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Abstract

Lasers surgery offers precision and fewer complications, but challenges include controlling
ablation depth and identifying tumor edges. Intraoperative imaging, especially optical
laser scanning microscopes (LSM), such as optical coherence tomography (OCT) and
image scanning microscopes (ISM), may overcome these issues. They provide benefits
such as, cost-effectiveness, and no radiation exposure. This work investigates the use of
OCT and ISM to enhance surgeries providing better depth perception, clearer tumor
margins, and surgical precision. Transitioning optical imaging from bench-top to clinical
settings requires overcoming challenges like limited focus depth, motion blur, and slow
data acquisition. Computational sensing may be a solution to tackle this problem by
co-designing hardware and software through techniques like optimization and machine
learning. In particular, compressive sensing is of special interest here, as it enables
sampling data below the Nyquist rate and is able to reconstruct original signals using
computational methods. Compressive sensing is typically used in single-pixel cameras.
This work explores applying compressive sensing to LSM, specifically ISM and OCT.
First, we investigate how to combine laser surgery with optical imaging modalities. Then,
we apply compressive sensing ISM and leverage the micro-images from a single-photon
avalanche diode (SPAD) to produce better images. We address the limitations of 1D and
2D OCT scans under the separate optical path (SOP) category by using a 3D-OCT scan
to determine the ablation depth. OCT scanning time is reduced by applying compressive
sensing without significant loss in the quality of the depth map. Finally, we use the
depth map to control the exposure time (laser on/off time) to accurately ablate a given
depth across different tissue types in a feedback controller. So far, ablation over a given
point has been performed using a high-speed scanner, but the ablation area remains
limited. Auto-CALM extends the capability of CALM to ablate over a larger area
defined by the surgeon automatically. It employs target tracking, laser tracking, and an
ablation algorithm. Tested on a porcine model simulating breathing, Auto-CALM showed
high precision and promised significant surgical advancements. Integrating compressive
sensing with LSM modalities such as OCT and ISM is a significant step in transferring
this technology from bench-top to clinical settings. We have shown that it reduces the
photo-bleach of ISM, reduces the scanning time of OCT, and enables the control of the
laser ablation depth. Additional efforts, such as the development of endoscopic probes
that incorporate these technologies and the extension of the depth of focus, are essential
for the clinical application of these advancements.
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Chapter 1

Introduction

Abstract
The discussion begins with laser microsurgery and the challenges it introduces. Following
this, the focus shifts to imaging methods utilizing lasers, specifically Optical Coherence
Tomography (OCT) and Image Scanning Microscope (ISM). The organization of the
thesis is then outlined, and the study’s main contributions are highlighted.



2 Introduction

1.1 Laser Microsurgery
The history of laser surgery begins in 1951, with the first medical application reported
by Goldman in 1962. Since then, laser technology has evolved significantly, leading to
minimally invasive procedures, shorter recovery times, and less risk to patient health [19],
[6]. Lasers are used in a wide range of surgical applications, including cardiovascular
surgery, ophthalmology, lithotripsy, cancer treatment, and cosmetic procedures. In
cardiovascular surgery, for instance, lasers have proven effective in angioplasty for coronary
and peripheral vessels [19]. In ophthalmology, lasers have revolutionized procedures like
LASIK for vision correction [66]. In the field of oncology, lasers are used for tumor
ablation and other cancer treatments [6]. In cosmetic and dermatological procedures,
lasers are used for skin resurfacing, scar revision, hair removal, and tattoo removal [75],
[45]. Laser surgery in Ear, Nose, and Throat (ENT) or Otorhinolaryngology has become
a common practice due to its precision, minimally invasive nature, and wide range of
applications. The most commonly used lasers in ENT are the CO2 (carbon dioxide)
laser, the diode laser, and the neodymium YAG (Nd:YAG) laser[69]. Laser surgery
offers several benefits, including non-contact tissue ablation, precise cutting, hemostasis,
low cicatrization, reduced postoperative pain, and reduced tissue swelling. In addition,
they can be combined with endoscopes, microscopes, and surgical robotic systems. The
development of the CO2 laser in 1964 [62] brought an alternative approach to perform
incisions on soft tissues. In 1972, Jako et al. conducted animal studies to demonstrate
the viability of performing surgical interventions in the larynx using a CO2 laser as a
tissue cutting tool [40]. Three years later, Strong [77] reported on the use of a CO2
laser in conjuction to a microscope for the excision of a laryngeal carcinoma from a
human patient. Laser surgery presents numerous advantages over traditional cold-steel
surgery. These advantages include better control over bleeding, enhanced sterility of the
surgical site, and the absence of post-operative edema [82], [85]. Laser surgery is now an
established alternative to radiation therapy for the treatment of laryngeal cancers [74],
[68]. A review by Milford and O’Flynn from 1991 provides a detailed comparitive study
on radiotherapy and laser excision for the treatment of laryngeal carcinomas taking into
account recurrence and total treatment period. The conclusion was a positive assessment
of laser surgery as a valid alternative treatment [57]. Soon after, it was reported that
laser surgery enables effective treatment of T1 and T2 type tumors in the larynx, and
constitutes a convenient and acceptable alternative for the patient [26].
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1.2 Transoral Laser Microsurgery (TLM)
Technological progress has transformed lasers in versatile tools for the treatment of diverse
pathologies affecting delicate human organs. Together with other important applications
such as eye surgery, transoral surgery is a major application field for lasers. Transoral
Laser Microsurgery (TLM) is an evolution of the early techniques for laser surgery
of the larynx. It includes a suite of minimally invasive endoscopic techniques for the
excision of minuscule laryngeal diseases [68] as shown in Fig 1.1. In degenerative diseases
associated with cancer, the primary objective of TLM is to ensure a complete eradication
of the malignant tissue. At the same time, surgeons try to minimize the removal of
healthy tissues, to preserve as much organ function as possible [76]. The execution
of such accurate resections requires the use of a microscope and precise control of the
laser incisions. In today’s surgical practice, laser incisions are performed manually, i.e.
moving a free-beam laser by means of a joystick-like device, called laser micromanipulator
[68]. The micromanipulator is coupled to the operating microscope, forming an effective
surgical device, yet, it is difficult to master, especially because it breaks the hand-eye
coordination of the surgeon [22].

Figure 1.1 The state-of-the-art surgical setup in laser phonomicrosurgery [54]
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1.3 Challenges in TLM
There are two main issues in TLM. First, the presently available technologies for TLM
do not include any support for sensing the depth of laser cuts. The quality of incisions
relies entirely on the dexterity and visual perception of clinicians. Extensive training
is required to develop an effective laser cutting technique,which includes both (i) the
acquisition of basic knowledge of the physical principles behind laser ablation of tissue;
and (ii) the ability to manipulate the laser parameters and its exposure time in order to
provide accurate cutting [68], [76]. Parameters traditionally used in TLM include power,
energy delivery mode, pulse duration and incision scanning frequency. The resulting
incision depends on the combination of these parameters plus the total time of laser
exposure. However, it is not evident how to regulate these parameters in order to
achieve the desired cutting level. While experienced clinicians normally have sufficient
knowledge and understanding of the laser ablation processes, lack of experience represents
a practical problem for many others. Secondly, there is the difficulty in determining
tumor margins. laser surgery is challenging because of the complex laser-tissue interaction
process. This leads to poor ablation depth control and tissue specificity, increasing the
risk of accidental damage to nerves or blood vessels [59]. In our lab, depth control of laser
surgery was previously achieved based on a tissue model using feedforward controllers
[30]. Nevertheless, the efficacy of these controllers is contingent upon the fidelity of the
tissue model, which presents significant challenges due to the heterogeneity of tissue
types. Further complexity arises within individual tissue classifications, where variability
is influenced by factors such as moisture content and the presence of neoplastic tissues,
both of which substantially complicate the modeling process.

1.4 Intraoperative imaging
Intraoperative imaging can mitigate these challenges by providing accurate depth of
ablation which can be used in a feedback controller. The current lack of intraoperative
imaging capabilities has been associated with increased chances of over or under-treatment.
Under-treatment requires repeated surgery with the associated cost, while over-treatment
can lead to complications and reduce surgical quality. Various medical imaging tech-
nologies, such as MRI and CT, are commonly used in preoperative or postoperative
settings. However, their use during intraoperative scenarios is generally limited. In
contrast, ultrasound can be utilized intra-operatively, offering good imaging depth but
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has lower resolution (0.2–2 mm) [34]. Optical coherence tomography (OCT) addresses
this niche challenge of high-resolution (5–10 µm) intraoperative imaging. It has low-cost,
radiation-free, and fiber-based advantages. In addition, OCT can be integrated with
hand-held probes, laparoscopes, catheters, and endoscopes [33]. Therefore, OCT and ISM
(Image Scanning Microscope) imaging provide microns and sub/micron-level resolution,
respectively. Secondly, they can easily integrated with laser-based microsurgery.

1.5 Image Scanning Microscope
Laser scanning microscopy (LSM) is the optical architecture at the base of many imaging
and spectroscopy techniques widely used in the fields of material science [80], biology [7],
and medicine [36]. The reason for the success of LSM-based imaging techniques is their
high spatiotemporal resolution and their capability to provide quantitative information.
The LSM concept consists in focusing and scanning a laser beam on a sample to record
either the scattered or fluorescent light with a single-element detector. Therefore, a
complete image is built pixel-bypixel by arranging the recorded intensity values along the
scanning pattern [70]. Among the LSM techniques, confocal laser scanning microscopy
(CLSM) became especially popular, thanks to its ability of rejecting out-of-focus light
and its superior spatial resolution. In detail, CLSM setups are designed to image the
focal plane of the objective lens onto a circular pinhole, placed before the detector. Thus,
the pinhole acts as a spatial filter allowing most of the light coming from the focal
plane to reach the detector, while blocking most of the out-of-focus light. The closer
the pinhole, the higher the spatial resolution and the signalto-background (SBR) ratio
of the images [20]. Notably, CLSM images achieved a lateral resolution twice better
than the optical diffraction limit in the extreme case of a point-like pinhole aperture
[21], [10], [9]. Thus, theoretically, CLSM should be a super-resolution technique, but
in a realistic scenario, the pinhole cannot be fully closed. Indeed, closing the pinhole
reduces the overall amount of recorded photons, compromising the signal-to-noise ratio
(SNR) of the acquired images and hindering the capability of CLSM to achieve super-
resolution. Recently, image scanning microscopy (ISM) transformed confocal microscopy
into a practical super-resolution technique. Theoretically developed in the 1980s [10],
[71], [9], it has been experimentally realized for the first time in 2010 [58]. The core
idea behind ISM is to replace the single-element detector with an array of detectors
as shown in Fig 1.2, each detector acting as in a closed pinhole configuration. Thus,
after a complete scan, each detector element generates a confocal image which represents
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the same sample from a slightly different point-of-view. Furthermore, each detector
contributes to the photon detection efficiency, maximizing the SNR of the acquisition.
As a result, the ISM microscope provides a multi-dimensional dataset, which can be
intuitively seen as a collection of scanned images, as many as the elements of the detector
array, almost identical in content, but different in SNR and each shifted from each other
by a quantity named shift-vector. Thus, estimating and compensating for the shifts
enables the summation of all the collected images, constructing an ISM image with
sub-diffraction resolution and enhanced SNR.

Figure 1.2 Image scanning microscopy. (a) A sketch of the laser scanning microscope
equipped with a SPAD array detector. (b) The ISM dataset, seen as a set of scanned
images as many as the number of elements of the detector array. (c) The ISM dataset, seen
as a collection of micro-images, as many as the scan points. The depicted microimages
correspond to the scan points highlighted in (b) as white boxes [94]. Figure licensed
under CC BY 4.0.

1.6 Optical Coherence Tomography
OCT has a good potential to address these challenges given the following: (1) its imaging
resolution ranges between 5 and 10 µm, which is enough to resolve precancerous lesions;
(2) its penetration depth is normally between 1 and 3 mm, which is sufficient to image

https://creativecommons.org/licenses/by/4.0
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the entire depth of epithelial tissues; and (3) it is an optical fiber-based imaging system
and thus has potential to be compact, free of radiation, and affordable [78].

Optical Coherence Tomography (OCT) is a non-invasive imaging technique that
resembles ultrasound imaging. However, unlike ultrasound, it uses an infrared laser to
image both surface and subsurface details. OCT images are fundamentally made up of a
one-dimensional point scan called an A-scan. A point on the sample is scanned to acquire
its raw spectral data, consisting of spectrum intensity along various depths. These data
are processed to obtain the A-scan data, which represents the reflectivity signal strength
at various depths in the direction of that point.When the A-scan is repeated along a
line in the sample, a B-scan (2D images) is obtained. Repeating the B-scan along the
surface of the sample yields a C-scan (3D images). Laser scanners, which may be based
on various technologies such as mirror galvanometers, MEMS-mirrors, MEMS-lenses, or
fiber scanners, perform both B-scans and C-scans.

The most straightforward OCT configuration is based upon the Michelson interfer-
ometer, which splits the light 50/50 into a sample arm and a reference arm. In this
simple configuration, nearly 75% of the optical power is wasted [67]. The SNR of OCT
is approximately proportional to the optical power and is inversely proportional to the
bandwidth of the detection electronics. Hence, alternative power-conserving configura-
tions have been developed. As described in [67], such alternative configurations may use
optical circulators, unbalanced couplers, and/or balanced heterodyne detection.
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Figure 1.3 Comparison between Spectral Domain OCT (SD-OCT) and Swept Source
OCT (SS-OCT) by [24]. Figure licensed under CC BY 4.0.

The first-generation OCT is known as Time-Domain OCT (TD-OCT). In these
systems, the reference arm was mechanically scanned, limiting the image acquisition rate.
Evolution toward Fourier Domain OCT (FD-OCT) gave rise to the second-generation
OCT, which eliminated the need to mechanically scan the reference arm. These newer
devices can be classified into either Swept Source (SS-OCT) or Spectral Domain (SD-
OCT), as illustrated in 1.3. Both methods are equivalent from a theoretical point of
view. However, SD-OCT uses a broadband light source with a spectrometer at the
interferometer exit. SS-OCT uses a laser with a narrow instantaneous line width that
is rapidly tunable over a large wavenumber range, which is combined with a single
detector [4]. Both SD-OCT and SS-OCT are capable of real-time imaging with resolution
(5–10 µm), which is about two orders of magnitude finer than ultrasound imaging (0.2–
2 mm) [35]. Detailed mathematical descriptions of OCT fundamentals can be found
at [13, 39].

Another modern OCT technology is the polarization-sensitive optical coherence
tomography (PS-OCT). This is a set of hardware and software extensions to OCT

https://creativecommons.org/licenses/by/4.0
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that allows measuring the birefringence of local regions of the tissue [1]. A tissue
is said to be birefringent if the real part of its refractive index is polarization state
dependent. Tissues such as muscle, cartilage and tendons exhibit birefringence due to
their internal arrangement of sub-cellular fibrous structures. When the tissue is damaged
or undergoes necrosis, this structure degenerates with a corresponding reduction in
birefringence. The degree of birefringence, thus, gives an indication of the degree of tissue
damage [39, 1].

Despite its capabilities and different imaging modalities, standard OCT systems
cannot image internal organs due to their limited imaging depth.

1.7 Complementary Nature of ISM and OCT
OCT is capable of visualizing micron-scale tissue structural morphologies with the imaging
contrast predominantly sensitive to the scattering property of tissues. Fluorescence
imaging techniques such as confocal, ISM, two-photon excitation fluorescence (TPEF)
can provide depth-resolved submicron-scale images with the imaging contrast coming from
exogenous or endogenous fluorophores, thus providing molecular information which cannot
be obtained by OCT. The two complementary imaging modalities provide important,
yet different optical information based on unique contrast mechanisms. There is, hence,
a strong motivation for developing integrated platforms for performing both OCT and
fluorescence imaging. Furthermore, this combination has proven effective in visualizing
morphology and fluorophore distribution in several benchtop systems [55].

1.8 Thesis Organisation & Contributions
2. Literature Review

This chapter delves into the current advancements in OCT-guided laser surgery in detail.
Subsequently, the importance of separate optical paths (SOP) and computational sensing
is briefly highlighted.

• Publications: A. Gunalan and L. S. Mattos, "Towards OCT-Guided Endoscopic
Laser Surgery—A Review," Diagnostics, vol. 13, no. 4, pp. 677, Feb. 2023.
[Online]. Available: link

http://dx.doi.org/10.3390/diagnostics13040677
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3. Compressive Image Scanning Microscope
In the third chapter, the limitations of Image Scanning Microscopy (ISM) are overcome
by reducing the number of scan points fourfold through a fixed sampling strategy and
leveraging computational sensing to reconstruct the full image. To the best of our
knowledge, this is the first application of compressive sensing to ISM.

• Publications: A. Gunalan, M. Castello, S. Piazza, S. Li, A. Diaspro, L.S. Mattos,
P. Bianchini, "Compressive Image Scanning Microscope," Presented at International
Symposium on Computational Sensing, Luxembourg, 2023. link

4. Compressive 3D OCT-Guided Depth Control
To overcome the limitations of 1D and 2D OCT scans under SOP categories, a 3D-OCT
scan was employed to determine ablation depth. Additionally, compressive sensing was
applied to OCT hardware to decrease scanning time without a significant loss in depth
map quality. Lastly, the depth map was utilized to control the exposure time (laser on/off
time) to accurately ablate a given depth across various tissue types using a feedback
controller.

• Publications: (in-preparation)

5. Auto-CALM: Automatic Computer-Assisted Laser Microsurgery
In the previous chapters, ablation over a given point was performed using a high-speed
scanner, but the area of ablation remained limited. This chapter extends the capability
of CALM to automatically ablate over larger areas defined by the surgeon. Auto-CALM
includes laser spot tracking, target tracking, and an automatic ablation algorithm.

• Publications: S. Li, A. Gunalan, M.A. Azam, V. Penza, D. G. Cladwell, L.S.
Mattos, "Auto-CALM: Automatic Computer-Assisted Laser Microsurgery," IEEE
Transactions on Medical Robotics and Bionics. (accepted)

6. Conclusion
• Summarize the entire work and discuss further future research direction.

https://doi.org/10.48550/arXiv.2307.09841


Chapter 2

Literature Review

Abstract
This chapter reviews various state-of-the-art approaches for integrating OCT and laser
surgical systems. These methods are categorized into three types: a double-clad fiber
(DCF), a dichroic mirror, and separate optical paths. Additionally, the critical factors to
consider when designing these systems are summarized, with a special emphasis on the
use of Separate Optical Paths (SOP). The chapter concludes by introducing computational
sensing and its relevance in this context.
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2.1 Introduction
In this chapter, the state of the art in OCT-guided laser surgery is reviewed. The
references are organized based on the methods utilized to integrate a high-power surgical
laser with OCT. To date, these methods include: (1) double-clad fiber [41]; (2) dichroic
mirror [43]; and (3) separate optical paths [28].

2.2 Double-Clad Fiber (DCF)
When light travels in an optical fiber, only waves at certain discrete angles greater
than or equal to the fiber’s critical angle will propagate, resulting in discrete modes or
eigenfunctions. In a single-mode fiber (SMF), due to the small core diameter, only one
mode of light propagates through it. Whereas in the multi-mode fiber (MMF), multiple
modes propagate. Double-clad fibers (DCF) have a single-mode core surrounded by a
multi-mode inner cladding, as shown in Figure 2.1a. The inner core is used for OCT
imaging, and the outer core is used for laser therapy. DCF can support wavelengths up
to 1750 nm [52]. However, the DCF is known to have cross-talk between the single-mode
core and inner cladding, which results in ghost images and/or increased noise floor [8].

Maltais-Tariant et al. synchronized the therapy galvanometer and imaging galvanome-
ter of a double-clad fiber system to deliver the treatment laser only in targeted areas [52].
A shutter was used to stop the therapy laser once the targeted therapy duration or
coagulation was reached. A diagram of the system setup is presented in Figure 2.1b. It
included a reflective collimator based on a 90° off-axis parabolic mirror, which contributed
to avoid damaging the OCT system with the therapy laser’s high power. Ghost artifacts
induced by the DCF were reduced by splicing an extra 1 m of Single Mode Fiber (SMF)
between OCT and DCF. The process was demonstrated on an ex vivo rat tongue and
abdominal muscles for ablation depths ranging from 500 to 1000 µm.

Jivraj et al. coupled an OCT signal into the signal core of a fiber laser using a
commercially available pump combiner [42]. The tilted fiber gratings were used to protect
the OCT system from the high-power laser. The saturation of the OCT’s balance detector
by the reflected leakage light from the combiner was avoided by firing ablation pulses
during the latter half of the A-line period, when no OCT data are being gathered. The
system demonstrated the feasibility of the method, but the following drawbacks were
observed: (1) OCT sample beam dispersion due to the fiber laser; (2) attenuation of



2.2 Double-Clad Fiber (DCF) 13

(a)

(b)

Figure 2.1 OCT-guided laser surgery systems based on double-clad fibers. (a) Different
types of optical fibers: single-mode fiber (SMF), double-clad fiber (DCF) and multi-mode
fiber (MMF). (b) Experimental setup proposed for co-localized OCT imaging and laser
therapy, used with permission from [52] © The Optical Society.

OCT due to the large mode area of the fiber laser; and (3) bending loss. In addition,
the system did not incorporated any steering control of the end of the fiber.

Chang et al. described the use of en-face OCT maps to classify tumors and non-tumor
tissues based on Otsu’s method [18]. Then, by combining this information with laser
ablation units, they generated driving signals for the therapy laser. In the system, the use
of a DCF avoided the need for image registration. However, the filters used to avoid
high-power backscattered radiation attenuated the OCT signal, affecting image quality.
An additional limitation included the fact that the system did not consider potential
patient motions between the acquisition of OCT images and the subsequent laser therapy.
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2.3 Dichroic Mirror (DM)
A dichroic mirror allows light of a certain wavelength to pass through, while light of
other wavelengths is reflected. They are made by alternating layers of optical coatings
with different refractive indices. The interfaces between these layers produce phased
reflections, selectively reinforcing certain wavelengths of light. Reflective collimators
are typically based on a 90◦ off-axis parabolic mirror, which has a focal length that
remains constant over a broad wavelength range. In the studies reviewed in this section,
dichroic mirrors and reflective collimators are used to align OCT and high-power lasers.
This combination of optics is useful to avoid damaging the OCT setup with the intense
backscattered high power laser [83].

Zhang et al. investigated the potential of OCT-guided laser surgery in cochleostomy
(inner ear surgery) [89]. This procedure involves drilling the cochlea while avoiding
damage to the cochlear endosteum. However, due to the small diameter and thickness of
the endosteal layer, the drilling process reaches the limits of human capabilities. Thus,
the researchers used OCT images to control the pulse position and duration of a high-
power laser in closed-loop, as illustrated in Figure 2.2. This enhanced the precision of
the operation, preventing laser exposure to the critical structure. Nonetheless, detection
of the critical structure was difficult due to the presence of the highly scattering bone.
Therefore, they developed a speckle averaging technique called History Compounding.
Finally, they also used OCT as an accurate optical tracking system by locating small
laser-ablated landmarks surrounding the cochleostomy. However, open challenges for
clinical translation were still identified. For example, the experiments demonstrated that
100% protection of the endosteum was not guaranteed, as the channel bottom penetrated
the “stop surface” in some points. In addition, the critical structure segmentation was
semi-automatic and OCT imaging, processing, and CO2 laser control were conducted by
three independent software packages. This resulted in high operation complexity, which
may lead to increased surgical time.



2.3 Dichroic Mirror (DM) 15

(a)

(b)

Figure 2.2 OCT-guided laser surgery systems based on dichroic mirrors. (a) Control
loop scheme of the OCT-guided laser cochleostomy by [89] is licensed under CC BY 3.0.
(b) Data flow and representation in the smart laser surgical system, used with permission
from [43] © The Wiley .

Katta et al. used prior OCT images to obtain a laser ablation pattern avoiding blood
vessels in a tissue phantom [43]. As shown in Figure 2.2, the laser power and its ON/OFF
times were dynamically controlled based on a “blow-off” model during A-scan OCT.
However, the field curvature in the scanning element and the laser’s finite ON/OFF
time resulted in an uneven cut. Recently, they used prior OCT images to compute the

https://creativecommons.org/licenses/by/3.0/
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three-dimensional tumor margin and angiography images to guide the coagulation and
ablation steps in a brain cancer surgery of a xenograft model [44].

In 1999, Boppart et al. used OCT to image 65 sites on five ex vivo rat organ tissues
before, during, and after laser ablation [11]. Following imaging, tissue registration
was achieved by histologic processing to confirm the ablation site’s morphology. They
identified that the carbonized tissue layer rapidly absorbs and scatters both the incident
argon laser and OCT imaging beams. Because of this, OCT imaging penetration is
reduced and shows shadowing artifacts. The same group performed another study on
prostate ablation [12]. In this case, it was noted that the loss of cell viability in the
in vitro specimens reduced the contrast when compared to in vivo studies. It was also
suggested that the presence of blood will further reduce OCT imaging penetration.

Leung et al. ablated ex vivo cortical (outer bone) using pulsed lasers while imaging
in real time [48]. The intense backscattered light from the ablation process was avoided
using inline coherence imaging (ICI). The ICI is analogous to M-mode (“motion-mode”)
ultrasonography. This provided the depth information in real time, avoiding tomography.
They studied both the thermal and the ultrashort pulsed regimes of the ablation laser,
finding that carbonization from the thermal regime affected image quality.

Ohmi et al. studied tissue laser ablation using OCT [60]. For this, they controlled
the ablation lasers using an electronic shutter and used OCT to image the ablation
crater. Laser ablation and OCT imaging were repeated following a sequential automatic
procedure. Using this method, they performed experiments on human teeth and chicken
bones. The depth of the crater and the ablation rate was determined from the OCT
images. The ablation rate was estimated as 0.21 µm per pulse on the human tooth.
However, the resolution of the OCT imaging system was only 10 µm, leading to the
imprecise measurement. Real-time feedback was not possible due to the slower data
acquisition of TD-OCT used.

2.4 Separate Optical Paths (SOP)
Fan et al. integrated a bench-top OCT setup and an endoscope systems with fiber
laser to create a proof-of-concept system for OCT diagnostics and guidance during
laser surgery [28]. In the system, the OCT beam and the ablation laser have separate
optical paths, but they are manually aligned using the endoscopic images. In this setup,
2D-OCT is initially used to generate a tumor map and then to monitor the laser ablation.
The results demonstrated the potential of OCT-guided laser surgery for accurate tumor
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resections. Nonetheless, significant challenges remained open to achieve full integration
of OCT and laser ablation into an endoscopic system.

Li et al. fastened an electromagnetically actuated forward scanning OCT probe of
0.5 mm diameter with a hollow waveguide to permit co-planar ablation and imaging [51].
The waveguide’s tip had a CaF2 window to align the laser with the OCT signal, as shown
in Figure 2.3. The system was tested in gelatin and ocular tissues. Real-time 1-D OCT
images were used to monitor the lasing operation to avoid ablating critical structures.
The combined probe functioned as long as the surface being ablated was within the
scanned volume, approximately 3 to 5 mm from the probe tip.

Figure 2.3 Combined miniature B-scan OCT and surgical laser in an intraocular probe,
used with permission from [51] The Wiley. (A) Picture of the device. (B) Magnified
picture showing the support strucutre (white arrow) and the combined OCT (red arrow)
and laser (blue arrow) probe tip. (C) Details of the optical components that allow
co-planar ablation and imaging. (D) Diagram of the combined OCT and laser probe tip
showing the scanning optical fiber.
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2.5 Why SOP?
Regarding OCT-guided laser surgery, it is clear from this review that three major factors
should be considered when designing such systems. First, the OCT detector should
not be saturated with the backscatter reflected light from the ablation laser. This can
be achieved by using a filter or by synchronizing the timing of the OCT imaging and
the therapy laser pulse, as described in the papers reviewed herein.Second, the focusing
optics have to be carefully designed considering both lasers. Mirrors are a good choice
as they provide broadband and high thermal load. However, they make the integration
into an endoscopic system more challenging. Nonetheless, the use of MEMS technology
may be a viable solution to these miniaturization and integration challenges. Finally,
the three major methods to co-align the OCT laser and a therapy laser include the use
of a double-clad fiber (DCF), a dichroic mirror, or separate optical paths. Although the
DCF allows for easier endoscopy integration, the laser power is limited. It is also known
to have crosstalk between the single-mode core and inner cladding, which results in ghost
images and/or increased noise floor [42]. The Dichroic mirror on the hand can easily
handle power laser, but it is difficult to miniaturize. It will also require redesigning the
existing high-power surgical setup, increasing the cost and slowing the clinical adaptation.
On the contrary, a Separate Optical Path (SOP), in which two separate probes are used,
provides easier clinical adoption with the existing surgical workflow. Hence, this work
will focus on the separate optical path.

2.6 Computational Sensing
Despite the numerous advantages offered by these optical imaging modalities, adapting
them from a traditional bench-top setup to a clinical workflow presents numerous
challenges, such as shallow depth of focus, short working distance, motion blurring
and slow acquisition, etc. Computational sensing is a rapidly evolving area within the
signal processing field that aims to tackle the above-mentioned problems by co-designing
hardware and software. Unlike the traditional methodology of designing hardware
and software separately, here, the design is approached synergistically by leveraging
computational techniques such as optimization, machine learning, and hardware design to
achieve performance previously considered impossible. One such example is compressive
sensing which samples below the Nyquist sampling frequency and reconstructs the
original signal by leveraging computational resources. Typically, compressive sensing is
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implemented by Micromirror Device (DMD) or coded aperture in single-pixel cameras.
The application of CS to Laser Scanning Imaging is limited.





Chapter 3

Compressive Image Scanning
Microscope

Abstract
A novel approach to implementing compressive sensing in laser scanning microscopes
(LSM), specifically in image scanning microscopy (ISM), is presented, utilizing a single-
photon avalanche diode (SPAD) array detector. This method overcomes two significant
challenges in applying compressive sensing to LSM: the computational time for the
sampling matrix and the quality of reconstructed images. A fixed sampling strategy is
employed, which skips alternate rows and columns during data acquisition, reducing the
scan points by a factor of four and eliminating the need for computing different sampling
matrices. The parallel images generated by the SPAD array are exploited to enhance the
quality of the reconstructed compressive-ISM images compared to standard compressive
confocal LSM images. The results showcase the approach’s effectiveness in producing
higher-quality images with reduced data acquisition time and its potential benefits in
minimizing photobleaching.
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3.1 Introduction
Compressive sensing allows the reconstruction of high-dimensional (N) signals x from
low-dimensional (M) measurements y, as long as the signal is sparse on a particular basis,
such as wavelet or shearlet (N > M). Generally, solving for x in y = Ax is an ill-posed
problem, meaning there is no unique solution or the solution is not robust to small data
perturbations [27]. Therefore, a regularizer term (ϕ) is introduced to solve it.

argmin
x

ϕ(x) s.t. Ax = y (3.1)

Compressive sensing is commonly implemented using a Digital Micromirror Device
(DMD) or coded aperture in single-pixel cameras. Each row of A corresponds to a unique
binary mask, as illustrated in Fig. 3.1. M unique binary masks sample the object of
interest sequentially to obtain each element of the measurement matrix Y [86], [25].

Figure 3.1 Standard optical architecture for compressive sensing based on the single-pixel
camera.

In Laser Scanning Microscopes (LSM), images are formed by scanning point-by-
point, which is the basis for multiple imaging modalities like confocal microscopy, image
scanning microscopy (ISM), and optical coherence tomography. Compressive sensing
could enable higher temporal resolution and reduced photobleaching through efficient
sampling. However, most existing laser scanning hardware doesn’t use encoding devices
like DMD or coded aperture, limiting the application of compressive sensing in such
configurations.

Pavilion (2016) was the first to implement compressive sensing on such a configuration
[63], using the point spread function (PSF) of the optical setup as a smoothing function,
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which led to a reduction of confocal fluorescence measurements by 10-15 times. In 2018,
Francis et al. [31] used a multi-resolution approach for better reconstruction in confocal
images, but both the quality, and time, of the reconstructed image is lower than standard
TVAL3 solver [72]. Further details about TVAL3 are explained in section 3.2.2. In 2021,
Hu et al. improved the speed in Raman imaging by sampling only the region of interest
and avoiding scanning the background substrate, but the sampling matrix A needed
to be recomputed for every new image [38]. The practical application of compressive
sensing to laser scanning imaging modalities is limited by three main factors: (1) the
solver’s reconstruction time, (2) the time to compute the sampling matrix (A), and (3)
the quality of the reconstructed images.

In this work, the focus is on addressing the latter two issues. Initially, alternate rows
and columns are skipped during data acquisition, which reduces the number of scanned
points by a quarter, as detailed in section 3.2.3. This process establishes a fixed sampling
matrix A for different images, removing the necessity to compute various A matrices.
Secondly, the parallel images produced by the Image Scanning Microscope (ISM) on the
single-photon avalanche diode (SPAD) array detector [15] are utilized to enhance the
quality of reconstructed images. To the best of the author’s knowledge, this represents
the first instance of implementing compressive sensing on an image-scanning microscope
(ISM).

3.2 Materials and Methods

3.2.1 Simulation Setup and Ground Truth

The open-source ISM simulation software, BrightEyes-ISM, is utilized to create ISM
images. Initially, a 2D point spread function (PSF) is generated for each element in the
SPAD array detector as shown in Fig. 3.2. The simulation space is configured with a pixel
size of 25 nm, detector element size of 50 nm, detector element pitch of 75 nm, and the
total magnification of the optical system is set to 500. The PSF is simulated for excitation
and emission wavelengths of 640 nm and 660 nm, respectively. Subsequently, synthetic
tubulin phantoms are generated as depicted in Fig. 3.3 using the BrightEyes-ISM package
[92]. These phantoms mimic various tubular microscopic structures frequently imaged
by ISM, with variations in the number of tubular filaments and the thickness of each
filament to produce a diverse set of samples. These phantoms are then convolved with
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the PSF for each element of the SPAD array detector to produce several parallel images.
Finally, Poisson noise is added to the resulting images as illustrated in Fig. 3.4.

Figure 3.2 Point Spread Function (PSF) for each element in the SPAD array detector
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Figure 3.3 Phantom
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Figure 3.4 Parallel Micro-image on the Detector
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3.2.2 Compressive Sensing Reconstruction

There are two common choices for the regularizer ϕ(x) in Eq. 3.1 [29]: (1) L1 norm ||x||1
and (2) Total Variation (TV ) norm ||x||T V :

||x||T V :=
n1∑
i=1

n2∑
j=1
|xi+1,j−xi,j |+ |xi,j+1−xi,j | (3.2)

TV regularization is more appropriate for image reconstruction because it preserves
edges and boundaries [90]. A comprehensive review of various algorithms for solving L1

norm and TV norm can be found in [72]. Based on the provided information, TVAL3
[49] was chosen due to its fast reconstruction time.

3.2.3 Scanning Pattern

Compressive sensing enables the reconstruction of the original signal from 10-15% of the
sample through random scanning. However, implementing such an arbitrary scanning
system on the galvo mirror poses significant challenges. As a solution, a fixed sampling
strategy was adopted by scanning alternate rows and columns, as shown in Fig. 3.5,
achieving an overall compression ratio of 25%. An additional benefit of this method is the
consistency of the sampling matrix A across different images, unlike in random scanning,
where different A matrices must be computed for different samples. The sampled data
(y) and the sampling matrix (A) are then used to reconstruct the image using the TVAL3
solver.

Figure 3.5 Sampling strategy: Alternate rows and columns are skipped. White indicates
sampled location, and black shows the unsampled location.

3.2.4 ISM Reconstruction

The ISM image is generated by combining all parallel images from the SPAD array
detector. Adaptive Pixel Reassignment (APR) [16], [17], available in the BrightEyes-
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ISM package, is employed for this merging process. This procedure is applied to the
corresponding reconstructed images from compressive sensing to obtain the Compressive-
ISM images. For the Confocal LSM image, the central element of the SPAD array
corresponds to the standard image, and in this case, the reconstructed image from
compressive sensing is used directly.

3.3 Results and Discussion
The quality of reconstructed images for both Compressive ISM and Compressive Confocal
LSM is evaluated by computing the relative error using Eq. 3.3:

Relative Error = ∥Ifs− Ics∥F
∥Ifs∥F

(3.3)

where ∥∥F denotes the Frobenius norm, Ifs represents the fully sampled image
corresponding to the top row in Fig.3.6, and Ics corresponds to the compressive images
corresponding to the bottom row of Fig.3.6. Twenty-five samples are used to calculate
the mean and standard deviation, as shown in Table 3.1. Compressive ISM yields better
results compared to Compressive Confocal LSM images, as illustrated in Fig.3.6. This
improvement can be attributed to the utilization of parallel images generated by the
SPAD array. Moreover, our proposed sampling strategy reduces the number of scanned
points by a factor of four, leading to faster data acquisition, decreased photobleaching in
the sample, and eliminating the need to compute the sampling matrix A for different
samples.

Table 3.1 Quality of reconstructed Images

Imaging Technique Relative Error
Compressive Confocal LSM 14.65±2.67 %

Compressive ISM 12.50±0.71 %

3.4 Conclusion
An efficient compressive sensing method for image scanning microscopy was devised using
a SPAD array, incorporating a fixed sampling strategy to reduce acquisition time and
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Figure 3.6 (a) Fully sampled CLSM. (b) Fully sampled ISM. (c) Compressive CLSM.
(d) Compressive ISM.
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negate the need for computing various sampling matrices. The Compressive-ISM recon-
struction yielded images of superior quality compared to those obtained through standard
Compressive Confocal LSM. This work paves the way for practical applications in laser
scanning imaging modalities, improving temporal resolution, minimizing photobleach-
ing, and enhancing image quality. Future research includes hardware implementation,
block-based compressive sensing [88] for faster reconstruction, GPU-based solutions for
parallel SPAD array reconstruction, and deconvolution-based ISM algorithms [93] to
further improve image quality.



Chapter 4

Compressive 3D OCT-Guided Depth
Control

Abstract
This study introduces a pioneering approach to determining ablation depths using 3D
Optical Coherence Tomography (OCT) in laser microsurgery under the Separate Optical
Path (SOP) category. This method overcomes the limitations of conventional 1D and
2D OCT scans by providing a more comprehensive and accurate depth assessment. A
significant advancement is the implementation of compressive sensing in OCT hardware,
which effectively reduces scanning time without compromising the quality of the depth
map. Additionally, a feedback controller was introduced in order to utilize the depth map
to precisely adjust the laser exposure time across different tissue types, ensuring accurate
ablation.
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4.1 Introduction
The SOP works mentioned previously in section 2.4 utilize 1-D and 2-D OCT scans
for depth information. When ablating a point a 3D crater hole is produced. A 1-D
OCT scan can give drastically different values depending on where the OCT is focused
within the ablated crater, leading to incorrect estimates about the depth. In the case of
2D-OCT scans, it also depends on the plane of the scan. Hence, both 1D and 2D OCT
data are insufficient since they depend on the scan location. Additionally, 2D image
processing must be calibrated to a specific OCT data set. Alternatively, 3D scans offer a
higher-fidelity map that is easier to interpret; the large data size (≈ 2GB) complicates
data analysis; and the acquisition time (≈ 15s) results in motion blur. Compressive
sensing allows reconstruction of high-dimensional (N) signals x from low-dimensional
(M) measurements y, as long as the signal is sparse on a certain basis, like a wavelet or
shearlet (N > M).

In this chapter, we have three significant contributions:

• To our best knowledge, This is the first application of 3D-OCT scan to determine
the ablation depth under the separate optical path (SOP) category. This address
the limitations of 1D and 2D OCT scans.

• Secondly, we apply compressive sensing on OCT hardware to find the optimal
compression ratio. Using the optimal compression ratio we reduced the scanning
time without significant loss in the quality of the depth map.

• Finally, we use the depth map to control the exposure time (laser on/off time) to
accurately ablate a given depth across different tissue types in a feedback controller.

4.2 OCT Hardware Sampling
To the best of the author’s knowledge, prior research on compressive sensing on OCT,
notably by Haydar et al. (2020) [37] and McLean and Hendon (2021) [56], primarily
concentrated on synthetic sampling. In synthetic sampling, data was initially scanned
through a full scan. Then, this full scan was re-sampled at various compression ratios.
The re-sampled data was used to reconstruct the full image. However, this method of
synthetic sampling does not address the practical need to reduce scanning time. Unlike
existing scanning methods, our approach described in Section 3.2.3 is implemented directly
on the hardware, reducing scanning time. Moreover, we also vary the compression ratio
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from 0.5, 0.8, 0.9, and 1.0. for both B-Scan and C-scan and comparing the reconstruction
quality and net reduction factor across 16 different compression conditions.

4.2.1 Experimental Setup

Figure 4.1 OCT-Guided Surgical Laser Setup

In our study, we ablated ex-vivo tissue samples using our laser microsurgery setup.
Our laser microsurgery setup consists of a customized motorized laser micromanipulator
(CALM), a Leica M651 surgical microscope (Leica, Wetzlar, Germany) with a built-in
Leica2 camera, a UniMax 2000EWD (Reliant Technologies, Inc, Forster City, California)
laser focusing system, a DEKA SmartXide2 C60 CO2 surgical laser (DEKA M.E.L.A.
S.r.l., Calenzano, Italy) with a red aiming laser. We used HiScan (DEKA M.E.L.A.
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S.r.l., Calenzano, Italy) to scan the high-power beam [2]. All the trials were done with 3
watts power. The Thorlabs TELESTO (TEL300) system imaged the ablated samples
using a spectral domain (SD-OCT) device with an LSM04 objective lens and a nominal
central wavelength of 1310 nm. ThorLabs’s C++ Spectral SDK, version 5.2, is utilized
to acquire the data.

4.2.2 Data Acquisition Pipeline

At the start of the process, the OCT device, probe, and processing handles were set up.
Next, the scan parameters, such as the acquisition mode and OCT device speed, were
set up. Table 4.1 shows the standard parameters.

Table 4.1 Standard Data Acquisition Parameters

Parameter Value
Length of B-Scan 5.0 mm
Width of Volume 5.0 mm
OCT Device Speed 146 kHz
Acquisition mode Asynchronous Continuous
A-Scan Averaging 3
B-Scan Averaging N/A

Within each scan, we calculate the number of A-scans per B-scan and B-scans per
volume as follows:

AScansPerBScan = 300×BscanCR
BScansPerVolume = 300×CscanCR

(4.1)

BscanCR and CscanCR correspond to the compression ratios of B-Scan and C-Scan,
respectively. The compression values chosen are 1.0, 0.9, 0.8, and 0.5 for both B-Scan
and C-Scan, resulting in 16 unique scans for each sample. We process the raw data
to obtain volumetric data. the volumetric data consisted of 2D array of A-scan. Each
A-Scan is filtered by Gaussian filtering and threshold for maximum intensity to find the
surface, as shown in Fig. 4.2.
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Figure 4.2 Depth Estimataion from Single A-Scan

If both compression ratios are 1.0, the data is at full resolution and is the ground
truth. The number of A-scans and B-scans and the data acquisition parameters are
limited by the rotational speed of the galvo mirror, which scans the OCT laser beam.

Figure 4.3 Red box indi-
cates the scanned region of
the ablated sample

Figure 4.4 Raw Full Surface
Map

Figure 4.5 Filtered Full Sur-
face Map

4.2.3 Upsampling Strategy

When we perform compressive scanning, we obtain a map with lower resolution as shown
in fig. 4.6.
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Figure 4.6 Sparse Depth Map of compression ratio 0.5 for both B-Scan and C-Scan

The resolution of this map depends on the compression ratio used during the data
acquistion. During compressive reconstruction, missing pixels were estimated at a higher
resolution. The process of transforming scanned pixel locations from low resolution
to high resolution, where pixels are to be estimated, is called the upsampling process.
First, a column-wise upsampling of a compressed matrix by dividing it into intervals
and padding zero columns between each interval based on the B-scan compression ratio
(BscanCR). The BscanCR, as specified in Table 4.2, determines the size of the interval
and the number of zero columns for padding.

Table 4.2 Upsampling Parameters

CR Ratio Interval Size Padding Size
1.0 N/A N/A
0.9 9 1
0.8 4 1
0.5 1 1

The process is repeated for rows based on the C-scan compression ratio (CscanCR)
which decides the interval and padding sizes. This produces upsampled data as seen in
Fig. 4.7.
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Figure 4.7 Upsampled Surface Map

4.2.4 Compressive Scanning & Reconstruction

The upsampled matrix facilitates the derivation of the sampling matrix (A) and the
compressed dataset (y). Subsequently, the sampled dataset (y) and the sampling matrix
(A) are employed in conjunction with the compressive sensing algorithm, TVAL3, as
delineated in Sections 3.1 and 3.2.2, to reconstruct the image (x), depicted in Figure 4.8.
This reconstruction process was executed using MATLAB (R2022b) on an Intel® Xeon®
CPU E3-1270 v5 @ 3.60GHz, equipped with 34.29 GB of RAM and Windows 10 Pro
(64-bit).

Figure 4.8 Reconstructed Surface Map
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4.2.5 Evaluation Metrics

In this chapter, the metric described in Section 3.3 is used to quantify the reconstruction
quality. As mentioned in the section 4.2, existing research predominantly employs
synthetic sampling, thereby prioritizing reconstruction quality as the primary evaluation
metric. Although reconstruction quality is a necessary metric, it proves insufficient for
hardware-based compressive sensing applications. Consequently, we introduce a novel
metric termed the "Net Reduction Factor," which accounts for scanning and reconstruction
times. This metric is crucial, as it highlights whether the increased reconstruction duration
does not negate any reduction in scanning time

Net Reduction Factor = Tfs− (Tcs +TR)
Tfs

(4.2)

where Tfs represents the full scanning time, Tcs is the compressive scanning time,
and TR is the reconstruction time. The Net Reduction Factor, which ranges from 0 to 1
is used to quantify the reduction in scanning time.

4.2.6 Results and Discussion

The evaluation of the compressive scan method focused on two key aspects: (1) the
quality of the reconstructed depth map and (2) the overall reduction in scanning time,
considering both scanning and reconstruction time.

Reconstruction Quality

A reconstruction error of zero signifies an exact match between the compressive depth map
and the fully scanned depth map, implying no quality degradation due to compression.
This means that the fully scanned image Ifs and the compressive scanned image Ics are
identical. On the other hand, a reconstruction error of 100% means a poor reconstruction
quality, indicating a significant deviation of the compressive depth map from the fully
scanned depth map. In essence, a lower reconstruction error is preferable as it signifies
a closer match between the compressive and fully scanned depth maps, which suggests
better quality preservation during the compression process.

Table 4.3 presents the reconstruction error across various compression ratios in both
dimensions. Initially, it appears counterintuitive that when both B-Scan and C-Scan are
lowest, that is 0.5 the reconstruction error is lowest at 13.41±3.56%. Whereas other
compression ratios have 50% to 90% error. This is primarily attributed to error caused
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Table 4.3 Reconstruction Quality

C-Scan Compression Ratio
0.5 0.8 0.9 1

B-
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an
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n
R

at
io 0.5 13.41

± 3.56%
99.95
± 0.10%

99.92
± 0.15%

99.88
± 0.22%

0.8 99.81
± 0.32%

99.69
± 0.45%

99.50
± 0.59%

99.15
± 0.87%

0.9 98.48
± 1.36%

97.43
± 1.76%

95.43
± 2.89%

91.88
± 3.65%

1 85.65
± 4.16%

74.07
± 4.79%

53.60
± 4.06%

N/A

by moving the location of the pixel during the upsampling process. To illustrate, consider
an simple toy example of scanning A-scans along a line, as shown in Fig. 4.9.

Figure 4.9 Actual scan location
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Figure 4.10 Assumed scan location during upsampling. Orange circles are padded pixels
which are estimated; black circles are the scanned pixels.

In this example, the first row indicates 10 A-scans along a line, which represent the
ground truth or reference. The second row, with a 0.9 compression ratio, comprises 9
A-scans; the third row, at a 0.8 ratio, includes 8 A-scans; and the fourth row, at a 0.5
ratio, consists of 5 scans along the line. These scans are uniformly spaced. However,
as depicted in Fig. 4.10, the upsampling process reveals a discrepancy between the
actual scan locations and their up-sampled location counterparts for all compression
ratios. This mismatch is minimized at a compression ratio of 0.5, leading to a lower
reconstruction error. In the future, precise control over the scan locations will be crucial
for improved estimation. Unfortunately, ThorLabs C + + Spectral SDK, version 5.2,
provides functionality to specify the length of line segment to be scanned and number of
scans. However, it does not allow precise control over the exact location of each scan.

Finally, when both compression ratios are 0.5, the lowest reconstruction error is 9.85%,
and the highest is 16.97%. A standard deviation of 3.56%. This is mainly due to the
surface level variation of the tissue sample; if the sample is highly uneven, some portion
of the sample is out of focus, thus a higher error.

Scanning Time

Tables 4.4 and 4.5 represent the reconstruction and scanning times across various com-
pression ratios in both dimensions.

The full scanning time is 16.99 seconds, which consistently decreases as the compression
ratio increases from 0.9 to 0.5. At a compression ratio 0.5 for both axes, the lowest scan
time achieved is only 4.34 seconds. The reconstruction time varies from 633 milliseconds
to 893 milliseconds. As the compression ratio increases, the number of pixels to estimate
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Table 4.4 Reconstruction Time (milliseconds)

C-Scan Compression Ratio
0.5 0.8 0.9 1

B-
Sc

an
C

om
pr

es
sio

n
R

at
io 0.5 893.99

± 79.86
749.61
± 48.00

693.96
± 40.04

649.84
± 37.55

0.8 706.86
± 55.18

718.27
± 20.33

708.34
± 39.93

666.45
± 48.89

0.9 672.84
± 33.53

690.92
± 30.34

704.02
± 48.63

642.23
± 26.82

1 633.09
± 28.36

649.49
± 27.04

653.55
± 19.25

N/A

Table 4.5 Scanning Time (Seconds)

C-Scan Compression Ratio
0.5 0.8 0.9 1
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io 0.5 4.34

± 0.12
6.78
± 0.20

7.51
± 0.14

8.33
± 0.16

0.8 5.96
± 0.14

9.41
± 0.08

10.55
± 0.09

11.69
± 0.13

0.9 6.54
± 0.05

10.21
± 0.08

11.44
± 0.12

12.84
± 0.10

1 7.05
± 0.04

11.00
± 0.13

12.56
± 0.25

16.99
± 0.18
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increases, leading to a corresponding increase in reconstruction time. A net reduction
factor of 0 indicates that there is no decrease in scanning time, meaning that the time
required for compressive scanning and reconstruction time (Tcs +TR) is equivalent to the
full scanning time (Tfs). The closer the Net Reduction Factor is to 1, the greater the
time savings shown in table 4.6,

Table 4.6 Net Reduction Factor

C-Scan Compression Ratio
0.5 0.8 0.9 1

B-
Sc

an
C

om
pr

es
sio

n
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at
io 0.5 69.11

± 0.65%
52.67
± 1.57%

49.47
± 1.25%

44.69
± 1.79%

0.8 58.20
± 1.89%

38.32
± 1.43%

32.40
± 1.07%

25.68
± 1.09%

0.9 56.31
± 0.69%

34.14
± 1.00%

27.14
± 1.03%

20.09
± 1.05%

1 54.02
± 0.51%

31.18
± 0.94%

22.60
± 1.17% N/A

A 69.11% savings in scanning time was achieved when the compression ratios of both
B-Scan and C-Scan are 0.5. It is very clear that in terms of both net reduction factor and
reconstruction quality, a compression ratio of 0.5 for both B-Scan and C-SCacn remains
the optimal choice. This is primarily due to the least upsampling error and high saving
in time due to skipping alternate rows and columns.

4.3 Feedback Controller
In this section, the optimal compression ratio of 0.5 is used for both B-scan and C-scan to
precisely ablate a given depth of 1mm across different tissue types. Both tissues, chicken
breast and beef, were ablated under the same conditions, utilizing a 5-watt power setting
and identical Kp and Kd values.
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4.3.1 Depth Estimation

The depth map generated by 3D Optical Coherence Tomography (OCT) provides absolute
depth information, which is directly not useful. The metric of interest is the relative
depth, defined as the distance from the surface to the deepest point of ablation. This
is determined by calculating the difference between pre-and post-ablation depth maps.
Direct computation of this differential, however, can yield inaccurate estimates due to
the presence of noise, which primarily originates from two sources. The first noise source
arises from surface irregularities. To counteract this, the region of interest (ROI) is limited
to the center of the ablated crater, where the median depth is determined. The second
noise source is due to the inclined nature of ablation, which introduces points surpassing
the OCT’s depth of field. A straightforward binary thresholding approach is applied
to the ablated crater to address this issue, effectively minimizing the influence of this
noise and enhancing the overall accuracy of the relative depth estimation. Compressive
sensing acts as an essential filter, filtering out any excessive noise, as seen in Fig.4.8.
The primary reason for this is that the process of under-sampling (25%) and estimating
the remaining pixels primarily functions with natural images [5], whereas noises do not
qualify as natural images. Consequently, compressive sensing inherently serves as an
essential filter by default.

4.3.2 PD Controller

The exposure time (laser on/off time) is calculated based on the current depth using a
proportional plus derivative controller, as shown in eq 4.3.

Exposure Time = Kp · e+Kd ·
de

dt
(4.3)

where Kp and Kd are the proportional and derivative constants. e is the difference
between current depth and desired depth, and de

dt is the rate of change of error. The PD
controller was manually tuned by trial and error until the desired depth was reached
within two cycles.
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4.3.3 Results & Discussion

Table 4.7 Ablated Depth Per Cycle

Tissue Cycle 1 Cycle 2
Chicken Breasts 0.39±0.07 1.09±0.06
Beef 0.35±0.06 1.10±0.16

Irrespective of the tissue type, the overall ablated depth accuracy remained less than
0.1 mm. However, the standard deviation in beef was higher, at 0.16. This might be
because the PD controller gains were tuned specifically for chicken breast and not for
beef. This issue can be mitigated in two ways: either by having a high-resolution system,
i.e., increasing the number of cycles by employing a control system that responds more
slowly, thus converging slowly towards the desired depth. Alternatively, using a Model
Predictive Controller could help to converge quickly with high precision, since the model
provides prior information.

4.4 Conclusion
This work presents a novel approach in laser microsurgery, primarily through the inno-
vative implementation of 3D OCT scanning under SOP category. This addresses the
limitations of traditional 1D and 2D OCT scans by accurately determining ablation
depths, a crucial factor in surgical precision. Then, we successfully apply compressive
sensing on OCT hardware. Our findings reveal that a compression ratio of 0.5 for
both B-scan and C-scan strikes the perfect balance, resulting in a substantial reduction
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in scanning time by 69.11% while maintaining high-quality depth map. Notably, this
approach also enhances noise filtration, eliminating the need for traditional filtering
methods. However, the reconstruction error is influenced by the up-sampling process
and the depth of focus, suggesting areas for future enhancement. Either software or
hardware-based approaches can improve the upsampling methods. Hardware-based
approaches could enable low-level API access for precise control of scanning locations.
Alternatively, one could explore software-based novel upsampling methods. The depth of
focus can be improved with longer objective lenses. However, these objectives are often
larger. Hence, other computational sensing methods should explored that could enhance
the depth of field without increasing the physical size of the object lens. Additionally,
the development of a feedback controller using depth maps for precise laser exposure
adjustment has shown effectiveness across various tissue types, potentially enhancing the
efficiency and precision of surgical procedures. Looking ahead, integrating more advanced
controllers such as (MPC) and adapting our methods to diverse surgical conditions could
further expand the applicability of this technology in clinical settings, paving the way for
more refined surgical techniques.





Chapter 5

Auto-CALM: Automated
Computer-Assisted Laser
Microsurgery

Abstract
In the previous chapters, ablation over a given point was performed using a high-speed
scanner, but the ablation area remains limited. This chapter extends the capability of
CALM to ablate over larger area defined by the surgeon automatically. Auto-CALM
allows the surgeon to define the ablation area, which is then precisely ablated by the
system while compensating for tissue motions and deformations. This is achieved based
on three control blocks: target tracking, laser tracking, and the ablation algorithm. The
ablation area, i.e., the target, is defined by the surgeon using a stylus tablet. Then, the
target is graphically overlayed on the surgical video. This target is tracked in real time
using improvised optical flow. The improved optical flow features a scaling technique for
enhanced resilience to tissue deformations and a census transformation for robustness
against illumination variations. Based on the laser spot position and target positions, the
ablation algorithm generates a trajectory to ablate the target in real-time. This motion
compensation increases the accuracy of the system against breathing motions. Auto-CALM
was tested on a porcine larynx model simulating breathing, Auto-CALM demonstrated
superior performance to manual and other methods such as TAM, achieving high precision
under challenging conditions. This system promises significant improvements in surgical
ablation tasks, with further studies aimed at clinical translation.
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5.1 Introduction
Previously, a computer-assisted laser microsurgery system (CALM) was proposed to
enable accurate ablations and resections using an intuitive graphics tablet for precise laser
control [2]. CALM is based on a robotic laser micromanipulator and has demonstrated
excellent potential for clinical use in transoral laser microsurgery (TLM). The work
presented here further enhances CALM with intelligent capabilities by automating the
laser movement over given area selected by the surgeon. Also, It adapts to real-time tissue
motions and deformations for enhanced laser ablation accuracy. The system components
are shown in Fig. 5.1. In this work, automatic capabilities are added to CALM based
on the integration of a real-time monocular color vision system. This enables tracking
both the laser spot and the target tissue. The laser spot is tracked using both classical
approach and pre-trained models. Target tracking combines a scaling strategy with a
customized optical flow method featuring pyramid windowing and census transformation
to manage tissue deformations and brightness variations as decribed in section 5.3.3.
Finally, an controller is proposed to execute user-defined ablation operations based on
the real-time laser position and target position. This includes motion compensation,
which is implemented to increase precision and robustness against breathing motions. To
start the operation, the user draws the desired ablation region using a graphics tablet
and a stylus. Then, Auto-CALM performs the entire ablation automatically. This work
offers three primary contributions to the advancement of CALM: 1) Laser Spot Tracking.
2) Target Tracking: A method based on optical flow is used to track moving targets. To
overcome challenges related to tissue deformation, feature changes, and the assumption
of velocity smoothness in optical flow, a scaled lesion contour strategy is proposed. In
addition, long-range deformation and brightness variations are addressed using pyramid
and census transformations. 3) Ablation Algorithm: This algorithm controls the ablation
process on a moving target by updating the laser trajectory in real-time. First, it ablates
the contour of the desired ablation area, and then its inside. The internal ablation
process uses continuous raster scanning with speed compensation to ensure complete
ablation and enhance accuracy. This chapter is organised as follows: First, section 5.2
describes the experimental setup. Section 5.3.1 presents the calibration method that
enables laser steering control from a monocular vision system. Then, the methods for
laser tracking, target tacking and autonomous ablation are presented in sections 5.3.2,
5.3.3, 5.3.4, respectively. Evaluations metrics are presented in section 5.3.5. Then, the
performed experiments are introduced in 5.3.6. Evaluation results of tracking methods
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are presented in 5.4. Results from comparative experiments with manual CALM and
Track Anything Model (TAM) are presented in 5.4.3. Results from robustness assessment
experiments on a porcine larynx model under various conditions of motion and tissue
features are presented in section 5.4.4. Finally, conclusions are presented in 5.5.

Figure 5.1 Auto-CALM system components.

5.2 Materials
The Auto-CALM system is shown in Fig. 5.1. It includes a custom motorized laser
micromanipulator (CALM), a Leica M651 surgical microscope (Leica, Wetzlar, Germany)
with a built-in Leica2 camera, a UniMax 2000EWD (Reliant Technologies, Inc, Forster
City, California) laser focusing system, a DEKA SmartXide2 C60 CO2 surgical laser
(DEKA M.E.L.A. S.r.l., Calenzano, Italy) with a red aiming laser, a Weller WFE 2ES
fume extractor (Weller, Besigheim, Germany), and a Wacom CTL-4100ML graphics
tablet (Wacom Co. Ltd., Kazo, Saitama, Japan) used for lesion contour design by
the operator. In addition, the setup includes a custom interface circuit for automatic
activation of the ablation laser, and a custom motion platform designed to hold the
porcine larynx model and simulate human respiration.

CALM is based on a spherical orientation mechanism with anti-backlash gears
and high-resolution encoders as in Fig. 5.2. It provides high precision (35 µm), a
programmable working area (up to 40 × 40 mm2 at 400 mm distance), and controllable
scanning speeds up to 100 mm/s [2].
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Figure 5.2 CAD Design of CALM [2]

5.3 Methods
Auto-CALM relies on a vision-based controller. Therefore, the first method implemented
in the system is responsible for computing the mapping between CALM workspace and
the workspace of the microscope camera. The second method implements laser spot
tracking, which enables compensating for vision-based controller and laser positioning
errors. The subsequent methods implement target tracking and the ablation procedure.

Figure 5.3 Sequence diagram of vision-guided system with three blocks.
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The overall framework is shown in Fig. 5.3. The operator begins the procedure by
drawing the contour of the desired ablation area on the current video frame using the
stylus of the graphics tablet. This contour is then scaled up, generating the tracking
contour (i.e., a new contour suitable for tracking). In parallel, the laser spot is tracked
on the current video frame, generating a segmentation mask. Then, during operation,
the tracking algorithms constantly update the tracking contour position and the laser
spot position based on each new video frame. The ablation contour is reconstructed
based on the updated tracking contour in parallel. Finally, using this information and
the laser spot position, the automatic ablation controller updates the ablation path and
the control of CALM.

5.3.1 CALM to RGB Image Mapping

A velocity PID controller controls the CALM laser spot. This is akin to mouse-stylus
controllers. Hence, calibration aims to establish a direct mapping that links the laser spot
position on the surgical video frame to the positions of CALM’s actuators. This enables
controlling the aiming of the laser in a closed loop using image coordinates as input.
Therefore, this calibration aims to determine the parameters of the affine transformation
that maps the RGB image space (i.e., points in the surgical video frame) to CALM’s
coordinates. Further details regarding calibration are available in this work [50] from our
lab.

5.3.2 Laser Spot Tracking

We first implemented laser spot tracking using a classical technique and then developed
another implementation using the pre-trained model. Ultimately, we decided to use the
pre-trained model approach due to its novelty. Hence, in all the subsequent experiments
were conducted using the approach of pre-trained models.

Classical Technique

The laser spot is segmented by thresholding based on the color and area of the laser
spot in the hue-saturation-value (HSV) color space. However, this is not sufficient as
the laser spot’s area changes from frame to frame due to laser diffusion, even if the laser
is not moving. To address this, we apply morphological operations [61]. Morphological
operations are a set of operations that process images based on shapes. These operations
are beneficial for preprocessing tasks such as removing noise, filling holes, or finding
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and emphasizing specific shapes within an image. Two basic morphological operations,
erosion, and dilation, were used. Furthermore, a Kalman filter [84] is used to get stable
laser spot position by optimally fusing model predictions with sensor measurements,
addressing inherent uncertainties. Prior predictions are derived from the initial state
estimate and simple state transition model. In the simplistic model, we assumed the spot
position remains constant from one-time step to the next in the absence of external control
inputs. These prior estimates are combined with real-time laser position, factoring in
uncertainties quantified by process and measurement covariances. The process covariance
represents the uncertainty in the model’s predictions, while the measurement covariance
represents the uncertainty in the sensor measurements.

Pre-Trained Model

Figure 5.4 Pipeline of laser spot tracking based on SAM and XMem.

The visual laser spot tracking algorithm is a feature-based method. It is designed
to be robust to occlusion, background noise, illumination changes, and diffusion at the
tissue. Taking inspiration from TAM, a method based on SAM and XMem for tracking
the laser spot centroid in the intricate surgical setting is proposed. This method enhanced
autonomy during initialization through edge detection, and adjusted probes and affinities
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to enhance suitability for intricate surgical procedures. The method’s pipeline is shown
in the Fig. 5.4 and described below.

Step 1: Initialization - In this step, a mask based on the HSV color space is used
to identify potential regions of interest (ROIs) in the initial frame. OpenCV’s dilation
function is employed to enhance the contour of the laser spot and compensate for any
deformation [14]. A subsequent edge detector is used to identify circles within the Regions
of Interest (ROIs), taking advantage of the consistent color and brightness exhibited
by the laser spot after automatic white balance adjustment within a single frame. To
ensure accurate initialization, users have the option to manually select the ROI through
interactive clicks, enhancing the reliability of the process.

Step 2: Segmentation with SAM - Exploiting SAM’s capabilities to segment
ROIs using cues from the automatic detection or the bounding bounding boxes defined
by the user, an initial mask of the target object is derived.

Step 3: Tracking with XMem - Leveraging on the mask generated in the previous
step, XMem conducts semi-supervised Video Object Tracking (VOS) in the subsequent
frames. As XMem performs well in relatively simple scenarios, its predicted masks are
predominantly used. However, when mask quality diminishes, XMem’s predictions are
retained along with intermediate parameters like probes (ROIs) and affinities (features
of laser spot), which guide the transition to Step 4.

Step 4: Refinement with SAM - When XMem’s predicted mask quality falls
short, as mentioned above, SAM is called upon for mask refinement. Concretely, the
probes and affinities are adapted as point prompts for SAM, while the predicted mask
from Step 2 serves as a mask prompt. Leveraging these prompts, SAM generates a more
accurate segmentation mask. This refined mask is also integrated into XMem’s temporal
correspondence to enhance subsequent object discrimination.

SAM is based on ViT [23] and trained on the large-scale dataset SA-1B [46]. In the
case of zero-shot edge detection, the results from BSDS500 [53] show a high recall at 50%
precision, albeit with reduced precision. Compared to the ground truth, SAM predicts
more edges, including sensible ones that are not annotated in BSDS500. However, given
the accurate region of interest (ROI), SAM can accurately segment the contour of the
laser spot. To evaluate SAM’s performance in our scenario, we calculate the error of the
laser spot centroid obtained from SAM in step 2 and compare it to the pre-placed laser
position in section III-C. The error is measured to be 29 ± 6 µm.

XMem is designed to address the challenges encountered in long-term videos by
utilizing a mask description of the target object in the initial frame to track the object
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and produce corresponding masks in subsequent frames. The training datasets are
YouTubeVOS [87] and DAVIS [65]. The integration of SAM can solve its difficulties
of requiring initial accurate mask and recovering from tracking or segmentation failure.
To evaluate the predicted mask in step 3, we introduce the average J&F of Jaccard
index J and contour accuracy F [64]. J represents the intersection-over-union of the
estimated segmentation and the groundtruth mask. Given an output segmentation M
and the corresponding ground-truth mask G it is defined as defined as:

J = |M∩G
M∪G

| (5.1)

Closed contours c(M) define the boundary of the mask’s spatial area. Consequently,
contour-based precision (Pc) and recall (Rc) between the contour points of c(M) and c(G)
can be calculated using bipartite graph matching. F , denoted as F = 2PcRc/(Pc +Rc),
represents a combined metric of precision and recall. Mask quality deterioration in step
3 indicates that J&F is below 85.

5.3.3 Target Tracking

Figure 5.5 (a) Anatomy of the porcine larynx. (b) Scaling strategy: green line repre-
sents the drawn target contour, blue line is the scaled contour, and purple line is the
reconstructed contour.

Target tracking relies on a scaling strategy integrated with a customized optical flow
method. Here, the optical flow tracking incorporates pyramid windowing and census
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transformation techniques to effectively address tissue deformations and variations in
brightness. Sequence diagram of vision-guided system with three blocks. Csca: Scaled
contour; tn: time sequence; Crec: Reconstructed contour; Path: Ablation path generated
by algorithm; Plas: Laser spot centroid position.

The scaling strategy is employed to prevent tracking failure when the laser spot passes
through the original contour and disrupts the feature that is otherwise trackable by
optical flow. The scaling strategy involves three steps as shown in Fig. 5.3 and Fig. 5.5
(b):

1. Outlining the lesion contour (Selected contour: green line) with a stylus in the
current frame.

2. Scaling the contour to generate the tracking contour (Csca: blue line).

3. Reconstructing the target contour (Crec: purple line) after estimating the tissue
motion using the proposed optical flow method.

In the second step, the contour is scaled by 1.3 times the distance between each point
of lesion contour and the target centroid to generate the tracking contour, ensuring a
minimum distance of 0.26 mm between each point of blue line and its corresponding
point on the green line, which is twice the diameter of the CO2 laser spot.

Consider a point x,y in the image space. Let δx,δy be the change in the displacement
of that point when an object moves. Now, under the assumption that the intensity of a
point remains constant and the time and displacement steps are infinitesimally, we arrive
at the optical flow constraint equation:

Ixu+ Iyv + It = 0

where u = δx
δt and v = δy

δt , and Ix, Iy, It are the partial derivatives of intensity with
respect to x, y, and t (time). Ix, Iy, It can be easily computed by using the current frame
and the previous frame. However, the parallel component of optical flow u,v cannot be
computed due to the aperture problem. Hence, it is an ill-posed problem. To obtain a
unique solution, we regularize the equation by an additional constraint; the two major
methods are (1) Lucas and Kanade and (2) Horn and Schunck. In this work, we adopted
Lucas and Kanade’s method. This method considers a window around each point within
which the optical flow (u,v) is constant. This works well in textured regions. So far, we
have considered the object’s motion to be small. This might only sometimes be the case.
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In order to address this, we employ the pyramidal Luncak Knade algorithm. When an
image is downsampled, the coarse object motion is reduced to a few pixels. Hence, we
can apply the Lucas Kandae algorithm at a lower resolution. Then, use the optical flow
from a lower resolution to wrap the image at a higher resolution. Then, this wrapped
image is used to compute the optical flow [73].

The integration of census transformation contributes to mitigate the effects of varying
brightness by transforming the pixels surrounding a central pixel into a numerical
representation through a kernel size of 3 by 3 [3]. It computes, for every pixel in the
image, a binary string (census signature) by comparing its grey value with the grey values
in its neighbourhood. This process is based on a transformation that associates a pixel
P with a clockwise concatenation of strings representing the set of neighboring pixels
whose intensity are different from that of P . Each Census digit is defined as

ξ(P, P ′) =


0 P −P ′ > ϕ

1 |P −P ′|< ϕ

2 P ′−P > ϕ

(5.2)

where ϕ represents the tolerance parameter, defining the threshold for considering
pixel intensity differences when comparing neighborhoods. The Census Transform focuses
on encoding the relative spatial arrangement of intensities in a local neighborhood, which
is a fundamentally different approach aimed at feature description and matching rather
than the image filtering of conventional low-pass filtering. Hence, census transformation
provides more robust and stable features for optical flow calculation.

5.3.4 Ablation Algorithm

The automatic ablation algorithm (Algorithm 1) controls the state of the CO2 laser
power (ON/OFF ) and the velocity vector vc = (vx vy)T of the laser spot. Given the
scaled target contour and the tracked visual laser spot, it generates an ablation path
plan. This path consist of a series of points P i

P , where i is from 1 to N at every frame
of the RGB image, as shown in Fig. 5.6(a). The laser is on during the entire ablation
procedure when moving from one point to the next. The distance between each point is
set to be 0.23mm, which is the diameter of the CO2 laser spot in our system.

The ablation path is defined to ablate the contour of the target area first to avoid
over ablation, as tissue tends to shrink when ablated. Then, the inside area is ablated
following a continuous raster scanning path. In each frame, the velocities vx and vy are
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Figure 5.6 (a) Generated path: path inside is a continuous raster scan to ensure complete
ablation; the CO2 laser is activated in the beginning and turned off at the end of scan
process. (b)(c) PTE metrics: the determination of the PTE metrics is based on a discrete
representation and geometric relationships, as described in [47].

calculated using Eq. 5.3 and Eq. 5.4, respectively, to move the laser spot to the next
target point Pi+1, where i = 0, ...,N and N = len(path)−1.

vx = sign(θ1)|vy(∆xc/∆yc)| (5.3)

vy = sign(θ2)| v(∆xc/∆yc)√
1+(∆xc/∆yc)

| (5.4)

where xc, yc are the relative displacement in CLAM workspace required to reached
the desired position; v is the speed of CALM, consisting of nominal speed and motion
compensation: v = vnominal +vcomp. In this case, vcomp is calculated based on the motion
of the target as vcomp = d/dt, where d represents overall pixel displacement vector as
defined in 5.3.3. The velocity compensation compensates for the breathing motion of the
target.
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Algorithm 1 Ablation algorithm
Input: Crec,Plas

Output: vx, vy, Power

1: i,Power = 0,Off

2: while i≤ len(Crec) do
3: Path←Crec

4: vx, vy, Dist←Plas and Path[i]
5: if Dist < threshold then
6: if i == 0 then
7: Power = On

8: end if
9: i+1

10: end if
11: Publish: vx, vy, Power

12: end while
13: vx,vy,Power = 0,0,Off

14: Publish: vx, vy, Power

where Crec = reconstructed contour; Plas = laser spot coordinates; Path = generated
ablation path; Dist = distance between laser spot and target point in Path; threshold

= 0.05 mm (value set to evaluate path following).

5.3.5 Evaluation metrics

The evaluation of the automated ablation system is based on three metrics: Path
tracing error (PTE), contour error, and surface error.

Path Tracing Error

The PTE metric represents the deviation between the nominal path and the recorded
tracing trajectory as shown in Fig. 5.6 (b) and (c). Both the planned path and the
laser spot trajectory are represented in the camera frame (CF). The computation of the
orthogonal projection positions ∗Pk

L of the laser spot Pk
L onto the segments comprising

the planned path is described in the literature [47], where k = 1, ...,N . The scaling factor
rk

L is evaluated to determine its validity. If it satisfies the condition 0≤ rk
L ≤ 1, the laser

spot measurement is projected onto the corresponding path segment and considered for
further processing. This results in the computation of the orthogonal path error between
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Figure 5.7 An example of contour error measurement.

the k-th spot measurement and its corresponding projection on the planned path as the
L2 norm:

ek
P T = ||Pk

L−∗ Pk
L||2 (5.5)

The RMSE of ek
P T provides the metric PTE as:

PTE =

√√√√√ 1
N

N∑
k=1

(ek
P T )2 (5.6)

Contour Error Metrics

For defining the contour error metrics, the distance error Edist illustrated in Fig. 5.7
is used. This error corresponds to the distance between the selected contour Ccus and
post-ablation contour Cabl that is measured manually. This is defined as the minimum
distance (infimum) from a query point Pcus ∈Ccus to Pabl ∈Cabl:

Edist = min_dist(Ccus,Cabl) (5.7)

Using Edist, the following two error metrics are defined:

1. Contour Error (CE), defined as the RMSE of Edist over the entire contour.

2. Maximum Absolute Error (MAE), defined as the maximum Edist between Ccus

and Cabl
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Surface Error

The surface error is evaluated using the DICE similarity coefficient, which is a widely
used metric to determine the similarity of overlapping regions. Here, DICE is used to
compare the ablated area with the target area [91].

DICE = 2×Area(overlapping)
Area(Target)+Area(Ablated) (5.8)

The precision and robustness of a laser cutting procedure can also be evaluated by
introducing the ratios of overshooting (ρover) and undershooting (ρunder). These ratios
are defined as follows:

ρover = Area(Overshoot)
Area(Target) (5.9)

ρunder = Area(Undershoot)
Area(Target) (5.10)

The denominator for both ρunder and ρover is the same, allowing for comparison of the
undershooting and overshooting effects on system performance as depicted in Fig. 5.7.

In addition, the ablation speed of different experimental conditions was used as a
metric for performance comparisons. In the case of Auto-CALM and the automatic
system based on TAM, the ablation speed was defined as the average speed between
every two points along the planned path. In the case of manual CALM, the ablation
speed was computed as the average speed of every movement distance of 0.23 mm. These
speed values were then used to calculate the overall ablation speed mean and std for
each condition.

5.3.6 Assessment Experiments

The use of a ex-vivo porcine larynx specimen in surgical experiments has been validated
due to its anatomical, physiological, and functional similarities to the human larynx [79].
Hence, in all experiments ex-vivo porcine larynx is used as the specimen. A sinusoidal
linear motion with 5 mm displacement and 2 mm/s velocity simulated the physiological
motion of the larynx due to respiration [81]. In addition, features on the specimen were
marked using a surgical pen, and areas without features were left unmarked.

In all experiments, the perimeter of the target ablation area was drawn using the
graphics tablet and stylus. In addition, the CO2 laser was always operated using the



5.3 Methods 61

SmartPulse emission mode (pulsed laser) at a power level of 0.4 W with a frequency of
50 Hz.

Comparative Experiment

In the first experiment, we compared the area ablation performance of Auto-CALM with
two other conditions: Manual operation of CALM and autonomous ablation based on
TAM replacing target tracking. Four ablation trials were conducted for each method.
Breathing motions were simulated, and clear features were present in all the trials, as
summarized in Table 5.1. The ablation was performed at the epiglottis of the ex-vivo
porcine larynx mode. Here, clear features referred to easily identifiable diseased tissue
(i.e., the coloured areas) which are marked by the surgical pen.

Table 5.1 Comparative Experiments Conditions

Experiment Location Motion Clear Features
AUTO-CALM Ep Simulated Present
Manual CALM Ep Simulated Present

TAM Ep Simulated Present

Robustness Experiment

In the second experiment, we examined the robustness of Auto-CALM considering four
conditions:

1. No motion and no clear features (NM-NF);

2. Clear features but no motion (NM-F);

3. Motion but no clear features (M-NF);

4. Motion and clear features (M-F).

These conditions are summarized in Table 5.2.
In this experiment, CALM’s velocity was initialized at 3 mm/s with compensation

and each condition was assessed through ablation tests at four different locations in the
larynx as shown in Fig. 5.5:

1. Epiglottis (Ep);
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Table 5.2 Robustness Experiments Conditions

Experiment Location Motion Clear Features

NM-NF

Ep
PIC
PA
IFP

None None

NM-F

Ep
PIC
PA
IFP

None Present

M-NF

Ep
PIC
PA
IFP

Simulated None

M-F

Ep
PIC
PA
IFP

Simulated Present

2. Paired interarytenoid cartilages (PIC);

3. Paired arytenoid (PA);

4. Intralaryngeal fat pad (IFP)

5.4 Results & Discussion

5.4.1 Laser Tracking Result

To evaluate the efficacy of this approach, we performed controlled laser ablations along
a predetermined trajectory while documenting the visual laser centroid’s path for later
comparison with the pre-defined trajectory. In addition, to test the system robustness,
we conducted these trials under four distinct conditions: tissue material under low
illumination level (T-L), tissue material under high illumination level (T-H), plaster of
Paris (PP) under low illumination level (P-L), and PP under high illumination level
(P-H). Here, low and high illumination levels correspond to the minimum and maximum
settings of the microscope’s light source.

Laser tracking was assessed by following a ground truth trajectory across four test
scenarios, which included different illumination levels and materials, as shown in Fig. 5.8
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and Table 5.3. The difference between the average PTE for the low and high illumination
conditions on biological tissue was 12 µm, suggesting that the laser tracking performance
is only slightly affected by illumination levels. The maximum PTE for all conditions
does not exceed the laser spot radius (114 µm in our system), which indicates that the
system maintains errors within a potentially clinically acceptable range. Finally, the
spread between the median and maximum values across all conditions is only 57 µm,
indicating accurate tracking.

Figure 5.8 Laser tracking results. Green and blue represent path recorded by proposed
method and planned path, respectively.

Table 5.3 Path tracing error metrics of laser tracking in µm

Condition PTE Mdn Max
P −L 67 55 98
P −H 72 66 107
T −L 63 69 89
T −H 75 81 112
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5.4.2 Target Tracking Result

To evaluate tracking accuracy, we recorded the estimated motion and velocity of a target
tissue during 8 trials conducted under tissue motion simulation. The direction and speed
of motion are controlled by the human respiration platform. In our case, the speed is set
to 2 mm/s, simulating the physiological motion of the larynx due to respiration. For each
trial, we recorded the moving direction and speed of ten distinct points on the target
contour, estimated using the proposed tracking method. Subsequently, we computed two
key metrics: Root Mean Squared Error (RMSE) and Maximum Absolute Error (MAE)
with respect to the known motions of the target. We then calculated the mean and
standard deviation (std) of these metrics.

Table 5.4 shows the RMSE and MAE of the target algorithm for direction and speed
estimation during motion, both in feature and no-feature conditions.

Table 5.4 Target tracking assessment

Condition Direction (°) Speed (mm/s)
RMSE MAE RMSE MAE

M-NF 1.41±0.0785 1.65±0.2231 0.31±0.0235 0.38±0.08792
M-F 1.16±0.0723 1.29±0.1790 0.28±0.0402 0.34±0.07469

As expected, the tracking error is lower when features are present compared to the
no-feature condition. However, the difference in error is relatively small both in direction
estimation (RMSE: 0.25°, MAE: 0.36°) and speed estimation (RMSE: 0.03 mm/s, MAE:
0.04 mm/s). This demonstrates the robustness of the target tracking algorithm even in
feature-poor conditions.

5.4.3 Comparative Result

Table 5.5 Comparison experiments

Method Contour error (mm) Surface error (%) Mean ablation speed (mm2/s)
CE MAE ρρρunder ρρρover DICE

CALM 1.24±0.0863 1.84±0.0561 4.83±0.383 15.69±2.103 80.02±4.648 0.35±0.1724
TAM 1.71±0.0941 2.14±0.1554 27.83±4.899 0±0 78.77±4.367 1.37±0.5471

Auto-CALM 0.33±0.0354 0.51±0.0972 0.99±0.260 5.49±0.524 96.235±1.648 1.43±0.1623
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Figure 5.9 Comparative Experiment Conditions: The first row represents the target
area, while the second row displays the results after ablation. (a) Ablation using manual
control of CALM, (b) automatic ablation using TAM, and (c) automatic ablation using
Auto-CALM.

The results presented in Table 5.5 offer a comparative analysis of the efficacy of Auto-
CALM with respect to the manually controlled CALM and automatic ablation based on
TAM. Sample results are illustrated in Fig. 5.9.

Auto-CALM demonstrates a notable improvement in the contour metric with respect
to the other two condition, both in terms of CE and MAE. Specifically, it achieves
errors as low as 0.33 mm and 0.51 mm for CE and MAE respectively. These reductions
are statistically significant both when compared to CALM condition (CE p-value =
1.34× 10−4, MAE p-value = 1.20× 10−4) and to the TAM condition (CE p-value =
1.12×10−4, MAE p-value = 1.29×10−4). This substantiates Auto-CALM’s enhanced
fidelity to the prescribed ablation trajectory.

In terms of surface error, TAM presents an elevated ρunder of 27.83% due to shrinkage
of tissue during ablation, whereas CALM is characterized by a large ρover of 15.69% due
to manual errors. In contrast, Auto-CALM registers a modest error in both ρunder of
0.99%, and ρover of 5.49%. Statistical analyses attest the significant difference between
the conditions: When compared to CALM, (ρunder p-value = 1.519×10−3, ρover p-value
= 1.696×10−3); when compared to TAM, (ρunder p-value = 2.304×10−3, ρover p-value
= 3.66×10−4).

Auto-CALM’s small errors in both undershooting and overshooting demonstrate the
benefit of the proposed control method based on a scaling strategy for target tracking,
which handles tissue deformations, and on the implemented laser tracking method, which
handles the challenges in tracking the laser spot on real tissue even during ablation.



66 Auto-CALM: Automated Computer-Assisted Laser Microsurgery

The congruence between the ablated and target areas, measured by the DICE
coefficient, is also maximized by the use of Auto-CALM, reaching 96.22%. This is primary
due to the minimized undershooting and overshooting. The statistical significance of
this result is confirmed relative to CALM (p-value = 6.873×10−3) and TAM (p-value =
1.4437×10−2).

Observing Fig. 5.9, one can note dark spots on the ablated areas. These spots are,
for the most part, small tissue carbonizations resulting from the laser-tissue interactions.
Nonetheless, in some spots where the ink had penetrated deeper into the tissue, the
ink can indeed still be seen. Further laser passes over the target ablation area should
completely remove residues of this “diseased" tissue. This highlights the importance of
both knowing how deep we want to ablate the tissue and of devising ways to control the
ablation depth. These topics are part of our current research efforts. For what regards
the experiments performed herein, the experimental data demonstrated the proposed
automatic ablation method could provide a complete coverage of the target ablation area.

Finally, the results show that automatic operations can generate a uniform laser
ablation speed that is also overall faster than the mean speed achieved through manual
operation. The mean ablation speed under Manual CALM was 0.3±0.1724 mm/s.
Both Auto-CALM and TAM exhibited higher mean speeds of 1.43 mm/s and 1.37
mm/s, respectively. In particular, Auto-CALM demonstrated a lower standard deviation,
indicating a more uniform motion.

5.4.4 Robustness Result

The results of the robustness assessment experiment are depicted in Fig. 5.10. The data
is presented as heatmaps representing the individual mean value of the error metrics
for each experimental condition across the four anatomical locations. In addition, the
overall error metrics considering all different anatomical locations for each condition are
displayed as error bar graphs.

A comparison of planned path and actual path is shown in Fig. 5.11(a), and the
corresponding path tracing error (PTE) over length of path is shown in Fig. 5.11(b).
The largest mean error was recorded under the M-NF condition at 0.29 mm, closely
followed by M-F at 0.28 mm. This stands in contrast with both the NM-NF and NM-F
conditions, for which smaller mean PTE errors of 0.20 mm were recorded as expected
(due to the absence of tissue motion).
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Figure 5.10 Heatmaps representing the individual error metrics for four conditions across
four anatomical locations on the specimen, and error bar graphs representing the mean
and standard deviation of the errors over all anatomical locations.
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Figure 5.11 (a) Comparison of planned and actual laser path, (b) Path tracing errors
over the length of the nominal path.

Overall, the maximum difference between the mean PTE of the difference conditions
was only of 0.09 mm, which is a fairly small value considering that the CO2 laser spot in
our system presents a 0.23 mm diameter.

Similar tendencies are also evident in CE and Maximum Absolute Error (MAE)
metrics, which are related to contour errors. The M-NF and M-F conditions showed the
highest mean CE and MAE errors (respectively 0.33 mm and 0.31 mm for CE; and 0.48
mm and 0.50 mm for MAE). These were contrasted by the lower mean errors in the
NM-NF and NM-F conditions: 0.23 mm and 0.22 mm for CE, and 0.30 mm and 0.34
mm for MAE. The maximum differences between the motion and no-motion conditions
were only 0.11 mm for CE and 0.20 mm for MAE. Overall, these errors may fall within
clinically acceptable ranges given the typical 1–2 mm resection margins [32].

The graphs in Fig. 5.10 also show that the impact of having clear features or no
clear features is not strong on the results. This corroborates the good performance of
the proposed target tracking algorithm. In addition, a noteworthy observation is the
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smaller mean ρunder of 0.88% compared to the mean ρover at 4.01%. This discrepancy
suggests a higher risk of ablating healthy tissue, particularly during target movement.
This pattern is more pronounced under the M-NF condition, with the Ep anatomical
location displaying the highest ρover of 7.21%.

The DICE metric, which gauges the matching between the ablated and target areas,
was 97.54% for NM-NF, 97.45% for NM-F, 95.49% for M-NF, and 95.79% for M-F. These
overall high DICE coefficients demonstrate the ability of Auto-CALM to reliably ablate
the desired area under different conditions. Nonetheless, it is clear that the no-motion
conditions perform significantly better than motion conditions. This trend is consistent
across the different anatomical locations. However, the maximum difference between the
mean DICE values for the different conditions is only 2,05%. Therefore, while motion
conditions tend to present greater error magnitudes and variability, the differences are
relatively minor, attesting the robustness of the system against tissue motions. Also in
this case the impact of feature quality on the system performance was very small.

5.5 Conclusion
In Chapter 5 Auto-CALM, an Automated computer-assisted laser microsurgery system
specifically tailored for Transoral Laser Microsurgery (TLM), was introduced. The system
incorporates real-time visual sensing, providing automated laser ablation capabilities
through the integration of novel algorithms for laser tracking, target tracking, and ablation
control. A thorough assessment of the system was performed through realistic target
ablation experiments conducted on four distinct anatomical locations of ex-vivo porcine
larynx models. Notably, Auto-CALM demonstrated a DICE coefficient improvement of
more than 16% over both manual operation of CALM and automatic ablation based on
Track Anything Model (TAM). Furthermore, its performance was assessed using another
three key metrics: path tracing error, contour error, and maximum absolute error.
The results demonstrated that Auto-CALM performed well across different anatomical
locations and under different motion conditions and visual features quality, underscoring
its potential to be an effective and reliable system for accurate ablations during transoral
laser microsurgery. Future research will include the development of novel techniques
for ablation depth control, and the optimization of the proposed algorithms for faster
performance. These next developments should provide sufficient data to validate the
system’s safety and expedite its application in clinical scenarios.





Chapter 6

Conclusion

6.1 Summary
In my PhD thesis, I address the intricate challenges and advancements in the field of laser
microsurgery and optical imaging. The first chapter begins by exploring the complexities
of laser microsurgery and delves into the use of advanced imaging methods like Optical
Coherence Tomography (OCT) and Image Scanning Microscope (ISM). I then focus
on the critical factors in designing OCT-guided laser surgery systems, emphasizing the
prevention of OCT detector saturation, the need for precise focusing optics, and the
alignment of OCT and therapy lasers, with a special emphasis on Separate Optical Paths
(SOP) due to their compatibility with existing surgical workflows.

In the third chapter, I present a novel approach in laser scanning microscopy, specifi-
cally in ISM, by employing a single-photon avalanche diode (SPAD) array detector for
compressive sensing. This approach significantly improves image quality and reduces data
acquisition time, addressing major limitations in LSM. The fourth chapter introduces an
innovative method for determining ablation depths using 3D OCT in laser microsurgery
under SOP. By incorporating compressive sensing into OCT hardware, this method
efficiently assesses depth while a feedback controller adjusts the laser exposure time
across different tissue types, ensuring accurate ablation.

The final chapter of my thesis introduces Auto-CALM, a new controller for real-time
dynamic laser ablation. This system allows for precise ablation, accounting for tissue
motions and deformations, and is validated through extensive experiments, demonstrating
promising results for clinical application. Overall, my thesis represents a substantial
contribution to the field of laser microsurgery, combining sophisticated imaging techniques
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with advanced signal processing methodologies like to enhance surgical precision and
efficiency.

6.2 Future Directions
There are multiple frontiers in which further research can be pursued to accelerate clinical
translation.

Extended focus of depth: Optical imaging devices have a tight depth of focus. An
ideal, perfectly flat surface would have no issue. However, biological tissues, especially in
in-vivo applications, will not be flat. Plus, there is the involuntary and voluntary motion
of muscles has to be handled.

Occlusion Challenges in Laser Surgery: Laser surgery often takes place within confined
spaces, where smoke is generated during the procedure. Additionally, the combination of
low light conditions and the presence of surgical instruments can lead to occlusion issues
that need to be addressed for effective optical imaging.

In my third chapter, I utilized SPAD micro-images to achieve better quality images.
However, SPAD is capable of photo-counting. More specifically, SPAD generates a lot of
data. Efficiently handling this data should also be considered. Hence, further research
must be conducted to explore what more is possible. For example, consider examining the
device from UBICEPT, a startup based at MIT and the University of Wisconsin-Madison.

In the field of endoscopic probes, despite several advancements, there still exists a
technological gap, particularly in integrating OCT-guided laser surgery within a single
probe. This challenge can be approached through various methods: first, by utilizing
optical fiber combined with multiplexing techniques; second, by employing mirrors along
with multiple light sources; and third, by fusing two separate probes together in a
co-aligned fashion. Among these methods, the use of mirrors and the concept of dual
probes are especially promising. Mirrors have the advantage of transmitting light across
a wide spectrum, effectively accommodating both high and low power wavelengths. This
capability is crucial in surgical contexts where varying intensities of light are needed. A
notable example of this application is the CO2 laser produced by Deka, which operates
invisibly but is co-aligned with a visible aiming laser. Such innovations, leveraging the
inherent properties of optical components, offer exciting new avenues for exploration in
endoscopic probe design. I strongly suggest users explore Ansys Zemax OpticStudio for
new designs and highly recommend the Optical Engineering Course by the University of
Colorado Boulder on Cousera.



References

[1] Polarization-sensitive oct. http://obel.ee.uwa.edu.au/research/techniques/
polarization-sensitive-oct/.

[2] Alperen Acemoglu, Nikhil Deshpande, Jinoh Lee, Darwin G Caldwell, and Leonardo S
Mattos. The calm system: New generation computer-assisted laser microsurgery. In
2019 19th International Conference on Advanced Robotics (ICAR), pages 641–646.
IEEE, 2019.

[3] G Allevi, L Casacanditella, L Capponi, R Marsili, and G Rossi. Census transform
based optical flow for motion detection during different sinusoidal brightness varia-
tions. In Journal of Physics: Conference Series, volume 1149, page 012032. IOP
Publishing, 2018.

[4] Silke Aumann, Sabine Donner, Jörg Fischer, and Frank Müller. Optical Coherence
Tomography (OCT): Principle and Technical Realization, pages 59–85. Springer
International Publishing, Cham, 2019. ISBN 978-3-030-16638-0. doi: 10.1007/
978-3-030-16638-0_3. URL https://doi.org/10.1007/978-3-030-16638-0_3.

[5] Author’s First name Initials. Author’s Last name. Natural image statistics for
human and computer vision. CiteSeerX, Year of Publication. Available online at:
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.9114.

[6] Beina Azadgoli and Russell Y Baker. Laser applications in surgery. Annals of
Translational Medicine, 4(23):452, Dec 2016. doi: 10.21037/atm.2016.11.51.

[7] Peter O. Bayguinov, Dennis M. Oakley, Chien-Cheng Shih, Daniel J. Geanon,
Matthew S. Joens, and James A. J. Fitzpatrick. Modern laser scanning confocal
microscopy. Current Protocols in Cytometry, 85(1), June 2018. ISSN 1934-9300. doi:
10.1002/cpcy.39. URL http://dx.doi.org/10.1002/cpcy.39.

[8] Kathy Beaudette, Hyoung Won Baac, Wendy-Julie Madore, Martin Villiger, Nico-
las Godbout, Brett E. Bouma, and Caroline Boudoux. Laser tissue coagulation
and concurrent optical coherence tomography through a double-clad fiber coupler.
Biomed. Opt. Express, 6(4):1293–1303, Apr 2015. doi: 10.1364/BOE.6.001293. URL
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-6-4-1293.

[9] M Bertero, P Brianzi, and E R Pike. Super-resolution in confocal scanning microscopy.
Inverse Problems, 3(2):195–212, May 1987. ISSN 1361-6420. doi: 10.1088/0266-5611/
3/2/006. URL http://dx.doi.org/10.1088/0266-5611/3/2/006.

http://obel.ee.uwa.edu.au/research/techniques/polarization-sensitive-oct/
http://obel.ee.uwa.edu.au/research/techniques/polarization-sensitive-oct/
https://doi.org/10.1007/978-3-030-16638-0_3
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.9114
http://dx.doi.org/10.1002/cpcy.39
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-6-4-1293
http://dx.doi.org/10.1088/0266-5611/3/2/006


74 References

[10] M Bertero, P Boccacci, M Defrise, C De Mol, and E R Pike. Super-resolution
in confocal scanning microscopy: Ii. the incoherent case. Inverse Problems, 5(4):
441–461, August 1989. ISSN 1361-6420. doi: 10.1088/0266-5611/5/4/003. URL
http://dx.doi.org/10.1088/0266-5611/5/4/003.

[11] Stephen A. Boppart, Juergen Herrmann, Costas Pitris, Debra L. Stamper, Mark E.
Brezinski, and James G. Fujimoto. High-resolution optical coherence tomography-
guided laser ablation of surgical tissue. Journal of Surgical Research, 82(2):275–
284, 1999. ISSN 0022-4804. doi: https://doi.org/10.1006/jsre.1998.5555. URL
https://www.sciencedirect.com/science/article/pii/S002248049895555X.

[12] Stephen A. Boppart, Juergen M. Herrmann, Costas Pitris, Debra L. Stamper,
Mark E. Brezinski, and James G. Fujimoto. Real-time optical coherence tomography
for minimally invasive imaging of prostate ablation. Computer Aided Surgery, 6(2):
94–103, January 2001. doi: 10.3109/10929080109145996. URL https://doi.org/10.
3109/10929080109145996.

[13] Caroline Boudoux. Fundamentals of biomedical optics: from light interactions with
cells to complex imaging systems. Pollux, Montréal, 2016. ISBN 978-1-366-45119-4
978-1-366-58826-5 978-1-366-44619-0.

[14] Gary Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for the
Professional Programmer, 25(11):120–123, 2000.

[15] Mauro Buttafava, Federica Villa, Marco Castello, Giorgio Tortarolo, Enrico Conca,
Mirko Sanzaro, Simonluca Piazza, Paolo Bianchini, Alberto Diaspro, Franco Zappa,
Giuseppe Vicidomini, and Alberto Tosi. Spad-based asynchronous-readout array
detectors for image-scanning microscopy, 2020. URL https://arxiv.org/abs/2002.
11443.

[16] Marco Castello, Colin J. R. Sheppard, Alberto Diaspro, and Giuseppe Vicidomini.
Image scanning microscopy with a quadrant detector. Optics Letters, 40(22):5355,
November 2015. doi: 10.1364/ol.40.005355. URL https://doi.org/10.1364/ol.40.
005355.

[17] Marco Castello, Giorgio Tortarolo, Mauro Buttafava, Takahiro Deguchi, Federica
Villa, Sami Koho, Luca Pesce, Michele Oneto, Simone Pelicci, Luca Lanzanó, Paolo
Bianchini, Colin J. R. Sheppard, Alberto Diaspro, Alberto Tosi, and Giuseppe
Vicidomini. A robust and versatile platform for image scanning microscopy enabling
super-resolution FLIM. Nature Methods, 16(2):175–178, January 2019. doi: 10.1038/
s41592-018-0291-9. URL https://doi.org/10.1038/s41592-018-0291-9.

[18] W. Chang, Y. Fan, X. Zhang, and H. Liao. An intelligent theranostics method using
optical coherence tomography guided automatic laser ablation for neurosurgery. In
2018 40th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 3224–3227, 2018. doi: 10.1109/EMBC.2018.8513016.

[19] Daniel S Choy. History of lasers in medicine. Thoracic Cardiovascular Surgery, 36
(Suppl 2):114–117, Jun 1988. doi: 10.1055/s-2007-1022985.

http://dx.doi.org/10.1088/0266-5611/5/4/003
https://www.sciencedirect.com/science/article/pii/S002248049895555X
https://doi.org/10.3109/10929080109145996
https://doi.org/10.3109/10929080109145996
https://arxiv.org/abs/2002.11443
https://arxiv.org/abs/2002.11443
https://doi.org/10.1364/ol.40.005355
https://doi.org/10.1364/ol.40.005355
https://doi.org/10.1038/s41592-018-0291-9


References 75

[20] José-Angel Conchello and Jeff W Lichtman. Optical sectioning microscopy. Nature
Methods, 2(12):920–931, November 2005. ISSN 1548-7105. doi: 10.1038/nmeth815.
URL http://dx.doi.org/10.1038/nmeth815.

[21] I Cox, Colin Sheppard, and T Wilson. Super-resolution by confocal fluorescent
microscopy. Optik - International Journal for Light and Electron Optics, 60:391–396,
04 1982.

[22] Nikhil Deshpande, Jesus Ortiz, Darwin G. Caldwell, and Leonardo S. Mattos.
Enhanced computer-assisted laser microsurgeries with a virtual microscope based
surgical system. In 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, May 2014. doi: 10.1109/icra.2014.6907469. URL http://dx.doi.org/
10.1109/ICRA.2014.6907469.

[23] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[24] Wolfgang Drexler, Mengyang Liu, Abhishek Kumar, Tschackad Kamali, Angelika
Unterhuber, and Rainer A. Leitgeb. Optical coherence tomography today: speed,
contrast, and multimodality. Journal of Biomedical Optics, 19(7):1 – 34, 2014. doi:
10.1117/1.JBO.19.7.071412. URL https://doi.org/10.1117/1.JBO.19.7.071412.

[25] Marco F. Duarte, Mark A. Davenport, Dharmpal Takhar, Jason N. Laska, Ting
Sun, Kevin F. Kelly, and Richard G. Baraniuk. Single-pixel imaging via compressive
sampling. IEEE Signal Processing Magazine, 25(2):83–91, 2008. doi: 10.1109/MSP.
2007.914730.

[26] Hans Edmund Eckel and Walter Franz Thumfart. Laser surgery for the treatment of
larynx carcinomas: Indications, techniques, and preliminary results. Annals of Otol-
ogy, Rhinology & Laryngology, 101(2):113–118, February 1992. ISSN 1943-572X. doi:
10.1177/000348949210100202. URL http://dx.doi.org/10.1177/000348949210100202.

[27] Vania V. Estrela, Hermes Aguiar Magalhaes, and Osamu Saotome. Total variation
applications in computer vision. 2016. doi: 10.48550/ARXIV.1603.09599. URL
https://arxiv.org/abs/1603.09599.

[28] Yingwei Fan, Boyu Zhang, Wei Chang, Xinran Zhang, and Hongen Liao. A novel
integration of spectral-domain optical-coherence-tomography and laser-ablation
system for precision treatment. International Journal of Computer Assisted Radiology
and Surgery, 13(3):411–423, September 2017. doi: 10.1007/s11548-017-1664-8. URL
https://doi.org/10.1007/s11548-017-1664-8.

[29] Elin Farnell, Henry Kvinge, Julia R. Dupuis, Michael Kirby, Chris Peterson, and
Elizabeth C. Schundler. Total variation vs l1 regularization: a comparison of
compressive sensing optimization methods for chemical detection. 2019. doi: 10.
48550/ARXIV.1906.10603. URL https://arxiv.org/abs/1906.10603.

http://dx.doi.org/10.1038/nmeth815
http://dx.doi.org/10.1109/ICRA.2014.6907469
http://dx.doi.org/10.1109/ICRA.2014.6907469
https://doi.org/10.1117/1.JBO.19.7.071412
http://dx.doi.org/10.1177/000348949210100202
https://arxiv.org/abs/1603.09599
https://doi.org/10.1007/s11548-017-1664-8
https://arxiv.org/abs/1906.10603


76 References

[30] Loris Fichera, Diego Pardo, Placido Illiano, Jesùs Ortiz, Darwin G. Caldwell,
and Leonardo S. Mattos. Online estimation of laser incision depth for transoral
microsurgery: approach and preliminary evaluation. The International Journal of
Medical Robotics and Computer Assisted Surgery, 12(1):53–61, 2016. doi: https:
//doi.org/10.1002/rcs.1656. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
rcs.1656.

[31] Bibin Francis, Manoj Mathew, and Muthuvel Arigovindan. Multiresolution-based
weighted regularization for denoised image interpolation from scattered samples
with application to confocal microscopy. J. Opt. Soc. Am. A, 35(10):1749–1759, Oct
2018. doi: 10.1364/JOSAA.35.001749. URL https://opg.optica.org/josaa/abstract.
cfm?URI=josaa-35-10-1749.

[32] Sabrina Garofolo, Cesare Piazza, Francesca Del Bon, Stefano Mangili, Luca Guas-
tini, Francesco Mora, Piero Nicolai, and Giorgio Peretti. Intraoperative narrow
band imaging better delineates superficial resection margins during transoral laser
microsurgery for early glottic cancer. Annals of Otology, Rhinology & Laryn-
gology, 124(4):294–298, October 2014. doi: 10.1177/0003489414556082. URL
https://doi.org/10.1177/0003489414556082.

[33] Ajay Gunalan and Leonardo S. Mattos. Towards oct-guided endoscopic laser
surgery—a review. Diagnostics, 13(4):677, February 2023. ISSN 2075-4418. doi:
10.3390/diagnostics13040677. URL http://dx.doi.org/10.3390/diagnostics13040677.

[34] Ilker Hacihaliloglu, Elvis C.S. Chen, Parvin Mousavi, Purang Abolmaesumi, Emad
Boctor, and Cristian A. Linte. Interventional imaging: Ultrasound, page 701–720.
Elsevier, 2020. ISBN 9780128161760. doi: 10.1016/b978-0-12-816176-0.00033-8.
URL http://dx.doi.org/10.1016/B978-0-12-816176-0.00033-8.

[35] Ilker Hacihaliloglu, Elvis C.S. Chen, Parvin Mousavi, Purang Abolmaesumi, Emad
Boctor, and Cristian A. Linte. Chapter 28 - interventional imaging: Ultrasound.
In S. Kevin Zhou, Daniel Rueckert, and Gabor Fichtinger, editors, Handbook of
Medical Image Computing and Computer Assisted Intervention, The Elsevier and
MICCAI Society Book Series, pages 701–720. Academic Press, 2020. ISBN 978-
0-12-816176-0. doi: https://doi.org/10.1016/B978-0-12-816176-0.00033-8. URL
https://www.sciencedirect.com/science/article/pii/B9780128161760000338.

[36] Karl-Jürgen Halbhuber and Karsten König. Modern laser scanning microscopy in
biology, biotechnology and medicine. Annals of Anatomy - Anatomischer Anzeiger,
185(1):1–20, January 2003. ISSN 0940-9602. doi: 10.1016/s0940-9602(03)80002-x.
URL http://dx.doi.org/10.1016/S0940-9602(03)80002-X.

[37] Bassel Haydar, Stéphane Chrétien, Adrien Bartoli, and Brahim Tamadazte. Three-
dimensional oct compressed sensing using the shearlet transform under continuous
trajectories sampling. Informatics in Medicine Unlocked, 19:100287, 2020. ISSN
2352-9148. doi: 10.1016/j.imu.2019.100287. URL http://dx.doi.org/10.1016/j.imu.
2019.100287.

[38] Chuanzhen Hu, Xianli Wang, Ling Liu, Chuanhai Fu, Kaiqin Chu, and Zachary J.
Smith. Fast confocal raman imaging via context-aware compressive sensing. Analyst,

https://onlinelibrary.wiley.com/doi/abs/10.1002/rcs.1656
https://onlinelibrary.wiley.com/doi/abs/10.1002/rcs.1656
https://opg.optica.org/josaa/abstract.cfm?URI=josaa-35-10-1749
https://opg.optica.org/josaa/abstract.cfm?URI=josaa-35-10-1749
https://doi.org/10.1177/0003489414556082
http://dx.doi.org/10.3390/diagnostics13040677
http://dx.doi.org/10.1016/B978-0-12-816176-0.00033-8
https://www.sciencedirect.com/science/article/pii/B9780128161760000338
http://dx.doi.org/10.1016/S0940-9602(03)80002-X
http://dx.doi.org/10.1016/j.imu.2019.100287
http://dx.doi.org/10.1016/j.imu.2019.100287


References 77

146:2348–2357, 2021. doi: 10.1039/D1AN00088H. URL http://dx.doi.org/10.1039/
D1AN00088H.

[39] Joseph A. Izatt, Michael A. Choma, and Al-Hafeez Dhalla. Theory of Optical
Coherence Tomography, pages 65–94. Springer International Publishing, Cham,
2015. ISBN 978-3-319-06419-2. doi: 10.1007/978-3-319-06419-2_3. URL https:
//doi.org/10.1007/978-3-319-06419-2_3.

[40] Geza J. Jako. Laser surgery of the vocal cordsan experimental study with carbon
dioxide lasers on dogs. The Laryngoscope, 82(12):2204–2216, December 1972. ISSN
1531-4995. doi: 10.1288/00005537-197212000-00009. URL http://dx.doi.org/10.
1288/00005537-197212000-00009.

[41] Jamil Jivraj, Yize Huang, Ronnie Wong, Yi Lu, Barry Vuong, Joel Ramjist, Xijia
Gu, and Victor X. D. Yang. Coaxial cavity injected OCT and fiber laser ablation
system for real-time monitoring of ablative processes. In Optical Techniques in
Neurosurgery, Neurophotonics, and Optogenetics II, volume 9305, pages 26 – 29.
SPIE, 2015. doi: 10.1117/12.2080606. URL https://doi.org/10.1117/12.2080606.

[42] Jamil Jivraj, Chaoliang Chen, Yize Huang, Joel Ramjist, Yi Lu, Barry Vuong, Xijia
Gu, and Victor X. D. Yang. Smart laser osteotomy: integrating a pulsed 1064nm fiber
laser into the sample arm of a fiber optic 1310nm oct system for ablation monitoring.
Biomed. Opt. Express, 9(12):6374–6387, Dec 2018. doi: 10.1364/BOE.9.006374.
URL http://www.osapublishing.org/boe/abstract.cfm?URI=boe-9-12-6374.

[43] Nitesh Katta, Austin B. McElroy, Arnold D. Estrada, and Thomas E. Milner. Optical
coherence tomography image-guided smart laser knife for surgery. Lasers in Surgery
and Medicine, 50(3):202–212, 2018. doi: https://doi.org/10.1002/lsm.22705. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/lsm.22705.

[44] Nitesh Katta, Arnold D Estrada, Austin B McElroy, Aleksandra Gruslova, Meagan
Oglesby, Andrew G Cabe, Marc D Feldman, RY Declan Fleming, Andrew J Brenner,
and Thomas E Milner. Laser brain cancer surgery in a xenograft model guided by
optical coherence tomography. Theranostics, 9(12):3555–3564, 2019. doi: 10.7150/
thno.31811. URL https://doi.org/10.7150/thno.31811.

[45] Ensieh Khalkhal, Majid Rezaei-Tavirani, Mohammad Reza Zali, and Zahra Akbari.
The evaluation of laser application in surgery: A review article. Journal of Lasers in
Medical Sciences, 10(5):S104–S111, December 2019. ISSN 2228-6721. doi: 10.15171/
jlms.2019.s18. URL http://dx.doi.org/10.15171/jlms.2019.S18.

[46] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, and Ross Girshick. Segment anything. arXiv:2304.02643, 2023.

[47] Dennis Kundrat, R Graesslin, Andreas Schoob, DT Friedrich, MO Scheithauer,
TK Hoffmann, Tobias Ortmaier, Lueder Alexander Kahrs, and PJ Schuler. Preclinical
performance evaluation of a robotic endoscope for non-contact laser surgery. Annals
of Biomedical Engineering, 49:585–600, 2021.

http://dx.doi.org/10.1039/D1AN00088H
http://dx.doi.org/10.1039/D1AN00088H
https://doi.org/10.1007/978-3-319-06419-2_3
https://doi.org/10.1007/978-3-319-06419-2_3
http://dx.doi.org/10.1288/00005537-197212000-00009
http://dx.doi.org/10.1288/00005537-197212000-00009
https://doi.org/10.1117/12.2080606
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-9-12-6374
https://onlinelibrary.wiley.com/doi/abs/10.1002/lsm.22705
https://doi.org/10.7150/thno.31811
http://dx.doi.org/10.15171/jlms.2019.S18


78 References

[48] Ben Y.C. Leung, Paul J.L. Webster, James M. Fraser, and Victor X.D. Yang. Real-
time guidance of thermal and ultrashort pulsed laser ablation in hard tissue using
inline coherent imaging. Lasers in Surgery and Medicine, 44(3):249–256, January
2012. doi: 10.1002/lsm.21162. URL https://doi.org/10.1002/lsm.21162.

[49] Chengbo Li, Wotao Yin, Hong Jiang, and Yin Zhang. An efficient augmented
lagrangian method with applications to total variation minimization. Computa-
tional Optimization and Applications, 56(3):507–530, July 2013. doi: 10.1007/
s10589-013-9576-1. URL https://doi.org/10.1007/s10589-013-9576-1.

[50] Shunlei Li, Ajay Gunalan, Muhammad Adeel Azam, Veronica Penza, Darwin
G. Caldwell, and Leonardo S. Mattos. Auto-calm: Autonomous computer-assisted
laser microsurgery. IEEE Transactions on Medical Robotics and Bionics.

[51] Zhuoyan Li, Jin H. Shen, John A. Kozub, Ratna Prasad, Pengcheng Lu, and Karen M.
Joos. Miniature forward-imaging b-scan optical coherence tomography probe to
guide real-time laser ablation. Lasers in Surgery and Medicine, 46(3):193–202, March
2014. doi: 10.1002/lsm.22214. URL https://doi.org/10.1002/lsm.22214.

[52] Raphaël Maltais-Tariant, Caroline Boudoux, and Néstor Uribe-Patarroyo. Real-
time co-localized oct surveillance of laser therapy using motion corrected speckle
decorrelation. Biomed. Opt. Express, 11(6):2925–2950, Jun 2020. doi: 10.1364/BOE.
385654. URL http://www.osapublishing.org/boe/abstract.cfm?URI=boe-11-6-2925.

[53] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of
human segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics. In Proceedings Eighth IEEE Interna-
tional Conference on Computer Vision. ICCV 2001, volume 2, pages 416–423. IEEE,
2001.

[54] Leonardo S. Mattos, Nikhil Deshpande, Giacinto Barresi, Luca Guastini, and Giorgio
Peretti. A novel computerized surgeon–machine interface for robot-assisted laser
phonomicrosurgery. The Laryngoscope, 124(8):1887–1894, 2014. doi: https://doi.
org/10.1002/lary.24566. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/lary.
24566.

[55] Jessica Mavadia-Shukla, Jiefeng F. Xi, and Xingde D. Li. Multi-modal Endoscopy:
OCT and Fluorescence, pages 1599–1613. Springer International Publishing, Cham,
2015. ISBN 978-3-319-06419-2. doi: 10.1007/978-3-319-06419-2_54. URL https:
//doi.org/10.1007/978-3-319-06419-2_54.

[56] James P. McLean and Christine P. Hendon. 3-d compressed sensing optical coherence
tomography using predictive coding. Biomed. Opt. Express, 12(4):2531–2549, Apr
2021. doi: 10.1364/BOE.421848. URL https://opg.optica.org/boe/abstract.cfm?
URI=boe-12-4-2531.

[57] C.A. MILFORD and P.E. O’FLYNN. Management of verrucous carcinoma of the
larynx. Clinical Otolaryngology, 16(2):160–162, April 1991. ISSN 1749-4486. doi:
10.1111/j.1365-2273.1991.tb01968.x. URL http://dx.doi.org/10.1111/j.1365-2273.
1991.tb01968.x.

https://doi.org/10.1002/lsm.21162
https://doi.org/10.1007/s10589-013-9576-1
https://doi.org/10.1002/lsm.22214
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-11-6-2925
https://onlinelibrary.wiley.com/doi/abs/10.1002/lary.24566
https://onlinelibrary.wiley.com/doi/abs/10.1002/lary.24566
https://doi.org/10.1007/978-3-319-06419-2_54
https://doi.org/10.1007/978-3-319-06419-2_54
https://opg.optica.org/boe/abstract.cfm?URI=boe-12-4-2531
https://opg.optica.org/boe/abstract.cfm?URI=boe-12-4-2531
http://dx.doi.org/10.1111/j.1365-2273.1991.tb01968.x
http://dx.doi.org/10.1111/j.1365-2273.1991.tb01968.x


References 79

[58] Claus B. Müller and Jörg Enderlein. Image scanning microscopy. Physical Review
Letters, 104(19), May 2010. ISSN 1079-7114. doi: 10.1103/physrevlett.104.198101.
URL http://dx.doi.org/10.1103/PhysRevLett.104.198101.

[59] F.W. Neukam and F. Stelzle. Laser tumor treatment in oral and maxillofacial
surgery. Physics Procedia, 5:91–100, 2010. ISSN 1875-3892. doi: https://doi.org/10.
1016/j.phpro.2010.08.125. URL https://www.sciencedirect.com/science/article/pii/
S1875389210005511. Laser Assisted Net Shape Engineering 6, Proceedings of the
LANE 2010, Part 1.

[60] Masato Ohmi, Manabu Tanizawa, Atsushi Fukunaga, and Masamitsu Haruna. In-
situ observation of tissue laser ablation using optical coherence tomography. Optical
and Quantum Electronics, 37(13-15):1175–1183, December 2005. doi: 10.1007/
s11082-005-4189-2. URL https://doi.org/10.1007/s11082-005-4189-2.

[61] OpenCV. Morphological operations in opencv. https://docs.opencv.org/4.x/d9/
d61/tutorial_py_morphological_ops.html, 2024. Accessed: 2024-02-19.

[62] C. K. N. Patel. Continuous-wave laser action on vibrational-rotational transitions
of co2. Phys. Rev., 136:A1187–A1193, Nov 1964. doi: 10.1103/PhysRev.136.A1187.
URL https://link.aps.org/doi/10.1103/PhysRev.136.A1187.

[63] N. Pavillon and N. I. Smith. Compressed sensing laser scanning microscopy. Opt.
Express, 24(26):30038–30052, Dec 2016. doi: 10.1364/OE.24.030038. URL https:
//opg.optica.org/oe/abstract.cfm?URI=oe-24-26-30038.

[64] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross,
and Alexander Sorkine-Hornung. A benchmark dataset and evaluation methodology
for video object segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 724–732, 2016.

[65] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-
Hornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation.
arXiv preprint arXiv:1704.00675, 2017.

[66] Dan Z. Reinstein, Timothy J. Archer, and Marine Gobbe. The history of lasik. Jour-
nal of Refractive Surgery, 28(4):291–298, April 2012. ISSN 1081-597X. doi: 10.3928/
1081597x-20120229-01. URL http://dx.doi.org/10.3928/1081597x-20120229-01.

[67] Andrew M. Rollins and Joseph A. Izatt. Optimal interferometer designs for optical
coherence tomography. Opt. Lett., 24(21):1484–1486, Nov 1999. doi: 10.1364/OL.24.
001484. URL http://www.osapublishing.org/ol/abstract.cfm?URI=ol-24-21-1484.

[68] Marc Rubinstein and William B. Armstrong. Transoral laser microsurgery for
laryngeal cancer: A primer and review of laser dosimetry. Lasers in Medical Science,
26(1):113–124, September 2010. ISSN 1435-604X. doi: 10.1007/s10103-010-0834-5.
URL http://dx.doi.org/10.1007/s10103-010-0834-5.

[69] H Rudert. Laser-chirurgie in der hno-heilkunde [laser surgery in ent surgery].
Laryngol Rhinol Otol (Stuttg), 67(6):261–8, 1988.

http://dx.doi.org/10.1103/PhysRevLett.104.198101
https://www.sciencedirect.com/science/article/pii/S1875389210005511
https://www.sciencedirect.com/science/article/pii/S1875389210005511
https://doi.org/10.1007/s11082-005-4189-2
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://link.aps.org/doi/10.1103/PhysRev.136.A1187
https://opg.optica.org/oe/abstract.cfm?URI=oe-24-26-30038
https://opg.optica.org/oe/abstract.cfm?URI=oe-24-26-30038
http://dx.doi.org/10.3928/1081597x-20120229-01
http://www.osapublishing.org/ol/abstract.cfm?URI=ol-24-21-1484
http://dx.doi.org/10.1007/s10103-010-0834-5


80 References

[70] C.J.R. Sheppard and A. Choudhury. Image formation in the scanning microscope.
Optica Acta: International Journal of Optics, 24(10):1051–1073, October 1977. ISSN
0030-3909. doi: 10.1080/713819421. URL http://dx.doi.org/10.1080/713819421.

[71] Colin Sheppard. Super-resolution in confocal imaging. Optik - International Journal
for Light and Electron Optics, 80:53, 02 1988.

[72] Yoni Sher. Review of algorithms for compressive sensing of images. 2019. doi:
10.48550/ARXIV.1908.01642. URL https://arxiv.org/abs/1908.01642.

[73] Shree K. Nayar. First Principles of Computer Vision. https://www.youtube.com/
playlist?list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV, 2024. [Online; accessed
24-March-2024].

[74] Emanuel M. Skolnik, Lawrence Martin, King F. Yee, and Michael A. Wheatley. Ra-
diation failures in cancer of the larynx. Annals of Otology, Rhinology & Laryngology,
84(6):804–811, November 1975. ISSN 1943-572X. doi: 10.1177/000348947508400612.
URL http://dx.doi.org/10.1177/000348947508400612.

[75] Ki Uk Song. Footprints in laser medicine and surgery: Beginnings, present, and future.
Medical Lasers, 6(1):1–4, June 2017. ISSN 2288-0224. doi: 10.25289/ml.2017.6.1.1.
URL http://dx.doi.org/10.25289/ML.2017.6.1.1.

[76] . Steiner. Endoscopic Laser Surgery of the Upper Aerodigestive Tract. With Special
Emphasis on Cancer Surgery. Georg Thieme Verlag Stuttgart, New York, 2000.
ISBN 9783131627018. doi: 10.1055/b-006-161074. URL http://dx.doi.org/10.1055/
b-006-161074.

[77] M. Stuart Strong. Laser excision of carcinoma of the larynx. The Laryngoscope, 85(8):
1286–1289, August 1975. ISSN 1531-4995. doi: 10.1288/00005537-197508000-00003.
URL http://dx.doi.org/10.1288/00005537-197508000-00003.

[78] Jingjing Sun and Huikai Xie. Mems-based endoscopic optical coherence tomography.
International Journal of Optics, 2011:825629, 2011. ISSN 1687-9384. doi: 10.1155/
2011/825629. URL https://doi.org/10.1155/2011/825629.

[79] M Makin Swindle, Andrew Makin, Alan J Herron, Fred J Clubb Jr, and Kendall S
Frazier. Swine as models in biomedical research and toxicology testing. Veterinary
pathology, 49(2):344–356, 2012.

[80] Xu Teng, Feng Li, and Chao Lu. Visualization of materials using the confocal
laser scanning microscopy technique. Chemical Society Reviews, 49(8):2408–2425,
2020. ISSN 1460-4744. doi: 10.1039/c8cs00061a. URL http://dx.doi.org/10.1039/
C8CS00061A.

[81] Aggeliki Tsoli, Naureen Mahmood, and Michael J Black. Breathing life into shape:
Capturing, modeling and animating 3d human breathing. ACM Transactions on
graphics (TOG), 33(4):1–11, 2014.

http://dx.doi.org/10.1080/713819421
https://arxiv.org/abs/1908.01642
https://www.youtube.com/playlist?list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV
https://www.youtube.com/playlist?list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV
http://dx.doi.org/10.1177/000348947508400612
http://dx.doi.org/10.25289/ML.2017.6.1.1
http://dx.doi.org/10.1055/b-006-161074
http://dx.doi.org/10.1055/b-006-161074
http://dx.doi.org/10.1288/00005537-197508000-00003
https://doi.org/10.1155/2011/825629
http://dx.doi.org/10.1039/C8CS00061A
http://dx.doi.org/10.1039/C8CS00061A


References 81

[82] Charles W. Vaughan, M.Stuart Strong, and Geza J. Jako. Laryngeal carcinoma:
Transoral treatment utilizing the co2 laser. The American Journal of Surgery, 136
(4):490–493, October 1978. ISSN 0002-9610. doi: 10.1016/0002-9610(78)90267-2.
URL http://dx.doi.org/10.1016/0002-9610(78)90267-2.

[83] Paul J. L. Webster, Joe X. Z. Yu, Ben Y. C. Leung, Mitchell D. Anderson, Victor
X. D. Yang, and James M. Fraser. In situ 24 khz coherent imaging of morphology
change in laser percussion drilling. Opt. Lett., 35(5):646–648, Mar 2010. doi:
10.1364/OL.35.000646. URL http://ol.osa.org/abstract.cfm?URI=ol-35-5-646.

[84] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

[85] Joel M. White, Harold E. Goodis, and Charles L. Rose. Use of the pulsed nd:yag
laser for intraoral soft tissue surgery. Lasers in Surgery and Medicine, 11(5):
455–461, January 1991. ISSN 1096-9101. doi: 10.1002/lsm.1900110511. URL
http://dx.doi.org/10.1002/lsm.1900110511.

[86] Rebecca M. Willett, Roummel F. Marcia, and Jonathan M. Nichols. Compressed
sensing for practical optical imaging systems: a tutorial. Optical Engineering, 50(7):
072601, 2011. doi: 10.1117/1.3596602. URL https://doi.org/10.1117/1.3596602.

[87] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang,
and Thomas Huang. Youtube-vos: A large-scale video object segmentation bench-
mark. arXiv preprint arXiv:1809.03327, 2018.

[88] Joseph Zammit and Ian J. Wassell. Adaptive block compressive sensing: Toward
a real-time and low-complexity implementation. IEEE Access, 8:120999–121013,
2020. doi: 10.1109/access.2020.3006861. URL https://doi.org/10.1109/access.2020.
3006861.

[89] Yaokun Zhang, Tom Pfeiffer, Marcel Weller, Wolfgang Wieser, Robert Huber, Jörg
Raczkowsky, Jörg Schipper, Heinz Wörn, and Thomas Klenzner. Optical coherence
tomography guided laser cochleostomy: Towards the accuracy on tens of micrometer
scale. B ioMed Research International, 2014:1–10, 2014. doi: 10.1155/2014/251814.
URL https://doi.org/10.1155/2014/251814.

[90] Yin Zhang. An Efficient Algorithm For Total Variation Regularization with Applica-
tions to the Single Pixel Camera and Compressive Sensing. PhD thesis.

[91] Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare MC Tempany, Michael R
Kaus, Steven J Haker, William M Wells III, Ferenc A Jolesz, and Ron Kikinis.
Statistical validation of image segmentation quality based on a spatial overlap
index1: scientific reports. Academic radiology, 11(2):178–189, 2004.

[92] A. Zunino, E. Slenders, F. Fersini, et al. Open-source tools enable accessible and
advanced image scanning microscopy data analysis. Nature Photonics, 2023. doi:
10.1038/s41566-023-01216-x. URL https://doi.org/10.1038/s41566-023-01216-x.

[93] Alessandro Zunino, Marco Castello, and Giuseppe Vicidomini. Reconstructing
the image scanning microscopy dataset: an inverse problem, 2022. URL https:
//arxiv.org/abs/2211.12510.

http://dx.doi.org/10.1016/0002-9610(78)90267-2
http://ol.osa.org/abstract.cfm?URI=ol-35-5-646
http://dx.doi.org/10.1002/lsm.1900110511
https://doi.org/10.1117/1.3596602
https://doi.org/10.1109/access.2020.3006861
https://doi.org/10.1109/access.2020.3006861
https://doi.org/10.1155/2014/251814
https://doi.org/10.1038/s41566-023-01216-x
https://arxiv.org/abs/2211.12510
https://arxiv.org/abs/2211.12510


82 References

[94] Alessandro Zunino, Marco Castello, and Giuseppe Vicidomini. Reconstructing the
image scanning microscopy dataset: an inverse problem. Inverse Problems, 39
(6):064004, April 2023. ISSN 1361-6420. doi: 10.1088/1361-6420/accdc5. URL
http://dx.doi.org/10.1088/1361-6420/accdc5.

http://dx.doi.org/10.1088/1361-6420/accdc5


Author Bio

Ajay Gunalan, born on December 20, 1995, in Chennai, India, is a Ph.D. student at
the Italian Institute of Technology, where he is pioneering the development of novel
laser technologies for micro-surgical robots. With a Bachelor’s degree in Mechanical
Engineering from B.S.A. Crescent Institute of Science and Technology in Chennai, India,
he has a solid foundation in engineering principles. Ajay’s research is focused on enhancing
healthcare affordability by integrating medical and engineering disciplines. His expertise
spans computational imaging, image processing, machine learning, and robotic software
development. Ajay is deeply committed to working with diverse teams to solve new
challenges each day, aiming to transform healthcare through innovative technology. His
previous experiences include developing Medical Device, Humanoid, Legged Robot, and
Tele-Robotics.

Contact: ajay.gunalan@pm.me
ajaygunalan.com

https://ajaygunalan.com/

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Laser Microsurgery
	1.2 Transoral Laser Microsurgery (TLM)
	1.3 Challenges in TLM
	1.4 Intraoperative imaging
	1.5 Image Scanning Microscope
	1.6 Optical Coherence Tomography
	1.7 Complementary Nature of ISM and OCT
	1.8 Thesis Organisation & Contributions

	2 Literature Review
	2.1 Introduction
	2.2 Double-Clad Fiber (DCF)
	2.3 Dichroic Mirror (DM)
	2.4 Separate Optical Paths (SOP)
	2.5 Why SOP?
	2.6 Computational Sensing

	3 Compressive Image Scanning Microscope
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 Simulation Setup and Ground Truth
	3.2.2 Compressive Sensing Reconstruction
	3.2.3 Scanning Pattern
	3.2.4 ISM Reconstruction

	3.3 Results and Discussion
	3.4 Conclusion

	4 Compressive 3D OCT-Guided Depth Control
	4.1 Introduction
	4.2 OCT Hardware Sampling
	4.2.1 Experimental Setup
	4.2.2 Data Acquisition Pipeline
	4.2.3 Upsampling Strategy
	4.2.4 Compressive Scanning & Reconstruction
	4.2.5 Evaluation Metrics
	4.2.6 Results and Discussion

	4.3 Feedback Controller
	4.3.1 Depth Estimation
	4.3.2 PD Controller
	4.3.3 Results & Discussion

	4.4 Conclusion

	5 Auto-CALM: Automated Computer-Assisted Laser Microsurgery
	5.1 Introduction
	5.2 Materials
	5.3 Methods
	5.3.1 CALM to RGB Image Mapping
	5.3.2 Laser Spot Tracking
	5.3.3 Target Tracking
	5.3.4 Ablation Algorithm
	5.3.5 Evaluation metrics
	5.3.6 Assessment Experiments

	5.4 Results & Discussion
	5.4.1 Laser Tracking Result
	5.4.2 Target Tracking Result
	5.4.3 Comparative Result
	5.4.4 Robustness Result

	5.5 Conclusion

	6 Conclusion
	6.1 Summary
	6.2 Future Directions

	References

