 
boundary conditions (e.g., weather, time period or user/customer features) 
influencing their particular variation over time. Advanced DSS tools, at both 
meter and system level, can provide such level of insight by means of time-series 
analytics methods.  

Algorithms related to (i) sequential and recurrent pattern mining (ii) causality 
analysis (iii) time series similarity proved to be flexible in their combination and 
effective in extracting essential knowledge from time series [17–20]. Such 
advanced techniques play an essential role for addressing emerging issues in 
building energy management such as identification of energy anomalies, 
identification and diagnosis of system faults, occupancy and load profiling. 

However, the coupling of building physics expertise and diverse analytics 
techniques still needs significant contributions aimed at developing robust and 
generalizable analytical frameworks of analysis that provide useful knowledge to 
be translated in ready-to-implement energy saving and management strategies. 
For this reason, the primary question addressed through this research is:  

 How it is possible to robustly extract useful knowledge from building time 
series in order to better understand building behaviour and develop DSS 
solutions aimed at improving its energy performance?  

 
This question is articulated into several more specific parts from both 

analytics and energy point of view: 

 How to combine, in an effective way, time series analytics and automatic 
rule extraction techniques? 

 How to prepare time series for mining only useful information from 
them? 

 How to deal with highly multivariate time series problems? 

 How to deal with time series data gathered from different system 
components, energy systems or even buildings? 

 How can faulty operation conditions in building systems be detected and 
promptly diagnosed? 

 How can anomalous behaviors in building energy management that 
should be changed be identified? 

 How to compare the energy performance of a building to its peers? 

 How to ensure high performance of the analytical process while 
maintaining high interpretability of the analysis? 
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The present dissertation aims at solving and discussing all the aforementioned 
analytics and energy aspects that typically arise in DSS tool development phase, 
in a robust way as possible. 

1.4 Objectives of the thesis and novelty 

The application of data analytics techniques in DSS is a relatively young and 
fast-growing discipline and clearly its potential has not been fully explored. In the 
present study much of the effort is devoted in conceiving and testing several novel 
methodologies for actively contributing to this field of research. Methodological 
frameworks are developed to prove data analytics effectiveness and scalability 
specifying how such methodologies need to be employed for specific applications, 
scales of analysis and feedback schemes and which information should be mined 
accordingly. In this perspective the main research objectives can be summarized 
as follow: 

 Demonstrate that data analytics-based DSS tools have a high potential in 
improving energy management during daily operation of buildings. Today, 
the most spread data analytics based technologies already installed in 
buildings refer to DSS solutions (i.e., EIS and FDD system [12]). For this 
reason, advancing research on these energy management solutions represents 
the most effective way for strongly impact the building automation sector in 
the short term.   

 Address the emerging need of increased automation and robustness in data 
analytics-based procedures for the advanced characterization of the energy 
performance in buildings (i.e., from system component up to district level).  

 Address the transition from a reactive to predictive approach in building 
energy management. Advanced DSS tools should leverage on the estimation 
of building and system behavior over time for helping owners and managers 
in delivering an optimal indoor environment quality with the possibility of 
anticipating or early detecting anomalous trends and system failures in their 
buildings. 

 Address the need of high interpretability of the analyses performed by data 
analytics based DSS tools. DSS solutions include a human-in-the-loop 
paradigm in the decision-making process and for this reason they require high 
simplicity in terms of interpretability and opportunity to integrate them into 
existing systems.  

 Rationalize and improve the quality of the feedback schemes especially for 
real time analytics processes. The process of data analysis often implies a 
knowledge barrier for users unfamiliar with advanced techniques. For that 
reason, advanced visualization represents a very important step for improving 
feedback quality and increasing user engagement resulting in a better 
exploitation of enabling tools such as DSS.  
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The main objective of this research study is then demonstrating the added value of 
data analytics and its contribution in improving DSS tools performance. To this 
aim robust analytical frameworks of analysis are conceived and tested on real 
dataset of measured building-related data. The novelty of this research is not 
related to the set of applications selected (well known in the research field), but it 
is associated to the approach followed for conducting them. In all the introduced 
methodologies, supervised and unsupervised rule extraction algorithms are used 
and combined in an innovative way for achieving the highest performance as 
possible while maintaining both results and analysis fully interpretable.  

1.5 Organization of the thesis 

The whole dissertation is divided into 5 chapters organized as showed in Fig. 4. 
 The main content of each chapter is summarized as follow. 
 

 
Fig. 4 - Conceptual organisation of the thesis 

Chapter 1 presents the motivation of this research, the objectives, and the 
organization of the thesis. 

Chapter 2 presents the literature review. The chapter includes two main 
sections. The section 2.1 introduces a general framework of knowledge extraction 
from building related data and provides a focus on the data mining and machine 
learning algorithms used in this research study for conducting time series analysis 
and automatic rule extraction. On the other hand, section 2.2 reviews the 
applications of data analytics in DSS for enhancing energy management in 
buildings. Both meter and system level applications are discussed. 

Chapter 3 presents the developed DSS solutions at meter level with reference 
to advanced EIS tools. In particular section 3.2 presents and discusses the 
development of an EIS tool for HVAC scheduling improvements at system level 
(tested on the measured data of a town hall). Section 3.3 presents and discusses 
the development of an EIS tool for the detection of anomalous energy trends at 
whole building (tested on the measured data of a university campus and a town 
hall). Section 3.4 presents and discusses the development of an EIS for the 
identification of typical energy use patterns at  building portfolio level (tested on 
the measured data of more than 100 commercial and industrial buildings).  
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Chapter 4 presents the developed DSS solution at system level that consists in 
an FDD tool conceived for detecting and diagnosing faults of AHU components in 
HVAC systems.  

Eventually chapter 5 summarizes the work presented in this dissertation and 
gives an outlook about application opportunities, and barriers of data analytics-
based technologies in the building sector.  
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2 Literature review 

The scope of the present chapter is to investigate the findings achieved so far in 
the scientific literature about the use of advanced data analytics techniques and 
their application in energy and building sector. This chapter provides an extensive 
overview on the techniques employed to automatically extract information from 
building related data in order to address emerging tasks in building energy 
management. The chapter is organised in two main sections. On one hand, section 
2.1 presents and discusses the general framework of analysis that is behind the 
knowledge extraction process when building related data are analysed. On the 
other hand, section 2.2 reviews all the applications, related to very active fields of 
research, that benefit from the advancements of data analytics. The applications 
and range of techniques reviewed in both sections go beyond the scope of the 
present thesis but fit very well with the current need of analytics capabilities 
required to advanced DSS tools in buildings that are the focus of this dissertation.  

Portions of the present Chapter were already published in the following 
scientific papers: 

 Capozzoli A., Cerquitelli T., Piscitelli M.S. 2016. Chapter 11 – 
Enhancing energy efficiency in buildings through innovative data 
analytics technologies, in: D. Ciprian, F. Xhafa (Eds.), Pervasive 
Comput., pp. 353–389. [1] (the portion reused by the author is less 
than 10% of the material in the book chapter as required by the 
publisher for a free use of the content) 

 Capozzoli A., Piscitelli M.S., Brandi S. 2017. Mining typical load 
profiles in buildings to support energy management in the smart city 
context. Energy Procedia, 134 pp. 865–874. [11] 

 Capozzoli A., Piscitelli M.S., Brandi S., Grassi D., Chicco G. 2018. 
Automated load patterns learning and diagnosis for enhancing energy 
management in smart buildings. Energy, 157 pp. 336–352. [21] 

 Piscitelli M.S., Brandi S., Capozzoli A. 2019. Recognition and 
classification of typical load profiles in buildings with non-intrusive 
learning approach. Applied Energy, 255 pp. 113727. [10] 

 Capozzoli A., Piscitelli M.S., Gorrino A., Ballarini I., Corrado V. 
2017. Data analytics for occupancy pattern learning to reduce the 
energy consumption of HVAC systems in office buildings. Sustainable 
Cities and Society, 35 pp. 191-208 [14]. 

 Piscitelli M.S., Mazzarelli D.M., Capozzoli A. Submitted for 
publication. Enhancing operational performance of AHUs through an 
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advanced fault detection and diagnosis process based on temporal 
association and decision rules. Energy and Buildings. [22] 

 Capozzoli A., Piscitelli M.S., Neri F., Grassi D., Serale G. 2016. A 
novel methodology for energy performance benchmarking of buildings 
by means of Linear Mixed Effect Model: The case of space and DHW 
heating of out-patient Healthcare Centres. Applied Energy, 171 pp. 
592–607. [52] 
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2.1 Knowledge extraction process for building related 
data 

  The section 2.1 provides an extensive overview on the techniques that are 
useful for automatically extracting information from data and a specific focus is 
devoted to the algorithms employed in methodological frameworks discussed in 
chapter 3 and 4.  

Fig. 5 presents a general framework of the knowledge extraction process for 
building related-data which mainly includes four phases according to [1,23]. Data 
pre-processing phase consists of two tasks, i.e., data preparation and data 
characterization (Fig. 5). This phase is fundamental for improving the quality of a 
given dataset and preparing the data in formats that are suitable for the application 
of data analytics methods. On the other hand, data characterization is useful for 
obtaining preliminary knowledge from data in form of visualizations and simple 
statistics. 

Data segmentation is an important phase in the process of analysis, and it is 
aimed at finding more homogenous sub-datasets in the available database for 
increasing the effectiveness of knowledge discovery. Data segmentation can be 
performed through expert-based and statistical-based approaches or by means of 
pattern recognition techniques. 

Knowledge discovery deals with the application of different data analytics 
techniques, to discover hidden knowledge and patterns in massive data. The 
knowledge discovery phase could exploit both supervised and unsupervised 
learning techniques on the basis of the mining target defined by the analyst. 

Eventually, knowledge exploitation is aimed at selecting, interpret, and use 
the knowledge discovered. Therefore, Selected knowledge is used for supporting 
the final user (e.g., energy manager) in the decision-making process with the final 
aim of spotting energy saving opportunities and improving energy performance 
during daily operation of buildings.  

 

 

Fig. 5 - Framework of the knowledge discovery process on building energy data and organization of section 
2.1 (adapted from [1]) 
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2.1.1 Data pre-processing 

The two main tasks that are included in data pre-processing phase are: data 
preparation and data characterization. While data characterization, aims at 
providing a first outlook on the analysed dataset (by means of visualizations and 
simple statistics), data preparation underlies various objectives. 

Data preparation consists in three tasks including data cleaning, data 
transformation and data reduction. In the literature was demonstrated that data 
preparation is a time-consuming task and it could take up the 80% of the total 
computational time of the analysis [24]. Moreover, this phase is also crucial for 
ensuring high performance of data analytics algorithms considering that their 
effectiveness is largely dependent from the quality of data and from the way in 
which they are prepared for the analysis.  

The purpose of data cleaning task is to solve data quality issues in the dataset, 
that are mainly related to the presence of missing values and statistical outliers. 
Such inconsistencies could be generated by noisy and uncertain measurements, 
sensor faults and insufficient sensor calibration [1]. When dealing with missing 
values, a number of alternative approaches can be adopted. The simplest approach 
consists in ignoring records that have missing attributes. In this case the record is 
removed from the dataset. However, such approach is not recommended in the 
case of time series data, where each data point has a specific location in the time 
domain. In that perspective, other approaches such as substitution by mean, by 
regression/classification model, or by moving average model, make it possible to 
replace such data with different degrees of approximation. Differently from 
missing values, statistical outliers included in the analysed dataset should be 
firstly detected and then replaced. Outliers are records that significantly differ 
from the other elements in the data sample. The identification of such 
inconsistencies could be performed by means of simple statistical methods (e.g., 
box plot analysis (see Fig. 6)) as well as though supervised and unsupervised 
(e.g., clustering analysis) data analytics techniques.  

 

 

Fig. 6 - Punctual outliers identified through box plot analysis in a time series of 3 years length 
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When a time series is analysed, the outliers can be classified into two different 
types: punctual outliers and anomalous data sequences [1]. The first type of 
outliers is often detected through rolling window-based techniques (e.g., hampel 
filter), whenever anomalous time series sequences could be detected through 
further investigation at a later stage. In fact, differently from punctual 
inconsistencies (that are mainly related to data transmission problems), anomalous 
sequences could be associated to the monitoring of specific events that are of 
interest in several pattern recognition application (e.g., fault detection and 
diagnosis).     

The process of data transformation consists in data scaling and data type 
transformation. The purpose of data scaling is to normalize record attributes so 
that they become equally important in terms of variability ranges. The methods 
used for data scaling include min normalization, max normalization, min-max 
normalization, Z-score normalization, and decimal point normalization [1]. The 
reasons behind data transformation can be different. For example, data scaling is 
an essential preliminary step for the development of some supervised analytics 
methods (e.g., support vector machine, artificial neural network) that can be 
negatively affected by heterogeneity in the scale of data input. However, in other 
cases, data normalization is employed for extracting patterns from data that are 
not sensitive to their magnitude.  

 

 

Fig. 7 - Three different daily load profiles in their original form (a), scaled through max normalization (b), 
and trough min-max normalization 

 
Fig. 7 shows the effect of different data scaling methods used for the 
normalization in the (0,1) range of three building daily load profiles. In particular 
Fig. 7 (a) shows the three load profiles in their original form, Fig. 7 (b) shows the 
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load profiles after max normalization and Fig. 7 (c) shows the same three profiles 
transformed trough a min-max normalization. In particular, profile 1 and 2 are the 
closest profiles in Fig. 7 (a) and this is essentially due to their similar magnitude. 
On the contrary the min-max normalization (Fig. 7 (c)) tends to emphasize only 
macroscopic shape similarities between the profiles completely neutralizing 
magnitude effects. In between, max normalization (Fig. 7 (b)) makes the profiles 
comparable (transforming them in the same variability range) while preserving 
some features of their original magnitude (e.g., min/max ratio). From the 
examples provided, it is clear that data scaling represents an important task in 
preparing data especially for pattern recognition procedures for which the concept 
of data similarity plays a key role.   

The data type transformation is another pre-processing task useful for 
preparing the data in a suitable format for the application of specific data analytics 
algorithms. The most common data type transformation consists in transforming 
numerical data into categorical ones (e.g., High, Medium, Low). As a reference, 
algorithms such as association rules, can only manage data in categorical format 
for finding robust relations between itemsets. Available methods for data type 
transformation include equal-frequency binning, equal-interval binning, and 
entropy-based discretization [1]. The last pre-processing task is data reduction. In 
the case of time series, sampling techniques are commonly used for the reduction 
of the observation sampled at a specific time frequency related to each variable. In 
some cases, both reduction and transformation of data is needed for specific 
mining purpose. To this aim, techniques such as Principal Component Analysis, 
Curvilinear Component Analysis, Sammon Maps, frequency-domain analysis or 
wavelets [25,26] can be employed. Such methods consist in the elaboration of the 
initial data into a new vector subspace, for which it is not possible to directly 
represent the specific properties of the transformed data. However the physical 
meaning of the original data is lost when they are used [27].  

An effective solution is to use more sophisticated data preparation methods 
that allow to address both tasks while preserving the easily interpretable nature of 
data. For what concerns time series, one of the most used technique, is the so-
called Symbolic Aggregate approXimation (SAX). SAX is an emerging technique 
in time series analytics that is one of the focus of this research study. For the sake 
of completeness, Section 1 reports an overview on Symbolic Aggregate 
approXimation (SAX) with the aim of discussing its advantages and limitations. 

 Data reduction and transformation in time series: Symbolic 
Aggregate approXimation (SAX) 

SAX is one of most promising techniques available to reduce and transform 
time series, while preserving key information. It is based on the reduction of the 
time series through a piecewise technique and on its transformation into a 
symbolic string. The method makes it possible to discretise the time series on the 
time axis in non-overlapping time windows of equal length by implementing a 
PAA technique (Fig. 8). PAA performs a constant approximation of the data by 
replacing the values of the original time series that fall into the same time window 
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with their mean value. In order to transform the PAA results into a symbolic 
string, the amplitude of the variable (vertical axis) has to be divided into a number 
of regions that are defined by the analyst. A symbol is associated to each region, 
and this allows the PAA segments to be encoded. A simple way of addressing this 
task was proposed in [28], that is, by means of the standardisation of the original 
time series with a Z-score transformation. 

In this way, the desired number of regions is identified, through the definition 
of breakpoints, on the basis of a hypothesis of a Gaussian distribution. The 
regions identified, by means of the breakpoints, on the amplitude space of the 
time series have equal probability of occurring. An example of a breakpoint table 
is reported in Table 1.  

Table 1 - Table of breakpoints for alphabet size A = 3, 4, 5 calculated from a standard Gaussian 
distribution 

  Alphabet size A 

  3 4 5 

B
re

ak
po

in
ts

 β
 

β1 -0.43 -0.67 -0.84 

β2 0.43 0 -0.25 

β3 - 0.67 0.25 

β4 - - 0.84 

 
The set of breakpoints β = {β1, …, βA-1} (in Z-score) is calculated according 

to the chosen alphabet size, in this case A, which corresponds to the desired 
number of regions and hence to the symbols needed to encode the time series.  

However, if the distribution of the time series is not Gaussian, the above 
explained process, in which a standardised lookup table (Table 1) is used, may 
generate unequal probability regions on the amplitude axis. If the hypothesis of 
normality is not satisfied, it is crucial to analyse the actual distribution function of 
the variable under investigation to find regions with equal probability [25] or 
regions where the values of the amplitude axis occur frequently [29]. 

After the identification of the regions, the obtained symbols are concatenated 
to form a symbolic string. The subsequent step consists of chunking the entire 
string into a set of N symbolic sub-strings, each with a reference time length T 
(specified a-priori by the analyst). Each substring contains a certain number of 
time windows. In this way, the time series data is transformed into a series of 
continuous symbolic sub-strings that are called SAX words. In short, the SAX 
technique requires three input parameters:  

 the definition of the reference time length T of the N sub-strings,  

 the number W of time windows that compose the N sub-strings, and 

 alphabet size A to convert the result of the PAA technique into a symbolic 

string.  

Fig. 8 shows the output of a SAX process applied to the energy consumption 
time series of a building, with N = 3 days, the daily length T = 24 hours, the 
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number of time windows W = 4 and alphabet size A = 3. The right-hand side of 
the figure shows a sketch of the NxW matrix in which the evaluated SAX words 
are stored for the successive analysis. The N1 and N2 daily profiles of two 
working days are encoded with the same SAX word (i.e., A-C-C-B), while daily 
profile N3, pertaining to a Saturday, is characterised by a different SAX word 
(i.e., A-B-B-A), which denotes a lower electrical demand for time windows W2, 
W3 and W4.  

  

 

Fig. 8 - SAX transformation of a three-day length time series (W=4, A=3) [21] 

A further advantage of the SAX transformation is the possibility of computing 
a distance measure between the SAX words to perform a clustering analysis [25]. 
To this aim, Lin et al. [28] defined the MINDIST function. Considering two SAX 
words of the same length, their overall distance is defined by the lower bounding 
approximation to the Euclidean distance. The ‘lower-bound distance’ corresponds 
to the distance between the lower limit of the Z-score interval of the symbol 
located at greater amplitude and the upper limit of the Z-score interval of the other 
symbol. In other words, the distance between two equal or consecutive symbols 
(e.g., “a” and “b”) is 0, while MINDIST ≠ 0 if the symbols are at least two 
alphabets apart (e.g., “a” and “c”) [28].  

Although SAX introduces certain advantages as far as dimensionality reduction 
is concerned, the selection of the input parameters W (i.e., time windows) and A 
(i.e., symbol ranges) is an essential step. Fig. 9 shows two daily load profiles 
reduced and transformed through Symbolic Aggregate approXimation. For both 
profiles W and A are set equal to four and three, respectively. In particular, the 
daily load profiles are encoded with the same SAX word (i.e., a-c-c-a) even if 
they have significantly different shapes. Indeed, the incorrect number of time 
windows and symbols, strongly affects the quality of the data reduction and 
transformation in terms of information loss due to the approximation of the 
original time series. 
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Fig. 9 - Comparison between two load profiles with different shapes encoded with the same symbolic 
string 

In order to face the issue different approaches were proposed in the literature 
[2,30]. For example, the genetic algorithm NSGA-II was used in [31] to optimise, 
for a daily length reference period, the number of SAX words generated by setting 
different alphabet sizes and numbers of time windows. The objective was to 
maximise data accuracy and compression and to minimise the complexity of a 
time series transformation, in terms of the number of different generated SAX 
words. In the literature, different modifications to the original SAX process were 
proposed for improving its performance and better handling the phase of symbolic 
encoding of data. In the following, the main characteristics of an enhanced SAX 
algorithm (Adaptive Symbolic Aggregate approXimation) is described.  

 Adaptive Symbolic Aggregate approXimation (aSAX) 

The adaptive symbolic aggregate approximation introduced by Ninh et al. [32] 
is based on the original SAX, but an adaptive algorithm is used for breakpoint 
identification. These adaptive breakpoints are evaluated through a pre-processing 
phase, which is based on the K-means clustering technique. In this case, the 
hypothesis is not of equal probability, but consists of finding, for a fixed 
predetermined number of symbols, the partitions that minimise the total 
representation error after the SAX transformation. The algorithm consists of an 
iterative process, which starts from the initial conditions, labelled with the 
superscript (0), and evolves with the generic iteration, labelled with the 
superscript (j). The algorithm inputs are the alphabet size A (which corresponds to 

parameter k in the K-means algorithm), and the initial breakpoints 𝛽
(), for i = 1, 

…, A, evaluated under the equal probability hypothesis as an effective 
initialisation of the cluster intervals. The generic step of the algorithm then 

computes the centroids 𝑐
() of all the PAA segments, 𝑥, that fall between two 

consecutive breakpoints [𝛽
(ିଵ)

, 𝛽ାଵ
(ିଵ)], for i = 1, …, A−1, as follows (Eq. 1): 
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where Ni is the total number of segments included in the [𝛽
(ିଵ)

, 𝛽ାଵ
(ିଵ)] 

interval. Subsequently, the new breakpoints 𝛽
() are moved to the centre of two 

consecutive centroids. The total representation error, that is, the total residual sum 
of squares between all the samples and their centroids, is then computed as (Eq. 
2): 
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Eq. 2 

At the end of each j iteration, it is possible to evaluate the relative 
representation error reduction,  

𝜀(), as follows (Eq. 3): 

𝜀() =  
𝑅𝑆𝑆௧௧

(ିଵ)
− 𝑅𝑆𝑆௧௧

()

𝑅𝑆𝑆௧௧
(ିଵ)

 

Eq. 3 

The adaptive breakpoint search process is stopped by fixing a minimum 

threshold, 𝜀 ̅, when 𝜀() < 𝜀.̅ The above described process converges rapidly, due 
to the initialisation of the effective equally probable breakpoint search process and 
the reduced dimensionality of the PAA segments. The SAX approximation error 
of the symbols is then reduced, step by step, until the best set of breakpoints is 
obtained. The aSAX algorithm proved to be effective in overcoming limitations of 
the original SAX process significantly reducing the transformation error of 
encoded time series. Good evidence of this is found in the application of such 
algorithm  in the methodological framework proposed and discussed in section 
3.3.3. 

2.1.2 Data segmentation 

Data segmentation is a fundamental phase for enhancing knowledge extraction 
from massive databases considering that makes it possible to find more 
homogenous sub datasets according to the specificity of their own features. In 
fact, when the heterogeneity among the data points within each sub-dataset is low, 
a more effective recognition of typical and infrequent patterns can be performed 
(essential for load profiling process and anomalous energy trend detection). 
Approaches for the segmentation of data can differ and can be based on domain 
expertise, statistical methods or data analytics algorithms [11]. A high expertise is 
required to the analyst in order to determine the segmentation approach to be 
adopted. For example, with reference to energy consumption data of buildings, a 
typical expert segmentation consists in separating weekdays data from 
weekend/holidays data [19] due to the different load conditions that occur during 
these periods. Depending if the analysis is or not performed on thermal sensitive 
energy data, the assumptions that need to be taken into account for an expert 
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segmentation could be significantly different. In that case, the use of simple 
statistical methods (e.g., Pearson correlation, analysis of variance) can support the 
segmentation process by extracting useful correlations or performing significance 
tests. For example, the statistical approach can be effective for sub-setting energy 
consumption data on the basis of a climate-driven segmentation considering a 
seasonal effect (winter and summer season). However, expert-based and statistical 
methods are not always able to properly segment data, and in the case of building 
energy consumption it is due to the existence of various load conditions not 
always easily inferable. 

In this perspective, in order to avoid the identification of noisy or not 
homogeneous subsets of data, more and more analysts are relying on the 
application of data analytics techniques, such as cluster analysis, for performing 
data segmentation [33]. Unlike the expert segmentation, cluster analysis allows 
homogeneous sets of data to be discovered with an unsupervised approach and 
without leveraging on a-priori knowledge.  

 

 
Fig. 10 - Comparison between domain expert based and pattern recognition-based segmentation of daily load 

profiles of a building 

In Fig. 10 is reported an example of very effective data segmentation carried 
out through the application of a hierarchical clustering algorithm on daily load 
profiles of a building. The left side of Fig. 10 shows the results obtained by means 
of a domain expert segmentation (i.e., winter working days, summer working 
days, Saturdays and holidays) that lead to the identification of groups with low 
internal similarity. In this case, assuming the average profile as the representative 
statistical object of each group can produce significant information losses. On the 
other hand, the segmentation performed through the unsupervised pattern 
recognition technique (Fig. 10), produces groups of statistical objects (i.e., load 
profiles) with high internal similarity for which the average profile (i.e., centroid) 
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is representative of the subset of data considered. In each homogeneous group 
further analysis can be conducted in a later stage for more specific objectives. 

As a result, an effective data segmentation of data allows typical and infrequent 
patterns to be extracted and easily distinguished in massive datasets, significantly 
supporting the analyst in his/her inference process.  

2.1.3 Knowledge discovery process 

The knowledge discovery phase covers the actual mining purposes of the 
whole knowledge extraction process. A wide range of data analytics techniques 
can be used, and new data mining and machine learning algorithms are emerging 
in the research field of Artificial Intelligence (AI). The selection of the most 
appropriate algorithm depends on the problem under investigation, the level and 
quality of available data and the degree of domain expertise.  

According to the literature data analytics techniques can be classified into two 
main categories, i.e., supervised learning and unsupervised learning techniques 
[34]. On one hand supervised learning techniques aims at modeling the 
relationship between output and input variables learnt from a training dataset of 
historical data. On the other hand, unsupervised learning techniques are not 
employed for achieving an explicit mining target but aim at automatically 
extracting underlying and hidden data structures that exist between variables in a 
dataset [7,35].  

A wide range of both supervised and unsupervised data analytics techniques 
were proposed in the literature to find and model patterns representing interesting 
knowledge implicitly stored in massive data repositories. As a reference Fig. 11 
reports the main data analytics techniques with reference to their supervised 
(classification/regression) or unsupervised (clustering, association analysis) 
nature.   

 

 

Fig. 11 - Classification of the main supervised and unsupervised data analytics techniques  

Although each data analytics technique represents a powerful tool of analysis, 
its fully exploitation is often related to its combination with other techniques in a 
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multi-step framework of analysis. In energy and building applications 
unsupervised and supervised techniques are usually employed in sequence (e.g., 
clustering-then-classification) or parallel (e.g., ensembling of regression models) 
for achieving demanding knowledge discovery targets. As a result, the 
development of robust methodological frameworks for building applications 
requires excellent transversal skills that involve both building physics and data 
science domain. In this perspective the following sections provide a gentle 
introduction to the main supervised and unsupervised data analytics techniques 
that demonstrated, in the literature, to be dominant in the “energy data analytics” 
field of application (i.e., classification/regression, clustering, association rule 
mining). Each technique is discussed by highlighting its mining purpose, the main 
input parameters to be set by the analyst and the way used for setting them. In 
addition, a specific focus is provided for the algorithms employed for the 
development of the DSS tools presented in chapters 3 and 4.   

 Supervised data analytics techniques 

2.1.3.1.1 Classification and regression  

Classification and regression models are the two families of learning 
algorithms used for developing descriptive or predictive models from a collection 
of records. Each record can be expressed as a tuple (x,y), where x represents the 
explanatory attribute set while y is the target attribute. In particular, the type of 
target attribute is the key factor that distinguishes classification from regression 
models. Models designed for categorical target attribute are classification models, 
on the other hand, models in which y is a numerical continuous attribute are 
regression models [36]. Classification and regression models include various 
algorithms as decision tree, neural networks, and support vector machines. Each 
algorithm employs different learning processes to develop models with high 
accuracy and generalization capability, i.e., models that are capable to accurately 
predict previously unknown records. Generally, the development of classification 
and regression models is performed by splitting the available dataset into training 
set, which is used in the construction phase of the model, and test set for 
validation [1].  

Support Vector Machines (SVM) [37] were first proposed in statistical 
learning theory and can be used for developing both classification and regression 
model (called Support Vector Regression SVR for regression). SVM is able to 
identify the optimal hyperplane for separating two or more classes by maximizing 
the margin between their closest data points. If a linear separator cannot be 
identified, data are usually transformed into a higher-dimensional space by means 
of kernel function that makes them linearly separable [38]. The Support Vector 
Regression (SVR) uses the same principles as the SVM for classification, with the 
difference that the main objective is to minimize residuals instead of 
misclassification error. However, the main concept behind is the same: identify 
the hyperplane which maximizes the margin but considering a tolerance ε of the 
error. 
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Artificial Neural Networks (ANN) [37] simulate biological neural systems. 
The network consists of several layers: an input layer, n hidden layers, and an 
output layer. Each layer is composed by nodes that are called neurons. Each 
neuron in a layer takes as input a weighted sum of the outputs of all the neurons in 
the previous layer, and it applies an activation differentiable function (sigmoid, 
tangent) to the weighted input. The network is trained with back propagation of 
the error and iteratively updates the weights of each neuron for minimizing 
residuals or misclassification error (depending on whether it is a classification or 
regressive ANN). The updating of neuron weights is performed in the backward 
direction, that is, from the output layer through each hidden layer down to the first 
hidden layer [1,38]. 

Despite those algorithms (i.e., SVM and ANN) can achieve very high 
accuracy in both classification and regression problems, the models are not easily 
interpretable for the final user. In order to overcome this limit in the knowledge 
discovery process, interpretable models such as decision trees are often used. In 
the following, the main characteristics of two decision tree algorithms (Recursive 
partitioning tree and evolutionary tree) employed in the methodological 
frameworks proposed in sections 3.2, 3.3, 3.4 and 4.1 are presented and discussed 
with the aim of better introduce their advantages. 

2.1.3.1.1.1 Classification And Regression Tree (CART) based on recursive 
partitioning algorithm 

Decision trees are machine learning algorithms capable to accomplish both 
regression and classification tasks through the recursive splitting of the records, 
included in a dataset, into purer subsets called nodes. 

Classification And Regression Tree (CART) is a specific kind of decision tree 
that is based only on binary splitting. Regardless the learning algorithm 
considered, decision tree has three types of nodes: the root node that contains the 
whole learning sample (i) the internal nodes that contain purer subsets of the 
whole learning sample and are splitted into two child nodes (ii) leaf or terminal 
nodes that are child nodes pure enough to not be further splitted [39]. In this way, 
the decision trees output can be translated into a hierarchical tree structure 
composed by nodes and directed edges (i.e., branches) as showed in Fig. 12.  In 
particular, the leaves represent the predicted class labels/numerical values of the 
target attribute and the branches represent the conjunctions of the explanatory 
attributes leading to those class labels/numerical values.  
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Fig. 12 - Example of decision tree representation [22] 

The development of classification/regression tree, as for all predictive models, 
unfolds through two steps: training and testing of the model.  Initially, all the 
records are grouped in the root node and iteratively the algorithm evaluates the 
best segmentation of the dataset using a predictor attribute, that minimise the 
average impurity measure of the child nodes after the split (e.g., Variance, Gini 
index, Entropy). If there are no stopping rules set by the analyst, the 
classification/regression tree continuously grows until the impurity in the leaf 
nodes (in the classification case) or the variance (in the regression case) is zero. In 
order to avoid this condition of model overfitting, diverse appropriate early 
stopping criteria can be set in advance (e.g., minimum number of cases into parent 
and child nodes, maximum tree depth (see Fig. 12), minimum reduction in node 
impurity/variance after a split). Although the early stop criteria are satisfied, the 
decision tree could continue to be quite large and/or complex. To this purpose, to 
set the right tree size, by reducing branches and leaf nodes, it is possible to define 
a cost-complexity parameter α that can optimize the trade-off between the cost of 
misclassification/residual sum of squares and the tree complexity [39]. 

According to [39] starting from Tmax a sequence of pruned sub-trees Tmax, 
T1,..., Tn exists, where Tmax corresponds to the fully-grown tree. For any subtree T 
< Tmax the number of final nodes |T| correspond to the tree complexity. Then the 
complexity parameter α (between 0 and ∞) represents the penalty of adding other 
nodes that do not contribute significantly to the improvement of the overall 
prediction. Through a linear combination of the misclassification cost of the tree 
R(T) and its complexity |T|, the cost-complexity Rα(T) can be measured as (Eq. 
4): 

 

𝑅(𝑇) = 𝑅(𝑇) +  αห𝑇෨ห 

Eq. 4 

Then for each value of α the subtree T(α) < Tmax which minimises Rα(T) can 
be found, where (Eq. 5): 
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𝑅(𝑇) 

Eq. 5 

Although α is a continuous variable, there are at most a finite number of 
subtrees of Tmax. Thus, the pruning process produces a finite sequence of smaller 
and smaller subtrees Tl, T2, T3, … Tn until the root node is reached. Obviously, a 
direct search through all possible subtrees to find the minimizer of R(T) is time 
consuming. For this reason, weakest link cutting method is often used [39]. The 
weakest link cutting method allowed to find the sequence of αi which result in the 
sequence of the smallest minimizing subtrees Tαi. In the following, the definition of 
cost-complexity is extended to a single node of the tree and then for a single 
branch coming out of a node. In particular, for any node t∈Tmax (Eq. 6): 

 
𝑅(𝑡) = 𝑅(𝑡) +  α 

Eq. 6 

Also, for any branch Tt (Eq. 7): 
 

𝑅(𝑇௧) = 𝑅(𝑇௧) +  α|𝑇௧| 

Eq. 7 

For α = 0, the inequality R0(Tt) < R0(t) is always satisfied. If α gradually 

increase up to α =
ோ(௧)ିோ( ்)

| ்|ିଵ
, then Rα(Tt) = Rα(t). The node for which this equality 

is true at the smallest α, is defined as the weakest link and the branch Tt  is pruned. 
This procedure is repeated iteratively until the last subtree collapse in the root 
node. At the ending of the iterations the final pruned tree can be evaluated by 
plotting the subtree risks versus their complexity parameters. 

Typically, this plot has an initial sharp drop followed by a relatively flat 
plateau region and then a slow rise. When the decision tree is subjected to a 
validation procedure (e.g., k-fold cross-validation) it is also possible to compute a 
standard error for each sub-tree risk. The choice of the best subtree starts from the 
plateau region of the subtree risks in which is included the minimum cross 
validated risk achieved. In fact, any sub-tree risk within one time the standard 
error of the achieved minimum risk can be considered as being equivalent to the 
minimum [21]. Then the simplest model (with the minimum number of final 
nodes) among all the identified sub-trees in the plateau region, is chosen. 

K-fold cross-validation is usually used for such algorithms. For this kind of 
method, the original sample of data with M number of objects is divided into k 
equal sized subsamples. For the k subsamples evaluated, a single subsample is 
selected as validation dataset for testing the model, and the remaining k-1 
subsamples are used for the training. This process is then repeated k times, using a 
subsample at a time as testing.  
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As a reference, the explained procedure is employed for developing both 
classification and regression trees in the data analytics based methodologies 
presented in sections 3.2, 3.3, 3.4 and 4.1.  

2.1.3.1.1.2 Classification And Regression Tree (CART) based on 
evolutionary partitioning algorithm 

As explained in the previous section, the training of a decision tree through 
recursive partitioning method consists of a forward step-wise approach where at 
each parent node the best split is evaluated maximizing homogeneity in its child 
nodes. However, this learning technique leads to solutions that are locally optimal, 
since the splits are evaluated for minimising a loss function in the next step only 
[39]. An alternative learning process consists of searching globally optimal trees 
for example by means of an evolutionary approach. The main steps of the 
algorithm can be summarised as follow [40]:  

 Setting of the model parameters: During this step the parameters of the 
model are set by the analyst. The main parameters are the maximum 
depth of the trees, the minimum number of observations in a leaf node, 
the size of tree population (Θ), the variation operator probabilities, the 
number of iterations, the evaluation function and the complexity 
parameter.   

 Initialization: During this step the population of Θ trees is initialized. 
Each tree is initialized with a root node split that is randomly generated 
from the input variables. 

 Survivor selection: In every iteration, each tree (parent solution) is 
selected once to be modified (generating an offspring solution) by one of 
the variation operators (i.e., split, prune, major split rule mutation, minor 
split rule mutation, crossover). The population size Θ remains constant 
during the evolution and only a fixed subset of the candidate solutions 
can be stored for the next iteration. The algorithm uses a deterministic 
crowding approach, where each parent solution competes with its most 
similar mutation (offspring) for being stored in the population at iteration 
i+1. In a classification problem the algorithm evaluates among the 
population of parents and offsprings, the best trees in terms of 
classification accuracy and complexity. 

 Termination: The tree with the highest quality according to the 
evaluation function is returned as the final output of the algorithm at the 
end of the n iterations. For a large number of iterations (e.g. 10000 
iterations) the algorithm terminates when the quality of the best 5% of 
trees in Θ remains stable for 100 iterations, but not before the ending of 
1000 iterations.  

The core of the evolutionary learning process consists in the five variation 
operators implemented by the algorithm at each learning iteration [40]. The main 
principles of the operators are described below: 
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 Split: the operator randomly selects a leaf node of a tree and assigns a 
split rule to it. The split rule is randomly generated respect to the input 
split variable vr and split point sr. As a consequence, the leaf node 
becomes a parent node after the generation of two new child nodes; 

 Prune: the operator randomly selects an internal node of a tree which has 
two leaf nodes as successors and prunes it; 

 Major split rule mutation: the operator randomly chooses an internal 
node of a tree and modifies the split rule respect to input split variable vr, 
and the split point sr; 

 Minor split rule mutation: The operator randomly chooses an internal 
node of a tree and modifies the split rule only respect to the split point sr 

of the input variable vr; 

 Crossover: The operator randomly selects subtrees from two trees and 
exchanges them creating two new trees. 

It is important to highlight that the globally optimal decision tree algorithm 
could lead to slightly different solutions depending on the random initialization of 
the population Θ and the probabilities of variation operators to be applied at each 
iteration. For this reason, a sensitivity analysis on the tuning of model parameters 
is highly recommended.  

As a reference, the introduced algorithm is employed for developing a 
classification tree in the data analytics based methodology presented in section 
3.4. 

 Unsupervised data analytics techniques 

2.1.3.2.1 Clustering  

Cluster analysis belongs to the family of unsupervised data mining techniques 
used for conducting exploratory analysis on massive datasets. 

The final aim of clustering is grouping a collection of data objects into subsets 
(clusters) on the basis of their similarity in a n-dimensional space. A good cluster 
analysis should lead to the identification of sub datasets that are characterised by 
high intra-class and low inter-class similarity [1,37,38]. A wide variety of 
clustering procedures has been introduced in the scientific literature and it is 
already available on different statistical software. The effectiveness of the 
different methods was widely discussed in the literature also considering the 
effect of data normalization (e.g., max normalization) and data reduction (e.g., 
symbolic aggregate approximation, principal component analysis) techniques on 
the final results [25].  

The most used clustering techniques in the literature are partitive, 
hierarchical, and density-based algorithms. Partitive clustering (e.g., K-means 
[41], K-medoids [42]), consists in a division of the data objects into non-
overlapping subsets (i.e., clusters) such that each data object can be included only 
in one subset. K-means is a well-known partitive algorithm that is used for 
grouping data objects in a pre-determined number of K clusters which are 
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represented by a prototype object called centroid (i.e., mean of the points in the n-
dimensional space).  

The first step of K-means consists in the setting of the number K of clusters 
desired to which corresponds a prototype object (centroid) randomly located in 
the n-dimensional space [43]. Each object in the dataset is then assigned to the 
closest centroid, and each group of objects assigned to the same centroid is a 
cluster. The centroid of each cluster is then recalculated as the average of all the 
object assigned to the cluster. This process is repeated until the objects do not 
change cluster anymore, and the centroids do not change position.  

Given that K-means minimizes the within-cluster sum of squares, this 
algorithm is particularly effective for the identification of spherical-shaped 
clusters. However, the randomly initialization of centroid positions may 
negatively affect the whole iteration process of the algorithm leading to non-
optimal solutions. K-means is also sensitive to the presence of outliers, 
heterogeneous densities of objects, and non-globular shapes of clusters [1]. 
Despite of all these limitations, K-means is computationally fast and easy to be 
implemented.  

In density-based algorithms (e.g., DBSCAN [44]), a cluster is defined as a 
dense area of data objects surrounded by an area of low density [43]. DBSCAN is 
a well-known density-based algorithm capable to evaluate dense groups of objects 
in databases through the setting of two input parameters [1,38,43]: 

 Eps: that is the search space radius of neighbours around a data point p 

 minPts: that corresponds to the minimum number of data points that a 
n-dimensional sphere of radius Eps should contain to define a dense 
region. 

Once these parameters are defined, the algorithm scans the data objects in the 
dataset and classifies them as (i) core points, (ii) border points or (iii) outliers. In 
particular, a core point is included in a dense region where at least minPts points 
are within the distance Eps. Border points are located on the edge of dense regions 
and are included in n-dimensional spheres of radius Eps that group less than 
minPts point but at least one core point. As a consequence, all the points that are 
not reachable from any other point are classified as outliers. Any two core points 
that are within distance Eps are grouped together in the same cluster. Any border 
point close enough to a core point is put in the same cluster as the core point. 
Outliers are instead isolated [1,38,43]. Differently from K-means, DBSCAN can 
handle clusters of non-globular shapes and outliers, thus increasing cluster 
homogeneity. The number of clusters is not required as an input parameter, but 
the user should specify the Eps and MinPts parameters [1,38,43].  

Hierarchical algorithms are also widely used for performing data clustering. 
Differently from partitive algorithms, hierarchical ones allow clusters to have sub-
clusters. In this way objects are organized as a set of nested clusters that can be 
represented with a tree-like structure (i.e., dendrogram). Hierarchical clustering 
techniques can be classified in agglomerative and divisive algorithms. On one 
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hand, agglomerative algorithms start with the objects as singletons (clusters with 
one object) and at each step merge the closest pair of clusters according to a 
proximity measure [43]. On the other hand, divisive algorithms follow the 
opposite approach recursively splitting objects starting from an all-inclusive 
cluster.   

In agglomerative hierarchical clustering the proximity between two clusters 
can be computed in different ways according to the linkage method selected [43]. 
In particular, single linkage method merges clusters assuming cluster proximity as 
the distance in the n-dimensional space computed between the closest two objects 
that are in different clusters. Conversely, complete linkage method considers the 
proximity as the distance between the farthest two objects in different clusters. 
Average method, instead, defines cluster proximity as the average distance 
between each object in one cluster and every object in the other cluster. An 
alternative is the Ward method, that differently from the other linkages, assumes 
that a cluster is represented by its prototype object (i.e., centroid) and considers 
the proximity between two clusters in terms of the increase of the sum of square 
error that results from their merging. 

On the basis of the linkage method employed clustering results can 
significantly vary. Fig. 13 shows the dendrograms of three clustering solutions 
obtained from the same dataset considering single, complete and average linkage. 
In particular, on the y-axis there is the height of each node in the plot that 
corresponds to the fusing distance between its two nested sub-clusters. Cutting all 
the dendrograms at four clusters, it is possible to understand that the selection of 
the linkage method highly impacts the cardinality and dispersion of the obtained 
clusters.  

 

 

Fig. 13 - Comparison between three dendrograms of hierarchical clustering algorithms assuming different 
linkage methods (i.e., single, complete and average method) 

In the following, the main characteristics of a very effective prototype-based 
partitive clustering algorithm (Follow The Leader) are discussed. The follow the 
leader algorithm makes it possible to catch the advantages of k-means without 
setting a-priori the number of clusters to be found.  
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2.1.3.2.1.1 Follow the leader clustering algorithm 

“Follow The Leader” (FTL) method [45,46] is a partitive clustering technique 
that differently from K-means does not require the a-priori definition of the 
number of clusters K, but it is initialized selecting a maximum distance threshold 
ρ. The dataset is sequentially scanned by the algorithm over a number n of 
iterations, large enough to ensure the stabilization of the clustering results. In the 
first iteration, the FTL approach is used to define, as a first attempt, the total 
number of clusters K and the number of objects assigned to each cluster. During 
the iterations, if the distance between an object and the cluster centroids computed 
until that iteration is lower than ρ*, the object will be assigned to the cluster of the 
closest centroid otherwise a new cluster with one single element is generated. 
Indeed, the number of clusters and the number of objects belonging to the same 
cluster may change until the algorithm converges to a stable solution.  

Given that the clustering analysis is an unsupervised data mining technique 
the input parameters are a-priori set by the analyst. For this reason, usually a 
cluster validity index is needed for supervising their tuning. The selection of an 
optimal value of input parameter can be then conducted with a “trial and error” 
procedure. For FTL different values of ρ can be tested and the results in terms of 
cluster separation and cohesion be compared.  
One of the most used cluster validity metric is the Davies-Bouldin Index (DBI) 
[47]. DBI is based on the concept that for a good partition, inter cluster separation 
as well as intra cluster cohesion should be as high as possible. As a reference for 
each clustering result obtained from the setting of different of ρ, the DBI is 
evaluated according to the following equation (Eq. 8): 
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Eq. 8 

Where: 

 K is the final number of clusters fixing a certain value of the input 
parameters (i.e., ρ in “follow the Leader” clustering). 

 𝑑, is the Euclidean distance between centroids of the clusters Ck and Cl. 

 𝛿, 𝛿 are the standard deviations of the distances of objects in clusters Ck 
and Cl. 

The value of the parameter ρ which minimises DBI is considered as the value 
that leads to the optimal cluster solution. This can be considered as a general 
validation procedure of clustering results that can be extended also to other kind 
of algorithms.   

As a reference the Follow The Leader method is employed in the data 
analytics based methodology presented and discussed in section 3.4.3. 
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2.1.3.2.2 Association rule mining  

Association rule mining (ARM) is an unsupervised data mining method to 
identify all associations and correlations between attribute values in a dataset [48]. 
The output is a set of association rules that are used to represent patterns of 
attributes that are frequently associated together (i.e., frequent patterns). 

Let 𝐼 =  {𝑖ଵ, 𝑖ଶ, … 𝑖ௗ} be the set of all items in a dataset and 𝐷 =

 {𝑑ଵ, 𝑑ଶ, … 𝑑ௗ} be the set of all transactions. Each transaction 𝑑 contains a subset 
of items chosen from I. In association analysis, a collection of items is named 
itemset and the transaction width is defined as the number of items present in a 
transaction. A transaction 𝑑 contains an itemset X if X is a subset of 𝑑. An 

important property of an itemset is its support count, that corresponds to the 
number of transactions that contain a specific itemset. The support count, σ(X), 
for an itemset X can be expressed as follows [48] (Eq. 9): 

 
𝜎(𝑋) = |{𝑑_𝑖 |𝑋 ⊆  𝑑_𝑖, 𝑑_𝑖 ∈ 𝐷}| 

Eq. 9 

Association rules are usually represented in the form X → Y, where X (also 
called antecedent) and Y (also called consequent) are disjoint item sets (i.e., X ∩ 
Y = ∅). Rule quality is usually measured through rule support and confidence. 
Rule support is the fraction of the total number of transactions in which both the 
item sets X and Y occur while confidence determines how frequently items in Y 
appear in transactions that contain X. According to [48] Support and Confidence 
can be calculated with the following equations (Eq. 10 and Eq. 11): 

 

Support, s(X → Y) =
𝜎(𝑋 ∪  𝑌)

𝑁
 

Eq. 10 

Confidence, c(X → Y) =
𝜎(𝑋 ∪ 𝑌)

𝜎(𝑋)
 

Eq. 11 

Where N is the total number of transactions. Therefore, Given a dataset D, 
whose generic record is a set of items, ARM process discovers all association 
rules with support and confidence greater than, or equal to, minimum thresholds 
a-priori defined by the analyst (i.e, MinSup and MinConf).  

Furthermore, in order to rank the most interesting rules, the lift index can be 
used to measure the correlation between antecedent and consequent of the 
extracted rules. Therefore the lift is intended as the ratio between the observed 
support to the expected support and is calculated as follow (Eq. 12): 

 

Lift (X → Y) =
𝜎(𝑋 ∪ 𝑌)

𝜎(𝑋) x 𝜎(𝑌)
 



35 
 

Eq. 12 

If lift (X → Y) = 1, itemsets X and Y are statistically independent from each 
other. Lift values below and above 1 show a negative and positive correlation 
between itemsets respectively. As a result, rules with a lift value close to 1 are not 
of interest.  

In the context of discrete-value-transactions, association rules can be used as 
an efficient method for mining also co-occurrences or implications between 
events in the time domain (Temporal Association Rule Mining (TARM)). The 
application of TARM algorithms is particularly effective for extracting hidden 
knowledge from time series that is one of the main objectives investigated in this 
research study. 

For the sake of completeness, the next section, presents and discusses the 
application association rules in time series for mining relevant pattern through a 
temporal-based approach. As a reference a TARM algorithm is employed in the 
data analytics-based methodology presented and discussed in section 4.1. 

2.1.3.2.2.1 Temporal association rules 

Temporal association rule mining is an extension of sequential pattern mining 
that is an important data mining method with broad applications that can extract 
frequent itemset sequences while maintaining their chronological order.  

The output of this analysis consists in the automatic identification of IF-
THEN rules (IF event A happens THEN event B will also happen) capable to 
assess how strong is the relation between events frequently associated together. 
According to the number of time series considered during the analysis, the ARM 
techniques can be categorized in univariate and multivariate association rules. The 
aim of extracting association rules from single time series is to identify frequent 
event sequences that could be useful for example in characterizing chiller 
operation in complex cooling systems [30]. When multiple time series are 
considered, ARM techniques can be further divided in intra-transactional and 
inter-transactional association rules respectively. The first type is aimed at 
discovering events, in different time series, that frequently happen at the same 
time. This kind of analysis based on the extraction of co-occurrence, is 
particularly suitable in finding rules related to the simultaneous operation of 
different devices or systems in buildings. In that case it would be sufficient to 
discretize the time series in sequences of 0-1 to preserve only the information 
related to the system switching ON and OFF. The second type of association rules 
are the most complex ones since that the co-relations are discovered assuming the 
existence of a time lag in the event implications. For these rules, the search space 
in the time domain is represented by a sliding window which length is set in 
advanced by the analyst. The tuning of this parameter is considered a fundamental 
step of the analysis due to its impact on the results in terms of total number of 
rules and consistency with the physical phenomenon they describe.  
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The problem of finding inter-transactional association rules between events is 

represented in the following form: X
௧

→ Y.                                                                
Therefore, the occurrence of the antecedent X implies the occurrence of the 

consequent Y within a time t. The temporal relation between events should 
respect two constraints: the maximum temporal lag between antecedent and 
consequent and their chronological order.  

As regards temporal association rules, an effective approach for their 
automatic extraction was proposed by Zaki by means of the cSpade algorithm 
[49]. This algorithm extracts sequential rules considering some constraints defined 
by the user according to his needs. These constraints may drive the mining of 
frequent patterns from the database of transactions, for instance by setting the 
length of the sliding window or a minimum time gap between antecedents and 
consequents of the rules. 

However, since the database of transactions, is generated by using a sample-
by-sample sliding window approach, the number of the transactions N results to 
be very high with items mostly overlapped. For this reason, the calculation of rule 
support cannot be performed with the canonical formulation. In fact, the value of 
support calculated according to Eq. 10 can be affected  by the high value of the 
denominator (i.e., the total number of transactions), suggesting the use of a 
formulation less sensitive to the sample size [50]. 

In the methodology proposed in section 4.1, the support of an association rule 
is defined as the ratio between the number of transactions that include both 
antecedent and the number of transactions that include at least the consequent (Eq. 
13).  

Support(X → Y) = 𝑃(𝑋, 𝑌) =
𝑁(𝑋, 𝑌)

𝑁(𝑌)
 

Eq. 13 

The support calculated with Eq. 13 makes it possible to have high values of 
support also for large transaction datasets obtained through a sliding window.  
The support calculated through Eq. 13, assesses the frequency of X U Y on a 
smaller portion of the total number of transactions (i.e., only the transactions that 
include the consequent itemset Y). The support is in the range (0-1) and allows an 
easier extraction of rules to be assumed as reference patterns (i.e., with high 
support) of the occurrence of a specific condition over time (i.e., consequent 
itemset Y). However, the confidence can be still calculated according to Eq. 11 
only if the consequent itemset Y occurs in a transaction not violating the 
chronological order respect to the antecedent itemset X. 

Also for the inter-transactional approach, the mining of association rules can 
be summed up as a two-step’s procedure. In a first phase, the frequent item sets 
with a support greater than the MinSup are extracted then the confidence is 
considered for filtering out rules that consist in weak implications [51].  
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2.1.4 Knowledge exploitation 

The purpose of knowledge exploitation (so-called post-mining phase) is to 
select, interpret and utilize the knowledge discovered in the previous phase [23].  
Different approaches are proposed in the literature to efficiently exploit extracted 
knowledge and to interpret the patterns discovered (e.g., by means of decision and 
association rules). The knowledge exploitation usually requires domain expertise 
to explain the knowledge discovered and to convert it into actionable measures for 
enhancing building energy performance (e.g., energy system rescheduling, set 
point optimization, diagnosis of a fault). 

Knowledge extracted from energy-related data can be then transferred to 
different users that often have very different requirements in terms of data insight. 
For what DSS tools is concerned, extracted knowledge should be informative and, 
at the same time, easy to be understood and to be exploited in the decision-making 
process. To this purpose, the developed data-driven methodological frameworks 
in this research study (presented in chapters 3 and 4), leveraged on the application 
of automatic rule extraction techniques. Such techniques (e.g., association rules, 
decision trees) aim at extracting from large amounts of data, inference rules in 
form of IF-THEN implications that are able to effectively describe all the relations 
that exist between the variables included in the same dataset. In this way the 
results of the analysis can be translated in a set of interpretable decision rules that 
can be easily embedded in DSS, helping managers, owners or service companies 
in increasing awareness about the measured energy performance of their 
buildings/systems and achieve demanding energy management targets during 
daily operation. In addition, also advanced visualizations were used for improving 
feedback interpretability and increasing user engagement for a better exploitation 
of enabling tools such as DSS. 
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2.2 Research context: applications of data analytics 
technologies for building energy management 

The section 2.2 introduces the research context of the dissertation. While in 
the previous section a general data analytics framework was discussed, in the 
following the main applications of data analytics-based processes for building 
energy management are reviewed. Such applications represent the most important 
functionalities that can be embedded in advanced DSS that are the focus of this 
study. Fig. 14 shows the conceptual framework at the base of implementing DSS 
for enhancing energy management in buildings. The flow starts from a set of 
various data analytics techniques that can be exploited for conducting analysis in 
the context of different applications (i.e., application layer (Fig. 14)) identified as 
the main functionalities of an advanced DSS. Each application has its own 
objective and useful knowledge is extracted accordingly. Once knowledge is 
extracted it is transferred to the domain expert (e.g., energy manager) for 
supporting him/her in the definition and implementation of effective energy 
saving strategies. DSS should also be equipped with verification tools capable to 
assess the impact of the implemented strategies for supporting the domain expert 
in verifying the achievement of expected targets (Fig. 14).  

  
Fig. 14 - Conceptual framework behind the use of DSS 

In order to ensure the adequate robustness of the whole management process 
great effort has been devoted in the scientific literature for developing as possible 
the DSS application layer (i.e. the set of functionalities that an advanced DSS 
should provide). 

Knowledge extracted trough data analytics-based functionalities of DSS 
contains information for example on how and when building energy use changes 
during the day with the ability to answer questions such as:  

 how much energy is expected to be consumed at different times of the 
day?  
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 Which are the typical energy consumption patterns of a building or 
energy system? 

 Which are the unexpected/infrequent energy consumption patterns? 

 Which is the most valuable energy saving opportunity to be investigated? 

 Are building systems behaving as expected?  

 How the building is behaving respect to its peers, its past or its intended 
energy performance? 

 Which are the main energy consumption trends of a building portfolio? 

In this context, the following sections review analytics-based functionalities 
that are widely recognised as the most impacting in the building energy 
management through DSS (Fig. 14) such as (i) energy consumption prediction 
[53,54], (ii) load profiling [9,10,33], (iii) Fault detection and diagnosis [13,55], 
(iv) energy benchmarking [52,56,57], (v) characterization of the occupant 
behaviour [14,58]. 

In particular, section 2.2.1 presents the main modeling approaches and 
implications behind the development of prediction models for supporting energy 
management in buildings. The predictive modeling is at the basis of advanced 
DSS tools and enables several energy management functionalities that leverage on 
the estimation of building and system behavior over time such as demand 
response, fault detection and diagnosis, anomalous energy trend identification, 
benchmarking of the building energy performance, assessment of the energy 
saving.  

Section 2.2.2 presents and discusses the main opportunities related to the 
application of load profiling tools for deeply characterizing energy consumption 
in buildings. Such tools leverage on time series analytics and pattern recognition 
techniques for extracting both typical and infrequent load profiles in building 
energy consumption time series also providing information about their shapes and 
magnitudes. The load profiling applications are discussed at single building level 
(section 2) highlighting their usefulness in detecting anomalous trends of energy 
consumption [21]. At building stock level, section 2.2.2.2  provides a wide 
overview on the main implications the load profiling analysis has on building 
demand response and demand side management, customer classification and 
energy benchmarking [10].  

Section 2.2.3 discusses the implementation of fault detection and diagnosis 
(FDD) methodologies for enhancing building energy system performance 
(especially HVAC systems) during daily operation. FDD tools proved to be 
essential for achieving demanding energy saving targets in buildings given that up 
to 20% of energy consumption can be caused by incorrect system configurations 
and inappropriate operating procedures [59].   

Section 2.2.4 discusses the exploitation of benchmarking methodologies that 
can be embedded in DSS tools for setting credible targets of energy efficiency 
e.g., through the comparison of the energy performance among similar buildings. 

Section 2.2.5 discusses the importance of characterizing occupant behavior in 
buildings for identifying significant energy saving opportunities. One of the main 
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opportunities is related to the analysis of occupancy patterns in buildings for 
optimising energy system rescheduling.  As a reference, occupancy based 
rescheduling strategies of HVAC systems proved to be capable of generating a 
potential savings higher than 10% of energy consumption [14].   

The final aim of this chapter is then to discuss a wide research context, for 
better pointing out broader challenges and opportunities related to the use of data 
analytics in DSS solutions for enhancing energy efficiency in buildings.  

2.2.1 Prediction of building energy consumption 

Over the past few decades, researchers have paid much effort to find robust 
solutions for improving building energy efficiency and usage through various 
techniques and strategies.  

The prediction of building energy consumption proved to be essential for a 
variety of energy management applications such as demand response, demand 
side management, fault detection and diagnosis [60], predictive maintenance and 
optimal control of building systems. According to the prediction horizon of 
interest, predictive analysis can be categorized as follows: Short Term Forecasting 
(STF), Medium Term Forecasting (MTF), and Long-Term Forecasting (LTLF). 
Each of these categories has a different characteristic prediction horizon, which is 
typically included between few hours (i.e., STF) up to one year (i.e., LTF) and 
different possible applications can be defined accordingly [61]. The research 
focus is currently more devoted on short-term prediction given its close linkage to 
the day-to-day operations. 

As a reference, peak demand prediction leverages on STF and makes it 
possible to inform energy manager about the occurrence of a peak in the building 
load. It is extremely important, for avoiding penalties in the electricity bill or load 
shedding and power outages in the case the generation and supply systems are not 
able to satisfy peak demand [62]. In this perspective, if the final user is timely and 
adequately informed, he/she can intervene for shifting or shaving the peak and 
thus avoiding the occurrence of unsatisfactory conditions. However, the use of 
prediction tools not only enables the implementation of effective energy 
management strategies during daily operation but also makes it possible to assess 
their actual impact on building energy consumption. When a Continuous 
commissioning (CC) of buildings is implemented, prediction tools are essential 
for benchmarking building energy consumption against its past or intended 
performance [63]. For example, Fig. 15 illustrates how prediction models can be 
used in the measurement and verification of energy saving in buildings. Data 
collected during pre-retrofit period are used to train and test a prediction model 
capable to provide a robust energy consumption baseline of the building under 
analysis (Fig. 15). After the implementation of a retrofit action the adjusted 
baseline is estimated through the model considering the boundary condition of the 
post retrofit period (e.g., climate condition, number of occupants). Savings or 
avoided energy consumption are then calculated by comparing the adjusted 
baseline and the post-retrofit actual data. This kind of application is crucial for 
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partially close the decision-making process in building energy management as it 
gives to building owners, managers and occupants a feedback on the impact of 
energy conservation measures. 

 

 

Fig. 15 - Use of prediction models for the measurement and verification of energy saving 

Despite the great potential of using predictive-based management solutions, 
the development of prediction models is often thwarted by the high complexity of 
the systems inside buildings [1]. This is due to the growing variety of multi-
energy plant systems, integration with renewable energy systems, type of loads 
(e.g., thermal sensitive electrical load) and variable occupant behaviour and 
presence patterns. These are distinctive characteristics of a building that together 
with indoor and outdoor environmental conditions (external air temperature, 
indoor thermal comfort requirements), make the predictive modeling a complex 
task.  

Nowadays, there are many prediction modeling methods available for solving 
such issues and also achieving high accuracy [64]. A general classification of such 
methods can be made according to the modeling approach employed in the 
analysis such as white box models, grey box models and black box models [63]. A 
white box model is also termed as first principle-based model, which makes use of 
physical equations for modelling building systems and components. Conversely, a 
black box model uses data-driven fitting techniques rather than physical 
knowledge, leveraging on statistical or data analytics-based algorithms. The 
principle of grey box model lies in the middle between white box model and black 
box model, it combines both physical knowledge of the system considered and 
data-driven fitting techniques to derive a robust prediction model. Currently more 
and more researchers are exploiting advanced data analytics techniques (black box 
models) for accomplishing predictive tasks in building energy management, and it 
is mainly due to their high capability in dealing with non-linear problems [64] that 
often characterise building operation. Various studies have also demonstrated that 
non-linear techniques could outperform linear ones (e.g., multiple linear 
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regression and autoregressive moving average) in building-related applications 
[53,65–67]. 

Artificial Neural Networks (ANN) and Support Vector Machine (SVM) were 
the two most widely used techniques for this kind of application [61]. Kumar et al. 
[68] reviewed various ANN methods, including back propagation, recurrent ANN, 
auto associative ANN and general regression ANN highlighting their high 
potential in providing robust predictions for various forecasting purposes in 
buildings.  In thermal and electrical energy prediction, ANN was tested with 
different objectives. In thermal energy prediction, numerous researchers predicted 
space cooling load [65,69], space heating load [70,71] domestic hot-water heating 
load [70]. Ben-Nakhi and Mahmoud [72] adopted artificial neural networks to 
predict next-day building cooling load in order to optimise the HVAC thermal 
energy storage system operation. It was demonstrated that optimal control 
strategies based on such predictive modeling approach can increase the operating 
flexibilities while reducing the operating costs. In different applications, Support 
vector regression (SVR) proved to be useful for prediction purposes. In [73], good 
accuracy in cooling load and monthly utility bill prediction was observed. Dong et 
al. [73] applied SVR to predict monthly utility bills in four commercial buildings 
located in Singapore. The prediction was based on weather data (ambient 
temperature, relative humidity and global solar radiation) collected for each of the 
buildings analysed. The achieved accuracy was close to 96%. 

Another group of non-linear models that was widely used for conducting 
predictive analysis in energy and building applications includes tree-based 
algorithms such as decision trees and random forests. When such models are 
based on the development of a single tree they have the advantage of being 
interpretable as their flowchart-like tree structure can be easily translated in a set 
of IF-THEN decision rules. Yu et al. [74] used the decision tree to predict and 
classify the building Energy Use Intensity (EUI) of Japanese residential buildings. 
In [75] the decision tree method was found to be suitable in improving the criteria 
of energy efficiency measures in building renovation. Given their nature, decision 
trees proved to be particularly effective in performing classification tasks. In [76–
78] a decision tree was used for predicting different levels of primary energy 
demand for space heating of about 90,000 flats. The analysis was performed on 
data gathered from public available energy certificates. Capozzoli et al. [56] 
developed two different models for estimating the annual heating energy 
consumption for 80 schools in the province of Turin (Italy). The models 
developed were a Multiple Linear Regression (MLR) and a regression tree 
(decision tree with a numeric output). The accuracy of the two models proved to 
be quite satisfactory and the regression tree performed slightly better than MLR. 
However, for achieving higher performance, especially for what regression 
analysis is concerned, ensembling techniques were applied on tree-based models. 
Algorithms based on decision tree ensembling such as random forests, extreme 
random forests, bagging trees, gradient boosting trees demonstrated to be a 
valuable solution for conducting regressive prediction analysis also on data with 
high granularity (e.g., hourly data). In [54] 12 regression models were used for 
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predicting hourly electrical energy consumption for 482 non-residential buildings. 
The results showed that decision tree-based models performed better than other 
models (including ANN and SVM) on two-thirds of the total cohort of buildings 
generally achieving high accuracy.  

For what ensemble learning is concerned, Fan et al. [53] proposed a data 
mining approach for predicting next-day energy demand and peak power demand 
of the tallest building in Hong Kong. Eight predictive models including multiple 
linear regression (MLR), autoregressive integrated moving average (ARIMA), 
support vector regression (SVR), random forests (RF), multi-layer perceptron 
(MLP), boosting tree (BT), multivariate adaptive regression splines (MARS), and 
k-nearest neighbours (kNN) were developed individually and then ensembled by 
optimising model weights through the application of genetic algorithm (GA). The 
percentage errors of the ensemble models were 2.32% and 2.85% for the next-day 
energy consumption and peak power demand respectively, which were higher 
than those of individual base models.  

Future trends in predictive modeling also concern with the exploitation of 
novel algorithms that belong to the family of deep learning techniques. Deep 
learning is a powerful solution which is currently used in a wide variety of data 
analytics tasks, such as image and language recognition. Fan et al. [66] discussed 
the potentials of deep learning algorithms (fully-connected autoencoders (AEs), 
convolutional autoencoders (CAEs) and generative adversarial networks (GANs)) 
demonstrating their potentials in improving the feature engineering for supporting 
analysts in developing robust, flexible and accurate building energy prediction 
models.  

2.2.2 Load profiling in buildings 

The application of data analytics techniques coupled with a robust physics-
based expertise can effectively support the implementation of procedures or 
strategies aimed at enhancing the operational performance of buildings [79]. In 
particular, the mining of time-series data has recently gained high attention in the 
scientific literature as a way to describe building load patterns and the boundary 
conditions (e.g., weather, time period or user/customer features) influencing their 
particular variation over time. The electrical or thermal load time series are 
usually characterised by a particular trend with stochastic components and time 
based cycle at annual, seasonal and daily scales [80]. 

In the process of building load profiles characterisation (i.e., so-called load 
profiling), pattern recognition techniques play a key role for the identification of 
typical operational patterns and trends in a high-dimensional time series [17,81]. 
Besides this, it can help building managers investigate the discrepancies of energy 
use characteristics between different seasons, working day and non-working day, 
day and night, peak and baseload hours, etc. In the analytical process of building 
load profiling, time series are usually chunked into sub sequences through a fixed 
length window to obtain time scale-based profiles. In the majority of energy and 
buildings applications load profiles are usually well described on a daily scale. 
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The mining of load profiles is an emergent task which enables the implementation 
of various energy management and diagnostic strategies at both single and 
multiple buildings level. The process of daily load profiling primarily consists in 
grouping similar load profiles using domain expert-based procedures, statistical 
methods or data mining algorithms. For each group of similar loads profiles, a 
representative load pattern can be extracted. The shape of a load profile is usually 
representative of an operational pattern of a building and can be used as reference 
for estimating its expected behaviour over time. Therefore, there are two main 
expected goals behind load profiling analysis in buildings that can be summarized 
as follows:  

 Identification of typical load patterns e.g., in form of reference load 
profiles, 

 Detection of anomalous load patterns when typical ones were 
violated. 

Depending on whether a single building or a group of buildings are analysed, 
different implications arise from the process of load profiling. In the first case a 
detailed diagnostic analysis of energy time series is performed to discover typical 
energy patterns characterising the operation of building or energy systems and 
then identify anomalous ones accordingly. In the second case, instead, the 
objective becomes a load classification to discover typical classes of buildings 
according to shape similarity [82,83].  

However, conducting load profiling analysis in complex systems such as 
buildings is not an easy task. Indeed, different climatic conditions (external and 
internal), occupancy patterns, building thermo-physical features and 
heating/cooling systems operation modes generate the existence of various load 
patterns (in terms of shape and magnitude), not always easily inferable through 
domain expert based procedures and statistical methods.  

In this perspective, more and more analysts rely on the application of 
unsupervised pattern recognition techniques such as cluster analysis [84]. Unlike 
the expert segmentation, cluster analysis allows load patterns to be identified in a 
not pre-determined time domain. In this way, robust and consistent reference 
profiles can be discovered.  

 

 Load profiling at whole building level 

The robust characterisation of operational patterns and trends of energy 
consumption over time (i.e., energy profiling) is a central issue in building energy 
management, making it possible to better:  

 handle the energy demand during the peak times for cost operational 
saving purposes [85,86],  

 define the size of renewable energy system to reduce the operational costs 
[87],  
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 define benchmarks that take into account the trend of energy consumption 
over time [15,88], and 

 detect anomalous patterns and profiles [30,89]. 

Capozzoli et al. [11] introduced a general framework for the mining of typical 
daily load profiles at both a single and a multiple building level, and discussed 
various applications exploiting load profiling frameworks as preliminary analysis 
for supporting the definition of energy management solutions. In fact, load 
profiling at whole building level is highly desirable on a liberalised energy market 
for enhancing load forecasting [90–92], implementing targeted demand-side 
management solutions [93], promoting modifications of the building energy 
demand and implementing demand response initiatives [11,94]. These 
implications are potentially crucial for several stakeholders (energy managers, 
energy service companies, energy network operators and policy makers) for both 
ordinary energy management and strategic planning activities. 

In [95] a motif extraction based methodology was proposed to enhance the 
operation of a set of chillers serving a data center. Moreover, the sustainability 
impact was evaluated by means of useful metrics. In [96] a pattern recognition 
analysis based on a clustering algorithm (k-Shape) was performed in order to 
discover building energy consumption patterns. These patterns were further 
utilized to improve the accuracy and robustness of a forecasting model of energy 
consumption for ten institutional buildings in Singapore based on Support Vector 
Machines (SVM) algorithm. Also in [97] typical load profiles identification were 
used as a preliminary step in the development of a forecasting model for the 
electrical power demand of a supply fan of an Air Handling Unit (AHU). In detail, 
using a Fuzzy C-Means clustering algorithm, three subsets of homogeneous daily 
profiles (typical patterns) of the supply fan modulation were discovered while the 
atypical profiles were removed from the dataset. Then, for each subset a 
forecasting model combining Autoregressive Neural Network (ANN) and a 
physical model was built. The development of innovative robust methodologies to 
automatically detect anomalous energy consumption [60] (profiles with 
shape/magnitude significantly different from the typical operation patterns) makes 
it possible to operate a continuous commissioning of the building, also defining 
rule-based strategies [98] to be implemented in the building energy management 
system. For building diagnosis purpose also the robust extraction of daily patterns 
of occupancy data or indoor environmental quality parameters can be extremely 
useful when it is correlated with energy usage patterns. For example, the 
occupancy profile can be associated to operation of air conditioning or lighting 
systems. On the other hand, the building energy usage patterns can be analysed in 
relation to different components or sub-systems whose mutual interactions and 
correlations can be discovered by analysing their behaviour over time with a 
temporal approach in the knowledge discovery. Temporal data mining can support 
the optimal operation of a building at multiple levels through the extraction of 
useful cross-sectional relationships between forcing variables and the actual 
energy consumption by performing a multivariate time series analysis.  



46 
 

In some cases, can also be beneficial to transform and reduce the daily load 
profiles to increase the computational cost of analysis [28] and improving the 
identification of frequent and infrequent patterns [21,89]. To this purpose SAX 
representation of time series can be employed for transforming the original load 
profiles information into strings of symbols. In [30] SAX and motif discovery 
were employed in combination with Temporal Association Rule Mining (TARM) 
to mine temporal correlations in Building Automation Systems (BAS) data. The 
extracted knowledge joined with domain expertise was helpful in identifying 
typical patterns and anomalies, estimating energy performance and detecting 
opportunities for energy conservation measures. In [99], the time series related to 
the operational cycles of a solar cooling system was transformed into a symbolic 
representation and clustered to detect bad, average or good chiller performances. 
A similar work was conducted in [100], where the SAX process was used to 
reduce the computational efforts when pattern discovery algorithms were run. 
SAX was also adopted in [30] to discover frequent patterns in time series related 
to the energy consumption of the International Commerce Centre in Hong Kong 
and to efficiently estimate the similarity between each pair of symbolic sub-
strings through the Random Projection algorithm. Infrequent pattern recognition 
was conducted in [89] by means of daily load profiles transformed into SAX 
words. Infrequent operating patterns of the cooling energy consumption of an 
international school campus and the overall electricity consumption of an office 
building were evaluated by setting a threshold of occurrence below which the 
SAX words representing daily load profiles could be considered as infrequent.  

As discussed above the robust recognition of energy patterns from load profiles 
of building energy consumption is particularly desirable to perform robust energy 
characterization and diagnosis. In section 3.3 a robust methodological procedure 
conceived for this purpose is developed on real case study.  

 Load profiling at building portfolio level 
A number of load profiling frameworks have been developed in the literature to 

deal with data coming from multiple buildings usually with the aim to identify, 
through unsupervised analysis, homogenous groups of typical daily load profiles 
(i.e., customer classification) characterised by similar shapes and/or magnitude 
[11,101]. When a group of buildings is analysed a classification process is usually 
performed. To this purpose a reference daily load pattern needs to be selected for 
each building (Fig. 16). In fact, the classification process could involve a large 
number of buildings making it a labour intensive and time-consuming task.  For 
this reason, in most of cases, it is necessary to extract only one representative load 
pattern from the set of typical daily load profiles of each building. On the basis of 
the data segmentation, the representative load pattern usually corresponds to the 
typical profile in a specific time period or to the most populated cluster or to the 
most occurring motif. After the selection of the reference load pattern for each 
customer/building, data scaling is necessary in order to compare the different 
profiles between each other removing the effect of magnitude (Fig. 16). 
Magnitude differences, resulting from different building design features (e.g. 
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gross volume, floor area, installed power, etc.) or load conditions, can negatively 
affect the performance of pattern recognition algorithms in discovering similar 
shapes among daily load profiles.  

 

 
Fig. 16 - Generation of the database of Customers’ patterns (i.e., normalized load profiles) 

Scaling can be achieved through different approaches. Load profiles in the 
(0,1) range are obtained normalizing respect to a reference power e.g., the 
maximum value [102], mean value [87] or between minimum and maximum [84] 
values of the original daily load profiles. In other cases, a z-score normalisation 
can be also performed. Consequently, the representative normalised load patterns 
are stored in a database (Fig. 16) and then grouped through unsupervised pattern 
recognition algorithms in order to discover typical classes of customers/buildings.  

The whole process consists of three different steps: (i) identification of n 
classes of buildings according to load profile similarity, (ii) definition of the 
normalised reference load pattern for each customers’ class (e.g. centroid) (iii) 
enrichment of the database with additional attributes (categorical or numerical) for 
each load profile to perform a supervised classification process.  

The first step of the process, in most of the cases, makes use of unsupervised 
data analytics techniques to identify homogenous groups of customers based on 
their electrical/thermal daily load profiles [103]. To address that task several 
algorithms were proposed in the literature and tested on different case studies 
(e.g., from low voltage to high voltage electric customers). 

According to Panapakidis et al. [104] the methods used for the identification 
of homogenous load profile groups can be categorized as partitional clustering 
algorithms (e.g., k-means), fuzzy clustering algorithms (e.g., Fuzzy C-means), 
hierarchical clustering algorithms, neural network based clustering (e.g., self-
organizing maps) and algorithms that not belong to the previous categories (e.g., 
support vector clustering). The k-means algorithm was used with success for the 
classification of industrial [84] or domestic [105] electricity customers. Fernandes 
et al. used the Fuzzy C-means for the segmentation of residential gas consumers 
[106]. In [46] a customer classification process was performed by using a 
hierarchical clustering process, while Figueiredo et al. characterized the energy 
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consumers by means of a self-organizing maps [107]. Moreover in [108] a support 
vector clustering process was adopted to segment electrical load patterns. 

Despite their proven effectiveness, the robustness of such unsupervised 
methods is strictly dependent from various factors such as the aggregation 
algorithm (e.g., complete, single linkage in hierarchical clustering) [103], the 
dissimilarity distance measure between profiles [88,96], the data normalization 
technique [11] and number of clusters (i.e., customer groups). Due to such degrees 
of freedom in the clustering problem formulation, several adequacy indices (based 
on the measure of inter-cluster similarity and intra-cluster dissimilarity) have been 
proposed in the literature in order to assess the quality of clustering results [103].  

In [103,104] the most popular indices were reviewed such as mean index 
adequacy (MIA), clustering dispersion indicator (CDI), scatter index (SI), 
Silhouette index,Variance Ratio Criterion (VRC) and Davies-Bouldin Index 
(DBI). The use of adequacy indices makes it possible to partially supervise the 
process suggesting the most suitable number of customer groups to be assumed in 
the clustering analysis.  

The outcome of that step is then the identification of a number of energy 
customer classes (buildings with similar energy consumption profiles), for which 
the reference load pattern can be calculated as the centroid or medoid of the 
profiles grouped together. Subsequently, the customer class label is encoded as a 
categorical variable to be predicted through a supervised classification model. To 
this purpose the load profile database is enriched with additional attributes 
(categorical and/or numerical) to be considered in the classification as predictive 
variables.  

These attributes can be defined a-priori or based on in-field measurement 
campaign [45]. A-priori indicators are related to the customers’ energy contracts 
and type of commercial activity and then are generally used by energy providers 
to preliminary characterize their clients. These indicators are static and do not 
exhibit sensitivity to load profile shape and magnitude [45]. Indeed, if they are 
used as unique predictors they cannot provide a good characterization of the 
energy use of customers in the time domain [11]. For this reason, indicators 
extracted from in-field measurement campaign are employed in order to ensure a 
higher accuracy of the supervised classification model. These indicators deal with 
specific features of the load profile shapes and are calculated for each customers’ 
reference load pattern.  

These indicators (in the (0,1) range) are capable to capture the normalized 
variability in daily load profiles, and hourly/sub-hourly load shares with respect to 
specific reference values (mean, max, min, standard deviation) in different daily 
periods (e.g. night, lunch time) [45,109].  

Once the predictive attributes are selected, the customer classification process 
goes through the development of a supervised classification model. The 
classification task aims at assigning unknown customers into pre-identified 
classes. Decision trees (e.g. C4.5, C5.0, CART) have been often used in the 
literature to accomplish that task due to their capability in handling both 
categorical and numerical variables and the high readability of their output in 
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form of decision rules [110,111]. In [112] Ramos et al. used C5.0 algorithm for 
classifying a portfolio of about 1000 medium voltage customers in groups 
identified though a clustering analysis. Also in [107] Figueiredo et al. employed 
the C5.0 algorithm for customer classification purpose. In particular, a different 
consumer characterization is obtained for each load conditions considered. As a 
reference for winter working days and weekends the overall classification 
accuracy is close to 80% leveraging on a set of about 30 decision rules. 

Fig. 17 shows the main conceptual steps of the described customer 
classification process. In particular, once the customer class are identified targeted 
energy management and demand response strategies can be conceived for each 
class. At this stage, when new customers are included in the portfolio it is possible 
to sorting them in the customer classes previously identified. 

 

Fig. 17 - Conceptual framework of the customers’ classification process 

Rhodes et al. in [83] stated that load profiling of residential customers could 
serve as a starting point for utilities looking to reduce electricity use during peak 
times by developing policies that target load shifting. Eventually, in the two-way 
paradigm of smart grid, load profiling at building portfolio level is particularly 
beneficial for both energy providers and users that are involved in Demand 
Response (DR) programs [94,113]. In the current competitive energy retail 
market, DR programs are designed to be attractive for the consumers and at the 
same time profitable for the retailers. In incentive-based programs, knowledge of 
customers’ macro-behaviour in energy consumption allows the distribution 
companies to better manage the grid operation [114] and the interactions between 
energy consumption and production [94,115] (e.g., indirectly switching certain 
electric appliances at certain times).  

The consequent modification of a load profile allows to flat the demand profile 
or in some cases to follow the generation pattern for achieving an improved grid 
stability [116]. For example, virtual thermal storage, through the modification of 
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load profiles of a group of buildings served by a district heating network 
represents an effective way to increase the share of heat from cogeneration and 
renewable sources [117].  

Load profiling also makes possible to identify energy customers that exhibit 
more variable load patterns than their peers considering the same load conditions 
(i.e., season, day type). Classifying these customers is essential as they could be 
able to change their loads more effectively when involved in demand response 
programs [118]. In that perspective energy retailers can take advantage from that 
knowledge in the design stage of dynamic pricing plans. According to the 
different customer groups in the building portfolio, different energy tariffs can be 
set for each typical curve in order to maximize the relative profit [119,120]. For 
instance, in [45] the authors demonstrated how a data-driven customer 
classification process could be used to modify existing energy tariffs by fixing 
rate coefficients for each customer class.  

Also the customer side is experiencing a revolution in the smart grid 
environment in terms of demand management opportunities. In fact, thanks to the 
spread of electrical/thermal energy storages, renewable energy systems and data 
analytics technologies in buildings [1], user’s energy demand is becoming more 
and more flexible [115,116]. Energy managers can implement, in an easier way, 
strategies aimed at modifying building energy use to obtain targeted changes in 
electrical/thermal load profile [116]. In this way, customers can change their load 
profiles (e.g., consuming less energy during peak hours or shifting the energy use 
to off-peak hours) in response of variations of energy price over time [121] (i.e., 
price-based programs) leveraging on energy flexibility and fully exploiting 
building potential in the energy management [122]. Benchmarking the energy 
usage in the time domain, through load profiling, is then crucial also for the 
impact assessment of DMSs and DR initiatives [123,124].  

The information about shape and magnitude of electrical power consumption 
patterns can reveal useful knowledge [125] about building energy flexibility 
potential and/or in some cases the presence of multiple typical patterns (e.g., 
seasonality, intra-week variation)[83]. From the design point of view, the in-depth 
characterization of the energy demand makes it possible to better address the 
current transition from large centralized generation plants to multi-energy 
distributed ones that are capable to provide, from different sources, energy at a 
small scale (e.g., neighbourhood) when it is needed [116]. In fact, the lack of 
knowledge about building energy use patterns currently represents the main 
barrier for fully exploiting the benefits of energy management also at micro grid 
level.  

Section 3.4 presents a robust methodological procedure of load profiling for 
conducting customer classification. The tool is developed at building portfolio 
level on energy consumption data of real buildings. 
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2.2.3 Fault detection and diagnosis  

Recent years have seen an increasing interest of the scientific community in 
exploring solutions to improve energy efficiency in buildings by implementing 
advanced data-analytics based energy management strategies [126]. According to 
[59], around 20% of energy consumption in buildings is attributable to incorrect 
system configurations and inappropriate operating procedures that can be 
effectively detected through automatic analytics processes. For example, in 
commercial buildings, inefficient system plants waste an estimated 15% to 30% of 
energy used [127,128]. Due to lack of proper maintenance, failure of components 
or incorrect installation, building systems are frequently run in faulty conditions 
where a fault is intended as an unpermitted deviation of at least one characteristic 
property of the system from the acceptable, usual, standard condition. The 
objective behind Fault detection and diagnosis (FDD) is twofold. On one hand 
fault detection consists in the recognition of a fault occurrence, and on the other 
hand fault diagnosis corresponds to the identification of the causes and the 
location of the fault [129]. In particular, advanced methods of fault detection are 
based on mathematical models and on methods of system and process modelling 
to generate fault symptoms (e.g. residuals). Fault diagnosis methods use causal 
fault-symptom-relationships by applying methods from statistical decision, 
artificial intelligence and soft computing.  

Although currently underutilized, FDD is a powerful tool for ensuring high 
efficiency in building operation and FDD products represent a very fast-growing 
market in the context of building analytics technologies [130]. According to [12] 
over 30 FDD products are available in U.S. that may be delivered through 
different implementation models [130]. Despite the existing differences in the 
way tools are implemented and integrated with the monitoring system, the main 
tool classification can be performed according to the approach employed for 
conducting the FDD analysis.  

In the study presented in [126] the methods used for performing an FDD 
analysis can be classified in quantitative model-based, qualitative model-based 
and process history-based. 

The quantitative model-based approach includes all the methods involving 
engineering models with different levels of detail in the physical description of the 
system (e.g. white box models). The qualitative model-based methods exploit the 
system knowledge derived from domain expertise (e.g. rule-based, qualitative 
models). The last category includes data-driven methodologies exploiting 
collected operational data of the system under investigation (e.g. Artificial Neural 
Networks, Association Rules Mining, grey box models). While rule-based 
methodologies (qualitative approach) are still the norm, vendors are beginning to 
use data driven methodologies for addressing FDD tasks [130].  

In the last few years, the data-driven approach gained more and more interest, 
thanks to its applicability even in the case engineering models of the building and 
systems are inadequate or difficult to be developed, or the physics-based 
knowledge is not wide enough [126]. In this context, particularly promising is the 
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implementation of data analytics techniques which include both supervised and 
unsupervised algorithms. As reviewed in [13], the main advantages of the data-
driven approach based on data analytics, in comparison to traditional approaches 
rely on the opportunity to  

 Learn patterns from system operational data automatically without the 
use of physical models. The data-driven approach based on data 
analytics does not require an a-priori understanding of the 
relationships that exist among faults and their symptoms. Therefore, it 
would be simple to implement the data driven-based methods. 

 Achieve higher fault detection and fault diagnosis accuracy than the 
knowledge driven-based (qualitative) methods also for faults of low 
severity levels. 

 Perform FDD analysis exploiting a limited number of variables. It 
means that can enable an optimisation of sensor installation and then 
significantly reduce the number of required sensors.  

Considering the building application field, the most developed data-driven based 
FDD processes focused on the operation data of Heating Ventilation and Air 
Conditioning systems, considering that in commercial buildings they could 
account for 50% of the energy demand [131]. Such systems are essential in 
buildings for maintaining the desired microclimatic indoor conditions and often a 
large amount of operation variables is collected through BAS for controlling 
them. However, the presence of BAS does not ensure that HVAC systems were 
operated in absence of component or control faults. It has been estimated that the 
identification and diagnosis of these faults in HVAC can lead to potential savings 
of about 30% [132].  

One of the most sources of component and control faults in HVAC is related 
to Air Handling Units management. A study conducted on more than 55.000 Air 
Handling Units of HVAC systems, showed that 90% of them runs with one or 
multiple faults [133] making them a matter of interest in many FDD applications. 
In this perspective, the next section provides a wide overview about the use of 
data analytics for conducting data-driven FDD analysis on real operational data of 
AHU systems.  

 Fault detection and diagnosis in AHUs  

As stated in section 2.1.3, data analytics techniques can be categorized in 
supervised and unsupervised approach. Both approaches were employed in the 
literature for conducting FDD analysis in AHUs [134,135].  

Even though each component of an AHU can be potentially corrupted by a 
fault, the most common faults can affect sensors (e.g. offset in the measurement), 
controlled devices (e.g. blockage or leakage of air damper or coil valves), 
equipment (e.g. coil fouling or reduced capacity, duct leakage, fan complete 
failure or deviation in the pressure drop or belt slippage) and controllers (e.g. 
unstable or frozen control signal for dampers, coils or fan) [136]. Dehestani et al. 
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proposed a methodology to identify faults related to the fans and the air dampers 
of an AHU. The methodology used a Multi-Class Support Vector Machine (MC-
SVM), for the identification of both pre-labelled faults and new ones [137]. In 
[138] and [55] a Bayesian Network (BN) was adopted for the diagnosis of faults 
related to air dampers, cooling coil valve stuck and return fan failure. The BN 
exploited as input the residuals obtained from a set of limit checking rules and 
statistical models capable of estimating air temperature, water flow rate, air flow 
rate and fan power consumption. Mulumba et al. in [139] proposed a methodology 
to diagnose the presence of several faults affecting air dampers, cooling coil valve 
and return fan by using a SVM in combination with an autoregressive model with 
exogenous inputs. Yan et al. in [140] proposed a combination of two supervised 
techniques to diagnose the blockage of air dampers and coil valve, the duct 
leakage and the return fan failure. In [140] was developed a classification tree 
which used as inputs both monitored data (i.e. air temperature and flow rate, fan 
speed and power, and cooling coil valve position) and residuals obtained from a 
regression model of the fan speed, while as output the labels of different faults. 
The methodology developed made it possible to accurately perform fault 
diagnosis, but without taking into account transient periods of operation. Different 
classification models for fault detection were also compared in [141] and CART 
algorithm was identified as the best choice for the detection of steam or chilled 
water leakage.  

The unsupervised methods proved to be particularly flexible for their nature in 
exploring data set without any a priori constraint, contrary to the supervised 
models [7].  

In [142] the authors proposed an unsupervised methodology to identify 
energy wastes and faults of a fan in an AHU by exploiting Association Rules 
Mining (ARM). This type of algorithm requires a strong expertise by the analyst 
for the interpretation of the results considering that the rule set extracted could 
include also not interesting information for the identification of anomalous 
operation of the air conditioning system [142]. Many studies made use of ARM 
for the identification of faults in different types of HVAC sub-systems including 
district heating substation, AHU and chillers [13]. In order to help the domain 
expert in the interpretation of ARM results, in [143] was proposed a methodology 
to reduce the number of rules to be analysed and to effectively group them for 
distinguishing the faulty from the normal operation. Furthermore, the temporal 
relation among the energy consumption of different HVAC components was 
studied in [30,144] to determine the presence of faults and prevent a reduction of 
energy performance over time.  

A combination of a supervised with unsupervised methods (e.g., decision tree 
and clustering analysis) for the detection of anomalous energy consumption in a 
group of smart office buildings was proposed in [60,145]. As a reference, Dey et 
al. achieved high values of accuracy in the automatic FDD on fan coil units 
operation  by combining MC-SVM and cluster analysis [146]. 

In [147] Du et al. proposed a methodology to identify faults of temperature, 
flow rate and pressure sensors in a VAV system by implementing Artificial 
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Neural Networks (ANNs) in combination with a signal decomposition technique 
(i.e. Wavelet analysis). In [148], ANN was combined with clustering analysis to 
diagnose faults related to cooling coil valve, air damper and temperature sensors 
in an AHU. In the first step, ANN was used for the estimation of supply air and 
water temperature to perform a residual analysis, then the methodology leveraged 
on clustering analysis for the fault diagnosis stage. Guo et al. used a Hidden 
Markov Model (HMM) for the fault detection phase and a cluster analysis for the 
identification of various types of faults such as the blockage of dampers, frozen 
fan or unstable cooling coil valve control signal [149]. In [150,151] an 
unsupervised data-driven approach was used to identify the presence of cooling 
coil valve blockage, heating coil valve leakage and air damper blockage, by 
analysing the error generated from the reduction of variables by means of Wavelet 
Transform and Principal Component Analysis. Successively, fault diagnosis was 
performed by analysing the trend of each variable during faulty conditions in 
order to identify the variable mostly influenced by the fault source.  

In [152] the authors proposed a methodology to diagnose the stuck of the 
recirculation damper and of the cooling coil valve and the decreasing of the 
supply fan speed in an AHU. In particular an SVM was used in combination with 
a white box model, exploiting the residuals obtained comparing actual and 
simulated fault-free values of supply and mixed air temperature, and cooling coil 
outlet water temperature. Wu et al. [59] combined a quantitative model-based 
method with an unsupervised data-driven method to diagnose sensor faults, air 
damper blockage or frozen fan. Specifically, the variables considered were firstly 
reduced (i.e., by means of Principal Component Analysis); successively the 
presence of faults was investigated comparing actual monitored data with the 
estimation of airflow rate and energy calculated by using energy and pressure-
flow simplified balance equations. In other works, qualitative-based approach was 
used to perform automatic FDD in combination with the data-driven approach. In 
[153], the detection of faults occurring in an AHU was performed by exploiting 
“IF-THEN” expert rules related to the residuals of mixed air temperature, return 
air flow rate, supply air static pressure and cooling coil valve control signal, 
generated with different General Regression Neural Networks. In [154] was 
proposed the integration of expert rules with  Bayesian Networks in order to better 
isolate faults in AHU. Such approach made it possible to exploit the violation of 
expert rules to better detect the co-occurrence of multiple faults at the same time.  

The proposed literature review demonstrated how much active is the FDD 
research field and the high contribution that data analytics methodologies bring.  

In this perspective, Chapter 4 presents and discusses a novel FDD tool, based 
on data analytics techniques, developed on measured AHU operation data.  

2.2.4 Benchmarking analysis 

The main goal of a benchmarking system is to evaluate the divergence between 
the energy performance of a building/system and a reference baseline.  
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Benchmarking methods can be categorized according to the considered type of 
baseline. Four types of baselines can be considered in existing benchmarking 
methods: previous performance of similar buildings (i.e., external benchmarking), 
current performance of similar buildings (i.e., external benchmarking), previous 
performance of the same building (i.e., internal benchmarking), and intended 
performance of the same building (i.e., internal benchmarking) [63]. The first two 
types of baselines are used by regulators, public authorities, or private building 
portfolio managers to encourage owners to improve energy efficiencies of their 
buildings [155]. On the other hand, internal benchmarking techniques are 
exploited et single building level for energy tracking and continuous 
commissioning purpose.  

According to the modelling approach considered benchmarking analysis can be  
further classified in calculation-based and data-driven benchmarking system 
[156]. The calculation-based benchmarking system compares the observed energy 
consumption with a simulated benchmark, representing an archetype or a 
theoretical energy consumption [157]. Calibrated simulation tools, belonging to 
the so-called white box methods, are by now the main instrument to assess the 
energy performance of buildings and to evaluate the possible scenarios for energy 
retrofit [158–162]; they also provide the most reliable results in the design stage 
of a building [163]. This approach is however of limited use for large building 
stocks because it is time-consuming, labour intensive [164], and it requires 
detailed building information which is not always easily available within a large 
dataset [165]. The data-drive benchmarking process compares the observed 
energy consumption with a benchmark value obtained from actual energy 
consumption data. The most common data-driven benchmarking processes 
proposed in the literature are performed through statistical models [166], data 
analytics techniques [9,10,52,167,168] and simple normalization of the energy 
consumption with respect to floor area and/or volume as a way to computing the 
mean or median value [156].  

With the rapid growth of stored data in the building sector and the necessity to 
extract knowledge from these large datasets to improve the building performance, 
the data-driven benchmarking analysis is becoming the most promising approach. 
The choice of the most suitable strategy (simple normalization, statistical models 
and data analytics techniques) to develop a benchmarking process depends mainly 
on the quantity and the quality of the available information and on properties of 
the available dataset. 

When the pieces of information available are exclusively related to building 
energy consumption (e.g. total energy consumption, space heating, space cooling, 
lighting, etc.), a simple normalization is the most common way to obtain the 
benchmark value. To this purpose, buildings are firstly segmented and classified 
according to their building end-use category as residential, industrial, commercial 
and then Key Performance Indicators are calculated.  

This approach, relying only on one the calculation of simple KPIs, was used  
for example in [5,169]. In [5] the average energy consumption for different 
building types in the US was computed, in order to make available comprehensive 
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building energy information useful to plan efficient energy policies for the future. 
In [169], the annual total electricity use intensity is used to identify the benchmark 
value of the California State Teachers’ Retirement System  Headquarters 
(CalSTRS). To quantify the potential energy savings, this value was thus 
compared with a median value of annual total electricity use intensity obtained 
from 31 buildings selected from the database of California’s Commercial End Use 
Survey.  

Other simple normalization methods evaluate different performance indicators 
simultaneously. For instance, in [170] Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) was used to introduce a multi-criteria 
benchmarking approach. This technique made it possible to compare building 
energy performances considering multiple indicators for a more comprehensive 
evaluation. Lee at al. [171] demonstrated that this multi-criteria approach is more 
consistent than using a single performance indicator.  

However, in many cases, buildings belonging to the same end-use category 
can exhibit significantly different patterns in their energy consumption [9,121]. In 
such cases, benchmarking methods related to the energy use intensity (e.g., 
kWh/m2y) of the building are not able to fully characterise the energy behaviour 
of a customer over time. On the contrary, knowledge extracted from energy 
consumption time series (i.e., load profiling analysis) contains information on 
how and when building energy use changes during the day for various end uses 
such as appliances, lighting, ventilation, heating and cooling [15,16].  

For this reason, data analytics techniques, such as cluster analysis, were 
proposed in the literature to find homogeneous groups of buildings having  the 
same energy consumption pattern (i.e., energy profiling) [9–11,167], or similar 
energy features [168]. As a reference, when a clustering analysis is conducted for 
segmenting buildings in heterogeneous building portfolios, the benchmarking 
process analysis can be conducted using the centroids of the clusters as reference 
patterns/values. Also supervised data analytics techniques were often used for 
benchmarking energy use in buildings taking into account various significant 
influencing factors(e.g. weather conditions, building envelope, building 
operational modes, occupant behaviour etc.) [172]. These benchmarking 
processes, based on the development of prediction models, represent fast and 
accurate management tools. The main used models are Artificial Neural Networks 
(ANNs) [65,70,71,173], Support Vector Machine (SVM) [73,174], Gaussian 
Process Regression (GPR) [175,176], Multiple Linear Regressions (MLR) 
[56,177–180].  

Sharp [181] developed a stepwise linear regression model in order to evaluate 
the main factors influencing EUI (Energy Use Intensity) for office buildings. The 
main variables considered were building size, number of workers, number of 
computers, occupancy, operating schedule, presence of an economizer and 
presence of a chiller. Regression residuals (i.e. the difference between the 
monitored and the estimated energy consumption) were used as measures of 
energy inefficiency.  Also  in [179,180] the residuals of the regression model were 
used as measure of the building energy efficiency. Similarly, the Energy Star 
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[182] uses the Energy Efficiency Ratio (defined as the ratio between the actual 
and the estimated energy consumption) to perform the building energy 
benchmarking.  

Wong et al. [183] used an ANN model in the evaluation of energy 
performance of office buildings located in Hong Kong. The results showed that 
the ANN model achieved more accuracy in the prediction of electricity use for 
periods in which the energy end-use was clear (i.e. summer cooling and winter 
heating). 

In [52], a novel methodology was proposed to perform a benchmarking 
analysis particularly suitable for heterogeneous samples of buildings. The 
methodology exploited Linear Mixed Effects Model to take into account both 
fixed effects shared by all individuals within a dataset and the random effects 
related to specific groups/classes of individuals in the population. The groups of 
individuals within the population were classified through a decision tree. The 
benchmarking analysis was tested for a case study of 100 out-patient Healthcare 
Centres in Northern Italy, finally resulting in 12 different frequency distributions 
for space and Domestic Hot Water heating energy consumption, one for each 
class of homogeneous class of buildings. From the median value of each 
frequency distribution, reference values were extracted to be used in a 
benchmarking analysis.  

Benchmarking analysis is one of the main functionalities in DSS and in this 
dissertation is explored at building portfolio level on real energy consumption 
data of more than 100 buildings. Specifically, section 4.3 presents a robust 
methodological procedure with twofold objective. On one hand the aim is the 
identification of typical load profiles in a building portfolio (i.e., energy use 
benchmarks). On the other hand, a second objective is to develop a tool for the 
classification of new buildings included in the portfolio (i.e., customer 
classification). These two objectives are achieved by developing a unique 
multifunctional DSS tool. 

2.2.5 Characterisation of occupant behaviour  

Occupant behaviour is one of the major factors influencing building energy 
consumption and introducing sources of uncertainty in building energy use 
prediction and simulation [184–186]. Currently the exploitation and 
characterization of occupant-related data in buildings is insufficient thus limiting 
opportunities of building design optimizations and energy management 
improvements [184]. Occupant behaviour is associated with various actions that 
have a direct or indirect impact upon building energy consumption such as 
adjustment of thermostat settings, opening and closing of windows, dimming and 
switching of lights, use of blinds, turning on/off of HVAC systems, presence and 
movement in building spaces[184]. 

Occupant actions in building can be categorized in (i) adaptive actions, and 
(ii) non-adaptive actions [186–188]. 
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On one hand, adaptive actions are intended as reactions of occupants (a) to adapt 
the indoor environment to their needs or preferences or (ii) adapt themselves to 
the environment e.g. by clothing adjustments and movement in building spaces 
[186]. On the other hand, non-adaptive actions are related to occupant presence 
and operation of plug-ins and electrical appliances [186]. Both adaptive and non-
adaptive actions are influenced by typological factors called “drivers” that are 
related to external and individual parameters. According to [189] drivers of 
occupant actions in buildings can be classified as follow: 

 Physical drivers such as internal and external environment, such as 
temperature, wind speed, humidity; 

 Contextual drivers, related to the building features, such as floor area, 
insulation, type of heating system; 

 Psychological drivers related to the ways people reacts to satisfy their 
needs;  

 Physiological drivers such as age, activity level and health of occupants; 

 Social driver related to interactions between occupants.  
 
Quantifying the effect of occupant behaviour on building energy consumption and 
the potential energy saving achievable through its modification remain primary 
challenges. According to the literature a potential reduction of energy 
consumption in the range of 10-20% and 5-30% can be achieved for residential 
and commercial buildings respectively [184–186].  

Ouyang and Hokao in [190] investigated the energy saving potential in 124 
households in China by improving behaviour of occupants. Specifically, the stock 
of households was segmented into two groups. The occupants included in the first 
group, received suggestions on how improve their behaviour for reducing energy 
consumption, while maintaining unchanged occupant habits in the second group. 
By comparing monthly household electricity consumption of both groups, it was 
found that energy-conscious behaviour lead to an energy saving higher than 10%.  

In [191] the authors simulated the effect of occupant behaviour by means of the 
energy simulation software ENERWIN. The first step of the analysis was aimed at 
collecting (by means of surveys) data and information on typical occupancy 
patterns and operation schedules of electrical devices in 30 residences in Kuwait. 
In the second step of analysis, the patterns obtained in the previous step were used 
as input data of the simulation software ENERWIN replacing its default data. 
Results demonstrated that the annual electricity consumption would rise by 21% 
when the realistic occupant behaviour patterns were used instead of the default 
settings provided by the software. 

The research studies presented, demonstrated that occupant behaviour 
significantly influences energy management in buildings making its fully 
characterization highly desirable for improving energy performance. However, 
occupant behaviour is a complex phenomenon to be effectively characterized due 
to its stochastic nature and dependency from social factors. To this purpose, with 
a certain level of approximation, it can be simplified and represented 
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quantitatively by understanding the relation that exist between drivers and 
behaviour [184]. In this perspective the growing availability of data in buildings, 
also related to occupant-related information, makes the use of data analytics 
techniques particularly suitable to automatically extract robust behavioural 
patterns from massive datasets [1,58,189,192].  

In [193] a methodology for characterizing and improving occupant behaviour 
in residential buildings was proposed. End-use loads of various electrical devices 
were categorized into two levels (i.e., main and sub-category) and were analysed 
to indirectly infer the corresponding two-level occupant activities (i.e., general 
and specific behaviours). In particular, data clustering and classification were 
performed for analysing the main-use loads with the aim to identify general 
energy-inefficient behaviours of occupants. In a second step of analysis, 
association rules were extracted to also characterize energy-inefficient specific 
occupant behaviour. The methodology was implemented in a group of residential 
buildings and demonstrated the effectiveness of data analytics techniques for the 
identification of behaviours to be modified for achieving energy saving.  

In [189] was proposed a data analytics based methodology conceived for the  
extraction and modeling of window opening and closing patterns in an office 
building naturally ventilated. A multi-step framework of analysis was developed. 
Firstly, a logistic regression model was developed to identify the most relevant 
factors influencing opening and closing of windows. Successively, a clustering 
analysis was performed to extract typological behavioural patterns considering 
motivational aspects, opening duration, opening frequency and window positions. 
Eventually, association rules were mined among the cluster patterns for the 
identification of two reference office user profiles. for which different natural 
ventilation strategies as well as robust building design recommendations that may 
be appropriate. Such advanced characterization of occupant behaviours provided a 
set of behavioural rules that can be used to support specific operation and 
maintenance and develop ventilation-based energy saving strategies. 

In this context, especially for commercial and office buildings, great attention 
has been paid to the collection and processing of occupancy data in buildings, 
since different system operations can be optimized by characterizing and 
managing occupants’ presence [194–196]. In fact also for occupant presence 
patterns a great difference from the default profiles suggested in building energy 
modelling software could exist [58].  

Currently, most heating, cooling, ventilation and lighting systems are operated 
considering buildings as occupied with a fixed schedule that is assumed to not 
change over time. In the majority of cases, this assumption differs significantly 
from the actual occupants’ presence. As a consequence, knowledge extractable 
from occupancy data can lead to considerable energy savings achievable by 
operating energy system (especially for centralized HVAC systems) with 
optimized occupancy-based schedules [197].  

In the literature several researchers focused on the analysis of actual 
occupancy data for characterising and managing occupant presence improving the 
performance of HVAC systems in buildings. In [197], through the analysis of 



60 
 

actual occupancy data, was introduced an optimised HVAC schedule by reducing 
occupancy diversity through the aggregation of occupants with similar patterns in 
the same part of the building. Fig. 18 shows the main conceptual steps behind 
occupancy diversity reduction in buildings for optimising HVAC system 
rescheduling. In particular, thanks to the adoption of unsupervised pattern 
recognition techniques it is possible to construct the database of typological 
occupancy profiles. In this way it is possible to reduce the occupancy diversity in 
each thermal zone by aggregating in the same portion of the building occupants 
that exhibit similar behaviour (i.e., occupancy profile). As a consequence, the 
schedule of each HVAC system can be optimised and diversified according to the 
actual occupied period of the served thermal zone generating a potential reduction 
of the daily operation hours of the system. 

 

 

Fig. 18 - Main conceptual steps behind occupancy diversity reduction in buildings 

 Yang, Ghahramani and Becerik-Gerber in [198] investigated the concept of 
occupancy diversity reduction in buildings and provided a methodology to 
quantify its impact on HVAC energy consumption. Five reference buildings were 
analysed, considering different set point controls before and after eliminating 
occupancy diversity. The energy efficiency at both zone and building level were 
found to be significantly affected by occupancy diversity. A reduction of the 
energy consumption of the HVAC systems of about 18% was found when 
occupancy diversity was minimized at building level.  

In [199] was presented an experimental study on two occupancy-based 
HVAC system control strategies implemented in a Building Automation System 
(BAS). The experimental analysis was performed in a single room in a university 
campus in Florida equipped with a VAV (Variable Air Volume) system. The 
occupancy data required for the control strategies were collected through an 
occupant’s presence sensor. Both occupancy-based strategies were found to 
guarantee 40% of energy savings during the experiments, compared with a 
baseline control that did not use occupancy measurements. 
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Another study, aimed at calculating energy savings due to the adoption of an 
occupancy-based control strategy, was carried out in [200]. Operational zoning 
and intermittent HVAC system operation strategies were evaluated for common 
built mosques in Saudi Arabia, considering that the mosques were occupied for 
five periods of one hour per day (for prayers). Since it was difficult to accurately 
define the occupancy profiles, the percentage of occupants was derived as a 
function of the pray duration. Compared to a continuous operation mode, the 
intermittent mode led to 30% of savings as a result of an appropriate operation 
zoning.  

In section 3.2 a robust methodological procedure is developed, exploiting 
actual occupancy data for obtaining scheduling improvements of HVAC systems 
in buildings.  

2.3 Discussion of the literature review  

The application of data analytics techniques represents a powerful opportunity 
to extract useful information from the building-related data to enhance energy 
efficiency of buildings during their operation. The applications discussed in the 
previous sections demonstrated the usefulness of data analytics technologies in 
several fields of building energy management especially for what concerns DSS 
solutions (i.e., not including a control signal as output).  

The information obtained from DSS tools enables building owners to operate 
their buildings more efficiently avoiding energy waste over time. Differently from 
other kinds of EMIS systems, DSS read data from the monitoring system, analyse 
them but do not have a direct communication with the Building Automation 
System (BAS) for adjusting the control parameters of building energy systems 
during operation. In this perspective, while DSS are powerful tools, they need to 
be integrated in a robust verification process to achieve the desired impact.   

As demonstrated in the literature review, advanced data analytics techniques 
are today capable to address emerging energy management tasks that represent 
essential functionalities of advanced DSS solutions; i.e., energy consumption 
prediction, identification of energy anomalies, identification and diagnosis of 
faults in energy systems, benchmarking and characterization of the occupant 
behavior. However the effective coupling of building physics and data science, at 
the basis of advanced DSS, still needs significant contributions aimed at 
developing robust and generalizable frameworks of analysis that on one hand 
extract useful knowledge from measured data and on the other hand support the 
final user in defining ready-to-implement energy saving and management 
strategies.  

A plethora of both general purpose and tailored algorithms are available for 
each data analytics technique, and in most cases no algorithm is universally 
superior [1]. Several aspects determine which algorithm performs best, including 
data volume, data quality and the target of analysis. The selection of an optimal 
algorithm, as well as the tuning of its parameters, needs to be supervised by an 
experienced computer scientist, seeking a good trade-off between generalizability, 
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robustness, interpretability, and accuracy. The whole process requires a 
considerable amount of expertise and effort. Thus, new scalable approaches that 
are highly interpretable for the user and capable to automatically extract 
actionable knowledge from massive energy-related data repositories will fuel the 
next generation of energy management and information systems [1].  

This dissertation seeks to address each of these challenges through the 
development of four DSS tools useful at different levels of building energy 
management (from system component level up to building stock level) leveraging 
on both building physics and data science expertise. 
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3 DSS applications at meter-level: 
development of advanced Energy 
Information Systems (EIS) tools  

This chapter discusses in detail the development of data analytics-based 
methodologies that can be integrated in DSS. The focus is on meter-level 
analyses, typically performed by means of advanced Energy Information System 
(EIS) tools.  

Portions of the present chapter were already published in the following 
scientific papers: 

 Capozzoli A., Piscitelli M.S., Brandi S. 2017. Mining typical load 
profiles in buildings to support energy management in the smart city 
context. Energy Procedia, 134 pp. 865–874. [11] 

 Capozzoli A., Piscitelli M.S., Brandi S., Grassi D., Chicco G. 2018. 
Automated load patterns learning and diagnosis for enhancing energy 
management in smart buildings. Energy, 157 pp. 336–352. [21] 

 Piscitelli M.S., Brandi S., Capozzoli A. 2019. Recognition and 
classification of typical load profiles in buildings with non-intrusive 
learning approach. Applied Energy, 255 pp. 113727. [10] 

 Capozzoli A., Piscitelli M.S., Gorrino A., Ballarini I., Corrado V. 
2017. Data analytics for occupancy pattern learning to reduce the 
energy consumption of HVAC systems in office buildings. Sustainable 
Cities and Society, 35 pp. 191-208 [14]. 
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3.1 Advanced Energy Information Systems (EIS) 

Advanced EIS are enabling tools (i.e., DSS) that provide the needed analytical 
capability to building owners and energy managers as they are conceived for 
automatically extracting knowledge from building related data. The information 
gathered through EIS tools provides insight into building energy use and system 
performance enabling building owners to operate their buildings more efficiently 
[12].  

Differently from other kinds of energy management DSS tools, EISs read data 
at meter-level, analyse them and provide informative outputs to a human user 
(e.g., energy manager, building owner, energy service company)[12,201].  

Advanced EISs not only allow new forms of building energy management to 
be pursued but at the same time significantly reduce the complexity of 
performance commissioning in existing buildings. According to the Building 
Commissioning Association (BCA) Existing Building Commissioning (EBCx) is 
defined as a systematic process aimed at improving the performance of buildings 
and energy systems by means of low/no cost and capital-intensive measures and 
ensuring their effect persists over time [202].  

Advanced EISs are today capable to enhance such process (i.e., building 
commissioning) and it is mainly due to the exploitation of data analytics methods. 
In particular, as emerged from section 1.3, time series analytics and automated 
rule extraction techniques play an essential role in the knowledge discovery phase 
for maximizing both the amount of extracted information and its interpretability.  

In this context, the effective coupling of building physics and data science 
needs significant contributions aimed at developing robust and generalizable 
methodological frameworks for bridging the gap between the growing availability 
of measured data and the need of actionable knowledge. As stated in section 1.1, 
the effectiveness of DSS solutions (and then also of EIS) can be considered 
strictly related to three main factors: (i) the level of user engagement, (ii) the 
detail of the analysis and information provided, (iii) the level of interpretability of 
the results obtained. Such aspects should be then properly considered for 
achieving significant improvements in building energy management. In order to 
demonstrate such potential, three main opportunities related to the implementation 
of EISs are investigated in this dissertation for different testbeds at different scales 
(Fig. 19).  
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Fig. 19 - Advanced EIS tools developed at different scales and organization of Chapter 3 

Novel frameworks of analysis are developed at meter-level for addressing the 
following main tasks typically required to advanced EISs (Fig. 19): 

 HVAC scheduling improvements at building system level  (discussed in 
in section 3.2). 

 Identification of energy consumption reduction opportunities through the 
detection of anomalous energy trends at whole building level (discussed 
in section 3.3). 

 Identification of typical energy use patterns and customer classification at 
portfolio level (discussed in section 3.4).  

All the developed tools leverage on methodological procedures that exploit time 
series analytics and rule extraction techniques for ensuring high interpretability of 
the results.  
The conceived EIS tools can be then easily translated in a set of decision rules and 
embedded in DSS helping managers, owners or service companies in increasing 
awareness about the energy performance of their buildings and achieve 
demanding energy management targets during daily operation. 
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3.2 Development of an EIS tool for scheduling 
improvements at building system level 

Advanced EISs provide today valuable opportunities for extracting in a robust 
way useful hidden knowledge from monitored building-related data and 
developing effective and ready to implement energy saving strategies in buildings. 
In this perspective one of the most frequently implemented operational 
improvement through EISs at system level, deals with the optimization of energy 
system schedules (e.g., lighting system, HVAC system).  

Given the new paradigm of pervasive monitoring in buildings more and more 
data (not only related to energy consumption and system operative variables) are 
becoming available, completely changing the approach also to traditional energy 
management strategies such as HVAC system scheduling optimization. In 
particular, in the last few years, great attention has been paid to the collection and 
processing of occupancy data in buildings, since different system operations can 
be considered directly or indirectly based on the occupants’ presence [194–196].  

The next section presents the main research challenges related to HVAC 
scheduling improvements in buildings and introduces the motivations and novelty 
of proposed methodological approach.  

3.2.1 Motivations and novelty of the proposed approach 

Currently, most heating, cooling, ventilation and lighting systems are operated 
considering buildings as occupied with a fixed schedule that is assumed the same 
over time. In the majority of cases, this assumption differs significantly from the 
actual occupants’ presence. As a consequence, EISs capable to exploit knowledge 
gathered from occupancy data can lead to considerable energy savings achievable 
by operating energy system with optimized occupancy-based schedules [197]. 
Starting from the literature reviewed in section 2.2.5, an advanced EIS tool for 
HVAC schedule improvement is developed and presented for demonstrating the 
impact related to the analysis of actual occupancy data in buildings.  

The proposed process is effective as it can be generalized and is capable of 
driving energy managers in the definition of the most advantageous HVAC 
schedule when occupancy data are available. The aim is to evaluate optimised 
HVAC system operation schedules by displacing occupants with similar 
occupancy patterns and, similar arrival and exit times, in the same building 
thermal zone (i.e., by reducing occupancy diversity in the building). The novelty 
of the proposed methodology concerns the fact that the displacement of occupants 
from one thermal zone to another is proposed considering more than one typical 
occupancy profile. This is useful for fully exploiting the knowledge of occupant 
behaviours that can vary over different days of a week. In this way, the occupancy 
diversity in buildings can be furtherly reduced leading to higher energy savings 
achievable through system rescheduling. Despite, the usefulness of occupant 
related data, privacy issues could exist when they are not properly analysed.   
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For this reason, the proposed pattern recognition analysis is performed on 
aggregated occupancy information ( i.e., related to groups of occupants) in order 
to preserve the privacy of each individual occupant [203].  

The aim is to develop an EIS tool capable to define an optimal and fixed 
distribution of groups of occupants in the sub-zones of the building under analysis 
(considering fixed constraints, such as room capacity and occupancy pattern 
similarity) in order to reduce the operating hours of the HVAC system in the 
thermal zones of the building. The results obtained for the considered case study 
show that the HVAC scheduling improvement could determine a potential 
monthly reduction of the electricity use for HVAC (space heating, space cooling, 
ventilation and air treatments) that ranges from 12.2% to 15.4% while the average 
energy saving for the whole analysed period (4 months) amounts to 14%. 

The developed methodology for schedule optimization, the description of the 
case study and obtained results are presented and discussed in detail in the 
following sections. In particular, section 3.2.2 provides a presentation of the case 
study considered for conducting the analysis; section 3.2.3 presents the developed 
methodological framework; section 3.2.4 and section 3.2.4.2 present the results 
obtained in terms of recognized occupancy patterns and displacement of the 
occupants. Eventually, section 3.2.6 discusses the results and contains the 
concluding remarks related to this specific EIS tool. As a remark part of the 
content of the section 3.2 was published as scientific article in the Elsevier journal 
“Sustainable city and societies” [14]. 

3.2.2 Case study used for developing the EIS tool at building system 
level  

The EIS tool for HVAC scheduling optimization is developed through the 
analysis of anonymised occupancy data collected in the office building of the 
town hall of Zaanstad (Netherlands).  

The Zaanstad Town Hall (Fig. 20) is a five-storey building located in the 
North Holland province, to the northwest of Amsterdam, in the Netherlands. It is 
characterised by a conditioned net floor area of about 23,000 m2 and by a 
conditioned net volume of about 60,000 m3. The Town Hall was built above a bus 
station, that is currently located on ground floor. The rest of the building includes 
a public area and the employees’ offices.  

Since the Town Hall was built in 2011, the building envelope is characterised 
by quite a high thermal performance. The opaque envelope is made up of a 
lightweight metal frame structure with a continuous external thermal insulation 
layer (U = 0.27 W∙m-2K-1), while the windows are low-e double glazed and are 
filled with air (U = 1.10 W∙m-2K-1). Each window is equipped with internal solar 
shading devices that are manually controlled. 

The building is divided into five thermal zones: the bus station, the public 
area and three office thermal zones (named CD, EF and GH, respectively), as 
shown in Fig. 20. Each thermal zone has two kind of sub-zones: offices and 
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corridors on each floor. In detail 30 office sub-zones are included in the three 
thermal zones considered (10 offices for each thermal zone). 

 
Fig. 20 - Zaanstad Town Hall: picture and geometric model [14] 

Each thermal zone has an individual HVAC system with a centrally controlled 
temperature set point. In addition, each office is equipped with a thermostat that 
allows the occupants to increase or decrease the temperature set point by ± 2 °C. 
The HVAC system is usually turned on at 6:00 am and turned off at 9:00 pm 
during working days, while it is switched off during holidays and weekends. Each 
thermal zone is connected to a heat/cold storage, coupled to a geothermal heat 
pump, which provides space heating and space cooling, and to an air handling 
unit. Condensing gas boilers integrate the space heating and domestic hot water 
energy needs in each thermal zone.  

The lighting system is controlled by means of presence sensors that have been 
installed in each office. The entire building is equipped with a BAS that includes 
several sensors, actuators and user interfaces and allows the energy manager and 
the energy providers to control and manage the HVAC system and the lighting 
system.  

The following data are monitored on an hourly basis in each office: indoor air 
temperature, relative humidity of the indoor air, temperature set point and 
occupancy presence. Furthermore, the delivered electricity and natural gas are 
monitored for each building zone. The BAS is also connected to a meteorological 
station that is located on the roof of the building, which monitors the outdoor air 
temperature, the relative humidity, the wind speed and the wind direction.  

Another monitoring system, called FlexWhere, tracks the presence of the 
employees in each office. This system monitors user’s workstation login and 
visualises this information through different monitors located at the entrance of 
each room/working unit. All the workstations are connected on cloud, thus 
flexibility in moving employees through the building offices is guaranteed. 
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The FlexWhere system stores data that gives information on the current state 
of the workstations every 15 minutes. A 0 value indicates that a workstation is 
empty while 1 indicates it is occupied.  

In this way, if an employee is temporary out of office when the workstation is 
still logged in, the workplace is classified as occupied. This situation points out 
some limitations of this approach for the assessment of occupant presence. 
However, the information related to arrival and exit times can instead be 
considered robust and reliable. 

In order to develop the EIS tool for schedule optimization, the anonymised 
and aggregated occupancy data provided by the FlexWhere system are used to 
extract typical occupancy patterns for each office sub-zone.  

Fig. 21 shows the hourly box plots of the measured number of occupants for 
the whole building and for each thermal zone considered. The boxplots are built 
considering both occupancy data related to weekdays and weekends (when the 
offices are unoccupied).  

The descriptive statistics allows the occupancy patterns to be detected easily 
at a high level of aggregation and common assumptions to be made that were 
useful for the subsequent occupancy learning process. 

 

 
Fig. 21 - Hourly measured number of occupants in the whole building and in single thermal zones [14] 

Fig. 21 shows that the arrival time at the building and thermal zone level 
varies over a very narrow range. For this reason, it can be assumed as a recurrent 
pattern that occurs at around 07:00 a.m. As a consequence, performing a schedule 
optimisation based on the arrival time would not produce any advantage, since the 
office sub-zones show very similar entry times of the occupants. 

The exit time, instead, is affected by a greater variability, ranging from 17:00 
to 20:00, depending on the thermal zone considered. This is further highlighted in 
Fig. 22 (a) and (b), which show the box plots of the number of occupants of two 
representative office sub-zones (office C1 and office D0), that belong to the same 
thermal zone (C-D). 
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(a) (b)  

Fig. 22 - Hourly measured number of occupants in sub-zone C1(a) and sub-zone D0 (b) [14] 

Therefore, the occupant displacement process may only affect the HVAC stop 
time of each thermal zone to any great extent. The start of the HVAC system is 
currently scheduled at 06:00 a.m. for all the thermal zones to guarantee thermal 
comfort on the arrival of the first employee that is assumed to occur at 07:00 a.m. 
Moreover, through dynamic simulation was estimated that one hour is the shortest 
boost period possible to ensure a comfortable temperature at 07:00 a.m. in the 
building. For this reason, all the successive procedures are aimed at optimising the 
HVAC schedule considering only the convenience of re-scheduling the shutdown 
time of the HVAC system for each thermal zone. 

Fig. 23 shows a scatterplot of the maximum number of occupants recorded in 
a single timestep (i.e., 15 min) during the monitored period versus the design 
capacity for each office sub-zone.  

 

 

Fig. 23 - Maximum number of occupants vs. design capacity [14] 

The office sub-zones are characterised by a design capacity that ranges from 
20 to 36 occupants, with a value of the maximum occupancy rate for the 
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monitored period that is never lower than 75% (Fig. 23). Considering that office 
sub-zones are characterised by a relatively high variability in terms of design 
capacity, and the actual maximum occupancy rate is not always equal to 100%, a 
preliminary labelling analysis is required. Indeed, the office sub-zones are labelled 
in order to understand which groups of occupants can be moved from an office to 
another one avoiding room capacity issues. The occupants that work in office sub-
zones with the same capacity label can be then interchanged in the displacement 
process for reducing occupancy diversity in each thermal zone. 

3.2.3 Implemented methodology for HVAC schedule optimisation 
exploiting occupancy data 

As described in detail in Section 3.2.2, the HVAC schedule optimization EIS 
tool is developed for a building composed of three thermal zones for which the 
HVAC system can control the individual loads and ventilation rates. Each thermal 
zone is composed of 10 office sub-zones, and each office sub-zone is considered 
as the minimum level of aggregation of occupancy data.  

The general framework of the whole methodological process of analysis 
unfolds over two different stages, which are shown in Fig. 24 and Fig. 25 
respectively. The first stage aims at optimising the HVAC schedule according to 
the actual arrival and exit times of the occupants, by displacing the occupants with 
the most similar occupancy patterns to the same thermal zone. To this aim, a 
preliminary characterisation of the typical occupancy profiles of each sub-zone is 
performed by means of a data analytics-based process.  

The second stage of the analysis aims at assessing the energy performance 
impact of the optimised occupancy-based HVAC schedules that are obtained in 
the first stage. To this purpose, a calibrated simulation model of the building is 
used. 

 Occupancy pattern analysis and reconfiguration process 

This first stage of the analysis aims at finding an optimised HVAC schedule 
according to actual patterns of occupants’ presence. The first stage of the 
methodology is shown in  Fig. 24, and it is structured in three phases as follows:  

1. Data preparation; 
2. Recognition and classification of the occupancy patterns;  
3. Reconfiguration process of the thermal zones through the occupants’ 

displacement.  

The aim of the first phase is to prepare the occupancy data, organising them in 
daily occupancy profiles aggregated at office sub-zone level. Successively, in the 
second phase, the typical daily occupancy profiles of each sub-zone are identified 
and classified considering robust explanatory variables (e.g. season, month, day of 
the week). Eventually, groups of occupants with similar occupancy patterns are 
displaced in the same thermal zone in order to reduce occupancy diversity as 
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possible. The new occupants’ configuration makes it possible to rationalise the 
number of operating hours of the HVAC system in each thermal zone. 

 

 

Fig. 24 - Occupancy pattern analysis and reconfiguration framework (adapted from [14]) 

3.2.3.1.1 Data preparation 

A data aggregation processes is performed for preparing the time series of 
occupancy data in the proposed methodology. Data aggregation is a prerequisite 
for the analysis, considering that the displacement process should be investigated 
by aggregating and anonymizing occupancy data, in order to avoid privacy issues.  
The sub-zone aggregation level allows information to be extracted from 
occupancy time series of groups of about 20-30 occupants. These groups are large 
enough to preserve the privacy of the individual occupants, and at the same time 
sufficiently homogenous to define robust and representative occupancy patterns. 

In a second step, the sub-zone occupancy time series are chunked in fixed 
daily sequences. The daily sequences, which represent the occupancy profiles, are 
then organized in an MxN matrix, where M is the number of daily occupancy 
profiles and N is the number of measurements per day (i.e., for a timestep of 15 
min., N is equal to 96). 

3.2.3.1.2 Recognition and classification of the occupancy patterns 

Once the occupancy data are aggregated at a sub-zone level, a pattern 
recognition analysis is performed to discover the typical occupancy patterns of 
each sub-zone. The typical occupancy patterns of each sub-zone are extracted by 
clustering the daily occupancy profiles with a time interval of 15 minutes. The 
statistical objects to be clustered are represented by vectors of 96 components 
(daily occupancy profiles), where each component corresponds to the number of 
occupants in a sub-zone during a specific timestep. The outcome of this process is 
that n groups of daily occupancy profiles are defined for each sub-zone, and the 
typical occupancy patterns are evaluated by calculating the centroid of the profiles 
clustered together. Once the typical occupancy patterns are evaluated for each 
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sub-zone, a supervised classification process is performed in order to characterise 
the patterns, considering time variables (e.g. month, day of the week, season) as 
input attributes. The pattern recognition is performed using a partitive clustering 
algorithm (i.e., k-means), while the classification process is performed adopting a 
binary recursive decision tree based on CART algorithm [204]. These two 
methods are well-known algorithms in the field of occupant behaviour and 
occupancy characterisation [58,205]. They proved to be effective in different 
occupancy pattern recognition applications and energy performance analysis in 
buildings due to their flexibility and their easy implementation.  

3.2.3.1.3 Reconfiguration of the thermal zones through occupants’ 
displacement 

A labelling process of the sub-zones, considering their maximum capacity and 
the maximum occupancy rate recorded in the monitored period, is firstly carried 
out in the reconfiguration phase. The labelling procedure makes it possible to 
evaluate the physical constraints that need to be considered for the occupants’ 
displacement. The reconfiguration of the thermal zones is based on the moving of 
groups of occupants that work together in the same office sub-zones to other sub-
zones with similar capacities.  

The results of the labelling procedure, together with the outcomes of the first 
two phases of the analysis, are used to aggregate groups of employees with similar 
occupancy profiles in the same thermal zone, according to the occupancy pattern 
and the constraints related to each sub-zone capacity. This third phase allows an 
optimised operation schedule of the HVAC system to be set up in each thermal 
zone. 

 Energy performance assessment 

The second stage of the methodological process is aimed at assessing the 
impact of the HVAC schedule optimization on the energy performance of the 
building through a forward simulation approach.  

A forward simulation model is built, according to the framework set out in 
Fig. 25, and data related to the climate, users, equipment, lighting (input data) and 
to the building features (fixed parameters) are introduced. The historical energy 
consumption data are then used to calibrate the model. The output of this model is 
used to build a baseline model for the impact evaluation of the strategy. A second 
forward model is built by implementing the optimised HVAC operation 
schedules, obtained from the occupancy patterns analysis and reconfiguration 
process (first stage), in the calibrated tailored baseline model. Eventually, the 
assessment of the impact is performed through the comparison between the 
outcomes of these two forward models. 
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Fig. 25 - Energy performance assessment (adapted from [14])  

This procedure is useful to assess the impact that the EIS tool can have on the 
final energy consumption of a building by optimizing HVAC schedules on the 
basis of actual occupancy data. The frameworks proposed hereafter can be easily 
and smoothly generalized to different kinds of building types and air conditioning 
systems.  

3.2.4 Results obtained from HVAC schedule optimisation analysis 

 Recognition and classification of the occupancy patterns 

In order to perform the pattern recognition analysis, the building occupancy 
data are firstly aggregated at office sub-zone level in order to perform analysis on 
occupancy profiles representative of about 20-30 occupants. In this way, thirty 
occupancy datasets (one for each office sub-zone) are identified without affecting 
occupant privacy.  

In the methodological process proposed, privacy plays a key role, considering 
that the information related to the displacement of single occupants is often 
recognized as sensitive data [203]. The main potential drawback of this kind of 
data aggregation is that the average occupancy profile, related to each group of 
employees, may not be representative of the whole sample of employees if the 
occupants have very different habits in the same sub-zone. However, the 
assumption of considering an average profile for each sub-zone as a common 
occupancy pattern for a group of occupants that work in the same sub-zone is 
verified and demonstrated hereafter.  

On the other hand, better results, in terms of occupancy diversity reduction, 
can be achieved by displacing one occupant at a time, although this could generate 
exclusion and marginalization processes. For this reason, the analyses are focused 
on aggregated occupancy profiles in order to keep the work context of each 
occupant unchanged after the displacement process.  

The typical occupancy profiles for each office sub-zone are identified through 
a k-means clustering algorithm (discussed in section 2.1.3.2.1). In detail, two 
parameters are used as partitioning performance criteria for selecting the optimal 
number of clusters. The first parameter is the average within cluster distance, 
which is calculated by averaging the distance between the centroid and all the 
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examples in a cluster. This parameter is a good indicator of inter-cluster 
similarity. The Davies-Bouldin index [206] is selected as a second indicator. The 
Davies-Bouldin index is based on an inter-cluster to intra-cluster distance ratio. 
Clusters with low intra-cluster distances (high intra-cluster similarity) and high 
inter-cluster distances (low inter-cluster similarity) have a low Davies–Bouldin 
index. The value of k that produced the set of clusters with the smallest Davies–
Bouldin index is considered as the best number of partitions based on this 
parameter. 

Once the occupancy profiles are clustered, the typical occupancy profiles of 
each office sub-zone are evaluated averaging all the profiles in the same cluster 
and then expressed in the form of daily profiles with a timstep of 15 minutes. 
Three or four typical occupancy patterns are discovered, depending on the sub-
zone considered. Fig. 26 shows the centroids of the four clusters evaluated for one 
of the thirty sub-zones (sub-zone D0).  

 

 

Fig. 26 - Typical occupancy patterns of sub-zone D0 [14] 

Similar results are obtained for the remaining sub-zones. It can be observed 
that all the days during which the office sub-zone D0 is completely unoccupied 
(holidays and weekends) are grouped in cluster 1, while the remaining clusters 
describe three different occupancy patterns over the monitored period that need to 
be further characterised.  

Moreover, it is verified that the typical occupancy profiles of each sub-zone 
are characterised by a low deviation, thus validating the assumption of 
considering an average profile as being representative of all the occupants that 
work in the same sub-zone. As a reference, Fig. 27 shows the average occupancy 
profile and the standard deviation of a cluster related to the sub-zone C1. It can be 
observed that the arrival and exit times are affected by lower deviation than the 
middle hours of the day. This outcome is also valid for all the clusters associated 
to the remaining sub-zones. 
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Fig. 27 - Occupancy profile sub-zone C1 (cluster 3) [14] 

This fact demonstrates that even though the number of occupants may change 
slightly from day to day, the uncertainty related to their arrival and exit times can 
be considered negligible.  

In the proposed data analytics framework, the occupancy patterns recognized 
by the cluster analysis are subsequently classified in order to learn the occupancy 
schedule rules. To this aim, a supervised classification process is developed in 
order to associate each typical occupancy pattern evaluated through k-means to a 
specific time reference period.  

 A classification tree (discussed in section 2.1.3.1.1.1) is built for each sub-
zone considering the variables “month” and “day of the week” as input attributes. 
These variables proved to be able to explain the properties of different typical 
occupancy patterns discovered [205].  

Fig. 28 shows the output of the classification process for the occupancy 
patterns of sub-zone D0 in the form of a decision tree. The classifier does not 
include “month” as a splitting variable. This means that, during the monitored 
time period (i.e., four months), the occupancy patterns are closely related to the 
day of the week, but independent from the month of the year. It is found, for sub-
zone D0, that: 

 The objects classified as belonging to cluster 0 are daily occupancy 
profiles of Monday, Tuesday and Thursday in 85.2% of the cases; 

 The objects classified as belonging to cluster 1 are daily occupancy 
profiles of Saturday and Sunday in 100% of the cases; 

 The objects classified as belonging to cluster 2 are daily occupancy 
profiles of Friday in 88.9% of the cases; 

 The objects classified as belonging to cluster 3 are daily occupancy 
profiles of Wednesday in 66.7% of the cases. 
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Fig. 28 - Classification of the occupancy patterns of sub-zone D0 [14] 

 The Gini index is used in the implemented classification and regression tree 
to establish the degree of impurity of each node. The k-fold cross-validation 
method is used to evaluate the accuracy of the classification tree. The 
classification tree is initially developed by setting the minimum number of cases 
in the parent and child nodes (10 and 8 cases, respectively), and the maximum 
decrease in the impurities of each split is set equal to 0.01. The tree-growing 
process is stopped before decision tree is generated in its maximum size. In this 
way, by means of an early stopping rule it is possible to overcome the problem of 
model overfitting.  

The classification process is useful for characterizing the patterns of each sub-
zone that need to be considered in the thermal zone reconfiguration process. 
Thanks to the coupling of the cluster analysis and the classification tree, it is 
possible to identify, with a high level of accuracy, the group of weekdays that 
have similar occupancy profiles for which the process of occupants’ displacement 
can be extended. In fact, the reconfiguration phase is aimed at aggregating group 
of employees with similar occupancy profiles in the same thermal zone as long as 
the considered occupancy profiles referred to the same time period. As an 
alternative, seven average daily occupancy profiles – one for each day of the week 
– could be computed, but this would increase the complexity and the 
computational cost of the reconfiguration process. Moreover, the developed 
classification trees could also be used for occupancy schedule prediction 
purposes, if adequately trained, tested and validated for a monitoring period of at 
least an entire year [205]. 

As a final result, each sub-zone is characterised by at least 3 occupancy 
patterns composed of: 
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 One representative occupancy pattern for Monday, Tuesday and Thursday, 
that are generally the days with the highest occupancy rate for all the sub-
zones;  

 One representative occupancy pattern for weekends and holidays, when all 
the sub-zones are unoccupied; 

 One representative occupancy pattern for Friday, that is generally the day 
with the lowest occupancy rate for all the sub-zones. 

For what Wednesday is concerned, it results to be the day characterized by the 
greatest diversity between the occupancy patterns among the sub-zones.  

On one hand, for sub-zones characterized by 3 typical patterns, Wednesday 
has an occupancy profile similar to Friday or to the group of days that includes 
Monday, Tuesday and Thursday. On the other hand, for some sub-zones 
Wednesday exhibits a completely different occupancy profile from all the other 
days of the week justifying the existence of an additional pattern.  

In this way, excluding the weekend pattern (representative of the unoccupied 
period), it is not possible to identify less than three reference periods for the 
working days of a week: 

 First reference period: Monday, Tuesday and Thursday; 

 Second reference period: Friday; 

 Third reference period: Wednesday. 

In the following section, the displacement process is performed considering 
the convenience of displacing occupants in the same thermal zone according to 
the similarity of occupancy profiles that refer the same reference period. In fact, 
all the potential occupants’ displacements that could generate improvements in re-
scheduling the operation of the HVAC system are considered in a three-step 
reconfiguration process (one step for each reference period). 

 Reconfiguration of thermal zones through the occupants’ 
displacement 

 

3.2.4.2.1 Capacity labelling of the sub-zones 

As stated in section 3.2.3.1.3, a preliminary capacity labelling of each sub-
zone is performed to evaluate the physical constraints of thermal zone 
reconfiguration. In this phase, the sub-zones are labelled according to their 
maximum capacity and the maximum number of occupants recorded during the 
monitored period. This first procedure makes it possible to identify the physical 
constraints that need to be taken into account during the occupants’ displacement. 

The reconfiguration process is based on the moving of groups of occupants 
that work together in the same office sub-zones to other sub-zones with similar 
capacities in order to group together occupants with similar presence patterns in 
the same thermal zone. In order to maximize the potential number of interchanges 
both design capacity (DC) and maximum occupancy rate (MNO) of each sub-
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zone are considered. The sub-zones C0 - E0 - G0 - H0 (4 offices located at ground 
floor) are excluded from the labelling process, because they are not connected to 
FlexWhere system. The capacity labelling procedure unfolds over the following 
steps: 

1. The sub-zones are ordered according to their design capacity (DC1, DC2, 
DC3…DCn with DCj > 0).  

2. The maximum number of occupants recorded during the monitored period 
is evaluated for each sub-zone (MNO1, MNO2, MNO3…MNOn with 

MNOj  0).  
3. The minimum design capacity (DC1) is selected as a reference value.  
4. According to the design capacity order, the first capacity label was 

assigned to those sub-zones that verify the following condition (Eq. 14): 
 𝑀𝑁𝑂 ≤ 𝐷𝐶ଵ               

Eq. 14 

for 2 ≤ 𝑗 ≤ 𝑛 

5. According the design capacity order, the first sub-zone for which the 
condition (Eq. 14) is not verified becomes the new reference sub-zone, and 
its design capacity is set as the reference value for the labelling process of 
the remaining sub-zones. 

As a result of this process, five labels are assigned to the office sub-zones (Fig. 
29) as follow: 

 Label A: office sub-zone with DC equal to 20 occupants; 

 Label B: office sub-zones with DC ranging from 22 to 24 occupants; 

 Label C: office sub-zones with DC ranging from 28 to 30 occupants; 

 Label D: office sub-zones with DC ranging from 32 to 34 occupants; 

 Label E: office sub-zones with DC equal to 36 occupants. 
 

 

Fig. 29 - Capacity labels of the sub-zones [14] 
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Although some sub-zones are involved in the labelling process, they are 
successively excluded from the occupants’ displacement analysis for the 
following reasons: 

 Sub-zones D0-D3-D4 (Label E): These sub-zones are characterised by 
the highest design capacity and are located in the same thermal zone 
(thermal zone C-D). For this reason, it was not possible to move their 
occupants to other thermal zones. 

 Sub-zone C3 (Label A): This is the smallest sub-zone, in terms of design 
capacity. The group of occupants in this office sub-zone could be 
displaced to any other sub-zone, but the opposite is never possible.  

 
Table 2 - sub-zone capacity label [14] 

Thermal zone ID Sub-zone Design capacity 
Maximum number 

of occupants 
Capacity 

label 

C-D 

C1 24 21 B 

C2 22 21 B 

C3 20 20 - 

C4 30 26 C 

D0 36 35 - 

D1 32 31 D 

D2 34 32 D 

D3 36 36 - 

D4 36 35 - 

E-F 

E1 28 27 C 

E2 28 27 C 

E3 30 28 C 

E4 30 28 C 

F0 24 20 B 

F1 32 32 D 

F2 28 28 C 

F3 32 32 D 

F4 32 32 D 

G-H 

G1 24 21 B 

G2 24 21 B 

G3 24 22 B 

G4 24 22 B 

H1 34 32 D 

H2 30 22 C 

H3 34 32 D 

H4 34 29 D 

 
The occupants that work in these office sub-zones cannot be moved 

elsewhere, and for this reason their typical occupancy profiles are used as 
constraints in the reconfiguration analysis. These profiles are considered as target 
patterns, with respect to which it is necessary to ensure similarity during the 
reconfiguration process. Eventually, only the groups of occupants that work in 
office sub-zones with the same capacity labels can be interchanged. Table 2 
reports the complete list of thermal zones, sub-zones, design capacity, maximum 
number of occupants and capacity labels (sub-zones D0, D3, D4 and C3, which 
are excluded from the occupants’ displacement analysis, are in bold). 
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3.2.4.2.2 Reconfiguration of the thermal zones 

After the pattern recognition, the classification analysis and the capacity 
labelling, it is possible to initialize the thermal zone reconfiguration process. In 
this phase the convenience of aggregating occupants with similar occupancy 
profiles in the same thermal zone is explored. The analysis is conducted 
evaluating the similarity between occupancy patterns that refer to the same 
reference time period (same group of weekdays). The concept of similarity 
involves only the occupants’ exit time, given that the reconfiguration process is 
aimed at optimising the stop schedule of the HVAC system for a typical week. As 
already discussed in section 3.2.2, the start schedule of the HVAC system is 
considered to be already optimal.  

For this reason, a reference occupants’ exit time is extracted from each 
occupancy pattern evaluated through the clustering analysis. This time 
corresponds to the last time the presence of at least 1 occupant is observed. 
Considering all the occupancy profiles, the extracted exit times range between 
16:15 and 20:15 (i.e., exit time interval). In order to reduce the computational cost 
of the reconfiguration process the exit time interval is divided into time windows 
of fixed length of 30 minutes. The splitting of the exit times into time windows is 
particularly useful to reduce the order of the optimisation problem. Then each 
time window is labelled with a symbol as follow: 

 Symbol a: reference exit time equal to 16:45; 

 Symbol b: reference exit time equal to 17:15; 

 Symbol c: reference exit time equal to 17:45; 

 Symbol d: reference exit time equal to 18:15; 

 Symbol e: reference exit time equal to 18:45; 

 Symbol f: reference exit time equal to 19:15; 

 Symbol g: reference exit time equal to 19:45; 

 Symbol h: reference exit time equal to 20:15. 

 In this way, an exit time vector, composed of three letters (one for each 
reference period during the typical week), can be associated to each group of 
occupants. For example if a group of occupants has a reference exit time for 
Monday, Tuesday and Thursday equal to 17:45, a reference exit time for 
Wednesday equal to 17:15 and a reference exit time for Friday equal to 16:15, its 
exit time vector can be expressed through the symbol sequence c-b-a. 

Starting from the encoding of exit times during the three reference periods, 
two main hypotheses can be assumed for carrying out the thermal zone 
reconfiguration process through occupant displacement: 

 Constrained occupant displacement: A group of occupants can be moved 
only one time and then the new work location does not change for the 
entire week; 
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 Theoretical occupant displacement: A group of occupants can be moved 
one time for each of the reference time periods. In this way, for a group of 
occupants, the work location can change up to three times during the 
week. 

Despite the second hypothesis could lead to a higher reduction of HVAC 
operation hours, it is characterized by poor feasibility. For this reason, in the 
reconfiguration process each displacement of occupants involve the entire week, 
thus ensuring that the thermal zone configuration does not change from one 
reference period to another.  

However, the second hypothesis is also tested, but only with the aim of 
evaluating a theoretical reduction of HVAC operation hours. Fig. 30 shows the 
reconfiguration procedure in form of flowchart.  

 

 

Fig. 30 - Process of reconfiguration of thermal zones through occupant displacement (adapted from [14]) 

The steps of the process are described hereafter: 

1 Identification of the HVAC occupancy-based schedule (without occupant 
displacement):  

The first step of the procedure is aimed at evaluating the HVAC stop time for 
each thermal zone, according to the actual occupant presence patterns without 
considering any occupant displacement.  

In this case, the objective is to evaluate the reduction of HVAC operation hours 
(N*) for the three thermal zones during a week, in comparison to the base case 
scenario, where the system is operated with a fixed schedule from 6:00 to 21:00. 
The shutdown time of the HVAC system is identified for each reference time 
period according to the greatest exit time symbol associated to the last occupant 
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group that leave the thermal zone. The reduction of HVAC operation hours (N*) 
is found to be 27.15 hours per week, and this figure is taken as a reference value 
to calculate the additional improvement that could be achieved through the 
occupant displacement process. 

2 Identification of the optimal HVAC occupancy-based schedule (with 
theoretical occupant displacement):  

All the possible displacements of occupant groups are computed independently 
for each reference period, in order to aggregate occupants that have the encoded 
exit time symbols as similar as possible in the same thermal zone. As a reference, 
occupants that work in the same sub-zone can be moved to another sub-zone with 
the same capacity label only if it is located in a different thermal zone.  

The aim of this step is to find a further theoretical reduction of HVAC 
operation hours (Nth) for the three thermal zones and for all the reference periods 
respect to the solution obtained in the step 1. This can be considered a theoretical 
limit, because the optimization is performed taking into account each reference 
time period independently from the others. In other words, a group of occupants 
can be moved one time for each of the reference time periods. In this way, in 
order to reduce the occupancy diversity in the thermal zone, for a group of 
occupants the work location can change up to three times during the week. The 
chosen shutdown time of the HVAC system, after the reconfiguration, 
corresponds to the exit time of the last occupant group that leave the thermal zone. 
The further theoretical cumulated reduction of the HVAC operation hours for all 
thermal zones, is found to be: 

 6 hours for the Monday-Tuesday-Thursday reference period; 

 1 hour for the Wednesday reference period; 

 2 hours for the Friday reference period.  

The optimal solution for a typical week converges to a theoretical further 
reduction of Nth= 9 hours with respect to the N*=27.15 hours obtained in the 
previous step. Starting from this preliminary result, the following reconfiguration 
process is performed through a constrained occupant displacement process 
moving the groups of occupants only one time in order to maintain unchanged the 
work location for the entire week. The main objective is to obtain a reduction of 
HVAC operation hours as close as possible to the theoretical solution Nth. To this 
purpose one optimization cycle for each reference period is run for moving 
occupants as shown in Fig. 31.  
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Fig. 31 - HVAC schedule optimisation through constrained occupant displacement 

3 First optimisation cycle of the HVAC occupancy-based schedule (with 
constrained occupant displacement):  

The reconfiguration process is conceived for optimising the displacement of 
each group of occupants that worked in the same sub-zones to another sub-zone 
with the same capacity label in order to reduce occupancy diversity in the thermal 
zone.  

The first optimisation cycle (Fig. 31) only takes into account the Monday-
Tuesday-Thursday reference period. The cycle ended when no other change 
generated an improvement, that is, a reduction in the operation time of the HVAC 
system in all the thermal zones, with respect to the HVAC stop schedule evaluated 
in step 1 for the same reference period. 
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4 Second optimisation cycle of the HVAC occupancy-based schedule (with 
constrained occupant displacement):  
 
The second optimisation cycle (Fig. 31) only takes into account the Friday 

reference period. The optimisation cycle ends when no other change generates an 
improvement, that is, a reduction in the sum of the operation hours of the system 
in all the thermal zones, with respect to the HVAC stop schedule evaluated in step 
1 for Friday. Moreover, a displacement is considered admissible, if it generates a 
greater reduction in the total operating hours on Friday than the potential increase 
of operating hours for the previously optimised reference time period.  

 
5 Third optimisation cycle of the HVAC occupancy-based schedule (with 

constrained occupant displacement):  
 
The third optimisation cycle (Fig. 31) only takes into account the Wednesday 

time reference period. The third optimization cycle ends when no other change 
generated an improvement, that is, a reduction in the sum of the operation hours 
of the system in all the thermal zones, with respect to the HVAC stop schedule 
evaluated in step 1 for Wednesday. A displacement is considered admissible if it 
generates a greater reduction in the total operating hours on Wednesday than the 
increase in the sum of operating hours for the other previously optimised 
reference time periods.  

 
6 Identification of the HVAC occupancy-based schedule obtained through the 

constrained occupant displacement:  

At the end of the reconfiguration process (Fig. 31) the final shutdown schedule 
of the HVAC system for each reference time period corresponds to the greatest 
exit time symbol associated to the last occupant group that leave the thermal zone. 

The reconfiguration process does not converge to a single solution, but 
instead converges to n equivalent solutions. Table 3 shows the optimal solution 
for the HVAC occupancy-based schedule obtained through the constrained 
occupant displacement process. Each group of occupants is labelled by specifying 
the sub-zone of origin before the reconfiguration process. For example, the label 
OC2 refers to the group of occupants that before the reconfiguration process used 
to work in the sub-zone C2. However, after the reconfiguration process the sub-
zone C2 is occupied by the group of occupants labelled as OG3. This displacement 
of occupants is admissible, because the capacity constraint is respected. In fact, 
the sub-zone C2 and the sub-zone G3 have the same capacity label (i.e., label B). 
Due to the constraints considered in the analysis, the best solution generated a 
reduction of 8.5 operation hours respect to the solution evaluated in step 1. The 
deviation from the theoretical optimal solution (step 2) can be considered 
negligible and it is equal to 30 minutes.   
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Table 3 - Final optimised HVAC occupancy-based schedule obtained through the constrained occupant 
displacement process [14] 

   Exit time symbol* 

  Group of occupants Mon–Tue–Thu  Wednesday Friday  

Thermal 
zone 

Sub-
zone** 

Ante reconfig. 
Post 

reconfig. 
Ante 

reconfig. 
Post 

reconfig. 
Ante 

reconfig. 
Post 

reconfig. 
Ante 

reconfig. 
Post 

reconfig. 

C-D 

C1 OC1 OG1 b d b b a b 

C2 OC2 OG3 c d c d c c 

C3 OC3 OC3 d d d d b b 

C4 OC4 OH2 a h a h a e 

D0 OD0 OD0 g g b b b b 

D1 OD1 OF3 c d c d b c 

D2 OD2 OF1 c c a d a e 

D3 OD3 OD3 d d d d c c 

D4 OD4 OD4 e e e e d d 

HVAC system stop time 19:45 20:15 18:45 20:15 18:15 18:45 

          

E-F 

E1 OE1 OE1 c c c c c c 

E2 OE2 OE2 d d d d b b 

E3 OE3 OE3 d d c c c c 

E4 OE4 OE4 d d d d d d 

F0 OF0 OC2 b c b c a c 

F1 OF1 OH3 c d d c e c 

F2 OF2 OF2 c c c c c c 

F3 OF3 OH1 d c d c c c 

F4 OF4 OF4 c c b b b b 

HVAC system stop time 18:15 18:15 18:15 18:15 18:45 18:15 

  
       

G-H 

G1 OG1 OF0 d b B b b a 

G2 OG2 OG2 c c c c b b 

G3 OG3 OC1 d b d b c a 

G4 OG4 OG4 c c c c b b 

H1 OH1 OD2 c c c a c a 

H2 OH2 OC4 h a h a e a 

H3 OH3 OD1 d c c c c b 

H4 OH4 OH4 b b b b b b 

HVAC system stop time 20:15 17:45 20:15 17:45 18:45 17:15 

 
*Exit time symbols: a = 16:45, b = 17:15, c = 17:45, d = 18:15, e = 18:45, f = 19:15, g = 19:45, h = 20:15. 
**The sub-zones excluded from the occupant displacement analysis are in bold. 

 

3.2.5 Impact assessment of HVAC scheduling optimisation 

 Boundary conditions, assumptions and calibration of the model 

A forward simulation model is developed to assess the energy performance of 
the case study before and after the implementation of the HVAC occupancy-based 
schedule obtained through the occupant displacement process. The analysis is 
aimed at estimating the potential impact of an advance EIS capable to exploit 
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actual occupancy data for supporting energy managers in achieve scheduling 
improvements of the HVAC system in their buildings. The calculation is carried 
out by means of a detailed simulation tool, EnergyPlus 8.5 [207], and using the 
building geometry interface of DesignBuilder 5.0.  

The public area and the bus station are excluded, as they are not affected by 
the implementation of the energy management strategy proposed by the EIS. The 
three thermal zones (C-D, E-F, G-H) are modelled separately, considering a multi-
zone calculation, without thermal coupling between zones. 

In the cases where the use of the building is known, the actual data are 
considered, otherwise standard values according to ISO 18523-1 [208] are taken 
into account.  

The maximum heat load related to occupancy is derived from ISO 18523-1, 
and is scaled with respect to the normalized actual occupancy profile for each sub-
zone evaluated in Section 3.2.4.1. The schedules of the heat loads (related to 
lighting and appliances) and of the ventilation rate are built according to the 
normalised actual occupancy profiles that are gathered from measurements. The 
temperature set-point for heating is derived from hourly time-step measurements. 

The energy baseline model is calibrated considering the actual weather data 
and the building energy consumption in the period from January to April 2016. 
The monitored variables are the outdoor air temperature, relative humidity, wind 
speed and wind direction; the remaining weather data are derived from the IWEC 
(International Weather for Energy Calculations) data set. The available energy 
consumption data are the metered hourly values of the overall delivered electricity 
for each office zone, including all energy uses, i.e. heating, cooling, mechanical 
ventilation, lighting and appliances. No breakdown of the HVAC consumption 
into final energy uses is available. 

In order to compare the results of the energy performance simulation with the 
actual energy consumption, some elaborations on the hourly global amount of 
electricity consumption data are carried out considering the following 
assumptions: 

 The electricity consumption during the unoccupied hours (i.e. night hours, 
weekends and holidays) is attributed to the energy uses that are considered 
independent from the building occupancy (e.g. server room, stand-by 
parasitic power). 

 The electricity consumption during the occupied hours is considered to 
depend on the building occupancy and is therefore mainly due to space 
heating, space cooling, ventilation and air treatments, lighting and plug 
loads.  

Consequently, the global energy consumption is split between the unoccupied 
periods and the occupied periods, and the model calibration is performed 
considering only the energy consumed in the occupied periods. 

Fig. 32 shows an example of metered hourly electricity consumption data, 
referring to the first week of April 2016, for office zone G-H. The energy 
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consumption in the occupied and unoccupied periods is marked with different 
shades of grey. 

 

 

Fig. 32 - Monitored hourly electricity consumption of zone G-H during the first week of April 2016 [14] 

Fig. 33 (a) and Fig. 33 (b) show the comparison between the monitored and 
simulated monthly electricity consumptions for the whole office building and for 
each thermal zone for the period January-April 2016.  

The monthly deviations between the actual and the estimated consumptions 
are very low; the deviations for the whole office building range from 0.3% in 
April to 2.2% in January. For what concerns the single zones, the highest 
deviation can be observed for the thermal zone EF (3.11%). On average, the 
forward energy simulation model overestimates the actual consumption values by 
0.45%. 

The accuracy of the model calibration is verified according to ASHRAE 
Guideline 14 [209], which provides acceptable tolerances of the calibration 
through the use of two indexes, as follows: (i) MBEmonth = ±5%, and (ii) 
CV(RMSEmonth) = 15%. For the conducted simulations, MBEmonth and 
CV(RMSEmonth) are 0.45% and 1.51% respectively. These results denote an 
accurate calibration of the baseline model. Since a breakdown of the HVAC 
consumption is not available, a monthly basis calibration process was preferred to 
an hourly calibration. This choice is considered more appropriate and compatible 
with the details of the available monitored data.  

 

(a)  (b) 

Fig. 33 - Comparison between the monitored and predicted electricity consumption values on a monthly basis 
for the whole office part (a), and by considering the office zone for the whole analysed period (b) [14] 
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 Assessment of the energy savings 

The forward simulation models of the case study before and after the 
implementation of the HVAC occupancy-based schedule are run considering the 
same boundary conditions (e.g. weather data) in order to make them comparable. 
The estimated energy saving obtained refers to the electricity use for HVAC 
(space heating, space cooling, ventilation and air treatments) during an occupied 
period of four months. Fig. 34(a) and Fig. 34(b) show the estimated energy saving  
for the whole office part of the building, and for each thermal zones. The results 
show that the HVAC scheduling improvement leads to a monthly energy saving 
that range from 12.2% to 15.4% while the average energy saving for the whole 
analysed period (4 months) amounts to 14%. 

 

(a) (b) 

Fig. 34 - Comparison between the electricity use for HVAC before (baseline) and after the implementation of 
the strategy, on a monthly basis for the whole office part (a), and considering the office zone for the whole 

analysed period (b) [14] 

3.2.6 Discussion  

The developed EIS tool aims at performing an automatic recognition and 
classification of building occupancy patterns for the improvement of HVAC 
scheduling. In the developed data analytics process, a cluster analysis and a 
decision tree are coupled in a complementary way, without overlapping, in terms 
of extracted knowledge. In fact, while the k-means allows the analyst to discover 
hidden occupancy profiles from actual data, the decision tree provides a unique 
set of IF-THEN rules used to classify them. The high interpretability of the results 
obtained allows the final user to easily identify groups of weekdays with common 
occupancy profiles, for which the rescheduling of the HVAC system should be 
performed. The novelty of the proposed EIS tool consists in its ability to consider 
multiple occupancy patterns at the same time in the thermal zone reconfiguration 
process HVAC scheduling improvement. The advantage is the possibility to 
exploit in the analysis a variable presence behaviour in occupying the building 
over time [58]. This characterisation increases the number of constraints that need 
to be taken into account, but also offers the opportunity of achieving greater 
energy savings. Another advantage is that the developed EIS tool is capable of 
effectively handling occupancy aggregated data. In this way, it is possible to 
overcome privacy issues for individual occupants, whose specific habits are not 
deducible from the analysis. 
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As far as the analysed case study is concerned, the starting time of the HVAC 
system is considered already optimised, with respect to the expected arrival time 
of the occupants. For this reason, the rescheduling is performed exclusively on the 
shutdown time of the system in each thermal zone for each reference period. The 
final schedule computed by the EIS tool could determine a potential reduction of 
the electricity use for HVAC (space heating, space cooling, ventilation and air 
treatments) during the monitored periods of about 14%. Moreover, in order to 
assess the impact of the reconfiguration process, according to [197,198], two 
different strategies are compared:  

 strategy 1 – HVAC occupancy-based schedule obtained without 
performing any occupant displacement (step 1 of the reconfiguration 
process)  

 strategy 2 – HVAC occupancy-based schedule obtained through the 
constrained occupant displacement (step 6 of the reconfiguration process).  

The results obtained through a forward simulation model show that the 
implementation of the strategy 1 can reduce the electricity use for HVAC of about 
10% (about 17 MWh), while the implementation of strategy 2 can generate a 
further reduction of 4.2% (7.3 MWh) at the whole building level for the 
monitored period during the heating season (from January 2016 to April 2016). 

Such figures demonstrate the powerfulness of data analytics based EIS in 
improving daily energy management of buildings. The developed EIS tool proved 
to be effective in drawing low-cost real-life management solutions, being capable 
to handling both multiple occupancy patterns and physical constraints in the 
occupant displacement process (e.g. sub-zone design capacity). In this 
perspective, the EIS tool shows enough flexibility for including in the future 
further constraints to the occupant displacement process such as the similarity of 
the employees’ tasks, the presence of specific working groups or of special 
workplaces. 

Prima facie, EIS tools capable to exploit occupancy data offers very 
interesting opportunities to understand and manage the presence of occupants in 
buildings leading to low/no cost and capital-intensive energy saving measures. On 
the other hand, obtain occupancy data with high quality and resolution, could be 
complex and expensive. Low-quality data could be responsible of non-robust and 
wrong reasoning from the final user, de facto, erasing the potential positive effect 
of EIS implementation. For this reason, domain expertise in building/energy 
applications always represents a cornerstone for supervising the knowledge 
extraction from data and ensuring that the information acquired is credible enough 
for being considered as actionable.   
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3.3 Development of an EIS tool for the automatic 
detection of anomalous energy trends at whole building 
level  

The following sections describe and discuss the development of a real-time 
analytics based EIS tool capable to perform an automatic anomalous trend 
detection in building energy consumption time series. To this purpose the EIS tool 
should have two main functionalities that can be summarized as follows:  

 Robust Identification of building typical energy consumption patterns 
over time; 

 Exploitation of the typical pattern knowledge for the detection of 
anomalous trends. 

The main objective is then to conceive a methodological framework of 
analysis that allows the final user to gain insights into energy consumption time 
series at whole building level and enables the identification of incorrect energy 
management procedures that are responsible of energy wasting during operation.  

The methodology exploits time series analytics techniques and automatic rule 
extraction methods (decision trees) for developing a load profiling framework that 
can be embedded in a EIS.  

As discussed in section 2 load profiling is an application field of data 
analytics in building energy management that is aimed at providing information 
on the actual energy use pattern at system, whole building and portfolio level. 
Besides this, it can help building managers to effectively investigate and 
characterise the building energy behaviour among different load conditions such 
as winter and summer season, working and not-working day, peak and off-peak 
hours.  

Differently from the HVAC schedule optimiser tool, previously presented in 
section 3.2, the developed anomaly detector provides to the user a number of 
feedbacks during the day, leveraging on advanced data visualizations and highly 
interpretable results (in forms of IF-THEN inference rules) for systematically 
support the exploitation of the knowledge extracted. In this way it is possible to 
identify poor performance and quickly alarm or suggest solutions. 

The next section presents the main research challenges related to the 
detection of anomalous trend in building energy consumption time series and 
introduces the motivations and novelty of the proposed methodological approach.  

3.3.1 Motivation and novelty of the proposed approach 

In the analysis of building related data, the characterisation of the building load 
profiles plays a key role to fully understand the building energy usage patterns 
(both normal and anomalous patterns).  
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In this field of application, different questions concerning temporal energy 
pattern characterisation and anomaly detection need to be answered, such as: 

 How can crucial information from various time series be extracted to 
characterise energy consumption and to identify saving opportunities in 
buildings? 

 Can a tailored methodological process for energy pattern discovery also 
be flexible as far as the building typology, the detail of data, the set of 
explanatory variables and the sampling data frequency are concerned? 

 How can an anomaly detection EIS tool, based on the predictive modeling 
of building energy consumption, which is easy to use, and has few 
explanatory variables, be developed? 

 How does the presence of thermal sensitive loads influence the structure of 
the procedure proposed to characterise electrical energy use patterns? 

In order to contribute to answering these questions, in the following is 
proposed and discussed the development of a novel EIS tool. Such tool uses 
meter-level data to characterise energy consumption at whole building level and 
to detect anomalous energy patterns in quasi real time in order to reduce energy 
waste and operating costs. The EIS tool is conceived to be general for different 
types of buildings and is tested for two different case studies which differ in 
volume, building end use, data sampling frequency, set of explanatory variables 
and heating/cooling system configuration. 

The analysed datasets refer to the overall building electrical demand of two 
public buildings (i.e., a university campus and a town hall) and are gathered from 
actual energy management systems. In order to limit the amount of data to be 
handled, attention is focused on the selection of a suitable data size reduction 
technique. In detail an enhanced SAX representation (discussed in section 2.1.1.2) 
is employed in the proposed methodology to address the aforementioned issue 
while increasing the computational efficiency [28].  

SAX (discussed in section 2.1.1.1) is one of most promising techniques 
suitable to reduce the size of a time series, preserving key information. It is based 
on the reduction of the time series through a piecewise technique and on its 
transformation into a symbolic string. Given its remarkable flexibility and faster 
computation, the SAX method is widely used in the energy and building sector as 
a pre-processing step (data reduction and transformation), or to rapidly 
characterise building operation energy patterns. In the developed methodology, 
and adaptive SAX transformation is coupled with a regression tree model 
(discussed in section  2.1.1.2 and 2.1.3.1.1.1) in an innovative way in order to 
optimise the reduction of the time series assuming aggregation intervals of 
unequal length and minimise as possible the transformation error of the original 
time series. Moreover, differently from the existing literature, after the encoding 
of the time series in symbols, motif and discord recognition is performed at the 
aggregation interval level by developing predictive classification models 
(discussed in section 2.1.3.1.1.1) for each time window.  
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The results obtained for the two case studies demonstrated that the developed 
classifiers can predict the typical patterns of building energy consumption during 
each time window of the day with an accuracy well over 80%. As a result of the 
high the accuracy of the classifiers (final nodes with very high occurrence 
probability of a certain energy consumption pattern), it is possible to achive a 
strong anomaly detection capability of the EIS tool when the classification rules 
are violated during building operation. 

Furthermore, a preliminary high-level energy diagnosis step is also included in 
the framework of analysis using additional electrical energy consumption datasets 
related to the building heating and cooling needs. The performed diagnosis is 
considered as preliminary, because it considers as potential cause of the anomalies 
detected at whole building the incorrect operation of the HVAC system that in 
both buildings is responsible of the most impacting energy demand. After a 
validation phase, the process has been also implemented on a virtual server of one 
of the two case study considered (i.e., Politecnico di Torino campus) for working 
on-line. This EIS tool can be easily translated in a set of interpretable rules 
helping campus managers in the early detection of anomalous energy patterns and 
preliminary diagnosis of their most probable associated causes.  

The subsequent sections are organised as follows. Section 3.3.2 describes the 
case studies used for developing the EIS tool for detecting anomalous energy 
trends in building energy consumption. Section 3.3.3 describes the 
methodological framework adopted for conducting the analysis. Section 3.3.4 
presents the results obtained for the selected case studies. Eventually section 3.3.5 
discusses the results and contains the concluding remarks related to this specific 
EIS application.  

As a remark part of the content of the section 3.3 was published as scientific 
article in the Elsevier journal “Energy” [2]. 

3.3.2 Case studies used for developing the EIS tool at whole building 
level  

The methodology is tested on two case studies in order to demonstrate the 
flexibility and adaptability of the conceived EIS tool in real building applications. 
The selected case studies are substantially different from each other in terms of 
location of the building, building typology, type of equipment, operating 
schedules, monitored variables and data sampling frequency.  

The first application (Case study 1) refers to the overall electrical energy 
consumption of a town hall located in Spain (with hourly sampling frequency of 
data), whereas the second application (Case study 2) is related to the total 
electrical energy consumption of a part of the university campus of the Politecnico 
di Torino, Italy (with 15-min sampling frequency of data). Fig. 35 reports the 
carpet plots of the one-year electrical average power demand for hourly and 15-
min time intervals for case study 1 and case study 2, respectively. The carpet plot 
is a visualisation technique that depicts numerical values (i.e., hourly or sub-
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hourly electrical demands) using a colour palette and assuming a dimensional 
filling grid (time of the day vs. day of the year). 

  

 

Fig. 35 - Carpet plot visualisation of the total electrical demand for Case study 1 (a) and Case study 2 
(b) [2] 

 Case study 1 – Sant Cougat town hall 

The first case study refers to the town hall of Sant Cugat del Vallés. Sant Cugat 
del Vallés is located in north-east Spain and is characterised by Mediterranean 
weather conditions. The considered building, which was built in 2007, is a six-
storey glazed building with an overall floor area of about 8,600 m2. Two of the 
six-storeys are underground and are used for parking, as well as for housing 
technical equipment and archives, whereas the other four storeys are used for 
public activities, that is, as offices, meeting rooms and changing rooms. The 
building envelope is characterised by a flat roof with low-performance skylights 
(thermal transmittance U = 5.70 W m-2 K-1) and by a vertical transparent envelope 
composed of steel frame and double-glazed windows filled with air (thermal 
transmittance U = 2.70 – 3.00 W m-2 K-1). External solar shading devices are 
installed, and the natural lighting is controlled manually through internal curtains. 
The building is divided into twenty-eight thermal zones, and the indoor thermal 
comfort and air quality are met with a multi-zone all-air system with partial 
recirculation. Each thermal zone is equipped with individual Air Handling Units 
(AHU), which are connected to the centralised system. The centralised system is 
composed of two heat/cold storage systems, coupled to an air-to-water heat pump 
and electrical chiller. The storage capacity for hot water is 2500 litres, whereas it 
is 2000 litres for chilled water. 
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The heat pump is characterised by a rated heating and cooling capacity of 503 
kW and 570 kW, respectively. Since the heat pump alone is unable to meet the 
cooling needs, an electrical chiller, with a rated cooling capacity of 150 kW, has 
also been installed. The building is equipped with a BAS that allows the energy 
manager to control and manage operation of the HVAC system. The data used in 
this analysis pertain to the April 2013 to March 2014 period, have an hourly 
timestamp and include: the total building electrical load, the electrical load of the 
heat pump, chiller and circulation auxiliaries, the external air temperature and the 
internal air temperature in one of the most representative zones. Table 4 
summarises the variables collected for this case study. 

Table 4 - Case study 1 - Summary of the variables [2] 

Variable Description Type Unit of measure 

Day Day of the week Categorical [-] 

E_total Total electrical demand of the building Numerical [kW] 

E_H/C system Electrical demand of the Heating/Cooling system Numerical [kW] 

T_external External air temperature Numerical [°C] 

T_internal Internal air temperature Numerical [°C] 

 
Fig. 35 (a) shows that the most significant variations of the electrical load 

mainly occur in the time interval between 05:00 a.m. – 08:00 p.m., albeit with 
different trends over the year. By analysing the total electrical demand, one can 
infer that the HVAC system is usually turned on at 5:00 a.m., except for a limited 
period of the year during which the system is turned on at 3 a.m., and it is 
switched off at 8:00 p.m. The average incidence of the HVAC system on the total 
electrical demand is 35% for the analysed period. When the building is 
unoccupied, and the plug-loads are switched off, the base load of the building is 
about 50 kW. Moreover, it is possible to note that the electrical demand peak 
during the winter season occurs in the early morning, whereas it occurs in the 
middle of the day during the summer and autumn.  

 Case study 2 – the Politecnico di Torino campus 

The second case study refers to a part of the Politecnico di Torino campus, that 
is served by the same medium-voltage transformer room. The overall floor area, 
which is over 20.000 m2, includes several facilities. The area is divided into 
central administration offices, which host more than 300 employees, and 
academic spaces, which include more than 20 lecture halls and 4 information 
technology labs. Moreover, a bar and a large canteen are located in the public 
spaces, and their yearly electricity consumption accounts for 17% of the total 
consumption. One of the building’s data-centres, whose consumption represents 
14% of the analysed part of the campus, is located underground. The heating and 
cooling system is composed of two different circuits, which are used to produce 
hot and chilled water. The heating circuit is served by a heat exchanger that is 
connected to the district heating system, while the cooling circuit is instead served 
by a closed-loop geothermal plant composed of two chillers and one water-to-
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water heat pump. The chillers and the heat pump are connected in parallel and 
have a total rated cooling capacity of 1120 kW and 590 kW, respectively.  

The overall yearly consumption of these systems, including circulation 
auxiliaries for both the heating and cooling circuits, accounts for 15% of the total 
consumption. Data pertaining to the year 2015, with a time stamp of 15 minutes, 
were analysed for this case.  

Table 5 - Case study 2 - Summary of the variables [2] 

Variable Description Type Unit of measure 

Day Day of the week Categorical [-] 

E_total Total electrical demand of the building Numerical [kW] 

E_H/C system 
Electrical demand of the Heating/Cooling 

system 
Numerical [kW] 

T_external External air temperature Numerical [°C] 

T_internal Internal air temperature Numerical [°C] 

Occupancy 
Number of occupants in the central 

administration offices of the Politecnico di 
Torino 

Numerical [-] 

 
Table 5 summarises the variables considered for this case study. from Fig. 

35(b) it can be inferred, that the building energy systems are usually turned on at 
6.00 a.m., a period in which the building begins to be occupied, and are switched 
off at 19.00 p.m. The total electrical demand increases over the time interval 
between 9 a.m. (the time at which teaching and office activities begin) until 4 
p.m., with the greatest electrical demand in the middle of the day, since all the 
activities, including the canteen activities, take place at this time. During the 
summer period, there is a higher electrical demand in the afternoon hours than in 
the other periods of the year. This is due to a higher operation of the cooling 
system to meet the cooling needs.  

3.3.3 Implemented methodology for the automatic detection of 
anomalous trends in building energy consumption time series   

The methodology is based on the application of an enhanced SAX 
transformation, coupled with classification and regression trees, in order to 
perform an advanced energy consumption characterisation and an anomalous 
trend detection analysis. The methodology process is performed through a 
multistep data analytics procedure. The whole process is tested on the total 
electrical energy consumption data of two buildings which have different end 
uses. One-year, hourly/sub-hourly electrical energy consumption data are 
available for each building, together with other influencing variables (e.g., 
climatic, occupancy data). The general framework unfolds over several different 
stages, as shown in Fig. 36.  
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Fig. 36 - Framework for advanced characterisation of building energy consumption time series and 
anomalous trend detection (adapted from [2]) 

The first stage (Fig. 36) is aimed at data preparation. Data pre-processing is a 
crucial task to prepare the time series for the analysis. At this stage, the energy 
consumption time series are analysed in order to identify any missing value and/or 
punctual outlier to be removed and replaced. The second stage of the analysis is 
aimed at transforming the energy consumption time series by implementing an 
enhanced SAX process. In detail, two preliminary hypotheses are formulated in 
different way from the classic SAX implementation presented in Section 1. The 
first hypothesis is related to the length of the non-overlapping W windows on the 
time axis. In the literature, the time windows are generally assumed to have the 
same length [30,31,89]. However, this hypothesis could cause a significant loss of 
information in many applications, in terms of approximation error of the original 
time series. For example, when analysing building energy consumption data, the 
symbolic sub-strings have a daily length (i.e., T = 24 hours), which constrains the 
length that each time window can assume if the hypothesis of equal-length is 
satisfied. In the case of an hourly-based time series, if T has a length of 24 hours, 
the time windows can have sizes of 2, 3, 4, 6, 8 or 12 hours, which results in 
equally sized time windows, each with duration T/W.   

To overcome this limitation, unequal time window lengths can be identified in 
order to approximate the original time series in a much better way than when the 
equal ones are used [210]. This time series approximation, called Adaptive 
Piecewise Constant Approximation (APCA), is based on the same principle as 
PAA, but it offers the advantage of being able to conduct a finer aggregation of 
areas of the time series where the amplitude variation of the variable is higher 
than in the areas with low amplitude variation over time [210].  

In the proposed approach, the evaluation of time windows is conducted using a 
Regression Tree algorithm (described in section 2.1.3.1.1.1) [204]. The regression 
tree is used to optimise the size and the number of time windows through a cost-
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complexity process, searching for a trade-off between the approximation error and 
the number of time windows. The regression tree is developed using the 
hourly/sub-hourly electric power demand as the numerical target attribute, and the 
time of the day as the ordinal explanatory attribute. The time attribute is set as an 
ordinal variable to identify non-overlapping time windows that are then used to 
segment the daily reference period. This choice is important, because if the time 
variable is set as a categorical one (i.e., without preserving the order of the 
possible values in the splits of the regression tree), the identification of non-
overlapping time windows would not be ensured. In such a case, the regression 
tree could indiscriminately group together some electric power demand values 
pertaining to the early morning with those referring to the night. 

In addition, in the developed methodology, the second hypothesis, which is 
formulated in a different way from that of the classic implementation of SAX, 
rejects the equal probability of the symbols in order to encode each approximated 
constant segment on the vertical axis. This difference is specifically introduced by 
considering the nature of the energy consumption data. In fact, in some 
applications, where a data transformation and reduction of the time series is 
needed, the evaluation of equal probability regions may not be the best choice, in 
terms of approximation quality. For example, the operation of a chiller in a 
building depends exclusively on the occupancy rate during the day. Therefore, 
assuming a 10-hour operation per day (08:00 – 18:00) during working days, the 
chiller is turned off most of the time (14 hours per day). In that case, the 
breakpoints evaluated by considering equal probability symbol regions could 
produce very narrow intervals in correspondence to low electrical power values 
and wide intervals for high values (considering that the most frequent electrical 
power values during the day are close to zero). This could result in losing key 
information when the constant approximated segments are encoded in symbols.  

In the proposed methodology, without any standardisation of the original data, 
and rejecting the equal probability hypothesis, the aSAX (Adaptive Symbolic 
Aggregate ApproXimation [32]) algorithm is adopted for the evaluation of 
breakpoints. The aforementioned methods (i.e., Regression Tree and aSAX) used 
in the methodological process to reduce and transform the data are briefly 
introduced and discussed in Section 2.1.1.2 and 2.1.3.1.1.1. 

After the data transformation, the entire time series encoded in a unique string 
of symbols is chunked into N sub-strings of a daily length (i.e., T = 24 hours) in 
order to obtain constant time-scale based sequences. The N symbolic sub-strings 
are made up of a certain number, W, of time windows encoded in alphabetic 
symbols and organised in an NxW matrix. In this way, each daily load profile is 
represented by a SAX word that is then used as the input for the successive 
anomaly detection analysis. At this stage, the probability of each symbol 
occurring in each time window, under specific boundary conditions, is evaluated 
by means of a classification tree, which is based on additional explanatory 
variables (e.g., external temperature, internal temperature, day type, month). In 
this way, if the occurrence probability estimated with the classification tree and 
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associated with a symbol is very low, it is likely that the energy consumption in 
the corresponding sub-daily time window is abnormal.  

Furthermore, the post-mining stage of the analysis is performed using 
additional datasets for the two case studies in order to further support the 
preliminary diagnosis of detected anomalous patterns at whole building level.  

In this perspective, the developed EIS tool based on the proposed methodology 
can be effectively used to support the implementation of advanced targeted 
anomaly diagnosis in a specific time window of the entire time domain. The EIS 
tool can easily and smoothly be generalised for different kinds of building types 
and climates.  

3.3.4 Results obtained from load profile characterization analysis 

 Application of the customised SAX process 

In order to perform an advanced characterisation of the total energy 
consumption for the two case studies, a reduction and transformation of the 
energy consumption time series are carried out using the proposed transformation 
process.  

The time windows of the daily load profiles are evaluated using a regression 
tree. As described in Section 3.3.3, a regression tree allows unequal time window 
lengths to be identified. The regression tree is developed using the total electrical 
load as the numeric target variable and the time of the day as an ordinal predictive 
attribute. In order to identify the optimal number and size of the time windows, 
the regression tree is subjected to a cost-complexity pruning process. Assuming 
the time as an ordinal variable, any non-overlapping time windows with 
homogeneous electricity consumption values are identified. In order to preserve 
the accuracy of the model in the leaf nodes during the operation hours of the 
building systems (e.g., from 07:00 to 19:00), only working days are taken into 
account, and days with a low standard deviation of the electricity demand (e.g., 
Sundays, holidays) are excluded. In fact, the tree splitting process is based on the 
reduction of the variance around the mean value of the numeric target variable in 
each leaf node until the stopping criteria have been satisfied (e.g., the minimum 
number of cases in the parent and child nodes, maximum tree depth, minimum 
reduction in node variance after splitting). For the analysed case studies, the 
selected stopping criterion is based on the minimum number of objects in a child 
node in order to identify time windows with a length of at least two hours (i.e., 
𝑊.  ௧120 min.), as follows (Eq. 15): 

𝑂𝑏𝑗
𝑚𝑖𝑛

= ൫𝑀𝑑𝑎𝑦𝑠,𝑡𝑜𝑡 − 𝑀𝑑𝑎𝑦𝑠,𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑൯ ∗
𝑊𝑚𝑖𝑛.  𝑙𝑒𝑛𝑔𝑡ℎ

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 
 

Eq. 15 

 
where 𝑂𝑏𝑗 the minimum number of objects in a child node, 𝑀ௗ௬௦,௧௧ is 

the total number of daily load profiles, 𝑀ௗ௬௦,௫௨ௗௗ is the number of daily load 
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profiles excluded from the dataset (e.g., Sundays, holidays), 𝑊.  ௧  the 

minimum length of the time window (expressed in minutes) and timestep 
(expressed in minutes) is the measurement sampling frequency. For example, if a 
measurement campaign of one year (with 250 working days and the other days 
being excluded), a time window length of 120 minutes and a sampling frequency 
of 15 minutes are assumed, 𝑂𝑏𝑗 equal to 2000 objects.  

 

 

Fig. 37 - Identification of sub-daily time windows by means of the CART algorithm for Case study 1 [2] 

 

Fig. 38 - Identification of sub-daily time windows by means of the CART algorithm for Case study 2 [2] 
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Fig. 37 and Fig. 38 report the outputs of the regression model for both case 
studies in the form of decision trees. The cost-complexity pruning process was 
performed for both case studies.  

The pruning procedure of the regression tree is repeated iteratively, and smaller 
and smaller subtrees are found until the root node is reached. At the end of the 
iterations, the final pruned tree can be evaluated by plotting the relative errors of 
the subtrees versus their complexity parameters (cp). This kind of plot usually 
shows an initial sharp drop, followed by a relatively flat region (Fig. 39).  

 

 

Fig. 39 - Optimal size of the regression tree for Case study 1 (a) and Case study 2 (b) [2] 

When the decision tree is subject to a validation procedure (e.g., k-fold cross-
validation), it is also possible to compute a standard error for each relative error of 
the sub-tree. The choice of the best subtree starts from the flat region of the 
subtree errors that includes the minimum cross validated error that is achieved. In 
fact, the values falling within one standard error of the achieved minimum risk 
(i.e., 1-SE rule) identify statistically equivalent sub-trees [204]. The simplest 
model (with the minimum number of final nodes) of all the identified sub-trees in 
the flat region is then chosen.  

As shown in Fig. 39, both of the decision trees have five final nodes, which are 
determined when the relative error goes below the user-defined threshold (green 
dashed line), and which correspond to five time windows of different lengths. 

Table 6 reports the obtained time windows with reference to their durations. 
For both buildings, period 1 and period 5 are related to the night hours during 
which the buildings are unoccupied, while periods 2, 3 and 4 are representative of 
the operation hours of the building systems. It is possible to note that the lengths 
of the evaluated time windows are significantly different from each other, thus 
highlighting the importance of assuming time windows of unequal lengths to 
achieve an optimal time series reduction. 
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Table 6 - Sub-daily time windows for case study 1 and case study 2 [2] 

Case study Time windows  

1) Sant Cougat 
town hall 

Period 1 
 

00:00 – 04:59 
5 hours 

Period 2 
 

05:00 – 06:59 
2 hours 

Period 3 
 

07:00 – 13:59 
7 hours 

Period 4 
 

14:00 – 19:59 
6 hours 

Period 5 
 

20:00 – 23:59 
4 hours 

2) Politecnico di 
Torino 

Period 1 
 

00:00 – 06:29 
6 hours and  
30 minutes 

Period 2 
 

06:30 – 08:59 
2 hours and  
30 minutes 

Period 3 
 

09:00 – 15:44 
6 hours and  
45 minutes 

Period 4 
 

15:45 – 19:14 
3 hours and  
30 minutes 

Period 5 
 

19:15 – 23:59 
4 hours and  
45 minutes 

 
Period 2 has the shortest duration (about 2 hours) for both case studies. In fact, 

period 2 represents the ramp-up of the daily load profile during which the 
heating/cooling systems are usually turned on and the employees start to occupy 
the building. The regression tree isolates this period in a specific time window, 
which is characterised by a high load variation over a very short time, thus 
reducing the global constant approximation error to a great extent. After the 
identification of the time windows, the entire time series is reduced through a 
constant approximation process by replacing the electrical demand values that fall 
into the same time window with the relative mean value. The time windows 
identified through the regression trees are also assumed for the previously 
excluded daily load profiles. It is in fact verified that the days that showed a 
limited variation of the electrical demand over time (e.g., flat profiles of Sundays 
and holidays) are not influenced to any great extent by the windowing process, in 
terms of the constant approximation error of the time series.  

In the successive step, the constant approximated segments are encoded in 
symbols. For this purpose, the aSAX algorithm is implemented, as discussed in 
section 3.3.3. Alphabet size A, which corresponds to the number of symbols, is 
assumed equal to the number of the previously identified sub-daily time windows. 
Fig. 40 shows the frequency histogram of the electrical demand time series 
reduced through the constant approximation process.  

 

 

Fig. 40 - Identification of Adaptive breakpoints through the aSAX algorithm for case study 1 (a) and 
case study 2 (b) [2] 



103 
 

The hypothesis of Gaussian distribution of the constant approximated time 
series is rejected for both case studies. As explained in section 3.3.3, the equal 
probability hypothesis for the breakpoint evaluation is used for the initialisation of 
the aSAX algorithm. The initial position of the breakpoints (dotted lines in Fig. 
40) produces very narrow intervals in correspondence to low values of electrical 
demand and wide intervals for high values. The final adaptive breakpoint 
positions evaluated after about 20 iteration steps of the aSAX algorithm 
(continuous lines in Fig. 40) make it possible to identify balanced regions that 
minimise the representation error resulting from the encoding of the symbols. 
Table 7 reports the breakpoints of each symbol for both case studies.  

Table 7 – Breakpoints of each symbol for case study 1 and case study 2 [2] 

Case study Symbol 

1) Sant 
Cougat town 

hall 

a 
0 kW - 76 kW 

b 
76 kW - 125 kW 

c 
125 kW - 184 kW 

d 
184 kW - 247 kW 

e 
> 247 kW 

2) Politecnico 
di Torino 

a 
0 kW - 188 kW 

b 
188 kW - 292 kW 

c 
292 kW - 414 kW 

d 
414 kW - 535 kW 

e 
> 535 kW 

 
Fig. 41 reports the output of the customised SAX process for a sequence of 

twenty consecutive time windows for case study 1. The left-hand side of the 
figure also shows the frequency histogram of the constant approximated segments 
of the reduced time series and the breakpoints evaluated through the aSAX 
algorithm.  

 

 

Fig. 41 - Symbolic transformation for a sequence of twenty time windows (i.e., four days) for case study 
1 [2] 

The successive step consists in chunking the entire transformed time series into 
a set of sub-strings. As previously discussed, the reference sub-string has a daily 
length, and it is found to be composed of five consecutive non-overlapping time 
windows for the analysed case studies.  

After the chunking of the time series, the transformed daily load profiles are 
organised in an NxW matrix, where N are the daily sub-strings (i.e., N = 365 
days), and W is the number of identified time windows (i.e., W = 5 time windows 
for both case studies). 
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Fig. 42 - Carpet plot visualization of the SAX symbols for Case study 1 (a) and Case study 2 (b) [2] 

Fig. 42 (a) and (b) report the carpet plots of the NxW matrix for case study 1 
and case study 2, respectively. Through this effective visualisation, it is possible 
to quickly understand how the symbols are distributed among the time windows in 
the daily load sub-strings. 

The occurrence frequency of each symbol is then calculated for each time 
window (Fig. 43 and Fig. 44) for the whole monitored period in order to perform a 
preliminary characterisation of the data after their encoding in symbols. It can be 
seen, for case study 1, that the symbol “a” has an occurrence of about 90% for 
periods 1 and 5, thus highlighting a close correlation between the electricity 
consumption in these time windows and the OFF state of the HVAC system, 
which mostly influences the reduction in the total electrical demand during the 
night hours.  

 

 
Fig. 43 - Occurrence frequency of each symbol in each time window for case study 1 [2] 
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Fig. 44 - Occurrence frequency of each symbol in each time window for case study 2 [2] 

The symbols do not exhibit any specific trends for other periods, thus 
suggesting the need to further investigate the dependencies of each symbol on the 
boundary conditions of influence. To this purpose, a classification tree is 
developed for each time window, using the SAX symbol as a categorical target 
variable and the additional available variables as predictive attributes.  

Table 8 - Summary of the variables used for the classification process for each time window [2] 

Variable Description Case study 1 Case study 2 

Day Day of the week   

T_ext Average external temperature   

T_int Average internal temperature   

T_int_pre Average internal temperature in the previous period   

Occ Number of occupants   

Sym_pre Symbol in the previous period   

 
Table 8 summarises the variables used for the characterisation of each time 

window. 
As a reference, Fig. 45 reports the output of the classification tree developed in 

period 3 (07:00 – 13:59) for case study 1. For this period, it is possible to identify 
the boundary conditions that could explain the occurrence of each symbol with a 
high probability by means of a classification tree. 

The building of case study 1 is equipped with a heat pump that supplies both 
hot and cold water according to its operating mode (heating or cooling mode). 
This implies that the electric consumption of the heat pump is thermal sensitive 
and during winter operation is inversely proportional to the outside temperature, 
while the opposite occurs in the summer period.  
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Fig. 45 - Classification tree developed for period 3 (07:00 – 13:59) for Case study 1 [2] 

The classifcation tree shown in Fig. 45 is able to distinguish two characteristic 
power demand symbols for the working days: "d" and "e". A higher consumption 
(i.e., symbol “e”) is associated with the hot season (T_ext > 20.35°C) and the cold 
season (T_ext < 9°C), while a lower consumption (i.e., symbol “d”) is associated 
with the mild season (9°C < T_ext < 20.35°C). Symbol “a” only occurrs in period 
3 during Sundays and Holidays (tree node 2), while symbol “b” is typical of 
Saturdays and had an occurrence probability of about 77% (tree node 4). At the 
same time, these decision rules extracted from the classification tree developed in 
period 3 also make it possible to identify a very low occurrence probability 
associated with a symbol, given certain boundary conditions. For example, the 
symbol “b” has an occurrence probability lower than 1% during Sundays and 
Holidays (tree node 2). Therefore, the symbol “b”, due to its low occurrence 
during these days, can be considered as a discord candidate that needs to be 
further investigated in the diagnostic phase. In fact, the higher the accuracy of the 
decision rules is (final nodes with very high occurrence probability of a certain 
symbol), the higher the consequent anomaly detection capability when the rules 
are violated during building operation.  
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Table 9 - Decision rules for case study 1 [2] 

Time window Decision rules Symbol Accuracy 

Period 1 
(00:00 – 04:59) 

IF system_start = is turned OFF  a 98% 

IF system_start = is turned ON at 04:00 a.m. AND T_int ≥ 23,43 °C  a 80% 

IF system_start = is turned ON at 04:00 a.m. AND T_int < 23,43 °C  b 79% 

Period 2 
(05:00 – 06:59) 

IF Day = Holiday OR Sunday OR Saturday  a 83% 

IF Day = Monday OR Tuesday OR Wednesday OR Thursday OR Friday 
AND T_int_pre (period 1) ≥ 23,55 °C  c 88% 

IF Day = Monday OR Tuesday OR Wednesday OR Thursday OR Friday 
AND T_int_pre (period 1) < 23,55 °C  d 60% 

Period 3 
(07:00 – 13:59) 

IF Day = Holiday OR Sunday  a 99% 

IF Day = Saturday  b 77% 

IF Day = Monday OR Tuesday OR Wednesday OR Thursday OR Friday 
AND 9 °C ≤ T_ext < 20,35 °C  d 73% 

IF Day = Monday OR Tuesday OR Wednesday OR Thursday OR Friday 
AND T_ext ≥ 20,35 °C  e 98% 

IF Day = Monday OR Tuesday OR Wednesday OR Thursday OR Friday 
AND T_ext < 9 °C  e 84% 

Period 4 
(14:00 – 19:59) 

IF Sym_pre = a OR b OR c  a 96% 

IF T_ext < 24,1 °C AND Sym_pre (period 3) = “d” AND T_int < 25,55 
°C  c 69% 

IF T_ext < 24,1 °C AND Sym_pre (period 3) = “d” AND T_int ≥ 25,55 
°C  d 75% 

IF T_ext < 24,1 °C AND Sym_pre (period 3) = “e”  d 94% 

IF Sym_pre = “d” OR “e” AND T_ext (period 3) ≥ 24,1 °C  e 79% 

Period 5 
(20:00 – 23:59) 

-  a 95% 

 

Table 10 - Decision rules for case study 2 [2] 

Time window Decision rules Symbol Accuracy 

Period 1 
(00:00 – 06:29) 

-  a 74% 

Period 2 
(06:30 – 08:59) 

IF 0cc < 47 AND  Day = Holiday OR Sunday  a 81% 

IF 0cc < 47 AND Day = Monday OR Tuesday OR Wednesday OR 
Thursday OR Friday OR Saturday AND T_ext < 18,8 °C  b 86% 

IF 0cc < 47 AND Day = Monday OR Tuesday OR Wednesday OR 
Thursday OR Friday OR Saturday AND T_ext ≥ 18,8 °C  c 78% 

 IF 0cc ≥   47 AND T_ext < 18 °C  c 93% 

 IF 0cc ≥   47 AND T_ext ≥ 18 °C  d 80% 

Period 3 
(09:00 – 15:44) 

IF 0cc < 189,5 AND  Day = Holiday OR Sunday  a 84% 

IF 0cc < 189,5 AND Day = Monday OR Tuesday OR Wednesday OR 
Thursday OR Friday OR Saturday AND T_ext < 22,35 °C  b 81% 

IF 0cc < 189,5 AND Day = Monday OR Tuesday OR Wednesday OR 
Thursday OR Friday OR Saturday AND T_ext ≥ 22,35 °C  c 77% 

IF 0cc ≥   189,5  e 93% 

Period 4 
(15:45 – 19:14) 

IF 0cc < 94 AND  Day = Holiday OR Sunday OR Saturday  a 85% 

IF 0cc < 94 AND Day = Monday OR Tuesday OR Wednesday OR 
Thursday OR Friday AND T_ext < 17,3 °C  b 90% 

IF 0cc < 94 AND Day = Monday OR Tuesday OR Wednesday OR 
Thursday OR Friday AND T_ext ≥ 17,3 °C  c 100% 

IF 0cc ≥   94 AND T_ext < 28,95 °C  c 88% 

IF 0cc ≥   94 AND T_ext ≥ 28,95 °C  d 74% 

Period 5 
(19:15 – 23:59) 

IF Day = Holiday OR Sunday OR Saturday  a 75% 

IF Day = Monday OR Tuesday OR Wednesday OR Thursday OR Friday  b 87% 

 
Table 9 and Table 10 report all the decision rules extracted from the 

classification trees developed for case study 1 and case study 2 developed for each 
period. It can be observed that the set of additional variables used by the 
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classification trees differ among the periods. Furthermore, it can be noticed that 
period 5, pertaining to case study 1, and period 1, referring to case study 2, are not 
associated with any decision rule. These periods are characterised by a very high 
occurrence (over 70% over the whole year) of only one symbol. In these cases, the 
additional available variables are not able to further characterise the occurrence of 
other symbols.  

The classification process leads to very robust results, with a global accuracy 
that ranges between 80% and 90%. The methodological process proves to be 
flexible, both with respect to the timestamp of the data (hourly or sub-hourly) and 
to the set of input variables employed in the classification phase. As previously 
discussed, a discord can be detected when a different symbol from the one 
estimated through the decision rules is observed in a specific time window, given 
certain boundary conditions.  

 

 

Fig. 46 - Anomalous patterns related to the building heating/cooling system operations for Case study 1 
[2] 

Fig. 46 and Fig. 47 show various daily sub-strings containing anomalous 
candidates for both case studies. In order to perform a preliminary diagnosis in 
which the causes of the occurrence of an infrequent symbol are searched for in a 
time window, the corresponding electrical demand of the heating/cooling system 
which influences the total building electrical demand the most, is also analysed. 
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Fig. 46 and Fig. 47 report the original (not reduced) daily profiles of the total 
building electrical demand (green line), the constant approximation of the total 
building electrical demand (red dashed line) and of the cooling/heating system 
electrical demand (blue line). The figures also report the occurrence probabilities 
of symbols extracted from the leaf nodes of the classification trees developed for 
each time window. The symbol occurrence probabilities are visualised by filling 
the regions of the amplitude space with different shades of grey. The higher the 
symbol occurrence probability is, the darker the colour of the symbol region. 
Thanks to this effective visualisation, the final user of the EIS tool can quickly 
become aware of a potential anomalous energy consumption when the mean value 
of the total electrical demand (PAA segment) falls into a time window filled with 
a lighter colour. Fig. 46 reports four representative daily sub-strings for case study 
1, where infrequent values of the total electrical demand are detected for at least 
one time window during the day. Fig. 46 (a) shows the daily load profiles (the 
electrical demand for the whole building and for the heating/cooling system) for a 
Saturday. By means of the decision rules reported in Table 9, it is possible to 
assess a-a-b-a-a as the estimated word (made up of five consecutive symbols) 
related to the whole building electrical demand. The real sequence of symbols that 
instead emerged is a-b-c-c-b, which is significantly different from the expected 
word. Excluding the first time window of the day, where a perfect match between 
the real and the expected symbols is observed, the total electricity consumption of 
the building can be considered infrequent in time windows 2, 3, 4 and 5. In order 
to establish whether these detected infrequent patterns correspond to an 
anomalous energy management operation, the daily electrical load profile of the 
heating/cooling system is analysed. It can be observed that the system is not 
turned off at 12:30 a.m., as expected for Saturday, thus generating an over-
consumption during periods 4 and 5. Moreover, the total electrical demand 
variation of the building during operation perfectly matches the electrical load 
variation of the heat pump, thus suggesting that the system is operated when no 
other electrical load is present in the building. For this reason, it can be inferred 
that the system is turned-on during the considered day although the building is 
unoccupied.  

Fig. 46 (b) and (c) report two daily sub-strings that refer to working days in 
the summer season. The total electrical demand for these two days is found to be 
higher than that expected for periods 5 and 1, respectively. By analysing the trend 
of the electrical demand of the cooling system, it can be inferred that these over-
consumptions are due to an incorrect operation during the night hours. The last 
discord reported in Fig. 46 (d) corresponds to a delayed start-up of the system 
after 06:00 in the morning, which results in an under-consumption during period 
2.  

By comparing Fig. 46 (c) and (d), it is possible to observe the flexibility of the 
procedure in predicting, for the ramp-up time window (period 2), different 
symbols between the winter and summer seasons (i.e., according to different 
boundary conditions).  
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For the sake of completeness, Fig. 47 (a) and (b) show anomalous profiles 
generated by an incorrect operation of the heating/cooling system during 
unoccupied periods for case study 2. An over consumption can be observed in 
Fig. 47 (a), due to the incorrect operation of the heating system during a holiday; 
Fig. 47 (b), instead, shows the case of an infrequent electrical demand during the 
night (periods 1 and 5), due to continuous operation of the chiller system 
throughout the day. 

 

 

Fig. 47 - Anomalous patterns related to the building heating/cooling system operations for Case study 2 
[2] 

3.3.5 Discussion  

The performed analysis focused on whole building level in order to 
demonstrate the potential of an EIS tool for detecting anomalous trends in 
building energy consumption time series. For developing the EIS tool, data 
reduction, transformation and data analytics methods are coupled in a 
complementary way in order to detect infrequent/unexpected patterns of whole 
building energy consumption at a sub-daily time scale. 

Early detection of anomalous trends in energy consumption trough EIS tools 
can prevent the occurrence of abnormal events and reduce energy waste over 
time. In this context, the proposed anomaly detection EIS tool (based on the 
extraction of decision rules) can identify abnormal energy consumption in 
representative and specific time windows of the day. In order to demonstrate the 
implications also for a preliminary fault diagnosis, some anomalous trends of the 
total electrical load are examined in a post-mining phase, using additional datasets 
of the electrical energy consumption related to heating and cooling needs. 

Considering that SAX is based on the reduction and approximation of a time 
series, the information loss, due to SAX implementation, needs to be considered 
during the analysis. The shapes and magnitudes of the energy profiles of buildings 
are influenced a great deal by occupancy and system operation schedules (e.g., 
start-up and shut-down of the heating/cooling system, occupants’ arrival and 
departure times), which often result in high energy consumption variations over 
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very short time periods. Strong load variations over time represent very important 
features of the daily energy profile, which should be automatically detected and 
isolated in specific time windows in order to reduce the constant approximation 
error. Managing the windowing process is a complex issue; an erroneous setting 
of the number of time windows and of the number of symbols could negatively 
affect the capability of the EIS tool to identify energy patterns that can be 
considered frequent and typical for irregularly occupied buildings or buildings 
characterised by a high number of anomalous consumption patterns and 
inefficient operating settings over time. 

The impact of input parameters on the generation of symbolic sub-strings was 
evaluated in [89] by performing a sensitivity analysis on both the number of 
equal-length time windows and the number of symbols. It was found that 
increasing the size of the input parameters makes the interpretation of the results 
difficult in a manual way. On the other hand, a smaller number of parameters can 
generate a decreasing level of detail and the loss of key information.  

In this context, the main objective of the proposed methodology, at the basis of 
the EIS tool, is to exploit the potential of SAX, while customising the process 
according to the specific data features, and at the same time to develop an 
automatic, but supervised, procedure for the tuning of input parameters.  

The regression trees make it possible to perform numerical estimations, by 
segmenting the dataset through splitting criteria that are evaluated on explanatory 
variables. Setting the time of the day as an ordinal input variable makes it possible 
to identify subsequent time windows of different lengths on daily load profiles, 
where the constant approximation produces a low approximation error. The 
number of the time windows is defined by means of the complexity parameter α 
(varying between 0 and ∞), which represents the penalty of adding other time 
windows that do not contribute significantly to the improvement of the overall 
approximation error of the regression tree.  

The great advantage of this tool is the self-tuning capability of the process to 
find the most appropriate lengths and number of time windows in order to 
effectively reduce the time series. Moreover, the number of symbols (alphabet 
size) necessary to encode the reduced time series is set equal to the number of 
sub-daily time windows. When the alphabet size is defined, the adaptive 
breakpoint identification process, performed with the aSAX algorithm [32], is 
completely automated.  

After the encoding of the time series in symbols, infrequent pattern recognition 
is performed. Differently from other applications (e.g., as the work published in 
[89]) for the developed EIS tool the discords in the time series are detected at a 
single time window level by developing predictive classification models for each 
time window. A set of decision rules is then extracted from the classification trees 
to estimate the mostly frequently occurring SAX symbol for a time window, given 
certain boundary conditions. As a reference, in the case of the characterisation of 
thermal sensitive electrical loads (i.e., the electrical demand of chillers or heat 
pumps), the climatic conditions (external and internal), occupants’ presence, the 
thermo-physical features of a building and the operation modes of the 
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heating/cooling systems could help explain the existence of infrequent but not 
anomalous patterns, which are not always easy to be inferred. For this reason, and 
also thanks to the progressive electrification of heating/cooling systems, the 
pervasive monitoring of indoors/outdoors variables of influence is an important 
aspect to be taken into account in EIS design.  

In this context, despite EIS tools are becoming more and more accurate and 
comprehensive in characterizing the actual energy behaviour of the building 
during its operation, the effectiveness of the information transfer to the user still 
remain a matter of concern. 

In the developed EIS tool the results obtained through a real-time analysis of 
building-related data are provided to the user by means of scheduled feedbacks 
during the day.  Each feedback is expected to be sent at the end of each time 
window and consists in a symbol estimation (explained trough IF-THEN rules), 
and powerful graphical visualisation that allow stakeholders to have an immediate 
picture of anomalous trends that deviate from the frequent/expected energy 
consumption patterns in quasi real time [35,211] and then avoiding further energy 
waste during the subsequent hours. 

In this way, it is possible to compare the expected behaviour and the actual 
energy consumption at the end of a preidentified characteristic time period thus 
reducing the number of interactions with the user during a day while ensuring 
high consistency and interpretability of the knowledge transferred. 

In the next section the last EIS tool developed is presented and discussed. In 
that case the analysis is focused on a larger scale than the single building with the 
aims of identifying typical energy use patterns and classifying energy customers 
at building portfolio level. 
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3.4 Development of EIS tool for the identification of 
typical energy use patterns and the classification of 
energy customers at building portfolio level 

The progressive introduction of Advanced Metering Infrastructure (AMI) in 
the last years is enabling the collection of a huge amount of building energy 
consumption data [212,213]. In this context, data analytics based EIS can be 
exploited by energy suppliers or portfolio managers to gain insight into energy 
consumption patterns for a vast number of buildings [11]. A significant amount of 
research has been conducted in the field of building characterization using 
measured meter data [57,214].  

This field of research often deals with the exploitation of various extracted 
temporal features from smart meter data [214] (e.g., load shape features, weather-
dependency features, load pattern specificity, load diversity, long and medium-
term volatility) for the segmentation and classification of large stock of buildings 
according to their energy behaviour.  

Traditionally, when a portfolio of buildings is analysed, energy customers are 
segmented and classified according to their building end-use category as 
residential, industrial, commercial and so on. However, in many cases, buildings 
belonging to the same category can exhibit significantly different patterns in their 
energy consumption [9,121]. In such cases, benchmarking methods related to the 
calculation of energy use intensity metrics (e.g., kWh/m2y) of the building are not 
able to fully characterise the energy behaviour of an energy customer over time. 
Conversely, knowledge extracted from energy consumption time series (i.e., load 
profiling analysis) contains information on how and when building energy use 
changes during the day for various end uses such as appliances, lighting, 
ventilation, heating and cooling [15,16].  

A number of load profiling frameworks were developed in the literature to 
deal with data coming from multiple buildings usually with the aim to identify, 
through unsupervised analysis, homogenous groups of typical daily load curves 
(i.e., customer classification) characterised by similar shapes and/or magnitude 
[11,101]. In this context, advanced EIS tools capable to effectively mine the 
energy consumption patterns of buildings in large portfolios not only provide 
more robust energy benchmarks [9,15] but can also support the development of 
energy management initiatives and demand response programs [94] targeted to 
specific segments of users [215]. 

In order to provide a contribution in the aforementioned research fields, in the 
following is proposed and discussed the development of an EIS tool used to 
characterise energy consumption at building portfolio level with the aim of 
extracting typical patterns in the time domain.  
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The developed EIS tool also can address a robust customer classification 
process and enabling the classification of new unknown customers through a non-
intrusive approach which does not make use of in-field load monitoring data.  

Specifically, the identification of typical patterns is performed by analysing 
hourly daily load profiles grouped together using the “Follow the Leader” 
clustering algorithm (details in section 2.1.3.2.1). Successively, the classification 
of customers is performed developing a decision tree as a supervised classifier 
(details in section 2.1.3.1.1.2). The predictive attributes are gathered from 
monthly energy bills of each customer and from additional information on 
customers’ habits collected by means of phone survey.  

The next section presents the main research challenges related to the 
identification of typical energy use patterns and customer classification in 
building portfolios and introduces the motivations and novelty of proposed 
methodological approach. 

 

3.4.1 Motivations and novelty of the proposed approach 

In the literature, the customer classification problem has been widely 
discussed by several researchers. Overviews on data mining based methodologies 
for customer classification are provided in [11,103,216]. As stated in section 
2.2.2.2, this task unfolds over four main methodological stages: i) identification of 
n classes of customers with similar energy consumption profiles; ii) definition of 
the reference load pattern for each class; iii) enrichment of the database with 
predictive attributes; iv) development of a supervised classification model. 

Although the clustering phase for the identification of typical energy use 
patterns is well investigated in the literature, little focus has been devoted to 
classification phase and in particular to the nature of the predictive attributes 
employed for developing the classifier. As previously explained in section 2.2.2.2, 
in most of cases the classification attributes are directly extracted from the load 
curves as done in [109,217]. These variables show an excellent explanatory 
potential; however, they can be computed only through an intrusive approach. 
This is usually unfeasible since energy providers or building managers not always 
have at their disposal such information when dealing with a new building to be 
included in their portfolio.  

Indeed, the main issues to be addressed for developing a customer 
classification EIS tool are the following: 

 Most of the analytical effort presented in literature is devoted to the 
pattern recognition phase (i.e., clustering phase) often neglecting the 
development of classifiers capable to estimate, for an unknown customer, 
its most probable cluster label and representative profiles; 

 When a classification model is developed, in most of the cases the input 
attributes are gathered from in-field energy monitoring campaigns. It 
means that such a classifier can be used by an energy 
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provider/retailer/manager only for classifying buildings, whose energy 
consumption profiles are already available; 

 The output of the customer classification process mainly consists in 
estimating normalised reference shapes of load profiles (e.g, (0,1) range) 
without providing any information about their magnitude;  

 In most of the applications only one reference load pattern per customer 
is considered for the subsequent clustering analysis. This assumption 
while allowing the dataset to be reduced, in some cases can constraint the 
exploration of different load conditions (e.g., seasonal patterns).  

In that perspective, the main objective is to develop and test an EIS tool that 
contributes to facing the aforementioned issues in a robust way as possible. The 
methodological framework of the analysis focuses on electrical load patterns of a 
stock of industrial and commercial buildings and relies on the application of data 
analytics techniques. The analysed dataset refers to the overall electrical demand 
of more than 100 energy customers of an Italian energy provider (eVISO s.r.l.). 
The EIS tool is conceived to be general for different types of buildings and is 
tested for a portfolio of buildings which significantly differ in volume and 
building end use. 

In particular, the representative load profiles are grouped with a “Follow the 
Leader” clustering algorithm (discussed in section 2.1.3.2.1) [45,46]. In the post-
clustering phase, a globally-optimal decision tree [218] is employed to build a 
supervised classification model and compared against a traditional recursive 
partitioning decision tree (the classification algorithms are explained in section 
2.1.3.1.1.1 and section 2.1.3.1.1.2 respectively). The predictive attributes are 
extracted from monthly energy bills of each customer and from additional 
information about customers’ habits collected by means of phone survey. The 
proposed tool can be then employed by energy retailers, energy managers and 
demand response operators to identify representative groups of customers in large 
heterogeneous building portfolios and to estimate for an unknown customer its 
most probable reference load profile by exploiting easy-to-collect and non-
intrusive data and information (e.g., billing data, working time schedules).  

The rest of the chapter 3 is organised as follows. Section 3.4.2 provides a 
description of the analysed dataset used for developing an EIS tool for the 
identification of typical energy patterns in building portfolio (benchmarking) and 
for the classification of new energy customers. Section 3.4.3 presents the 
methodology adopted for developing the EIS tool. Section 3.4.4 presents the 
results obtained for the analysed case study. Eventually, section 3.4.5 discusses 
the results and contains the concluding remarks related to this specific EIS 
application.  

As a remark, part of the content of the section 3.4 was published as scientific 
article in the Elsevier journal “Applied Energy” [10].  
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3.4.2 Case study used for developing the EIS tool at building portfolio 
level 

The customer classification EIS tool is developed starting from the monitored 
data of 114 electrical customers of the Italian Energy Provider (eVISO s.r.l.). The 
buildings are located in Piedmont (North-Western region of Italy) and are 
characterized by similar climate conditions. 17 customer typologies (i.e., building 
end uses) are considered in the analysis.  

 

 

Fig. 48 - Number of customers for each category (adapted from [10]) 

In particular, from Fig. 48 it can be inferred that the majority of the analysed 
buildings are manufacturing industries (i.e., metal-working, wood-working, stone-
working). 
The analysed data consists in three different datasets: 

 Electrical power dataset: it includes at least 4 months of measured hourly 
power demand of the 114 customers from “00:00:00 2014-01-01” to 
“23:00:00 2017-01-31”;  

 Energy bills dataset: it includes the monthly billing information for the 
114 customers; 

 Additional info dataset: it includes features of the 114 customers such as 
building typology and working time.  

Electrical power data were collected by means of smart meters installed by 
the energy provider while monthly billing data and the additional information 
were retrieved through short phone surveys and energy bills. For conducting the 
analysis, data are analysed and presented in anonymous form due to privacy 
issues related to the customer’s portfolio of the energy provider.  
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 Fig. 49 - Example of raw data structure [10]  

 Fig. 49 shows an extraction of records from the available dataset in order to 
provide an understanding of raw data structure. The year 2016 is selected as 
reference period for conducting the analysis. During 2016 the electrical power 
and energy bills datasets present the minimum amount of missing values and all 
the additional info are available. 

Fig. 50 also shows the box plots of the average electrical power demand in the 
three italian ToU time slots for the buildings in the same category. The high 
diversity of the sample, in terms of building typology and energy consumption, 
represents an asset for developing this kind of EIS tool in the perspective of 
extracting knowledge as generalizable as possible. 

 
 

 
Fig. 50 - Box plots of the average electrical power demand in the three time slots related to different Italian 

electrical energy tariffs (F1, F2, F3) for the buildings in the same category [10] 
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3.4.3 Implemented methodology for the identification of typical 
energy use patterns and for the classification of energy 
customers 

The methodology relies on the application of a clustering algorithm coupled 
with a decision tree, to perform a robust classification of a number of electrical 
industrial and commercial customers belonging to the same building portfolio. 
The whole process is developed and tested on the dataset previously described in 
section 3.4.2. The general framework unfolds over four different stages (Fig. 51) 
below introduced. 

 

 

Fig. 51 - General methodological framework of the analysis [10] 

 Data pre-processing for cleaning, filtering and normalizing 
building load profiles 

The first stage is aimed at filtering and preparing the data. Data pre-
processing is a mandatory task for any analytical process applied to data collected 
by means of smart meters. The time series of energy consumption for each 
building is chunked into daily sub-sequences. After the segmentation, only load 
profiles of working days are considered.  

Punctual outliers are removed from daily load profiles and replaced through 
linear interpolation. Furthermore, also outliers at daily energy trend level are 
detected and removed. These profiles are characterised by very low or infrequent 
variation in energy demand over time.  

The first type of abnormal patterns is represented by days during which the 
electrical load is significantly lower than the other working days. These days may 
include holidays or days that are not correctly identified and labelled as no-
working days.  

The identification process of these profiles is conducted separately for each 
building for each month. For each daily load profile, the daily power demand 
standard deviation is calculated. In this way, through a box plot analysis for each 
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building for each month, the low variation profiles are identified according to the 
following equations (Eq. 16 and Eq. 17): 

 
𝑂𝑈𝑇ௌ =  𝑄1ௌ − 1.5 ∙  𝐼𝑄𝑅ௌ 

Eq. 16 

𝐼𝑄𝑅ௌ =  𝑄3ௌ −  𝑄1ௌ 

Eq. 17 

Where Q1 and Q3 are, the first and third quartile of the frequency distribution 
of the standard deviation of daily power demand respectively and IQR represents 
the interquartile range. All the profiles labelled as 𝑂𝑈𝑇ௌ are the lower outliers of 
the distribution and are removed from the set of data. 

To the second type of abnormal patterns belong the days which electrical 
power demand is significantly different, in terms of magnitude and shape, from 
the other working days. The identification of such profiles is carried out 
separately for each month for each building in the dataset. To this purpose, the k-
Nearest-Neighbours (KNN) algorithm is employed.  

The algorithm computes the distance matrix between all the elements (i.e., 
daily load profiles) in a specific month and identifies for each profile the set of its 
K nearest neighbours. The number of K neighbours and the distance metric are set 
by the analyst.  

 
 
 
In this case study K is assumed equal to 4 and the distance metric adopted is 

the Euclidean distance computed as follow (Eq. 18): 

𝒅 =  ඩ(𝒒𝒊 − 𝒑𝒊)
𝟐

𝒏

𝒊ୀ𝟏

 

                                                                                                                             
Eq. 18 

The algorithm returns for each element the distance values of its 4 nearest 
neighbours. These 4 values are then averaged into one single value and its 
frequency distribution among the months is computed. The outliers of these 
distributions represent the daily load profiles that significantly differ from their 
nearest neighbours and are identified according to the following equations (Eq. 19 
and Eq. 20): 

 
𝑂𝑈𝑇ேே =  𝑄3ேே + 1.5 ∙  𝐼𝑄𝑅ேே  

Eq. 19 

𝐼𝑄𝑅ேே =  𝑄3ேே −  𝑄1ேே 

Eq. 20 
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Where Q1 and Q3 are, the first and third quartile of the frequency distribution 
of the average distance of each profile from its neighbours respectively and IQR 
represents the interquartile range. All the profiles labelled as 𝑂𝑈𝑇ேே are the 
upper outliers of the distribution and are removed from the set of data. 

Once the abnormal load profiles are identified and filtered out, the monthly 
reference load profiles for each building are calculated by averaging the 
remaining working daily load profiles in each month.  

At this stage, in order to facilitate the subsequent grouping of similar profiles, 
also a normalization of data is carried out. The data normalization, especially for 
multidimensional problems, is necessary to compare load profiles of different 
buildings to each other, removing the effect of the amplitude variability of data 
attributes. For energy profiling tasks, amplitude differences related to different 
load conditions can negatively affect the performance of pattern recognition 
algorithms in discovering similar shapes among profiles. To this purpose the 
Normalized Monthly Reference Load Profiles (NMRLPs) in the (0,1) range are 
obtained normalizing each monthly reference load profiles respect to its maximum 
average power according to the following equation (Eq. 21):  

 

𝒙ෝ, =  
𝒙,

max൫𝒙,൯
 

Eq. 21 

Where 𝒙, is the vector representing the monthly reference load profile of 

the i-th customer for the m-th month and max൫𝒙,൯ corresponds to its maximum 

value.  

 Clustering of the Normalized Monthly Reference Load Profiles 
(NMRLPs) 

The second stage of the analysis is aimed at grouping similar NMRLPs in 
clusters which are representative of specific energy consumption patterns. The 
unsupervised segmentation is performed by means of “Follow the Leader” 
clustering algorithm [45,46] using the Euclidian distance as dissimilarity measure. 
Details on the clustering method are provided in section 2.1.3.2.1. 

 Classification of the identified clusters 

The clusters evaluated in the previous stage are analysed and described, and 
the labels of the most representative ones are used as target variables in a 
classification process. More in detail, a proposed model consisting in a globally 
optimal decision tree [110,218] is compared with a baseline model consisting of a 
recursive partitioning classification tree algorithm [204]. The proposed model 
makes use of stochastic optimisation methods (i.e., evolutionary algorithms) that 
can lead to much more accurate classification than locally optimal decision trees 
[218]. Both the classification models (i.e., baseline and proposed) are developed 
using the cluster labels as target variable, and additional building features as input 
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variables.  The classifiers are able to predict, for a new building included in the 
portfolio, the most probable NMRLP on monthly basis only using a-priori 
knowledge (e.g., occupant arrival and exit time) and billing data. As a 
consequence, an energy provider or energy manager may be able to easily 
estimate, for a new building, the monthly average hourly load profile based on the 
membership to a customer class previously identified. Details on the classification 
algorithms are provided in sections 2.1.3.1.1.1 and 2.1.3.1.1.2.   

 Data rescaling of the estimated Normalized Monthly Reference 
Load Profiles (NMRLPs) 

The final stage of the process consists in the rescaling of NMRLPs. In fact, 
after the estimation of the NMRLP for a new building, it becomes essential to 
evaluate the magnitude associated to these normalized profiles. To address this 
task only historical billing data are used as shown in Fig. 52.  

In Italy, from electrical energy bills, it is possible to associate energy 
consumption data to hours with specific Time of Use (ToU) tariffs. The Italian 
ToU tariffs consist of three different daily time slots (Fig. 52): 

 F1 time slot (peak hours): it includes hours between 8 a.m. and 7 p.m. 
during working days; 

 F2 time slot (off-peak hours): during working days this slot includes one 
hour in the morning (7 a.m.) and hours between 7 p.m. and 11 p.m. 
During Saturdays it includes hours between 7 a.m. and 11 p.m.; 

 F3 time slot (off-peak hours) which comprises the remaining hours not 
included in the F1 and F2 time slots (i.e., Sundays, Holidays and night 
hours between 11 p.m. and 7a.m.). 

 

Fig. 52 - Methodological process for the rescaling of the Normalized Monthly Reference Load Profiles 
(NMRLPs) [10] 

For developing the EIS tool only working days were analysed for computing 
NMRLPs for each building. For this reason, in order to rescale these normalized 



122 
 

load profiles, only the energy consumption referred to the F1 slot during the 
billing period was considered, since the other slots are also included in weekends 
and holidays.  

Assuming a monthly billing period, the total energy consumption in the time 
slot F1 for that period (𝑸𝑭𝟏

) is divided for the number of working days to 

calculate the daily average energy consumption 𝑸𝑭𝟏,𝒘𝒅 expressed in kWh. The 

scaling factor K is then calculated as follow (Eq. 22): 
 

𝐾 =
𝑄ிభ,௪ௗ

𝑞
 

Eq. 22 

Where q is the normalized daily average energy consumption of the estimated 
NMRLP during the F1 time slot (i.e., 8 a.m. – 18 p.m.) calculated as follow (Eq. 
23): 

𝑞 =  𝑞 ∗ 𝑇

ଵ଼

ୀ଼

 

Eq. 23 

Where 𝒒𝒊 is the i-th normalized average power of the NMRLP and T is the 
timestep of the load profile expressed in hours. After the evaluation of the scaling 
factor, each 𝒒𝒊 of the NMRLP is multiplied by K. Assuming that K is calculated 
starting from an average energy balance on about the 50% of the hours of a day 
(F1 time slot), it can be considered a reliable and representative scale factor for an 
entire working day. For this reason, the factor K is then used also to rescale 𝒒𝒊 not 
included in the F1 time slot.  

Following this framework, the rescaling process proves to be straightforward 
and robust.  

The entire methodological process, behind the functionalities of the EIS tool, 
is tested using a sampling composed by 13 buildings, for which one-year of 
hourly data are available. The approximation error referred to classification and 
rescaling of NMRLPs is then evaluated in a testing phase.  

3.4.4 Results obtained from typical energy use pattern recognition and 
customer classification analysis 

 Data pre-processing results  

To develop the customer classification EIS tool, raw data are prepared and 
processed. The main objective of pre-processing phase is to evaluate the NMRLPs 
in a robust way. Data pre-processing unfolds over different stages that makes it 
possible to automatically filter out from the dataset weekends, daily load profiles 
with low standard deviation and abnormal daily load profiles. For the year 2016 
the “electrical power dataset” is composed by 41.724 daily load profiles. After 
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data pre-processing the dataset is reduced of about the 42% of the total number of 
daily load profiles (Fig. 53(a)). In particular are filtered out: 

 The 31% of the total amount of load profiles referred to weekends or 
holidays;  

 The 8% of the total amount of load profiles labelled as working days that 
have low standard deviation of power during the day; 

 The 3% of the total amount of load profiles labelled as working days that 
are characterized by abnormal/infrequent patterns.  

The final dataset is then composed by 24.310 daily load profiles. 
 

 

Fig. 53 - Percentage of valid and excluded load profiles after pre-processing analysis (a) valid and excluded 
daily load profiles grouped by month for a randomly selected customer (b) [10] 

Fig. 53(b) shows the impact of data pre-processing for a randomly selected 
building in terms of valid and excluded daily load profiles. It is possible to notice 
that, after the data filtering, the remaining daily load profiles (in orange) exhibit 
high homogeneity in each month. This ensure that averaging those profiles per 
month, leads to a robust evaluation of reference patterns. At the end of the entire 
process the available set of monthly reference load profiles is made up of 1.249 
NMRLPs normalised in the range (0,1). It is important to highlight that, although 
a reference period of 1 year is considered for the analysis, the number of 
NMRLPs per customer may be different from twelve (i.e., one per month) due to 
the presence of missing data or the filtering of entire months during the pre-
processing phase (e.g. August). On average per each customer about 10 NMRLPs 
are available. 

 Clustering Results 

In order to find similar groups of NMRLPs a clustering analysis is performed. 
The “Follow the Leader” algorithm is employed to this purpose as previously 
explained in section 3.4.3. The initialization of the algorithm consists in choosing 
an optimal value of the parameter ρ. To do this a sensitivity analysis is conducted, 
using the Davies Bouldin index (DBI) as reference metric for cluster validation 
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(according to the process described in section 2.1.3.2.1). Considering that monthly 
reference load profiles are normalized, ρ represents an a-dimensional threshold 
distance between load profiles in the range (0,1). The clustering results are 
evaluated for different values of ρ in a range between 0,8 and 2,0 with an 
incremental step of 0,05. For each setting of ρ the corresponding number of 
clusters and DBI is calculated. Fig. 54 shows the results of the sensitivity analysis. 

 

 
Fig. 54 - Identification of optimal value ρ* with the corresponding number of clusters for the initialization of 

“Follow the Leader” algorithm [10] 

The Fig. 54 shows that the optimal value ρ* of the parameter ρ (that minimize 
the DBI) is equal to 1,30 and corresponds to the identification of 17 clusters. It 
means that for ρ = ρ* the resulting clusters exhibit optimal inter cluster separation 
and intra cluster cohesion. The 17 clusters obtained have different cardinalities 
and are shown in Fig. 55 with the evidence of their centroids. 

 

 
Fig. 55 - Clusters of load profiles identified through the “Follow The Leader” algorithm [10] 
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For classification purpose, only the labels of the most representative and 
populated clusters are considered. The selection process unfolds over a descriptive 
analysis of the clusters obtained.  

The Fig. 56 shows the scatter plot of the number of buildings (x-axis) versus 
the number of NMRLPs (y-axis) grouped in each cluster. The horizontal and 
vertical dashed red lines represent the average number of NMRLPs and of 
buildings per cluster respectively. In this way the 17 clusters are segmented 
according to two main plane regions.  

 

 
Fig. 56 - Scatter plot of the number of customers (x-axis) versus the number of NMRLPs (y-axis) grouped in 

each cluster [10] 

The first region includes clusters in the left-bottom corner of the plot. These 
clusters group together few NMRLPs and buildings that are characterized by 
patterns that significantly differ from the rest of the dataset. In particular those 
clusters can be described as follow: 

 Clusters 3, 4, 6 and 14 include one single NMRLP. These profiles 
correspond to specific months during which the energy consumption 
patterns of some buildings are infrequent. Although those profiles are not 
filtered out during the pre-processing phase, the “Follow-the-Leader” 
algorithm is able to isolate them.  

 Clusters 9, 13 and 17 include all the NMRLPs of one single building. 
These buildings show infrequent energy consumption patterns compared 
to rest of the dataset and high intra cluster cohesion.  

 Within Cluster 8 are grouped together buildings with the same end-use 
which is related to milk production activities (i.e., dairy farms).  

 Within clusters 11, 12, 16 are grouped together buildings with end-use 
related to food-service activities (i.e., food industry). These are the only 
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buildings characterised by a power demand during night hours higher 
than in the morning ones. 

 Cluster 5 includes several buildings with different end-uses. However, 
the total number of NMRLPs that are grouped in this cluster corresponds 
to around the 3% of the total. 

The second region includes clusters in the right-top corner of the plot. In these 
clusters is grouped about the 90% of the total number of NMRLPs available in the 
dataset corresponding to 103 out of 114 initial customers. Centroids of clusters 1, 
2, 7, 10 and 15, are then generated from the most typical recognised patterns in 
the dataset. All these patterns are characterized by higher power demand during 
morning and afternoon hours than the night ones. Moreover, a reduction of power 
demand during the middle hours of the day occur due to the effect of a lunch-
break. Although these clusters show similar trends some differences can be 
pointed out (see Fig. 55):  

 Cluster 1 groups profiles for which power demand is high between 
“07:00” and “18:00” (i.e., around the 90% of the maximum power) with 
a strong decrease between “12:00” and “14:00” due to the lunch-break 
(i.e., the power demand is around the 50% of the maximum power); 

 Cluster 2 groups profiles for which the night power demand is higher 
than the profiles included in cluster 1 and the effect of lunch-break is less 
intense. Moreover, the power demand is still high also after “18:00”; 

 Cluster 7 groups profiles similar to cluster 1 but for which the power 
demand peak occurs in the afternoon hours after the lunch-break hours; 

 Cluster 10 groups profiles with the highest power demand during night 
hours (i.e., the power demand is around the 30-40% of the maximum 
power) compared to the other clusters (i.e., cluster 1,2,7,15); 

 Cluster 15 groups profiles for which the power demand is higher in the 
morning hours than in the afternoon hours after the lunch-break. 

In each of these clusters at least the 10% of the buildings are grouped as well 
as about the 10% of the NMRLPs. This ensures the representativeness of such 
groups for customer classification purpose. For this reason, only the labels of 
clusters 1,2,7,10,15 are used in the subsequent phase and encoded as the 
categorical target variables of the decision tree. As demonstrated in other studies 
[45,46], the FTL algorithm is capable to identify the most relevant clusters within 
the given dataset. The algorithm proves to be able to in handle outliers isolating 
anomalous/infrequent patterns in separate clusters that are easily identified and 
filtered out. 

 Classification Results 

In the classification phase of the methodological framework two classification 
models, which are based on different learning process, are compared in terms of 
accuracy for predicting the cluster labels assigned to each group of NMRLPs 
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evaluated in the clustering stage. In detail, a traditional recursive partitioning 
decision tree is selected as baseline, while a globally optimal decision tree is 
proposed as improved alternative.  

Decision trees are robust and highly readable algorithm and at this stage are 
used to predict, for new customers, their monthly average hourly load profiles 
based on the membership to one of the clusters previously identified by means of 
FTL algorithm. It is important to notice that the prediction is monthly-based, and 
then a customer could have NMRLPs belonging to different clusters for each 
month. Therefore, in this case, the decision trees allow to finely characterise also 
customers with multiple typical NMRLPs among the year (e.g., presence of 
seasonal-based patterns).  

To develop the models, the input attributes are selected from the available 
datasets. The variables included in the model can be easily acquired through short 
phone survey and from customer energy bills. In this way the input data collection 
can be considered as a non-intrusive process, since in-field energy monitoring is 
not needed. The input variables considered for both the “baseline” and “proposed” 
classifier are summarised in Table 11. All the input variables are treated as 
numeric or ordinal attributes, while the target variable (i.e., cluster labels) as a 
categorical attribute.  

Table 11 - Input variables for both “baseline” and “proposed” classifiers [10] 

 
Before developing the classification models, from each customer cluster at 

least one customer is sampled (with all its NMRLPs) to be used as testing. The 
testing dataset consists of 13 customers and 142 NMRLPs. Training and testing 
datasets are identified in order to obtain nearly the 85% of the initial population 
size in the training set, avoiding the presence of the NMRLPs of the same 
customer in both of them. Moreover, in order to roughly maintain the same share 
of cluster objects in the two sets, from each cluster a number of customers is 
sampled proportional to the cluster cardinality. 

In order to perform a robust and reliable comparison, for both the “baseline” 
and “proposed” classifier the minimum number of elements in each leaf node 
(minbucket) and the maximum depth reachable by the tree (maxdepth) are set 
equal to 20 and 3, respectively. The minbucket is set equal to two times the 

 Description Unit Name 

Monthly-
scale 

Variables 

Energy Consumption in time slot F1 / Total Energy consumption - F1 

Energy Consumption in time slot F2 / Total Energy consumption - F2 

Energy Consumption in time slot F3 / Total Energy consumption - F3 

Energy Consumption in time slot F1 / Energy Consumption in time slot 
F2 

- F1_2 

Energy Consumption in time slot F1 / Energy Consumption in time slot 
F3 

- F1_3 

Energy Consumption in time slot F2 / Energy Consumption in time slot 
F3 

- F2_3 

Customer
-features 

Working start time [h] opening 

Working end time [h] closing 

Lunch break duration [h] d_lt 
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average number of MRLPs for each customer, ensuring the presence of at least 
two customers classified in each leaf node of the tree. On the other hand, the 
maximum tree depth is set large enough to develop an accurate tree but not too 
much complex for avoiding overfitting issues. Considering that a maxdepth equal 
to 3 levels already limits the complexity of the possible solutions to a maximum 
number of 8 leaf nodes (as a consequence of three levels of binary splits), the 
complexity parameter α was set for both the classifiers equal to 0 in order avoid 
an additive penalty index in the evaluation function of the model.  

Table 12 - Configurations of variation operator probabilities (globally optimal decision tree) [10] 

Setting of the variation 
operators 

Probabilities 

Crossover 
Major 

mutation 
Minor 

mutation 
Split Prune 

c20m40sp40  20 % 20 % 20 % 20 % 20 % 

c10m30sp60  10 % 15 % 15 % 30 % 30 % 

c00m50sp50  - 25 % 25 % 25 % 25 % 

c40m20sp40  40 % 10 % 10 % 20 % 20 % 

c10m10sp80  10 % 5 % 5 % 40 % 40 % 

c50m00sp50  50 % - - 25 % 25 % 

 
For the “proposed” decision tree, based on the evolutionary learning 

algorithm, further hyper parameters need to be set (as explained in section 
2.1.3.1.1.2). The parameters to be tuned are the population size Θ, the maximum 
number of iterations and the variation operator probabilities. Six different 
configurations of variation operator probabilities, three different number of 
maximum iterations and four population sizes are tested. This analysis unfolds 
over two steps, as presented in [218].  

In the first step, the 18 configurations generated by combining six different 
settings of variation operator probabilities (Table 12) and three maximum number 
of iterations (i.e., 500, 1000, 10000) are analysed. Each combination is tested for 
100 different random initialisations of the population Θ, which is fixed at 100 
trees (default value). Each solution is evaluated computing its misclassification 
error. Fig. 57 shows the box plots of the 100 misclassification errors for each of 
the 18 combinations of the trees developed on the entire dataset. 
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Fig. 57 - Misclassification rates for 18 configurations of iteration number and variation operator probabilities 
(globally optimal decision tree) [10] 

From this first step it is possible to infer that the misclassification rate of the 
decision trees decreases with the increasing of the maximum number of iterations 
reaching its best median value for 10000 iterations and variation operator 
probabilities set at c20m40sp40. In the second step of the analysis the impact of 
the population size Θ on the misclassification rate is evaluated considering 100 
different random initialisations of populations with size of 25, 50, 100, 250 and 
500 trees respectively. In this step the number of iterations and variation operator 
probabilities are set at 10000 and c20m40sp40 respectively, that correspond to the 
optimal values previously identified. 

Fig. 58 shows that the cardinality of population size positively affects the 
overall performance of the decision tree, reaching the minimum median value of 
the misclassification rate for a population of 500 trees.  

 

 

Fig. 58 - Misclassification rates for populations with size of 25, 50, 100, 250 and 500 trees respectively 
(globally optimal decision tree) [10] 

According to the performed sensitivity analysis, the globally optimal tree was 
then developed on the training dataset with the following parameter setting: Θ 
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equal to 500, number of iterations set to 10000 and the variation operator 
probabilities set to c20m40sp40.  

Fig. 59 and Fig. 60 show the final decision trees (i.e., “baseline” vs 
“proposed”), developed on the training dataset. The two trees differ in terms of 
number of leaf nodes and input variables used for the split generation. The 
globally optimal decision tree is capable to converge into a more detailed and 
accurate solution following decision rule paths different from the other model.  

 

 

Fig. 59 - Globally optimal decision tree [10] 

 

Fig. 60 - Recursive partitioning decision tree [10] 
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In fact, the locally optimal decision tree at each parent node evaluates the best 
split, maximizing homogeneity in the next step only. On the contrary, the globally 
optimal decision tree is capable to leverage on less accurate internal splits in order 
to reach a higher final performance of the classifier. Table 13 and  

Table 14 report the decision rules extracted from the two classifiers.  

Table 13 - Decision rules extracted from globally optimal classifier [10] 

Cluster Node Decision Rules Profiles Accuracy 

1 
8 IF d_lt < 2 AND F1 ≥ 0.504 AND F1 ≥ 0.701 184 88 % 

12 IF d_lt ≥ 2 AND F2 < 0.208 AND F1_2 ≥ 3.27 159 82.4% 

2 
7 IF d_lt < 2 AND F1 ≥ 0.504 AND F1 < 0.701 230 67.8 % 

11 IF d_lt ≥ 2 AND F2 < 0.208 AND F1_2 < 3.27 42 54.8 % 

7 15 IF d_lt ≥ 2 AND F2 ≥ 0.208 AND opening ≥ 08:30 48 81.7 % 

10 
5 IF d_lt < 2 AND F1 < 0.504 AND opening ≥ 06:00 131 75.6 % 

14 IF d_lt ≥ 2 AND F2 ≥ 0.208 AND opening < 08:30 45 57.8 % 

15 4 IF d_lt < 2 AND F1 < 0.504 AND opening < 06:00 107 82.2 % 

 

Table 14 - Decision rules extracted from recursive partitioning classifier [10] 

Cluster Node Decision Rules Profiles Accuracy 

1 3 IF F1_2 ≥ 3.697 AND d_lt ≥ 0.5 335 86 % 

2 
4 IF F1_2 ≥ 3.697 AND d_lt < 0.5 38 68.4 % 

7 IF F1_2 < 3.697 AND F1 ≥ 0.459 AND d_lt < 2.25 292 55.8 % 

7 8 IF F1_2 < 3.697 AND F1 ≥ 0.459 AND d_lt ≥ 2.25 38 81.6 % 

10 10 IF F1_2 < 3.697 AND F1 < 0.459 AND opening ≥ 05:00 137 67,9 % 

15 11 IF F1_2 < 3.697 AND F1 < 0.459 AND opening < 05:00 106 83 % 

 
Both models suggest that NMRLPs grouped within cluster 1 and cluster 2 are 

characterised by a higher monthly energy consumption during time slot F1 respect 
to other clusters. However, the energy consumption during F2 hours are more 
significant for cluster 2 compared to cluster 1. According to the globally optimal 
decision tree solution, customers whose MRLPs are grouped within cluster 7 are 
characterized by working activities starting later than 08:30 a.m., while such a 
feature is not extractable from baseline solution (recursive partitioning decision 
tree). Within cluster 10 and cluster 15, are grouped MRLPs for which the energy 
consumption during time slot F2 are higher compared to other clusters. The 
difference between the cluster 10 and 15 consists in an earlier starting of working 
activities for customers in cluster 15 than of others in cluster 10. Those cluster 
features are exploited by both models, however, the globally optimal decision tree 
shows a more detailed description by using one more decision rule. The rules are 
furtherly applied on the testing set to evaluate “out-of-sample” performances of 
the two models.  

Table 15 reports the overall misclassification errors of the two models for the 
training and testing datasets. It is possible to see that the proposed globally 
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optimal decision tree performs better than the locally optimal one both in training 
and testing. The accuracy in testing session increases of about 6%. 

Although for the “proposed” model the setting of parameters is not 
straightforward and the computational cost is quite high, the algorithm is capable 
to reach results significantly better than the “baseline” approach in terms of 
generalizability and accuracy of the model.    

Table 15 - Overall misclassification errors of recursive partitioning and globally optimal decision tree for the 
training and testing dataset [10] 

 Misclassification error 

 
Globally optimal decision 

tree 
Recursive partitioning 

decision tree 
training 23.5 % 27.1 % 

testing 24.6 % 30.9 % 

 

 Rescaling results 

The last phase of the methodological process consists in the rescaling of the 
estimated NMRLPs. In fact, after the classification of the 13 customers of the 
testing dataset, their estimated NMRLPs are rescaled in order to obtain a reference 
hourly power demand profile expressed in kW. The NMRLPs are rescaled by 
multiplying their 24 values (one for each hour of the day) by the scaling factor K 
(as explained in section 3) obtained by using the actual monthly energy 
consumption in the F1 time slot. The rescaled NMRLPs are compared to the 
actual ones in order to evaluate the overall performance of the methodological 
framework.  

In particular the Pearson correlation computed between real and rescaled 
profiles is select as validity index. For instance, in the case of a customer with 10 
monthly reference load profiles, the correlation coefficient is calculated among 24 
x 10 data points expressed in kW. On average for the entire testing set, consisting 
in 142 profiles, a strong linear correlation coefficient equal to 0.895 is obtained 
(Fig. 61).  

It means that the EIS tool is capable to return, for an unknown customer, a set 
of estimated monthly reference load profiles that are accurate in terms of both 
magnitude and shape.  
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Fig. 61 - Linear correlations between actual and rescaled estimated energy profiles for each customer of the 
testing set [10] 

 
 

 

Fig. 62 - Actual load profiles of the working days (grey lines), actual average load profiles (red lines) and 
rescaled load profiles (blue lines) of a randomly selected customer from the testing set (a) carpet plot of 

actual load profiles together with the carpet plot reconstructed on monthly basis through the rescaled 
estimated load profiles (b) [10] 
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As a reference, Fig. 62 (a) shows the results of the rescaling process for each 
month of a randomly selected customer from the testing set. For each month, grey 
lines show the actual load profiles of the working days, the red line is the actual 
average profile and blue line is the rescaled NMRLP. In addition, Fig. 62 (b) 
shows the carpet plot of actual load profiles together with carpet plot 
reconstructed on monthly basis through the rescaled estimated load profiles. Both 
figures show how the process performs proving its robustness and effectiveness. 

3.4.5 Discussion  

The developed EIS tool provides a robust solution for the automatic 
identification of typical energy use patterns and classification of energy customers 
in building portfolios.  

To this purpose, supervised and unsupervised data analytics techniques are 
combined in the methodological framework of the analysis. In the pattern 
recognition phase the “follow the leader” method is used for identifying typical 
energy use patterns of the most significant customer groups in a building 
portfolio. At the same time the fine tuning of the pattern recognition process 
allows the EIS tool to isolate infrequent or anomalous patterns in separate groups. 
The algorithm belongs to the family of partitive clustering techniques, but 
differently from K-means it requires a distance threshold instead of the number of 
desired clusters K as input parameter. It brings advantages in terms of algorithm 
flexibility. In fact, the use of a distance threshold makes it possible to better 
manage infrequent/anomalous patterns without performing a preliminary outlier 
detection for preserving clustering performances. The setting of the threshold ρ is 
supervised by using the Davies Bouldin Index as a cluster validity metric allowing 
the optimal value ρ* to be automatically identified. The cluster analysis results in 
the identification of 17 customer groups among the portfolio, that are 
characterized by different cardinality and reference shapes of the load profiles. 
Even if the high diversity of patterns represents an asset in a customer 
classification process, a large customer database is required to adequately 
represent each of them.  

For the case study considered the developed EIS tool considers 5 cluster 
labels in the classification phase given that the remaining 12 groups include few 
customer profiles or discord ones. Excluding Clusters 3, 4, 6 and 14 that group 
one single discord NMRLP, the others are candidates for being considered in the 
classification process when further NMRLPs will be stored in the customer 
database. In that perspective, the EIS tool can be considered open and furtherly 
upgradable considering that more cluster labels could be taken into account in the 
future for developing an extended classification. One of the most recently 
developed algorithms for decision tree based on globally optimal learning process 
is tested and compared with the well-known one-step-forward approach. This 
proposed classification model leads to an improved accuracy of 6% for the testing 
data set in comparison to the baseline classification model. Differently from more 
straightforward decision tree models, the globally optimal algorithm requires a 
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high computational cost and the tuning of model parameters represents a non-
trivial and time-consuming task. For the case study analysed, the higher accuracy 
achieved, and the limited database volume make its implementation reasonable. 
The algorithm is capable to accomplish the classification task by fully exploiting 
few input variables collected through a non-intrusive approach.  

This aspect represents one of the strengths of the methodological process at 
the basis of the EIS tool, given that it allows final users to preliminary 
characterize electric or thermal energy customers in a very detailed way without 
using in-field monitoring data [219]. The opportunity to estimate, for an unknown 
customer, its most probable NMRLPs is highly desirable for several stakeholders 
(e.g., energy suppliers, local and national authority, energy manager of a large 
building portfolio) in the smart city environment. 

As a consequence, the knowledge that can be extracted through this kind of 
EIS tool can enable the definition of both robust energy performance benchmarks 
and effective energy management strategies conceived for specific customer 
groups. As a reference, on the basis of their representative load profiles, specific 
groups of customers can be involved in targeted financial demand response 
programs (e.g., Time Of Use tariff, Critical Peak Pricing, Real-Time Pricing). 

These programmes are getting more and more attention as retailers keep 
looking for a better way to balance loads and at the same time increase their 
profitability. On the other hand, such programs are designed to be attractive also 
for the consumers (building portfolio managers) as they can exploit a deeper 
knowledge of their energy patterns to reduce the total energy bill cost of their 
building portfolios. In this context the modification of a load profile plays a 
critical role not only from an economical point of view but also in terms of grid 
stability.  

The developed EIS tools can also be employed for tracking the changes of 
power consumption patterns over time. By benchmarking customer flexibility (in 
terms of demand modification) it is possible to assess which could be the 
influence and the impact of specific Demand Side Management (DSM) and 
Demand Response (DR) initiatives for a group of customers or even at larger 
scale (e.g. district). Furthermore, the rescaling process, adopted in the 
methodological framework of analysis, makes it possible to associate a magnitude 
to the normalised load profiles once they are classified. The results prove that 
introduced the methodological process allows to robustly estimate for an unknown 
customer, a set of monthly reference load profiles that are accurate in terms of 
both magnitude and shape.  

An EIS tool capable to estimate the shape of a load profile together with its 
magnitude enables the fully characterization of building energy use patterns from 
the very early customer engagement stage.  
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4 DSS application at system-level: 
development of a fault detection 
and diagnostic (FDD) tool 

This chapter discusses in detail the development of a data analytics-based 
methodology that can be integrated in a DSS. The focus is on system-level 
analysis, performed by means of Fault Detection and Diagnostic (FDD) tool. The 
developed tool is conceived for conducting automated FDD analysis on HVAC 
system data that are specifically referred to the operation of Air Handling Unit 
(AHU) components. 

This content is developed as a publication submitted to the Elsevier journal  
“Energy and Buildings”: 

 Piscitelli M.S., Mazzarelli D.M., Capozzoli A. Submitted for 
publication. Enhancing operational performance of AHUs through an 
advanced fault detection and diagnosis process based on temporal 
association and decision rules. Energy and Buildings. [22] 
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4.1 Development of FDD tool for the detection and 
diagnosis of faults at system level 

FDD tools belong to the family of software solutions that automate the 
process of detecting faults and improper operation of building systems and help 
user to promptly diagnose their potential causes [126]. FDD tools represent an 
essential part of DSS that is focused on system-level applications often exploiting 
data collected through Building Automation Systems (BAS). Such tools are 
typically integrated to BAS as separate software and are able to provide detailed 
information about the duration and frequency of faults, with reference of their 
relative cost, energy impact and priority level [12,130]. 

The literature review reported in sections 2.2.3 and 2.2.3 demonstrated how 
much active the scientific research is in the field of data analytics application for 
FDD in HVAC systems with a specific reference to AHUs. The opportunity to 
approach the well-known task of FDD from this innovative point of view is 
mainly due to the growing availability of experimental data related to both normal 
and faulty operation of systems. In this context some projects, supported by the 
American Society of Heating, Refrigerating and Air Conditioning Engineers 
(ASHRAE) made very comprehensive field surveys, laboratory tests and 
performance evaluations about the performance of HVAC systems also in faulty 
conditions. The outcomes of such projects (e.g., ASHRAE Project 1312-RP and 
1043-RP) enabled a great spread of FDD methodologies exploiting experimental 
measured data. Among the papers reviewed in section 2.2.3, several published 
studies focused on the ASHRAE RP-1312 data set for developing and testing 
FDD methodologies for AHUs [55,138,220–225].  

Despite those papers discuss the results of FDD methodologies on the same 
data set, not always the assumptions behind the analysis are the same. The main 
differences are related to the operation mode considered (cooling, heating, 
spring), the number and the type of faults analysed, the regime of operation 
considered (transient, non-transient). However, from the analysis of these works, 
some general considerations can be made:  

 In most of the cases the analysis is performed for the summer period 
achieving high values of accuracy in diagnosing faults (over 90% of 
accuracy), 

 The analysis is performed for data collected with sampling frequency of 1-
min (original granularity of the dataset), 

 Data-driven models used for characterizing the normal behaviour of the 
AHU lack of interpretability (SVM, ANN) 

 In most of the cases, the fault diagnosis is performed through interpretable 
classifiers (decision trees, Bayesian networks). 

The present chapter presents and discussed the development of an FDD tools 
starting from the ASHRAE RP-1312 data set. The main objective is to introduce 
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an FDD methodology for AHU systems that is based on data analytics techniques, 
fully interpretable and rule-based. Indeed, the rule-based approach can satisfy the 
user need of simplicity and interpretability while the data-driven nature of the tool 
can enable the learning of system operational patterns automatically [13]. Another 
objective is also to reduce the granularity of the dataset while maintaining good 
performance in fault diagnosis. In fact, analyse data with a high sampling 
frequency could expose the FDD tool to instabilities when deployed for operating 
in real time (presence of punctual anomalies, missing values, sensor network 
latency).  

In the proposed methodological framework of analysis, at the basis of the 
developed tool, two rule extraction methods (association rule mining, decision 
tree) are employed for conducting FDD analysis in AHU system by exploiting the 
reduction and transformation of multiple time series related to the operation 
variables of the system. 

The next section presents the main motivations and research challenges 
related to the automatic extraction of interpretable rules in multivariate FDD 
problems and introduces the motivations and novelty of the proposed approach. 

4.1.1 Motivations and novelty of the proposed approach 

The complexity of an AHU system with multiple operational parameters and 
temporal interactions among them makes challenging the effective 
characterisation of its behaviour.  

The operation of an AHU system is characterized by two major time-regimes, 
transient and non-transient respectively. The transient operation typically occurs 
when the AHU is started-up and is approaching the steady state conditions, or 
when it is shutdown or disturbed from its non-transient regime. These 
disturbances could be caused by either variation of thermal loads or by feedback 
controls and during transient periods some variables can exhibit strong variation 
in short time and a significant temporally lagged response respect to the control 
signals. In addition, the behaviour of an AHU system varies as its mode of 
operation changes during the day and the year i.e., off mode, heating mode, free 
cooling mode, and cooling mode. As a consequence, a robust data analytics-based 
FDD tool should be able to automatically determine the mode of operation of the 
system to prevent false alarms from being generated. For example, normal 
behaviour during summer season may be faulty if the system is operating in 
heating mode (winter season).  In order to avoid this condition, FDD tools in 
AHU systems are characterized by a hierarchical architecture that makes it 
possible to exploit only the portion of knowledge that is consistent with the 
specific operation mode considered. In this perspective, when using data 
analytics-based FDD tools it is necessary for the training data to be exhaustive as 
possible for each operation mode.  

However, given their complexity data analytics-based FDD tools often lack in 
interpretability. In this context, the use of rule-based methods for FDD can satisfy 
the user need of simplicity in terms of understanding the FDD tool, using it, 
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commissioning it, integrating it with existing BAS and updating it. For this 
reason, great attention is paid on the application of advanced supervised and 
unsupervised rule extraction methods (i.e., decision trees, association rule mining) 
with reference to multivariate problems. 

The operation of an AHU is a perfect case that can be effectively described 
through the analysis of multiple time series (defined as series data points indexed 
in time order) associated to each operational variable of the system. Considering 
that the majority of AHU operational data are gathered from continuous-time 
continuous-variable signals by high frequency sampling a suitable data reduction 
(aggregation in the time domain) and discretization (quantization of the signal 
value) become often necessary for knowledge extraction applications.  

This is a challenging task considering that each variable has its own behaviour 
and distribution and, as a consequence, the optimal time aggregation and value 
discretization of the signal need to be identified with the aim of minimizing the 
information loss and of maximizing the mining performance. Such preparation of 
time series is an essential step in FDD methodologies based on rule extraction 
techniques (e.g., based on association rule mining algorithms or decision trees) 
that, in the literature, have been used for effectively mining co-occurrences or 
implications between discrete values and events in the time domain during HVAC 
operation [30,140,142,226]. 

 

 

Fig. 63 - Graphical representation of co-occurrence and implication between discrete values and events 
among multiple time series 

Fig. 63 depicts in graphical form the concepts, previously introduced, of 
discrete value, event (change of discrete value between two contiguous 
aggregation intervals), co-occurrence and implication of discrete values and 
events with reference to two time series encoded in symbols. 

When multiple time series are considered, rule extraction techniques can be 
categorized in intra-transactional and inter-transactional respectively. The first 
type of extraction is aimed at discovering co-occurrences between discrete values 
and events that frequently happen at the same time among different time series 
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(Fig. 63). The second type of rule extraction is more complex, considering that in 
this case the occurrences of discrete values and events among different time 
series, are searched taking into account the existence of a time lag (Fig. 63). 
During transient period of AHU operation, the latter approach is particularly 
favourable in describing phenomena that are characterized by temporal 
dependences between discrete values and events representative of the system 
operation (e.g., change of status in fan speed and the corresponding effect on 
supply air temperature). 

In order to develop an FDD tool capable to be flexible in relation to different 
conditions of operation in AHUs, two rule extraction methodologies tailored for 
both transient and non-transient periods are introduced. The developed framework 
is aimed at preventing anomalous running modes in AHUs which can lead to 
significant energy waste over time and/or discomfort conditions in the built 
environment. 

The analysis relies on temporal abstraction as a pre-processing stage. 
Temporal abstraction is aimed at reducing and transforming time series in 
discrete-time and discrete-value signals through aggregation on the time axis and 
discretization of the value in order to perform the extraction of interesting co-
occurrences and implications. To this purpose the adaptive Symbolic Aggregate 
approximation (described in section 2.1.1.2) algorithm is used. 

Furthermore, by means of temporal association rules (described in section 
2.1.3.2.2.1) in form of IF-THEN implications strong relations between events 
(i.e., change of discrete value between contiguous aggregation intervals) are 
automatically mined in the transient period of AHU operation (i.e., start-up phase) 
considering an intra-transactional approach for characterizing the fault-free 
behaviour of the system. Similarly, during the non-transient period of operation a 
set of classification trees (described in section 2.1.3.1.1.1) are developed for 
extracting reference patterns in form of decision rules. Potential faulty conditions 
are then detected when the discovered association and decision rules are violated 
over time. Successively, the identified anomalous patterns (during the non-
transient period) are exploited for performing a diagnosis of the most probable 
faults associated to a specific kind of rule violation by means of a classification 
algorithm (described in section 2.1.3.1.1.1). In particular the developed FDD tool 
is capable of detecting up to 11 typical faults (of valves, fans and dampers) in 
AHUs with an overall accuracy of 90% leveraging on a set of intuitive and 
interpretable decision rules. 

By combining and integrating data analytics techniques, the conceived FDD 
methodology introduces the following innovative aspects: 

 An adaptive process of data reduction and transformation is employed to 
enhance the knowledge extraction from multiple time series. In complex 
systems as AHUs, the number of monitored variables and their sampling 
frequencies could be very high. Extracting only key information from large 
data set is essential for reducing redundancy, complexity and computational 
cost. The developed methodology makes it possible to achieve good 
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performance in FDD (comparable to other studies focused on the same 
dataset [55,138,220–225]) leveraging only on the analysis of significant 
discrete intervals of the operational variables over time. 

 The start-up period of AHU operation is isolated and treated separately by 
developing a tailored analytics module (instead of being filtered out as 
happened in other studies focused on the same dataset [55,138,220–225]). 
During transient period of operation time lags occur for example between a 
change of status in fan speed and the corresponding effect on supply air 
temperature. Such a condition could compromise the assumption of discrete 
value and event co-occurrence when the reference behaviour of the system is 
characterised. For this reason, temporal association rules are extracted, 
following an intra-transactional approach, for discovering associations 
between events during transient periods, across multiple time series, that 
frequently happens within a time lag.  

 The characterization of normal behaviour during the non-transient period is 
completely automated and performed by using a set of estimation models 
based on decision trees. In comparison to other studies focused on the same 
dataset [55,138,220–225], the reference behaviour of the AHU is evaluated 
estimating the most probable discrete value of each influencing operational 
variable in relation with all the other ones monitored. In that way, all the 
existing relations between variables are exploited through several estimation 
models for detecting potential faulty conditions. Such approach introduces 
high flexibility and generalizability in the formulation of the FDD problem.  

 A fault diagnosis during non-transient period of AHU operation is performed 
by employing a decision tree capable to extract rules for the classification of 
typical faults. The diagnosis process exploits the residuals evaluated by 
means of a set of estimation models (i.e., difference between real and 
expected discrete value of influencing variables) as input attributes for the 
classification of the most probable faults.  

As previously stated, several studies considered the RP-1312 data set in the 
analysis, achieving an accuracy in fault diagnosing over 90%. As a consequence, 
the main objective of this analysis is not to improve the (already high) FDD 
performance achieved on the RP-1312 dataset, but rather to demonstrate the 
opportunity to achieve high performance as well through a fully interpretable and 
simplified data-driven approach, based on rule extraction techniques.  

The remining sections of chapter 4 are organised as follow. Section 4.1.2 
presents the case study analysed for developing the FDD tool; then section 4.1.3 
provides a description of the proposed methodology. Successively, section 4.1.4 
presents the results obtained from the application of the methodology. Eventually, 
Section 4.1.5 discusses the results and contains the concluding remarks related to 
this specific DSS application. 
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4.1.2 Case study used for developing the FDD tool at system level  

In order to test the validity and the effectiveness of the developed FDD tool, 
operational data related to two AHUs collected in the framework of the Research 
Project ASHRAE RP-1312 [136] are analysed. The system investigated is a 
Variable Air Volume (VAV) AHU. A VAV system is able to modulate the air 
flow rate according to the variation of the building load and it is typically made up 
of 4 subsystem controllers acting on supply air temperature, dampers and valves, 
supply air static pressure and return air flow rate. Specifically, the control logic 
maintains the supply air temperature set-point acting on damper and valve 
positions, according to the mode of operation (i.e. heating, cooling with partial 
mixing of outdoor air, cooling with 100% of outdoor air, cooling with minimum 
outdoor air). 

Furthermore, even the static pressure of the supplied air and the difference 
between the supply and return air flow rate is controlled. The return air flow rate 
is modulated acting on the mixing dampers and the return fan speed, while the 
system maintains the supply air static pressure set point. As a result, the difference 
between the supply and return air flow rate is kept constant [227]. 

The analysed dataset is particularly interesting and includes several running 
conditions for two AHUs in faulty and fault-free operation. The faulty operation is 
obtained by artificially implementing a number of different faults.  The site, where 
monitoring data were collected, is a test facility simulating a typical commercial 
building occupancy schedule. 

The monitoring data were gathered from two AHUs of the facility (AHU-A 
and B), which are perfectly identical form technical and operational points of 
view and serve specular zones. The zones served by AHU-A and B face east and 
west orientation respectively in order to be comparable also under thermal load 
aspects. The AHUs are characterised by a mixing chamber to mix return air with 
outdoor air by means of dampers. Each AHU is equipped with heating and 
cooling coils and VAV devices to locally adjust the supply air temperature. 
However, the control volume considered excludes the local VAV devices. 

Fig. 64 shows a schematic configuration of the system with the indication of  
monitored variables (description is provided in Table 17).  
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Fig. 64 - Scheme of the AHU analysed (refer to Table 17 for variable encoding) 

In the context of the ASHARE project different faults were implemented one 
per time, each for a whole day, only in the AHU-A, in order to analyse the effects 
of each fault independently. The AHU-B was always run in fault-free conditions 
to have a reference of the normal operation. The data collection was conducted 
over three seasons and only the monitoring data of the summer season are in the 
following considered.  

The dataset consists of multiple time series (one for each variable monitored) 
with a length of 33 days and a sampling time of 1 minute. In particular, 22 out of 
33 days are tagged as fault-free days while the remaining 11 days correspond to 
different faulty conditions. Table 16 reports the number of fault-free and faulty 
days, the description of each fault and the tags used for labelling each day 
included in the monitoring campaign. 

Table 16 - Tags and descriptions of faults 

Fault Tag Description Number of days 

CCVS15 Cooling coil valve stuck at 15% 1 

CCVS65 Cooling coil valve stuck at 65% 1 

CCVSFC Cooling coil valve stuck fully closed 1 

CCVSFO Cooling coil valve stuck open 1 

EASFC Exhaust air damper stuck fully closed 1 

EASFO Exhaust air damper stuck fully open 1 

Normal Normal operation 22 

OAS45 Outdoor air damper stuck 45 1 

OAS55 Outdoor air damper stuck 55 1 

OASFC Outdoor air damper stuck fully closed 1 

RFCF Return fan complete failure 1 

RFF30 Return fan at fixed speed (30%) 1 

 
A feature selection is preliminarily performed on the basis of expert system 

considerations to focus the analysis only on relevant variables. 
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As a result, the variables considered for the implementation of the FDD tool 
are: electrical load, pressure drop and speed of fans, flow rate and temperature of 
the air measured in different parts of the system, damper position, valve position, 
water flow rate and energy exchanged in the cooling coil.  

Table 17 reports the list of the 23 variables considered for the analysis with 
the specification of variable labels, descriptions, ID n° and unit of measure.  

Table 17 - List of variables considered in the analysis 

Variable Description ID n° Unit 

SF_WAT Supply fan power 1 W 

RF_WAT Return fan power 2 W 

SA_CFM Supply air flow rate 3 m3/h 

RA_CFM Return air flow rate 4 m3/h 

OA_CFM Outdoor air flow rate 5 m3/h 

SA_TEMP Supply air temperature 6 °C 

MA_TEMP Mixed air temperature 7 °C 

RA_TEMP Return air temperature 8 °C 

HWC_DAT Heating coil air temperature 9 °C 

CHWC_DAT Cooling coil air temperature 10 °C 

SF_DP Supply fan pressure drop 11 Pa 

RF_DP Return fan pressure drop 12 Pa 

SF_SPD Supply fan speed 13 % 

RF_SPD Return fan speed 14 % 

OA_TEMP Outdoor air temperature 15 °C 

CHWC_EWT Cooling coil input water temperature 16 °C 

CHWC_LWT Cooling coil output water temperature 17 °C 

CHWC_GPM Cooling coil water flow rate 18 m3/h 

E_ccoil Cooling coil power 19 kW 

CHWC_VLV Cooling coil valve position 20 % 

EA_DMPR Exhaust air damper position 21 % 

OA_DMPR Outdoor air damper position 22 % 

RF_SST Return fan start/stop signal 23 - 

 
For the application of the proposed FDD methodology, the available data 

sample is split into two datasets. The first one is used for the characterization of 
the normal operative condition of the system, while the latter is used for the fault 
detection and diagnosis.  The first dataset is composed of 20 days tagged as 
“Normal” (training dataset), while the second by the rest of the days including 2 
“Normal” days and 11 “Faulty” days (testing dataset). 
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4.1.3 Implemented methodology for the detection and diagnosis of 
faults in AHU 

The methodology relies on the application of both supervised and 
unsupervised algorithms, to perform robust fault detection and diagnosis in 
AHUs. 

The framework unfolds over different stages as shown in Fig. 65.  Two 
different analytics modules are proposed for developing an FDD tool tailored for 
both transient and non-transient conditions of the AHU operation. For that 
purpose, in the methodological framework, a data segmentation phase is 
preliminarily carried out in order to split the data according to the regime of 
operation they belong to (i.e. transient or non-transient). In the following sections 
are then described the pre-processing analysis applied to the entire dataset and the 
two analytics modules tailored for transient and non-transient periods. 

 

 

Fig. 65 - General framework of the analysis  

 Data pre-processing stage 

The pre-processing stage consists of three main tasks i.e., cleaning, reduction, 
and transformation, typically accomplished for preparing the data sets. In detail, 
outlier detection and replacement are firstly performed (for each time series) by 
using the Hampel filter method [228].  For each data point in the time series, the 
algorithm computes the median of a window that includes the considered data 
point and its k surrounding samples. If a data point differs from the median by 
more than a standard deviation, it is tagged as a statistical outlier and replaced 
with the median. 
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The monitoring data are available in time-series with a sampling time of 1-
minute, which would make the analysis onerous to be performed. For this reason, 
in a successive step a data reduction and transformation process are performed by 
means of the adaptive Symbolic Aggregate Approximation (aSAX) method [229] 
(described in section 2.1.1.2). This algorithm is employed for reducing the time 
series through a piecewise technique aggregating data with a fixed length window 
from 1 minute to 15 minutes and then for transforming it into a symbolic string. 
The objective is to maximise data compression and minimise the complexity of 
the time series while preserving important information.  

Fig. 66 reports an example of data reduction and transformation through 
aSAX algorithm for a portion of the time series related to the variable encoded 
with the ID n° 16 according to Table 17 (i.e., cooling coil input water 
temperature). The figure shows the time series after the application of the Hampel 
filter (green curve) and the time series in form of constant approximated 
piecewise (black lines). Furthermore, Fig. 66 also shows the result of the aSAX 
transformation of the time series into a symbolic string. The variable can assume 
three discrete values encoded with the symbols 16.A, 16.B or 16.C according to 
the region the piecewise segments of 15-min fall in.  

 

 

Fig. 66 - Example of aSAX transformation for a numerical variable 

The obtained symbol sequence is 16.C-16.C-16.B-16.B-16.B-16.B-16.A-16.B 
from which it is possible to infer that the original time series is characterized by 
changes in the pattern at times 14:30, 15:30, 15:45 that in the present 
methodology are intended as events. 

 As a result, time series are transformed in discrete-time discrete-value 
sequences of equidistant symbols making it possible to extract events from them. 

 Regime identification  

At this stage, a regime identification is performed, at daily scale, to detect 
when transient and non-transient conditions typically occur during the AHU 
operation.  
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To this purpose an automatic regime detector is used to identify the transient 
period and separate it from the non-transient one. The details of the detector used 
are the same as that reported in [138,230]. The transient identification is 
performed on data with sampling time of 1 minute, specifically analysing the 
cooling coil valve position, the supply air temperature, supply fan speed and the 
supply air static pressure. Then the frequency of transient data points during the 
day is evaluated for each 15-min aggregation interval derived from the data 
reduction phase (Fig. 67).   

 
Fig. 67 - Identification of the transient period 

Thanks to this analysis it is possible to establish during which aggregation 
interval of 15-min (of the reduced daily time series) a transient condition has the 
highest frequency of occurrence.  

Starting from such aggregation interval of 15 min, the transient period is 
evaluated considering a time window of two hours (i.e., blue area of the plot) that 
includes one hour before and one hour later the aggregation interval considered 
(Fig. 67).  

As can be noticed from Fig. 67, transients occur at the start-up and the shut-
down. Among the two transient periods, only the start-up transient is investigated 
because during this period the system dynamics affects the successive operation, 
while in the other case the system is thereafter turned off. 

As a result, the non-transient period is supposed to start at the end of the start-
up time interval and ends when the system is turned off. 

Therefore, excluding the night hours, during which the AHU is certainly not 
operated, the dataset is segmented as follows: 

 From 05:00 to 07:00: transient period labelled as “system start-up”; 

 From 07:00 to 18:00: non-transient period. 
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 Implemented FDD methodology for the transient period 

As explained in section 4.1.3.2 the segmentation phase makes it possible to 
distinguish transient from non-transient periods during the day.  

The main flow of FDD research has been carried out in a steady-state 
approach [55,136,140,231,232], because operating characteristics in a steady state 
is relatively more credible and reproducible than in a transient state [231]. 
Transient data are characterised by great variation in the time domain and require 
specific machine learning and data mining algorithms to be employed for properly 
reflect the system dynamics. The herein proposed FDD tool provides a tailored 
methodology for such condition of operation. 

An overall procedure is developed to obtain temporal association rules that 
are representative of frequent relationships between events in multiple time series, 
using a time window and a time lag. 

Temporal association rules are an interesting extension of association rules 
that include a temporal constraint, which leads to different forms of IF-THEN 
implication over time. When an event leads to the occurrence of another event, 
there may be causal relationship or certain correlation between them. The 
corresponding mining purpose is to find out the reference fault-free association 
rules between events and time in a temporal transaction dataset, whose violation 
can suggest the presence of faulty conditions during the start-up period of the 
AHU system. The extraction makes it possible to find those sequences of events 
that appear many times among monitored fault-free days and have a high rate of 
occurrence (i.e., reference rules). 

The reference association rules are searched in the 20 days tagged as fault-
free (training dataset) while the remaining 2 fault-free days and 11 faulty days 
(testing dataset) are used in the successive fault detection phase. 

 

 

Fig. 68 - Procedure for the construction of the database of transactions 

Before extracting reference temporal association rules from data, it is 
necessary to create the database of transactions T following the framework 
reported in Fig. 68.   
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The first step consists of putting together all the transitions that occur in each 
time series into a unique multivariate time series of transitions.  

In particular, according to the symbolic transformation performed during the 
pre-processing stage a transition in a time series is a kind of event that 
corresponds to the change of symbol (i.e., encoded discrete values of the variable) 
in a specific timestep across two consecutive aggregation intervals.  

As an example, Fig. 68 (a) shows six timesteps of four time series (i.e., 
cooling coil input water temperature, return fan speed, supply air temperature, 
supply fan power). The time series “supply fan power” corresponds to the 
operation variable of the AHU encoded with the ID n° 1 and assumes only two 
discrete values (encoded with the symbols 1A and 1B) along the six timesteps 
considered. In the same way the time series “return fan speed” that corresponds to 
the operation variable of the AHU encoded with the ID n ° 14, assumes three 
discrete values (encoded with the symbols 14A, 14B and 14C) among the six 
timesteps. If two consecutives aggregation intervals are encoded with the same 
symbol no transition (i.e., event) is detected. Otherwise, during a specific 
timestep, a transition (i.e., event) is encoded reporting the ID n° of the variable 
and the two symbols included in the change of discrete value. For example, 
according to Fig. 68 (a), at the first timestep T_1 for any time series, a transition 
does not occur and then 0 is stored in the time series of transitions (Fig. 68 (b)). 
On the contrary, at the fourth timestep T_4, a transition occurs for the time series 
1, 14 and 16. In particular, for time series 1 and 14, occurs a change from symbol 
“A” to symbol “B” (events encoded as “1A1B” and “14A14B” respectively) 
while for time series 16 the variable changes symbol from “C” to “A” (event 
encoded as “16C16A”). Once the encoded events are stored in the multivariate 
time series of transitions (Fig. 68 (b)), the database of transactions is constructed 
by chunking this time series considering a fixed-length sliding time window (Fig. 
68 (c)). Fig. 68 (d) shows how the encoded transitions for each timestep are stored 
in the database of transactions. For example, assuming a sliding window that 
includes four timesteps, the database T can be represented by a 4 𝑥 𝑛  transition 
matrix where n corresponds to the maximum number of sliding windows which 
can be contained in the time series of transitions.  

Considering that the time windows are sliding a timestep by time, two 
consecutive rows in the database T (Fig. 68 (d)) differ only for a single item. As a 
reference considering a time series of transitions with 6 timesteps and a sliding 
window that includes 4 timesteps, the database of transactions is a 4 𝑥 3 transition 
matrix given that the maximum number of complete time windows is equal to 3 
(Fig. 68 (d)). After the construction of the database T, the temporal association 
rules are searched among transactions. 

The cSpade algorithm [49] is selected for the extraction of the rules from the 
inter-transactional database setting in advance three fundamental parameters: 
minimum confidence, minimum support, and maximum time lag between 
antecedent and consequent item sets (equal to the sliding window length). 

According to the proposed methodology, the first two parameters (i.e., 
confidence and support) should be as high as possible, to ensure that the extracted 
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rules are much frequent as possible and then representative of the normal 
behaviour of the system.  

Once the reference rule set is identified, it is used for detecting the presence of 
potential faults in a testing dataset.  

In particular, a temporal association rule is expressed as a logical IF-THEN 
implication where the presence of an event (i.e., antecedent) implies the 
occurrence of another event (i.e., consequent) within a certain time lag. According 
to this formulation, three potential violations can occur when such rules are 
applied on a testing set of data:  

i) absence of the antecedent itemset,  
ii) absence of consequent itemset,  
iii) absence of antecedent and consequent item sets.  

In that perspective, the violation analysis helps physical interpretation of rules 
making it possible to assess their sensitivity to the presence of specific faults or 
group of them. 

 Implemented FDD methodology for the non-transient period 

The methodology employed for performing an FDD analysis during non-
transient period relies on three fundamental phases that can be generalized as 
follows: 

 Development of reference models through classification trees, 
representative of the normal behaviour (fault-free condition) of the system 
under analysis; 

 Comparison between the estimated behaviour of the system and the actual 
one (i.e., evaluation of model residuals) for detecting potential faulty 
conditions; 

 Analysis of the model residuals for diagnosing the most probable cause 
associated to a specific fault (fault diagnosis). 

The first step of the process consists of a robust characterization of the fault-
free operation of the AHU during the non-transient period (i.e., from 07:00 to 
18:00). To this purpose, several estimation models (i.e., classification trees) are 
developed on a portion of the available non-transient dataset. In detail 20 days 
tagged as fault-free are considered at this stage (training dataset) while the 
remaining 2 fault-free days and 11 faulty days (testing dataset) are used in the 
successive diagnostic phase. 

 For the development of the estimation models (i.e., classification trees), all 
the variables concerning the operation of the AHU (e.g., supply fan power, return 
fan power, supply air flow rate) are selected once at a time as target attribute 
while the remaining ones are used as input attributes. However, features related to 
external forcing variables to the AHU system (i.e., cooling coil input water 
temperature, outdoor air temperature) are used only as input attributes. 
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 In that way, 21 classification trees are developed for providing a robust 
benchmark of the fault-free operation. To that purpose, a classification tree based 
on recursive partitioning algorithm (described in section 2.1.3.1.1.1) is employed 
as a supervised classifier. The developed classification trees estimate for each 
target variable and for each 15-min aggregation interval included in the non-
transient period, the most probable discrete value (encoded as symbol) according 
to the relationship that exists between all the input variables and the dependent 
attribute. Successively all the classification trees developed are put together in the 
same estimation layer as shown in Fig. 69.  

 

 

Fig. 69 - Analytics module for the non-transient period 

At this stage, the estimation process can be summarized as follow: 

 At each aggregation interval (i.e., 15 min.) the monitored variables are 
encoded into symbols through the aSAX method (i.e., pre-processing 
stage); 

 The set of encoded variables goes through the estimation layer (that 
consists of 21 classification trees) providing an estimation of each target 
variable for the considered aggregation interval; 

 The actual symbols are compared with the estimated ones. 

The latter step consists in the evaluation of the model residuals (i.e., the 
difference between actual and predicted values).  

In particular, the difference between two equal symbols is assumed to be zero, 
while the residual differs from zero if the symbols are at least one alphabet apart. 
For example, if the estimated and actual symbol for a variable is equal to “A” and 
“B” respectively, the residual between those symbolic discrete-values is equal to 1 
(Fig. 69).    
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Considering that the estimation models are trained on fault-free data, at the 
end of the estimation process it is possible to assess how much the input data 
differ from the reference fault-free behaviour of the AHU through the analysis of 
residuals. Understanding which variables are out of range and assessing the 
severity of those deviations enables the detection of possible faulty conditions. In 
order to test the developed FDD tool, all the days excluded from the training set of 
the reference models (i.e., 2 fault-free days and 11 faulty days) are considered. In 
particular, each day included in the testing dataset is labelled as “Normal” or with 
the tag of one of the faults reported in Table 16.   

The time series of the 13 days are pre-processed (aggregated in intervals of 
15-min and encoded in symbols) and put through the estimation layer (i.e., 21 
classification trees) generating a dataset of residuals as shown in Fig. 70.  

 

 

Fig. 70 - Structure of the database used for developing the classification tree of fault diagnosis 

At this stage, a further classification tree is developed to predict the label of 
each faulty or Normal condition (Fig. 70) for performing the fault diagnosis. This 
classification tree estimates the most probable label (e.g., CCVSFC, EASFC, 
RFCF or Normal) according to the residuals evaluated for each variable as an 
outcome of the estimation layer.  

In the dataset reported in Fig. 70 the target variable is the fault tag, and the 
same tag is assigned to all of the 44 aggregation intervals of 15-min that belong to 
the same day (included in the 11 hours of “non transient” operation of the AHU 
from 7:00 to 18:00), generating a total amount of 572 instances on which develop 
the classifier.  

The developed FDD tool is then trained and tested on real data of an AHU 
operated in cooling mode for 33 non consecutive days during the summer season 
(22 “normal” days and 11 “faulty” days). Therefore, the decision and association 
rules extracted through the proposed methodology can be considered valid only 
for the operation mode under consideration. In this perspective, rule-based tools 
can be easily integrated in FDD systems with hierarchical architecture capable to 
exploit only the useful knowledge during specific conditions. For instance, the use 
of automatic detector makes it possible to call specific sets of rules depending on 
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the operating mode of the AHU: off mode, heating mode, free cooling mode, and 
mechanical cooling mode [233].  

4.1.4 Results obtained from fault detection and diagnosis analysis 

 Data pre-processing results 

According to the methodological framework introduced in Section 4.1.3, a 
data pre-processing stage is preliminarily implemented. Firstly, outliers are 
filtered out by implementing the Hampel filter on the 1-minute time series. For 
each sample of the time series, the filter computes the standard deviation and the 

median of a window composed of the current sample and 
ିଵ

ଶ
 adjacent samples 

on each side of the current sample. Len is the window length and is set equal to 31 
minutes.  

After data cleaning a data reduction is performed by means of a piecewise 
aggregate approximation (PAA) process with the aim of approximating the time 
series of each considered variable to the mean value calculated in non-overlapped 
time intervals with a fixed length of 15 min. Successively, the trasformation of the 
reduced variables in symbols is carried out by implementing the aSAX algorithm 
[229].  

The algorithm is initialised for each variable by identifying the number of 
symbols (i.e., discretization intervals) and the initial positions of the breakpoints 
(i.e., borders of the discretization intervals) with a hierarchical cluster analysis 
using the Ward linkage method [48] (described in section 2.1.3.2.1). Through the 
clustering algorithm, it is possible to obtain the optimal number of discretization 
intervals (i.e., number of symbols) by computing several cluster validation 
metrics. This process is completely automated and performed through Nbclust 
package [234] available in the statistical software R. The number of discretization 
intervals is constrained from 2 to 4 considering only data referred to the period of 
operation of the system (i.e., ON-hours of the system).  

 When the optimal positions of the adaptive breakpoints are found and each 
variable is encoded in symbols, the operation conditions of the AHU are 
considered fully characterised. Successively, data related to OFF-hours of the 
system operation are analysed to find possible additional intervals. In particular, if 
during OFF-hours a variable typically assumes values that are out of the identified 
ranges of discretization, a new lower or upper half-open interval is appended to 
the previous ones. 
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Fig. 71 - Distributions and breakpoint identification for some variables 

Fig. 71 shows the encoding process performed for 4 variables (i.e., cooling 
coil input water temperature, return fan pressure drop, return air flow rate, outdoor 
air damper) randomly selected from the set of inputs. It can be observed that for 
two variables an additional OFF-hours discretization interval (i.e., red area of the 
distributions in Fig. 71 (a) and (c)) is added to the other ranges of values for the 
symbol encoding (i.e., ID n° = 16, symbol = D and ID n° = 4, symbol = A).  

As a reference, Table (a) in Appendix A summarizes the transformation 
results obtained, with the specification of the numerical range corresponding to 
each symbol for all the analysed operational variables. 

At this stage, transient and non-transient periods are identified, and the data 
set is consequently segmented. In particular, it is labelled as transient start-up 
period the time interval between 5:00 and 7:00, while the period from 7:00 to 
18:00 is considered as non-transient period. 

 Fault detection analysis for the transient period (system start-up)  

The encoded time series are analysed for extracting temporal association rules 
in the start-up period of system operation. In detail, the transitions of the variables 
(i.e., change from a symbolic discrete-value to another one) are preliminarily 
encoded and the inter-transactional database is created considering a sliding 
window of 60 minutes. The width of the sliding window is chosen to be large 
enough to include any effect of the system dynamics, but tight enough to ensure 
that the occurrence of a consequent itemset is related to a physics-based 
implication with its antecedent itemset. 

Considering that the fault detection methodology is conceived for extracting 
reference association rules of normal operation, the inter-transactional database is 
created from the fault-free dataset, by selecting rules with high values of support 
and confidence. The ARM process is carried out by implementing the cSpade 
algorithm [49]. The analysis implemented in R [235], including the rule extraction 
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phase which is performed by using the “cSpade” function of the “arules” package 
[236]. 

Considering that the application of the cSpade algorithm is conducted on the 
inter-transactional database, the values of support and confidence associated with 
the rules extracted are evaluated according to formulations reported in section 
2.1.3.2.2 (Eq. 11 and Eq. 13) and introduced in [50,237]. 

Typically, the main issue related to association rules mining consists in 
handling and filtering a large number of rules extracted and eventually identify 
those that are of interest [20]. To tackle this problem and facilitate the mining of 
useful knowledge from extracted rules, a post-mining phase is performed.  

The post-mining phase is aimed at solving various practical issues, such as 
interestingness, redundancy, generalization, visualization and interpretability of 
association rules. 

To this purpose additional quality metrics are introduced: the daily support of 
the rule (i.e. SUPP.DAY) calculated for both fault-free (SUPP.DAYNORMAL) and 
the faulty days (SUPP.DAYFAULTY) and the actual time lag between the 
antecedent and consequent of a rule (ACTUAL TIME LAG). In more detail, the 
SUPP.DAYNORMAL is defined as the percentage of fault-free days during which a 
single association rule (Ri) occurred, while SUPP.DAYFAULTY is calculated for the 
faulty days (Eq. 24 and Eq. 25). 

 

𝑆𝑈𝑃𝑃. 𝐷𝐴𝑌ேைோெ , 𝑅 =
° ୭ ୰ୣୣିୟ୳୪୲ ୢୟ୷ୱ ୵୧୲୦ ୭ ୲୦ୣ ୭ୡୡ୳୰୰ୣ୬ୡୣ ୭ ୲୦ୣ ୰୳୪ୣ ୖ

୭୲.  ° ୭ ୰ୣୣିୟ୳୪୲ ୢୟ୷ୱ
  

Eq. 24 

 

𝑆𝑈𝑃𝑃. 𝐷𝐴𝑌ி், 𝑅 =
° ୭ ୟ୳୪୲୷ ୢୟ୷ୱ ୵୧୲୦ ୭ ୲୦ୣ ୭ୡୡ୳୰୰ୣ୬ୡୣ ୭ ୲୦ୣ ୰୳୪ୣ ୖ

୭୲.  ° ୭ ୟ୳୪୲୷ ୢୟ୷ୱ
  

Eq. 25 

The ACTUAL TIME LAG is introduced to evaluate the most frequent 
temporal distance between the first occurrence of an antecedent and the last 
occurrence of the corresponding consequent of a specific rule. As a consequence, 
even though the rules are searched with a sliding window of 60 minutes, the user 
can have a feedback about the most frequent time interval within a consequent 
itemset occurs given the presence of its antecedent itemset.  

The ACTUAL TIME LAG is calculated for each rule by computing the 
cumulative frequency of occurrences of the temporal distance between antecedent 
and consequent. For each rule a cumulated frequency threshold of 80% is 
considered in order to evaluate this metric.  

Fig. 72 shows the frequency distribution of the ACTUAL TIME LAG for two 
rules. The rule on the left (i.e., rule 1077) occurs for more than the 80% of the 
time with an actual time lag between the antecedent itemset and consequent 
itemset of 15 minutes, while for the rule on the right (i.e., rule 15268) the 80% of 
occurrences has a characteristic time lag lower or equal to 30 minutes. 
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Fig. 72 - Distribution of the time lags for rule 1077 (a) and rule 15268 (b) – (refer to Table (b) in 
Appendix B for the description of the rules) 

At this stage, more than 15,000 rules are extracted from the start-up dataset of 
fault-free days, assuming minimum support and minimum confidence equal to 0.7 
and not including drivers of system’s operation as potential consequent events 
(i.e. outdoor air temperature and cooling coil input water temperature). 

After the rule extraction, the values of support and confidence are recalculated 
considering only the occurrences of each rule within the evaluated ACTUAL 
TIME LAG (instead of the window of 60-min), reducing the set of rules to 7,419 
rules. 

Since the rules extracted should be representative of the fault-free operation of 
the system, only the rules, which in the testing dataset frequently occur in normal 
days and rarely in the faulty ones, are of interest for the problem under 
investigation. To this purpose, after the application of the 7,419 temporal 
association rules to the testing dataset, only the rules with a SUPP.DAYNORMAL 
equal to 1 (i.e., the rule occurring for each day labelled as “normal” included in 
the testing dataset) and a maximum value of SUPP.DAYFAULTY equal to 0.3 are 
considered with the final result of obtaining 465 reference rules (SUPP.DAY 
values are set by the user).  

As a general approach, the parameters are set in order to obtain a limited 
number of interesting rules, which respect the following conditions i) each rule 
occurs during fault-free condition with high support and confidence, ii) each rule 
has high probability to be violated during faulty conditions regardless from the 
fault type. In this perspective, general rules that are sensitive to more fault types at 
the same time are preferred to those violated only for specific faults.  

However, according to ASHRAE project RP-1312, during the faulty day 
tagged as CCVSFO (i.e., cooling coil valve stuck open), the blockage of the 
cooling valve in fully open position was implemented from 8:00 to 18:00 and 
hence out of the start-up period of the system. For this reason, the day tagged as 
CCVSFO is not considered in the calculation of SUPP.DAYFAULTY.  
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The introduced metrics allow an enhanced comprehension of the rule set, 
making it possible to discriminate rules with high support and confidence 
occurring during both fault-free and faulty days, from the rules, robust as well, 
occurring only during the normal operation of the system.  

Fig. 73 shows for each day in the testing dataset (composed by 11 different 
faulty days and 2 Normal days) the percentage of rules (out of the 465 considered) 
which occur and/or are violated, with specification of the kind of violation 
detected. In particular the label “presence” indicates that the rule occurred with its 
antecedent and consequent while the labels “antecedent”, “consequent” and 
“absence” indicate three different types of violation. In detail, the label 
“antecedent” denotes that a rule is violated because of the only presence of the 
antecedent; the label “consequent” indicates that a rule is violated because of the 
only presence of the consequent; the label “absence” indicates the complete 
violation of a rule because of the absence of both antecedent and consequent. The 
characterisation of the rules in terms of type of violation helps the interpretation 
of the path which determines a specific fault. In fact, the presence of the only 
antecedent, the only consequent, rather than the absence of both item sets, 
correspond to different behaviours of the system in relation to the presence of the 
considered faults.  

The results obtained can be described according to the severity of rule 
violation for each day representative of a specific fault implementation or normal 
operation. To this purpose four different groups of days can be identified and in 
the following described. 

 

Fig. 73 - Characterization of the presence or the violation of the extracted rules for the testing days 
(refer to Table 16 for the encoding of faults) 

The first group includes days characterized by the presence of the 100% of the 
465 rules tested. This is the case of days in Fig. 73 (d), (n) and (o) tagged as 
Normal and the faulty day tagged as CCVSFO. Such condition suggests, as 
expected, that during the faulty day CCVSFO the start-up of the system can be 
considered normal.  

The second group instead, includes the days in Fig. 73 (a), (c), (f), (g), (h), (i) 
and (m) that are characterized by a net prevalence of rule violations (more than 
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70%). Moreover, for those days, the presence of a fault is also associated to a 
specific kind of violation of the rules. As a reference, in case of CCVSFC, 
EASFO, OAS45, OAS55, OASFC and RFF30 the rules are violated mainly due to 
the absence of both antecedents and consequents, while only in the in case of 
CCVS15 the rule is violated for the absence of consequent.  

The third group includes the day in Fig. 73 (e) for which, during the start-up 
period, the percentage of violations is lower than the percentage of valid 
occurrences of the rules. Such condition suggests that during this day the 
behaviour of the system is similar to the normal one limiting the number of 
violations. The main reason is that such fault does not strongly affect the system 
operation making the detection process less sensible to its presence. This result 
agreed with the findings of the ASHRAE-RP 1312 project, during which the 
analysed dataset was generated. 

The last group includes days in Fig. 73 (b) and (l) that are characterized by a 
similar amount of violated and not violated rules (violation rate between 40% and 
60%). These two faults seem to affect the performance of the system differently 
from other faults respect to which hypothetically they should exhibit high 
similarity (i.e., CCVS15 and RFF30). Regarding the fault CCVS65 (Fig. 73 (b)), 
the cooling coil valve is stuck at 65% and therefore the supply air flow is 
overcooled. In this case, the system reacts opening the heating coil valve and 
operating in fully recirculation mode for increasing the supply air temperature. 
Consequently, the failure of the cooling coil valve does not affect the capability of 
the system in reaching the supply set-point temperature, but the operation of the 
other components is different from the normal condition.  

On the opposite, during the day (Fig. 73 (a)) tagged as CCVS15 (included in 
group 2) the cooling coil valve is almost closed limiting the heat exchange with 
the supply air flow that does not reach the set point temperature. Such case is 
representative of the complete failure of the system in maintaining the desired 
conditions of the indoor environment, as a matter of fact, justifying a higher rule 
violation rate for CCVS15 respect to CCVS65.  

Regarding the fault RFCF (Fig. 73 (l)), the system is operated implementing 
the complete failure of the return fan despite its speed control signal is correctly 
elaborated. Instead, during the day in Fig. 73 (m) tagged as RFF30 (included in 
group 2), the return fan is not corrupted, but it is subjected to a faulty control 
signal. In this case the high number of rules violated for RFF30 suggests a higher 
sensitivity of the extracted rules to frequent transitions of the fan speed discrete 
values rather than fan power ones.  

Some key figures related to the 465 extracted rules are in the following 
described. The rules are characterized by an ACTUAL TIME LAG that lies 
between 15 and 30 minutes. The evaluation of the ACTUAL TIME LAG can be 
then an essential step for reducing the intrinsic latency of the FDD tool during real 
implementation. Indeed, the ACTUAL TIME LAG gives the opportunity to check 
the occurrence of a rule within a time interval smaller than the width of the sliding 
window used for the rule extraction (in this case study is equal to 60 min.).   



159 
 

Table 18 reports the transitions in the antecedent and consequent item sets 
with the corresponding occurrence frequency. 

Table 18 - Occurrence frequency of each event included in the antecedent and consequent item sets 

Itemset Variable Event Frequency 

Antecedent 
 

Return Fan Speed RF_SPD [A-B] 87% 

Cooling coil input water temperature CHWC_EWT [D-C] 31% 

Return fan power RF_WAT [A-B] 24% 

Exhaust air damper position EA_DMPR [A-B] 23% 

Cooling coil output water temperature CHWC_LWT [C-B] 22% 

Supply fan speed SF_SPD [A-B] 22% 

Cooling coil input water temperature CHWC_EWT [C-A] 21% 

Supply fan power SF_WAT [A-B] 21% 

Return fan start/stop signal RF_SST [A-B] 18% 

Return air flow rate RA_CFM [A-B] 16% 

Return fan pressure drop RF_DP [A-B] 12% 

Return fan pressure drop SF_DP [A-B] 9% 

Consequent 
 

Return Fan Speed RF_SPD [B-C] 87% 

Supply Air Temperature SA_TEMP [B-A] 49% 

Cooling coil output water temperature CHWC_LWT [B-A] 46% 

Cooling coil air temperature CHWC_DAT [B-A] 36% 

 
In particular, the number of different consequent item sets is 13, resulting 

from a combination of 4 different events, while the antecedent item sets are 99, 
resulting from the combination of 12 different events. 

Table (b) in Appendix B reports the obtained rule set including the most 
representative rules.  

The rules extracted are meaningful since they can be interpreted as chains of 
events that characterise the normal operation of the AHU in reaching the set-point 
conditions during the start-up period. Indeed, extracted rules can be expressed as 
IF-THEN implications to be verified within a specific time interval. As a 
reference, the rule n° 8661 (included in Table (b) in Appendix B) can be written 
and interpreted as follow: IF (RF_SPD [A-B] and CHWC_LWT [C-B] and 
EA_DMPR [A-B]) occur THEN (CHWC_DAT [B-A] and RF_SPD [B-C]) will 
occur within 30 minutes with the 100% of confidence during a normal day. 

In detail, the antecedent itemset includes transitions related to the return fan 
speed, the cooling coil output water temperature and the exhaust air damper position 
that imply the occurrence of consequent transitions related to the temperature of 
the air after the cooling coil and return fan speed.  

In order to further improve the interpretability of the rules a novel 
visualization is also proposed. Fig. 74 shows an example of this visualization, 
referred to the profiles of the variables involved in rule n°1253 (included in Table 
(b) in Appendix B).  

Fig. 74 shows the trend of the variables in terms of real profile (i.e. green 
curve) and PAA (i.e. black segments). Regardless of the approximation 
introduced by the PAA, the behaviour of the variables during the transient period 
is preserved, as can be seen by looking at the supply air temperature trend 
(SA_TEMP). In fact, during the start-up period the supply fan speed (SF_SPD) 
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initially ramps up and then it is reduced to a constant level. The transitions of the 
antecedent itemset are reported in red, while the consequent itemset in blue. The 
PAA is represented in a window of 60 minutes, while with a darker shade of grey 
the length of the ACTUAL TIME LAG (i.e., 15 minutes) is reported. On the y-
axis are shown the values used for the discretization of each variable. 

The rule in Fig. 74 shows a typical behaviour of the system at the start-up 
period, in terms of the variation of “Supply fan speed” (SA_SPD), “Exhaust air 
damper” (EA_DMPR),“Return fan power” (SA_CFM), and “supply air 
temperature” (SA_TEMP). 

 

 

Fig. 74 - Visualization of an extracted temporal association rule (refer to Table 17 for variable 
encoding) 

According to this rule, usually at the time scheduled for the start-up (i.e. 6:00 
a.m.), the supply fan receives the start signal contemporary to the opening of the 
exhaust air damper while the return fan power increases (change from A to B). 
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After 15 minutes from the occurrence of the first antecedent transition in the event 
chain, according to the rule supply air temperature decreases from symbolic 
discrete-value B to A until the reaching of the desired set-point.  

This proved that the chain of events related to each association rule provides 
information about the expected behaviour in terms of discrete-value changes 
among influencing variables of the AHU during normal operation. 

 Fault detection and diagnosis during non-transient period 

The first step of the methodology for non-transient period, is aimed at 
developing a classification tree model for each variable to predict the normal 
operation of the system. For the development of the reference estimation models, 
all the variables related to the operation of the AHU are selected once at a time as 
target attribute while the remaining ones are used as input attributes. However, 
features related to external forcing variables to the AHU system (i.e., cooling coil 
input water temperature, outdoor air temperature) are used only as input attributes. 

As a result, 21 reference models are built for providing a robust benchmark of 
fault-free operation. Moreover, the variables used as input are also considered 
with a maximum backward lag of four time steps (i.e. 60 minutes). Indeed, the 
decision trees are able to predict the discrete values (i.e., symbol) of a target 
variable considering the discrete values of the input variables both in the same and 
previous aggregation intervals. 

 

 

Fig. 75 - Decision tree for the estimation of the symbolic discrete-values of the cooling coil valve 
position 

Fig. 75, reports as an example the classification tree developed for predicting 
the discrete values (i.e., symbol) of the variable “cooling coil water valve 
position” (i.e., variable tagged as CHWC_VLV with ID n° = 20), with an overall 
accuracy of 88%. The algorithm selects as input variables the “cooling coil water 
flow rate” (i.e., variable tagged as CHWC_GPM with ID n° = 18) and the 
“pressure drop of the supply fan” (i.e., variable tagged as SF_DP with ID n° = 
11). From this classification tree, it is possible to extract useful decision rules for 
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straightforwardly characterizing all the implications between discrete values (i.e., 
symbols) that typically occur during the fault-free operation of the AHU.  Table 
19 reports all the IF-THEN decision rules extracted from the CT shown in Fig. 75 
with the reference of the accuracy achieved in each leaf node. The accuracy is 
referred to each single leaf node assuming that the predicted label of the node 
corresponds to the label of the majority of the objects.  

Table 19 - Decision rules for the estimation of the symbolic discrete-value of cooling coil valve position 

Rule number Decision rules 
CHWC_VLV 
discrete-value 

N° of 
objects 

Leaf node 
accuracy  

1) 
IF CHWC_GPM = 18_A   

                                                            
20_A 224 95% 

2) 

IF CHWC_GPM = 18_B or 18_C AND SF_DP = 
11_B or 11_D AND CHWC_GPM (lag -1) = 

18_A or 18_B      
        

20_B 61 55% 

3) 

IF CHWC_GPM = 18_B or 18_C AND SF_DP = 
11_B or 11_D AND CHWC_GPM (lag -1) = 

18_C          
                             

20_C 28 65% 

4) 
IF CHWC_GPM = 18_B or 18_C AND SF_DP = 

11_C 
                                          

20_B 567 85% 

 
For example, according to rule 4, the value of the response variable “cooling 

coil valve position” is equal to 20_B (i.e. CHWC_VLV lies in the interval 41 – 75 
[%]) if the “cooling coil water flow rate” is equal to 18_B or 18_C (i.e. 
CHWC_GPM lies in the interval 0,89 – 2.7 [m3/h]) and the “supply fan pressure 
drop” is equal to 11_C (i.e. SF_DP lies in the interval 562 – 770 [Pa]). Once all 
the estimation models are trained and validated, the residual analysis is performed 
by using a testing dataset including both faulty and fault-free data (i.e., 2 fault-free 
and 11 faulty days). Therefore, the difference between the actual discrete state of 
a variable and that estimated by the decision tree during an aggregation interval 
determines the detection or not of a potential faulty condition, since the predicted 
discrete state should be considered as the reference condition (fault-free). The 
values of the residuals can be equal to zero in case of absence of deviation from 
the normal conditions, positive if the actual value is higher than expected, or 
negative if the actual value is lower than expected. 

Eventually, in order to perform fault diagnosis, it is developed an additional 
classification tree which uses as input the residuals obtained from the estimation 
performed through the 21 classification trees in the estimation layer and as output 
the tags related to the various faults considered.  
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Fig. 76 - Classification tree for the fault diagnosis during the non-transient period 

Fig. 76 shows the classification model obtained, which can classify with a set 
of intuitive rules the faults considered with an overall accuracy of the 90%. 
The variables involved as input for the classification are the supply air 
temperature (i.e. SA_TEMP), the position of the outdoor and exhaust air dampers 
(i.e. OA_DMPR, EA_DMPR), the cooling coil outlet water temperature (i.e. 
CHWC_LWT), the cooling coil valve position (i.e. CHWC_VLV), the power 
demand of the supply fan (i.e. SF_WAT), the pressure drop of the return fan (i.e. 
RF_DP) and the return air flow rate (i.e. RA_CFM). The classification tree 
developed can diagnose 11 different faults and the normal condition as well.  

The latter is predicted by following the decision tree path (Fig. 76) including 
all zeros (i.e. residual equal to zero) in the splits for the variables SA_TEMP, 
EA_DMPR, OA_DMPR, RF_DP and RA_CFM. By referring to Fig. 76, some 
other rules are described in the following.  

The first split made by the classification tree concerns with the supply air 
temperature, which identifies the faults related to a blockage of the cooling coil 
valve at 0% (CCSFC) or at 15% (CCVS15)  if the air temperature presents values 
higher than normal (i.e., SA_TEMP residuals = 1, 2, 3),. 

In some cases, the faults can be diagnosed by analysing the variables directly 
related to the corrupted component, such as the blockage of the exhaust and 
outdoor air dampers at 0%, 55% or 100% (i.e. OASFC, OAS55, EASFC, and 
EASFO). In other cases, a series of deviation from the normal condition for 
different variables can be considered as symptoms for a specific fault. That is the 
case, for example, of anomalous energy exchange in the cooling coil due to 
blockage of the cooling coil valve at 65% (CCVS65) or 100% (CCVSFO). These 
faults are diagnosed in the case both the air dampers are completely closed (i.e. 
negative values of residuals), but the supply air temperature does not present a 
deviation from the normal condition. In this case, the system tries to 
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counterbalance the excessive decrease of the temperature of the air by operating in 
fully recirculation mode. 

The effect of a fault related to the return fan can be easily identified, since the 
pressure drop at the return fan is lower than expected while supply air temperature 
and air damper positions are normal. The discrimination between the complete 
failure of the return fan (RFCF) and the case in which the speed is fixed at 30% 
(RFF30) can be performed by evaluating the severity of the reduction of the return 
air flow rate rather than the reduction of the power demand of the supply fan.  

The FDD tool is based on a multiclass classifier for fault diagnosis and when 
in operation sorts data into either fault-free (i.e., normal) or faulty classes. All the 
evaluation metrics for a multiclass classification model can be understood in the 
context of a binary classification model (where the classes are “positive” and 
“negative”). These metrics are derived from the following categories: 

 True Positives (TP): Objects labelled as positive and predicted to be 
positive. 

 False Positives (FP): Objects labelled as negative and predicted to be 
positive. 

 True Negatives (TN): Objects labelled as negative and predicted to be 
negative. 

 False Negatives (FN): Objects labelled as positive and predicted to be 
negative. 

The multiclass classification problem can be seen as a set of many binary 
classification problems and its performance can be assessed labelling as “positive” 
each class once at time. In the context of the presented multiclass diagnostic 
classifiers some metrics can be calculated: 

 Accuracy (A): Objects of items correctly identified as either truly positive 

or truly negative out of the total number of items i.e., 
ା

ାାା
. 

 Recall (R): Number of objects correctly identified as positive out of the 

total actual positives i.e., 


ା
. The recall is calculated for each class and 

then averaged among classes for a global performance assessment of the 
CT. 

 Precision (P): Number of objects correctly identified as positive out of the 

total items predicted as positive i.e., 


ା
. The precision is calculated for 

each class and then averaged among classes for a global performance 
assessment of the CT. 

 False Positive Rate (FPR), Type I error: Number of objects wrongly 

identified as faulty out of the total actual fault-free data i.e., 


ା
. In FDD 

processes, this error means that  data belonging to fault-free class 
(negative) are incorrectly labelled as faulty (positives) generating false 
alarms.   
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 False Negative Rate (FNR), Type II error : Number of objects wrongly 

predicted as fault-free out of the total actual faulty data i.e., 


ା
. In FDD 

processes, this error means that  data belonging to one of the fault classes 
(positives) are incorrectly labelled as fault-free (negative) generating 
missing detection opportunities.   

In particular, the developed classification tree exhibits the following 
performances A = 90%, R = 89%, P = 91%, FNR = 4%, FPR = 4%. The 
performance of the classification tree can be also assessed with the detail of each 
class considered. To this purpose, Table 20 reports the Confusion Matrix (CM) of 
the classification tree. The CM, in form of table (actual class vs predicted class), 
allows an effective analysis of the performance of the classification tree making it 
possible to identify confusion between all the considered classes (i.e., mislabelling 
of objects belonging to a class and classified into another one).  

In particular, rows of the table correspond to the actual classes while columns 
to the predicted ones. At this stage it is possible to evaluate in each class the 
proportion of prediction actually correct (i.e., Precision) and the proportion of 
actual values predicted correctly (i.e., Recall). 

Table 20 - Precision and recall for classification tree of fault diagnosis during non-transient period 
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CCVS15 39 0 0 0 0 5 0 0 0 0 0 0 44 89% 
CCVS65 0 44 0 0 0 0 0 0 0 0 0 0 44 100% 
Normal 0 0 84 3 0 0 0 0 0 0 1 0 88 96% 
OAS45 0 0 17 27 0 0 0 0 0 0 0 0 44 61% 
RFF30 0 0 2 1 33 0 0 0 0 0 0 8 44 75% 

CCVSFC 0 0 0 0 0 44 0 0 0 0 0 0 44 100% 
CCVSFO 0 5 2 5 0 0 32 0 0 0 0 0 44 73% 
EASFC 0 0 0 0 0 0 0 44 0 0 0 0 44 100% 
EASFO 0 0 0 0 0 0 0 0 44 0 0 0 44 100% 
OAS55 0 0 0 0 0 0 0 0 0 44 0 0 44 100% 
OASFC 0 0 0 0 0 0 0 0 0 0 44 0 44 100% 
RFCF 0 0 0 0 9 0 0 0 0 0 0 35 44 80% 

Total 39 49 105 36 42 49 32 44 44 44 45 43 572 
Average 

89%  

Precision 100% 90% 80% 75% 79% 90% 100% 100% 100% 100% 98% 81% 
Average 

91%  
 

 
Thanks to this methodology the faults in the dataset were diagnosed with both 

high precision and recall, as can be seen in Table 20. The lowest values of 
precision and recall are related the fault “outdoor air damper stuck at 45%” 
(OAS45), for which part of the records are mislabelled as “Normal” (i.e., 17 out 
of 44 objects, that correspond to the 39% of data labelled as OAS45 and to the 
89% of the total amount of False Negatives). This condition is due to the fact that 
the stuck of the outdoor air damper at 45% does not invalidate the operation of the 
system which is similar to the fault-free one during the non-transient period. It is 
worth nothing that all the assumptions taken, and results obtained are related to a 
specific operative condition of the system (i.e., cooling mode). The set of rules 
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extracted can be then considered a valid FDD solution if only applied on data 
consistent with the initial hypotheses. Despite this, even though the analysis is 
related to a portion of the possible operative conditions of an AHU, the 
performance achieved suggests good perspectives in applicability and 
generalizability of the proposed tool. 

4.1.5 Discussion  

The developed FDD tool is based on two different analytics modules 
proposed for the analysis of both transient and non-transient conditions of AHUs. 
The fault detection during the start-up period is performed with an innovative 
approach by searching frequent and non-anomalous relationships between events 
in a temporal transaction set using temporal association rules. A temporal 
association rule is expressed as a logical IF-THEN implication where the presence 
of an event (i.e., antecedent) implies the occurrence of another event (i.e., 
consequent) within a certain time lag. According to this approach, the violation of 
a rule or group of rules may suggest the occurrence of abnormal conditions during 
system operation. Three potential rule violations are considered for detecting 
faults during the start-up period: i) absence of the antecedent, ii) absence of 
consequent, iii) absence of antecedent and consequent.   

The used rules are extracted by expert knowledge from a large set of possible 
rules, are representative of the normal operation of the AHU and are characterised 
by high physical interpretability. The introduction of innovative parameters (e.g. 
SUPP.DAY in faulty and normal conditions, support and confidence in the 
ACTUAL TIME LAG) allow a robust selection of the most interesting association 
rules, minimising the effort required in the post-processing stage. Furthermore, an 
effective visualization of the temporal association rules is introduced with the aim 
of supporting energy managers in the interpretation of the temporal associations 
between operational variables in real-time. 

The FDD tool, for the non-transient period, provides a robust benchmark of 
the fault-free operation of the AHU by training and testing 21 classification trees. 
The classification trees are able to predict the discrete values (i.e., symbol) of a 
target operational variable considering the values of the input variables both in the 
same and previous aggregation interval. The classification trees show high 
performance (i.e., high accuracy, precision and recall) in modeling all the variable 
relations that are characteristic of the operative condition of interest (i.e., 20 days 
of AHU operated in cooling mode). 

Eventually, an additional classifier is embedded in the tool in order to perform 
fault diagnosis. The diagnosis shows an overall accuracy of 90% and is performed 
by means of a set of intuitive rules easy to be implemented for detecting up to 11 
typical faults in AHUs. However, the set of rules extracted can be considered 
valid only if applied on data consistent with the initial hypotheses (i.e., AHU 
operated in cooling mode).  

Overall, the results obtained are characterised by robustness and high 
interpretability proving the effectiveness of the proposed FDD tool for ensuring a 
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correct energy and operational management of the ventilation and air-conditioning 
process. Even though the tool is tailored for the case study analysed, the outcomes 
of the analysis can be considered flexible and generalizable. The methodologies 
are conceived for being automatic and for effectively managing the redundancy, 
interpretability and physical meaningfulness of the association and classification 
rules. Moreover, the developed FDD tool is conceived for quasi real-time 
implementation, paying attention to the optimisation of its computational cost. To 
this purpose, the preliminary discretisation of the variables, performed trough the 
aSAX algorithm, proved to be particularly effective in extracting the crucial 
operational conditions of the AHU reaching the optimal trade-off between data 
reduction and information loss. Moreover, the association rules are extracted from 
an event-based dataset (i.e., database of transactions) where only information 
about the discrete-value changes of the operational variables is stored. As a 
consequence, the computational cost related to the mining of rules is strongly 
reduced, increasing the feasibility of such approach in real case studies. In more 
detail the rule extraction phase takes more or less 10 minutes. It means that the 
most onerous parts of the analysis are represented by the pre-processing and post-
mining phases. In the pre-processing phase the assessment of the optimal 
quantization of the time series through aSAX is validated by using more than 20 
metrics (cluster validity indices included in the R Nbclust package [234]). Such 
calculation takes more than 10 minutes. In the post mining phase, the 
recalculation of support and confidence of each rule within the evaluated 
ACTUAL TIME LAG (instead of the window of 60-min), and the violation 
analysis performed on the testing dataset take about 20 minutes. For what concern 
the analysis of non-transient data, the development of each classification tree 
takes few seconds of computation and can be considered a task easily 
parallelizable. As a result, the impact of the analysis of non-transient data can be 
considered negligible in terms of computational cost compared to the pre-
processing, rule extraction and rule post-mining. Indeed, in the perspective of a 
real-time implementation of the FDD tool, the update of the discretization 
intervals, set of association rules and estimation models can be accomplished 
during night-time while the fault detection and diagnosis tool can be run online 
during operation. For what concern the pre-processing stage, during the real-time 
operation the Hampel filter can still be used but considering that its intrinsic 
latency equal to (Len-1)/2 should be added to the latency of the FDD process in 
detecting faults (in this case the latency of the FDD tool is equal to the length of 
the aggregation interval i.e., 15 min). For avoiding high latency in the analysis, 
Len can be reduced. As an alternative, other pre-processing algorithms, 
particularly suitable for the analysis of data streams, can be employed for 
detecting statistical outliers in real-time (i.e., before time t+1 and without any look 
ahead) [238]. 

A major future effort to build upon this work is the expansion of the tool to 
other operation modes and systems and to integrate it with knowledge driven-
based analysis for better addressing the implementation issues that are 
characteristic of data analytics-based FDD tools. Indeed, such tools need a proper 
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amount of data for the development of diagnosis models and cannot extrapolate 
beyond the range of training data [13]. It means that their capability in 
automatically extracting pattern from actual performance data is strictly related to 
the availability of pre-labelled monitored data (typically derived from AHU 
recommissioning or simulated data). On the contrary, knowledge driven-based 
approach (i.e., quantitative approach) can introduce domain knowledge and user 
experience into the FDD process [13], especially in the case initial information is 
not enough for deploying an FDD tool. In this perspective, a perfect integration of 
both approaches represents the main opportunity for significantly improve 
robustness, accuracy, and generalizability of FDD tools conceived for applications 
in building energy systems.    
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5 Conclusions 

The present dissertation was aimed at demonstrating the effectiveness of data 
analytics-based DSS tools for improving energy management and enhancing 
energy efficiency in buildings. The growing availability of building related data is 
currently changing the decision-making process for optimising building daily 
operation making it possible to exploit the great potential of data analytics-based 
technologies also in the building sector. However, the knowledge extraction from 
massive building datasets is not an easy task and it requires skills in both data 
science and building physics.  

The research activity outlined in the present dissertation was undertaken in 
this framework with the aim to actively contributing to bridging the gap between 
these two research areas.  

To this purpose both meter-level and system-level DSS applications were 
explored and advanced data analytics-based EIS and FDD tools were proposed. 
Each tool was conceived for being implemented on a specific scale and for 
addressing tasks that are relevant in the building research field (from system 
component up to building portfolio level) bringing the following innovative 
aspects: 

 HVAC scheduling improvements at building system level 
The improvement of HVAC schedules is one of the most effective way 
for reducing energy waste in buildings during daily operation. HVAC are 
often responsible of the largest amount of the building energy 
consumption and typically are operated with fixed schedules that poorly 
fit with the actual occupancy of the building. In that perspective, the 
developed EIS tool is capable to effectively analyze measured occupancy 
data and extracting from them typical patterns in form of daily profiles. 
The scope behind the identification of such patterns is twofold. On one 
hand, it allows the reduction of occupancy diversity in buildings by 
means of the proper displacement of occupants among building thermal 
zones. On the other hand, it makes possible to reduce the operation hours 
of the HVAC system by modifying its schedule according to the actual 
presence of occupants. The developed EIS tool fully exploits both 
opportunities through an innovative process of analysis that is also 
capable to deal with variable behaviors of occupants during the week 
(multiple typical occupancy profiles) always preserving their privacy. 
The results obtained for the considered case study show that the HVAC 
scheduling improvement could determine a potential monthly reduction 
of the electricity use for HVAC (space heating, space cooling, ventilation 
and air treatments) that ranges from 12.2% to 15.4% while the average 
energy saving for the whole analysed period (4 months) amounts to 14%. 
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 Identification of energy consumption reduction opportunities 
through the detection of anomalous energy trends at whole building 
level 
Although data availability is increasing in buildings, in most of real 
cases, just few and aggregate variables related to the total energy 
consumption of the building are measured and stored. Improving 
building energy performance by analysing data at a such high level is 
challenging, especially for buildings characterised by the existence of 
various load conditions. In that perspective the developed EIS tool is 
capable to automatically detect anomalous energy trends in building 
energy consumption time series exploiting a small set of input variables. 
The tool is based on an innovative methodology that performs a 
transformation of the whole building energy consumption time series by 
coupling Symbolic Aggregate approXimation and decision trees. The 
main advantage introduced is the possibility of reducing data volume and 
at the same time performing advanced pattern recognition analysis on 
data referred to characteristic periods of the day. The results obtained for 
the two case studies demonstrated that the developed classifiers can 
predict the typical patterns of building energy consumption during each 
considered periods of the day with an accuracy well over 80%. As a 
result of the high the accuracy of the classifiers (final nodes with very 
high occurrence probability of a certain energy consumption pattern), it is 
possible to achive a strong anomaly detection capability of the EIS tool 
when the classification rules are violated during building operation.The 
tool is able to distinguish infrequent from anomalous sub-daily patterns 
based on specific boundary conditions in a fully interpretable way, 
helping users in early detecting anomalous energy patterns and 
diagnosing their most probable associated cause during building 
operation.  
 

 Identification of typical energy use patterns at building portfolio 
level i.e., customer classification. The knowledge of typical energy use 
patterns in large building portfolios is extremely valuable for designing 
targeted financial demand response programs, benchmarking the energy 
performance of buildings amongst their peers, and identifying strategic 
modifications of the building energy consumption curve. The developed 
EIS tool was capable to automatically extract from a building portfolio 
database, 5 groups of typical load profiles (i.e., benchmarking) and 
estimate for a new unknown customer its membership to one of them 
(i.e., customer classification). The tool is based on an evolutionary 
decision tree and achieves a classification accuracy of about 75% (6% 
higher than a reference classifier based on recursive partitioning decision 
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tree). The main innovative aspects introduced are twofold. The first one 
is the development of a non-intrusive classification model that does not 
take into account attributes based on in-field load monitoring as input 
variables but only exploits historical billing data and a-priori knowledge 
(e.g. type of activity, voltage level, type of contract, occupant arrival and 
exit time). The second aspect is related to the capability of the tool in 
providing for a new customer not only a normalized reference load 
profile but also an estimation of its magnitude. Classifying for a customer 
the expected shape of typical load profile together with its magnitude 
enables the exploration of demand response opportunities at the very 
early stage of the customer engagement phase. 
 

 Fault detection and diagnosis at AHU component level 
The optimal management of heating ventilation and air conditioning 
systems, is a crucial task, considering that such systems account for 50% 
of the energy demand in commercial buildings [131]. However, Air 
Handling Units (AHUs), that are an essential part of HVAC systems, are 
often inappropriately managed negatively impacting on building energy 
consumption and on the control of the indoor environment conditions.  
The developed FDD tool is based on a novel application of temporal 
association rules and decision trees for the extraction and identification 
of dominant pattern in AHU time series. Such patterns, in form of IF-
THEN rules, are capable to robustly characterize the normal fault-free 
operation of the system during both transient and non-transient condition. 
The rules are completely interpretable and their violation in the time 
domain allows system inefficiencies and failures to be detected and be 
associated to faults of fans, dampers, and valves. The FDD tool is 
capable of detecting up to 11 typical faults (of valves, fans and dampers) 
in AHUs with an overall accuracy of 90%. The novelty of the proposed 
tool consists in the evolution of the FDD task from an expert-threshold-
based analysis to an unsupervised-event-based one. In this way it is 
possible to learn robust FDD policies without a-priori knowledge of the 
system configuration by exploiting the knowledge of only relevant events 
extracted from multiple time series.  

Regardless to the final objective of each tool two main investigations are at 
the basis of methodology development: 

 Exploitation of time series analytics (e.g., sequential pattern mining, 
causality analysis, time series similarity) for extracting hidden patterns 
from building related data in the time domain, 

 Implementation of supervised and unsupervised algorithms that provide 
results in terms of interpretable IF-THEN rules (decision trees, 
association rule mining algorithms). 
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These two aspects were considered as key points to overcome the main barriers 
that today thwart the fully exploitation of data analytics-based technologies for 
building energy management. Currently, DSS software represents an effective 
solution for gaining insight into building data and converting it in actionable 
knowledge. However, the knowledge gap that exists between building 
professionals and data scientists significantly affect the impact that such tools 
could have in improving building operation. Indeed, non-expert users if not 
adequately supported in the knowledge exploitation phase, tend to not trust results 
and suggestions provided by data analytics-based systems. For this reason, in 
some cases, trivial but highly understandable analyses were preferred to very 
complex but detailed ones. The great challenge to face is then maximising the 
extraction of hidden patterns from data provided that their interpretability is 
guaranteed.  
     In that perspective, the developed tools significantly contributed to achieve this 
demanding target in the robust way as possible. Most of the findings and 
outcomes of the present research work were already discussed in detail in the 
previous chapters. Therefore, the goal of this final chapter is to provide mainly a 
wide overview on the lessons learned in the framework of this research study. 
 
Data pre-processing: the “sword of Damocles” hanging over data analysts 

One of the main barriers that can be encountered while developing data 
analytics-based processes is the low quality of data. Data volume is worth nothing 
if it is not supported by high quality data. In this perspective data pre-processing 
represents a mandatory step in the process of analysis. Data pre-processing 
requires very good skills in data analysis, and it could take up to 80% of the whole 
computational time. However, in the discussed applications the aim of data pre-
processing was twofold. On one hand data cleaning techniques (e.g., application 
of hampel filter) were used for detecting and replacing statistical outliers and 
increasing data quality. On the other hand, reduction and transformation 
techniques were employed for improving knowledge extraction according to 
specific mining targets.  

The definition of a good pre-processing procedure cannot be seen as an isolated 
task to be performed at the beginning of the analysis. In fact, the pre-processing 
and preparation of data impact the entire flow of analysis and can significantly 
enhance the performance of data analytics algorithms. Good evidence of this 
aspect was found in the development of the EIS tool for anomaly detection and 
the FDD tool (sections 3.3 and 4.1). For these applications, an enhanced SAX 
algorithm was used for reducing and transforming time series of building/energy 
system data. SAX made it possible to significantly reduce the dataset size and at 
same time to better identify relevant patterns in the time domain. Indeed, the 
encoding of time series in sequences of symbols perfectly match with the use of 
automatic rule extraction techniques (e.g., decision tree, association rules) and 
then increasing the whole process interpretability. 

Another crucial aspect of data pre-processing is related to its configuration in 
the case of on-line deployment of data analytics processes. The pre-processing of 
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data streams needs to be designed differently from off-line static conditions, 
considering that the managing of missing values and the identification of 
statistical outliers should be performed in real-time. In that case the pre-
processing of data could introduce latency issues in the process of analysis to be 
properly examined.  
 
“In the wrong hands, all tools are weapons”: data analytics and privacy 
issues 
Pervasive monitoring and control systems enable the opportunity to collect a large 
amount of data in buildings and to provide fine-grained and optimised controls for 
heating, cooling, ventilation, lighting, and other building energy systems. 
However, the information that is collected, especially if referred to occupancy 
data, could potentially be used for undesirable purposes, generating then privacy 
issues [203]. The characterization of occupant behaviour and presence in 
buildings represents a key strategy to improve system management and efficiency 
through low/no cost and capital-intensive measures. 
Particularly, the EIS tool developed for HVAC schedule improvements and 
occupancy diversity reduction, demonstrated its potential in reducing building 
energy demand by exploiting occupancy data, provided that information about 
occupant was aggregated and anonymised.  However, regarding the opportunity to 
reduce occupancy diversity in specific parts of the building, the aggregation of 
data represents a great constraint. In fact, the analysis of individual occupant 
locations may yield much better results in terms of occupancy diversity reduction 
in building. However it can reveal contextual information about the individuals’ 
habits, interests, activities, and relationships exposing occupants to mobbing 
practice, denigration and social reputation or economic damage [203]. In that 
perspective, the design of the data analytics processes should always take into 
account potential privacy issues finding a trade-off between the amount of 
knowledge extracted and the protection of sensible information. 
  

“In theory, there is no difference between theory and practice.…but, in 
practice, there is” (Jan L. A. van de Snepscheut): Scientific research vs real-life 
implementation 

The development of data analytics methodologies of analysis has been widely 
explored in the scientific literature but in most of the cases only through off-line 
tests. Despite off-line tests are essential for assessing the reliability of data 
analytics processes, crucial aspects related to data volume management, 
computational cost, updating of models, decline in accuracy are often neglected. 
In this research study rule extraction techniques were employed for two main 
reasons. On one hand such techniques are characterised by a high degree of 
interpretability, that represents a huge benefit for the final user. On the other hand, 
outputs in form of small sets of IF-THEN rules can be easily embedded in energy 
management systems and updated with a low computational cost (as a reference 
the computation of a recursive partitioning decision tree takes few seconds). 
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Another aspect to be considered is related to the actual availability of a proper 
amount of data for the development of data analytics-based tool. Indeed, despite 
their capability in automatically extracting pattern from actual performance data 
they cannot extrapolate beyond the range of training data [13]. Especially in the 
case of new installation of monitoring systems, data analytics-based tools can be 
enabled after a certain amount of time. On the contrary, an approach based on 
domain expertise can introduce a-priori knowledge into the data analytics process 
[13], particularly useful in the first period of data collection. In this perspective, a 
perfect integration of both approaches will represent the main opportunity for 
significantly improving robustness, accuracy, and generalizability of advanced 
data analytics tools and significantly reducing the time lag between their 
installation and utilization. 
 
“The whole is greater than the sum of its parts”: is the integration of EMIS 
tools always possible? 
The main problem faced throughout this research study has been the availability 
of heterogeneous sets of building monitored variables among the case studies 
analysed. As a consequence, each scale of application was investigated with 
reference to different buildings. That is in fact no problem, because each tool was 
properly developed and tested demonstrating its robustness and effectiveness. 
However, it was not possible to integrate tools in a unique multilevel EMIS 
solution that allows information to be exchanged between tools and to achieve 
further improvements in building energy management. The most valuable solution 
is to re-think the paradigm behind data collection and data analysis. Monitoring 
systems are often designed with the only aim of measuring operation variables 
useful for the control of building systems neglecting other kind of measurements 
that could instead enable the implementation of advanced processes of analysis. 
Next generation of building monitoring systems should be then conceived, from 
their early design stage, in the perspective of maximising the set of functionalities 
that EMIS systems could have when being installed in buildings.  
 
Having skills in data analytics is not enough 
The diversity of data analytics techniques and their combination require good 
skills in data science. However, most of the effort is needed for understanding 
which analytical process can support the analyst in achieving a specific energy 
management target. It means that a strong background in building physics is 
always required for the fully exploitation of building related data.  

In the context of the modern building industry, engineers rarely have both 
scientific backgrounds, and this could introduce several limitations. In fact, while 
data scientists tend to approach the energy modeling problems mainly looking at 
the achievable algorithm performance, energy and building engineers give priority 
to understandability and respect of physics laws of the analysis. As a result, on 
one hand data scientists are exposed to the risk of extracting counterintuitive 
knowledge from building related data. On the other hand, building end energy 
engineers typically are able to infer only trivial and obvious knowledge from large 
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energy datasets. It is clear that the building sector is experiencing a relevant 
transition phase making essential the introduction of a new hybrid professional 
figure that is transversal to both energy and analytics application fields. This is a 
long process during which the scientific research will play a fundamental role in 
driving the required technological and knowledge transfers.  

 
“By far, the greatest danger of Artificial Intelligence is that people conclude 
too early that they understand it” (Eliezer Youdkowsky): Toward Explainable 
Artificial Intelligence (XAI) 
The EU General Data Protection Regulation (GDPR) went into effect on May 25, 
2018. The regulation had a great impact on Artificial Intelligence (AI) companies 
and professionals especially due to the introduced “right to explanation” mandate. 
The basic concept is that when a decision is automatically generated, the final user 
has the right to receive an explanation about the generation process of that 
decision. Despite the regulation is essentially focused on personal data protection 
and safeguarding of personal rights, the debate on AI explainability also took 
place in cross-cutting sectors, with no exclusion of the energy and building one. 
As a reference, the advent of novel techniques (e.g., deep learning methods) and 
learning approaches (e.g., reinforcement learning) makes it possible to integrate 
more and more sophisticated AI-based systems in the building energy 
management process. However, for building professionals is a big challenge to 
fully understand the inference mechanism learnt by such AI systems and then they 
could express mistrust towards their outputs. To enhance confidence in AI, data 
scientists are today focusing on the development of new Explainable AI (so-called 
XAI) systems that will have the ability to explain their rationale, their weaknesses, 
their strengths and how they will perform in the future.   

A major effort to build upon this research work will be then focused on fully 
addressing all the mentioned challenges that are behind the next generation of 
“intelligent” buildings.  
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Appendix A 
Table (a) - Discretization intervals for all the analysed variables. 

Variable ID Unit Sym. A Sym. B Sym. C Sym. D Sym. E 

SF_WAT  1 [W] 
< 522 
OFF 

522 – 1265 
ON 

1265 – 2440 
ON 

> 2440 
ON 

- 
 

RF_WAT  2 [W] 
< 181 
ON 

181 - 337 
ON 

336 – 502 
ON 

> 502 
ON 

- 

SA_CFM  3 [m3/h] 
< 591 
OFF 

591 – 2276 
ON 

2276 – 3414 
ON 

3414 – 4706 
ON 

> 4706 
ON 

RA_CFM  4 [m3/h] 
< 838 
OFF 

838 – 2712 
ON 

2712 – 3527 
ON 

> 3527 
ON 

- 

OA_CFM  5 [m3/h] 
< 477 
ON 

477 – 1146 
ON 

> 1146 
ON 

- - 

SA_TEMP  6 [°C] 
< 15,9 

ON 
15,9 – 23,5 

ON 
23,5 – 32,4 

ON 
> 32,4 

ON 
- 

MA_TEMP  7 [°C] 
< 20,3 

ON 
20,3 – 30,8 

ON 
> 30,8 

ON 
- - 

RA_TEMP  8 [°C] 
< 25,7 

ON 
25, 7 – 31,5 

ON 
>31,5 
ON 

- - 

HWC_DAT  9 [°C] 
< 20,2 

ON 
20,2 – 26 

ON 
26 – 35,7 

ON 
> 35,7 

ON 
- 

CHWC_DAT  10 [°C] 
< 14,4 

ON 
14,4 – 22 

ON 
22 – 30,7 

ON 
> 30,7 

ON 
- 

SF_DP  11 [Pa] 
< 324 
OFF 

324 – 562 
ON 

562 – 770 
ON 

> 770 
ON 

- 

RF_DP  12 [Pa] 
< 46 
ON 

46 – 114 
ON 

> 114 
ON 

- - 

SF_SPD  13 [%] 
< 50 
OFF 

50 – 67 
ON 

67 – 75 
ON 

75 – 87 
ON 

> 87 
ON 

RF_SPD  14 [%] 
< 30 
OFF 

30 – 43 
ON 

43 – 57 
ON 

57- 69 
ON 

> 69 
ON 

OA_TEMP  15 [°C] 
< 18,3 

ON 
> 18,3 

ON 
- - - 

CHWC_EWT  16 [°C] 
< 1,3 
ON 

1,3 – 2,8 
ON 

2,8 – 6,7 
ON 

> 6,7 
OFF 

- 

CHWC_LWT  17 [°C] 
< 13,3 

ON 
13,3 – 19,9 

ON 
19,9 – 21,2 

ON 
> 21,2 
OFF 

- 

CHWC_GPM  18 [m3/h] 
< 0,9 
ON 

0,9 – 1,7 
ON 

> 1,7 
ON 

- - 

E_ccoil  19 [kW] 
< 11,7 

ON 
> 11,7 

ON 
- - - 

CHWC_VLV  20 [%] 
< 41 
ON 

41 – 75 
ON 

> 75 
ON 

- - 

EA_DMPR  21 [%] 
< 20 
ON 

20 – 70 
ON 

> 70 
ON 

- - 

OA_DMPR  22 [%] 
< 20 
ON 

20 – 47 
ON 

47 – 77 
ON 

> 77 
ON 

- 

RF_SST  23 [-] 
< 0,5 
OFF 

> 0.5 
ON 

- - - 
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Appendix B 
Table (b) - Most representative extracted temporal association rules 

ID N° Antecedent Consequent Supp. Conf. 
ACTUAL 

TIME 
LAG 

SUPP. 
DAY 

FAULTY 
1077 SF_SPD [A-B], EA_DMPR [A-B], RF_WAT 

[A-B] 
CHWC_DAT [B-A] 0.70 0.8 15 0.27 

1078 SF_WAT [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

CHWC_DAT [B-A] 0.70 0.8 15 0.27 

1526 SF_SPD [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

CHWC_DAT [B-A],  
CHWC_LWT [B-A] 

0.70 0.8 15 0.27 

1527 SF_WAT [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

CHWC_DAT [B-A],  
CHWC_LWT [B-A] 

0.70 0.8 15 0.27 

1864 SF_SPD [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

CHWC_DAT [B-A],  
CHWC_LWT [B-A], SA_TEMP [B-

A] 

0.75 0.8 15 0.27 

1865 SF_WAT [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

CHWC_DAT [B-A],  
CHWC_LWT [B-A], SA_TEMP [B-

A] 

0.75 0.8 15 0.27 

8661 RF_SPD [A-B], CHWC_LWT [C-B], 
EA_DMPR [A-B] 

CHWC_DAT [B-A], RF_SPD [B-
C] 

0.9 1 30 0.09 

8750 RF_SPD [A-B], EA_DMPR [A-B], RF_SST [A-
B] 

CHWC_DAT [B-A], RF_SPD [B-C] 0.8 0.89 30 0 

6255 RF_SPD [A-B], CHWC_LWT [C-B],  
RA_CFM [A-B] 

CHWC_DAT [B-A], RF_SPD [B-
C], CHWC_LWT [B-A] 

0.89 0.8 15 0.18 

6256 RF_SPD [A-B], CHWC_LWT [C-B], RF_SST 
[A-B] 

CHWC_DAT [B-A], RF_SPD [B-
C], CHWC_LWT [B-A] 

0.89 0.8 15 0.09 

6226 RF_SPD [A-B], CHWC_LWT [C-B], RF_SST 
[A-B] 

CHWC_DAT [B-A], RF_SPD [B-
C], SA_TEMP [B-A] 

0.89 0.8 15 0.09 

6936 RF_SPD [A-B], CHWC_LWT [C-B] CHWC_DA T [B-A], RF_SPD [B-
C], SA_TEMP [B-A] 

0.889 0.8 15 0.18 

1933 SF_SPD [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

CHWC_LWT [B-A], SA_TEMP [B-
A] 

0.75 0.8 15 0.27 

1934 SF_WAT [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

CHWC_LWT [B-A], SA_TEMP [B-
A] 

0.75 0.8 15 0.27 

5257 RF_SPD [A-B], EA_DMPR [A-B], RA_CFM 
[A-B] 

RF_SPD [B-C] 0.82 1 30 0.18 

5259 RF_SPD [A-B], EA_DMPR [A-B], RF_SST [A-
B] 

RF_SPD [B-C] 0.82 1 30 0.09 

6415 RF_SPD [A-B], CHWC_LWT [C-B],  
RF_WAT [A-B] 

RF_SPD [B-C], CHWC_LWT [B-A] 0.8 0.8 15 0.09 

6416 RF_SPD [A-B], CHWC_LWT [C-B], RF_DP 
[A-B] 

RF_SPD [B-C], CHWC_LWT [B-A] 0.8 0.8 15 0.09 

6126 RF_SPD [A-B], CHWC_LWT [C-B],  
RF_WAT [A-B] 

RF_SPD [B-C], CHWC_LWT [B-
A], SA_TEMP [B-A] 

0.89 0.8 15 0.09 

8309 RF_SPD [A-B], CHWC_LWT [C-B], 
EA_DMPR [A-B] 

RF_SPD [B-C], CHWC_LWT [B-
A], SA_TEMP [B-A] 

0.78 0.78 15 0.09 

15268 RF_SPD [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

RF_SPD [B-C], SA_TEMP [B-A] 0.8 0.89 30 0 

15269 RF_SPD [A-B], EA_DMPR [A-B], RF_DP [A-
B] 

RF_SPD [B-C], SA_TEMP [B-A] 0.8 0.89 30 0 

1253 SF_SPD [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

SA_TEMP [B-A] 0.70 0.8 15 0.27 

1254 SF_WAT [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

SA_TEMP [B-A] 0.70 0.8 15 0.27 

1406 
 

SF_WAT [A-B], EA_DMPR [A-B], RF_WAT 
[A-B] 

CHWC_DAT [B-A], SA_TEMP [B-
A] 

 

0.70 0.8 15 0.27 

5240 
 

CHWC_EWT [D-C], EA_DMPR [A-B],  
RF_WAT [A-B] 

CHWC_DAT [B-A], SA_TEMP [B-
A] 

 

0.70 0.8 30 0.27 
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Table (b) reports 26 rules (two for each unique consequent transaction) 
extracted from the transient dataset with the specification of the event chains of 
antecedent and consequent, the value of support and confidence within the 
ACTUAL TIME LAG and its duration (evaluated on the training dataset), and the 
SUPP.DAYFAULTY (evaluated on the testing dataset).  
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included/partially included in this dissertation.  
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