
Università degli Studi di Messina

Department of Engineering

doctoral programme in
"cyber physical systems"

xxxiv cycle
ing-inf/05

A service-oriented architecture for IoT

infrastructure and Fog-minded DevOps

Doctoral Thesis by: Supervisor:

Zakaria Benomar Prof. Antonio Puliafito

Co-Supervisor:

Prof. Giovanni Merlino

The Chair of Doctoral Program:

Prof. Antonio Puliafito

Academic Year 2020 - 2021

Declaration of Authorship

A thesis submitted in fulfillment of the requirements
for the Doctor of Philosophy

I hereby certify that the thesis I am submitting is entirely my own original work

except where otherwise indicated. Any use of the works of any other author, in any

form, is properly acknowledged at their point of use.

Zakaria Benomar

Messina, 23 November 2021

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps i

Acknowledgment

Academia

A special thanks to Prof. Antonio Puliafito as a great mentor and supervisor.

His advice, guidance, patience, and insight throughout this project was undeniable.

Besides, I would like to thank him also for providing me the wonderful opportunity in

doing research at the University of Messina. I wish to express my deepest gratitude

to Prof. Giovanni Merlino and Prof. Francesco Longo that have dedicated their time

and effort in providing countless assistance.

Extending the gratitude to all the professors and team members at MDSLab,

Department of Engineering, University of Messina.

Outside the Univeristy of Messina, I would like to thank Prof. Khalid El Baamrani

and Prof. Noureddine Idboufker for their help and valuable advices.

Family and friends

I am indebted to both of my parents Omar Benomar and Aziza Bousseta to have

always been there to support and help me during my studies and life in general. I thank

also my brother, Oussama Benomar for his undeniable advices and help. I would like

to recognize the invaluable assistance of Fatima Ezzahra Houzaly who is a big support

for me. I will be always grateful for your help, assistance,and encouragement.

This project would not have been possible without the help of all of you. Thank you.

I acknowledge all my friends from MDSLab Nachiket Tapas, Arif Sahbudin, Fab-

rizio De Vita, Islem Bejaoui, Giovanni Cicceri, and Giuseppe Tricomi.

I also thank all the engineers from SmartMe.IO that I had the opportunity to

collaborate with, in particular Fabio Verboso, Nicola Peditto, Carmelo Romeo and

Alfonso Panarello.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps ii

Abstract

The huge and steady growth in terms of the number of distributed devices con-

nected to the Internet, the so-called Internet of Things (IoT), calls for newly developed

infrastructure management techniques to deal with the complexity of emerging IoT

deployments, especially in light of the growing impact of the sharing economy. In this

context, most of the management platforms tackle IoT issues from a high level where

IoT data is managed using Cloud oriented solutions. In such a scenario, the approach

adopted can be categorized under the data-centric approach where IoT devices are

considered as simple mere data generators uploading data towards Cloud platforms

that provide, afterwards, processed data to the users.

In order to challenge this mainstream consensus on the relationship between the

Cloud and IoT, what is interesting to investigate is the adoption of the Cloud "as-

a-Service" approach from a low level when dealing with IoT infrastructure. Indeed,

the as-a-Service paradigm provides well-investigated mechanisms for infrastructure

and service provisioning; thus the challenge then is to adapt this approach to fit

the management of a dynamic, possibly virtualized, infrastructure of sensing and

actuation resources. Cloud providers can extend then their offerings portfolios by

providing access to shareable IoT resources according to the utility model using access

at the lowest level where possible. Besides providing access to virtualized IoT nodes,

an interesting capability to enable is related to computing at the network edge (even

on the IoT nodes themselves) to meet the requirements of typical IoT applications,

such low processing delays and data privacy.

The thesis presents the design and implementation of a set of mechanisms to

integrate IoT within the Cloud wisdom. In particular, the approach enables the capa-

bility of offering IoT resources (e.g., sensors and actuators) as virtualized resources.

Therefore, the virtual IoT instances can take benefits of the resources (e.g., storage,

networking and compute) offered by the Cloud, Fog or the edge-based IoT nodes. The

premise then lies in engaging the research from a device-centric perspective using the

Stack4Things framework.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps iii

List of Publications

Peer reviewed journals

1. Z. Benomar, G. Campobello, A. Segreto, F. Battaglia, F. Longo, G. Merlino,

and A. Puliafito, “A fog-based architecture for latency-sensitive monitoring ap-

plications in industrial internet of things,” IEEE Internet of Things Journal,

2021

2. Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “A cloud-based and dy-

namic dns approach to enable the web of things,” IEEE Transactions on Network

Science and Engineering, 2021

3. Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Cloud-based enabling

mechanisms for container deployment and migration at the network edge,” ACM

Transactions on Internet Technology (TOIT), vol. 20, no. 3, pp. 1–28, 2020

4. Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Cloud-based network

virtualization in iot with openstack,” ACM Transactions on Internet Technology

(TOIT), vol. 22, no. 1, pp. 1–26, 2021

International conferences

1. L. D’Agati, Z. Benomar, F. Longo, G. Merlino, A. Puliafito, and G. Tricomi,

“Iot/cloud-powered crowdsourced mobility services for green smart cities,” in

2021 IEEE 20th International Symposium on Network Computing and Appli-

cations (NCA), IEEE, 2021, pp. 1–8

2. Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Deviceless: A serverless

approach for the internet of things,” in 2021 ITU Kaleidoscope: Connecting

Physical and Virtual Worlds (ITU K), IEEE, 2021, pp. 1–8

3. Z. Benomar, “Phd forum abstract: I/ocloud: Adopting the iaas paradigm

in the internet of things,” in 2021 IEEE International Conference on Smart

Computing (SMARTCOMP), IEEE, 2021, pp. 412–413

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps iv

4. G. Cicceri, G. Tricomi, Z. Benomar, F. Longo, A. Puliafito, and G. Merlino,

“Dilocc: An approach for distributed incremental learning across the comput-

ing continuum,” in 2021 IEEE International Conference on Smart Computing

(SMARTCOMP), IEEE, 2021, pp. 113–120

5. Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Stack4things: A cloud-

based system for building software-defined cities infrastructure,” in The 7th Ital-

ian Conference on ICT for Smart Cities and Communities, 2021

6. Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “A stack4things-based

web of things architecture,” in 2020 International Conferences on Internet of

Things (iThings) and IEEE Green Computing and Communications (Green-

Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics),

IEEE, 2020, pp. 113–120

7. Z. Benomar, G. Campobello, F. Longo, G. Merlino, and A. Puliafito, “Fog-

enabled industrial wsns to monitor asynchronous electric motors,” in 2020 IEEE

International Conference on Smart Computing (SMARTCOMP), IEEE, 2020,

pp. 434–439

8. Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Enabling secure restful

web services in iot using openstack,” in 2020 IEEE 17th International Conference

on Mobile Ad Hoc and Sensor Systems (MASS), IEEE, 2020, pp. 410–417

9. G. Cicceri, C. Scaffidi, Z. Benomar, S. Distefano, A. Puliafito, G. Tricomi,

and G. Merlino, “Smart healthy intelligent room: Headcount through air qual-

ity monitoring,” in 2020 IEEE International Conference on Smart Computing

(SMARTCOMP), IEEE, 2020, pp. 320–325

10. Z. Benomar, G. Campobello, F. Longo, G. Merlino, and A. Puliafito, “A

new fog-enabled wireless sensor network architecture for industrial internet of

things applications,” in 24th IMEKO TC4 International Symposium, 2020, pp.

179–184

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps v

11. G. Tricomi, Z. Benomar, F. Aragona, G. Merlino, F. Longo, and A. Puliafito,

“A nodered-based dashboard to deploy pipelines on top of iot infrastructure,”

in 2020 IEEE International Conference on Smart Computing (SMARTCOMP),

IEEE, 2020, pp. 122–129

12. G. Tricomi, Z. Benomar, G. Merlino, F. Longo, A. M. Longo, and A. Puliafito,

“Too(l)smart: A template to make cities "smart",” in The 6th Italian Conference

on ICT for Smart Cities and Communities, 2020

13. Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Enabling container-based

fog computing with openstack,” in 2019 International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications (Green-

Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData), IEEE, 2019, pp. 1049–1056

14. Z. Benomar, D. Bruneo, F. Longo, G. Merlino, and A. Puliafito, “A mininet-

based emulated testbed for the i/ocloud,” in 2019 15th International Conference

on Mobile Ad-Hoc and Sensor Networks (MSN), IEEE, 2019, pp. 277–283

15. Z. Benomar et al., “Extending openstack for cloud-based networking at the

edge,” in 2018 IEEE International Conference on Internet of Things (iThings)

and IEEE Green Computing and Communications (GreenCom) and IEEE Cy-

ber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-

Data), IEEE, 2018, pp. 162–169

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps vi

Table of Contents

Declaration of Authorship i

Acknowledgment ii

Abstract iii

List of Publications iv

List of Abbreviations xii

List of Figures xv

List of Tables xix

Introduction 6

1 IoT and Cloud computing 7

1.1 Introduction . 7

1.2 Cloud computing . 8

1.2.1 Definition . 8

1.2.2 Cloud services . 8

1.2.3 Resource provisioning in the Cloud 10

1.2.4 Types of Clouds . 10

1.3 IoT cloudfication . 12

1.3.1 Motivation . 12

1.3.2 The device-centric approach . 14

1.3.3 I/Ocloud: a multi-tenant IoT solution 15

1.3.3.1 Type of IoT nodes . 15

1.3.3.2 Virtual IoT entities . 16

1.3.3.3 I/Ocloud virtualization at the network edge 19

1.4 Enabling technologies . 20

1.4.1 OpenStack . 20

1.4.2 Stack4Things . 21

1.5 I/Ocloud use case: Software Defined Cities 25

1.6 . 26

vii

TABLE OF CONTENTS

2 Network Virtualization in IoT 27

2.1 Introduction . 27

2.2 Background . 29

2.2.1 Network Virtualization . 29

2.2.2 The OpenStack Networking subsystem: Neutron 30

2.3 Network Virtualization in IoT: use cases 33

2.3.1 Partitioning IoT nodes within a same LAN 34

2.3.2 Regrouping IoT nodes from different networks 35

2.3.3 Extending an IoT network with powerful machines 35

2.3.4 Extending an IoT network with personal devices 36

2.4 Stack4Things and Neutron integration design 37

2.4.1 Integration scenario . 37

2.4.2 Advanced functionalities of the integration 42

2.5 The Stack4Things virtual networking solution 43

2.5.1 Stack4Things networking APIs 43

2.5.2 Workflow of attaching a board to a virtual network 44

2.5.3 Creating Virtual Networks using Stack4Things 46

2.6 Experimental results . 49

3 Containers deployment at the network edge 58

3.1 Introduction . 58

3.2 Edge and Fog computing . 59

3.2.1 The Cloud shortcomings . 59

3.2.2 Computing paradigms at the network edge 61

3.2.3 Virtualization techniques for Edge/Fog computing 64

3.2.3.1 Virtualization approaches 64

3.2.3.2 Containerizations . 66

3.2.4 Containers migration and Fog computing 67

3.3 Zun, Kuryr and IoTronic integration 67

3.3.1 Zun and Kuryr subsystems . 68

3.3.2 The integration scenario . 69

3.3.3 Container instantiation workflow 74

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps viii

TABLE OF CONTENTS

3.3.4 Container migration workflow 77

3.4 Empowered use cases . 79

3.4.1 Fog Computing benefits In IoT 79

3.4.2 Mobility support using Stack4Things 81

3.4.3 Implementing services using Stack4Things 83

3.5 S4T environment emulation . 84

3.5.1 Motivation . 84

3.6 Emulation system . 85

3.6.1 S4T integration with Containernet 86

3.6.2 Emulator use cases . 88

3.6.2.1 Emulator for metric estimation 88

3.6.2.2 Emulator as decision making aid 89

4 Enabling SOA in IoT using RESTful Web services 92

4.1 Introduction . 92

4.2 Service-Oriented Architecture and IoT 94

4.2.1 Service-Oriented Architecture (SOA) 94

4.2.2 Web services . 95

4.2.3 RESTful Web services and IoT 95

4.2.4 Secure Web services in IoT . 96

4.3 Technologies background . 97

4.3.1 The OpenStack DNSaaS system: Designate 97

4.3.2 Automatic Certificate Management Environment (ACME) . . . 98

4.4 Exposing Cloud-enabled IoT-hosted services 99

4.5 S4T Dynamic DNS system . 102

4.5.1 Overview of the Stack4Things Dynamic DNS system 102

4.5.2 Workflow of exposing a service 104

4.6 Implementation and experimental results 106

4.6.1 Testbed description . 107

4.6.2 Functional workflow . 108

4.6.3 Performance evaluation . 110

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps ix

TABLE OF CONTENTS

5 Deviceless: an approach extending Serverless to IoT deployments 114

5.1 introduction . 114

5.2 The Serverless paradigm . 117

5.2.1 Before Serverless . 117

5.2.2 Serverless computing . 118

5.2.3 Serverless for Edge computing 119

5.3 The OpenStack FaaS subsystem: Qinling 121

5.4 The Deviceless system description . 122

5.4.1 Containers orchestration . 123

5.4.2 Functions executions . 124

5.4.3 Deviceless functional workflows 125

5.4.3.1 Runtime creation . 125

5.4.3.2 Execution workflow . 128

5.5 A FaaS-powered flow-based development tool for distributed IoT envi-

ronments . 129

5.5.1 Node-RED . 130

5.5.2 Extended Node-RED . 131

5.6 Experimental results . 133

6 Industrial use case: Stack4Things as a Fog system for Industrial

IoT monitoring applications 137

6.1 Introduction . 137

6.2 System Architecture And Description 138

6.2.1 The sensing layer . 138

6.2.2 The aggregation/compute Layer 140

6.2.3 The middleware layer . 141

6.2.4 The application layer . 142

6.3 Security mechanisms of the system . 142

6.3.1 Sensing layer security services 143

6.3.2 Fog layer security services . 147

6.3.3 Cloud layer security services . 148

6.4 Case study . 149

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps x

TABLE OF CONTENTS

6.4.1 Analytical model . 150

6.4.2 Exploiting the Fog-layer for data aggregation 153

6.4.3 Simulation results . 154

6.5 Further advantages of data aggregation 158

Conclusion and future works 160

Bibliography 163

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps xi

TABLE OF CONTENTS

List of Abbreviations

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
AC Alternating Current
ACME Automated Certificate Management Environment
ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
AR Augmented Reality
CA Certificate Authority
CCA Clear Channel Assessment
CDF Cumulative Distribution Function
CLI Command-Line Interface
COE Container Orchestration Engine
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CRIU Checkpoint/Restore In Userspace
CRM Customer Relationship Management
CRUD Create, Read, Update, Delete
DDNS Dynamic Domain Name System
DES Data Encryption Standard
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
DSC Distributed Source Coding
DV Domain Validation
EV Extended Validation
FUSE Filesystem in Userspace
GPIO General-Purpose Input/Output
GRE Generic Routing Encapsulation
GUI Graphical User Interface
HSM Hardware Security Module
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
HVAC Heating, Ventilation, and Air Conditioning
IaaS Infrastructure as a Service
ICMP Internet Control Message Protocol
ICT Information and Communication Technology
IoT Internet of Things
IP Internet Protocol
ISM Industrial, Scientific and Medical
ISP Internet Service Provider
IT Information Technology

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps xii

TABLE OF CONTENTS

IWSN Industrial Wireless Sensor Network
JSON JavaScript Object Notation
LAN Local Area Network
LSB Least Significant Bit
LUT Lookup Table
M2M Machine to Machine
MAC Medium Access Control
MCU Microcontroller Unit
MEC Multi-access Edge Computing
MPU Microprocessing Unit
MSB Most Significant Bit
MTU Maximum Transmission Unit
NaaS Networking as a Service
NAT Network Address Translator
NFV Network Function Virtualization
NIST National Institute of Standards and Technology
NTP Network Time Protocol
NV Network Virtualization
OS Operating System
OV Organization Validation
OVS Open vSwitch
PaaS Platform as a Service
PDR Packet Delivery Ratio
PKI Public Key Infrastructure
QoE Quality of Experience
QoS Quality of Service
QUIC Quick UDP Internet Connections
RAM Random Access Memory
RBAC Role-based Access Control
ROM Read-only Memory
RPC Remote Procedure Call
RPL Routing Protocol for Low-Power and Lossy Networks
RSSI Received Signal Strength Indicator
RTT Round-Trip Time
S4T Stack4Things
SaaS Software as a Service
SBC Single-Board Computer
SDC Software Defined City
SDN Software Defined Networking
SINR Signal-to-Interference-plus-Noise Ratio
SOA Service-Oriented Architecture

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps xiii

TABLE OF CONTENTS

SOAP Simple Object Access Protocol
SSH Secure Shell
SVD Singular Value Decomposition
TC Traffic Control
TCP Transmission Control Protocol
TPM Trusted Platform Module
UDP User Datagram Protocol
UI User Interface
URL Uniform Resource Locator
URLLC Ultra-Reliable Low-Latency Communication
UUID Universally Unique Identifier
VETH Virtual Ethernet
VIF Virtual InterFace
VLAN Virtual Local Area Network
VM Virtual Machine
VMM Virtual Machine Monitor
VN Virtual Node
VNC Virtual Network Computing
VNF Virtual Network Function
VNI Virtual Network Identifier
vNIC virtual Network Interface Card
VPN Virtual Private Network
VXLAN Virtual Extensible Local Area Network
WAMP Web Application Messaging Protocol
WAN Wide Area Network
WoT Web of Things
WS WebSocket
WSDL Web Services Description Language
WSN Wireless Sensor Network
WSS WebSocket Secure
XaaS Everything as a Service
XML Extensible Markup Language

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps xiv

List of Figures

1 Management solutions. 9

2 Cloud-based IoT architectures: (a) IoT devices as a data source for the

Cloud, (b) IoT as remote interface to Cloud-based applications, and

(c) IoT as an extension of the Cloud resources. 12

3 I/Ocloud instances with attached I/O resources. 17

4 A layered architecture of the I/Ocloud virtualization approach. 18

5 OpenStack architecture. 21

6 Stack4Things subsystems. 22

7 Stack4Things architecture overview. 23

8 Stack4Things Cloud side architecture. 24

9 Lightning-Rod architecture. 24

10 The Software Defined City paradigm. 26

11 Architecture of Neutron subsystem. 31

12 Nova compute node/binding-host design. 32

13 The MENO end-to-end communication concept. 33

14 Regrouping IoT nodes in different virtual networks. 34

15 Overlays extending IoT networks with Cloud-based VMs and personal

devices. 36

16 A hybrid overlay composed of IoT nodes, Cloud-based VMs and a per-

sonal device. 37

17 The Cloud-side architecture of the Stack4Things network virtualization

system. 38

18 The node-side architecture of the Stack4Things network virtualization

system. 39

19 Low-level functional diagram of bridged tunneling over WS (IoT nodes

managed by the same WS tunnel agent). 40

20 Low-level functional diagram of bridged tunneling over WS (IoT nodes

managed by different WS tunnel agent). 40

xv

LIST OF FIGURES

21 Low-level functional diagram of bridged interconection between an IoT

node and a Nova VM. 42

22 The workflow of attaching an edge IoT node to a specific logical network. 45

23 Throughput variation when the edge node is uploading/receiving TCP

traffic to/from a Cloud-based instance. 51

24 Comparison of the latency experienced using a Public-IP based deploy-

ment and the S4T overlay. 52

25 Comparison of the virtual networking performance with a UDP traffic

using the two versions of Socat. 53

26 CPU usage of the WS tunnel server and Socat when managing UDP

packets with 80 bytes payload length sent by different instances. 54

27 CPU usage of the WS tunnel server and Socat processes varying traffic

sources and the payload length. 55

28 Overview of Cloud, Fog, Mist and Edge Computing in an IoT smart

environment context. 62

29 Platform/Hypervisor-based virtualization and Containerization com-

parison. 65

30 Stack4Things Cloud-side containerization subsystem architecture. . . . 68

31 Stack4Things board-side containerization subsystem architecture. . . . 70

32 Low-level functional diagram of bridged tunneling over WS for edge-

based containers (boards managed by the same WS tunnel agent). . . . 72

33 Low-level functional diagram of bridged tunneling over WS for edge-

based containers (boards managed by different WS tunnel agent). . . . 72

34 A container instantiation workflow using the S4T system. 75

35 A container migration workflow using the S4T system. 78

36 Use cases for containers migration . 80

37 S4T Fog containerization use case. Two different services are depicted

in this scenario, i) a Traffic Control (TC) service that collects data

based on the smart cameras and traffic lights deployed across different

sites ii) an Augmented Reality (AR) service following the user during

his/her mobility. 82

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps xvi

LIST OF FIGURES

38 Integration design of S4T with Containernet. 86

39 S4T Cloud-based overlay in the emulation deployment. 87

40 Designate subsystem architecture. 98

41 The WebSocket tunneling system. 101

42 DDNS Cloud-side system architecture. 103

43 The device side Web services system. 104

44 A detailed workflow description of exposing a service (a Web server in

this case) hosted on an edge IoT node. 105

45 The Stack4Things-based routing mechanism. 109

46 Latency experienced with the WS tunnel when using packets with 40

bytes of payload. 110

47 Latency experienced with the WS tunnel when using packets with 400

bytes of payload. 111

48 CPU usage on the Raspberry Pi 3 Model B+. 113

49 A Software Defined City as closed-loop system. 116

50 Management responsibilities in PaaS and FaaS 118

51 The Cloud-side Deviceless system architecture. 121

52 The device-side FaaS system architecture. 125

53 A runtime instantiation workflow. 126

54 A function execution workflow. 128

55 Node-RED browser-based flow editor. 130

56 Integration of the flow-based Node-RED development tool with the

Deviceless approach. 132

57 Node-RED node for Qinling: configuration editor 132

58 Qinling node-based example flow. 133

59 Graph and gauge generated by the Qinling functions. 133

60 Monitoring system layers. 139

61 Block diagram of the sensor board used in our experiments for inter-

facing 3-phase motors. The board is equipped with all the necessary

sensors for measuring voltages, currents, speed, temperature and me-

chanical vibrations. 140

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps xvii

LIST OF FIGURES

62 Block diagram of the encryption algorithm used for the Sensing layer . 144

63 Voltage samples corresponding to a single packet transmission, with

and without encryption. 146

64 Proposed Architecture . 150

65 Packet Delivery Ratio (PDR) as a function of the traffic generation rate

(�) for 20-node (red line) and 5-node (black line) star-topology WSNs. 152

66 Omnet++ simulation environment . 154

67 Packet Delivery Ratio (PDR) for different traffic generation rates � in

the case of: 1) a cluster with 5 nodes (black line); 2) a cluster-tree

network with 4 clusters and without data aggregation (blue line); 3) a

cluster tree-network with 4 clusters with data aggregation (red line). . . 155

68 End-to-end latency for different traffic generation rates � in the case

of: 1) a cluster with 5 nodes (black line); 2) a cluster-tree network

with 4 clusters and without data aggregation (blue line); 3) a cluster

tree-network with 4 clusters with data aggregation (red line). 155

69 Cumulative Distribution Function (CDF) of packet delay for � =10 pk/s

and � =25 pk/s. 156

70 Recovered currents with and without data aggregation. 158

71 Mean relative error on the estimation of maximum current with and

without SVD-based data aggregation for different values of SNR. 159

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps xviii

List of Tables

1 The IoTronic RESTful networking APIs. 43

2 Comparison between different IoT network virtualization approaches. . 47

3 Statistical TCP results of throughput (Mbps) during an upload/down-

load from/to the IoT node. 51

4 Statistical TCP results of latency (ms) during an upload/download

from/to the IoT node. 51

5 WS tunnel client and Socat averaged CPU usage during 5 mins with

different packets data sizes. 56

6 The Stack4Things IoTronic RESTful containerization APIs. 74

7 Throughput results (in Mbits/s) while uploading from an edge-device

to a Cloud instance . 88

8 Links latency (point-to-point) without involving the S4T overlay. 89

9 Links bandwidth (point-to-point) without involving the S4T overlay. . . 89

10 Emulation latency results (in ms) using the S4T network virtualization

approach. 90

11 Emulation throughput results (in Mbits/s) using the S4T network vir-

tualization approach. 90

12 Averaged results considering the different scenarios possible (based on

the S4T network virtualization approach). 91

13 WS tunnel client and Socat CPU usage with different packets’ payload

lengths. 112

14 The resources usage of the Deviceless system on an IoT node 134

15 Execution time comparison between Serverless and Deviceless 135

16 802.15.4 MAC parameters used for simulation and analytical results. . . 150

17 End-to-end latency and PDR of DISCUS and proposed SVD-based

aggregation scheme for two different traffic generation rates. 157

xix

LIST OF TABLES

Introduction

The Internet of Things (IoT) allows us to interconnect objects, places, people,

and any other physical entity to the Internet. By attaching communicating devices to

them (e.g., sensors and actuators), digital representations of our physical goods can

be created. The new mass of data thus generated by these devices can be gathered

afterwards to monitor/control specific resources and activities. Indeed, the scope

of IoT capabilities consists of diverse settings and use cases including healthcare,

environmental monitoring, security/surveillance, retail, and more [1].

Recently, the IoT field attracted most of the biggest companies and organizations

to determine its abilities and potential. The vast field of applications makes the IoT

an interesting profit-making domain generating an immense economic value. Accord-

ing to McKinsey Global Institute [2], by the year 2025, IoT could spawn an annual

economic impact between USD 3.9 trillion and USD 11.1 trillion. In fact, several new

services can be conceived using the plethora of IoT devices taking ground. Based on

the world population and number of IoT devices [3] [4], we can assume that by 2025

a person will own, on average, around nine connected devices communicating with

the Internet. Due to this overwhelming expansion in terms of variety and number of

distributed connected devices, dealing with such a complex environment is challeng-

ing. Newly designed mechanisms and systems are required to deal with the typical

constraints of IoT deployments. Besides, the massive amount of heterogeneous data,

so called Big Data [5], generated by the IoT devices needs to be properly managed and

processed. In this context, the mainstream solution adopted in the IoT landscape is

resorting to the (limited) data-centric [6] approach provided by the Cloud computing

paradigm. In this design, the Cloud is typically leveraged as is and the IoT devices

are seen as mere data producers. Indeed, although the Cloud computing providers

(e.g., Amazon and Microsoft) offer IoT services, they only help with the collection,

distribution and processing of IoT data. The IoT infrastructure that produces this

data is obviously deployed outside the datacenters and must usually be connected and

managed by the application developers themselves [7] [8]. In this regard, the need to

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 1

LIST OF TABLES

own the infrastructure can be a market barrier, especially for small and medium sized

software companies that cannot afford the related costs. For these companies, it

might be beneficial to focus only on applications development and possibly rent the

necessary IoT sensors and actuators [9]. In addition, if we take into consideration the

emergence of the new advanced and complex concepts, such as the smart city [10],

the IoT services providers have to get authorization to install IoT nodes in public do-

mains. Such a problem is not encountered in private domains/campuses, but it would

become a significant hurdle to overcome in wide and large-scale deployments. In ad-

dition, albeit IoT applications may use the same kind of sensor data, each application

provider has to deploy his/her own infrastructure. Actually, in most of the deploy-

ments, as is the case for Wireless Sensor Networks (WSNs), applications are, usually,

embedded on the devices thereby, leading to redundant deployments and underutiliza-

tion of the available resources [11]. The provisioning of emerging IoT-enabled services

in a cost-efficient manner while decoupling applications from the underlying physical

infrastructure and configurations is still an ongoing challenge.

Along with the accelerating pace of development of powerful and flexible embedded

systems, characterized by reprogrammable behavior and ease of use, such things are

often gaining a “smart” labeling to indicate this evolution. Ubiquity, in terms of

availability of cheap resources (often coupled with free and open software tools), as

well as ever higher board reconfigurability and embedded processing power may be

taken for granted in specific scenarios. Thus, such a stimulating albeit challenging

scenario calls for suitable approaches, technologies, and solutions to overcome the

limitation of the Cloud/IoT data-centric integration approach (e.g., non real time

data, no users-initiated interactions with actuators). Ideally, at the very least, (fleets

of) devices bought from a diverse range of vendors, should be manageable by resorting

to a unified framework, reconfigurable on-the-fly at runtime, even if already deployed

(i.e., remotely), and repurposed for a variety of duties, possibly multiplexed onto the

same resources concurrently when constraints allow for it.

In the interest of using the infrastructure more efficiently, the Cloud "as-a-Service"

model brings convenient features enabling on-demand access to a shared pool of

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 2

LIST OF TABLES

resources. By integrating IoT within the Cloud ecosystem at the infrastructure

level, decoupling IoT services from the infrastructure can be achieved. In fact, in

the Infrastructure-as-a-Service (IaaS) Cloud computing model, the users can, on-

demand, access/use virtualized instances, such as Virtual Machines (VMs) or con-

tainers through Secure Shell (SSH) protocol, Web-based virtual console, or Virtual

Network Computing (VNC). Moreover, the IaaS model offers significant flexibility for

the users by enabling complete control over the virtual instances, including their net-

working configurations. Accordingly, the idea is to provide a full integration between

IoT and the Cloud by virtualizing IoT resources (i.e., sensors and actuators) and

providing them to users/developers as Cloud resources thus, extending the providers’

IoT portfolios by offering developers the possibility of renting tailored IoT virtual

infrastructure.

To conceive a solution integrating IoT with the Cloud, an important aspect to take

into account is that providing virtualized IoT instances at the datacenters level can-

not always satisfy the requirements of particular IoT applications. Indeed, the Cloud

computing resources are usually concentrated in a few datacenters which are consid-

erably far from the vast majority of data producers. Such a considerable distance

from the IoT devices leads to some drawbacks (first and foremost, high round-trip

latencies) that are not acceptable for typical time-sensitive applications and services.

For such applications, it might be possible to process the sensed data at the edge and

transmit only pertinent processed information back to the central datacenter (when

required). The virtualization of IoT resources has to be then managed at the network

edge (on the devices themselves or in their proximity) while preserving the Cloud

characteristics (e.g., multi-tenancy and transparency).

In the context of exploring new interaction methods with IoT deployments, our

view aims at fully integrating IoT within the Cloud wisdom and adapt the typical as-

a-Service Cloud model to IoT. An (IoT-oriented) view aligned with the DevOps [12]

trend aiming to accelerate the delivery of software products. Besides, we would like to

enable edge computing capabilities in certain cases to overcome the Cloud drawbacks.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 3

LIST OF TABLES

Structure of the dissertation

In this work some approaches and solutions are presented to address the afore-

mentioned challenges while exploring new ways to make use of an IoT distributed

infrastructure. This dissertation is organised in six chapters, excluding the closing

one and this introduction, as outlined in the following:

• Chapter 1 discusses the different IoT/Cloud integration patterns. Besides, we

introduce the basic concepts behind our device-centric, service-oriented, Cloud-

mediated approach for sensing and actuation, including a high-level architecture.

In particular, a description of the OpenStack-based Stack4Things (S4T) middle-

ware is provided. Moreover, the different background concepts used throughout

the thesis are introduced. This chapter is based on the following publication:

– “PhD Forum Abstract: I/Ocloud: Adopting the IaaS Paradigm in the

Internet of Things,” Benomar et al. [13]

• Chapter 2 describes a mechanism for Cloud-enabled network virtualization

in IoT. The solution is implemented within S4T and is meant to support and

simplify the management of wide-area heterogeneous sensor-/actuator- hosting

nodes. A Cloud user can deploy overlay networks among distributed IoT nodes

as well as Cloud-based instances to make them seem on the same physical net-

work. Real-world examples and experimental results of the solution are outlined.

This chapter is based on the following publications:

– “Extending openstack for cloud-based networking at the edge,” Benomar

et al. [14]

– “Cloud-based Network Virtualization in IoT with OpenStack,” Benomar

et al. [15]

• Chapter 3 reports a solution to enable the sharing of an IoT infrastructure

through containerization. For enhanced networking capabilities, the networking

driver introduced in Chapter 1 is being used to provide advanced networking

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 4

LIST OF TABLES

services for the edge-based virtual IoT instances. The usage of the system

to enable the Fog computing paradigm in an IoT context is reported as well.

Furethermore, a description of an S4T emulation environment for performance

evaluation is detailed. This chapter is based on the following publications:

– “Enabling container-based fog computing with openstack,” Benomar et

al. [16]

– “Cloud-based enabling mechanisms for container deployment and migration

at the network edge,” Benomar et al. [17]

– “A Mininet-Based Emulated Testbed for the I/Ocloud,” Benomar et al. [18]

• Chapter 4 introduces a set of mechanisms to enable the use of a Service Ori-

ented Architecture (SOA) design in IoT. In particular, the approach exposes,

to the Web, the distributed IoT resources (either physical or virtual) as Rep-

resentational State Transfer (REST) enabled Web services. The solution, in

this context, provides new services by dynamically assigning globally resolvable

domain names to identify the physical/virtual dispersed IoT nodes even when

deployed behind networking middleboxes. This chapter is based on the following

publications:

– “A Stack4Things-based Web of Things Architecture,” Benomar et al. [19]

– “Enabling Secure RESTful Web Services in IoT using OpenStack,” Beno-

mar et al. [20]

– “A Cloud-based and Dynamic DNS approach to enable the Web of Things,”

Benomar et al. [21]

• Chapter 5 introduces a new computing paradigm in the IoT landscape named

Deviceless. Specifically, the new approach aims at extending the Cloud-based

Serverless computing model down to the network edge. In particular, a Cloud

user (i.e., a developer) can make use of a distributed IoT infrastructure with

hosted resources (e.g., sensors and actuators) in a Serverless-like fashion. A

use case of exploiting the new paradigm to conceive data pipelines leveraging a

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 5

LIST OF TABLES

distributed IoT infrastructure is reported as well. This chapter is based on the

following publication:

– “Deviceless: A Serverless Approach for the Internet of Things,” Benomar

et al. [22]

• Chapter 6 presents an industrial use case where the S4T edge computing en-

abling services are exploited. Concretely, an S4T-based Fog architecture is intro-

duced to provide edge computing capabilities by deploying a data aggregation

algorithm. A set of advantages of using the system are discussed and reported

based on a real industrial monitoring use case. This chapter is based on the

following publications:

– “Fog-Enabled Industrial WSNs to Monitor Asynchronous Electric Motors,”

Benomar et al. [23]

– “A new fog-enabled wireless sensor network architecture for industrial in-

ternet of things applications,” Benomar et al. [24]

– “A Fog-based Architecture for Latency-sensitive Monitoring Applications

in Industrial Internet of Things,”Benomar et al. [25].

An ending chapter, which is not numbered, wraps up this work with the conclusions

and proposes further work related to the presented subjects.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 6

Chapter 1
IoT and Cloud computing

1.1 Introduction

Taking into account the massive amounts of IoT devices, available by the billions

very soon, generate means stepping into the BigData realm, usually tackled at the

higher levels, i.e., in terms of centralized treatment, analytics and storage [26]. Due to

the rapid adoption of IoT services, the problem of storing, processing, and accessing

large amounts of data has arisen. In this regard, the Cloud computing paradigm [27] is

improving the success of IoT thanks to the facilities and services it provides. The use

of Cloud platforms in conjunction with IoT has become a kind of catalyst by bring-

ing up many advantages to deal with data management and processing. IoT devices

with sensing capabilities can upload the gathered information about their surround-

ing physical environments to the Cloud as input for intelligent monitoring/actuation

systems. This IoT/Cloud integration aims at transforming IoT data into insights and

consequently, driving cost-effective services and applications.

Within the trend that aims to adopt the service-oriented computing and its ex-

tension to the Everything-as-a-Service (XaaS) approach [28], several solutions opt for

adapting the "as-a-Service" paradigm in IoT environments. Nonetheless, most of the

approaches consider the Cloud as an extended application domain (i.e., a data sink)

where data generated by IoT devices are stored and then retrieved according to a

data-centric approach [29] [30] [31]. Such solutions can obviously provide enough re-

sources to process IoT data yet, they are limited since the users cannot customize the

business logic running on the IoT devices and therefore, they can only make use of

the data stored on the Cloud as is. In addition, the data-centric approach does not

provide user-initiated interactions with the actuators.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 7

1.2 Cloud computing

In this chapter, we dive into the details of the Cloud and IoT integration. Specifi-

cally, we firstly introduce the Cloud computing paradigm and its different services and

implementations. Afterwards, we present our view that aims at integrating IoT within

the Cloud wisdom at the deepest level possible (i.e., the infrastructure), thus enabling

users to share the IoT infrastructure by virtualizing the nodes hosted resources (i.e.,

sensors and actuators).

1.2 Cloud computing

1.2.1 Definition

The Cloud computing paradigm has an instrumental role in expanding the benefits

of computing, storage, and networking capabilities to Cloud-based applications. The

National Institute of Standards and Technology (NIST) defines Cloud computing as a

model for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort

and without the service provider involvement [27]. The seamless reconfigurability

provided by the Cloud is beneficial to offer the pay-as-you-go payment method [32].

This efficient billing model plays a relevant role in adopting Cloud services since

it allows the users to conveniently access and use remote resources (e.g., compute,

storage) and data management services whilst being charged for only the amount of

resources being used. Today, big Information Technology (IT) companies like Google,

IBM, Microsoft, and Amazon provide large datacenters to host users’ applications and

services.

1.2.2 Cloud services

The Cloud provides different services depending on the application developers

needs. We mention here the three most known Cloud offerings, namely IaaS, Platform-

as-a-Service (PaaS), and Software-as-a-Service (SaaS). Cloud users can choose one of

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 8

1.2 Cloud computing

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

On Premises IaaS PaaS SaaS

Managed by the user Managed by the Cloud provider

Figure 1: Management solutions.

these services based on the level of control he/she needs over the infrastructure.

In the IaaS computing model, a user has low-level access to the IT infrastructure

with regards to processing, storage, and networking resources [33]. An IaaS user can

configure his/her instances (often offered as standalone VMs) in terms of hardware

and software. In particular, the control over the instance allows the Cloud consumer

to customize its hardware configuration, such as the number of central processing

unit (CPU) cores, Random Access Memory (RAM) capacity, and storage capacity. In

addition, the user is also responsible for managing the system-level software [34].

In the PaaS computing model, the user does not have the same control over the in-

frastructure as in the IaaS. A PaaS user instead delegates the infrastructure hardware

and software management duties to the Cloud provider. The provider then delivers

hardware and ready-to-use software tools over the Internet. Usually, these tools are

needed for applications development [35]. The user focuses only on the application

business logic without worrying about the software/hardware configurations.

As for the SaaS model, the Cloud provider offers an entire application stack (i.e.,

the application runs completely on the provider’s datacenter). The user delegate, in

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 9

1.2 Cloud computing

this case, all configuration/management tasks to the provider. Using the SaaS model,

the user needs only to log in and then use the service through a specific applica-

tion/software (e.g., a Web browser). Examples of SaaS include Gmail, Dropbox, and

Microsoft 365.

Based on the discussions above, the Cloud is a platform that can be utilized

for distinct use cases by a variety of end-users depending on their needs. Figure 1

illustrates the three different Cloud services and their relationship with the underlying

Cloud infrastructure. It also depicts the infrastructure management responsibilities

in the three Cloud offerings (i.e., IaaS, PaaS, and SaaS).

1.2.3 Resource provisioning in the Cloud

Resource provisioning is a key feature for the Cloud computing paradigm [36].

Since the demands of the Cloud tenants can not be known beforehand and can change

over time, setting a static allocation of resources can lead to a performance drop by

either over-provisioning or under-provisioning them [37]. The core concept of Cloud

computing is based on provisioning the resources in a flexible fashion on the basis

of the demand/load. To optimize resource usage in a Cloud, the providers opt for

virtualization technologies and efficient provisioning systems to manage the hardware

and software configurations of their datacenters. Besides, as already mentioned, since

it is difficult to estimate the usage of the applications/services hosted on a Cloud,

the providers adopt the pay-as-you-go billing plan [38] with a demand-driven resource

provisioning.

1.2.4 Types of Clouds

Cloud deployments can be categorized into four types private Clouds, community

Clouds, public Clouds, and finally hybrid Clouds [27]. The private Cloud is an IT

model that provides a dedicated proprietary environment for a single business en-

tity. Like other types of Cloud computing environments, the private Cloud provides

extensive and virtualized computing resources through physical components stored

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 10

1.2 Cloud computing

on-premises or in a vendor’s datacenter. One of the main benefits of deploying a pri-

vate Cloud is the degree of control gained by the organization and the high privacy it

ensures. As the private Cloud is only accessible to a single organization, this later has

the possibility to configure the environment and manage it in a way adapted to its

specific IT needs. However, in this model, users do not benefit from the pay-as-you-go

billing method.

The community Cloud, more rarely used, consists of sharing a given Cloud dat-

acenter between several companies with the same requirements in terms of security

and confidentiality. It is therefore akin to a shared private Cloud.

A public Cloud is a service accessible to everyone via the Internet. This service

can consist on provisioning resources, such as storage (e.g., Dropbox) or computing

power (as offered by Amazon EC2), or even applications (e.g., Customer Relationship

Management (CRM) tools). Public Cloud providers benefit from enormous storage

and compute capacities allowing them to serve all their users at once. They generally

have a global presence. However, the services provided by public Cloud platforms are

adaptable up to a certain limit, so they may not quite meet all users needs. Besides,

using a public Cloud can also be economical as no investment is necessary to set it

up. Usually, the user only pays for what he/she consumes, which is also a good point

for businesses up to a certain level of use as from a certain volume of data transfer,

the economic advantage may decrease.

The fourth Cloud implementation is the hybrid Cloud which is a combination of

private and public Clouds. Nowadays, the needs of companies in terms of information

systems are constantly evolving and becoming more complex and specific. The hybrid

Cloud makes it possible to best respond to these concerns thanks to a distribution of

resources and a precise definition of the roles of each Cloud in the overall operation of

the information system. With a hybrid Cloud, the user can benefit from the security of

a private Cloud to store sensitive data, and at the same time, the flexibility and speed

of a public Cloud to size an infrastructure. The combination of the different Cloud

deployments can be achieved through standardized or proprietary technologies [39].

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 11

1.3 IoT cloudfication

IoT devices

+ +

Virtual
infrastructure

Data push

Applications

Cloud datacenter

(a)

IoT devices

Data push

+ +

Virtual
infrastructure

Cloud datacenter

Applications

ad-hoc
interactions

(b)

+ + +

I/O enhanced
virtual

infrastructure

Applications

I/Ocloud
datacenter

IoT devices

(c)

Figure 2: Cloud-based IoT architectures: (a) IoT devices as a data source for the
Cloud, (b) IoT as remote interface to Cloud-based applications, and (c) IoT as an
extension of the Cloud resources.

The Cloud computing paradigm is meant to provide users access to a pool of

computing resources for ubiquitous computing. However, even though the Cloud has

been an effective solution to develop a wide range of applications [40] [41], it induces

several issues mainly related to the time required to access the services as well as

privacy issues [33]. Besides, the fast expansion in the amount of data generated at

the network edge by a rising number of connected devices necessitates data processing

close by the connected devices in order to satisfy the applications demands (e.g., low

processing delays).

1.3 IoT cloudfication

1.3.1 Motivation

The growing interest in the IoT comes from the ubiquity of devices with sensing

and actuating capabilities that act as programmable gateways to the physical world.

In general, most of the approaches to fully exploit the IoT ecosystem rely primarily

on adopting the Cloud paradigm. However, as discussed earlier, most of the solutions

adopted can be classified in the category of data-centric solutions [42] [43] [30] where

the only operations permitted are data manipulation ones (see Figure 2a). In such a

management design, the IoT devices are considered as mere/simple sources generating

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 12

1.3 IoT cloudfication

data or, at most, a bidirectional remote interface usually non-reconfigurable [44].

To have complete control over an IoT infrastructure and enable the possibility to

reprogram it, users may opt for vertical solutions to deploy and manage their infras-

tructure (see Figure 2b). Nevertheless, a similar solution does not enable the appli-

cation developers to share an IoT infrastructure, thus each user has to set up its own

infrastructure, which is a limitation for the adoption of IoT applications on a larger

scale as the capital expenditure of IoT infrastructure is often nontrivial. Besides,

authorizations to deploy IoT nodes in public domains for large-scale deployments can

be hard to acquire. In addition to the limitation of sharing the IoT infrastructure, the

data-centric-oriented solutions are based on sending all the generated data towards

a datacenter. For instance, an IoT sensing deployment with sensors producing data

at a high data rate from a large number of sensors can incur significant operational

expenditure in terms of bandwidth [45], storage and processing cost. In such scenar-

ios, it might be useful to process the generated data at the edge and transmit only

preprocessed information to the Cloud, thus avoiding high bandwidth and storage

use. On the other hand, data processing at the network edge is also useful to sat-

isfy the requirements of typical time-sensitive applications that cannot tolerate delays

introduced when relaying on a faraway Cloud.

We believe that technologies are now mature enough to challenge the mainstream

consensus on the relationship between the Cloud and IoT. In the context of enabling

multi-tenant IoT infrastructure, our view aims at stretching the Cloud paradigm by

adapting the Cloud-enabled metaphors to the IoT infrastructure; that translates into

viewing IoT as a natural extension of the datacenter as in Figure 2c. By doing so,

it becomes possible then to pool a diverse range of geographically dispersed devices

as infrastructure resources, together with standard Cloud facilities, such as compute,

storage, and networking facilities.

Problem statement: Is it possible to build a public, multi-tenant IoT in-

frastructure capable of edge computing (when needed) and that can offer an IoT

infrastructure as a extension of a Cloud deployment?

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 13

1.3 IoT cloudfication

1.3.2 The device-centric approach

Putting sensing-related duties into context, a way to manage effectively huge

collections of incoming data consists in minimizing the communication overhead by

bringing computation closer to data, and not the other way around [46]. As already

discussed, the solutions usually used in IoT systems adopt a data-centric approach

based on the Cloud. An interesting paradigm to investigate in order to overcome the

IoT/Cloud integration issues is to provide the users actual, even if virtual, sensing/ac-

tuation resources at the network edge instead of only the data they generate.

Although the Cloud data-centric oriented approach can be an effective solution to

adopt in a set of scenarios, the device-centric one bring up a set of benefits [46]:

• Decentralized control: distributed policies can be set up on sensors and

actuators through customization features allowing to deploy user-personalized

software on the sensing/actuation entities.

• Onboard data prefiltering and processing: using edge computing, data

generated by the sensors/actuators can be filtered and/or preprocessed on the

IoT devices themselves, thus reducing latency to take decisions while enhancing

users privacy.

• Reduced number of data transfer: by enabling edge computing on top of

IoT devices, direct links between the users and the sensing/actuation devices

can be established, thus requiring just one data transfer. Instead, in the data-

centric approach, at least two transfers are required since data are first stored

into a database that exposes them afterwards to the users.

• Composition and repurposing: a user can implement customized logic on

an IoT node; thus, he/she can aggregate, compose, and/or repurpose sensing

resources.

• Enhanced security: the device-centric approach enhances security/privacy in

IoT. In fact, the approach enables shifting processing tasks from the Cloud to

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 14

1.3 IoT cloudfication

the devices and vice versa, according to the required level of security and the

device capabilities.

• Information dissemination: data are disseminated through the distributed

sensing infrastructure, hence allowing the implementation of distributed data

delivery algorithms to optimize data transfer.

To put into action the device-centric view together with multi-tenancy capabilities

in IoT, we need to provide a set of functionalities in the areas of sensors and actuators

virtualization to have (virtual) sensing resources available as endpoints, e.g., registered

and enumerable, as well as actionable.

In the following, we introduce an overview of our I/Ocloud approach [44] [13] that

aims at providing the capability of offering standardized and generic programming

capabilities on top of IoT resources, regardless of the underlying infrastructure con-

figurations. In addition, the approach keeps the ability to make use of the unique

characteristics of an IoT-enhanced distributed datacenter, such as the availability of

nodes at the edge, which may then be used as computing infrastructure to deal with

data (pre)processing.

1.3.3 I/Ocloud: a multi-tenant IoT solution

1.3.3.1 Type of IoT nodes

An IoT resource is a connected entity (for instance, a sensor/actuator) that can

be exported and attached while not necessarily being programmable. Among the

wide range of available IoT resources, we can mention, for example, sensors attached

to General-Purpose Input/Output (GPIO) digital pins of a Single-Board Computer

(SBC), an accelerometer hosted on a smartphone, optical heart rate sensor within a

smart watch, and a wireless sensor node.

As such, an IoT node can be defined then as any computing entity capable of host-

ing physical IoT resources (e.g., sensors and actuators) while running a user-defined

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 15

1.3 IoT cloudfication

logic. Examples of IoT nodes include smartphones, SBCs, etc. In general, such kinds

of nodes are typically commercialized with limited computing and storage capabilities.

Besides, in most cases, these nodes are being used at the network edge and often, de-

ployed behind networking middleboxes, such as Network Address Translators (NATs)

and/or firewalls.

1.3.3.2 Virtual IoT entities

As discussed before, our view aims at achieving a seamless integration between

the Cloud and IoT by providing the distributed IoT resources (i.e., sensors and actu-

ators) hosted on nodes deployed at the network edge as virtualized Cloud resources.

This approach might also be considered as an input/output of a Cloud datacenter,

a paradigm that we refer to as I/Ocloud [13]. A Cloud user can then interact with

remote IoT resources as they were Cloud-based resources without resorting to ad-hoc

or application-level Application Programming Interfaces (APIs). One of the critical

functions of the I/Ocloud is to ensure that IoT deployments are engaged as active

elements of the Cloud infrastructure while preserving their characteristics (e.g., sens-

ing capability). In fact, the core concept of the Cloud/IoT integration is to redefine

virtualization to include IoT nodes’ hosted resources. We talk then in our view about

I/O virtualization (virtIO).

The I/Ocloud approach extends the virtualization concept to the IoT world by

abstracting IoT resources and providing them as virtual ones. An I/O resource can

be seen as an instance of a developer-friendly interface for an I/O primitive of its

physical counterpart. The abstraction mechanism can concern the entire I/O resources

of an IoT node or just a subset of the resources. In addition, the I/O virtualization

capability can also regroup, logically, IoT resources from different IoT nodes within

the same (logical) entity.

To provide low level access to IoT resources, the I/Ocloud abstraction approach

is based on file system virtualization. This choice was made on purpose since many

common modern IoT nodes (e.g., Raspberry Pi, Arduino) employ the GPIO pseudo-

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 16

1.3 IoT cloudfication

IoT node 1

IoT
resource

IoT
resource

IoT
resource

...

IoT node 2

IoT
resource

IoT
resource

IoT
resource

...

VN

I/O
resource

VN
VN

migration

Virtual
disk

Virtual
network

I/Ocloud
datacenter

I/O
resource

VM

I/O
resource

I/O
resource

Figure 3: I/Ocloud instances with attached I/O resources.

file system1 approach in their system software to interact with the boards physical pins

interfaces. This I/O virtualization can also be extended to cover nodes virtualization

in IoT. Indeed, from our perspective, we would like to provide accessible virtual entities

with attached I/O resources (see Figure 3) virtualized through the file system. An

I/Ocloud instance is a virtual representation of a physical IoT node, including its

physical pins while being able to host user-defined logic and providing, at the same

time, interactions with the remote physical IoT resources. Technically, an I/Ocloud

instance is a self-contained and isolated environment with a user space-defined file

systems. This later file system aims at representing a clone of the remote physical

IoT resources within the file system hierarchy of the virtual IoT node.

Figure 4 depicts a layered architecture of the virtualization approach. As shown

in the figure, bottom-up, we have sensors and actuators in the case of a physical

IoT device (left node), whereas on the right, a compute node belonging to a Cloud

datacenter is depicted, featuring no directly attached transducers. In the IoT node, on

top of the Linux-based Operating System (OS), we have the pseudo file system (sysfs)-

based interface enabling I/O operations to/from the physical pins. To fully virtualize

and reproduce the corresponding IoT node as a virtual instance hosted on the physical

IoT node, the GPIO pseudo file system of the IoT node has to be supplemented by

1
A pseudo file system is a hierarchical interface to non-file objects that appear as if they were

regular files in the tree of a file system. These non-file objects may be accessed with the same system

calls as regular files and directories.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 17

1.3 IoT cloudfication

Cloud Compute node

Container engine
Virtualization hypervisor

Virtual I/O sysfs

 Application

Virtual node (2)

GPIO sysfs

Linux-based OS

SA S

I/O operations

Application

Virtual node (1)

Virtual I/O sysfs

 Application

Virtual machine

Virtual I/O sysfs

IoT node

I/O Hypervisor

Linux-based OS

Container engine

I/O operations
I/O Hypervisor

Figure 4: A layered architecture of the I/Ocloud virtualization approach.

a comprehensive clone of the user space setup. The role of the the I/O hypervisor is

to expose a virtualized (user space-defined) sysfs (i.e., the /sys filesystem) for each

virtual IoT node spawned. The sysfs virtualization can then shift the availability of

I/O operations upwards to the corresponding virtual IoT node.

The I/Ocloud virtualization approach can be also enabled on the Cloud by ex-

posing remote transducers on virtual IoT nodes spawned in the Cloud datacenter as

shown in Figure 4 by the dashed arrow starting from the sensors on the physical IoT

node (on the left), which through inter-hypervisor communication are exposed to a

virtual IoT instance hosted on the Cloud compute node (on the right). Wrapping

up, the red dashed arrows highlight the final result in terms of I/O virtualization.

In particular, the direction of the arrows corresponds either to an input (a sensor)

or output (an actuator). In our design, the user space file system is enabled using

Filesystem in Userspace (FUSE) [47] over Remote Procedure Calls (RPCs) to ensure

remote interactions with the physical IoT resources.

When considering the typical Cloud facilities, we can deploy the I/Ocloud ap-

proach either using plain VMs or Virtual Nodes (VNs). The difference between the

two instances resides in the instance flavor as in standard Cloud deployment. Once a

VM/VN gets instantiated, virtualized I/O resources can be attached to the instance

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 18

1.3 IoT cloudfication

as they were physically connected regardless of the configuration of the physical nodes

hosting them. An IoT application developer can therefore use his/her VM/VN as it is

a physical IoT node with sensors/actuators attached to its physical pins (see Figure 3).

1.3.3.3 I/Ocloud virtualization at the network edge

The I/Ocloud virtualization at the edge perspective emerges as soon as we rec-

ognize that I/O resources represent an interface to the physical world while the dis-

tributed IoT nodes hosting the physical resources can provide a pool of distributed

computing nodes at the network edge.

Pushing computing to the periphery of the network means decentralizing business

logic as desired, scheduling its execution on the boards themselves, whenever con-

ceivable. This means possibly engaging the Cloud to mainly support communication

below the application level when direct interaction among nodes is impaired as a result

of network-imposed constraints.

Regarding the VNs management, a VN may be instantiated as an isolated and

portable environment (e.g., a lightweight container) either on the datacenter or a

remote IoT node. A VN may be deployed at first on the I/Ocloud datacenter and

migrated, when needed, toward other infrastructure (e.g., to the edge) to meet, for

instance, latency constraints (see Figure 3). Conversely, the VN may be instantiated

on an edge-based physical IoT node then offloaded to the Cloud, the case when more

compute resources are required, for example. Besides the virtualization of the IoT

nodes and their physical resources, the I/Ocloud view goes beyond this virtualization

level to provide network virtualization as well. In fact, this is a critical aspect to

fully integrate IoT with the Cloud and overcome networking barriers in IoT deploy-

ments. The I/Ocloud view aims at making the users able to instantiate personalized

networking topologies among any combination of VMs and VNs spanning both, the

datacenter as well as Wide Area Networks (WANs) when VNs are deployed at the

network edge (see yellow dashed lines in Figure 3). Besides, the networking solution

should also cover bare-metal IoT nodes the case when a user own an IoT device or

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 19

1.4 Enabling technologies

set of devices and want to include them within his/her IoT deployment.

Based on these discussions about the I/Ocloud, the approach can bring significant

benefits, including:

• decoupling the IoT infrastructure and the underlying networking configurations

from users business logic,

• enhancing the concept of IoT infrastructure as Code (IaC),

• enabling edge computing to meet the requirements of specific applications,

• enabling a low-level abstraction of IoT nodes and resources (this is important

for applications code portability),

• interacting with IoT resources with a high level of granularity (thanks to the

pseudo file system);

• overcoming networking barriers in IoT deployments.

1.4 Enabling technologies

1.4.1 OpenStack

OpenStack is a set of open-source software tools for building and managing Cloud

computing platforms. OpenStack is a centerpiece of infrastructure Cloud solutions

for most commercial, in-house, and hybrid deployments, as well as a fully open source

ecosystem of tools and frameworks. Currently, OpenStack allows to manage virtual-

ized computing/storage resources, according to the infrastructure Cloud paradigm. In

Figure 5, a conceptual architecture of OpenStack depicting components, as boxes, and

the services they provide to other components, with arrows, are shown, respectively.

Nova, the compute resource management subsystem, lies at the core of OpenStack

and provisions VMs, with the help of a number of subsystems that provide core (e.g.,

networking in the case of Neutron) and optional services (e.g., block storage, in the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 20

1.4 Enabling technologies

Neutron

Horizon

Nova Glance

Ceilometer

VM

Provides UI

Cinder

Keystone

Swift

Monitores

Provisions

Provides
images

Stores images
in

Backups volumes in

Provides
auth for

Provides
volumes for

Provides network
connectivity for

Figure 5: OpenStack architecture.

case of Cinder) to the instances. Horizon is the dashboard and as such, provides ei-

ther a (web-based) User Interface (UI) or even a command-line interface to Cloud end

users. Ceilometer, the metering and billing subsystem, like most other components

of the middleware, cannot be fully analyzed on its own, as it needs to interface to,

and support, Nova. In particular, while both Nova and any of the aforementioned

subsystems exploit a common bus, the former alone dictates a hierarchy on partici-

pating devices, including their role and policies for interaction. Indeed, Nova requires

a machine operating as Cloud controller, i.e., centrally managing one or more com-

pute nodes, which are typically expected to provide component-specific services (e.g.,

computing) by employing a resource-sharing/workload-multiplexing facility, such as

a hypervisor.

1.4.2 Stack4Things

To achieve the I/Ocloud view discussed earlier, we based our work on the Open-

Stack open-source project. A first effort extending the OpenStack ecosystem to sup-

port the management of IoT deployments has been made by virtue of the S4T mid-

dleware [48]. The implementation-driven approach of the project tries to implement

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 21

1.4 Enabling technologies

Neutron

Horizon

IoTronic

Qinling

Designate

IoT
node

Provides UI

Provides
network

connectivity
for

Provisions
containers for

Provisions

Provides connectivity for

Keystone

Zun

Exposes to
the Web

Provides
auth for

Figure 6: Stack4Things subsystems.

suitable capabilities for IoT infrastructure to join an edge-extended IaaS Cloud. The

middleware provides infrastructure-enabling facilities to manage instances at the net-

work edge.

Highlighting this focus, as can be seen in Figure 6, the same kind of conceptual

architecture as in Figure 5 is used to represent the subsystems composing our S4T mid-

dleware by taking into account just core components for our approach. In particular,

introducing a novel subsystem, IoTronic, devoted to the provisioning and configura-

tion of IoT nodes with hosted sensing and actuation resources. Indeed, in place of a

VM, in this case, we have a diamond-shaped box symbolizing a (transducer-hosting)

IoT node, and corresponding interactions are described as text along the arrows. With

regard to the rest of the OpenStack subsystem used within S4T, the networking ser-

vice, Neutron, has been enhanced to provide network connectivity for both, IoT nodes

deployed at the network edge (see Chapter 2) and virtual IoT nodes (i.e., I/Ocloud

VNs) instantiated using the Zun subsystem (see Chapter 3). Furthermore, to make

the edge-based IoT nodes resources (either virtual or physical) exposed as Web re-

sources, we used the OpenStack Designate subsystem to associate publicly resolvable

domain names with the distributed physical/virtual IoT nodes even when deployed

within IPv4 masquerade networks (see Chapter 4). In addition to the capabilities of

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 22

1.4 Enabling technologies

S4T IoTronic

S4T IoTronic
command line

client

IoT nodes

S4T lightning-rod

Web browser

node OS tools,
services, and
IoT resources

Users

OS level calls

REST communication

Service forwarding (WS-tunneled)

Stack4Things Cloud

...

WAMP control channel

OpenStack servicesOpenStack servicesOpenStack servicesOpenStack services

OpenStack
command line

clients

Figure 7: Stack4Things architecture overview.

the I/Ocloud view in providing virtual IoT resources (e.g., sensors and actuators), we

also extended our approach to enable the developers to use, in particular situations,

Serverless-like interactions as interfaces to the nodes hosted resources (i.e., sensors and

actuators). We extended, in this case, the capabilities of Zun and Qinling subsystems

(see Chapter 5).

Figure 7 gives a technical high-level overview of the S4T deployment which is split

between a datacenter and a number of edge IoT nodes. As hardware setup of the

managed nodes, we made a decision, on purpose, to make use of relatively smart

(embedded) devices capable of hosting a minimal Linux distro (e.g., OpenWRT) such

as SBCs (e.g., Arduino, Raspberry Pi, and Arancino2) that are microprocessor (MPU)-

powered. Such a hardware configuration makes the IoT nodes capable of hosting

Linux-based tools together with different runtime environments, specifically Python

and Node.js, that are required by the S4T node agent Lightning-Rod (LR). This later

agent is responsible for bridging the remote IoT nodes to the Cloud infrastructure

where the S4T IoTronic service is deployed. IoTronic is modeled after the standard

design of OpenStack services as exhibited in Figure 8 that depicts the Cloud side

architecture of S4T (red subsystem).

The interconnection between IoTronic and LR is built on top of a full-duplex mes-

2
https://smartme.io/projects/arancino-cc/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 23

1.4 Enabling technologies

 IoTronic
database

IoTronic
conductor

S4T
command
line client

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

Web
browser

IoTronic A
P

IsS4T
dashboard

WS tunnel
agent

Data and commands
to/from boards

Communication
to/from board
internal services

WAMP control channel

Services forwarding (WS-tunneled)

REST communication

AMQP pub/sub and RPC

Figure 8: Stack4Things Cloud side architecture.

WAMP control
channel
 MPU-powered IoT node

Board FileSystem

s4
t W

A
M

P
lib

s4t
lightning-rod

engine

s4t wstunnel plugin

OS tools

s4t lightning-rod

plugin

s4t plugin
loader

System calls

Other communication

WebSocket
tunnel

sensors
and

actuators

GPIO

MPU
s4t Lightning-rod

Figure 9: Lightning-Rod architecture.

sage channel used in our design to forward commands from the Cloud to the IoT

nodes. Technically, the interconnection is established using a Web Application Mes-

saging Protocol (WAMP)-based communication (violet arrow in Figures 7, 8 and 9).

WAMP is an open standard WebSocket (WS) subprotocol stated to provide pub-

lish/subscribe (pub/sub) as well as RPC patterns (alongside routed RPCs). IoTronic

provides services forwarding through the Cloud (green arrows in Figures 7, 8 and 9).

In particular, users/administrators are able to make use of services (e.g., ssh) enabled

on remote devices, regardless of their physical networking configuration. Specifically,

the user connection requests are forwarded, on the Cloud side, to the S4T IoTronic

WS tunnel agent that is a “wrapper” in control of the WS server to which the devices

connect through the use of S4T wstunnel libraries (see Figure 9). This particular

capability of services forwarding is provided based on a reverse tunneling mechanism

using WebSocket [49].

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 24

1.5 I/Ocloud use case: Software Defined Cities

As depicted in Figure 8, at the core of the IoTronic subsystem, the conductor

manages the local database that stores metadata about the nodes. The S4T API server

exposes a set of RESTful APIs that enable different interactions with the (remote)

IoT nodes, either through the IoTronic Command-Line Interface (CLI) or Web-based

Graphical User Interface (GUI). For this purpose, the OpenStack Horizon dashboard

has been customized with an S4T panel exposing the services provided by IoTronic.

1.5 I/Ocloud use case: Software Defined Cities

A Smart City [10] is an ecosystem of infrastructure and services aiming to bring

together society, government, and technology to produce enhanced services (smart

mobility, smart environment, etc.). This holistic view calls for an all-encompassing

approach to embrace technologies and services, thus providing a broader (or even a

global) solution to (smart) city problems. In this light, there is the need for a scalable

architecture aiming at reusing, multiplexing, and sharing technologies and services on

the urban scale. The goal is to establish a homogeneous ecosystem where multiple

applications can scale out to a metropolitan scope, thus underpinning an open and

shared Information and Communication Technologies (ICTs) infrastructure made of

sensing, actuation, network, processing, and storage resources.

In order to manage heterogeneous and complex socio-technical systems on the

scale of whole cities, where both social and technological issues merge, an overarch-

ing approach able to deal with all related issues in an all-encompassing fashion is

required. Specifically, on the one hand the goal is to provide a uniform representation

of connected smart objects by abstracting, grouping, and managing them as a unified

ecosystem of smart objects to be configured, customized and contextualized according

to the high level, application, requirements. On the other hand, a management layer

able to control the ecosystem dynamics, able to map such requirements into lower

level ones, implementing and enforcing specific policies to satisfies such requirements

is needed.

A suitable solution may therefore lie in adopting a software defined approach,

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 25

1.6

S
Networking

API

A
Networking

API

Networking

API

Networking

API

Control logic Control logic Control logic

Board Board Board Board

Control plane

.. .

.. .

Ia
aS

 la
ye

r
I/O

 la
ye

r
P

hy
si

ca
l s

ys
te

m

Application /
Service

Application /
Service

.. .

Virtual
board

Virtual
board

Virtual
board

Application /
Service

City

S A S A S A

Figure 10: The Software Defined City paradigm.

where basic mechanisms provided by the smart cities objects at data plane, are used

by the control plane to implement policies related to application/end user-level re-

quirements. Thus, we talk about Software Defined Cities (SDCs) [50]. The data plane

level in this approach is composed of the geographically distributed IoT devices that

interact with the physical environment using the sensors and actuators. Regarding

the control plane, it is composed of the Cloud-hosted (or edge-based) virtual boards

(see Figure 10).

1.6

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 26

Chapter 2
Network Virtualization in IoT

2.1 Introduction

In a typical IaaS Clouds, users are able to create VMs and access them remotely.

In addition, a user has full control over the networking configurations of his/her VMs

as he/she can instantiate topologically complex virtual networks among them. In the

context of consolidating the Cloud and IoT paradigms, deep and genuine integration

between of the two environments may only be attainable at the IaaS level. In fact, an

IoT deployment without networking resilience and adaptability makes it unsuitable

to meet user-level demands and requirements. Such a limitation makes IoT services

adopted in very specific and statically defined scenarios, thus leading to limited plu-

rality and diversity of use cases. By integrating IoT within the Cloud ecosystem

at the infrastructure level, decoupling IoT services from the infrastructure and the

underlying networking configurations can be achieved.

However, when considering the particularity of IoT environments, they cannot be

managed similarly as standard IaaS Cloud-based deployments. Several features and

properties significantly diverge from what a typical IaaS environment is characterized

by and what it is expected to provide. On the one hand, an IoT deployment is a fully

distributed ecosystem with IoT nodes being geographically scattered; accordingly,

their reachability is a critical factor that should not be taken for granted. Indeed, the

actual IoT landscape is based on nodes deployed, most of the time, behind firewalls

with particular security policies/restrictions and/or NATs, especially when the IPv6

addressing scheme could not be an option. On the other hand, contrary to IaaS-

oriented datacenters where the provider has complete control over the equipment’s

physical level and logical layouts (e.g., cabling, networking configurations), IoT de-

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 27

2.1 Introduction

ployments do not provide such a level of control. An IoT infrastructure owner, in

general, expects not to grant an administrator similarly complete management abili-

ties and privileges over his/her physical infrastructure. For instance, the infrastructure

may be assembled in an opportunistic way (i.e., volunteer-contributed) from multiple

(IoT) owners, and the requirement to decouple ownership from administrative capa-

bilities, in this case, becomes then even more urgent. Yet, any (standard) network

virtualization [51] [52] mechanism will require at least some form of reconfiguration

capabilities on the IoT node-side networking facilities.

Considering the aforementioned dictated limitations, decoupling IoT applications

logic from the underlying networking configuration of the infrastructure cannot be en-

abled through mechanisms and protocols which are standard in the realm of datacenter-

level deployments. As such, IoT poses unique challenges including always-on reacha-

bility of IoT nodes, or at least suitable signaling, diagnostic and recovery mechanisms

to cope with connectivity disruptions.

This chapter describes a rationale and some mechanisms in order to enable such

functionalities when dealing with the unique requirements and challenges of IoT en-

vironments, e.g., embedded boards and other constrained devices. In particular, net-

work virtualization is addressed here on top of a Cloud platform whislt taking into

account the limitations of the smart devices. Furthermore, the approach can at the

same time be mapped onto an IaaS-focused IoT solution based on the I/Ocloud ap-

proach when integrated with containerization at the network edge (see Chapter 3).

The contribution here is thus three-fold: a Cloud-based framework for the setup

of virtual networks among geographically distributed IoT nodes as well as Cloud-

based instances (e.g., VMs) whichever the deployment scenario; description of a set

of scenarios that can be enabled through network virtualization in IoT; a flexible and

lightweight network virtualization solution for IoT based on universally available and

minimal tools, according to the Unix philosophy of composability and modular design.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 28

2.2 Background

2.2 Background

2.2.1 Network Virtualization

The networking field has known undeniable progress thanks to Network Virtual-

ization (NV) [51] techniques by introducing advanced and innovative functionalities.

The NV approach aims at providing the ability to set up logical/virtual networks de-

coupled from the underlying network hardware and configurations. This approach was

introduced through several virtualization techniques that are widely adopted nowa-

days such as, Virtual Local Area Networks (VLANs) [53] and Virtual Private Networks

(VPNs) [54]. Mainly, these techniques were used to provide functional services (e.g.,

security, traffic engineering) [52].

Over the past decade, organizations have been adopting virtualization technolo-

gies at an accelerated rate considering the emergence of Cloud offerings. In a Cloud

infrastructure, the NV approach abstracts networking services and connectivities that

were previously delivered by dedicated hardware into logical virtual networks using

virtual instances hosted by off-the-shelf hardware resources decoupled from the physi-

cal underlying networks. These virtual networking instances can operate just like the

standard hardware solutions would. Instead of using dedicated equipment only to de-

liver standard layer 2/3 services such as, switching and routing, the NV techniques can

also incorporate advanced virtualized layer 4-7 functionalities, such as load-balancing

and firewalling. Such a software-defined approach provides a variety of benefits in

solving typical challenges in today’s datacenter-based deployments. Indeed, it grants

a significant level of flexibility and scalability for both the service providers and users

who can self provision their networks without modifying or configuring the underly-

ing physical links/infrastructure. Therefore, customization of networking topologies

has become more efficient by dint of the agility provided by software-based compute

resources. Recently, the NV approach has known a significant boost thanks to the gen-

uine decoupling of the control and forwarding planes supported by Software-Defined

Networking (SDN) [55] and Network Functions Virtualization (NFV) [56]. These lat-

ter paradigms introduced advanced programmability capabilities with a meaningful

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 29

2.2 Background

level of network resilience not achievable before.

2.2.2 The OpenStack Networking subsystem: Neutron

Neutron is an OpenStack project providing Networking-as-a-Service (NaaS) for

devices, such as virtual Network Interface Cards (vNICs) used by other OpenStack

services such as Nova3. Neutron exposes a set of APIs and provides several choices for

datacenters administrators to manage the networks traffic. Indeed, rather than using

only the default open source switching solutions provided by OpenStack (e.g., Linux

bridge and Open vSwitch (OVS)), administrators can also use third-party developed

plugins. Therefore, the Cloud users can design customized networking topologies with

extended features. In a typical Cloud deployment, the Neutron subsystem provides:

• The capability to handle, in a flexible way, OpenStack networking objects, such

as ports, networks and subnets that other OpenStack services can make use of

through a set of APIs.

• The ability to instantiate scalable Cloud deployments by supporting a large

number of isolated users. Cloud tenants can instantiate desired networking

topologies using different agents, drivers, and plugins.

The OpenStack networking subsystem (i.e., Neutron) is meant to be a self-service

system, i.e., a Cloud user can configure and customize his/her networking topologies

without involving or opening a support ticket from the Cloud administrator. For

instance, Neutron can deal with the provisioning of the infrastructure by keeping users’

traffic isolated even when they use the same IP addressing ranges (i.e., overlapping

addresses).

In Neutron terminology, a set of terms has been introduced such as networks, sub-

nets and ports. To have a complete grasp of the integration and interactions between

IoTronic and Neutron, understanding these (Neutron) concepts is recommended for

the rest of this chapter.
3
https://docs.openstack.org/nova/latest/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 30

2.2 Background

N
e

u
tro

n
 se

rve
r

Neutron
database

Neutron
AMQP
queues

DHCP agentL3 agent L2 agentDHCP agent
Other

advanced
agents

AMQP messages (pub/sub, RPC)

Other communication

Figure 11: Architecture of Neutron subsystem.

To keep tenants’ deployments isolated, Neutron uses the concept of networks.

From the datacenter perspective, a network is similar to the VLAN concept. In

particular, each network is associated with a user and has a unique identifier that

can be recognized with. The network is totally under the control of the user who

can handle it depending on his/her needs. A user can instantiate several subnets

within his/her network and create customized topologies with particular networking

policies. A subnet in simple terms, is a set of IP addresses associated with a particular

configuration state. Last and not least, a port in OpenStack refers to the logical

connection of a device (e.g., a vNIC) to a subnet (i.e., a virtual switch). It also

describes the corresponding networking configuration of the device, such as its IP and

Media Access Control (MAC) addresses.

The typical architecture of Neutron allows the support of core functionalities (e.g.,

switching) along with the ability to include extended ones (e.g., routing, load balanc-

ing) using extra agents. Figure 11 shows the internal components of Neutron. The

subsystem consists of five elements, a RESTful server exposing a set of APIs to interact

with the different Neutron services. A database that stores the metadata associated

with the Neutron objects (e.g., networks, ports, and subnets). Then we have the L2

and L3 agents that afford the networking services. More specifically, the L2 agent

deals with switching tasks within the same logical network while the L3 facilities pro-

vide (virtual) routing between different subnets or the external world (e.g., Internet).

To make use of other advanced services, such as load balancing and firewalling, a user

can deploy extra dedicated agents. We mention here that all the different Neutron

components communicate using Advanced Message Queuing Protocol (AMQP).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 31

2.2 Background

software switch

T
A
P
0

VM1 VM2 VM3

Compute node

T
A
P
1

T
A
P
2

HYPERVISOR

eth0 eth0 eth0

Figure 12: Nova compute node/binding-host design.

In a native Neutron implementation (see Figure 12), the L2 agent runs on physical

servers where VMs are provisioned. These servers also host the virtual switching

facilities on which the Neutron ports get instantiated (see Figure 12). In Neutron

terminology, we refer to these machines (i.e., on which ports get created) as binding-

hosts. Technically, a Neutron port is a TAP device/interface. In this architecture,

the L2 agent manages the software bridges to provide multi-tenancy capabilities by

keeping the users’ networks isolated. The L2 agent keeps watching for new devices

(i.e., TAP-class interfaces) and once a new one gets instantiated, the L2 agent queries

Neutron for metadata associated with it (e.g., the subnet/network it belongs to).

Based on the information the L2 agent receives, it attaches the TAP interface to the

software bridge in charge of the virtual network involved. Afterwards, the hypervisor

connects the TAP device to the VM using a Virtual Ethernet (VETH) pair as the VM

and the virtual switch are hosted on the same physical machine (i.e., the binding-host,

see Figure 12).

In a Cloud environment, since the infrastructure is being shared among several ten-

ants, isolating their workloads is fundamental. To keep users’ traffic segregated from a

networking perspective, several overlay technologies, specified in terms of OpenStack

options as type drivers, can be used. For instance, VLAN, Generic Routing Encapsu-

lation (GRE) [57], and Virtual Extensible Local Area Network (VXLAN) [58]. These

technologies keep users isolated by associating for each network (i.e., user) a unique

identifier to be recognized with. The unique identifiers are stored in the Neutron

database and shared among all the physical hosts (i.e., compute nodes) where VMs

are provisioned. Therefore, packets switching among VMs, belonging to the same

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 32

2.3 Network Virtualization in IoT: use cases

Cloud

Internet

Phy
sic

al
Netw

ork

Cloud

Lo
gic

al
Netw

ork

End
-to

-E
nd

co
mmun

ica
tio

n

Service

Service
Service

End-to-end communication (unicast,
multicast...) in virtual networks using
existing, proprietary or clean state

protocols

Figure 13: The MENO end-to-end communication concept.

network and subnet, but running on different compute nodes can be achieved by en-

capsulating Ethernet frames within packets that contain the network identifier in their

header.

For layer 3 capabilities, such as virtual routing and floating IPs, an L3 agent

(located in OpenStack network node) is required. Such nodes can host Dynamic Host

Configuration Protocol (DHCP) agents as well. A DHCP agent is used in particular

deployments where tenants/users delegate to Neutron the liability to take care of the

IP stack of the VMs (i.e., configuring dynamic IP addresses).

2.3 Network Virtualization in IoT: use cases

In several IoT deployments, application developers do not need to expose or store

the data generated by the IoT nodes in a server with a public IP address. They can,

for example, store the data internally or process it before exposing it publicly. In such

a case, only a limited number of IoT nodes, machines (either physical or virtual), and

personal devices (e.g., smartphones, tablets, and wearables) need to cooperate for the

sake of providing a specific service. The concept of such deployments where different

smart objects can communicate in an end-to-end fashion was discussed in [59] under

the name of “Managed Ecosystem of Networked Objects” (MENO) (see Figure 13).

The MENO concept highlights the importance of network virtualization techniques

in enabling scenarios where applications running on top of a virtual network see only

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 33

2.3 Network Virtualization in IoT: use cases

VN1

VN2

Network

IoT node

(a) Segregating IoT nodes within the same physi-

cal network into two distinct virtual networks.

Internet

VN1

Edge
Router

VN2

Edge
Router

IoT node

Network 1 Network 2

(b) Two virtual networks accommodating IoT

nodes from two distant physical networks within

the same overlays.

Figure 14: Regrouping IoT nodes in different virtual networks.

the logical layer.

To accommodate geographically distributed IoT nodes within the same virtual

network, virtual links connecting them should be created on top of underlying layer

2/3 physical networks. Therefore, IoT nodes belonging to the same overlay can reach

each other even when they are not part of the same physical network (e.g., Local Area

Network (LAN)) regardless of their networking configurations. The NV approach is

extremely important in the IoT landscape to overcome reachability issues considering

that neither a public IPv4 addressing scheme can be used given the proliferation in

terms of the number of IoT devices, nor the IPv6 one which is not a suitable solution

under all circumstances. In the following, we describe a number of generic use cases

achievable by adopting NV techniques in IoT.

2.3.1 Partitioning IoT nodes within a same LAN

The most straightforward application the NV approach may enable in an IoT

context is the partitioning of IoT nodes within a physical network into two or more

virtual networks. Figure 14a depicts two virtual networks within each of them a subset

of the available IoT nodes are grouped. This scenario can be considered, for example,

in buildings management where virtual networks belonging to different administrators,

owners, departments, etc., should be deployed. In such a situation where the IoT

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 34

2.3 Network Virtualization in IoT: use cases

infrastructure may be used by multiple collaborators, we may need a flexible solution

to segregate the networks based on their users or services they may provide. To

deploy an application, the developer may arrange the IoT nodes within a customized

topology to accommodate the application requirements. We can also mention the

smart home use cases. Indeed, homes are increasingly becoming equipped with sensor

nodes (e.g., HVAC, fire detection, cameras, burglar detection. . .). By integrating all

the sensors and the actuators into a coherent ecosystem, they can afford a self-reliant

system able to react, automatically, to specific events (e.g., sending notifications or

actuation commands).

2.3.2 Regrouping IoT nodes from different networks

This use case may be required to connect IoT nodes belonging to two or more

geographically distributed physical networks. In Figure 14b, two different virtual net-

works grouping multiple IoT nodes belonging to different (distant) physical networks

are depicted. In this case, IoT nodes within an overlay seem to be, from a networking

perspective, sharing the same physical network regardless of their locations and un-

derlying networking configurations (e.g., being behind NATs). Such a scenario can be

realized, for example, by creating L3-based VPNs between the edge routers. This use

case can be envisaged, for instance, when IoT nodes from a physical network should

act upon measurements or data collected by other IoT nodes belonging to a different

physical network.

2.3.3 Extending an IoT network with powerful machines

In many cases, it is required to have one or more machines with enough compu-

tational/storage capabilities to deal with data management or perform calculations

beyond the capabilities of the IoT nodes. Figure 15a depicts the case when the

machines are located in a Cloud datacenter. The virtual network, in this scenario,

accommodates within the same overlay not only scattered IoT nodes, but machines

running on the Cloud as well. Such a deployment can be considered, for example, to

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 35

2.3 Network Virtualization in IoT: use cases

Internet

Edge
Router

VM VM

Cloud

IoT node

Edge
Router

Edge
Router

VN

Network 1 Network 2

(a) Regrouping IoT nodes from different physical

networks with Cloud-based instances within the

same overlay.

IoT node

Internet

Edge
Router

Edge
Router

Edge
Router

Network

VN PC

Smart
phone

(b) A virtual network composed of IoT nodes and

mobile personal devices (e.g., smart phones).

Figure 15: Overlays extending IoT networks with Cloud-based VMs and personal
devices.

store data gathered from the IoT nodes or to perform advanced data processing in the

Cloud. This virtualization capability exempts the user from assigning to the Cloud

machine a public IP address. A VM on the Cloud can collect data generated by a set

of IoT nodes and use it afterwards to provide higher-level applications/services.

2.3.4 Extending an IoT network with personal devices

This use case presents a scenario where a number of smart personal devices (e.g.,

smartphones, PCs, tablets, watches, connected cars) can be part of an IoT network.

Figure 15b depicts a virtual network regrouping a set of IoT nodes together with

personal devices.

Obviously, all of the above scenarios may be combined when needed to fit the

users demands. In Figure 16 a hybrid virtual network is shown. The virtual network

is created by combining partitions from two separate networks composed of several

IoT nodes while extending it with Cloud-based VMs and personal devices as well (e.g.,

a smart phone in this case). It is clear that the possible configurations are countless

and the networking topology will strongly depend on the use case to be implemented.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 36

2.4 Stack4Things and Neutron integration design

Internet
Edge

Router
Edge

Router

Cloud

VM VM

VN

Edge
Router

Smart
phone

IoT node

Edge
Router

Network 1

Network 2

Figure 16: A hybrid overlay composed of IoT nodes, Cloud-based VMs and a personal
device.

2.4 Stack4Things and Neutron integration design

In this section, we report a detailed description of our NV approach for IoT deploy-

ments. In particular, we highlight, from a technical implementation perspective, the

differences between a standard Cloud-based Neutron deployment and our IoT-oriented

solution.

2.4.1 Integration scenario

Instead of provisioning networking services only for instances hosted on the Cloud

(e.g., VMs), our view aims at extending the NV usage scope by enabling its capabilities

in the IoT landscape as well. The approach we are introducing provides NV services

through REST interactions with the IoTronic subsystem presented in Chapter 1.

In a typical native OpenStack deployment, Neutron provides networking services

for VMs running (locally) on the same hosts where the networking facilities (i.e.,

software switches) are hosted: a VM is attached to a virtual switch using a VETH

pair (see Subsection 2.2.2). On the other side of the spectrum, considering the kind

of IoT scenarios we are targeting, there is a significant difference compared to Cloud-

based deployments as the switching facilities and instances (i.e., IoT nodes) can not

be co-located on the Cloud: due to the nature of IoT deployments, IoT nodes can

not obviously be deployed inside datacenters where the virtual switches are running;

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 37

2.4 Stack4Things and Neutron integration design

IoTronic
database

IoTronic
conductor

S4T
command
line client

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

WS tunnel
agent

Web
browser

IoTronic A
P

Is
N

eutron server

Neutron
database

Neutron
AMQP
queues

S4T
dashboard

data and commands
to/from IoT nodes

REST communication

WS tunneling

AMQP pub/sub

Other communication

Socket communication

L3 agent L2 agent

WAMP
L2 agentL2 agent

DHCP agent

Ethernet frames

WAMP messaging

Network node

WS tunnel agent
host machine

Wired-equivalent
communication to/from
IoT nodes

Bridged networking
for IoT nodes
(logical link)

Logical L2 communication

Virtual sw
itch

Virtual sw
itch

TA
P

Figure 17: The Cloud-side architecture of the Stack4Things network virtualization
system.

accordingly, we can not use (virtual) Ethernet pairs as the case for VMs. In our

approach, the binding-hosts (where Neutron ports get created) are deployed inside the

datacenter precisely, we chose the machines hosting the WS tunnel agents as binding-

hosts (see red dashed rectangle in Figure 17). This choice was made on purpose as

the WS agents can set up WS tunnels in order to attach Neutron ports instantiated

on those machines to the IoT nodes deployed at the network edge using WebSocket.

In simple terms, ports are created/managed on the Cloud then attached to the IoT

nodes deployed at the network edge using WebSocket in a decoupled two-step pattern.

The system design takes into duly consideration the typical resource constraints of

IoT environments. In fact, the architecture used makes the IoT nodes not involved in

most of the NV duties by keeping them totally unaware of Neutron involvement. Be-

sides, since L2 agents and switching facilities are running on the Cloud, our approach

provides availability for mission-critical Neutron services and scalability for partic-

ular hefty configuration requirements. As shown in Figure 18 that represents the

S4T node-side architecture, attaching an IoT node to a virtual user-defined network

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 38

2.4 Stack4Things and Neutron integration design

WS tunneling

Socket communication

OS level calls

Other communication

Ethernet frames

WAMP messaging

Logical L2 communication

MPU-powered IoT node

Board FileSystem

S
4T

 W
A

M
P

lib

Lightning-Rod
engine

wstunnel plugin

OS tools

Lightning-Rod

plugin
S4T plugin

loader

sensors
and

actuators

GPIO

MPU

Data and commands
to/from the cloud

Wired-equivalent communication
to/from the Cloud

Bridged networking for
IoT nodes (logical link)

VIFVIF

Figure 18: The node-side architecture of the Stack4Things network virtualization
system.

translates into a relatively straightforward process, i.e., a Virtual InterFace (VIF) gets

instantiated on the IoT node and then attached (using a reverse WebSocket tunnel)

to the OpenStack networking platform managed by Neutron on the Cloud.

We focus, in the following, on a deployment involving the use of the Neutron

Modular Layer 2 (ML2) plugin with Linux bridge and VXLAN as mechanism driver

and type driver, respectively. Deployments using other mechanism drivers (e.g., OVS,

Cisco Nexus 1000v) or type drivers (e.g., GRE), can be achieved as well, if needed.

In Figure 19 a sketch is modeled after the low-level reverse tunnel, yet focused

on the creation of a switching platform using a virtual switch (i.e., a Linux bridge)

between two IoT nodes controlled by the same WS tunnel agent. Still sticking to

the setup of a control WS based on WAMP, as a preliminary step in this workflow,

in this case, a reverse WS tunnel (rtunnel) gets activated for each IoT node to be

virtually bridged. As a simplified scenario, the figure depicts only two such nodes,

yet no limitation is in place regarding the number of remote nodes to be virtualized

in terms of networking. As any IoT node in our approach, from now on referred to

as a client, needs to go through the same set of operations, we will describe the flow

just for a single instance for the sake of brevity.

Taking into consideration the uppermost node (i.e., a single-board computer) in

the diagram (see Figure 19), an initial step lies in setting up a TCP connection based

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 39

2.4 Stack4Things and Neutron integration design

TCP
client

Websocket
reverse tunnel

client

po
rt

IoT Node A Ethernet frame

TCP connection

TCP piping

Websocket
Socat

TCP
client

Websocket
reverse tunnel

client

po
rt

IoT Node B

Socat

VIF

VIF

TCP
serverpo

rt

Websocket reverse
tunnel server

TCP
serverpo

rt

Socat

Linux bridge

Socat

TAP

TAP

ws-tunnel agent node

Figure 19: Low-level functional diagram of bridged tunneling over WS (IoT nodes
managed by the same WS tunnel agent).

TCP
client

Websocket
reverse tunnel

client

po
rt

IoT Node A
Ethernet frame

Websocket
Socat

TCP
client

Websocket
reverse tunnel

client

po
rt

IoT Node B

Socat

TCP connection

TCP piping

L2 overlay (VXLAN)

po
rt

Websocket reverse
tunnel server

Socat
TCP

server

Linux bridge
TAP

ws-tunnel agent node

TCP
serverpo

rt

Websocket reverse
tunnel server

Socat

TAP
Linux bridge

VNI

VNI

ws-tunnel agent node

VIF

VIF

Figure 20: Low-level functional diagram of bridged tunneling over WS (IoT nodes
managed by different WS tunnel agent).

on a WS rtunnel, which consists of exposing, on the server-side, a listening socket

on a local port, as soon as the rtunnel server accepts a request for a new rtunnel.

The TCP connection just established gets piped to the rtunnel that encapsulates

TCP segments in a WS-based stream. On the WS rtunnel client-side, as soon as the

rtunnel is established, a new TCP client is brought up connecting to a local (Socat-

provided listening) port, and such TCP connection gets piped to the rtunnel. By

employing the executable called Socat, which operates in listening mode on both

sides of the chain and, on connection, starts exposing a virtual TAP device (depicted

in Figure 19 as VIF for the boards) on either side, then flows to/from these TAP

interfaces get piped through Socat to the rtunnel. Regarding virtual devices setup

and binding, Socat is considered a networking "swiss army knife" tool for Unix-like

systems. Alike its counterpart, Netcat, the more full-featured Socat offers a set of

networking features and quick shortcuts, such as socket piping/tuning, setup of virtual

TUN/TAP devices, and process control as well. The above-reported steps are time-

insensitive logical operations that can easily tolerate network unavailability. When a

user requests to attach an IoT node to a specific network through the dashboard or

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 40

2.4 Stack4Things and Neutron integration design

command line, IoTronic manages the process by:

i) requesting the creation of a Neutron port (TAP-class device) on the machine

hosting the WS tunnel agent in charge of managing the involved IoT node.

ii) establishing a (reverse) WS tunnel between the WS tunnel agent and the IoT

node.

iii) creating a VIF (i.e., a TAP class device) on the IoT node then piping connections

from the TAPs on both sides to the WS tunnel already created.

iv) assigning the IP and MAC addresses specified by Neutron to the VIF instanti-

ated previously in the IoT node.

Figure 19 describes a scenario with two IoT nodes managed by the same WS tun-

nel agent and belonging to the same virtual/overlay network. As already mentioned,

when attaching an IoT node to a network, IoTronic manages the process. Firstly, the

IoTronic conductor interacts with the Neutron server to create a port on the machine

where the WS tunnel agent in charge of the IoT node is running. Afterwards, the

L2 agent hosted on that machine handles this event (i.e., a new TAP class device is

created) by attaching it to the appropriate Linux bridge managing the traffic of the

concerned logical network. IoTronic then pipes the connections to the tunnel clien-

t/server, respectively, and sets up the (reverse) WebSocket tunnel. In order to attach

another IoT node to the same logical network, an identical workflow is triggered. As

a result, another WS tunnel is then created, and the connection piped to the same

Linux bridge as the two IoT nodes are expected to be on the same logical network

when the setup is over (see Figure 19). From a security perspective, a deployment

of this kind is secure as, for each instance, a WS tunnel is established between the

IoT node and the Cloud; thus, tunnels can be encrypted to ensure confidentiality, if

needed, such as when traversing public networks.

The reachability among the distributed IoT nodes belonging to the same virtual

network but managed by different WS tunnel agents is ensured by default. Indeed,

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 41

2.4 Stack4Things and Neutron integration design

TCP
client

Websocket
reverse tunnel

client

po
rt

VIF
IoT Node

Ethernet frame

Websocket

Socat

TCP connection

TCP piping

L2 overlay (VXLAN)

po
rt

Websocket reverse
tunnel server

Socat
TCP

server

Linux bridge

TAP

ws-tunnel agent node

Linux bridge
VNI

VNI

Nova Compute-nodeVM

TAP

Figure 21: Low-level functional diagram of bridged interconection between an IoT
node and a Nova VM.

as discussed previously, Neutron uses unique identifiers shared among all the binding-

hosts (i.e., machines hosting the WS agents in our case) to segregate users traffic and

enable transparent packets transport among them. Figure 20 shows the case when the

two IoT nodes are managed by different WS tunnel agents. In this case, an overlay

network is established by Neutron. In addition, reaching OpenStack instances (e.g.,

Nova VMs) from IoT nodes is also insured as the networks’ unique identifiers are

shared between all the binding-hosts including Nova compute nodes (see Figure 21).

Communications among all the binding-hosts (i.e., compute nodes and WS tunnel

agents machines) are based on overlay technologies, such as VXLAN and GRE. In

Figures 20 and 21 depicting the datapaths, we choose VXLAN and its corresponding

interfaces, represented as VXLAN Network Identifiers (VNIs).

2.4.2 Advanced functionalities of the integration

Complex and more advanced networking topologies involving IoT nodes over a

wide-area network are feasible in this light. Switching L2 traffic between IoT nodes

deployed at the network edge is not the only use case: advanced services for node-

hosted overlays may include, for example, routing, firewalling, load balancing as well

as advanced software-defined and Virtual Network Functions (VNFs). For layer 3

features, the L3 agent leverages the Linux IP stack and iptables. Besides, the agent

uses Linux network namespaces to provide isolated forwarding contexts; thus multiple

routers with potentially overlapping IP addresses are supported. Similarly to DHCP

servers that exist for each virtual network managed via Neutron and controlled by its

DHCP agent, every router lives in its own namespace.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 42

2.5 The Stack4Things virtual networking solution

Method URL Semantics Parameters Return type

1 PUT /v1/boards/{board_uuid or name}/ports Create and attach a port to a specific board
Network_uuid (uuid)

Subnet_uuid (uuid)
Port

2 GET /v1/ports Retrieve a list of ports – PortCollection

3 GET /v1/boards/{board_uuid or name}/ports Retrieve a list of ports attached to a board Board_uuid (uuid) or name (string) PortCollection

4 GET /v1/ports/{port_uuid} Retrieve details about a port Port_uuid (uuid) Port

5 GET /v1/boards/{board_uuid or name}/ports/{port_uuid} Retrieve details about a port attached to a board
Board_uuid (uuid) or name (string)

Port_uuid (uuid)
Port

6 DELETE /v1/boards/{board_uuid or name}/ports/{port_uuid} Detach a port from a board
Board_uuid (uuid) or name (string)

Port_uuid (uuid)
–

7 DELETE /v1/ports/{port_uuid} Delete a port (and detach it) Port_uuid (uuid) –

Table 1: The IoTronic RESTful networking APIs.

2.5 The Stack4Things virtual networking solution

This section gives details about our virtual networking solution from the develop-

ment point of view. We first report the RESTful APIs exposed by the system, then

a detailed description of the functional workflow when attaching an IoT node to an

OpenStack defined virtual network is reported. We do not report other workflows due

to space constraints. At the end of the section, we highlight the advantages of our

IoT-focused NV approach.

2.5.1 Stack4Things networking APIs

To expose the networking capabilities of S4T, a set of RESTful APIs were built4.

The choice of REST is in line with the design of OpenStack services APIs5; thus

we have a seamless integration of our system with other OpenStack services. We

report in Table 1 the S4T networking APIs built and tested. The table reports the

exploited Hypertext Transfer Protocol (HTTP) methods, Uniform Resource Locators

(URLs), semantics, input parameters, and return types. A Create, Read, Update,

and Delete (CRUD) architectural design is used to build the APIs. Regarding the

authentication, we delegate this aspect to the OpenStack identity service, Keystone,

as is the case for all the other OpenStack services. In particular, Keystone generates

authentication tokens that grant access to our networking REST APIs. Clients then

4
A Swagger APIs description: https://mdslab.github.io/iotronic-api/swagger-ui/#/

5
OpenStack API documentation: https://docs.openstack.org/api-quick-start/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 43

2.5 The Stack4Things virtual networking solution

obtain the token as well as the URL endpoint of the IoTronic service API by supplying

their valid credentials to the authentication service. Whenever an S4T client makes a

REST API request, the authentication token is included in the X-Auth-Token request

header. Regarding the return type of the APIs, we used JavaScript Object Notation

(JSON). In particular, a Port JSON data type is provided in response to requests #1,

#4, and #5. While a Portcollection JSON response (i.e., a list) is due for requests

#2 and #3.

2.5.2 Workflow of attaching a board to a virtual network

In this subsection, we report a detailed workflow description when attaching an

IoT node to a user defined virtual network. This use case corresponds to request #1 in

Table 1. As a use case prerequisite, we assume that the IoT node is already registered

to the Cloud. The following operations are then performed (see Figure 22):

1. The user sends a request using either the dashboard or the CLI in order to

attach an IoT node to a specific virtual network. The request contains in its

body the Universally Unique Identifiers (UUIDs) of the virtual network (network

and subnet) the board has to be attached to.

2. The dashboard/CLI performs the correspondant IoTronic REST API call (i.e.,

request #1 in Table 1).

3. The IoTronic API server sends a RPC (using RabbitMQ) to the IoTronic con-

ductor in order to create a new Neutron port and attach it to the IoT node.

4. The IoTronic conductor receives the RPC by extracting it from the IoTronic

AMQP queue and sends a query to the IoTronic database. In particular, it

checks if the IoT node involved is already registered to the Cloud and decides

the WS tunnel agent to which the IoT node has to be connected to.

5. The IoTronic conductor performs a REST call to the Neutron server to create,

on its database, an entry about a new port having as binding-host the machine

where the WS tunnel agent in charge of the IoT node is running.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 44

2.5 The Stack4Things virtual networking solution

IoTronic
conductor Neutron API WStun agent

L2 agent IoT deviceIotronic API

[2] Create a port and it
attach to the IoT node

[3] Create port and
attach it [5] Create a port on a

specific ws-agent machine

[7] Return information
about the port

Port
creation

DBDB

REST request RabbitMQ RPC WAMP RPC

[6] Database update
[port name, MAC, IP,...]

Other communication

WAMP agent

 [8] Create WS tunnel / Create TAP device

Dashboard
CLI

[1] Attach an IoT
node to a network

[4] Database check
[15] Database update

[9] TAP and WS tunnel
instantiation

[10] Request details
about the TAP interface

[11] Information about
the TAP interface

Attach the TAP interface
to a Vswitch

 [12] Create VIF on
the IoT device

 [13] Create VIF
[14] instantiate
a VIF and pipe
traffic

RabbitMQ RPC ACK WAMP RPC ACKREST response

ACKACKACKResponseResponse

Figure 22: The workflow of attaching an edge IoT node to a specific logical network.

6. The Neutron server interacts with its database to create the port and associate

to it a UUID. Besides, Neutron allocates for the new port both the MAC and IP

addresses. Afterwards, the Neutron server sends a notification about the port,

via RPC, to the DHCP agent to update the lease file.

7. The S4T IoTronic conductor receives the response for the REST call about the

Neutron port creation. Then it (i.e., the conductor) generates a random port

number that will be used subsequently for the Socat tunneling.

8. The IoTronic conductor sends an RPC (using RabbitMQ) to the WS tunnel

agent in charge of the IoT node in order to create and configure, using Socat, a

TAP class device associated with the Neutron port created in step 5 (the UUID

of the port is sent as a parameter in the RPC to assign for the TAP device a

name using it).

9. The machine where the WS tunnel agent involved (i.e., in charge of the IoT

node) is hosted receives the RPC and then follows up with its own set of server-

side network virtualization duties. Specifically, it creates and configures a TAP

interface corresponding to the port already created by Neutron (the name of the

interface is based on the port UUID) and pipes the WS tunnel to it. When the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 45

2.5 The Stack4Things virtual networking solution

L2 agent running on the machine hosting the WS tunnel agent (i.e., where the

TAP interface got created) detects the new TAP interface, it triggers the next

step.

10. The L2 agent requests from Neutron the details about the new TAP interface,

such as the network and the subnet it belongs to.

11. The L2 agent receives the Neutron server response and then attaches the TAP

interface to the appropriate Linux bridge managing the virtual network con-

cerned when using the Linux bridge L2 agent, or it (i.e., the L2 agent) matches

the interface with the proper VLAN ID when OVS is in use.

12. The IoTronic conductor sends a RabbitMQ-based RPC to the WAMP agent

managing the board in order to instantiate a VIF on the IoT node.

13. The WAMP agent to which the IoT node is registered receives the RPC from

the IoTronic RabbitMQ queue. The agent then forwards a WAMP-based RPC

to the IoT node.

14. Through the WAMP library, the LR engine receives the RPC from the WAMP

router. The LR engine then invokes (e.g., sets as running, passing needed pa-

rameters) the WS tunnel plugin that sets up a (reverse) WS tunnel with the

agent specified by the conductor (i.e., the Cloud-based host where the TAP

interface was created). The engine afterwards creates a VIF using Socat and

pipes traffic to/from it to the WS tunnel.

15. The IoTronic conductor performs a query to its database to store the new details

about the IoT node (e.g., network and subnet associated with the IoT node).

2.5.3 Creating Virtual Networks using Stack4Things

The S4T network virtualization approach enables users to create and manage

overlays composed of IoT nodes deployed at the network edge together with Cloud-

based instances. The solution is efficient and can enable all the scenarios mentioned

previously in Section 2.3. In particular, the approach provides:

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 46

2.5 The Stack4Things virtual networking solution

Aspects S4T overlay VPN-based overlay
Legacy apps

(e.g., AllJoyn)

Security

TLS-based communications

(using secure WebSocket)

between the devices and the Cloud

Encryption between clients

and VPN server possible (e.g., IPsec)

Depends on the

protocols/platforms used[60] [61]

Ability to span

distant networks
Supported Supported Not supported [62]

Interoperability with

personal devices

Possible (requires only a minimal

Linux-based environment

on the devices)

Possible
Strictly linked to the

platform/technologies used

Multi tenancy Supported
Could be supported but hard to manage

(management of the association users/VPNs)
Not supported

Table 2: Comparison between different IoT network virtualization approaches.

• A seamless integration with OpenStack: as discussed before, the intro-

duced NV approach is fully compatible with OpenStack, in particular, its net-

working subsystem, Neutron. Therefore, tenants’ traffic segregation can be con-

sidered a strong built-in capability S4T makes use of. Users can use the IoT NV

approach the same way as in a native Cloud deployment without worrying about

their networks isolation. Besides, Neutron provides a set of advanced network-

ing functionalities (e.g., load balancing) that may enable value-added services

in an IoT context. On the other hand, using a unified system to manage vir-

tual networks accomodating distributed IoT nodes together with Cloud-based

instances (e.g., VMs, containers) within the same overlay networks enables the

two environments to collaborate.

• Zero-configuration networking: the NV solution we introduced is able to

group IoT nodes belonging to different distant physical networks within the

same broadcast domains. It is worth mentioning here that the approach does

not require any specific configuration on the edge routers or networking equip-

ment. In particular, we do not use any layer 2/3-based VPNs over the Internet;

hence avoiding manual configurations that may inflict scalability issues (e.g.,

when multiple sites/networks should be connected) or involving the Internet

Service Provider (ISP). In this context, the approach overcomes the limitations

of other legacy applications that provide network virtualization functionalities

in the IoT landscape, such as the AllJoyn platform developed originally by the

AllSeen Alliance and now merged with IoTivity under the Open Connectivity

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 47

2.5 The Stack4Things virtual networking solution

Foundation (OCF)6. In particular, the AllJoyn framework comprises a DBus-

derived application protocol useful for messaging, advertisement, and discovery

of services, working via selected mechanisms on available transports. A limi-

tation of the protocol is being currently designed to work only as long as the

communicating devices are on the same broadcast domain [62]. Therefore, it

is unable to cross boundaries imposed by the network layer protocol. A single

subnet might be sufficient for small-scale deployments but not for buildings and

smart cities applications (see Table 2).

• Mobility support: being an agnostic approach vis-à-vis the physical network-

ing configurations of the IoT nodes and edge routers makes the solution stable

and does not get impacted by users/nodes mobility. Even with a mobile IoT

node experiencing a vertical handover (e.g., switching from 3/4G to WiFi) or

a connectivity interruption and, thus, an underlay IP address modification, our

network virtualization solution for creating overlays does not get affected by

such networking reconfigurations. Indeed, the overlay IP address assigned by

Neutron to the IoT node will always remain the same since it is not associated

with the underlay networking configuration. During a connectivity disruption,

the LR daemon will keep trying to establish a connection to the Cloud. Once

the Internet connectivity is reestablished, the VIF on the IoT node (created

when attaching the IoT node to the overlay for the first time) gets attached

(using a WebSocket tunnel) to the same Neutron port on the Cloud as before

the connectivity interruption. We mention that the Cloud port has been already

configured with an overlay IP and MAC addresses when attaching the IoT node

to the overlay for the first time (before the connectivity interruption). In other

terms, the association we have, in this case, is between the Neutron port (which

is created on the Cloud and does not get impacted by the mobility) and the

overlay IP address. Therefore, even if the underlay networking configuration of

an IoT node changes over time, the same overlay IP address will be assigned to

the VIF on the IoT node as the Neutron port remained intact.

6
https://openconnectivity.org/allseen-alliance-merges-open-connectivity-foundation-accelerate-

internet-things/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 48

2.6 Experimental results

• Extended IoT networks: the network virtualization approach we introduced

can also integrate personal devices such as, smartphones, tablets, PCs, etc.,

within the users defined overlays. Indeed, the device-side agent (i.e., LR) that

runs on the IoT nodes typically requires only a minimal Linux-based operat-

ing system with Python and Node.js as runtime environments, or even just a

JavaScript-enabled browser, for the most constrained environments, e.g., mo-

biles. We mention here that we have an app-based, browser engine-powered

LR agent designed for Android-based devices. Generally speaking, the stability

of the overlays discussed previously, even during devices mobility phases, may

enable interesting value-added services when combined with personal devices.

• Efficient applications deployment: by using the plugins injection capability

provided by S4T together with the network virtualization capability, developers

can have an efficient platform for applications deployements. Using the network

virtualization solution, a developer can accommodate IoT nodes to meet the

application’s networking topology requirements and then he/she can program

the business logic running on those IoT nodes. In fact, S4T enables the (remote)

programmability, even at runtime, of IoT nodes. A developer can upload, to

the Cloud, his/her code defining the business logic and inject it in an IoT node

(or group of nodes). As runtime environments, S4T provides the choice between

Python and Node.js, as these both provide suitable execution environments and

higher-level programming facilities with an extensive selection of libraries and

frameworks.

2.6 Experimental results

An evaluation of the proposed system is provided in the following, highlighting

specific key performance metrics namely throughput and latency, according to the

aforementioned virtual networking mechanisms established using a wrapped Socat-

based tunneling. We conducted a set of experiments based on the Flent [63] tool for

measuring throughput using Transmission Control Protocol (TCP) flows and Internet

Control Message Protocol (ICMP) echo requests to gauge latency (i.e., Round-Trip

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 49

2.6 Experimental results

Time (RTT)). The test setup is based on a server collecting data and presenting

statistics and a client generating TCP traffic and ICMP requests. When running

multiple tests in parallel, the output of each test is parsed, and the output is stored

in a common JSON-based format for further processing.

To assess the performance, we compared the results obtained by our NV approach

with the ones from a native connection without involving OpenStack (i.e., public IP-

based). Each experiment conducted in this part has a total duration of 10 minutes.

During such time intervals, we simultaneously measured throughput and latency vari-

ation over time. The S4T Cloud infrastructure is deployed at the Department of

Engineering of the University of Messina, Italy. The IoT node, instead, was config-

ured and deployed outside the university network to get realistic results over a WAN

interconnection. As an IoT node, we used an Orange Pi zero with ARMBIAN 5.60

and Linux kernel 3.4.113-sun8i. The board is powered by an Allwinner H2+ CPU

(1200Mhz ARM Cortex -A7 Quad-core) and 512 Mbytes of RAM. On the Cloud side,

we are implementing the WS tunnel agent on a virtual machine with 4 Gbytes of RAM

and 2vCPUs (the host machine is powered by an Intel Core i7 9xx CPU 2.13GHz).

Figure 23a depicts the TCP throughput variation while uploading from the edge

node to a Cloud instance considering two scenarios. In the first one, the Cloud

instance was deployed using a public IP address. In that case, the communication

is restricted only between the Cloud instance and the board without providing any

further interactions with other IoT nodes (i.e., the switching platform is not involved).

In the second one, the board has been attached to a virtual network created using

OpenStack; hence the board is considered as a Cloud instance that can interact with

VMs and/or other IoT nodes on the same logical network.

It may be noticed from Figure 23b that the throughput when the IoT node is

downloading from a Cloud instance using the virtual network decreases compared to

the native network (see Table 3). Similarly, when the IoT node is uploading to the

Cloud instance, we noticed a decrease of the throughput performance (see Figure 23a

and Table 3). Regarding the system latency, the approach introduces an additional

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 50

2.6 Experimental results

0

0,1

0,2

0,3

0,4

0,5

0,6

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

Time (s)

Public IP Virtual network

(a) Throughput variation when the IoT node

is uploading, using TCP, to the Cloud instance

(averaged every 10 seconds for better visibility).

0

0,1

0,2

0,3

0,4

0,5

0,6

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

Time (s)

Public IP Virtual network

(b) Throughput variation when the IoT node

is downloading, using TCP, from the Cloud in-

stance (averaged every 10 seconds for better vis-

ibility).

Figure 23: Throughput variation when the edge node is uploading/receiving TCP
traffic to/from a Cloud-based instance.

Upload Download
Statistics S4T Native S4T Native

Min 0.16 0.25 0.02 0.27
Max 0.57 0.99 0.4 0.5
Mean 0.38 0.43 0.31 0.39
Stdev 0.06 0.07 0.05 0.04

Table 3: Statistical TCP results of
throughput (Mbps) during an upload-
/download from/to the IoT node.

Upload Download
Statistics S4T Native S4T Native

Min 48.6 200 45.47 38.86
Max 205 414 323.5 148.1
Mean 103.91 317.88 160 40.49
Stdev 19.77 31.99 36 6.82

Table 4: Statistical TCP results of la-
tency (ms) during an upload/down-
load from/to the IoT node.

processing delay due to the different (TCP) traffic pipes used in the design. Figure 24a

and Table 4 show in detail the effect experienced. Of course, such a design based on

the Cloud is not for highly time-sensitive applications. For such particular latency

constraints, S4T is being extended to provide Fog solutions [16]. Nevertheless, the S4T

virtual network takes advantage of using WebSocket tunnels when traversing Firewalls

that, in this case, do not do further packet inspection. As reported in Figure 24b and

Table 4, our approach reduces the latency from the board to the Cloud while traversing

the university firewall. Concretely, the average latency increase from 103.91 ms when

using the virtual network to 317.88 ms when the native network is in use (see Table 4).

In order to further investigate the cause of the throughput performance decrease, we

performed additional tests using User Datagram Protocol (UDP) instead of TCP.

Indeed, the use of UDP brings more flexibility and control over the testbed as the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 51

2.6 Experimental results

0

10

20

30

40

50

60

70

80

90

100

[<50]
[50-75]

[75-100]

[100-125]

[125-150]

[150-175]

[175-200]
[>200]

Pa
ck

et
s

de
liv

er
y

ra
ti

o
(%

)

Latency (ms)

Public IP

Virtual Network

97.5%

1.7%0.7% 0.3% 0.2% 0.3%2.7%
11.4%

26.7% 28.4%

16.8%
13.3%

(a) Packets delivery distribution based on the

latency experienced when the IoT node is re-

ceiving a TCP traffic from the Cloud instance.

0

10

20

30

40

50

60

70

80

90

100

[<50]
[50-100]

[100-150]

[150-200]

[200-250]

[250-300]

[300-350]
[>350]

Pa
ck

et
s

de
liv

er
y

ra
ti

o
(%

)

Latency (ms)

Public IP

Virtual Network

0.3%

41.7%

0.2% 2.5%

56.3%

1.5% 0.2%

26.8%

53.8%

16.7%

(b) Packets delivery distribution based on the

latency experienced when the IoT node is gen-

erating TCP traffic in destination of the Cloud

instance.

Figure 24: Comparison of the latency experienced using a Public-IP based deployment
and the S4T overlay.

packet sending rate can be controlled with higher granularity, whereas for TCP, the

communication between the client and server is handled by the protocol itself that

determines the suitable packet generation rate (i.e., based on the 3-way handshake

and the windowing mechanism). UDP does not employ packet acknowledgment or

retransmission mechanisms; therefore, the throughput does not get impacted by the

protocol’s functionalities. For this purpose, we deployed a Python-based UDP client

(i.e., traffic source) and server (i.e., traffic destination/sink) on the IoT node and the

Cloud instance (i.e., the VM), respectively. We used several sending rate values for

the evaluation starting from 100 packets per second (pps) up to 1500 pps at 100 pps

step increments, with 80 bytes of payload size. Each UDP experiment reported in

this part has a duration of 5 minutes.

By using UDP and collecting statistics at the server-side, we noticed a consider-

able packet loss when using the Socat-based overlay (see red dashed rectangles in

Figure 25a). In fact, increasing the packet sending rate affects negatively the per-

centage of the received packets. The packet loss was around 50% when we generated

1500 pps. This considerable loss impacted significantly the throughput received by the

server, as depicted in Figure 25b. These results are mainly due to the Socat-dependent

sustained packet processing rate. Actually, Socat starts discarding packets above a

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 52

2.6 Experimental results

0
10
20
30
40
50
60
70
80
90

100

100 200 300 400 500 600 700 800 900 100
0

110
0

120
0

130
0

140
0

150
0

Pa
ck

et
s

de
liv

er
y

ra
ti

o
(%

)

Packets generation rate (packets/s)

Public IP based interconnection Overlay with modified Socat Overlay with standard Socat

(a) UDP packet delivery ratio based on different

packet sending rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Th
ro

ug
hp

ut
 r

ec
ei

ve
d

(M
bi

ts
/s

)

Packets generation rate (packets/s)

Public IP based interconnection Overlay with standard Socat Overlay with modified Socat

(b) UDP throughput received while varying the

packet sending rate.

Figure 25: Comparison of the virtual networking performance with a UDP traffic
using the two versions of Socat.

given threshold.

To evaluate the system scalability from the Cloud-side perspective, we deployed,

on the same LAN as where S4T is running, a number of Docker containers running

LR agents. By setting up the testbed within the same physical network, we cancel

the impact of external network delays and packet loss: the whole testbed runs within

the same LAN with links up to GB/s. We grouped all the containers on the same

overlay on which an OpenStack VM is running too. An issue we experienced, in this

case, is the packet loss even when the packet generation rate by each container is

low. Precisely, when we generated 100 pps by one container (i.e., the IoT node) in

the destination of the OpenStack VM, the packet loss was 0%. However, when we

attached 15 containers to the overlay and made each of them generate 100 pps, we had

an average of packet loss, on the Cloud, equal to 26%. This considerable amount of

packet loss was induced by only 100 pps. By increasing the rate of packets generation,

the packets ratio dropped significantly.

In order to deal with the aforementioned issues and make the system more per-

formant and scalable, the C-based Socat tool was modified7 to meet the requirements

of our use case. Specifically, the Socat packet buffer size was increased to avoid

packets overwriting, then the rest of the code was adapted accordingly. We report

7
Modified Socat https://github.com/Zakaria-Ben/Socat

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 53

2.6 Experimental results

0
10
20
30
40
50
60
70
80
90

100

1 instance

2 instances

3 instances

4 instances

5 instances

6 instances

7 instances

8 instances

9 instances

10 instances

C
P

U
 u

sa
ge

 (
%

)

Number of instances withn the overlay

1 vCPU-200pps 2 vCPUs-200pps

(a) Cloud CPU usage average of the WS tunnel

server and Socat processes during 2 minutes with

instances generating 200 pps in destination of

the OpenStack VM.

0
10
20
30
40
50
60
70
80
90

100

1 instance

2 instances

3 instances

4 instances

5 instances

6 instances

7 instances

8 instances

9 instances

10 instances

C
P

U
 u

sa
ge

 (
%

)

Number of instances within the overlay

1 vCPU-400pps 2 vCPUs-400pps

(b) Cloud CPU usage average of the WS tunnel

server and Socat processes during 2 minutes with

instances generating 400 pps each in destination

of the OpenStack VM.

Figure 26: CPU usage of the WS tunnel server and Socat when managing UDP
packets with 80 bytes payload length sent by different instances.

in Figures 25a and 25b a performance comparison of the two Socat versions (i.e.,

the default and modified one). The gain in terms of throughput was significant by

solving the buffer size issue that caused the considerable packet loss. For the rest of

this experimental part, we present the system scalability from the Cloud-side CPU

usage (i.e., WS tunnel server and Socat) point of view based on our modified version

of Socat. We did not report the RAM usage as it was minor. The WS tunnel server

uses around 3.1% from the available 4 GB of RAM, while each Socat instance uses

exactly 0.1%.

As we are increasing the number of instances generating traffic in the destination

of the OpenStack VM, we had an increase of the CPU usage of WS tunnel server

and Socat as reported in Figures 26a and 26b. In particular, when the Cloud (i.e.,

the machine where the WS tunnel agent is hosted) is powered by one vCPU, and

each instance generates 200 pps (see Figure 26a), the CPU usage of the two processes

involved (i.e., WS tunnel server and Socat) reached around 90% with nine instances

(a total of 1800 pps packet is being handled on the Cloud) while noticing a slight

packet drop due to the CPU overload (other processes are running on the host, such

as L2 agent and Linux bridge). We mention that the system, when overloaded, keeps

functioning, yet some packet loss occurs; thus, leading to throughput degradation

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 54

2.6 Experimental results

0
10
20
30
40
50
60
70
80
90

100

200 400 600 800
1000

1200
1400

1600
1800

2000

C
P

U
 u

sa
ge

 (
%

)

Packets received on the Cloud (packets/s)

Traffic generated by one instance Traffic generated by several instances

(a) Comparison of CPU usage (WS tunnel server

and Socat processes) when generating traffic by

one and several instances.

0
10
20
30
40
50
60
70
80
90

100

1 instance

2 instances

3 instances

4 instances

5 instances

6 instances

7 instances

8 instances

9 instances

10 instances

C
P

U
 u

sa
ge

 (
%

)

Number of instances within the overlay

200pps-80Bytes 200pps-500Bytes

(b) WS tunnel agent machine CPU usage (WS

tunnel server and Socat processes) with different

payload sizes.

Figure 27: CPU usage of the WS tunnel server and Socat processes varying traffic
sources and the payload length.

and higher latency when using TCP (as the lost packets should be retransmitted). In

general, the system performance is a tradeoff between the Quality of Service (QoS)

required and the resources allocated on the Cloud. By increasing the number of

CPUs allocated to the WS tunnel agent machine, we avoided the CPU overload and,

therefore the packet loss (see Figure 26a). With instances generating more UDP

packets, the CPU usage increased rapidly than the first case with 200 pps (Figure 26b).

From those experiments, we show that the CPU usage of the Cloud depends on the

number of packets received. Indeed, if an instance is attached to an overlay without

generating packets, it does not impact the CPU usage of the Cloud (neither Socat

nor the WS server consumes CPU resources).

To highlight more this aspect and outline the fact that the CPU usage depends

on the number of packets received and not the number of instances within a virtual

network, we compared the Cloud CPU usage when several instances generate a certain

number of packets with one instance generating the same amount of packets. We

report in Figure 27a the results when each instance generates 200 pps. As we can see

from the graph, the Cloud CPU usage is transparent regarding the packets sources.

Receiving a certain number of packets from one or several instances makes the Cloud

behave in the same manner. The limitation of the system indeed lies in the number

of packets it can manage (e.g., line rate) and not the number of instances within

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 55

2.6 Experimental results

Packets with 80 bytes of payload
CPU usage (%)

Packets with 500 bytes of payload
CPU usage (%)

Packets generation
rate (pps)

WS tunnel client Socat Total WS tunnel client Socat Total

100 3.26 0.74 4 3.42 0.74 4.16
200 6.05 1.34 7.39 6.06 1.35 7.41
300 8.98 1.97 10.95 8.98 2 10.98
400 12.17 2.67 14.84 11.62 2.62 14.24
500 14.72 3.26 17.98 14.57 3.18 17.75
600 17.1 3.84 20.94 16.98 3.79 20.77
700 20.34 4.54 24.88 19.67 4.2 23.87
800 22.61 5 27.61 22.52 4.97 27.49
900 24.54 5.51 30.05 24.62 5.75 30.37
1000 27.08 6.15 33.23 27.01 6.22 33.23

Table 5: WS tunnel client and Socat averaged CPU usage during 5 mins with different
packets data sizes.

an overlay. To further investigate the system behavior vis-à-vis the packet size, we

conducted other experiments with different payload sizes. We report in Figure 27b a

comparison between 80 bytes data size packets and 500 bytes ones. As reported in

this case (see Figure 27b), the CPU resource usage are quite aligned when changing

the payload length.

As reported previously, the system performance depends on the number of packets

generated within an overlay which is an aspect that depends strictly on the use cases.

For example, in a typical IoT scenario where nodes generate continuously 50 pps in the

destination of a Cloud VM, a machine hosting the WS tunnel agent with one vCPU

can handle up to 36 IoT nodes without any packet loss due to the overlay (the packet

loss can appear instead because of the transition network: the WAN). The number of

managed IoT nodes can be increased, of course, by using a powerful hardware setup.

However, we have to consider that Neutron and its virtual switches have a limitation

regarding the number of packets it can deal with within a single hosting machine as

reported in [64]. For this purpose, taking into consideration this later limitation while

dimensioning the system is essential. It is worth mentioning here that our approach

can support the use of several WS tunnel agents within different machines to ensure

the horizontal scalability of the system. Therefore, issues that can be inflicted by

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 56

2.6 Experimental results

Neutron and its virtual switches can be bypassed. In this case, as discussed before

(see Section 2.4), the reachability among IoT nodes belonging to the same overlay but

connected to different WS tunnel agents is ensured through the use of VXLAN/GRE

tunnels between the machines where the WS tunnel agents are deployed.

After evaluating the system scalability from the Cloud perspective, we also mea-

sured the CPU and RAM usage on an IoT node within a Neutron overlay. We consid-

ered as an IoT node a Docker container with 1 vCPU and 1 GB of RAM. The RAM

usage for the solution was around 4.56% (Socat and WS tunnel client use 0.32% and

4.24% respectively) during all the tests. We noticed that the RAM usage does not get

impacted by increasing/decreasing the packet generation rate. For the CPU usage,

we report in Table 5 the variation of the CPU usage for the WS tunnel client and

Socat (the two processes involved when using the overlay). As shown in the table and

Figure 2.4, the packet size does not impact the CPU usage. In fact, the results of the

CPU usage when using packets with 80 bytes and 500 bytes of payload are aligned.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 57

Chapter 3
Containers deployment at the network edge

3.1 Introduction

The current ICT scenario is dominated by large and complex systems, paving the

way to a ZettaBytes (BigData) landscape made up of a plethora of connected objects

and devices. Devices usually equipped by a wide range of sensing resources and

relatively advanced computing, storage and communication capabilities, often referred

to as smart, populate this scenario, thus highlighting the need for facilities for their

management. As discussed in the previous chapters, most of the efforts categorized

under the IoT umbrella term are mainly focused on managing IoT data using Cloud

platforms (i.e., the data-centric approach [30] [31]). However, other important aspects

related to data pre-processing and resource management at the network edge have to

be addressed.

With regard to sensing, basically, a sensor periodically checks, probes or queries

the observed system to provide updated information on its status. This information

may be gathered, processed or also stored for further handling. In some cases, the

system may require multiple phenomena observations from different sources to be

properly sensed using sensor networks, which in turn may require complex algorithms

for their processing and, in particular, specific techniques for managing the (often

huge) datasets thus generated. Besides the amount of data IoT deployments may

generate, a new set of time-sensitive applications is taken ground, therefore pushing for

quicker data processing delays. What is currently to be investigated more thoroughly

in IoT is data processing at the lowest level, i.e., closer to the source.

According to the above considerations, here follows a set of developed mechanisms

for processing duties to be pushed as close as possible to data sources, thus, leading

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 58

3.2 Edge and Fog computing

to perform computation either on the IoT devices themselves when they are powerful

enough [46] or in their proximity (i.e., Fog computing [65]). In particular, the idea

here is to enable Cloud users to inject intelligence on remote nodes in order to collect,

preprocess, aggregate and mine sensed data at the network edge. The virtualization

approach we are introducing here is meant to enable the IaaS computing paradigm in

IoT environments when combined with I/Ocloud mechanisms (i.e., file system virtu-

alization detailed in Chapter 1). Besides, with regard to Fog computing, the approach

we propose introduce multitenant PaaS environments on top of shared edge-based Fog

nodes.

3.2 Edge and Fog computing

3.2.1 The Cloud shortcomings

Thanks to the ample amount of resources (e.g., compute and storage) the Cloud

provides, most of the IoT applications rely on it to deal with data management and

processing. However, the centralized nature of the datacenters can induce a consid-

erable topological distance between the resources hosted on the Cloud and the vast

majority of IoT devices due to the geographical location. Accordingly, private Clouds

might be the less affected model unless it is used to cover a wide area (e.g., an orga-

nization that deploys the datacenter in a city while having branches in other cities).

On the opposite side of the spectrum, services/applications hosted on public Clouds

platforms (e.g., Google, Amazon, and Microsoft) can be severely affected by the dis-

tance. Indeed, public Clouds are meant to serve a wide range of users by providing

global coverage [66]. We can then have the Cloud datacenter located in another coun-

try or even continent from where a user is located. We discuss in the following the

shortcoming of the typical data-centric Cloud/IoT integration:

• Latency: recently, we have seen the rise of a new set of applications that goes

under the umbrella of Ultra-Reliable Low-Latency Communications (URLLC)

category [67] where extremely low latency and response times are of utmost

importance. Example of such applications include autonomous driving, smart

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 59

3.2 Edge and Fog computing

grids and industry 4.0 that require latencies less than 50 ms, 20 ms and 10 ms,

respectively [68]. Relying on a distant Cloud to deal data processing of such

applications may often induce high communication latencies, making it difficult

to satisfy the imposed time constraints. In fact, from a statistical perspective,

the average RTT between an Amazon Cloud server located in North California,

USA and a client in Northern Virginia, USA is 62 ms; the RTT value then

increases to reach 160 ms when the client is located in Milan, Italy; the RTT

keeps the increase to reach around 218 ms if the client is in the Middle East [69].

• Privacy and security: with the adoption of IoT devices in different fields (e.g.,

health care, domotic, manufacturing), concerns about data security and privacy

become more urgent. Transmitting personal and critical data to Cloud plat-

forms can induce high privacy risks [70]. Since some IoT devices are resource

constrained, they might be unable to deal with data encryption/decryption,

therefore dealing in such a case with data confidentiality and integrity is im-

portant. Besides, legal implecations can arise since IoT data may be generated

in a country then transmitted to a Cloud datacenter in another country where

regulations about data privacy are different.

• Bandwidth consumption: with the proliferation in terms of the number of

connected devices, the amount of data generated by IoT deployments is expected

to exponentially increase within the next few years. By 2025, the number of

IoT devices will reach more than 30 billion [71]. This massive number of IoT

devices will undoubtedly generate an immense amount of data. Back in 2019,

IoT devices generated around 13.6 zettabytes (i.e., 3352 billion gigabytes) of

data. This volume of data is expected to keep the increase to reach around

79.4 zettabytes by 2025 [72]. Delivering such a high volume of data up to the

Cloud may negatively impact users Quality of Experience (QoE) whislt imposing

several challenges for backbone networks.

• Context awareness: context-awareness is the ability of a system to collect

information about its environment at a given time and to adapt the behavior

of some entities accordingly. Contextual or context-aware computing [73] uses

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 60

3.2 Edge and Fog computing

software and hardware resources to automatically collect and analyze data and

then make adequate decisions. Due to the low coupling between the IoT devices

and the Cloud due to the geographical location and lack of proximity, limited

context is shared between the two entities.

3.2.2 Computing paradigms at the network edge

One of the biggest challenges that the Cloud is facing is to meet the increasing

demands of the new services in terms of QoS, such as computational speed and lower

latency [74]. For IoT services, the Fog computing paradigm is considered a crucial

paradigm to meet their demand [75]. The fact that Fog computing nodes are topolog-

ically in proximity of end devices is a key enabler of advanced services/applications

that were not feasible before while relying on the (remote) Cloud. Most of the solu-

tions introduced to meet the requirements of IoT services are based on the use of small

Cloud deployments, as the case of StarlingX8 project. Such kind of deployments make

use of powerful machines to build "cloudlets" close by end-users/devices. Another ex-

ample of such deployments is the OpenStack-based platform called OpenVolcano [76]

that was introduced for Fog-powered personal services deployment. However, the in-

tegration between the two platforms (i.e., OpenStack and Openvolcano) is achieved at

the highest layer of the architecture named "data collection and configuration layer".

OpenStack is used only to describe the requirements of the services while further con-

figurations, such as networking and resources allocation/provisioning are leveraged to

external (OpenStack) subsystems.

Recently, incumbent Cloud players are showing immense interest in the edge com-

puting paradigm using relatively powerful nodes, such as IoT gateways and devices.

For instance, Microsoft has released a platform for IoT called Microsoft Azure IoT

Edge [77] that extends the Cloud concept toward the network edge using container-

ization technologies. The same can be said of Amazon that enhanced the pre-existing

proprietary Cloud solutions using AWS Greengrass [78]; hence, they provide their

consumers the capability to deploy customized applications on IoT devices and gate-
8
https://www.starlingx.io

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 61

3.2 Edge and Fog computing

Horizontal offloading

Vertical offloading

............

Fog

Cloud

...
Mist

Edge

Figure 28: Overview of Cloud, Fog, Mist and Edge Computing in an IoT smart
environment context.

ways. However, such solutions (a) are proprietary solutions; thus, they make the

customers dependent to the vendors’ solutions (i.e., vendor lock-in issues), (b) do not

provide the ability to share the IoT infrastructure among different tenants the way

Cloud platforms can, and (c) requires users to deploy and invest in their own IoT

devices/gateways infrastructure.

Very few approaches have dealt with constrained nodes at the network edge akin to

IoT gateways, SBCs and access points to make use of them and exploit their resources

to satisfy the demands of specific services. Such nodes can be even shared among

several users, thus extending the paradigm of PaaS towards the network edge [79].

Pushing Cloud resources to such kind of (relatively) powerful nodes is also known as

Mist computing [80]. This paradigm can be considered a light-weight form of Fog

computing that keeps computation even closer to the edge devices by using nodes

(e.g., SBCs, access points) in the proximity of the edge IoT devices (e.g., resides

directly within the network fabric). In this scenario, the edge devices could execute

(relatively) simple data aggregation and filtering (or even no processing at all), then

rely on Fog/Mist nodes for advanced processing tasks through vertical offloading [81].

We depict in Figure 28 the processing architecture involving the Edge, Fog/Mist, and

Cloud layers according to the NIST definition [80]:

• Edge Computing: expects that data processing is held immediately on the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 62

3.2 Edge and Fog computing

edge IoT devices accordingly, reducing network latency and overhead.

• Mist Computing: considers that the processing resources are close to data

sources (e.g., SBCs) in order to provide support for the relatively constrained IoT

devices. If Mist nodes are powerful enough, they can cooperate using clustering

based on peer-to-peer communications [82].

• Fog Computing: presumes that resources such as compute and storage are

relatively close to data sources. Fog nodes could be part of the access net-

works (e.g., servers, cloudlets, routers). Similarly to Mist nodes, Fog nodes can

collaborate through clustering.

• Cloud Computing: is the highest layer of the stack that provides huge compu-

tational/storage resources for the lower levels (i.e., Fog, Mist, and Edge) when

their capabilities are not sufficient.

In the literature, a number of works promote the adoption of the Fog computing

paradigm with relatively powerful nodes. Paradrop [83] leverages the virtualization

technology, specifically containerization, to provide users isolated and controlled con-

tainers at the network edge. Users then can make use of these containers to deploy

their applications. In [84], an approach proposing multi-tenant IoT infrastructures

using Raspberry Pis and LXC/LXD containers [85] is introduced. However, the im-

plementation is at an early stage where only an architectural design based on Open-

Stack is presented without any further details about the services involved. In [86],

the authors present a platform named PiCasso that uses SBCs (e.g., Raspberry Pi)

as Fog nodes. Deploying services using PiCasso takes into consideration the specifi-

cations/requirements of the services and the available resources on the Fog nodes.

A management system that provides computing capabilities at the network edge

using IoT gateways and devices should come up with a set of well-developed features

capable of operating and managing, through WAN interconnections, a geo-distributed

infrastructure. Accordingly, akin systems should be able to cope with unexpected

aspects, such as NATs and firewalls (i.e., security policies and restricted settings)

traversal.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 63

3.2 Edge and Fog computing

3.2.3 Virtualization techniques for Edge/Fog computing

In the following, we give an overview of the virtualization approaches with a par-

ticular focus on the containerization technique. This later is a critical building block

in realizing the I/Ocloud view described in Chapter 1 by instantiating edge-based

VNs with user-space-defined file systems. On the other hand, the containerization at

the Fog level can preserve multi-tenancy and users isolation as in Cloud platforms.

3.2.3.1 Virtualization approaches

The virtualization paradigm is not new as it dates back to the 1960s with the

IBM 360 system that introduced this concept [87]. The hardware virtualization, also

commonly named platform/hypervisor-based virtualization [88], is a set of features

and techniques that make users able to isolate their runtime environments in the form

of so-called VMs on top of a shared compute resource (i.e., a host machine). The

VMs thus created act like real full-deployed computers as from the one hand, each

of them runs its own operating system kernel and on the other hand, they do not

have any access to, or visibility into, the underlying resources provided by the host

machine [89]. In the virtualization terminology, we refer to VMs as guests, whereas

the software that handles the virtualization process was called at its origins control

program yet, the terms hypervisor and Virtual Machine Monitor (VMM) have been

preferred over time [90].

Although the hardware virtualization technique has a set of advantages, this clas-

sical approach of virtualization is weak and not good enough as high density deploy-

ments are problematic to deploy and resource-consuming. In fact, using the hardware

virtualization, most of the host machine memory resources are devoured by the mul-

tiple copies of the OS kernels of the VMs provisioned. For that purpose, OS-level

virtualization [91], more commonly known as containerization, arises as a solution for

such a problem. This virtualization approach, rather than dedicating a whole OS for

each guest VM, it enables multiple isolated user-space environments to run on a single

host machine while sharing a unique kernel provided by the host. Instances provided

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 64

3.2 Edge and Fog computing

Host hardware

Host Operating System

Guest OS

Bins/Lib

Guest OS

Bins/Lib

Guest OS

Bins/Lib

App App App

Hypervisor

Virtual
Machine

Host hardware

Host Operating System

Bins/Lib Bins/Lib Bins/Lib

App App App

Container Engine

Container

Figure 29: Platform/Hypervisor-based virtualization and Containerization compari-
son.

in this case namely, containers, still, from the perspective of users and the processes

running on them, similar to real computers by making use of dedicated and isolated

file systems, TCP/IP stacks, etc. Indeed, from inside a container, a user/process

can only make use of a subset of resources made available through the kernel and

intentionally assigned to that container.

The difference between the two virtualization approaches, hardware virtualization

and containerization resides at the level where the resource partitioning and abstrac-

tion intervene (see Figure 29). In particular, in the case of containers, the abstraction

of resources occurs at the host kernel whereas for the hardware virtualization it is

below that level. The later virtualization paradigm (i.e., hardware virtualization) is

characterized by higher complexity compared to the former as it makes use of a fully

abstracted environment including the emulation of low-level (software-based) hard-

ware management. Furthermore, it requires more storage capacity considering the

multiple copies of OS kernels used. To make the virtualization more efficient, this

approach calls for the hardware-assisted virtualization [92] that exploits the hardware

capabilities of the host machine as the case for x86 processors with Intel VT-x and

AMD-V.

Considering, on the one hand, the significant usage of resources with reference

to computing/storage requirements in the case of hardware/platform virtualization,

and on the other hand, the IoT devices constraints as the case of relatively smart

embedded devices where the hardware-assisted virtualization requirements could not

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 65

3.2 Edge and Fog computing

be always satisfied, hardware virtualization can not be suitable for IoT environments.

Such constraints make the containerization most suitable for the IoT ecosystem given

its simplicity and reduced overall footprint [93] that enable, in their turn, advanced

functionalities (e.g., containers migration) [94].

3.2.3.2 Containerizations

The emergence of containers revolutionized the IT field. This technology has

become a key (open source) solution for application packaging and delivery, combining

lightweight application isolation with a significant level of flexibility for image-based

deployments. Containerization is used in several forms considering the large scope of

usage and the different techniques used [95]. In the following, we will focus on Linux-

based containers since they are mature and Linux fully supports containerization.

Linux Containers are enabled based on core technologies provided by the Linux

kernel, such as Control Groups (Cgroups) [96] for resource management, namespaces

for process isolation, and Secure computing mode (Seccomp) for security and sand-

boxing. The Linux kernel uses the former (i.e., Cgroups) in order to group a set

of processes for the sake of the system’s resource management. In particular, the

Cgroups capability provides flexibility as it enables dynamic allocation of resources

including system memory, CPU time, network bandwidth, or a combination of them

within user-defined groups of processes. Namespacing [97] is a feature made available

through the kernel that provides processes isolation. In container-based deployments,

containers are isolated through the use of namespacing as for each container a set

of dedicated namespaces gets created. Indeed, a namespace enables the creation of

an abstracted instance with a particular system resource (e.g., Mount, UTS, IPC,

PID, Network) and makes it behave as a fully separated instance with regards to the

processes running inside it. Therefore, multiple containers can simultaneously use a

shared resource without inflicting any kind of conflict. Seccomp [98] is a feature made

available through the Linux kernel to make restrictions over the system calls that a

process can use. For instance, when a developer uses potentially unsafe/unverified

code or software, Seccomp provides an efficient approach to isolate and restrict the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 66

3.3 Zun, Kuryr and IoTronic integration

code/program from using calls that have not been already permitted and declared.

In the case of containers, Seccomp prevents against the miss behavior of launched

applications inside them that could gain access to the host kernel and compromise it.

3.2.4 Containers migration and Fog computing

Extending the Cloud paradigm towards the network edge introduces novel aspects

that may either lead to new research challenges or change the way to deal with the

existing ones. As one of the main new research problem that arises with the Fog

computing paradigm is users/devices mobility support. As already discussed, Cloud

services are, in general, distant from the served users irrespective of the position of

the latter; thus, end users mobility is not an issue in Cloud-only environments. Con-

trariwise, the Fog computing paradigm benefit is principally related to the proximity

of Fog nodes from end devices. Consequently, users and devices mobility is a criti-

cal parameter to deal with as it may compromise the Fog benefits. In fact, when a

device/user moves from an area to another one, the topological distance separating

the Fog node and the device/user may increase and thus, impacting negatively the

QoS. In the literature, a set of approaches are proposed to cope with this issue by

making the services running on Fog nodes able to migrate across the Fog infrastruc-

ture[99] [100] [101].

3.3 Zun, Kuryr and IoTronic integration

In the following, we present our solution for managing the instantiation of con-

tainers at the network edge. We mention that the system is integrated within the

S4T middleware. We present the two OpenStack subsystems, Zun and Kuryr, that

we used to conceive the system. Afterwards, a description of the integration between

Zun, Kuryr, and IoTronic is reported.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 67

3.3 Zun, Kuryr and IoTronic integration

IoTronic
database

IoTronic
conductor

S4T
command
line client

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

Web
browser

IoTronic A
P

Is
Zun server

Zun
database

Zun
AMQP
queues

S4T
dashboard

WAMP control channel

WS tunnel
agent

WAMP
L2 agentkuryr

WS tunnel
agent host

HTTP-based
communication

WAMP
L2 agentZun compute

T
A
P

Docker
service

forwarding

Bridged
networking for
containers

N
eutron server

REST communication

AMQP pub/sub

other communication

Socket communication

Virtual sw
itch

Zun
scheduler

Zun WS
proxy

Figure 30: Stack4Things Cloud-side containerization subsystem architecture.

3.3.1 Zun and Kuryr subsystems

OpenStack is a mainstream solution used for providing Linux-based IaaS deploy-

ments. Recently, with the emergence of containers in Cloud services, it is becoming a

necessity for OpenStack to fully support container-based deployments and make the

infrastructure resources (i.e., storage, computing, and networking) available for them

as well. Rather than setting up new vertical silos to manage containers in OpenStack-

enabled Clouds, users might find efficient and useful a cross-platform API that handles

all the kind of Cloud instances (i.e., VMs, bare-metal servers, as well as containers).

As the OpenStack subsystem that provides containers management, Zun9 (the

green subsystem in Figure 30) makes the users able to rapidly launch and operate

containers without dealing with servers and clusters management. At the backend,

Zun uses several technologies while providing well-defined APIs that manage con-

tainers in a abstracted manner; hence hiding the complexity of the workflows. Zun

supports Docker [102] as a container runtime tool and can, optionally, cooperate with

other OpenStack subsystems, for instance, Glance in order to manage containers im-

ages instead of pulling them from public repositories (e.g., Docker hub) and Neutron

9
https://docs.openstack.org/zun/latest/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 68

3.3 Zun, Kuryr and IoTronic integration

(through Kuryr) to provide, for the containers, advanced networking capabilities (e.g.,

creating overlays). At the core of Zun components, we have the Zun-compute agent

that runs on the compute nodes (where the containers get provisioned). By performing

(almost) all backend operations, this agent hides the workflows of the services.

Talking about VM-based Cloud computing deployments, particularly the IaaS

model, networking is an essential feature as it is provided on demand for the users.

In fact, IaaS deployments grant a considerable level of flexibility and manageability

for the users as networking configurations of their instances are entirely under their

control. To provide the same level of manageability in container-based deployments,

a recent OpenStack project arises under the name of Kuryr10. In particular, Kuryr-

libnetwork is a Docker networking plugin leveraging Neutron to provide networking

services for Docker containers. This project aims to use the abstraction level and

all the complex services that Neutron and its corresponding plugins maintain to pro-

vide networking capabilities, resources, and services for container-based deployments.

The abstraction of networking features is mapped, using Kuryr, to standard Neutron

APIs. Therefore, in a stable and effective experience, users can interconnect all Cloud

instances, namely VMs, bare-metal servers as well as containers, to the same (logical)

network with persistent networking capabilities (e.g., floating IPs, security groups).

3.3.2 The integration scenario

In the following, an extension of the Cloud-based management system provided

by OpenStack to the network edge is presented. In particular, our approach uses

Zun and Kuryr to provide management and networking services for Docker containers

deployed at the edge of the network, specifically provisioned on top of geographically

dispersed nodes. This is achieved through RESTful interactions with IoTronic.

A major difference from data center-based OpenStack deployments is that, in our

approach, the three components Zun-compute, Kuryr, and the Docker engine are not

co-located on the Cloud, specifically on the same host (i.e., compute node). In fact,

10
https://docs.openstack.org/kuryr/latest/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 69

3.3 Zun, Kuryr and IoTronic integration

WAMP control
channel

MPU-powered IoT node

Board FileSystem

W
A

M
P

lib
ra

ry

Lightning-Rod
engine

wstunnel plugin

OS tools

Lightning-Rod

plugin
plugin
loader

Container

Docker
engine

MPU
ContainerContainer

TAP

Bridged
networking for
containers

Docker
service

forwarding

HTTP based
communication

Socket communication Other communication

Figure 31: Stack4Things board-side containerization subsystem architecture.

to extend the management scope provided by Zun and Kuryr in Cloud deployments

and make them able to deal with OS-level virtualization at the network edge, we

adapted the typical Cloud compute nodes (red dashed box in Figure 30) as Cloud-

based machines hosting IoTronic WS tunnel agents, Zun-compute agents as well as

the OpenStack switching platforms (i.e., virtual switches) managed by Neutron. The

Docker engines instead operate on the remote nodes where the containers get instan-

tiated (see Figure 31).

Figure 31 depicts the architecture of an IoT edge node (in this case, an MPU-

powered SBC). At the core of the IoT node architecture, we have the S4T LR engine

that provides interactions with the Cloud using the WAMP libraries (violet arrow in

Figures 30 and 31). Furthermore, the S4T WS tunnel libraries enable the engine to

act as a WS reverse tunneling client in order to connect the node to a specific WS

server running on the Cloud. The WS tunnels are used in our edge-based OS-level

virtualization approach twice: firstly, to forward the commands from the Cloud to

the (remote) Docker engines running on the IoT nodes (green arrow in Figures 30

and 31) and secondly, to provide networking facilities to the containers instantiated

on top of the edge-based nodes by attaching them to the switching platforms hosted

on the Cloud-side (red arrows in Figures 30 and 31).

In terms of the networking services provided by Neutron and Kuryr combined, in

our approach, the Neutron ports will get instantiated on the Cloud-side, exactly on

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 70

3.3 Zun, Kuryr and IoTronic integration

the compute nodes (i.e., machines hosting the WS tunnel agents). Afterwards, these

Neutron ports get attached to the containers provisioned on the remote nodes using

a newly introduced Kuryr networking driver that interacts with IoTronic and uses

Websocket as a communication channel (the mechanism detailed in Chapter 1).

In the following paragraphs, to describe our approach technical workflows, we focus

on the case when using the Neutron Modular Layer 2 (ML2) plugin based on Linux

bridge and VXLAN technologies as mechanism driver and type driver, respectively,

as depicted in Figure 33. We mention that deployments based on other technologies

using, for instance, OpenVSwitch as mechanism driver and GRE as type driver are

feasible as well.

When a user wants to deploy a container on a specific node at the network edge,

he/she sends a REST request to IoTronic (through the dashboard or CLI) that handles

the process by creating the container then attaching it to the desired Neutron overlay.

Indeed, IoTronic manages the workflow by:

• Setting up the environment by creating a forwarding service (the service is based

on a port forwarding approach on the Cloud) for Zun by establishing a WS tun-

nel from the Cloud to the involved remote node (green arrow in Figures 30 and

31). This communication channel is used then to forward the container instan-

tiation requests from the Cloud-based Zun-compute agent to the remote node.

• Interacting with the Zun-API server using REST to instantiate a container on

the specified host (i.e., the WS tunnel agent node in charge of the involved

node). This request will then be forwarded to the Docker engine on the remote

node using the WS tunnel created previously.

• After the instantiation of the container on the remote IoT node, the two sub-

systems, Kuryr and IoTronic, cooperate in providing networking services for the

container (i.e., create a TAP class device on the container, pipe traffic to/from

it to the WS tunnel used for networking duties, finally attach the TAP interface

to the container).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 71

3.3 Zun, Kuryr and IoTronic integration

TCP
client

Websocket
reverse tunnel

client

po
rt

IoT Node A Ethernet frame

TCP connection

TCP piping

Websocket
Socat

TCP
client

Websocket
reverse tunnel

client

po
rt

IoT Node B

Socat

TCP
serverpo

rt

Websocket reverse
tunnel server

TCP
serverpo

rt

Socat

Linux bridge

Socat

TAP

TAP

ws-tunnel agent node

VIF

container

VIF

container

Figure 32: Low-level functional diagram of bridged tunneling over WS for edge-based
containers (boards managed by the same WS tunnel agent).

TCP
client

Websocket
reverse tunnel

client

po
rt

IoT Node A
Ethernet frame

Websocket
Socat

TCP
client

Websocket
reverse tunnel

client

po
rt

IoT Node B

Socat

TCP connection

TCP piping

L2 overlay (VXLAN)

po
rt

Websocket reverse
tunnel server

Socat
TCP

server

Linux bridge
TAP

ws-tunnel agent node

TCP
serverpo

rt

Websocket reverse
tunnel server

Socat

TAP
Linux bridge

VNI

VNI

ws-tunnel agent node

VIF

container

VIF

container

Figure 33: Low-level functional diagram of bridged tunneling over WS for edge-based
containers (boards managed by different WS tunnel agent).

We mention that the edge-based containers that belong to the same logical network

but, managed by different WS tunnel agents is taken for granted as Neutron, by

default, set up a full-mesh topology among all the compute nodes (i.e., WS tunnel

agents nodes). This feature is based on overlay technologies, such as VXLAN and

GRE that enable network isolation.

A high-level overview of the approach design is depicted in Figures 33 and 32. The

scenario shows the case when two containers provisioned on top of two remote IoT

nodes yet, the containers belong to the same logical network. As indicated previously,

when the user solicits the instantiation of a container on a specific remote node,

IoTronic deals with the process. In particular, as an initial step, IoTronic establish

the WebSocket tunnel bridging the Cloud and the involved node. This particular

tunnel is used to forward the requests to the Docker engine. Specifically, IoTronic

sends the container instantiation request to the Zun-API server that forwards the

request to the Zun-compute running on the WS tunnel agent host in charge of the

remote node. The request is then forwarded (using the service forwarding WS tunnel)

to the Docker engine on the remote node. As a next step, Kuryr and IoTronic together

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 72

3.3 Zun, Kuryr and IoTronic integration

deal with the rest of the workflow by connecting the already instantiated container

to the requested network. The newly introduced Kuryr driver attaches the Neutron

port once created on the WS tunnel agent host in charge of the node to the (remote)

container. The interconnection is made by exploiting a reverse WS tunnel (rtunnel)

and Socat-based piping. Specifically, the link is created by leveraging, on the Cloud-

side (i.e., the WS tunnel server), using Socat, a listening socket (determined by

IoTronic) connected to the TAP interface associated with the Neutron port. Once

the Cloud-side rtunnel server gets the request to create the tunnel and accept it, the

Socat-based TCP connection is then piped to the WebSocket-based tunnel established

(blue arrow in Figures 32 and 33). On the rtunnel client-side (i.e., the edge node), an

identical workflow is initiated by connecting the TCP client (of the rtunnel) to a TAP

device that is created based on the metadata specified by Neutron (e.g., MAC and IP

addresses), then this Socat-based TCP connection is piped to the (rtunnel) WebSocket

communication channel. Finally, IoTronic attaches the (latter) TAP interface to the

container.

This proposed approach of S4T edge-based containerization service has been con-

ceived taking into consideration the constraints and limitations of edge nodes to make

the system efficient and scalable. In fact, the IoT nodes are not involved in the com-

plex workflows and duties, specifically the network virtualization ones since they are

completely not aware of Neutron/Kuryr subsystems that are running on the Cloud

consequently, keeping essentially the footprint of the approach lightweight for the

relatively constrained nodes. Besides, the fact that Kuryr, Neutron, and their cor-

responding switching platforms are running on the Cloud side provides robustness

and availability for particular complex configuration requirements and mission-critical

Neutron services (see Figures 30, 31, 32, and 33). In the architecture we propose, the

edge-based nodes are responsible only of provisioning the containers. In this context,

the relatively constrained IoT nodes (e.g., SBCs) offer good scalability to provision

multiple containers [103].

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 73

3.3 Zun, Kuryr and IoTronic integration

Method URL Semantics Parameters Return type

1 PUT /v1/boards/{board_uuid or name}/containers Create a container on a specific
board and attach it to an overlay

Image (string)

Network_uuid (uuid)

Subnet_uuid (uuid)

Container

2 GET /v1/containers Retrieve a list of containers – ContainerCollection

3 GET /v1/containers/{board_uuid or name}/containers Retrieve a list of containers
on a board Board_uuid (uuid) or name (string) ContainerCollection

4 GET /v1/containers/{container_uuid} Retrieve details about
a container Container_uuid (uuid) Container

5 GET /v1/boards/{board_uuid or name}/containers/{container_uuid} Retrieve details about
a container on a board

Board_uuid (uuid) or name (string)

Container_uuid (uuid)
Container

6 DELETE /v1/boards/{board_uuid or name}/containers/{container_uuid} Delete a container from a board
Board_uuid (uuid) or name (string)

Container_uuid (uuid)
–

7 DELETE /v1/ports/{container_uuid} Delete a container (force delete) Container_uuid (uuid) –

8 PUT /v1/boards/{board_uuid or name}/containers/{container_uuid} Migrate a container from
a board to another one

Board_uuid (uuid) or name (string)

Container_uuid (uuid)

Board_uuid (uuid) or name (string)

Container

Table 6: The Stack4Things IoTronic RESTful containerization APIs.

3.3.3 Container instantiation workflow

In this subsection, the workflow of creating an edge-based container attached to a

specific network using IoTronic is described. The request corresponds to the call #1

in Table 6. We highlight the different interactions among the subsystems involved

(i.e., IoTronic, Zun, Kuryr, and Neutron). As a use case essential requirement, we

presume that the hosting node (a SBC in this case) is already registered to the Cloud.

We do not target the application-level use case considering that it is impacted by the

logic of the deployed application. The following steps describe the workflow when

instantiating a container (see Figure 34):

1. The user requests to instantiate, on a specific remote node, a container attached

to an OpenStack/Neutron network using either the dashboard or the CLI.

2. The dashboard performs one of the available IoTronic APIs calls via REST.

3. The IoTronic conductor pulls the message from the IoTronic AMQP queue and

then performs a query on the IoTronic database. In particular, it checks if the

board is already registered to the Cloud and decides the WS tunnel and the

WAMP agents to which the node has to be connected to. Finally, it generates

a free TCP port to be used for forwarding socket-based requests from/to Zun

compute to/from the Docker engine running on the board (from now on, we

refer to this mechanism as Docker forwarding service).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 74

3.3 Zun, Kuryr and IoTronic integration

IoTronic
database

IoTronic
conductor

S4T
command
line client

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agentWeb

browser

IoTronic A
P

Is
Zun server

Zun
database

Zun
AMQP
queues

S4T
dashboard

WAMP control
channel

MPU
MPU-powered

node

s4
t W

A
M

P
lib

s4t
lightning-rod

engine

s4t wstunnel plugin

OS tools

s4t lightning-rod

plugin
s4t plugin

loader

s4t WS
tunnel
agent

Docker
engine

HTTP-based
communication

1

2

3

7

8

4

8

10

5

6

9

11

12

13

16
18

19

14

18

WAMP
L2 agentZun compute

1215-17

20

T
A
P

21

22

container

TAP20

20

Docker service
forwarding

containercontainer

WAMP
L2 agentkuryr

N
eutron server

bridged networking for
containers

FileSystem

Virtual sw
itch

Zun
scheduler

Zun WS
proxy

WS tunnel
agent host

Figure 34: A container instantiation workflow using the S4T system.

4. The S4T IoTronic conductor pushes a new message into a specific AMQP

IoTronic queue, then the S4T IoTronic WAMP agent, to which the board is

registered, pulls the message from the queue and publishes a new message into

a specific topic on the corresponding WAMP router.

5. Through the S4T WAMP lib, the S4T LR engine receives the message by the

WAMP router.

6. The LR engine opens a reverse WebSocket tunnel to the S4T IoTronic WS tunnel

agent specified by IoTronic also providing the TCP port on which the Docker

deamon is listening (by default, it is 2375).

7. The S4T IoTronic conductor performs a REST call to the Zun server to create

a container on a specific host (i.e, WS tunnel agent host).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 75

3.3 Zun, Kuryr and IoTronic integration

8. The Zun server creates, on his local database, an instance associated with the

container then, it pushes an RPC into the AMQP to create the container on the

specified host (i.e, WS tunnel agent host).

9. The Zun compute agent pulls the call from the AMQP queue.

10. The Zun agent performs a REST call to the Neutron server in order to get the

available networks.

11. After receiving the response of the REST message, the Zun agent sends a REST

request using the port provided for Docker service forwarding in order to create

the network in Kuryr environment.

12. the request is forwarded to the board using the Websocket based tunnel already

created for Docker service forwarding. Once received, the request is piped to

the port on which the Docker engine is listening.

13. Docker engine sends a REST request to Kuryr in order to create the network to

which the container should be attached.

14. Kuryr creates the network on his environment, then it sends back the response

of the request to the Docker engine.

15. The Docker engine forwards to the Zun compute agent, through the Docker

service tunnel, the response of the received request.

16. The Zun compute agent sends to the Docker engine a REST request to create

an isolated container (i.e., not attached to any network).

17. The Docker engine creates a container on the board then sends back a response

to the Zun compute agent about the status of the creation of the container

18. The Zun compute agent forwards a REST-based request to the Docker engine

in order to attach the container already created to the specified network.

19. The Docker engine performs a REST request to Kuryr in order to attach the

container to the specified network.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 76

3.3 Zun, Kuryr and IoTronic integration

20. Kuryr using a newly introduced driver, it performs a REST call to the IoTronic

server that triggers a set of operations to configure the container on the board

side (i.e., creates a tap interface, sets up a WebSocket based reverse tunnel with

the WS tunnel agent specified by the conductor). Then, it configures the Cloud

side by creating a TAP interface associated with a Neutron port. The driver

then connects the TAP devices on both sides (Cloud and remote node) to the

rtunnel using a socat-based piping mechanism. Finally, IoTronic attaches the

TAP on the board to the container.

21. Kuryr sends a response for the request to the Docker engine.

22. The Docker engine sends back a response to the Zun compute.

3.3.4 Container migration workflow

We describe in this part the workflow of a container migration process between two

remote boards. The request corresponds to the call #8 in Table 6. The different in-

teractions between the involved subsystems are highlighted. As the previous use case,

we assume that the two boards used in this part are already registered to the Cloud.

Concerning the migration, we make use of the Checkpoint and Restore in Userspace 11

(CRIU) Linux-based tool that can freeze a running application and checkpoint it to

the memory as a set of files. In order to make the workflow uncomplicated and easy to

be understood, we focus on the case where the two boards are managed by the same

WS tunnel agent 12. The steps listed bellow describe the workflow of the migration

process (see Figure 35):

1. The user sends a request (using either the dashboard or the CLI) to migrate a

container from a specific (source) board where it is actually running to another

one (destination board).

2. The dashboard performs one of the available IoTronic APIs calls via REST.
11

https://criu.org
12

In case the two boards are not managed by the same agent, an additional step is required.

Specifically, IoTronic do a check on its database to select the agent in charge of the destination

board before starting the migration process

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 77

3.3 Zun, Kuryr and IoTronic integration

IoTronic
database

IoTronic
conductor

S4T
command
line client

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

Web
browser

IoTronic A
P

Is
Zun server

Zun
database

Zun
AMQP
queues

S4T
dashboard

S4T WS
tunnel
agent

WAMP
L2 agentZun compute

T
A
P

WAMP
L2 agentkuryr

N
eutron server

MPU-powered
edge node

s4
t W

A
M

P
lib

s4t
lightning-rod

engine

s4t wstunnel plugin

OS tools

s4t lightning-rod

plugin

s4t plugin
loader

Docker
engine TAP

container

MPU-powered
edge node

s4
t W

A
M

P
lib

s4t
lightning-rod

engine

s4t wstunnel plugin

OS tools

s4t lightning-rod

plugin

s4t plugin
loader

Docker
engine TAP

container

1

2

3

4

5-8

6

7

7

9

10

4 4

MPU MPU

bridged networking
for containers

WAMP control channel

Virtual sw
itch

FileSystem FileSystem

Zun
scheduler

Zun WS
proxy

WS tunnel
agent host

Figure 35: A container migration workflow using the S4T system.

3. The IoTronic conductor pulls the message from the IoTronic AMQP queue and

then performs a query on the IoTronic database. In particular, it checks if the

two boards are already registered to the Cloud and decides the WS tunnel and

the WAMP agents to which the boards have to be connected to. Furthermore,

it checks if the specified container is actually running on the source board.

4. IoTronic through a set of interactions using HTTP with Neutron and the two

involved boards using RPC messages, attaches the two boards to the same

overlay used for the migration service 13.

5. The IoTronic conductor pushes a new message into a specific AMQP IoTronic

queue, then the S4T WAMP agent to which the source board is registered pulls

the message from the queue and publishes a new message into a specific topic

on the corresponding WAMP router.

13
Note that the 4th step for the creation of the overlay between the two boards and the 11th step

that removes the overlay have been detailed in Chapter 2

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 78

3.4 Empowered use cases

6. Through the S4T WAMP lib, the LR engine receives the message sent from the

WAMP router.

7. The LR agent proceed with the migration process by killing the processes in-

volved (i.e., socat and wstun), then it creates a snapshot of the container using

CRIU. Finally, LR uses of the migration overlay created in step 4 by specifying

for CRIU as a destination the (overlay) IP address of the destination board.

8. After the migration, to attach again the container to the network, the S4T

IoTronic conductor pushes a new message into a specific AMQP IoTronic queue

to create the Websocket tunnel, then the WAMP agent to which the board is

registered pulls the message from the queue and publishes a new message into

a specific topic on the corresponding WAMP router.

9. On the destination board, the LR agent receives the message from the WAMP

router.

10. The LR engine opens a reverse WebSocket tunnel to the S4T IoTronic WS

tunnel agent specified by the S4T IoTronic conductor (using the same Cloud-side

port number as before the migration since the TAP interface on the Cloud-side

remains the same: the two boards are managed by the same WS tunnel agent).

And finally, LR pipes the traffic to/from the container TAP interface.

11. IoTronic interacts with Neutron and the two boards in order to remove the bare

metal overlay created in step 4 (HTTP requests are sent to Neutron and RPC

messages to the boards).

3.4 Empowered use cases

3.4.1 Fog Computing benefits In IoT

With the proliferation in terms of the number of IoT devices being deployed,

IoT gateways are critical components in the actual IoT architectural design. The

gateway-based approach is meant to be suitable when dealing with the complexity of

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 79

3.4 Empowered use cases

Container Migration

Smart device

Container

Fog A

Fog B

Fog C

Container

(a) Container migration for load balancing.

Device mobility

Container Container

Fog A

Fog B

Fog C

Container Migration

AR AR

(b) Container migration for mobility sup-

port.

Figure 36: Use cases for containers migration

IoT deployments (e.g., number of devices, energy profiles, and connectivity models).

Gateways in such a complex ecosystem are relatively powerful than end-user devices.

In fact, they are characterized by more computational and storage capabilities con-

sidering the nature of tasks they must deal with. Hence, they are suitable to host

applications in the form of containers as described in Section 3.2.2 and consequently,

services can take advantage of their proximity to data sources. This particular feature

of setting up containerized applications at the Fog layer opens the door for advanced

features, such as services/containers migration (see Figure 36). Specifically, this capa-

bility is needed when a service is dependent and influenced by end-users mobility [104]

or when a close management system is required for better and efficient management

experience [105]. Here we highlight two important features provided by the Fog com-

puting paradigm to enhance IoT services:

Orchestration: the Fog computing paradigm aims to provide a management layer

based on small-scale Cloud datacenters or single Fog nodes totally in compliance with

the Cloud. This multi-layer stacked architecture should support services migration

between the Cloud and Fog nodes (i.e., vertical offloading) to meet the unsteady

overtime services demands. In particular, considering the case of a time-sensitive

application running on the Cloud, when the latency demands of the Cloud-based ap-

plication are not satisfied anymore, a migration of the service from the Cloud to an

edge node close by the end-devices is a must. In contrast, a migration from the edge

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 80

3.4 Empowered use cases

to the Cloud is also conceivable when a Fog-based application requires more compu-

tational power, for example. Another interesting use case is the horizontal offloading

between Fog nodes for load rebalancing using containers migration as depicted in Fig-

ure 36a. Such an approach can even be automated by deploying advanced scheduling

algorithms [106] [107].

Mobility: For particular services, containers/services migration is a crucial fea-

ture enabling the support of users/end-devices mobility [108] [66]. For instance, an

Augmented Reality (AR) application for navigation is a service that requires (cer-

tainly) the migration of the service across different sites to ensure a good QoE. This

is particularly depicted in Figure 36b where the AR service is shifting between three

sites to follow the mobility of the end device. As one of the most known applications

that has been enhanced thanks to AR, we can mention sightseeing services. A user/-

tourist using a smart device (e.g., smartphone, tablet, smart glasses) equipped with

a camera can take a walk through historical sites and get, in real-time, information

about the different locations he/she is visiting. The user can even get lookbacks (using

video streaming or pictures) in history and display the appearance of the sites long

years ago. The AR service running on the smart mobile device superposes the real

content of a video seen through the device camera with "artificial/unreal" content

(i.e., sounds, videos, 2D images) provided by a Fog-based computational system. In

such a case, the service migration between different sites (i.e., Fog nodes) is crucial

to collect images sent from the user device, analyze them and then send back infor-

mation, pictures, or videos to the user about the location in no time. In the same

context, the wearable cognitive assistance as deployed in [109] using a platform called

Gabriel uses the Fog computing paradigm. Such an application requires fast response

time as it must react to the user movements in due time; thus, making the mobility

of users an important factor to deal with.

3.4.2 Mobility support using Stack4Things

Owing to the meaningful advancement that Fog computing is knowing, the research

community and service providers promote it to provide a set of applications. In the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 81

3.4 Empowered use cases

Camera

TC
service

Smart
glasses

AR
service

TC
 service

TC
 service

Traffic
lights

Fog nodes (bare-metal) overlay

TC service overlay

AR service overlay

OpenStack
Cloud

(a)

Camera

TC
service

Smart
glasses

TC
 service

TC
 service

Traffic
lights

Fog nodes (bare-metal) overlay

TC service overlay

AR service overlay

Container
migration

User
mobility

OpenStack
Cloud

AR
service

(b)

Camera

TC
service

AR
service

TC
 service

TC
 service

Traffic
lights

Fog node (bare-metal) overlay

TC service overlay

AR service overlay

Container
migration

User
mobility

OpenStack
Cloud

(c)

Camera

TC
service

Traffic
lights

Fog node (bare-metal) overlay

TC service overlay

AR service overlay

OpenStack
Cloud

AR
service

TC
service

TC
service

(d)

Figure 37: S4T Fog containerization use case. Two different services are depicted in
this scenario, i) a Traffic Control (TC) service that collects data based on the smart
cameras and traffic lights deployed across different sites ii) an Augmented Reality
(AR) service following the user during his/her mobility.

following, we present our design that maintains the high mobility of users through

providing applications/containers live migration among different Fog nodes. This

approach could also be used for offloading purposes. In our design, we want to be

totally agnostic from the infrastructure point of view as an infrastructure owner, in

general, expects not to grant an administrator complete management abilities and

privileges over his/her physical infrastructure; hence we want to decouple (totally)

ownership from administrative capabilities. By doing so, we can provide third-party

developers the ability to use the infrastructure in an abstracted fashion regardless of

the underlying configurations.

Figure 37 highlights a use case of our platform with multiple Fog nodes where two

different services (i.e., Traffic Control (TC) and AR) are running. As depicted in the

figure, the two services are provisioned on top of a Fog node based on isolated contain-

ers. The S4T containerization solution provides flexibility and network abstraction

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 82

3.4 Empowered use cases

for users as the instances (i.e., containers) are totally unaware of the physical con-

nectivity of the hosts. Furthermore, the fact that we deal with distributed containers

as instances of the Cloud with their networking capabilities managed via Neutron

(through Kuryr/IoTronic) makes the platform efficient. In fact, instead of setting up

a new system to manage the geo-dispersed containers, we enhanced the OpenStack

system by making it able to manage containers at the network edge. Figure 37 de-

picts a use case with different instances of a TC service connected to the same network

(i.e., red dashed lines); thus, enabling possible advanced services, such as Machine to

Machine (M2M) interactions.

Regarding containers live migration use case, the figure depicts an AR service

following the user mobility. As shown in Figure 37, when the user is moving from

an area to another one, the AR container will reside in proximity of the end-user by

following him. To enable this feature, a virtual network is established among the bare

metal nodes involved (green dashed lines in the Figure 37) as detailed in Chapter 2.

At the end of the migration process, the migrated container will be attached to the

same logical network as in the initial state (in Figure 37, the orange container at the

end of the process is attached to the orange overlay).

3.4.3 Implementing services using Stack4Things

S4T middleware enable the users to deploy their services on top of nodes deployed

at the network edge. Each user can provision a number of services thanks to the

lightweight footprint of, and the isolation provided by the containerization technology.

The S4T edge containerization solution provides a set of benefits:

Dynamic installation of services: S4T makes users able to deploy services on

top of a geo-distributed infrastructure in an abstracted fashion and without dealing

with (low-level) issues that regard the infrastructure (e.g., connectivity, networking

configurations). Furthermore, the S4T framework provides services mobility through

containers migration regardless of the hosts’ networking configurations.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 83

3.5 S4T environment emulation

IoTronic APIs14: IoTronic provides for the developers ready-to-use RESTful

APIs to conceive their services and enable their migration.

Networking setup: the networking between the geographically distributed vir-

tualized environments (i.e., containers) is strong enough to provide the same level of

capabilities as for Cloud instances. Indeed, the networking capabilities are provided,

for the edge-based instances, through OpenStack subsystems (i.e., Neutron/Kuryr).

Accordingly, having deployments arranging Cloud-based instances (i.e., VMs, con-

tainers and bare-metal servers) together with the remote containers are feasible using

a unified system (i.e., OpenStack/Neutron).

Resource control: IoTronic provides an efficient management experience consid-

ering the multitenancy aspects used on the nodes that require resource control. The

resources controlled by IoTronic are the ones provided by the Zun subsystem (e.g.,

CPU, RAM) and Kuryr/Neutron for networking services. Using IoTronic APIs, users

can manage the containers resources based on the tasks they must achieve.

3.5 S4T environment emulation

3.5.1 Motivation

The S4T platform is a management system for IoT deployments that relies on the

Edge-to-Cloud continuum depending on the QoS required. In this context, a platform

providing the management of IoT deployments and advanced features akin to edge

computing should be strong enough and scalable to deal with the complexity of IoT

deployments. However, testing such management platforms in the real world is time-

consuming and could be costly. Moreover, the uncontrollable behavior of networks’

characteristics makes incorporating any feasible test hard to set up. Therefore, results

we get in such environments are not expressive and change depending on the network

status. In fact, such platforms might work perfectly during a period of the day or with

a few number of devices, while the performances could decrease significantly during

14
IoTronic Python APIs: https://mdslab.github.io/iotronic-api/swagger-ui/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 84

3.6 Emulation system

busy hours and huge deployments.

To provide a persistent free test and evaluation system for IoT management plat-

forms, there is a need to emulate, on the one hand, the realistic networks’ conditions

and, on the other hand, IoT deployments with a large number of devices. As dis-

cussed in this chapter and Chapter 2, the virtual networking infrastructure of S4T is

(always) hosted on the Cloud. Therefore, any communication based on the overlays

should transit through the virtual switches on the Cloud. However, relying all the

time on the (remote) Cloud might not always be the best choice as it can induce

considerable delays for typical time-sensitive applications. The idea we developed

is that, instead of using the Cloud for switching, we can deploy the Neutron virtual

switches on the Fog nodes using advanced distributed mechanisms as discussed in [81].

Consequently, IoT devices within a same overlay network can communicate using the

virtual networking infrastructure hosted on a nearby Fog node. By knowing the char-

acteristics of the links between the IoT devices meant to be on a same overlay and the

available Fog nodes, a suitable decision about where to deploy the virtual switch could

be made depending on the metric we want to optimize (e.g., latency, throughput, and

packet loss).

3.6 Emulation system

The S4T emulation testbed we developed is based on a tool called Container-

net [110]. The tool is a fork from the famous network emulator Mininet [111]. Even

though the original Mininet provides an efficient solution to emulate a set of scenar-

ios, the system has a number of limitations that make it inefficient to be adopted

in our use case. In particular, the most significant constraint is related to Mininet’s

partial virtualization approach as it does not provide fully separated emulated hosts.

In fact, an emulated host in Mininet is only a Linux process with Network and Mount

namespaces with CGroups. Therefore, all the emulated hosts share the filesystem and

processes. Containernet, on the other hand, provides a full virtualization approach

based on Docker containers that use advanced isolation features (e.g., Mount, UTS,

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 85

3.6 Emulation system

IoTronic
subsystem

OVS

eth0

root-eth0

. . .

LR LR LR

OVS

root-eth0

LANHost (1) Host (N)

Root namespace

eth0

Links controlled by users

Network Address Translation

LR LR Container

OVS OVS OVS

LR LR LR

Root namespace

OVS OVS OVS Devices and
links

Controlled by
the user

Emulator links
(Without any

particular
constraint)

C
on

ta
in

er
ne

t

Links without constraints

Figure 38: Integration design of S4T with Containernet.

IPC, PID, Network) for better sandboxing. This better isolation capability of the

emulated hosts is critical for our S4T environment emulation as hosts should run,

independently, a set of processes as required by the node-side agent LR. Furthermore,

Containernet provides the capability to add/remove emulated guests (i.e., containers)

at runtime.

In our integration scenario, we use containers to mimic the IoT infrastructure,

including the Fog nodes and the IoT devices. In this context, Containernet provides

considerable control over the containers resources and the deployment in general.

Moreover, Containernet enables the users to launch new containers or stop others

during the emulation. This particular feature is essential in our case, especially if we

consider the dynamicity of IoT deployments.

3.6.1 S4T integration with Containernet

The aim of integrating the S4T platform with Containernet is to emulate the edge

IoT devices, Fog nodes as well as the physical layer links (e.g., WAN interconnections).

To emulate different types of interconnections between S4T (i.e., IoTronic) and the IoT

nodes, we had to conceive a Containernet architecture providing users full control over

each container link. Furthermore, these containers should communicate with instances

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 86

3.6 Emulation system

D1 tunnel to the Cloud switch
D2 tunnel to the Cloud switch
D3 tunnel to the Cloud switch

LR
(D1)

LR
(D2)

LR
(D3)

OVS

OVS

OVS

OVS

root-eth0

eth0

WS reverse
tunnel server

S4T WS tunnel agent node

Linux
Bridge

OpenStack
Cloud

L2 frames

TCP piping
NAT

Emulation Host

Figure 39: S4T Cloud-based overlay in the emulation deployment.

outside the emulator environment (i.e., the LAN where S4T/IoTronic is deployed and

also the Internet). Therefore, having a Containernet deployment capable of reaching

the outside world is a must. As a solution for this requirement, we came up with

the architecture depicted in the Figure 38. To make the containers able to reach the

LAN (where S4T is deployed) and the outside world (i.e., Internet), the S4T emulator

creates a Containernet (i.e., a Mininet) node on the Root Namespace (i.e., the host

machine where the emulation is running) with an interface named root-eth0. Then,

the emulator configures NAT rules using iptables between the physical interface of

the host machine and the Root Namespace interface (root-eth0). Afterwards, this

later interface is then connected to an OVS switch (blue OVS in Figures 38 and 39)

created inside the Containernet environment to which, a number of OVSs (green ones

in Figures 38 and 39) get attached too. The links between the later OVSs and the

different containers are controlled by the user that can set different constraints, such as

bandwidth, latency, packet loss, etc. At the level of these links, the WAN network links

can be emulated within our deployment. Whereas the upper part, starting from the

links connecting the OVSs to the main OVS, is supposed to be without any particular

constraint (i.e., links with throughput in the order of GB/s and without latency or

packet loss). In our emulation setup, the containers acting as edge IoT nodes are built

using a LR Docker image. We mention that the emulator configures the containers

being instantiated to automatically be registered and connected to S4T. Besides, the

emulator handles the tasks of exposing, for each container, a number of ports used by

the S4T LR agent to provide different services (e.g., exposing local-running services

using the Cloud).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 87

3.6 Emulation system

Statistics Physical
testbed

Pysical testbed
(S4T overlay)

Emulation
(S4T overlay)

Min 0.25 0.16 0.31
Max 0.99 0.57 0.41
Mean 0.43 0.38 0.35
Stdev 0.07 0.06 0.56

Table 7: Throughput results (in Mbits/s) while uploading from an edge-device to a
Cloud instance

As a result, from a single configuration file, a user can have a set of containers con-

nected to IoTronic with specific constraints regarding their resources and the emulated

interconnections to S4T. We mention that there is no limit considering the number

of emulated hosts that can be leveraged. Users need only to run the emulation script

to deploy the IoT devices with their links constraints and register all the emulated

IoT nodes.

3.6.2 Emulator use cases

3.6.2.1 Emulator for metric estimation

In the previous chapter, we evaluated the S4T (Cloud initiated) virtual network-

ing solution for edge-based deployments using a physical testbed. Specifically, we

deployed an IoT node (i.e., Orange Pi zero) outside the network where our Open-

Stack Cloud is deployed. Accordingly, the IoT node can reach the Cloud through

a WAN interconnection. We report in Table 7 the results obtained during a TCP

upload from the device to a Cloud-based instance within the same virtual network.

In order to emulate such an environment using the S4T Containerenet-based em-

ulator, we used an emulated testbed with one IoT device (i.e., container) connected

to its associated OVS using a link with 0,43 Mbit/s as bandwidth (the throughput

average we obtained previously using the physical testbed, see Table 7).

We ran the emulation for 10 min during which we measured the throughput using

Iperf 15 tool. The result we obtained is aligned with the physical testbed as shown in

15
https://iperf.fr/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 88

3.6 Emulation system

Cloud D1 D2 D3
Cloud – 30 ms 120 ms 70 ms

D1 30 ms – 300 ms 200 ms
D2 120 ms 300 ms – 60 ms
D3 70 ms 200 ms 60 ms –

Table 8: Links latency (point-to-point) without involving the S4T overlay.

Cloud D1 D2 D3
Cloud – 2 Mbits/s 1 Mbits/s 4 Mbits/s

D1 2 Mbits/s – 3 Mbits/s 1 Mbits/s
D2 1 Mbits/s 3 Mbits/s – 3 Mbits/s
D3 4 Mbits/s 1 Mbits/s 3 Mbits/s –

Table 9: Links bandwidth (point-to-point) without involving the S4T overlay.

table 7. Indeed, we got using the emulation, as throughput average 0,35 Mbit/s while

considering the physical testbed, we got an average of 0,38 Mbit/s.

3.6.2.2 Emulator as decision making aid

In the following, we present an interesting use case for our emulation setup. Fig-

ure 39 depicts the S4T (Cloud-based) network virtualization approach described in

Chapter 2 using the emulator. The S4T network virtualization solution is based on the

use of the Cloud-based OpenStack/Neutron switching platform (e.g., Linux Bridge)

as highlighted in Figure 39. Nevertheless, as mentioned before, relying always on the

Cloud virtual networking infrastructure can not be suitable for particular applications

(e.g., time-sensitive ones); thus, we can make use of the Fog nodes to host the virtual

switching platforms and consequently, reduce latency between IoT devices within a

same virtual network. By knowing the characteristics of the links between the IoT

nodes that should belong to the same overlay and the Cloud, a suitable decision

about where to deploy the switch could be made depending on the metric we want

to optimize. To evaluate all the possible scenarios, the emulation setup could be

a useful tool to take the "best" decision. We consider, in this part, a scenario with

three IoT devices (D1, D2 and D3) that should be interconnected among each other

using the S4T virtual networking approach presented in Chapter 2. We suppose that

each of the three IoT devices has enough resources to host the switching platform.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 89

3.6 Emulation system

Cloud-based
switch

Switch based
on D1

Switch based
on D1

Switch based
on D3

D1 – D2 162.85 306.7 308.95 276.4
D1 – D3 112.55 206.65 368.6 210.3
D2 – D3 201.2 510.5 66.8 68.9

Table 10: Emulation latency results (in ms) using the S4T network virtualization
approach.

Cloud-based
switch

Switch based
on D1

Switch based
on D2

Switch based
on D3

D1 – D2 0.936 2.76 2.76 0.94
D1 – D3 1.45 0.95 2.72 0.95
D2 – D3 0.941 0.92 2.86 2.86

Table 11: Emulation throughput results (in Mbits/s) using the S4T network virtual-
ization approach.

Figure 39 shows the scenario where the devices are connected through the standard

Cloud-based switch. The point-to-point links characteristics (without involving the

S4T virtual networking solution) of the scenario we are considering are reported in

Tables 8 and 9. Each of the experiments (i.e., the scenarios mentioned in Table 12)

conducted by the emulator, in this part, had a total duration of 10 minutes during

which, we measured between all the devices (based on the S4T network virtualization

approach), the bandwidth average (using Iperf) and latency (using the MTR Linux-

based tool). Accordingly, based on the results obtained, the emulator system could

make the best switch placement decision (see Tables 10 and 11). We report here, as an

example, the average latency calculation of the scenario when the switch is deployed

on D1:

Avglatency =
LD1�D2 + LD1�D3 + (LD2�D1 + LD1�D3)

3

, Avglatency =
LD1�D2 + LD1�D3 + LD2�D3

3

, Avglatency =
306, 75 + 206, 65 + 510, 5

3
= 341, 3

The results we obtained are summarized in Table 12. As we can notice from the

table, to set up a virtual network between the three devices while having the lowest

latency, the Cloud-based scenario is the suitable solution with 158,86 ms. While in

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 90

3.6 Emulation system

Scenario Latency (ms) Bandwidth (Mbits/s)
Cloud-based switch 158.86 1.109
Switch hosted on D1 341.3 1.54
Switch hosted on D2 248.11 2.78
Switch hosted on D3 185.2 1.58

Table 12: Averaged results considering the different scenarios possible (based on the
S4T network virtualization approach).

order to get better performance, from the bandwidth point of view, deploying the

switch on D2 is the best choice with 2,78 Mbits/s. Of course, complex metrics can be

used to make the decisions.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 91

Chapter 4
Enabling SOA in IoT using RESTful Web services

4.1 Introduction

With the advances the hardware design and production fields are knowing, embed-

ded systems prices have decreased significantly, thereby making faster their adoption

in different fields. Such devices are becoming nowadays able to communicate as well

as performing useful tasks to provide newly added value services. In this context,

as one of the main facets of pervasive computing, the IoT paradigm is inspiring and

driving innovation in several sectors. In the vision of IoT, the Internet is spread-

ing rapidly beyond its classical core composed of powerful servers and other fringe

machines/devices (e.g., computers, smartphones) to billions of constrained embedded

devices (e.g., sensors and actuators).

In the previous chapters, we introduced our I/Ocloud view as well as a set of

enabling mechanisms aiming at providing virtualized IoT nodes as Cloud-based IaaS

instances. In particular, we introduced our approach for sharing the IoT infrastruc-

ture/resources and deploying virtual representations of the physical IoT nodes either

on the Cloud or the network edge. In this chapter, we focus on the way of exposing the

virtualized resources (i.e., virtual sensors and actuators) and the data being processed

and managed by these I/Ocloud instances (i.e., VNs) deployed at the network edge.

Indeed, after deploying the application on a virtual IoT node, the virtual resources

and the processed data should be exposed over the Internet. To this end, we opted for

RESTful Web services to be aligned with the Web of Things (WoT) paradigm [112].

The WoT approach aims at adopting Web technologies to interact with IoT re-

sources; thus unifying the application protocol to provide a homogeneous IoT envi-

ronment. Indeed, due to the diversity in terms of service providers and manufacturers

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 92

4.1 Introduction

in the IoT landscape, and even though IoT objects would have Internet connectivity,

this field is still fragmented and far from being a homogeneous environment where

devices can cooperate transparently. The actual IoT ecosystem seems similar to the

Internet before the arise of the World Wide Web in early 90s. At that time, the

Internet was based on proprietary solutions and competing hypertext systems that

made the Internet a complex system made-up of small incompatible islands that lack

a unified communication layer [113].

To merge the cyber world with the physical one and make IoT an integral part of

the Internet, reusing existing Web technologies and standards is a suitable choice. In

this case, IoT objects, either physical or virtual, will not be only IP-enabled devices

connected to the Internet yet, they become able to communicate and cooperate using

the same language. Therefore, they can interact among each others and with other

components from the existing Web world. In such a homogeneous environment, smart

objects will be able to offer their functionalities (e.g., sensed and processed data) via

RESTful Web services (also called Web APIs). For example, an embedded system

with a temperature sensor that collects measurements from the physical world can

provide its real-time sensed data as a smart service (i.e., a Web service). We can

build then an ecosystem where the smart objects can offer their functionalities as

Web services that other entities (e.g., other devices, Web services, applications) can

make use of to provide appealing services and applications.

In this chapter, following the trend aiming at incorporating the cyber world of

IoT within the Web wisdom, we introduce an innovative approach to enable the use

of the Web services in the IoT landscape. In particular, we accommodate relatively

powerful IP-enabled devices to expose hosted services as Web resources that can be

consumed in a transparent fashion. Specifically, we expose IoT services in a secure

manner using the REST paradigm thus, we talk then about RESTful Web services in

IoT.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 93

4.2 Service-Oriented Architecture and IoT

4.2 Service-Oriented Architecture and IoT

4.2.1 Service-Oriented Architecture (SOA)

The Service-Oriented Architecture (SOA) [114] consists in designing distributed

applications using reusable and interoperable components whose interactions take

place based on messages exchanges. This architecture offer an obvious advantage

which is interoperability. This advantage implies that applications can invoke and

interact with each other regardless of their underlying platforms, geographic locations,

and languages in which these applications have been developed. The SOA design

is based on: (i) the emergence of a service layer separating the services interfaces

(the what) from their implementations (the how). This separation makes the clients

not concerned with the way how a service will execute their requests. (ii) The use

of standard mechanisms for the publication, search, invocation, and composition of

these services. Thanks to the service concept, the SOA design has been very successful

making it possible to orient the latter towards a wide variety of aspects beyond the

initial software architecture domain. Today, SOA is seen as a suitable architectural

style to be adopted in different use cases [115].

Software architectures should be built upon well defined characteristics in which

loose coupling is the significant one so as to deal with complexity and the contin-

uous modifications of the deployments. It is obvious that any architecture should

not be strictly dependant on specific technology. In this context, SOA design is not

tied to any technology but can be implemented using Simple Object Access Proto-

col (SOAP) [116], RPC, Common Object Request Broker Architecture (CORBA),

Web Services etc. Every technology has its own advantages and limitations. For in-

stance, CORBA provides a rich development environment but requires to learn a new

programming model and does not support interoperability as it is a tightly coupled

architecture. On the other hand, the major advantages of Web Services are loose

coupling and interoperability.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 94

4.2 Service-Oriented Architecture and IoT

4.2.2 Web services

Web services [114] constitute a framework for building distributed applications.

They have typically been used to build applications that either interact using a web

browser or somehow related to the World Wide Web. But the technology that makes

up Web services is not tied to the World Wide Web or the particular technology that

typically is associated with it, such as web browsers.

A Web Service is a software technique designed to support interoperable M2M

interactions over a network. It is an interface described in a machine processable

format (specifically Web Services Description Language (WSDL) [117]. Other systems

interact with the Web service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with Extensible Markup Language (XML)

serialization in conjunction with Web-related standard.

Given the prevalence of the Web and its associated technologies, Web services

have seen a tremendous adoption in the general purpose IT world in the past couple

of years. All major programming languages provide libraries tailored to build web-

service-oriented applications; hence, a large body of existing IT systems is built using

Web services.

4.2.3 RESTful Web services and IoT

As mentioned before, the Web services concept plays a relevant role in enabling

interoperable IoT-oriented communications over the Internet [118]. On this basis, two

main categories of Web services are used: the REST-compliant Web services and the

arbitrary Web Services (WS-*). The difference between the two models resides in

their way of managing communications. While the first approach uses systematic and

well-defined operations (e.g., GET, POST, DELETE), the second approach, instead,

uses arbitrary operations (e.g., using SOAP). In this context, the choice of the suitable

model to implement depends strictly on the use case. For instance, when dealing with

ad-hoc services over the Web (so-called mashups) and IoT related use cases, the REST

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 95

4.2 Service-Oriented Architecture and IoT

model is meant to be an efficient solution [119] [120].

From the performance point of view, the RESTful compliant Web services are a

convenient choice compared to WS* when it comes to IoT. In fact, the RESTful Web

services are characterized by less overhead and parsing complexity while providing

stateless interactions [121]. Besides, the fact that WS* supports only XML as an

encoding pattern makes it unsuitable to be adopted in particular IoT scenarios, such as

low power and low data rate sensor networks. On the other hand, REST affords more

data format choices (e.g., plain text, XML and JSON) that make it a flexible model to

be adapted to the task at hand. In particular, in IoT scenarios, the use of REST and

JSON ensure higher performance implementations than WS* and XML [122] [123].

Another critical parameter to consider when choosing the suitable Web service

paradigm for IoT is the software development aspect. In order to promote external

developers communities in conceiving new IoT-based services/applications, providing

a consistent software architectural style with accurate APIs is critical in adopting IoT

services on a larger scale. In this context, developers prefer the REST architectural

style as it is less complex to implement and use [124]. In fact, a number of IoT-based

deployments uses the RESTful Web services model [125] [126].

4.2.4 Secure Web services in IoT

In IoT deployments, particularly the WoT architectural design, we expect to have

services and, therefore, data exposed publicly over the Web. Considering the dis-

tributed nature of IoT deployments, ensuring secure data transmission is challenging.

In such an environment where the infrastructure (i.e., IoT nodes) is geographically dis-

tributed with networks designers having limited control over the infrastructure (e.g.,

when it is contributed by volunteers), chances of malicious users to falsify the data

being transmitted or even spoof IoT nodes is considerably high [127]. As the WoT

paradigm aims to merge IoT with the Web, enabling Hypertext Transfer Protocol

Secure (HTTPS)-based communications is a convenient choice. In fact, HTTPS is

actually the de-facto protocol used in the Web that ensures peers identification and

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 96

4.3 Technologies background

prevents against communications sniffing and data manipulation [128].

To ensure secure communications between peers, Certification Authorities (CAs)

tend to make the servers administrators follow a set of manual tasks while configuring

their domains/servers. However, in the kind of IoT deployment we are targeting,

the manual configuration of the servers (i.e., devices) certificates may become an

error-prone task besides being time-consuming [128] due to the high-density of IoT

networks. In this context, the use of an efficient mechanism, such as the Automated

Certificate Management Environment (ACME) [129] protocol is essential in enabling

secure data exchange in IoT and avoid manual configurations. Efforts are on the way

to enhance the ACME Protocol by using a distributed trust mechanism based on

Blockchain [130].

4.3 Technologies background

In this section, we give details about the different concepts we made use of to

come up with our system. We introduce briefly the architecture of the OpenStack

Domain Name System-as-a-Service (DNSaaS) subsystem (i.e., Designate) and the

ACME protocol.

4.3.1 The OpenStack DNSaaS system: Designate

Designate is a multi-tenant DNSaaS service for OpenStack. It provides the capa-

bility to configure zones and DNS records within the OpenStack environment using

REST APIs. Furthermore, this service provides a very handy solution to automate

updates to DNS records based on other subsystems actions (e.g., Nova, Neutron).

Similarly to other OpenStack subsystems, Designate is composed of several compo-

nents (blue system in Figure 40): the API endpoint (designate-api), the (centralized)

controller (designate-central), an internal DNS server (MiniDNS or designate-mdns)

used to manage down-stream, outward-facing DNS servers. Designate provides a flex-

ible solution for Cloud administrators as it can be backed by a variety of open-source

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 97

4.3 Technologies background

Designate
database

Designate
AMQP
queues

Central Designate
MiniDNS

Pool
Manager

Backend
(BIND,

Infoblox)

D
esignate server

Figure 40: Designate subsystem architecture.

or commercial DNS servers, such as BIND, Infoblox, or PowerDNS. We mention that

the backend choice and configurations are managed by the Cloud provider. The ten-

ants (i.e., Cloud consumers), instead, do not have to mange the DNS configurations

as they only make use the services Designate provides (create/manage zones and DNS

records) through the exposed APIs. We describe here briefly the role of Designate’s

components:

• Designate-api: provides an OpenStack-native interaction interface using REST.

• Designate-central: it is the hub of activity. It coordinates all the commu-

nications between the different components and carries out the API requests.

Furthermore, this component manages the persistent storage for Designate data.

• Designate-mdns: a small MiniDNS server used to communicate with other

DNS servers over a standard DNS protocol.

• Designate-pool-manager: manages the states of the DNS servers that DNSaaS

uses. It ensures the synchronization between the DNSaaS and the backend DNS

servers.

4.3.2 Automatic Certificate Management Environment (ACME)

Digital certificates in Web Public Key Infrastructure (PKI) are widely used to

authenticate domain names. CAs are trusted to verify that a certificate applicant

represents legitimately the domain name(s) mentioned in the certificate. In the con-

text of verification, Domain Validation (DV) certificates are the most common type.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 98

4.4 Exposing Cloud-enabled IoT-hosted services

The verification in the case of DV issuance consists of verifying that the requester

has effective control over the domain. Of course, this is different from the process

of verifying the real-world identity of the requester which is managed by other types

of certificates, such as Organization Validation (OV) and Extended Validation (EV)

certificates.

In deployments that require DV, CAs tend to use a set of ad-hoc protocols for

certificate issuance and identity validation. The issuance process is managed by mak-

ing the administrator to follow interactive instructions from the CA (e.g., Certificate

Signing Request (CSR) generation, domain ownership verification, certificate down-

load/installation). However, in particular scenarios like the one we are targeting,

Web services for IoT, such a manual configuration of the certificates may become

error-prone and a time-consuming task [131] that cause significant frustration and

confusion considering the dimension of the deployments. ACME [129], as a recent

protocol initially designed by the Internet Security Research Group (ISRG) for their

Let’s encrypt [132] non-profit CA, can solve the critical pain-point of managing, man-

ually, X.509 certificates issuance. By using a client on the user-side server (e.g., IoT

nodes), such as Certbot16, ACME carries out the certificate issuance process with-

out any human interaction. Let’s encrypt CA has been increasingly adopted since a

couple of years ago [132].

4.4 Exposing Cloud-enabled IoT-hosted services

This section describes the tunneling approach we conceived to expose, publicly,

via the Cloud, TCP services hosted on IoT nodes deployed at the network edge. This

feature is then leveraged as an infrastructure-level enabling mechanism to expose the

IoT nodes hosted resources (i.e., physical/virtual sensors and actuators) by assigning

to them publicly resolvable domain names (a detailed description of this system is

reported in the next section).

As remote infrastructure, the deployed IoT nodes will be reachable over restric-

16
https://certbot.eff.org

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 99

4.4 Exposing Cloud-enabled IoT-hosted services

tive and even masqueraded IPv4 networks. In this case, the unique assumption that

can (always) be considered valid is outgoing Web traffic being authorized; that is,

only device-initiated TCP communications over standard HTTP/HTTPS ports are

permitted. To cope with the constraint mentioned above, we opted for a standard

TCP-based HTTP-borne full-duplex communication, namely WebSocket (WS) cou-

pled with a reverse tunneling mechanism, i.e., IoT nodes will initiate the process of

setting up the tunnel to the Cloud. Besides providing bidirectional flows between

two ends, WS is a network-agnostic protocol by turning communications into stan-

dard HTTP(S) interactions. Any mechanism then that exploits WS can overcome

the issues of reaching environments that block Web-unrelated traffic. An interesting

feature that can be enabled using WS is establishing TCP tunnels over WS, a way

to get client-initiated connectivity to any server/device-side service. For our system,

we designed and implemented a suitable reverse tunneling over WS17 solution as an

approach to provide connectivity to any IoT node-hosted service.

Even though we opt for the WS protocol that adds additional overhead to the

packets and requires a handshake to establish the client-server connection as a trans-

port medium for our tunneling system, those parameters do not significantly affect

the system performance. Indeed, authors in [133] outline that during long WS ses-

sions, the impact of those parameters becomes insignificant just after few messages

exchanges (see also subsection 4.6.3).

We depict in Figure 41 the design of the system as well as the process of a WS

reverse tunnel (rtunnel) creation. To expose a TCP service (e.g., a Web server) hosted

on a remote IoT node, the rtunnel client (which is pre-configured with the IP address

of the rtunnel server) sends a WS connection request to the rtunnel server (i.e., the

Cloud). In particular, the request specifies a TCP port to be used on the server-side.

Once the rtunnel server receives the request, it brings up a TCP server listening on the

port indicated, and a WS connection used as a control channel is established (purple

arrow in Figure 41). When an external TCP client connects to the TCP server on

the rtunnel server (i.e., Cloud), the rtunnel client and server manage this event by

17
https://github.com/MDSLab/wstun

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 100

4.4 Exposing Cloud-enabled IoT-hosted services

TCP
server

port
port
port

lo
ca

l
po

rt
lo

ca
l

po
rt

WebSocket reverse
tunnel server

local
service 1

local
service 2

TCP piping

TCP communication

Control channel

WebSocket tunnel

TCP
 client 3

TCP
 client 2

TCP
 client 1

WebSocket reverse
tunnel client

WebSocket tunnels

new_TCP_connection(ID)

WS message

WS connection request

TCP
client

lo
ca

l
po

rt service

IoT node

Constrained IoT
node

LA
N

po
rt service 3

Constrained IoT
node

new websocket_connection_request(ID)

Figure 41: The WebSocket tunneling system.

instantiating a WS-based communication channel (green arrow in Figure 41), and the

TCP session gets piped to it. On the rtunnel client-side, a similar mechanism is used

by bringing up a TCP client connecting to the local (or remote) service involved and

pipe afterwards the traffic to the tunnel.

Figure 41 highlights all the three scenarios the tunneling system may enable. A

first scenario, as we mentioned before, is node-provided access to a service running

on the node itself (service 1 in Figure 41). To illustrate a use case, we can consider

a Web server exposing the IoT node hosted resources (e.g., sensors and actuators).

The second use case, similarly to the first one, the service runs on the IoT node itself,

but it can forward/map requests to other constrained nodes behind it (service 2 in

Figure 41). A relevant use case we can mention is a proxy relaying HTTP requests

to a constrained network (e.g., 6LoWPAN-based) using an HTTP-COAP proxy. Last

and not least, the system can also provide access to services running on other devices

deployed on the same LAN as the gateway (service 3 in Figure 41). In this case,

the gateway, a relatively powerful node capable of handling the complexity of setting

up the WS tunnel; therefore, only applications flows are forwarded to the constrained

device behind it.

It is worth mentioning that the tunneling approach can also be extended to expose

UDP services (e.g., based on Quick UDP Internet Connections (QUIC) protocol).

In fact, to expose a UDP service hosted on remote IoT nodes, we accommodate

UDP flows on both sides (i.e., rtunnel client and server) to fit the WS tunnels TCP

server/client and transit via the WS tunnel. Specifically, we use the Linux Socat

tool that can establish bidirectional byte streams between two extremities (i.e., ports)

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 101

4.5 S4T Dynamic DNS system

whatever the transport protocol used (UDP or TCP) and transfers data between

them using TCP. Consequently, UDP packets on both sides (i.e., client and server)

get adapted to fit the (TCP-based) WS tunnel. This way, a UDP flow coming from an

external UDP client towards the Cloud gets tunneled and reaches services deployed

at the network edge.

4.5 S4T Dynamic DNS system

In this chapter, we aim at introducing a novel approach to expose, to the Web,

services running on IoT nodes deployed at the network edge. By assigning publicly

resolvable domain names to the services hosted on the distributed IoT nodes, we can

expose their resources (i.e., sensors and actuators) using REST APIs. We are the

moving towards a more decentralized, yet developer-side uniform IoT ecosystem. In

the following, we describe our OpenStack-based Dynamic DNS (DDNS) system that

uses IoTronic and the DNSaaS subsystem, Designate.

4.5.1 Overview of the Stack4Things Dynamic DNS system

We report in this subsection an overview of our tunneled reverse proxying approach

capable of assigning globally resolvable domain names to services deployed within IPv4

masqueraded networks. In particular, the approach uses only one publicly registered

domain name to make the distributed services identified using sub-domains of the

public one. That says, no public IP or public domain name associated with the IoT

node is required.

To conceive our system, we are considering, as mentioned before, that the IoT

nodes are typically deployed behind NATs and firewalls; therefore, they do not have

routable public IP addresses. To expose the IoT nodes hosted services, and by tran-

sitivity the physical or virtual sensors/actuators they may host (using for example

a Web server), our approach uses Designate to cope with the management of DNS

records (which are sub-domains of the public one) associated with the edge-based ser-

vices. To route requests based on the Uniform Resource Locators (URLs) indicated,

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 102

4.5 S4T Dynamic DNS system

IoTronic
database

IoTronic
conductor

IoTronic
command
line client

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

Web
browser

IoTronic A
P

I server
D

esignate A
P

I server

Designate
database

Designate
AMQP
queues

Dashboard

WAMP control
channel

Central

Web service tunnel
(WebSocket)

REST communication

AMQP pub/sub and RPC

other communication

Designate
MiniDNS

Pool
Manager

Backend
(BIND,

Infoblox)

WS tunnel
agent

NGINX
reverse
proxy

NGINX
reverse
proxy

NGINX proxy
host

Figure 42: DDNS Cloud-side system architecture.

IoTronic and LR, together with two NGINX reverse proxies18 deal with requests for-

warding (see Figures 42 and 43). In particular, for each sub-domain created and

assigned to a service, IoTronic and LR manage the instantiation of a reverse WS tun-

nel between the Cloud and the IoT node (see Section 4.4). Afterward, clients requests

in the destination of the service are forwarded through the WS tunnel using the NG-

INX reverse proxies rules managed by IoTronic and LR: the user does not have to do

any configuration.

Regarding the DV certificate issuance and validation, once the reverse WS tunnel

gets created and the two NGINX reverse proxies configured, LR manages the X.509

certificate issuance and validation using the ACME-based Let’s Encrypt CA client,

namely Certbot. Clients then, such as Web browsers and mobile applications, can

communicate using HTTPS with the edge-based services running on the IoT node.

Specifically, a client request is sent to the Cloud NGINX reverse proxy that manages,

based on the URL indicated in the request (specifically, the sub-domain part), the

forwarding/routing of the request through the suitable WS tunnel to reach the IoT

node/service concerned.

18
https://www.nginx.com

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 103

4.5 S4T Dynamic DNS system

WAMP control
channel
 MPU-powered IoT node

Board FileSystem

s4
t W

A
M

P
lib

Lightning-Rod
engine

wstunnel plugin

Certbot

Lightning-Rod

plugin
plugin
loader

Other communication

ServiceService

NGINX
reverse
proxy

Web service tunnel
(WebSocket)

sensors
and

actuators

Traffic pipe GPIO

MPU

Figure 43: The device side Web services system.

4.5.2 Workflow of exposing a service

In the following, we report a detailed description of the workflow when a user

wants to expose, publicly, a service (a Web server in this example) running on an

IoT node. The full domain name we are considering to be assigned to the Web

server is web-server.node-A.example.com. Consequently, the registered public domain

used is example.com, whereas the rest of the domain name, i.e., node-A and web-

server are managed by our DNS system to identify the IoT node and the service

concerned, respectively (an IoT node can host multiple services). Regarding the

Cloud NGINX reverse proxy, we consider that the host where it is running has as an

IP address 1.1.1.1, while the Web server hosted on the IoT node runs on port 9000.

We assume that the IoT node has already gone through a set of verification processes

(e.g., authentication) required by S4T; thus, it is registered and connected to the

Cloud. The following list of sequences takes place when exposing the Web server,

with low-level operations as depicted and numbered in Figure 44):

1. The user send a request to expose a service (e.g., Web server) running on a

specific IoT node using the OpenStack dashboard or the CLI. In particular, the

user chooses the service name (in this case, named web-server), DNS zone that

indicate the IoT node where the server is running (i.e., node-A), and the port

on which the Web server is listening (i.e., 9000).

2. The dashboard/CLI sends a REST request to the IoTronic API server that

pushes a new message into the AMQP queue.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 104

4.5 S4T Dynamic DNS system

IoTronic
database

IoTronic
conductor

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

Web
browser IoTronic A

P
I server

D
esignate server

Dashboard

WAMP control
channel

1 WS tunnel
agent

2

3

4

5

6

6

Web service tunnel
(WebSocket)

D
esignate A

P
I server

Designate
AMQP
queues

Central
Designate
MiniDNS

Pool
Manager

Backend
(BIND,

Infoblox)

Designate
database

IoTronic
command
line client

Domain NGINX IP
web-server.node-A.example.com 1.1.1.1

Domain Forwarding port
node-A.example.com 443 <--> 10000

MPU-powered IoT node

Board FileSystem

W
A

M
P

lib
ra

ry

Lightning-Rod
engine

WS tunnel plugin

Certbot

Lightning-Rod

plugins
Plugin
loader

NGINX
reverse
proxy

sensors and
actuators

GPIO

MPU 8
Forwarding portWeb service URL

8
web-server.node-A.example.com 20000 <--> 9000

Web
server

9

5

10

10

10

NGINX reverse
proxy host
(1.1.1.1)

NGINX
reverse
proxy

NGINX
reverse
proxy

7

Figure 44: A detailed workflow description of exposing a service (a Web server in this
case) hosted on an edge IoT node.

3. The IoTronic conductor gets the message from the queue and does a check using

its database. Specifically, IoTronic verifies if the IoT node is registered and

online. It also looks up the WAMP agent and the WS tunnel agent managing

the IoT node concerned (the WS tunnel agent is co-hosted on the same machine

where the Cloud NGINX reverse proxy is deployed. it has as IP address 1.1.1.1).

4. IoTronic interacts with the Designate API server to request the creation of a

type A DNS record using the IP address of the NGINX reverse proxy from

step 3 (i.e., 1.1.1.1) and the information provided by the user in step 1 (i.e., the

sub-domain names: web-server and node-A).

5. Designate creates the DNS record within its backend environment.

6. The IoTronic conductor sends an RPC to the WAMP agent managing the IoT

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 105

4.6 Implementation and experimental results

node to start the configuration process. Subsequently, the IoTronic WAMP

agent sends a WAMP-based RPC to the NGINX reverse proxy running on the

IoT node to instantiate a WS tunnel to the Cloud. A random port number is

generated and sent as an argument of the RPC to create the tunnel. In our

scenario, we consider as random port number 10000.

7. The IoT node receives the RPC through the WAMP library.

8. The LR agent manages the setup of the (reverse) WS tunnel by generating

a random port number (20000 in our scenario) and taking into consideration

the port number received as an argument of the RPC (i.e., 10000). Next, LR

configures the NGINX reverse proxy to forward requests in destination of the

URL web-service.node-A.example.com to the port on which the Web server is

listening (specified by the user in step 1, 9000 in this case)

9. LR manages, using the local Certbot daemon, the issuance of the DV certificate

from the Let’s Encrypt CA.

10. The IoTronic conductor interacts with the WS tunnel agent managing the

IoT node (using an RPC) to configure the Cloud-based NGINX reverse proxy.

Specifically, the proxy is used to forward requests in the destination of node-

A.example.com to the WS tunnel instantiated in step 6. That says, requests

reaching the Cloud NGINX reverse proxy on port 443 and having as destination

node-A.example.com are forwarded to port 10000 (i.e., the port on which the

WS tunnel is running).

To illustrate a functional workflow that uses the mechanisms described before, we

report in subsection 4.6.2 a detailed workflow of a request being routed using the

tunneling system.

4.6 Implementation and experimental results

In this section, we provide an online accessible testbed powered by the S4T DDNS

system. We also report a set of experiments results to assess the performance of the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 106

4.6 Implementation and experimental results

approach.

4.6.1 Testbed description

To prove the feasibility of our approach, we used a Raspberry Pi board to host

Web server running on a Docker container with the GPIO sysfs mounted on it (i.e.,

an I/Ocloud Virtual Node). Thus, we can expose publicly a set of hosted sensors/ac-

tuators as depicted in Figure 45. The OpenStack environment, including our IoTronic

system, is hosted at the Department of Engineering, University of Messina, Italy. The

Raspberry Pi runs the device-side LR agent and hosts a Web application container

that uses the built-in Flask Web server running on port 5000 (we use the Docker

port mapping capability). We used the approach presented in Section 4.5 to expose

the Web server running inside the container. As URL, we choose https://wot.rasp-

univ.iot.felooca.eu under which /temperature, /humidity, /redled and /greenled are

made available as resources. We remind that the choice of the URL is up to the

user except for its public part (in this case, felooca.eu). Other services hosted on the

same board are exposed as well, such as a video streaming from a Web camera using

streaming.rasp-univ.iot.felooca.eu as URL and a Node-RED instance19.

We mention here that the registered (and globally resolvable) domain name the

approach uses is felooca.eu. The iot sub-domain was created for management purposes

as the domain (i.e., felooca.eu) is used for production by the smartme.IO20 spin-

off company. The iot sub-domain does not affect the workflows described before:

it is transparent with regard to the approach here presented. To be aligned with

the descriptions presented in Section 4.5, we can consider that our public domain is

iot.felooca.eu.

By enabling the use of globally resolvable URLs associated with geographically
19

We exposed three services that the readers can access:

• The web page: https://wot.rasp-univ.iot.felooca.eu

• The video streaming: https://streaming.rasp-univ.iot.felooca.eu/?action=stream/

• A Node-RED instance: https://node-red.rasp-univ.iot.felooca.eu

20
https://smartme.io/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 107

4.6 Implementation and experimental results

distributed services deployed at the network edge, we are able to create mashups

based on distributed Web services. For instance, we used the video streaming URL to

incorporate the streaming on the Web page. The mechanisms provided by the system

make user agents, for example, web browsers, able to interact with the board-hosted

resources using HTTPS. The reader can access the following URL: https://wot.rasp-

univ.iot.felooca.eu that point out the Flask Web server hosted on the Raspberry Pi.

In this deployment, all the requests made to get sensors values (i.e., temperature

and humidity), as well as the LEDs status, are HTTPS-based GET requests. The

Linux command-line tool, curl, can also be used to retrieve the value of a met-

ric from a resource, for example, temperature: curl -X GET -H “Accept: applica-

tion” https://wot.rasp-univ.iot.felooca.eu/temperature. The reader can also interact,

in real-time, with the two LEDs using the corresponding Web page widgets by sending

HTTPS POST requests under the hood.

4.6.2 Functional workflow

We report in the following the functional workflow when a Web client requests

the value of the temperature sensor. The URL we consider is the one mentioned

before and made available over the Web: https://wot.rasp-univ.iot.felooca.eu and the

resource involved is /temperature. The complete workflow is reported in Figure 45

(we skip the different TCP/TLS handshakes for a matter of simplicity and to make

the workflow easier to grasp):

1. The client, a Web browser in this case, sends a DNS resolver query about the

URL (i.e., wot.rasp-univ.iot.felooca.eu) to the ISP public DNS server.

2. The public DNS server sends a response back to the client about the felooca

domain name. The response contains the public IP address of the S4T Cloud

DNS server.

3. The client sends a new DNS request to the S4T DNS server.

4. The DNS server sends a response back to the client with the IP address of the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 108

4.6 Implementation and experimental results

/temperature

/humidity

Zone Forwarding port

rasp-univ 443 <--> 60000

Service Forwarding port

wot 50000 <--> 5000

(1) DNS resolver query
wot.rasp-univ.iot.felooca.eu

(2) DNS query response
IP @ of the S4T DNS server

(4) DNS query response
IP @ (i.e., 51.75.29.20) of the
NGINX proxy managing the

board

ISP
DNS

server

(5) HTTPS GET request
https://wot.rasp-univ.iot.felooca.eu/temperature

(7) HTTPS GET request

https://wot.rasp-univ.iot.felooca.eu/temperature

ws: 60000:50000

S4T DNS
server

OpenStack
Cloud

NGINX
proxy

IP: 51.75.29.20

w
s

se
rv

er

/redled

node-red 50000 <--> 1880

port:1880

port:5000

w
s

cl
ie

nt

sensors
&

actuators

/greenled

streaming 50000 <--> 8090

(6) Forwarding

port:8090

(8)Forwarding

Raspberry Pi

w
s

cl
ie

nt

Service

Service

Service

ws: 70000:80000

...

test-board 443 <--> 70000 ...

GPIO

(3) DNS resolver query
wot.rasp-univ.iot.felooca.eu

Figure 45: The Stack4Things-based routing mechanism.

NGINX reverse proxy managing the board concerned (in the testbed we are

making accessible online, the proxy IP address is 51.75.29.206).

5. The client sends an HTTP GET request to the IP address specified by the DNS

server from the previous step (i.e., 51.75.29.206).

6. Once the NGINX reverse proxy receives the HTTP request, it checks the URL

mentioned. Based on the sub-domain specified (i.e., rasp-univ) that indicates

the board, the NGINX reverse proxy forwards the request through the appro-

priate WS tunnel connecting the Cloud to the board. Specifically, in our online

testbed, requests received on port 443 and having as URL https://wot.rasp-

univ.iot.felooca.eu are forwarded via the WS tunnel running on port 60000.

7. The request reaches the board NGINX reverse proxy through the WS tunnel.

8. The NGINX reverse proxy checks the URL of the request specifically, the service

name (i.e., wot). Based on its forwarding rules (created when exposing the Web

server, see Section 4.5.2), the proxy forwards the request to the port on which

the Web server is listening. In our scenario, the service is named wot and runs

on port 5000. As a result, the request reaches the Web server, and the response

(value of the /temperature resource) travels back the same way.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 109

4.6 Implementation and experimental results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290

La
te

nc
y

(s
)

Packet number

Latency experienced with WS tunnel (100 pps, 40 bytes)

(a) Latency experienced with the WS tunnel us-

ing a packet rate of 100 pps and 40 bytes as pay-

load length.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290

La
te

nc
y

(s
)

Packet number

Latency experienced with WS tunnel (200 pps, 40 bytes)

(b) Latency experienced with the WS tunnel us-

ing a packet rate of 200 pps and 40 bytes as pay-

load length.

Figure 46: Latency experienced with the WS tunnel when using packets with 40 bytes
of payload.

4.6.3 Performance evaluation

In this subsection, we evaluate firstly the performance of the tunneling approach

we implemented. Then, we present the results of deploying the whole solution (i.e.,

WS tunnel client and NGINX) on an IoT node.

To assess the performance of the tunneling mechanism, we used two VMs as UDP

client and server communicating through a WS tunnel. Each of the VMs has two

vCPUs and 2 GB of RAM. The VMs are hosted on a 2020 Intel i5 MacBook Pro

while being timely synchronized using Network Time Protocol (NTP).

To evaluate the impact of the WS tunnel on the latency it may introduce, we fixed

the latency between the 2 VMs (using the virtual bridge interface) at 50 ms. We

measured then the delay between the timestamp when a packet with 40 bytes of data

is sent by the client and the timestamp when the same packet reaches the server. For

the sake of clarity, we state here that the latency we intend to evaluate is a one-way

measure. Specifically, we used UDP as it brings more flexibility and control over the

testbed since the packet sending rate can be controlled with higher granularity.

Figures 46a and 46b depict the results of our experiments at 100 and 200 packets

per second (pps), respectively. The packet number (x-axis) represents the sequential

number of the packets received by the UDP server at a given packets sending rate. We

mention here that to accommodate the UDP traffic sent/received by the client and

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 110

4.6 Implementation and experimental results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290

La
te

nc
y

(s
)

Packet number

Latency experienced with WS tunnel (100 pps, 400 bytes)

(a) Latency experienced with the WS tunnel us-

ing a packet rate of 100 pps and 400 bytes as

payload length.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290

La
te

nc
y

(s
)

Packet number

Latency experienced with WS tunnel (200 pps, 400 bytes)

(b) Latency experienced with the WS tunnel us-

ing a packet rate of 200 pps and 400 bytes as

payload length.

Figure 47: Latency experienced with the WS tunnel when using packets with 400
bytes of payload.

make it tunneled through the TCP WS tunnel, we used the Socat tool as discussed

in Section 4.4. As reported in Figure 46a, the latency stabilizes at around 50 ms (i.e.,

the latency fixed between the two VMs) after some packet transmissions. This result

shows that the WS tunnel’s impact on latency is negligible during long sessions.

At the beginning of the communication, the higher latency value is due to the three-

way TCP handshake used to set up the WS tunnel (the second peak is attributed to

the TCP windowing). Indeed, while the WS tunnel is being created, the UDP client

keeps sending the packets at a fixed generation rate (i.e., 100 pps); those packets got

queued and, therefore, delayed. For the packets generated at 200 pps (Figure 46b),

similarly, the first train of packets was affected by a higher latency, whereas a latency

of approximately 50 ms identifies the steady-state response. In this case, we notice

that a higher number of packets was affected by the WS tunnel setup (i.e., TCP

handshake), as the packets generation rate is higher than in the first case; thus, more

packets were delayed in the queue. Albeit higher rate, the latency always stabilizes

around the same value of 50 ms (i.e., the latency we fixed between the two VMs). It is

worth mentioning that even though we depict only the first 300 packets in the graphs,

we run each experiment for 10 minutes. For all cases, the latency remained constant

and close to the values being shown. Regarding the performance of the tunnel vis-à-

vis the packets size, we used larger payloads. Specifically, as reported in Figures 47a

and 47b, we used packets with a payload 10 times larger than the first case (i.e, 400

bytes long) and we got the same results.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 111

4.6 Implementation and experimental results

Packets with 40 bytes of payload
(CPU usage in %)

Packets with 400 bytes of payload
(CPU usage in %)

Packets generation
rate (pps)

WS tunnel
client Socat Total WS tunnel

client Socat Total

100 2.48 0.38 2.86 2.6 0.4 3
200 4.37 0.76 5.13 4.31 0.71 5.02
300 5.2 1.12 6.32 5.23 1.09 6.32
400 5.78 1.4 7.18 5.62 1.42 7.04
500 6.18 1.66 7.84 6.11 1.58 7.69

Table 13: WS tunnel client and Socat CPU usage with different packets’ payload
lengths.

To overcome the tunnel’s instantiation queuing issue at the beginning of the com-

munications, a solution that would be conceivable when exposing services is to in-

stantiate the WS tunnels more proactively (i.e., once the user expose the service and

before receiving any request), anticipating the reception of the messages and keeping

TCP sessions alive to avoid the three-way handshakes.

Another aspect we evaluated is the CPU usage since the WS tunneling mechanism

we are introducing is meant to be implemented on IoT nodes. We report in Table 13

the CPU usage of the WS tunnel client. As we can notice, the packet size does

not impact the CPU resource usage as the results when using packets with 40 and

400 bytes payload lengths are aligned. We mention that the CPU usage of Socat is

reported as well since we are tunneling, in this case, a UDP traffic. The case when

using TCP-based flows Socat is not required (see Section 4.4).

We conducted a set of other experiments to evaluate the performance of the WS

tunnel and NGINX reverse proxy hosted on the IoT node. In particular, we measured

the NGINX reverse proxy and the WS tunnel client CPU and RAM usage using a

Raspberry Pi 3 Model B+ (Quad-Core 1.2GHz Broadcom BCM2837 64bit CPU with

1 GB of RAM). To generate GET HTTP requests, we emulated the users by means

of the open-source load testing tool, Locust21. We configured each emulated user to

send one GET request per second (using the constant_pacing function). We report

in Figure 48 the CPU usage of the NGINX reverse proxy and the WS tunnel client.

The CPU usage of the built-in Flask Web server used is reported as well (we opted for

21
https://locust.io

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 112

4.6 Implementation and experimental results

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

CP
U

 u
sa

ge
 in

 %

Number of clients

WStun client NGINX Flask Web server Total

Figure 48: CPU usage on the Raspberry Pi 3 Model B+.

the Flask built-in Web server for a matter of implementation simplicity). Of course,

other Web servers (e.g., Apache) can be used to improve the server performance. As

shown in the figure, when generating ten requests per second by ten users, the WS

tunnel client and NGINX uses 0.91%. This value keeps increasing quite linearly to

reach 8.07% when reaching 100 users. Regarding the RAM usage, the value remained

constant all along with the experiments while varying the number of users. Practically,

the NGINX reverse proxy and WS tunnel client combined use exactly 6.6% of the total

amount of 2 GB of RAM available.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 113

Chapter 5
Deviceless: an approach extending Serverless to IoT

deployments

5.1 introduction

Over the last few years, industry and academic research communities have pro-

posed many IoT applications. As discussed in the previous chapters, to deal with IoT

data management and processing, most of the solutions rely on Cloud platforms [134].

These Cloud-oriented approaches adopted in IoT data management can be framed into

the data-centric category [46] as the only operations provided are data manipulation

ones. Albeit the massive amount of resources the Cloud offers (e.g., compute and

storage), Cloud platforms consider often the IoT devices as only data providers up-

loading data towards datacenters. The Cloud role is then restricted to be a scalable

sink dealing with data processing. This management approach has several drawbacks

stemming from the non-real-time access to IoT data and the inability to personalize

the business logic running on the IoT nodes.

To deal with this short comings, we introduced a set of enabling mechanisms for

the I/Ocloud computing paradigm that aims at providing IoT infrastructure as IaaS

Cloud resources (a paradigm aligned with the IoT-as-a-Service [135]). The I/Ocloud

view can be enabled using virtual instances (i.e., containers or VMs) instantiated

either at the Cloud level or at the network edge to meet the requirements of IoT

applications. Besides, we also provided virtual networking services for the remote

containers and bare-metal IoT nodes to enable the users to set up customized net-

working topologies regrouping them. In this IaaS model, a Cloud user has low-level

access to the virtualized I/O resources of the physical device. However, in some cases,

this low-level access is not required. Besides, in the IaaS computing model, the Cloud

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 114

5.1 introduction

user pays for the virtual instance (i.e., a container or VM) and other resources required

to run applications from when they provision those resources until the time the cus-

tomer explicitly decommissions them. The provisioning periods of the instances (i.e.,

VMs and/or containers) can be then long although the tasks to handle can be short

in time. Indeed, even though a process should be executed only few times in response

to specific exceptional events, in the IaaS model, the developer has to provision an

instance continuously even if no process is running.

On the other hand, with the rise of the Cloud computing paradigm, we have seen

a transition from buying and managing bare metal servers to using instances (in the

form of VMs or containers) hosted in a Cloud datacenter. Recently, we are even

shifting from Cloud-based instances to the Serverless computing model [136] where

all traces of the actual server platform have disappeared. Specifically, the application

developer still writes the server-side logic yet, unlike traditional architectures, it runs

on stateless compute containers that are event-triggered, ephemeral (may only last for

one invocation), and fully managed by the Cloud provider. The developers can focus

then only on the business logic of their applications whilst delegating all infrastructure

management tasks (i.e., scalability, provisioning, etc.) to the Cloud provider; thus

leading to a new utility computing scheme, namely Function-as-a-Service (FaaS) [137].

In this computing model, the functions to be deployed have to be short running

processes to not exceed a delay fixed by the Cloud provider (e.g., for AWS Lambda,

a function can be configured to run up to 15 minutes per execution [138]).

In the context of enabling seamless interactions with IoT resources (e.g., sensors

and actuators), our approach aims at extending the Cloud Serverless paradigm [139]

towards the network edge to use it on top of a (shared) IoT infrastructure. Applica-

tion developers can then make use of the IoT resources (i.e., sensors and actuators) in

a Serverless-like fashion without managing the infrastructure or the used communi-

cation protocols. Furthermore, they will be charged for actual usage at a millisecond

granularity. We refer to this new computing model as Deviceless.

In addition to IoT-as-a-Service provided by the I/Ocloud paradigm, a user can use

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 115

5.1 introduction

S A

Embedded
system

Embedded
system

Embedded
system

Embedded
system

.. .

Ia
aS

 la
ye

r
I/O

 la
ye

r
P

hy
si

ca
l s

ys
te

m

Application /
Service

Application /
Service

.. . Application /
Service

City

S A S A S A

Management

Figure 49: A Software Defined City as closed-loop system.

Deviceless based on a event-programming model without resorting to VNs provisioned

for long periods (when not needed). This programming model can drive significant

infrastructure cost savings. In fact, if we consider the AWS Serverless offering, a

tenant has to pay around 21 USD per month for a Linux-based VM with 1 CPU

and 2 GB of RAM located in the Frankfurt, Germany’s AWS datacenter [140]. On

the other hand, if the tenant opt for AWS Lambda (the AWS serverless computing

platform), he/she has to pay only 0.0105 USD for 5 million function’s executions (the

function we consider has 1 ms a duration and requires 128 MB of memory) [141]. In

an IoT context, the event programming model fits very well the kind of application

we may need and for closed loop systems, such as configuring triggers for a range

of (dispersed) actuators based on sensing activities from geographically distributed

sensing resources (see Figure 49).

It is worth mentioning here that the objective of the Deviceless paradigm is to

simplify the way of conceiving IoT applications: the software engineering aspect. We

do not target issues related to time-sensitive applications. Our view of the Deviceless

aims to make it usable in conjunction with code deployed based on different coding

styles, such as microservices or monoliths. Therefore, we aim to provide Deviceless

and Serverless using the same platform to achieve complete integration between the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 116

5.2 The Serverless paradigm

two computing models.

In this chapter, we introduce our Deviceless approach to explore the Serverless

concept in an IoT scenario. Its implementation is based on our S4T framework and

two OpenStack-based subsystems, Qinling and Zun, that have been customized for

this purpose. Analogously with how the Serverless paradigm exempts users from man-

aging/operating the infrastructure, the S4T Deviceless abstraction model dispenses

developers from managing the IoT infrastructure and interact with remote sensors/ac-

tuators using short running atomic functions.

5.2 The Serverless paradigm

5.2.1 Before Serverless

To build a Cloud-based Web application, the developers have to deal with the

management of the instances hosting the service on the Cloud. Typically, the IaaS

cloud computing model is used. As such, the developers or the infrastructure team

are responsible for managing and provisioning the infrastructure. There are a few

issues with this:

• Users (i.e., the Cloud consumers) are billed for keeping the server up even when

it is not serving any request.

• The Cloud consumer is responsible of managing his/her server and its resources.

• The time to market can be significant due to infrastructure management [142].

For individual developers and smaller companies, dealing with infrastructure pro-

visioning could be hard and a time consuming task. These duties usually distract

developers from their main job of building and maintaining the service/application.

For bigger companies and organizations, developers are not responsible of the in-

frastructure management. Infrastructure provisioning tasks are often delegated to

specialized teams. However, since the developers cannot deploy applications without

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 117

5.2 The Serverless paradigm

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Platform-as-a-Service
(PaaS)

Managed by the user Managed by the Cloud provider

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Function-as-a-Service
(FaaS)

Error handling

Capacity planning

Parallelization

Scalability

Business logic

Functions

Error handling

Capacity planning

Parallelization

Scalability

Business logic

Functions

Figure 50: Management responsibilities in PaaS and FaaS .

cooperating with the infrastructure team, this can lead to slowing down the devel-

opment time. Recently, to deliver applications and services at high velocity, we are

seeing a new kind of developers managing both the software and the infrastructure,

a trend known as DevOps [12]. To push even this concept beyond and extremely

shorten applications delivery time, we are shifting now to NoOps [143] (a paradigm

based on Serverless) were all the infrastructure management tasks are delegated to

a third party (e.g., a Cloud provider) while the developers, instead, focus only on

applications logic.

5.2.2 Serverless computing

Serverless computing (or serverless for short) [136], is an execution model of cloud

computing in which the Cloud provider allocates machine resources on demand, taking

care of the servers on behalf of its customers.

In traditional application deployments, server computing resources are a fixed

recurring cost regardless of the amount of computing work actually performed by the

server. In a serverless IT deployment, the Cloud client only pays for the use of the

service; there is never a cost associated with downtime or inactivity periods: it can

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 118

5.2 The Serverless paradigm

be considered as a form of utility computing.

Serverless is a misnomer in the sense that servers are still used by the Cloud

providers to run code for developers. However, developers of serverless applications

are not concerned with capacity planning, configuration, management, maintenance,

fault tolerance, or scaling of containers, virtual machines, or physical servers. Devel-

opers can add code, build back-end applications, create event-handling routines, and

process data, all without worrying about servers, virtual machines, or the underlying

computing resources, as the hardware and the infrastructure configurations are all

managed by the supplier (see Figure 50). The code that is sent to the Cloud provider

for execution is usually in the form of functions.

In the recent few years, the Serverless Cloud computing model has been rapidly

adopted in the IT field since its first appearance in 2014 with AWS Lambda22. Most

of the Cloud providers, such as Microsoft and Google have introduced comparable

Serverless/FaaS services in their commercial offerings (i.e., Azure Serverless23 and

Google Cloud Functions24, respectively). Besides, other opensource solutions has

been developed, such as Apache OpenWhisk25, Kubeless26 and Fission27.

5.2.3 Serverless for Edge computing

The Serverless computing model provides a set of attractive benefits from the de-

veloper perspective [144]. With the emergence of new services, and to meet their

requirements in terms of, for example, latency and bandwidth usage, solutions based

on edge computing have been adopted [145]. Furthermore, adopting the Server-

less paradigm at the network edge can be an efficient approach in a set of scenar-

ios [146] [147]. Nevertheless, extending the Serverless computing model to cover edge

deployments is not a straightforward process and brings a set of particular challenges,

22
https://aws.amazon.com/lambda/

23
https://azure.microsoft.com/en-us/solutions/serverless/

24
https://cloud.google.com/functions

25
https://openwhisk.apache.org

26
https://kubeless.io

27
https://fission.io

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 119

5.2 The Serverless paradigm

such as resource pooling and infrastructure provisioning/management [148] [149]. Be-

sides, when considering IoT deployments, extending the Serverless to cover such dis-

tributed environments can be more challenging due to networking issues [147].

Unlike Cloud-based deployments where the execution infrastructure is deployed

within the same datacenter (i.e., same physical network) and thus, servers connectivity

is taken for granted, IoT scenarios, instead, are complex and hard to manage. Indeed,

IoT deployments are composed of geographically distributed nodes deployed, most of

the time, behind networking middleboxes (e.g., NATs and Firewalls).

Recent efforts are in progress to expand applicability of Serverless to cover IoT

gateways and devices, such as Amazon Greengrass [78] and Azure IoT Edge [77]

that provides edge-based runtimes dealing with IoT data processing. However, these

solutions are not real extensions of Serverless but just an extension of the Cloud

computing paradigm [148]. Furthermore, these proprietary systems makes the users

dependent to their platforms; thus, increasing vendor lock-in issues [136]. Exploiting

IoT resources (i.e., sensors and actuators) in a Serverless-like fashion can be a fruitful

for the developers as it exempt them from all infrastructure management duties. An

interesting platform extending Serverless to the IoT ecosystem is OpenWhisk-Light

(OWL)28. Yet, the solution is limited in sense that the functions deployed on the

IoT nodes triggers local actions based on only local detected events (i.e., no possible

interactions with other nodes/instances). For instance, the platform can not trigger

actions on an IoT node based on an event happening on another device or the Cloud;

hence leading to limited applicability of the solution. In the same spirit, the Kappa

system [150] enables the developers to conceive flow-based workflows in a Serverless-

like fashion using both Cloud-based instances and IoT nodes.

In our Deviceless view, we aim to abstract the hardware layer of the IoT nodes. In

particular, we would like to make the developers able to interact with IoT resources

(sensors and actuators) in a Serverless-like way through stateless and personalized

atomic functions. In particular, a code that uses Deviceless must behave as a Cloud

28
https://github.com/kpavel/openwhisk-light

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 120

5.3 The OpenStack FaaS subsystem: Qinling

IoTronic
conductor

IoTronic
command
line client

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

IoTronic A
P

I server
Q

inling A
P

I server

Qinling
database

Qinling
AMQP
queues

WAMP control
channel

IoTronic
WS tunnel

agent

WebSocket
tunnels

Zun A
P

I server

REST communication

AMQP (pub/sub, RPC)

other communication

Qinling
engine

Zun
database

Zun
AMQP
queues

Qinling
command
line client

IoTronic
database

Horizon
dashboard

Qinling
orchestrator

Zun
networking

driver

Zun WS
proxy

Zun
scheduler

...

Horizon
dashboard

Horizon
dashboard

Figure 51: The Cloud-side Deviceless system architecture.

Serverless native code when it comes to interacting with any kind of application:

microservices, monolithic or even Serverless applications.

5.3 The OpenStack FaaS subsystem: Qinling

Qinling (violet subsystem in Figure 51) is an OpenStack service that aims at

providing a platform to support Serverless functions (like AWS Lambda). The Qinling

system is highly flexible as it can be used with different Container Orchestration

Engines (COEs), such as Kubernetes and Docker Swarm. The Qinling system is

composed of:

• Qinling-API: represents the entry point of the interactions with Qinling. It ex-

poses a set of REST APIs through which, users or other OpenStack services can

communicate with the system (e.g., to create runtimes and execute functions).

It handles the received request by routing them either to the Qinling-engine or

the Qinling-orchestrator.

• Qinling-engine: it is the core subsystem that handles communications be-

tween the Qinling components as well as managing backend operations (e.g.,

pods instantiation, function creation/execution). It also represents the unique

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 121

5.4 The Deviceless system description

entry point to the database where metadata about functions and their containers

is maintained.

• Qinling-orchestrator: it is the component responsible for selecting the best

candidate where to provision a runtime (e.g., based on CPU/RAM available) and

scaling up/down (through the interaction with a COE) the number of containers

deployed based on the number of requests received.

In a nutshell, Qinling is meant to instantiate the environment required to cre-

ate runtimes end then execute users’ functions. Specifically, when Qinling receives

a request to create the runtime for a function, it instantiates (using Zun, see blue

subsystem in Figure 51) the containers needed to execute the function. In partic-

ular, Qinling creates three containers used for different purposes (the environement

composed of these containers is called a capsule29) :

• Runtime container: it is the isolated environment where users’ functions

get executed. Qinling supports three runtimes namely, Python2, Python3, and

Node.js.

• Sidecar container: it is the container where the functions required packages

are downloaded/stored. This container is used subsequently to provide these

packages for the runtime container.

• Pause container: the container that ensures network reachability for the two

containers mentioned above since is the only one attached to the network.

5.4 The Deviceless system description

In this section, we describe the architecture of the Deviceless system architecture

and workflows to execute functions at the network edge. The system is based on

IoTronic/LR and the two OpenStack Cloud-oriented subsystems Zun and Qinling

that have been customized to extend their (limited) capabilities and deal with IoT
29

the capsule is equivalent to the pod concept in Kubermetes

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 122

5.4 The Deviceless system description

deployments. A major modification, when compared to typical Cloud-based Serverless

deployments, is that, in our case, we split the Zun components between the Cloud and

the devices deployed at the network edge. In our approach, we consider the (remote)

IoT nodes as a computing infrastructure instead of the Cloud-based compute nodes.

Therefore, to make this infrastructure reachable by the Cloud subsystems, we used

suitable mechanisms to deal with NATs and firewalls traversal. Zun and Qinling can

then manage containers and functions deployed at the network edge. In the following,

we report details about the integration of Zun and Qinling with IoTronic to cope with

IoT environment constraints.

5.4.1 Containers orchestration

In typical OpenStack Serverless deployments, Qinling uses non-compatible Open-

Stack COEs (e.g., Kubernetes and Docker Swarm). In such deployments, the inte-

gration of Zun compute nodes as part of Kubernetes/Docker Swarm clusters is not

straightforward and requires manual configuration by the administrator. However,

this kind of (manual) configuration in an IoT context would become a hurdle consid-

ering, on the one hand, the large number of IoT devices that should be managed, and

on the other hand, the high dynamicity of IoT deployments (i.e., adding new devices

to deployments or removing others). In such a situation, having an automated mech-

anism to include/remove into/from the COE cluster can bring more flexibility for the

system. To deal in our situation with this limitation, we have designed for Qinling

an OpenStack-compliant COE based on Zun; therefore, a compute node (i.e., an IoT

device in our case) will be integrated automatically within the COE cluster.

The second aspect that has been extended in Zun is related to containers reacha-

bility. Indeed, if we consider a typical OpenStack deployment, containers reachability

within a datacenter is assured by the overlay networking services provided by the net-

working subsystem, Neutron. Nevertheless, for instances (i.e., containers) deployed

outside datacenters, as is the case for the kind of deployments we are targetting, con-

tainers reachability can not be handled by standard Cloud mechanisms [14]. Indeed,

IoT nodes are often deployed behind NATs and firewalls. We developed then for Zun

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 123

5.4 The Deviceless system description

a new networking driver that uses IoTronic in order to make the remote containers

reachable. Specifically, the new driver uses WebSocket as a transport channel with a

port forwarding capability provided by the Cloud. Therefore, requests reaching the

Cloud on a specific port will be forwarded through the WS tunnel to an associated

container (i.e., each port is associated with a remote container).

Another extension to Zun, specifically on its scheduler, has been done. In our

Deviceless view, a user will request the setup of a runtime then the execution of a

function on a specific IoT node to get, for example, the value of a sensor (or even do a

preprocessing of this value). The standard Zun scheduling policies do not provide this

kind of control to specify a particular compute node to instantiate a container (a set

of filters instead are used, such as RAMFilter, CPUFilter, LabelFilter, etc.). We then

added a new policy based on the name/id of the compute node called HostnameFilter.

5.4.2 Functions executions

The Deviceless system entry point is Qinling. To create a runtime on a specific

IoT node or group of nodes then execute functions on that/those runtime(s), a Cloud

user interacts with Qinling (i.e., he/she has to make the selection). Qinling, after-

wards, interact with Zun (to create the containers) and IoTronic to provide network

reachability for the containers. To enable the selection of IoT nodes in Qinling using

their hostname/id or labels, we added a new selection parameter called NodeName and

nodeSelector. The Qinling uses the hostname/id and labels to send the request to Zun

that uses in its turn, the HostnameFilter and LabelFilter filtering rules, respectively

(see the previous subsection).

Till now, the new features introduced in Qinling are related to the creation of the

runtimes. However, for functions execution, this is not enough. Indeed, if we consider

standard Qinling implementations in Cloud environments, to identify the runtime

where a function should be executed, Qinling relies on the IP addressing associated

by the OpenStack networking service (i.e., Neutron/Kuryr) to the container. In our

case, the edge-based capsules cannot use the standard OpenStack networking service

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 124

5.4 The Deviceless system description

WAMP control
channel
 MPU-powered IoT node

Board FileSystem

s4
t W

A
M

P
lib

Lightning-Rod
engine

s4t wstunnel client

OS tools

Lightning-Rod

plugin

s4t plugin
loader

WebSocket
tunnel

sensors
and

actuators

GPIO

MPU

REST communication
AMQP (pub/sub, RPC)
other communication

Zun
compute

agent

Docker
engine

Docker
engineComtaierContainer

Reverse
proxy

Figure 52: The device-side FaaS system architecture.

since it is unable to cope with the particularity of IoT deployments (Neutron does not

manage distributed instances deployed outside the Cloud). Hence, we are not able to

select the runtime based on its private/overlay IP address. To manage the association

between the incoming execution requests and the runtimes they are associated with,

we make an association between the couples {Cloud IP address, port}, and runtimes.

Therefore, each of the runtimes deployed at the network edge is reachable through

the Cloud public IP address and a specific port (i.e., the service forwarding capability

provided by S4T). On the IoT node side, we come up with the reverse proxy to

route the requests received (see Figure 52). In particular, we modified the request

going from Qinling to the edge-based devices by adding a new field, runtime_id, that

points to the correct runtime on the IoT device. Once the reverse proxy receives a

request, it checks the runtime_id field contained in the request and associates it with

one of the capsules it manages (each pause container has a label called runtime_id).

Consequently, we modified the Qinling database to store the capsules’ runtime_ids

as well.

5.4.3 Deviceless functional workflows

5.4.3.1 Runtime creation

In this subsection, the workflow of creating a runtime on a specific edge-based

node using the Qinling subsystem is described. In particular, we put the spotlight

on the different interactions among the subsystems involved (i.e., Qinling, Zun, and

IoTronic). As a use case essential requirement, we presume that the hosting node

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 125

5.4 The Deviceless system description

2

5
6

7

3

9

10

12 11

Create a
runtime

Schedules
the node

Creation
request

Creates the
containers with
specific
drivers

Creates the
Capsule (i.e.,
containers)

Returns the
assigned port

Status
update

Completion
notification

Cloud side Node side

Qinling API Qinling
orchest. Zun API IoTronic Zun

Compute
Docker
engine Capsule

1

Requests
the creation
of a runtime

Zun net
driver

8

Enables the
networking

for the
capsule

Zun
scheduler

4

Sends the
request for the
scheduling

Enable the
IoTronic
service

Figure 53: A runtime instantiation workflow.

(i.e., the IoT device) is already registered to the Cloud. The following steps describe

the workflow of instantiating a runtime on a device deployed at the network edge:

1. The user requests to deploy a runtime on a specific remote node, either through

the dashboard or the CLI. Then, the dashboard/CLI performs a specific Qinling

API call via REST.

2. The Qinling API server forwards the runtime creation request to the Qinling

(Zun-based) orchestrator.

3. The Qinling orchestrator sends the request to the Zun-api server with a partic-

ular body where it specifies the nodeName attribute (i.e., the hostname of the

device where the runtime should be created (see Section 5.4)).

4. The Zun-api server forwards the request to the Zun scheduler in order to select

the host (i.e., IoT device) where the runtime should be created.

5. The Zun scheduler apply the new filter HostnameFilter (see Section 5.4.2) to

schedule the appropriate host. Afterwards, it sends to the Zun-compute agent

running on that host a request to create a capsule (the three required containers).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 126

5.4 The Deviceless system description

6. After receiving the request, the Zun-compute agent sends an HTTP request, on

localhost, to the Docker engine to create the capsule.

7. Docker creates the containers needed.

8. After creating the containers, the Zun-compute agent requests the Zun network-

ing driver, that uses IoTronic, to make the container reachable by exposing the

capsule (i.e., the pause container) to the user.

9. The Zun networking driver interacts with the IoTronic subsystem to expose

the capsule. Specifically, IoTronic exposes the capsule using a particular port

associated with a public IP address on the Cloud then, a WS tunnel is created

between the IoT device and the Cloud. Hence, any request received on the

Cloud port/IP address will be forwarded through the WS tunnel to reach the

IoT node where the concerned runtime is instantiated (reaching exactly the

runtime container during a function execution will be discussed in the next

workflow that exploits the reverse proxy).

10. IoTronic sends back to the Zun networking driver the port and the Cloud IP

address associated with the capsule then, the metadata of the capsule already

created in step 7 (i.e., capsule runtime_id, IP/port) will be stored in the Zun

database.

11. The Zun-compute agent sends a notification about the status of the operation to

the Zun-scheduler. The response contains the runtime_id of the capsule created

that will be stored in the Qinling database (the runtime_id is important to reach

the runtime when a function should be executed).

12. The Zun-scheduler forwards the notification to the Zun-api server that con-

tacts, in its turn, the Qinling subsystem to store on its database the capsule

runtime_id.

The workflow reported previously concern the instantiation of a runtime on a single

IoT node. In order to deploy runtimes on several IoT nodes having the same label,

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 127

5.4 The Deviceless system description

2

7

8

3

9
10

Get metadataExecution
request

Routes the
request through
the WS tunnel Routes request

using reverse
proxy

Returns result
through the WS

tunnel

Returns the result
of the execution

Cloud side Node side

Qinling API Qinling
orchest. Zun API Lightning

Rod Runtime

5

Returns
information

11

Returns the
result of the

execution

1

Requests the
execution of a
function

Zun
database

4

Get metadata

6

Returns
information

12

Returns the
result of the

execution

Figure 54: A function execution workflow.

the same workflow will take place while specifying in step 3 the nodeSelector attribute

instead of nodeName. Therefore, the Zun scheduler will use the LabelFilter to select

the set of IoT nodes where the runtimes should be provisioned.

5.4.3.2 Execution workflow

The workflow of executing a function on a specific runtime deployed on an edge-

node using our FaaS system subsystem is reported bellow. As a use case essential

requirement, we presume that a hosting node (i.e., an IoT device) is already registered

to the Cloud and the user has already written his/her function and associated it to a

particular runtime (a function_id is stored on the Qinling database) after deploying

a runtime on the edge device. The following steps describe the workflow of executing

the function on the runtime:

1. The user sends a request to execute a function on a specific runtime created on a

remote node, either using the dashboard or the CLI. Then, the dashboard/CLI

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 128

5.5 A FaaS-powered flow-based development tool for distributed IoT environments

performs a specific Qinling API call via REST. The request body contains the

function_id.

2. After getting from its database the runtime_id involved, the Qinling-api server

forwards the request to the Qinling (Zun-based) orchestrator.

3. The orchestrator contacts Zun using the API server to get the metadata of the

runtime involved (i.e., IP/port used by IoTronic to expose the runtime).

4. The Zun-api server forwards the request to the Zun database to get the infor-

mation.

5. The Zun database sends back the metadata to the Zun-api server.

6. The Zun-api server forwards back the response to the Qinling orchestrator.

7. Based on the metadata received, the orchestrator routes the execution request

through the WS tunnel already created when the runtime was deployed on the

edge node. The request forwarded contains a field with the runtime_id.

8. Once the request reaches the IoT node through the WS tunnel, LR uses the

reverse proxy to identify the runtime concerned. Specifically, the reverse proxy

makes use of the runtime_id field in the received request to make the associa-

tion.

9. After the execution of the function on the runtime, a result is sent back to LR.

10. Using the WS tunnel, LR forwards back the result to the Qinling-orchestrator.

11. The orchestrator sends the result to the Qinling-api server.

12. Finally, the function execution result is sent to the user/dashboard.

5.5 A FaaS-powered flow-based development tool for distributed

IoT environments

In this section, we report a use case where the edge-FaaS system described be-

fore has been used. In particular, we enhanced the capabilities of the flow-based

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 129

5.5 A FaaS-powered flow-based development tool for distributed IoT environments

Figure 55: Node-RED browser-based flow editor.

development tool for visual programming namely Node-RED to cover distributed IoT

deployments.

5.5.1 Node-RED

Node-RED30 is a is a flow-based development tool for visual programming for

wiring, hardware devices, APIs and online services as part of the IoT topic. It provides

a browser-based flow editor (see Figure 55) to create JavaScript actions. The runtime

of the tool is built on Node.js. The data pipelines programs created using Node-RED

are called flows consisting of nodes connected by wires. The user interface is easy to

use as it consists of a flow editor with node templates on the left (see Figure 55) that

can be dragged and dropped into a flow canvas. As soon as the user create his/her

flow or modifying it, he/she can deploy it by saving it into the server and (re)starting

its execution on the Node-RED server [151].

Node-RED is supported by IBM and a large community of users that contribute

new nodes and flows. New nodes can be implemented in JavaScript and added to the

system by adding an HTML file to implement the UI in the browser, and a JavaScript

file for data processing or integration on the server. Text representations of flows can

be imported and exported between instances.

While Node-RED have been found to be useful on its own as data flow tool, several

30
https://nodered.org

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 130

5.5 A FaaS-powered flow-based development tool for distributed IoT environments

IoT scenarios require the coordination of computing resources across a distributed

environment: on servers, gateways and devices themselves. A feature that Node-RED

does not provide [151]. An interesting feature then is to extend the simple flows model

to include different types of wires. In a distributed flow, the wires between nodes are

not all local connections in the same execution engine, but may involve the transfer

of data between servers and devices over a local or wide area network. “Local” wires

are hosted on the same execution engine, while “remote” wires will require a network

connection.

5.5.2 Extended Node-RED

We exploited the Deviceless paradigm to extend the capabilities of the Node-

Red flow-based development tool for visual programming. In particular, we added

a new type of nodes that exploit, underneath, the functions managed by Qinling.

Thanks to the Deviceless system, a user can design workflows/pipelines among IoT

devices deployed at the network edge. Furthermore, the solution can also use the

standard Cloud-based Serverless computing model as shown in Figure 56 that de-

picts the high-level architecture of the approach. The Deviceless approach enables a

seamless orchestration of Qinling action containers deployed at the network edge with

Docker and Node-RED. From the user perspective, it is just an extended version of

Node-RED allowing the feature of enabling Qinling actions using a distributed IoT

infrastructure. Besides, instead of using only JavaScript to create actions/functions,

our approach extends the Node-RED programming languages choice to include other

languages such as Python.

When a user envisions the provisioning of a distributed flow, he/she can do it

without interacting or managing any remote IoT node. We report here a simplified

functional workflow (see Figure 56):

1. The user develops/defines the business logic to be deployed on a set on nodes

(i.e., functions to read the value of a sensor or actuate an action).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 131

5.5 A FaaS-powered flow-based development tool for distributed IoT environments

function 1

function 2

function 3

function 4

Zun compute agentLightning-Rod

Qinling API

Engine

Orches.

IoTronic API

WS-tunnel
agent

WAMP
agent

Net
driver

Zun API

Scheduler

function

function

function

function

Reverse proxy

Zun compute agentLightning-Rod

function

function

function

function

Reverse proxy

Zun compute agentLightning-Rod

function

function

function

Reverse proxy

Qinling IoTronic Zun

function

function

function

Zun compute agent

Zun
compute
node

S4T/OpenStack
Cloud

Docker engine Docker engine Docker engine

Docker engine

IoT node IoT node IoT node

1. D
evelop

2. Push

4. Deploy

sensors &
actuators

sensors &
actuators

sensors &
actuators

3. Define

Figure 56: Integration of the flow-based Node-RED development tool with the De-
viceless approach.

2. The user pushes the functions to the Cloud Qinling repository. Then, he/she

configures Node-RED nodes to use Qinling function (see Figure 57).

3. The user, using the extended Node-Red GUI that also has the new nodes based

on Qinling. The user can design his/her customized workflow among a set of

distributed IoT nodes and the Cloud-based instances as well. We mention here

that the IoT nodes do not host any Node-RED server. The user do not manage

the IoT nodes that are not even aware about Node-RED.

4. Once the user runs his/her Serverless/Deviceless flow using Node-RED GUI,

Qinling, together with Zun and IoTronic, takes the responsibility of instantiating

the functions and executing them as required by the application.

Figure 57: Node-RED node for Qinling: configuration editor

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 132

5.6 Experimental results

Figure 58: Qinling node-based example flow.

Figure 59: Graph and gauge generated by the Qinling functions.

To highlight a use case of our approach, we created a simple flow that makes use

of Qinling to monitor the CPU usage of an edge IoT node. We mention that the flow

is created on a Cloud-based VM and not the IoT node: the device is not even aware

about Node-RED.

In Figure 58, we show a flow that uses a Qinling-based Node-RED function. In

particular, the flow is meant to report the CPU usage on a Raspberry Pi every one

second. A Node-RED Timing node is used to trigger the function deployed on the

board (the node is named Qinling-node in the figure) to report the CPU percentage

usage. Afterwards, the value received is sent to a formatter in order to create a 10

minutes history CPU usage graph and a gauge showing the last value received (see

Figure 59). We mention here that the Node-RED flow is conceived on a Cloud-based

instance and not the IoT node itself (unlike OpenWhisk Light, see Section 5.2.3)

5.6 Experimental results

In the following, a preliminary evaluation of the Deviceless system is provided.

In particular, we focus on the resource usage of the system on the IoT nodes and

the impact of the new Zun networking driver we introduced. For that purpose, we

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 133

5.6 Experimental results

Idle 10 requests
CPU RAM CPU RAM

Reverse proxy ' 0% 1.1% 3.4% 1.1%
WS tunnel client ' 0% 4.1% 4.2% 4.1%

Zun agent ' 0% 9.7% 0% 9.7%
Lightning-Rod ' 0% 0.8% 0% 0.8%

Total ' 0% 15.7% 7.6% 15.7%

Table 14: The resources usage of the Deviceless system on an IoT node

deployed the Cloud-side of the system (i.e., IoTronic, Qinling, Zun) on a 10th gen i5

Intel-based late 2020 Macbook Pro. We mimic the IoT node using a VM hosted on the

same machine to have a fixed latency emulating a WAN interconnection. Therefore,

we can evaluate the impact of the networking driver we conceived. In particular, we

used the Linux Trafic Control (TC) with queuing disciplines (qdisc) to set the latency

between the Cloud and the IoT node. The IoT node (i.e., VM) is configured with one

vCPU and 1GB of RAM.

In Table 14 we report the averaged CPU and RAM usage of the Deviceless system

on the IoT node. In particular, we report the resource usage of all the processes in-

volved on the node-side (i.e., WebSocket tunnel client, Zun compute agent, LR, and

the reverse proxy). We are considering two scenarios, an idle mode, when all the

processes mentioned earlier are running but not executing any task (during 10 min-

utes). The second scenario, instead, is when the IoT node receives ten simultaneous

functions execution requests (the table reports the results averaged over 20 runs).

As we can notice from the table, when the IoT node is not receiving any execution

request, the Deviceless system does not use any CPU resources. Regarding the RAM

usage, the system uses precisely 15.7% of the 1 GB of memory available. We mention

that the RAM values for all the processes remained constant and equal to the values

shown in the table during the 10 minutes. When the IoT node receives ten simul-

taneous execution requests, the CPU values increase for both the LR reverse proxy

(that routes the requests to the runtime) and the WS tunnel client (a WS tunnel is

established between the Cloud and the IoT node). Yet, both the Zun agent and LR

do not load the CPU as they are not involved during functions execution (they are

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 134

5.6 Experimental results

Serverless
(Cloud-based)

Deviceless
(50 ms latency)

Deviceless
(100 ms latency)

Execution
time 150 ms 419 ms 850 ms

Table 15: Execution time comparison between Serverless and Deviceless

part of the control plane: creating runtimes and instantiating WS tunnels).

To further evaluate the solution, we conducted another experiment to assess the

impact of the network latency on the functions execution time. We specifically com-

pared the execution time between a standard Cloud-based Serverless deployment and

the Deviceless approach that uses the new WebSocket-based Zun networking driver.

Table 15 reports the results obtained when comparing Serverless and Deviceless

execution times (results averaged over 10 runs are reported). In the table, the execu-

tion time refers to the whole process starting from sending the request to execute a

function until getting the result. This process includes the management of the request

on the Cloud as well as the delays to reach the containers (either on the Cloud for

Serverless or the network edge for Deviceless), execute the function and sending back

the result.

Of course, when talking about Deviceless, we are expecting higher delays due to

the network latency. This is what we can see from Table 15. Executing a function

on the Cloud requires only 150 ms. On the other hand, when the containers are on

the network edge, more delays are introduced. We would like to mention that the

delay added is not equal to the RTT: sending the request and receiving the result.

In fact, if it were the case, we would expect a value around 250 ms when the latency

introduced by the network is equal to 50 ms (i.e., Serverless execution time + RTT

= 150 ms + 100 ms). However, since the new driver we are introducing uses a TCP-

based Websocket tunnel, which means a three-way TCP handshake (i.e., 1.5 RTT)

plus the time required to send the execution request and receiving the result through

the tunnel (i.e., 1 RTT), the delay increases accordingly (see Table 15).

To deal with the higher latency introduced by the three-way TCP handshake, we

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 135

5.6 Experimental results

would like to improve the performances in terms of the delay required to execute the

functions. In particular, a solution that can be considered to decrease functions exe-

cution time is instantiating WebSocket tunnels more proactively. Thus, anticipating

demand for function execution requests with predictive routines and keeping TCP

sessions alive to avoid three-way handshakes for most functions invocations. Besides,

to overcome the Cloud issues related to latency and enhance the Deviceless approach

performances, another aspect to investigate is exploiting the proximity introduced

by Mobile-edge Computing (MEC) [152] to IoT nodes to orchestrate the Serverless

functions executions at the network edge.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 136

Chapter 6
Industrial use case: Stack4Things as a Fog system for

Industrial IoT monitoring applications

6.1 Introduction

To improve the performances of industrial processes and achieve significant op-

timizations, the fourth industrial revolution (also known as Industry 4.0) aims at

substituting the mechanical operations and human interventions with automated sys-

tems relying on machine-aided decisions [153]. In this context, ICTs promote the use

of embedded systems within the industrial and manufacturing fields. Indeed, IoT

is the main facet able to introduce automation in industrial processes by making de-

vices/things able to communicate among each other and/or with digital systems [154].

To emphasize the particularity of IoT usage in the industrial sector, the term Indus-

trial Internet of Things (IIoT) [155] has been promoted as a substitute name instead

of the all-encompassing IoT term.

In IIoT deployments, Industrial Wireless Sensors Network (IWSN) technologies

play a key role in deploying monitoring and control systems thanks to the higher

flexibility in sensors and actuators placement [156]. However, to make IWSN deploy-

ments capital expenditures affordable, sensor nodes are mainly composed of inherently

resource-constrained devices unable to cope with data processing or storage. There-

fore, IWSNs mostly rely on transferring data toward centralized systems with enough

computing and storage resources [157]. One of the mainstream solutions to cope with

this problem is the Cloud computing paradigm. Nevertheless, even though providing

enough resources to deal with data management/processing, the Cloud approach in-

duces, at the same time, several drawbacks (e.g., high latency, security/privacy issues,

data storage cost) [158]. As such, the Fog computing paradigm has been introduced to

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 137

6.2 System Architecture And Description

solve (most) of the issues by pushing resources to the network edge and thus, enabling

smart operating edge environments with enhanced capabilities [159]. In this design, a

number of WSN motes can be clustered around a (powerful) Fog node capable of deal-

ing with data processing/storage and derive actionable intelligence locally. The Fog

nodes can also have the possibility to vertically offload workloads to the Cloud when

more resources are required; thus constituting a stacked Fog/Cloud architecture [160].

In this chapter, we propose a Fog-based architecture suited for IIoT monitoring

scenarios. We used our S4T middleware in particular, the remote (re)programmability

of the Fog nodes to provide a flexible system for industrial monitoring duties. More-

over, we exploited the Fog computing to implement a data aggregation technique able

to improve network performance in terms of packet delivery and latency. As a case

study, we focused on a distributed monitoring system for induction motors. In par-

ticular, with the aim of testing the proposed architecture in a real-world industrial

scenario, we designed a specific sensor-board for real-time monitoring of motors health

parameters.

6.2 System Architecture And Description

In this section, we present a detailed description of our layered Fog-based moni-

toring system (see Figure 60) as well as its hardware and software requirements.

6.2.1 The sensing layer

To implement the Sensing layer for our industrial monitoring system, we had

to make it easily scalable and cost-effective. For this purpose, we opted for the

use of battery-powered and wireless-capable devices with extremely low power data

transmission. In particular, we use devices based on the widely adopted IEEE 802.15.4

protocol [161]. Among the available motes based on the IEEE 802.15.4 standard and

the 2.4 GHz ISM band, we picked IRIS mote products by MEMSIC Inc. As the

operating system for the motes, we chose TinyOS31 that makes the source code easily
31

http://www.tinyos.net/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 138

6.2 System Architecture And Description

OS level callsREST communication

Service forwardingControl channel

A
gg

re
ga

ti
on

/C
om

pu
te

La

ye
r

M
id

dl
ew

ar
e

La
ye

r
A

pp
li

ca
ti

on

La
ye

r

...

Other protocols

802.15.4 links

IRIS
Mote

IRIS
Mote

IRIS
Mote

IRIS
Mote

IWSN gateway

Function

MCU
Low-level

I/O

MPU

Filesystem

Lightning-Rod

IRIS
Mote

Cloud
Level

Fog
Level

IWSN
Level

S4T IoTronic
command
line client

Web browser

OpenStack
command
line clients

IoTronic

Keystone OpenStack
services

OpenStack

Se
n

si
n

g
 L

ay
er

Figure 60: Monitoring system layers.

portable when other commercial platforms developed, for instance, by Advanticsys

and Zolertia.

As regards the rest of the protocol stack, we used IPv6 and IPv6 over Low-Power

Wireless Personal Area Networks (6LowPAN) [162] as network layer protocols and

the Routing Protocol for Low-Power and Lossy Networks (RPL) as routing protocol.

Moreover, UDP has been selected for the transport layer.

For the particular use case we are addressing, i.e. the monitoring of three-phase

motors, a sensor board has been specifically designed. We report its block diagram

in Figure 61. Technically, this sensor board can interface a IWSN mote with a three-

phase motor with voltages in the range of 10-500V and currents up to 50A. The

board uses hall effect transducers to measure voltages and currents while providing a

perfect (galvanic) isolation between the motor and the mote. Regarding the motors

characteristics to monitor, temperature and accelerometer sensors are integrated in

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 139

6.2 System Architecture And Description

From
motors

Hall effect
Voltage

Transducer

-

Vcc

In

Offset

Out+

Gain

IR
Detector

IR
LED

Acceletometer

Signal Conditioning Block

T

To IoT
Device

3 x

3 x

Vi

Ii

Hall effect
Voltage

Transducer

Figure 61: Block diagram of the sensor board used in our experiments for interfacing
3-phase motors. The board is equipped with all the necessary sensors for measuring
voltages, currents, speed, temperature and mechanical vibrations.

the board to monitor the temperature and mechanical vibrations. Finally, a system

composed of an Infrared (IR) light source and an optical detector is put in place to

measure rotational motion.

6.2.2 The aggregation/compute Layer

To process/manage the data generated by the motes composing the Sensing layer,

we introduced in our system a Fog layer composed of relatively powerful nodes. We

used specifically as Fog nodes the low-cost MPU-powered Arancino32 single board

computers commercialized by the academic spinoff company Smartme.IO. The promi-

nent feature of these boards is the joint on-board availability of an MPU alongside

one microcontroller unit (MCU) in order to assign workloads and peripherals (e.g.,

sensors) according to the unique features of every module, specialized for specific du-

ties, while making room for the two subsystems to work closely enough to cooperate.

In particular, on the MCU side, the Arancino host, in its base configuration, an Atmel

SAMD 32-bit part, which acts as a bridge between sensors and the MPU where most

logic will run. In terms of MPU, a socket can host different MPUs. In particular, for

our scenario, we used a Raspberry Pi 3 compute module.

32
https://arancino.cc/

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 140

6.2 System Architecture And Description

Being an MPU powered board, the Arancino can deal with most of processing tasks

in IoT scenarios and, in particular, data aggregation algorithms. Indeed, the board

can host different Linux distributions (e.g., Raspbian, OpenWRT) and therefore, it

can host several runtime environments (e.g., Python, Node.js, Java). Consequently,

a wide range of available libraries can be used. In particular, we used the Python

SciPy library to deploy a data aggregation algorithm (see Section 6.4). To efficiently

manage the deployment of the aggregation algorithms, we used the feature of remote

programmability of boards provided by the Middleware layer (see next subsection).

Besides performing data aggregation, this layer is also responsible for setting up

topology and managing topology information. In particular, we implemented a simple

clustering scheme where Fog nodes send packets periodically and each sensor node

selects its cluster head by measuring the Received Signal Strength Indicator (RSSI)

of received packets. In particular, for each sensor node, the cluster head is chosen

considering the Fog gateway corresponding to the maximum RSSI level. It is worth

noting that the proposed scheme can be profitably used also in the case of dynamic

networks.

6.2.3 The middleware layer

In a large industrial field, it is likely to have Fog nodes distributed within different

sites/working zones and, therefore networks with different configurations and security

policies. In this context, to enhance the capabilities of our industrial monitoring

system and manage efficiently the Fog nodes, we used our OpenStack-based S4T

platform meant for IoT infrastructure management as a Middleware layer.

S4T provides the capability to inject custom code on any edge-based node, even at

runtime, under the guise of independent pluggable modules, i.e., a way to adapt the

behavior of the IoT node under consideration to the task at hand (i.e., the context).

The runtime environment of choice in our case is Python as it provides advanced pro-

gramming facilities with a huge collection of third-party libraries and a comprehensive

open source ecosystem overall. The injection process is carried out by transferring the

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 141

6.3 Security mechanisms of the system

code as payload of a WAMP33 RPC message. An instantiated plugin can be defined

in this context as any process running in parallel that executes a workflow, e.g., a

continuous collection of sensor measurements. This (re)programmability capability

makes the Fog layer flexible in the sense that it can be adapted to networks changes

for example, when adding or removing sensors to/from a network. Besides, the flexi-

bility of Fog nodes extends the scope of possible application scenarios (e.g., schedule

motors maintenance, modeling energy consumptions, automatic detection electrical

and mechanical faults).

6.2.4 The application layer

The top layer of the system is the Application layer. This layer exploits the data

stored at the Middleware layer to provide for final users suitable GUIs to display

the monitoring information using Grafana34. Applications also can provide easier

interactions with the Middleware layer to manage the Fog nodes through RESTful

interactions with IoTronic.

6.3 Security mechanisms of the system

Security is one of the most important aspects to consider in IWSN applications

due to the fact that even basic system hacking could damage machines, business,

and operators too [163]. In general, four basic security services are needed for IWSN

applications: confidentiality, data integrity, authentication, and access control. The

proposed architecture addresses all the above services also exploiting reconfigurability

at the Fog layer to achieve the desired trade-off between security, complexity, and

energy consumption. While standard mechanisms have been exploited to guarantee

security at the Fog, Cloud, and Application layer, at the Sensing layer, a new ad-

hoc approach has been designed and implemented. In this section, we provide an

overview of the security mechanisms available in our architecture mainly focusing on

the Sensing layer, where an original contribution is introduced.
33

https://wamp-proto.org
34

https://grafana.com

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 142

6.3 Security mechanisms of the system

6.3.1 Sensing layer security services

Confidentiality mechanisms are needed to guarantee that relevant business infor-

mation are not read from unauthorized users. The common method for achieving that

goal is encryption. Basically, encryption converts the original information into a form

that is not intelligible by unauthorized users. Despite several encryption algorithms

already exist, such as Data Encryption Standard (DES) and Advanced Encryption

Standard (AES) [164], low-complexity encryption algorithms should be preferred for

WSNs to take into account their constrained computational and energy resources.

In particular, for the Sensing layer, we designed a simple symmetric encryption

algorithm specifically suited for WSNs that uses a 128-bit key to encrypt and decrypt

packet payloads. The algorithm can be thought as a simplified version of the AES,

developed with the main aim of reducing energy consumption and storage resources

in comparison to the original AES algorithm. The algorithm has been implemented

in TinyOS and tested with IRIS motes. Moreover related energy consumption has

been measured.

Data integrity services avoid that unauthorized users or hackers could modify

information while packets are in transit. As regards communications between the

gateway and the motes, we introduced a simple data integrity mechanism at the link-

layer by concatenating a random number at the end of each packet before encryption.

A simplified block diagram of the encryption algorithm is shown in Figure 62.

The 128-bit secret key is logically decomposed in 16 sub-keys of 8 bits each, i.e.

K1, ..., K16, which are used to encipher blocks of data. More precisely, we assume

that the payload of each packet is logically decomposed in blocks of four words of 16

bits each, i.e. W1, ...,W4. Each block is then processed in six consecutive steps to

obtain an enciphered block, i.e. C1, ..., C4. In each step a 16-bit word is transformed

by a function f() to obtain another 16-bit word. Henceforward, we use the notation

[MSB(k+1), LSB(k+1)] = f([MSB(k), LSB(k)]) to indicate that in the step k the Most

Significant Byte (MSB) and east Significant Byte (LSB) are transformed by the func-

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 143

6.3 Security mechanisms of the system

Figure 62: Block diagram of the encryption algorithm used for the Sensing layer

tion f(). Moreover, we indicate with rotn() a cyclic shift of n bits. The proposed

algorithm is shown in Algorithm 1 and, according to the previous notation, it can be

summarized as follows.

(a) SPLIT: each input word is logically splitted in two parts corresponding to the

most significant and least significant byte, i.e. [MSB(0), LSB(0)] = [MSB(Wi), LSB(Wi)]

(b) XOR1: the word [MSB(0), LSB(0)] is xored with sub-keys [K4·(i�1)+1, K4·(i�1)+2];

(c) CIRCULAR SHIFT: the sub-key K4·(i�1)+3 is splitted in two parts,

[MSB(K4·(i�1)+3), LSB(K4·(i�1)+3)] which are used to rotate the word [MSB(1), LSB(1)];

(d) SCRAMBLING: A LookUpTable (LUT) with 256 entries stores a random per-

mutation of all integer numbers in the range from 0 to 255 and is used to obtain

the word [MSB(3), LSB(3)] = [LUT (MSB(2)), LUT (LSB(2))];

(e) XOR2: another xor operation is performed so that bytes MSB(3) and LSB(3)

are both xored with the sub-key K4·(i�1)+1;

(f) SWAP: finally, the cyphered word Ci is obtained by swapping least and most

significant bytes obtained in the previous step, i.e. Ci = [MSB(5), LSB(5)] =

[LSB(4),MSB(4)].

The algorithm can be easily implemented even in simple microcontrollers, as those

used in low-cost IoT platforms. The related TinyOS source code is only 16 rows

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 144

6.3 Security mechanisms of the system

Algorithm 1: Encryption algorithm for the sensing layer
Inputs:
Four 16-bit unciphered words: W1, ...,W4

A 128-bit secret key K = {K1, ..., K16}
Output:
Four 16-bit ciphered words: C1, ..., C4

1 for i 1 to 4 do
// (a) SPLIT

2 MSB(0) = MSB(Wi)
3 LSB(0) = LSB(Wi)

// (b) XOR1
4 MSB(1) = MSB(0) �K4·(i�1)+1

5 LSB(1) = LSB(0) �K4·(i�1)+2

// (c) CIRCULAR SHIFT
6 MSB(2) = rotMSB(K4·(i�1)+3)(MSB(1))

7 LSB(2) = rotLSB(K4·(i�1)+3)(LSB
(1))

// (d) SCRAMBLING
8 MSB(3) = LUT (MSB(2))
9 LSB(3) = LUT (LSB(2))

// (e) XOR2
10 MSB(4) = MSB(3) �K4·(i�1)+4

11 LSB(4) = LSB(3) �K4·(i�1)+4

// (f) SWAP
12 MSB(5) = LSB(4)

13 LSB(5) = MSB(4)

14 Ci = [MSB(5), LSB(5)]

15 return C1, C2, C3, C4

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 145

6.3 Security mechanisms of the system

Figure 63: Voltage samples corresponding to a single packet transmission, with and
without encryption.

and its implementation requires only 256 bytes of RAM (to store the LUT) and 604

bytes of ROM (for the program). We measured energy consumption of the proposed

algorithm when implemented on IRIS platforms. With this aim, we connected a

sensing resistors of R = 10 ⌦ in series to the battery pack of an IRIS node using the

measurement scheme described in [165]. Furthermore, we programmed the mote to

transmits packets of 100 byte every 200 ms and to wake-up with a period of 50 ms.

Voltage signals across sensing resistors have been sampled with a Keysight MSOX3012

[166] digital oscilloscope so that energy consumption in a period T can be estimated as

E =
Vcc

R

NX

k=1

vkTs (1)

where vk is the k-th voltage sample, N = 2000 is the number of acquired samples

and Ts =
T
N = 1 ms is the sampling time. In this case, one measure of E is obtained

every T = NTs = 2 seconds which coincides with the time needed to send 10 packets.

Finally, mean energy consumption per packet (Ep) has been estimated by averaging

collected energy measurements over twenty experiments, i.e. considering an overall

number of 200 packet transmission periods.

In Figure 63 we report voltage samples corresponding to a single packet transmis-

sion, measured with and without encryption. Additional energy consumption due to

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 146

6.3 Security mechanisms of the system

the proposed enciphering algorithm can be appreciated by observing the time interval

between 1.332 and 1.337 seconds delimited by vertical black lines.

As it is possible to notice, enciphering is done in about 5 ms and related mean

energy consumption is Ep = 112 µJ. Note that this energy is negligible in comparison

to the energy needed to send and receive a packet (i.e., 4.2 mJ, according to measure-

ments collected in the interval 1.34-1.42 s) or either to sense the channel (i.e., 380 µJ,

according to the measurements collected in the interval 1.47-1.48 s).

In [167] authors evaluated performance of several block ciphers for WSNs im-

plemented on Mica2 and Arduino platforms. In particular, authors reported that

encryption time of AES-128 for a 32-byte packet is 5 ms. Note that, in the same

time, the proposed algorithm is able to encrypt a packet of 100 bytes. Mica2 and

IRIS motes are based on microcontrollers within the same family and have the same

clock speed and bus size. Therefore, we can state that, in comparison to AES-128,

the proposed algorithm is able to reduce encryption time by a factor of three. Alter-

natively, when the same packet length is considered, the proposed algorithm reduces

energy consumption by three times.

6.3.2 Fog layer security services

At the Fog layer, in order to achieve confidentiality and data integrity, it is nec-

essary to focus on ensuring that the software running on the Fog nodes cannot be

tampered with (even by users with physical access to the nodes). Moreover, it is nec-

essary to ensure that impersonation attacks with respect to the Cloud layer cannot

be conducted. Consequently, no user, no software, no device can act as an authorized

gateway without the Cloud layer detecting the attack.

For such a reason, we equipped the Fog nodes (i.e., the Arancino boards) with a

cryptochip, namely the ATECC608A produced by Microchip Technology Inc. This

chip is partially able to act akin to a Trusted Platform Module (TPM) chip, e.g., as

a secure enclave for keys and for on-chip (host-invisible) crypto-operations, such as

signing, verification of a signature and random number generation.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 147

6.3 Security mechanisms of the system

First of all, we implemented a secure boot mechanism for the MPU of the Arancino.

Once the system is booting, the cryptochip that holds the public key uses it to verify

that the image digest of the operating system and application level software has been

signed by the matching and genuine private key; therefore, no tamper of the software

is possible without the Fog node refusing to boot. Moreover, a remote attestation

mechanism has been implemented so that each Fog node can be uniquely identified

by the Cloud counterpart that can reject any device trying to connect to the Cloud

without being authorized. This latter mechanism is based on the use of WebSocket

Secure (WSS) (which is based on HTTPS) as a communication channel between the

edge device and the Cloud with a mutual authentication in place. An X.509 certificate

stored in the cryptochip is used to authenticate the Fog node. The use of WSS

also contributes to ensure data confidentiality and integrity being the communication

channel encrypted with a negotiated session symmetric key.

6.3.3 Cloud layer security services

As previously described, the Cloud layer represents the management layer for the

entire architecture. For what concerns security, authentication and access control

are the major requirements [168]. The Cloud layer exposes an HTTPS-based user

interface based on the OpenStack Horizon project. Basic user authentication via sim-

ple username+password credentials is managed using the OpenStack identity service

namely, Keystone. Besides, the middleware deals with access control via a Role-based

Access Control (RBAC) authorization engine implemented within the IoTronic ser-

vice. The engine implements the concepts of tenants, fleets, roles, delegations allowing

a fine-grained management of user permissions.

Finally, in order to defend the system against malicious Cloud administrators, a

mechanism for strong authentication using Hardware Security Modules (HSMs) has

been implemented. Each user is equipped with an HSM and each command sent to

the Cloud is signed with the corresponding private key. The Cloud, then delivers

the command, together with the signature, to the Fog node deployed at the edge.

Verification is performed on the signature directly by the Fog node cryptochip so that

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 148

6.4 Case study

the command is executed only if the signature is verified.

6.4 Case study

In this section we consider a real-world IIoT case study where our Fog-enabled

architecture has been customized for an Industry 4.0 factory and used to monitor

twenty three-phase induction motors. For this purpose, twenty IRIS motes have been

deployed across the factory and used for measuring amplitude and frequency of stator

currents. All motes have been programmed so that currents are sampled at a fixed

rate fs = 1 kHz and acquired with the built in 10-bit Analog-to-Digital Converter

(ADC). After acquiring 60 samples, i.e. 20 samples for each stator current, data are

transmitted in packets of 75 bytes each.

Note that under the above settings, one packet is transmitted every 20 ms and

thus, samples belonging to the same packet, represent exactly one Alternating Current

(AC) cycle of the nominal frequency of the power supply, i.e. fn = 50 Hz. Moreover,

considering that the Nyquist frequency satisfies the condition fs
2 > 9 · fn, harmonic

distortions up to the 9-th order can be detected. On the other hand, a data stream of

Rb =
75B
20ms = 30 kbps must be transmitted for each three-phase motor and, as will be

shown in this section, this traffic cannot be handled without the Fog-layer. To prove

the above statement, we compare three IWSN architectures:

1. an IWSN based on a simple star topology where all motes can communicate

directly and wirelessly with the sink;

2. a more complex cluster-tree IWSN where the 20 motes are disposed in 4 clusters

of 5 nodes each and, for each cluster, a gateway exists which acts as cluster head

able to forward all received packets to the sink;

3. a third solution, based on the proposed Fog-enabled architecture shown in Fig-

ure 64, where we assume the same number of clusters and gateways of the pre-

vious scenario but with Fog nodes able to exploit a data aggregation technique,

introduced with the aim of reducing the traffic towards the sink.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 149

6.4 Case study

IWSN
Fog node

Mote

Sensor board

Electric motor

6LowPAN links (IPv6)

Electric communication

WAN (IPv4/IPv6)

REST communication

Sensors

Mote

Sensors

Mote Mote

Sensors Sensors

 OpenStack
services

S4T/OpenStack

Storage

Compute

Networking

Authentication

S4T
IoTronic

Customization

IWSN
Fog node

IWSN
Fog node

IWSN
Fog node

Developers
Admins

Figure 64: Proposed Architecture

In the next subsections we investigate the above scenarios considering both sim-

ulations and analytical models. In both cases, we considered the beaconless mode of

the IEEE 802.15.4 MAC protocol where MAC parameters have been fixed according

to Table 16.

6.4.1 Analytical model

In order to estimate the Packet Delivery Ratio (PDR) in the first scenario, i.e.

a star network topology, we simplified and adapted the model proposed in [169]. In

particular, we assume that sensor nodes transmit their data at a constant packet

rate �, here measured in packets per second (pk/s). Note that, in the proposed case

study, where each node generates one packet every 20 ms, the packet rate per node is

� = 1
20m = 50 pk/s.

According to the beaconless mode of the 802.15.4 protocol, all nodes, before to

Parameter Value
macminBE 3
macmaxBE 5

macMaxCSMABackoffs 4
aMaxFrameRetries 3

Table 16: 802.15.4 MAC parameters used for simulation and analytical results.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 150

6.4 Case study

transmit, wait for a random backoff period and then tests the channel to determine

whether the channel is busy or idle by performing the Clear Channel Assessment

(CCA) procedure. Basically, a node transmits only if the CCA succeeds, otherwise it

waits for another random backoff period. This process is repeated up to a maximum

number of attempts equal to macMaxCSMABackoffs+1, i.e. 5. When the maximum

number of attempts is reached, the packet is simply discarded.

Therefore, if we indicate with ↵ the probability of a single CCA failure, the proba-

bility that a node discards a packet after 5 consecutive CCA failures is given by � = ↵5.

Even if the packet passes the CCA phase, and thus it is transmitted, it can fail to be

received due to either collisions or channel impairments. According to the 802.15.4

protocol, we assume that a packet can be retransmitted at most aMaxFrameRetries=3

times if required, before being discarded.

By indicating with � the overall packet failure probability due to both collisions

and channel impairments, the probability of not receiving a packet due to either 5

CCA failures or 3 failed retransmissions is given by

� = � + (1� �)�[� + (1� �)�[� + (1� �)�[� + (1� �)�]]] (2)

In [169], by modeling CCA attempts as independent Poisson processes, authors

derived a set of fixed point equations which can be solved using an iterative scheme

to obtain ↵, � and thus �. Finally, the packet delivery ratio can be evaluated as

PDR = 1� �. It is worth observing that � can be expressed in terms of the probability

of packet collision, pc, and the packet error rate, pe, as � = pc + (1 � pc) · pe. In

general, pe is a time-varying quantity related to the Signal-to-Interference-plus-Noise

Ratio (SINR). However, for sake of simplicity, we assumed that pe is constant. In

particular, to obtain numerical results reported in this section, we fixed pe = 10�2.

In Figure 65, we report the PDR obtained with the above model for different values

of the packet generation rate � in the case of a star topology IWSN with all nodes

in the same carrier sensing range. In particular, we reported results for two networks

with, respectively, 20 nodes (red line) and 5 nodes (black line). As it is possible

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 151

6.4 Case study

0

20

40

60

80

100

0 10 20 30 40 50

P
a
c
k
e
t

D
e
l
i
v
e
r
y

R
a
t
i
o

(
%
)

λ (pkt/s)

20 nodes
5 nodes

Figure 65: Packet Delivery Ratio (PDR) as a function of the traffic generation rate
(�) for 20-node (red line) and 5-node (black line) star-topology WSNs.

to observe, in the case of a star topology with 20 nodes, the PDR corresponding

to � = 50 pk/s is lower than 10% that is a too low value for any practical IWSN

application. Therefore, connecting all 20 nodes in a simple star topology is not a

viable solution for the proposed case study.

The low PDR value achieved in the previous scenario can be easily justified con-

sidering that with 20 motes, each transmitting at the rate of Rb = 30 kbps, the overall

offered traffic is equal to 20⇥ 30k = 600 kbps and thus it is larger than the maximum

bit-rate specified for the physical layer of IEEE 802.15.4 protocol equal to 250 kbps.

To solve this problem, a solution commonly adopted in IWSN consists in parti-

tioning the network into clusters and use a different channel of 802.15.4 for different

clusters. One more channel is then used for communications between cluster-heads

and the sink. According to the IEEE 802.5.4 standard, a total of 16 channels are avail-

able in the 2.4-GHz band, numbered from 11 to 26. In particular, we assume that

nodes are distributed in 4 clusters of 5 nodes each, i.e. the second scenario investigated

for this case study. The four clusters exploit channels 15, 16, 20 and 21, respectively.

Finally, channel 26 is reserved for communications between cluster-heads, i.e., the Fog

gateways, and the sink.

As shown in Figure 65, where it is possible to compare the PDR for two star

topologies with, respectively, 20 nodes (red line) and 5 nodes (black line), by reducing

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 152

6.4 Case study

the number of nodes that use the same channel, the PDR increases due to a reduced

number of packet collisions. However, even with the previous solution, a traffic rate of

5� = 250 pk/s, i.e. 150 kbps, is generated by each cluster, which saturate the channel

used for communications between the cluster heads and the sink.

6.4.2 Exploiting the Fog-layer for data aggregation

With the aim of reducing the network traffic, we exploited the Fog layer to

implement a data aggregation technique based on Singular Value Decomposition

(SVD) [170]. Data aggregation exploits correlations among data to reduce energy

consumption [171] and together with duty-cycling techniques is one of the most used

energy reduction technique in IWSNs [172]. Basically, SVD allows to rewrite a N⇥M

matrix A as the product of three matrices, U,⌃ and V , such that A = U⌃V T . Such

a decomposition can be used for both compression and denoising.

We assume that each gateway rearranges collected data, i.e., 5 packets representing

60 current samples each, into a matrix A of 15⇥20 elements. Afterwards, the gateway

performs SVD to obtain the set of matrices � = {U,⌃,V } and thus, their submatrices

�k = {Uk,⌃k, Vk} where ⌃k is the k ⇥ k upper left corner submatrix of ⌃ and the

matrices Uk and Vk are given by the first k columns of U and V , respectively. From

SVD theory, it is known that the maxtrix Ak = Uk⌃kV T
k approximate A by minimizing

the norm ||A� Ak||. Therefore, given �k, Ak can be reconstructed.

It is worth noting that the overall number of nonzero elements of �k are at most

k(N+1+M) and can be less than the number of elements of the original matrix A. In

particular, every time that the condition k(N+1+M) < NM holds, the set of matrices

�k = {Uk,⌃k, Vk} can be considered a compressed representation of A. Therefore, by

transmitting �k instead of the original matrix A, the amount of data that must be

sent from each gateway to the sink is reduced by a factor F = NM
k(N+1+M) ⇡

N
2k , where

the last approximation holds when M ⇡ N .

In particular, by fixing k = 2 it is possible to achieve a compression factor F =

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 153

6.4 Case study

(a) OMNET++: Single cluster with 5 nodes. (b) OMNET++: Multi-hop network with 4 clus-

ters.

Figure 66: Omnet++ simulation environment

15·20
2(15+1+20) ⇡ 4.17 so that the traffic that must be forwarded by each gateway is �g =

5�
F ⇡ 60 pk/s instead of 250 pk/s.

Obviously, we expect that, by reducing the amount of data that must be transmit-

ted, packet collisions reduce too and thus the PDR increases. The simulation results

reported in the next subsection confirm the previous statement.

6.4.3 Simulation results

We have simulated the above scenarios with OMNET++ [173]. OMNET++ is

a modular, component-based C++ simulation library and framework for modeling

communication networks, multiprocessors and other distributed or parallel systems.

In particular, we used OMNET++ to compare the following three scenarios:

1. A single cluster with 5 nodes and 1 sink, disposed as shown in Figure 66a;

2. A cluster-tree network with 4 clusters of 5 nodes each, disposed as shown in

Figure 66b and where all gateways act as simple relayers by forwarding all

received packets to the sink;

3. The same cluster-tree network in the previous scenario but with the proposed

SVD-based data aggregation technique enabled in the Fog layer.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 154

6.4 Case study

Figure 67: Packet Delivery Ratio (PDR) for different traffic generation rates � in the
case of: 1) a cluster with 5 nodes (black line); 2) a cluster-tree network with 4 clusters
and without data aggregation (blue line); 3) a cluster tree-network with 4 clusters
with data aggregation (red line).

Figure 68: End-to-end latency for different traffic generation rates � in the case of:
1) a cluster with 5 nodes (black line); 2) a cluster-tree network with 4 clusters and
without data aggregation (blue line); 3) a cluster tree-network with 4 clusters with
data aggregation (red line).

PDR and end-to-end latency achieved in the above scenarios for different traffic

generation rates are reported in Figure 67 and Figure 68, respectively.

As it is possible to observe, according to simulation results in Figure 67, the PDR

obtained with data aggregation (red line) is quite greater respect to the case without

aggregation (blue line) and almost coincide with that achieved in the case of a single

cluster of 5 nodes (black line). Moreover, as shown in Figure 68, data aggregation

largely reduces network latency, i.e. end-to-end delay.

Nevertheless, simulations results show that, even with data aggregation, the net-

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 155

6.4 Case study

Figure 69: Cumulative Distribution Function (CDF) of packet delay for � =10 pk/s
and � =25 pk/s.

work saturates with a traffic rate per node of 35 pk/s. Therefore, in order to achieve a

better and reasonable PDR, at the end we decided to reduce the sampling frequency

fs from 1 KHz to 500 Hz, that is enough to detect possible harmonic distortions up

to the 5th order. As a consequence, � is reduced from 50 pk/s to 25 pk/s so that

a PDR of 99.95% and an average latency of 120 ms are achieved by exploiting data

aggregation.

For sake of completeness, in Figure 69 we reported the Cumulative Distribution

Function (CDF) of packet delay for two values of �, i.e. 25 pk/s and 10 pk/s. It is

worth observing that, when the offered traffic per node is limited to 10 pk/s, almost

all transmitted packets (around 99.3%) experimented an end-to-end latency lower

than 50 ms. This result is in agreement with requirements imposed by the NIST for

wireless monitoring applications of factory workcell [174].

It is worth mentioning that the time required to perform the proposed SVD-

based data aggregation technique is very minimal and do not (significantly) impact

the end-to-end latency. Indeed, we conducted an experiment to measure this time

using randomly generated 15 x 20 matrices with float values in the interval [0, 500].

The result of performing 1000 SVD calculation shows that the average time required is

lower than 2 ms. In practice, end-to-end delay is mostly due to the backoff mechanism

at the MAC layer and to the time needed to collect enough packets before to exploit

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 156

6.4 Case study

� (pk/s) Technique Latency (ms) PDR (%)
10 DISCUS 34.7 99.99

SVD 29.3 100.00
25 DISCUS 2808.1 67.86

SVD 121.0 99.95

Table 17: End-to-end latency and PDR of DISCUS and proposed SVD-based aggre-
gation scheme for two different traffic generation rates.

data aggregation.

Several other data aggregation techniques suitable for IWSNs exist, see for in-

stance [175], [176] and references therein, and can be profitably implemented with the

proposed Fog architecture.

For sake of completeness, we compared performance of the proposed data ag-

gregation technique with DISCUS [171], a Distributed Source Coding (DSC) data

aggregation scheme inspired by the Slepian-Wolf theorem. According to DISCUS, in

each cluster, one node sends uncompressed data (as side information) while all other

nodes in the same cluster transmits encoded (i.e., compressed) data. For simulation

purposes, we considered that nodes are able to encode original 10-bit words with only

2 bits, i.e. we assumed for DISCUS a compression factor of 5, slightly greater than

the factor achieved with our proposed SVD-based aggregation scheme.

End-to-end latency and PDR of both DISCUS and proposed SVD-based aggrega-

tion technique are reported in Table 17 for two different traffic generation rates, i.e.,

� = 10 pk/s and � = 25 pk/s.

As it is possible to observe, even considering similar compression ratios and the

same network topology, the proposed scheme outperforms DISCUS in terms of both

latency and PDR.

Higher latency of DISCUS can be justified considering that side information and

compressed information are transmitted in two consecutive transmission attempts due

to the Maximum Transmission Unit (MTU) imposed by the IEEE 802.15.4 protocol,

i.e. 127 bytes at PHY layer. Therefore, at the least two CCAs should be performed

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 157

6.5 Further advantages of data aggregation

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

t [s]

-10

-5

0

5

10

cu
rr

e
n

t
[A

]

recovered signal (without data aggregation)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

t [s]

-10

-5

0

5

10

cu
rr

e
n

t
[A

]
recovered signal (with data aggregation)

Figure 70: Recovered currents with and without data aggregation.

by the cluster heads in the case of DISCUS which obviously reflects on the latency.

With the aim of further improving network performance, we started the integration

of channel coding techniques [177] and IoT-specific compression algorithms [178].

6.5 Further advantages of data aggregation

In the previous subsections we have shown that by exploiting data aggregation

at the Fog layer, it is possible to substantially improve PDR and latency. However,

higher PDR and lower latency are not the only advantages introduced by the Fog

layer. In fact, SVD improves measurement accuracy as well. This can be observed

in Figure 70 where we reported a set of three-phase currents reconstructed with and

without the proposed SVD-based data aggregation technique. Note that, using SVD,

a substantial reduction of the noise is achieved.

Obviously, by reducing the noise it is possible to achieve a greater accuracy in

estimation of interesting parameters. For instance, in Figure 71 we reported the mean

relative error achieved on measurements of maximum values of stator currents (Imax),

obtained with and without data aggregation for different values of the Signal-to-Noise

Ratio (SNR). More precisely, mean relative error values reported in Figure 71 have

been obtained by averaging the relative error errImax = 100 · |Îmax�Imax,true|
|Imax,true| on 1000

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 158

6.5 Further advantages of data aggregation

0

5

10

15

20

25

30

10 15 20 25 30

m
e
a
n

r
e
l
a
t
i
v
e

e
r
r
o
r

o
n

I
m
a
x

(
%
)

SNR (dB)

w/o aggregation
with aggregation

Figure 71: Mean relative error on the estimation of maximum current with and with-
out SVD-based data aggregation for different values of SNR.

sinusoidal periods, where Imax,true is the true (noise-free) peak value of the current

and Îmax = max{Ii} is the corresponding measured/estimated value obtained from

Ns = 20 samples.

As it is possible to observe, independently from the SNR, data aggregation provides

a substantial reduction of measurement errors. This positive effect of SVD-based

aggregation is observed also for other quantities of interest, i.e. root mean square

values of currents [179] and also on frequency estimation [180].

Finally, it is worth mentioning that the Fog layer is mandatory for the proposed

SVD-based data aggregation. In fact, SVD cannot be implemented with commercial

motes commonly used in IWSNs. Moreover, exploiting reprogrammability of the Fog

layer, Fog gateways can be remotely configured in order to adapt parameters of SVD,

i.e., N,M and k, to other possible application scenarios, where different kind of signals

or a different number of nodes must be handled.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 159

6.5 Further advantages of data aggregation

Conclusion and future works

This dissertation proposes a set of new mechanisms to adapt the Cloud as-a-

Service approach to IoT infrastructure while taking into consideration the emergence

of new applications that require edge computing capabilities. To this purpose, an

infrastructure-oriented Cloud approach is proposed (i.e., I/Ocloud) in this context to

provide mechanisms for virtualizing IoT resources (i.e., sensors and actuators) and of-

fer them as typical Cloud resources (e.g., compute, storage and networking). Besides,

the approach also enables edge computing capabilities to meet the requirements of typ-

ical applications. The S4T framework has been enhanced with features to promote

the adoption of the I/Ocloud paradigm within an OpenStack-based environment. Of

course, the approach can also be extended to other Cloud management platforms.

In the first chapter of this thesis, we have described our view that aims at pro-

viding IoT infrastructure as shareable (Cloud) resources. We have investigated and

showed the advantages of using the approach in enabling the device-centric model in

IoT instead of adopting the limited Cloud-oriented data-centric approach. We have

also outlined the capability of enabling edge computing using the I/Ocloud approach.

In Chapter 2, we have introduced an OpenStack compatible solution for extending

Cloud-based overlays to the network edge. The system enables users to connect their

personal IoT devices to the Cloud-defined virtual networks; thus, they can communi-

cate among each other and with Cloud-based instances as if they were on the same

physical network. The solution can obviously bring a considerable level of flexibility

to deal with actual real-world needs and future emerging deployments. It is worth

mentioning that we had the opportunity to introduce our approach for networking

at the edge to the OpenStack community at large, receiving broadly favorable feed-

back35. In Chapter 3, to enable the I/Ocloud view of adopting edge computing in

specific scenarios, we have proposed a solution to deal with the instantiation and

35
https://www.openstack.org/summit/vancouver-2018/summit-schedule/events/21201/an-edge-

computing-case-study-for-monasca-smart-city-ai-powered-surveillance-and-monitoring

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 160

6.5 Further advantages of data aggregation

management of containers at the network edge. Thanks to the networking solution

proposed in this chapter and the previous one, a user can regroup, within the same

overlay, virtualized IoT nodes, physical IoT devices he/she may own as well as Cloud-

based VMs. Besides, we also described a set of use cases where the containerization

at the edge can also be used to provide a multi-tenant PaaS solution for enabling Fog

computing. Furthermore, we described our Mininet-based S4T emulator for the Edge-

to-Cloud continuum. In Chapter 4, an approach for exploiting IoT resources (either

virtual or physical) using RESTful Web services is detailed. The solution is aligned

with the WoT design. The approach can generally enable Web services in distributed

environments using a Dynamic DNS feature provided by S4T. In Chapter 5, to have

a complete integration between IoT and the Cloud, we have introduced our solution

for enabling Serverless computing using edge-based IoT resources (a paradigm named

Deviceless). In such a case, users can avoid provisioning I/Ocloud instances for long

periods (when not needed) by making use of Serverless-like interactions to interact

with remote sensors and actuators. Finally, in Chapter 6, an industrial user case where

a set of S4T capabilities were exploited to enable Fog computing is reported. An ex-

haustive set of experimental results showing the efficiency of using Fog computing in

industrial monitoring applications is provided.

Future works on S4T will be devoted to extending the platform integration with

environments enabling Fog computing, such as the ETSI MEC [181]. In fact, if we

consider the actual S4T architecture, most of the enabled functionalities rely on the

Cloud. As future works, we would like to adapt S4T and make it usable in conjunc-

tion with Fog environments orchestrated by a Cloud-based S4T deployment. Such an

aspect will significantly enhance the performance of the provided services (e.g., the

DDNS routing mechanism that relies, in the actual design, on the Cloud). Another

research direction will be focused on extending and integrating other OpenStack ser-

vices (e.g., Keystone) and enhancing the security of S4T using advanced decentralized

technologies, such as Blockchain. Besides, containers migration aspect in S4T should

be deeply investigated to provide efficient mechanisms preserving the services’ URLs

after their migration to enable services continuity. Besides, another aspect we would

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 161

6.5 Further advantages of data aggregation

like to investigate is related to software rejuvenation [182] in IoT. Indeed, since the

IoT nodes have to host long-running processes to enable communication with the

Cloud and deal with data processing, mechanisms to cope with systems’ failure and

performance degradation are essential to avoid software aging and crash/hang.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 162

BIBLIOGRAPHY

Bibliography

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things:

Vision, applications and research challenges,” Ad hoc networks, vol. 10, no. 7,

pp. 1497–1516, 2012.

[2] M. Patel, J. Shangkuan, and C. Thomas. “What’s new with the internet of

things?” (2017), [Online]. Available: https://www.mckinsey.com/industries/

semiconductors / our - insights / whats - new - with - the - internet - of -

things (visited on 01/19/2022).

[3] United Nations. “World population prospects: The 2017 revision.” (2017), [On-

line]. Available: https://population.un.org/wpp/DataQuery/ (visited on

01/19/2022).

[4] Statista. “Iot: Number of connected devices worldwide 2015-2025.” (2016), [On-

line]. Available: https://www.statista.com/statistics/471264/iot-

number-of-connected-devices-worldwide/ (visited on 01/19/2022).

[5] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile networks and

applications, vol. 19, no. 2, pp. 171–209, 2014.

[6] Y. Liu, K. A. Hassan, M. Karlsson, Z. Pang, and S. Gong, “A data-centric inter-

net of things framework based on azure cloud,” IEEE Access, vol. 7, pp. 53 839–

53 858, 2019.

[7] A. Botta, W. De Donato, V. Persico, and A. Pescape, “Integration of cloud

computing and internet of things: A survey,” Future generation computer sys-

tems, vol. 56, pp. 684–700, 2016.

[8] E. Cavalcante et al., “On the interplay of internet of things and cloud comput-

ing: A systematic mapping study,” Computer Communications, vol. 89, pp. 17–

33, 2016.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 163

BIBLIOGRAPHY

[9] A. Detti et al., “Viriot: A cloud of things that offers iot infrastructures as a

service,” Sensors, vol. 21, no. 19, p. 6546, 2021.

[10] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in 2011 international

conference on electronics, communications and control (ICECC), IEEE, 2011,

pp. 1028–1031.

[11] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wire-

less sensor network virtualization: Early architecture and research perspec-

tives,” IEEE Network, vol. 29, no. 3, pp. 104–112, 2015. doi: 10.1109/MNET.

2015.7113233.

[12] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee Software,

vol. 33, no. 3, pp. 94–100, 2016.

[13] Z. Benomar, “Phd forum abstract: I/ocloud: Adopting the iaas paradigm in the

internet of things,” in 2021 IEEE International Conference on Smart Comput-

ing (SMARTCOMP), IEEE, 2021, pp. 412–413.

[14] Z. Benomar et al., “Extending openstack for cloud-based networking at the

edge,” in 2018 IEEE International Conference on Internet of Things (iThings)

and IEEE Green Computing and Communications (GreenCom) and IEEE Cy-

ber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-

Data), IEEE, 2018, pp. 162–169.

[15] Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Cloud-based network vir-

tualization in iot with openstack,” ACM Transactions on Internet Technology

(TOIT), vol. 22, no. 1, pp. 1–26, 2021.

[16] ——, “Enabling container-based fog computing with openstack,” in 2019 In-

ternational Conference on Internet of Things (iThings) and IEEE Green Com-

puting and Communications (GreenCom) and IEEE Cyber, Physical and So-

cial Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, 2019,

pp. 1049–1056.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 164

BIBLIOGRAPHY

[17] ——, “Cloud-based enabling mechanisms for container deployment and migra-

tion at the network edge,” ACM Transactions on Internet Technology (TOIT),

vol. 20, no. 3, pp. 1–28, 2020.

[18] Z. Benomar, D. Bruneo, F. Longo, G. Merlino, and A. Puliafito, “A mininet-

based emulated testbed for the i/ocloud,” in 2019 15th International Confer-

ence on Mobile Ad-Hoc and Sensor Networks (MSN), IEEE, 2019, pp. 277–

283.

[19] Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “A stack4things-based web

of things architecture,” in 2020 International Conferences on Internet of Things

(iThings) and IEEE Green Computing and Communications (GreenCom) and

IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData) and IEEE Congress on Cybermatics (Cybermatics), IEEE, 2020,

pp. 113–120.

[20] ——, “Enabling secure restful web services in iot using openstack,” in 2020

IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems

(MASS), IEEE, 2020, pp. 410–417.

[21] ——, “A cloud-based and dynamic dns approach to enable the web of things,”

IEEE Transactions on Network Science and Engineering, 2021.

[22] ——, “Deviceless: A serverless approach for the internet of things,” in 2021

ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K), IEEE,

2021, pp. 1–8.

[23] Z. Benomar, G. Campobello, F. Longo, G. Merlino, and A. Puliafito, “Fog-

enabled industrial wsns to monitor asynchronous electric motors,” in 2020

IEEE International Conference on Smart Computing (SMARTCOMP), IEEE,

2020, pp. 434–439.

[24] B Zenomar, G. Campobello, F. Longo, G. Merlino, and A. Puliafito, “A new

fog-enabled wireless sensor network architecture for industrial internet of things

applications,” in Proceedings of the 24th IMEKO TC4 International Symposium

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 165

BIBLIOGRAPHY

and 22nd International Workshop on ADC and DAC Modelling and Testing,

Palermo, Italy, 2020, pp. 14–16.

[25] Z. Benomar, G. Campobello, A. Segreto, F. Battaglia, F. Longo, G. Merlino,

and A. Puliafito, “A fog-based architecture for latency-sensitive monitoring

applications in industrial internet of things,” IEEE Internet of Things Journal,

2021.

[26] Y. Qin, Q. Z. Sheng, N. J. Falkner, S. Dustdar, H. Wang, and A. V. Vasilakos,

“When things matter: A survey on data-centric internet of things,” Journal of

Network and Computer Applications, vol. 64, pp. 137–153, 2016.

[27] P. Mell, T. Grance, et al., “The nist definition of cloud computing,” National In-

stitute of Standards and Technology (NIST) Special Publication 800-145, 2011.

[28] P. Banerjee et al., “Everything as a service: Powering the new information

economy,” Computer, vol. 44, no. 3, pp. 36–43, 2011.

[29] X. Sheng, J. Tang, X. Xiao, and G. Xue, “Sensing as a service: Challenges, so-

lutions and future directions,” IEEE Sensors journal, vol. 13, no. 10, pp. 3733–

3741, 2013.

[30] R. Mizouni and M. El Barachi, “Mobile phone sensing as a service: Business

model and use cases,” in 2013 Seventh International Conference on Next Gen-

eration Mobile Apps, Services and Technologies, IEEE, 2013, pp. 116–121.

[31] A. Bhawiyuga, D. P. Kartikasari, K. Amron, O. B. Pratama, and M. W. Habibi,

“Architectural design of iot-cloud computing integration platform,” Telkom-

nika, vol. 17, no. 3, pp. 1399–1408, 2019.

[32] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the

clouds: Towards a cloud definition,” ACM sigcomm computer communication

review, vol. 39, no. 1, pp. 50–55, 2008.

[33] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and challenges,” in

2010 24th IEEE international conference on advanced information networking

and applications, Ieee, 2010, pp. 27–33.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 166

BIBLIOGRAPHY

[34] A. Yousefpour et al., “All one needs to know about fog computing and related

edge computing paradigms: A complete survey,” Journal of Systems Architec-

ture, vol. 98, pp. 289–330, 2019.

[35] D. Beimborn, T. Miletzki, and S. Wenzel, “Platform as a service (paas),” Busi-

ness & Information Systems Engineering, vol. 3, no. 6, pp. 381–384, 2011.

[36] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provisioning

cost in cloud computing,” IEEE transactions on services Computing, vol. 5,

no. 2, pp. 164–177, 2011.

[37] S. Singh and I. Chana, “Cloud resource provisioning: Survey, status and fu-

ture research directions,” Knowledge and Information Systems, vol. 49, no. 3,

pp. 1005–1069, 2016.

[38] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume cloud computing,”

in 2011 IEEE International Conference on Services Computing, IEEE, 2011,

pp. 370–377.

[39] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual infras-

tructure management in private and hybrid clouds,” IEEE Internet computing,

vol. 13, no. 5, pp. 14–22, 2009.

[40] J. Soldatos et al., “Openiot: Open source internet-of-things in the cloud,” in

Interoperability and open-source solutions for the internet of things, Springer,

2015, pp. 13–25.

[41] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service and big

data,” arXiv preprint arXiv:1301.0159, 2013.

[42] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as a

service model for smart cities supported by internet of things,” Transactions

on emerging telecommunications technologies, vol. 25, no. 1, pp. 81–93, 2014.

[43] X. Sheng, J. Tang, X. Xiao, and G. Xue, “Sensing as a service: Challenges, so-

lutions and future directions,” IEEE Sensors journal, vol. 13, no. 10, pp. 3733–

3741, 2013.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 167

BIBLIOGRAPHY

[44] D. Bruneo, S. Distefano, F. Longo, G. Merlino, and A. Puliafito, “I/ocloud:

Adding an iot dimension to cloud infrastructures,” Computer, vol. 51, no. 1,

pp. 57–65, 2018.

[45] M. U. Ilyas, M. Ahmad, and S. Saleem, “Internet-of-things-infrastructure-as-a-

service: The democratization of access to public internet-of-things infrastruc-

ture,” International Journal of Communication Systems, vol. 33, no. 16, e4562,

2020.

[46] S. Distefano, G. Merlino, and A. Puliafito, “Device-centric sensing: An alterna-

tive to data-centric approaches,” IEEE Systems Journal, vol. 11, no. 1, pp. 231–

241, 2015.

[47] B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To {fuse} or not to {fuse}:

Performance of user-space file systems,” in 15th {USENIX} Conference on

File and Storage Technologies ({FAST} 17), 2017, pp. 59–72.

[48] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito, “Stack4things:

A sensing-and-actuation-as-a-service framework for iot and cloud integration,”

Annals of Telecommunications, vol. 72, no. 1-2, pp. 53–70, 2017.

[49] I. Fette and A. Melnikov, “The websocket protocol,” IETF, Tech. Rep. RFC

6455, 2011.

[50] G. Merlino, D. Bruneo, F. Longo, A. Puliafito, and S. Distefano, “Software

defined cities: A novel paradigm for smart cities through iot clouds,” in 2015

IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE

12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl

Conf on Scalable Computing and Communications and Its Associated Work-

shops (UIC-ATC-ScalCom), IEEE, 2015, pp. 909–916.

[51] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,”

Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 168

BIBLIOGRAPHY

[52] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual

network embedding: A survey,” IEEE Communications Surveys & Tutorials,

vol. 15, no. 4, pp. 1888–1906, 2013.

[53] D. L. Passmore and J. Y. Freeman, “The virtual lan technology report,” 1997.

[54] H. A. Seid and A. Lespagnol, Virtual private network, US Patent 5768271,

1998.

[55] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceed-

ings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[56] Y. Li and M. Chen, “Software-defined network function virtualization: A sur-

vey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[57] S. Hanks, T. Li, D. Farinacci, and P. Traina, “Generic routing encapsulation

over ipv4 networks,” IETF, Tech. Rep. RFC 1702, 1994.

[58] M. Mahalingam et al., “Virtual extensible local area network (vxlan): A frame-

work for overlaying virtualized layer 2 networks over layer 3 networks,” IETF,

Tech. Rep. RFC 7348, 2014.

[59] J. Hoebeke, E. De Poorter, S. Bouckaert, I. Moerman, and P. Demeester, “Man-

aged ecosystems of networked objects,” Wireless Personal Communications,

vol. 58, no. 1, pp. 125–143, 2011.

[60] N. Naik, “Choice of effective messaging protocols for iot systems: Mqtt, coap,

amqp and http,” in 2017 IEEE international systems engineering symposium

(ISSE), IEEE, 2017, pp. 1–7.

[61] O. Tomanek and L. Kencl, “Security and privacy of using alljoyn iot framework

at home and beyond,” in 2016 2nd international conference on intelligent green

building and smart grid (IGBSG), IEEE, 2016, pp. 1–6.

[62] M. Villari, A. Celesti, M. Fazio, and A. Puliafito, “Alljoyn lambda: An architec-

ture for the management of smart environments in iot,” in 2014 International

Conference on Smart Computing Workshops, 2014, pp. 9–14.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 169

BIBLIOGRAPHY

[63] T. Høiland-Jørgensen, C. A. Grazia, P. Hurtig, and A. Brunstrom, “Flent: The

flexible network tester,” in Proceedings of the 11th EAI International Confer-

ence on Performance Evaluation Methodologies and Tools, 2017, pp. 120–125.

[64] F. Callegati, W. Cerroni, and C. Contoli, “Virtual networking performance in

openstack platform for network function virtualization,” Journal of Electrical

and Computer Engineering, vol. 2016, 2016.

[65] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in

the internet of things,” in Proceedings of the first edition of the MCC workshop

on Mobile cloud computing, 2012, pp. 13–16.

[66] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog computing

for the internet of things: A survey,” ACM Transactions on Internet Technology

(TOIT), vol. 19, no. 2, p. 18, 2019.

[67] D. Soldani, Y. J. Guo, B. Barani, P. Mogensen, I Chih-Lin, and S. K. Das, “5g

for ultra-reliable low-latency communications,” Ieee Network, vol. 32, no. 2,

pp. 6–7, 2018.

[68] P. Schulz et al., “Latency critical iot applications in 5g: Perspective on the

design of radio interface and network architecture,” IEEE Communications

Magazine, vol. 55, no. 2, pp. 70–78, 2017.

[69] “Aws latency monitoring.” (2021), [Online]. Available: https://www.cloudping.

co/grid (visited on 11/02/2021).

[70] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and privacy for

cloud-based iot: Challenges,” IEEE Communications Magazine, vol. 55, no. 1,

pp. 26–33, 2017.

[71] Statista. “Global iot and non-iot connections 2010-2025.” (2021), [Online].

Available: https://www.statista.com/statistics/1101442/iot-number-

of-connected-devices-worldwide/ (visited on 10/14/2021).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 170

BIBLIOGRAPHY

[72] ——, “Global iot connections data volume 2019 and 2025.” (2020), [Online].

Available: https://www.statista.com/statistics/1017863/worldwide-

iot-connected-devices-data-size/ (visited on 10/14/2021).

[73] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware

computing for the internet of things: A survey,” IEEE communications surveys

& tutorials, vol. 16, no. 1, pp. 414–454, 2013.

[74] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot):

A vision, architectural elements, and future directions,” Future generation com-

puter systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[75] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for internet of

things: A primer,” Digital Communications and Networks, vol. 4, no. 2, pp. 77–

86, 2018.

[76] R. Bruschi, P. Lago, G. Lamanna, C. Lombardo, and S. Mangialardi, “Open-

volcano: An open-source software platform for fog computing,” in 2016 28th

International Teletraffic Congress (ITC 28), IEEE, vol. 2, 2016, pp. 22–27.

[77] Microsoft. “Azure iot edge.” (2019), [Online]. Available: https : / / azure .

microsoft.com/en-us/services/iot-edge/ (visited on 11/02/2021).

[78] Amazon. “Aws greengrass.” (2019), [Online]. Available: https://aws.amazon.

com/greengrass/ (visited on 11/02/2021).

[79] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A container-based edge

cloud paas architecture based on raspberry pi clusters,” in 2016 IEEE 4th

International Conference on Future Internet of Things and Cloud Workshops

(FiCloudW), IEEE, 2016, pp. 117–124.

[80] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and C. Mah-

moudi, “Fog computing conceptual model,” NIST, Tech. Rep. Special Publica-

tion (NIST SP) 500-325, 2018.

[81] G. Merlino, R. Dautov, S. Distefano, and D. Bruneo, “Enabling workload en-

gineering in edge, fog, and cloud computing through openstack-based middle-

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 171

BIBLIOGRAPHY

ware,” ACM Transactions on Internet Technology (TOIT), vol. 19, no. 2, p. 28,

2019.

[82] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, and A. Puliafito,

“Data agility through clustered edge computing and stream processing,” Con-

currency and Computation: Practice and Experience, vol. 33, no. 7, pp. 1–1,

2021.

[83] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling lightweight multi-

tenancy at the network’s extreme edge,” in 2016 IEEE/ACM Symposium on

Edge Computing (SEC), IEEE, 2016, pp. 1–13.

[84] M. Ahmad, J. S. Alowibdi, and M. U. Ilyas, “Viot: A first step towards a

shared, multi-tenant iot infrastructure architecture,” in 2017 IEEE Interna-

tional Conference on Communications Workshops (ICC Workshops), IEEE,

2017, pp. 308–313.

[85] S Senthil Kumaran, Practical LXC and LXD: linux containers for virtualization

and orchestration. Springer, 2017.

[86] A. Lertsinsrubtavee, A. Ali, C. Molina-Jimenez, A. Sathiaseelan, and J. Crowcroft,

“Picasso: A lightweight edge computing platform,” in 2017 IEEE 6th Interna-

tional Conference on Cloud Networking (CloudNet), IEEE, 2017, pp. 1–7.

[87] R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7, no. 6,

pp. 34–45, 1974.

[88] I. Habib, “Virtualization with kvm,” Linux J., vol. 2008, no. 166, 2008, issn:

1075-3583. [Online]. Available: http://dl.acm.org/citation.cfm?id=

1344209.1344217.

[89] B Asvija, R Eswari, and M. Bijoy, “Security in hardware assisted virtualization

for cloud computingstate of the art issues and challenges,” Computer Networks,

vol. 151, pp. 68–92, 2019.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 172

BIBLIOGRAPHY

[90] A. Desai, R. Oza, P. Sharma, and B. Patel, “Hypervisor: A survey on concepts

and taxonomy,” International Journal of Innovative Technology and Exploring

Engineering, vol. 2, no. 3, pp. 222–225, 2013.

[91] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-

based operating system virtualization: A scalable, high-performance alternative

to hypervisors,” in ACM SIGOPS Operating Systems Review, ACM, vol. 41,

2007, pp. 275–287.

[92] M. Zabaljáuregui, “Hardware assisted virtualization intel virtualization tech-

nology,” pp. 1–54, 2008. [Online]. Available: https://lettieri.iet.unipi.

it/virtualization/Vtx.pdf (visited on 01/02/2021).

[93] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Consolidate iot

edge computing with lightweight virtualization,” IEEE Network, vol. 32, no. 1,

pp. 102–111, 2018.

[94] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers via docker

container migration,” in Proceedings of the Second ACM/IEEE Symposium on

Edge Computing, ACM, 2017, p. 11.

[95] Z. Kozhirbayev and R. O. Sinnott, “A performance comparison of container-

based technologies for the cloud,” Future Generation Computer Systems, vol. 68,

pp. 175–182, 2017.

[96] R. Rosen, “Resource management: Linux kernel namespaces and cgroups,” Hai-

fux, May, vol. 186, 2013.

[97] E. W. Biederman and L. Networx, “Multiple instances of the global linux

namespaces,” in Proceedings of the Linux Symposium, Citeseer, vol. 1, 2006,

pp. 101–112.

[98] M. A. Babar and B. Ramsey, “Understanding container isolation mechanisms

for building security-sensitive private cloud,” CREST, University of Adelaide,

Australia, Tech. Rep., 2017.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 173

BIBLIOGRAPHY

[99] Z. Rejiba, X. Masip-Bruin, and E. Marin-Tordera, “A survey on mobility-

induced service migration in the fog, edge, and related computing paradigms,”

ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–33, 2019.

[100] E. N. Ciftcioglu, K. S. Chan, R. Urgaonkar, S. Wang, and T. He, “Security-

aware service migration for tactical mobile micro-clouds,” in MILCOM 2015-

2015 IEEE Military Communications Conference, IEEE, 2015, pp. 1058–1063.

[101] C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino, “Companion

fog computing: Supporting things mobility through container migration at the

edge,” in 2018 IEEE International Conference on Smart Computing (SMART-

COMP), IEEE, 2018, pp. 97–105.

[102] C. Anderson, “Docker [software engineering],” IEEE Software, vol. 32, no. 3,

pp. 102–c3, 2015.

[103] P. Bellavista and A. Zanni, “Feasibility of fog computing deployment based on

docker containerization over raspberrypi,” in Proceedings of the 18th interna-

tional conference on distributed computing and networking, 2017, pp. 1–10.

[104] C. Puliafito, E. Mingozzi, and G. Anastasi, “Fog computing for the internet of

mobile things: Issues and challenges,” in 2017 IEEE International Conference

on Smart Computing (SMARTCOMP), IEEE, 2017, pp. 1–6.

[105] Y. Jiang, Z. Huang, and D. H. Tsang, “Challenges and solutions in fog com-

puting orchestration,” IEEE Network, vol. 32, no. 3, pp. 122–129, 2017.

[106] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.

Zomaya, “Secure and sustainable load balancing of edge data centers in fog

computing,” IEEE Communications Magazine, vol. 56, no. 5, pp. 60–65, 2018.

[107] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, Y. Dou, and A. Y. Zomaya,

“Adaptive energy-aware computation offloading for cloud of things systems,”

IEEE Access, vol. 5, pp. 23 947–23 957, 2017.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 174

BIBLIOGRAPHY

[108] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling and

learning algorithms for containers in fog computing,” IEEE Transactions on

Services Computing, vol. 12, no. 5, pp. 712–725, 2018.

[109] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “To-

wards wearable cognitive assistance,” in Proceedings of the 12th annual inter-

national conference on Mobile systems, applications, and services, ACM, 2014,

pp. 68–81.

[110] M. Peuster, H. Karl, and S. van Rossem, “Medicine: Rapid prototyping of

production-ready network services in multi-pop environments,” in 2016 IEEE

Conference on Network Function Virtualization and Software Defined Networks

(NFV-SDN), 2016, pp. 148–153. doi: 10.1109/NFV-SDN.2016.7919490.

[111] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyp-

ing for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[112] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the internet of things

to the web of things: Resource-oriented architecture and best practices,” in

Architecting the Internet of things, Springer, 2011, pp. 97–129.

[113] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in internet of

things: Taxonomies and open challenges,” Mobile Networks and Applications,

vol. 24, no. 3, pp. 796–809, 2019.

[114] C. Ferris and J. Farrell, “What are web services?” Communications of the ACM,

vol. 46, no. 6, p. 31, 2003.

[115] A. S. Mohamed and C. Al-Atroshi, “Adaptability of soa in iot services–an

empirical survey,” International Journal of Computer Applications, vol. 975,

p. 8887, 2018.

[116] D. Box et al., “Simple object access protocol (soap) 1.1,” W3C, Tech. Rep.,

2000. [Online]. Available: https : / / www . w3 . org / TR / 2000 / NOTE - SOAP -

20000508/.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 175

BIBLIOGRAPHY

[117] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web services

description language (wsdl) 1.1,” Tech. Rep., 2001. [Online]. Available: http:

//www.w3.org/TR/2001/NOTE-wsdl-20010315.

[118] M. A. G. Maureira, D. Oldenhof, and L. Teernstra, Thingspeak–an api and web

service for the internet of things, 2014. [Online]. Available: https://staas.

home.xs4all.nl/t/swtr/documents/wt2014_thingspeak.pdf.

[119] C. Pautasso and E. Wilde, “Why is the web loosely coupled? a multi-faceted

metric for service design,” in Proceedings of the 18th international conference

on World wide web, 2009, pp. 911–920.

[120] C. Prehofer and I. Gerostathopoulos, “Modeling restful web of things services:

Concepts and tools,” in Managing the Web of Things, Elsevier, 2017, pp. 73–

104.

[121] Z. Shelby, “Embedded web services,” IEEE Wireless Communications, vol. 17,

no. 6, pp. 52–57, 2010.

[122] A.-R. Breje, R. Győrödi, C. Győrödi, D. Zmaranda, and G. Pecherle, “Com-

parative study of data sending methods for xml and json models,” INTER-

NATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND AP-

PLICATIONS, vol. 9, no. 12, pp. 198–204, 2018.

[123] D. Yazar and A. Dunkels, “Efficient application integration in ip-based sensor

networks,” in Proceedings of the First ACM Workshop on Embedded Sensing

Systems for Energy-Efficiency in Buildings, 2009, pp. 43–48.

[124] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things service

architecture: Rest or ws-*? a developers’ perspective,” in International Confer-

ence on Mobile and Ubiquitous Systems: Computing, Networking, and Services,

Springer, 2011, pp. 326–337.

[125] B. N. Silva, M. Khan, and K. Han, “Integration of big data analytics embedded

smart city architecture with restful web of things for efficient service provi-

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 176

BIBLIOGRAPHY

sion and energy management,” Future generation computer systems, vol. 107,

pp. 975–987, 2020.

[126] A. Tiberkak, A. Hentout, and A. Belkhir, “Lightweight remote control of dis-

tributed web-of-things platforms: First prototype,” in 2020 IEEE International

Conference on Internet of Things and Intelligence System (IoTaIS), IEEE,

2021, pp. 103–108.

[127] R. Yugha and S. Chithra, “A survey on technologies and security protocols:

Reference for future generation IoT,” Journal of Network and Computer Ap-

plications, vol. 169, p. 102 763, 2020. doi: 10.1016/j.jnca.2020.102763.

[Online]. Available: https://doi.org/10.1016/j.jnca.2020.102763.

[128] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz, “Mea-

suring {https} adoption on the web,” in 26th {USENIX} Security Symposium

({USENIX} Security 17), 2017, pp. 1323–1338.

[129] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten, “Automatic

certificate management environment (ACME),” IETF, Tech. Rep. RFC 8555,

2019. doi: 10.17487/rfc8555. [Online]. Available: https://doi.org/10.

17487/rfc8555.

[130] E. F. Kfoury, D. Khoury, A. AlSabeh, J. Gomez, J. Crichigno, and E. Bou-

Harb, “A blockchain-based method for decentralizing the acme protocol to

enhance trust in pki,” in 2020 43rd International Conference on Telecommu-

nications and Signal Processing (TSP), IEEE, 2020, pp. 461–465.

[131] C. Tiefenau, E. von Zezschwitz, M. Häring, K. Krombholz, and M. Smith, “A

usability evaluation of let’s encrypt and certbot: Usable security done right,”

in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-

munications Security, 2019, pp. 1971–1988.

[132] J. Aas et al., “Let’s encrypt: An automated certificate authority to encrypt the

entire web,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security, 2019, pp. 2473–2487.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 177

BIBLIOGRAPHY

[133] D. Skvorc, M. Horvat, and S. Srbljic, “Performance evaluation of websocket

protocol for implementation of full-duplex web streams,” in 2014 37th Interna-

tional Convention on Information and Communication Technology, Electronics

and Microelectronics (MIPRO), IEEE, 2014, pp. 1003–1008.

[134] A. R. Biswas and R. Giaffreda, “IoT and cloud convergence: Opportunities

and challenges,” in 2014 IEEE World Forum on Internet of Things (WF-IoT),

IEEE, 2014, pp. 375–376.

[135] E. G. Petrakis, S. Sotiriadis, T. Soultanopoulos, P. T. Renta, R. Buyya, and

N. Bessis, “Internet of things as a service (itaas): Challenges and solutions

for management of sensor data on the cloud and the fog,” Internet of Things,

vol. 3, pp. 156–174, 2018.

[136] I. Baldini et al., “Serverless computing: Current trends and open problems,” in

Research advances in cloud computing, Springer, 2017, pp. 1–20.

[137] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications of function-

as-a-service computing,” in Proceedings of the 52nd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, 2019, pp. 1063–1075.

[138] Amazon Web Services. “Aws lambda.” (2022), [Online]. Available: https://

aws.amazon.com/lambda/faqs/ (visited on 01/19/2022).

[139] G. McGrath and P. R. Brenner, “Serverless computing: Design, implementa-

tion, and performance,” in 2017 IEEE 37th International Conference on Dis-

tributed Computing Systems Workshops (ICDCSW), IEEE, 2017, pp. 405–410.

[140] Amazon Web Services. “Amazon ec2 on-demand pricing.” (2022), [Online].

Available: https://aws.amazon.com/ec2/pricing/on- demand/ (visited

on 01/19/2022).

[141] ——, “Aws lambda pricing.” (2022), [Online]. Available: https://aws.amazon.

com/lambda/pricing/ (visited on 01/19/2022).

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 178

BIBLIOGRAPHY

[142] G. Adzic and R. Chatley, “Serverless computing: Economic and architectural

impact,” in Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, 2017, pp. 884–889.

[143] D Ferguson, C Pahl, M Helfert, A Jindal, and M Gerndt, “From devops to

noops: Is it worth it?” In Cloud Computing and Services Science10th Inter-

national Conference, CLOSER 2020, Prague, Czech Republic, May 7–9, 2020,

Revised Selected Papers, vol. 1399, 2021, pp. 178–202.

[144] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of serverless

computing,” Communications of the ACM, vol. 62, no. 12, pp. 44–54, 2019.

[145] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,

no. 1, pp. 30–39, 2017.

[146] S. Nastic et al., “A serverless real-time data analytics platform for edge com-

puting,” IEEE Internet Computing, vol. 21, no. 4, pp. 64–71, 2017.

[147] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar, “Towards

a serverless platform for edge {ai},” in 2nd {USENIX} Workshop on Hot Topics

in Edge Computing (HotEdge 19), 2019.

[148] S. Nastic and S. Dustdar, “Towards deviceless edge computing: Challenges,

design aspects, and models for serverless paradigm at the edge,” in The Essence

of Software Engineering, Springer, Cham, 2018, pp. 121–136.

[149] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing: Extending

serverless computing to the edge of the network,” in Proceedings of the 10th

ACM International Systems and Storage Conference, 2017, pp. 1–1.

[150] P. Persson and O. Angelsmark, “Kappa: Serverless IoT deployment,” in Pro-

ceedings of the 2nd International Workshop on Serverless Computing, 2017,

pp. 16–21.

[151] M. Blackstock and R. Lea, “Toward a distributed data flow platform for the

web of things (distributed node-red),” in Proceedings of the 5th International

Workshop on Web of Things, 2014, pp. 34–39.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 179

BIBLIOGRAPHY

[152] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-

edge computing architecture: The role of mec in the internet of things,” IEEE

Consumer Electronics Magazine, vol. 5, no. 4, pp. 84–91, 2016.

[153] R. Beudert, L. Juergensen, and J. Weiland, “Understanding smart machines:

How they will shape the future,” Schneider-Electric, 2015.

[154] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Com-

puter networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[155] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE

Trans. on industrial informatics, vol. 10, no. 4, pp. 2233–2243, 2014.

[156] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks: Chal-

lenges, design principles, and technical approaches,” IEEE Transactions on

industrial electronics, vol. 56, no. 10, pp. 4258–4265, 2009.

[157] F. Battaglia and L. L. Bello, “A novel jxta-based architecture for implementing

heterogenous networks of things,” Computer Communications, vol. 116, pp. 35–

62, 2018.

[158] M. Craciunescu, S. Mocanu, and G. Manea, “Towards practical integration

of wsn in cloud dedicated to smart environments,” in 2017 21st International

Conference on Control Systems and Computer Science (CSCS), IEEE, 2017,

pp. 447–452.

[159] Y. Guan, J. Shao, G. Wei, and M. Xie, “Data security and privacy in fog

computing,” IEEE Network, vol. 32, no. 5, pp. 106–111, 2018. doi: 10.1109/

MNET.2018.1700250.

[160] I. Azimi, A. Anzanpour, A. M. Rahmani, T. Pahikkala, M. Levorato, P. Lilje-

berg, and N. Dutt, “Hich: Hierarchical fog-assisted computing architecture for

healthcare iot,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s, 2017, issn:

1539-9087. doi: 10.1145/3126501.

[161] J. Zheng and M. J. Lee, “A comprehensive performance study of ieee 802.15.

4,” Sensor network operations, vol. 4, pp. 218–237, 2006.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 180

BIBLIOGRAPHY

[162] G. Mulligan, “The 6lowpan architecture,” in Proceedings of the 4th workshop

on Embedded networked sensors, 2007, pp. 78–82.

[163] I. Tomić and J. A. McCann, “A survey of potential security issues in existing

wireless sensor network protocols,” IEEE Internet of Things Journal, vol. 4,

no. 6, pp. 1910–1923, 2017. doi: 10.1109/JIOT.2017.2749883.

[164] S. Heron, “Advanced encryption standard (aes),” Network Security, vol. 2009,

no. 12, pp. 8–12, 2009.

[165] A. Di Nisio, T. Di Noia, C. G. C. Carducci, and M. Spadavecchia, “High dy-

namic range power consumption measurement in microcontroller-based appli-

cations,” IEEE Transactions on Instrumentation and Measurement, vol. 65,

no. 9, pp. 1968–1976, 2016.

[166] Keysight, MSOX3012A Mixed Signal Oscilloscope. [Online]. Available: https:

//www.keysight.com/en/pdx-x201841-pn-MSOX3012A/mixed-signal-

oscilloscope-100-mhz-2-analog-plus-16-digital-channels.

[167] K. Biswas, V. Muthukkumarasamy, X.-W. Wu, and K. Singh, “Performance

evaluation of block ciphers for wireless sensor networks,” in Adv. Comp. and

Communication Technologies, Springer, 2016, pp. 443–452.

[168] A. Famulari, F. Longo, G. Campobello, T. Bonald, and M. Scarpa, “A simple

architecture for secure and private data sharing solutions,” in 2014 IEEE Symp.

on Computers and Communications (ISCC), 2014, pp. 1–6. doi: 10.1109/

ISCC.2014.6912518.

[169] R. Srivastava, S. M. Ladwa, A. Bhattacharya, and A. Kumar, “A fast and

accurate performance analysis of beaconless ieee 802.15. 4 multi-hop networks,”

Ad Hoc Networks, vol. 37, pp. 435–459, 2016.

[170] G. W. Stewart, “On the early history of the singular value decomposition,”

SIAM Review, vol. 35, no. 4, pp. 551–566, 1993.

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 181

BIBLIOGRAPHY

[171] G. Campobello, A. Segreto, and S. Serrano, “Data Gathering Techniques for

Wireless Sensor Networks: A Comparison,” Int. J. of Distributed Sensor Net-

works, vol. 12, 4156358:1–4156358:17, 2016. doi: 10.1155/2016/4156358.

[172] G. Campobello, S. Serrano, A. Leonardi, and S. Palazzo, “Trade-Offs between

Energy Saving and Reliability in Low Duty Cycle Wireless Sensor Networks

Using a Packet Splitting Forwarding Technique,” EURASIP Journal on Wire-

less Communications and Networking, vol. 2010, 8:1–8:11, 2010. doi: 10.1155/

2010/932345.

[173] A. Varga, “Omnet++,” in Modeling and tools for network simulation, Springer,

2010, pp. 35–59.

[174] K. Montgomery, R. Candell, M. Hany, and Y. Liu, Wireless User Require-

ments for the Factory Workcell. National Institute of Standards and Tech-

nology (NIST), 2021. [Online]. Available: https : / / nvlpubs . nist . gov /

nistpubs/ams/NIST.AMS.300-8r1-upd.pdf.

[175] G. Dhand and S. Tyagi, “Data aggregation techniques in wsn:survey,” Procedia

Computer Science, vol. 92, pp. 378–384, 2016, 2nd Int. Conf. on Intelligent

Computing, Communication & Convergence, ICCC 2016, 24-25 January 2016,

Bhubaneswar, Odisha, India, issn: 1877-0509. doi: https://doi.org/10.

1016/j.procs.2016.07.393.

[176] N. John and A Jyotsna, “A survey on energy efficient tree-based data aggre-

gation techniques in wireless sensor networks,” in 2018 Int. Conf. on Inven-

tive Research in Computing Applications (ICIRCA), 2018, pp. 461–465. doi:

10.1109/ICIRCA.2018.8597222.

[177] G. Campobello, A. Leonardi, and S. Palazzo, “On the use of chinese remainder

theorem for energy saving in wireless sensor networks,” in 2008 IEEE Interna-

tional Conference on Communications, IEEE, 2008, pp. 2723–2727.

[178] G. Campobello, A. Segreto, S. Zanafi, and S. Serrano, “Rake: A simple and

efficient lossless compression algorithm for the internet of things,” in 2017 25th

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 182

BIBLIOGRAPHY

European Signal Processing Conference (EUSIPCO), 2017, pp. 2581–2585. doi:

10.23919/EUSIPCO.2017.8081677.

[179] Z. Benomar, G. Campobello, F. Longo, G. Merlino, and A. Puliafito, “A new

fog-enabled wireless sensor network architecture for industrial internet of things

applications,” in 24th IMEKO TC4 International Symposium, 2020, pp. 179–

184.

[180] G. Campobello, A. Segreto, and N. Donato, “A new frequency estimation algo-

rithm for iiot applications and low-cost instrumentation,” in 2020 IEEE Inter-

national Instrumentation and Measurement Technology Conference (I2MTC),

IEEE, 2020, pp. 1–5.

[181] F. Giust, X. Costa-Perez, and A. Reznik, “Multi-access edge computing: An

overview of etsi mec isg,” IEEE 5G Tech Focus, vol. 1, no. 4, p. 4, 2017.

[182] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for software re-

juvenation,” IEEE Transactions on Dependable and Secure Computing, vol. 2,

no. 2, pp. 124–137, 2005.

END

A service-oriented architecture for IoT infrastructure and Fog-minded DevOps 183

